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Abstract

When systems and subsystems are put under external shocks and duress, they suffer

physical and economic collapse. The ability of the system components to recover

and operate at new stable production levels characterizes resilience. This research

addresses the problem of estimating, quantifying and planning for resilience in inter-

dependent systems, where interconnectedness adds to problem complexity. Interde-

pendence drives the behavior of sectors before and after disruptions. Among other

approaches this study concentrates on economic interdependence because it provides

insights into other levels of interdependence. For sectors the normalized losses in

economic outputs and demands are suitable metrics for measuring interdependent

risk. As such the inoperability input-output model enterprise is employed and ex-

panded in this study to provide a useful tool for measuring the cascading effects of

disruptions across large-scale interdependent infrastructure systems. This research

defines economic resilience for interdependent infrastructures as an “ability exhibited

by such systems that allows them to recover productivity after a disruptive event in

a desired time and/or with an acceptable cost”. Through the dynamic interdepen-

dent risk model resilience for a disrupted infrastructure is quantified in terms of its

average system functionality, maximum loss in functionality and the time to recovery,

which make up a resilience estimation decision-space. Estimating such a decision-

space through the dynamic model depends upon the estimation of the rate parameter

in the model. This research proposes a new approach, based on dynamic data assim-

ilation methods, for estimating the rate parameter and strengthening post-disaster

resilience of economic systems. The solution to the data assimilation problem gener-

ates estimates for the rate of resilient recovery that reflects planning considerations

xii



interpreted as commodity substitutions, inventory management and incorporating re-

dundancies. The research also presents a robust optimization based risk management

approach for strengthening interdependent static resilience estimation. There is a

paucity of research dealing with quantification and assessment of uncertainties in in-

terdependency models. The focus here is more on the extreme bounds of event and

data uncertainties. The deterministic optimization becomes a robust optimization

problem when extremes of uncertainties are considered. Computationally tractable

robust counterparts to nominal problems are presented here. Also presented in this

research is a discrete event simulation based queuing model for studying multi-modal

transportation systems with particular focus on inland waterway ports. Such models

are used for impact analysis studies of inland port disruptions. They can be integrated

with the resilience planning methodologies to develop a framework for large-scale in-

terdependent risk and recovery analysis.
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Chapter 1

Introduction and Motivation

1.1 Overview

Many large-scale systems and critical industries such as transportation, telecommu-

nications, power, and banking share significant resources, and the flow of goods and

information constantly takes place among these different industry sectors. Realizing

the interdependent nature of US infrastructure and industry sectors, the Department

of Homeland Security (DHS) stresses the urgency and need to protect infrastructures

(DHS., 2009):

Attacks on Critical Infrastructure and Key Resources (CIKR) could signifi-
cantly disrupt the functioning of government and business alike and produce
cascading effects far beyond the targeted sector and physical location of the
incident. Direct terrorist attacks and natural, manmade, or technological haz-
ards could produce catastrophic losses in terms of human casualties, property
destruction, and economic effects, as well as profound damage to public morale
and confidence.

Hence, increased connectivity of today’s infrastructure systems (Pederson et al., 2006)

has meant that direct impacts of disruptions lead to cascading indirect impacts called

multiplier effects (Santos, 2006). For the economic health and security of a region,

‘lifeline’ infrastructures like transportation systems, emergency services and informa-

tion and communications technology (ICT) need to be at full or almost full function-

ality during disruptive times.

With focus on security and global threats the approach towards infrastructure

protection has lead to changes in viewpoints on the importance of infrastructures for a
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functioning society. The definition of ‘infrastructures’ has been evolving over the years

due to changing threat perceptions. For considerable time US public policy makers

considered infrastructures as economic facilities with “the common characteristics of

capital intensiveness and high public investment at all levels of government” (CBO.,

1983). The Clinton Executive Order (Clinton, 1996) redefined infrastructures in a

security context as:

The framework of interdependent networks and systems comprising identifiable
industries, institutions (including people and procedures), and distribution
capabilities that provide a reliable flow of products and services essential to
the defense and economic security of the United States, the smooth functioning
of government at all levels, and society as a whole.

Making ‘protection’ the central theme of national infrastructure security the Critical

Infrastructure Protection (CIP) was a Presidential Directive (Clinton, 1998) that

reflected the prevailing mandate at the time.

In recent years some extreme impacts of local and global significance have altered

the thought process incorporated in the CIP approach. The September 11, 2001 ter-

rorist attack on the World Trade Center (Kendra & Wachtendorf, 2003) highlighted

the fact that protection and prevention against man-made disruptions is not always

possible. Moreover monitoring and safeguarding against global human threats arising

from different sources likes pandemics (H1N1, H5N1) and bio-chemical weapons is al-

most impossible. Also extreme weather events like hurricanes Katrina and Ike (Blake

et al., 2007) have shown that some events are just too big and extreme to protect

against. As such there has been an increased understanding that it is not possible

to protect every potential target against every conceivable attack and eliminate all

vulnerabilities (CITK., 2006).

While little can be done to prevent the occurrences of all extreme events, pre-

ventive measures help in lessening the impact of resulting disruptions. Interest lies

in predicting the adverse impacts of disruptive events in an interdependent economy

2



and evaluating risk management efforts to lessen these impacts. Since infrastruc-

ture interconnectedness leads to improved efficiency during normal operations there

is interest in preserving interdependence during disruptions because it can be utilized

for speedy recoveries. Due to the practicality of such an approach there has been a

paradigm shift in infrastructure security, where the emphasis on ‘preparedness and

response’ has been added to the ‘protection and prevention’ approach.

The Critical Infrastructure Resilience (CIR) (CITK., 2006) highlights the new take

in policy making by introducing resilience as the overarching objective for safeguard-

ing against risk. In its broadest definition and scope, as specified by the Infrastructure

Security Partnership (TISP) (2011), a resilient sector would “prepare for, prevent,

protect against, respond or mitigate any anticipated or unexpected significant threat

or event”, and “rapidly recover and reconstitute critical assets, operations, and ser-

vices with minimum damage and disruption”. Resilience has been incorporated into

the security lexicon and the DHS National Infrastructure Protection Plan (NIPP)

stresses the importance of building a resilient society (DHS., 2009):

Build a safer, more secure, and more resilient America by preventing, de-
terring, neutralizing, or mitigating the effects of deliberate efforts by terror-
ists to destroy, incapacitate, or exploit elements of our Nation’s CIKR, and
to strengthen national preparedness, timely response, and rapid recovery of
CIKR in the event of an attack, natural disaster, or other emergency.

To help realize the goal of improving interdependent infrastructure resilience to dis-

ruptions a concentrated research effort is required to understand the very nature of

the problem at hand. Some relevant questions that need to be answered are: (i) What

factors characterize interdependent infrastructure behaviors? (ii) How do we quantify

interdependence and measure the system performances in terms of such interdepen-

dence? (iii) How is the interdependent performance eroded due to disruptive events

and how can this erosion be quantified? (iv) Are there indicators in the interdepen-

dent sectors behaviors that exhibit properties of resilience and recovery? (v) How do

3



we quantify the resilience through the properties that are inherent in the system and

then enhance such resilience by strengthening such properties? (vi) What quantifi-

able planning strategies can be constructed to improve resilience and what aspects

of the system do these strategies concentrate on? and (vii) Can an overall resilience

estimation and planning framework be formalized and implemented practically?

1.2 Defining resilience and its domains

With current emphasis on resilience estimation and system preparedness, develop-

ing a quantifiable resilience estimation methodology presents an interesting research

challenge. To this end, the research presented here aims to construct a resilience

framework for interdependent infrastructure systems. The questions posed above

have been answered in detail in the subsequent development of this work, to come

up with a framework that is capable of quantifying system resilience to impacts on

interdependent infrastructures that are of homeland security and national interest.

The primary research interest lies in analyzing large-scale infrastructure systems,

like industry sectors, that are of socio-economic importance. For such systems, in-

terdependence exists across many layers and over time increases, leading to physical,

cyber, geographical, and logical interdependencies across sectors (Rinaldi et al., 2001).

A broad analysis of interdependence would entail capturing all structural details ex-

plaining interactive system behaviors. But such analysis becomes system specific and

is too complex to solve beyond a certain point. The problem is simplified if we con-

centrate on one aspect of interdependence that is good enough to explain most of

interactive system behaviors.

Economic interactions among sectors provide suitable measures around which in-

terdependence can be estimated and expanded to a generalized framework. The level

of economic interdependence between infrastructure systems can be used as an in-

4



dicator of other levels of interdependence to some degree. For large-scale industry

sectors economic consequences of impacts are major drivers during recovery planning

and decision-making. Understanding interdependent impacts in terms of business

economic interruptions has been considered to be a useful tool for analyzing the

capabilities of such systems to withstand disruptions (Tierney, 1997; Rose & Liao,

2005). Measures that quantify losses due to economic interruptions provide suitable

metrics around which resilience can be expressed and planning can be considered.

With emphasis on economic aspects of interdependent behavior, this research

concentrates on developing a quantifiable economic resilience estimation framework.

Such a framework is applicable to studies of large-scale infrastructure recovery be-

haviors from extreme weather related events to man-made impacts. Before going into

further details the definition of economic resilience that has been proposed in this

study is presented here.

Economic resilience for interdependent infrastructures describes an ability ex-
hibited by such systems that allows them to recover productivity after a dis-
ruptive event in a desired time and/or with an acceptable cost, noting that
resilience is planned for in advance of a disruptive event through preparedness
policies and investments. Economic resilience planning leads systems towards
targeted stable levels of productivity which indicate their recovery from dis-
ruptions.

Some of the aspects of system resilience defined above come from the properties of

the infrastructure systems that are being analyzed. Large-scale infrastructures have

similar properties to macro-economic systems that are spread over vast geographic

and economic domains. As such most disruptive impacts can be absorbed by such

systems without complete loss of functionality because there are several mechanisms

in place to cope with the disruptive events. The recent Japanese earthquake and

tsunami (Fackler, 2011) caused unprecedented loss of life and economic productivity,

while an off-season snowstorm along the East-Coast of the US caused widespread

electricity blackouts leading to business disruptions (Allen, 2011). But in the end
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economies have recovered from such adverse impacts. Therefore there exists an in-

herent resilience (Rose, 2004a) property that is present due to measures that are

already part of the system. There is a general understanding that in macro-economic

systems such resilience is realized through either the availability of resources (inven-

tories) that are in place or the market prices that drive resource allocations towards

necessary consumers and thus satisfy incomplete demands (Rose, 2007). The business

coping behavior or community response properties (Tierney, 1997) are thus contribu-

tors towards inherent resilience properties. For economic systems inherent or inbuilt

resilience can be quantified through the amount of economic losses they are able to

avoid immediately after a disruptive event.

Having established that there would be some capability inherently present in the

systems that allows for recovery, the research emphasis here is to improve on such ca-

pabilities. As highlighted through the definition above, improving resilience requires

a planning mechanism that leads towards better system performance. Hence this

research provides decision-making methods that help in resilience planning and esti-

mation for disruptive recovery of interdependent economic systems. Disruptions in

economic systems at the macro level result in losses of market supplies and demands

that materialize themselves as interdependent risks. Such risks are instrumental in

establishing the resilience planning objectives in two types of domains

1. Static resilience planning domain - In the framework presented here, when in-

terest lies in improving the long term recovery behavior of the infrastructures

after disruptions, then the resilience planning is said to be static resilience plan-

ning. Primarily the focus is to quantify the disruptive system response that is

time independent and only concerned with the long term capability of the sys-

tem to rearrange itself. The path taken towards recovery is irrelevant and the

only driving factor for system resilience is its capability to withstand the initial

disruptive impacts. In terms of estimating and quantifying such resilience, the
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demand side risks of the macroeconomy provide suitable measures.

2. Dynamic resilience planning domain - When the short-term recovery behavior

of interdependent systems needs to be improved then the planning involves

understanding the path the system takes from the onset of disruption up until

any given time. Such behavior shows properties that can indicate dynamic

resilience planning. The quantification of the dynamic system responses helps

establish the dynamic resilience planning measures. Both demand and supply

side driven economic risks drive the dynamic interdependent system responses

and are fundamental in establishing the measures for such resilience planning.

In establishing an improved dynamic response leading to strengthened system re-

silience there is also scope for incorporating new measures that help the system with-

stand further impacts and update its response to future disruptions. As such, it can

be said that the planning introduces an adaptive resilience (Rose, 2004a) capability

into the system behavior. Adaptive response comes from extra effort and ingenuity

(Rose, 2007) that leads to system enhancement, and for interdependent economic

systems it can be realized through adaptive responses in organizational responses in

the public and private domains (Comfort, 1999).

1.3 Components of a resilience framework and research ap-

proaches

Having established a broad definition for economic resilience and the primary types

and domains of resilience of interest in this research, there is a need to establish a

resilience framework. An understanding needs to be developed about the primary

elements that motivate the formation of the framework in the first place. We look at

the research approaches that have been undertaken and highlight the motivation for
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using our approach. Figure 1.1 shows the two principle elements of a resilience frame-

work that need to be understood in a quantitative fashion. The resilience framework

is built around these components, which are respectively (i) the interdependence of

infrastructures, and (ii) the nature of the response and recovery of each infrastructure.

1.3.1 Modeling interdependence

Due to underlying interdependence, many industry and infrastructure sectors face

direct and indirect risks due to disruptive events. The potentially wide-ranging indi-

rect losses due to the cascading effects of disruptions in such interconnected systems

(Rinaldi et al., 2001) are often greater than the direct impacts (Jiang & Haimes,

2004) of such disruptions. Hence, from a risk analysis perspective, an understanding

of the impacts of a man-made attack, accident, or natural disaster must account for

the interdependencies among industry and infrastructure sectors (Heal et al., 2006).

Studies on potential disruptions due to earthquakes and floods (Cavallo et al., 2010),

terrorist attacks (Gordon et al., 2007; Rose, 2009b), and power outages (Cavdaroglu

et al., 2010), among others (Noy, 2009), have focused on interdependence of systems.

The different research approaches suggested for studying infrastructure interde-

pendence include agent-based models (Bonabeau, 2002; Outkin et al., 2008), network

models (Zhang et al., 2005; Lee et al., 2009), survey and expert judgement based

models (Markowsky, 2009), among others (Pederson et al., 2006). Even though there

are several merits of such schemes their scope in analyzing large-scale infrastructures

is limited either by computational complexities and logistic elements (network mod-

els) or they have been designed for system specific interdependence estimations. As

such the most widely used class of models for interdependent infrastructure analy-

sis come from the Leontief based economic input-output family of models (Leontief,

1966). Explained in brief, the economic input-output models represent the equilib-
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Figure 1.1: Establishing the two main elements of the resilience framework.

9



rium balance in demand and supply for a system of many interconnected industries

and thus are natural indicators for interdependence. These models are supported

by vast data resources across the world (Atkinson et al., 1995; BEA., 2011). A few

interesting applications that have incorporated the economic input-output models in

large-scale interdependent system analysis include environmental life-cycle assessment

(Hendrickson et al., 1998), hurricane damage assessment (Hallegatte, 2007, 2008)

and earthquake impact analysis (Brookshire et al., 1997), terrorist attack impacts

on ports (Gordon et al., 2005), analysis of electricity lifeline disruptions (Rose et al.,

1997). Input-output model analysis has also been incorporated into broader modeling

frameworks such as transportation network analysis models for spatial and temporal

analysis of lifeline structures (Cho et al., 2001; Okuyama et al., 2004).

A risk-based extension to the economic input-output model is the inoperability

input-output model (IIM). Introduced by (Haimes & Jiang, 2001), in the IIM study

sector-wise economic risk is measured in terms of: (i) inoperability, or the fractional

loss of industry economic output relative to its pre-disruption as-planned output level,

and (ii) demand perturbation, or the fractional loss of sector final demand relative

to its pre-disaster as-planned output level. Extensions of the model to dynamic

(Lian & Haimes, 2006) and multi-regional (Crowther, 2007; Crowther & Haimes,

2010) analysis frameworks have been made. The static intra- and multi-regional IIMs

are in fact normalized notions of the economic input-output model and thus bear

structural resemblance to the economic input-output models. The rational behind

using these models is that they provide metrics which allow for a comparative scale

to measure the degrees of risk among interacting sectors. While economic sector

outputs and demands might vary across a wide range depending upon the volume of

commerce of sectors, the normalized IIM evaluates risk on the same scale allowing

for comparison of disruption impacts on sectors. It might be of decision-making

interest to evaluate economic impacts in terms of the fraction of damage instead of
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the amount of damage so that the decision-making is not biased towards the bigger

economic systems. Though the dynamic IIMs are also built from normalizing the

dynamic economic input-output models their interpretation of the dynamic rate terms

are different. Insights into dynamic impact and recovery, which are not captured by

the dynamic economic input-output models, can be provided through the dynamic

risk models.

The IIM enterprise, including the dynamic and also multi-regional models, has

been applied in numerous risk modeling applications, including: malevolent attacks

(Andrijcic & Horowitz, 2006; Haimes et al., 2005b), supply chain disruptions (Wei

et al., 2010; Barker & Santos, 2010a), workforce availability (Barker & Santos, 2010b;

Orsi & Santos, 2010), transportation disruptions (Pant et al., 2011; MacKenzie et al.,

2012a), and resource sustainability (Santos et al., 2008).

1.3.2 Resilience estimation

The importance of resilience in infrastructures has already been stressed so now its

important to understand the meaning of resilience for different users. Different view-

points about resilience exist within the research community (Rose, 2007), but there

is consensus that resilience estimation is vital for risk decision-making (Klein et al.,

2003). The main difference of opinion in defining and understanding resilience arises

between the engineering approach that resilient recovery occurs by moving towards

the previous stable state (Bruneau et al., 2003), and the ecological approach that

resilience is developed to move towards a different system state (Handmer & Dovers,

1996). The original definition of resilience is attributed to Holling (1973) who stated

that for ecological systems resilience is “a measure of the persistence of systems and

of their ability to absorb change and disturbance and still maintain the same rela-

tionships between populations or state variables”. Since then there have been several

definitions of resilience across different disciplines, which has led some to question the
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relevance of the term in research (Klein et al., 2003; Rose, 2007, 2009a). Table 1.1

highlights some interpretations of resilience that have been misunderstood with other

concepts used in disaster management.

Table 1.1: Different resilience definitions and conflicts in research.

Author Definition Comment

Holling (1973) resilience implies ability to
bounce back to original stability

Resilience can still exist
after fluctuations lead to
another state not neces-
sarily stable

Mileti (1999) “...a resilient community...takes
mitigation actions consistent with
achieving that level of protec-
tion.”

Mitigation is imple-
mented before a dis-
ruption and resilience
after.

Timmerman
(1981); Pelling
(2003)

in context to hazard vulnerabil-
ity “...resilience to natural haz-
ards is the ability of an individual
to cope with or adapt to hazard
stress”

Resilience is post-
disaster condition and
vulnerability is pre-
disaster.

Bruneau et al.
(2003)

resilience results in reduced prob-
ability of failure and reduced con-
sequences of failure.

Failure probability is re-
duced through mitiga-
tion and not resilience.

Godschalk
(2004)

“future mitigation programs must
also focus on teaching the city’s
social communities and institu-
tions to reduce hazard risk and re-
spond effectively to disasters, be-
cause they will be the ones most
responsible for building ultimate
urban resilience.”

Resilience and mitigation
are unrelated.

Primarily resilience has been defined in context to the speed of systems to go

towards equilibrium (Adger, 2000), capability to cope and bounce back (Wildavsky,

1988), ability to adapt to new situations (Comfort, 1999), be inherently strong and

flexible and adaptive (Tierney & Bruneau, 2007), ability to withstand external im-
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pacts and recover with least outside interferences (Mileti, 1999).

Economic resilience has been defined as the “inherent ability and adaptive response

that enables firms and regions to avoid maximum potential losses” (Rose & Liao,

2005). Mainly economic resilience has been studied in context to seismic response

and recovery (Tierney, 1997; Bruneau et al., 2003), community behavior (Chang &

Shinozuka, 2004) and disaster hazard analysis (Rose, 2004b), among others (Rose,

2009a).

Even though there are different opinions in defining resilience there is some con-

sensus in the measurement of system resilience. Generally resilience in measured in

terms of the amount by which the system is able to avoid maximum impact (static

resilience (Rose, 2004a)/robustness (McDaniels et al., 2008)) and the speed at which

the system recovers from a disruption (dynamic resilience (Rose, 2004a)/ rapidity

(Zobel, 2010)). In recent work Vugrin et al. (2010) have developed an economic

resilience framework for measuring the targeted economic response of infrastructures.

1.4 Building resilience for large-scale infrastructures - ap-

proach and contributions

Several research components are considered here in building the resilience estimation

framework for interdependent economic systems.

1.4.1 Interdependence modeling

This research study addresses the problem of estimating, quantifying and planning

for resilience in interdependent systems, where interconnectedness adds to problem

complexity. Understanding interdependence is critical for the development of the

framework proposed here. The ultimate usefulness of understanding interdependent

impacts, particularly from the standpoint of a preparedness decision maker, is not
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just a descriptor of property damage, but of business economic interruption (Tierney,

1997; Rose & Liao, 2005). That is, at the heart of understanding and planning for

disruptive events is the quantification of (i) dollars of losses, and (ii) extent of and

duration of system inoperability. The study of physical models of interdependency

provides little benefit unless they are ultimately translated into those quantities. As

such, this work focusses on modeling economic resilience in interdependent infrastruc-

tures and industries.

The input-output based models (Leontief, 1941; Haimes & Jiang, 2001) are uti-

lized here for understanding and building an interdependent resilience framework.

In particular the inoperability input-output enterprise provides a suitable framework

on which interdependent infrastructure resilience concepts can be built. As out-

lined before, interdependence modeling is not a problem in these models due to the

availability of economic input-output data. Moreover, economic interactions between

infrastructures can be integrated with physical attributes to strengthen resilience es-

timations. During disruptions the inability of economic sectors to supply products or

the loss of demand for commodities is an indicative of possible physical damages to

infrastructure systems.

Rose (2007) points out that there is a similarity of the inoperability input-output

model with static resilience estimation. Also the dynamic inoperability input-output

model (DIIM), based on the economic input-output model, captures the interconnect-

edness of infrastructures and models recovery from disruptions. Hence, it is a useful

resilience construct that captures dynamic aspects of resilient recovery. This research

interprets and extends the inoperability input-output model capabilities of resilience

estimation.

One way to develop resilience to economic losses would be by maintaining product

inventories which reflect physical actions. In its present formulation the DIIM assumes

that resilience comes from within a sector (Lian & Haimes, 2006). Such a treatment
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of resilience does not account for the interdependent effects of product substitution

and inventory management. This research expands the capabilities of the DIIM in

capturing such effects.

1.4.2 Risk management and system performance planning

In order to improve interdependent infrastructure resilience, this work provides a

structured decision-making approach. Emphasis has been given to devising strategies

to reduce infrastructure losses (Grabowski & Roberts, 1997), and this study seeks

to provide an approach to quantify the efficacy of such strategies that prepare for

timely post-disaster infrastructure functionality and performance, with emphasis on

the interdependent relationships among infrastructures.

In the estimation of a static resilience planning the IIM can measure the efficacy

of preparedness strategies in interdependent infrastructures by quantifying measures

of interdependent inoperability and economic loss that may result from a disruptive

event. Developing and choosing such a strategy requires quantitative trade-off anal-

yses among different metrics such as cost, benefit, and risk, where interdependent

sector risk is measured with the IIM. While the IIM can be used in a descriptive

manner to model inoperability and economic loss resulting from a disruptive event,

the ultimate usefulness of the model comes from its prescriptive ability to quantify

how the implementation of risk management can lessen the interdependent impacts of

a disruptive event. There are numerous ways to plan for risk management of interde-

pendent systems using the IIM metrics (Jiang & Haimes, 2004; Anderson et al., 2007;

Crowther, 2008). The risk management approach suggested here assumes that there

exist planning policies that lead to reduction the demand losses, which translates to

reduced economic losses. Planning economic loss reduction policy distributions based

on the availability of budgets or deciding the budgets required for allowable economic

losses provide two perspectives of the risk management decision-making. Such an
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approach contributes a simple scheme that adds to the capabilities of the IIM-based

interdependent risk evaluation. Presenting the problem as a scheme to strengthen

static resilience strengthening scheme is a new research approach.

Dynamic resilience explained through a model extension of the DIIM is also based

on a planning decision. Such planning is aimed at making the model confirm to tar-

geted behaviors that are representative of system resilience. The meaning and inter-

pretation of dynamic resilience comes from certain properties that systems exhibit.

In this research, dynamic resilience of a disrupted system is quantified in terms of

three metrics: (i) average level of system operability/functionality (ii) maximum in-

operability/loss of functionality, and (iii) time to recovery. These three metrics can

be utilized to generate performance criteria for the dynamic behavior of interdepen-

dent recoveries. Specifically for large-scale interdependent systems that are being

studied here the resilience quantification from the performance target-based planning

approach is a new concept introduced here. Most of the models that discuss infras-

tructure resilience are limited in their treatment of quantifying the interdependent

nature of resilience. Similar metrics exist in engineering resilience methods (Bruneau

et al., 2003) but have been used it in a qualitative manner to discuss the collective

resilience of systems. Quantitative treatment has been limited to individual systems

(Zobel, 2011). Due to the wide scope of the input-output model the dynamic resilience

estimation methods are applicable to many systems in unison. Network-based mod-

els have been used to quantify combined resilience for transportation (Dueñas-Osorio

et al., 2007) or ICT systems (Ulieru, 2007), but they have to be infrastructure and

network specific.

The dynamic resilience planning methods add more meaning to the resilience in-

terpretation of the previous dynamic risk input-output schemes. It is shown, that

in particular for resilient recovery, it is desirable for a sector to maintain stock of

other sectors for utilization during recovery. Maintaining stock inventory would help
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a sector be prepared for the disruption in advance, thus providing an inherent in-

terdependent resilience. Also adaptive resilience, which for interdependent sectors is

achieved through changes in production and modified flows of resources when disrup-

tions occur, can be quantified through the methods presented here. Previous DIIM

research has ignored such effects and assumed that the interdependency structure

remains invariant for entire analysis. Many researchers have pointed out that use of

input-output models for disruption modeling should account for such changes (Ku-

jawski, 2006; Hallegatte, 2008). Our methods account for updated interdependency

structures between infrastructures reflecting new market situations as a result of dis-

ruptions.

In most resilience estimation studies, the notion of equilibrium is central to sys-

tem recovery. The engineering resilience view (Bruneau et al., 2003; McDaniels et al.,

2008; Zobel, 2011), shared by TISP, associates resilience with the ability to return to

previous levels of stability. Rose & Liao (2005) have argued that for some disruptions

economic systems cannot return to original stability levels. Nonetheless their eco-

nomic resilience approaches are based on the notion that resilience leads to attaining

different levels of equilibrium. Regional economies do not remain at equilibrium and

hence resilience is truly adaptive if it impacts economic evolution (Simmie & Martin,

2010). Associating resilience with constant change is becoming a popular notion due

to evolutionary nature of economic systems (Pendall et al., 2010). Though not dis-

cussed explicitly here, the approach presented in this research is capable of extending

the “constant change” notion to interdependent resilience.

1.4.3 Mathematical concepts developed

Evaluation of model feasibility

It is important is establish the feasibility of the models being developed. The input

data and output metrics in the interdependency models are constructed to confirm to
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real-world economic properties. Hence there are certain mathematical rules that the

models should confirm to. In the static models the existence of the matrix inverses

are critical for model solutions, while in dynamic models the stability of the system

is important for the existence of feasible solutions. Since there are matrices involved

here, eigenvalue analysis (Hu et al., 1998; Meyer, 2000; Lewis et al., 2006) is utilized to

understand system behaviors. In particular the Greshgorins Circle Theorem (Moon

& Stirling, 2000) has been utilized here to show the possible ranges of values of the

dynamic system rate matrix elements that are required for stable solutions. Such

mathematical treatment of these models has been missing from literature.

1.4.4 Robust optimization in static resilience planning

Risk studies of infrastructures requires quantification of the disruptive events and the

underlying interdependent complexities of the systems. A deterministic approach for

such problems has limited scope (Rose, 2004b), making uncertainty-based analysis

a logical alternative. Sources of epistemic and aleatory uncertainties (Paté-Cornell,

1996; Haimes, 2009) arising due to unreliable data and limitations in disaster pre-

dictions need to be included in the analysis approach. In interdependent systems

the exact relationships between the elements at the physical or economic level may

be unknown though estimable, thereby creating scope for analyses that incorporate

approaches such as structural fragility (Kim et al., 2007), covariance structure esti-

mates (Hays & Kachi, 2008) and auto-regressive estimates (Bessler & Yang, 2003).

Hence, many approaches have incorporated uncertainty in the modeling of interde-

pendent sectors, including agent-based models (Lewis, 2006), discrete simulations and

dynamic models (Brown et al., 2004; Min et al., 2007), among others.

Incorporating uncertainties in systems analyses increase the scope for decision

making in planning and management for extreme events. Risk-based decision mak-

ing involves finding optimal solutions to single or multiple objectives that provide
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guidelines to minimize risk while optimizing any number of other often competing

objectives. Since seminal works by Dantzig (1955) and Charnes & Cooper (1959),

stochastic optimization methods for decision making under uncertainty have been

widely developed (Infanger, 1994; Kall & Mayer, 2010). These methods assume that

underlying probability distributions for uncertain model parameters are know from

historical data, and therefore future predictions are governed by past distributions.

Decisions made from probability-driven optimal solutions are only as good as those

underlying probability distributions (Huber, 2010). Some of these inaccuracies are

addressed by the robust optimization framework (Soyster, 1973), that provides de-

cision making solutions that are feasible and distribution independent. And since

often is the case in risk-based decision making that we seek not the best option but

rather to avoid making a bad decision, robust decision making can reflect worst case

scenarios. Due to their ability to account for uncertainty in underlying parameters,

robust optimization has seen several recent theoretical and methodological develop-

ments (Ben-Tal & Nemirovski, 2000; Ben-Tal et al., 2006; Atamturk & Zhang, 2007;

Ben-Tal et al., 2009). While robust decision making has been applied in analyses of

individual systems, e.g., inventory control (Bertsimas & Thiele, 2006; Bienstock &

Özbay, 2008), its application to interdependent systems is limited.

Data assimilation in dynamic resilience planning

The dynamic resilience planning is a problem of estimating the rate parameter of the

dynamic risk input-output model. Having set planned targets for the resilience met-

rics the dynamic resilience behavior is established by calibrating the model to meet

the prescribed target values. Model calibration and prediction is a very widely used

approach based on linear or non-linear least-square fit methods (Draper & Smith,

1998). If the model is dynamic, as is the case here, then the parameter estima-

tion problem is a data assimilation scheme where data are combined with results
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from a predictive model to produce an estimate of the current state of the system

(Lewis et al., 2006). The data assimilation problem developed here is solved using

a forward sensitivity approach, in which parameter sensitivities are critical for the

problem solution (Lakshmivarahan & Lewis, 2010). Data assimilation is typically

used in forecasting, particularly in weather forecasting (Kanamitsu, 1989; Kalnay,

2003), hydrology (Reichle et al., 2002), among others (Lewis et al., 2006). No lit-

erature is available on the use of data assimilation to describe dynamic recovery of

disrupted infrastructure and economic systems, considering its great potential for use

in interdependent resilience planning.

1.5 Inland waterway applications

The application of the methods developed in this research can be made on multi-

modal transportation systems and in particular inland waterway ports and network

systems. Multi-modal transportation systems, identified by DHS to be among the

critical US infrastructures (DHS., 2009), play a significant role in maintaining com-

modity flows across industries, and preserving the functionality of a multi-regional

interdependent economy. A disruptive event that causes inoperability of the multi-

modal transportation network is propagated to industry demand and supply, thereby

causing production losses. For example, in 2002, Oklahoma witnessed the collapse of

an I-40 bridge spanning the Arkansas River, due to a barge collision with a bridge

pylon. The resulting daily detouring of 22,000 vehicles caused congestion, secondary

road infrastructure accelerated wear and other economic losses that persisted for

nearly two months, as the bridge was repaired (Schmitt et al., 2010). Similarly, the

I-35W bridge collapse over the Mississippi river in Minneapolis, Minnesota caused

the daily rerouting of 140,000 vehicles (Zhu et al., 2010) with a significant adverse

economic impact. Events like these make risk analysis of freight disruptions an impor-
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tant research topic. Furthermore, the risks of larger-scale disruptive events, such as

earthquakes and malevolent man-made attacks, could result in the protracted closure

of key transportation facilities such as rail yards, cargo terminals, airports, seaports,

or inland ports. Multi-modal risk assessment studies of various sorts have appeared

recently (Sohn et al., 2004; Ham et al., 2005a,b; Tatano & Tsuchiya, 2008; Ishfaq

& Sox, 2010); though risk studies of inland port disruptions have been particularly

sparse in number. Transfer facilities, such as inland ports, are the locations that

are particularly susceptible to disruptions in commodity flows that can cause losses

of demand and supply to certain industries, which then propagate among other in-

terdependent intra- and inter-regional industries. Inland port operations that are

susceptible to disruptions include commodity arrivals at port, storage at unloading

yards, transfer to docks by cranes, loading onto vessels, and departure to destinations.

Inland waterways, although prominent in North America, are even more common in

the European economy (Rodrigue et al., 2010).

The risk-based interdependency model quantifies the propagation of inoperabil-

ity, or the extent to which industry output will not be produced, through a set of

interconnected industry sectors. Operations at inland ports can be modeled through

simulations as queueing systems capable of quantifying the number of commodities at

each point of operation. By comparing the normal port operations with the disrupted

port operations, the difference in number of arrivals and departures can be obtained

to measure the losses for commodities/industries that use the port. Quantifying these

losses respectively as loss in demand for the exporting region and loss in supply and

demand for the importing region provides parameters for the risk input-output mod-

els. The interdependent nature of these models then cascades these losses to other

industries locally and across regions, thereby providing an estimate for large-scale

economic impacts of disruptions at an inland port.

The work presented here differs from other transportation disruption studies in
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that it does not use the traditional network analysis approach. Most of the exist-

ing studies in the literature build an optimized transportation network of roads and

railways that minimize travel distance across regions and use the economic data to

maintain the constraint that the supply is equal to the demand (Ham et al., 2005a,b).

Such network approaches are computationally intensive; hence, our analysis of the

inflow or outflow of goods through a region using queuing concepts at particular com-

ponents in a network can reduce the computational burden and help build an efficient

means to quantify multi-regional inoperability and economic losses due to disruptive

events. In addition, existing studies assume that during a disruption, supply finds al-

ternate paths on the network to meet demand. In practice, this might not be true for

short time duration and across all industries. In particular, for port disruptions there

are bulk products that are sitting at the port or are off shore for which alternative

transportation arrangements are costly or impractical. In light of this perception, a

company decision maker may prefer to wait for some time for the port to reopen.

1.6 Structure of the dissertation

The research framework developed in this study is shown in Figure 1.2. The discussion

of the framework is organized in rest of the dissertation Chapters that follow.

Chapter 2 reviews the static and dynamic interdependent economic and risk input-

output models. It presents mathematical proofs for the existence of feasible solutions

to the static and dynamic input-output models. The discussion of the static eco-

nomic input-output model includes model development, existence of model solution,

and the data support on which the model is built. The static risk input-output model

is presented with the risk metrics and the mathematical properties of the risk inter-

dependency matrix are also discussed. The dynamic economic input-output model

is presented and shown to be unstable. The dynamic risk input-output model is
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presented and its stability criteria are established.

In Chapter 3 the resilience framework using economic input-output data based

risk models is constructed. The static risk input-output model metrics are shown

to be suitable for resilience estimation. A static resilience problem is presented as

a resource allocation and planning scheme. Subsequently a risk management opti-

mization problem is formulated and solved to show resilience planning. The dynamic

risk input-output model is developed as a resilience estimation construct. To develop

the resilience methodology the dynamic model behavior to external shocks is ana-

lyzed and resilience is quantified through appropriate metrics. These metrics, called

the time averaged level of operability, maximum loss of functionality, time to recov-

ery, respectively denote the systems’ ability to maintain functionality throughout the

post-disruption response, withstand the maximum disruptive impact and still recover,

and progress towards recovery with some speed. The functional relationship between

the metrics is developed to generate a decision support space. Adaptive resilience

behavior through the dynamic risk input-output model is also presented.

Chapter 4 discusses the nature of uncertainties in the static resilience planning

problem developed in Chapter 3. Uncertainties change the problem objective due to

which the static resilience risk management questions posed previously have to be

reformulated as a problem of estimating the required amounts of resource allocations

when economic losses need to be kept below certain thresholds. The general guidelines

that need to be followed to make the problem robust are presented, which depends

upon the uncertainty sets that are vital to the solution of the robust problem. The

robust formulations to the nominal problems are built from the given uncertainty

sets. Robust formulations, which increase the problem dimensions but preserve the

nominal problem structure, are the result of the given data and event uncertainty

sets. An example problem highlights the usefulness of the robust schemes by showing

that small data uncertainties have great affect on the planning solutions, which are
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accounted for in the robust solution.

Chapter 5 proposes the scheme for solving the parameter estimation problem from

dynamic resilience metrics. The inverse problem and the parameter estimation scheme

is subsequently explained. The forward sensitivity scheme is presented and it is shown

that control estimates are obtained from sensitivity functions. The computations of

sensitivity matrices and the forward sensitivity scheme’s computational tractability in

solving the inverse problem are also discussed. An example problem is solved using

the sensitivity algorithm and the different dynamic model and resilience concepts

generated throughout Chapters 2 to 5 are discussed. The usefulness of the method in

generating the model parameter essentially provides a useful tool to understand and

interpret the interdependence of dynamic systems.

Chapter 6 is the application of the methodologies of concepts developed here on an

inland port system. It discusses the relationship between the input-output risk metrics

and transportation hubs (e.g., ports). A queueing-based simulation model is presented

that describes normal port export and import operations and the adjustments that

can be made to incorporate effects of disruptive events. A case study of the impacts

of exports and imports disruptions through the Port of Catoosa in Oklahoma and the

inland waterway network of the Mississippi River system is shown.

Chapter 7 concludes this study and discusses future research avenues for this work.
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Chapter 2

Economic Input-Output Based Risk Interdependency Models

2.1 Introduction

This Chapter generates a discussion that includes a review of static and dynamic

interdependent economic and risk input-output models, and analysis of the mathe-

matical conditions required for these models to be feasible. Such analysis is crucial

when the model metrics are used to describe economic risk to infrastructure systems,

because it is desired that the model result is reflective of a quantifiable real world sit-

uation. While the mathematical analysis generates some already known results about

the properties of the interdependency matrix in the economic input-output model,

the presentation of such analysis for inoperability input-output models is an extension

to research. The discussion in this Chapter is geared towards the development of the

dynamic risk input-output model that is presented in the Section 2.5 with a different

approach than previous research.

The primary research question here is:

What are the models used for quantifying interdependence and do these models
give feasible solutions?

The static interdependency models are systems of linear equations relating input and

output vectors of the same dimension by a matrix operator that captures interdepen-

dence. Hence, the solution of a static model exists and is unique if the matrix operator

is invertible. The dynamic interdependency models are systems of first-order linear

differential equations that are temporal extensions of the static models. In dynamic
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behavior the stability of the model is important for the existence of feasible conver-

gent solutions across all times, and it depends upon the growth/decay rate parameter

in the model. We address these issues as we progress through the Chapter.

In Section 2.2 the discussion of the static economic input-output model includes

model development (Section 2.2.1), the proof that the model solution exists due to

the properties of the interdependency matrix arising from the problem structure (Sec-

tion 2.2.2), and the data based approach for generating the model (Section 2.2.3).

The static risk input-output model developed in Section 2.3.1 presents the risk met-

rics with the range of values they take, while in Section 2.3.2 the properties of the

risk interdependency matrix that lead to an invertible matrix are presented. Sec-

tions 2.4.1 and 2.4.2 respectively present the dynamic economic input-output model

and the conditions that make the model unstable. The Section 2.5 development of

the dynamic risk input-output model addresses, in Section 2.5.2, the stability criteria

necessary for convergent solutions. Section 2.5.3 establishes the possible values the

model parameters can take for satisfy the stability criteria. This completes the de-

velopment of the new risk input-output model presented in the research. Section 2.6

provides a closing remark to the findings of the Chapter.

2.2 Economic input-output model

The economic input-output model (Leontief, 1936, 1941, 1951, 1986), for which Wass-

ily Leontief won a Nobel prize, has been widely accepted as a useful tool for analyz-

ing the interdependent connections between industry sectors. Such interdependence

makes for convenient usage in macroeconomic impact analysis studies. Leontief’s

model establishes a common comparative framework between sectors ranging from

agriculture, energy, manufacturing to banking, communications, information tech-

nology, among others. Over the years the economic input-output model has been
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studied and developed to interpret intra-regional and multi-regional static and dy-

namic interactions among infrastructures (Isard et al., 1998; Lahr & Dietzenbacher,

2001; Leontief et al., 2004; Ten Raa, 2005; Miller & Blair, 2009). The wide use and

popularity of the model is due to the fact that it is built for, supported, and verified

by vast data resources (Polenske, 1980; Horowitz & Planting, 2006).

2.2.1 Leontief’s economic model

The basic principle behind the economic input-output model is that it explains the

supply and demand balance in an economy consisting of interacting sectors. It can

be interpreted as a macroeconomic supply chain in which firms produce goods to

satisfy demands of other firms and households and in return use resources from the

other firms and households to make more of those goods. The value of transactions

between industries in the group provides an indication of the supply and demand

requirements in the economy. When supply and demand are balanced the economy is

said to be at equilibrium. Equation (2.1) expresses this supply and demand balance

mathematically for a group of n interacting industries. The total output of the ith

industry sector, measured in dollars, is distributed to all industries and also satisfies

external demand. If xi is the dollar value for industry i total output, zij is the dollar

amount of industry i output purchased by industry j, and ci is the dollar value of

final demand for industry i output, then the input-output balance is expressed as

xi =
n∑

j=1

zij + ci (2.1)

Equation (2.1) is called the demand side input-output model because it accounts

for the amount of intermediary and final demands for industry output, thus giving

an indication of the output required to balance such demands. A supply side input-

output model also exists (Ghosh, 1958), and measures the balance of industry j output
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with the total amount of commodities it purchases from all other industries and the

value added vj expenditures it requires to generate output. Hence, in the supply side

model the purchases required by an industry are a measure of supply amount needed

to produce its output. Equation (2.2) expresses the supply side input-output balance

discussed so far.

xj =
n∑

i=1

zij + vj (2.2)

The demand and supply balances through the input-output model are depicted in

Table 2.1, which shows the equilibrium economic accounting in terms of balances

between selling and purchasing sectors. Such tables, called input-output transactions

(flow) tables, have been adopted across number of countries for understanding and ac-

counting of their economic structures. The final demand column in these transaction

tables is made up of consumer/household purchases, private investment purchases,

federal, state and local government purchases, and exports sales of industry products.

The value added rows of the tables consist of payments made by the sector in labor

expenses, government taxes, capital interest, rental and other payments, and import

purchases by industries to make their product. The input-output balance between

economic sectors typically depicts a long-run behavior of interindustry flows. The

numbers in the transaction tables would generally show annual amounts of selling

and purchasing balances between industries.

A key assumption in the input-output model is that zij depends upon xj, which

implies that the amount of product an industry purchases depends upon its output

production. In the input-output model this relationship is assumed to be linear and

is expressed as

zij = aijxj (2.3)

where aij, called the technical coefficient, is explained as the value of product in-

dustry j purchases from industry i for producing $1 of its own output. Under the
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Table 2.1: Economic Input-Output transactions(flow) table for an n sector economy

Buying Sector
Final Demand Total Output

1 . . . j . . . n
Selling sector 1 z11 . . . z1j . . . z1n c1 x1

...
...

...
...

...
...

i zi1 . . . zij . . . zin ci xi
...

...
...

...
...

...
n zn1 . . . znj . . . znn cn xn

Value Added v1 . . . vj . . . vn
Total Output x1 . . . xj . . . xn

Equation (2.3) assumption the input-output Equations (2.1) and (2.2) become

xi =
n∑

j=1

aijxj + ci (2.4)

xj =
n∑

i=1

aijxj + vj (2.5)

Research and application has primarily been focused on the development of the

demand side input-output model, which was as intended through Leontief’s formula-

tion and model usage. The supply side model has been questioned because it depicts

economic behavior for a constant supply distribution, which has raised concerns in

research (Oosterhaven, 1988; Rose & Allison, 1989).

2.2.2 Existence of solution to input-output system

The Leontief input-output model expression of Equation (2.4) leads to the n sector

matrix Equation (2.6) where x is an n × 1 vector of industry production outputs,

A is an n × n industry-by-industry matrix of technical coefficients, c is an n × 1

vector of final demands, and I is an n × n identity matrix. The model shows that

total production is made up of industry-to-industry intermediate production (Ax)

30



and production to satisfy final demands (c).

x = Ax + c =⇒
(
I−A

)
x = c (2.6)

Equation (2.6) shows that the primary usage of the input-output model involves find-

ing the industry outputs for given final demands, which depends upon the proposition

that the matrix I−A is invertible. We investigate and prove that this is always true

through the following two properties of the elements of the A matrix.

1. In the economic system under consideration each industry purchases something

from all the other industries. Hence the connectivity between two sectors is

finite which means that aij ≥ 0,∀1 ≤ i, j ≤ n. This leads to an irreducible non-

negative technical coefficient matrix expressing a strong connected relationship

across industries.

2. If both sides of Equation (2.5) are divided by xj we get the following

1 =
n∑

i=1

aij + vj/xj =⇒
n∑

i=1

aij = 1− vj/xj < 1 (2.7)

which shows that the sum of elements along each column of the A matrix is at

most equal to 1.

We now show that the above two conditions lead to an invertible I−A matrix. For

this we first state a property of the A matrix, which is essential for the existence of

the inverse.

Proposition 1. If a given non-negative irreducible matrix A =
{
aij : aij ≥ 0, ∀1 ≤

i, j ≤ n
}

has column sums less than 1 then the spectral radius of A, given as ρ(A) is

always less than 1.

Proof. Since A is an irreducible non-negative matrix and is also an n × n square
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matrix, from the Perron-Frobenius theorem (Meyer, 2000), the maximum eigenvalue

λ of Aᵀ, and hence A, is a real number that satisfies the condition

0 ≤ min
j

∑

i

aij ≤ λ ≤ max
j

∑

i

aij < 1 (2.8)

where the upper bound of one exists because column sums of A are less than 1, while

the lower bound is due to non-negative elements of A. Hence, it can be concluded

that the matrix A has a spectral radius less than 1, i.e., ρ(A) < 1.

The above Proposition means that the geometric series
{
A,A2, ...,Ak

}
of powers

of the A matrix converges towards 0, which is expressed as

lim
k→∞

Ak = 0 (2.9)

Hence Equation (2.10) shows that the inverse of I−A, which by definition can be

written as the infinite sum of the powers of A stops growing after some k and hence

is less than infinity. This shows that the matrix I−A is always invertible.

(I−A)−1 =
∞∑

k=0

Ak <∞ (2.10)

In the input-output literature (I−A)−1 is referred to as the Leontief inverse

and its existence means that the industry output can be measured in terms of final

demands as

x =
(
I−A

)−1
c (2.11)

The primary usage of Equation (2.11) is for economic impact analysis wherein we

measure the change in output due to the change in demand resulting from growth or

disruption to the economy.
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2.2.3 Make-Use data tables for model development

The linear production function in the input-output model may appear to be an overly

simple assumption, but nonetheless the model has been found to be applicable in vast

amount of research efforts. Such research efforts have made sure that the validity of

the model is attested for by the consistency of its results. The general consensus

has been that input-output models can be useful tools in macroeconomic analysis

when long run economic behavior is studied. In addition, there are detailed data

sets available to support analysis with the model, including the commodity flow data

published annually by the US Bureau of Economic Analysis (BEA., 2011) and the

worldwide data maintained by the Organization for Economic Co-Operation and De-

velopment (OECD., 2011). The data sets used for constructing the input-output A

matrix constitute what is known as the commodity-by-industry framework. Since the

inception of this framework (Stone, 1961; Stone et al., 1963), it has been adopted by

several countries around the world and ratified by the United Nations (UN., 2009) as

the standard the input-output data gathering method.

The commodity-by-industry framework is based on the premise that industries

make and use commodities. Every industry is associated with making one primary

commodity in addition to several secondary commodities. The dollar value of com-

modities made by industries are collected in a Make table, which is an industry-by-

commodity table. Most commodities are required by almost all industries for making

products, which means every commodity is used by almost all industries. The Use

Table collects information on the dollar commodity-by-industry usage in the economy.

In the commodity-by-industry framework generally the number of industries and

commodities is not the same. If it is assumed that there are n industries producing

m commodities, then these m commodities will be used by n industries. Hence, the

make table translates into an n × m matrix V = {vik,∀1 ≤ i ≤ n, 1 ≤ k ≤ m},
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while the use table becomes an m × n matrix U = {ukj,∀1 ≤ k ≤ m, 1 ≤ j ≤ n}.

Table 2.2 shows that input-output arrangement of the economy based on the make-

use matrices. It can be seen from the table that the row sums of the make matrix are

equal to the sector outputs (x), while the column sums of the make matrix are equal

to the commodity outputs or total industry inputs (y).

Table 2.2: Commodity-by-industry input-output structure of the economy

Commodities Industries Final Total
1 . . . m 1 . . . n Demand Output

Commodities 1 u11 . . . u1n e1 y1
...

...
. . .

...
...

...
m um1 . . . umn em ym

Industries 1 v11 . . . v1m x1
...

...
. . .

...
...

n vn1 . . . vnm xn
Value Added v1 . . . vn
Total Inputs y1 . . . ym x1 . . . xn

While different forms of input-output A matrices can be obtained from the make-

use data, the most relevant one has been found to be the industry-by-industry matrix.

This matrix translates the make-use data into an n industry selling and purchasing

structure similar to the Table 2.1 construct. The A matrix is obtained from normal-

ized make (V̂) and normalized use (Û) matrices, by establishing the input-output

relationships through these matrices. The relationship between the matrices is shown

in Table 2.3, which highlights the mathematical derivation of the A matrix through

input-output relationships

Input-output accounting through the make-use tables has provided a data based

credibility to the Leontief economic construct. Due to the the worldwide availability

of such data and its organization into make-use tables the input-output method is

also considered to represent a global supply chain characterizing inter-industry and
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Table 2.3: Derivation for the input-output A matrix from make-use tables

Normalize matrices
v̂ik = vik/yk =⇒ V̂ = V[diag(y)]−1

ûkj = ukj/xj =⇒ Û = U[diag(x)]−1

Output-Input equation
xi =

∑n
k=1 vik =

∑n
k=1 v̂ikyk

=⇒ x = V̂y

Input-Output equation
yk =

∑m
j=1 ukj + ek =

∑m
j=1 ûkjxj

=⇒ y = Ûx + e

Derivation
V̂y = V̂Ûx + V̂e

=⇒ x = (V̂Û)x + V̂e
=⇒ x = Ax + c

Result A = V̂Û , c = V̂e

commodity flows. In the US this supply chain is defined and compiled for industries

named according to the North American Industry Classification System (NAICS)

(Kelton et al., 2008). From BEA data for NAICS industries input-output accounts

can be generated at the national, regional and local level. Every 5 years the BEA

gives a list of 65 NAICS industries for which input-output accounts are maintained,

and also annually produces a list of 15 aggregated industries from combining the 65

sectors.

2.3 Inoperability input-output model

2.3.1 Model formulation

An extension of the economic input-output model of interest to this work is the Inop-

erability Input-Output Model (IIM) (Santos & Haimes, 2004; Santos, 2006). Instead

of describing the connections between the interdependent industry sectors in terms of

commodity flow dollars, the IIM illustrates how normalized production losses propa-

gate through all interconnected industries.

Central to the development of the inoperability input-output analysis is the as-
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sumption that the interdependency structure of the economy, measured by the A

matrix does not change when demands and resulting outputs change. If in the n

sector economic system x̂ and ĉ represent equilibrium as-planned output and final

demand levels respectively, while x̃ and c̃ represent disrupted/perturbed equilibrium

levels for output and final demands respectively, then

x̂ = Ax̂ + ĉ (2.12)

x̃ = Ax̃ + c̃ (2.13)

Here it is assumed that the production and demand levels at the perturbed conditions

are lower than as-planned levels. The key premise of Equations (2.12) and (2.13) is

that when the as-planned interdependent economy is disrupted there are reductions

in demands for products, which results in reduced equilibrium industry outputs. The

IIM approach builds on this notion of equilibrium shift by providing two metrics that

translate degraded outputs and demands into risk measures. These metrics called

inoperability and demand perturbations are explained below.

Inoperability for industry i, qi, refers to the inability of the industry to perform its

intended functions. In the context of economic loss analysis for measuring failure in

industry sectors, qi is the measure of the loss of production in industry i as a propor-

tion of its original production level, as shown in Equation (2.14). The inoperability

of a system lies between 0 and 1, where qi = 0(x̃i = x̂i) is a measure of a perfectly

operable industry i, and qi = 1(x̃ = 0) is a measure of complete failure of industry i.

qi =
As-planned Output(x̂i)− Perturbed Output(x̃i)

As-planned Output(x̂i)
(2.14)

For the n sector economy the inoperability vector q of size n × 1 is a vector of

industry inoperabilities expressed in terms of the changed outputs normalized by the
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as-planned outputs.

qi =
(
x̂i − x̃i

)
/x̂i =⇒ q =

[
diag(x̂)

]−1(
x̂− x̃

)
(2.15)

Demand perturbation for industry i, c∗i , refers of the change in final demand for

industry i output due to disruptive events. For economic systems it is the measure

of the change in demand as a proportion of the original production level in industry

i, as shown in Equation (2.16). Demand perturbation can occur due to the inability

of the producing sector to meet the demands of the final consumers when there is a

failure in the system. The values of c∗i lie between 0 for no economic failure and loss

of demand, and ci/x̂i < 1 for total economic failure and loss in demand.

c∗i =
As-planned Demand(ĉi)− Perturbed Demand(c̃i)

As-planned Output(x̂i)
(2.16)

The demand perturbation vector c∗ of size n× 1 for the n sector economy is thus

a vector of industry demand perturbations expressed in terms of the changed final

demands normalized by the as-planned outputs.

c∗i =
(
ĉi − c̃i

)
/x̂i =⇒ c∗ =

[
diag(x̂)

]−1(
ĉ− c̃

)
(2.17)

From the concepts developed in Equations (2.12) through (2.17) the IIM provided

in Equation (2.18) is derived by subtracting Equation (2.13) from Equation (2.12)

and normalizing with x̂, thus essentially maintaining a form similar to the Leontief

economic input-output model.

[
diag(x̂)

]−1
(x̂− x̃) =

([
diag(x̂)

]−1
A
[
diag(x̂)

])[
diag(x̂)

]−1
(x̂− x̃)

+
[
diag(x̂)

]−1
(ĉ− c̃)

=⇒ q = A∗q + c∗ (2.18)
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Normalized interdependency matrix A∗ of size n× n is a modified version of the

original A matrix describing the extent of economic interdependence among a set

of infrastructure and industry sectors. Shown in Equation (2.19), the row elements

of A∗ indicate the proportions of additional inoperability that are contributed by a

column sector to the row sector.

A∗ =
[
diag(x̂)

]−1
A
[
diag(x̂)

]
⇐⇒ a∗ij = aij

(
x̂j/x̂i

)
(2.19)

2.3.2 Existence of solution to the inoperability input-output model

Similar to the input-output approach the IIM measures the inoperability in terms of

the demand perturbations, which means that the solution of Equation (2.18) depends

upon the existence of the inverse of the matrix I−A∗. We can prove that this inverse

always exists due to the properties of the A and A∗ matrices.

1. Since the elements of A∗ are derived from A it is easy to see that A∗ would

also be an irreducible, non-negative matrix, i.e., a∗ij ≥ 0,∀1 ≤ i, j ≤ n.

2. If both sides of Equation (2.5) are divided by xi we get

1 =
n∑

j=1

aij
xj
xi

+
ci
xi

=⇒
n∑

j=1

a∗ij = 1− ci
xi
≤ 1 (2.20)

Hence we can see that the sum of elements on each row of A∗ is less than or

equal to 1.

Arguing as before, we can show that the spectral radius of A∗ is less than 1,

which leads to an invertible I−A∗ matrix structure. This is shown to be true in two

different ways. Proposition 2 uses the fact that A∗ and A are similar matrices and

thus have the same eigenvalues and spectral radius. Proposition 3 proves the same

result for a general A∗ matrix with the properties highlighted above.
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Proposition 2. The interdependency matrices A∗ and A have the same eigenvalues.

Proof. Let λ̄∗ be an eigenvalue of A∗. Therefore λ̄∗ satisfies the characteristic equation

of A∗, which leads to the following

det(A∗ − λ̄∗I) = det(
[
diag(x̂)

]−1
A
[
diag(x̂)

]
− λ̄∗I)

=
[
diag(x̂)

]−1
det(A− λ̄∗I)

[
diag(x̂)

]

= det(A− λ̄∗I) = 0 (2.21)

λ̄∗ also satisfies the characteristic equation of A, which means A∗ and A have the

same eigenvalues. Hence, if A has a spectral radius less than 1, then so does A∗.

Proposition 3. If a given non-negative irreducible matrix A∗ =
{
a∗ij : a∗ij ≥ 0,∀1 ≤

i, j ≤ n
}

has row sums less than 1 then the spectral radius of A∗, given as ρ(A∗) is

always less than 1.

Proof. Since A∗ is an irreducible non-negative matrix and is also an n × n square

matrix, from the Perron-Frobenius theorem (Meyer, 2000), the largest eigenvalue λ∗

of A∗ is a real number that satisfies the condition

0 ≤ min
i

∑

j

a∗ij ≤ λ∗ ≤ max
i

∑

j

a∗ij ≤ 1 (2.22)

where the upper bound of one exists because row sums of A∗ are less than 1, while

the lower bound is due to non-negative elements of A∗. Hence, it can be concluded

that the matrix A∗ has a spectral radius less than 1, i.e., ρ(A∗) ≤ 1.

From either Proposition 2 or 3 we conclude that the geometric series
{
A∗, (A∗)2, ...

}

of powers of the A∗ matrix converges towards 0, which is expressed as

lim
k→∞

(A∗)k = 0 (2.23)
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Hence Equation (2.24) shows that the inverse of I−A∗, which by definition can be

written as the infinite sum of the powers of A∗ stops growing after some k and hence

is less than infinity. This shows that the matrix I−A∗ is always invertible.

(I−A∗)−1 =
∞∑

k=0

(A∗)k <∞ (2.24)

Similar to the economic input-output model, the interdependent risk impact anal-

ysis has been concentrated on solving the system

q =
(
I−A∗

)−1
c∗ (2.25)

2.4 Dynamic economic input-output model

2.4.1 Model development

While the static equilibrium analysis of Equation (2.11) allows for study of long-

term economic behavior, interest lies in studying the short-term dynamic aspects of

changes in interdependent economic systems. Research has focussed on developing

different dynamic models using the input-output concepts (Solow, 1956; Duchin &

Szyld, 1985; Steenge & Thissen, 2005). The Leontief (1986) dynamic input-output

model is one such construct that builds a simple notion of a dynamically growing

economy given by a first order differential equation. In a dynamic interdependent

economy it is assumed that industry outputs x(t) and exogenous demands c(t) are

now time-dependent and they evolve according to the dynamic model

x(t) = Ax(t) + c(t) + Bẋ(t) (2.26)

where B is an n × n matrix called the capital coefficient matrix, whose element

bij(∈ [0, 1]) represents the capital stock of industry i maintained by industry j per
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unit of its output (Leontief, 1986). Equation (2.26) shows that the time-dependent

industry outputs are still interdependent on other sector outputs through the matrix

A while being driven by the time-dependent exogenous demands. The additional

dynamic term signifies, through the capital coefficient matrix, the ability of the sectors

to invest in the capital resources of other sectors such as inventory, land, machines

with their rate of change (ẋ(t)) of output. For solving the dynamic input-output

model the continuous or discrete-form solution of the differential equation given in

Equation (2.27) is sought

ẋ(t) = −B−1
[
Ax(t) + c(t)− x(t)

]
(2.27)

2.4.2 Model issues

The solutions of the dynamic economic system depend upon the existence of B−1,

and as such, it is assumed that B−1 exists at all times. One of the problems with the

dynamic economic input-output model is the unavailability of data for the B matrix.

Data for the B matrix can be obtained through the capital flow tables provided by the

BEA (BEA., 2011), which at present contain data updated till 1997. Santos (2006)

outlines the procedure for generating the B matrix from the BEA capital flow data.

Since, the elements of B are estimates of the investment in technology, equipment,

etc. by sectors they are expected to vary substantially over time. Hence, using old

estimates does not lead to a reliable model for estimating the temporal changes in

sector outputs.

The bigger issue with the solution of the Equation (2.27) system is that there is no

guarantee that the matrix B is invertible (Luenberger & Arbel, 1977). In reality not

every sector needs to maintain capital stocks of other sectors, which means that some

of the rows or columns of the B matrix would contain all zero elements. Moreover

the amounts of capital stock requirements of some sectors might be identical leading
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to two rows of columns being the same, which also leads to a singular B. Leontief

(1986) suggested solving the discrete-time dynamic model recursively backward in

time, with the assumption that the matrix I−A + B is always invertible. Assuming

discrete time steps k = 0, 1, 2, ..., N this solution is given as

x(k) =
(
I−A + B

)−1[
Bx(k + 1)− c(k)

]
(2.28)

Although the above formulation gives a feasible solution due to the existence of the

matrix inverse the problem with using it arises due to the fact that the system behavior

at time-step N needs to be known. This is not practical because generally the initial

behavior at time-step k = 0 is given as we estimate the future x(N) behavior from it

and not the reverse.

2.5 Dynamic risk input-output model

2.5.1 Model development

The need for a dynamic risk input-output model arises because the static equilib-

rium approach of the IIM lacks in modeling temporal interdependent inoperability

propagation. Economic impact analysis requires modeling the dynamic interactive

effects between an engineering and economic perspective, and representing the dif-

ferent time scales over which the actual disruptive events take place and direct and

multiplier economic effects are felt (Okuyama et al., 2004). Modeling dynamic inter-

dependent inoperabilities from the onset of a disruption till its dissipation over time

determines how long it takes sectors to recover from a disruption. This added model

feature makes for a dynamic risk input-output process that can also be used as a

risk management model because recovery can be improved through efficient resilience

metrics.
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A dynamic inoperability input-output model was proposed (Lian & Haimes, 2006)

along similar lines to the Leontief dynamic input-output model. The dynamic risk

input-output model we intend to discuss here is along similar lines to the Lian &

Haimes (2006) model, with a subtle difference that will be discussed as the model is

developed.

It is assumed that as-planned interdependent economic system is time invariant

and obeys the Leontief input-output equilibrium construct at all times. Restating

Equation (2.12) as-planned economic behavior as a dynamic model with rate of change

˙̂x = 0

x̂ = Ax̂ + ĉ + B˙̂x (2.29)

When a disruption occurs at time t = 0 it is assumed that industry outputs reduce to

levels x̃(0) and exogenous demands reduce to c̃(0). The equilibrium between demand

and supply no longer exists and for subsequent times t the industry output evolution

is assumed to be governed by the dynamic input-output model

x̃(t) = Ax̃(t) + c̃(t) + B˙̃x(t),∀t > 0 (2.30)

Since, the perturbed output levels are lower than the as-planned levels the aim of the

economic system is to move from the perturbed state towards the as-planned levels.

If we subtract Equation (2.30) from Equation (2.29) we get

x̂− x̃(t) = A
[
x̂− x̃(t)

]
+ ĉ− c̃(t) + B

[
˙̂x− ˙̃x(t)

]
(2.31)

Utilizing the previous definitions and constructions a dynamic inoperability risk input-

output model is constructed by normalizing Equation (2.31) with the diagonal matrix
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of as-planned output levels, diag(x̂), to obtain

q(t) = A∗q(t) + c∗(t) + B∗q̇(t) (2.32)

where q(t) = [diag(x̂)]−1[x̂ − x̃(t)] is now a time-dependent inoperability vector

that represents the loss of output as a ratio of as-planned output at all times,

c∗(t) = [diag(x̂)]−1[ĉ− c̃(t)] is the time-dependent demand perturbation vector that

represents the loss of demand as a ratio of as-planned output at all times, A∗ =

[diag(x̂)]−1A[diag(x̂)] is the risk interdependency matrix as before, and B∗ is ob-

tained from the B matrix as B∗ = [diag(x̂)]−1B[diag(x̂)].

Equation (2.32) can be reformulated as Equation (2.33) to give a state-space

presentation of the dynamic model. Here we introduce the matrix K∗ = −(B∗)−1 to

separate the differential term from the rest of the equation.

q̇(t) = −K∗(I−A∗)q(t) + K∗c∗(t),∀t (2.33)

K∗ matrix introduced in Equation (2.33) is an n× n matrix that controls the rate of

change of industry output in relation to its inability to establish equilibrium between

demand and supply. Although Equation (2.33) is similar in structure to the dynamic

input-output model of Equation (2.27) it represents recovery instead of growth. It

is assumed that K∗ exists and even though we mathematically derived it from the

B in reality it is not governed by the existence of the B−1 matrix. Understanding

the meaning and role of the K∗ is central to the development of the dynamic risk

input-output model and is discussed is the next section.

Assuming the model evolution is studied in discrete time-steps given by 0, 1, 2, ...,

with unit time interval, the continuous time model of Equation (2.34) can be dis-
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cretized as

q(k + 1) =
[
I−K∗(I−A∗)

]
q(k) + K∗c∗(k) (2.34)

2.5.2 Dynamic risk input-output model stability conditions

A closed form analytic solution to the differential Equation (2.33) exists and is ex-

pressed as

q(t) = e−K
∗(I−A∗)tq(0) +

∫ t

0

e−K
∗(I−A∗)(t−z)K∗c∗(z)dz (2.35)

which shows that the evolution of inoperability at any time t depends upon the initial

inoperability q(0), the demand perturbations c∗(t) at all times, the matrices A∗ and

K∗. These parameters are referred to as system controls.

The dynamic risk input-output model is primarily used to model recovery from

disruptions. Hence it is important that the Equation (2.35) solution leads towards an

inoperability that signifies dissipation of the disruptive effects resulting from initial

inoperabilities and demand perturbations. These considerations govern the values

that can be taken by the elements of the K∗ matrix. Since, it is required that the

model provide stable solutions to inoperability evolution at all times the right hand

side of Equation (2.35) cannot diverge or grow over the long run. Hence, requirement

for model stability leads to the necessary condition that

lim
t→∞

e−K
∗(I−A∗)t → 0 (2.36)

Establishing the Equation (2.36) necessary stability condition also guarantees that the

dynamic risk input-output model is bounded at at times. As seen in Equation (2.35)

the first term on the right hand side signifies free evolution of the system with 0 ≤

q(0) ≤ 1 by definition. Hence this term asymptotically converges towards zero.
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The second term contains the forcing function c∗(t), which is also bounded because

0 ≤ c∗(t) ≤ ĉ/x̂.

∫ t

0

K∗e−K
∗(I−A∗)(t−z)c∗(z)dz ≤

∫ t

0

K∗e−K
∗(I−A∗)(t−z)(ĉ/x̂)dz

= [1− e−K∗(I−A∗)t](I−A∗)−1(ĉ/x̂)

≤ (I−A∗)−1(ĉ/x̂) ≤ 1 (2.37)

Having established the necessary system stability criteria puts restrictions on the

values that can be taken by the elements of the K∗ matrix, due to the fact that A∗

is mainly data driven and thus exists a priori. Therefore an exercise in establishing

system stability requires finding the range of possible K∗ values that lead to system

convergence. Two results in matrix theory that establish the stability requirements

of state-space systems based on properties of the eigenvalues of the state matrix

(−K∗(I−A∗) in our case) are stated in Proposition 4 (Lewis et al., 2006). With

these results we can decide on the possible acceptable values of the matrix K∗.

Proposition 4. For bounded initial conditions, the continuos state-space linear sys-

tem ẏ = My converges when every eigenvalue, λM, of M has a negative real part

Re(λM) < 0. Moreover the discretized counterpart, y(k+ 1) = (I + ∆tM)y(k), of the

state-space system converges only when the spectral radius ρ(I + ∆tM) < 1.

From Proposition 4 we can conclude that the dynamic risk input-output model has

a convergent solution if the matrix K∗(I−A∗) has positive real valued eigenvalues.

We use this information and combine it with the practical interpretations of K∗ to

establish a possible range of values.

2.5.3 Establishing parameter values for stable system behavior

Equation (2.33), called the Dynamic inoperability input-output model (DIIM) when

K∗ is a diagonal matrix, is explained in detail in the works of Haimes et al. (2005b),
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Lian & Haimes (2006) among others. Lian & Haimes (2006) argue that the K∗

matrix represents a short-term behavior of sectors to invest to adjustments in changing

outputs. They consider K∗ is a diagonal matrix, whose diagonal elements, 0 ≤ k∗ii ≤

1(∀i = {1, 2, ..., n}), represent the ability of each sector to attain stable responses

to changes in its production outputs and demands. We explore the system stability

when such an assumption holds. Proposition 5 and 6 show that system stability is

guaranteed.

Proposition 5. Given non-negative irreducible matrix A∗ =
{
a∗ij : a∗ij ≥ 0,∀1 ≤

i, j ≤ n
}

which has row sums less than 1 there exists an n × n positive diagonal

matrix K∗, such that the matrix K∗(I−A∗) has positive eigenvalues.

Proof. Since the sum of each row of A∗ is less than 1, we can show that

n∑

j=1

a∗ij ≤ 1 =⇒
∑

j 6=i

|a∗ij| ≤ 1− a∗ii (2.38)

Hence, the matrix I−A∗ is a diagonally dominant matrix. From Greshgorins Circle

Theorem (Moon & Stirling, 2000) every eigenvalue λ∗i of I−A∗ satisfies the condition

|λ∗i − (1− a∗ii)| ≤
∑

j 6=i

|a∗ij|,∀i = {1, 2, ..., n} (2.39)

From Equation (2.39) the lower bound on the real part of the eigenvalues of I −A∗

is given as

Re(λ∗i ) ≥ 1−
∑

j=1

a∗ij > 0 (2.40)

Assume the matrix K∗ is given as K∗ = {diag(kii), kii > 0,∀1 ≤ i ≤ n}. The ith row

of the product matrix K∗(I−A∗) is given as k∗ii[1 − a∗i1,−a∗i2, ...,−a∗in], which is the

multiplication of the the ith row of I−A∗ by kii. Hence, the lower bounds on every
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eigenvalue κ∗i of the matrix K∗(I−A∗) can be expressed as

Re(κ∗i ) ≥ k∗ii

[
1−

∑

j=1

a∗ij

]
> 0 (2.41)

which proves that the eigenvalues of K∗(I−A∗) are positive.

Proposition 6. Given a non-negative irreducible matrix A∗ =
{
a∗ij : a∗ij ≥ 0,∀1 ≤

i, j ≤ n
}

which has row sums less than 1 bounds on the elements of the diagonal

matrix K∗ for which I − K∗(I−A∗) has a spectral radius less than 1 are given by
{

diag(kii), 0 < kii < 2/(1− a∗ii +
∑

j 6=i a
∗
ij),∀1 ≤ i, j ≤ n

}
.

Proof. The ith row of the product matrix I−K∗(I−A∗) is given as

[
k∗iia

∗
i1, k∗iia

∗
i2, . . . , 1− k∗ii(1− a∗ii), . . . , k∗iia

∗
in

]

From Greshgorins Circle Theorem (Moon & Stirling, 2000) every eigenvalue κ̄∗i of

I−K∗(I−A∗) satisfies the condition

|1− k∗ii(1− a∗ii)− κ̄∗i | ≤
n∑

j 6=i

|k∗iia∗ij| (2.42)

Hence the maximal bounds on the real value of the ith eigenvalue are established as

1− k∗ii
(

1− a∗ii +
n∑

j 6=i

a∗ij

)
≤ κ̄∗i ≤ 1− k∗ii

(
1−

n∑

j=1

k∗iia
∗
ij

)
(2.43)

Since the spectral radius of the I −K∗(I−A∗) is less than 1, |κ̄∗i | < 1,∀1 ≤ i ≤ n.

This establishes a maximal bound on the inequality (2.43), which is leads to the two
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inequalities

− 1 < 1− k∗ii
(

1− a∗ii +
n∑

j 6=i

a∗ij

)
=⇒ kii <

2(
1− a∗ii +

∑n
j 6=i a

∗
ij

) (2.44)

1− k∗ii
(

1−
n∑

j=1

k∗iia
∗
ij

)
< 1 =⇒ kii > 0 (2.45)

Hence (2.44) and (2.45) provide the limits for the range of kii,∀1 ≤ i ≤ n, which are

as stated in the proposition.

We have being able to show range of values that the elements of the K∗ matrix can

take if it is strictly a diagonal matrix. One caveat with choosing K∗ from this range

is that the upper bound values are greater than 1. Since in the dynamic risk input-

output model we have the term K∗c∗(t) which contributes towards the inoperability,

there is a chance that the value of q(t) might overshoot 1 which violates its very

definition. Hence, if a choice of K∗ has to be made from the above defined range then

care should be taken that the product K∗c∗(t) does not exceed 1. For simplicity sake

and to confirm to previously established research we recommend that for a diagonal

K∗ the elements should be kept between 0 and 1.

For a K∗ matrix with non zero off-diagonal elements it is difficult to establish a

range for the values of the matrix. Based on the Proposition 4 we want to establish a

dense K∗ for which the joint spectral radius of the term I−K∗(I−A∗) is less than 1.

Establishing this is not simple for any matrix, but here we can make an assumption

about the K∗ matrix that comes from its practical interpretation. The values of

K∗ in general represents the degree of resilience investment that a sector makes in

safeguarding itself against a disruption. Such investments come by strengthening its

own resources and productions or by investing in inventories of other sector products

to substitute for its own. There is a general incentive of a sector to concentrate on

safeguarding its own interests, which translates mathematically to a K∗ that is a
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diagonally dominant matrix and in which the off-diagonals are small values. It can

be assumed that an dense K∗ is represented as K∗ → diag(K∗) + ∆K∗, where ∆K∗

is introduces a perturbation in the diagonal diag(K∗) matrix to give the K∗.

2.6 Discussion and summary

This development of the economic and risk input-output models presented here shows

that these models possess mathematical properties that makes them always produce

feasible solutions. Moreover there is a credible and dedicated data support system

in place for these models, which means that they can be readily used for large-scale

infrastructure risk analysis. Although the linear structure of the static models is quite

simplistic it is nonetheless a useful construct for a basic analysis of interdependent

system behaviors and risk properties. Having established the existence of solutions

for the static models the development of the dynamic models is done by introducing

a rate term to the static models, which makes the dynamic models first-order linear

differential equations. The stability criteria that is established for a convergent fea-

sible solution of the dynamic models is important for obtaining solutions from such

models. Also the mathematical rules that are developed here have been related to

the real world importance of the terms in these models, which helps establish cer-

tain guidelines for estimating or choosing the possible values of model parameters for

practical and mathematical convenience. Overall we have been able to derive certain

results here that show the existence of matrix inverses in the static systems and the

criteria for the model stability in dynamic systems. Such properties are useful because

they provide a prescription for choosing possible values for data or parameters where

data is sparse or there is no prior knowledge about the possible parameter values and

hence a design or expert-based judgement is required.
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Chapter 3

Resilience Estimation and Planning Through the Risk

Input-Output Framework

3.1 Introduction

The primary focus of this Chapter is to develop a resilience framework using economic

input-output data based risk models. Resilience denotes the ability of the system

to “spring back, rebound, return to the original form, recover readily or adjust”

(Oxford English Dictionary, (OED., 2012)) from an external shock. The static and

dynamic risk input-output models that we discussed in Chapter 2 are suitable tools

for quantifying and planning for improved system resilience, and we show how these

models can be applied towards achieving such goals.

Our static risk input-output model (Haimes & Jiang, 2001; Santos, 2006) quan-

tifies the ability of the system of interdependent infrastructures to move from one

equilibrium state to another after disruption. This means that the model is able to

capture the system’s capability to rearrange itself, which shows a resilience quality.

Much of this quality depends on the ability of the system to resist the immediate

impact of the external perturbation it is subjected to. In the context of the static

model the relevant resilience planning question, in its broadest context, is

How can the shock impact be reduced so that the system of interdependent
infrastructures shifts from one equilibrium to another with minimum losses
given the constraints of the planning environment?

In Section 3.2 we expand on the above question by posing the static resilience problem
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as a resource allocation and planning scheme. Such an approach lends itself towards

a risk management optimization problem, which is explained in Section 3.2.1, while

Section 3.2.2 provides some numerical insights into the planning problem with an

example.

For a dynamic system resilience is indicative of its ability to resist initial impact

effects and also return to adequate functionality within a desirable time-frame. The

dynamic risk input-output model (Lian & Haimes, 2006) quantifies the trajectory

of inoperability from the time of the disruptive event up until the system has made

recovery. It is a suitable indicator of properties that define resilience. Resilience esti-

mation through the dynamic model requires answering the following set of questions

What properties in the dynamic response to disruptions for the system of inter-
dependent infrastructures imply resilience? How can we use these properties
to estimate measures for resilience estimation?

These questions are handled in detail in Section 3.3, where we explain the dynamic

risk input-output model as a resilience estimation construct. An understanding needs

to be first developed on why the model is being used for resilience estimation. This

comes from the type of disruptive events and their modeled behaviors, which are

reflective of real world large-scale infrastructure responses to system shocks. It is un-

derstood that large-scale economic systems inherently possess resilient properties that

lead towards recovery from disruptions (Klein et al., 2003). To this end Section 3.3.1

quantifies the type of external shocks and the model responses we are interested in.

Once the system responses are understood resilience is quantified through appropri-

ate metrics, explained in Section 3.3.2, which answers the first of our questions about

dynamic resilience. These metrics, called the time averaged level of operability, maxi-

mum loss of functionality, time to recovery, respectively denote the systems’ ability to

maintain functionality throughout the post-disruption response, withstand the max-

imum disruptive impact and still recover, and progress towards recovery with some
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speed. The time averaged level of operability metric can be expressed as a function of

the other two metrics and improving system speed to recovery can come at the cost

of incurring more maximum impact. These complex behavior are better understood

if the metrics can be used to generate a decision space that allows a user to choose

appropriate levels of values and thus affect system resilience. Section 3.3.4 explains

this construct.

Most resilience constructed in the static and dynamic model domains is in response

to either an instantaneous or a continuos and short lived disruption. As such the

resilient recovery is implied to come from pre-disruption preparedness and lends itself

to be an inherent system property. In general a system could be subjected to multiple

shocks that occur in phases. As such building the properties that allow a system to

adapt its resilient behavior and rearrange itself every time it is shocked is required.

Section 3.4 discusses this adaptive resilience behavior through the dynamic risk input-

output model. Finally, Section 3.5 summarizes the topics discussed in this Chapter.

3.2 Static Resilience estimation

Static resilience is defined as “the ability of the system to maintain functionality

when shocked” (Rose, 2007). Mathematically static economic resilience is measured

in terms of the maximum potential drop in system performance and the estimated

performance drop (Rose, 2004a). Figure 3.1 shows the graphical representation of

static economic resilience and its mathematical formulation. The static economic re-

silience definition suggested is quite similar to the static inoperability metric defined

in Equation (2.14), which suggests that the inoperability input-output model Equa-

tion (2.18) can be used as a resilience measuring construct. In essence if solution of

the equation q = A∗q + c∗ gives us q < 1, then the values 1− q tells us how much

functionality the system is able to preserve after the disruptive impact. While simply
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Figure 3.1: Static economic resilience visualization and mathematical definition
(Rose, 2004a).

measuring the inoperabilities as a result of disruptive impacts is a good enough indica-

tion of the cascading collapse that is still able to preserve some levels of functionality,

it is useful to improve the system performance such that cascading failures can be

optimized. As such, minimizing the sector inoperabilities in some form leads to better

system resilience. Such improvements are brought through efficient resource alloca-

tions during disruption recovery. Resource allocation requires developing strategies

that reduce demand perturbations effectively leading to economic resilience. This

demand driven approach is consistent with the idea that static economic resilience is

a consequence of efficient utilization of resources and not system repair (Rose, 2007).

3.2.1 Strengthening static resilience through risk management

In order to improve static economic resilience a risk management approach needs to

be adopted. A general risk management approach can be based on three questions

(Haimes, 1991): (i) What can be done and what options are available? (ii) What

are the associated trade-offs in terms of costs, risks and benefits? (iii) What are the
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impacts of current management decisions on future options? This triplet of questions

motivates the development of a framework for interdependent risk decision-making

formulation, which is explained below.

Consider a system consisting of n interdependent economic sectors related through

the inoperability input-output model. Assuming a disruptive event results in initial

demand perturbations for m ≤ n of the sectors. If such demand perturbations are

given by c∗l (0), l = {1, 2, ...,m}, then the risk management is concerned with reducing

these c∗l (0)’s through appropriate measures. If rl signifies a risk management strategy

adopted to reduce the initial sector l demand perturbation impact, then the effec-

tiveness of rl is measured in terms of the new demand perturbation resulting from

implementing rl on c∗l (0). This can be represented in functional form as

c∗l = fl(c
∗
l (0), rl) (3.1)

Assuming a numerically higher value for rl signifies a better management strategy, the

graphical relationship between c∗l and rl is chosen as one of the possible forms shown

in Figure 3.2. The upper bound c∗l (0) shows the inability of the strategy to reduce

initial impacts, which is interpreted through the lowest value for rl. The Figure 3.2

c∗l

rl

c∗l (0)

Figure 3.2: Possible functional relationships between c∗l and rl showing that the
greater effect of the risk management strategy results in lesser demand perturbations
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interpretation of the relationship between demand perturbations and management

strategy suggests that an as high as possible value for rl should be conveniently

adopted. But since implementing risk management comes at a cost there is a finite

budget that governs the maximum possible values taken by rl. If gl(rl) expresses the

cost of implementing the strategy rl then this budget as an upper bound. For an

interdependent system planning the consideration of an overall budget would give a

better planning option because it influences the distribution of resources for imple-

menting the management strategies across all affected sectors. Thus, for the entire

economy if at most budget b is available, then the Equation (3.2) constraint shows

allocations that are decided on a fixed budget.

m∑

l=1

gl(rl) ≤ b (3.2)

For an interdependent economic system being analyzed at the macro level overall

system behavior needs to be quantified through a suitable metric. A metric for

measurement of the overall impact of inoperabilities and demand perturbations for

interdependent systems is the total economic loss, Q, experienced across all n sectors.

Equation (3.3) shows how Q can be measured in terms of the as-planned outputs,

xi’s, and the inoperabilities qi’s across all sectors. Since risk planning considerations

entail the minimization of the total economic loss resulting from a disruptive event,

minimizing Q helps achieve such an objective and answers the first of the questions

posed above.

Q =
n∑

i=1

xiqi = xᵀq (3.3)

As established already that the static inoperability input-output model is a demand

driven model, Q is expressed in terms of the demand perturbations using the inop-
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erability model. Thus expressing Q = xᵀ[I−A∗]−1c∗ shows that the interdependent

nature of the economic system is reflected in the decision-making framework. Here

the vector c∗ is the n× 1 demand perturbation vector for all n sectors and is given as

c∗i =





c∗l if i ∈ l

0 otherwise
(3.4)

Combining the above equations into a risk management problem provides the

statement for the improvement of static resilience of an interdependent economic

system. Equation (3.4) shows the optimization formulation, which is understood

through the following statement:

For given initial impact on sectors in the form of demand perturbations if risk
management strategies exist to reduce effects of such demand perturbations,
then given a finite budget for implementation how do we allocate the strategies
such that the overall interdependent economic losses are minimized?

min Q = xᵀq = xᵀ[I−A∗]−1c∗

subject to

c∗l = fl(c
∗
l (0), rl),∀l = {1, 2, ...,m}

∑m
l=1 gl(rl) ≤ b

rl ≥ 0,∀l = {1, 2, ...,m}

(3.5)

MacKenzie et al. (2012b) have developed a similar risk management framework

for accessing the budget allocations required for efficient recovery in the aftermath of

the Deepwater Horizon oil spill (Cleveland, 2010). In their model fl is exponential

with a quadratic r0 term in the exponent for allocating budget to all sectors.
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3.2.2 Example planning problem insights

The type of the functional forms fl and gl govern the solution to the resilience planning

problem. For macro level planning of the input-output kind of systems the rl value

might denote the amount of capital that can be invested to purchase and substitute

for the lost demand denoted by c∗l . With increased capital investment the demand

perturbations are expected to decrease. Assuming there exists an exponential function

that represents the decrease in demand perturbation from the initial level c∗l (0) as

investments are made, the function fl is represented as given in Equation (3.6)

c∗l = c∗l (0)e−αlrl (3.6)

where αl > 0 can be regarded as the measure for the effectiveness of investment rl,

which also shows the return for substituting for lost demand for sector l. Using this

formulation the optimization problem of Equation (3.5) becomes

min Q = xᵀ[I−A∗]−1c∗

subject to

c∗l = c∗l (0)e−αlrl ,∀l = {1, 2, ...,m}
∑m

l=1 rl ≤ b

rl ≥ 0,∀l = {1, 2, ...,m}

(3.7)

Assuming the matrix D∗ = [I−A∗]−1 = [d∗ij] denotes the interdependent propa-

gation, the solution of the Equation (3.7) optimization problem is obtained by con-

structing the Lagrangian function

L =
m∑

l=1

( n∑

i=1

xid
∗
il

)
c∗l (0)e−αlrl + λ0

( m∑

l=1

rl − b
)
−

m∑

l=1

λlrl (3.8)
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where λl, l = {0, 1, 2, ...,m} are the Lagrangian multipliers. Assuming

Wl =

( n∑

i=1

xid
∗
il

)
c∗l (0)

the optimal resource allocations rl are obtained by solving the Karush-Kuhn-Tucker

conditions (Boyd & Vandenberghe, 2004) given by

∂L
∂rl

= 0 =⇒ −Wlαle
−αlrl + λ0 − λl = 0,∀l = {1, 2, ...m} (3.9)

m∑

l=1

rl ≤ b (3.10)

rl, λl ≥ 0, ∀l = {1, 2, ...m} (3.11)

λ0

( m∑

l=1

rl − b
)

= 0 (3.12)

λlrl = 0, ∀l = {1, 2, ...m} (3.13)

Setting λ0 > 0 and λl = 0, l = {1, 2, ...,m} leads to the optimal resource allocation

values obtained by solving the system of Equations (3.14) and (3.15)

−Wlαle
−αlrl + λ0 = 0,∀l = {1, 2, ...m} (3.14)

m∑

l=1

rl = b (3.15)

An example problem illustrates the effectiveness of planning resource substitution

for a decreasing demand perturbations and enhancing the static system resilience.

Table 3.2 shows a three industry economy with given input-output transactions table.

From the table the interdependency matrix A∗ and the maximum possible demand

loss vector c∗(0) can be calculated, as shown in Equation (3.16). Also the substitution

measures for the three sectors given by the α vector are shown in Equation (3.16).

These values come from expert elicitation or previous recovery planning data based

on the properties of the system.
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Table 3.1: Two industry input-output transaction data in million of dollars

Industry 1 2 3
External Demand (c) Total Output (x)

($ US million) ($ US million)
1 266 378 230 126 1000
2 267 110 224 899 1500
3 340 340 468 52 1200

Value added 127 672 278
Total Output(xT ) 1000 1500 1200

A∗ =




0.27 0.38 0.23

0.18 0.073 0.15

0.28 0.28 0.39



, c∗(0) =




0.13

0.59

0.04



, α =




0.05

0.04

0.08




(3.16)

Two results which can be obtained from the resource allocation problem are shown

in Figures 3.3(a) and 3.3(b). The decrease in the total economic losses for the en-

tire economy with increasing budget allocation provides a estimate of the impact of

budget allocation of the ability to improve system performance. Further, as shown

in Figure 3.3(a) the sector-wise allocation of budget shows the optimal distribution

of resource for most improved performances. In this example Industry 2 gets most

of the budget, which can be explained from the fact that it is most impacted by the

disruption. For low budget allocation almost all of the allocation goes to Industry 2.

Figure 3.3(b) highlights the returns from the resource investments in the individual

sectors and the entire economy. The net benefit of budget allocation can be estimated

as (Anderson et al., 2007)

Net Benefit = Loss when no allocation− Loss due to allocation− Allocation Cost

= Net loss avoided− Investment made (3.17)

This metric when plotted against the amount of resource allocation shows that be-
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yond a certain point there is a diminishing return of the investment. Hence, the

maximum limit till which budget/resource allocation makes gives increasing returns

can be accessed to help decision-making. As seen in Figure 3.3(b) investing resources

to Industry 3 beyond approximately $40 million does not provide any increasing re-

turns for the investments. Hence, excess budgets can be directed towards the other

two sectors for improving their performances. The above analysis is a basic frame-
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Figure 3.3: Trade-offs between investments in losses.

work for a static resilience improvement and estimation problem, where the decision

variable vector r can have different meanings depending upon the nature of the prob-
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lem.

3.3 Dynamic Resilience estimation

Dynamic resilience behavior adds the time element to recovery properties desired

from a system rebounding from disruptions. For economic systems the “speed of the

system towards achieving a desired state” (Rose, 2007) becomes a factor in determin-

ing how dynamically resilient it is. In the dynamic risk input-output model construct

most of the system behavior is indicative of a progression towards a stable state, and

also the system inoperability responses are bounded. Hence, the dynamic model is a

suitable candidate for analyzing and characterizing resilience in interdependent sys-

tems. We explore the dynamic risk input-output model behavior and build resilience

interpretations through it.

3.3.1 Dynamic behavior

The n sector dynamic risk input-output model, which was discussed previously in

Section 2.5.1, is restated here. This model, used for quantifying interdependent risk

recovery for economic sectors, is given by the first order different equation

q̇(t) = −K∗(I−A∗)q(t) + K∗c∗(t), ∀t > 0 (3.18)

The analytic solution of the differential Equation (3.18) is given as

q(t) = e−K
∗(I−A∗)tq(0) +

∫ t

0

e−K
∗(I−A∗)(t−z)K∗c∗(z)dz (3.19)

From Equation (3.19) it is evident that the temporal evolution of sector inoperability

depends on the initial inoperability vector q(0), demand perturbation vectors c∗(t) at

all times, model parameters K∗ and A∗ that effect the rate of recovery of the system.
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From a system dynamics point of view the first term represents the motion that is

inherently driven by system properties, and the second term represents system dy-

namics due to forced external loading. Some model properties, previously explained,

are restated as follows:

1. The inoperability, qi(t) at any time t of sector i will lie between 0 and 1, where

a value of 0 means that there is no loss of output and a value of 1 shows total

loss of output. The q(t) vector can be treated as a measure of likelihood of

damage to interdependent sectors and hence it is a risk metric.

2. The demand perturbation, c∗(t) at any time t for sector i will lie between 0 for

no loss of demand and ci/xi < 1 for complete loss in demand of sector i output.

c∗(t) is a metric for measuring risk to interdependent sectors due to external

disturbances.

3. A∗ is a data-driven matrix derived from the Bureau of Economic Analysis data

(BEA., 2011). In Section 2.3.2 it was shown to be an irreducible non-negative

matrix with row sums less than 1. A∗ measures the degree of interdependence

between sectors, which provides an indication of the cascading effect of a dis-

ruption.

4. The K∗ matrix represents a short-term behavior of sectors to invest to adjust-

ments in changing outputs. In Section 2.5.3 we showed that when K∗ is a

diagonal matrix its elements are given as

K∗ =
{

diag(kii), 0 ≤ k∗ii ≤ 1(∀i = {1, 2, ..., n})
}

(3.20)

A K∗ with non-negative off-diagonal elements is also constructed in Section 2.5.3

and is an almost diagonal matrix. K∗ elements represent the speed with which

sectors can attain stable responses to changes in its production outputs and
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demands.

5. The bounds that are established for the elements of the K∗ are determined by

the consideration that the matrix K∗(I−A∗) has positive eigenvalues. This

guarantees that the solution of Equation (3.19) does not diverge, which is an

important consideration for modeling recovery through the model.

From a resilient recovery perspective we need to investigate possible functional

forms of Equation (3.19) that suggest the system approaches towards an equilibrium

state. Three possible cases are considered for analysis.

No demand perturbations

This condition arises when the disruption only affects the supply of economic com-

modities due to a direct impact on industry facilities. Such impacts would have

localized effects leading to partial failure of economic sector productivity, but would

not be widespread enough to affect demand losses. Mathematically it means c∗ = 0,∀t

in Equation (3.19), which eliminates the second term to give

q(t) = e−K
∗(I−A∗)tq(0) (3.21)

The above solution always leads to the stable state q(t) → 0, t → ∞, due to the

exponential decay term. This implies that economic sectors are able to recover from

supply only disruptions as long as they have some resilience. Such resilience can be

built through component redundancies.

Constant demand perturbations

When the final demand perturbations are stationary during the entire time of analysis,

the disruption is said to have lead to a constant demand perturbation. This condition

implies that the economy has never fully recovered from the impact and there are
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always some residual demand perturbations, which might arise either due to inability

of the economic sectors to meet final demands or decrease in demand from final

consumers. In Equation (3.19) if we substitute c∗(t) = c∗,∀t, the time-dependent

inoperability becomes

q(t) = (I−A∗)−1c∗ + e−K
∗(I−A∗)t[q(0)− (I−A∗)−1c∗

]
(3.22)

The stable state solution of the above Equation is q(t→∞) = (I−A∗)−1c∗, because

of the exponential decay term approaches zero over time. This stable state condition

solution shows that at equilibrium the dynamic model reduces to the static inoper-

ability input-output model. Such a condition is desirable for the input-output based

economy because it shows the natural tendency of the system towards balancing the

demand and supply shortages. For resilient economic recovery c∗ should be such that

q(t → ∞) ≤ q(0) because it is desirable to move towards an equilibrium condition

that is better than the initial system state. Hence, c∗ should be a low value indicating

only some residual shortages that exist in the economy.

Exponentially decreasing demand perturbations

A generalized recovery behavior is represented by demand perturbations that dissipate

after an initial impact. There are entire families of curves that can be used to plan

or represent the recovery of the demand perturbations over time. Exponentially

decaying demand perturbations cover a wide variety of complex planning and behavior

patterns, making them natural fits for quantifying system recoveries. If the demand

perturbation is given as c∗(t) = e−Ptc∗(0), where P is a matrix for the rate of decay

of demand perturbations. P = diag(pi), 0 ≤ pi ≤ 1 would represent a good choice for

the rate of recovery planning or behavior for each sector. Substituting the value of
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c∗(t) into Equation (3.19) the time-dependent inoperability becomes.

q(t) = e−PtZ−1K∗c∗(0) + e−K
∗(I−A∗)t[q(0)− Z−1K∗c∗(0)

]
(3.23)

where Z = [K∗(I−A∗)−P]. For mathematical design purposes, the choice of matrix

Z is made such that it is invertible. The stable state condition for the Equation (3.23)

inoperability is q(t→∞) = 0, which is achieved quicker with larger values of pi.

An example problem is provided to give a visual presentation of the model dy-

namics generated from the above three disruption scenarios. A two-sector economy

is considered here with an input-output transaction as shown in Table 3.2. From

the data the interdependency matrix A∗ is calculated and shown in Equation (3.25).

The K∗ matrix is assumed to be a diagonal matrix with diagonal elements equal to

0.5 for both sectors. It is also assumed that a disruptive event occurs and causes

an initial inoperability in sector 2, while sector 1 does not have any initial inoper-

ability. Demand perturbation considered for the three scenarios are also shown in

Equation (3.25). Figure 3.4 shows the operability (1 - q(t)) profiles for the sector

recoveries for the three scenarios presented here.

Table 3.2: Two industry input-output transaction data in million of dollars

Industry 1 2 External Demand (c) Total Output (x)
1 250 400 350 1000
2 200 100 1700 2000

Value added 550 1500
Total Output(xT ) 1000 2000
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A∗ =




0.25 0.40

0.10 0.05


 , K∗ =




0.5 0

0 0.5


 , q(0) =




0

0.5


 ,

Case 1: c∗(t) =




0

0


 , Case 2: c∗(t) =




0

0.2


 , (3.24)

Case 3: c∗(t) =
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Figure 3.4: Dynamic profiles for sector operability vs time signifying recoveries from
three scenarios of disruptions for a two sector economy. (a) Sector 1 risk profiles, and
(b) Sector 2 risk profiles, for the three disruption scenarios characterized respectively
by zero, constant and exponentially decaying demand perturbations. All scenarios
show some form of recovery after initial impact.

3.3.2 Metrics for resilience using the dynamic risk input-output model

Having established that the dynamic risk input-output model is capable of model-

ing sector recoveries we need to quantify resilience through this model. For this

the methodologies developed in the engineering resilience framework are explored

and related to the model. Bruneau et al. (2003) developed a framework for seis-
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mic resilience estimation that captured technical, organizational, social and economic

aspects of community behavior. The quantitative concepts of this framework ap-

ply to the dynamic economic resilience estimation framework we intend to discuss.

Seismic resilience is estimated by measuring the expected degradation of the system

from the time immediately after an earthquake till it makes suitable recovery. Fig-

ure 3.5 shows the graphical representation and the formulation for measuring system

resilience based on the quality of the system at each time. From this approach, called

the resilience triangle approach, the loss of resilience is quantified by the metric R

which gives the shaded area showing the loss of quality during recovery. Based on this

approach resilience is contended to have four dimensions applicable to any general

system behavior characteristics.

1. Robustness - The measure of the sector’s ability to resist the initial impact.

2. Rapidity - The measure for the time it takes a sector to attain recovery.

3. Redundancy - Ability of the sector to substitute for lost product through in-

ventories and other means.

4. Resourcefulness - Capacity enhancing capabilities of a sector to improve its

performance.

As shown in the Figure 3.5, the resilience triangle concentrates on quantifying

system resilience in terms of the robustness and rapidity, which are understood to

be achieved through incorporating redundancy and resourcefulness into the system

(Bruneau et al., 2003). Research on the resilience triangle concept has been extended

to include better methods to measure the resilience through multiple triangles showing

more redundancies (Bruneau & Reinhorn, 2007), finding the area beneath the curve

which actually indicates resilience (Cimellaro et al., 2010; Zobel, 2010, 2011). Prob-

abilistic approaches have also been incorporated into the resilience triangle approach
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Figure 3.5: Resilience triangle concept showing the measures of robustness and ra-
pidity and the calculation of the loss of resilience which is the shaded area (Bruneau
et al., 2003).

(Chang & Shinozuka, 2004; Bruneau & Reinhorn, 2007).

Although resilience quantified through the above approach is based on four sys-

tem characteristics it ultimately measures one quantity encapsulating entire system

behavior. Zobel (2010, 2011) contend that a multi-dimensional representation of re-

silience is necessary because a single metric could be misleading. Mathematically the

areas within two triangles can be the same indicating the same amount of resilience,

but one behavior could be due to high robustness and low rapidity while the other

might be the opposite. Figure 3.6 highlights this point. Such considerations require

multiple metrics in the resilience estimation framework. Vugrin et al. (2010) discuss

the importance of and develop metrics for building an infrastructure and economic

resilience framework.

By its very definition and equation structure, the dynamic risk input-output model

can be used to measure and quantify resilience. The four dimensions of infrastructure
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Figure 3.6: Resilience triangles having same shaded areas but different robustness and
rapidity conditions. (a) Higher impacts but faster recovery, and (b) Lower impact
but slower recovery.

resilience can be explained through the model to develop a multiple metric frame-

work for building economic resilience frameworks. In previous dynamic inoperability

input-output model (DIIM) analysis resilience is understood only in terms of the K∗

matrix. Haimes et al. (2005b); Lian & Haimes (2006) call the coefficients of K∗ in-

dustry resilience coefficients that measure the efficacy of a sector’s risk managements

options. For the diagonal K∗, with diagonal elements between 0 and 1, higher re-

silience is indicated by closeness of elements towards 1 and lower resilience means

diagonal elements tend towards zeros. Treating the K∗ matrix as the only indica-

tor of resilience is an incomplete and inaccurate analysis approach. In fact K∗ is a

factor that contributes towards the interdependent system resilience, and the actual

resilience is built on such contributions. Figure 3.7 shows the caveat in treating K∗ as

the only resilience metric. Using the two sector example data of Table 3.2 we consider

responses to same initial inoperability and demand perturbation conditions for two

different K∗ matrices. Using same q(0) as in Equation (3.25) and c∗ = 0,∀t we find
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responses for a lower K1 and a higher K2 resilience matrices given in Equation (3.25).

Given c∗ = 0,∀t and

A∗ =




0.25 0.40
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
 , q(0) =
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
 , (3.25)
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Figure 3.7: Sector 1 dynamic response profiles showing sector operability vs time from
two different K∗ matrices. The plot shows the trade-off between higher immediate
impacts and recovery times for the two different K∗ choices.

The analysis shows that for industry Sector 1 having a higher values for diagonal

K∗ leads to faster time to recovery but comes at a cost of increasing the initial impacts

of disruptions. Hence, there is a trade off between achieving faster recovery at the

cost of higher cascading impacts. Due to the coupling effects from interdependency

the choice of higher K∗ can lead to adverse non-desirable effects.
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We need multiple metrics for a holistic quantification of resilience and measuring

such trade-offs between the metrics. The three metrics proposed here to explain

resilience through the dynamic risk input-output model are related to the resilience

triangle approach and in essence explain the four resilience dimensions of the Bruneau

et al. (2003) framework.

Time averaged level of operability for a sector

The overall level of functionality maintained by a system, starting from the time of

initiation of disruptive effect till any time horizon, provides a good indication of its

resilience to the disruptive event. From the dynamic risk input-output model the

measure 1 − qi(t) is the level of operability of sector i at each instance of time and

can be used to quantify the overall sector functionality level. Starting at t = 0, if

the system is being monitored till a long time t = T then overall system performance

can be quantified in terms of the time averaged level of operability over the analysis

period. This metric, which we call Fi, is given in Equation (3.26) as

Fi =
1

T

∫ t=T

t=0

[
1− qi(t)

]
dt = 1− 1

T

∫ t=T

t=0

qi(t)dt (3.26)

From Equation (3.26) we observe that 0 ≤ Fi ≤ 1, with Fi = 0 occurring for a

totally inoperable system (qi(t) = 1,∀t ∈ [0, T ]) and Fi = 1 corresponding to a fully

functional system (qi(t) = 0, ∀t ∈ [0, T ]) during the entire time of analysis. Typically a

system would prefer to have Fi closer to 1 because it indicates high levels of operability

at each time step. A certain level of consideration needs to be made in deciding the

time T over which the system functionality is being measured. In most analysis the

dynamic risk input-output being used provides an exponentially decaying solution

for sector inoperability. After a certain time the model values converge towards

almost zero values. If T is large integral term involving qi(t) in Equation (3.26)
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will converge towards zero (limT→∞
1
T

∫ t=T
t=0

qi(t)dt = 0) and the measure Fi(T ) → 1.

A case-based study for the possible values for T and Fi is required based on the

particular trajectory of qi(t), which depends upon the external forcing c∗i (t)∀i. The

vector representation F of the Equation (3.26) metric for the entire n sector economy

is given in Equation (3.27). Here 1 in a n× 1 vector of ones.

F = 1−
∫ t=T

t=0

q(t)dt (3.27)

Zobel (2010, 2011) have used a similar approach to define a normalized resilience

metric from the area beneath the resilience triangle, which they call the predicted

resilience of a system. Fi can also be related to the economic loss metric Qi, which

is widely used in inoperability loss estimation studies of the infrastructure systems

(Barker, 2008; Barker & Santos, 2010a). For a dynamic inoperability response Qi is

defined as

Qi = xi

∫ T

t=0

qi(t)dt (3.28)

Hence, its functional relationship with Fi is as expressed as

Fi = 1− Qi

xiT
=
xiT −Qi

xiT
(3.29)

Equation (3.29) suggests that if xiT represents the maximum loss the system could

have incurred then Fi is a measure of the amount of loss the system avoided as fraction

of potential maximum damage. This is consistent with the static economic resilience

definition (Rose, 2007), which is often used as an overall performance measure even

for dynamic system analysis.
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Maximum loss of sector functionality

The immediate impact of a disruptive event on an infrastructure system is felt through

the degradation of its output producing capacity. In addition, if the external demands

for output are perturbed system operability is further eroded. A preferred resilient

system is one that is capable of maintaining a high level of initial operability and

continues being as much operable as possible during disruptions. In reality there are

events that a capable of causing systems to lose most of their functionality, which

makes it difficult for them to operate at high levels of productivity. As such there is

interest in understanding the worst effect a disruption can have on the infrastructures

before they can recover to better levels of performance. Since resilience is associated

with the capability of a system to bounce back or recoil from disruptions, getting

a perspective of the lowest productivity levels during recovery is needed to develop

an understanding for system resilience. In the dynamic risk input-output model it is

assumed that any infrastructure is capable of recovering from any level of inoperability

below one to an equilibrium condition. Hence, in the model, inoperability reaches a

maximum value before the sector rebounds towards recovery. This maximum sector

i inoperability, called maximum loss of functionality, is quantified as

qmi = max
t≥0

[qi(t)] (3.30)

It is clear from Equation (3.30) that 0 ≤ qmi ≤ 1 since it is directly measured in terms

of inoperability which lies between zero and one. Like the previous resilience metric

a case-based study is required for quantifying possible ranges in which qmi values lie

depending upon the trajectory taken by the time-dependent inoperability. The n

sector vector for maximum loss of functionality is expressed as

qm = max
t≥0

[q(t)] (3.31)
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1 − qmi is referred to the robustness measure in the resilience triangle framework,

although there is a slight difference between its interpretation in the two approaches.

In the engineering based interpretation robustness implies the ability to resist the

direct impact and avoid immediate damages (Bruneau et al., 2003; McDaniels et al.,

2008), which would be measured in terms 1− qi(0). qmi can manifest itself at a later

time as seen in Figure 3.7, because it comes from a coupled system response and

highlights the reaction of one sector to shocks in others. In the end strengthening

robustness or reducing qmi require similar planning strategies that enhance sector and

overall system performances.

Time to recovery

Dynamic resilience is best understood in context to the speed of recovery of systems.

The faster a system is able to recover from a disruptive event the more resilient it is

supposed to be. The notion of system recovery is important when trying to under-

stand the time it takes to recover. For an ideal resilient system recovery implies return

to pre-disruption levels of productivity and thereafter the capability to maintain func-

tionality at the same levels. In reality systems might not be able to reorganize and

recover to pre-disruption output levels due to the existence of permanent losses or

different evaluation standards. Hence, recovery is best understood in terms of the

capability of the system to achieve a stable condition where productivity levels are

higher than they were immediately after the disruptive impacts. In the dynamic

risk input-output model analysis we showed that the infrastructure systems approach

equilibrium conditions from different initial inoperability and demand perturbation

forcing conditions. Hence, we can define a suitable resilience metric, called the time

to recover for indicating sector recovery through the dynamic model. As the dynamic

model analysis suggests, the equilibrium levels of sector inoperability depending upon

different dynamic conditions are known. Thus, time of recovery is measured in terms
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of said equilibrium level inoperabilities. If for sector i the equilibrium inoperability

is given as qei then its time to recovery τi is defined as the time when its inoperability

qi(t) is within an ε(<< 1) neighborhood of qei . This is stated in Equation (3.32) as

τi =
{
t : t > 0, |qi(t)− qei | ≤ ε

}
(3.32)

Similar to the above two metrics, the time to recoveries of all the sectors can be

collected in an n× n matrix defined as

τ = diag
[
τ1, τ2, ..., τn

]
(3.33)

Time to recovery is synonymous with the notion of rapidity in all dynamic re-

silience frameworks (Bruneau et al., 2003; Rose, 2007), with slight difference in its

role here. Rapidity is always associated with an improved dynamic resilience, because

it is understood that recovery brings the system from its worst initial condition to a

desired state and the increased speed implies more resilience. As shown in Figure 3.7

there is a tradeoff between the time to recover and maximum inoperability, which

shows that increased speed does not always lead to a better performance throughout.

Again system interdependence brings about such behaviors.

The graphical representation of the three resilience metrics generated from a gen-

eral sector response to disruption is shown in Figure 3.8. Parallels can be drawn with

the Figure 3.5 resilience triangle.

3.3.3 Relationship between the resilience metrics

Since the three resilience metrics defined above come from the dynamic risk input-

output model, a functional relationship exists between them. Investigating such a

function that relates the three metrics gives us a sense of bounds associated with

the each metric based on its dependence on the other two. Moreover we can find

76



!"#$%

&
'$

()
*"
+",
-%

qm

τ!"#$%,.%($/.0$(-1%

2)3"#4#%+.55%.6%647/8.7)+",-1%

T =

!"#$%)0$()9$:%+$0$+%.6%.'$()*"+",-1%

F =
Shaded Area

T

Figure 3.8: Resilience metrics as given by the dynamic risk input-output model.

the values for two of the metrics and use them to make an educated guess about

the possible value of the third metric. From the definitions of the resilience metrics

it is convenient to represent the time averaged level of operability in terms of the

maximum loss of functionality and the time to recovery. Equation (3.34) gives the

general functional form that expresses the relationship between the resilience metrics

Fi = gi(T, q
m
i , τi) ⇐⇒ F = g(T,qm, τ ) (3.34)

The functional form of g can be developed by looking at the definitions developed

from Equations (3.26) to (3.33). Fi given in Equation (3.27) can be estimated as

Fi = 1− 1

T

∫ t=τi

t=0

qi(t)dt−
1

T

∫ t=T

t=τi

qi(t)dt (3.35)

Since, by definition τi represents a time to attain stability the level of sector inop-
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erability can be considered time invariant beyond τi. Substituting the equilibrium

inoperability estimation qei of Equation (3.32) in Equation (3.35) we get

Fi = 1− 1

T

∫ t=τi

t=0

qi(t)dt−
1

T

∫ t=T

t=τi

qei dt

= 1−
(
1− τ

T

)
qei −

1

T

∫ t=τi

t=0

qi(t)dt (3.36)

This relationship can be generalized to the entire interdependent economy to get the

average operability vector F as

F = 1−
(
I− τ

T

)
qe − 1

T

∫ t=τ

t=0

q(t)dt (3.37)

The particular form of the functional relationship in Equation (3.37) is further

explained when we look at specific functions for the time-dependent sector inoper-

ability. Therefore the expressions for inoperabilities derived previously will be used

here to explain the exact functional relationships.

No demand disruptions

The interdependent inoperability vector for this case is an exponential decaying func-

tion and was calculated in Equation (3.21). It can be substituted into the Equa-

tion (3.37) expression for the time averaged level of operability.

F = 1−
(
I− τ

T

)
qe − 1

T

∫ t=τ

t=0

e−K
∗(I−A∗)tq(0)dt

= 1− 1

T
[1− e−K∗(I−A∗)τ ][K∗(I−A∗)]−1q(0) (3.38)

As shown before the equilibrium inoperability is given as qe = 0, which is achieved at

τ →∞. For numerical and practical purposes we can assume that each τi represents a

time beyond which there is no significant sector inoperability and numerically qi(t) ≈
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0,∀t > τi. Also, it is clear here that sector inoperabilities are obtained through

the product of an exponentially decaying matrix function with a vector. Hence,

for simplicity it is assumed that the maximum sector inoperabilities occur initially,

which means qm = q(0). This might not be the general case as some inoperability

grow from their initial levels due to system couplings. Substituting for qm into the

Equation (3.38) the functional relationship between the resilience metrics is described

through Equation (3.39)

F = 1− 1

T
[1− e−K∗(I−A∗)τ ][K∗(I−A∗)]−1qm (3.39)

Constant demand perturbations

Similar to the case-based analysis for the no demand perturbation scenario we can

find a relationship between the resilience metrics for a constant demand perturbation

scenario. The time-dependent inoperability for this case was also calculated pre-

viously in Equation (3.22) and needs to be plugged into Equation (3.37). Here the

equilibrium inoperability is qe = [I−A∗]−1c∗ and again it is assumed that qm = q(0).

F = 1− (I−A∗)−1c∗ − 1

T
[1− e−K∗(I−A∗)τ ][K∗(I−A∗)]−1[qm

− (I−A∗)−1c∗] (3.40)

Exponential decaying demand perturbations

The Equation (3.23) expression for the time-dependent inoperability is used to calcu-

late the desired functional relationship in this case. As shown before, since this is an

exponential decaying response qe = 0. Similar to previous assumptions qm = q(0)

for this case also. Equation (3.41) provides the required expression relating F to T ,
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τ and qm.

F = 1− 1

T
[1− e−Pτ ]P−1Z−1K∗c∗(0)

− 1

T
[1− e−K∗(I−A∗)τ ][K∗(I−A∗)]−1

[
qm − Z−1K∗c∗(0)

]
(3.41)

3.3.4 Decision space generated by resilience metrics

Evaluating system performances through the resilience metrics allows for better un-

derstanding of the system, which leads to better decision-making. By capturing the

overall resilience through the F metric and also through the characteristics that sig-

nify system robustness and rapidity allows for comparison between different disruption

scenarios (Zobel, 2011). Since, we have been able to obtain a functional relationship

between the metrics it is possible to use two metrics and estimate the third. This pro-

vides an overall picture for system performance objectives. Equations (3.39) to (3.41)

are complex matrix functions that can become difficult to solve because they require

measures for recovery times and maximum inoperabilities for all the sectors. Hence,

getting a decision support through these constructs can becomes quite challenging.

Nevertheless these equations provide valuable information that allows us to develop a

visualization between the resilience metrics. We propose utilizing the functional forms

of the derived functions for building a visualization tool for specific sectors. From

example the Equation (3.39) suggests that for the no demand perturbation case the

sector specific relationship between the resilience metrics is of the form

Fi = 1− 1

αiT
(1− e−αiτi)qmi (3.42)

where αi denotes some measure of interdependence suggested through K∗(I−A∗)

matrix. Oliva et al. (2010) suggest that the term
∑n

j=1 a
∗
ij can be treated as quick

global evaluation for sector resilience. It is called a dependency index because it
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reflects the infrastructures capabilities to maintain functionality under maximum in-

terdependent inoperabilities. Deriving from the matrix form of Equation (3.39) the

term αi can take the values given by Equation (3.43), which is obtained by assuming

a diagonal K∗ matrix.

αi = k∗ii
(
1−

n∑

j=1

a∗ij
)

(3.43)

The above value for αi can be utilized to reflect a decision-maker’s control over the sys-

tem resilience by controlling the possible values for k∗ii. Combining expressions (3.42)

and (3.43) provides a functional form for quick visualization of the system resilience

metric relationships, that can be controlled through changing the degree of interde-

pendence. A contour plot showing isolines for Fi based on all combination for τi

and qmi can be constructed to generate a decision space that reflects recovery and

maximum impacts for same levels of overall functionalities. The two-sector example

problem previously discussed in Table 3.2 is considered here to show such contour

plots. From the data we get the following relationships between the resilience metrics

F1 = 1− 1

0.35k∗11T
(1− e−0.35k∗11τ1)qm1

F2 = 1− 1

0.85k∗22T
(1− e−0.85k∗22τ2)qm2 (3.44)

From Equation (3.44) Figures 3.9 and 3.10 show, respectively for Sector 1 and 2,

the contour lines for Fi as τi and qmi vary for different choices of kii. Similar analysis

is also presented in generating a multi-dimensional decision-space using the resilience

triangle construct (Zobel, 2010, 2011; Zobel & Khansa, 2011). Such plots generate

a decision-space which can be used to estimate the outcome of system performance

when choosing recovery strategies reflected through K∗. The values on the contour

isolines, which denote the Fi values, can indicate to the decision-maker the outcome
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of different k∗ii choices. A comparison is made in Figure 3.9 between two outcomes,

shown as dots on the plots, that result in same recovery time and overall operability,

but vary in the maximum inoperability values. Hence the choice of k∗11 = 0.8 is

better in this case because it results in lower maximum losses while maintaining same

values for other performance metrics. Similar tradeoffs can be accessed through the

two decision-spaces for Sector 2. In general it is seen that higher k∗ii leads to faster

recovery and higher average operabilities for same levels of maximum inoperabilities.

Another way of utilizing the resilience metrics is done through planning for the amount

of investment required in rebuilding or substitution to recover from a disruption.

This is quantified through the value of K∗ elements that could indicate the desired

tradeoff between the metrics. An example problem of such planning is presented in

Equation (3.45). For the given interdependency matrix A∗ it is known that there are

not demand perturbations, and there is an initial inoperability q(0) that shows sector

2 suffers more disruption than sector 1. For sector 1 the decision is to determine the

effect of its k∗11 planning on its resilience metrics, given that k∗22 = 1. Figure 3.11 shows

both the change of maximum sector inoperability (qm) and average inoperability

(1−F ) with the change in recovery time as k∗11 is varied from 1 to 0. As k∗11 is increased

from 0 to 1 the time to recovery decreases along with the average inoperability, but

the maximum inoperability increases. This shows a tradeoff analysis between the

metrics that can be useful for resilience planning.

Given c∗ = 0,∀t and (3.45)

A∗ =




0.25 0.40

0.10 0.05


 , q(0) =




0.1

0.5


 , K∗ =



k∗11 0

0 1



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Figure 3.9: Sector 1 contour lines of F1 for varying τ1 and qm1 for two type of responses
generated as a result of choosing different k∗11 values. Decisions can be made between
the two options based on where the sector performance lies on the plots.
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Figure 3.11: Sector 1 relationships between maximum inoperability (qm1 ) and average
inoperability (1− F1) vs recovery time (τ) for varying k∗11 values. As k∗11 is increased
from 0 to 1 the time to recovery decreases along with the average inoperability, but
the maximum inoperability increases. This shows a tradeoff analysis between the
metrics that can be useful for resilience planning.

3.4 Adaptive resilience planning

The static and dynamic resilience estimation and planning schemes developed so far

are based on the assumption that disruptive impacts are felt one time or follow a

fixed trajectory during recovery. In the dynamic domain it is realistic to assume that

disruption occurs in phases or there are multiple disruptions that affect the system. As

such the system needs to readjust its recovery behavior and reevaluate its resilience.

This means that the K∗ matrix needs to be updated in order to accommodate such

readjustment, which leads towards an an adaptive resilience estimation model.

In effect updating the K∗ matrix shows the systems capability to “maintain func-

tion on the basis of ingenuity or extra effort” (Rose, 2009a). Such resilience has an

emergent property that allows the system to reorganize against the changing risk

(Haimes et al., 2008). The discussion here suggests a scheme of modeling dynamic

resilient responses due to the changing risks.
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3.4.1 An adaptive dynamic risk input-output model

The dynamic risk input-output model developed so far can also be used for estimating

adaptive resilience for sector recoveries. Resilience is developed against disruptions

in the supply, which are treated as instantaneous effects similar to the onset of the

initial inoperability q(0). Also, resilience is developed for changing demand pertur-

bations, which can be continuos in time. Given the dynamic risk input-output model

of Equation (3.18) it is assumed that new disruptions occur at times 0, t1, t2, ....., tn

where 0 < t1 < t2 < ..... < ts. Also, it is assumed that the disruptions in sup-

ply/inoperability are quantified through the series of vectors d(0),d(t1), ...,d(ts).

These disruptions add onto the already existing inoperability in the system, which

implies that the inoperabilities are effected as

q(0) = d(0)

q(t1) → q(t1) + d(t1)

...

q(tn) → q(tn) + d(tn) (3.46)

Disruptions can also have an effect on the demand perturbations, which means c∗(t)

can be divided into different time intervals to reflect the changes in the demand side

c∗(t) =





c∗0−t1(t) 0 ≤ t < t1

c∗t1−t2(t) t1 ≤ t < t2
...

...

c∗≥ts(t) ts ≤ t <∞

(3.47)

Using Equations (3.46) and (3.47) we can divide the time evolution of inoperabil-

ity into intervals that divide the different shocks and their effects. Equation (3.48)
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provides the formulation for the evolving inoperability

q(t) =





e−K
∗
1(I−A∗)tq(0) +

∫ t
0
e−K

∗
1(I−A∗)(t−z)K∗1c

∗(z)dz 0 ≤ t < t1

e−K
∗
2(I−A∗)(t−t1)q(t1) +

∫ t2
t1
e−K

∗
2(I−A∗)(t2−z)K∗2c

∗(z)dz t1 ≤ t < t2
...

...

e−K
∗
s+1(I−A∗)(t−ts)q(ts) +

∫ t
ts
e−K

∗
s+1(I−A∗)(t−z)K∗s+1c

∗(z)dz ts ≤ t <∞

(3.48)

As shown in the above equation, for recovery from a new impact of the disruptive

event on the system would require different K∗ estimates. Hence K∗ is adapting to the

requirements of the new system behavior. From Equation (3.48) the inoperability in a

time interval tk ≤ t < tk+1 can be transformed into a time interval 0 ≤ t′ < (tk+1− tk)

where the model evolution now becomes

q′(t′) = e−K
∗
k+1(I−A∗)t′q′(0)

+
∫ t′

0
e−K

∗
k+1(I−A∗)(t′−z)K∗k+1c

′∗(z)dz, 0 ≤ t′ < (tk+1 − tk)
(3.49)

where q′(t′) = q(t − tk), q′(0) = q(tk) and c′∗(t′) = c∗(t − tk). Hence we have a

series of dynamic risk input-output models for each time interval that can be used

for analysis of an adaptive response to disruptions.

An example problem shows how the inoperability response evolves when multiple

disruptions affect the system. We consider the two sector economy system given in

Table 3.2 whose interdependency matrix is restated here in Equation (3.50). As-

suming that there are no demand perturbations in the economy, but three supply

disruptions given in Equation (3.50) occur at times 0, 10 and 25. Different values of
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K∗ are used in the recovery planning as given in Equation (3.51).

A∗ =




0.25 0.40

0.10 0.05


 , d(0) =




0

0.5


 ,

d(10) =




0.2

0


 , d(25) =




0.1

0.1


 (3.50)

K∗0−9 =




0.5 0

0 0.5


 , K∗10−24 =




0.2 0

0 0.2


 , K∗≥25 =




0.8 0

0 0.8


 (3.51)

Figure 3.12 shows the evolution of the sector operabilities due to the above values

of K∗ in response to the multiple disruptions. The resilience metrics that were devel-

oped in Section 3.3.2 can be applied to the adaptive analysis to also understand the

system performance due to different resilience decisions.

3.5 Summary and discussion

This Chapter presented resilience estimation models for static and dynamic systems.

It was argued that the static risk input-output model is in itself a resilience estima-

tion scheme and thus can can be used to improve infrastructure resilience through

risk management. The risk management problem is in essence a method to reduce

the demand perturbation effects for the interdependent systems, which results in low-

ering the direct and indirect cascading inoperability effects of the disruptions. In

general there are several decision-making options available, which are geared towards

reducing the demand perturbations. It is assumed, and there is plausibility in such

an assumption, that the decision-maker has a mathematical model that signifies the

effectiveness of the risk policies in decreasing the demand risks. Hence the primary
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Figure 3.12: Operability profiles showing sector recoveries due to different K∗ matrices
to adapt to multiple disruptions of the interdependent system.

objective of the static resilience scheme is to come up with a decision to allocate the

policies across interdependent sectors subjected to budget constraints for implement-

ing said policies. The guiding objective of the planning decision is the preference

to lower the total economic losses for the entire economy. For a particular budget

resource allocation problem the solution of the risk management problem shows the

effectiveness of budget allocation, and the limit beyond which there is no need to al-

locate more budget. Overall the scheme is a useful optimization based methodology

that can provide planners with simple metrics and a prescription for strengthening

static resilience in an interdependent economy.

Resilience is also constructed in the domain of the dynamic risk input-output

model. The lack of a proper resilience estimation scheme in the dynamic model do-

main motivates the formulation of metrics that describe resilience. Even though the

model has been capable of describing interdependent infrastructure resilience, its in-
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terpretation of resilience has been flawed. This is corrected here and improved to

provide a holistic resilience construct through the dynamic model. Three charac-

teristics in dynamic resilience behavior namely the average sector level of function-

ality/operability, the maximum inoperability/loss of functionality and the time to

recovery are described. These provide a complete picture for resilience estimation in

dynamic systems because they reflect the notion that resilience should indicate the

ability to maintain functionality and posses a speed to recovery.

The usefulness of generating a trio of resilience metrics for the dynamic system

behavior is shown through the conceptual and mathematical decision-making scheme

that is prescribed here. The resilience metrics can be related to each other by a

function, which typically expresses the average sector level of functionality in terms

of the maximum inoperability and the time to recovery. As such a decision space can

be generated to give the tradeoffs between the choice of resilience planning options,

which are reflected through the values taken by the metrics.

Generating an adaptive scheme for resilience estimation and dynamic model be-

havior is a natural extension of the dynamic risk input-output model. Such an exten-

sion has been missing from previous research. An adaptive model is a better repre-

sentative of actual recovery behavior because there are multiple shocks and changing

resilience properties that are exhibited by the system. The resilience metric schemes

can be also applied to the adaptive model behavior.
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Chapter 4

Robust Static Resilience Planning Under an Uncertainty

Framework

4.1 Introduction

The risk input-output model is a data-driven model. It contains uncertainties due

to inaccuracies in data collection, including source data and assumptions inherent in

input-output analysis. Some input-output assumptions that create uncertainty are

the linearity or proportionality assumption, the allocation of resources distributed

across sectors, and aggregation of multiple sectors into bigger sectors. In addition,

the risk-based parameters such as demand perturbations and initial inoperabilities

used in decision-making depend upon events that are often extreme in nature and

difficult to understand a priori.

This Chapter discusses the nature of uncertainties in the problem at hand and

provides planning solutions to the decision-makers for the worst-case uncertainties.

The relevant research questions here is:

What is the nature of the uncertainties present in the optimization scheme and
how do they affect the problem formulations and solutions? What decision-
making formulations can be constructed to consider the extreme realizations
of the uncertainties in decision planning? Can we guarantee that the planning
solutions are robust to every uncertainty specified within a prescribed limit?

Section 4.2 discusses the solution approach that answers the questions posed

above. Uncertainties in the available data change the problem objective due to which

the static resilience risk management questions posed in Section 3.2.1 has to be re-
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formulated. While previously the planning objective was to minimize the overall

economic losses with given budgets, due to uncertainty there is no certainty as the

how much loss reduction would occur for a given budget allocation. Since planners

would like to have estimates for their budgets the problem objective changes to es-

timating the required amounts of resource allocations when economic losses need to

be kept below certain thresholds. Section 4.2.1 elaborates this further.

Since there is interest in analyzing the extreme uncertainty effects on the planning

solutions the optimization problem is formulated as a robust optimization scheme.

Section 4.2.2 gives the general guidelines that need to be followed to make the robust

formulations. The nature of the uncertainties are fundamental to understanding so-

lutions to planning objectives. Section 4.2.3 constructs the uncertainty sets that are

vital to the solution of the robust problem. These uncertainty sets are constructed to

reflect the real world interpretations of uncertainties in the input-output scheme and

the model physics itself. The robust formulations to the nominal problems are built

from the given uncertainty sets in Section 4.2.4. Robust formulations increase the

problem dimensions considerably but here they preserve the nominal problem struc-

ture and hence are useful. The Section 4.3 example problem highlights the usefulness

of the robust schemes by showing that small data uncertainties have great affect on

the planning solutions, which are accounted for in the robust solution. Section 4.4

concludes the work.

4.2 Robust optimization in static resilience

4.2.1 Reformulating the risk management problem due to uncertainty

In Section 3.2.1 we presented the framework for building and strengthening static re-

silience through the inoperability input-output model. The framework was based on

the notion that static economic resilience can be improved through optimal allocation
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of risk management options that contribute towards decreasing the demand pertur-

bations that drive direct and indirect disruption propagation effects (Santos, 2006).

For an n sector economic system we formulated a resource allocation based optimiza-

tion framework whose objective is to minimize the total economic loss Q subjective to

budget constraints. Also it is assumed that there are functional relationships between

demand perturbations (c∗) and the effectiveness of the risk management options (r)

that suggest decrease in demand perturbations as the risk management efficacy is

increased. For m ≤ n sectors impacted by initial demand perturbations c∗(0) the

static resilience planning problem we formulated is restated below.

min Q = xᵀ[I−A∗]−1c∗

subject to

c∗l = fl(c
∗
l (0), rl),∀l = {1, 2, ...,m}

∑m
l=1 gl(rl) ≤ b

rl ≥ 0,∀l = {1, 2, ...,m}

(4.1)

where x is the n× 1 vector of sector outputs, I is an n× n identity matrix, A∗ is the

n × n interdependency matrix, fl is the functional relationship between the sector l

initial demand perturbation c∗l (0) and the risk management option rl, gl is the cost

function for implementing the risk management option rl and b is the budget limit

for implements risk management in the entire economy.

In Section 3.2.1 we discussed the solution of the optimization problem when r

denote budget allocations, which are related to the demand perturbations through

an exponentially function. Equation (4.2) is a particular case of the Equation (4.1),
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where αl > 0 is the measure of the effectiveness of the resource allocation.

min Q = xᵀ[I−A∗]−1c∗

subject to

c∗l = c∗l (0)e−αlrl ,∀l = {1, 2, ...,m}
∑m

l=1 rl ≤ b

rl ≥ 0,∀l = {1, 2, ...,m}

(4.2)

The above decision-making framework is a convex optimization problem, for which

the solution was obtained through the Karush-Kuhn-Tucker (Boyd & Vandenberghe,

2004) optimality conditions. Even though it is a convenient framework for resilience

strengthening through risk management planning there are some important system

considerations that are omitted in the analysis. Primarily the framework is built

on the assumption that the system properties and behavior are deterministic, which

gives point estimates for the risk planning options. Such analysis is incomplete and

in fact inaccurate because risk is uncertain by nature and in its extreme realization

can have severe effects on the system behavior. If planning options do not consider

extreme risk then they are rendered ineffective leading to severe systems failures.

The general optimization problem formulated in Equation (4.1) contains: (i) mod-

eling or epistemic data uncertainties in estimation of the A∗ matrix and magnitude

of x vector and (ii) statistical or aleatory uncertainties in estimating probability dis-

tributions for c∗(0) vectors. Due to the presence of such uncertainties there arises a

need to reformulate the problem statement. Previously our risk management problem

was motivated by the question

Given a finite budget for implementation how do we allocate the strategies
such that the overall interdependent economic losses are minimized?

which showed that we were certain our planning would lead to a certain minimized
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economic loss estimate. Since, the objective Q is uncertain now the finite budget

allocation approach does not apply because we are not sure if the allocated budget

is sufficient to begin with. As a risk planner the interest still lies in minimizing the

overall risk at an acceptable cost. Hence, due to the new planing paradigms the risk

management problem is reformulated through the question

For given initial impact on sectors in the form of demand perturbations if risk
management strategies exist to reduce effects of such demand perturbations,
then what is the minimum budget required for implementation of allocation
of strategies such that the overall interdependent economic losses are below a
certain acceptable threshold?

The mathematical statement of the above translates into the following optimization

problem

min b =
∑m

l=1 gl(rl)

subject to

xᵀ[I−A∗]−1c∗ ≤ Q

c∗l = fl(c
∗
l (0), rl),∀l = {1, 2, ...,m}

rl ≥ 0,∀l = {1, 2, ...,m}

(4.3)

Applying this general framework to the specific problem of resource allocation we dis-

cussed for static resilience planning in Equation (4.2), the resource allocation problem

is reformulated as

min
∑m

l=1 rl

subject to

xᵀ[I−A∗]−1c∗ ≤ Q

c∗l = c∗l (0)e−αlrl ,∀l = {1, 2, ...,m}

rl ≥ 0,∀l = {1, 2, ...,m}

(4.4)

Due to uncertainty there are certain modifications that need to be incorporated into
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the optimization frameworks of Equations (4.3) and (4.4). For this we investigate

the components of the optimization problem that contain uncertainties and the effect

said uncertainties have on the problem. Primarily we are concerned with knowing

whether the functional forms of the objective function and constraints are preserved

or changed when data and event uncertainties are incorporated into the framework.

Objective function

The general objective function of the resource allocation problem is to find the optimal

budget that needs to be allocated to the risk management options. For this the

planner would like to have a certain functional form of the objective function, which

means that the parameters in the function gl are certain. This does not mean that

the budget allocated would be a certain budget. It essentially implies that there

is certainty that the functional form of the objective function does not alter. We

say that the optimization problem has a certain objective. Hence, in the resource

allocation Equation (4.4) the objective is always
∑m

l=1 rl, in which the coefficients

associated with the rl variables will always be 1.

Constraints

As mentioned previously, the estimates of the industry outputs (x) and the inter-

dependency structures in A∗ are not known with certainty. This can result in the

different sets of constraints for bounding the total economic loss. Hence, the con-

straint xᵀ[I−A∗]−1c∗ ≤ Q is no longer a single constraint but belongs to a family of

constraints given as

xᵀ[I−A∗]−1c∗ ≤ Q,∀x ∈ Ux,A∗ ∈ UA∗ (4.5)
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where Ux is a set that contains all possible realizations for the output vectors and

UA∗ contains all possible realizations for the A∗ matrices. Detailed descriptions of

the uncertainty sets will be provided in the next section.

The functional relationship c∗l = fl(c
∗
l (0), rl) between the demand perturbations

and the risk management options also contains the initial demand perturbation esti-

mates that initiate the onset of disruptions in the system. As is the nature of disrup-

tions and risks, the estimates for c∗(0) cannot be known with certainty. As such the

equality in the relationship cannot be maintained and from a planning perspective

the best that can be done is to try to achieve a relationship that holds true within a

bounded neighborhood. This implies that the equality constraint is transformed as

|c∗l − fl(c∗l (0), rl)| ≤ εl,∀c∗l (0) ∈ Uc∗(0) (4.6)

where ε << 1 shows how close the risk management option translates into the de-

sired demand perturbation, Uc∗(0) is the set that contains all possible realizations for

the event that generates c∗l (0). Hence, the corresponding constraint in the resource

allocation problem of Equation (4.4) becomes

|c∗l − c∗l (0)e−αlrl | ≤ εl,∀c∗l (0) ∈ Uc∗(0) (4.7)
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4.2.2 Uncertain optimization and general robust formulation

The new formulation of the risk management problem (4.4) due to uncertainty be-

comes

min
∑m

l=1 rl

subject to

xᵀ[I−A∗]−1c∗ ≤ Q,∀x ∈ Ux,A∗ ∈ UA∗

|c∗l − c∗l (0)e−αlrl | ≤ εl,∀c∗l (0) ∈ Uc∗(0),∀l = {1, 2, ...,m}

rl ≥ 0, ∀l = {1, 2, ...,m}

(4.8)

Equation (4.8) is a collection of uncertain optimization problems of which Equa-

tion (4.4) is an instance. Since, now we are dealing with a collection of problems,

instead of a single optimization problem, the concepts of optimality and feasibility

lose their relevance. As decision-makers we are interested in obtaining a determinis-

tic solution to an uncertain optimization, and thus are required to define paradigms

for decision-making. Robust optimization principles for uncertain optimization prob-

lems provide such paradigms which are stated through the main proposition of robust

optimization:

When we solve the uncertain optimization problem we should obtain a de-
terministic value for the decision variable. This value should hold as long as
the data is within the uncertainty sets defined for the problem and it never
violates any of the constraints of the optimization.

The above proposition leads to the concept of a robust feasible solution set consisting

on the decision variables that satisfies all the realizations of the constraints coming

from the uncertainty set. In our risk management framework the decision variables

are the c∗ and r vectors, for which the robust feasible solution is one that belongs to
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the set

S(Ux,UA∗ ,Uc∗(0)) =

{
(c∗, r) :

xᵀ[I−A∗]−1c∗ ≤ Q, ∀x ∈ Ux,A∗ ∈ UA∗

|c∗l − c∗l (0)e−αlrl | ≤ εl, ∀c∗l (0) ∈ Uc∗(0)

}
(4.9)

It is very clear from the information so far that the ability to obtain the robust feasi-

ble set of solutions to the uncertain optimization problem hinges on the uncertainty

sets. The theory of robust optimization is mainly concerned with constructing rules

for the uncertainty sets that lead to feasible solutions. Since, new sets of rules are

being created in addition to the ones defined by the problem statement, robust opti-

mization leads to increased computational complexity of the uncertain optimization

problem. Computational tractability is thus the governing issue when robust opti-

mization formulations are made. Most of the recent theoretical research has focused

on identifying problems for which tractable robust solutions can be obtained. It can

be stated here that robust optimization is different from sensitivity analysis because

the aim of robust optimization is to seek feasible solutions that do not depend upon

the data uncertainties, but instead on the larger set which bounds them, and are

constructed a priori. Sensitivity analysis, on the other hand, looks at a trajectory of

solutions obtained from data variations and hence are data and perturbations sensi-

tive.

We now provide a further rule that is required to make a start in solving the

uncertain optimization problem of Equation (4.8).

1. The uncertainty sets are closed, convex sets. If a general non-convex set Ū

is chosen for the uncertainty then we can always take its Convex Hull (Conv(Ū))

to construct U . For the class of convex problems this means that the convexity

structure of the problem is still preserved. Since, every uncertainty set is convex

and the constraints in the problem Equation (4.8) are also convex, the robust

feasible solution will hold for all uncertainties if it satisfies the worst-case of the
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uncertainty. Hence, robust optimization problem is reduced to finding robust

feasible c∗ and r that satisfy

S(Ux,UA∗ ,Uc∗(0)) =

{
(c∗, r) :

maxx,A∗ xᵀ[I−A∗]−1c∗ ≤ Q

maxc∗l (0) |c∗l − c∗l (0)e−αlrl | ≤ εl

}
(4.10)

This simplifies our analysis from an uncertain constraint problem to a certain con-

straint problem. This is one of the central principles of robust optimization and

introduces the concept of the robust counterpart of an uncertain optimization prob-

lem. The robust counterpart of Equation (4.8) can now be stated as

min
∑m

l=1 rl

subject to

maxx,A∗ xᵀ[I−A∗]−1c∗ ≤ Q,∀x ∈ Ux,A∗ ∈ UA∗

maxc∗l (0) |c∗l − c∗l (0)e−αlrl | ≤ εl,∀c∗l (0) ∈ Uc∗(0),∀l = {1, 2, ...,m}

rl ≥ 0,∀l = {1, 2, ...,m}

(4.11)

4.2.3 Constructing uncertainty sets

The notion computational tractability of the robust optimization problem hinges

on the structure of the uncertainty sets. Here we discuss the development of the

uncertainties for which we seek solutions to the robust problem.

Data uncertainties

The coefficients of the A∗ matrix, derived from the technical coefficient matrix A,

are subject to uncertainties arising from the inter-industry data collection efforts by

the Bureau of Economic Analysis (BEA) (Horowitz & Planting, 2006). The BEA

collects annual input-output records for a group of 15 aggregated industries and more

detailed records for 65 industries every five years. Hence, there exists data uncertainty
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in the industry aggregations and in the temporal nature of inter-industry transactions.

Furthermore, structural changes might occur in the A∗ matrix due to occurrences of

disruptive events (Percoco, 2006), which manifest themselves as forced substitutions

in A∗ whether by strategy a priori or by necessity a posteriori. Uncertainty in the

interdependency matrix has been analyzed in a number of studies (Quandt, 1958,

1959; Bullard & Sebald, 1977; Percoco et al., 2006) and specifically for A∗ (Barker

& Haimes, 2009). The x vector is obtained from the same BEA data and hence,

has uncertainties similar to the A∗ matrix. Most of these studies concluded that the

sample mean estimates coefficients of the A matrix, x vector or the I−A∗ matrix

are bounded within a small interval of the published values (Bullard & Sebald, 1977).

Due to the assumption of having bounded intervals for the data uncertainty, we

construct the uncertainty sets along similar lines to the theories of budgeted uncer-

tainty sets (Bertsimas & Sim, 2004). We assume that each data value available to

us is known to lie within an interval instead to having a point estimate. Hence, the

actual output xi of sector i lies somewhere in the interval [x̄i − x̂i, x̄i + x̂i], where

x̄i is known as the nominal value that is free of any uncertainty, while x̂i is the un-

certain value that signifies the perturbation resulting in deviation from the nominal

value. Generally it is expected that the perturbation is small or at least less than

the nominal value. Since, xi is known to occur within the specified interval, a scaled

parameter νi is defined for quantifying the fractional deviation of xi from x̄i relative

to the maximum allowed deviation x̂i.

νi =
xi − x̄i
x̂i

∈ [−1, 1] (4.12)

This means that xi can be represented as

xi = x̄i + νix̂i, νi ∈ [−1, 1] (4.13)
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While in a robust sense each νi can either be equal to -1 or 1 when we consider the

maximum bounds of the uncertainty set. In reality every xi will lie somewhere within

the chosen interval and it would be a decision-makers preference to build a robust

solution for the extreme interval as it might be too conservative. Hence, in order to

control the amount of uncertain deviation the total uncertainty is limited by a budget

that is given as

n∑

i=1

|νi| ≤ Λ (4.14)

where Λ lies in the interval [0, n]. By controlling the value to Λ the amount of un-

certainty that is distributed to the sector outputs is regulated. It also shows the

decision-makers preference in assigning uncertainty to his/her available nominal es-

timates for the output vales. Using the Equations (4.13) and (4.14) the uncertainty

set Ux is given as follows

Ux =
{
xi : xi = x̄i + νix̂i, |νi| ≤ 1,

n∑

i=1

|νi| ≤ Λ, i = {1, 2, .., n}
}

(4.15)

A similar approach can be adopted in constructing the uncertainty sets for the el-

ements of the n × n A∗ matrix. Assuming for each element a∗ij the interval [ā∗ij −

â∗ij, ā
∗
ij + â∗ij] specifies the range within which the actual realization of the element

lies. A scaling parameter ηij is defined as

ηij =
a∗ij − ā∗ij
â∗ij

∈ [−1, 1] (4.16)

This means that a∗ij can be represented as

a∗ij = ā∗ij + ηij â
∗
ij, ηij ∈ [−1, 1] (4.17)
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While incorporating uncertainties into the A∗ matrix certain rules have to be followed

that come from the definition of the matrix itself. It was established in Section 2.3.2

that each element of the interdependency matrix is greater than 0 and the sum of

elements along a row are less than 1. This means that the uncertain A∗ will have to

belong to the set

A∗ =
{
a∗ij, a

∗
ij ≥ 0,

n∑

j=1

a∗ij ≤ 1
}

(4.18)

It is assumed here that the perturbed values â∗ij are always less than the nominal

values ā∗ij, which implies that the condition that the elements in the uncertain matrix

are greater than of equal to zero is always met. Guaranteeing the bound on the row

sums of the matrix would lead to a budget over the amount of uncertainty that can

be associated with the ηij values. This is constructed as follows

n∑

j=1

a∗ij ≤ 1

=⇒
n∑

j=1

(
ā∗ij + ηij â

∗
ij

)
≤ 1

=⇒
n∑

j=1

ηij â
∗
ij ≤ 1−

n∑

j=1

ā∗ij

=⇒
∣∣∣

n∑

j=1

ηij â
∗
ij

∣∣∣ ≤
∣∣∣1−

n∑

j=1

ā∗ij

∣∣∣ = Γi (4.19)

Here Γi is associated with the allowed budget in the uncertainty, which has similar

meaning to the budget Λ. The constrain (4.19) can be further modified to accommo-

date for the largest possible uncertainties associated with the scaling of the ηij values

for the upper bounds established for the budgets. Hence, the inequality (4.19) should
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be true for the largest value of the left hand side term. This is established as follows

max
∣∣∣

n∑

j=1

ηij â
∗
ij

∣∣∣ ≤ Γi (4.20)

=⇒
n∑

j=1

â∗ij|ηij| ≤ Γi (4.21)

Using the Equation (4.15) and (4.20) the budgeted uncertainty set UA∗ for the A∗

matrix is established as

UA∗ =
{
a∗ij : a∗ij = ā∗ij + ηij â

∗
ij, |ηij| ≤ 1,

n∑

j=1

â∗ij|ηij| ≤ Γi, i = {1, 2, .., n}
}

(4.22)

Event uncertainties

Uncertainties associated with c∗(0) are classified as event uncertainties because they

depend upon the occurrence of a disruptive event. Instead of an interval bound

on the possible realizations of the event uncertainties, it is preferred to associate

such uncertainties with probability distributions. In reality we would consider the

chances of a disruptive event occurring and causing an expected amount of damage,

which results in an average value for the c∗(0). Average estimates are not good

enough for decision-making because there is also the possibility of the disruptive

event resulting in a c∗(0) that deviates substantially from the expected value. Hence,

multiple realizations of c∗(0) are required for a complete decision-making analysis.

Instead of the actual probability distribution if it is assumed that the expected value

E[c∗(0)] and the variance V ar[c∗(0)] of c∗(0) are known, then we can construct an

uncertainty set. Having the first two moments are good enough for our purposes

of constructing an uncertainty set, and in general we might not have enough data

to construct an actual distribution but can extract some estimates of the fist two

moments. Any realization of c∗(0) can be said to be within the interval [c̄∗(0) −
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κĉ∗(0), c̄∗(0) + κĉ∗(0)] ,where κ ≥ 0 signifies the spread of the interval about its

expected value. The uncertainty set Uc∗(0) is thus constructed as

Uc∗(0) =

{
c∗(0) :

c∗(0) ∈ [c̄∗(0)± κĉ∗(0)],

E[c∗(0)] = c̄∗(0), V ar[c∗(0)] = ĉ∗2(0), κ ≥ 0

}
(4.23)

4.2.4 Robust problem formulation

With the uncertainty sets that have been constructed, we need to see the correspond-

ing robust formulations of the constraints in the optimization problem. As mentioned

previously the robust formulation transforms the original problem into a higher di-

mension problem, which satisfies the constraints for the extreme uncertainty bounds

imposed by the budgets. We look at the two types constraints in our resource allo-

cation problem and construct robust counterparts for them.

Robust constraint due to data uncertainty

In the risk management problem we formulated in Equation (4.11) the robust formu-

lation for data uncertainties requires us to formulate a tractable formulation for the

constraint

max
x,A∗

xᵀ[I−A∗]−1c∗ ≤ Q,∀x ∈ Ux,A∗ ∈ UA∗ (4.24)

Due to the presence of the term (I−A∗)−1 the uncertainty from A∗ is not linearly

transformed into the constraint unlike the x vector. We can construct an approxi-

mation of the (I−A∗)−1 matrix that allows for a linear transformation of the un-

certainties. If an uncertain A∗ matrix is given as Ā∗ + ∆Ā∗ ∈ UA∗ then assuming

the terms of ∆Ā∗ are small we get the following transformation of the inverse matrix

104



[I− (Ā∗ + ∆Ā∗)]−1.

[I− (Ā∗ + ∆Ā∗)]−1 = I + (Ā∗ + ∆Ā∗) + (Ā∗ + ∆Ā∗)2 + ...

≈ I + Ā∗ + (Ā∗)2 + ....+ ∆Ā∗[I + 2Ā∗ + 3(Ā∗)2 + ....]

= (I− Ā∗)−1 + ∆Ā∗(I− Ā∗)−2 (4.25)

Before building the robust constraint some notation is introduced here as follows

Ā∗ = [ā∗ij] ∈ Rn×n

∆Ā∗ = [ηij â
∗
ij] ∈ Rn×n

D̄∗ = [d̄∗ij] = (I− Ā∗)−1 ∈ Rn×n

P̄∗ = [p̄∗ij] = (I− Ā∗)−2 ∈ Rn×n

∆D̄∗ = ∆Ā∗P̄∗ ∈ Rn×n

x̄ = [x̄i] ∈ Rn×1

∆x̄ = [νix̂i] ∈ Rn×1

Due to uncertainty the left hand side of the Equation (4.24) is transformed as

xᵀ[I−A∗]−1c∗ = (x̄ + ∆x̄)ᵀ[I− (Ā∗ + ∆Ā∗)]−1c∗

= (x̄ + ∆x̄)ᵀ[D̄∗ + ∆D̄∗]c∗

= x̄ᵀD̄∗c∗ + x̄ᵀ∆D̄∗c∗ + ∆x̄ᵀD̄∗c∗ + ∆x̄ᵀ∆D̄∗c∗

≈ x̄ᵀD̄∗c∗ + x̄ᵀ∆D̄∗c∗ + ∆x̄ᵀD̄∗c∗ (4.26)

By separating the nominal data and the uncertain data the robust constraint of

Equation (4.24) is interpreted as solving for the maximum of the uncertain parts of
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the inequality. Hence, the robust constraint is the one that satisfies

x̄ᵀD̄∗c∗ + max
UA∗

x̄ᵀ∆D̄∗c∗ + max
Ux

∆x̄ᵀD̄∗c∗ ≤ Q (4.27)

We look at the element wise expansion of each component of the above formulation

to construct the robust constraint.

max
UA∗

x̄ᵀ∆D̄∗c∗ = max
UA∗

n∑

j=1

(
n∑

i=1

x̄i

( n∑

k=1

ηikâ
∗
ikp̄kj

))
|c∗j |

= max
UA∗

n∑

i=1

(
n∑

k=1

x̄i

( n∑

j=1

p̄kj|c∗j |
)
â∗ikηik

)

=
n∑

i=1

max
ηik∈UA∗

n∑

k=1

sikâ
∗
ikηik (4.28)

where sik = x̄i

(∑n
j=1 p̄kj|c∗j |

)
.

Finding the solution of the Equation (4.28) is equivalent to solving the n problems

the ith of which is given as

maxηik
∑n

k=1 sikâ
∗
ikηik

subject to
∑n

k=1 â
∗
ikηik ≤ Γi

0 ≤ ηik ≤ 1

(4.29)

Since this is a linear optimization problem its optimal solution is the same as its dual.

The dual of the Equation (4.29) optimization problem is calculated as

min Γiwi +
∑n

k=1 zik

subject to

â∗ikwi + zik ≥ â∗ikx̄i

(∑n
j=1 p̄kj|c∗j |

)

wi, zik ≥ 0

(4.30)
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Here wi and zij are dual variables. There are n such problems each coming from

constructing the dual for each term of the ith sum in the final term of Equation (4.28).

We can construct a similar formulation for the term maxUx ∆x̄ᵀD̄∗c∗ which is given

as

max
Ux

∆x̄ᵀD̄∗c∗ = max
νi∈Ux

n∑

i=1

( n∑

j=1

d̄∗ij|c∗j |
)
x̂iνi

= max
νi∈Ux

n∑

i=1

rix̂iνi (4.31)

where ri =
∑n

j=1 d̄
∗
ij|c∗j | The solution of the above problem is equivalent to solving

the problem

maxvi
∑n

i=1 rix̂iνi

subject to
∑n

i=1 νi ≤ Λ

0 ≤ νi ≤ 1

(4.32)

The optimal solution of the above is the same as its dual, which is given as

min Λy +
∑n

i=1 ti

subject to

y + ti ≥ x̂i
∑n

j=1 d̄
∗
ij|c∗j |

y, ti ≥ 0

(4.33)

From the Equations (4.27), (4.30) and (4.33) the following theorem is proposed

Theorem 1. The robust constraint

x̄ᵀD̄∗c∗ + max
UA∗

x̄ᵀ∆D̄∗c∗ + max
Ux

∆x̄ᵀD̄∗c∗ ≤ Q
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can be solved by the linear programming problem

min
∑n

i=1

∑n
j=1 d̄

∗
ijc
∗
j x̄i +

∑n
i=1 Γiwi +

∑n
i=1

∑n
k=1 zik + Λy +

∑n
i=1 ti ≤ Q

subject to

â∗ikwi + zik ≥ â∗ikx̄i

(∑n
j=1 p̄kjf

∗
j

)
,∀i, k

y + ti ≥ x̂i
∑n

j=1 d̄
∗
ij|c∗j |

−f ∗j ≤ c∗j ≤ f ∗j , ∀j

wi, zik ≥ 0,∀i, k

y, ti ≥ 0

(4.34)

Proof. See Equations (4.27), (4.30) and (4.33)

Robust constraint due to event uncertainty

As discussed previously the event uncertainty is given by a probability distribution for

which the first two moments are known to us. The constraint in the Equation (4.11)

for which we seek a robust formulation due to the event uncertainty shows the plan-

ning function that relates the effectiveness of the risk management option in reducing

the effect of the initial disruption. We further make an assumption that due to the

uncertainty in c∗(0) we are not 100% certain that the inequality will be true to begin

with. This implies that most of the times we are sure that our planning function

and the targeted demand perturbation are within the bound εl, but there is a chance

that the inequality is violated sometimes. This might happen due to fact that the

planning function has been designed for a particular range of possible values for c∗(0),

but does not hold when c∗(0) lies outside this range. Thus our inequality for which

we seek a robust formulation is now a chance constraint given as

P
[
|c∗l − c∗l (0)e−αlrl | > εl

]
≤ γl (4.35)
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where γl << 1 shows the small chance that the constraint is violated. The robust fea-

sible counterpart to the above chance constraint is the one that satisfies the constraint

for the maximum limit of the uncertainty set and is given by

max
c∗(0)∈Uc∗(0)

P
[
|c∗l − c∗l (0)e−αlrl | > εl

]
≤ γl (4.36)

Before we derive the robust formulation we state the following result from Chebychev

(Stewart, 2009)

Proposition 7. Let X be a random variable with finite expectation E[X] and nonzero

variance V ar(X) then for some t > 0

P[|X − E[X]| ≥ t] ≤ V ar(X)

t2
(4.37)

Proof. For the random number X, we have

tP[|X| ≥ t] = tE[I|X|≥t] = E[tI|X|≥t] ≤ E[|X|] (4.38)

where I|X|>t is an indicator function which is 1 if |X| ≥ t and 0 if |X| < t, which

means tI|X|≥t ≤ |X|. From the constraint (4.38) we can see that

P[|X| ≥ t] ≤ E[|X|]
t

(4.39)

The above result is in fact known as the Markov inequality (Stewart, 2009). In (4.39)

if we replace X by X − E[X] then we can get

P[|X − E[X]| ≥ t] =⇒ P[(X − E[X])2 ≥ t2] ≤ E[(X − E[X])2]

t2

=
V ar(X)

t2
(4.40)
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which proves the Chebychev’s Inequality.

From the above condition we can build a robust formulation for the chance con-

straint. Inequality (4.36) can have two variants given as

P
[
c∗l (0)e−αlrl − c∗l > εl

]
≤ γl (4.41)

P
[
c∗l (0)e−αlrl − c∗l < −εl

]
≤ γl (4.42)

. Rearranging the constraint (4.41) we get the following

P
[
c∗l (0)e−αlrl − c∗l > εl

]
= P

[
c∗l (0)e−αlrl > εl + c∗l

]

= P



|c∗l (0)e−αlrl − c̄∗l (0)e−αlrl |

> |εl + c∗l − c̄∗l (0)e−αlrl |


 (4.43)

Equation (4.43) is of the form of Equation (4.37), because E[c∗l (0)e−αlrl ] = c̄∗l (0)e−αlrl .

Hence we get

P
[
c∗l (0)e−αlrl − c∗l > εl

]
≤ ĉ∗2(0)e−2αlrl

(εl + c∗l − c̄∗l (0)e−αlrl)2
(4.44)

From Equation (4.44) we can assume that

max
c∗(0)∈Uc∗(0)

P
[
|c∗l − c∗l (0)e−αlrl | > εl

]
≤ γl

=⇒ ĉ∗2(0)e−2αlrl

(εl+c
∗
l−c̄
∗
l (0)e−αlrl )2

≤ γi

=⇒ |εl + c∗l − c̄∗l (0)e−αlrl | ≥ 1√
γi
ĉ∗(0)e−αlrl (4.45)

The above outlined method generates a loose robust bound on the chance constraint.

The factor γl can be related to the number of deviations κ of a random c∗(0) from

its mean. Specifically from the definition of the Chebychev’s inequality in Equa-

tion (4.37) we can see that if t = κ
√
V ar(X) then we get 1/κ2 as the upper limit on
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the inequality. Thus γl = 1/κ2 can be set as a bound on the chance constraint. This

is not a very robust constraint bound because it means that the probability that the

chance constraint is violated has a very high upper bound. For example if κ = 2,

then γl = 0.25 which is a very loose upper bound for the probabilistic constraint.

Nevertheless there is merit in such a bound because it helps us develop an estimate

for the event uncertainty measure even though they are conservative.

Final robust formulation

Collecting the results from the development of the robust constraints the final robust

counterpart of our original resource allocation problem is summarized as follows

Theorem 2. Given the budget allocation problem for static resilience estimation

min
∑n

l=1 rl

subject to

xᵀ[I−A∗]−1c∗ ≤ Q

c∗l = c∗l (0)e−αlrl ,∀l = {1, 2, ..., n}

rl ≥ 0,∀l = {1, 2, ..., n}

(4.46)

If the uncertainties in the data are defined through budgeted sets Ux and UA∗ defined

in Equations (4.15) and (4.23) respectively and the event uncertainties are specified by

the set Uc∗(0) defined in Equation (4.24) and the chance constraint in Equation (4.34),
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then the robust counterpart of the problem is given as

min
∑n

l=1 rl

subject to
∑n

i=1

∑n
j=1 d̄

∗
ijc
∗
j x̄i +

∑n
i=1 Γiwi +

∑n
i=1

∑n
k=1 zik + Λy +

∑n
i=1 ti ≤ Q

â∗ikwi + zik ≥ â∗ikx̄i

(∑n
j=1 p̄kjf

∗
j

)
,∀i, k

y + ti ≥ x̂i
∑n

j=1 d̄
∗
ijf
∗
j , ∀i, j

−f ∗j ≤ c∗j ≤ f ∗j ,∀j

wi, zik ≥ 0,∀i, k

y, ti ≥ 0,∀i

εl + c∗l − c̄∗l (0)e−αlrl ≥ 1√
γi
ĉ∗(0)e−αlrl ,∀l

εl + c∗l − c̄∗l (0)e−αlrl ≤ − 1√
γi
ĉ∗(0)e−αlrl ,∀l

rl ≥ 0,∀l

(4.47)

4.3 Example Problem

In order to show the effectiveness of the robust optimization scheme we illustrate

the effect of uncertainties in the framework and the look at the nominal and robust

solutions. The static resilience estimation problem of Section 3.2.2 is again examined

with uncertainties introduced into the framework. Table 4.1 shows the transaction

flow data for the economic system from which the interdependency matrix A∗, and

maximum demand perturbations c∗ are generated. As previously mentioned the

parameters αl are available to the decision-maker.

A∗ =




0.27 0.38 0.23

0.18 0.073 0.15

0.28 0.28 0.39



, c∗(0) =




0.13

0.59

0.04



, α =




0.05

0.04

0.08




(4.48)
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Table 4.1: Two industry input-output transaction data in million of dollars

Industry 1 2 3
External Demand (c) Total Output (x)

($ US million) ($ US million)
1 266 378 230 126 1000
2 267 110 224 899 1500
3 340 340 468 52 1200

Value added 127 672 278
Total Output(xT ) 1000 1500 1200

4.3.1 Data uncertainty effects

As a first stage analysis it is considered that there are no unknown events in the

framework and the planner is certain about the policy functions that relate the de-

mand perturbations to the allocated budgets. The only uncertainties that arise in

the framework exist due to unreliable data estimates. Assuming a 5% uncertainty in

both the output (x) and the interdependency matrix coefficients the corresponding

robust formulation is constructed. From previous formulations that data uncertainty

sets take the following values

Ux =
{
xi : xi = x̄i + 0.05νix̄i, |νi| ≤ 1,

3∑

i=1

|νi| ≤ 3, i = {1, 2, 3}
}

(4.49)

UA∗ =

{
a∗ij :

a∗ij = ā∗ij + 0.05ηij ā
∗
ij, |ηij| ≤ 1,

∑3
j=1 â

∗
ij|ηij| ≤ Γi,

Γi = {0.1260, 0.5993, 0.0433}, i = {1, 2, 3},

}
(4.50)

The values above are the maximum allowable uncertainty budgets that can be intro-

duced into the formulations. As a planning exercise we examine the effects of varying

the uncertainty budgets from 0 to their maximum values. There are significant dif-

ferences in amounts of resources that need to be allocated to keep the total economic

losses to targeted levels. Figure 4.1 shows that as the allowable uncertainties are

increased by moving the realized values for the allocated budgets to their maximum
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values there is a considerable deviation from the nominal planning scenarios. For this

problem the robust uncertainty solution shows that for just a 5% uncertainty in data

estimates the required monetary values of resource allocations are considerably higher

than their nominal counterparts. In particular the maximal robust solutions shown in

the Figures 4.1(a) and 4.1(b) dominate all the other solutions, which show that they

reflect the notion of the decision-making solution being robust to all realizations of

the uncertainties within its limits. To further highlight the effect of uncertainties and

the robust considerations the amounts of resource allocations to each sector for given

total economic loss planning are shown in the Table 4.2. The nominal value results

are denoted by rN , while the robust planning results are denoted by rR. The numbers

show that there is a considerable difference in the requirements for each sectors when

the worst-case uncertainties are incorporated into the planning. Also it is evident

that the onset of resource allocation required for each sector is realized earlier than

the nominal planning case. Such an analysis highlights the importance of the robust

scheme developed and its requirement for the resource planning.

Table 4.2: Comparisons of the required resource allocations between the nominal
planning and the robust planning. All numbers are in $US millions.

Q
Sector 1 Sector 2 Sector 3

rN rR rN rR rN rR

3700 0 0 0 0 0 0
3330 0 0 3.3694 33.0776 0 0
2960 0 1.4269 7.2646 37.5941 0 0
2590 0 4.7042 11.8809 41.6833 0 0
2220 0 8.5048 17.5470 46.4342 0 0
1850 0 12.4287 24.8857 51.3458 0 1.4136
1480 0 16.9622 35.3182 57.0059 0 4.2523
1110 6.5781 22.7159 44.2229 64.1979 0 7.8483
740 15.4108 30.8252 55.2636 74.3347 3.2904 12.9163
370 29.2737 44.6179 72.5923 91.5825 11.9547 21.5303
0 431.0008 543.3183 571.0274 614.0301 262.2573 273.1499
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(a) Economic losses vs Allocated budgets
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(b) Net benefit vs Allocated budgets

Figure 4.1: Trade-offs between investments in losses for different levels of budgeted
data uncertainties. The bold line with circles is the maximal robust solution under
the available budgets
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4.3.2 Event uncertainties

In addition to introducing data uncertainties in the analysis event uncertainties are

also introduced. It is assumed that available data estimates are still known within

±5% accuracy. The uncertainty in the values of the c∗ is assumed to be of ±2%

deviation from the mean. This means the uncertainty set for the events, which is the

set for c∗ is defined as

Uc∗(0) =

{
c∗i (0) :

c∗i (0) ∈ [c̄∗i (0)± 0.02κc̄∗i (0)], i = {1, 2, 3}

E[c∗i (0)] = c̄∗i (0), V ar[c∗i (0)] = 0.0004c̄∗2i (0), κ ≥ 0

}
(4.51)

We choose κ = 3 here which means that the upper limit of the violation of the chance

probabilistic chance constraint is γ = 0.11. The values above are the maximum

allowable uncertainty budgets that can be introduced into the formulations. As done

previously we examine the effects of varying the uncertainties in data and event

budgets from 0 to the maximal limits that have been set for them. The amounts of

resources that need to be allocated to keep the total economic losses to targeted levels

are further increased when event uncertainties are added to the previously introduced

data uncertainties. Figure 4.2 shows that as the allowable uncertainties are increased

by moving the realized values for the allocated budgets to their maximum values there

is a considerable deviation from the nominal planning scenarios. There is a greater

variation in the budget allocation for just the additional 2% deviation in the event

estimates along with the 5% data uncertainties. Now the required monetary values

of resource allocations are considerably higher than their nominal counterparts. As

shown in the previous case the maximal robust solutions shown in the Figures 4.2(a)

and 4.2(b) dominate all the other solutions. The amounts of resource allocations to

each sector for given total economic loss planning are shown in the Table 4.3. The

nominal value results are denoted by rN , while the robust planning results are denoted
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by rR. The numbers show that due to event uncertainties there is further difference in

the requirements for each sectors when the worst-case uncertainties are incorporated

into the planning. The onset of resource allocation required for each sector is realized

earlier than the nominal planning case, and great amounts of budgets are required

for each level of economic loss. The only inconsistent result here is the value for

resource allocations when Q = 0. The value for the robust solution is considerably

less than the nominal value. This a due to the probabilistic limits we have placed

over the chance constraint. The robust solutions obtained a violated with probability

1− γ = 0.89, which is a weak bound and needs to be improved. For other cases the

robust results are as expected.

Table 4.3: Comparisons of the required resource allocations between the nominal
planning and the robust planning. All numbers are in $US millions.

Q
Sector 1 Sector 2 Sector 3

rN rR rN rR rN rR

3700 0 0 0 0 0 0
3330 0 0.4670 3.3694 36.3938 0 0
2960 0 3.3408 7.2646 39.9791 0 0
2590 0 6.5839 11.8809 44.0330 0 0
2220 0 10.3211 17.5470 48.7118 0 0.0949
1850 0 14.0377 24.8857 53.3502 0 2.4245
1480 0 18.5003 35.3182 58.9287 0 5.2135
1110 6.5781 24.2535 44.2229 66.1203 0 8.8093
740 15.4108 32.3621 55.2636 76.2559 3.2904 13.8773
370 29.2737 46.1529 72.5923 93.5013 11.9547 22.4895
0 431.0008 231.7977 571.0274 287.9179 262.2573 144.8736

4.4 Summary and discussion

This Chapter addresses the issue of uncertainties in the interdependent input-output

framework and their effect on risk management. There is a need to consider such

uncertainties because they will produce varying planning risks some of which would
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Figure 4.2: Trade-offs between investments in losses for different levels of budgeted
data uncertainties and also event uncertainties. The bold line with circles is the
maximal robust solution under the available budgets
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not be captured through the nominal planning strategies. Uncertainties manifest

themselves in several ways and can be analyzed through various approaches. Since

the planning objective is to guarantee results that consider the maximal effects of

the uncertainties the solutions we seek to the risk management problem should be

representative of the worst-case/best-case scenarios in the planning. This leads to

the robust optimization approach, which is a useful construct for extreme uncertainty

analysis.

In order to construct robust solutions to the static resilience strengthening and

estimation problem the nature of the uncertainties present in the system need to

be considered. In particular the mathematical properties of the uncertainty sets

are important to us because they influence the structure of robust formulation. We

have divided the uncertainties into data and event uncertainties to construct the

uncertainty sets. Data is assumed to be estimated within an interval of accuracy,

which means that the data uncertainty sets are bounded sets. The actual realization

of the data values is controlled within the bounded sets by imposing budget limits that

that control the amount of uncertainty within the prescribed interval. The budgets

are also controlled through the considerations of the feasibility of the problem as is

the case with the interdependency structures because there is a limit to which the

interdependency matrix remains viable. For event uncertainties the introduction of

chance constraints means that due to the uncertainty of the events the feasibility of

the planning constraints is not known with complete certainty. The limits which give

the bound the probabilities that the constraints are feasible or are violated shows the

decision-makers preference and conservatism in handling the event uncertainty. Here

we have introduced a bit conservative bound on the event chance constraint.

The robust formulation that is constructed here increases the size of the nominal

problem significantly but the structure of the robust counterpart is the same as the

nominal problem. The constraints containing the data were linear in the original
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problem and that linearity is preserved in the robust formulation. Also the chance

constraints for event uncertainties have similar structures to the nominal problem,

although that happens due to simplified nature of the planning functions. The overall

robust formulation is not too complex to solve.

The static resilience planning results show the effect of small uncertainties in

the solutions. In general the robust problem results show that small uncertainties

in the data and event estimates make huge differences in the amounts of required

resource allocations for keeping the total economic losses below accepted thresholds.

As such the usefulness of the robust schemes is validated through the severity of the

impact of small uncertainties in the problem. The robust solution guarantee that

maximal worst-case scenarios are generated and for planning this is an important

consideration.
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Chapter 5

Forward Sensitivity Based Parameter Estimation in the

Dynamic Risk Input-Output Model

5.1 Introduction

The dynamic risk input-output model presented in Chapters 2 and 3 was shown to

be a useful tool in risk evaluation and in particular resilient recovery estimation.

Resilience through the model has been explicitly expressed through a matrix, which

we call K∗, for which data or estimates do not exist. This Chapter proposes a scheme

for obtaining the K∗ by setting targets for the dynamic recovery that provide a

feedback to estimate the model parameters.

In current research K∗ has been modeled as a diagonal matrix in which each

diagonal element is obtained from a recovery decision made for the particular sector

it represents (Lian & Haimes, 2006). The general interpretation associated with the

resilience matrix is that it represents a recovery rate during direct supply disruptions

to sectors (Haimes et al., 2005b) or a substitution rate during demand disruptions

(Haimes et al., 2005a). We argued in Chapter 3 that using the diagonal matrix alone

as a resilience metric is an incomplete and inaccurate analysis through the model.

Also, having a diagonal matrix that is derived based on the individual sector planning

only does not reflect the interdependent effects of resilience planning in the economy.

Interdependent systems are coupled so any parameter in the model should account

for such coupling. It has been argued that the current dynamic risk input-output

model does not account for resilience satisfactorily (Rose, 2007).
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The three resilience metrics we proposed in Section 3.3.2 can be used provide a

more complete picture of the resilient recovery through the dynamic risk input-output

model. Since these metrics were derived from the model, we need to have all the model

parameters, which brings us back to the problem that we do not know the K∗ elements

from any data or event a prior. The resilience metrics, called the average level of

system operability (F ), time to recovery (τ) and maximum inoperability (qm), can

be treated as performance metrics for evaluating the model performance. Decision-

makers’ interest is to make sure that systems perform within specific desirables. An

example of desirables for evaluating the performance of sector i from initial impact

(q(t = 0) = 0.3) till long run recovery (T = 60 days) could be: (1) 0.95 ≤ Fi ≤ 1

- On an average the sector maintains at least 95% functionality in the long run; (2)

τi ≈ 30 - The sector is able to almost attain stable productivity after 30 days; (3)

qmi ≤ 0.4 - At the most the sector loses 40% productivity before making a recovery.

Setting targets for performance metrics provides a benchmarking for the model.

Such information can be utilized as a feedback to the model for setting values for

the K∗ elements. We desire sectors to have certain levels of resilience quantified

through the metrics we defined. The relevant resilience performance questions for the

estimation of K∗ are:

What should our estimates of K∗ elements be so that we can take the system
to a targeted level of recovery for a specified time? What should our estimates
of K∗ elements be so that we make sure that the system has a desired average
level of operability performance target during the entire time of recovery?

Resilience has been expressed as “the ability to efficiently reduce both the magnitude

and duration of the deviation from targeted system performance levels” (Vugrin et al.,

2010). This is consistent with the approach we adopt here because in the absence of

any prior knowledge of our system parameter K∗, we estimate it through targeted

knowledge of the physical and mathematical properties of the system. This approach
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is called the inverse problem and is used widely in feedback control systems research

(Franklin et al., 1994; Lewis et al., 2006; Lakshmivarahan & Lewis, 2010).

The inverse problem and the parameter estimation scheme is subsequently ex-

plained in the Chapter. Section 5.2 outlines the mathematical statement of two

inverse problems, one based on setting targets for the recovery metric τ , while the

other based on setting targets for the performance metric F . It is a more complete

metric for performance evaluation because it includes other metrics also. Section 5.3.1

explains and derives the formulation and algorithmic scheme, called the forward sensi-

tivity method (Lakshmivarahan & Lewis, 2010), for solving the inverse problem. The

algorithm is a least square fit of the model to the targeted data in which sensitivity

functions lead to corrections in control estimates. The computations of sensitivity

matrices required to solve the inverse problem are explained in Section 5.3.2. These

computations also highlight the forward sensitivity scheme’s computational tractabil-

ity in solving the inverse problem. Section 5.3.3 examines the significance of the

method and computational issues that limit the solution scheme. Section 5.4 sug-

gests a scheme based on system planning for the generation the the performance

metrics that help evaluate the model parameter. Section 5.5 explains the concepts

developed through a numerical example. A summary and discussion of the topics

presented in this Chapter is provided in Section 5.6.

5.2 Mathematical statement of the inverse problem

The n sector dynamic risk input-output model of Equation (2.33) describes a system of

first-order differential equations. We restate the model here to note certain properties

necessary for solving the inverse problem.

q̇(t) = −K∗(In −A∗)q(t) + K∗c∗(t),∀t (5.1)
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where q is the n×1 inoperability vector, c∗(k) are n×1 vectors for demand perturba-

tions, A∗ is an n×n interdependency matrix, K∗ is the n×n rate parameter matrix,

and In is an n × n identity matrix. It is assumed that the given model produces a

deterministic forecast for q(t). The formulation suggests that a solution q(t) of the

model exists and in unique for a given set of initial conditions q(0), external forcing

c∗(t) and parameters K∗,A∗. Also, we see that the first partial derivatives of the

q(t) with respect to any of the variables exists. The dynamic discrete-time version

of the model from Equation (2.34) is also restated and would henceforth be used for

developing the inverse problem.

q(k + 1) =
[
In −K∗(In −A∗)

]
q(k) + K∗c∗(k), ∀k = 0, 1, 2, ... (5.2)

As established previously the initial condition q(0) is given and is bounded between 0

and 1. Equation (5.2) can also be expressed explicitly in terms of the initial conditions

as (Barker, 2008)

q(k + 1) =
[
In −K∗(In −A∗)

]k+1
q(0)

+
k∑

r=0

[
In −K∗(In −A∗)

]r
K∗c∗(k − r) ∀k = 0, 1, 2, ... (5.3)

Equation (5.3) shows that the evolution of inoperability at any time-step k depends

upon the initial inoperability q(0), the demand perturbations c∗(r) at all previous

time-steps, the matrices A∗ and K∗. These parameters are referred to as system

controls.

As is evident from Equation (5.3), q(0) and c∗(r) are external control inputs, to

which the system responds. The elements of q(0) represent measures of initial impacts

on sectors due to disruptions. If disruptive events have a direct impact on economic

sectors then we can obtain data-based estimates of the initial inoperabilities. For
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economic sector i, the value of qi(0) can be controlled through inventory management

strategies (Barker & Haimes, 2009; Barker & Santos, 2010a). Similarly, demand

perturbations are exogenous terms that depend upon responses to external stimuli.

For a disruptive event, values of demand perturbations can be obtained from data

of the impact or could be based on expert elicitation. In this study, we assume that

q(0) and c∗(r) estimates come from data or models that need to be combined with

the Equation (5.2) model.

From Equation (5.3) we also see that K∗ and A∗ reflect internal controls that

determine the trajectory of inoperability. In Chapter 3 we established that these

controls can be associated with redundancies and resourcefulness of sector resilience

behavior. As mentioned previously, A∗ can be obtained through the data (BEA.,

2011). Hence, any form of system control would be incorporated through estimating

K∗, which is not known to us.

Two metrics derived from the dynamic risk input-output model are the time to

recovery and average level of operability, which for a particular sector i are respectively

given as

τi =
{
k : k > 0, |qi(k)− qei | ≤ ε

}
⇐⇒ τ =

{
k : k > 0, |q(k)− qe| ≤ ε

}
(5.4)

Fi = 1− 1

T

T∑

k=0

qi(k) ⇐⇒ F = 1− 1

T

T∑

k=0

q(k) (5.5)

τi indicates the time it takes the disrupted system to recover to acceptable levels of

functionality given by qei , and Fi represents the average level of functionality that is

maintained by the sector during the time frame T when recovery is analyzed. τ can

be considered to indicate an overall recovery for the entire n sector system, while

F is the n × 1 vector quantifying average operability of all n sectors. These can be

considered to represent performance metrics that indicate a resilience properties of

the system.
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As we do not know the values in the K∗ matrix, we cannot readily estimate

the above performance metrics. On the other hand there are physical meanings

attached to these metrics, which can help us develop an estimate for them. For

example saying that the disrupted sector recovers in 30 days means we know that

τi = 30 with qei having value indicative of such recovery. Similarly saying that during

recovery the sector is able to function at 90% capacity on an average means Fi = 0.9.

Assuming that such estimates can be inferred they can be used to compute the model

parameters. This is the inverse problem or a feedback problem. The estimated values

for the performance metrics can be called ‘observations’ that help us calibrate the

model.

If, for a sector, the value for one of the chosen performance metrics is decided then

it is known that this target value can be achieved through the model with suitable

values assigned to the parameters. If, for the chosen performance metric for sector i,

ztari denotes the observation value and zmodi denotes the true value given by the model

then it can be assumed that

ztari = zmodi + νi (5.6)

where νi ∼ N(0, σ2
i ) is a random Gaussian unavoidable error that exists due to im-

precise information in estimating the observation. This also shows some uncertainty

that always exists in estimating the targeted value for the performance metric.

The inverse problem is an parameter estimation problem where it is desired that

the model and observation are as close to each other as possible. The least squares

criterion, which finds the best fit between modeled and observed values, is the obvious

choice for solving the inverse problem. Equation (5.7) expresses the least squares

problem, which is a mathematical statement of the inverse problem.

min

{
J =

n∑

i=1

1

σ2
i

(
ztari − zmodi

)2
=
(
ztar − zmod

)ᵀ
W
(
ztar − zmod

)}
(5.7)
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where the n × n matrix W = diag(1/σ2
i ) in general represents the weights given to

each target, ztar is an n× 1 vector of target values for all sectors and zmod is an n× 1

vector of all sector performance metric values given by the model.

Since zmodi is obtained from the model it is a function of the state variable qi(k),

which can be represented as zmodi = hi(qi(k)) or zmod = h(q(k)). Using zi = ztari

and z = ztar for further notation the Equation (5.6) observation-model relationship

is expressed as

zi = hi(qi(k)) + νi (5.8)

As established qi(k) is a function of K∗ among other parameters. Since the goal is

to find the parameter K∗ that provides the best model fit for the given observation

Equation (5.7) is written as

min
K∗

{
J(K∗) =

n∑

i=1

1

σ2
i

[
zi − hi(qi(k))

]2
=
[
z− h(q(k))

]ᵀ
W
[
z− h(q(k))

]}
(5.9)

Here it is noted that the cost function J is an implicit function of K∗ since the choice

of K∗ determines how well a fit is achieved.

The general formulation developed applies to any of the resilience metrics shown

in Equations (5.4) and (5.5). If the time to recovery metric, τ is used as a performance

metric then we are planning for the time when the economic sectors have inoperabil-

ities which indicate stability. A planning decision can be made about deciding the

time at which such stability should exist. Setting a target value for τ means a deci-

sion is made to attain stability from τ onwards. Stability means the system is able

to reach an equilibrium from initial impact. The value that denotes stability depends

upon the type of external stimulus to the system. Hence if it is assumed that we

know the targeted equilibrium inoperability zτ at τ then, hτ (q(t)) = q(τ), and the
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inverse problem is given by the following set of equations

Model space: q(k + 1) =
[
In −K∗(In −A∗)

]
q(k) + K∗c∗(k)

Observation space: zτ = q(τ ) + ντ

Inverse problem: minK∗

{
J(K∗) =

[
zτ − q(τ )

]ᵀ
W
[
zτ − q(τ )

]}
(5.10)

Similarly the overall average level of operability metric, F can also be used for

performance evaluation. F is a more complete metric for performance that can be

used to find K∗ because it captures the most likely system behavior, which is averaged

over every time-step. The Equation (3.37) representation for F is restated here in

discrete form to show that quantifying F leads to estimating time to recovery and

equilibrium inoperability, which gives a more complete picture of system performance.

F = 1−
(
1− τ

T

)
qe − 1

T

k=τ∑

k=0

q(k)dt (5.11)

Instead of F we use F̄ given by Equation (5.12) for setting a observational space

model for which the target value is set at zF̄ . F̄ in fact represents an average loss of

operability measure.

F̄ = 1−
(
1− τ

T

)
qe − F (5.12)

The observational space model, which comes from Equation (5.11), is obtained as

hF̄ (q(k)) =
1

T

τ∑

k=0

q(k) (5.13)
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Hence, the inverse problem in this case is represented as

Model space: q(k + 1) =
[
In −K∗(In −A∗)

]
q(k) + K∗c∗(k)

Observation space: zF̄ = 1
T

∑τ
k=0 q(k) + ν F̄

Inverse problem: minK∗

{
J(K∗) =

[
zF̄ − h(q(k))

]ᵀ
W
[
zF̄ − h(q(k))

]}
(5.14)

Having set up the inverse problem our goal is to find the optimal K∗ that solves

systems in Equations (5.10) or (5.14). In the next sections we outline the general

solution scheme that estimates such an optimal K∗.

5.3 Solution scheme for the inverse problem

5.3.1 First-order forward sensitivity method

In order to solve the minimization problem in Equation (5.9) the computation of the

gradient of J with respect to K∗ is calculated and equated to zero. This gradient,

denoted by ∇K∗J is a non-linear function of K∗, which makes it difficult to get a value

for K∗ by simply calculating the gradient and equating it to zero. A method based on

calculating the first-order directional derivative with respect to K∗ is employed here

to approach the optimal K∗ through the δK∗ incremental improvements following an

initial estimate. In the subsequent development of a solution for the problem we will

transform the n×n matrix K∗ into an n2×1 vector k∗, which is obtained by stacking

the columns of [K∗]ᵀ into a column vector.

Equation (5.2) is a state space equation in which q(k) denotes the state of the

system at time-step k. An initial guess can be made about the elements of k∗ to

obtain a value of q(k) that would satisfy Equation (5.8). But this value of sector

inoperability calculated through the model is different from the true value. As such

there will be an error in prediction of the observations. This error is called the forecast

error (Lewis et al., 2006; Lakshmivarahan & Lewis, 2010), because it measures the
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amount by which the model is unable to match the observations. The forecast error

e at time-step k can be defined as

e ≡ z− h(q(k)) = f(k∗) + ν (5.15)

where f(k∗) is a deterministic error induced by the incorrect control variables. We are

interested in finding corrections δk∗ such that the model forecast errors e updated to

eN = e + δe are purely random, that is E[eN ] = 0.

Using the first-order variational analysis approach (Lakshmivarahan & Lewis,

2010), the problem of improving the model forecast is tackled by improving the param-

eter via small increments and looking at the first variation effects of such increments

on the model and observation functions. Figure 5.2 shows the schematic of the solu-

tion approach being adopted here. A δk∗ change in the controls will induce a change

q(0),A∗, c∗(k) q(1) q(2)k∗

δk∗

k∗ + δk∗ q(1) + δq(1) q(2) + δq(2)

δq(2)δq(1)

e

e + δe

Figure 5.1: First-order variational analysis showing the increment of the parameter
from a base case to a perturbed case, which results in the increment of the model
values and therefore the error estimates

δq(k) in the model, which gives

eN = e + δe = z− h(q(k) + δq(k)) (5.16)
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From the first-order Taylor’s expansion we can obtain

eN = e−Dq(k)(h)δq(k)) (5.17)

where Dq(k)(h) = [∂hi/∂qj(k)] denotes the n× n Jacobian of h with respect to q(k).

Further the change δq(k) is due to the perturbation of k∗ by δk∗. Using the Taylor’s

series expansion the first variation of this induced change can be expressed as

δq(k) = Dk∗(q(k))δk∗ (5.18)

where Dk∗(q(k)) = [∂qi(k)/∂k∗
′
ij ] is the n × n2 matrix for the Jacobian of q(k) with

respect to k∗ and represents the first-order sensitivity of the state with respect to the

k∗ vector. Combining Equation (5.17) and (5.18) we get

eN = e−Dq(k)(h)Dk∗(q(k))δk∗

= e−Hδk∗ (5.19)

where H = Dq(k)(h)Dk∗(q(k)). The perturbation that removes the systematic error

from the forecast error satisfies

E[eN ] = 0 =⇒ e = Hδk∗ (5.20)

The above system is a linear least-squares problem, in which e is an n× 1 vector, H

is an n × n2 matrix and δk∗ is an n2 × 1 vector. It is an under-determined system

where the number of unknowns are more than the number of equations. Hence,

the solution to this problem is obtained by minimizing the Tikhonov regularization
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function (Tikhonov et al., 1977; Groetsch, 1984)

min
δk∗

{
J̄(δk∗) =

1

2
(e−Hδk∗)ᵀW(e−Hδk∗) +

µ

2
(δk∗)ᵀ(δk∗)

}
(5.21)

where µ is a regularization constant. The solution of this linear least-squares problem

can be found by directly equating the Jacobian ∇δk∗ J̄ = 0, which is now linear in

δk∗.

∇δk∗ J̄ = −HᵀWe + (HᵀWH + µIn2)δk∗ = 0

=⇒ δk∗ = (HᵀWH + µIn2)−1HᵀWe (5.22)

where In2 is an n2 × n2 identity matrix. With the above calculated value for δk∗

the updated error estimate of Equation (5.19) can be obtained to see how much

improvement has been made in estimating the discrepancy between the model and

the observation. If this improvement is satisfactory then the new value k∗ + δk∗

indicates the value for the K∗ that satisfies the targeted system behavior. Otherwise

we can further improve the estimate by again calculating the next perturbation δk∗

that is solved through the process outlined from Equation (5.15) to (5.22) above.

Table 5.1 shows the iterative algorithm through which the optimal increment leading

to the optimal K∗ is obtained.

The analysis approach, called the forward sensitivity method (FSM) (Lakshmi-

varahan & Lewis, 2010), is useful for obtaining better estimates to the system and we

know the sensitivity evolution of the state space in terms of the control parameters.

5.3.2 Computing the sensitivity functions

The solution of the forward sensitivity methods relies on finding the matrix H from

Equation (5.19). For the two inverse problems defined in Equations (5.10) and (5.14)
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Table 5.1: First-order sensitivity algorithm for solving the inverse problem

Given: z,h,W,A∗,q(0), c∗(k),∀k, µ
Set: tol << 1
Step 1: Initial guess for K∗

Step 2: Find e = z− h(q(k))
Step 3: If e ≤ tol; STOP

else
Step 4: Find H = Dq(k)(h)Dk∗(q(k))
Step 5 Solve δk∗ = (HᵀWH + µIn2)−1HᵀWe
Step 6: Update:

k∗ → k∗ + δk∗

eN = e−Hδk∗

Step 7: If eN ≤ tol; STOP
else

Step 8: e = eN ; GOTO Step 4

the specific expressions for H provides more insight into the forms of the sensitivity

functions that generate the forward sensitivity calculations. Hence, we are interested

in finding the two matrices Hτ and HF̄ given as

Hτ = Dq(τ)(q(τ))Dk∗(q(τ)) (5.23)

HF̄ = Dq(k)(hF̄ )Dk∗(q(k)) (5.24)

In this section we provide the expressions from calculating the required Jacobian

matrices, which reflect the forward sensitivities with respect to model parameters.

Before proceeding we express the sector-wise temporal inoperability, which is needed

for sensitivity calculations. From Equation (5.2), the sector i inoperability at time-

step k + 1 becomes

qi(k + 1) = qi(k)−
n∑

j=1

k∗
′

ijqj(k) +
n∑

j=1

( n∑

r=1

k∗
′

ira
∗
rj

)
qj(k) +

n∑

j=1

k∗
′

ijc
∗
j(k)

= Gi(K
∗,A∗,q(k), c∗(k)) (5.25)
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Calculations for Dq(k)(h) depends upon the functional form of h. When the

observation space is defined by the Equation (5.10) then

Dq(k)(h) = Dq(τ)(q(τ)) = In (5.26)

For the observational space given by Equation (5.13) the expression for Dq(k)(h)

is

Dq(k)(h) = Dq(k)

(
1− 1

T

T∑

k=0

q(k)

)

= − 1

T

T∑

k=0

Dq(k)(q(k))

= − 1

T

T∑

k=0

In (5.27)

Dk∗(q(k)) are obtained from a recursive computation of the forward sensitivities

of q(k+ 1) in dynamic risk input-output model Equation (5.2). At any time step we

are interested in the following forward sensitivity matrices

Dk∗(q(k + 1)) = U(k + 1) =
[
uij(k + 1)

]
=




∂q1(k+1)
∂k∗11

· · · ∂q1(k+1)
∂k∗nn

...
. . .

...

∂qn(k+1)
∂k∗11

· · · ∂qn(k+1)
∂k∗nn



(5.28)

For calculating the forward sensitivities, we will need the Jacobian of Gi from Equa-
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tion (5.25) with respect to ql(k)(l ∈ {1, 2, ..., n}) and k∗
′
pj(p, j ∈ {1, 2, ..., n})

∂Gi(k)

∂ql(k)
=

∂
[
qi(k)−∑n

j=1 k
∗′
ijqj(k) +

∑n
j=1

(∑n
r=1 k

∗′
ira
∗
rj

)
qj(k) +

∑n
j=1 k

∗′
ijc
∗
j(k)

]

∂ql(k)

=

[
δil − k

′∗
il +

n∑

r=1

k
′∗
ira
∗
rl

]
(5.29)

∂Gi(k)

∂k∗
′
pj

=

∂
[
qi(k)−∑n

s=1 k
∗′
isqs(k) +

∑n
s=1

(∑n
r=1 k

∗′
ira
∗
rs

)
qs(k) +

∑n
s=1 k

∗′
isc
∗
s(k)

]

∂k∗
′
pj

= 1p((p−1)×n+j)

[
− qj(k) +

n∑

s=1

a∗jsqs(k) + c∗j(k)

]
(5.30)

where 1pg is an indicator function that is equal to 1 at the (p, g) element of the matrix

and 0 otherwise. Using Equation (5.28) and Equation (5.30) the calculations of the
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forward sensitivities are as follows:

∂qi(k + 1)

∂k∗
′
pj

=
n∑

l=1

∂qi(k + 1)

∂ql(k)

∂ql(k)

∂k∗
′
pj

+
∂Gi(k)

∂k∗
′
pj

=
n∑

l=1

∂Gi(k)

∂ql(k)

∂ql(k)

∂k∗
′
pj

+
∂Gi(k)

∂k∗
′
pj

=
n∑

l=1

[
δil − k

′∗
il +

n∑

r=1

k
′∗
ira
∗
rl

]
∂ql(k)

∂k∗
′
pj

+ 1p((p−1)×n+j)

[
− qj(k) +

n∑

s=1

a∗jsqs(k) + c∗j(k)

]

=⇒




...

· · · uij(k + 1) · · ·
...




=

[
∂Gi(k)
∂q1(k)

· · · ∂Gi(k)
∂ql(k)

· · · ∂Gi(k)
∂qn(k)

]




u1j(k)

...

ulj(k)

...

unj(k)




+ 1p((p−1)×n+j)

[
− qj(k) +

n∑

s=1

a∗jsqs(k) + c∗j(k)

]

=⇒ U(k + 1) =
[
In −K∗(In −A∗)

]
U(k)

+ T(k), U(0) = 0 (5.31)

where T(k) is the n× n2 matrix of the ∂Gi(k)/∂k∗
′
pj terms defined in the equations

above. From the above expressions spanning Equations (5.23) to (5.31) the expres-

sions for the required H matrices are given as

Hτ = InU(τ) (5.32)

HF̄ = − 1

T

T∑

k=0

InU(k) (5.33)
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5.3.3 Importance of and issues with forward sensitivities

In general using the the inverse problem for parameter estimation is a useful scheme

because it shows the fidelity of the model to actual data/observations. The approach

is an online method in which the parameter estimate can be improved and updated as

more data is available to us. Hence, the method leads to reliable estimates of model

parameters.

Equations (5.32) and (5.33) suggest that the calculations of the matrices Hτ and

HF̄ are based on obtaining Dk∗(q(k)), which is the state variable sensitivity with

respect to the control parameter. This further shows that the gradient of the function

J̄ in Equation (5.22) can be directly interpreted in terms of the sensitivities. Also

the updated forecast error eN is shown to be dependent on the forward sensitivities

in Equation (5.19), which means that the structure of the forecast errors can be

interpreted in terms of sensitivity calculations. Hence, the direction of the gradient

and the error updates can be understood in terms of the sensitivity calculations using

the method we presented here. Such analysis insights make the FSM a useful method

in solving the inverse problem.

Substituting M =
[
In −K∗(In −A∗)

]
, the expression for the forward sensitiv-

ity of Equation (5.31) can be expanded as a series of M and T(k), ∀k as shown in

Equation (5.34)

U(k + 1) = MU(k) + T(k)

= M
[
MU(k − 1) + T(k − 1)

]
+ T(k)

= M2
[
MU(k − 2) + T(k − 2)

]
+ MT(k − 1) + T(k)

...

= MkT(0) + Mk−1T(1) + · · ·+ MT(k − 1) + T(k) (5.34)
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M is the state matrix of the dynamic risk input-output model and it was es-

tablished in Section 2.5.3 that for the model to have a stable solution the spectral

radius of M is less than 1. Therefore the powers of M progressively contain smaller

terms and after some k,Mk → 0. Also, the elements of T(k) come from the vector

c∗(k)− (In−A∗)q(k), which also approaches 0 as the system moves towards stability.

Therefore, it can be seen that beyond some value of k,U(k+1)→ 0. Hence there is a

region in the iterative scheme where the forward sensitivities are said to be saturated

and do not change. This results in the matrix H being ill-conditioned. As such if the

observations lie in this region then the FSM is not able to estimate the parameter.

Such considerations a required while using the performance metrics to set targets for

the system to generate the inverse problem. Lakshmivarahan & Lewis (2010) suggest

that if the condition number of the matrix HᵀH should be less than 104 for favorable

estimates. Section 5.5 expands on the above discussion through a numerical example.

5.4 Setting values for observation space

A key issue in the development and solution of the inverse problem is the availability

of the observation space or target values that will be used for parameter estimation.

Knowledge of the system through past recovery data can provide us with estimates

for the recovery time or average inoperability values, which can be used for solving

the inverse problem. For example estimates are available for disaster impact and

recovery from Hurricane Katrina (Hallegatte, 2008), and these can be used for future

recovery planning. One caveat of using already available data is that it will not

replicate itself in reality, which means planning decisions made from one disruptive

event are unique to that problem. Also, in general there is little or no data for recovery

planning of most macro level systems. The problem we are dealing with could be

referred to as an ‘online’ parameter estimation problem, where the estimates depend
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upon the type of disruptive event characterized through the initial inoperability and

demand perturbations. The observational space generated should represent a desired

behavior we want to ascribe to the system that is reflective of the response to the

given disruptive event given through the model space. Such an approach has been

employed in economic planning and design, where the planner wants his/her system

behavior to ‘emerge’ from the model itself. This planning philosophy for feedback

control design for economic systems is elucidated by Archibald (2005) in his work

‘Information, incentives and the economics of control’

There is, however, a crucial distinction between the familiar use of feed-back
systems for physical control and their potential use for economic control: in
the former use, the target must be set, i.e. pre-selected; in the latter use, the
target must somehow “emerge” as the process goes on. If this were not the
case, we should at the most have a system for the implementation of a plan,
not a substitute for the planning process itself.

Given the situation that there is no available data in our problem we use particular

scenarios of the dynamic risk input-output model itself to generate the observation

space. Based on the previous discussion on the dynamic risk input-output model in

Chapter 2 setting K∗ = In gives some insights into the system recovery behavior.

In Section 2.5.3 we established that since K∗ is modeled to be diagonal or close to

diagonal with its elements k∗ij ∈ [0, 1], having K∗ = In means that the interdepen-

dent recovery is fastest compared to other responses most of the times. Moreover.

K∗ = In signifies that the system interdependence given through A∗ is preserved and

controls the response. Hence, we use the model given by Equation (5.35) to generate

a benchmark for the observation data.

q1(t) = e−(In−A∗)tq(0) +

∫ t

0

e−(In−A∗)(t−z)c∗(z)dz (5.35)

Using the above model we can calculate for all the sector time to recovery τ 1, equi-

librium inoperabilities q1e and F̄1 = 1
T

∫ T
t=0

q1(t) among other parameters. The zτ
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observational data can be conveniently generated as

zτ = q1e + ντ , ντ ∼ (0, diag(σ2
τ )) (5.36)

In the inverse problem of Equation (5.13) setting τ ≥ τ 1 would imply that the

equilibrium has been shifted to a later time and hence the K∗ estimation problem is

posed as

For times τ ≥ τ 1 we ask ourselves the question: What is K∗ such that

zτ = q(τ ) + ντ?

We are mainly shifting the equilibrium towards a later time and finding the
K∗ for the sectors for this new situation.

Similarly the zF̄ observational data can be generated and used to estimate system

performance

zF̄ = F̄1 + ν F̄ , ν F̄ ∼ (0, diag(σ2
F )) (5.37)

where the Gaussian error terms ν F̄ arise because the assumptions that the targets

cannot be set with complete certainty.

In the inverse problem of Equation (5.14) setting τ ≥ τ 1 would imply that the

equilibrium has been shifted to a later time and hence the K∗ estimation problem is

posed as

For times τ ≥ τ 1 we ask ourselves the question: What is K∗ such that

zF̄ =
1

T

τ∑

k=0

q(k) + ντ?

We are mainly shifting the equilibrium towards a later time, while maintaining
the same overall level of functionality, and finding the K∗ for the sectors for
this new situation.
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Using K∗ = In for benchmarking and setting τ ≥ τ 1 for performance evaluation of

the system is justified due to the opposing tradeoff between the maximum inoperabil-

ity and the time of recovery arising from coupled system behaviors. Figure 5.2 shows

that faster recovery might come at the cost of greater maximum inoperability for the

same level of overall performance. Same areas under curves means same overall level

of operabilities and lower maximum impact at the cost of later recovery might be a

preferred option. Table 5.2 summarizes the observational data generation approach.

Table 5.2: Algorithmic procedure to generate the observation data for the inverse
problems

Given: A∗,q(0), c∗(k), ∀k, µ
Set: K∗ = I
Calculate: q1e, τ 1, F̄1

Set: zτ = q1e + ντ , ντ ∼ (0, diag(σ2
τ ))

Set: zF̄ = F̄1 + ν F̄ , ν F̄ ∼ (0, diag(σ2
F ))

5.5 Example problem

The practical application of the above methods is highlighted through a 15 sector

economy that shows the interdependence between economic sectors in the state of

Oklahoma. This data is obtained from the BEA (BEA., 2011). Table 5.3 lists the

economic sectors with annual output levels specified. Assuming that there is a disrup-

tive event that results in initial inoperabilities for the mining and the manufacturing

sectors only, the values in the initial inoperability vector are also given in Table 5.3.

If there are no demand perturbations for this system at all times (c∗(k) = 0,∀k),

then the problem of finding the K∗ matrix is a recovery rate estimation exercise. We

investigate the problem in context of the inverse problem given in Equation (5.10)

where the τ metric generates the performance criteria and also reflects the recov-
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Figure 5.2: Two sector recoveries with same areas under the curves showing same
levels of functionality. It can be seen that there is a tradeoff between the recovery
time and the maximum inoperability which needs to be considered in setting recovery
targets.

ery behaviors. From the Table 5.2 approach for estimating the observational data

the recovery times τ 1 for all sectors are about the same (τ 1
i = 6,∀i ∈ [1, 15]). The

observational vectors q1e and F̄1 are also given in Table 5.3.

Setting different recovery times for the attainment of stable states is analogous

to setting different planning horizons for recovery and monitors the consequences

of such decisions. Figure 5.3 shows the trajectories of four major sectors as their

recovery times vary. In the plots it is visible that the delayed recoveries result in

later attainment of stabilities but there are lower maximum losses for the sectors.

Figure 5.4 highlights such tradeoffs due to different recovery planning efforts. Shown

in the figures 5.4(a) to 5.4(d) on the left side are the maximum economic/output losses

incurred by the sectors for different recovery planning horizons and on the right side

are the average economic/output losses the sectors incur due to such planning. Using

these metrics instead of the previously defined qm and F metrics gives a practical

interpretation to the metrics the signify resilience. For a planner measures of economic
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losses help in understanding the implications of the planning decisions. As seen in

the Figure 5.4 for each sector delayed recovery results in a higher average loss of

functionality but there is a maximum impact effect due to the interdependence with

other affected sectors, which results in initial cascading of the disruption. Such results

highlight the justifications in using the proposed triplet of resilience metrics instead of

a singular measure like total economic loss, which is generally done for such studies.

From the computational aspects of the forward sensitivity scheme interest lies in

examining the evolution of the forward sensitivity operators because these are indica-

tive of the capability of the model to provide a solution to the inverse problem. As

discussed before the sensitivity functions ∂qi(k+1)
∂k∗jk

approach towards zeros after some

time which means that they not sensitive to the placement of the data/observation

beyond a certain time. Figure 5.5 shows the sensitivity functions for the two affected

sectors (mining and manufacturing) because these drive the responses for most of the

interdependent economy. In this problem the size of the matrix Dk∗(q(k)) is 15×225,

which means there are 225 sensitivity operators for each sector. As seen in the fig-

ures beyond time t = 25 most of the sensitivity operators approach towards zero,

and having data/observations beyond this point would not yield any solutions from

the computational scheme. Also, another advantage of these sensitivity operators is

that they can tell how much each qi(k) is sensitive to which k∗ij elements and in what

direction does that sensitivity progress. From a planning perspective we can interpret

this as a indicator of the effectiveness of the sector investments in substitutions for

certain products that would help in better recovery. Figure 5.6 shows the values for

the k∗ij, j = [1, 15] in the form of a bubble plot for the mining sector as the recovery

planning horizon is shifted for 6 days to 20 days. Here the sizes of the bubbles reflect

the values of the k∗ij elements. Greater the size of the bubble greater is the value of

the parameter. Such a plot is indicative of two things: (i) The interdependent struc-

ture of the resilience parameters that shows the amount of substitution/inventory the
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mining sector needs to maintain to attain a targeted planning recovery, (ii) The af-

fect of the substitutions on the overall performance metrics. As expected the mining

sector needs to increase its self reliance to achieve faster recovery and also increasing

most of its interdependent resilience leads towards the faster recovery. Since, we have

been highlighting the fact that faster recovery comes at a cost of increased maximum

impacts there is an interest to regulate the amount of interdependence due to substi-

tution/inventory. In particular there is an indicator here that the mining sector can

increase its k∗ij value with respect to other sectors by more substitution and decrease

its own k∗ii by maintaing lesser redundancy to decrease the maximum economic loss

impacts and achieve comparable recovery times.
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Figure 5.3: Recovery trajectories for four sectors as time to recovery is extended.
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Figure 5.4: Trade-offs between maximum output losses and average output losses as
recovery is delayed.
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Figure 5.5: Evolution of the forward sensitivities for the inoperabilities of the two
affected sectors.
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Figure 5.6: Values of the k∗ij, j = [1, 15] elements for the mining sector for different
recovery times.

5.6 Summary and discussion

This Chapter presents the computational scheme for solving the parameter estima-

tion problem of the dynamic risk input-output model. The approach adopted here

comes from theories in control system designs and dynamic data assimilation method-

ologies. Primarily the parameter estimation problem is an inverse problem that is

solved through the availability of data that the model is supposed to predict. A func-

tional relationship exists between the model and the observation and the unknown

parameter is estimated to satisfy this functional relationship with as much precision
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as possible. Though such methods are available in other research domains their us-

age in the parameter estimation for the dynamic risk input-output model is a novel

approach.

Unlike other domains of application where the data is readily available to calibrate

the model here the big issue is the lack of data which shows the recovery behavior

that can be explained through the model. As such the problem is really a planning

issue where the model is being used to agree to a specified decision preference. As

the requirements of the model are that it should be a suitable construct for resilience

estimation, the data is realized as performance targets set to meet specific resilience

goals. Such assumptions are not too implausible, because in risk planning for future

behaviors and for unknown scenarios there is a need to create manufactured scenarios.

The solution scheme adopted here is called the forward sensitivity scheme and

its is based on calculating the sensitivity of the model state to the parameter being

estimated. This approach has computational and practical relevance. Computation-

ally sensitivity shows the effect of perturbation of the parameter on the model state,

which translates to the magnitude of the effect on model state due to the parameter.

More sensitivity indicates the parameter is significant in predicting the model states.

Time evolving sensitivity, which is being used here, also shows the domain of analysis

where the model does not respond to fluctuations in the parameter values. For the

inverse problem this domain is important because it shows that the model parameter

would not be able to predict the model state properly within the domain, hence the

effect of observations on the model are negligent. These issues are discussed here in

relation to the dynamic risk input-output model.

Having developed the solution scheme, the example problem brings together the

resilience concepts and the forward sensitivity approach develop over the previous

chapters and this one. Primarily the goal of developing the forward sensitivity ap-

proach here is the seek solutions to the possible values the K∗ matrix takes during
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recovery and how these translate towards resilience indicators. Through the example

problem the resilience conceptualization and model frameworks have been presented

here. In the end we have a convenient tool for predicting dynamic resilience in inter-

dependent systems.
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Chapter 6

Inland Waterway Disruption Analysis

6.1 Introduction

This Chapter presents a study on multi-modal transportation risk assessment, with

particular focus on inland ports. The purpose of this Chapter is to develop a method-

ology for applying the input-output risk models, so that the concepts that were de-

veloped in the previous chapters can be used for real world applications. Inland

waterway systems are CIKR of homeland security importance and hence need to be

studied for risk assessment and planning. The Chapter is organized in the following.

Section 6.2 motivates the importance of studying inland waterway ports from a eco-

nomic and security point of view. Section 6.3 presents a multi-regional framework

for applying the input-output models that were discussed previously. The economic

multi-regional model is based on the input-output principles and its risk-based exten-

sion is also constructed by following previously defined steps for model development.

The models presented here are static, but they can be conveniently extended to the

dynamic domains. In Section 6.4 the link between the commodity flows across inland

waterway port hubs and input-output models is shown. This leads to the development

of the risk metrics that express the losses in commodity flows as inoperabilities and

demand perturbations. Hence, the unified framework that combines transportation

hub commerce with input-output risk models is established. In order to estimate

losses in the transportation hub we need to develop a model that as-planned and

disrupted states of the system being analyzed. Hence, in Section 6.5 a port queuing
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model is presented for representing the flow of goods across the. The queuing model

divides the commodity flows into four main components: arrivals, yard storage, crane

operations and departures, which is useful in monitoring the flows across the differ-

ent stages of the transport. Therefore, disruptions to each of these components can

be separately modeled and their effect on the rest of the queue can be conveniently

quantified. Such schemes are suggested for building different disruption scenarios that

affect port commerce, and generate risk metrics. Section 6.6 presents a case study for

the Port of Catoosa in Tulsa Oklahoma, where the methods developed are applied

and their risk assessment application is shown. The work presented here shows the

scope of the models, which can be applied to any general transportation hub and

network. The importance of the work and its applicability to the risk management

and resilience method is highlighted in Section 6.7.

6.2 Motivation

The prevention of, and recovery from, disruptions to large-scale economies often in-

volves decision making by parties interested in the normal operation of more than one

industry. Government policy makers and industry decision makers both have a need

for distributing resources where they will be most useful in ensuring normal produc-

tion levels, whether for the economy as a whole or for individual supply chains. This

resource allocation depends on accurate information regarding the potential effects

of preparedness and mitigation strategies that take into account the interconnected

nature of the economy.

Such planning is particularly important risk-based policy and decision making

for transportation infrastructure, listed among the US critical infrastructure and key

resources (DHS., 2009). Roads and highways have been the primary mode for freight

transport, moving an estimated 69% freight by weight and 65% by value in 2007
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(Schmitt et al., 2010). With US domestic freight projected to grow annually by

1.6% from 2010 till 2040 (Schmitt et al., 2010) along with greater increase in general

pedestrian traffic, there is concern about the future of the aging US transportation

system (Hasley, 2010). Estimates suggest that in 2009, congestion in 423 metropolitan

areas caused urban Americans to travel 4.8 billion hours more, and to purchase an

extra 3.9 billion gallons of fuel for a congestion cost of $115 billion (Schrank et al.,

2010). Congestion also exists on rail transport and is projected to increase along

Class I railway lines and terminals along coasts (Association of American Railroads,

2007). A viable freight alternative is needed for sharing the burden with road and

rail for future sustenance of the US multi-modal transportation infrastructure.

The US Maritime Administration, a division of the US Department of Transporta-

tion, has identified such a freight alternative, calling for an investment in inland wa-

terways for general freight movement (Marine Administration, 2011). The increased

use of the 25,000 miles of commercially navigable waterways for freight transport will

likely lead to reduced congestions on US highways, as well as reduced risk of acci-

dents relative to highway and rail transport and reduced air pollution emissions (US

Department of Energy, Energy Information Administration, 2010). Transportation

by barge is often cheaper than the alternatives of rail and truck, and there are many

products that are too large for other methods of transport. Around 38 states depend

on inland waterways to move as much as 630 million tons annually in the last decade

(US Army Corps of Engineers, 2009), currently a distant third behind roadway and

rail.

6.3 Multi-Regional Economic Impact Framework

Isard et al. (1998) proposed a multi-regional input-output (MRIO) framework for

multi-regional trade supply and demand balance. If we assume that the n economic
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sectors trade across p regions then using the MRIO we can express the equilibrium

between sector outputs supplies and intermediary and final product demands across

all regions. Equation (6.1) expresses this trade balance as

xri =

p∑

s=1

n∑

j=1

trsi a
s
ijx

s
j +

p∑

s=1

trsi c
s
i (6.1)

where xri is the output of industry i in region r, trsi is the proportion of industry

i output that flows from region r to region s, asij is the proportion of industry i

output used by industry j after it comes from all sources in region s, and csi is

the final exogenous demand for industry output i in region s. Expressed in matrix

form Equation (6.1) leads to Equation (6.2) with np× 1 vectors and np× np matrix

structures. Each n × n sub-matrix Trs =
[
diag(trsi )

]
∀i = {1, 2, ..., n} is called the

trade coefficient matrix for trade flow interdependence between region r and s. Also

each sub-matrix As =
[
asij
]
∀i, j = {1, 2, ..., n} is an n × n regional industry-to-

industry interdependency matrix for region s. Each n× 1 vector of regional industry

outputs, xr(=
[
xri
]
∀i = 1, 2, ..., n) and n × 1 vector of regional exogenous demand,

cr(=
[
cri
]
∀i = 1, 2, ..., n) make up the multi-regional supply and demand vectors of

the MRIO.
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(6.2)

The MRIO is also supported and validated through publicly available data sources.

The Bureau of Transportation Statistics, maintains commodity flow data for entire

US domestic and international trade (BTS., 2011), which is used in constructing the

trade coefficient matrices. Also, the A matrix data available at the national level

is converted to a regional Ar matrix through different regional multipliers methods
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(Miller & Blair, 2009). The location quotient multipliers used here takes into account

the regional contribution of an industry compared to its contribution to national

outputs. As outlined by the BEA (BEA., 1997) the location quotient lri for industry

i in region r is the proportion between its regional output contribution to the entire

regional economic output xrto and its national output contribution to entire national

output xto.

lri =
xri/x

r
to

xi/xto
(6.3)

The regional input-output industry-by-industry interdependence matrix obtained by

combining the two BEA data sources is expressed in Equation (6.4). As lri approaches

1 industry i’s contribution to regional demands approaches its national trade capac-

ity, which means the national interdependency has a one-to-one correspondence to

regional interdependency.

arij =





lri aij lri < 1

aij lri ≥ 1
(6.4)

The MRIO extension to the inoperability framework leads to a multi-regional inop-

erability input-output model (MRIIM) (Crowther & Haimes, 2010). In the MRIIM

Equation (6.5), derived from (6.2), qr and c∗r are respectively the n × 1 vectors

for inoperabilities and demand perturbations at the region r level. A∗s is now the

n×n regional industry-to-industry inoperability propagation matrix for region s, and

T∗rs =
[
diag(xr)

]−1
Trs
[
diag(xr)

]
represents the n × n matrix for the inter-regional
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inoperability flow between regions r and s.
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(6.5)

6.4 Applications to Transportation facility disruptions

Transportation facilities, such as ports, are outlets for commodity flows across regions.

Since the multi-regional input-output model quantifies the equilibrium of the imports

and exports between regions, port facilities are suitable geographic locations where

this equilibrium can be studied. For a port located in region r(r ∈ {1, 2, ..., p})

exporting to region s(s ∈ {1, 2, ..., p}, s 6= r), the amount of commodity i that arrives

at the port is the amount of final demand for that commodity for region r. Hence,

Equation (6.6) shows how the total final demand, cri , for commodity i in region r is

divided, where (cri )re is the amount of commodity i that is consumed internally or

exported out of other locations except the port, and (cri )pe is the amount of export

out of the port into region s.

cri = (cri )re +

p∑

s=1,s 6=r

(cri )pe (6.6)

The amount of commodity i that is shipped to region s is then used by industries in

s for their production and for final consumption. Hence, in region s the amount of

import, Ds
i =

∑p
r=1,r 6=sD

rs
i , contributes towards the total output, xsi , of the industry

i and the final demand, csi , for the commodity i. Value (xrsi )pi is the amount of
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industry i output that comes through the port from region r, (xsi )re is the amount of

industry i output in region s coming for sources other than the port import, (crsi )pi

is the amount of final demand for commodity i coming from the port into region s,

(csi )re is the amount of final demand for commodity i through sources other that the

port import.

∑

r 6=s

Drs
i =

∑

r 6=s

(xrsi )pi +
∑

r 6=s

(crsi )pi (6.7)

xsi = (xsi )re +
∑

r 6=s

(xrsi )pi (6.8)

csi = (csi )re +
∑

r 6=s

(crsi )pi (6.9)

When disruptions result in change in the amount of arrivals and departures of com-

modities at the port, they affect the exports and imports of the regions having com-

merce through the port. It is assumed that the disruptions cause losses in commodity

flows only through the port while the rest of the flows are not affected. Hence, Equa-

tion (6.10) shows that for the entire economy of region r, port disruptions result in a

demand perturbation for commodity i, c∗ri , given by the loss of exports,
∑

s 6=r(∆c
rs
i )pe,

as a proportion of the total output of commodity i in region, xri .

c∗ri =

∑
s 6=r(∆c

rs
i )pe

xri
(6.10)

For the importing region s, the amount of import loss,
∑

r 6=s ∆Drs
i , in Equation (6.11)

results in the loss of output,
∑

r 6=s ∆(xrsi )pi, and final demand,
∑

r 6=s ∆(crsi )pi, for

commodity i in region s.

∑

r 6=s

Drs
i =

∑

r 6=s

∆(xrsi )pi +
∑

r 6=s

∆(crsi )pi (6.11)
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Thus, for the entire economy of region s, the loss of imports causes an inoperability,

q̂si , and demand perturbation, c∗si . The demand perturbation in industry i can be

calculated.

c∗si =

∑
r 6=s ∆(crsi )pi

xsi
(6.12)

While export contributions toward input-output model metrics are straightforward

to understand and model, import substitutions are more complicated. Typically in

input-output tables imports are value-added contributions towards sector outputs and

thus the inoperability due to them is expressed as

q̂si =

∑
r 6=s ∆(xrsi )pi

xsi
(6.13)

Since the MRIIM also provides sector inoperability (denoted by q̃si here), we need

to compare Equation (6.5) and (6.13) inoperabilities, and the maximum of the two

values provides actual sector inoperability.

qsi = max

{
q̃si , q̂

s
i

}
(6.14)

The MRIIM interdependency equation uses the information from Equations (6.13)

and (6.14) as inputs for calculating the inoperabilities and demand perturbations for

interconnected industries across regions. If m ∈ 1, 2, ..., n different commodities are

transported through the port from region r to s, then in the event of a disruption

there is a demand perturbation, given by Equation (6.13), only for those commodities,

while the rest of the commodities experience no demand perturbation. Hence, the

demand perturbation vector for region r is found with Equation (6.15).

c∗rj =





∑
s 6=r ∆(crsj )pe

xsj
, j ∈ {1, 2, ...,m}

0, otherwise
(6.15)
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Similarly, for the importing region s, there is a demand perturbation for only those

commodities imported through the port, while the rest of the commodities experience

no perturbation in demand. The demand perturbation vector for the importing region

s is calculated in Equation (6.17)

c∗sj =





∑
r 6=s ∆(Drsi )pe

xsj
− qsj , j ∈ {1, 2, ...,m}

0, otherwise
(6.16)

Equations (6.15) and (6.17) combined with the MRIIM form a complete solvable sys-

tem that quantifies the inoperability and demand perturbations for the entire regional

economies for interconnected industries. The equations for demand perturbations de-

veloped above assume only exports from region r through the port, whereas in actual

situations commodities are also imported into r through the port. Therefore, the

total demand perturbation for region r is given in Equation (6.18).

c∗rj =





∑
s 6=r ∆(crsj )pe

xrj
+

∑
s 6=r ∆(Dsri )pe

xrj
− qrj , j ∈ {1, 2, ...,m}

0, otherwise
(6.17)

While there are several kinds of disruptions, any of which can be incorporated into

transportation flow analyses, we are primarily interested in modeling impacts due to

export-import losses. Such an approach is practical from the perspective of estimat-

ing economic losses because we are interested in quantifying lost commerce due to

disruptions.

6.5 Port simulation model

A simulation model that provides estimates of the commodity arrivals and departures

through the port is a useful tool for estimating the parameters for the MRIIM. Fig-

ures 6.1 and 6.2 depict a supply chain model for inland port operations, which can
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be extended to the entire waterway network. For the inter-regional commodity flow

analysis we consider a queueing system for freight transfer through the supply chain.

Supply chain modeling approaches have been applied in the transportation studies

for different types of transfer facilities (Simão & Powell, 1992; Lee et al., 2003) and

have been used in analyzing transportation disruptions (Wilson, 2007). In this study,

the components of the different port operations are defined and explained as follows.

1. Delivery/Receipt - These operations include the arrival of commodities for ex-

ports out of the region and the departure of commodities for imports into the

region.

2. Yard operations - These are storage operations for the temporary storage of

commodities at the port where they are kept for further transport.

3. Crane operations - Cranes are used at the port to transfer commodities to and

from the port docks.

4. Shipment - Freight shipment operations include the departure of commodities

for exports and the arrival for imports.

Figure 6.1: Port export-import model
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Figure 6.2: Overall inland waterway transportation model

A discrete time model, based on concepts developed by Simão & Powell (1992), can

be built for simulating the above port operations. Due to different order of the oper-

ations, the simulation models for exports and imports will be separate. It is assumed

that commodities arrive independent of each other at the port, and each commodity

is transported through the port operations separately. Hence, for m commodities

arriving at the port there are m parallel queueing systems in operation. Considering

a time increment of ∆t, the discrete time model can capture the evolution of queue

model at all times t = 0,∆t, 2∆t, .... Before developing the iterative equations for the

queueing system, some random variables are defined for quantifying different elements

of normal port operations:

1. Yi(t) = The number of units of commodity i arriving at the terminal in the time

interval (t−∆t, t];

2. Ni(t) = Number of units of commodity i in yard storage at time t after com-

modities have arrived in the interval (t−∆t, t];

3. Vi(t) = The maximum units of commodity i that can be transferred by the

cranes to the docks in the time interval (t, t+ ∆t];

4. Wi(t) = The maximum number of imported units of commodity i that can be
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loaded from the yard to trucks or trains in the time interval (t, t+ ∆t];

5. Ui(t) = The number of units of commodity i that are transferred to the dock

for shipment in the time interval (t, t+ ∆t];

6. Di(t) = The number of units of commodity i departing in the interval (t, t+∆t].

In simulating the commodity arrival process, service capabilities of the transfer cranes

and import loading process are known from data describing port annual exports and

imports and daily crane operations, respectively. Hence, assuming that Yi(t), Vi(t)

and Wi(t) are known, the other variables are calculated by adding and subtracting

random variables, as described in the following sections. The same variables are used

for formulating the export and import operations as they have the same meaning for

both operations.

6.5.1 Port export operations

When commodities arrive at the port, they are stocked at the yard. At time t+ ∆t,

the number of units of commodity i at the yard is the sum of the units remaining to

be carried by the transfer cranes and the units that arrive.

Ni(t+ ∆t) = max[0, Ni(t)− Vi(t)] + Yi(t+ ∆t) (6.18)

The number of units of commodity i transferred by cranes is the minimum of the

number of units at the yard and the crane capacities.

Ui(t) = min[Ni(t), Vi(t)] (6.19)
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For normal port operations, the number of units of commodity i exported from the

port is equal to the number of units transferred to the docks.

Di(t) = Ui(t) (6.20)

6.5.2 Port import operations

For imports the commodities are now arriving at the docks and transferred from the

cranes to the yards. The number of units of commodity i transferred by the cranes

becomes

Ui(t) = Yi(t+ ∆t) (6.21)

Equation (6.22) calculates the number of units of commodity i at the yard as the sum

of the units remaining and the units transferred by the cranes.

Ni(t+ ∆t) = max[0, Ni(t)−Wi(t)] + Ui(t) (6.22)

Under normal port operations, the number of units of commodity i departing the

port are equal to the units transferred by the crane, as shown

Di(t) = min[Ni(t),Wi(t)] (6.23)

From the simulation equations it can be seen that the crane operations and depar-

ture processes lag the arrival and yard storage operations by ∆t time. The above

formulations for exports and imports involve the simple additions, subtractions and

splitting of random variables. As mentioned before, if the distributions for Yi(t),

Vi(t) and Wi(t) are known, then the rest of the distributions of the random variables

can be obtained by convolutions of the probability mass or density functions. This
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allows for estimates of the random variables in the queueing model. Arrivals of the

commodities can be modeled as independent non-stationary Poisson processes (with

rate λi(t) for commodity i). Similarly, the rate of service for the crane operations at

the terminal could be modeled as a Poisson process with time-dependent rates (µi(t)

for commodity i).

6.5.3 Modeling disruptive events

A disruptive event such as a man-made attack, an accident, or a natural disaster can

cause damage to components of the transportation network. Different scenarios of

incorporating disruptive events in the supply chain model can be explored to quantify

the amount of loss incurred due to damages. In this study we investigate how dis-

ruptions can affect the parameters in the queueing system simulation model. Some

situations considered are as follows.

1. Terminal Closure - A disruptive event, such as a storm, tornado or attack, may

cause the closure of the terminal for some time ∆T . In this case there are no

arrivals over the period of the storm, but normal service is resumed once the

event subsides. In the simulation algorithm this is modeled as.

Yi(i) = 0,∀t ∈ [t, t+ ∆T ] (6.24)

Such an event is a special case of the scenario where there is a partial disruption

in the arrival of commodities due to a disruptive event. Using the assumption of

time-dependent Poisson arrival rate of commodities, Equation (6.25) quantifies

how the rates of arrival for commodity i change in the simulations, where λ∗i (t)

are the the disrupted arrival rates and λi(t) are the arrival rates under normal
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port operations.

λ̃i(t) =





λ∗i (t), ∀t ∈ [t, t+ ∆T ]

λi(t) otherwise
(6.25)

2. Crane Outage - Disruptive events and normal wear and tear that damage some

of the cranes may limit the number of commodities that are transferred to and

away from the docks. Hence, if the disruption lasts for a time ∆T , in the

simulation model the condition imposed is governed by Equation (6.26), where

Ũi is the capacity limit on the amount of units of commodity i that can be

transported by the cranes.

Ui(t) = Ũ , ∀t ∈ (t, t+ ∆T ] (6.26)

A generalized simulation modeling scenario for such events could be the change

in the time-dependent service rates of crane operations, as shown in Equa-

tion (6.27), where µ∗i (t) are the the disrupted crane service rates and µi(t) are

the service rates under normal port operations.

µ̃i(t) =





µ∗i (t), ∀t ∈ [t, t+ ∆T ]

µi(t) otherwise
(6.27)

3. Departure Stoppage - Similar to arrival disruptions, hazards such as floods in

the river or barge accidents can cause disruptions in the departure of com-

modities for exports and imports. For commodity i, such disruptions over

time ∆T change the number of units departed with Equation (6.28), where

θ(t) ∈ [0, 1),∀t ∈ (t, t+ ∆T ] is the factor representing the reduction in depart-
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ing commodity.

D̃i(t) =





θ(t)Di(t), ∀t ∈ [t, t+ ∆T ]

Di(t) otherwise
(6.28)

The above three modeling formulations for disruptive events provide different scenar-

ios for calculating the losses over the period of analysis. Some or all of these scenarios

can occur in an actual port disaster. Each scenario can be incorporated easily into

the queueing model while preserving the simple arithmetic of addition, subtraction,

and splitting on the random variables.

6.6 Case Study: Inland Waterway Port Dock and Channel

Disruptions

We demonstrate, through a case study of commerce disruption at the Port of Catoosa

and along the Mississippi River System, the application of the network model with

the MRIIM.

6.6.1 Port of Catoosa Overview

Connecting to the Mississippi River System, considered the most important commer-

cial navigation corridor in the US, is the McClellan-Kerr Arkansas River Navigation

System (MKARNS). Along the MKARNS is the Port of Catoosa located near Tulsa,

Oklahoma, the subject of the case study that illustrates the dock-specific discrete-

event queueing models for commodity flows and disruptions.

The port is an important transportation hub for the Midwest, as it is the farthest

north inland port that remains unfrozen all year long. Commodities of all types,

including grains, fertilizers, metal products, and chemicals, are shipped both in and

out of the port. The port provides services for at least ten states, including Al-
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abama, Arkansas, Illinois, Iowa, Kentucky, Louisiana, Mississippi, Ohio, Oklahoma,

and Texas.

The Port of Catoosa has four main docks, each of which deals with a specific

commodity type. The Dry Cargo dock handles large items, primarily steel, iron, and

machinery. The Dry Bulk dock handles a variety of loose commodities that are moved

by conveyer, such as sand, gravel, and fertilizers. The Grains dock moves agricultural

products such as corn, wheat, and soybeans. Finally, the Liquid Bulk dock moves

liquid products including chemicals, liquid fertilizers, and even molasses. If any of

these docks were to become inoperable, it would stop the flow of the specific type of

commodity handled by that dock.

Figure 6.3 lists the the combined estimates for the annual exports and imports (in

US$ million) for major industries among the states that do the most commerce using

the port. These estimates are obtained from the integration of different databases

(BTS., 2011; Catoosa., 2011; USAC., 2011). These industries/commodities are the

inputs for the port and network simulation model, with each commodity having its

separate queue from arrival until departure.

!"#$%&'(#)"#*%!)+!(#'","#,%&-+!.(#.!%#/011#

23
34
#5
64
#7
89
8:
5;
8#
<:
34
=>
?@

$8
?:
3A
8=
B
#<
:3
4=
>?
@

CD
8B
E>5
A@

$:
EB
5:
F#
G
8?
5A
@

25
7:
E>5
?8
4#
B
8?
5A
@

G
5>
DE
68
:F

G
E@>
"#G
56
=H
5>
?=
:E6
;#
IJ
"/
K

G
E6
8:
5A
@#I
L"
/K

'3?5A#M#NOPQ#BEAAE36

)8
6?
=>
RF
#I1
Q"
SK

TAA
E6
3E
@#I
Q"
1K

T3
U
5#
I/
"1
K

%:
R5
6@
5@
#I0
"Q
K

,3
=E
@E5
65

%A
57
5B
5

'8
V5
@

WD
E3

G
E@@
E@@
E<
<E

+@XB5?84#Y.N#BEAAE36#566=5A#5B3=6?#3H#8V<3:?ZEB<3:?#?D:3=;D#C5?33@5#E6#/00Q[#

[#-5?5#.3=:>8@\

]1^#Y.#%:BF#C3:<@#3H#+6;E688:@(#'=A@5#$3:?#3H#C5?33@5#

]/^Y.#-8<5:?B86?#3H#':56@<3:?5X36#!8@85:>D#564#T66395X98#'8>D63A3;F#%4BE6E@?:5X36

!"#$%&'($()#'%*&'+(,*

!"#$%+,"-#$.%*+"+&*

P1P"/ //P"_ 1LJ"0 10Q"J Q0"_ JJ"0

LJJ"J /11"_ O/"1 Q/"/ JQ"1 /Q"Q

10"L

/012%34251346%70!!5175

Thursday, January 12, 2012

Figure 6.3: Estimates for the 2007 annual export-import commerce through Catoosa,
in US $ million
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6.6.2 Port Disruptions

We consider a port closure for a duration of two weeks and model the local and

multi-regional effects of such a disruption. There are a number of natural and man-

made events that could cause disruptions in the movement of commodities through

the Port of Catoosa. In May of 2002, an Interstate 40 bridge spanning the Arkansas

River collapsed, shutting down barge traffic for over two weeks. Heavy rains in the

summer of 2008 led to flooding of the waterway, which greatly reduced the number of

barges that could be moved through. A fire at a fertilizer company in early 2009 led to

chemical run-off into the port, which required clean up before it spread. Events such

as the bridge collapse and flooding affect the entire port’s ability to move product,

whereas a fire and the subsequent cleanup affect one or more docks.

We choose a day of the year when a disruptive event occurs and stop overall

port and the local waterway commerce for a two week duration. In the port model,

the disruptions manifest with the stopping of the arrival and departure queues in

the port supply chain, which results in commodities not entering the network flow.

Hence, export-import loss metrics are generated for the duration of disruption by

estimating the amount of lost flow relative to a “no disruption” scenario. We also

observe that, for the magnitude of the event we discuss: (1) disruptions at the port

or waterway do not directly disrupt industry supply chains/ infrastructures, and (2)

the values of demand perturbations or supply inoperabilities due to such a localized

disruption are small fractions compared to entire state-wide industry outputs.

Figure 6.4 shows the cumulative loss of export-imports from the onset of disruption

around day 25 of the year extended till the rest of the year. The individual effects of

such a disruption felt across each of the docks in shown in Figure 6.5. The Dry Cargo

and Liquid Bulk docks experience highest export-import losses due to volume and

value of commerce through these docks. Overall, more losses are incurred as import
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losses than export with total losses amounting to an estimated $45.0 million for such

a disruptive event.
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Figure 6.4: Sector-wise accumulation of export-import losses of the year due to 2-week
port closure

The overall impacts of the disruption are propagated due to interdependencies

cascading to regional economies of the states doing commerce with Oklahoma through

the port. Out of many possible scenarios, we present here the effects on Oklahoma

industries due to total and partial port closure. Figure 6.6 ranks the top 10 industries

by the total amount of losses as a result of the port closure, while Figure 6.7 shows

such ranking due to closure of only the Dry Cargo dock. Such analysis highlights

the importance of using the dynamic MRIIM for studying macroeconomic risks. As

shown in the figures, there are several industries which are indirectly affected by

the port closure and incur substantial losses due to their interdependence with port

industries.

Another aspect of port disruptions worth highlighting is the economic impact it
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Figure 6.5: Dock specific export-import losses due to port closure

has across multi-regional economies. Figure 6.8 shows the direct, indirect, and total

losses for regional economics of the 10 states using the port for commerce. In input-

output modeling terms, direct losses come from the demand driven disruptions and

are calculated as the sum of the T∗c∗ vector in the multi-regional models. These

contribute towards backward linkage effects of disruption propagation that result in

indirect losses. As can be seen from the Figure 6.8 total multi-regional direct losses of

$111.8 million due to two week port closure are accompanied by total indirect losses

of $72.9 million across all states. Hence, we have shown through data the severity of

an localized transportation disruption on multi-regional commerce.
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Figure 6.6: Output losses for Oklahoma industries due to total port shutdown

6.7 Summary and discussion

Multi-modal transportation systems are vital to the shipment of commodities among

interdependent industries and across multiple regions, and freight disruptions at a

number of nodes along the transportation system can have adverse impacts on the

flow of commodities. One such node is an inland waterway port, whose risk stud-

ies in the literature have been sparse. This study provides a novel approach for

modeling the adverse impact across interdependent industries and across multiple re-

gions, resulting from a disruption in the operations of an inland port. The risk-based

approach integrates the Multi-Regional Inoperability Input-Output Model (MRIIM)
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Figure 6.7: Output losses for Oklahoma industries due to Dry cargo dock shutdown

with a simulation model of inland port operations to quantify the impact of real dis-

ruptions in inter-regional commodity flow connected by a single terminal of usage in

a multi-modal transportation system. The study considers three different disruption

scenarios (terminal closure, crane outage, and departure stoppage) and quantifies in-

terdependent impact in terms of inoperability (extent to which output is not being

shipped and produced), and economic losses (dollar value of port inoperability).

The modeling approach depends upon existing and estimated data sources. The

MRIIM is parameterized from commodity flow databases from the Bureau of Eco-

nomic Analysis and the Bureau of Transportation Statistics, and the simulation model

is parameterized by commodity flow data describing the operations of the inland port.
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Figure 6.8: Estimates for industry direct and indirect losses across 10 states using
Catoosa for commerce

The two-week disruption scenario for the inland Port of Catoosa in Oklahoma

that we explore in this study shows that $45 million export-import losses in port

industries result in $111.8 direct and $72.9 indirect losses for industry sector across

10 states. The ranking of sectors with most losses further highlights the fact that

interdependence results in substantial losses of sectors that do not directly operate at

the port. The dock specific losses we present here give an indication of the impacts on

the port and industries if disruptions were more localized, identifying key industries or

key docks facilitates investments to protect against and prepare for disruptive events.

The contributions of this paper are several. First, we broaden the scope of the

MRIIM scheme (Crowther & Haimes, 2010) with the novel integration of the approach

with multi-modal transportation systems for analyzing the interdependent adverse

impacts of an inland port disruption. Second, our queuing model provides a much

simpler analysis approach of tracking freight movement through the port compared
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to other discrete models (Simão & Powell, 1992). We also show how the components

of our queuing model are altered due to disruptions, often ignored in much of the

literature. Finally, the ultimate usefulness of our risk-based approach lies in its ability

to measure the efficacy of risk management options. That is, investments in port

protection (e.g., security, system hardening) may result in reduced initial effects of a

disruption, and investments in preparedness (e.g., contingency routing options) may

result in reduced downtime of a port. The approach described here is also useful

to measure the interdependent and inter-regional benefit of implementing these risk

management investments. Although this case study has been descriptive in nature,

prescriptive uses of the model may be more useful and powerful.

Several opportunities for further research will be explored, including relaxing the

equilibrium assumption of the MRIIM to include a dynamic analysis of inoperability

and economic losses, and exploring more complex scenarios of port disruptions that

highlight the realistic nature of man-made attacks, accidents, and natural disasters.
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Chapter 7

Concluding Remarks

7.1 Summary and Conclusion

The overriding theme of this dissertation was to develop a static and dynamic re-

silience estimation scheme for interdependent sectors of national importance (DHS.,

2009). To this end a methodology was constructed using the interdependent risk

input-output models (Haimes & Jiang, 2001; Santos, 2006), which have been derived

from economic input-output data and models (Leontief, 1966; Miller & Blair, 2009).

The summary and outtakes from the research presented here are as follows:

1. An analysis of the interdependency models used in the study, with emphasis

on the mathematical feasibility of these models, was presented in Chapter 2.

Using eigenvalue analysis and convergence criteria rules, the stability criteria

was developed for a convergent feasible solution of the dynamic models. The

real world importance of the terms in the interdependency models were related

to mathematical constructs, which helps establish certain guidelines for esti-

mating or choosing the possible values of model parameters for practical and

mathematical convenience. Such properties are for providing a prescription for

choosing possible values for data or parameters, where data is sparse or there

is no prior knowledge about the possible parameter values, and hence a design

or expert-based judgement is required.

2. Chapter 3 presented resilience estimation models for static and dynamic sys-

tems. It was proposed that static resilience strengthening can be planned
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through a risk management problem to reduce the demand perturbation ef-

fects for the interdependent systems, thereby lowering the inoperability effects

of the disruptions. A general risk policy planning framework geared towards

reducing the demand perturbations was presented. The guiding objective of

the planning decision was the preference to lower the total economic losses for

the entire economy. The solution of the risk management problem showed the

effectiveness of budget allocation and the limit beyond which there is no need

to allocate more budget. Hence a useful optimization based methodology was

suggested for providing planners with simple metrics, and a prescription for

strengthening static resilience in an interdependent economy.

3. Also in Chapter 3 dynamic resilience concepts were discussed. The lack of inter-

dependent dynamic resilience estimation methods in the dynamic model domain

motivated the formulation of metrics that describe resilience and provide a holis-

tic resilience construct through the dynamic model. Resilience was constructed

on the basis of the metrics (i) average sector level of functionality/operability,

(ii) maximum inoperability/loss of functionality, and (iii) time to recovery from

disruptions. Therefore, a complete picture for resilience estimation for dynamic

systems was generated based on the notion that resilience should indicate the

ability to maintain functionality and a speed to recovery.

4. The usefulness of generating a trio of resilience metrics for the dynamic system

behavior helped in developing a decision-space that had both descriptive and

prescriptive uses in resilience decision-making. The tradeoffs between the choice

of resilience planning options which are reflected through the values taken by

the metrics provides valuable insights into interdependent resilience planning.

5. An adaptive scheme for resilience estimation and dynamic model behavior was

also provided in Chapter 3. This is a natural extension of the dynamic risk
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input-output model, which has been missing from previous research. An adap-

tive model is a better representative of actual recovery behavior because there

are multiple shocks and changing resilience properties that are exhibited by the

system. The resilience metric schemes can be also applied to the adaptive model

behavior.

6. Chapter 4 expanded on the static resilience planning framework of Chapter 3

with emphasis on developing optimization methods that account for uncertain-

ties in the interdependent input-output framework. Such uncertainties produce

varying planning risks some of which would not be captured through the nom-

inal planning strategies. Given that the motivation of the planning strategies

was to guarantee results that consider the maximal effects of the uncertainties,

the solutions should be representative of the worst-case/best-case scenarios in

the planning.

7. The robust formulation highlighted the nature of the uncertainties in data and

event present in the problem. Each data was assumed to be realized within an

interval, which gave rectangle bounded sets. For event uncertainties the intro-

duction of chance constraints meant that due to the uncertainty of the events the

feasibility of the planning constraints was not known with complete certainty.

The limits, which give the bound the probabilities that the constraints are fea-

sible or are violated, show the decision-makers preference and conservatism in

handling the event uncertainty. The robust solutions guaranteed that maximal

worst-case scenarios were generated and for planning this is an important con-

sideration. Overall the robust method is a useful tool for the interdependency

model analysis as the uncertainty sets constructed here can be applied to an

uncertainty analysis of these models.

8. In Chapter 5 the rate parameter of the dynamic risk input-output model was es-
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timated using concepts from dynamic data assimilation methodologies. Though

such methods are available in other research domains their usage in the param-

eter estimation for the dynamic risk input-output model is a novel approach.

Data generation for model calibration was achieved by interpreting the model as

a resilience planning tool. The data was realized by setting performance targets

to meet specific resilience goals. This is a new conceptual approach discussed

here.

9. The parameter estimation problem was solved using a forward sensitivity scheme,

which was based on calculating the sensitivity of the model state to the param-

eter being estimated. This approach has computational and practical relevance.

Computationally sensitivity shows the effect of perturbation of the parameter

on the model state, which translates to the magnitude of the effect on model

state due to the parameter. More sensitivity indicates the parameter is signifi-

cant in predicting the model states. Time evolving sensitivity shows the domain

of analysis where the model does not respond to fluctuations in the parameter

values. For the inverse problem this domain is important because it shows that

the model parameter would not be able to predict the model state properly

within the domain, hence the effect of observations on the model are negligent.

Such consideration can be applied in the planning scheme because it is an indi-

cator of the domain in which the performance targets need to be specified. In

the end a convenient tool for predicting dynamic resilience in interdependent

systems was developed.

10. The port study in Chapter 6 described the interdependent adverse effects of

disruptive events on inter-regional commodity flows resulting from disruptions

at an inland port terminal. This was done by integrating a risk-based Multi-

Regional Inoperability Input-Output Model with models that simulate port
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operations such as commodity arrival, unloading, sorting, and distributing.

The study made several contributions to the homeland security literature in

risk-based decision making for the little-explored, though vital, components of

multi-modal commodity flows. There has been very limited research on inter-

dependency risk analysis, particularly applied to inland waterway disruptions.

Integrating these two research domains helped produce a framework that pro-

vides suitable metrics for risk-based decision making.

7.2 Future directions

There are several avenues of using and expanding the methods developed in this

dissertation. Some of them are discussed below.

1. To begin with the static and dynamic resilience estimations framework needs

to be integrated with the port and waterway network models to provide a real

world application of the concepts presented here. Developing the resilience

models for the port studies would help in testing and refining these models.

2. The robust static resilience optimization formulation can be improved by devel-

oping a more robust formulation for the chance constraint. This can be improved

by developing a better uncertainty guarantee in the chance constraint.

3. The dynamic resilience parameter estimation problem considered here does not

account for uncertainties in the model. There are several developments to the

method if model uncertainties are incorporated. Robust concepts can be devel-

oped in similar fashion to the methodology presented for the static problem.

4. The port study can be further extended to include other network- and facility-

specific details into the model. Uncertainties in analysis have not been dis-

cussed here and need a detailed investigation for a robust risk assessment and
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planning. Overall, this work serves as an initial blueprint for further complex

multi-regional interdependent risk analysis along inland waterways.
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