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ABSTRACT

The mechanical behavior of porous media such as geomaterials is largely
governed by the interactions of the solid skeleton (or grains) with the fluids existing in
the pores. These interactions occur through the interfaces between bulk components.
Traditional analysis procedures of porous media. based on the principle of etfective stress
and Darcy's law. commonly fail to account for these interactions. In this dissertation. a
continuum theory of multiphase porous media is developed. capable of rigorously
characterizing the interactions among bulk components. Central to the theory is the
implementation of the dynamic compatibility conditions that microscopically represent
the constraints on the pressure jumps through interfaces. [t is shown that Terzaghi's
ettective stress and capillary pressure can be characterized within a common tframework.
Within this context. a theoretical framework for poroelastoplasticity is developed.
allowing the hysteresis in capillary pressure and plastic deformation of skeleton to be
simulated in a hierarchical way. It is found that the mixture theory-based models of
porous media can be linked with Biot’s poroelasticity theory. A linear model based on the
proposed theory is developed and used to analyze the propagation of acoustic waves in
unsaturated soils and favorable comparisons to experimental results are obtained. A finite
element procedure is developed and implemented into a computer code (called
U_DYSACQ2) for elastoplastic static and dynamic analyses of saturated and unsaturated
porous media. Numerical examples including wave propagation. two-phase flow.
consolidation. and seismic behavior of an embankment are presented. These examples
show the capability of the theory for modeling a wide variety of behaviors of porous

media.
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Chapter 1 INTRODUCTION

1.1 Preliminaries

Study of the behavior of porous media is of great interest in a number ot diverse
fields. such as civil engineering, environmental science. petroleum engineering. chemical
engineering. geophysics. and biomechanics. Failure of a slope after a heavy precipitation.
moisture movement in the region surrounding a waste containment area. propagation of
earthquake impulses in geomaterials. collapse of an earth dam. and multiphase flow in
biological tissues are among the engineering problems where understanding the behavior

of porous media becomes crucial.

A porous medium is an assemblage of the solid particles forming a matrix
(skeleton) whose voids are filled with several tluids. e.g. water. oil. air and gas. For a
porous medium consisting of certain components’. its overall behavior is by and large
controlled by the interactions among various coexisting phases. Hence. the analysis of the
porous media requires a rigorous procedure that can properly characterize these
interactions. Such a procedure was first developed by Biot (1941. 1956a&b. 1962. 1972.

1977). Thus far. most of the procedures extensively used in the analysis of the behavior

* The word “component” and “phase” will be used interchangeably in this dissertation.



of porous media are based on the generalized formulations of Biot's theory. These
models consist of two key components. i.e. the principle of effective stress owed to
Terzaghi (1936) and tlow equations represented by. for example. Darcy's law (Aifantis.

1980).

It has been well recognized that Darcy's law is valid for the tluid dissipation with
low Reynold’s number. e.g. for laminar flow. which generally is the case in the porous
media. On the other hand. the Terzaghi's effective stress principle strictly holds only for
the porous media constituted by an elastic and/or plastic solid component that is
incompressible. If the porous medium consists of an elastically compressible solid
component. this principle remains applicable. although it needs to be slightly modified
(Lade and de Boer. 1997). For the porous materials such as the rock masses with
occluded porosity and the swelling soils. however. the concept of Terzaghi's etfective
stress cannot be applied. The reason is that in those porous media the solid phase may
experience irreversible compression so that the effective stresses cannot be defined in the

customary sense (Coussy. 1989b: Bennethum et al.. 1997: Murad and Cushman. 1997).

The restrictive character of the effective stress principle becomes even more
obvious when we try to generalize this principle to account for the behavior of the porous
materials with multiphase flow. In modeling unsaturated soils. for instance. the
difficulties in developing a single effective stress equation have been well recognized
(Aitchison and Donald. 1956: Bishop and Donald. 1961: Bishop and Blight. 1963: Blight.
1963). These difficulties lead to the introduction of the theory of mixtures in deriving the

governing equations of porous media. In the models of porous media derived from the

[89]



continuum theory of mixtures, the microscopic structures of the porous media have been
smeared out. and hence volume fractions or porosity is usually introduced to recover
these microscopic structures. Consequently. the closure equations due to introducing
volume fractions must be developed so that a closure description of the porous media can
be achieved. Thus far. however. a procedure that can be satisfactorily used to derive the
closure equations has not been developed. A rigorous theoretical framework that can be
generally applied to modeling the behavior of porous media remains to be done. This

motivates the research of this dissertation.

1.2 Microscopic Considerations

One of the salient features of porous media is the existence of the interfaces among
various coexisting components (as schematically shown in Fig. 1.1). Basically. the
interactions. such as phase change and hydraulic dragging between two bulk components.
take place only through the interfaces (assuming the electro-magnetic effects are
negligible). At the microscopic scale. the mechanical interactions on an interface can be
categorized into two groups. One is the dragging force due to the relative motions of
various components in the direction tangential to the interface: the other is due to the
material impenetrability and represents some sort of force equilibrium. i.e. the capillary

equilibrium, in the direction normal to the interface.

If the porous medium is isotropic. as usually assumed in a local averaging

-

procedure. the first type of interactions has a macroscopic counterpart. ie. the

hydrodynamic drag, which can be taken into account by using the flow equations of



Darcy’s type (Aifantis. 1980. Prevost. 1980). An example of the second type of
interactions at the macroscopic scale is the moisture retention curve usually introduced in
the analysis of multiphase flow. The moisture retention curve is a relationship between
matric suction (i.e. the capillary pressure on the interface between two fluids) and the
degree of saturation. Although this kind of relationships has been extensively
investigated. its character remains poorly understood (Muccino et al.. 1998).
Furthermore. little is known so far about the coupling effects between the deformation

and the matric suction.

Solid graips (S)

(Do)

Figure 1.1 Microstructure of a three-phase porous medium

To get insights into the problem. we intuitively consider the capillary equilibrium

from a microscopic point of view. Let p’_  be the microscopic pressure of a-component

(see Fig. 1.1). At equilibrium. the pressure difference ( p2_ - p?_ ) on af -interface is

not arhitrary, and it is a function of surface tension. temperature. the local geometry of



voids. the local distribution of fluid content. etc.. This is the so-called dynamic
compatibility conditions on the interfaces (Wilmanski. 1995). Assuming isotropy of the
porous medium, these dynamic compatibility conditions can be averaged onto the
macroscopic scale to vield the relationships between the capillary pressures and some

macroscopic state variables = (e.g. the porosity and degree of saturation). Hence. we

can write p* - p” =v"'(Z). where p” is the (averaged) pressure of a-phase and v* is

a function of state variables =. In the limit case where the porous medium is constituted

by incompressible solid grains and saturated by a single fluid. the material

Al

i

impenetrability vields the constraint p)_ = p? = on the interface. As a consequence.

p' =p". ie. the capillary pressure is zero. Based on the theory of porous media. it can
be easily proved that the zero capillary pressure condition. i.e. p' = p*. yields the

Terzaghi’s effective stress equation for the saturated porous media (Prevost. 1980: Murad

and Cushman. 1997). In other cases. however. p* — p” is generally not equal to zero.

The capillary equilibrium in porous media is achieved through local fluid flow. a
capillary relaxation process due to the fluid exchange driven by the non-equilibrium
capillary forces between the pores of different sizes. It must be noted that. although the
local fluid flow may be substantially influenced by the macroscopic fluid flow driven by
pressure gradient or vice versa. the former has nothing in common with the latter. In fact.
the capillary relaxation time is generally of the same order as or even larger than the
characteristic time scale of macroscopic fluid flow (Buyevich. 1995) and that of the
skeleton deformation. Consequently, the Terzaghi's effective stress principle can not be

appiied to the porous media such as sweiling soiis (Bennethum et ai.. 1%97: Murad.

w



1999). in which the effects of the capillary relaxation on the overall behavior of the
material can no longer be neglected. Furthermore, since the capillary relaxation may
induce energy loss. the change of capillary pressures with the material state is usually

irreversible and accompanied by hysteresis phenomena.

From the above discussions, it is quite obvious that the effective stresses and the
capillary pressures are closely correlated through the dynamic compatibility conditions
on the interfaces. At macroscopic scale. the dynamic compatibility conditions on the
interfaces can be represented by the relationships between the capillary pressures and
state variables. Since these relationships are independent of any balance equations or
constitutive relationships for an individual component. they can be used as the closure
equations mentioned above. Therefore. in order to develop a continuum model of porous
media. it becomes crucial to properly simulate the change of the capillary pressures with

the state of the material.

1.3 Objectives

The objective of this dissertation is to develop a continuum model of porous
media capable of rigorously incorporating the effects of the interactions on the interfaces
discussed above. The porous media of concern are those saturated by two immiscible
simple fluids. To this end. the general structure of constitutive relationships is first
investigated within the frameworks of the continuum theory of porous media and the
irreversible thermodynamics. A nonlinear continuum model of the porous media is then

developed, which accounts for the finite deformation and elastoplasticity. A



thermoporoelastic model is derived from a formal linearization of the general theory. and
employed to simulate the propagation of the body waves in the porous media. General
initial/boundary value problems concerning the behavior of porous media are
constructed. and the corresponding finite element solution procedures are presented.
Various numerical examples are introduced to show the validity and capability of the

proposed model in simulating the behavior of porous media.

1.4 Contributions

To the author’s knowledge. the following aspects of this dissertation are original:

o The effective stresses and capillary pressures are found to have a common
microscopic origin, that is. the dynamic compatibility conditions on the
interfaces. By considering these compatibility conditions. the restrictions on

the use of the effective stresses can be removed.

s A theoretical tframework capable of rigorously incorporating the dynamic
compatibility conditions on the interfaces is established. Within this
framework. it is possible to describe the nonlinear behaviors. such as plasticity

and capillary hysteresis of multiphase porous media. in a unified way.

o Establishing a connection between the Biot's theory of porous media and the
models of porous media based on the continuum theory of mixtures. Through
this connection. a continuum model of the porous media saturated by multiple

fluids can be developed in a rather straightforward manner.



1.5 Outline of the Dissertation

The outline of the dissertation is as follows. After a review of the state of
knowledge in Chapter 2. general constitutive relationships are developed within the
framework of the theory of mixtures in Chapter 3. The emphasis here is on the
restrictions exerted by the second law of thermodynamics on various dissipative
mechanisms. particularly. the irreversibility of the capillary pressures and plastic
deformation. Based on the general constitutive relationships developed in Chapter 3. a
nonlinear model of the porous media is derived in Chapter 4. By investigating the
variational structure of the proposed model. a connection is established between the
Biot’s theory of porous media and those based on the theory of mixtures. Such a
connection provides a way to incorporate the dynamic compatibility conditions on the

interfaces into a continuum model of porous media and allows the field equations for the

porous media with multiple fluids to be easily generated.

By directly linearizing the general theory developed in Chapter 3&4. a
thermoporoelastic model is presented in Chapter 5. Through these derivations. it is
clearly shown that the restrictions in the application of the effective stress can be released
by introducing the dynamic compatibility conditions on the interfaces. Furthermore. it is
shown that many classic models used in geomechanics are derivable from the proposed
theory. As an application and validation of the proposed theory. Chapter 6 investigates
the propagation conditions of the body waves in porous media. where theoretical results

are compared with experimental data.



Chapter 7 deals with the initial/boundary value problems on the static and dynamic
behaviors of porous media. Two sets of the statements of problems are considered that
are appropriate for various situations. The corresponding finite element solution
procedures are developed and implemented. Finally. several numerical examples using

the finite element code developed are presented in Chapter 8.



Chapter 2 CURRENT STATE OF KNOWLEDGE

2.1 Continuum Theories of Porous Media

The first continuum theory of porous media was developed by Biot (1941.
1956a&b, 1962). and was used to describe the isothermal. linear elastic behavior of the
porous media saturated by a single fluid. This theory was later generalized to account for
the finite elastic deformation of saturated porous media (Biot. 1972). The above
generalization involves two important concepts, i.e. the pressure function u(p") and the
increase of the total fluid mass in a unit volume of the porous medium (denoted by m).

Function g relates the fluid chemical potential to the fluid pressure p* . Variable m
equals (Jnp" —n,p, ). where J is the determinant of the deformation gradient F. n is the

porosity, and p” is the fluid mass density; a quantity with a subscript “0” represents an
initial value. Later. Biot (1977) presented a more general theory of porous media by
introducing the so called “principle of virtual dissipation™. a generalization of
d’Alembert’s principle to non-linear irreversible thermodynamics. This principle is quite
heuristic. although it can be used to generate the field equations of the porous media in a

very straightforward manner.
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In Biot's theory. due to the use of variable m, the flow equation is put into a
convective format that is particularly appropriate for the flow in the porous media with a
deforming skeleton. In the convective description. the motion of the fluid is described
with respect to the (material points of) solid skeleton. Since the fluid outside the domain
spanned by the deforming skeleton has no influence on the behavior of the porous
medium, it is more convenient to describe the fluid motion with respect to the deforming
skeleton. In this setting, the convected flow equation keeps objectivity. This is desirable
for the analysis of the porous media at finite deformation. Furthermore, the boundary
conditions can be very easily defined in a numerical procedure based on the convective

formulation.

Recently. Biot's theory had been generalized into the global context of the
thermodynamics of open continua by Coussy (1989a&b. 1995). In Coussy’s model. the
concept of plastic porosity is introduced so that the irreversible compression of solid
grains can be taken into account. Generally. the irreversible part of m may have two
contributions. i.e. the plastic deformation of the skeleton and plastic porosity. If the solid
grains experience irreversible compression, the plastic porosity is not derivable from the
plastic deformation of the skeleton. and an independent evolution equation must be
developed for it. In this case, the effective stresses are no longer appropriate for the
description of the constitutive behavior of porous media. Clearly. Coussy’s model is more
general than the effective stress-based models that will be discussed later in this chapter.
Recently, Coussy’s model has been slightly modified and applied to the numerical

analysis of the behavior of saturated porous media (Amero. 1999).

11



The generalized formulations of Biot's theory most extensively used in practice are
those developed by Zienkiewicz et al. (1977. 1982) and Prevost (1980). which are all
heuristic in nature. Since these models themselves place no restrictions on the
constitutive relationships of the porous media., phenomenological stress-strain
relationships that are based on some stress measures (e.g. the effective stresses) must be
introduced. In addition. the Darcy's-type flow equations are intuitively employed to
describe the fluid diffusion. Note that the above models are appropriate for many
saturated geomaterials. for which the stress measure can be properly defined. In general.
however. an intuitive choice of the stress measure in modeling the material behavior must
be done with caution. since it may incur thermodynamic inconsistency. We will further

discuss this point in the tollowing section.

One of major difficulties in applying Biot’s theory (including its generalizations)
stems from the fact that these models do not consider the microscopic structures that play
critical roles in the overall behaviors of the porous media. as discussed in the last chapter.
The theories of mixtures can play a role in alleviating this difficulty. Comprehensive
reviews on this subject can be found in Bedford and Drumbheller (1983) and de Boer
(1996). Within the framework of the mixture theories. some variables. e.g. the volume
fractions of individual components. are employed to represent the microstructure of
porous media. This induces the equation-deficiency problem. Therefore. complementary
equations must be developed so that a complete set of governing equations can be
obtained. These complementary equations are usually called the closure equations. One
of the key steps in developing a model of porous media is to formulate the closure

equations.



Traditionally, the closure equations are obtained in one of the following ways. One
may introduce additional constitutive equations (Morland, 1972; Bowen. 1980; de Boer.
1996: de Boer and Bluhm, 1999). Alternatively, the introduced variables are treated as
internal variables and their evolution equations are developed based on the principles of
continuum mechanics (Bowen. 1982; Svendsen and Hutter, 1995). In addition. balance
equations can be directly established for the introduced variables (Goodman and Cowin.

1972; Passman. 1977: Wilmanski. 1996).

Among the models mentioned above. those proposed by Bowen (1982) and de Boer
et al. (de Boer. 1996: de Boer and Bluhm. 1999) are of primary interest here. In Bowen's
theory. the volume fractions are introduced as internal variables so that the microstructure
of the porous media can be taken into account to some extent. This theory accounts for
the pore relaxation effects that are important tor some applications. e.g. the subsurface oil
production processes. This theory includes the Biot's poroelasticity model as a particular
case and can be used in the analysis of the elastically deforming porous media with
multiphase flow. Although the thermodynamic restriction on the evolution of volume
fractions is given. the evolution equations have not been explicitly treated in Bowen's
theory. Furthermore. Bowen's theory does not take into account the compressibility of
the solid phase. It has been recognized. however. that the compressibility of the solid
phase plays important roles in the overall behavior of porous media (Lade and de Boer.

1997).

Recently. de Boer and his coworkers (e.g.. de Boer, 1996: de Boer and Bluhm.

1999) proposed a procedure that can be used to formulate the closure equations in the

-
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continuum models of porous media. In this procedure. the deformation gradient (defined
in Chapter 3) is decomposed into two components accounting for the deformation of real
material and change of the porosity. [t is noted that both of these two components contain
the microscopic aspects of the porous medium. If a constitutive relationship is developed
for one of these two deformation components. the other is fully determined.
Consequently. an additional constitutive equation is obtained, and it can be used as the
closure equation. Although this model can be used to describe the behavior of saturated
porous media. its usefulness in modeling the porous media saturated by multiple fluids is
uncertain. The reason for this is that the microscopic interactions on the interfaces. which
have been discussed in the previous chapter. cannot be taken into account. In fact. it is

unclear so far how to apply the above procedure to multiphase porous media.

In recent vears. following a line quite different from those cited above, Gray and his
coworkers (Hassanizadeh and Gray. 1990; Gray and Hassanizadeh, 1991) proposed a
model of porous media. in which interfaces are explicitly considered as independent
phases. This model gives some new insights into the constitutive structure of multiphase
porous media. Remarkably. it was found for the first time that the evolution of capillary
pressure is restricted under the second law of thermodynamics. This result can be used to
deduce the relationship between the capillary pressure and state variables of the material.
Oddly. this important result seems to have been overlooked or. at least. underutilized. In
the application of the above model. although it was recognized that the effects of the
capillary relaxation could be significant. the time effect had been simply omitted in
interpreting the capillary phenomena (Gray and Hassanizadeh. 1991; Hassanizadeh and

Gray. 1993: Muccino et al., 1998).
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Based on their theory. Hassanizadeh and Gray (1993) proposed that the suction
(P°) must be a function of the degree of saturation (s) and the area density of the
meniscus (a*") and the hysteresis can be explained as simply the projection of the
hypersurface P* —s" —a™ on to the P —s" plane. To verify this conjecture. Celia and
his coworkers have developed a functional relationship among P. s”.and a™ based on
a pore-scale computational model (Reeves and Celia. 1996: Celia et al.. 1998). They
found that. although the suction is a function of s* and a™. the explicit form of the
hypersurface P* —s" —a™ still depends on the path of state. e.g. imbibition or drainage.

to some extent. Clearly. this result is inconsistent with the above conjecture.

Here. it is worthwhile to emphasize that the hysteresis in the capillary pressure is
phenomenological and it represents a kind of energy dissipation. From the standpoint of
continuum mechanics. it should be possible to link the hysteresis phenomenon with some
dissipative mechanism occurring in the porous media. In other words. capillary
phenomena can be simulated within the framework of the continuum mechanics. This
point will be an underlying theme of this dissertation. Very recently, parallel to the
procedure developed by Gray and his coworkers. a thermomechanical model of porous
media have been developed by Muraleetharan and Wei (1999). in which the volume
fractions are introduced as state variables. One of the important results of this work is that
the thermodynamic restrictions on the evolutions of all the capillary pressures have been
established. In this dissertation. using the standard principles of continuum mechanics.
the theoretical results of Muraleetharan and Wei's work will be further generalized. and a

continuum modei of porous media wiii be derived.



2.2 Stress-Strain Constitutive Modeling

Modeling the stress-strain constitutive behavior of porous media has been closely
linked with the efforts to identify the relevant stress measures concerning the behavior of
porous media. In phenomenological approaches, the stress measures used to describe the
constitutive relationships of porous media include the total stresses. the effective stresses
(Terzaghi, 1936). the two stress state variables (Fredulund and Morgenstern. 1977). and
those based on the mixture theories. The effective stress-based constitutive models. such
as the celebrated Cam Clay model (Schofield and Wroth, 1968). are thermodynamically
consistent in general. when applied to the saturated porous media constituted by
incompressible solid grains (see, e.g.. Ehlers, 1989, 1993: Coussy. 1995: pp.84-208). In
modeling the saturated porous media constituted by an elastically compressible solid
phase. the effective stresses can still be employed with slight modifications (Lade and de
Boer. 1997). These observations are very important. since most of the constitutive models

of porous media available in literature are based on the Terzaghi's etfective stresses.

Due to the success in modeling the saturated porous media based on the effective
stresses. it becomes natural to generalize the effective stress concept to the multiphase
porous media (see. e.g.. Bolzon et al.. 1996). In modeling the porous media saturated by
two immiscible fluids. such as unsaturated soils. the most frequently used effective stress
equation is the so-called Bishop's formulation (Bishop. 1959). Difficulty in applying this
formulation was recognized by Aitchison and Donald (1956), Bishop and Donald (1961).
Bishop and Blight (1963). and Matyas and Radhakrishna (1968). This led to a tentative

proposition by Fredlund and Morgenstern (1977) that any pair among net stress. suction.
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and the excess of total stress over pore water pressure can be used as independent stress
state variables. Here. the net stress equals to the total stress minus pore air pressure and

the suction is the subtraction of pore water pressure from pore air pressure.

[n the early practice of unsaturated soil mechanics, the two stress state variables had
been used to simulate some discrete. local aspects of the mechanical behavior of
unsaturated soils. Important contributions to this topic include the works by Coleman
(1962). Fredlund (1979). Lloret and Alanso (1980, 1985), Escario and Arez (1986). and
Fredlund et al. (1987). Although these works cover many aspects of unsaturated soils. an
integrated scheme for the constitutive behavior of porous materials was not available
until Alonso et al. (1990) presented an elatsoplastic model using the concept of two stress
state variables. Alonso et al. (1990) developed their model within the framework of the
Cam Clay model (Schotield and Wroth. 1968) by introducing the concept of LC curve
(i.e. the load-collapse curve). This model was examined based on experimental data by
Cui and Delage (1996). Wheeler and Sivakumar (1995). and Wheeler (1996). It was
found that for the completeness of the model specific water volume (the volume of water

plus solids in a volume of soil containing a unit volume of solid) must be included.

Based on Wheeler's model (Wheeler, 1996) and the bounding surface plasticity
(Dafalias and Herrmann. 1986). Muraleetharan and Nedunuri (1998) developed an
elastoplastic model for the unsaturated soils. This model keeps all the main features of
Wheeler's model. In addition. Muraleetharan and Nedunuri's model can handle the cyclic
plasticity of the unsaturated soils. Although it is quite primitive. this model seems to be

the first one that incorporates cyclic plasticity of unsaturated soils.
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In recent years. the two stress state variables become more and more popular in
modeling the behavior of unsaturated soils. Although the constitutive models based on
these two variables may capture some features of the porous materials, the
thermodynamic basis for the use of the two stress state variables has not yet been
established. This may create concerns in applications. since it is difficult to imagine that
one can employ a stress measure confidently without knowing its conjugated strain. In
fact. difficulties in applying these models have been recognized (Li et al.. 1999: Vaunat
et al.. 2000). In addition. it is quite obvious that the two stress state variables can be
applied only for porous media saturated by two immiscible fluids and can not be

generalized for porous media with multiple fluids.

The stress-strain constitutive relationships can also be established within the
framework of theory of mixtures (e.g.. Robin et al.. 1996: Loret and Khalili. 2000).
Studies in this respect are primitive, though such models are practically and theoretically
appealing. Due to its thermodynamic consistency, the approach to developing constitutive
relationships based on the theory of mixtures is more rigorous than the others mentioned
above. In fact. the effective stress models can be viewed as particular cases of the models

based on the theory of mixtures (see. e.g. Ehlers. 1993).

2.3 Wave Propagation in Porous Media

[nterestingly. the early studies on the dynamic behavior of porous media concern
exclusively the wave propagation in porous media (e.g.. Biot. 1956a&b: Brutsaert. 1964).

Theen fae thn manlenin aonnndicmnn fae tlen weimern wonmacatine tee sl e Aletln et B
LRIUD 1ldi, IV difdlydld PLULLULUIILY LUl IV yrdvLe PLUPARALIVIL L UL pULUGLAadtiL tilateetdld
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saturated by a single fluid have been fairly well developed (Bourbie et al., 1987). These
analysis procedures are generally based on Biot’s theory or its generalized formulations.
They predict the existence of two compressible waves and one rotational wave in a
saturated porous material. The rotational wave and the faster compressional wave are
similar to those in the single-phase continua, though the former is slightly dissipative.
However, the second compressional wave, usually called Biot's wave. is highly diffusive.
and hence generally elusive in the experimental observations. The Biot’s wave was first
observed by Plona (1980) and later confirmed by Berryman (1980). Several analytical
solutions have been presented in the literature that treat the problem of wave propagation
in saturated porous media under various conditions (see, for example. Garg et al.. 1974:

Simon et al.. 1984: de Boer et al.. 1993. and Gajo and Mongiovi. 1995).

By contrast. the problem of wave propagation in the porous media saturated by
multiple fluids received limited attention from researchers. [t seems that Brutsaert (1964)
is the first one who generalized Biot's theory to account for the acoustical behavior of
porous media such as unsaturated soils. He found that in general there exist three
compressional waves in the porous media saturated by two immiscible fluids. The
existence of the third compressional wave is due to the presence of a second tluid
component in the pores. The first analytical solution of the problems concerning the body
waves in unsaturated porous media is owed to Garg and Nayfeh (1986). This model is
based on a generalization of Biot's theory, where additional constitutive equations (the

closure equations) were assumed for the porosity and the degree of saturation.
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In a different context. Tuncay and Corapcioglu (1996, 1997) developed a model to
describe the body waves in the poroelastic materials saturated by two fluids. In this
model, the field equations valid in microscopic scale are directly averaged to
macroscopic level, and the capillary equilibrium on the meniscus between the water and
air is explicitly taken into account. This model also predicts the existence of the third
compressional wave. Intrinsically, this model is equivalent to a generalization of Biot's

model.

Thus far. several experimental studies have been presented in the literature
regarding the acoustical properties of elastic porous media. A comprehensive review on
this subject was given by Bourbie et al (1987). Most of these studies are concerned with
high trequency (i.e. ultrasonic) waves only. [n the higher frequency range. however. the
basic assumptions in a usuai linear model of porous media. e.g. frequency-independent
and continuum. may break down. For the purpose of comparison with the theoretical
results based on the continuum models. the experimental observations on the low
frequency waves are desirable. Murphy (1982. 1984) provided such an experimental
study. considering the acoustical waves in the Missillon sandstone saturated by water and

air.

2.4 Finite Element Analysis Procedures

Several finite element analysis procedures available in the literature are all based on
the simple generalizations of the Biot's theory. In the procedures developed in the early

stage. the constitutive behaviors of the porous media are described exclusive by using the



effective stresses. In these models. the effect of the degree of saturation on the behavior
of the porous media are implicitly and approximately taken into account by introducing
some relationships that present the tluid compressibility as a function of the degree of
saturation. Here, the works by Ghaboussi and Kim (1984), Chang and Duncan (1983).

and Vardoulakis and Bestos (1983, 1986) are good examples.

Fully coupled analysis procedures of the behavior of multiphase porous media are
only available in recent literature. and majority of these studies is devoted to the static
problem. Extensive references are given and discussed in a new book by Lewis and
Schrefler (1998). The key components of these models include the formulations of Biot’s
type. soil-water relationship. hydraulic properties as functions of the water content. and a

effective stress formulation (usuaily Bishop's formulation).

[t seems that the first dynamic analysis procedure considering the effect of negative
water pressure on the deformation of unsaturated soils was given by Zienkiewicz et al
(1990b). In a strict sense. this procedure is not fully coupled. since for convenience the
authors had assumed that the air pressure remains constant and equal to the ambient air
pressure. On the other hand. recent research shows that the air pressure might experience
significant change during the deformation process (Schrefler and Zhan. 1993).
Furthermore. during a dynamic event. even stronger coupling between the air and the
other phases may be expected. In recent vears. a fully coupled dynamic analysis
procedure. capable of simulating the multiphase flow within deformable porous media.
have been developed by Li et al (1990) and Li and Zienkiewicz (1992). This procedure

can be viewed as an extension of the one by Zienkiewicz et al (1990). In this procedure.



however, the gas phase is formally considered as an independent phase. This procedure
was later extended to the finite deformation problems by Meroi et al (1995), and very

recently it has been used in analyzing the dynamic behavior of unsaturated soils

(Schrefler and Scotta. 2001).

Although there is increasing interest in using the two-stress-state variables to model
the constitutive relationships of unsaturated soils. application of these constitutive models
in the numerical analysis is still primitive. Several applications concerning the static
behaviors of unsaturated soils can be found in the literature. for instance. Alonso et al
(1998) and Thomas and He (1998). Thus far. it seems that no dynamic analysis
procedures are available that explicitly incorporate the constitutive relationships using the

two-stress-state variables.



Chapter 3 A CONTINUUM THEORY OF POROUS MEDIA
SATURATED BY TWO IMMISCIBLE FLUIDS

The objective of this chapter is to develop a continuum theory of porous media
saturated by two immiscible fluids within the framework of the theory of mixtures. We
assume that the fluid is simple. i.e. no molecular diffusion is considered. For clarity and
generality, the fluids will be denoted as the wetting fluid (W) or non-wetting fluid (V)

corresponding to the reiative value of their wetting potentials.

In what follows. it is assumed that any point in the domain spanned by the solid
skeleton is simultaneously occupied by all the phases. This is the point of view of the
continuum theory of mixtures. However. the procedure followed here differs from the
other theories of mixtures in that it explicitly deals with the dynamic compatibility

conditions on the interfaces discussed in Chapter 1.

3.1 Basic Assumptions and Kinematics

In the theory to be developed below. macroscopic state parameters and balance
equations are obtained by integrating their microscopic counterparts based on a local
averaging procedure (Hassanizadeh and Gray. 1979 I&II). For instance. the volume

fraction of a bulk component is a macroscopic (or average) quantity obtained by dividing



the total volume of that component in the representative elementary volume® (REV) by

the total volume of the REV (see Fig. 3.1).

Figure 3.1 A representative elementary volume (REV)

Let D be the characteristic size of the REV used in the averaging procedure. If a
state parameter is computed using the averaging volumes (REVs) that vary from a smail
size to a very large size. the computed quantity will fluctuate with D when D is less than
a certain value £ (as shown in Fig. 3.2). When ¢ < D < L. the computed parameter is not
very sensitive to the size of the REV. If, however, the size of the REV is further increased
so that D> L. gross inhomogeneities are induced that may affect the stability of the
averaged parameter. To obtain meaningful average quantities. it is required that the size
of the averaging volume (REV) must satisfy the inequality /<< D << L (Whitaker.
1969). Typically. # =30 micron for sands and 7=/ micron for clays. whereas L=/

cm. [n this range of D. all the average quantities are independent of the size of the REV.

" A representative eiementary voiume (KEV) is the infinitesimai averaging voiume used in the averaging
procedure.



[n the following, we assume that an averaging volume of such a characteristic size exists
for the porous media under considerations. Consequently, all the macroscopic state
parameters can be defined in the domain of concern and represented by the functions of

spatial coordinates and time.

State parameters

fFlucxuationé Stable Gross inhomogeneity
¢ (Averaging)

>
Size of averaging volume

Figure 3.2 State parameters as a function of the size of REV

In what follows. @ or f is used to denote an individual bulk component: af

represents an interface between « -phase and [ -phase. Standard solid mechanics sign
convention is used. i.e. tensile stresses are positive. Let £° c R® be a fixed but otherwise

arbitrary reference configuration of « -phase. As usual in the theory of mixtures. each

individual phase is assigned an independent motion defined by
AR A I i R.ic x= ;(,“(X")= ,'(“(X“.t). (3.1.1)

where @ =S.W.N: 5“ cR’ is the current configuration. and ¢ € [0.T] < R" the elapsed

time: X“ represents the coordinate of a particle (denoted by p“) of « -phase in its



reference configuration; X is the spatial position of p“ at time r (see Fig. 3.3). Function

;(”(X”.l) is assumed to be invertible and differentiable as many times as necessary.

[nverting (3.1.1) leads to

The velocity and acceleration of p” are defined. respectively. by

3 (X=.1)

vix.t)= —L—= 3.1.3
(x.r) Y (3.1.3)
and
a‘(x.r)= AP e (,X 'l) = Ex.r) +v' V', 3.1.9
ot at

where V represents the spatial gradient. and the operator (&/dt + v -V ) is the so-called

material derivative with respect to the motion of & - phase and written as D“/Dr .

u(x+Ax.t)

Reference
Configuration &*

¥ Current
Configuration

Figure 3.3 The motion and displacement of an individual phase
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The displacement of the material point X* is given by (see Fig. 3.3

w'x.t)= " (X".)-X". (3.1.9)

where equation (3.1.2) is used. It is assumed for convenience that the reference and initial
current configuration (at ¢=0) are coincident. With equation (3.1.5) and by the

definitions of (3.1.3) and (3.1.4). one has

ol cu'(x.t) D* .
ve(x.r) = ry o = Dr u'(x.r). (3.1.6)
and
R év*(x.1) D* R
a‘(x.t)= = e =77 (x.1). (3.1.7)

Conventionally. the reference configuration of the solid skeleton is used as the
reference configuration for the motions of the fluids in the mixture. Such a convention is

justified by the fact that. as far as the fluids are concerned. of interest only is the part

within the domain spanned by the solid skeleton. i.e. s °. When the reference

configuration & of the solid skeleton is used. the description of the motions is called

Lagrangian (or material). Otherwise. if the current configuration 5° of the solid

skeleton is used. the description of the motions is Eulerian (or spatial).

[n either case. it is useful to define the relative displacement and relative velocity of

a fluid with respect to the deforming solid skeleton. Let xe 5. the relative

displacement of the material point of fluid a is defined as

o N\ ol 2\ <. i .
U \Ci)= o\ ) —u (X0, 0.

W)
—
[=2]
-



The corresponding relative velocity of a fluid is therefore given. in the Eulerian

description. by

ou’(x.1)

w'(x.1)= 3

= v"(x.t)— v"(x.t). xeJS'. (3.1.9)
X'&X" fived

Now. what is the Lagrangian counterpart of the relative velocity of a fluid particle? Due
to its importance in developing the flow equations. we will derive in details the

Lagrangian relative velocity of a fluid particle in the following. Let W< (X “'.t)
=w'oy’ (X"'.I). where fog represents a compound function. By definition (3.1.9). it
is noted that W "(X‘.l) does not represent the Lagrangian relative velocity of a fluid

particle. since the mapping z* ' : x> X° (a =#¥.N ) changes from time to time.

Figure 3.4 Lagrangian relative velocity of a fluid particle

Consider a fluid particle p* located at x' = y°(X".1) € 5" (as shown in Fig. 3.4).

In a neighborhood of p®. there exists a solid particle p* located at x* = 7" (X’ + 5 X.1)



X +vi(x' .00t =x+v(x’,0)dt

. . 5.1.10
= ' (X)) + FS X +vi(x'.1)d1. © )

[t foilows from (3.1.10) that

Fsx =(v:-v')sr. (.1.11)

From the derivations given above, it is clear that the Lagrangian relative velocity of p* is

X=F”(v"—v"). (3.1.12)
where F™' is the inverse of the deformation gradient F of the solid skeleton defined by

F= ?/ =[+ ?“
cX’ X’

(3.1.13)

where [ is the second-order unit tensor with components &, (i or /=1.2.3).and J,, is

the Kronecker deita. In the following. it is assumed that the transformations between

configurations preserve the orientation. i.e. J =det F >0 .

In deriving equation (3.1.12), it is clear that W (X" .r) represents the velocity of a
fluid particle at X approaching to (or escaping from) the solid particle p* that will meet
(or met) the fluid particle at the moment . In fact. W*(X".1) is the convective

representation of the relative velocity of a fluid. and obtained by pulling back the relative

velocity (3.1.9) to the reference configuration.

For later use. we define the Lagrangian strain tensor (i.e. the Green-St. Venant

strain tensor) as
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(c-0n==(F'F-I). (3.1.14)

l\)l\

where C=F'F is the right Cauchy-Green deformation tensor. Linearizing (3.1.14)

yields

/
-

Y 5
E=smay=1{[2%] 429 |2, (3.1.15)
2|\ dx ax

where sym() represents the symmetrical part of a tensor object and ¢ is the strain tensor

of the solid skeleton at infinitesimal deformation.

3.2 Balance Equations

The local forms of macroscopic balance equations. developed by Hassanizadeh
and Gray (1979 [ & II) and Gray and Hassanizadeh (1989) based on a local averaging
procedure. are introduced here. This set of balance equations differs from the others in
that it includes the balance equations for the interfaces between two bulk phases.
Furthermore, the exchange terms in this set of balance equations are physically very well
motivated. From now onwards. it is assumed that the interfaces do not carry any averaged
thermodynamical properties. This assumption is general enough for the development of a
continuum model. since the macroscopic properties of the interfaces are in general much

smaller than their bulk-phase counterparts.

For a bulk phase. the mass balance is

a a .a
M*nap"v.n“—zf;a (‘1” ‘)
T oee v e = Cag e T rame
D‘ Hza
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and for an interface

=g _g?
0=-e,, —ée.,. (

LI
(L]
9
S’

where é;, accounts for the rate of mass transfer through af-interface to «-bulk phase:

n" and p® are the volume fraction and frue mass density. respectively. All the terms

with a carat represents exchange terms. (3.2.2) states that af-interface does not store any

excessive mass. For later discussions. it is useful to introduce the total mass density of the

mixture, which is defined by

The equations of linear momentum balance for a bulk phase is represented by

D(I u
o 24 v

n'p

=V-(nt*)-n"pb* =Y T, (3.24)

pra

and for an interface

0=(Fz + inv )= (7 + 20 (

(U8
to
W
—

where ¢“ is the macroscopic rrue Cauchy stress tensor of a bulk phase: T;’, represents the
rate of linear momentum transferring to « -phase due to its mechanical interactions with
[ phase. The total linear momentum transfer has two contributions: one is due to the

mass change and the other is due to the mechanical interactions. Therefore. (3.2.5) states

that the total linear momentum transfer from a to f is always equal to that from £ to
« . In the following, it is assumed for simplicity that the external body supplies of linear
momentum for all the phases are equal. i.e. 5 =b (a=S.W, V). The total (Cauchy)

stress tensor ¢ of the mixture is defined by
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o= n't". (3.2.6)

Assuming that the moment of momentum is conservative for all the individual

phases (i.e. microscopically, they are non-polar materials), one may obtain

The equations of energy balance tor a bulk phase is

a oot

np" DD[IE —nt" d* -V (n"g*)-n"ph* = ZO

and for an interface

where t“:d" represents. in indicial notation. r’d’. and v -v* =v'v‘: d“ is the
symmetrical part of the velocity gradient. i.e. d° = 1/2[(Vv*)" + Vv*]: h“ the external
supply of energy: q“ the heat flux: Q7 the rate of energy transferring to « -phase

through af -interface. (3.2.10) shows that the energy exchange through an interface has

three contributions associated with heat exchange. mechanical interaction. and mass

exchange.

The entropy balance for a bulk phase is

[U%]
N
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n“p —V-(n“(p“)—n“p"w“ = ZCD:” + A" (3.2.11)

Hra

and for an interface
0= -(‘55,, +eyn’ )—(f% +éln’) (3.2.12)

where n° is the entropy density; ¢* the surface flux term of entropy and it is assumed
that ¢“ =¢" /60 . w” the external supply of entropy with w* =h“/8 . A" the net
production of entropy in « -phase. From now onwards. all the phases are assumed to
have the same temperature & at a local point. (3.2.12) implies that the interfaces can not

store or generate entropy. The total entropy density of the mixture 7 is defined by

pn= Z n‘pn’. (3.2.13)
2NN
Finally, the second law of thermodynamics requires that
A= Y A" 20. (3.2.14)

az=SW.N

where A is the total net production of the entropy of the mixture. For later use. we

introduce the Helmholtz free energy A* defined by the Legendre transtormation.

A" =E"-0n°. (3.2.

(9]
19
—
n
~

and the total free energy density of the mixture y given by

pY = Zn“p"A" . (3.2.16)

a=yH v

|98
(V%)



3.3 General Constitutive Relationships

[n order to determine the state of the porous medium by using the balance equations

presented above. the following independent fields must be evaluated:

In mass balance:  n“p“ . or alternatively. n* & p“
In linear momentum balance:  v*. or alternatively, u*

In energy balance: @

*

where @¢=S,W.V:. u* is the displacement defined by (3.1.5). To this end. it is

necessary to establish the constitutive relationships for the following state parameters:
E“(or A°). n*. q*. t*. é', T2

[t is noted that since at any point of the domain all the phases share the same temperature

an independent constitutive equation is not needed for Q.

For simplicity. we consider the porous media with an elastic solid skeleton saturated
by two inviscid fluids (the elastoplasticity of the porous media will be discussed later).
By introducing the principle of local action” (Odgen. 1984: pp.172-174). the set of

constitutive variables proves to be

=={6.v6.n" Vn* p" Vp°.F. w*} (3.3.1)

" Let ./ (X") be a neighborhood of the point X'. The principle of local action states that the material
recpanse at X' is denendent on the histarv of the mation inside £7(X") anlv and unaffectad hv the

motion outside .#"(X"). The constitutive law based on this principle is local.



where a =S, W, N =W, N. Note that the volume fractions of fluids are included as
constitutive variables. The reason for this is that the volume fractions can be used to
represent the local structure of the porous medium and therefore the interactions between
two bulk components through the interfaces. In the proposed model. no internal
constraints are introduced. That is. all the bulk phases are assumed compressible ( p* is a
variable). As shown in Chapter 6. any model of porous media with internal constraint

excludes at least one mode of acoustic waves. This of course is not a desirable feature for

a general model as developed here.

As a starting point. we postulate the following constitutive equations for the free

energies:
A" = 4°(0. p° E). (3.3.2)
A = 4%(6.p" .n"). (3.3.3)
and
A¥ = 47(6. p" .n"). (3.3.4)

In postulating these constitutive equations. it has been assumed that the free energy
density of an individual phase is solely determined by the state variables of this
individual phase. The inclusion of the volume fractions in (3.3.2)-(3.3.4) is one of the
distinguishing features of the theory presented hereafter. Since the volume fraction of
solid can be determined by integrating the mass balance equation of the solid phase with

u’ and p’ given. n’ is not explicitly included in (3.3.2). Due to the requirement of the

material objectivity’. E is used in (3.3.2) instead of F. In addition. because the influence

* This is a basic assumption in continuum mechanics stating that two observers in relative motion make no
(mathematical and physical) difference in deducing the macroscopic properties of a material under test. In
other words, materiai properties are unatiected by a superposed rigid body motion and a constitutive
relationship has the same form for all the observers.
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of deformation on a tluid can be implicitly accounted for by using the volume fraction. £

is excluded in (3.3.3) and (3.3.4).

With the assumption that the interfaces do not carry averaged thermodynamic

properties, it can be shown that the sufficient and necessary conditions for (3.3.2)~(3.3.4)

to satisfy the entropy inequality (3.2.14) are (Muraleetharan and Wei. 1999)

r7"=-c;ga-rz=—?;.
" =-p"I.
t' =-p°I
t'=t-p'l.

where a =S, W..V.and

OA= SHIT' - Tw -r+ Zé’;,(G"-G")+V€%20. (3.3.9)

PR g-W N aff =SW WN NS

where p is the total mass density defined by (3.2.3): n the total entropy defined by

(3.2.13); w the total free energy density defined by (3.2.16).

p=(p") A =S W.N

-
a

p
and
6‘:‘ 4 N

_Fr
cE

t=p'F

(3.3.10)

(3.3.11)

p® is the thermodynamic pressure of « -phase; (3.3.6) and (3.3.7) show that p" and

p" equal to the real material pressure.



In the entropy inequality (3.3.9).

4
M =p-p' -n?p* 2o (33.12)

bl
4 rs V] /lﬂc;A” # ;:;:C?Aﬁ R
r =—ZTM’+ p’-n"p ywl Vn? ~n’p 7\79, (3.3.13)

vell
q= n‘q". (3.3.14)
=S W N
and
G =4+ (3.3.15)
)

G“ is the chemical potential of @ phase. which is usually called the Gibbs free energy.

The physical significance of G* will be explained later.

To get insights into the structure of the constitutive relationships presented above.

we define a new energy density function for the porous medium as follows.

w(. E.n* .n*.m*)= pw(6. E.n* .n* p*). (3.3.16)
where a=S. W.N: p, =Jp=(det F)p: v is given by (3.2.16): m is the partial
mass density of « phase with respect to the reference configuration. i.e.

m® =Jnp*. (3.3.17

Clearly. W represents the total free energy stored in a volume of the porous medium that

is unit before deformation.

Emploving (3.2.6). (3.3.5)-(3.3.8). (3.3.10), (3.3.11). (3.3.15)~(3.3.17). and (3.3.2)-

(3.3.4) one may easily nrove that



oW

== (3.3.18)
o=t FFr (3.3.19)
C.
G = g”ﬁ , (3.3.20)
ml
and
& =-J-'%. (3.3.21)

where a=S. W, N:. f=W, N. It is now instructive to compare the continuum model
described by (3.3.16)-(3.3.21) with Bowen's model (Bowen. 1982). It is noted that the
present model differs from the latter in the following aspects: firstly. the partial mass
density of solid skeleton. i.e. m". is included as a constitutive variable in the present
model: secondly. /7" in (3.3.21) clearly has physical meaning as explained in the next
section. The direct consequence of including m; in the model is that the compressibility

of the solid phase can be considered in the present model.

The physical significance of G” is now interpreted as follows. [f the exchange of
mass between two components is neglected, dm” represents the total mass change of g
fluid in a volume of the porous medium that is unit before deformation. Consider two
large reservoirs of fluids with constant pressure p” and p . respectively. Let these two
reservoirs connect. respectively. with the wetting and nonwetting fluids in a unit volume
of the porous medium (see Fig.3.5). The two reservoirs and the unit volume of porous
medium now constitute a single thermodynamic system. G” equals to the work done
reversibly and isothermally on the system in the following process: firstly. to extract a

unit mass of A fluid from the reservoir with constant p; ; then. to increase the pressure



of this unit mass of fluid up to p”. which is the equilibrium pressure of the fluid in the

sample; finally. to inject it into the sample of the porous medium at p”. Consequently.

we have

- I s dc
G'=-Po _[ry +P > (3.3.22)
p; ¢ {p”({)} p’ EP"(C)

A unit volume of porous media

Wetting fluid reservoir Nonwetting fluid reservoir

Figure 3.5 A thermodynamic system

The physical explanation of G” described above was first presented by Biot (1972). who
dealt with the porous media saturated by a single fluid. Biot called G” the “pressure

function™. It should be noted that (3.3.22) is based on the assumption that p” is solely

determined by p”. i.e. the fluid is assumed to be ideal. [t must be pointed out that this

assumption generally is inconsistent with the theory of porous media (Bowen. 1982). For
many applications, however, such an assumption is appropriate. We will discuss this

point further in Chapter 5.



3.4 Equilibrium State

At equilibrium. the corresponding constitutive variables in (3.3.1) read

=,=16..0.n".0p%.0.F 0} (3.4.1)

where a=S.W.N; B=W.N; ( ){q denotes the set of state variables at equilibrium.

(3.4.1) implies that the gradient of state variables are zero. [n addition. all the other rate-
type quantities. e.g. #” and eZ,. are also zero. Since the entropy attains its minimum

(zero) at equilibrium, it follows that

f=W N:af=SW.WN.NS. Conditions given by (3.4.2) yields

=0, . (3.4.4)
ri =0. . (3.4.9)
G*-¢"), =0. (3.4.6)
and
q,=0. (3.4.7)

(3.4.6) states that at equilibrium the chemical potential function G* continues through
the interface between two phases. This is the classical Maxwell condition for a phase

equilibrium line. Combined with (3.4.4). (3.3.12) vields
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. 4P
(p” -p° )n,=(n/’p” f’%) .B=W.N. (3.4.8)
o
eq

Equation (3.4.8) shows that at equilibrium some kinds of constraints are imposed on the

pressure difference between a fluid and the solid (i.e. the capillary pressure).

Equivalently. the matrix suction p* - p" can be represented by

- . A T L -
(p,\. _pu )m =l n N — _nu pu = . (3.4.9)
‘ n n

oy

[n general. the right-hand sides of (3.4.8) and (3.4.9) do not vanish due to the dependence
of free energies on the volume fractions. It is quite obvious that (3.4.8) and (3.4.9)
represent the macroscopic counterparts of the dvnamic compatibility conditions on the
intertaces. which have been discussed in Chapter 1. Since (3.4.8) and (3.4.9) comes out
naturally due to the inclusion of the volume fractions as constitutive variables. they can
be used as the closure equations. It is also noted that for the porous media saturated by

two fluids only two closure equations are independent.

In what follows. /7” (B =W.N) will be termed as the capillary potentials with

respect to the solid phase. This terminology is relevant. since /77 is a relative quantity
and may vanish at equilibrium. which is consistent with the fact that at equilibrium the
chemical potentials of all the phases are equal. For later use. it is useful to define the

capillary potential of the nonwetting fluid with respect to the wetting fluid as

n"=n*-m". (3.4.10)
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Unlike the capillary potentials /7" and /7% (a =W, N), at equilibrium the capillary

pressure between a and 8 phases (i.e. p* — p”) is generally not equal to zero.

3.5 Nonequilibrium State with Linear Dissipation

For many applications such as those with flow or heat conduction in the porous
media. the assumption of thermodynamic equilibrium is too restrictive. In this section.
our attentions will be turned to the nonequilibrium states that slightly deviate from
equilibrium. As noted in Section 3.1. the kinematics of the tluids is detined solely within
the domain of the current configuration of the solid y'(£.t). That is. the fluids outside
this domain are of no concerns. Naturally. the motions of the fluids should be described
with respect to the motion of the solid. This approach at least has two advantages over the
others (e.g. Prevost. 1980; Bowen. 1982): 1) all the fields can be defined in the same

domain; 2) objectivity can be achieved automatically.

Now. we first cast the residual dissipation inequality of (3.3.9) into the form with

respect to the reference configuration as

g.= YWH - YW R+ Y J&,(G*-G")+GRADO-Q 20. (3.5.1)

J-W N af =SW WN NS
where 2_ =J0A.
HY =JIT". (3.5.2)
R’ =JF'F. (3.5.3)
and
0=JjF". (3.5.4)
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while /7. #”.and § are the dissipative parts of /7”. r*.and q/8. respectively: GRAD
is the gradient operator with respect to X°. The terms in the right-hand side of the

equality in (3.3.1) represent the energies dissipated by the capillary relaxation, fluid

diffusion, mass exchange. and heat conduction. respectively.

The functional forms of the dissipative forces can be assumed as

H =H(Z,.7" W' GRADG). (3.5.3)
R =R (Z,.7" W GRADS). (3.5.6)

and
0=0(Z,.#" .W?.GRAD 9). (3.5.7)

where =WV, N Z_ is the set of the state variables at equilibrium given by

z,=1..n".p".E}. (3.5.8)

W’ is the Lagrangian (or convective) relative velocities of a fluid particle defined by

(3.1.12). It can be easily seen that the dissipation functions assumed above are objective.
For simplicity and without loss of much generality. we assume that the solid has at least a

center of symmetry. i.e. Q@ =-I belongs to the symmetry group of the solid. With this

assumption and following Bowen (1982). it can be proved that for linear dissipation.

oH" 6H" .
= = (J.D.g)
W’  O(GR4DE)
and
R” 50 3
per =%=0. (3.5.10)



Theretore. (3.5.3)-(3.3.7) can be linearized as tollows,

H =Y cin. (3.5.11)
d=W N
R ==, W -u, -GRAD . (3.5.12)
FEL
and
0=-Y o, W -0’ -GRADE. (3.5.13)
p=w N

Finally. the rates of mass exchanges is assumed as
ey, =¢,(G" -G). (3.5.14)

In (3.5.11)-(3.5.14). the coefficients are the functions of 8_.n”.p”. and E. The spatial

forms of (3.5.12) and (3.5.13) can be derived by using (3.5.3) and (3.5.4). and it follows

that
r‘f:-lz,‘l;-w’—;l;;-ve. (3.5.13)
and
é=—uZd);~w"—a‘)"-V9. (3.5.16)
where
m,=J F (@) F"', @ =J"F'(u))F". (3.5.17
a); =J"'Flw))F'. @ =J"Fl@")F'. (3.5.18)

It needs to be pointed out noted that unlike (3.5.12) and (3.5.13) R’ and Q can also be

put as the functions of fluid mass fluxes (see Appendix I).



Assuming the mixture at equilibrium is thermodynamically stable, the dissipative
energy function given in the left hand side of (3.5.1) attains its minimum at equilibrium

(as schematically shown in Fig. 3.6). Hence, the coefficients in (3.5.11)-(3.5.14) are

restricted by

-, Ve

&0 .
det r“]>0. (3.3.19)
oz &

where =, (i = 1.2.---.1]) are the components of {#” W/ &2, .GRADG}. B=W_ N .

4 @A Stable
@ B Unstabl

Figure 3.6 States of the system at equilibrium

[nserting (3.5.15) into (3.3.13) and noting that r* =r/ +7* =F”_ one obtains an
expression for Zf;‘; (a=W.N). which can be deleted from (3.2.4). By using (3.3.10).

Pra

(3.3.3). (3.3.4), and (3.3.15). it can be proved that

g p D2V B BTl _ 38 239
n’p _Dt—_n plb+n"p’VG” =r". f=W.N (3.5.20)

where 7/ is the drag (dissipative) force given by (3.5.15). This is the spatial form of the

flow equation of a fluid. It is remarkable that. instead of the pressure gradient. a more
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general chemical potential, i.e. G“, becomes the driving force for the multiphase flow.
This result is expected. since the motions of various components are coupled in a

multiphase porous medium.

For many applications, the chemical potential of a tluid may be approximately

evaluated by using (3.3.22). It follows immediately that

B8
n,,,,Dv
yo,

-n’p’b+n’Vp? =¥, .

(9]
(W)
19
e
S—

Usually. it is more convenient to use (3.5.21) than (3.5.20) in a numerical analysis. since

p* can be directly measured.

3.6 Rate-Independent Elastoplasticity

The theory developed above applies only to the porous media with an elastic solid
skeleton. In many applications, however, plastic deformation may become dominant. In
this section. the above theory is generalized to account for the elastoplastic deformation
of the skeleton. Deformation is assumed to be rate-independent. i.e. any relaxation etfects
are neglected. To avoid dealing with too much kinematics. which remains controversial
for finite (plastic) deformation. we assume that the deformation is infinitesimal and the

strain tensor can be additively decomposed into an elastic part and a plastic part. i.e.

E=E +E,. (3.6.1)

In addition. it is also assumed that the volume fractions can be additively decomposed

into two components as
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n=n’+n, f=W.N (3.6.2)

where n? is the recoverable part and n/ the irreversible part (see Figure 3.7).

Since the porosity n equals to the summation of n* and »n* . one obtains

L4 ¥ W ) b)
n,=n +n’.n =n +n, (3.6.3)

Figure 3.7 Definition of n} and n, for point A

Consequently, the free energy functions can be assumed as

A =16.p" . E..x). (3.6.4)
A = 4"(6. p* 0" V). (3.6.5)

and
A" = 4°(0. p" ¥ v¥). (3.6.6)
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where y, v"'.and v" are the internal variables which characterize the hardening states

of deformation and volume fraction. With (3.6.1) and (3.6.2). equations (3.6.4)-(3.6.6)

can be expressed equivalently as

A =40.p".E.E,x). (3.6.7)
A =400, g " ). (5.68)

and
A = 47(6. p'.nt.nl vt ). (3.6.9)

Similar to the procedure followed by Muraleetharan and Wei (1999). one can prove
that with (3.6.7)-(3.6.9) equations (3.3.5)-(3.3.8) and (3.3.10)-(3.3.14) remain valid. In

addition, since the capillary relaxation effects are neglected. we obtain

¥
[7"=p"'—p“'-—n"p"%=0. (3.6.10)
s
or
- .
p’-p =n”p"c—h7- (3.6.11)
The residual dissipation inequality becomes
2,+2,,20. (3.6.12)

where 2, is the dissipated energy due to the plastic deformation and 2, is due to the

diffusion and heat conduction. They are given, respectively. by

ﬂp=7r:E"p+{-i+ Zs"r'zf+ Zz"l)"’. (3.6.13)
AWN g=W.V
and
Oy == D W ¥ +V0-¢ (3.6.14)
PR
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Variables . (*.and (" are the thermodynamic forces given by

oA’ o g od’ = o4

x=-n'p’ . n . - . -~
P eE, P an’ P e

Noting that

400" E,.x)= £'6.p" . E-E,0)=4'(0.p" .E.E,.p). (36.16)
and

A26.p% .n? V)= 12(6.p" .0’ -nt v y=47(0.p° .n" . nf V). (3.6.17)
one can easily prove that

T=n't". (3.6.18)
and
s'=p’-p . f=W.N. (3.6.19)

Since ~, and Z,, stem from totally different internal dissipation mechanisms.

they can be uncoupled. It follows that

(n“'t‘):Ep +¢ g+ Z(p" -pint + Zz"l}" >0. (3.6.20)
JwN g=¥ N
and
- YW +V-420 (3.6.21)
A-W.N

Fluid diffusion and heat conduction are restricted by (3.6.21). which have been discussed
in the last section. Equation (3.6.20) is the plastic dissipation inequality and will be used

to develop a potential theory of plasticity for the porous media in the coming chapter.

It is now instructive to note that. for the saturated porous media constituted by

incompressible solid grains, s” = p” - p> =0, and n’t° is just the Terzaghi's effective
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stresses (Prevost. 1980). In this case, (n“t‘):E,,+{ -x 20, representing the energy

dissipation due to the plastic deformation of the solid skeleton. Clearly, the effective
stresses are the thermodynamic forces conjugated to the plastic strains. This justifies use
of effective stresses in modeling the stress-strain constitutive relationships of saturated
porous media. [f the solid skeleton does not experience irreversible deformations and

n,=n. +n) =0.the tree energy functions have the following forms.

A" =4%8.p° E). (3.6.22)
A = 4706, p* 0" n¥ ), (3.6.23)

and
AV =AY (9. p'v.n"'.n:.v). (3.6.24)

[t is noted that n” and n, are not independent. Hence. 4" and 4" include the same

hardening variable. The plastic dissipation inequality now reads

—(p* =PI+ 20. (3.6.25)

where v is the internal variable representing the moisture content hardening and 1 is the

conjugated thermodynamic force given by

==L " A ¥ pt A (3.6.26)
cv

(3.6.25) implies that the hysteresis in the suction can be simulated as the irreversibile

change of the moisture content within the framework of the classic elastoplastic theory.



Chapter 4 A NONLINEAR MODEL OF POROUS MEDIA AND ITS
VARIATIONAL STRUCTURE

In the theory developed in the previous chapter, some state variables. such as the

true mass density of a bulk component ( p*) and the frue Cauchy stress tensor of the

solid component (£°). cannot be directly accessed through experiment. Hence. it is
awkward to apply the above theory in practice. By using the general results previously
obtained. this chapter intends to develop a continuum model describing porous materials

based on the state variables that are experimentally accessible.

[n the following. continuum field equations are first presented. All the formulations
are given exclusively in the Lagrangian setting that is more appropriate for porous media
as discussed before. Then a hyperelastic model of porous media is developed. explicitly
accounting for the dynamic compatibility conditions on interfaces. A theoretical
framework of poroelastoplasticity is developed. and it can be used to describe the
nonlinear behaviors of porous media. such as plasticity and hysteresis. in a hierarchical
way. Finally. the proposed model is mapped into a general framework. which can be
directly inferred from the principle of virtual dissipation attributed to Biot (1977). Within
this framework. a connection between Biot's theory and the mixture theory-based models

of porous media is established.



4.1 Field Equations

For simplicity, our attentions will be focused on the porous media without phase
change, i.e. all the terms with mass exchange will be simply dropped. Multiplying (3.2.1)
by J(=detF), and noting that J=JV v’ =Jdiv(v')", we obtain the following

Lagrangian form of the mass balance equations for the bulk components.

m' =0, 4.1.1)
and
m? + DIV(m’W?)=0. B=W.N. (4.1.2)

where m’ =.Jn"p”. the mass of a -phase in a volume of the porous medium which is
unit before the deformation; W’ is the convective relative velocity of a fluid defined by

(3.1.12). and DIV the material divergence operator (i.e. with respect to the reference

configuration). Equation (4.1.1) implies that m’ is constant. which is obvious for the

porous media without phase change. Integrating (4.1.2) over the time period [ru . 1] vields

m” +DIVM” =0. f=W.N, (4.1.3)

where m” is the change in the mass of £ -fluid in a volume of the porous medium. which

is a unit volume before the deformation. i.e. m” =m’ —m?. m’ represents the initial

"

total mass of A-fluid in a unit volume of undeformed porous medium. The initial total

mass of the porous medium per unit undeformed volume is given by

m,=m’ +m, +m". M’ is represented by

* In tha fallawina tha avar dat ranracantc tha matarial darivative with racneast ta tha matian aftha cl-alatan
QD LNT JCNOWIRE, L0 QST COL TOPrCSeil L0 NaNNNa QontVvaElve W TSPt (D Lo ouen ol lag skt

e.g. a=D'a/Dt.



M’ = [ m!Widr. “.1.4)

(M*) , can be viewed as the total mass of [ -fluid that flowed across a material surface

which. before the deformation. is a unit area with the unit normal in direction / (= 1. 2. 3).

Without mass exchange. the equation of linear momentum balance for an interface.

i.e. (3.2.5). becomes

f;’;+f;‘:]=(), aff =SW . WN.NS. (4.1.5)
and therefore
5 (i +2) =0 416
aff - SWHN NS

The equation of total linear momentum balance for the porous medium is obtained

by summing up (3.2.4) for all the bulk phases. i.c.

pv’+ Y nfpfw + S n’ pPw’ - Vv =dive + pb. (4.1.7

BW N pwy

where w” is the relative velocity defined by (3.1.9). div the spatial divergence operator.
p the total mass density of the mixture given by (3.2.3). and e the total Cauchy stress

tensor defined by (3.2.6). Multiplying (4.1.7) by J. we deduce the Lagrangen form of the

total linear momentum balance as

pV'+ Y m! W' +W? -GRADV'|=DIVP+ p, B (4.1.8)

g N

where

VX .t)=v' o 5 (X5 1), (4.1.9)

B(X*.t)=boz*(X*.1) (4.1.10)



pe=Jp= D m’=m, + Zm"’. @.1.11)

and

4

P =JFTe=2"-. (4.1.12)
cF

where (3.3.19) has been used. P’ is usually called the first Piola-Kichhoff stress tensor.
With (4.1.2) and (4.1.4), the left-hand side of (4.1.8) can be cast into
pV'+ Y [FM* + 2AM? -GRADY +W*DIV M”| (4.1.13)
LEL 2R
The last two terms in the bracket of (4.1.13). which represent the linear momentum
contributions due to the convection, are high-order small quantities. For convenience.

these two terms are omitted in the following derivations. Therefore. (4.1.8) becomes

pV'+ YL FM” =DIVP+p,B (4.1.14)

g N
The Eulerian form of the flow equation of a fluid is given by (3.5.20). Pre-
multiplying (3.5.20) by JF T. and using (3.5.3). we obtain the following convective

representation of the flow equation of a fluid.

m'F'V® +CM" =m’B,. ~m’GRADG” + R” . (4.1.15)
where the linear momentum contributions due to convection have been dropped: B. =
F'B=F"boy'(X".1): Cis the right Cauchy-Green deformation tensor. i.e. C = F'F:

R’ are the friction-like drag forces given by (3.5.12). For some applications. e.g. the
deformation of an earth dam subjected to earthquake loading, the relative acceleration of

a fluid is negligible’. Then. (4.1.15) becomes

* We will discuss this point further in Chapter 6.



m’F'V* =m’B. -m’GRAD G* + R* (4.1.16)

Substituting the pressure function given by (3.3.22) into (4.1.16), it follows that

m'F'V® =m”B. -n"GRAD P* + R". 4.1.17)

where P is the Kirchhoff pressure of 8 -fluid defined by P*(X*.1)=Jp" o °(X".1)

As assumed before. at any point in the domain of concern all the coexisting
components have the same temperature. Hence. there is only one equation for the energy
balance, i.e. the total energy balance of the porous medium as a whole. Applying (4.1.5)

to (3.2.10), we get

Na 3 V'
Q.u) + Qu{l

+T5 w' +T2 W =0, (4.1.18)

where aff = SW.WN, NS . Summing (4.1.18) over all the interfaces. it follows after some

manipulations that

Y You=-% (Zfd‘;j'w“. (4.1.19)
NW.Y Jea

= a=W N\ Jza

Define the total energy density of the porous medium as

E,=pE= Y mE". (4.1.20)

a=S .5

By summing up (3.2.15). we obtain
E,=pw+p.n0. (4.1.21)

When (3.2.9) is multiplied by J and summed up tor the three bulk phases. we obtain

W
(W)



E,~S:E-DIVQ-h, ==Y DIVM"E*)- ¥ (JF’ZT‘;]-W. (4.1.22)

g N g=W N

where S is the second Piola-Kirchhoff stress tensor given by

s=rp=" (&.1.23)
C.
The external supply of energy A, is
Zm,"h" . (4.1.24)
a=yW.N
and the heat flux @ is related to ¢ by the Piola identity. i.c.
Q=JgF". (4.1.25)

[t is noted that the first term in the right-hand side of (4.1.22) accounts for the rate of
energy loss due to the fluid flowing outside the domain and the second term represents
the rate of the energy loss due to the hydrodynamic drag. The existence of these two

terms in the energy balance equation is one of the main features of the diffusive-like

materials such as the porous media of concern here.

By using (3.2.15). (4.1.21). (3.3.13). (3.3.15). (3.3.16). (3.3.18)~(3.3.21). (4.1.1).

and (4.1.2). £, and E’ can be eliminated from (4.1.22). and it follows that

O, ~DIVIQ- D . (6n’M*)-h, = Y H*W' - Y W!-R'. (4.1.26)

a=W.N A=W N L EL
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functions defined by (3.3.18) and (3.3.5). respectively. It is noted that the right-hand side
of (4.1.26) represents two important internal dissipative mechanisms in the porous media

with multiple fluids. i.e. the capillary relaxation and fluid diffusion.

The dissipative force H” is evaluated by (3.5.11). Introducing (3.3.21) and (3.5.2).

we obtain the closure equations as

HY =JI1? =-Z==H’.  f=W.N (4.1.27)

Thus far. a closed set of governing equations for the porous media saturated by two
immiscible fluids has been established. This set of equations includes the mass balance
equation (4.1.3). equation of motion (4.1.14), tlow equation (4.1.135). energy balance
equation (4.1.26). and closure equation (4.1.27), as well as the energy function ¥ defined
by (3.3.16) together with (3.2.16) and (3.3.2)-(3.3.4). The independent state variables of
the porous medium include ¥* (or #”). M” (or m”.). n".and @ . It needs to be pointed
out that the explicit constitutive functions. i.e. (3.3.2)-(3.3.4). are material-dependent and

must be specified in application.

4.2 Hyperelasticity of Porous Media

[n the terminology of continuum mechanics. hyperelasticity states that there exists
an energy function such that the stress equals the derivative of the energy function with
respect to its conjugated strain (e.g.. Desai and Siriwardane (1984)). In recent vears.
hyperelastic models have found many successtul applications in modeling the behavior of

porous media, see, for example, Vermeer (1978). Loret (1985), Lade and Nelson (1987).
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Molenkamp (1988). and Borja et al. (1997), among others. In contrast to the
hypoelasticity-based models, which may entail nonvanishing dissipation in a closed cycle
of deformation (Zytynski et al.. 1978), the hyperelastic models are founded on

fundamental thermodynamic laws.

From the tield equations presented above, it is noted that a set of independent state

variables can be chosen as (8, E.m* . m*.n" .n*), where m’(= m’) has been excluded.

Compared to the other variables. n* and n" are hidden (i.e. internal), and they exist only
in the capillary relaxing processes (some sort of internal dissipative mechanisms) as
shown in the right-hand side of (4.1.26). In other words. n* and n"* can be determined
only by relating them to some internal dissipative mechanisms. The thermodynamic
aspects of these mechanisms have been discussed in the previous chapter. where we show
that the evolution of n* and n* is driven by the capillary pressures. The conjugated

problem now can be presented as

(.. . G*.G*)= (0. E.m".m?). (4.2.1)
where
a"’ W N y
n, =¥(9.E.m .m*.n".n") 4.2.2)
S= %21(6. E.m*.m*.n" n*) (4.2.3)
and
G’ = ﬂ(&,E.mw.m",nW.n”). B=WN (4.2.4)
om’

where n* and n" are obtained by using (4.1.27) in a viscoelastic model or by using a

elastoplastic model discussed in the coming section.

58



[n some applications, the capillary equilibrium can be achieved immediately and the
hysteresis in the capillary pressure is trivial. In such cases, the viscosity due to the

capillary relaxation is negligible, and (4.1.27) becomes

H* =2—W7=0. B=W.N (4.2.3)
n

It is remarkable that when the effects of the capillary relaxation are not considered
equation (4.2.5) represent the constraints on the hyperelastic model (4.2.2)-(4.2.4). As
discussed before. these constraints stem from the dynamic compatibility conditions on the

interfaces.

The energy function in (4.2.2)-(4.2.5) is defined as a mass-weighted average of the

Helmholtz free energies of the solid and the fluids. i.e.

W(O.E.m}.m . n’)=m) £*0.E.p )+ D m 40w .p7).  (42.6)

Py

where S is repeated over W and V: in the right-hand side. p” =m’/(Jn”). and
J =det F . It must be noted that an explicit inclusion of m, in the LHS of (4.2.6) is
unnecessary since m, is a constant. However. inclusion of m, helps make clear that the
true mass density of the solid component. i.e. p*. is changezble through p’ =
m’ /[J(1-n" —n*)]. The compressibility of the solid phase is therefore explicitly
included in the presented model. It can be proven that if p’ is excluded. the capillary

pressures may vanish at equilibrium (Bowen. 1982). However. vanishing capillary

pressures have never been observed in the multiphase porous media.
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Because the chemical potential G” can not be measured directly in laboratories, it
is inconvenient to use directly the model represented by (4.2.2)-(4.2.6). Hence. it is
desirable to establish relationships between G” and some measurable variables such as

p” . As discussed in Chapter 3. in isothermal conditions G’ can be represented by

de
G” = : 42.7
f; P (&) (.27)

where p” is assumed as a function of p” only. This assumption is acceptable for many

s

applications. since n” generally has little influence on p”. It is noted that to be

consistent with (4.2.7) the fluid pressure in a porous media is thermodynamically defined
as the pressure of an outside fluid in local contact with the solid skeleton and in
thermodynamic equilibrium with it (Biot. 1977). Such a pressure simply is what we
measure in an experiment! In nonisothermal conditions. (4.2.7) must be modified. and a

detailed account can be found in Biot (1977).

By introducing (4.2.7). it can be proven that 6. E. and m” are the functions of

M. S. p".and p*. Define a new energy function by the Legendres transformation as.
WO.S.G*.G' .n".n*)=W-S E-G"'m* -G*m* +n,6  (4.2.8)

where § is the second Piola-Kirchhoff stress tensor defined by (4.1.23). With the

introduction of (4.2.8), it is easily seen that

A=—"(n SG" G n" n"), (42.9)
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E=-2(y.5.6°.G* n".n"). (42.10)
aS
v W S.GY.GYon"n*), B=W.N 4.2.11)
3G
and
H =2 (1,.5.G" .G " n"). B=W.N (42.12)
on

Since n” can be evaluated by using the evolution equations as discussed before and G* is
a function of p” (B =W,N), all the variables in (8. E, m”) are the functions of 7,,
S. p*.and p*. Therefore. n,, S. p*.and p* can be used as independent state

variables in modeling the behavior of the porous media saturated by two immiscible
fluids. This result is useful in developing stress-strain constitutive relationships as will be

discussed in the following.

4.3 A Theoretical Framework of Poroelastoplasticity

The energy dissipation associated with plastic infinitesimal deformation in the
porous media saturated by two fluids is restricted by inequality (3.6.20). In the following.

it is assumed that the compressibility of the solid component is very small so that

p, =const . This assumption is reasonable for many porous media such as unsaturated

soils. Noting that m’ =(det F)n®p’ = const . we take the time derivative of this equation

and obtain

y

7’ =-n=-n"divv’ =-n*I - E. 4.3.1)

where 2 is the norasity of the norous medium It follows from (4.3 1) that
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Hence. the plastic porosity is derivable from the plastic deformation. By introducing

4.3.2). n ,‘,’ can be eliminated from the left-hand side of (3.6.20). This vyields

2, =n"(t' +p*I:E, —(p* - p" " +{- y+1v 20, (4.3.3)

where v is the parameter accounting for the moisture content hardening: y accounts tor

the hardening of solid matrix. It is noted that since #, can be determined using 7, and

E_ through (4.3.2). the hardening parameter v* in (3.6.9) must be replaced by v and .
i g

Let
and
S,=p'-p* (4.3.3)
o can be viewed as the Cauchy effective stress tensor and S,, is usually called the

matric suction. Equation (4.3.3) shows that the thermodynamic forces associated with E ,
and 7’ are. respectively. 67 and S,,. In a fully saturated condition. S, =0. ie.

p* =p” :(4.3.4) yields
¢? =n*(’+p" D)=’ -np" D)+ p"I =6+ p"I (4.3.6)

Clearly. in this case. 67 becomes the Terzaghi's effective stress tensor. That is. the

£ = And C ~e

~es ~ ateanac
AV 2N v Ul (%4 V3 U LSOO
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measures. This feature is desirable when ¢ and S, are used as stress measures in
M

constitutive modeling as discussed in the following.

Cast (4.3.3) into

r

2,=6¢" E -S " +{ g+w=Y-X=D(X)20. (4.3.7)

where ¥ =(67.5,.{.1) and X =(E,,-n,. x.v). We will describe the constitutive

model within the generalized stress Y-space. Suppose that there exists a convex surface

f(Y) containing the origin in Y-space such that plastic dissipation occurs only when the
surface is reached. f(Y) is called the vield surface, which can be determined through

experiments. Hence. the plastic dissipation problem can be stated as.
D(X)=sup(Y"-X)20 (4.3.8)
Ve

Rate-independence requires that D(X) be a positively homogeneous function of degree

one only. i.e. D(cX)=cD(X) forany ¢>0.

(4.3.8) can be viewed as a representation of the principle of maximal plastic
dissipation (Lubliner. 1990: pp.117-120). which is equivalent to the following normality

law,

XeN D). (4.3.9)

where N, (Y) is the cone of outward normals to f(Y) in ¥-space. This gives the

evolution equations of E, . n’ . and the internal variables. Explicitly. we obtain



=il i X y-iL v-iL

LA =l y=A, V= 4.3.10
B T . o *3-10)

while it requires that
A20. f(e”.S,.{.1)<0.and if(67.S,.{,1)=0 (4.3.11)

(4.3.11) is the general loading/unloading criterion for the elastoplastic problem expressed
in the standard Kuhn-Tucker form (Luenberger. 1984). Equation (4.3.10) represents the
flow rule associared with the yield surface. For many naturally deposited geomaterials.
however, the normality is not satisfied. Therefore. a nonassociated tlow rule must be
introduced. In such cases. the vield surface function f(Y) in (4.3.10) must be replaced

by a potential function g(Y).

To evaluate multiplier A. it is noted that f(e?.S,.{.1)=0 when A>0.
Assuming ¢ ={(x) and 1 = «(v). it follows that

af ¢ + aj S +1£+12’.V

0=f= L 67 4 X
f éo*? e, " & o dt év

Inserting (4.3.10) into (4.3.12). we obtain A after some manipulations as

i:-% . (4.3.13)

f =a‘%;¢" +%SM. (4.3.14)

M

where

and
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Thus far, all the evolution formulations of plastic deformation and internal variables
have been presented. Explicit elastic stress-strain relationships will be derived in the
coming chapter. If f(¥) and (or) potential function g(¥). as well as hardening laws
¢ =¢(x) and 1 =¢(v), are specified. the stress-strain behavior of the porous media can
be fully determined. Note that the above theoretical framework has a hierarchical
structure. If the porous medium is fully saturated by a single fluid. we set
f(¥)= f(e+p"I. {). and the above model is just the general case of the effective
stress-based elastoplastic models. If the solid skeleton does not experience irreversible
deformation. f(¥)= f(S,,.t) and E'",, =(): the above model describes the irreversible
behavior (i.e. hysteresis) in the suction. Another interesting case is that. when the
hysteresis in the suction is negligible. we have f(¥)= f(¢7.{). In this case. the etfects
of the suction on the material hardening can be taken into account by assuming the
hardening law as ¢ ={(S,.7). The last model is very useful in modeling the
elastoplastic behavior of unsaturated soils. since by properly constructing the hardening
law {={(S,,. ) the elastoplastic models based on the effective stresses can be easily

generalized to unsaturated soils within this framework.

4.4 Variational Structure of the Proposed Model

In this section. the theory presented above will be employed to deduce an important
principle. i.e. the principle of virtual dissipation. which is owed to Biot (1977). Through

thece derivations a connection will he estahlished hetween the Riot’s theorv and those



based on the theory of mixtures, providing the way to take into account the dynamic

compatibility conditions on the interfaces in a continuum model of porous media.

In the model presented above. temperature & is used as an independent state

variable. In fact. since @ and the entropy density 1, are thermodynamically conjugated
to each other. either & or 7, can be used as an independent state variable. If. however.
phase change occurs in the porous media. n7, may vary with the proportion of each bulk
phase, while the temperature § remains constant. Therefore. use of 7, as a state variable

can generally provide a better description of the porous media. Both sides of (4.1.26) is

divided by €. and it follows, after some manipulations, that

Ny =hy[0+$+5. (d.4.1)
where
s=DIV[Q- Y (1" M")]. (4.4.2)
and -

& = Z[:[”ﬁ"— Y M"-fk"—[—Q«- ZU”M"]-GRADH (4.4.3)

pW.N g=W N P=W N

In (44.3), R* =R*/m”: 0 =Q/8 is the entropy production solely due to the heat
conduction. Equation (4.4.1) implies that entropy density 7, has three contributions: 1)
h, /6 due to the external supply of heat. which is known: 2) s due to the heat and fluid

fluxes: and 3) s” due to the internal dissipation. Integrating (4.4.2) over [¢,.¢] vields

s==-DIV®. (4.4.4)
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where it is assumed that at initial state s=0; @ can be viewed as the total entropy

flowing across a surface, which, before the deformation, is a unit area and

&= [ [0+ Y (" M* )kt (4.4.5)

FE

Ifsand s are known, 7, is obtained by integrating (4.4.1). On the other hand, if
@ is given. s can be calculated through (4.4.4). and s° is evaluated by using (4.4.3).
Therefore, the independent state variables can be chosen as u’. m” (or M”). n”.and s
(or @). The corresponding dependent variables now include S (or Por ¢). G’.and 6.
[n constitutive assumptions for the dissipative forces. i.e. (3.5.5)~(3.5.7). @ is used as a

constitutive variable. [f @ is used instead of 4. we may assume that

H =H(Z,7 .M .®) (4.4.6)
R =R [m =R (z, .. M".). (@4.7)

and
GRADO=0(Z.,.1* M .#). (4.4.8)

- = -

[t can be shown that the set of equations (3.5.5)-(3.5.7) is equivalent to the set of (4.4.6)-

(4.4.8) in the sense that either one can be derived from the other.

Assuming the system deviates slightly from equilibrium. it follows from (4.4.3) that

65'= > X4, o065 =) Xaq,. (4.4.9)

=t 5

where ¢, and X, are scalar or tensor objects given in the following sets. i.e.
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{q,.k=12..5={M" M".n" .n*" @}, (4.4.10)

and

(X, k=125 ={-R*.R" .H" .H* ~GRAD®) (4.4.11)

For linear dissipation. we apply Onsager’s principle (de Groot. 1952) and obtain

8D

Y ==
aq,

(4.4.12)

where D is a intrinsic dissipation function represented by the following quadratic form.

b=i7 Y B4, (4.4.13)

while B, =B, and det(B,) 20 . By applying the assumption of material symmetry (see
section 3.5). further restriction is obtained over B, . It turns out that B, =B, =B,

=B, =0.i=1.2.&35. Finally. by introducing (4.4.9), (4.4.12) and (4.4.13). we derive

gs’ =:,,Z, % g =2D (4.4.14)

Now. the governing equations can be categorized into six coupled field equations

and summarized in Table 4.1. The corresponding independent fields are chosen as u*.

M? . n” and @ . Consider a subdomain of the material body. The initial configuration of
this subdomain is denoted by 2. which has a boundary 7~ with the unit normal N (see

Fig. 4.1). Without losing generality, it is assumed that. at initial state. &’ =M’ = =0,

@ =M’=d=0.7"=0.n"=n".0=6.. p.,=m. and m* =m’ . For the time being.
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it is not necessary to specity the boundary conditions. Suppose that. durning a thermo-

mechanical process. 2 arrives at a new state represented by (u’. M”. n’. @). To

obtain the variational description of the problem, let the virtual displacement of the state

be represented by (ou’. SM”’ . 6n’. 5®).

Current

Reference Configuration

Configuration

Figure 4.1 Definition of the problem: a porous medium experiences a motion y;

Table 4.1 Summary of the coupled equations

Fields Coupled field equations
(State variables) Field Constitutive Supplementary
u’ 4.1.14) (4.2.10) (3.1.13). G.1.14), (4.1.3)
M? 4.1.13) (4.2.11) (4.1.3). (447
n’ 4.1.27) (4.4.6) (4.4.6)
b (4.4.8) 4.29) (4.4.1). (4.43). (444)
Note: g=W.N
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To begin with. it is assumed that the body force field & per unit mass can be derived

from a potential U(x).1.e.

b(x.0)=-VU(x.1) (4.4.15)
and

B.(X.t)=-F'VU(x.t)=-GRAD[U o " (X.1)] (4.4.16)

By introducing Gauss's theorem and integration by part. the weak form of (4.1.14)

can be expresses as

0= L( pyii' + Y FM” DIV P - p BYSu'dV
AN (4.4.17)
=0E}, + [ [P:0F + p,(VU)Suw'|dV = [ fowdi.

where f is the mechanical force per unit initial (undeformed) area on the boundary 7.
ie. f, =PN,.and V, is the component of N: JE;, is the kinetic energy of the solid

component and given by

Oy, = L( pii* + Y FM*)Su'dV (4.4.18)

g:=W.N

Divide both sides of (4.1.15) by m” and insert (4.4.16) into the resulting equation.

[t follows that

F'ie' +(m?)'CM’ =-GRAD(G” +U)+ R". (4.4.19)
where 1:(" is given by (4.4.7) or (4.4.12).

Similarly, with introduction of Gauss’s theorem and (4.1.3), the weak form of

(4.4.19) can be presenicd as
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0= [ [F'ii’ +(m’)'CM* + GRAD(G® +U) - R* \oM*dV

) (4.4.20)
=3E}, + [ [(G” +U)dm” - R*M*1dV + [ (G +U)NSM”dA.

where =W & N .and

OE;, = [[F'ii’ +(m!)' CM”1eM"dV (4.4.21)

The weak form of the closure equation (4.1.27) is

0= L(—H“ + H)on*dv (4.4.22)

Finally. The weak form of the heat conduction equation (4.4.8) is written as

0= [ (GRADO - Q)5®dV
= (805 - Qo®)dV + [ONSdA

(4.4.23)

where use of (4.4.4) has been made.

Summing up (4.4.17). (4.4.20). (4.4.22). and (4.2.23) yields the variational equation

of the problem. i.e.

[ (i’ + Y FM")ou' + Y [F'ii’ +(m!)'CM" |6 M*}1dV
g N

=W N

+ L[P:5F+ Y (G#om”)- Y H”Sn’ +6551dV

ey PRy

+ L[(m,, +ﬂ_zm")(VU)5u-" +ﬂZ(U§m")]dV |
w0 W (4.4.24)

(-3 (RPSM*) + Z(Fl”an”)—éaop]dv

BN e

+ [=fow + Y[(G* + U)NSM® |+ ONS®dA

g=W N

N
=v.
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To simplify (4.4.24), we define a new energy function by using Legendre’s

transformation as follows.

V(.. E.m* .n*y=W(6.E.m".n")+n0 (4.4.25)

where =W and V. It follows that

g=2 (4.4.26)
on,
Furthermore. it follows from (4.2.3). (4.2.4), and (4.1.26) that
&V
=—, 4427
oE (
ov
G¥ = ——. (4.4.28
om’ )
and
HY = —?—Z (4.4.29)
on

With introducing (4.4.26)-(4.4.29). (4.4.9) and (4.4.12). the variational equation

(4.4.25) can be cast into

Sy, +8,E, +0F + [ 05s'dV =5+ . (4.4.30)

where

8,E,= [[P:6F+ Y (G’6m")~ Y H’on’ +65s]dV = Lakp"dV; (4.4.31)
g=W N BN
the term &8,/ represents the restricted variation of ¥ with §s° =0 and 6k, =0: # is

the work done by the generalized external force acting on the boundary /~ and

0F = -fr{f&f - Z[(G" +U)NSM? |- ONS®YdA ; (4.4.32)

AW N
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& s the potential of the body force and given by

&= [(m+ Y m"UdV: (4.4.33

H=w.N

E,, is the total kinetic energy of the porous media and its virtual variation is given by

O, = L{(pﬂa*’ + Y FM")su' + Y [F'ii’ +(m!)'CM"1oM”\dV  (4.4.34)

gW.N g N

Thus far. we have recovered Biot's principle of virtual dissipation (Biot, 1977).
which states that given A, a true solution (&’. M’ . n’. &) must satisfy (4.4.30) with

constraints (4.1.3), (4.4.3), and (4.4.4). This principle can be viewed as a generalization
ot d"Alembert’s principle to nonlinear irreversible thermodynamics. As pointed out by
Biot (1977). the principle of virtual dissipation is very general. [n fact. it can be applied

to the porous media saturated by & (k£ > 2) immiscible fluids. In such cases. f#=W..V is
simply replaced by £ =/.2....k. and all the equations presented above are applicable.
However, it must be emphasized that in order to take into account the dynamic
compatibility conditions on the interfaces the energy function # can be assumed as

WG.E.m.m*.n*)=m A" (0.E.p" )+ Y m’ (6.0 .p"). (4439
d=1.20 0k

where @ =12...k: A (i=s.2...k) depends on m' only through p' =m/Jn'

(J =detF),and m’ =m; =const.

[t is instructive to make some remarks on the constitutive assumption in (4.4.35).

Here, the free energv of an individual component is assumed to be a function of the state
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variables of this component only. Since a bulk component interacts with the others in the
porous medium only through the interfaces surrounding it (neglecting the electro-
magnetic effects), the volume fraction and true mass density need to be introduced as
state variables. For example, the deformation of the skeleton can influence the free
energy of a fluid. and yet such effects can be represented directly by the change in n“
and p“. Therefore, it is unnecessary to include E as an argument in 4“. Similarly. the
content of & fluid may also influence the free energy of the solid skeleton, but this effect
occurs solely through the boundary of the solid grains, which are assumed to be
isotropically distributed. Hence, this effect can be directly reflected by the change in the
pressure of the solid grains, and correspondingly. p* but n* is included as an argument

of 4°.

Another important point regarding (4.4.35) is that the energy function W depends

on p* through my =J(/- > n”)p’. This is one of the distinguishing features of the
d=12 .k

presented model. [t is worthy to note that the celebrated model of porous media by
Bowen (1982). which was developed within the framework of the theory of mixtures. can

be derived solely by using the principle of virtual dissipation and by assuming that

W(.E.m*.n*)= Y mA0.E.n*.p,) (4.4.36)

=¥ 12k

where p_ is the partial mass density. i.e. p, =n“p“: a is repeated from / to k.
Comparing (4.4.35) to (4.4.36), it can be easily seen that if p° is excluded in (4.4.35) the

presented model is just a particular case of Bowen's model. In the Bowen's model.
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however, the exclusion of p° as a state variable leads to an unacceptable result stating

that the pressure differences on the interfaces (i.e. suction) will vanish at thermodynamic
equilibrium. This result is inconsistent with experimental observations. Furthermore. it is
well-recognized (Lade and de Boer, 1997) that the compressibility of the solid phase.

which is represented by using p”. has significant influence on the behavior of the porous

medium. Therefore. it is important to include p’ as a state variable in a general model.

With introduction of the principle of virtual dissipation. it is quite straightforward to
derive the field equations presented in Section 4.1. This is achieved by simply following
a procedure inverse to that used in this section. To recover all the constitutive equations.
however, it is useful to introduce the Euler-Lagrange’s equations, which are also
derivable from the principle of virtual dissipation with the incorporation of the
generalized coordinates. A detailed account of this development was given by Biot (1972.

1977), and will not be repeated here.

From the above derivations. it is shown that the constitutive assumptions made in
the theories of mixtures are generally more restrictive than those in Biot's theory. This
point can be seen from an inspection of (4.4.35) or (4.4.36). In Biot’s theory. the total
free energy function IV is assumed directly as a function of some macroscopic state
variables. such as the left-hand side of (4.4.35) or (4.4.36) (also see. e.g.. Coussy. 1995:
Ch.10). The choice of the constitutive variables is quite intuitive. since in general it is
difficult to identify appropriate constitutive variables (not to mention an explicit
constitutive function form). This provides great challenges in applying Biot's theory. In

the theory of mixtures, however. any component existing in the porous media is viewed
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as an independent phase. and the energy function /" is assumed as a mass weighted
average of the free energies of all individual components, such as the right-hand side of
(4.4.35) or (4.4.36). Since each individual component is considered as a continuum, its
free energy function can be more easily obtained. Hence, one of the greatest challenges in
the theory of mixture is to identify the parameters representing the interactions among
various components. [n spite of these differences. Biot’s theory can be closely linked

with the models of porous media based on the theories of mixtures. as discussed above.
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Chapter 5 A LINEARIZED MODEL AND THERMOPORO-
ELASTICITY

The objectives of this chapter are two-fold: first. to obtain a set of governing
equations for thermoporoelasticity by linearizing the general theory presented in the
previous chapters: second. to show how the restrictions in applying the effective stresses
can be released by considering the dynamic compatibility conditions on the interfaces.
Although discussions are limited to the linear range. insights into the nonlinear model of

porous media may be gained through linearizing the general theory.

The outline of this chapter is as follows: Section | concerns the linearization of the
general constitutive relationships: the linear field equations are derived in Section 2: in
Section 3. the effective stress. an important concept in the conventional soil mechanics. is-
formulated based on the results previously presented. In Section 4. a general account of

the physical significance and the evaluation of elastic coefficients are presented.

5.1 Linearized Constitutive Relationships

In the general model developed in Chapters 3&4. three free energy functions need

to be specified. i.e.

.
oot

-~
n
g

and

77



A =40.p".n"). B=W.N (5.1.2)

Assume that the porous medium is initially at an equilibrium state represented by
=, =lo.n 0 E wi={6, 00 p;. 0. 0}, (5.1.3)

where a=S. W.N and f=W.N. Under a small external disturbance. the porous

medium arrives at a new state with
=10, +6.n" +n’. p° +p".E, w}. (5.1.4)

From now onwards in this chapter. 8. n’, p*. E.and w” are all viewed as incremental

variables. By using Taylor’s series. (5.1.1) and (5.1.2) are expanded about =, to vield.

respectively.
n p) A° =én:E: D :E—én,‘,"cﬂ: +§n,,‘K\[’o—‘)
- - S \b (5.1.5)
S 1y ,0'\ Sars . Y ’ Yy . 3
-'104,09?“”"9]* CE+n =0 E+0(e )
and
Y _
npl A ==Lnic,8) +inff<a(p—] +Lnor(wy
2 2 p? 2 et
! (3.1.6)

s s
0 i Lt 2 On? +0(e’)
0 "“pd ] nm B [} "

Jo pi

where Ore’) represents the higher-order (>2nd) terms: A®(a=S.W.N) is the

corresponding incremental free energy function of « -phase. For a linear model. the
proposed quadratic forms of free energy functions. i.e. (5.1.5) and (5.1.6). are sufficient

for the discussions. It is noted that the first order terms are all dropped in the above
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linearized equations. As will be clear later. this is simply due to the fact that we are
dealing with an incremental model. The coefficients in (5.1.5) and (5.1.6) generally are

the functions of =, and their physical significance will be discussed later.

With (5.1.5) and (5.1.6), (3.3.10) and (3.3.11) can be linearized as follows,

Y

PPkl E-E9. (5.1.7)
s,
PL
p”=K”?+iﬂ"n”—l‘;9.ﬂ=lV. N (5.1.8)
and
¢ =D:E+J :1,2--Ji 16, (5.1.9)

0

where p‘ (a=S. W.\V) and ° represent the incremental values: I, is an isotropic
fourth-order tensor with components (/,),,, = [/.7(5“6(, +5,,c5/,). In (5.1.7)(5.1.9) and

from now onward. the higher order terms are dropped for clarity. and the porous media-

are assumed to be statistically isotropic. Hence. it follows that

D=2 0. (5.1.10)
JL=20. (5.1.11)

and
D:E=i(l:E)M+2ukE. (5.1.12)

where A, and g, are the Lamé’s constants of the solid skeleton. Obviously. by its very

definition. K, (a@=S. W.N) is the isothermal bulk modulus of & phase. The total

Cauchy stress. i.e. (3.2.6). now reads
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o=ni(A =2 Y1 E) +2n pE +n} 2, Ly Tk, 21
p,, a=SW.y¥ P,

(5.1.13)

- anlﬁ"n"li—( n i, + Zn,‘,’l‘;j

A=W N a=sW.N

The specific entropy of a bulk phase is obtained by linearizing (3.3.3). i.e.

pn =c0+ 4, p—:,.+J;‘; E. (5.1.14)
and

pint =0+ X, p 0 (5.1.13)
” p?

3

where B =W, N. By definition. the specific heat capacity of an individual phase is

¢y =6y, (a=S. W.N). The total specific entropy of the mixture is now given by

Z(rz;’cup+ ny A, g Zamdy cE+ Ynliin'  (5.1.16)
a-SWN a:SW.N p g N

Neglecting the viscosity due to capillary relaxation. the closure equations (3.4.8).
which are the macroscopic counterparts of the dynamic compatibility conditions on the

interfaces. can be linearized to vield

P’ -p  =nl@n’ +n? ¥ p‘ 2. B=W.N (5.1.17)

on
IJ

Finally. the incremental chemical potentials are

p’G* =K, L E v -2,0.B=W.N (5.1.18)
? p?

L)
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The constitutive relationships described above include the following coefficients:
Avo g A K (a=S WN), X (B=WN).OB=WN), c(a=S.W.N).Z,.
A (f=W.N) and 2’(a=SW.N). It must be noted that. for a model to be

physically possible. certain restrictions must be imposed on the listed material
coefficients. For the linear model presented above. the free energies represented by
(5.1.5) and (5.1.6) must always have nonnegative values. For free energy A’ to be

nonnegative, it is necessary that

3A+2u,>0. (5.1.19)
u, >0, (5.1.20)
K. >0. (5.1.21)
and
(4\. +-§y\.)K\. >(4 ). (5.1.22

For nonnegative 4”( =W, N ). itis required that

K, >0. (5.1.23)
0’ >0. (5.1.24)

and
K,07 2(#. ] . (5.1.25)

5.2 Linearized Field Equations

In the following. it is assumed that the effects of the mass exchange terms can be
neglected. The mass balance equation. i.e. (3.2.1). now can be cast into the following

itnedr forms
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———t+t—+m Vv =0, (5.2.1)
p, ¢t dt
and
n‘/'] y:} ~ B
_a_p_+0n +nf’V v’ =0. ﬁ:FV Vv (3.2.2)
p! ot ot

The equation of motion for the porous medium is obtained by summing up the
linear momentum balance equations. i.e. (3.2.4), over all the phases. By introducing

(5.1.13). the linear counterpart of this equation is expressed as.

. 5\
n:p '%_-_ (,{ + = A )VV w+nuV-Vu +n i VLP—J

a:SWYN

ST o A (R

[nserting (3.5.15) and (5.1.18) into the linearized form of flow equation (3.5.20).

one obtains

, 00w o p" 3
n’ p? = =-n) A Vn” —n/K,V pr -p'w +nlAV0.  (524)
7

where S =/, V:in using (3.5.15). the cross effects have been omitted. i.e. 7 depends

on w” only. Subtraction of (5.2.4) from (5.2.3) repeatedly for both fluids vields the linear’

form of the linear momentum balance equation of the solid skeleton. i.c.

S .S o'u’ e s s s ¥
n,p, at; =n, (A'.\‘ + U, _llpe)vv. u +na.u.\'v' Vu
(3.2.5)
5
s .5 g ~g g 5 sy S a8
‘nll (K\ -A'pt F}+ :u W +(nl) A'pﬂ —n!) A&)Vg
) BN



The total energy balance of the porous medium is given by (4.1.26). and its linear

form can be expressed as follows.

an

6,p, — % +divq =10 (5.2.6)

[nserting (3.5.16) and (3.1.16) into (5.2.6) yields

ni, op* an’ o
pre) 0 ¥ BRIy O
a=y Wy asWy p” 4wy at ot (5.‘) 7)

Za)"V w -@'(V-V8)=

Thus far. all the field equations governing the linear thermoelasticity ot the porous
media saturated by two immiscible fluids have been presented. The closed set of field
equations includes: the mass balance equations (3.2.1) and (5.2.2). the linear momentum
balance equations (5.2.4) and (3.2.5). and the energy balance equation (5.2.7). as well as
the closure equation (5.1.17) with constitutive equations (5.1.7) and (5.1.8). The total
number of the independent field equations is 9. which equals to the number of the

unknowns. i.e. {6, u".p*.n*}. @ =S.W.N and f=W.N.

The field equations presented above can be further cast into a more compact form
by deleting n” and p“ (@ =S.W.N and f=W.N). Integrating (5.2.1) and (5.2.2) with-

respect to time yields. respectively,

nf£f+n"+an-u'Y =0, (5:2.8)

1

and
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Y]
n’ —p7+n" +n'Vow =0, (5.2.9)

"

where f=W.N: n" =-n" —n". With incorporation of (3.2.8). (5.2.9). (5.1.17). (5.1.7).

and (5.1.8). p“ and n“ are deleted from (5.2.4), (5.2.5). and (3.2.7). It follows that

A

n,p, 6_" =M, +nu VYV -w +n V-V + M wVV-u'
E

P (5.2.10)
MVt Y pﬂ(-f‘—-Lj+H\.ﬂv9.
" g N ot ot
W e'u" ¥ W 5
o Py =MV + M, VGV u" + M, VV-u
PP (5.2.11)
(S-S ) 90,
ct ot
v N a:u‘v » Sy W v
ny, P, T= M SNV-w + M VV-u" + M VGV u
a ” a ¥ (5-2.12)
-i“v( :‘ —QL)+HW,V9.
ct ot
and
bl o\ Ou’ o) oW, o n
=t Z(Qu_ ;z)v'_+ o, + Zw,, Vie—-'V-V8=0 (3.2.13)
ct i ot W N ot

where the coefficients M. and H_, are given in Appendix II. ¢. O,. O, . and O, are

given. respectively, by

(22, -n2 22 \H,, -n? 2,)

[ s

c=6| Tlne)- ¥

5.2.14
azSW. A=W N Kﬂ - nflﬁ, ( )
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8,(42, —nl 5 M, ~nfK )
0,=- . B=W.N 52.15
=g K” —nf/lﬂ, ,B ( )

and
BMy-nid -nl2)

[

K, -1
A e

o, = 9,,['151}‘; - (5.2.16)

The final set of governing equations includes (5.2.10)-(5.2.13). which govern the
linear. isotropic. thermoelasticity of the porous media saturated by two immiscible.
compressible fluids. Note that the model represented by the above governing equations

has a symmetrical structure.

Without the thermal effects. Equations (5.2.10)-(5.2.13) are similar to the
generalized formulations of Biot's theory used in the analyses of the wave propagation in
porous media. see. for instance. Brutsaert (1964). Bowen (1982). Garg and Nayfeh
(1986). Santos et al. (1990). and Tuncay and Corapcioglu (1997). among others.
However. the proposed model differs from those cited above in that it is capable of
rigorously considering the dynamic compatibility conditions on interfaces discussed in
Section 1.2. [t is noted that. in the generalized Biot's models. the relationship between the
capillary pressure and moisture content, which is a macroscopic counterpart of the
dynamic compatibility conditions on interfaces, was introduced intuitively: moreover.
this relationship was used in these models only to obtain some material constants. In the
model presented here. however. the relationships between capillary pressures and state
variables (including moisture content) are considered as the original components of the
model (see Eq. (5.1.17)). This treatment is thermodynamically consistent. as discussed in_

the previous chapter.



The field equations represented by (5.2.10)-(5.2.13) are only applicable to the

porous materials where each fluid phase is interconnected. In reality, however. the
content of a fluid may change from time to time. When n" decreases to a small value.
i.e. when n, > (6, is a positive value close to bur less than the porosity n). the

nonwetting fluid will be disconnected and trapped in the wetting one. [n such a case. both
fluids will macroscopically move together. For simplicity, the thermal effects will be

omitted in the following discussions. Once n) >6., one may set n’ =0. (5.2.10)-.

(5.2.12) yields Biot's model for the saturated porous media (Biot. 1956a). i.e.

2 Y

n'p! oﬂ_u_ = V[(A +NWV-u' +QV-u"]+ NV.-Vu' +aw”, (52.17)
and
n,p, Oa—[" =V(OV-u' + RV -4 )- iw" . (5.2.18)
where
‘ . nn (K, =AY .
A=n} (4 + K, - 24" )~ W A) (5a19)
oK +n Ky +nn)(n,@F -24)
N=nu,. (5.2.20)
nn (A -K)nA -K,
0= 4)(\, nR) (5.2.21)
nK,+nK, +nn,(n0 - 24°.)
and
N sg W N2 W
oL MKKy ~m () +n,K,00)] 5227

- 5 5 W Wy
nK,+n K, +nn,(n@ -21 )

It must be pointed out that. in the Biot’s model. there exists a term called the coupling
mass. i.e. p,,. This term arises quite intuitively as a result of local nonuniformities in the
flow when the constituents of the mixture move relative to one another (Biot. 1956 I:

Coussy, 1995: pp.31-34). Although the coupling mass may be important in dynamics of
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the fluids containing particies or bubbles (Soo, 1967), its effects on the porous media.
such as those considered here, remain unclear. However, it has been recognized (Bowen.
1976) that the coupling mass term does not follow the principle of material indifference

(objectivity) and it is difficult to motivate base on the continuum theory of mixtures.

5.3 Effective Stress in Porous Media

The principle of effective stresses, usually attributed to Terzaghi (1936). plays a
crucial role in modeling the behavior of geomaterials. [n fact, majority of the stress-strain
constitutive relationships of geomaterials used in practice is based on the effective
stresses. According to Terzaghi (1936). the effective stress principle may be stated as: all
measurable effects of a change of stress, such as compression. distortion. and a change of
shear strength of a soil are exclusively due to change in effective stress. For saturated.
soils. Terzaghi proposed that the effective stress equals to the excess of the total applied
stress over the pore pressure. In the past decades. many efforts have been made to
develop the effective stress formulations for the porous media with multiple fluids.
However. it turns out that generalization of the Terzaghi effective stress concept to a-

mutiphase system is not straightforward.

In the following, the effective stress formulations will be developed based on the
Terzaghi principle of effective stress. For convenience. we only consider the isothermal

conditions. Assume that n) #0 and n, #0. With introducing (5.1.7)-(5.1.9). (5.1.17).
and (5.2.8). the mass densities p° and volume fractions n* is eliminated from (5.1.13).

This yieids
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W v 5{ 2 l"e): 'l:u ; - .
o+ (z,0" + 1.0 )1=,,,~,[AS_L»_+(K_-1J“= J(I CEM +2m uE . (5.3.1)
N s a‘\'
where

v [ A ay < -

Iy =0, tn, | KS -1 a—s. (3.3.2)
] /lS a

N =nl)v +nl; - _1 -_L 5 3 ’)
'( ( K»\' } a\ ( >

1 =n,| —=—-~]1|. 3.

4 R 0 K_\_ J
n, K, K, <<
a.\' =—,—+ W W W\ + v v ) N (D‘J'J)

K, n[07K,-(1,)] n/[OK,-(L,)]

n i -K, (5.3.6)

a, = - —. 3.

T WOrK, - (2] ’

and
n;/l‘; - K\’ -

- —. (5.3.7)

a, = - -
onl @YK, - (A0)]

By Terzaghi’s definition. the effective stress formulation for a linear model of the porous

media saturated by two immiscible fluids can be represented by
oe=c+(z,p" +1.p") (5.3.8)

Thus far. all the individual components are assumed to be arbitrarily compressible. -

This assumption is too general for practical use. In (5.1.7)-(5.1.9). coefficients 4, and
A (B=W.N) account for the coupling effects in the porous media. For some porous

materials. these coupling coefficients may be small. For instance. in the unsaturated soils.
the coupling between the volume fraction and the mass density of an individual

component is negligible. [n such cases, it is reasonable to assume that
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|,lf,,|<< K,.

s
A,

<«<K,. (3.3.9)

[n addition, since the microscopic pressure difference on the interface mainly depends on
the surface tension and the curvature of the interface, its macroscopic counterpart. i.e. the
capillary pressures, must be influenced dominantly by the fluid content and not by the

mass density of the fluids. Therefore, from (5.1.17). it is reasonable to expect that
A, << @ << K, (5.3.10)

The second inequality of (3.3.10) is quite obvious. since @’ generally is not more than

10* kPa by its definition and K, larger than /0 kPa (say. for geomaterials).
With (5.3.9) and (5.3.10). (5.3.2) and (5.3.3) lead to

L. nne
W TN A W AW
n,0, +n; O]

+n' =1-yz,. (5.3.1D
With @20 (f=W.V). it can be deduced from (5.3.11) that 0<z, </ and
0<x, <1.Now,(5.3.8) becomes

e=c+[y.p +U-y,)p' (5.3.12)
This is the so-called Bishop effective stress formulation for unsaturated soils (Bishop."

1959). The stress-strain relationship, i.e. (5.3.1), can be written as

’ 5t 9 (l:"): n:!r n:@:’ @: y 2 Y 11
,‘,{4\. 3 + O O :'(I cE) +2n uE . (5.3.13)
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where ¢’ is the effective stress defined by (5.3.12). It is noted that whether or not the‘
assumptions made in (5.3.9) and (5.3.10) are generally applicable to the porous media
needs experimental justifications. As discussed in Section 35.4. however. the
consequences of these assumptions are consistent with the experimental observations in

unsaturated soil mechanics (Fredlund and Rahardjo, 1993).

The above stress-strain relationships are applicable only to the porous materials

with interconnecting fluid phases. As discussed in the last section. when n! > . the

porous media will become saturated. and the nonwetting tluid will be trapped in the
wetting phase. In such a case, one may set n* =n. n' =-n.and n} =1-n,. where n is

the change in the porosity of the material.

Following a procedure similar to that used in deriving (5.3.13). one may develop
the effective stress formulation for the saturated porous media. In the following. it is

instructive to consider the following three particular cases usually met in practice.

a) Both components are nearlv incompressible. In this case. K, — +w and
K, — +w. Due to the impenetrability on the interface between the fluid and the solid.
the microscopic pressure of the fluid must be equal to that of the solid. i.e. pi  =p. .
Therefore. for the statistically isotropic porous media. p* = p* . Since p*/p) =0 and

6 =0.(5.1.17) implies that @’ — 0. This is expected. since in this case the free energy

of the fluid is independent of the porosity, i.e. the volume fraction of the fluid. Inserting

(5.1.9) into (3.2.6) with n, =0, one can prove that
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c+p"I=nA(I:EM+2nuE. (5.3.14)

This is a representation of Terzaghi's effective stress principle for the linear, isotropic
elastic saturated porous media, and it is suitable for come saturated granular soils (e.g.

sands). For a linear model. (5.3.14) implies that the effective stress tensor is

wn
(U8
—
wn
S

¢=c+p'I= [n,‘ft“ —n,,p"'l]+ p'I=n't. (5.3.

where ¢° is defined by (3.3.11). The first equation of (5.3.15) is the classic effective

stress formulation (Terzaghi. 1936).

b) The fluid is nearly incompressible and the (individual) solid component
compressible. This model is useful in dealing with porous media such as rock and

concrete. In this case. K, —» +w0:

" S (as _
p-\'=( K, ] LA K-")l.-E. (5.3.16)

RWald 5 2
nn,@" + K, nne’ +K,

and the stress-strain relationship is expressed by

a+a,p*I=n’[A +v{l: E)M +2niuE. (5.3.17)
where
.- l_n;,"("u".f@i' + &) (53.18)
! nn@ + K,
and

S oW s PP LAV
. n,n, @n _(/{'pc +2nnnn@n )'{ge 53.19
v= — . (3.5.19)
nnO" +K,

. < m i s . . )
Similarly (53.17) implies that the effective stress formulation now becom

ac
— saasrsalen . R o —aie v Ueevaaee
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o'=c+a,p'I. (5.3.20)

where @, is usually called the Biot coefficient. n, <a, </,since +=>K, >4} . Itis

noted that the effective stress formulation represented by (5.3.20) is usually employed in

modeling the rock-like porous materials (Lade and de Boer. 1997).

c) Both components are compressible. Similarly, in such a case. the linear elastic

stress-strain relationship reads

o+a,p’l=n’(A +vXI:E) +2nuE. (5.

[ 1)
LI
9
—
S

where a, is now given by

| n {n, A (K, ~2,)+ 4, K, +nm (0K, —(£,)]}
a,=1- N - .
! n (@7 K, —(2 )1+ K, K,

and v is

vaolel e LE\ . (5.3.23)
K.\‘ K.\' {nunr; [@n KW - ('{,n). ] + KWKS}

(B mmY10r Ky = (X)) [A, - K,)’

With inequality (5.1.25) and noting that 4, <K, <+w and 4, <K, <+w. one can
easily prove that n, <a, </. Remarkably, if the coupling coefficient A’ is negligible.
(5.3.21) and (5.3.22) become equivalent to (5.3.18) and (5.3.19). respectively. Hence. A7, -

can be confidently neglected when the fluid has low compressibility.

From the above discussions, it is clear that an explicit expression for the effective
stress is primarily determined by the compressibility of individual phases coexisting in

the porous media. For the porous media saturated by a singie fluid. if both the soiid and
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the fluid have low compressibility, the Terzaghi effective stress is applicable; otherwise,
model b) or ¢) must be introduced. It is also noted that for the problems of infinitesimal
deformation coefficients @, may be considered as constants, since p*. p“. nand E
change slightly, and all the coefficients existing in the model are practically constant.
This feature has great practical and theoretical significance in modeling the behavior of
porous media. As for multiphase systems, however, it seems very awkward (though
possible) to employ an explicit effective stress formulation in modeling the stress-strain

behavior. since y, and y, are generally the functions of the state variables.

5.4 Evaluation of Material Coefficients

Suppose that the initial porosity n, and the degree of saturation of the wetting fluid.

i.e. S,. are known. In the linear model presented above. there exist 24 coefficients yet to

determine. which can be categorized into the following three groups:

Group 1 (mechanical effects): 4,. u,. 4.
(ﬂ = ;V. ‘V ).

Group 2 (thermal effects): c,. 4),. 45, .and A%, (a=S. W .N: f=W.N).

. (@a=SW.N), #  and O/

Group 3 (conductivity): z”. ég. and 0° (B=W.N).

[t is noted that these coefficients are generally the functions of 8,. n; . n. . and/or-

pi(a=S.W.N). In Group 3. @’ is the thermal conductivity of the mixture. and 7’

may be related to the permeability of the fluid flow. Both coefficients can be measured in

lnkr\mfr\nnc lnnor 107')\ 0 ranracant ¢t tha nnnnl'nn hatwwaan tho tamaarntiisa nnd laed
vvvvvvvv -p Wﬂ rsvvv‘nn L2 g e VWL Y Bl M \.llly»‘“\-mb “alina Llulu
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diftusion. For many applications, the coupling etfects between heat conduction and fluid

diffusion are negligible. and these parameters are usually dropped.

In what follows. our attentions will be focused on the evaluation of the material
coefficients in Group 1 & 2. According to their characteristics. the coefficients in each
group can be further distinguished among deformation properties. coupling properties.
and intrinsic properties. The intrinsic constants, which represent the properties of an

individual component. include bulk moduli K, . specific heat capacity ¢, (=6,c_ ). and

A’ - The last coefficient can be expressed as

i =3K al. (5.4.1)

From (5.1.7) and (5.1.8), it is clear that @, is just the thermal dilatational coefficient of

a -component. The compressibility of an individual phase is defined by

It is noted that all the intrinsic properties of materials are accessible in routine
experiments or can even be obtained in the standard handbooks. see. for instance. Clark
(1966). Unlike the intrinsic properties. all the other material coefficients generally are not

transparent and must be determined by correlating them to the phenomenological

parameters of porous media. These coefficients include the coupling properties 4'_. 4

s

A .and A5 . the Lamé coefficients 4, and u,. and the suction coetficient ©* .

The phenomenological parameters used to evaluate the material constants of the

proposed model can be experimentally determined. To begin with. it is useful to
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introduce some important concepts associated with the experiments such as constant-

suction, drained. and undrained. During a constant-suction experiment. the matric suction
(i.e. the difference between p* and p" ) remains constant. In a completely drained test.
no change in the pressure of a fluid is allowed. i.e. pressure increments p* and p* must

be zero. In a fully undrained test. however, it requires that no local diffusion be permitted

and no fluids escape out of the domain spanned by the skeleton. Concisely. the fully

undrained condition is defined by

w=u" =u". (5.4.3)

With (5.4.3). balance equations (5.2.8) and (5.2.9) may be added together to yield

e =-1:E= Y nt. (5.4.4)

f a

0

where ¢, is the volumetric strain of the matrix. which is positive in compression. (5.4.4)

gives another representation of the undrained condition.

If the compressibility of the solid grain is excluded and the content of the wetting

fluid vanishes (i.e. the dry porous media). the stress-strain relationship (3.3.1) become

¢=n'Al:E)+2nuE. (3.4.5)

This is the linear. isotropic. elastic model of the dry porous media. Clearly. i(=n)4,)

and u(=n)u,) are the Lamé coefficients that account for the isotropic linear elastic

deformation of the solid matrix solely due to the rearrangement of solid grains. It seems

Te

. s 1 .. PO S e 3 cremle o Fleo o o0 .o el a3 Lo 1. T o_.fle..
uat A4 alid g call UC UCleliiilicuy Uiiuugtl a U1Icul 1oL ULl QIC ULy >alllpic. Ll 1cality.
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however, such a point of view is incorrect. For instance, it is well recognized that
inclusion of small amount of moisture may drastically change the mechanical behavior of
the granular materials (Hornbaker et al., 1997). Therefore. in the experiments to
determine the phenomenological properties, the samples of very low moisture content
should be excluded. Comparing (5.3.1). (5.3.13). (5.3.14). (5.3.17). and (5.3.21). one may
notice that. irrespective of fluid content and drained conditions, the shear modulus of the

porous media can always be represented by

G=u=nu,. (5.4.6)

which can be directly measured in a laboratory test.

By their definitions. 4’ _and A, are independent of the fluid contents. Hence. these

two coefficients can be obtained by testing the fully saturated samples. For the fully
saturated porous media under isothermal conditions. given K,. K, . and u, as well as
the initial volume fractions of individual phases. one still has A’ . 4,. 4 .and @] to
determine. The last four coefficients may be obtained by correlating them to the
phenomenological parameters such as the drained bulk modulus X, . the undrained bulk
modulus K,.. and the Skempton coefficient B. References on the interpretation and

evaluation of the phenomenological parameters of the saturated porous media are
abundant in the literature. see. for instance. Biot & Willis (1957). and Kimpel (1991).
among others. In the following. it will be assumed that the coupling between the mass

density p” and the volume fraction n* can be neglected. Hence, A7 =0. We will skip
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experimental details and only concern with the correlation between the material constants

of the proposed model and the phenomenological parameters.

Taking the trace of both sides of (5.3.21). one obtain

] 2
g(l co)+a,p’ = n:(/i_\. + ?zx + vjl - E. (5.4.7)

where @, and v are given by (5.3.18) and (5.3.19). respectively. In a fully drained
compression test, the fluid pressure in a saturated sample is constant. i.e. p" =0.

Therefore. by definition. K, can be represented as
: 2
K, =n;}(i._\. +},as +v) (5.4.8)

For a fully undrained compression of a saturated sample. using (5.1.7). (5.1.8).

(3.1.17).(5.2.8). (5.2.9). and (5.4.3). one can prove that

p* =-r(I: E). (5.4.9)
where
(K, +nini@ -n' & K,

0" pe

= — 5.4.10)
nK,+nK, +nn@" ( '

By using (5.4.9). p* is eliminated from (5.4.7). It follows that
é({ :6)=(K, +ma, XI - E) (5.4.11)

where (5.4.8) has been used. By definition, the undrained bulk modulus of the saturated

porous material is now represented by

K.=K,+na, (5.4.12)

97



The Skempton coettficient B can be derived through establishing the relationship

between the mean stress and the pore water pressure. Using (5.4.9) and (5.4.11). one

obtain
[ D W - ”
_}(1"g)= a5+7 p (3.4.13)
Therefore. the pore pressure coefficient is
K,\' =«
B=|la,+—2&| =— (5.4.14)
( . T j K,,
or
7 =BK, (5.4.13)

Inserting (5.4.15) into (5.4.12). we obtain an expression for Biot's coefficient as

[1-&) (5.4.16)

Given K. K,.. and B. parameters 7 and «, are obtained by using (5.4.15) and
(5.4.16), respectively. Now. (3.3.18). (5.3.19). (5.4.8) and (5.4.10) can be solved
simultaneously to obtain 4),. 4,.and @ . It must be pointed out that. unlike 4, and
A,. coefficients @” are generally dependent on the fluid contents for the multiphase
porous media. Therefore. 47 and @ together with A" and @] must be determined

through the phenomenological properties obtained by the tests of the samples with the

specified degree of saturation. In the following, it is assumed that 4°, =0 and 4}, =0.

The first phenomenological parameter to consider is the specific saturation capacity

. (as shown in Fig. 5.1), which is the inverse of the slope of the relationship between
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the matric suction ( p* — p* ) and the specific moisture content (n” ). [n the experiments

to determine such a relationship, the volume of the sample is usually kept constant. [t

follows from (5.1.17) that
p*=p" =n'@'n* -n’@"n", (5.4.17)

where use has been made of 45, =0 and #=0. Since the volume of the specimen is

constant. n” +n* =n = 0. Consequently. (5.4.17) becomes

p¥ - p* =-(n'O0F +n*0*)n* (5.4.18)

lx
I,
>

y n"(=nS,)

Figure 5.1 Evaluation of specific saturation capacity

By definition. the specific saturation capacity /. is

r.=-(n‘@ +n*0")’ (5.4.19)

Similar to those used for the saturated porous media, the other empirical parameters
used to determine the material constants of the unsaturated porous media include various

bulk moduli obtained under various controlled drained conditions. These bulk moduli are

99



the drained and undrained bulk moduli as well as the bulk moduli obtained by the tests
under mixed drained conditions. In a test with mixed drained conditions. the pressure of
one fluid is kept constant (fully drained) and the drainage of the other fluid is completely
prevented. [t must be pointed out that the fluid diffusion in a multiphase system is
generally much slower than the deformation of the solid skeleton. It is therefore difficult.
though possible. to perform the experiments as mentioned above in laboratories. In
practice. some justifiable assumptions. which depend on the problems of concerns. may

be introduced to simplify the theoretical and experimental procedures.

In the following. it is assumed that the assumptions made in (5.3.9) and (5.3.10) are

valid. Taking the trace of both sides of (5.3.13) and using (5.3.12), we get

) | _nnore;

© % (1 F). (5420
K meremer || B 540

- 2
P -ZWS‘\I = nr: ’ls +}4ux -

where p_ and S, are the mean net stress and the matric suction. respectively. and

defined by
I . .
p~,=}1.‘6+p . (5.4.21)
and
S,=p"-p" (5.4.22)
(5.4.20) can be cast into
[ E="Pm Sy (5.4.23)
K.\l H

where K, is the constant-suction bulk modulus. and A is the bulk modulus associated

matric suction. Both K, and A can be experimentaily determined. in tact. experiments.
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show that (5.4.23) can be used to evaluate the elastic volumetric strain tor unsaturated

soils (Fredulund and Rahardjo, 1993: Ch. 12). Comparing (5.4.23) with (5.4.20). one

obtains
J, o2 ) wnerer .
K, =n)| A, +)7;1S - sz + O O _]’ (5.4.24)
and
xe =H'K, (5.4.25)

(5.4.25) can be used to experimentally determine the effective stress parameter y, . With

K., and H given. (5.4.19) and (5.3.11) now can be solved for @" and @" .

[t is worthy to note that (5.4.24) also gives a relationship between the material
constants and phenomenological parameters. However. the last term in the bracket of
(5.4.24) is generally much smaller than the sum of the first three terms so that the value

of K,, may not be explicitly dependent on @' and @) in some cases. Hence. use of

(5.4.24) in determining @ and @' should be avoided.

Thus far. the coefficients yet to be evaluated are the thermal parameters 4 and
A (B=W.N). Coefficient i, represents the coupling between temperature and the

deformation of the solid skeleton. and 45, accounts for the coupling effects between

temperature and the volume fractions of fluids. In the following. it is assumed that

Al =0. Note that (5.4.20) is derived for the isothermal conditions. Under nonisothermal

conditions. (5.4.20) will become
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s

Y /l'\‘ Ay -y -
—Aw =R N 0, —A,, — 4, . d4.2
P = ZwSy =K, (I : E) [ T ,,,Je (5.4.26)

The coefficient of the last term in the RHS of (5.4.26) can be decomposed into

(A o .
n,‘,‘(—-k—’].:& -, J =3K,,a;, (5.4.27)

N

[t is clear that @, is the thermal dilatation coefficient that can be measured by exposing
the material sample to varying temperature while keeping constant suction and zero net
mean stress. Solving (5.4.27). one obtain

/{5 ) K arl

A = ?":z‘w - ——"’1 - (5.4.28)

0

In this section. sufficient information is provided to determine the material
coetficients of the proposed model. Note that the procedure used to evaluate material
constants is not unique. [n practice. a few justifiable assumptions may drastically simplify
the experimental procedure. For instance. as far as unsaturated soils are concerned. only
shear modulus G. specific saturation capacity /.. and bulk moduli / and K, (see
(5.4.23)) need to be determined in the laboratory. Given these phenomenological
parameters. all the elastic parameters in the proposed model can be obtained by using the

relationships developed above. As a particular example. the material constants of the

Massilon sandstone will be evaluated in the next chapter.
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Chapter 6 ACOUSTICAL WAVES IN POROUS MEDIA

As an application and validation of the linear model previously developed. this

chapter is devoted to analyzing the propagation conditions and characteristics of
acoustical waves in the porous media saturated by two immiscible fluids. Simulation of
acoustical waves in porous media is of great interest in geophysics. petroleum
engineering, chemical engineering. and geotechnical engineering. For example. acoustic
waves can be used to improve oil recovery processes (Beresnev and Johnson. 1994); a
detailed analysis of acoustic waves in porous media also finds its application in

interpreting dynamic soil tests (Gajo and Mongiovi, 1994).

In the following. our discussions will be confined mainly to the relatively low

frequency range (< /0" Hz). In a model of porous media. two sets of relationships are
frequency-dependent. i.e. the flow equations and closure equations. It must be noted that
in the linear model developed in the previous chapter. the flow diffusion is assumed to be
linear or, equivalently. the model only considers laminar flow. Biot (1956a&b) had
shown that the laminar flow assumption breaks down if the frequency exceeds a certain
limit. In the closure equation (5.1.17). the viscous terms associated with the capillary

relaxation are omitted. Such an assumption applies only in the low frequency range.
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6.1 Weak Discontinuity Waves

Weak discontinuity is defined such that. through a material surface within the
domain of concern, the acceleration field is subjected to a jump. but the displacement and
velocity fields are continuous over the whole open domain. As will be shown later, such a
discontinuity surface may propagate through the porous media in the form of purely

elastic waves without attenuation.

Suppose that a field ¢ is subjected to a jump at some points in the domain of
concerns (2. and these points form a continuous. ditferentiable surface ¢,(t) (i.e. an
orientable 2-dimensional differentiable manifold). represented by w(x.r)=0. x e 2 (Fig.

6.1). Taking the material derivative of w(x.r) with respect to the motion of the solid

skeleton yields

N

—w(x,[):?-yx(x,t)%— v - Vy(x.t)=0. (6.1.1)
Dt ct

w(x,r)=0

Figure 6.1 Discontinuity surface of acceleration
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Let n be the unit vector normal to /(x,¢) and r be a unit tangent vector. Then.

Vi
n= nt=0. (6.1.2
/{le )

If the gliding on the discontinuity surface in r direction is excluded. it follows trom
(6.1.1) and (6.1.2) that

O’:vx.n:a_‘—w/lqu. (6.1.3)
ot
where U is the only nontrial component of the propagation velocity of ¢, (¢).

From the definition of weak discontinuity. it follows that

lu]=0. [v*]=0. (6.1.4)

where a=S. W, N: [[(o]]=qo’ -¢~. ¢" and ¢~ denote the values of ¢ on the positive
and negative side of the wave front ¢,(t). Using (6.1.4). one obtains the following

kinematical compatibility conditions (a detailed proof is presented in Appendix [II).

Ha" ﬂ =-a"U. (6.1.5)
ct

[vv]=a"®n. (6.1.6)

and

[vVvu]=-U"a"®@nen. (6.1.7)

where a“ represents the normal jump of the spatial gradient of the velocity v* through

¢,(t): ® denotes the tensor product, e.g.. (m® m), =mn,.
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[n the following, our attention is limited to the isothermal condition and all the
temperature terms will be dropped. Applying (6.1.4)-(6.1.7) to (5.2.10)-(5.2.12), it

immediately follows that

nwpU'a =M’ -nn+2n’ua* +M,a" -nmm+ M a" -nn.  (6.1.8)
n pfU'a” =M a’ -nn+M_.a" -nn+M,.a" -nn. (6.1.9)
and
n'p’Ua” =M a* -nn+ M, a" -nn+ M a" -nn, (6.1.10)

Since t-n=0. it follows from (6.1.9) and (6.1.10) that @* -7 =0 and @ -7 =0. That is.
a’ (S =W.N) have only one component. which is parallel to the unit normal vector n.
This result is expected. since the inviscid fluids cannot resist any shear displacement. Let
a’=a’n+d’t and @’ =a’n (S =W.N). Inserting these two equation into (6.1.8)-

(6.1.10) yields

mpU'al =nua’. (6.1.11)
mpU'al =(My +2nmu)a + M.a" + M a". (6.1.12)

n, pyUd” =Mga’ +M,.a" + M, a". (6.1.13)

LA

and

npiUa” =M, a + M. a" + M a". (6.1.14)

Equation (6.1.11) immediately vields the speed of the only rotational wave (i.e. shear

wave) in the porous media as
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and (6.1.12)-(6.1.14) now constitute an eigenvalue problem. and the corresponding

characteristic equation is given by

det(z-U k) =0, (6.1.16)
where
Mo+dmp, M, M,
K= M, My Ml (6.1.17)
M, My, M,
and
z=diagn)p’.n! p*.n’pY). (6.1.18)

Since x and z are positive-definite. (6.1.16) has three positive solutions for .
implying that there exist three compressional (also called longitudinal or dilatational)

waves propagating in the porous media saturated by two immiscible tluids.

[t is now instructive to discuss the effect of the internal constraints on the wave
propagation in porous media. Such kinds of constraints are associated with the
compressibility of the individual components. Assume that a bulk phase (say. the solid
phase) is incompressible. i.e. p* =0 (p’ is an incremental quantity). Using (3.1.17).
(3.1.7). (5.1.8). (5.2.8). (5.2.9). and (6.1.7)., we can prove that there is a constraint among
a® (a =S.W.N) independent of (6.1.12)-(6.1.14). i.e. only two of @” are independent.

Therefore. as pointed out in Chapter 3. applying any internal constraint to the model at

least excludes one mode of the waves.

In a finite element analysis of deformation. it is sometimes assumed for

convenience that the relative acceleration of a fluid can be neglected (Zienkiewicz and
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Shiomi, 1984; Li and Zienkiewicz. 1990). Under this assumption, one has
ov’ /ot = cv* [or=0v¥[dr. and correspondingly, @’ =a" =a". Hence, the set of field
equations. i.e. (5.2.10)-(5.2.12), delivers only two body waves: a rotational wave and a
compressional wave. Generally, in many slow phenomena. e.g. an earth dam under
earthquake loading, the compressible waves due to the existence of the fluids. i.e. the
second and third compressional waves. have little influence on the deformation of the

solid skeleton. Therefore, the assumption made above usually applies in such cases.

6.2 Acoustical Waves

Existence of three compressional waves in the porous media saturated by two
immiscible fluids has been shown in the last section. In reality. all these waves are not the
pure waves and not carried independently by any individual component. In addition. due

to the relative motion of the components. all these waves are dispersive and attenuated.

The body waves in a continuum can be categorized into two kinds. which
corresponds to shear and compression. respectively. To obtain the equations of wave

propagation. the shear waves are first uncoupled from the compressional waves. Let

V-uw'=¢, (@a=S.W.N), (6.2.1)
and

Vxu' =R, (@=S.W.N). (6.2.2)

Applying the divergence operator, i.e. V-(). to both sides of (5.2.10)-(5.2.12) and

dropping all the temperature terms. one obtains the equations of propagation for the

compressional waves as follows.
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E=KkVe+dé. (6.2.3)

d=| -2 o5 0 (6.2.4)

Similarly. applying the curl operator, i.e. Vx (). to both sides of (5.2.10)-(5.2.12).

one obtains the equations of propagation for the shear waves, i.e.

R=hV'Q+dR. (6.2.5)
where 2" =(2,.2,..92,).and
nu, 0 0]
h={ 0 0 0 (6.2.6)
0 00

Consider a harmonic pertubation wave traveling through the porous medium in the

direction n. The solutions of (6.2.3) and (6.2.5) now can be represented by

£ =Aexp[i(§n-x-a)t)], (6.2.7)

and

2= Bexpli(¢n- x - wi)], (6.2.8)

where A" =(A,. 4,.4,). B =(B,, B,, B, ); { is the wave number: o is the angular

Lonvesmen mvre & 1 Teo mmercmmml 2 e n mmceremlaee meccsnnlann L .2 .=
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£, are the real and imaginary parts of £ . respectively. ¢, is usually called the attenuation

l

coefficient. The phase velocity is defined as v = w/¢, .
Inserting (6.2.7) into (6.2.3), one obtains after some rearrangements that
ozt ¢in-iwd)a=0 (6.2.9)
For (6.2.9) to have nonzero solutions. it is required that
det(— 0+ k- iaxi): 0 (6.2.10)

This equation is sometimes called the dispersion relation of the compressional waves.

Given angular frequency @ . (6.2.10) can be numerically solved for ¢ . and therefore the
phase velocity and the attenuation coefficient can be evaluated. In general. for a given
angular frequency . the polynomial expanded from (6.2.10) has three complex roots for
(w/¢) and the wave number ¢ has six roots. However. only three of these roots
physically make sense. since the amplitude of the waves must decrease with time and the
imaginary part of ¢ (i.e. £) is always nonnegative. Therefore. there exist three

compressional waves in general, which are denoted by P/. P2, and P3. respectively. such

that v,, >v,, >v,;.

Before solving (6.2.10), however. it is instructive to examine first its character in
the zero and infinite frequency limits. As @ -0 so that { >0 and w/¢{ becomes

finite. it can be shown from the expansion of (6.2.10) that
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(%)[1_v[%)”=0 (6.2.11)

s M niu e M, M+ 2AM, M+ M)

N

where

v

e Ty T O . (6.2.12)
np' +n p" +np

(6.2.11) implies that. in this particular case. the three phase velocities become v, . 0. and

0. respectively. Physically. this situation corresponds to those wherein all the three

components move together, i.e. 4 — +w0 and 4 - +~o. Alternatively. as @ — +w
such that ¢ -+ and /¢ remains finite. (6.2.10) degenerate to (6.1.16) with
U® =(w/¢) . Therefore. the infinite frequency limit is equivalent to the case with no

viscous coupling. that is. 2* -0 and 4 — 0. The corresponding waves are usually

called the purely elastic waves (Biot. 1956a).
Similarly. inserting (6.2.8) into (6.2.5) vields
w7+ h-ivd)B=0. (6.2.13)
and the corresponding dispersion relation of the shear waves is
det(- w2+ ¢ h-id)=0. (6.2.14)

For a given frequency . (6.2.14) has only one nonvanishing solution for (w/¢) . i.e.

there is only one shear wave (called the S-wave). As @ = 0 and w/{ becomes finite.

s
.. n, l
2, 0 s
v, =V wow

w0 = Y S vy N
np +n) p" +njp
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v, given by (6.2.15) is the velocity of the shear wave when all the three components
move together. As @ — + and /¢ remains finite, equation (6.2.14) degenerate to

n’ p*(@/¢) =n)u,. Clearly, this case corresponds to those wherein viscous coupling

vanishes. The velocity of the shear wave is now given by (6.1.15).

From the discussions given above, it is clear that in a low-frequency range there are
only one compressional wave and the shear wave traveling through the porous medium.
and the strong viscous coupling leads the three compressional waves to coalesce into a
single front. As mentioned in the end of the last section. in many tinite element analyses
of geotechnical structures subjected to dynamic loading in the lower frequency range. it is
generally acceptable to drop the relative acceleration terms of the fluids. The only
consequence of dropping the relative velocity ot the fluids is the exclusion of the effect of

the second and the third compressional waves on the deformation.

6.3 Evaluation of Material Constants

This section further concerns the material constants of the linear model presented in
Chapter 5. To this end, Massilon sandstone will be introduced as an example. The
material and acoustical properties of Massilon sandstone are well documented in the
literature (see. Murphy. 1982; Murphy, 1984: Bourbié et al. 1987: Ch. 3), and the
material parameters are summarized in Table 6.1. In the following, it is assumed that the
coupling between the mass density and the volume fraction of a fluid is negligible. This

assumption is reasonable for geomaterials as discussed in Chapter 5. Therefore, one has
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A% =A% =0.0. Under the isothermal condition, the following parameters remain to

specify: A,, uy. A, @Y, @, i* Jand 4°.

pe ¥ n

Table 6.1 Material Parameters of Massillon Sandstone Saturated by Water and Air

Material Parameters Symbol Value Unit
Porosity n 0.23 -
Density of solid grain p’ 2650.0 kg/m’
Density of water P’ 997.0 kg/m’
Density of gas P’ 1.10 kg/m’
Bulk modulus of solid grain K, 35x10° kPa
Bulk modulus of water K, 225x10° kPa
Bulk modulus of air K, 0.11x10° kPa
Viscosity of water M 1.0x107 Pas
Viscosity of air My 1.8x107° Pas
Intrinsic permeability k 23x107" m
Bulk modulus of the matrix K 1.02x10° kPa
Shear modulus of the matrix G 144x10° kPa

The last four parameters are generally dependent on the degree of saturation. @
and @ can be obtained using (5.4.19). (5.4.25), and (5.3.11). For Massilon sandstone.

however, the explicit relationship between modulus A and the degree of saturation S, is

not available. An alternative equation must be introduced. Experiments show that
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although there is some discrepancy y, is always located in the vicinity of S, for many
types of porous materials (Donald. 1961: Blight, 1961). Therefore. in the following it is

assumed as a first approximation that y, =S, . With (5.4.19). and (5.3.11), one obtains

)
A e (63.1)
s
and
WO =" -n'@". (63.2)

The specific saturation capacity 7, is calculated through the moisture retention curve. i.e.

the relationship between the matric suction (S,,) and the degree of saturation. Here.

Brooks and Corey (1964) expressions are employed. i.e.

S,(S)=p,S"*. (6.3.3)

where p, is the air-entry value pressure. A a positive constant to be specified. and S,

the effective degree of saturation given by

0.0 S <S,

S = S. =S S,<S <S,
S-S,
1.0 S 28,

where S, and S, are the residual and air-entry degree of saturation. respectively.
Coefficients 4” (8 =W.N) can be related to the permeability by

o 2 O,
T k(")

o~
(N
[PS]

1 59
N
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where £ is the intrinsic permeability of the porous medium; n, and k” represent the

shear viscosity and relative permeability of /£ -fluid. respectively. According to Brooks
and Corey (1964), the relative permeabilities for the liquid and the air are given by

kY = St (6.3.9)
and

kY =(1-8)(1-8%44), (6.3.6)

respectively. Since no data for the moisture retention and the permeability of Massilon
sandstone are available. the following values of parameters are chosen in the analysis:
p,=30 kPa, 4=15.S,=01.S, =085~ 10. The moisture retention curve of the

sandstone and the relative permeability curves of the liquid and air are shown in Fig. 6.2a

and b. respectively.
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Figure 6.2 a) Moisture retention curves for Massilon sandstone: b) Relation between
relative permeability and degree of saturation. ( Krf = k”)



To evaluate the elastic constants of the solid matrix, (5.4.24) can be employed.
Since the last term in (5.4.24) is O(max(@” , & )) which is several orders less than the

bulk modulus of the matrix for geomaterials. It is therefore reasonable to set

(6.3.7)

where K is given in Table 6.1. and x, directly obtained through (5.4.6) as 1.87x10°
kPa. If 4], is known, 4, can be computed through (6.3.7). To evaluate A’ . however. it

Is necessary to introduce other phenomenological parameters, such as the pore pressure

coefficient B and the drained bulk modulus of the matrix K, . which are unfortunately
lacking for Massilon sandstone. On the other hand. parametric study shows that for wave
propagation problems no significant change in the results can be observed with £,
varying from 0 ~ /x /0" kPa provided that A, is calculated through (6.3.7). This can be
easily understood from the fact that all the elements in the matrix & of (6.2.10) are
influenced very slightly by the choice of A}, for instance., M = K ++4/3n, u, . which is
only influenced by K and y,. Correspondingly, from (5.3.18). the Biot coefficient «,
may be varied from /.0 down to 0.56 with varying 4. Such a range of a, covers those
values that most kinds of geomaterials may have. Hence. we simply choose
A', =1.0x 10" kPa or correspondingly a, =0.78. and from (6.3.7) A, = 2.935x /0° kPa.

Thus far. all the material parameters are evaluated. and polynomial equation (6.2.10) and

(6.2.14) can therefore be solved numerically.
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6.4 Analysis of Numerical Results

In the following, based on the solutions to (6.2.10) and (6.2.14), the behavior of the
acoustical waves in the sandstone saturated by water and air are discussed in details.
From these discussions. some general acoustical behavior of the porous media saturated

by two immiscible fluids will be deduced. In the examples presented in this section. S,

is chosen as 95%.
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Figure 6.3 Influence of the degree of saturation on the velocities: a) P/: b) P2: ¢) P3:d) S
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Figure 6.3 illustrates the influence of the degree of saturation on the velocities of
the various types of waves for four different frequencies, i.e. 300. [000. 1500, and 2000
Hz. In Fig. 6.3a. it is shown that as the degree of saturation increases the velocity of the
first compressional wave P/ decrease slightly. When §, >95% . v,, rapidly increases
with §,. Two mechanisms may be used to explain this observation: on the one hand. v,

decreases with increase in the density of the mixture: on the other hand. v, increases

with decrease in the compressibility of the mixture. Since the air is much lighter and

more compressible than the water. in low saturation range. the decrease in v, due to the
water replacing the air in the pores cannot be compensated by the increase in v, due to
the decrease in the compressibility when S, increases. In higher saturation range.
however. the increase in v, due to the decrease in compressibility much overweighs the
decrease in v, due to the increase of the density of the matrix. Fig. 6.3a also shows that

for all the four frequencies no significant differences in the corresponding velocity curves

can be observed.

Fig. 6.3b shows that similar to v, the velocity of the second compressional wave

v_, decreases with the degree of saturation increasing up to 83% and then it increase

pl
rapidly when the porous material approaches the fully saturated condition. It is also seen
that within the frequency range 500~2000 Hz the P2 of higher frequency has higher

velocity. As shown in Fig. 6.3c. unlike v, and v, . the velocity of P3 increases with S,

pl

increasing up to about 75% and then decreases. When S. < S, or §. > S, . v., vanishes
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and P3 disappears. This implies that the third compressional wave coexists with the
capillary pressures. and whenever the matric suction vanishes P3 disappears. Similar to
v,, . the P3 of higher frequency also has higher velocity. Fig. 6.3d shows that the velocity
of the shear wave slightly decreases with S, increasing. The reason for this is that the
decrease in v, due to the increase of the density of the matrix is always dominant with

the water replacing the air in the pore space. It can also be seen from Fig. 6.3d that within

the frequency range 300~2000 Hz. the effect of frequency on the shear wave is trivial.
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Fig. 6.4 illustrates the effects of the degree of saturation and the frequency on the
attenuation coefficient (i.e. ¢,) for the four different waves. As expected, in all the cases.
the waves of higher frequency always attenuate more rapidly. When S, <350% . slight
attenuation is observed for the P/ of frequency more than /000 Hz (Fig. 6.4a). For the S
wave (Fig. 6.4d) and P/ wave of frequency lower than 300 Hz, the attenuation is trivial.
When S, >350%. S and P/ are attenuated rapidly with the increase in saturation and the
attenuation reaches a peak value at around S, =S, . where the air phase is trapped in the
water. Existence of peak values in the attenuation curves of Pl and S waves was also
observed by Tuncay and Corapcioglu (1996). whose analysis was based on a linear model
developed by using a averaging procedure (Tuncay and Corapcioglu. 1997). In Tuncay
and Corapciogiu’s work. moisture retention curve is represented by Van Genuchten's

relationship (Van Genuchten. 1980). which is smooth for S, < S, < S, .

It is noted from Fig. 6.2b that the relative permeability of the water become
significant only when S > 30 %. Therefore. it is quite clear that the attenuation of P/ or
S is dominated by the (local) fluid diffusion. The same conclusion has been drawn by Yin
et al (1992) in interpreting experimental data. Fig. 6.4b shows that at §, =82% the
attenuation of P2 reaches its peak and whenever one of the fluid phases disconnects it is
minimal. [n contrast. as shown in Fig. 6.4c. P3 attenuates strongly when one of the fluid

phases tends to disconnect and the attenuation of P3 has smaller values in between S,

and S, . This again implies that there exists an affinity between P3 and the capillary

nl-\nnnmnnnn
prravasvalavasaa.
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The effects of frequency on the waves have been briefly discussed above for the
frequency range from 300~2000 Hz. Figures 6.5 and 6.6 illustrate these effects in a much
wider frequency spectrum. It is worthy to be noted that because of the frequency-
dependent behavior of acoustical waves the cases of frequency more than /0° Hz are
more mathematical than physical in nature. Furthermore, in the higher frequency range
where wavelength may be less than the size of pores. the continuum assumption breaks

down. Hence. the following discussion is limited to the frequency range less than /0’ Hz.
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[n the acoustical range (< /0® Hz.). the current example shows that the effects of
frequency on the phase velocities of P/ and S are small. In ultrasonic range (> /0’ Hz.),
however, this may not be the case. As shown in Fig. 6.5a, the velocity of P/ can be
greatly influenced by the frequency in ultrasonic range. Unlike P/ and S. the effects of
frequency on the second and the third compressional waves are significant, as shown in
Fig. 6.5b&c. For these two waves. the phase velocity increases with the frequency

increasing in the range of 0~10° Hz. As expected, for all the waves, the attenuation

increases with the increase in the frequency.
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From the above discussions. it is clear that unlike P/ wave and S wave P2 and P3
are very sensitive to the frequency and they attenuate rapidly. Therefore. P2 and P3
waves are not true waves and they are associated with some kind of dissipation. Among
all the waves, the shear wave has lowest attenuation. The first compressional wave P/ is
the fastest and attenuates more slowly: the second compressional wave P2 is slower than
P but faster than P3. P2 is sometimes called Biot’s wave and it has a higher attenuation
coefficient than P/. The slowest wave is the third compressional wave P3. and
furthermore P3 is most strongly attenuated. In reality. it could be extremely difficult, if
not impossible. to observe P3. Even the second compressional wave P2 can not be
routinely observed in the laboratory. In fact. the first formal observation of P2 was not
reported until 1980 (Plona. 1980: Berryman, 1980). almost 25 years after Biot presented
his theory (Biot, 1936a). It is noted that the elusive nature of P2 and P3 does not mean
that they are not important. Since P2 and P3 may consume significant energy during
numerous reflections and transmissions on the interfaces (Geertsma and Smit, 1961). it is
important to understand the characters of these two waves so that the acoustical behavior

of porous media can be properly described.

6.5 Comparison to Experimental Results

In this section. the numerical results presented above will be compared to the
experimental data on the acoustical waves in the Massilon sandstone saturated by water
and air (Murphy, 1982 & 1984). The material properties are the same as those given in

Table 6.1 and discussed in Section 3. except that S... is chosen as 0.85. As will be seen



later, for S,, =0.85 ~ 1.0, the effects of S, on the phase velocities of S and P1 waves

are trivial. However, the choice of S, will significantly influence the attenuation.

The calculated and measured velocities of the first compressional wave P/ and the
shear wave S are shown in Fig.6.7. from which it can be seen that the agreements
between the theoretical and experimental results are favorable. As the model predicted.
the velocities of P/ and S slightly decrease with the degree of saturation increasing. For
P1. the experiment shows that close to the fully saturated conditions the phase velocity

increases rapidly. This feature is properly captured in the predicted results.
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Figure 6.7 Comparison of calculated and measured phase velocities of P1 wave and S
wave (Experimental data after Murphy (1982))

The calculated and measured results for the attenuation of waves are presented in
Fig. 6.8. The attenuation is now represented by a dimensionless quantity Q' i.e. specific

attenuation. defined by



Y% Jﬁ{%,{‘ 6.5.1)

where ¢, and ¢, are the real and imaginary parts, respectively. of the wave number.
Physically. the specific attenuation represents the energy loss per cycle. Although the
dissipative mechanism of waves remains unclear, many factors are believed to have
contributions to the energy loss. Such factors include intergranular friction, breakage of
chemical bondage. capillary force. tluid/solid inertial coupling, various relaxation
processes. local fluid diffusion, and so on. On the other hand. the theoretical model used
in the analysis is a linear elastic model so that it can only account for the attenuation due
to the local diffusion. Therefore, it seemingly does not make sense to compare the

theoretical results directly with the measured data.
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Figure 6.8 Comparisons of calculated and measured attenuation of P1 wave and S wave
(Experimental data after Murphy (1982))
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By extensively analyzing the experimental data, Yin et al. (1992) proposed that the

measured attenuation of waves may be viewed as the superposition of three portions: the

effects of open pore boundary Q"

> the local fluid diffusion 0, . and the viscoelastic

frame deformation Q.. The last one is independent of the degree of saturation.

Therefore, under a certain experimental condition. the attenuation due to diffusion may
be obtained as O/, = O~ = Ojvm - Using this method. we redrew Murphy (1982)'s data
in Fig. 6.8. It can be seen that the theoretical predictions are reasonably good when
S,<S,,. As S, exceeds S, and approaches 100%, however, the theoretical results

significantly deviate from the experimental data for both P/ and S.

Both experimental and theoretical results show that the calculated phase velocity of

P! has a peak value. From the theoretical results. it is noted that v,, reaches its peak
when S, is about S, . i.e. when air phase is disconnected and trapped in the water. To

ascertain this observation, Fig.6.9 further presents the calculated velocity and attenuation

of PI corresponding to different S, values. It is shown that although the velocity of P/
is not significantly influenced by S . the attenuation of P/ has a peak value when

S. =S, forall different S, .

Experimental studies may be needed to confirm the correlation between the peak

value of the attenuation of P/ and S, . On the other hand. sufficient experimental data

shows that the attenuation of P/ reaches a peak at the saturation ranging from 85%~95%

(Murphy, 1982&1984; Yin et al., 1992). Yin et al. (1992) provided an explanation for



this phenomenon. They noticed that when the degree of saturation is about S, the air

phase exists in the water only as separate pockets. As a P wave travels through the porous

material containing separate air pockets, the large compressibility contrast between the

water and the air generates local liquid flow around the air pocket. which consumes

energy from the P wave. A quantitative analysis of this mechanism is provided by Yin

(1992), where he showed that the peak of the attenuation of P1 is reached approximately

at S, =S,. Clearly.

conclusions.

the theoretical result presented above supports Yin et al.’s
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Figure 6.9 Effects of S, on: a) the velocity of P1: b) the attenuation of P1

As mentioned above, the attenuation is overestimated for P/ and underestimated

for S when the degree of saturation exceeds S,,. The discrepancy may be explained as

follows. In compression. the interstitial liquid offers resistance due to its low
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compressibility. For higher saturation, the gradient of local liquid pressure is lower in the
pores. Therefore. based on the local fluid flow mechanism by Yin et al. (1992), when

S, > S, the higher saturation leads to a more uniform pressure distribution and hence

the lower energy dissipation. In shear. however. the gradient of local liquid pressure may
be higher due to the higher saturation. Hence, greater attenuation is expected when the
saturation increases. In the present simple model, the effect of local fluid flow around the

air pockets has not been properly considered. Hence, great discrepancy in the high

saturation range is expected.

Although the wave attenuation has great potential use in practice (e.g. in
monitoring oil recovery processes), it remains poorly understood and underutilized. It
must be pointed out that in higher saturation the effect of local diffusion will become

dominant in attenuation and a simple linear elastic model may be not sufficient to account

for such complex phenomena.



Chapter 7 INITIAL AND BOUNDARY VALUE PROBLEMS (IBVP)
AND FINITE ELEMENT SOLUTION PROCEDURES

7.1 Preliminaries

In this chapter. the initia/boundary value problems (IBVP) of porous media and
their solution procedures are presented. The governing equations presented in Chapter 4
are very general in the sense that they account for thermal effects and finite deformation.
In what follows. however. our attention will be focused solely on the mechanical aspects

of the porous media. and it is assumed that

1. the material is in the isothermal condition. i.e. 8 =6, ;

2

deformation of the solid skeleton is infinitesimal. In this case. the current
configuration is approximately coincident with the reference configuration.

FxIl+¢e.e=sym(Vu').and J=detF = [+ :¢.

(9]

body force is due to the gravity, i.e. U =-bx. b is the gravitational

acceleration. which may also include those induced in centrifuge testing.

In addition. the effects of capillary relaxation will be neglected. This is equivalent to the
assumption that the capillary equilibrium can be achieved immediately. It is also assumed

for convenience that the hysteresis in the capillary pressures is negligible. The cross
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effects (i.e. Knudsen effect) of the relative velocities of fluids on drag force R” in
(4.4.19) will be dropped in the following derivations. Therefore, it follows from (4.4.12),

(4.4.13), and (4.4.7) that
R=R/m’ =-J"M", B=W.N (7.1.1)

where coefficient J” is a second-order tensor and can be related to the permeability

coefficient of Darcy’s flow equation as discussed later.

To derive the weak statements of the IBVP., we first define the space of
configuration and the space of variation. Let L° denote the Hilbert space of all the

generalized displacements ¢ : &x[0.x) — R* that are square integrable. i.e.

loli: = [l av <. (7.1.2)
where ¢ can be a scalar object or a vector object: dim is 3 for vector fields and / for
scalar fields. Let H' be the Hilbert space of ¢: &x[0.0) = R“™ such that ¢ and the

gradient Vo belong to L*. For our purpose, it is sufficient to define the spaces of

configuration and variation as follows.

C={p:Ex[0.0) >R"™ | peH'.p=ponl,} (Space of configuration)
and

7 ={n:8->R"™| neH' . n=0onr,} (Space of variation)

where [, represents the boundary with @ being specified as @ . It is noted that 7 is a

function of spatial coordinate only and independent of time.
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In general. the choice of the generalized displacements in describing the problem is
not unique. In what follows. two sets of generalized displacements will be introduced to

represent the [BVP. The first one has been used in Chpater 4 to derive variational
equations and includes {u’.M" M"}". For an [BVP, the boundary conditions

corresponding to this set of displacements are specified as

o Essential boundary conditions

u'=u on I, (EB1-1)
M =M onr,,. (EB1-2)
M*=M"  onrl,. (EB1-3)

where (M?), represents the total mass of A -tluid that has flowed through unit area of
I, (i.e. the relative mass displacement of the fluid) in i" direction.

e Natural boundary conditions

e-n=f on [ . (NB1-1)
G* =G* onrl,. (NB1-2)
G'=G" on [, (NB1-3)

where G can be related to the specified pressure p” through (4.2.7). For convenience

and without losing much generality, it is assumed that the boundary of the domain can be

additively decomposed into various sets of two disjointed parts and

8é’=l"cu[:=[”’;,u1:,,=[T;‘.u1:". (7.1.3)

* n" and n" are not used as generalized displacements here, since they can be viewed as the internal
variables associated with the capillary equilibrium and relaxation. In a finite element procedure. internal
variables are usually eliminated at the Gaussian (i.e. quadrature) point level.
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and

l"”ml‘u=1”l;,m1f\l,.=1"\m[‘\=¢ (7.1.4)

M

where @ denotes the zero set. The meaning of (7.1.3) and (7.1.4) is schematically shown

Fig.7.1.

Figure 7.1 Boundary conditions

As discussed in Chapter 6. if the higher frequency modes of the problem is not of
main concern. for instance. when a structure is subjected to earthquake loading. wave
loading or static loading, the effects of the relative accelerations of fluids on the behavior

of the porous medium are negligible”. In such cases. {#’.G".G"} can be introduced as
the fundamental unknowns in describing the IBVP. Since G” is related to p” through

(4.2.7), {u’.p".p"} can also be equivalently used as a set of generalized displacements.

The corresponding boundary conditions remains to specify are

o Essential boundary conditions

w=u on . (EB2-1)

* This assumption is not too stringent in applications, since the high frequency modes of a loading may be
damped out when stress waves propagating through the porous media.
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=p" on 1'; ‘e (EB2-2)

pi‘
p* = B onrl,. (EB2-3)

e Natural boundary conditions

c-n=f on [, (NB2-1)
MY -n=n"p"w" on r,. (NB2-2)
M'-n=n"p'w’ onrl,. (NB2-3)

where W’ represents the component of the relative velocity of 4-fluid in the direction

normal to the boundary. Similarly, it is assumed that the boundary of the domain can be

additively decomposed into various sets of two disjointed parts ( /,. [, )and (/. [ ,).

7.2 IBVP: Form |

Let {u’. M" .M"} be the set of the generalized displacements and {¢. 4" .q"} be
the corresponding variations. With the assumptions and boundary conditions introduced
above. the statement of the initial and boundary value problem (IBVP) can be obtained
by a simple specification of variational equation (4.4.24) and the principle of virtual

dissipation presented in Chapter 4. That is,

Weak form 1: Given b, @. M”. f. and G* (f=W.N ) as well as proper
initial conditions. find solution {u*. M" M"} e £ x ¢ w XC,,, such that. for

any {¢.q4".q"} e/ x /"

xXF .
(Vd LA
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L[¢.(pa-" —pb+ Y M*)+ Y q" (i’ ~b+M* Im! AV

A= ¥ A=W.N

+L[svm(V¢) o+ Z(G”V gV + L St -(JIM YV (W-1)

A=Wy

[ #sav+ % L<G m)dd4 =0,
M 4= N

[n deriving (W-1). the higher order small quantities have been omitted: p is the total
mass density of the porous medium. i.e. p=m, + m* +m" . The initial conditions of the

problem is specified as

w’'(x.t,))=u(x). @'(x.1,)=v,(x). (IC1-1)
M (x.,)=M)(x). M"(x.1,) = M" (x). (IC1-2)

and
MY (x.t))=M} (x). M*(x.1,)= M (x). (IC1-3)

Eliminating R* from (4.1.17) by using (7.1.1) and (4.4.7). we can see that in fact J* can

be related to the permeability tensor as

k”k
I =(p") ’7— (7.2.1)

where k is the intrinsic permeability tensor [m’] and generally a function of porosity and

deformation: £’ is the relative permeability of B-fluid and it can be represented as a

function of n* ; p? is the viscosity of f#-fluid [Pa s].

In general. stress tensor ¢ and chemical potential G’ (B =W.N) can be
expressed as functions of {¢.m".m"} and internal variables {¢,.n".n".q,} through

stress-strain constitutive relationships. i.e.
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a=d(e,m".m" ¢,.n" .n"q,). (1.2.2)
and

G’ =G"(e.m" ,m".¢ 0" .n".q,). (7.2.3)

where the generalized strains {g¢, m*.m"} are related to the generalized displacements
(. M* ,M"} through (3.1.15) and (4.1.3); &, is the plastic strain tensor: g, represents
other internal variables accounting for hardening, damage, and other internal dissipative
mechanisms. It is noted that in a continuum model. all the internal variables can be
viewed as the functions of {e.m" .m"} . Therefore. we can write the incremental forms of
(7.2.2)and (7.2.3) as

de=C:de+c”dm” +c¥dm”, (7.2.4)
and

dG* =e” :de + " dm” +C¥dm” . (7.2.3)

respectively. where the coefficients are called the tangent moduli; C is a fourth-order
tensor; ¢’ and e” are symmetric second-order tensors. For hyperelasticity-based models.

it can be easily proved that ¢” =e” and C has major symmetry, i.e. C,, =C,, .

It is noted that (7.2.2) and (7.2.3) are not conventionally used in modeling the
behavior of porous media due to the involvement of m” . Biot (1972, 1977) is the first to
use m* (m” = m for saturated porous materials) as a constitutive variable. Variable m
has been used subsequently by Rice (1975) and Coussy (1989. 1995). Recently. it is

introduced by Amero (1999) into a numerical model of the porous media at finite strain.

where m ic additivelv decomnoced into an elactic nart and an irrevercible nart The
where m 1s additively decomnpased into an elastic nart ang an irreversible part,
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irreversibility of m” is well motivated by experimental observations. In fact, for the
porous media saturated with multiple fluids there are at least two components

contributing to the irreversible part of m”, i.e. ¢, and nf,’. The latter has been defined in

Chapter 3 as the plastic part of the volume fraction. With introduction of (4.2.7), (7.2.5)

can be equivalently written as

dp” =B’ :de+Z"dm" + Z"dm" (7.2.6)

where B?. Z". and Z" are the tangent moduli represented as functions of state
variables. Equation (7.2.6) has been derived and discussed in details by Coussy (1995:
pp.385-441). All the moduli in (7.2.4)-(7.2.6) can be evaluated if the stress-strain

constitutive relationship and the closure equations are explicitly given.

To obtain the finite element formulations of (W-1), let the domain of concerns be

additively decomposed into nel disjointed elements, that is.
£=) Q (7.2.7)

where 2° (e=1[.2....nel) represent the elements connecting with each other through
nod nodal points. Let &r,. M". and M be the ith components of the solution
fa'.M" M"} atnode A of element e. Following the standard finite element procedure
(e.g. Hughes, 1987). we write the discretized forms of variables {u’(x.r). M"(x.t).

M?¥(x.t)} for xe 2" and t € [0.T] as

w”(x.)=N(x)a,().oru” =N'ir . (7.2.8)

M™(x,t)=Ni(x)M7 (1), ot M* =NM" (7.2.9)
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and

M™(x,0)=N{(x)M}(t),or M* =NIM", (7.2.10)

where superscript # denotes the discrete counterpart of a continuous variable; capital
letters A (or B) used as a subscript represents the element node number. and letters i (or J,
k. ) as a subscript represents the spatial direction. Summation convention is used here.
¢.g. the repetition of A implies that the summation is repeated from / to n°". where n:"
is the total number of nodes in an element. N¢(x) (a =1.2.3) is the shape function of
node 4 associated with S. /¥, and M. respectively, and it satisfies V7(x,)=4,. where

X, 1s the spatial coordinate of node B and &, is the Kronecker delta.

Let <"and /" be finite-dimensional approximations to ¢ and /. respectively.

Then. <" can be considered approximately as a subset of <. while 7" is a subset of

@

#; . For instance. if u* ec" . then «” e . Let {¢". 4" .q™} be the discrete counterpart

of the variations. which have the forms similar to (7.2.8)-(7.2.10). respectively. The
Galerkin formulation of the problem therefore follows directly from the weak form (W-1)
by replacing {&’.M*. M*} and {¢.4".q"} for {u™. M" M™} and {4".q".q™}.

respectively. This yields the coupled finite element equations as follows.

YN oAV + 3 (i) + Z(:fwﬁg) + Z(‘Z,ZBI"’[—.;) =Y ‘F,. (FEl-])
YL NG AV + Y (el My) + T (i) + X2 My) = L F). (FEL-2)
and

g

Y NGV + T e M+ Y (i + Y (22 M) =Y FL. (FEL-3)

¢
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where

“ziw =0, [, NNV, (FE1-4)
i =0, [ (m ) NNV (FEL-3)
=0, [ (m") NNV (FE1-6)
T =0, [ NINdV=2n (FEL-7)
o =0, [ NNV =z, (FE1-8)
‘hy= | JININAY (FE1-9)
Chy= | JININGY (FE1-10)
“Fo= [ pN'bdV + L__,_f:.v;/;dA. (FEL-11)
Fo=[ NibdV- jm,ﬂ NiG¥ndd. (FEI-12)
and
Fo= [ Nbav-| . NG ndd. (FEI-13)

where J/ denotes the component of J*: 802° N ", represents the part of the element

boundary coincident with the domain boundary where G* (or equivalently. p” ) has been

specified (see Fig.7.2).

Figure 7.2 The specified element boundaries 842° N I j',



(FE1-1)-(FE1-3) can be assembled into a more compact matrix form as

F*+cd+zd=F* (7.2.11)

where the components of displacements d are given as follows,

w, M M)y, (7.2.12)

't

a is the global node number: the elements in the bracket are read in order as follows:
index a is repeated from | to nod . which is the total number of the nodal points, and for

every a. index i is continuously repeated from 1 to /, ([, is the spatial dimension of

dim
the problem). It is noted that if a certain variable is specified on the boundary it must be

excluded trom (7.2.12).

F™ is obtained by assembling the element internal force ‘F™ with the following

components.
. NLo,dvV. [ NGV, [ NG dV}. (7.2.13)
Hence, we write
el
F™ =A(F™). (7.2.14)

el
where @l is an operator representing the assembling procedure of the global matrices (a

detailed account of implementation can be found in Hughes (1987: Ch.2 & Ch.3).
Similarly. the global external force F™. the global matrices c, and z can be obtained by

assembling their element counterparts. i.e.

nel
c =el(‘c). (7.2.15



m= 5(7) , (7.2.16)

nel
F~ =5(‘F"’). (7.2.17
where
[0, 0. 0
‘c= , ‘et. 0 |, (7.2.18)
, 0 :cJJ

‘7= 27, 0 (7.2.19)

and “F* is the element external force vector with components as follows,

CFLFLLCF) (7.2.20)

ul

[t is noted that ‘¢ and ‘z are symmetrical and hence ¢ and z are symmetrical. This

feature is desirable in a numerical procedure.

7.3 IBVP: Form 2

Here. displacement of the skeleton (#'). pore water pressure ( p" ). and pore air
pressure ( p*) are used as generalized displacements. Let their variations be ¢. 7" . and
7" . respectively. (4.1.8) and (4.1.3) can be chosen as the coupled field equations. which
are associated with @’ and p? (B =W and V). respectively. With the assumptions and

natural boundary conditions introduced in Section 7.1. the weak torm of (4.1.8) can be

expressed as
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[opiil ~0,,~pb)dV = [ [pptiil ~b)~¢,0,1dV - [ 4fdd=0 (13.0)

As will be seen later, it is more convenient to use the rate forms of mass
conservation equations than the original form (4.1.3). Take the time derivative of (4.1.3)

and divide both sides by p”. The weak formulations of the mass balance can be put as

0= L;ﬂ(m” +M?)/p? dvV

. ., (1.3.2)

= L(n""n’x”/p” -7 M* [p*)dV + [ 7' MY [ pPdA.
)

where M? =n”p’Ww”: f=W.N. Since the relative acceleration of a fluid is omitted.

.W," can be eliminated from (7.3.2) by introducing the flow equation (4.4.19). Inserting

(7.1.1) and (4.2.7) into (4.4.19), it follows after some manipulations that

. i ﬂ -
M= [_@7+b-ii-‘J (133)
P
or
i , p’
M2 =" ),,(——';4»17, - i ] (73.4)
p

Now, eliminating ] # from (7.3.2) by inserting (7.3.4) vields

Kk .
[ ’7')'7 e+ P Y

. k'K,
- [

p"b,dV—I_ 7n’ W’ dd
2

where =W .N. Itis noted that (7.2.1) has been used in (7.3.5). Finally. we obtain the

weak statement of the initial/houndary value problem (IBVP) as follows.
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Weak form 2: Given b, #. 5”.f. and w’ (B =W .N) as well as the initial
conditions (IC2): &’(x,1,)=u,(x), &’(x,1,)=v,(x), and p*(x.1,)= p’(x).
find solution {u’, p* p*} € ¢ xc7y 7, such that, for any {.7%.7%} €

Fx /";”. x ﬁ;\ .(7.3.1) and (7.3.5) must be satisfied.

Similar to the procedure followed in last section, in order to derive the finite

element formulations of the [BVP. we first cast {#’. p*.p*} and {g.7".7"} into the

finite-dimensional forms associated with the spatial discretization. that is.

u;% = IV’I‘I—(“’ M ¢: = [V:¢—41 (7‘3'6)
p* = NpY . " = N (13.7)

and
P =NF. 2 =N (138)

where {u”.p" . p™} € K,"xz;ﬁ x(ﬁf and {p”.7". 7"} € &;”er: xVP: are the

finite-dimensional counterparts of the generalized displacement and its variation.

respectively. Since ¢" is a subset of <] and #;" a subset of /. (7.2.6)-(7.2.8) must

satisfy the discrete forms of (7.3.1) and (7.3.5). Noting the ¢.*. 7*". and 7" are the

arbitrarily chosen small quantities. we deduce that

Y LN o,V + Y (i) =2 CFl (FE2-1)

YRGB+ [ N AV + Y (i) =Y F (FE2-2)

and
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Z('x’j,p,,)+21 N m”dV+z(*_j;f,,,)-z F). (FE2-3)

where “z)\, and ‘F, are given by (FE1-4) and (FEI-11), respectively:

Ky= L' ‘V';,(k’uk”/ﬂ )Nli/dV (FE2_4)
Ko = [ NLEk, /0N, AV (FE2-5)
A IH. Ni(p" klk, "INV . (FE2-6)
= LN Kk NV (FE2-7)

‘Fi= L NP Kk )b dY - [_n, - Nin"w¥dd . (FE2-8)

and
eF‘! - J'nl [Vi’(py k’,vk"/q.\')b/dV _ J;a‘lr‘ ‘an’vW:dA. (FE2'9)

where 302° n I"’, represents the part of the element boundary coincident with the domain

boundary where the fluid relative velocity w” has been specified.

Taking the time derivative of

m’ =m’ -m’ =Jn"p" -n’p’. p=W.N (7.3.9)
one obtain
iy
m_ u +n +n”p (7.3.10)
p’ P

where n” can be evaluated by using the closure equations discussed in Chapter 4. and if
the viscosity due to the capillary relaxation are neglected. we may simply assume that
s

n’ = n’(¢,.p".p"). In addition. to be consistent with the assumption made in (4.2.7).

]

p? is assumed as a function of p” only, i.e. p? = p”(p”). Therefore. (7.3.10) can be

cast into
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md
" =90 + 9/ p* + 9! p* (7.3.11)

The finite dimensional counterpart of (7.3.11) is

(] p") = $%i® + 92 p* + 9 p* (7.3.12)
where
i an M1
3 =n’ +—a— (7.3.13)
£,
By ]
9 = ”[?””’ o (7.3.14)
s 9P
and
] P
97 = "[f“" + g”v . (7.3.15)
] P

Here. 0, has the same meaning as the Kronecker delta. i.e. 5, =/ when @ =/ and
0, =0 for otherwise: K, is the bulk modulus of # component and defined by

&

pTGp” (7.3.16)

u:

[t is noted that in general 97. 9.and 9/ are changeable. Inserting (7.3.12) into (FE2-2)

and (FE2-3) yields. respectively.

S CKEBY )+ S+ et + Bl )+ L) = T Fl. (FE2:2)

and
Y KBy )+ Y (Clplty Py + D)+ 2. (T, )= F/ . (FE2-3y
where
‘i = [ NVIIN, AV . a=2.3 (FE2-10)
and
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ch= [ NNV . a. f=20r3 (FE2-11)

It is noted that, in (FE2-10) and (FE2-11). 9; =9, and &, = 3, : Here, the summation

convention does not apply to the repeated indexes. Semi-discrete formulations (FE2-1),

(FE2-2)', and (FE2-3)' can be assembled into a more compact form as
F™+cd+zd =F (7.3.17)
where the global unknown vector 4 is represented by

u,.p..p}. for 1-D

{u,.n,.p P} for 2-D

- - = =W =y
i, u,,.u,,p, .p.}. for3-D

a is the global node number. and repeated from 1 to the total number of the nodal points.

i.e. n,. The components of the element internal force “F™ is represented by

-

([ V0,47, KBy KB . (73.18)

Matrices ¢. z. F™. and F* are obtained by assembling the corresponding element

matrices, i.e.
c=Acc). (73.19)
m=RA(%). (7.3.20)
F~ =§I(‘F‘"). (7.3.21)
where

145



0, 0. 0
‘c=|c’.re”  e” (7.3.22)
ccll.zci.'.tcn
ezll, 0' 0
‘7=|7". 0, 0). (7.3.23)
¢zll' 0. 0-j
and
(‘F=), ={F,. F,.°F|} (7.3.24)

7.4 Nature of the Problems and Initial Conditions

The semi-discrete finite element formulations presented above are represented by
an ordinary differential equation (ODE). i.e. (7.2.11) or (7.3.17). In application. choice of
a particular set of formulations depends on the nature of the problem and computational
efficiency. For example. if we are dealing with the problems of the wave propagation in
the porous media. the first form of the IBVP, i.e. (7.2.11). must be used. The reason is
that the effects of the relative accelerations of fluids cannot be neglected on the
propagation behaviors of the waves in the porous medium. The ODE (7.2.11) has a

svmmetrical structure. which is a desirable feature from the numerical point of view.

If deformation and flow are of main concern and the high frequency modes of
loading can be neglected. the second form of the IBVP, i.e. (7.3.17). can be used.
Generally, the matrices in (7.3.17) are not symmetrical. In large-scale computations.
however. this drawback is offset by a smaller set of unknowns in (7.3.17). For example. if
(7.2.11) is employed. there will be totally 9 degrees of freedom (DOF) per nodal point in

a 3-D problem. and if (7.3.17) is used there are only 5 DOFs in a node.
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Before solving (7.2.11) or (7.3.17), it is important to assure that its solution exists
and is unique. However. a proof of the existence and uniqueness of the problem goes
beyond the scope of this dissertation. The interested readers may be referred to Fichera
(1972) and Knops and Payne (1971) for a general account of the existence and
uniqueness of elastic problems. A proof of the existence and uniqueness theorems for
elastic waves propagating through fluid-saturated porous media was presented by Santos
(1986 [&II). In the following. we shall go directly to the solution procedure. assuming

that the problem has a unique solution.

To solve (7.2.11) or (7.3.17). the initial conditions must be specified. [n general. the

initial state of the porous medium can be determined by the following parameters.

[nitial porosity: n,(x)

[nitial degree of saturation:  S,,(x)
Initial displacement:  (x)

Initial stress: &, (X)

Initial pressure of wetting fluid:  p, (x)

[nitial pressure of nonwetting fluid: pl(x)

!

[nitial body force: &’

[n addition, the initial velocity of the solid skeleton must be specified. If (7.2.11) is used.

the initial values of M. (x) and M’ (x) also need to be specified.

The initial state of the porous medium was formed either in a geological or in an

artiticial installation process. In a numerical analysis. these processes should be simulated
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in order that the initial conditions can be obtained. However, such kinds of numerical
simulations are not always possible. For example, if (7.3.17) is used to evaluate the initial
conditions of a naturally deposited soil body, it is impossible to specify the history of the

relative velocity, i.e. W”. of a fluid on the boundary. In this case. the initial conditions

can be evaluated by the following procedure:

I setw' =w" =0,

(3]

input some small initial stresses o (x). and compute p, (x) and p; (x) by

using the relationship between the suction and degree of saturation.

(S}

solve the steady state equation F™(d)= F(1,) with constraints p* = p, and

v

p=p;.

[t is noted that p) (x) and p.(x) are the initial total fluid pressures in excess of the
atmospheric pressure. The reason for applying the constraints to the steady state equation

in Step 3 is that p* (x) and p*(x) are the specified unknowns in the equation.

The process to solve the steady state equation will be called the static analysis in

the following. After the static analysis. the initial state of porous medium represented by

al(x). u'(x). p, (x).and p) (x) will be known. and we can move to the next step of

the solution. To that end. the arrays of d and d are cleared. and the time history of the

forces applied at ¢ =¢,. e.g. the base motion. are activated.
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7.5 Solution Procedures: Dynamic Analysis

For the hyperbolic problem given by (7.2.11) or (7.3.17), many solution procedures
are available in the literature. A comprehensive survey and detailed analysis of various
algorithms can be found in Hughes (1987: Ch.9). In the following. the Hilber-Hughes-
Taylor « -method will be employed that has been commonly applied to the dynamic
analysis of structures (Hilber et al.. 1977). Use of the « -method in analyzing the
dynamic behavior of saturated porous media was first made by Muraleetharan et al.
(1994) and later by Arduino (1996). This algorithm has many desirable features as

addressed later.

Basically. the a-method’ can be viewed as a generalization of the Newmark
method. Let the time period of solution [z,.t, ] be separated into .V steps. Provided that

the solution is advanced to nth time step, we try to find the solution at r=¢,

(n=1.2...N). In the a-method, the time-discrete equation ot (7.2.11) or (7.3.17) is
written as

an-,’ + (a + [kd.nul _aCdn + Flm(dn-l-a) = Fal ((n-lua) M (7'5'1)
where ¢, =(+a), -a,,d =d(t ). d =(+ad,  -ad,.

The Newmark recurrence formulations are retained in the « -method and they are

given by

4, =d, +d,a+[f,, + (- )4 (752)

" Here. a. f.and y are the parameters of the algorithm and not symbols for a component.
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and

d,, =d,+|d,, +(-y)d (7.5.3)
where At is the time step, i.e. A=t _, -t .

Due to its nonlinearity, (7.5.1) must be solved through an iteration procedure. e.g.
the Newton's methods. In the following, the Newton-Raphson method will be used. Let

e be the error vector. and we can write

ed, )=z _ +(@+l)d, -acd +F ", )-F*(¢,_,.). (154

where, with introduction of (7.5.2) and (7.5.3), e can be expressed as a function of d_,.

Suppose that the non-convergent solution at the end of ith iteration step is d._,. Next. we

search a new solution expressed as
qrel - o qiel - =
dl.=d_ +4d". (7.5.5)

such that e(d'”!) meets the specified convergence criteria with respect to certain norms.

Linearizing (7.5.1) about ii;,, vields

Linfe(d.})] =e(d,_ )+ di[e(c?;., +ed™)| =ed, )+ XE(d,,)-Ad"". (15.6)
£

=0

where X is the tangent modulus given by

I ))=z+(I+aptc+(+a)f(at) k. (1.5.7)
and

c
K=

(F™(d,. ) (7.5.8)
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An explicit form of x will be given later. Naturally, we expect that Lin[e(d'')] =0.

This leads to

A =-X" e,

Table 7.1 Flow chart of the solution procedure for dynamic analysis

19

LI

Set iteration counter i =0

The predictor phase

d.,

d,,

0
En»l :dn *(1—'/)411‘1:'

"

d., =d.  =d +dAn +(% - BN d,

Evaluate e(J,',_,) with (7.5.4)

Solve (7.5.9) for ad""!
The mudti-corrector phase

dy=d, +ad"
dy =d,. - dpd™
dy; =d,., + () pod"!

Calculate e(d'™) with (7.5.4)

-

Check convergence

If “e(J;’,’,)"/”e(J,‘,'.,)“ <¢ :and !

|l <.
Then go to next time step.

Otherwise. set i «— i+ [/ and goto 4

n~i

The iteration procedure now is simplified as follows: solve (7.5.9) for Ad': update

d.d.and d by (7.5.5). (7.5.3). and (7.5.2). respectively: check convergence: go to the



next iteration step unless the convergence criteria are satisfied. The solution scheme with

a predictor/multi-corrector algorithm now is summarized in the Table 7.1.

Note that, if a=0. the procedure presented above reduces to the Newmark
method. When parameters { a. 5.y } are chosen such that @ e [-1/3.0]. B=(I~-a) /4.
and y =(/-2a)/ 2, the a-method is second-order accurate and unconditionally stable
(in the sense of linearization) (Hughe. 1987: Ch. 9). Decrease in @ increases the amount
of numerical dissipation. For a linear problem. if @ is chosen as —0.3. the maximum
numerical dissipation can be achieved in using the above algorithm. Such a feature of the
algorithm is desirable for a dynamic analysis, since the high-frequency modes stemming

from numerical discretization may induce spurious behaviors and must be damped out.

The tangent modulus defined by (7.5.8) is evaluated in the following. Similar to the

other global matrices. x is obtained by assembling its element counterparts. i.e.

K=§('x) (7.5.10)

For the second form of the problem. i.e. (7.3.17). F™ is given by (7.3.18). By definition
(7.5.8), we obtain

e e 12 e 13
K. K

K.

‘k=| 0. ‘x*. 0 (7.5.11)
0. 0. ‘E”J

where the components of ‘s~ and ‘x” have been given in (FE2-4) and (FE2-5).

respectively; and the components of ‘x''. “x™.and ‘x” are given as



0(0 )

Kiw = [ N3 CuNydV = [N )"' Ny v (7.5.12)
ll nel
o(o
k= LN NTay = [ N ('—w)""N:dV. (7.5.13)
nel
and
. O(o .
K= [ NLeINSdV = [ N3, (Q ~) NYdv (7.5.14)
nel
where C,. ¢/ .and ¢, are the tangent moduli consistent with the stress-point algorithm

used to integrated the stress-strain relationship. Hence. they are usually called the

consistent (or algorithmic) tangent moduli. It is noted that, although C,, possesses minor

symmetry. i.e. C), =C’ and C’ = in general. C‘ zC)
ki ukl /Ii

D7

For the first form of the problem. i.e. (7.2.11). F™ is given by (7.2.13). and we

write

K K K
‘K= e"_.‘l. eh,.'.’. f"..‘l (7515)
‘I\" e .l rh.,'!

Similarly, the components of ‘k™(m.n=1.23) can be obtained by (7.5.8) with
incorporation of (7.2.4) and (7.2.5). It is noted that. for the hyperelestoplastic model.

(7.5.15)is s etric to the extent if “x"’ possesses major etry.ie. C), =C;,
ymm p JOr Symium ik

ki *

In a computational procedure, the consistent tangent moduli can be replaced by the
continuous moduli (e.g. the elastoplastic modulus) without deteriorating the accuracy of
the results. As shown by Simo and Taylor (1985), however, use of the continuous moduli

sometimes may drastically deteriorate the rate of the convergence.



7.6 Solution Procedures: Quasi-Static Analysis
For the quasi-static problems. e.g. the fluid diffusion or consolidation of the porous
media. the inertial terms can be dropped. and (7.2.11) or (7.3.17) becomes
cd + F™(d) = F=(1) (7.6.1)

(7.6.1) can be solved by using the one-step generalized trapezoidal family of methods

(Hughes. 1983), which consists of the following equations:

cd,, +F"d,,)=F, (7.6.2)
d. =d +4d,_. (7.6.3)

and
d.,=(-0)d, +64,,. (7.6.4)

where Fo =F™(t,,) and @ e[0./]. Notably. if 8>0.5. the generalized trapezoidal

methods are unconditionally stable (for linear problems). Some of the well-known
methods belonging to this family include the forward Euler method (& =0). backward
Euler method (8 = /). and Crank-Nicolson method (8 =0.3). If §>0.5. this family of

methods is unconditionally stable: otherwise. it is conditionally stable.

The Newton-Raphson method will be used to solve the nonlinear equation (7.6.2).

Linearizing (7.6.2) about 4., and using (7.6.3) and (7.6.4). we derive

e(d)=ed, )+ Z(d )ad"" . (7.6.3)
where
Zd ))=c+ Mtk (7.6.6)

and
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e(d ,)=[6AF7 + (I - G)Alcd" +cd )| -0AtF™(d. )-cd,,, (7.6.7)
Forcing the right-hand side of (7.6.5) to be zero leads to
M =-X" e ) (7.6.8)

The solution procedure is implemented as described in Table 7.2.

Table 7.2 Flow chart of the solution procedure for quasi-static analysis

Set iteration counter { = 0

t2

Calculate e(d.,) through (7.6.7),

Solve (7.6.8) for dd' .

(9%]

4. Update solution. d!.) =d’ , + Md'.

nel

W

Calculate e(d.’’) through (7.6.7).
6. Check convergence:
If ile(d,’,'_‘, )“ / ”e(d;'_ , )“ <& go to next time step:

Otherwise. set { =i + 1. and go to Step 3.

7.7 Some Remarks on Implementation

The second form of IBVP. i.e. (7.3.17). and its solution procedures have been

implemented into a FORTRAN code. where «’. p*. and p* are used as nodal
variables. [n this semi-discrete finite element equation. coefficients 9. 97, and 9’

(S =W.N) remain to be evaluated (see (7.3.13)-(7.3.15)). They can be determined by



way. these coefficients may be obtained as follows. For geomaterials the bulk modulus of
the solid component is very large so that the density of solid phase remains
approximately constant. From the mass balance equation of the solid component. i.e.

m' = (det F)n® p* = const . one may derive

n=n'=-n"l.a =~(-nl:da (7.7.1)

where 7 is the porosity. and use of p° =0 has been made. In addition. n* =nS  and
n" =n(l-S).where S is the degree of saturation. Hence, if a relationship between the

degree of saturation and matric suction (sometimes called the moisture retention curve) is

given. one may evaluate 8/, 9/.and 9/ through (7.3.13)~(7.3.13).

With $/. 9. and 9/ being evaluated in this way. (7.3.17) has a desirable feature

that when the porous media becomes saturated (7.3.17) will change smoothly into its

saturated counterpart. If the degree of saturation S, tends to 100%. i.e. p* - p* > 0.1t

follows that 3° — 0. 37 - 0.and 3 — 0. and element matrix (7.3.22) becomes

0. 0. 0
‘c=| ¢’ ct+c.0]. (7.7.2)
0 0. 0

Therefore. (7.3.17) collapses into the finite element formulation of saturated soils
developed by Zienkiewicz and Shiomi (1984). In the computer code. switching an
element from an unsaturated state into a saturated state (or vice versa) now is very

simple. In fact. if one element becomes saturated (i.e. the matric suction is less than the



air entry value), it only needs to set the relative permeability of the nonwetting fluid in

this element to a small value, and nothing else needs to be changed in the code. Based on
numerical tests, this small quantity may be chosen as k¥ = 0.000! . The above procedure

allows the computer code to have capability of simultaneously handling both saturated
and unsaturated conditions. It is shown from the numerical examples in the next chapter

that the above procedure works very well.
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Chapter 8 NUMERICAL EXAMPLES

The finite element discretization and numerical time integration procedures

developed in Chapter 7 have been implemented into a FORTRAN finite element code
called U_DYSAC2. U_DYSAC2 was created by modifying a saturated soil code
DYSAC2 (Muraleetharan et al. 1988: 1997). In the new code. displacement () and fluid
pressures ( p* and p") are used as nodal variables. Four-node- quadrilateral elements are
employed for both displacement and pressures. Discussions on the merits and drawbacks
of this kind of elements are abundant the literature (e.g.. Belytschko et al.. 2000: pp.451-
461). It is believed that this kind of elements is more efficient than the higher-order
elements for hyperbolic problems whose solutions are generally not smooth. The elastic
models presented in Chapter 5 and the elastoplastic model developed by Muraleetharan
and Nedunuri (1998) have been implemented into a constitutive driver that can be readily
modified to include other constitutive models. The new code allows for static and

dvnamic 2-D (or 1-D) analysis of saturated and unsaturated porous media.

This chapter presents the numerical simulations of different kinds of problems. To
validate the finite element code and the corresponding procedures. numerical results will

be compared with analytical solutions or experimental data whenever it is possible.
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8.1 Elastic Response of a Saturated Soil Column Subjected to Loading

The problem is defined in Figure 8.l1a. A one-dimensional infinite soil column is
separated from a half space consisting of a soil deposit saturated by an incompressible
fluid. On the surface, the soil column is subjected to a load (traction) f(¢). It is assumed
that the surtace is a drained boundary (free boundary). Analytical solution of the problem
has been presented by de Boer et al.(1993). This example is introduced to demonstrate
the capability of the code in capturing the incompressibility conditions and to check the

efticiency of the procedure introduced at the end of Chapter 7 to switch to the saturated

! 45—
z
10m
I dl
Yy

a) Geometry of the problem b) Finite element mesh: 20 x 2 elements

conditions.

o0.0y= f(), p*(0.0)=0.0

Figure 8.1 A soil column subjected to a load

In order to model the infinite soil column by using the finite element method. a soil
column with a length of 10 m is considered. The solution will be reported for a very short

time period so that no reflection wave from the rigid bottom boundary could influence
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the solution. The finite element mesh used is schematically given in Fig. 8.1b. Two

different kinds of loading are considered as given below:

Sinusoidal loading:  f(¢t) = 3.0[/ - cos(@w t)] [kPa), =75 s"

Step loading: f)=3.0H(1) [kPa].

where H(r) is the Heaviside function. The material parameters are

p =2000kg/m’. p* =1000kgim’.
n' =0.67. K, =10x10" kPa. k=00Imls
A=5583kPa. u=8375kPa

[tis noted that K, assumes a very large value due to the incompressibility of the tluid.

The numerical displacements and pore water pressures at various depths are
reported and compared with the analytical solutions in Fig. 8.2 and 8.3. respectively. Fig.
8.4 presents the vertical displacements with depth at different times. In all the
comparisons. the numerical results agree favorably with the analytical solutions. Fig. 8.2a
shows some numerical oscillation at the early phase. This problem is induced by a sudden
application of the step loading. As can be seen from Fig. 8.2b. however, no difference can
be observed between the analytical and numerical displacements under the sinusoidal
loading. Similar trends are observed in comparing the numerical and analytical pore
water pressures (Fig. 8.3). Under the step loading. although the numerical oscillation in
the pore water pressures is more prominent than that in the displacement. agreement

between the numerical and analytical pore water pressures is reasonably good.
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Figure 8.2 Comparisons of numerical and analytical solutions for vertical
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Figure 8.3 Comparisons of numerical and analytical solutions for pore water
pressures at various locations
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[t is noted that in this analysis the porous medium is considered as a three-phase
material. The numerical results show that the procedure introduced in the last chapter to
switch the saturation condition works very well. In fact. under both loading conditions
(i.e.. step and sinusoidal), the virtual air pressures (not shown) are found to be equal to
the water pressures in all elements. That is. the matric suctions in all elements are always

Z€ro.

8.2 Propagation of a Step Displacement through an Unsaturated Soil Column

The geometry of this problem is the same as Fig. 8.1a. At the top boundary. instead
of a specified load. a step displacement with amplitude of /.0x/0'm is applied. The
soil column used in numerical simulation has a height of 4.0 cm. The finite element mesh
consists of four hundred elements with a dimension of 0.01cm. The element size and time
step values have been selected such that there is enough time for the fastest wave to travel
from one node to another. This can be done by first estimating the wave velocity based
on the given material constants. and the wave velocities are used to estimate the element
and time step sizes. The soil column is partially saturated with a degree of saturation

equal to 70% . The material parameters are given as below.

p*=2700kgim’. p* =1000kg/m’. p¥ =12.3kg/m’.
A=6.923x10"kPa. u=4.613x 10" kPa .
K, =2.177x10° kPa. n* =04. k=1.0x10" m/s

[n addition. the relationship between suction and degree of saturation is described by the

Brooks and Corey formulation, in which S.. =0.4. 1 =0.5.and p, =10 kPa.

164



Numerical displacement and pore pressures are, respectively, given in Fig. 8.5 and
8.6 for two locations along the depth, i.e. 0.5 cm and 2.0 cm. Fig. 8.5 shows that the
fronts of the three compressional waves merge into a single wave front. This is an
expected result. since in the finite element code. the fluid pressures are used as nodal
variables and the relative accelerations of the fluids are omitted. As discussed in Chapter
6. omitting the relative accelerations results in additional constraints over the wave
propagation. In this case. all the three components coexisting in the porous media move
together. It can be seen from Fig. 8.5 that numerical oscillation occurs at the moment
when the wave front arrives. [t is also noted that the sharp wave front is smeared out to
some extent. This is the typical behavior resulting from using the so-called u-p
tormulation to simulate the wave propagation problems (Simon et al.. 1986: Gajo et al..

1994).
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Time (s)

Solid displacement (m)

------- Closed form
Numerical

Figure 8.5 Time history of the verticai dispiacements at depth of 0.5 cm and 2.0 cm



The responses of air and water pressures are presented in Fig. 8.6. Both water and
air pressures increase rapidly when the wave front arrived. After the wave front left. they
reduced to the original values. At the same time, the suction experienced a decrease
followed by an increase. This result may be explained as follows. From the finite element
formulations (FE2-2) and (FE2-3), it is noted that if the inertial effects is neglected the
changes in fluid pressures are determined by the changes in m" and m” . It can be seen

from (7.3.10) that m” is determined by the volumetric strain rate (u,,). the rate of
volume fraction (n”). and the rate of mass density ( p”). Before the wave front arrives or
after the wave front leaves. the change in m” is insignificant. since £ (=4, ). 7" and p*
remains approximately zero. Hence. the fluid pressures will take their original values. At
the arrival of the wave front, however. & will be changed drastically. leading to sudden

changes in water and air pressures as shown in Fig. 8.6.

12 L L] L L]
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-;" o4
8 41
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Time (s)

Figure ¥.6 Pore water and air pressure responses at depth 0.5 cm and 2.0 cm.
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Fig. 8.6 clearly shows that the value of wave velocity is about (/.5x/07)+
(3.0x107%) = 300 m/s . This value can also be obtained by using equation (6.2.12). Since
the relative accelerations of fluids have been omitted in the u—p“ — p¥ finite element
formulation. (6.2.12) can be used to evaluate the wave velocity as discussed in Chapter 6.
Here. due to its incompressibility. the solid phase have a very large bulk modulus. say,

K,=10x10" kPa. and A, =0.0kPa. From (5.4.6) and (6.3.7). one may obtain
A, =1.161%10" kPa and p, =0.774x10° kPa. Finally. assuming A", = A" =0.0. one
evaluates (6.2.12) and get v, =299 m/s. This result confirms the consistency between

the linear models derived in Chapter 5 and the general model that has been developed in

Chapter 4 and implemented into the tinite element procedure in Chapter 7.

8.3 A Two-Phase Flow Problem

The problem is based on an experiment performed by Liakopoulos (1965) on a
column of Del Monte sand (see Fig. 8.7). The sand column was instrumented to measure
the matric suction at several points along the column during its desaturation. Before the
start of the experiment. water was continuously injected from the top until a uniform flow
condition was achieved solely under gravitational force. The water was allowed to drain
freely at the bottom through a porous stone. Once the experiment started. the water
supply on the top ceased and the tensiometor reading was activated. During the
experiment. the air could flow freely through top boundary. The Del Monte sand had a

porosity of 0.3, and its hydraulic properties were measured in an independent set of
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experiments (Liakopoulos, 1965). The relationships between the degree of saturation and

matric suction and relative permeability of water are given below,

S = 1.0—0.10152x(i] . (8.3.1)
9.81
and
k¥ =1.0-2207x(1.0-5 )" (8.3.2)

where S, is the matric suction with a unit kPa. Since in Liakopoulos’s work no

formulation was given for the relative permeability of the air. the Brook and Corey’s

relative permeability function of air (Brooks and Corey. 1964) will be used. i.e.

S-S,

k¥ =(1.0-S Y x(1.0-8S)"'.S =
A R

(8.3.3)

The mechanical parameters of Del Monte sand are not available either. Hence. typical

values of the material parameters for sand are selected and they are listed in Table 8.1.

$EPeiiiibbl

@t =0, the sand is

fully saturated
1.0m "

Y

L.

YVYYY

I 0.lm l

Porous stone

Figure 8.7 Schematic of Liakopoulos™ experiment (Liakopoulos. 1965)
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Table 8.1 Material parameters of Del Monte sand

Material parameters Symbols Values

Young's modulus £ 1.5x10" kPa
Poisson ratio v 0.2

Solid grain density o’ 20x10° kg/m’
Water density " 1.0x10" kg/m’
Alir density o’ [.2kg/m’

Bulk modulus of water K, 22x 10" kPa
Water viscosity Nw 1.0x107 Pa-s
Alr viscosity ny 1.8x10™" Pa-s
Intrinsic permeability k 15101 mt

For the numerical simulation. the above experiment was viewed as a 1-D problem.
and 20 elements with a size of 0.03mx0./m was used. The boundary conditions are

defined as tollows:

‘@ the lateral sides: u, =0.0 w, =0.0: w' =0.0
@ the top: w” =0.0: p* =0.0 kPa

@ the bottom: u, =u, =0.0:p" =p* =0.0 kPa

where p”(B=W.N) represents the part of fluid pressure in excess of the atmospheric

8

pressure; w’ is relative velocity of a tluid in the direction normal to the boundary. At

t =0.0. the sand column is fully saturated and at a mechanical equilibrium state. Hence.

u =u =00 S =10 and n¥ =00kPa Since the water ic initially in a uniform flau;
. y .Y, .ang r 1.0 kFa  zince the water ic pafially in 2 low

“eassatsaass a
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condition under gravitational force. the vertical gradient of potential equals to

gravitational acceleration. i.e.

&

w

\3) I (@F)

It follows from (8.3.3) that p* =0.0 kPa at t=0.0. The initial stress states can now be
obtained by solving the steady state equation with constraints p* = p* = 0.0 kPa. Once
the initial conditions are obtained. we can proceed to the numerical simulation of the
experiment. Note that at +=0.0 the fluid (water) is not in static equilibrium. Hence. in
the numerical simulation. the initial condition (8.3.3) must be considered. This is done

through activating the gravitational forces of the fluids at the moment the simulation

process commences.

The numerical results are presented in Fig. 8.8 through Fig. 8.13. Experimental data
are available only for the pore water pressures along the column at 5. 10. 20. 30. 60. and
120 minutes. No air pressure. degree of saturation. and displacement were recorded in
Liakopoulos™ experiment. [t can be seen from Fig. 8.8 and 8.9 that the agreement between
the numerical prediction and measured results is very good for the times atter 30 minutes.
Before 30 minutes. however. the pore water pressures decrease faster than the measured
results in the numerical predictions. The values of pore water pressures in the early stages
are very sensitive to the air entry value of the porous material. Unfortunately. the air
entry value of Del Monte sand is not available (it was chosen as 7 kPa in this example).
Both analytical and experimental results in Fig. 8.9 shows that once the water supply at
the top ceased. the pore pressures decrease rapidly and then tends to a stable value until

the whole system attains a static equilibrium state.
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Figure 8.8 Comparisons of numerical predictions and experimental results for the
pore water pressures along the sand column

0 T L] Al L]

@  Data after Liakopoulos (1965)
Numerical

v ¥

Pore water pressure (kPa)

l L '[ ¥ l v ] L
0 20 40 60 80 100 120 140
Time (min)

Figure 8.9 Comparison of numerical predictions and experimental results for the

- vt v s ity e smmomes b by o s A NTE ee mee N LIS ..,
IC Watel piressuIcs at iCigit v. >/ J #i aiQ v.0zJ i
pv VY

171



The pore air pressures along the soil column are presented in Fig. 8.10. At a certain
depth. air pressure first decreases to a minimal value and then increases again. This
dissipation process can be seen in Fig. 8.11. From these results, it is noted that air
pressure may become significant in a multiphase flow process so that the so-called
passive air phase assumption usually made in the analysis of two-phase flow is not
acceptable. Evolutions of the degree of saturation at various depths are depicted in Fig.
8.12. The sand column became unsaturated in the upper part (from 0.4-1.0 m). Fig. 8.13
describes evolution of the vertical displacement along the sand column. It can be seen

that the deformation of the solid skeleton and the fluid flow are coupled.
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0.8 -
-y
£t 06 -
= 4
K=y
% 04 - ——— 5m|n
] —@— 10min
——— 20 min
02 4 —f— 30min
60 min
1 = 120 min
0 v ' LS ]' v
-10 -8 -6

Pore air pressure (kPa)

Figure 8.10 Evolution of the pore air pressure profile based on the numerical predictions
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Figure 8.11 Time history of the pore air pressures at height 0.97 mand 0.625 m
based on the numerical predictions
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Figure 8.12 Evolution of the degree of saturation profile based on the numerical
predictions
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Figure 8.13 Evolution of the vertical displacement profile based on the numerical
predictions

8.4 Flooding of a Centrifuge Model Embankment

This example is based on the centrifuge model test of a compacted Minco silt
embankment that was originally performed to examine the settlement associated with
flooding. A detailed analysis of the centrifuge test has been presented by Miller et
al.(2000). Since for the time being we are unable to calibrate an elastoplastic constitutive
model based on the swelling/collapse behavior of the Minco silt’. a comprehensive
numerical analysis of the experimental results is impossible. In the following, however.

this example is introduced to demonstrate how the numerical procedure developed in this

* A laboratory test program to obtain the stress-strain behavior of Minco silt is ongoing at the University of
Oklahoma.
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dissertation can be used to simulate some important behaviors of an unsaturated soil

embankment subjected to flooding.

The centrifuge testing procedure is briefly given below. Well-prepared moist soil
was compacted into three equal layers in the centrifuge box to the target dry unit weight.
It was then carefully shaped into the chosen geometry. The miniature pore water pressure
transducers and LVDTs are placed into various locations to measure the matric suction
and displacement. At the first stage. the centrifuge was gradually brought up to an
acceleration of 165g and then water was introduced through the bottom of the
embankment. The geometry of the embankment and the instrumentation are
schematically shown in Fig. 8.14. The time histories of the acceleration and water level

are given in Fig 8.13.

30 T L] T T L T L e + L

25 Vv VT i
1 @ PPT

20 - .

Model Vertical Dimension (cm)

Model Horizotal Dimension (cm)

Figure 8.14 Model dimension and instrumentation for centrifuge model #3 (after Miller et
al. (2000))
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Figure 8.16 Finite element mesh of the centrifuge model embankment
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Table 8.2 Material parameters ot Minco silt

Material parameters Symbols Values

Young's modulus E 1.2x 10" kPa
Poisson ratio 14 0.3

Solid grain density p’ 2.69%x10° kg/m’
Water density o 1.0x10° kg/m’
Air density p’ 1.2kg/m’

Bulk modulus of water K, 22x10" kPa
Water viscosity N 1.0x107 Pa-s
Air viscosity Ny 2.0x107 Pa-s
Intrinsic permeability k 6.03x10" m’

The finite element mesh used in the analysis is shown in Fig. 8.16. The material
properties of Minco silt are summarized in Table 8.2. The relationship between matric
suction and specific moisture content for Minco silt has been obtained by Muraleetharan
and Granger (1999). This relationship can be represented by the Brooks and Corey

formulation. in which S, =0.25. A=0.95 and p, =3.0 kPa.

All the results are reported in the prototype scale obtained by multiplying the model
scale by the acceleration scaling factor (i.e. 165). The predicted horizontal displacement
of Node #22 is given in Fig. 8.17. and the predicted vertical displacements of Node #6.
#22. and #14 are presented in Fig. 8.18a). b), and c). respectively. It is noted that the

displacemenis dunng ihe ponding pertod do not agree weil with the measured vaiues.
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This result is expected. since the embankment is collapsible when it is wetting. On the
other hand. a calibrated constitutive model capable of describing the collapse of the
unsaturated soils is not included in the current version of the finite element code. and
only an elastic model is used here. Except for the flooding time period. the predicted
displacements in the early spin-up period (< 35 hrs) are still acceptable when compared to
the measured results. This may be explained as follows. During the early stage of
spinning, the centrifuge acceleration was low and the embankment deformed elastically.
and that was captured by the code. When the acceleration increased, the embankment
behaved plastically. In this case, an elastoplastic constitutive model should be introduced
to describe the material behavior. This example shows that a constitutive model capable

of realistically describing the material behavior is crucial for a numerical analysis.
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Figure 8.17 Comparison of the predicted horizontal displacement at Node # 22 with the
measured results
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Figure 8.19 Comparisons of the predicted pore water pressures with the measurements
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As compared to the predicted displacements, the predicted pore water pressure
agrees well with measured results in general. This can be seen from Fig. 8.19. The
numerical simulation properly depicts the evolving trends and the magnitudes of the pore
water pressures around the locations of PPT1 and PPT4. At PPT3. the numerical pore
water pressure is lower than the measured result during the time that the second water
level (WL2) was increased. although both have similar values at the final stage. It needs
to be pointed out that the deformation of soil matrix and the flow of fluid are coupled. If
other constitutive models are alternately used in the analysis. numerical results may be
somewhat different from those given in Fig. 8.19. However. inclusion of a more realistic

constitutive model into the analysis procedure may improve the above numerical results.
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Figure 8.20 Changes in the degree of saturation of Element #85. #102. and #200.

The predicted changes in the degree of saturation of Element #85. 102 and 200 are

described in Fig. 20. During the first increase in the water level. the moisture contents of
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these elements change very slightly. All the three elements become fully saturated after
the third water level increase. It is noted that the elements become saturated in a very
short time. This is the typical behavior of silts and sands, since they generally have larger

pores than clayey soils and hence their intrinsic permeability is relatively large.

8.5 An Embankment Subjected to Earthquake Loading

The finite element discretization of the embankment considered in the analysis is
shown in Fig. 8.21. The embankment represents a speswhite kaolin centrifuge model
tested by Kutter (1982). Kutter's (1982) models were constructed using saturated kaolin
and subjected to base shaking. Additional details of the centrifuge model tests and the
dvnamic analysis of the saturated embankment using the computer code DYSAC2

(Muraleetharan et al. 1988. 1997) are presented by Muraleetharan et al. (1994).

Here. the numerical analysis is performed for the same embankment but it is
assumed that the upper part of the embankment is unsaturated (Fig. 8.21). The initial
degree of saturation of the unsaturated zone is 88%. For the unsaturated kaolin. the stress-
strain  behavior was modeled using a bounding surface elastoplastic model
(Muraleetharan and Nedunuri 1998). Necessary unsaturated model parameters were
obtained from suction controlled triaxial tests on kaolin (Wheeler 1996). All the model
parameters pertaining to unsaturated kaolin are summarized in Table 8.3. Other bounding
surface model parameters common to both the saturated and unsaturated soil can be
found in Muraleetharan et al. (1994). The relationship between the matric suction and the

degree of saturation is described by the Rrooks-Corev relationshin (1964) Permeability



coefticients of air and water were also varied according to the Brooks-Corey relationship

(1964) starting with the values given in Table 8.3.

Table 8.3. Hydraulic and Mechanical Properties of Kaolin Used in the Analysis

Properties Symbol Value
Density of solid grains o’ 2620 kg/m’
Density of water p¥ 1000 kg/m’
Density of air pt 1.22 kg/m’
Bulk modulus of water K, 22x 10" kPa
Initial Bulk modulus of air K, 100 kPa
Porosity n 0.596
[ntrinsic permeability k Lox 10w’
Viscosity of water T 1.0x 10" kPa s
Viscosity of air e 1.7x 10" kPa s
Brooks-Corey (1964) Parameters:
Residual volumetric water content 0. 0.1
Pore size distribution index A 0.5
Bubbling pressure 2, 7y kPa
Slope of the isotropic compression line on void ratio-mean  A(S,,) 0.128
net stress plot (Wheeler [1996)
Parameters describing the change of A with suction r 1.570
(Alonso et al. 1990)
B 0.013
Value of specific volume on the isotropic compression N(S,,) 2122
line when net mean stress is one atmospheric pressure
(Wheeler 1996)
Slope of the rebound line on void ratio-mean net stress K 0.02

and void ratio-suction plots (Wheeler 1996)
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Slope of the critical state line on deviatoric stress-net M.S,) 0.933
mean stress plot on the compression side (Wheeler 1996)
Intersection of the critical state line on the deviatoric u(s,,) 54.2 kPa

stress axis (Wheeler 1996)

Note: S, = degree of saturation, S,, = matric suction and the parameters dependent on suction are
indicted with a S|, in the parenthesis.

EB2 N4g
N20 s Unsaturated zone
6.88m | Y £s "
= I
] T T 1\@ Saturated
C X ——
27.52m

Figure 8.21 Finite element discretization of the kaolin embankment

The stress states before shaking (i.e. the initial stress states) are obtained by
solving the steady state equation in Chapter 7 and depicted in the stress contours (Fig.
8.22). The embankment was subjected to the base motion shown in Fig. 8.25¢. Numerical
results are summarized in figures from 8.23 to 8.26. For comparison purposes. the
behavior of the saturated embankment predicted by the previous analysis (Muraleetharan
et al. 1994) are also shown. Although the analyses were conducted at the model

(centrifuge) scale. all the results are presented in the prototype scale.
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Figure 8.22 Initial net stress contours of the embankment

185



0.0 . T T

= { .. a) Node #49
E 014 :
c ‘.
g - \\‘
Q -02 -4 "\. -
O .
.@. - .‘\
=} Se..
§ 03 4 <
ﬁ - “‘0\."
9
T 0.4 4 U_DYSAC2 -
> {4 -----. DYSAC2 1

'0-5 Ll L] l L] v r L3 v l v L] I v v

0 3 9 12 15
Time (s)
0.4 r T T T
4 b) Node #89
U_DYSAC2 NN )
039 ...... DYSAC2 AT
K

Horizontal displacement (m)

Time (s)

Figure 8.23 Time histories of the displacements at node #49 and #89

Fig. 8.23 presents the predicted time histories of the displacements at Node #49
and #89. The dispiacements of the saturated embankment obtained by DYSAC2 are also
given. It can be seen that the wunsaturated embankment experiences much less

displacement than its saturated counterpart. This is of course expected. since the
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desaturation always leads the embankment to become more rigid. Theretore, analyzing an
embankment as an unsaturated soil embankment is economical for design purpose. Of
course, one has to know the moisture history of the embankment throughout its lifetime

before such analysis can be performed.

Fig. 8.24 gives the pore water pressure evolutions of Element #10. #14. and #69.
The pore air pressure of Element #69 where the soil is unsaturated is also given. Fig.
8.24a) shows that both air and water pressures increase slightly during the shaking. It can

also be seen that change in the matric suction ( p* — p*) is verv small. This can be

explained as follows. The permeability of the kaolin is very small so that no significant
change in degree of saturation may occur during the shaking. In this case. the change in
matric suction is basically controlled by the volumetric strain (for Element #69.

€., =1.3%). Hence. the suction of element #69 would not experience significant change.

Element #10 and #14 are saturated. where positive excessive pore water pressure is
accumulated (see Fig.8.24b and c¢). It is noted that in Element #14 the water pressure
experiences significant oscillation. In Element #10. however. the water pressure shows
more monotonic increase. This represents the effects of shear stress. It will be shown later
that the shear stress field in Element#14 experienced significant change. The acceleration
time histories of Element #82 are shown in Fig. 8.25. For both horizontal and vertical
accelerations. the predicted values by U_DYSAC2 are larger than those predicted by
DYSAC2. This again implies that the partially saturated embankment is more rigid than

its fully saturated counterpart.
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The stress contours at 15.5 seconds are presented in Fig. 8.26. Compared with Fig.
8.22. it can be seen that all the stress fields have experienced significant change during
the shaking event. Keeping in mind that in the saturated zone p* = p" and the net
stresses equals to the effective stresses, it can be noted from Fig. 8.26a that significant
amounts of pore air (water) pressure has built up in the unsaturated (saturated) zone. This

can also be seen in Fig. 8.26b. In the area near the toes. where o is small. the net stress

(o, +p") or effective stress (g, +p" ) is very small due to the built-up of the fluid

pressures. and the stresses are concentrated around the core of the embankment.
Comparing Fig. 8.26¢ and Fig. 8.22c shows that the shear stress concentration has moved
toward the toes on both sides. This is the typical mode of shear failure for an
embankment. Also, it is noted that the shear stress in the central area did not have
significant change. Since the soil in the central area was subjected to less initial shear
stress than the other zones of the embankment, its stress state is further from the critical
state line. This may explain the cause that a relatively smooth response of pressures is

usually observed in this area as noted above (see. also. Muraleetharan et al.. 1994).

8.6 Consolidation of the Soils below a Foundation

When a building is placed on the ground. pore water pressure will immediately
increase and then gradually decrease. As a consequence, the settlement will vary with
time. This is the classic consolidation problem of soils that is of great interest in
geotechnical engineering (e.g.. Zaman et al.. 1991). The problem is schematically shown

in Fig. 27. Because of symmetry. it is sufficient to model only one half of the problem.
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The finite element mesh is shown in Fig. 8.27. The material parameters of the foundation

soil are summarized in Table 8.4. It is assumed that the underground water table is at a

depth of 3.0 m.

Table 8.4 Material parameters of the foundation soil

Material parameters Symbols Values
Young's modulus E 1.0x 10" kPa
Poisson ratio v 0.3
Solid grain density o’ 267x10° kg/m’
Water density p" 1.0x10" kg/m’
Air density p’ 1.2kg!m’
Bulk modulus of water K, 2.2x10° kPu
Permeability k 1.0x10~ m/day
100kN I m*
Ntl
N Drained boundary

I0m

ﬂ [mpervious boundary
I5m

Figure 8.27 Definition of the consolidation problem



Numerical results are summarized in Fig. 8.28 to Fig. 8.30. Fig. 8.28 depicts the
dissipation of pore water pressures in Element #6 and #9. It can be seen that in Element
#6 the pore water pressure decays rapidly early after the loading is applied (the loading is
applied in one day) and then the rate of decay becomes slower. Element #9 is in the
unsaturated zone. and the pore water pressure increase slightly in the beginning. This is
due to the increase in the air pressure under the compression. Then. when the air pressure
dissipate. the water pressure decreases. Fig. 8.29 gives the evolution of the displacement
at Node #11. Since the soil is unsaturated in the upper layer, the displacement developed
rapidly due to the applied loading. Relatively small amount of settlement can be

attributed to the pore water pressure dissipation. This behavior is sharply different from

the tully saturated soils.
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Figure 8.28 Pore water pressure dissipation in Element #6 and #9
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Figure 8.29 Change of the displacement at Node #11

The pressure dissipation process is described in Fig. 8.30. where several snapshots
of the pressure contour at 1. 5. 10. 20. 40. and 100 days are presented. These contours
clearly show the direction in which flow occurs. In the beginning, the pore water pressure
is accumulated under the foundation. The water pressure in the area near the unsaturated
zone dissipates faster than the deeper zone. As a consequence, the center of the highest
pore water pressure keeps moving down with time until the consolidation process is

completed.
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Chapter 9 CONCLUDING REMARKS AND RECOMMENDATIONS

9.1 Summary

In this dissertation. an attempt is made to develop a continuum theory of porous
media saturated by two immiscible fluids. The main focus is on how to characterize the
dynamic compatibility conditions on interfaces. The dynamic compatibility condition
represents the interaction on the interface between two bulk components in porous media.
This concept is discussed in Chapter 1 based on microscopic considerations. The current
state of relevant knowledge is discussed in Chapter 2. Thermodynamic arguments for the
dynamic compatibility conditions on interfaces are given in Chapter 3. where general
constitutive relationships of porous media are developed. In Chapter 4. a nonlinear
continuum model of porous media is presented that is capable of handling the dynamic
compatibility conditions on interfaces. Linearization of the general theory developed in
Chapter 3 and Chapter 4 is given in Chapter 5. where a linear model of porous media is
developed. In Chapter 6. the developed linear model is applied to the analysis of the
propagation of acoustical waves in porous media. Initial/boundary value problems and

finite element solution procedures are given in Chapter 7. Numerical examples are
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presented in Chapter 8, showing the capability ot the proposed model in modeling the

behavior of multiphase porous media.

9.2 Conclusions

(S8

W)

The following conclusions can be made based on the results obtained so far:

. At microscopic level. the dynamic compatibility conditions on interfaces are the

constraints on the pressure difference between two coexisting bulk components. It is
shown (in Chapter 3) that these compatibility conditions are restricted under the
second law of thermodynamics. The thermodynamic restriction vields the closure

equations that is indispensable in a continuum model of porous media.

Behavior associated with capillary pressure and Terzaghi's effective stress can be
characterized within a common framework. In this context. a theoretical framework
of poroelastoplasticity is developed. This framework has a hierarchical structure, and

describes the hysteresis in capillary pressure and plastic deformation of skeleton in a

unified way.

It is found that the mixture theory-based models of porous media can be linked with
Biot's poroelasticity theory. To that end, the principle of virtual dissipation (Biot.
1977) is introduced, with incorporation of a properly defined total free energy
function of the porous media. Such a free energy function can be assumed as a mass-

weighted average of all the free energies of bulk components.
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A continuum model of porous media capable of accounting tor the dynamic
compatibility conditions on interfaces has been developed. It is shown that for a
hyperelastic material, the dynamic compatibility conditions on interfaces represent
the constraints on the material model. This result provides a way to incorporate the

dynamic compatibility conditions into a constitutive model of porous media.

A linear model of porous media is developed. By using this model. the restrictive
character of the principle of Terzaghi's effective stress can be released. It is shown
that many classic models of porous media in geomechanics can be deduced from the

proposed theory.

The linear model developed is used to analyze the propagation of acoustic waves in
porous media. Theoretical results are compared with experimental data. and favorable
comparisons are observed. The proposed model predicts existence of three
compressional waves in the porous media saturated by two immscible fluids. The

third (slowest) compressional wave is associated with the capillary phenomena.

The nonlinear model developed is used to represent the initial/boundary value
problems associated with porous media. Finite element solution procedures have been
developed and implemented into a computer code (U_DYSAC2). This code can be

used in static and dynamic analysis of saturated and unsaturated porous media.

Numerical examples including wave propagation. two-phase flow, consolidation. and
seismic response of an embankment are presented. showing the capability of the

developed procedure in modeling the behavior of porous media.
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9.3 Recommendations for Future Research

The following avenues of research may be followed to enhance the research

performed in this dissertation:

19
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. To verify the procedure developed in this dissertation. further experiments and more

numerical analyses should be performed.

An celastoplastic constitutive model may be developed within the theoretical
framework developed in Chapter 3 and Chapter 4. The proposed constitutive model

must be calibrated. implemented. and validated in applications.

Following the procedure discussed in Chapter 3. experiments may be pertormed to
evaluate the material parameters in the linear model developed. This will help to

further verify the procedure presented here.

Other robust algorithms should be introduced into the finite element code. The
initial/boundary value problems (IBVP) associated with unsaturated porous media are
different from those related to the saturated materials in that the IBVPs concerning
the behavior of unsaturated porous media are highly nonlinear even when an elastic

stress-strain model is used.

Other schemes for finite element discretization should be included. For instance.
higher-order elements should be implemented into the computer code. and the

efficiency of these elements must be examined through numerical analyses.
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6. A numerical procedure based on the nonlinear model presented remains to be

developed that can be used to analyze the behavior of porous media at finite strain.

7. The theory presented above may be further generalized to take into account some
other important phenomena associated with porous media such as swelling, viscosity

and molecular diffusion.
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APPENDICES

I. DISSIPATIVE FORCES AS FUNCTIONS OF FLUID MASS FLUXES

In (3.5.17) and (3.5.18). except for &”, all the other material coefficients do not transform

in the usual sense. To make this point clear, we introduce two new variables: M* =m’W’ and

m’ =n’p*w’, which represent the mass fluxes with respect to the reference and current

configurations, respectively. M” and nr’ can be related to each other through the Piola

transformation, i.e.

M =Jm’F"’ (L.1)

In the following, M? and m’ will be used to derive the dissipative forces instead of W,”

and w”. Uncoupling the fluid diffusion and heat conduction from the total residual dissipation.

one obtains

O, ==Y M R +GRAD6-Q 20. (1.2)

F

or equivalently.

oA, =- Y e’ -#* +V8-¢20. (13)
where R’ =(m”)"R”. s =(n’p®)'F”. and ¢’ is the dissipative part of q7 /6. Now. using

dissipation inequality (1.2) and following the same procedures in deriving (3.5.12) and (3.5.13).

one obtains

R =-Y B -M"-B-GRADG, (L4)

L1 ARY



and

Q=-YB,-M’"-B,-GRADG. (L5)

E)

By using (3.5.4). (L1). &2, =J6A,,. and GRAD 6 =F'V§. it can be proved that the

spatial counterparts of (1.4) and (1.5) are,

F=- S b —b V8. (L6)
FER}
and
Gg=-Yb,-m"-b,-V6. (.7
FRUY

The coefficients in (1.6) and (1.7) are related to those in (I.4) and (L.5) through the following

transformations.

b; =JF"(B;)F“‘. b, =F '(B))F'. (1.8)
and

b, =F(B\)F"'. b =J"F(B)F". (19)

Comparing ([.8) and (1.9) with (3.5.17) and (3.5.18), one may notice that unlike the latter (I.8)
and (1.9) are those usuaily applied to the contravariant and covariant tensors defined on various

deforming configurations.



II. COEFFICIENTS IN FIELD EQUATIONS (5.2.10)-(5.2.13)

n (K, -4 )(D, +D, -2D,D,)

M, =n(i +K -24))
' K (I-D.D,)

(ILDH

_ nn\(’l:: - K\ )(”v’:. A":rn - Kll’ )(1 - D\' )Dw‘
B K.(/-D,D,) '

M

(11.2)

W

0 on
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M
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(11.10)
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1. DERIVATIONS OF DYNAMIC COMPATIBILITY CONDITIONS (6.1.5)-(6.1.7)

Let # be a subdomain of &, 2 c & . Consider a field o(X.t), Xe ~. Its global

balance equation in Lagrangian description can be expressed as

4 [o(X.ndV ={ w(X.ONS + [y, (X.0)dV + [ p*(X.0)dV . (HL1)
dt -

where w(X.1), v, (X.t). and ¢ *(X.t) denotes the flux density, supply. and production of
@(X.1). respectively: /V is the unit normal vector to the boundary §» of the subbody 2 < & . If
@. W, v, .and @* are continuous over # < & . one obtains the following local form of the

balance equation.

I [»7)

—=DlVy +y, +p*. (I11.2)
4
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where DIV denotes the divergence operator with respect to X.

Now. our attention is turned to the subbody # c & containing points of discontinuity of

the field ¢ . It is assumed that these discontinuity points form an orientable two-dimensional
differentiable manifold <,(¢). The unit normal of ¢,(¢) is represented also by V. If any effects
connected with the gliding of ¢,(¢) in the tangential direction are exluded. the only nontrivial
component of the surface velocity is U in V direction and given by (6.1.3). Let [[o]] and [w]) be
the jump values of @ and w through ¢,(r), respectively. Assuming the continuity of L. [[w]]

and [[q/]] on the surface ¢, (t), one may prove that

felt + Twln =0. (I1.3)

This is the so-called Kaotchine’s condition ( Wilmancki  199R: nn 53.34)
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Note that

2 (GRaDv*)= GMD(@-] N 1), (IIL4)
Gt Ot \ Ot

where GRAD is the gradient operator with respect to X; I is the second-order unit tensor with

components o, (i.e. Kronecker’s delta); x* and v* are the motion and velocity of « -phase.
respectively. By using (3.1.1) and (3.1.2). x* and v* can be cast into functions of coordinate

X (€8 =25") and t. (111.4) implies that (dv*/dt ® I) plays the role of the flux of GRADv".
Integrating (I[1.4) over the subdomain 2 < &', one obtains

d gy [V "

— [(GRADv"\dV = { —-® NS . (IL.5)

Hence, it follows trom (il1.3) that

[GRAD v U + H"”—”@J N=0. (111.6)

The spatial form of (I11.6) is

[wv]u -+ ”iﬂﬂs n=0. (IIL.7)
L ct

where n is the unit normal to ¢,(¢) with respect to the current configuration. Let a* be the jump
amplitude of Vv’ through ¢,(r); then.

[Vv']=a" ®n. (I11.8)

Inserting (II[.8) into (II.7). one obtains

Havd ” =-a'lU. (I11.9)
at

Equations (II[.7)«(II[.9) are usually called the Hadamard's relationships (Coussy. 1995: pp.252).
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Similarly. using

%[GRAD(GRAD ' |=Dpv[(GraDv)®1] .

one may prove that

[GRAD(GRAD y)]JU +[[GRAD v [JO N = 0.

or equivalently.

Vv U +[vv]®n=0.

Finally. inserting (II[.8) into (III.12) and employing (3.1.5), one obtains

[vv wl=-U'a"®n®n.

(1I1.10)

(L1

(1L.12)

(111.13)



IV. NOMENCLATURE

Latin symbols

a’ acceleration of a-phase, [LT?]

A Helmholtz free energy of a-phase, [L°T~]

a* area density of af-interface, [L"]

b* macroscopic external supply of linear momentum of a-phase. [L'T07]
C, compressibility of a-phase, [M"'LT’]

¢ coefficient matrix of generalized velocity

D dissipation function

d° the symmetric part of velocity gradient of a-phase. [T']

E* macroscopic internal energy per unit mass of a-phase, LT}

total internal energy of the mixture, [L'T"]

E' Lagrangian stain tensor

e, mass exchange rate from ap-interface to a-phase, (ML™TY
F deformation gradient of the solid skeleton

G shear modulus of the mixture, [ML"'T7]

g gravitational acceleration, [LT7]

h* external supply of energy to a-phase, [L'T]

h* external supply of energy to af-interface. [L°T"]

I isotropic second order tensor with component J,

J jacobiof F.ie. J =det F

k global matrix of tangent modulus

k intrinsic permeability, [L’]

k? relative permeability of B-fluid

K bulk modulus of the mixture, [ML™'T?]

K, bulk modulus of a-phase. [ML'T?]

K, undrained bulk modulus of the mixture, [ML"'T?]

K, drained bulk modulus of the mixture. [ML T

m’ current mass of a-phase in a volume of porous medium that is unit before

deformation. [ML"|
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change in mf’ , [ML"]

total mass flowed across a surface that before the deformation is a unit area. [ML"]

total mass flowed across a surface that after the deformation is a unit area, [ML™]
porosity

volume fraction of a-phase

nominal stress, [ML'T?]

the first Piola-Kirchhoff stress. [ML'T?]
Kirchhoff pressure of a-phase. [ML'T?]

thermodynamic pressure of a-phase. [ML T

heat flux vector of a-phase, [MT]

body supply of heat to a-phase from ap-interface. [ML"'T"]

non-equilibrium part of the linear momentum exchange of a-phase. [ML™T?
equilibrium part of the linear momentum exchange of a.-phase. [ML™T™]

the second Piola-Kirchhoff stress tensor. [ML T~

degree of saturation

matric suction (capillary pressure associated with contractile skin), [ML"'T*]

body supply of momentum to a-phase from ap-interface. [ML T~
effective stress tensor, [ML' T

macroscopic stress tensor of a-phase, [ML"'T?]

relative displacement of /3 -fluid with respect to skeleton. [LT ']
diplacement of a-phase. [L]

specific energy function of the mixture, [ML™'T]

macroscopic velocity of a-phase, [LT"]

total free energy function of mixture, [ML"'T"]

convected relative velocity of 4 -fluid. [LT"]

relative velocity of A -fluid. [LT"]

position vector of the solid phase in deformed configuration. [L]
position vector of a material point of a-phase in undeformed configuration. [L]

global mass matrix



Greek symbols

o total Cauchy stress tensor, [ML™'T?]

’ capillary potential of B-fluid with respect to the skeleton, [MLT~]
n capillary potential of nonwetting fluid with respect to wetting fluid, [ML"'T?]
n macroscopic internal entropy per unit mass of a-phase, [L*T76"]

n total macroscopic internal entropy per unit mass of the mixture, [L°T6"']
n“ macroscopic internal entropy per unit mass of af-interface. [L*T70]
) temperature, [0]

A entropy.

P overall (volumetric) mass density of the mixture. [ML"]

p intrinsic (volumetric) mass density of a-phase. [ML”]

0 macroscopic entropy flux vector of a-phase. [MT’8"]

e’ material coefficients, [ML'T]

Z effective stress parameters

A, elastic constant of the skeleton, [ML™'T?)

A, elastic constant of the skeleton, [ML'T?]

A & u Lamé coefficients of the mixture, [ML"'T™]

v Poisson ratio
Special notation

A operator to assemble the element matrices into a global matrix

5" reference configuration of a-phase

S current configuration of a-phase

g domain spanned by the solid skeleton before deformation. i.e. &*
«Q finite element e

< space of configuration

4 space of variation

v gradient operator with respect to the deformed configuration x. [L"']
det determinant of a matrix
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div

D*

Dt
GRAD
DIv

sym()

divergence operator with respect to the deformed configuration x. [L™]
material derivative following the motion of a-phase, [T"']

gradient operator with respect to the reference frame X, (L]
divergence operator with respect to the reference frame X. [L"']

symmetrical part of a second-order tensor
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