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Abstract

The development of a large-scale phased array radar system such as the future

MPAR will need a cost-effective tool for predicting electromagnetic characteris-

tics of antennas. Simulating and optimizing of large finite phased array antennas

using commercially available solvers are time-consuming and memory-extensive

even though they are highly capable of solving general electromagnetic problems

with acceptable accuracy. In this work, a full-wave electromagnetic solver based

on finite-difference time-domain (FDTD) method has been developed for simulat-

ing phased array antennas. The planar array or array element can be simulated,

optimized, or analyzed using FDTD theory based on an orthogonal, regular Carte-

sian lattice. The FDTD updating equation for diagonally anisotropic material was

obtained for periodic structure based on the cylindrical coordinate system. This

FDTD algorithm can be used to simulate active element patterns of conformally

cylindrical array antennas. The simulation of active element patterns in an infinite

faceted-cylindrical array was accomplished with a nonorthogonal and unstructured

grid. The derivation of FDTD theory and periodic boundary condition for a struc-

ture based on the nonorthogonal and unstructured grid is presented. In this work,

two simulation schemes, which are based on computed near-field current density

information and the physical knowledge of finite array antennas, were presented for

predicting broadside array radiation characteristics with the consumption of rela-

tively low computational resources. The validation of the simulation program and

schemes was fulfilled by comparing simulation results with measurements taken

by near-field and far-field techniques.

xiii



Chapter 1

Introduction

The phased array antenna is an arrangement of multiple microwave radiators em-

ployed to form a directive beam by using the wave behavior of constructive and

destructive interference. Besides the capability of forming the directive beam in

the desired direction, the phased array antenna enables many features in radar

and communication systems.

1.1 Phased Array Antennas and Applications in

Radar and Communication Systems

1.1.1 History

In 1905, Karl Ferdinand Braun, a Nobel laureate in physics, experimentally demon-

strated that three antennas located at the corners of an equilateral triangle with

quarter wavelength altitude could form a directional transmitter, which could steer

the direction of the beam by 120◦. According to his lecture [1], one antenna, he

labeled as (C), has a quarter wavelength phased delay with respect to the other

two (A) and (B), which are in phased. By shifting the excitation circularly, (A)→

(B) → (C) → (A), he could steer the direction of the beam by 120◦. Even though

his experiment does not fully demonstrate the basic concept of the phased array

1



antenna, this is the first agile-beam demonstration, and this experiment reflects

our interest in agile-beam forming going back to the beginning of the twentieth

century.

After Marconi had published a paper about directional antennas[2] in the proceed-

ings for the Royal Society of London in 1925, a few researchers started investigating

how to design antennas with a directional beam. Friis [3] built the first array of

loop antennas to create a directional beam in 1925. In the 1920s, 1930s, and

1940s, some early researchers such as Friis, Feldman [3–5], Hansen [6, 7], Bruce

[8], Carter [9], Schelkunoff [10], and Southworth [11] did pioneering theoretical

and experimental research on phased array antennas. During World War II, early

phased array antennas were built for radar systems by the United States and

Britain. Dolph[12] and Taylor [13] made important contribution to array pattern

synthesis. Until 1950, beam forming systems of Phased Array Antennas were im-

plemented with an electromechanical system to produce the phase sheeting for

each element. The invention of the first ferrite phase shifter [14] in 1954 was a

milestone in the development of phased array antenna technology. In the early

1960s, a handful of research institutes and companies such as Lincoln Laboratories

[15], General Electric (GE), Radio Corporation of America (RCA), and Hughes

started conducting dedicated research on phased arrays. During this decade (the

1960s), the technology for diode phase shifters [16–19] started evolving, and that

became an excellent alternative to ferrite phase shifters. The digital beam forming

[20, 21] was first used in underwater acoustic array for detection systems in the

1950s. Because of the higher flexibility of digital progressing techniques, digital

beam forming [22–25] became a very promising branch of phased array technology.

In 1991, Ng et al [26] demonstrated the first optical delay system, which could be

used in the beam forming of phased array systems. Due to the inefficiencies in

modulation, detection, and switching, this area is still under investigation. In ad-

dition to the array synthesis method introduced by Dolph and Taylor, many other

algorithms were developed in the 1990s. The conjugate gradient-based algorithm
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[27], simulated annealing (SA) [28], genetic algorithm (GA) [29], and intersection

approach [30] are the significant discoveries among the pattern shaping algorithms

that emerged in the 1990’s. The particle swarm optimization (PSO) [31] was intro-

duced to minimize sidelobe level in 2005. The GaAs integrated microwave circuits

or monolithic microwave integrated circuits (MMIC) made low-cost TR modules a

reality [32]. The GaN and SiC technologies made TR module on chip more power

handling capable [33].

In this subsection, a very brief history of phased array is presented. More details

about the history of this fascinating field can be found in chapter 17 of History of

Wireless [34] written by Robert Mailloux.

1.1.2 Applications

(a) NOAA’s National Weather
Radar Testbed (NWRT).

(b) Cylindrical Polarimetric Phased Array Radar (CPPAR).

Figure 1.1: Example of Phased Array Radar Systems for Weather Measure-
ments

Although phased array technology has been used in many commercial applica-

tions, the military applications have been the most significant since its discovery.

Sea-Based X-Band (SBX) is the most impressive phased array radar system in the

world. It is a massive X-band phased array radar system floating on the sea. This

phased array system is a mobile ballistic missile defense system. The whole system
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is 85 meters tall and 116 meters long. The phased array antenna has 352 subar-

rays, which have 128 TR modules [35]. AN/SPY-1 is a passive S-band phased

array radar system manufactured by Lockheed Martin. SPY-1A is the system

used for NOAA’s National Weather Radar Testbed (NWRT) located in Norman

Oklahoma (Figure 1.1(a)). The beam width of the broadside pattern is 1.7◦ by

1.7◦. The AN/SPY-3 manufactured by Raytheon is an X-band active phased array

radar system used by the Blue-water Navy. Theater High Altitude Area Defense

(THAAD), an anti-ballistic missile system, uses an X-band phased-array radar

system. The phased arrays are used in MIM-104 Patriot, which is a surface-to-air

missile system. The highly agile beam created by phased array antenna in MIM-

104 Patriot is capable of detecting a fast target with low radar cross-sectional areas

(ballistic missiles, stealth aircraft, and cruise missiles). B-1B aircraft is equipped

with navigation and weapon-targeting radar (the AN/APQ-164 radar) system in

which a phased array antenna is used. The MP-RTIP manufactured by Northrop

Grumman is an X-Band long range active phased array radar system with the ca-

pabilities of very high-resolution synthetic aperture radar, ground moving target

indicator, and air target tracking. These are a few examples of military applica-

tions of phased array antennas. The complete list of military applications is much

longer.

While today’s vehicles are equipped with many safety precautions, the lack of

attention and errors of drivers cause over a million fatalities per year. The low-

cost phase array antennas are designed for intelligent collision avoidance and cruise

control radar of the automobile [36]. A W-band phased array radar system is built

on a single SiGe chip with digital or RF beamforming capabilities. Even though

phased array on a chip is under investigation for more improvements and capa-

bilities [37–39], those systems are in production by many manufacturers (Denso,

Bosch, and Delphi).

A highly agile beam is a critical aspect of today’s weather radar system, because

it can bring many required improvements such as high Probability of Detection
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(POD), low False Alarm Ratio (FAR), implementing of numerical weather models,

and flexibility. Traditional parabolic antennas with mechanical beam steering

such as Weather Surveillance Radar-1988 Doppler (WSR-88D) cannot gain the

high flexibility and superior observation capability that phased array can [40].

Cylindrical Polarimetric Phased Array Radar (CPPAR) [41–43] was developed to

demonstrate the inherent polarimetric advantage [44] of the cylindrical manifold

in weather radar applications (Figure 1.1(b)). This is an S-band array with 1824

elements. The elevation beam steering is done by frequency scanning, and the

elevation range is from 0◦ to 20◦ corresponding to the frequency from 2.7GHz

to 3.1GHz. The 3dB-beam width of the broadside pattern is 4.5◦ in the vertical

plane.

In the United States, seven radar system networks are in operation for the de-

fense and surveillance services. The next generation solution is the Multi-function

Phased Array Radar (MPAR) network, which can perform severe weather surveil-

lance, long range surveillance, locate non-cooperate targets, terminal area surveil-

lance, chemical dispersion, and many other surveillances simultaneously. The

number of MPAR systems in this new network can be approximately 350 [45, 46].

Besides the many applications of phased array antennas in radar systems used in

military and commercial products, the applications in the communication systems

keep expanding every day. The satellite and deep-space communications are using

circularly polarized array antennas. There are many radio broadcasting cooper-

ations which use phased array antennas to avoid interference with other signals.

5G LTE systems are about to appear by 2022. The proposed system is operating

in mmWave bandwidths and phased array on a chip technology is essential for

proposed millimeter-wave 5G communication systems [47].

The Multiple Input and Multiple Output (MIMO) radar [48, 49] can provide better

resolution and accuracy than conventional phased array radar systems. Since the

system does not have the maximum energy efficiency and is required to have high

signal processing requirements, these radar systems are well suited for searching

5



rather than tracking.

1.1.3 Ongoing Research in Phased Array Antennas

According to the IEEE International Symposium on Phased Array Systems and

Technology in 2014 and 2016, there are many mainstream research areas in phased

array antennas. Array designing methodologies, T/R modules, array beamform-

ing, calibration, array signal processing, array measurements, conformal array, and

applications (radar and communication) can be listed as those main areas of re-

search. There are large and more specific research areas which can be categorized

under one or many of the mainstream areas. As an example, multi-functional

phased array radar may be classified under almost all of the mainstream areas

since the system will be more versatile.

1.2 Various Types of Phased Array Antennas

and Manifolds

In the world of phased array antennas, there are many manifolds in use such as

Linear Array Antennas, Planar Array Antennas, and various kinds of Conformal

Array Antennas. Linear arrays are the simplest and oldest array manifolds. The

linear array can be considered as a special kind of planar array. The planar array

is the most commonly used array manifold which has array elements populated

on a planar surface in the regular or irregular arrangement. The conformal array

antennas have various types since the array is supposed to conform to a prescribed

shape. One can categorize conformal arrays into two groups: singly curved surface

and doubly curved surface. The most typical example for array antenna with

a singly curved surface is circular cylindrical array antennas. This is the most

desired array manifold for weather radar applications, because of the polarimetric

advantage. Rings, elliptic cylinders, hyperbolic cylinders, and cones are the other
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singly curved surfaces. There are many antennas on the skin of a passenger or

military aircraft. They need to be directional beam forming antennas. Doubly

curved arrays are apparently qualified as the solution for many of them, because

doubly curved arrays can have the surfaces of simple geometrical shapes such as

spheres, paraboloid, hyperbolic paraboloid, ellipsoid, and hyperboloid or arbitrary

shapes. The faceted arrays for any conformal array with singly curved surface and

doubly curved surface can exist. In this work, planar arrays, circular cylindrical

arrays, and faceted cylindrical arrays are considered exclusively.

1.3 Importance of Antenna Modeling for MPAR

Developing a low-cost Multifunction Phased Array Radar (MPAR) is very chal-

lenging as the system is expected to be versatile and operate up to the desired

level of performance in different functionalities. As an example, the single linear

polarizations are used to do the aircraft surveillance in normal weather conditions.

However, under heavy precipitation, a circularly polarized mode is needed to min-

imize the depolarization loss [50]. System capabilities of current radar networks,

which are used for terminal aircraft surveillance, en route aircraft surveillance,

terminal area weather surveillance, and national scale weather surveillance have

different sensitivity, coverage, angular resolution, waveform, and update rate [51].

According to the cost model presented in [46], an antenna element, T/R module,

power, timing, and control, digital transceiver, analog beamformer, digital beam-

former, mechanical/packaging, and RF interconnects are the main parts which

should be included in the MPAR system. To realize the conceptual MPAR sys-

tem, the research and development (R&D) needs to be done in four main streams.

By bringing improvements to elements of finite array antennas and developing

phased array architectures are essential to risk mitigation in the MPAR full-scale

system. The cost effective, more flexible, and compact TR module design is a

main research interest [52]. The back-end development of radar systems with
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field programmable gate arrays (FPGAs) and application-specific integrated cir-

cuits (ASICs) are an ongoing developments by numerous researchers. The forth

research area of MPAR is post processing of the digital data from the back-end

system.

Advanced Technology Demonstrator (ATD), a planar array with advanced dual-

polarization capabilities is proposed to demonstrate the risk mitigation of the

MPAR concept. NOAA National Severe Storms Laboratory (NSSL) and Federal

Aviation Administration (FAA) are jointly participating in this project to replace

SPY-1A passive array installed on NWRT with ATD. It has been theoretically

shown that cylindrical array [44] manifold has unique advantage in weather mea-

surements. Therefore the correct modeling of phased array antennas is a critical

aspect in future MPAR systems.

1.4 The Approach Used in the Work

The designing and optimization of the array antenna are mostly done by the proper

quantitative antenna analysis. Since large finite phased array antenna elements can

not be easily designed or optimized by simple analytical or intuitive methods, the

simulation tools developed based on a numerical method are used to approximate

the solution of analytical equations. The phased array antennas (more princely any

antenna) will be mainly characterized by the radiation pattern (gain, directivity,

E-field, or axial ratio) and input impedance (or S parameters). In addition to

these two measurements, mutual coupling matrix or scattering matrix which can

be derived from input impedance or radiation pattern of embedded elements will

be important in phased array antennas characterization.

In this work, both measurement and simulation are used to validate the proposed

methods. Far-field and near-field techniques were utilized in the measurement

procedures of antennas presented in this dissertation. The finite array simula-

tion methods are the ultimate objective of this work which is using the Finite
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Difference Time Domain (FDTD) method. Periodic Boundary Conditions (PBC)

and Convolutional Perfectly Match Layer (CPML) are used whenever required to

model the finite array problem.

1.5 Dissertation Outline and Objectives

The objective of this work has the following three aspects: (1) the comparison of

various array antennas with both measurements and simulations, (2) development

of the FDTD program with PBC in rectangular, cylindrical, and non-structured

nonorthogonal grid for simulations of active element in planar, cylindrical and

faceted-cylindrical arrays, and (3) scalable electromagnetic characterization of

large finite array antenna using two new schemes to do the FDTD simulation.

All three aspects focus on the pursuit of one objective. That is to develop an

innovative procedure which is based on both physics and theoretical knowledge to

analyze large finite phased arrays for weather radar applications.

Chapter 2 start with a general discussion of computational electromagnetic (CEM)

in section 2.1. A overview of the Finite Difference Methods (Section 2.1.1), Finite

Element Method (Section 2.1.2), Method of Moments (Section 2.1.3), High Fre-

quency Asymptotic Methods (Section 2.1.4), and Hybrid Methods (Section 2.1.5)

are presented. The discussion of the Finite Difference Time Domain (FDTD)

method is more emphasized since FDTD is the method being used in this work.

Section 2.2 evaluates the strengths and weaknesses of each computational electro-

magnetic technique. The last section of Chapter 2 (Section 2.3) introduces the

EM Solver called PASim (Phased Array Simulator) build as a part of this work.

Section 2.3 presents the motivation to build it, the spacial capabilities of PASim

in finite phased array antenna simulation.

Chapter 3 presents detailed theory of PASim program and simulation results us-

ing PASim, HFSS, and xFDTD. Section 3.1 discusses the PASim implementation

(updating equations in [53], numerical dispersion in Section 3.1.1, perfectly match
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layer in [53], and periodic boundary condition in Section 3.1.2) in rectangular

grid. The PASim is capable of modeling the cylindrical phased array antenna.

The derivation of updating equations, numerical stablity, and periodic boundary

in cylindrical coordinate system are presented in Subsections 3.2.1, 3.2.2, and 3.2.3.

All of the cylindrical array antennas measured in this work are faceted cylindrical

phased array antennas. Therefore Section 3.3 presents an alternative griding sys-

tem for modeling the antennas element of faceted cylindrical phased array with

periodic boundary. Section 3.5 elaborates the validation of the simulation data

from PASim program using a simple patch antennas, patch antenna with slots,

and multilayer patch antenna from MIT LL.

The discussion of antennas measurement in an anechoic chamber is presented in

chapter 4. In Section 4.1, the coordinate systems used in antennas measurements

and the definitions of cross polarization is given. The measurement set-up for

near-field and far-field measurement are explained in Section 4.2. In this section,

the old far-field chamber (was be located at One Partner Place on The University

of Oklahoma’s Research Campus) is validated with the NEXRAD feed antennas

measured in new far-field range. The active element pattern or embedded element

pattern measured in near-field chamber needs to be processed to generate array

pattern for planar and faceted cylindrical array using a MATLAB program. The

theoretical background of this data processing is presented in 4.3.

A brief system description and measurements of Configurable Phased Array Demon-

strator (CPAD) is presented in Chapter 5. In section 5.1 the description and

illustration of system level designing are given. CPAD-I (Configurable Phased Ar-

ray Demonstrator version 1) was configured into planar 4× 4 array (Section 5.2),

planar 2 mirrored array (Section 5.3), and 16-elements ring array (Section 5.4).

CPAD-II has 64 elements and measurement of planar and cylindrical arrays are

discussed in Section 5.5 and Section 5.6.

The physical knowledge of array elements or the measurement of active element
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pattern and the FDTD method with PBC is used to propose two schemes to pre-

dict the array broadside pattern in Chapter 6. The chapter starts with a brief

literature review of analyzing methods for finite array antennas. The goals and

requirements of analyzing tools for future multi-functional phased array anten-

nas are discussed in Section 6.1. The fundamental theories and techniques - far-

field region, near-field regions, surface equivalent theory, and near-field to far-field

transformation are discussed in Section 6.2. Two proposed methods, which are

the central objectives of this dissertation are presented in section 6.3.

The final chapter, Chapter 7 presents a summary of the dissertation and numerous

proposed future works to improve PASim program
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Chapter 2

Overview of EM Simulation

Solving Maxwell’s equations [54] in different problems was a long-lasting research

interest. In fact, researchers had been investigating in this field over last cen-

tury. One way to carry out solving Maxwell’s equations is by using analytical

techniques. Even though analytical methods can solve problems with simple geo-

metrical shapes such as spheres, cylinders, and planes, it gets more tedious math-

ematically when the problem has complex geometrical details. The numerical

techniques for solving electromagnetic problems are the most attractive method,

especially in engineering applications. The field of computational electromag-

netic started evolving in the early 1960s. Those methods can be categorized as

time-domain solvers and frequency domain solvers as illustrated in Figure 2.1.

A time-domain method solution and a frequency-domain solution can be related

with Fourier transform. The time-domain method can be further divided into two

groups : integral equation (IE) solvers and partial differential equation (PDE)

solvers. The numerical method and asymptotic method are two major categories,

which can be included in the frequency domain method.

During the last five decades, there were three most predominant computational

methods developed for full-wave electromagnetic simulations. Those were Finite-

Difference Time-Domain (FDTD) Method, Finite Element Method (FEM), and

Method of Momentum (MoM). In addition to them, there were many other hybrid
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Figure 2.1: Computational methods for electromagnetic analysis

techniques and high-frequency methods. The high-frequency techniques, such as

physical optics (PO) and uniform theory of diffraction (UTD) are based on ray

theory, diffraction theory, and perturbation theory. Most of the electromagnetic

solvers emerged with the rapid increase in the computational capability of pro-

cessing units in 1990’s. Present-day solving Maxwell’s equation can be done with

many commercially available proprietary software and free/open source software

with astounding success. Since the primary focus of this work is to solve the elec-

tromagnetic problem of large phased array antennas, the discussion will be em-

phasized upon solving Maxwell’s equation more accurately and rapidly on large

scales.

2.1 Solving Maxwell’s Equations in Time & Fre-

quency Domains

The differential form of Maxwell equation is presented in equations 2.1 (Maxwell-

Ampere’s Law), 2.2 (Faraday’s Law), 2.3 (Gauss’s Law for Electric field), and 2.4

(Gauss’s Law for Magnetic field). ~E, ~H, ~D, ~B, ~J , ~M , ρe, and ρm are the electric

field strength vector, magnetic field strength vector, electric displacement vector,
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magnetic flux density vector, electric current density vector, magnetic current den-

sity vector, the electric charge density, and magnetic charge density respectively.

∇× ~H =
∂ ~D

∂t
+ ~J (2.1)

∇× ~E = −∂
~B

∂t
− ~M (2.2)

∇ · ~D = ρe (2.3)

∇ · ~B = ρm (2.4)

2.1.1 The Finite Difference Method

The finite difference method is the oldest among all the other numerical compu-

tation methods used in the computational electromagnetics. The main branch of

this approach is the finite difference time domain method, which was first proposed

by Yee in 1966 [55]. Since it is the simplest method among other electromagnetic

solvers, FDTD is the right place to start understanding a problem with rudimen-

tary mathematics. After all, it is a time domain method, with which one can do

the transient analysis using the variation of the electric/magnetic field, electric/-

magnetic current density, or electric/magnetic flux densities in the time domain.

2.1.1.1 The Basic Idea of The Finite Difference Method

One can find the approximation value of a differential of a function at a given

point (or gradient at a given point) by using differencing equation, which can

be written as forward differencing formula (equation 2.5), backward differencing

formula (equation 2.6), and central differencing formula (equation 2.7) :
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f ′(x) =
df(x)

dx
≈ f(x+ ∆x)− f(x)

∆x

(2.5)

f ′(x) =
df(x)

dx
≈ f(x)− f(x−∆x)

∆x

(2.6)

f ′(x) =
df(x)

dx
≈ f(x+ ∆x)− f(x−∆x)

2∆x

(2.7)

Using the Taylor series, we can do the error analysis of those differencing equations.

The Taylor series of f(x+ ∆x) and f(x−∆x) can be written as in equation 2.8a

and equation 2.8b respectively.

f(x+ ∆x) = f(x) + f ′(x)∆x +
1

2
f ′′(x)∆x

2 +
1

6
f ′′′(x)∆x

3 + ... (2.8a)

f(x−∆x) = f(x)− f ′(x)∆x +
1

2
f ′′(x)∆x

2 − 1

6
f ′′′(x)∆x

3 + ... (2.8b)

Using equations 2.8a and 2.8b, one can show that the forward differencing formula

and the backward differencing formula are first-order accurate (O(∆x)). On the

other hand central differencing formula is more accurate, which is second-order

accurate (O(∆x
2)).

2.1.1.2 The FDTD Algorithm in 1D problem

The one-dimensional Maxwell’s equation in source free problem can be written as

equation 2.9a (Faraday Law) and 2.9b (Ampere-Maxwell Law). Assume that the

electric field only has a non-zero component in z direction and the magnetic field

has a non-zero component in y direction only.

µ
∂Hy

∂t
=
∂Ez
∂x

(2.9a)

ε
∂Ez
∂t

=
∂Hy

∂x
(2.9b)
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In equations 2.9a and 2.9b, temporal derivative of the electric (or magnetic) field

is related to spatial derivative of the magnetic (or electric) field. The Equations

2.5, 2.6, and 2.7 can be used to write differencing equations with first-order accu-

racy in spatial partial derivatives and second-order accuracy in temporal partial

derivatives.

µ

(
Hy

n+ 1
2

[
i+ 1

2

]
−Hy

n− 1
2

[
i+ 1

2

]
∆t

)
=
Ez

n[i+ 1]− Ezn[i]

∆x

Hy
n+ 1

2

[
i+

1

2

]
= Hy

n− 1
2

[
i+

1

2

]
+

∆t

µ∆x

(Ez
n[i+ 1]− Ezn[i]) (2.10a)

ε

(
Ez

n+1 [i]− Ezn[i]

∆t

)
=
Hy

n+ 1
2 [i+ 1

2
]−Hy

n+ 1
2 [i]

∆x

Ez
n+1[i] = Ez

n[i] +
∆t

ε∆x

(
Hy

n+ 1
2

[
i+

1

2

]
−Hy

n+ 1
2

[
i− 1

2

])
(2.10b)

After the electric and magnetic components as illustrated in Figure 2.2 are com-

puted using 2.10a and 2.10b, current densities, potentials, radiations, and s pa-

rameters can be computed.

2.1.2 The Finite Element Method

In engineering and mathematical physics, boundary value problems have to be

solved very often in the fluid dynamic problem, heat transfer, mass transport,

structural engineering, and electric/magnetic potential. The finite element method

(FEM) is a very popular numerical procedure for getting well-approximated so-

lution for boundary value problems. This method was first introduced in the

1940s for solving a problem in structural engineering. Hrennikoff [56] in 1941 and

McHenry [57] in 1943 developed this method to find stresses in continuous solids.

Courant [58] used this method to solve equilibrium and vibration problem in 1943.
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Figure 2.2: The arrangement of electric field and magnetic field components
of 1D FDTD problem in space and time

Engineers and scientists started applying FEM in structural engineering for air-

craft manufacturing industry in the 1950s. But until 1969, the FEM was not used

to solve electromagnetic problems. Silvester [59] is the first researcher who used

FEM to solve waveguide problem in 1969.

The Finite Element Method can be done in four steps, which are common for

any boundary-value problem solving including electromagnetic problem. Each of

the steps is briefly discussed in the following subsections. These are very concise

descriptions of the process from very lengthy discussion from [60, 61] by Jian-Ming.

2.1.2.1 Discretization of the Domain

In this first step, the entire domain is subdivided into small domains called el-

ements. 1D problem is the most simpler one, which has a large line segment to

represent the domain and small line segments to represent elements. Discretization

of the 2D problem is done using small triangles (for irregular regions) or rectangles
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(for regular regions). In 3D problem, the domain can be subdivided into tetrahe-

dra, triangle prisms, or rectangular bricks. This process is considered as the most

significant task because the way the domain is discretized will effect the memory

requirement, computation time, and accuracy of the solution.

2.1.2.2 Selection of the Interpolation Functions

After the completion of the first step explained in Section 2.1.2.1, suitable poly-

nomial functions (interpolation functions) are selected to find the approximated

solution for the elements. By increasing the order of polynomial functions, the

accuracy of solutions can be improved. The linear polynomial is more popular

interpolation function to minimize complexities of the process.

2.1.2.3 Formulation of the System of Equations

Using Ritz variational method or Galerkin method, the formulation of the systems

of an equation can be done, using the solutions of elements from interpolation

process in Section 2.1.2.2. In either method, the formulation is conducted through

three intertwined processes.

• Formulate the equations for each element (called elemental equations).

• Build the system of equations by taking the summation of elemental equa-

tions (called the process of assembly).

• Apply the Dirichlet or homogeneous Neumann boundary condition to the

system of equations.

If the problem considered is having a source or excitation, the final form of the

equation is a deterministic system of equations and the problem has no sources

that will be eigenvalue type system of equations.
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2.1.2.4 Solution of the System of Equations

Depending on the nature of given problem, a computer will have to solve determin-

istic or eigenvalue matrix equation. The final step is to solve the matrix equation

and obtain the solution. Then the post-processing can be run to find the output

parameters, such as radiation patterns, current distributions, S-parameters, and

lumped element values.

2.1.3 The Method of Moments

The method of moments or moment method had been in existence well before

it was first used to solve EM problems in the 1960s. Mei and Van Bladel [62],

Andreasen [63], Oshiro [64], Richmond [65], and Harrington [66] did the early

research to bring this theoretical method into electromagnetic boundary value

problem solver. Today this computational method is used in many commercially

available electromagnetic solvers.

Let’s consider integral equation which is a linear operator acting upon an unknown

function (f), however, the result is a known function. This is the kind of equation

we may encounter when we solve the charge distribution of the integral solution to

Poisson’s equation in electromagnetic. One can write the unknown function f ex-

actly in a linear combination of expansion functions or basis functions f1, f2, f3, ....

The number of functions can be infinity to get the exact unknown function. Since

the computational need to be realistic, a finite number of basis functions are con-

sidered. By plugging in this linear combination in an integral equation, a new

equation can be deduced using the linear property of integral operator. Then a

set of weighting functions or testing functions is defined to take the inner product

of both sides of the equation. Finally, a matrix equation will be created in the

format of [lmn][αn] = [gm]. [lmn] is the inner product of the integrally operated

basis function with a m number of testing functions. [αn] is the n number of
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constant which needs to be determined. [gm] is a known matrix. Using the appro-

priate procedure, the inverse of [lmn] can be computed and the vector [αn] can be

obtained. Then the unknown function may be computed using f =
∑
αnfn.

2.1.4 High-Frequency Asymptotic Techniques

The high-frequency asymptotic techniques are used when the geometry of the

object is much larger than the smallest wave of the problem. In addition to that,

the geometrical features of the object of the problem should not be small to get

the accurate simulation results. Asymptotic theory can be categorized into two

major classes of solvers based on geometrical optics (GO) [67] and physical optics

(PO). The computational method based on geometrical optics are using the Snell’s

law as the underlying principle. Geometrical theory of diffraction (GTD) [68–70],

uniform theory of diffraction (UTD) [71, 72], uniform asymptotic theory (UAT)

[73, 74], and spectral theory of diffraction (STD) [75, 76] are the derivatives of

the geometrical optics. In physical optics, the lit region and shadow region will

be detected and compute the induced current densities ( ~Js = n̂ × ~H) in those

regions. The assumption of neglecting the effect of geometrical discontinuities is

made intrinsically in this method. The induced current in the lit region will be

calculated with the equation 2.11a and the induced current in the shadow region

will be calculated with the equation 2.11b.

~Js ≈ 2n̂× ~H inc (2.11a)

~Js ≈ ~0 (2.11b)

Then there will be a discontinuity on the boundary between the lit region and

the shadow region, even though the geometrical discontinuity will not necessarily

exist. By taking the radiation integral or the PO integral of those currents, far-

field radiation can be calculated. The physical theory of diffraction (PTD) is
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a derivation of physical optics. The physical theory of diffraction improves the

accuracy by introducing non-uniform fringe currents to create the geometrical

discontinuity.

2.1.5 Hybrid Techniques

In Section 2.2, there is a discussion about strengths and weaknesses of FDTD,

FEM, and MoM methods. None of these methods can be considered as the best

method for general EM Solver development. In addition to those predominant

methods, the finite element time domain (FETD) method, the finite-volume time-

domain (FVTD) method, the plane-wave time-domain (PWTD) algorithm, dis-

continuous Galerkin time domain (DGTD) method, the conjugate gradient fast

Fourier transform (CGFFT) method, and asymptotic method as discussed in Sec-

tion 2.1.4 can have their own strength and weakness in electromagnetic simulation.

Hybridization of those methods can compensate one method’s weakness with an-

other method’s strength. Either numerical algebra or physical principles can be

used to do these hybridizations of different methods.

Hybridization of the Finite Element and Finite Difference (hybrid FE-FD) Meth-

ods is the combination of finite element time domain (FETD) method with the

FDTD method. Indisputably, in this hybridization, the weakness of the FDTD

method which is the incapability to model complex geometrical details should be

compensated. A strength of the FDTD method is the ability to simulate large

structure, which can be inherited in this method. The hybridization of the Finite

Element and the Boundary Integral (FE-BI) methods is another well-known com-

bination. Another weakness of FEM is the requirement of an ABC or a PML to

truncate the domain of a given problem, even though it may need to deal without

any truncation in the radiation analysis. But the Method of Moments models

the problem with an appropriate Green function. The hybridization of FEM and
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MoM is capable of simulating highly complicated electromagnetic problems with

complex geometries and materials.

2.2 General Comparison of EM Solvers

Since there is no need for solving matrix equations, in general, the FDTD method is

computationally efficient. The method is directly derived from Maxwell’s equation

and it can be used to solve virtually any electromagnetic problem. The simplicity

of the method is an enormous advantage as this is the only method which can be

implemented with less amount of work. The material anisotropy and inhomogene-

ity can be modeled more accurately and easily. Many EM solvers using FDTD

computation use the rectangular grid to represent the geometrical details of the

problem, which can be fairly accurate to represent the geometrical information.

But this method with the regular grid is incapable of accurately modeling the tiny

geometrical details of the problem. One can use conformal grids, irregular unstruc-

tured grids, or sub-grids to overcome this disadvantage at the cost of simplicity

and efficiency of the solver. The method is well suited for modeling and simula-

tion of electrodynamic problems since the intertwinement of electric and magnetic

fields are modeled correctly. The homogeneous and inhomogeneous penetrabilities

in FDTD are in optimum level in both open region problems and guided wave

problems [77]. The guided wave problem space can be simulated in a much wider

frequency band by selecting the proper exciting waveform. Since FDTD is in the

time domain, the program can provide the data, while the time-marching-loop is in

progress. The FDTD can model problems with dispersive and nonlinear materials

accurately which is one of the alluring features of the method.

Modeling complex geometrical details of the problem using EM solver, which em-

ploys FEM, is much more accurate and versatile. But the exponential growth of

the matrix dimension can limit the size of a problem domain, due to the limit

of computer capacity. Since it is in the frequency domain, the transient solution
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can not be achieved. The guided wave problem space can be simulated in a sat-

isfactory range of frequency band and better frequency scaling than it in MoM.

The homogeneous and inhomogeneous penetrabilities of FEM in both open region

problems and guided wave problems are comparable with the FDTD solver [77].

The EM problem with dispersive materials can be modeled very easily using FEM.

The ability to use higher-order basis functions in a conformal element can model

the electromagnetic interaction with material more accurately. FEM EM solvers

can easily simulate the other physical phenomena such as mechanical or thermal

solutions since the thermal and mechanical problems can be formulated as bound-

ary value problems. Unlike the FDTD method, Time domain FEM can be made

unconditionally stable.

The Method of Moments is particularly more efficient in simulating one denomi-

national and two denominational objects since one or two denominational objects

are exclusively subjected to mesh, and not the air region around the object. MoM

is inherently capable of handling an electromagnetic problem with radiation at

the far-field range. Then EM simulators with MoM are more suitable for solving

electromagnetic radiation and scattering problems. The current densities from

near zone and far zone sources are very common in studying, designing, and syn-

thesizing antennas. Because MoM directly finds the current densities, MoM is

more capable of simulating antennas fabricated with microstrip technology. MoM

is computationally expensive when the material is inhomogeneous. It is more ef-

ficient and accurate for perfectly or highly conducting surfaces. When the MoM

formulation is based on the magnetic field integral equation, the solver can be used

in a particular set of problems. MoM is not a very efficient method for simulation

in a large frequency range. When the number of frequency points is increased,

computation time increase very rapidly. As an example, if a problem with the

homogeneous material is simulated with ten frequency points and 20 frequency

points, simulation with 20 frequency points will take 64 times more CPU usage

than the simulation with ten frequency points.
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Software Name Developer Method License
HFSS Ansys FEM, FE-BI Proprietary

FEM Element Keysight FEM Proprietary
FDTD Element Keysight FDTD Proprietary

Momentum Keysight MoM Proprietary
xFDTD Remcom FDTD Proprietary
FEKO Altair MoM, MoM-PO Proprietary

CST MWS CST FDTD Proprietary
NEC Burke MoM GPL

openEMS Liebig FDTD GPL
Meep MIT FDTD GPL

FDTD++ Biosketch FDTD GPL

Table 2.1: Commercial and Free electromagnetic solvers.

From the above comparison, one can recognize FDTD as the most attractive

method for an academic project because it is simple to implement, can be used in

a large range of applications, and is able to simulate in broad frequency bandwidth

without needing extensive computational time. But FDTD, FEM, and MoM are

used in many EM solvers as listed in Table 2.1, which are available as free or

proprietary solvers. MoM is the most common method in many cases for last few

decades, but FDTD is being adapted in many solvers due to the advancement of

GPU and parallel computing.

2.3 Phased Array Simulator (PASim)

2.3.1 Motivation to Develop another EM Solver

Simulation of a large finite phased array antenna is a challenging task, which has

to be confronted. The commercial software listed in 2.1 can provide excellent

simulation results. They are not very capable of producing accurate simulation

results of a large finite array with limited computational resources. Therefore there

is a need for building a new simulator for solving the particular electromagnetic

problem. The PASim was created as an attempt to build a successful EM solver

for the finite phased array simulation.
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2.3.2 Capabilities of PASim

Since PASim is a “home-build” FDTD code, it has all the benefits of being flexible

and expandable. Originally, it was based on the FDTD theory and MATLAB

code for rectangular grid from [53]. Then it was extended for the cylindrical grid,

non-orthogonal unstructured grid, periodic boundary condition, and finite array

simulation using an efficient algorithm. Since there is no air gap in the directions

of +x̂, −x̂, +ŷ, and −ŷ the time taken for simulating an active element pattern in

infinite-by-infinite array is less than the time, which requires simulating an isolated

element1.

The first version of PASim was written in C programming language. Even though

C and C++ programming languages are ideal options for this kind of heavy numer-

ical computational task, Java programming language had to be used to minimize

the debugging and diagnostic time. The PASim written in Java programming lan-

guage is 2 to 3 times slower than the PASim written in C programming language.

As the ultimate objective is to implement a fast algorithm for large finite array

simulation rather than building a final product ready to ship, this compromise had

to be made.

2.3.3 Abstract Functional Illustration of PASim

The PASim program has three major functionalities: preprocessing, time-marching-

loop, and post-processing. In preprocessing the definition of the problem, initial-

ization of the variables, and calculation of the updating coefficients will be carried

out. The time-marching-loop is the main functionality of this program, which

will calculate all the variable (electric and magnetic field components) values in

a time domain. In addition, it will be used to correct the value at output probes

and near-field electric and magnetic current information in the frequency domain.

Finally, the s-parameter calculation using voltage and current data at defined

117/25 is the approximated ratio between the elapsed time for simulating an active element
pattern in infinite-by-infinite array and the elapsed time for simulating an isolated element

25



ports and near-field to far-field transformation using electric and magnetic current

components will be performed in the post-processing function.

Figure 2.3: Abstract Functional Illustration of PASim

The number of time steps, Courant factor, default number of Yee cells per wave-

length, port frequencies, far-field frequencies and dimensions of Yee cell are the

problem space parameters which should be defined as the first task of the pro-

gram. The number of time steps and the dimensions of Yee cell can be edited by

both user and the program. The next task is to define the boundary condition

of the problem space. Three kinds of boundaries are used in this program. The

convolutional perfectly match layer (CPML), periodic boundary condition (PBC),

and X-boundary (new fictitious boundary introduced in this work). The electrical
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and magnetic properties of materials (εr, µr, σ
e, and σm) used to build the struc-

ture or antenna should be entered by the user or read from a data file. The loss

tangent (tan δ) can be used to calculate σe for some materials. The user can enter

the problem geometry with the dimension, location, and material type of basic

brick-shaped objects in Meters. Then the program will assign the materials to

those geometrical objects. Using those geometrical details, the electrical and mag-

netic property arrays are built and computed for both isotropic and anisotropic

materials. All the non-homogeneous material components will be approximated

using proper approximation strategies. When the material is partially filed in a

Yee cell, the sub-cell averaging scheme can be used to find the effective electric and

magnetic properties [53]. If the sub-cell averaging scheme is neither acceptable nor

necessary, the program can carry out a snapped-to-grid scheme. Defining the ma-

terial properties of an electric conductor with the zero thickness is accomplished

by assigning material properties two-dimensionally. Voltage sources are used as

the excitation in this program and they are defined with 50Ω internal resistors

[53]. Those voltage sources are initialized with Gaussian or normalized deriva-

tive of a Gaussian or cosine-modulated Gaussian waveform. FDTD program with

periodic boundary condition is using cosine-modulated Gaussian waveform as it

can define a waveform in a narrow band of frequency. Updating coefficients will

be calculated before finishing the preprocessing, since the material properties are

considered time-invariant (not depending on the temperature or field intensity).

Within the time-marching-loop, most of the unknown variables are computed as

the loop is incrementing in time steps. Updating magnetic field components will be

performed in problem space as the first step and then CPML region electric field as

the next step. After updating all the magnetic field components current samples

will be computed and collected at designated ports for computing S-parameters.

In the next sequence of operations, the electric field components are computed and

voltage samples are collected at port’s locations. In addition to that, if there is any

periodic boundary defined in the problem, updating field components at periodic
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boundaries are carried out (this will be discussed exclusively in chapter 3). After

updating all the electric and magnetic field components, electric field updates due

to the voltage source are applied. Finally electric and magnetic current density

components on the imaginary near-field closed surface are computed and collected

in the frequency domain. This sequence of operations is recursively performed

until reaching the defined number of time steps or reaching the loop terminating

criteria.

The final of the three major functionality is used to calculate voltage and current

in the frequency domain, the impedance in the frequency domain, S-parameters

and to convert current densities on the near-field surface to electric and magnetic

field components in far-field. Near-field to far-field transformation is discussed in

Chapter 6. If there are any field probes, surface current probes are defined in the

first major steps, and those data can be converted to frequency domain at this

stage. As an example, if all the electric field components in the ~x and ~y direction

on a planar surface at fixed Z location, the transient analysis of electric field on

that plane can be carried out. After all the data processing is done the program

will save S-parameters, voltages, currents, and far-field data.

PASim program is integrated into the genetic algorithm to do the electromagnetic

optimization of radiating element as illustrated in Figure 2.4. This enables the

patch antenna optimization in two different ways. The first method is changing

the selected variables (dimension of the patch and location of the ports) randomly

to create a population. This is the most typical electromagnetic optimization that

is available in almost all of the commercially available solvers. The second method

is a broader way of doing optimization. In the second optimization process, the

microstrip patch of a known good antenna will be fragmented into small microstrip

patches. Then the population will be created by switching them on (present) and

off (absent) individually. These types of patch antennas are investigated by some

researchers [78, 79] and PASim can pave the way to optimized known good patch

antenna to enhance more desired characteristics.
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Figure 2.4: Genetic algorithm used in PASim Program
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Chapter 3

FDTD Simulation of Infinite

Array Antenna with Different

Manifolds

The EM full-wave simulation program can be implemented with the well estab-

lished FDTD updating equations and PML theory, which can be found in [53, 80].

The basic idea of FDTD simulation is to determine electric and magnetic field

components at each point of discretized finite space and time of the given problem

space. FDTD theory in the rectangular coordinate system can be extended for

other orthogonal grids such as cylindrical coordinate system and spherical coor-

dinate system, nonuniform grids, non-orthogonal grids, curvilinear grids, locally

conformal/globally orthogonal grids, and unstructured grids.

The FDTD updating equations in the cylindrical grid for isotropic media can be

found in [80]. In this chapter, the FDTD updating equation for anisotropic media

will be presented. These equations can be used to simulate a fully conformal

cylindrical phased array antenna. But in real world applications, the fabrication of

this kind of large array may not be economical. In addition, most of the prototype

cylindrical arrays are not fully conformal. As an example, the cylindrical array

measured in this work was fabricated with planar linear (or column) arrays, which
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are called faceted-cylindrical arrays. The simulation of a faceted-cylindrical array

in a nonorthogonal grid can be done using an extended version of the FDTD theory

in the rectangular grid for an isotropic material.

To simulate active element patterns, the infinite-by-infinite size of the array is

assumed, which is a good approximation for a majority of active elements in a

large array. A periodically arranged patch antenna is modeled as the unit cell.

The FDTD model for the unit cell of a planar phased array can be depicted as in

figure 3.1. The number of Yee cells [55] in the x̂ and ŷ directions in the mesh will

accommodate only the patch antenna, since the model is using PBC in x̂ and ŷ

direction and there should not be any air gap between elements. This EM solver

can be used to generate isolated element patterns and AEP for finite-by-infinite

array and infinite-by-infinite array as well.

3.1 The FDTD Method with Rectanguler Grid

The original proposal of FDTD method for electromagnetic simulation by Yee [55]

was derived for the rectangular coordinate system. More comprehensive presen-

tation of the FDTD updating equations, ABC, PML, CPML, and PBC in the

rectangular coordinate system can be found in many publications [53, 80]. The

FDTD theory for anisotropic media can be found in [53]. For connivance, the

updating equations for the rectangular grid are listed in apendix B.

3.1.1 Numerical Dispersion and Stability

The numerical dispersion is used to analyze the limitation of simulation accuracy

for electrically large structures. Numerical dispersion can create phase shifting

and that phase shifting can be assimilated through the time-marching-loop. This

unnatural phenomena can create completely bogus results. Since the discussion

of electrically large finite array structures is the central piece of this research, the
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analysis of numerical dispersion is important in different girds. The physical dis-

persion relation can be presented in equation 3.1 and the numerical dispersion

relation can be presented in equation 3.2. The derivation and more detail discus-

sion of those relations can be found in [80]. In these relations, c is the speed of

light, kx, ky, and kz are spatial frequencies, and ω is the temporal frequency.

(ω
c

)2

= k2
x + k2

y + k2
z (3.1)

The equation 3.2 will deduce to physical dispersion relation, as ∆x → 0, ∆y →

0, ∆z → 0 and ∆t → 0. Therefore smaller Yee cell sizes form a substantially

smaller numerical dispersion, since ∆t will be determined by the spatial parameters

(inequality 3.3).

[
1

c∆t
sin

(
ω∆t

2

)]2

=

[
1

∆x
sin

(
kx∆x

2

)]2

+

[
1

∆y
sin

(
ky∆y

2

)]2

+

[
1

∆z
sin

(
kz∆z

2

)]2

(3.2)

Since the discretization process of space and time in the FDTD method will ap-

proximate the real properties of vacuum or free space, the period of sampling will

control the error generation, propagation, convergence, and divergence. Numeri-

cal stability study will determine the restriction of sampling period of space (∆x,

∆y, and ∆z parameters) and time (∆t parameter). The Courant-Friedrichs-Lewy

(CFL) factor is used to determine the numerical stability of the FDTD numerical

approximation, which can be given as in inequality 3.3 for the rectangular grid.

∆t 6
1

c
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

(3.3)
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Figure 3.1: Unit cell for FDTD simulation for Planar array.

3.1.2 Periodic Boundary Condition

In this EM simulator, these updating equations are altered to realize the periodic

boundaries as in [81–83]. Yee cells at ix = 1, iy = 1, ix = Nx + 1, and iy = Ny + 1

are used to form the periodic boundaries as illustrated in Figure 3.2. In the +ẑ

and −ẑ directions, convolutional perfectly match layers (CPML) are implemented

with proper air gaps to truncate the problem space in the finite region. The PBC

method used in this program is called constant horizontal wavenumber approach

[84–86]. This approach can be used for simulating EM structures in a wide-band

frequency domain. Since the same approach was adapted to implement the peri-

odic boundary condition in cylindrical and nonorthogonal grids in sections 3.2.3

and 3.3.3, the detailed procedure with equations of this approach in the rectan-

gular grid are not presented in this section. But the exclusive discussion of this

approach can be found in the chapter 14 of the newer edition of [53]. Figure 3.2

illustrates the electric field calculation procedure of constant horizontal wavenum-

ber approach in rectangular grid. The problem space is surrounded with electric

field components which are tangent to the terminating surface. This is the way

to discretize the electric field in all of the other cases in this simulation program.

Therefore, as an example, Ey and Ez electric field components can be found on the

yOz surface at ix = Nx + 1. In other words, The sizes of Ex, Ey, Ez, Hx, Hy, and
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Figure 3.2: Field components in one unit cell.

Hz are (Nx)×(Ny+1)×(Nz+1), (Nx+1)×(Ny)×(Nz+1), (Nx+1)×(Ny+1)×(Nz),

(Nx + 1)× (Ny)× (Nz), (Nx)× (Ny + 1)× (Nz), and (Nx)× (Ny)× (Nz + 1) re-

spectively. In the case of CPML, the electric field components on the terminating

surface are forced to be zero in the entire time marching loop. However in the

case of PBC, those electric field components which are illustrated by red circles

and tangles with no fill, in Figure 3.2, are not zero and need to be updated using

magnetic field components looping around them. The magnetic filed components

which are illustrated by blue dashed circles and arrows do not exist in the problem

space. Then in this procedure, electric field components inside the problem space

are updated with FDTD updating equations, while the electric field components

tangent to the periodic boundary are updated with the FDTD equation modified
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by Floquet theory.

3.2 The FDTD Method for Cylindrical Grid

3.2.1 Derivation of FDTD Updating Equations for

Diagonally Anisotropic Media in Cylindrical

Coordinate System

Most of the derivations of Yee algorithm that can be found in the literature are

for problem space in the rectangular coordinate system filled with isotropic me-

dia. However, as we discussed before, there are strong needs for FDTD solutions

in cylindrical coordinates. In this section, the Yee algorithm is re-derived for diag-

onally anisotropic media in cylindrical coordinate systems starting from Maxwell’s

equations.

In this derivation, 2.1 and 2.2 will be used to derive field updating equations and

updating coefficients. Constitutive relations are for linear materials which can

linearly relate electric/magnetic fields with electric/magnetic flux densities (equa-

tions 3.4a and 3.4b) and electric/magnetic fields with electric/magnetic current

densities (equations 3.4c and 3.4d).

~D = ε ~E (3.4a)

~B = µ ~H (3.4b)

~Jc = σe ~E (3.4c)

~Mc = σm ~H (3.4d)

ε, µ, σe, and σm are diagonal tensors for electric permittivity, magnetic permeabil-

ity, electric conductivity and magnetic conductivity, hence the diagonal anisotropic
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material is considered. Using the constitutive relations and decomposition of elec-

tric and magnetic current densities, one can eliminate flux densities and rewrite

equations 2.1 and 2.2 with material properties (equations 3.5 and 3.6.

∇× ~H = ε
∂ ~E

∂t
+ σe ~E + ~Ji (3.5)

∇× ~E = −µ∂
~H

∂t
− σm ~H − ~Mi (3.6)

The Curl of vector in cylindrical coordinate system (equation B.1) can be plugged

in to equations 3.5 and 3.6 to extract six scalar equations (equations 3.7, 3.8, 3.9,

3.10, 3.11, and 3.12).

1

r

∂Hz

∂φ
− ∂Hφ

∂z
= εr

∂Er
∂t

+ σerEr + Jr (3.7)

∂Hr

∂z
− ∂Hz

∂r
= εφ

∂Eφ
∂t

+ σeφEφ + Jφ (3.8)

1

r

(
∂rHφ

∂r
− ∂Hr

∂φ

)
= εz

∂Ez
∂t

+ σezEz + Jz (3.9)

1

r

∂Ez
∂φ
− ∂Eφ

∂z
= −µr

∂Hr

∂t
− σmr Er −Mr (3.10)

∂Er
∂z
− ∂Ez

∂r
= −µφ

∂Hφ

∂t
− σmφ Hφ −Mφ (3.11)

1

r

(
∂rEφ
∂r
− ∂Er

∂φ

)
= −µz

∂Hz

∂t
− σmz Ez −Mz (3.12)

Equations 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 can be rearranged to derive equations

3.13, 3.14, 3.15, 3.16, 3.17, and 3.18. Then all the temporal derivations of the field

components on the left hand side and all the electric or magnetic field components,

spacial derivations of electric or magnetic field components, and current densities
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are on the right hand side.

∂Er
∂t

=
1

εr

(
1

r

∂Hz

∂φ
− ∂Hφ

∂z
− σerEr − Jr

)
(3.13)

∂Eφ
∂t

=
1

εφ

(
∂Hr

∂z
− ∂Hz

∂r
− σeφEφ − Jφ

)
(3.14)

∂Ez
∂t

=
1

εz

(
1

r

∂rHφ

∂r
− 1

r

∂Hr

∂φ
− σezEz − Jz

)
(3.15)

∂Hr

∂t
=

1

µr

(
∂Eφ
∂z
− 1

r

∂Ez
∂φ
− σmr Er −Mr

)
(3.16)

∂Hφ

∂t
=

1

µφ

(
∂Ez
∂r
− ∂Er

∂z
− σmφ Hφ −Mφ

)
(3.17)

∂Hz

∂t
=

1

µz

(
1

r

∂Er
∂φ
− 1

r

∂rEφ
∂r
− σmz Ez −Mz

)
(3.18)

The equation 3.21 can be derived by applying finite deference equations B.5 for

∂Er
∂t

, similar equation to B.7 for
∂Hz

∂φ
, similar equation to B.8 for

∂Eφ
∂z

and the

averaging equation B.10 for E
n+ 1

2
r field components to express in En

r and En+1
r .

Then all the electric field components are in n+ 1(∼ ∆t(n+ 1)) and n time-steps

and all the magnetic field and electric current density components are in n + 1
2

time-step on the left side of the equation. all the FDTD equation derived are in the

same format. Left hand side electric field is the future value to be predicted from

the past value of electric field component, present current density component, and

present H field components (only perpendicular) surrounded by or looping around

the electric field. the visual illustration of equation 3.19 is shown in Figure 3.3.
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Figure 3.3: Field components for Er computation formula.

En+1
r (ir, iφ, iz) = Cere(ir, iφ, iz)× En

r (ir, iφ, iz)

+ Cerhz(ir, iφ, iz)×
(
H
n+ 1

2
z (ir, iφ, iz)−H

n+ 1
2

z (ir, iφ − 1, iz)
)

+ Cerhφ(ir, iφ, iz)×
(
H
n+ 1

2
φ (ir, iφ, iz)−H

n+ 1
2

φ (ir, iφ, iz − 1)
)

+ Cerj(ir, iφ, iz)× J
n+ 1

2
r (ir, iφ, iz)

(3.19)

The updating coefficients Cere(ir, iφ, iz), Cerhz(ir, iφ, iz), Cerhφ(ir, iφ, iz), and

Cerj(ir, iφ, iz) of the equation (3.19) can be computed as in equations (3.20a),

(3.20b), (3.20c), and (3.20d).

Cere(ir, iφ, iz) =

(
2εr(ir, iφ, iz)− σer(ir, iφ, iz)∆t

2εr(ir, iφ, iz) + σer(ir, iφ, iz)∆t

)
(3.20a)

Cerhz(ir, iφ, iz) =

(
2∆t

r∆φ (2εr(ir, iφ, iz) + σer(ir, iφ, iz)∆t)

)
(3.20b)

Cerhφ(ir, iφ, iz) =

(
−2∆t

∆z (2εr(ir, iφ, iz) + σer(ir, iφ, iz)∆t)

)
(3.20c)
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Cerj(ir, iφ, iz) =

(
−2∆t

2εr(ir, iφ, iz) + σer(ir, iφ, iz)∆t

)
(3.20d)

Applying finite deference equations B.5 for Eφ, B.7 for Hr, B.8 for Hz and aver-

aging equation B.10 for Eφ field components, the equation 3.21 can be derived.

En+1
φ (ir, iφ, iz) = Ceφe(ir, iφ, iz)× En

φ(ir, iφ, iz)

+ Ceφhr(ir, iφ, iz)×
(
H
n+ 1

2
r (ir, iφ, iz)−H

n+ 1
2

r (ir, iφ, iz − 1)
)

− Ceφhz(ir, iφ, iz)×
(
H
n+ 1

2
z (ir, iφ, iz)−H

n+ 1
2

z (ir − 1, iφ, iz)
)

+ Ceφj(ir, iφ, iz)× J
n+ 1

2
φ (ir, iφ, iz)

(3.21)

The updating coefficients Ceφe(ir, iφ, iz), Ceφhr(ir, iφ, iz), and Ceφhz(ir, iφ, iz) of the

equation (3.21) can be computed as in equations (3.22a), (3.22b), (3.22c), and

(3.22d).

Ceφe(ir, iφ, iz) =

(
2εφ(ir, iφ, iz)− σeφ(ir, iφ, iz)∆t

2εφ(ir, iφ, iz) + σeφ(ir, iφ, iz)∆t

)
(3.22a)

Ceφhr(ir, iφ, iz) =

(
2∆t

∆z (2εφ(ir, iφ, iz) + σeφ(ir, iφ, iz)∆t)

)
(3.22b)

Ceφhz(ir, iφ, iz) =

(
−2∆t

∆r (2εφ(ir, iφ, iz) + σeφ(ir, iφ, iz)∆t)

)
(3.22c)

Ceφj(ir, iφ, iz) =

(
−2∆t

2εφ(ir, iφ, iz) + σeφ(ir, iφ, iz)∆t

)
(3.22d)

Applying finite deference equations B.5 for Ez, B.7 for Hr, B.8 for Hφ and aver-

aging equation B.10 for Ez field components, the equation 3.23 can be derived.
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En+1
z (ir, iφ, iz) = Ceze(ir, iφ, iz)× En

z (ir, iφ, iz)

+ Cezhφ(ir, iφ, iz)×
(
rH

n+ 1
2

φ (ir, iφ, iz)− (r −∆r)H
n+ 1

2
φ (ir − 1, iφ, iz)

)
− Cezhr(ir, iφ, iz)×

(
H
n+ 1

2
r (ir, iφ, iz)−H

n+ 1
2

r (ir, iφ − 1, iz)
)

+ Cezj(ir, iφ, iz)× J
n+ 1

2
z (ir, iφ, iz)

(3.23)

The updating coefficients Ceze(ir, iφ, iz), Cezhφ(ir, iφ, iz), Cezhr(ir, iφ, iz), and

Cezj(ir, iφ, iz) of the equation (3.23) can be computed as in equations (3.24a),

(3.24b), (3.24c), and (3.24d).

Ceze(ir, iφ, iz) =

(
2εz(ir, iφ, iz)− σez(ir, iφ, iz)∆t

2εz(ir, iφ, iz) + σez(ir, iφ, iz)∆t

)
(3.24a)

Cezhφ(ir, iφ, iz) =

(
2∆t

r∆z (2εz(ir, iφ, iz) + σez(ir, iφ, iz)∆t)

)
(3.24b)

Cezhr(ir, iφ, iz) =

(
−2∆t

r∆φ (2εz(ir, iφ, iz) + σez(ir, iφ, iz)∆t)

)
(3.24c)

Cezj(ir, iφ, iz) =

(
−2∆t

2εz(ir, iφ, iz) + σez(ir, iφ, iz)∆t

)
(3.24d)

Applying finite deference equations B.9 forHr, B.3 for Ez, B.4 for Eφ and averaging

equation B.10 for Hr field components, the equation 3.25 can be derived.

H
n+ 1

2
r (ir, iφ, iz) = Chrh(ir, iφ, iz)×H

n− 1
2

r (ir, iφ, iz)

+ Chrez(ir, iφ, iz)× (En
z (ir, iφ + 1, iz)− En

z (ir, iφ, iz))

+ Chreφ(ir, iφ, iz)×
(
En
φ(ir, iφ, iz + 1)− En

φ(ir, iφ, iz)
)

+ Chrm(ir, iφ, iz)×Mn
r (ir, iφ, iz)

(3.25)

The updating coefficients Ceφe(ir, iφ, iz), Ceφhr(ir, iφ, iz), Ceφhz(ir, iφ, iz) and

Chrm(ir, iφ, iz) of the equation (3.25) can be computed as in equations (3.26a),
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(3.26b), (3.26c), and (3.26d).

Chrh(ir, iφ, iz) =

(
2µr(ir, iφ, iz)− σmr(ir, iφ, iz)∆t

2µr(ir, iφ, iz) + σmr(ir, iφ, iz)∆t

)
(3.26a)

Chrez(ir, iφ, iz) =

(
−2∆t

r∆φ (2µr(ir, iφ, iz) + σmr(ir, iφ, iz)∆t)

)
(3.26b)

Chreφ(ir, iφ, iz) =

(
2∆t

∆z (2µr(ir, iφ, iz) + σmr(ir, iφ, iz)∆t)

)
(3.26c)

Chrm(ir, iφ, iz) =

(
−2∆t

2µr(ir, iφ, iz) + σmr(ir, iφ, iz)∆t

)
(3.26d)

Applying finite deference equations B.9 for Hφ, B.3 for Hz, B.4 for Hr and aver-

aging equation B.10 for Hφ field components, the equation 3.27 can be derived.

H
n+ 1

2
φ (ir, iφ, iz) = Chφh(ir, iφ, iz)×H

n− 1
2

φ (ir, iφ, iz)

+ Chφez(ir, iφ, iz)× (En
z (ir + 1, iφ, iz)− En

z (ir, iφ, iz))

+ Chφer(ir, iφ, iz)× (En
r (ir, iφ, iz + 1)− En

r (ir, iφ, iz))

+ Chφm(ir, iφ, iz)×Mn
φ (ir, iφ, iz)

(3.27)

The updating coefficients Ceφe(ir, iφ, iz), Ceφhr(ir, iφ, iz), Ceφhz(ir, iφ, iz), and

Chφm(ir, iφ, iz) of the equation (3.27) can be computed as in equations (3.28a),

(3.28b), (3.28c), and (3.28d).

Chφh(ir, iφ, iz) =

(
2µφ(ir, iφ, iz)− σmφ(ir, iφ, iz)∆t

2µφ(ir, iφ, iz) + σmφ(ir, iφ, iz)∆t

)
(3.28a)

Chφez(ir, iφ, iz) =

(
2∆t

∆r (2µφ(ir, iφ, iz) + σmφ(ir, iφ, iz)∆t)

)
(3.28b)

Chφer(ir, iφ, iz) =

(
−2∆t

∆z (2µφ(ir, iφ, iz) + σmφ(ir, iφ, iz)∆t)

)
(3.28c)

Chφm(ir, iφ, iz) =

(
−2∆t

2µφ(ir, iφ, iz) + σmφ(ir, iφ, iz)∆t

)
(3.28d)
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Applying finite deference equations B.9 forHz, B.3 for Eφ, B.8 for Er and averaging

equation B.10 for Hz field components, the equation 3.29 can be derived.

H
n+ 1

2
z (ir, iφ, iz) = Chzh(ir, iφ, iz)×H

n− 1
2

z (ir, iφ, iz)

+ Chzer(ir, iφ, iz)× (En
r (ir, iφ + 1, iz)− En

r (ir, iφ, iz))

+ Chzeφ(ir, iφ, iz)×
(
(r + ∆r)E

n
φ(ir + 1, iφ, iz)− rEn

φ(ir, iφ, iz)
)

+ Chzm(ir, iφ, iz)×Mn
z (ir, iφ, iz)

(3.29)

The updating coefficients Chzh(ir, iφ, iz), Chzer(ir, iφ, iz), Chzeφ(ir, iφ, iz), and

Chzm(ir, iφ, iz) of the equation (3.29) can be computed as in equations (3.30a),

(3.30b), (3.30c), and (3.30d).

Chzh(ir, iφ, iz) =

(
2µz(ir, iφ, iz)− σmz(ir, iφ, iz)∆t

2µz(ir, iφ, iz) + σmz(ir, iφ, iz)∆t

)
(3.30a)

Chzer(ir, iφ, iz) =

(
2∆t

r∆φ (2µz(ir, iφ, iz) + σmz(ir, iφ, iz)∆t)

)
(3.30b)

Chzeφ(ir, iφ, iz) =

(
−2∆t

r∆r (2µz(ir, iφ, iz) + σmz(ir, iφ, iz)∆t)

)
(3.30c)

Chzm(ir, iφ, iz) =

(
−2∆t

2µz(ir, iφ, iz) + σmz(ir, iφ, iz)∆t

)
(3.30d)

3.2.2 Numerical Stability

The numerical dispersion analysis and numerical stability analysis for FDTD

scheme in a cylindrical grid were done by some investigators [87–89]. The re-

sult of numerical stability analysis in a cylindrical grid is used in this program to

calculate the time step size for a given Courant factor and Yee cell dimensions.

The Courant-Friedrichs-Lewy (CFL) condition can be presented as in inequality

3.31.
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Figure 3.4: Unit cell for FDTD simulation for a fully conformal (circular)
cylindrical array.

∆t 6
1

c
√

1
(∆r)2

+ 4
(∆r∆φ)2

+ 1
(∆z)2

(3.31)

3.2.3 Periodic Boundary Condition

The simulation model for fully conformal cylindrical phased array antenna can be

implemented using absorbing boundaries and periodic boundaries in the cylindrical

coordinate system as presented in this subsection. The PBC implementation used

in the rectangular grid (constant horizontal wavenumber approach [53]) can be

adapted for PBC in the cylindrical grid and the detail computational procedure

is presented in the rest of this section. The periodic boundaries are implemented

in +φ̂, −φ̂, +ẑ, and −ẑ directions and the Convolutional Perfect Match Layers

(CPML) are implemented in +r̂ and −r̂ directions. The circular array active

element or an isolated element based on the cylindrical coordinate system can be

simulated by switching the PBC to CPML of the unit cell in Figure 3.4, even

though the main objective is to simulate AEP of a cylindrical array antenna. The

cylindrical arrays in the real world have a finite number of elements. Because of

the periodicity in a circle, the antenna elements can be treated as an element in

a semi-infinite array. In this theory, infinite columns are assumed on a cylinder

with large radius comparing to λ.
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3.2.3.1 Periodicity in ẑ Direction

The equation (3.32) is for calculating the field components Eφ at the lower bound

of z (iz = 1). The field components En+1
φ (ir, iφ, 1) is computed using En

φ(ir, iφ, 1)

and magnetic field components in ẑ and r̂ directions, which are H
n+ 1

2
r (ir, iφ, 1),

H
n+ 1

2
r (ir, iφ,@), H

n+ 1
2

z (ir, iφ, 1), and H
n+ 1

2
z (ir − 1, iφ, 1). The updating coefficients

Ceφe(ir, iφ, 1), Ceφhr(ir, iφ, 1), and Ceφhz(ir, iφ, 1) of the equation (3.32) can be com-

puted using the equations 3.22 in section 3.2.1.

En+1
φ (ir, iφ, 1) = Ceφe(ir, iφ, 1)× En

φ(ir, iφ, 1)

+ Ceφhr(ir, iφ, 1)×
(
H
n+ 1

2
r (ir, iφ, 1)−Hn+ 1

2
r (ir, iφ,@)

)
− Ceφhz(ir, iφ, 1)×

(
H
n+ 1

2
z (ir, iφ, 1)−Hn+ 1

2
z (ir − 1, iφ, 1)

) (3.32)

The magnetic field component H
n+ 1

2
r (ir, iφ,@) does not exist in the problem space.

Using the Floquet theory H
n+ 1

2
r (ir, iφ,@) can be calculated as in equation 3.33. kz

is the wave number in ẑ direction and can be computed as kz = ω
c

sin$z ($z is

the incident angle of the wave to ẑ direction)

H
n+ 1

2
r (ir, iφ,@) = H

n+ 1
2

r (ir, iφ, Nz)e
jkzNz∆z (3.33)

A similar procedure can be carried out to compute En+1
φ (ir, iφ, Nz + 1). But using

the Floquet theory, En+1
φ (ir, iφ, Nz + 1) can be computed using En+1

φ (ir, iφ, 1) as

equation 3.34.

En+1
φ (ir, iφ, Nz + 1) = En+1

φ (ir, iφ, 1)e−jkzNz∆z (3.34)

The equation (3.35) is for calculating the Er field components at the lower bound

of φ (iφ = 1). The field components En+1
r (ir, iφ, 1) is computed using En

r (ir, iφ, 1)
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and magnetic field components in z and φ directions, which are H
n+ 1

2
z (ir, iφ, 1),

H
n+ 1

2
z (ir, iφ, 1), H

n+ 1
2

φ (ir, iφ, 1), and H
n+ 1

2
φ (ir, iφ, 1). The magnetic field compo-

nents H
n+ 1

2
z (ir, 1, iz) are at φ = 0. The updating coefficients Cere(ir, Nφ, iz),

Cerhz(ir, Nφ, iz), and Cerhφ(ir, Nφ, iz) of the equation (3.35) can be computed using

equation 3.20.

En+1
r (ir, iφ, 1) = Cere(ir, Nφ, iz)E

n
r (ir, iφ, 1)

+Cerhz(ir, iφ, 1)×
(
H
n+ 1

2
z (ir, iφ, 1)−Hn+ 1

2
z (ir, iφ, 1)

)
+Cerhφ(ir, iφ, iz)×

(
H
n+ 1

2
φ (ir, iφ, 1)−Hn+ 1

2
φ (ir, iφ, 1)

) (3.35)

The magnetic field component H
n+ 1

2
φ (ir, iφ,@) does not exist in the problem space.

Using the Floquet theory H
n+ 1

2
φ (ir, iφ,@) can be calculated as in equation 3.36. kφ

is the wave number in φ̂ direction and can be computed as kφ = ω
c

sin$φ ($φ is

the incident angle of the wave to φ̂ direction)

H
n+ 1

2
φ (ir, iφ,@) = H

n+ 1
2

φ (ir, iφ, Nz)e
jkzNz∆z (3.36)

Using the Floquet theory, En+1
r (ir, iφ, Nz+1) can be computed using En+1

r (ir, iφ, 1)

as equation 3.37.

En+1
r (ir, iφ, Nz + 1) = En+1

r (ir, iφ, 1)e−jkzNz∆z (3.37)

3.2.3.2 Periodicity in φ̂ Direction

The equation (3.38) is for calculating the Ez field components at the lower bound

of φ (iφ = 1). The field components En+1
z (ir, 1, iz) is computed using En

z (ir, 1, iz)

and magnetic field components in φ̂ and r̂ directions, which are H
n+ 1

2
φ (ir, 1, iz),

H
n+ 1

2
φ (ir−1, 1, Nz), H

n+ 1
2

r (ir, 1, iz), H
n+ 1

2
r (ir,@, iz). The updating coefficients of the
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equation (3.38) Ceze(ir, 1, iz), Cezhr(ir, 1, iz), and Cezhφ(ir, 1, iz) can be computed

using equation 3.24.

En+1
z (ir, 1, iz) = Ceze(ir, 1, iz)E

n
z (ir, 1, iz)

+Cezhφ(ir, 1, iz)×
(
rH

n+ 1
2

φ (ir, 1, iz)− (r −∆r)H
n+ 1

2
φ (ir − 1, 1, iz)

)
+Cezhr(ir, 1, iz)×

(
H
n+ 1

2
r (ir, 1, iz)−H

n+ 1
2

r (ir, @, iz)
) (3.38)

The magnetic field component H
n+ 1

2
r (ir,@, iz) does not exist in the problem space.

Using the Floquet theory H
n+ 1

2
r (ir,@, iz) can be calculated as in equation 3.39. kz

is the wave number in φ̂ direction and can be computed as kφ = ω
c

sin$φ ($φ is

the incident angle of the wave to φ̂ direction)

H
n+ 1

2
r (ir,@, iz) = H

n+ 1
2

r (ir, Nφ, iz)e
jkφNφ∆φ (3.39)

Using the Floquet theory, En+1
z (ir, iφ, Nz+1) can be computed using En+1

z (ir, iφ, 1)

as equation 3.40.

En+1
z (ir, Nφ + 1, iz) = En+1

z (ir, 1, iz)e
−jkφNφ∆φ (3.40)

The equation (3.41) is for calculating the Er field component at the lower bound

of φ (iφ = 1). The field component En+1
r (ir, 1, iz) is computed using En

r (ir, 1, iz)

and magnetic field components in ẑ and φ̂ directions, which are H
n+ 1

2
z (ir, 1, iz),

H
n+ 1

2
z (ir, Nφ, iz), H

n+ 1
2

φ (ir, 1, iz), and H
n+ 1

2
φ (ir, 1, iz− 1). The updating coefficients

Cere(ir, Nφ, iz), Cerhz(ir, Nφ, iz), and Cerhφ(ir, Nφ, iz) of the equation 3.41 can be

computed using equation 3.20.
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En+1
r (ir, iφ, 1) = Cere(ir, Nφ, iz)E

n
r (ir, iφ, 1)

+Cerhz(ir, iφ, 1)×
(
H
n+ 1

2
z (ir, iφ, 1)−Hn+ 1

2
z (ir, iφ, 1)

)
+Cerhφ(ir, iφ, iz)×

(
H
n+ 1

2
φ (ir, iφ, 1)−Hn+ 1

2
φ (ir, iφ, 1)

) (3.41)

The magnetic field component H
n+ 1

2
φ (ir, iφ,@) does not exist in the problem space.

Using the Floquet theory H
n+ 1

2
φ (ir, iφ,@) can be calculated as in equation 3.42. kφ

is the wave number in φ̂ direction and can be computed as kφ = ω
c

sin$φ ($φ is

the incident angle of the wave to φ̂ direction)

H
n+ 1

2
φ (ir, iφ,@) = H

n+ 1
2

φ (ir, iφ, Nz)e
jkzNz∆z (3.42)

Using the Floquet theory, En+1
r (ir, iφ, Nz+1) can be computed using En+1

r (ir, iφ, 1)

as equation 3.43.

En+1
r (ir, iφ, Nz + 1) = En+1

r (ir, iφ, 1)e−jkzNz∆z (3.43)

3.2.3.3 Treatment at the Corners

At the corners of the cell, Ers are updated using (3.44), (3.46), (3.47), and (3.48)

equations.

En+1
r (ir, 1, 1) = Cere(ir, 1, 1)En

r (ir, 1, 1)

+Cerhz(ir, 1, 1)×
(
H
n+ 1

2
z (ir, 1, 1)−Hn+ 1

2
z (ir,@, 1)

)
+Cerhφ(ir, 1, 1)×

(
H
n+ 1

2
φ (ir, 1, 1)−Hn+ 1

2
φ (ir, 1,@)

) (3.44)
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The magnetic field components H
n+ 1

2
φ (ir, 1,@) and H

n+ 1
2

z (ir,@, 1) do not exist in

the problem space. They can be calculated as in equation 3.45a and 3.45a.

H
n+ 1

2
φ (ir, 1,@) = H

n+ 1
2

φ (ir, 1, Nz)× ejkφNφ∆φ (3.45a)

H
n+ 1

2
z (ir,@, 1) = H

n+ 1
2

φ (ir, Nφ, 1)× ejkzNz∆z (3.45b)

After electric field component En+1
r (ir, 1, 1) is computed using equation 3.44,

All the electric field components En+1
r (ir, Nφ + 1, 1), En+1

r (ir, 1, Nz + 1), and

En+1
r (ir, Nφ + 1, Nz + 1) at other corners can be computed using equations 3.46,

3.47, and 3.47.

En+1
r (ir, Nφ + 1, 1) = En+1

r (ir, 1, 1)× e−jkφNφ∆φ (3.46)

En+1
r (ir, 1, Nz + 1) = En+1

r (ir, 1, 1)× e−jkzNz∆z (3.47)

En+1
r (ir, Nφ + 1, Nz + 1) = En+1

r (ir, 1, 1)× e−jkφNφ∆φ × e−jkzNz∆z (3.48)

The convolutional perfectly match layer (CPML) for cylindrical grid [89–92] will

be located in the direction of +r̂ and −r̂ directions in all the simulations presented

in this work. If finite-by-infinite array needs to be simulated, CPML layes will be

located in the direction of +r̂, −r̂, +ẑ, and −ẑ directions.

3.3 The FDTD Method for Nonorthogonal and

Unstructured Grid

FDTD updating equations, updating coefficients, numerical stability, numerical

dispersion, and periodic boundary in the nonorthogonal and unstructured grid
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will be discussed in the following subsections. Since CPML layer needs orthogonal

field components, the isotropic case will only be discussed.

3.3.1 Derivation of FDTD Updating Equations

Even though FDTD updating equation can be derived for nonorthogonal grid

starting from Maxwell’s equation as presented in section 3.2, the derivation pro-

cess is simplified by taking the geometry into consideration. In 1992, Jin-Fa Lee

and others [93] presented their work on generalizing the FDTD algorithm on a

nonorthogonal coordinate system. In this derivation, the initial results from Lee’s

generalization are used to obtain the updating equations.

Figure 3.5 illustrates the derivation of FDTD equations for electric field compo-

nents using the FDTD equations for rectangular grid. Let’s consider the nonorthog-

onal coordinate system is represented by α̂, β̂, and γ̂ unit vectors for representing

electric field components. notice that α̂ is depend on the location (α, β, γ) which

make this grid unstructured. By inspection of the geometry, one can write equa-

tions 3.49a, 3.49b, and 3.49c to express Ex, Ey, and Ez in terms of Eα, Eβ, and

Eγ.

Ex(x, y, z) = Eα(α, β, γ) cos Ωα,β,γ (3.49a)

Ey(x, y, z) = Eβ(α, β, γ)− Eα(α, β, γ) sin Ωα,β,γ (3.49b)

Ez(x, y, z) = Eγ(α, β, γ) (3.49c)

Jx(x, y, z) = Jα(α, β, γ) cos Ωα,β,γ (3.49d)

Jy(x, y, z) = Jβ(α, β, γ)− Jα(α, β, γ) sin Ωα,β,γ (3.49e)

Jz(x, y, z) = Jγ(α, β, γ) (3.49f)

In the same way, Let’s consider the nonorthogonal coordinate system is represented

by α̂′, β̂′, and γ̂′ unit vectors for representing magnetic field components. Using

the same procedure, by which the electric field component was determined, one
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Figure 3.5: Illustration of the process of transforming nonorthogonal grid
electric field into orthogonal grid electric field.

can write equations 3.50a, 3.50b, and 3.50c to express Ex, Ey, and Ez in terms of

Eα′ , Eβ′ , and Eγ′ (Figure 3.6).

Hx(x, y, z) = Hα′(α
′, β′, γ′) +Hβ′(α

′, β′, γ′) sin Ωα′,β′,γ′ (3.50a)

Hy(x, y, z) = Hβ′(α
′, β′, γ′) cos Ωα′,β′,γ′ (3.50b)

Hz(x, y, z) = Hγ′(α
′, β′, γ′) (3.50c)

Mx(x, y, z) = Mα′(α
′, β′, γ′) +Mβ′(α

′, β′, γ′) sin Ωα′,β′,γ′ (3.50d)

My(x, y, z) = Mβ′(α
′, β′, γ′) cos Ωα′,β′,γ′ (3.50e)

Mz(x, y, z) = Mγ′(α
′, β′, γ′) (3.50f)
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Figure 3.6: Illustration of the process of transforming nonorthogonal grid
magnetic field into orthogonal grid magnetic field.

Let’s consider Ωα,β,γ and Ωα′,β′,γ′ are measured with reference to the blue colored

dashed line and they are positive in clockwise direction. Notice that Ωα,β,γ and

Ωα′,β′,γ′ are depend on only β and β′ spacial parameters respectively. So below

relations (equations 3.51a, 3.51b, 3.51c, and 3.51d) are valid in this geometry.

Ωα,β,γ = Ωα,β+∆β,γ (3.51a)

Ωα′,β′,γ′ = Ωα′,β′+∆β′,γ′ (3.51b)

Ωα,β,γ = Ωα+∆α,β,γ = Ωα,β,γ+∆γ (3.51c)
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Ωα′,β′,γ′ = Ωα′+∆α′,β′,γ′ = Ωα′,β′,γ′+∆γ′ (3.51d)

In addition to that one can simplify the problem by observing equality between

Ωα,β,γ and Ωα′,β′,γ′ in both sign and magnitude. Equation 3.52 can express all the

simplification made using the geometry of this grid.

Ωβ = Ωα,β,γ = Ωα′,β′,γ′ = Ωβ′ (3.52)

So in the transformed equations, Ωβ is used for representing angles at each β and

β′ locations. If the number of element in one ring of the cylindrical array ie NE

and the number of Yee cells in β̂ direction is Nβ Ωβ can be calculated using NE

and Nβ as in equation 3.53.

Ωβ =
2π

NβNE

(3.53)

FDTD updating equation for determining En+1
α in terms of En

α, H
n− 1

2

β′ , H
n+ 1

2

β′ ,

H
n− 1

2

γ′ , and H
n+ 1

2

γ′ can be obtained, by plugging in Ex, Ey, and Ez from equations

3.49a, 3.50b, and 3.50c in FDTD updating equation A.1.

En+1
α (iα, iβ, iγ) = Cea(iα, iβ, iγ)× En

α(iα, iβ, iγ)

+
Ceb(iα′ , iβ′ , iγ′) sec Ωβ

∆β
×
(
H
n+ 1

2

γ′ (iα′ , iβ′ , iγ′)−H
n+ 1

2

γ′ (iα′ , iβ′ − 1, iγ′)
)

− Ceb(iα′ , iβ′ , iγ′)

∆γ
×
(
H
n+ 1

2

β′ (iα′ , iβ′ , iγ′)−H
n+ 1

2

β′ (iα′ , iβ′ , iγ′ − 1)
)

− Ceb(iα′ , iβ′ , iγ′)× J
n+ 1

2
α (iα, iβ, iγ)

(3.54)

The updating coefficients Cea(iα, iβ, iγ) and Ceb(iα′ , iβ′ , iγ′) can be derived from

the updating coefficients of rectangular case (Appendix A).

Cea(iα, iβ, iγ) =

(
2ε(iα, iβ, iγ)− σe(iα, iβ, iγ)∆t

2ε(iα, iβ, iγ) + σe(iα, iβ, iγ)∆t

)
(3.55a)
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Ceb(iα′ , iβ′ , iγ′) =

(
2∆t

2ε(iα′ , iβ′ , iγ′) + σe(iα′ , iβ′ , iγ′)∆t

)
(3.55b)

FDTD updating equation for determining En+1
β in terms of En

β , En+1
α , En

α, H
n− 1

2

α′ ,

H
n+ 1

2

α′ , H
n− 1

2

γ′ , and H
n+ 1

2

γ′ can be obtained, by plugging in Ex, Ey, and Ez from

equations 3.49b, 3.50a, and 3.50c in FDTD updating equation A.3.

En+1
β (iα, iβ, iγ) = Cea(iα, iβ, iγ)× En

β (iα, iβ, iγ)

− Cea(iα, iβ, iγ) sin Ωβ × En
α(iα, iβ, iγ) + sin Ωβ × En+1

α (iα, iβ, iγ)

+
Ceb(iα′ , iβ′ , iγ′)

∆β
×
(
H
n+ 1

2

α′ (iα′ , iβ′ , iγ′)−H
n+ 1

2

α′ (iα′ , iβ′ , iγ′ − 1)
)

+
Ceb(iα′ , iβ′ , iγ′) sin Ωβ

∆β
×
(
H
n+ 1

2

β′ (iα′ , iβ′ , iγ′)−H
n+ 1

2

β′ (iα′ , iβ′ , iγ′ − 1)
)

− Ceb(iα′ , iβ′ , iγ′)

∆γ
×
(
H
n+ 1

2

γ′ (iα′ , iβ′ , iγ′)−H
n+ 1

2

γ′ (iα′ − 1, iβ′ , iγ′)
)

− Ceb(iα′ , iβ′ , iγ′)× J
n+ 1

2
β (iα, iβ, iγ)

+ Ceb(iα′ , iβ′ , iγ′) sin Ωβ × J
n+ 1

2
α (iα, iβ, iγ)

(3.56)

FDTD updating equation for determining En+1
γ in terms of En

γ , H
n− 1

2

α′ , H
n+ 1

2

α′ ,

H
n− 1

2

β′ , and H
n+ 1

2

β′ can be obtained, by plugging in Hx, Hy, and Ez from equations

3.50a, 3.50b, and 3.49c in FDTD updating equation A.5.

En+1
γ (iα, iβ, iγ) = Cea(iα, iβ, iγ)× En

γ (iα, iβ, iγ)

+
Ceb(iα′ , iβ′ , iγ′) cos Ωβ

∆β
×
(
H
n+ 1

2

β′ (iα′ , iβ′ , iγ′)−H
n+ 1

2

β′ (iα′ − 1, iβ′ , iγ′)
)

− Ceb(iα′ , iβ′ , iγ′)

∆γ
×
(
H
n+ 1

2

α′ (iα′ , iβ′ , iγ′)−H
n+ 1

2

α′ (iα′ , iβ′ − 1, iγ′)
)

− Ceb(iα′ , iβ′ , iγ′) sin Ωβ

∆γ
×
(
H
n+ 1

2

β′ (iα′ , iβ′ , iγ′)−H
n+ 1

2

β′ (iα′ , iβ′ − 1, iγ′)
)

− Ceb(iα′ , iβ′ , iγ′)× J
n+ 1

2
γ (iα, iβ, iγ)

(3.57)
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FDTD updating equation for determining H
n+ 1

2

α′ in terms of H
n− 1

2

α′ , H
n− 1

2

β′ , H
n+ 1

2

β′ ,

En
β , En

α, En
γ , Mn

α′ , and Mn
β′ can be obtained, by plugging in Hx, Ey, Ez and Mx

from equations 3.50a, 3.49b, 3.49c, and 3.50f in FDTD updating equation A.7.

Notice the present value of magnetic field component in β̂′ (H
n+ 1

2

β′ ) is required to

calculate the present magnetic field component in α̂′ direction. So in the computer

program, H
n+ 1

2

β′ should be computed before computing H
n+ 1

2

α′ .

H
n+ 1

2

α′ (iα′ , iβ′ , iγ′) = Cha(iα′ , iβ′ , iγ′)×H
n− 1

2

α′ (iα′ , iβ′ , iγ′)

+
(
Cha(iα′ , iβ′ , iγ′)×H

n− 1
2

β′ (iα′ , iβ′ , iγ′)−H
n+ 1

2

β′ (iα′ , iβ′ , iγ′)
)

sin Ωβ

+
Chb(iα, iβ, iγ)

∆β
×
(
En
β (iα, iβ, iγ + 1)− En

β (iα, iβ, iγ)
)

− Chb(iα, iβ, iγ) sin Ωβ

∆β
× (En

α(iα, iβ, iγ + 1)− En
α(iα, iβ, iγ))

− Chb(iα, iβ, iγ)

∆γ
×
(
En
γ (iα, iβ + 1, iγ)− En

γ (iα, iβ, iγ)
)

− Chb(iα, iβ, iγ)×Mn
α′(iα′ , iβ′ , iγ′)

− Chb(iα, iβ, iγ) sin Ωβ ×Mn
β′(iα′ , iβ′ , iγ′)

(3.58)

The updating coefficients Cha(iα′ , iβ′ , iγ′) and Chb(iα, iβ, iγ) can be derived from

the updating coefficients of rectangular case (Appendix A).

Cha(iα′ , iβ′ , iγ′) =

(
2µ(iα, iβ, iγ)− σm(iα, iβ, iγ)∆t

2µ(iα, iβ, iγ) + σm(iα, iβ, iγ)∆t

)
(3.59a)

Chb(iα, iβ, iγ) =

(
2∆t

2µ(iα′ , iβ′ , iγ′) + σm(iα′ , iβ′ , iγ′)∆t

)
(3.59b)

FDTD updating equation for determining En+1
β in terms of En

β , En+1
α , En

α, H
n− 1

2

α′ ,

H
n+ 1

2

α′ , H
n− 1

2

γ′ , and H
n+ 1

2

γ′ can be obtained, by plugging in Ex, Ey, and Ez from

equations 3.49b, 3.50a, and 3.50c in FDTD updating equation A.9.
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H
n+ 1

2

β′ (iα′ , iβ′ , iγ′) = Cha(iα′ , iβ′ , iγ′)×H
n− 1

2

β′ (iα′ , iβ′ , iγ′)

+
Chb(iα, iβ, iγ) sec Ωβ

∆β
×
(
En
γ (iα, iβ, iγ + 1)− En

γ (iα, iβ, iγ)
)

− Chb(iα, iβ, iγ)

∆γ
× (En

α(iα, iβ + 1, iγ)− En
α(iα, iβ, iγ))

− Chb(iα, iβ, iγ)×Mn
β (iα′ , iβ′ , iγ′)

(3.60)

FDTD updating equation for determining En+1
γ in terms of En

γ , H
n− 1

2

α′ , H
n+ 1

2

α′ ,

H
n− 1

2

β′ , and H
n+ 1

2

β′ can be obtained, by plugging in Hx, Hy, and Ez from equations

3.50a, 3.50b, and 3.49c in FDTD updating equation A.11.

H
n+ 1

2

γ′ (iα′ , iβ′ , iγ′) = Cha(iα′ , iβ′ , iγ′)×H
n− 1

2

γ′ (iα′ , iβ′ , iγ′)

+
Chb(iα, iβ, iγ) cos Ωβ

∆β
× (En

α(iα, iβ + 1, iγ)− En
α(iα, iβ, iγ))

− Chb(iα, iβ, iγ)

∆γ
×
(
En
β (iα + 1, iβ, iγ)− En

β (iα, iβ, iγ)
)

+
Chb(iα, iβ, iγ) sin Ωβ

∆γ
× (En

α(iα + 1, iβ, iγ)− En
α(iα, iβ, iγ))

− Chb(iα, iβ, iγ)×Mn
α (iα′ , iβ′ , iγ′)

(3.61)

3.3.2 Numerical Stability

According to the Jin-Fa Lee’s paper [93], the stability criteria for generalized grid

can be written in terms of the dot products of dual or reciprocal basis which can

be derived from the unit vectors of each electric field component’s directions (α̂,

β̂, and γ̂ coordinate system). Let’s define the reciprocal bases as Âα, Âβ, and Âγ.

Âα =
β̂ × γ̂

α̂ · β̂ × γ̂
=

β̂ × γ̂
∆α∆β∆γ cos Ωβ

(3.62a)

Âβ =
γ̂ × α̂

β̂ · γ̂ × α̂
=

γ̂ × α̂
∆α∆β∆γ cos Ωβ

(3.62b)

55



Âγ =
α̂× β̂

γ̂ · α̂× β̂
=

α̂× β̂
∆α∆β∆γ cos Ωβ

(3.62c)

The same inequality can be derived using α̂′, β̂′, and γ̂′ coordinate system. The

equation 3.63 is the the stability criteria for generalized FDTD equation as ex-

plained in [93].

∆t 6
1

c
√ ∑

p,q∈α,iβ ,γ
Âp · Âq

(3.63)

By substituting the unit vectors in equation 3.63, one can deduce the inequation

3.64.

∆t 6
1

c
√

1
(∆α)2

+ 1
(∆β)2

+ 1
(∆γ)2

− 2 sin Ωβ
∆α∆β

(3.64)

This inequality is the CFL limit for this particulate geometry. Notice there is an

another criteria for Ωβ, since time step size ∆t should be a real value. Analysis

of that requirement will lead to the minimum number of element that can be in a

circular ring of the cylinder. The minimum number of elements will not guarantee

the stability but required to construct the model.

1

(∆α)2
+

1

(∆β)2
+

1

(∆γ)2
>

2 sin Ωβ

∆α∆β

(3.65)

Ωβ < arcsin

(
∆β

2∆α

+
∆α

2∆β

+
∆α∆β

2(∆γ)2

)
<
π

2
(3.66)

Then the maximum value of Ωβ is depend on the selection of ∆α, ∆β, and ∆γ.

From the geometry of faceted-cylindrical array, one can write the range of Ωβ in

terms of the number of elements (Ne) in one ring of the array.

− π

Ne

< Ωβ <
π

Ne

(3.67)
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Figure 3.7: Unit cell for FDTD simulation for faceted-cylindrical array.

3.3.3 Periodic Boundary Condition

In figure 3.7, a unit cell in unstructured nonorthogonal coordinates is illustrated

with PBCs and CPMLs. This model is unitized to simulate an active element

of a faceted-cylindrical array, which is the manifold structure used in the testbed

under measurement as shown in figure 4.9. The PBC for planar array unit cell

can be adapted for simulate antenna element with PBC for this kind array using

updating equations for a nonorthogonal grid. Since the nonorthogonality happens

to appeared only in a two-dimensional plane, a modified equation from rectangular

grid model is used. The key idea of formulating the proper projection scheme is

the very nature of this geometry of the unit cell of the faceted-cylindrical array.

The equations to calculate the field components in ŷ direction can be used without

any alteration. The field components in x̂ and ẑ direction have to be computed

with irregular non-orthogonal structured grid [80].

3.3.3.1 Periodicity in γ̂ Direction

The equation (3.68) is for calculating the field components Eβ at the lower bound of

γ (iγ = 1). The field components En+1
β (iα, iβ, 1) is computed using En

β (iα, iβ, 1) and

magnetic field components in α̂, β̂, and γ̂ directions, which are H
n+ 1

2

α′ (iα′ , iβ′ , 1),

H
n+ 1

2

α′ (iα′ , iβ′ ,@), H
n+ 1

2

β′ (iα′ , iβ′ , 1), H
n+ 1

2

β′ (iα′ , iβ′ ,@), H
n+ 1

2

γ′ (iα′ , iβ′ , 1), andH
n+ 1

2

γ′ (iα′−
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1, iβ′ , 1). The updating coefficients Cea(iα, iβ, 1) and Ceb(iα′ , iβ′ , 1) of the equation

3.68 can be computed using equation 3.55.

En+1
β (iα, iβ, 1) = Cea(iα, iβ, 1)× En

β (iα, iβ, 1)

− Cea(iα, iβ, 1) sin Ωβ × En
α(iα, iβ, 1) + sin Ωβ × En+1

α (iα, iβ, 1)

+
Ceb(iα′ , iβ′ , 1)

∆β
×
(
H
n+ 1

2

α′ (iα′ , iβ′ , 1)−Hn+ 1
2

α′ (iα′ , iβ′ ,@)
)

+
Ceb(iα′ , iβ′ , 1) sin Ωβ

∆β
×
(
H
n+ 1

2

β′ (iα′ , iβ′ , 1)−Hn+ 1
2

β′ (iα′ , iβ′ ,@)
)

− Ceb(iα′ , iβ′ , 1)

∆γ
×
(
H
n+ 1

2

γ′ (iα′ , iβ′ , 1)−Hn+ 1
2

γ′ (iα′ − 1, iβ′ , 1)
)

(3.68)

The magnetic field components H
n+ 1

2

α′ (iα′ , iβ′ ,@) and H
n+ 1

2

β′ (iα′ , iβ′ ,@) do not exist

in the problem space. Using the Floquet theory, H
n+ 1

2

α′ (iα′ , iβ′ ,@) andH
n+ 1

2

β′ (iα′ , iβ′ ,@)

can be calculated as in equation 3.69a and 3.69b. kβ is the wave number in β̂ di-

rection and can be computed as kγ′ = ω
c

sin$γ′ ($γ′ is the incident angle of the

wave to β̂ direction)

H
n+ 1

2

α′ (iα′ , iβ′ ,@) = H
n+ 1

2

α′ (iα′ , iβ′ , 1)ejkγ′Nγ′∆γ′ (3.69a)

H
n+ 1

2

β′ (iα′ , iβ′ ,@) = H
n+ 1

2

β′ (iα′ , iβ′ , 1)ejkγ′Nγ′∆γ′ (3.69b)

Using the Floquet theory, En+1
α (iα, iβ, Nγ+1) can be computed using En+1

α (iα, iβ, 1)

as equation 3.70. kγ is the wave number in γ̂ direction and can be computed as

kγ = ω
c

sin$γ ($γ is the incident angle of the wave to γ̂ direction)

En+1
β (iα, iβ, Nγ + 1) = En+1

β (iα, iβ, 1)e−jkγNγ∆γ (3.70)

The equation (3.71) is for calculating the Eα field component at the lower bound

of γ (iγ = 1). The field component En+1
α (iα, iβ, 1) is computed using En

α(iα, iβ, 1)

and magnetic field components in γ and β directions, which are H
n+ 1

2

γ′ (iα′ , iβ′ , 1),
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H
n+ 1

2

γ′ (iα′ , iβ′ − 1, 1), H
n+ 1

2

β′ (iα′ , iβ′ , 1), and H
n+ 1

2

β′ (iα′ , iβ′ , @). The updating coeffi-

cients Ceb(iα, iβ, 1), and Ceb(iα, iβ, 1) of the equation 3.71 can be computed using

equation 3.55.

En+1
α (iα, iβ, 1) = Cea(iα, iβ, 1)× En

α(iα, iβ, 1)

+
Ceb(iα′ , iβ′ , 1) sec Ωβ

∆β
×
(
H
n+ 1

2

γ′ (iα′ , iβ′ , 1)−Hn+ 1
2

γ′ (iα′ , iβ′ − 1, 1)
)

− Ceb(iα′ , iβ′ , 1)

∆γ
×
(
H
n+ 1

2

β′ (iα′ , iβ′ , 1)−Hn+ 1
2

β′ (iα′ , iβ′ ,@)
) (3.71)

The magnetic field component H
n+ 1

2

β′ (iα′ , iβ′ ,@) does not exist in the problem space.

Using the Floquet theory H
n+ 1

2

β′ (iα′ , iβ′ ,@) can be calculated as in equation 3.72.

H
n+ 1

2

β′ (iα′ , iβ′ ,@) = H
n+ 1

2

β′ (iα′ , iβ′ , 1)ejkγNγ∆γ (3.72)

Using the Floquet theory, En+1
α (iα, iβ, Nγ+1) can be computed using En+1

α (iα, iβ, 1)

as equation 3.73.

En+1
α (iα, iβ, Nz + 1) = En+1

α (iα, iβ, 1)e−jkγNγ∆γ (3.73)

3.3.3.2 Periodicity in β̂ Direction

The equation (3.74) is for calculating the Eγ field components at the lower bound

of β (iβ = 1). The field components En+1
γ (iα, 1, iγ) is computed using En

γ (iα, 1, iγ)

and magnetic field components in β̂ and α̂ directions, which are H
n+ 1

2

β′ (iα′ , 1, iγ′),

H
n+ 1

2

β′ (iα′ − 1, 1, iγ′), H
n+ 1

2

α′ (iα′ , 1, iγ′), H
n+ 1

2

α′ (iα′ , @, iγ′), H
n+ 1

2

β′ (iα′ , 1, iγ′), and

H
n+ 1

2

β′ (iα′ ,@, iγ′). The updating coefficients of the equation (3.74) Cea(iα, 1, iγ) and

Ceb(iα′ , 1, iγ′) can be computed using equation 3.55.
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En+1
γ (iα, 1, iγ) = Cea(iα, iβ, iγ)× En

γ (iα, 1, iγ)

+
Ceb(iα′ , 1, iγ′) cos Ωβ

∆β
×
(
H
n+ 1

2

β′ (iα′ , 1, iγ′)−H
n+ 1

2

β′ (iα′ − 1, 1, iγ′)
)

− Ceb(iα′ , 1, iγ′)

∆γ
×
(
H
n+ 1

2

α′ (iα′ , 1, iγ′)−H
n+ 1

2

α′ (iα′ ,@, iγ′)
)

− Ceb(iα′ , 1, iγ′) sin Ωβ

∆γ
×
(
H
n+ 1

2

β′ (iα′ , 1, iγ′)−H
n+ 1

2

β′ (iα′ ,@, iγ′)
)

(3.74)

The magnetic field componentsH
n+ 1

2

α′ (iα′ ,@, iγ′) andH
n+ 1

2

β′ (iα′ ,@, iγ′) do not exist in

the problem space. Using the Floquet theory H
n+ 1

2

α′ (iα′ , @, iγ′) and H
n+ 1

2

β′ (iα′ ,@, iγ′)

can be calculated as in equation 3.75 and 3.76. kβ′ is the wave number in β̂′

direction and can be computed as kβ′ = ω
c

sin$β′ ($β′ is the incident angle of the

wave to β̂′ direction)

H
n+ 1

2

α′ (iα′ , @, iγ′) = H
n+ 1

2

α′ (iα′ , 1, iγ′)e
jkβ′Nβ′∆β′ (3.75)

H
n+ 1

2

β′ (iα′ , @, iγ′) = H
n+ 1

2

β′ (iα′ , 1, iγ′)e
jkβ′Nβ′∆β′ (3.76)

En+1
γ (iα, iβ, Nγ + 1) can be computed using En+1

γ (iα, iβ, 1) as equation 3.77. kβ is

the wave number in β̂ direction and can be computed as kβ = ω
c

sin$β ($β is the

incident angle of the wave to β̂ direction)

En+1
γ (iα, Nβ + 1, iγ) = En+1

γ (iα, 1, iγ)e
−jkβNβ∆β (3.77)

The equation (3.78) is for calculating the Eα field component at the lower bound

of β (iβ = 1). The field component En+1
α (iα, 1, iγ) is computed using En

α(iα, 1, iγ)

and magnetic field components in γ̂ and β̂ directions, which are H
n+ 1

2

γ′ (iα′ , 1, iγ′),

H
n+ 1

2

γ′ (iα′ ,@, iγ′), H
n+ 1

2

β′ (iα′ , 1, iγ′), and H
n+ 1

2

β′ (iα′ , 1, iγ′ − 1).
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En+1
α (iα, 1, iγ) = Cea(iα, 1, iγ)× En

α(iα, 1, iγ)

+
Ceb(iα′ , 1, iγ′) sec Ωβ

∆β
×
(
H
n+ 1

2

γ′ (iα′ , 1, iγ′)−H
n+ 1

2

γ′ (iα′ , @, iγ′)
)

− Ceb(iα′ , 1, iγ′)

∆γ
×
(
H
n+ 1

2

β′ (iα′ , 1, iγ′)−H
n+ 1

2

β′ (iα′ , 1, iγ′ − 1)
) (3.78)

The magnetic field component H
n+ 1

2

β′ (iα′ ,@, iγ′) does not exist in the problem space.

Using the Floquet theory H
n+ 1

2

β′ (iα′ ,@, iγ′) can be calculated as in equation 3.79.

H
n+ 1

2

γ′ (iα′ ,@, iγ′) = H
n+ 1

2

γ′ (iα′ , Nβ′ , iγ′)e
jkβ′Nβ′∆β′ (3.79)

En+1
α (iα, iβ, Nγ + 1) can be computed using En+1

α (iα, iβ, 1) as equation 3.80.

En+1
α (iα, Nβ + 1, iγ) = En+1

α (iα, 1, iγ)e
−jkβNβ∆β (3.80)

3.3.3.3 Treatment at the Corners

At the corners of the cell (the FDTD mesh of the patch antenna), Eα has to be

updated using (3.81), (3.83), (3.84), and (3.85) equation.

En+1
α (iα, 1, 1) = Cea(iα, 1, 1)× En

α(iα, 1, 1)

+
Ceb(iα′ , 1, 1) sec Ωβ

∆β
×
(
H
n+ 1

2

γ′ (iα′ , 1, 1)−Hn+ 1
2

γ′ (iα′ ,@, 1)
)

− Ceb(iα′ , 1, 1)

∆γ
×
(
H
n+ 1

2

β′ (iα′ , 1, 1)−Hn+ 1
2

β′ (iα′ , 1, @)
) (3.81)

The magnetic field components H
n+ 1

2

γ′ (iα′ ,@, 1) and H
n+ 1

2

β′ (iα′ , 1,@) do not exist in

the problem space. They can be calculated as in equation 3.82a and 3.82b.

H
n+ 1

2

β′ (iα′ , 1,@) = H
n+ 1

2

β′ (iα′ , 1, Nγ)× ejkβNβ∆β (3.82a)

H
n+ 1

2

γ′ (iα′ ,@, 1) = H
n+ 1

2

γ′ (iα′ , Nβ, 1)× ejkγNγ∆γ (3.82b)
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Figure 3.8: PASim Simulation of AEPs of planar, cylindrical(100λ radius),
and faceted-cylindrical(100λ radius) arrays.

After electric field component En+1
α (iα, 1, 1) are computed using equation 3.44,

All the electric field components En+1
α (iα, Nβ + 1, 1), En+1

α (iα, 1, Nγ + 1), and

En+1
α (iα, Nβ + 1, Nγ + 1) at other corners can be computed using equations 3.83,

3.84, and 3.85.

En+1
α (iα, Nβ + 1, 1) = En+1

α (iα, 1, 1)× e−jkβNβ∆β (3.83)

En+1
α (iα, 1, Nγ + 1) = En+1

α (iα, 1, 1)× e−jkγNγ∆γ (3.84)

En+1
α (iα, Nβ + 1, Nγ + 1) = En+1

α (iα, 1, 1)× e−jkβNβ∆β × e−jkγNγ∆γ (3.85)

62



3.4 Simulation of Active Element Patterns

Figure (3.8) shows an example of principle plane cuts for AEPs from an infinite-

by-infinite planar array, a 100λ-diameter cylindrical array, and a 100λ-diameter

faceted-cylindrical array. 1257 radiating elements with λ
2

spacing can occupy one

ring (the circumference of the cylinder) of the 100λ-diameter cylindrical array.

1256 radiating elements with λ
2

spacing can occupy one ring of the 100λ-diameter

faceted-cylindrical array. The array element was modeled using the same specifi-

cation for all three manifolds and Figure 3.9 shows the dimensions of it. Therefore

the operating frequency is 2.8 GHz with very narrow bandwidth. In the section

3.5.1, more details of this patch antennas are presented. The blind spot in each

AEP at ±90◦ and slightly high directivity (∼ 0.5dB) of cylindrical array case

compare to the planar array case are noteworthy.

3.5 Applications and Validation of FDTD

Simulations

The patch antennas in subsection 3.5.1 and subsection 3.5.2 are designed for 2.8

GHz (in S-band) center frequency and fabricated on Rogers RT/duroid 5880 with

0.062inch(1.575mm) thickness and 0.5 oz(17µm) copper cladding. This high thick-

ness and a low relative dielectric constant of the substrate of microstrip patch

antenna stimulate the process of radiation. In addition to that, RT/duroid 5880

has resistivity to absorb moisture and change the electrical properties with tem-

perature, which make the material perfect for low-cost patch antenna application.

Since the S-band is the most desirable microwave frequency band used in weather

measurement, 2.8GHz was selected as the center frequency for both narrow band

patch antennas. The patch size is 0.5λ× 0.5λ (54× 54 mm2), since both antennas

were designed for a planar array with 0.5λ element spacing. The pictures of fab-

ricated patch antennas are in figure 4.6 in section 4.2.1.1. Simulation results from
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HFSS and xFDTD are compared with the simulation data from PASim program.

In addition to the simulation data comparison, the measurements of a fabricated

patch antenna are plotted on the same plots of simulation for comparison.

3.5.1 A Simple Patch Antenna

Figure 3.9: Geometry of the simple patch antenna design

(a) Parameter analysis using HFSS (b) Parameter analysis using PASim

Figure 3.10: Parameter analysis of Return Loss for the simple patch antenna

This is a simple patch antenna as depicted in Figure 3.9. This patch antenna

which design was simulated and optimized , and then HFSS is used to validate the

FDTD program. The genetic algorithm, which is a built-in capability of HFSS is
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(a) Parameter analysis using HFSS (b) Parameter analysis using PASim

Figure 3.11: Parameter analysis of Isolation for the simple patch antenna

Parameter d l
HFSS 7.082mm 34.371mm
PASim 6.825mm 34.125mm

Table 3.1: Best Case of Simple patch Antenna

used to do the optimization of a patch antenna for minimizing the possible return

loss (RL) and insertion losses (IL). As presented in Table 3.1 HFSS and PASim

optimizations based on the genetic algorithm are having excellent agreement. Note

from Figure 3.10 and 3.11, the minimal IL and RL are not achieved by the same set

of parameters. Here we have two design parameters - the probe location on x axis

and y axis (parameter d) and the dimension of square shaped patch (parameter l).

Since the PASim is using uniform grid with cell size 0.525mm×0.525mm×0.525mm

and interpolation to generate parameter analysis plots, the parameter analysis

plots has very few disagreements. Isolation and return loss is evaluated at 2.8GHz

frequency for d ∈ (3, 8) and q ∈ (1, 10) where l = 32 + q. The minimum return

loss and minimum isolation are not at the same location as in figure 3.10 and 3.11.

Since there are only two degrees of freedom, we can not control the location of the

minimum return loss and the minimum isolation.

The return loss and isolation of the best case of the patch antenna design are
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(a) Return Loss (RL = −20 log |S11|) (b) Isolation (I = −20 log |S12|)

Figure 3.12: Return Loss, Isolation of the simple patch antenna

Parameter a d l p q t
Value(mm) 9.151 6.400 31.973 11.487 10.706 1.000

Table 3.2: Best Case of patch Antenna with slots

plotted in Figure 3.12. The return loss and isolation data taken through measure-

ment and simulations by HFSS, xFDTD, and PASim was plotted on the same plot

for comparison (figure 3.12). The radiation pattern measurement using near-field

technique and simulation data from PASim are plotted in figure 3.13.

3.5.2 Patch Antenna with Arc-Shaped Slots

Parameter d and l are same as simple patch antenna. The parameter a is the

radius of the arc slots. The parameter p is the coordinate of the center of arc

slot (x = y = p). The parameter q will determine the sector size of the arc. The

parameter t is the width of the slot. Since this designing has five parameters, the

visualization of parameter analysis is not presented.The genetic algorithm with
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(a) Azimuth Principal Cut (b) Elevation Principal Cut

Figure 3.13: Azimuth and Elevation Principal Cut of the simple patch antenna

Figure 3.14: Geometry of patch antenna with slots

20,247 iterations is used to determined the best case of the patch antenna. The

optimization and sensitivity analysis using HFSS is carried out for lowest possible

return loss and isolation. The parameter values can be found in table 3.2.

The Figure 3.15 shows the return loss and isolation of the best case of the patch an-

tenna. AS in the section 3.5.1, the PNA measurements and simulations by HFSS,

xFDTD, and FDTD program are used to compare the return loss and isolation

data (figure 3.15). The figure 3.13 shows the radiation pattern measurement using
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(a) Return Loss (RL = −20 log |S11|) (b) Isolation (I = −20 log |S12|)

Figure 3.15: Return Loss, Isolation of the patch antenna with slots

near-field technique and simulation data from PASim.

3.5.3 Multilayer Patch Antenna Designed by MIT Lincoln

Laboratory

MIT Lincoln Laboratory proposed a multilayer patch antenna for future MPAR

application. In this subsection, the VSWR from both HFSS simulation and FDTD

program will be presented and compared. The antenna element is simulated as an

active element in Infinite-by-Infinite array in both HFSS and FDTD program. So

HFSS is using Master-Slave boundary condition, a frequency domain method for

handling periodic boundary. FDTD program is using periodic boundary condition

in time domain, which was explained in this chapter with details. The size of

the element is 25.4mm × 25.4mm with two substrate layers. Nelco N4000-13,

which has 3.22 dielectric constant and 0.008 loss tangent is used to fabricate the

bottom substrate. Rohacell - 71 HF, which has 1.075 dielectric constant and
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(a) Azimuth Principal Cut (b) Elevation Principal Cut

Figure 3.16: Azimuth and Elevation Principal Cut of the patch antenna with
slots

Figure 3.17: HFSS model of Multilayer Patch Antenna For The Future MPAR
By MIT Lincoln Laboratory.

0.0002 loss tangent is used to fabricate the top substrate. Bottom gold patch

size is 15.2354mm × 15.2354mm and the top gold patch sized is 18.1229mm ×

18.1229mm. The ground plane is also gold. The ports are located at (0,14.76065),

and (0,-14.76065) for H channel. They should be excited simultaneously with 180◦
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Figure 3.18: VSWR of Multilayer Patch Antenna For The Future MPAR By
MIT Lincoln Laboratory.

phase shift. (14.76065,0) and (-14.76065,0) are the location for V channel.
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Chapter 4

Laboratory Measurements

The physically observable phenomena of antennas are measured to investigate per-

formance such as gain, pattern, directivity, and polarization. Mechanical rotation

of the antenna under test (AUT) or the probe antenna will directly affect the

measured pattern and natural polarization vectors and will affect the conclusions

of performance caparisons with overlaid patterns or pass-fail specification lines.

Before the comparison is carried out, it is utmost important to understand and

select the proper coordinate system that AUT is being measured.

Some of the arrays and antennas presented in this dissertation are measured in

old far-field measurement facility, which was merely a conversion of office area

into an anechoic chamber with electromagnetic absorbers. The horizontal and

vertical principal plane cuts off the antenna pattern was measured in the old far-

field chamber. Since the measurements in different coordinated systems will be

the same at principal plane cuts as shown in Section 4.1, it was not necessary

to pay more attention to the coordinate system used in the old chamber. The

modern antenna test ranges located at Radar Innovations Laboratory are used for

all the antennas measurements taken after 2014. There is one near-field chamber

installed and validated by Nearfield Systems Inc. (NSI) and a Far-Field chamber

installed by ORBIT/FR.

The Near and Far-Field Chambers located at RIL can measure many free-space
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characteristics of antennas. The most important measurable characteristics are

free-space radiation pattern, directivity, and polarization. Other properties can be

derivations of these three. As an example gain is proportional to directivity and

the proportional constant is antennas efficiency. Essential theories and practices

of antennas and array antenna measurement, which are used in this work will be

presented in this chapter.

4.1 Coordinate systems

Antenna radiation patterns are measured using mechanical systems (robotic sys-

tems or automated rotary stage systems) in order to collect the field intensities

at each point of imaginary surfaces. Then the data points are discrete and taken

at the locations designated by the systems (mechanical systems and the software

systems). In a near-field facility, the imaginary surface can be planar, cylindrical,

spherical, or other surfaces. A typical far-field measurement system can take the

measurement in spherical coordinate system [94]. If the system does not map the

directivity, polarization, or radiation pattern to desired surfaces, proper formulas

can convert them to the desired one. In this section, the conversion of those co-

ordinate systems will be presented. More details can be found in [95] Appendix

A1.5 of [94] and Appendix C of [96].

4.1.1 Coordinate System for Far-Field Data Acquisition

In the far-field measurement, one can have three kinds of spherical coordinate

systems, using roll-over-elevation-over-azimuth positioner. In the description of

these three systems, the pole is an important definition. In this three coordinate

systems, all the data points are located at separate locations except that two sets

of data points are overlapped at two locations. Those two exceptional points are

recognized as poles. The importance of poles can be easily observed using a very

common earth’s surface map based on the Mercator projection [97].
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The Mercator projection is used to plot the layout of the Earth’s surface on a

spherical shape earth onto a cylindrical shape. Even though world map generated

by Mercator projection is so popular, the area of some lands located in the vicinity

of north and south poles (Greenland, Alaska, Finland, and Antarctica) are very

inaccurate. As an example, Mercator projection says the Greenland is larger than

Africa. The real size of Africa is fourteen times larger than the real size Greenland.

The distortions of the radiation pattern near to the poles are analogous to the

inaccurate layout information of the Earth’s surface from Mercator projection

near to the north and south poles [94].

4.1.1.1 Direction Cosine

In the direction cosine coordinate system, the unit vector r̂ of the position vector

~r to the data point is used to define the projected components in x̂, ŷ and ẑ

of the Cartesian coordinate system. Those projected components are commonly

annotated as u, v, and w. Then it can be written in a mathematical formula as

in the below equation.

r̂ = cosαx̂+ cos βŷ + cos γẑ = ux̂+ vŷ + wẑ (4.1)

The direction cosine is introduced first because it is used as a reference coordinate

system to define the polar spherical, azimuth over elevation, and elevation over

azimuth coordinate systems in subsequent subsections.

4.1.1.2 Polar Spherical

These are the coordinate systems specific to the roll-over-azimuth positioner sys-

tem 4.1(a). The roll-over-azimuth positioner system has two positioners, which

are for incrementing φ and θ angles. The data points can be taken in two ways,

depending on the way φ and θ angles are incremented. While the θ angle is fixed

in a position φ is incremented for all the possible set of values and vice versa.
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Either way can generate the same set of data points, even though the first one

can be the preferred choice to minimize wear and tear of the rotary stage. This is

the only possible way to measure the radiation in a full spherical surface without

any EM wave blockage by the positioner system [94]. The range of θ and φ can

be defined in different ways in order to measure data point on a complete sphere.

u = sin θ cosφ (4.2a)

v = sin θ sinφ (4.2b)

w = cos θ (4.2c)

(a) A patch antennas being measured (b) The data points on the sherical surface

Figure 4.1: Measurement using roll-over-azimuth.

4.1.1.3 Azimuth Over Elevation

An azimuth-over-elevation positioner systems also has two positioners, which are

for incrementing azimuth (az) and elevation(el) angles. While el angle is fixed in

a position az is incremented for all the values defined in the discrete range of az.

then the pole is in ŷ direction. The positioner system will not create any blockage

for az range but el range is limited by a blockage. The possible moving direction

of patch antenna and data point on spherical surface is shown on Figure 4.2(a) and
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4.2(b). The direction cosines in terms of az and el can be related as on Equation

4.3a, 4.3b, and 4.3c.

u = sin az cos el (4.3a)

v = sin el (4.3b)

w = cos az cos el (4.3c)

(a) A patch antennas being measured (b) The data points on the sherical surface

Figure 4.2: Measurement using azimuth-over-elevation.

4.1.1.4 Elevation Over Azimuth

An elevation-over-azimuth positioner system is same as the azimuth-over-elevation

positioner system except that the pole of the system is in x̂ direction. It is due to el

is incremented, while az angle is fixed in a position. The similarity and difference

between the elevation-over-azimuth and azimuth-over-elevation positionar systems

can be clearly observed by the comparison of Figure 4.3(a) with 4.2(a) and Figure

4.3(b) with 4.3(b).

u = sin az (4.4a)

v = cos az sin el (4.4b)

w = cos az cos el (4.4c)
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(a) A patch antennas being measured (b) The data points on the sherical surface

Figure 4.3: Measurement using elevation-over-azimuth.

4.1.2 Coordinate System for Near-Field Data Acquisition

There are three acquisition geometries commonly used in near-field range. Those

are planar, cylindrical, and spherical acquisition geometries. In the near-field

chamber located at Radar Innovations Laboratory, the AUT is always mounted

on a vertical plane. The maximum AUT cross section and maximum probe cross

section will be aligned at the initial position. The complex voltage values of each

data location will be used to transform (near-field to far-field transformation)

the far-field radiation. Rectangular waveguides are used as the range antenna

or the near-field probe since they possess many attractive characteristics such

as time invariant gain, low directivity, electrically small, wide bandwidth, low

scattering cross-section, and polarization purity. The probe and the AUT should

be positioned apart with recommended distance to avoid evanescent wave in data

collection. Hence it collects signal in propagating near-field region, not the reactive

near-field.

4.1.2.1 Planar Near-Field Scanner (PNFS)

Near-field measurement setup using planar acquisition geometry collects the data

in plane rectilinear grid. The near-field probe scans the aperture of AUT on the
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xOy plane, while the AUT is stationary. This scanner is more appropriate for

highly directive antennas measurement since the probe can cover limited solid

angle. The truncation of predictable far-field data is an intrinsic limitation of

PNFS.

4.1.2.2 Cylindrical Near-Field Scanner (CNFS)

In this scanner, the probe is moving up and down vertically while AUT is rotating

to change azimuth angle. Then the data points are located on a cylindrical grid.

This scanner is more appropriate fan-beam type antennas measurements since

there is a limitation in vertical scanning.

4.1.2.3 Spherical Near-Field Scanner (SNFS)

The pointing direction of a stationary probe is the pole of the spherical acquisition

geometry. Initially, the AUT’s aperture is on xOy plane and probe is perpendicular

to xOy plane. When the data acquisition or measurement of the electric field

at each designated point is being done, the incrementation of θ will be done by

rotating the AUT in azimuth and the AUT rotates around its center of the aperture

in order to increment the φ.

4.1.3 Cross Polarization Definitions

In the far-field measurement, the cross polarization is the polarization orthogo-

nal to a reference polarization. However, this is neither formal nor a complete

definition of cross polarization. The electric and magnetic fields at far-field are

completely and unambiguously defined by an electric and magnetic field vectors

perpendicular to the direction of EM wave propagation, as the EM wave will have

the planar wave condition (locally) at far-field. Thereupon one can define the

electric field and magnetic field with two transverse electric and magnetic field

vector components. According to the IEEE145-2013 [98], the cross polarization is

77



defined as “In a specified plane containing the reference polarization ellipse, the

polarization orthogonal to a specified reference polarization”. However the clas-

sical definitions presented by Arthur Ludwig [99] in 1973 are the formal way to

express the cross polarization in practice. In that paper, Ludwig had given three

definitions of cross polarization, which are discussed in next three subsections.

(a) Azimuth-over-elevation whith Ludwig II (b) Elevation-over-azimuth whith Ludwig II

(c) Azimuth-over-elevation whith Ludwig III (d) Elevation-over-azimuth whith Ludwig III

(e) Polar spherical whith Ludwig III

Figure 4.4: Cross popularization of an active element pattern at (4,4) location
of an 8 × 8 planar array with different cross polar definitions and coordinate

systems
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4.1.3.1 Ludwig I

The Ludwing’s first definition is presented with Cartesian polarisation basis êx,

êy, and êz, which are unit vectors in X, Y , and Z directions respectively. The

electric field vector using Ludwig I at any far-field data acquisition point can be

expressed in simple mathematical form (equation 4.5).

~E = Exêx + Eyêy + Ez êz (4.5)

In equation 4.5, Ex is co-polar electric field intensity component and Ey is cross-

polar electric field intensity component. The Ey ≈ 0 can be considered valid

approximation in the vicinity of θ = 0. The Co-Polarization and Cross-polarization

are oriented in êx and êy direction on every possible data acquisition points on the

imaginary far-field spherical surface. If the data acquisition points are taken with

polar spherical coordinate system, Ex and Ey can be calculated using Eθ and

Eφ components measured using Ludwig’s second definition with polar spherical

coordinate system.

Ex = Eθ cos θ cosφ− Eφ sinφ

Ey = Eθ cos θ sinφ+ Eφ cosφ

Ez = −Eθ sin θ

Notice the Ez is not zero unless θ = 0. Nevertheless only Ex and Ey are used to

represent polarization at far-field measurements. Thus the measurements are ac-

curate and reliable only in the vicinity of θ = 0. Due to this reason, the community

of antenna measurement is less favorable towards this definition.

79



4.1.3.2 Ludwig II

Generally, Ludwing’s second definition of cross polarization can be presented in

two different coordinate systems, which are azimuth-over-elevation and elevation-

over-azimuth. Anyhow the near-field measurement systems at RIL has the option

to translate the near field data taken by using PNFS, CNFS, or SNFS into polar,

spherical coordinate system. The polar spherical coordinate system will have many

Eθ and Eφ at θ = 0, which is called the singularity at θ = 0. That is the bore

sight of the antenna pattern.

Whereas at far-field, the electric field in the direction of EM propagation is zero. In

other words, the field components perpendicular to the imaginary spherical surface

at far-field has to be zero. Subsequently the field at far-field can be expressed using

azimuth-over-elevation or elevation-over-azimuth coordinate system as:

~E = Eaz êaz + Eelêel (4.6)

The Co-Polarization and Cross-polarization are oriented in êaz and êel direction on

every possible data acquisition points on the imaginary far-field spherical surface

with azimuth-over-elevation or elevation-over-azimuth coordinate system. The

singularities are 90◦ away from bore sight

Note : Entire measurements presented in this dissertation are in azimuth-over-

elevation coordinate system with Ludwig’s second definition of cross polarization.

4.1.3.3 Ludwig III

The usage of this definition is more common in the antenna measurement commu-

nity. The far-field data can be taken when the AUT is rolling in φ and positioning

in θ (roll-over-azimuth) while the range antenna is rolling. Unlike the far-field

measurement data taken with only polar spherical coordinate system, the probe

and AUT coupling is invariant at θ = 0 through out the measurement process. No

singularity at any location is the main advantage of this definition. The electric
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field vector at each data point can be given in three components Eco, Ecr, and

Er. Hence Er are in the planar wave propagation direction, Considering Er = 0

is both theoretically and experimentally accurate.

~E = Ecoêco + Ecrêcr (4.7)

The polar spherical electric field components and orthoganal electric field compo-

nents from the third definition can be related as :

~Eco = Eθ cosφ− Eφ sinφ (4.8a)

~Ecr = Eθ sinφ+ Eφ cosφ (4.8b)

More generalized and detailed definition of Ludwig’s third definition will depend

upon θ as presented by Roy and Shafai [100]. The generalized equation can be writ-

ten as equation 4.9a for co-polarization and equation 4.9b for cross-polarization.

~Eco = Eθ cos ζ − Eφ sin ζ (4.9a)

~Ecr = Eθ sin ζ + Eφ cos ζ (4.9b)

The angle ζ depends on θ and φ given by the observation direction and ϕ, which

is the direction of perfectly polarized aperture field.

ζ = arctan
1

cos(θ) tan(ϕ− φ)

When the perfectly linear polarized field is oriented in +ŷ direction, ϕ will be

π/2 (90 degrees). Subsequently the equation will appear to be ζ = arctan tan(φ)
cos(θ)

.

It is important to note that equation 4.8a and 4.8b will be valid when θ = 0

and perfectly linear polarized field is oriented in +ŷ direction. Figure 4.4 shows

the cross-polar active element pattern of the element at (4,4) location of planar
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array antennas. Depending on the testing antenna’s orientation and the channel

excited, azimuth-over-elevation (Figure 4.4(a)) or elevation-over-azimuth (Figure

4.4(b)) coordinate system will be used. It is noteworthy that the Figure 4.4(b)

and 4.4(d) are much smiler.

4.2 Measurement Setups in Near and Far-Field

Chambers

4.2.1 Measurement Setups in Near-Field Chamber

Figure 4.5: Near-Field Chamber at RIL

The chamber is 11 feet wide, 26 feet long, and 11 feet tall. The recommended

temperature is 68◦ ± 2◦ and the nonconducting humidity should be between 35%

and 75% for taking a measurement with optimum accuracy. The probe can move

±32.21 inch horizontally (X axis) and ±31.23 vertically (Y axis). Then the probe

can cover 4024 square inches (horizontally 64.42 inches × vertically 62.46 inches)

on a planar surface in near field planar antenna measurements. The azimuth base

can be rotated 360◦, which can cover θ ∈ [−180, 180] in cylindrical and spherical

near-field measurements. The φ ∈ [0, 360] in the spherical coordinate system can

be incremented by a positioner mounted on the azimuth base. The azimuth base

can move 78.74 inch in the z direction to make the initial fixed position of the
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AUT. In addition to that, the probe can move 4 inches in the z direction to make

small adjustments.

4.2.1.1 Isolated Patch Antennas

The isolated patch antennas (shown in Figure 4.6), which are used to validate the

PASim program was measured in the near-field chamber for obtaining the far-field

co-polar and cross-polar radiation pattern. The relevant antennas were measured

using SNFS with 3 degrees θ and φ resolution. The probe was at a fixed position

in the middle of XY plane. The antennas and cylindrical scanner alignment were

done using laser alignment tools. Therefore the middle point of the probe is aligned

with the middle point of the patch antenna at the initial position.

(a) The Simple Patch (b) The Patch with Slots

Figure 4.6: CPAD-1 : Measured 3D transmitting pattern of the planar 4×4
CPAD configuration.

The probe-to-azimuth stage radius, an important distance to be measured is the

distance between the front of the probe to the axis of the azimuth stage where

the AUT is mounted. The accuracy of this measurement should be within a

wavelength of the operating frequency or the desired frequency. The AUT will not

be able to locate on the axis of the azimuth stage. Then the distance between axis

to the AUT, maximum radial extent (MRE) has to be measured. Even though the
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(a) Co-Polar 3D Pattern of the Simple Patch (b) Cross-Polar 3D Pattern of the Simple Patch

(c) Co-Polar 3D Pattern of the Patch With Slots (d) Cross-Polar 3D Pattern of the Patch With Slots

Figure 4.7: CPAD-1 : Measured 3D transmitting pattern of the planar 4×4
CPAD configuration.

(a) Horizontal Plane Principal Cut (b) Vertical Plane Principal Cut

Figure 4.8: CPAD-1 : Measured 3D transmitting pattern of the planar 4×4
CPAD configuration.

accuracy of MRE is not critical, this distance should be entered in the measurement

software.

Figure 4.6(a) and 4.6(b) are the pictures of simple single layer patch antenna and

single layer patch with slots. The patch in Figure 4.6(b) does have better isolation

between ports than simple patch antenna. As the elements are separated by λ
2

84



in both array antennas and having compact the metal patch size, lower mutual

coupling in an array of single layer patch antennas with slots can be anticipated.

Thereupon both of them are having low-frequency bandwidth (BW < 2%). These

patch antennas are not suitable as radiating elements for MPAR. However, they

revealed some interesting design tradeoffs. Hence antenna’s manifolds and differ-

ent configurations of radiating elements on particular antenna manifold can be

characterized with low cost and limited resources.

4.2.1.2 Active Element Pattern

(a) Planar Array (b) Cylindrical Array

Figure 4.9: Planar and cylindrical array antenna configurations in near-field
chamber measurement.

In some literature, the active element pattern is called embedded element pattern

in order to avoid the misleading meaning in word “active” [101–103]. In this dis-

sertation, active element pattern will be used to call this important measurable
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parameter of phased array antennas. The AEP can be used to do the precise gain

and radiation pattern generation using the same mathematical procedure used in

isotropic array radiation pattern generation. In addition to that, AEP can be used

to calculate the mutual coupling between radiation elements. In order to measure

the active element pattern, one port of a test patch antenna element is excited,

while all the other ports are terminated with match load (50Ω). This element

pattern includes the mutual coupling between element, as they are measured in an

array environment. AEPs for the 64-element planar and cylindrical array elements

are measured in a near-field chamber at RIL. The initial goal was to do the electro-

magnetic characterization of planar and cylindrical array manifold with the same

number of elements. The paper by Guifu Zhang and others [44] did the layout

of theoretical works to compare polarimetric planar and cylindrical array antenna

manifolds and discussed seven benefits of using cylindrical array manifold, more

specifically in weather measurements. In this electromagnetic characterization,

the validation of some of the benefits could be done. The polarization puerility,

scan-invariant beamwidth, and scan-invariant polarization characteristics are the

benefits that can be validated using these measurements. This is discussed more

in section 5.5 and section 5.6.

The 64-element planar array was measured in planar near-field measurement scan-

ner. Since the distance between AUT and the probe should be absolutely invariant

in the measurements of all the elements the probe is moving in [a truncation of the

range] to collect data at designated data points. The data points are separated by

0.5 inch in both x and y axises. The distance between probe to AUT is [around 5λ

(20 inch)] and the operating frequency is 2.8GHz. Accordingly after near-field to

far-field transformation with Azimuth-over-elevation coordinate system, the far-

field radiation data could be predicted in [−40◦, 40◦] × [−40◦, 40◦] azimuth and

elevation range. A special support had to be constructed to mount the planar

array measurement in the near-field chamber (Figure 4.9(a)).

86



(a) Planar Array (b) Faceted-Cylindrical Array

Figure 4.10: Planar and Faceted-cylindrical phased array antennas Measure-
ment - Azimuth principal plane cut of AEP

The CNFS was used to take the near field measurement of the 64-element cylin-

drical array with 3 degrees and 0.622inch resolution. At the initial position, the

probe is in the middle of XY plane. Then it can move ∼ 2.5 feet up and ∼ 2.5

feet down. Initially, the middle point of the probe is aligned with the middle point

of the (1,1) patch antenna which is located at the upper left corner of the array.

The probe-to-azimuth stage radius, an important distance to be measured is the

distance between the front of the probe to the axis of the azimuth stage where

the AUT is mounted. The accuracy of this measurement should be within a wave-

length of the operating frequency or the desired frequency. The AUT will not be

able to place on the axis of the azimuth stage. Thereon the distance between axis

to the AUT, maximum radial extent (MRE) has to be measured. Even though

the accuracy of MRE is not critical, this distance should be entered in the mea-

surement software. In order to increase the elevation range, the probe required

modifications. In this near-field chamber, the azimuth stage had no facilities to

mount an 8 × 8 cylindrical array. Therefore a special mounting stage had to be

constructed in the lab (Figure 4.9(b)).

The planar and faceted-cylindrical array measurement set up in the near-field
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chamber is shown in figure 4.9. In the measurements, the AEPs varied with the

location of the element due to the surface currents and edge currents, as presented

in figures 4.10. The degradation of AEP’s gain in edge elements can be observed in

both planer (Figure 4.10(a)) and faceted-cylindrical arrays (Figure 4.10(b)). The

number of oscillation of the co-polar pattern can not be observed in a crystal clear

manner. Hence the diffraction field from edges of each column. However, in a

planar array, AEP has four oscillations, which is half of the number of element in

a row or column [104]. In the faceted-cylindrical array, the number of oscillations

is lower (two oscillations) than the number of oscillations in planar array case

but more intensive oscillations can be observed. EM characterization of a planar

and faceted-cylindrical array with more details can be extracted from 3D plots as

shown in Figure C.1 and Figure C.2.

4.2.2 Measurement Setups in Far-Field Chamber

In far-field measurement system, the planar wave approximation is made to min-

imize the size of the facility. In order to make this approximation reasonable and

meaningful, two conditions are required to be satisfied. The source antennas and

receiving antenna are coupled with separation distance R larger than 2D2/λ and

D/R should be extensively smaller in comparison with half-power beam width of

the source antenna radiation pattern. D is the maximum dimension of receiv-

ing aperture. The reflected energy or electromagnetic waves can interfere with

the field illuminating from the source antenna or absorbing from the receiving

antenna. This interference can destroy the illuminating fields or absorbing fields

which lead to the considerable degradation of the measurement accuracy. In order

to minimize reflection from a wall and other objects in the chamber, absorbing

forms are used to cover every possible area and object of the chamber.

The far-field measurement was done in both RIL old far field chamber and RIL

new far field chamber. CPAD-1 measurements were done in the far-field chamber
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and according to the nature of the measurement method, Ludwig’s third definition

of cross polarization [99] can be applied. There is no probe calibration used in old

chamber measurement process. The KOUN feed horn antenna has a 35dB cross

polar level. Then in the comparison of measurement and simulation, an excellent

resemblance of cross pol level can not be identified. As an example in the full-wave

simulation pattern, there is a deep null in the cross polarization pattern, but the

measurement pattern results generally do not show this null.

4.2.2.1 Measurement Set-up in Old Chamber

Figure 4.11: CPAD-I : Measurement Set Up At 1PP

The measurement of CPAD-I was done in an anechoic chamber located in the One

Partner Place on the University Research Campus. This chamber was built by

students at ARRC with absorbing forms in a regular office room. As in the figure
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(a) Planar 4× 4 CPAD-I (b) Circular CPAD-I

Figure 4.12: CPAD-I : 2× 2 Planar Array Antenna Measurement With Mir-
rored and Regular Configurations

4.11, the test setup has a vector network analyzer (VNA)1, a positioning system

or a rotary stage, rotary stage controller2, and the dual-polarized KOUN3.

The CPAD-1 antenna array was mounted on a positioning system as shown in

figure 4.12(a) and figure 4.12(b). The rotary stage can position the antenna in an

azimuth plane for taking the reading by the VNA. The VNA is the central piece

equipment of the measurement set-up. According to the Keysight Technologies

antenna test guide, far-field chamber test need number of pieces of equipment such

as microwave transmit source, test mixer module, amplifiers, LO/IF distribution

unit, routers, hubs, and a computer. In order to reduce the number of pieces,

the setup was simplified with the VNA and a script running on it. The VNA

accomplished generating the transmitting signal, sending the control signal to the

1Agilent R©E8364B PNA Network Analyzer has 10 MHz to 50 GHz and 104 dB of dynamic
range

2Soloist R©single-axis digital servo controller are used to control the azimuth (AZ) angle of the
positioning system

3KOUN is a feed horn antenna of the dual-pol WSR-88D radar system. The Co-Polar and
Cross-Polar measurement that was measured by in the same set-up with standard ATM horn
antenna in in figure 4.15(a)
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rotary stage for incrementing the azimuth position of the CPAD-I, receiving data

from CPAD-I and recording the S-parameters for each position. The array with

receive-mode and low power (the HPAs were not activated) transmit-mode was

measured with this setup. Henceforth the CPAD-I was under measurement as

the receive antenna; KOUN feed-horn antenna was connected to the transmitting

signal generating port of the PNA. The transmit power was set to 9dBm, which

is the maximum power VNA can generate for this set-up. The microwave signals

were transmitted to PNA and receive from PNA via the coaxial cable. The VNA

was set to save S parameters with 200 samples between 2700 MHz and 2710 MHz.

The S-parameter measurements were stored as PRN files which were processed by

a MATLAB program to compute the array pattern.

4.2.2.2 Measurement Set-up in New Chamber

Figure 4.13: Far-Field Chamber at RIL

The size of the new far-field chamber located at RIL is 26 feet width, 38 feet long,

and 26 feet hight. The probe or range antenna is a dual ridge horn antenna with

constant gain of 12dBi from 0.3 to 3.0 GHz frequency range. The cross polarization

level of the probe antenna is 45dB below the co-polarization level.
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4.2.2.3 Old & New Far-Field Chamber Measurements

The old chamber at One Partner Place was build by ARRC students as a tempo-

rary far-field facility. In this section, a comparison of the measurement of KOUN

fead horn antenna and NEXRAD feed horn antenna, which are taken in old and

new chambers respectively is presented. Figure 4.14(a) show the KOUN fead

horn, which was used as the reference antenna of the old chamber. The picture of

NEXRAD feed horn, which is under measurement in new chamber can be seen in

figure 4.14(b).

(a) KOUN Feed Horn Antenna (b) NEXRAD Feed Horn Antenna

Figure 4.14: NEXRAD and KOUN Feed Horn Antenna

4.3 Data Processing and The Array Pattern

Generation Using Active Element Patterns

As near-field data needs to be transformed into far-field data with desired coordi-

nate systems. However, the data processing is crucial in the near field measure-

ment. If the active element patterns of the array are measured, additional data

processing is needed to generate the array antenna pattern.
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(a) KOUN Feed Horn Antenna (b) NEXRAD Feed Horn Antenna

(c) KOUN and NEXRAD Co-Polar Ratios

Figure 4.15: NEXRAD(New Far-field Chamber) and KOUN(Old Far-field
chamber) Feed Horn Antenna Measurement

4.3.1 Data Processing

After completing the near-field measurement scanning, the NFS software can be

used for data processing. Hence the near-to-far field transformation, selecting

the coordinate system to do the near-to-far field transformation, resolution of

the far field pattern, polarization definition, and interpolation method. NSI 2000

software is able to process near-field row data and produces horizontal and vertical

principal plane cuts (H- and V-cuts), 2D intensity view of the pattern using proper

coordinate system definition (image), a contour of the image, 3D plots and far-field

data (listing).

There are 128 measurements, which has to be taken for planar and cylindrical
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array antennas. The manual data processing of each AEP is a laborious process.

The ability to automate this job using NSI 2000 software is advantageous in this

situation. This automation can be done with a program written in VBScript.

4.3.2 Generation of The Array Pattern Using AEP

The array theory can be used to develop the formula which can calculate an

approximate radiation pattern from measured or simulated element pattern :

E(θ, φ) = AF × EP . AF is the array factor for given antenna array manifold

and EP is element pattern measured or simulated in an array environment. In

case, we have used the AEP of each elements of the array, we are capable of read-

ing a much better approximation. In this section, the array pattern generation

theory for planar and faceted-cylindrical arrays used in this work is discussed and

the array patterns are presented.

Figure 4.16: Array Pattern Generation Theory Illustration

E(θ, φ) =
∑
∀n,m

am,ncm,nEm,n(θ, φ)ejk
−→r m,n·r̂θ,φ (4.10)
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Where Em,n(θ, φ) is the complex electric field in r̂θ,φ direction, which can be mea-

sured or simulated as phase and magnitude of each element’s AEP. k is the wave

number which is 2π/λ. m ∈ [−M/2+1,M/2] and n ∈ [−N/2+1, N/2] are positive

or negative integers. In this case, M and N are positive even numbers. am,n is the

complex excitation of (m,n) element.

am,n = |am,n|e−jk
−→r m,n·r̂θ0,φ0 (4.11)

r̂θ,φ is the unit vector in Cartesian coordinate system, which is in the direction of

any point in space (r, θ, φ).

r̂θ,φ = ux̂+ vŷ + cosθẑ (4.12)

u and v are the direction cosines and they are defined as u = sin θ cosφ and

v = sin θ sinφ. θ0 and φ0 define the beam steering direction.

cm,n is the complex calibration value for each elements. This value can be measured

with proper test procedure. In this work, measured AEP could be used to compute

the complex calibration value.

cm,n = |cm,n|e−jαm,n (4.13)

−→r m,n is the position vector of each element. The measurements of elements are

taken individually as far-field patterns (transform the near-field to far-field in

near-field scanning system). Then zm,n was taken as zero.

−→r m,n = xm,nx̂+ ym,nŷ + zm,nẑ (4.14)

In this work, the patch antenna size is 0.56λ × 0.56λ. Therefore let d = 0.56λ in

the planar and faceted-cylindrical array pattern generation.
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4.3.2.1 Planar Array

Since the elements of planar array is arranged on XY plane, the determination of

~rm,n is very intuitive with simple geometry. Let the number of elements 2M ×2N ,

where M and N are integers. When m ∈ [−M + 1,M ] and n ∈ [−N + 1, N ] the

xm,n, ym,n, and zm,n can be determined as below.

xm,n = d(2n− 1)/2 (4.15a)

ym,n = d(2m− 1)/2 (4.15b)

zm,n = 0 (4.15c)

let the number of elements (2M + 1) × (2N + 1), where M and N are integers.

When m ∈ [−M,M ] and n ∈ [−N,N ] the xm,n, ym,n, and zm,n can be determined

as below.

xm,n = dn (4.16a)

ym,n = dm (4.16b)

zm,n = 0 (4.16c)

4.3.2.2 Faceted-Cylindrical Array

xm,n, ym,n, and zm,n can be computed using below equations, which are derived

with geometrical information of a general faceted-cylindrical array with even num-

ber of elements in rows and columns.

xm,n =
d

2

(
sin

(2n− 1)∆ξ

2
cot

∆ξ

2

)

ym,n = (2m− 1)
d

2

zm,n = −d
2

(
csc

∆ξ

2
− cos

(2n− 1)∆ξ

2
cot

∆ξ

2

)
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The generated planar phased and faceted-cylindrical array pattern using 64 AEPs

for the H channel (horizontal polarization) is shown in figure 5.8 and 5.9 respec-

tively. In the same manner, radiation pattern can be generated for the V channel

using AEPs for V channels in both cases of planar array and faceted-cylindrical

array.
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Chapter 5

Lab-Scale, Reconfigurable

Testbed Systems

In this chapter, the measurement procedures and some of the measurements taken

in the Far-Field and Near-Field chamber facilities located at Radar Innovation

Laboratory (RIL) are presented. Different isolated antenna elements, embedded

elements, and phased arrays were measured using the near-field and far-field tech-

nique. A low-cost, small-scale testbed for the dual-polarized array antenna - the

Configurable Phased Array Demonstrator (CPAD) was developed for the proto-

typing and educational purposes. In order to study the effect on antenna char-

acteristics, this sixteen-element array with a beam-forming network (TR modules

and power combiner/divider) could be configured into different antenna manifold

(4× 4 planar array, eight-element ring array, and 2× 2 arrays with a mirrored ori-

entation of element’s configurations). The primary purpose of the measurements

taken using CPAD-I is to investigate as to how the array manifold configurations

affect the polarimetric array radiation pattern. Therefore all the elements (up to

16 elements) were excited with proper phase shiftings and attenuations to study

the side-lobe levels, cross-polarizations, and beam steering performances. The

investigation of active element patterns and generation of array patterns using

active element patterns were done using CPAD-II, which is a 64-element (8 × 8)
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array. The CPAD-II could essentially be configured into 8× 8 planar and faceted-

cylindrical array antennas to study the polarimetric characteristics of each array

manifolds.

5.1 Concept of Configurable Phased Array

Demonstrator (CPAD)

In the early works of Multi-functional Phased Array Radar research at Radar

Innovations Laboratory, a phased array test bed was created with the participation

of graduate research assistants. The test bed was called Configurable Phased Array

Demonstrator (CPAD), comprised of 16 dual channel patch antennas, TR modules,

and power divider/combiner (Figure 5.1). In this section, early CPAD works are

to be presented briefly. Those works have already been published in both journal

and conference papers [105–107]. The operating frequency was 2.705 GHz with

1.45% very narrow bandwidth. Nonetheless, S-band is more preferred frequency

band in a radar system for weather measurement, 2.705GHz was selected. In order

to make the system low-cost, narrow band simple dual-polarized microstrip patch

antenna was used, despite the fact that CPAD front end hardware was capable of

handling up to 8% of the frequency bandwidth of 2.8GHz center frequency.

The circuitry and systems for H channel and V channel were designed to have

identical electrical characteristics. Each TR module of the CPAD-I had a variable

phase shifter and variable attenuator in a common signal path for both transmit-

ting and receiving channel’s circuitry. A low noise amplifier (LNA), limiter, and

filter were installed on receiving signal path of the microwave circuit. A power am-

plifier (PA) was designed to boost the transmitting signal up to 44dBm. This PA

was fabricated on a separate board as CPAD was in the initial stage of designing

and each functionality requires to be well designed and tested before designing one

PCB for whole TR module. In addition, any EMC issue and possible heat transfer
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Figure 5.1: CPAD-I Concept

to the rest of the TR module would have been avoided. Four PCB boards (TRM,

two PA, and MCU) with the microstrip patch antenna were integrated into one

module, which can easily fit into different manifold structures. An extensive detail

of the development of the TR module was published in [107]. Each TR module

had a microcontroller unit (MCU), which was to be programmed to control the

phase shift and attenuation of each polarimetric channel. The MCU in each TR

module were running a program (slave program) in accordance with the command

sent through a serial peripheral interface (SPI) by the master program running

on master MCU board. An external global triggering/control signal was able to

control and synchronize the TR switches, LNAs, preamplifiers, HPAs, and MCUs

in TR modules with 5% duty cycle.

The signal from particular direction was received through all TR modules and com-

bined coherently in power divider/combiner and delivered to up/down converter
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or measurement equipment (VNA or Oscilloscope). When the CPAD was trans-

mitting, a signal from up/down converter or equipment was subjected to split into

identical signals and delivered to each TR modules. The power divider/splitters

for each H and V channel accomplished this functionality. The power converters

supplied 28V DC power converted from 110V 60Hz AC and it was the only power

source to the whole system. A LabVIEW program with a simple graphic user

interface (GUI) was implemented to communicate with master MCU to control

the phased shifting and attenuation of each TR module individually.

5.2 CPAD-I : 16-Elements Planar Subarray

In this demonstration, CPAD-I, in which elements are regularly separated by 0.7λ

spacing was configured as an 4×4 array for planar array measurements with beam

steering and amplitude tapering for beam forming with low side-lobe level. The

measured radiation pattern and simulation of planar 4× 4 antenna array patterns

for different beam steering directions are presented in figure 5.2. Figure 5.2(a),

5.2(b), 5.2(c), and 5.2(d) show the variation of array pattern with the variation

of the beam steering of 0◦, 10◦, 20◦, and 30◦. These patterns were measured with

uniform tapering (0dB attenuation in all the channels). Measured co-polarization

(Co) and cross-polarization (X) patterns are plotted with the simulated patterns,

which are having a good agreement.

The attenuation of each element of 4×4 planar array can be determined to get the

minimum side lobe level. There are many techniques which can accomplish the

amplitude tapering for sidelobe level reduction. In this measurement, the particle

swarm optimization method[108] -a nonlinear optimization procedure was used to

compute the attenuation of each element. The antenna elements were grouped into

three regions as presented in Table 5.1, because they had equal attenuation. The

elements (2,2), (2,3), (3,2), and (3,3) (region 1) were the middle four elements

of the 4 array with no attenuation. The elements at the edges without corner
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(a) Broadside Pattern (b) 10◦ Beam Steering

(c) 20◦ Beam Steering (d) 30◦ Beam Steering

Figure 5.2: CPAD-I : 4 × 4 Array Antenna Measurement with uniform illu-
mination

elements (region 2) were having 5dB attenuation. The elements at corners (region

3) were set with 15dB attenuation. The tapering for achieving a minimum sidelobe

level for the array was computed only for the broadband pattern. However that

tapering was used in beam steering pattern measurements. The low side-lobe

level which is 20 dB lower than the main beam could be achieved in the broadside

pattern of this 4 array. Hence the attenuators are capable of introducing quantized

attenuation in the receiving or transmitting signal path of a TR module, there are

minor differences between computed attenuations and the attenuation that was

set in the system. The measurements of H and V channels with the comparison of

simulated data can be seen in Figure 5.3. Figure 5.3(a), 5.3(b), 5.3(c), 5.3(d), and

5.3(e) show the variation of array pattern with the variation of the beam steering
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(a) Broadside Pattern (b) 5◦ Beam Steering

(c) 10◦ Beam Steering (d) 15◦ Beam Steering

(e) 20◦ Beam Steering

Figure 5.3: CPAD-I : 4× 4 Array Antenna Measurement With Tapering

of 0◦, 5◦, 10◦, 15◦, and 20◦.
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Region Element labels Attenuation Attenuation
(Theory) (Real)

1 (2,2), (2,3), (3,2), (3,3) 0dB 0dB
2 (1,2), (1,3), (2,1), (3,1), 5dB 5.18dB

(4,2), (4,3), (2,4), (3,4)
3 (1,1), (1,4), (4,1), (4,4) 15dB 14.48dB

Table 5.1: Three regions of the antenna elements distribution on the 4×4
array.

5.3 CPAD-I : 4-Elements Planar Mirrored Array

Configuration

This demonstration was used to show the orientation of radiating elements, which

can effect on the improvement of cross polarization level of the array radiation.

The mirrored configuration of each element’s orientation in an array has been stud-

ied by some researchers [109, 110] and validated as a possible method for reducing

cross-polarization levels. In addition to the reduction of cross-polarization level,

undesired sidelobes can be avoided using this configuration of elements in an array

[109]. The comparison of array patterns with radiating elements arranged in reg-

ular (all in the same orientation) and mirrored element configuration is presented

for both H and V channel in figure 5.4. The measurements and simulation agree

that there is some improvement of cross-polarization level around broadside.

5.4 CPAD-I : 16-Element Ring Array with the

Excitation of Four and Eight Elements

As the first conformal array demonstration of CPAD, a full circular array with

sixteen elements, which were equally spaced along the periphery of the ring was

built with 16 TR modules. The illuminated set of successive elements is called

the active sector of the full circular ring array. The different sizes of active sectors

in a ring array have to be measured to demonstrate the effect of curvature on
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(a) H Channel Azimuth Principal Plane Cut (b) H Channel Elevation Principal Plane Cut

(c) V Channel Azimuth Principal Plane Cut (d) V Channel Elevation Principal Plane Cut

Figure 5.4: CPAD-I : 2×2 Planar Array Antenna Measurement With Mirrored
and Regular Configurations

radiation characteristics of the focused beam. Then a four-element and an eight-

element active sector of the ring were excited with proper phase shifting to form

a focused beam and measured the radiation pattern using far-field measurement

technique. The radius of the ring array was 1.736λ where the λ is 110 mm for

2.705GHz center frequency.

The ring array antenna with excitation of 4-element was measured and simulated

for gathering radiation pattern with 0◦ (Figure 5.5(a)), 10◦ (Figure 5.5(b)), 20◦

(Figure 5.5(c)), and 30◦ (Figure 5.5(d)) beam steering (Figure 5.5). The lobes at

−90◦ and 90◦ are lower than the case of 8 element active sector array.
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(a) Broadside Pattern (b) 10◦ Beam Steering

(c) 20◦ Beam Steering (d) 30◦ Beam Steering

Figure 5.5: CPAD-I : Measurements of 4-element active sector ring

The measurement and simulation of ring array antenna with excitation of 8-

element were done for three steering beam in 0◦ (Figure 5.6(a)), 5◦ (Figure 5.6(b)),

and 10◦ (Figure 5.6(c)) directions (figure 5.6). The lobes at −90◦ and 90◦ are more

apparent in this case.

The important fact, that the curvature of a faceted ring array creates lobes at −90◦

and +90◦ location can be verified by observing this ring array radiation charac-

teristic. The same phenomenon can be observed in the faceted-cylindrical array

measurements in Section 5.6. This was a very small ring array with 16 elements,

therefore one element occupied 22.5◦ at the center of the ring. The commutating

scanning is the method used in a large cylindrical array with 100λ diameter. One

can use CPAD-1 in a radar system and implement a commutating scanning scheme

with very low resolution. In addition, the investigation of fundamental properties

of a faceted ring array manifold and compared the characteristics of a planar array

could be done with measurement of steered beams.
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(a) Broadside Pattern (b) 5◦ Beam Steering

(c) 10◦ Beam Steering

Figure 5.6: CPAD-I : Measurements of 8-element active sector ring

5.5 CPAD-II : 64-Elements Planar Array

Antenna

Figure 5.7: CPAD-II Array Antenna Specification

The patch antenna (Figure 5.7) was fabricated on RT/Duroid 5880 with 1.575 mm

thickness and 1/2 oz copper cladding. The operating frequency was selected in
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Figure 5.8: CPAD-II Planar Antenna Measurement - Radiation Patterns

S-band. The patch antennas are dual polarized single layer elements with 0.56λ

size.

The average directivities of AEPs were 9.81dB and 9.98dB at 3.1GHz for H and V

channel respectively. The S-band rectangular waveguide was utilized as the probe

antenna. OEWG WR284 probe model in [2.6GHz, 3.96GHz] frequency band was

used for the probe correction. The near-field scanner is 5ft high and can measure

[−50◦,+50◦] in both Azimuth range and Elevation range. The co-polarization and

cross polarization active element patterns of elements (4,1), (4,2), (4,3), and (4,4)

are shown in figure C.1(a), C.1(b), C.1(c), and C.1(d) respectively. The cross-

polarization level was around 15dB below the maximum of co-polarization level.

64-element were measured for both H and V channel to generate the radiation pat-

tern of the planar array as shown in Figure 5.8, which shows H channel amplitude

and phase patterns for co-polarization and cross-polarization. A similar pattern
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for V channel can be obtained using the same procedure. The radiation pattern

of array beam steering (θ = 20◦ and φ = 40◦) can be seen in Figure C.3.

5.6 CPAD-II : 64-Elements Cylindrical Array

Antenna

The average directivities of AEPs were 10.50dB and 10.46dB at 3.1GHz for H

and V channel respectively. The probe model was the same as the model used for

planar array measurements. The azimuth range was [−90◦,+90◦] and the elevation

range was [−32◦,+32◦]. An 8×8 array with 3.32λ radius array was measured using

near-field scanning. The co-polarization and cross-polarization of active elements

(4,1), (4,2), (4,3), and (4,4) are shown in figure C.2(a), C.2(b), C.2(c), and C.2(d)

respectively. The cross-polarization level was around 25dB below the maximum of

co-polarization level. The AEPs in this measurement were slightly more directive

than the planar array measurements of AEPs. As in the case of planar array, the

radiation pattern of the faceted-cylindrical array can be generated using AEPs

(shown in Figure 5.9). The radiation pattern of array beam steering (θ = 20◦ and

φ = 40◦) can be seen in Figure C.4.
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Figure 5.9: CPAD-II Cylindrical Antenna Measurement - Radiation Patterns
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Chapter 6

Scalable Finite Array Antenna

Simulation and Validation

The element-by-element approach [111] and infinite periodic structure approach

[112] are the oldest methods that were used to analyze finite arrays. In element-

by-element method, mutual impedance or admittance at each couple of elements

is calculated. That mutual coupling information can be used to construct a matrix

equation. Element currents of each element can be computed for any excitation

by solving this matrix equation. In the 1960s, array pattern based on an electro-

magnetic characterization of one element in the infinite array had been considered

an accurate analysis of any element in a large array. Therefore in infinite periodic

structure approach, one element with periodic boundary was analyzed and calcu-

lated the finite array pattern by multiplying it with array factor. The study of

infinite arrays was done by researchers based on a model theory by Farrell, Kuhn,

Knittel, Hessel, and Oliner [113, 114]. But today, this kind of analysis will be ac-

ceptable at the level of preliminary designing. The real world arrays have a finite

number of elements, and the final designing should be based on the proper analysis

and simulation of a finite array. Numerous research works have been published on

the investigations of computationally efficient methods for making a reasonably

accurate prediction to an electromagnetic characterization of the massive finite
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phased array antennas.

The Fourier windowing method [115] was used by Ishimaru, Coe, Miller, Green,

Skrivervik, Mosig, Roscoe, and Perrott in their investigation of finite periodic

structures [116] and finite phased array antennas [117, 118]. This method is based

on Poissons sum formula (or Greens function) and spatial Fourier transform. This

method can include reasonable effects of a finite array such as edge current. In

addition to that, the analyzing issues of non-uniform array element spacing can

be addressed using this method. The amount of required computational power

is independent of the size of the array being analyzed using this method. The

assumption of infinite periodic structure approach is still used in this method.

Hansen investigated finite array scan impedance using Gibbsian Model [119, 120].

In this method, standing waves which were similar to Gibbsian oscillations were

used to approximate the oscillations in scan impedance of each radiating element of

a finite array antenna. Tomasic [121] analyzed a finite array using the approximate

solution to a Fredholm integral equation, which was derived by assuming global

array concept. The approximation solution to this single Fredholm-type integral

equation of the second kind was generated using equivalent infinite array scattering

parameters and mutual admittances. The radiation patterns of a finite array were

obtained using a method based on Floquet Modal by Bhattacharyya [122, 123].

The electric and magnetic fields on the surface of all the apertures of array elements

were produced by Floquet Modal when an element of the array was excited. Then

Surface Equivalence Theorem can be used to compute the AEP of an element

excited. Array Decomposition Method (ADM) [124, 125] which is based on the

Fast Multipole Method (FMM) [126] were proposed to analyze finite array antenna

by using Toeplitz property of the Green’s function. The multipole expansion can

reduce the storage required in the simulation. Mutual impedance between array

elements was analyzed using Floquet Model [127] for a finite array with arbitrary

amplitude and phase distributions.

This is the summarization of well-known algorithms and procedures proposed in
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the literature. FDTD method with PBC can be used to model a good simulator

to simulate AEP and S-parameters of an infinite array. Then the well known

traditional methods for pattern prediction for small array (element-by-element

method) and large array (infinite array method) can be simulated to obtain the

preliminary solution. Very large array analysis, which uses only infinite array

methods will neglect the edge currents. Then low side-lobe designing will not be

done using only FDTD method with PBC. In this chapter, two novel approaches

are presented to compute the far-field power pattern of an arbitrarily large array

with the consumption of same computational resources. Both schemes are based

on the FDTD method and PBC. Both methods are validated with measurement

and simulation (HFSS).

6.1 Goals and Requirements

According to the literature review of finite array analysis, the method developed

so far is based on element-by-element approach and infinite periodic structure

approach. The infinite periodic structure approach has many variances by using

techniques to predict the electromagnetic characterization of edge elements using

an infinite array element. These are approximated analyzing methods, which may

not necessarily be the same as the actual behaviors of the edge elements. The goal

in the proposed new model is to model the more accurate electromagnetic effect

of edge elements on the finite array. The model should be able to simulate on

reasonably high performing computers.

6.2 The Basic Theory and Technique

In addition to the FDTD method and periodic boundary condition, the new finite

array method employed few other theories and models. The maximum reactive

near-field region of a very large array is discussed as it will determine the computer
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memory storage and processing time. Surface Equivalence Theorem is used to

convert the problem into a simple equivalent problem, then transformation of near-

field to far-field will be carried out to calculate the far-field electric and magnetic

field components.

6.2.1 Far-Field, Radiating Near-Field, and Reactive

Near-Field Regions

All the electromagnetic problems discussed so far in this dissertation are radiation

of electromagnetic waves at far-field. The far-field can be roughly defined as a very

large distance relative to λ
2π

[128]. More appropriate discrimination of far-field,

radiating near-field and reactive near-field regions for large arrays are defined with

simple inequalities as given below. These inequalities are valid for antennas with

aperture (D) larger than 2.5λ [128–130].

Reactive Near-Field ⇒ 0 < r < 0.62

√
D3

λ
(6.1a)

Radiating Near-Field ⇒ 0.62

√
D3

λ
< r <

2D2

λ
(6.1b)

Far-Field ⇒ 2D2

λ
< r <∞ (6.1c)

6.2.2 Surface Equivalence Theorem

Surface Equivalence Theorem [131] or a more rigorous form Huygenss principle

[132] is the fundamental physical theory of the near-field to far-field transforma-

tion, which will be discussed in section 6.2.3. The fundamental idea of this theorem

is to replace the complex geometrical details and excitations in a closed surface

with fictitious electric and magnetic current elements on the closed surface. These

surface current densities can be used to determine the far-field component. So this

method will reduce the complexity of the original problem and equivalent problem

saves memory and CPU time substantially. There are four forms of equivalent

114



Figure 6.1: An imaginary surface enclosing the patch antennas

problem exist depending on the nature of the current densities on the surface and

the field inside the close surface [129]. In near-field to far-field transformation,

electric and magnetic current densities are calculated and electric and magnetic

field components inside the close surface are zero. Surface Equivalence Theorem

with this particulate equivalent problem called Love’s theorem. The surface cur-

rent components on each surface of the imaginary box can be calculated as in

equation 6.2 as presented in [53].

Top ⇒ Jxx̂+ Jyŷ = −Hyx̂+Hxŷ and Mxx̂+Myŷ = Eyx̂− Exŷ (6.2a)

Bottem ⇒ Jxx̂+ Jyŷ = Hyx̂−Hxŷ and Mxx̂+Myŷ = −Eyx̂+ Exŷ (6.2b)

Left ⇒ Jxx̂+ Jz ẑ = −Hzx̂+Hxẑ and Mxx̂+Mz ẑ = Ezx̂− Exẑ (6.2c)

Right ⇒ Jxx̂+ Jz ẑ = Hzx̂−Hxẑ and Mxx̂+Mz ẑ = −Ezx̂+ Exẑ (6.2d)

Front ⇒ Jyŷ + Jz ẑ = −Hzŷ +Hyẑ and Myŷ +Mz ẑ = Ezŷ − Eyẑ (6.2e)

Back ⇒ Jyŷ + Jz ẑ = Hzŷ −Hyẑ and Myŷ +Mz ẑ = −Ezŷ + Eyẑ (6.2f)

Jx, Jy, and Jz are the electric current densities and Mx, My, and Mz are the

magnetic current densities on the surface top, bottom, left, right, front, and back of
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the imaginary surfaces in figure 6.1. The current components, which are tangent to

the surface exist. Those current densities converted from time domain to frequency

domain in the time-marching-loop using discrete Fourier transform.

6.2.3 Frequency Domain Near-Field to Far-Field

Transformation

The directivity equations if an antenna in far-field region can be found given with

auxiliary functions Nθ, Nφ, Lθ, Lφ as in equation 6.3. More exclusive discrimina-

tion of the far-field theories and radiation equations for Eθ, Eφ, Hθ, and Hφ can

be found in [129]. These are the equations used in FDTD computation to do the

near-field to far-field transformations [80, 133, 134].

Dθ =

(
k2

8πη0Prad

)
|Lφ +Nθη0|2 (6.3a)

Dφ =

(
k2

8πη0Prad

)
|Lφ −Nθη0|2 (6.3b)

The auxiliary functions and total radiated power can be calculated using equation

6.4 and 6.5 for the problem-spaces with rectangular and cylindrical grids respec-

tively. ψ is the angle between the position vector of far-field observation point and

the position vector of the location of considered current density component (~r′).

~r′ can be written as x′x̂+ x′ŷ + x′ẑ in the rectangular grid and ρ′ρ̂+ φ′φ̂+ z′ẑ in

the cylindrical grid.

Near-Field to Far-Field Transformation in Rectangular Grid :

Total radiated power ⇒ Prad =
1

2
<

(∑
S

| ~J∗ × ~M |

)
(6.4a)

Where : ~J = Jx~x+ Jy~y + Jz~z

and ~M = Mx~x+My~y +Mz~z
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Nθ =
∑
S

(Jx cos θ cosφ+ Jy cos θ sinφ− Jz sin θ) e−jk|
~r′| cosψ (6.4b)

Nφ =
∑
S

(−Jx sinφ+ Jy cosφ) e−jk|
~r′| cosψ (6.4c)

Lθ =
∑
S

(Mx cos θ cosφ+My cos θ sinφ−Mz sin θ) e−jk|
~r′| cosψ (6.4d)

Lφ =
∑
S

(−Mx sinφ+My cosφ) e−jk|
~r′| cosψ (6.4e)

Near-Field to Far-Field Transformation in Cylindrical Grid :

Total radiated power ⇒ Prad =
1

2
<

(∑
S

| ~J∗ × ~M |

)
(6.5a)

Where : ~J = Jρ~ρ+ Jφ~φ+ Jz~z

and ~M = Mρ~ρ+Mφ
~φ+Mz~z

Nθ =
∑
S

(Jρ cos θ cos(φ− φ′) + Jφ cos θ sin(φ− φ′)− Jz sin θ) e−jk|
~r′| cosψ (6.5b)

Nφ =
∑
S

(−Jρ sin(φ− φ′) + Jφ cos(φ− φ′)) e−jk|~r′| cosψ (6.5c)

Lθ =
∑
S

(Mρ cos θ cos(φ− φ′) +Mφ cos θ sin(φ− φ′)−Mz sin θ) e−jk|
~r′| cosψ

(6.5d)

Lφ =
∑
S

(−Mρ sin(φ− φ′) +Mφ cos(φ− φ′)) e−jk|~r′| cosψ (6.5e)

Near-field to far-field transformation for the nonorthogonal unstructured grid which

is presented in Section 3.3 can be derived using equations 6.4, 3.49d, 3.49e, 3.49f,

3.50d, 3.50e and 3.50f.

6.3 Large Finite Array Simulation

Inside the time-marching-loop, three main functionalities will be accomplished it-

eratively in each time steps. They are updating electric field, updating magnetic

field, updating field components from sources, and collecting data from probes
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There is a large probe enclosing the whole structure which is utilized as the imag-

inary near-field surface to collect all the electric and magnetic current information

in each time step. Then the current densities are originally collected in time

domain. But they were converted to frequency domain within the time-marching-

loop. In these proposed methods, this near-field current density data of various

patch array and antenna element are merged into the current densities of arbi-

trarily large array antennas. Then the near-field to far-field transformation will

be carried out on this constructed current density data.

6.3.1 First Proposed Scheme to Simulate Large Finite

Array Antennas

6.3.1.1 Algorithm

In this scheme, finite-by-finite, infinite-by-finite, finite-by-infinite, and infinite-

by-infinite arrays are simulated in separate time matching loops. The radiating

element of all four arrays can have any design. In this section, we use simple patch

antenna’s specification (Figure 5.7). Even though the finite sizes of the particulate

arrays can have any number, the simulation presented is based on 20-by-infinity,

infinity-by-20, and 8-by-8 arrays. The arrays annotated as (a), (b), (c), and (d) of

Figure 6.3 are illustrating for arrays being simulated (infinite-by-infinite array with

periodicities in both x̂ and ŷ directions, 20-by-infinite array with the periodicity

in ŷ direction, infinite-by-20 array with the periodicity in x̂ direction, and finite 4-

by-4 array respectively). These four simulations can be done simultaneously using

four cores of a computer as they are simulated in separate time-marching-loops.

The current densities are collected at strategic locations in each of the simulation.

The current densities on the imaginary surfaces, above and below of the middle

elements of the large array are recorded from the imaginary surfaces on the top

and bottom (+ẑ and −ẑ) of infinite-by-infinite array simulations (a). The current

densities of top left, top right, bottom left, and bottom right corners of the large
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Figure 6.2: Abstract Functional Illustration of PASim for simulating finite
array using first scheme

array are recorded from corner 2-by-2 subdivided arrays of the 4-by-4 finite array.

In addition to the current densities on the imaginary surfaces in +ẑ and −ẑ di-

rection, current densities in the surfaces in +x̂, −x̂, +ŷ, and −ŷ will be recorded.

The current densities of top, bottom, left, and right edge elements are collected

using two elements at the infinite edges of semi-infinite arrays (first two and last

two elements of both arrays). Basically, the current distributions on the surfaces

next to the periodic boundaries are discarded, and the current distributions on

the surfaces next to the CPML may be used to construct the current densities of

a large array. All the current densities are taken in the frequency domain and the

conversion from time to frequency domain is performed in the time-marching-loop.
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Figure 6.3: Large finite phased array antenna - Scheme I

There will be discontinuities at the cut-off lines (black dashed lines) and periodic

boundaries (red lines). Interpolated element currents are facilitating a smooth

transition from periodic boundaries to cut-off lines. These current densities are

used to merge and combine the near-field samples (current density components) of

a large finite array. This frequency domain interpolated current densities (building

blocks) are utilized for the near-field to far-field transformation calculations. The

array annotated as (e) in Figure 6.3 shows the assembly of all the near-field cur-

rent densities in the frequency domain for a planar array. The elements indicated

with dashed lines represent surfaces with interpolated current densities using ad-

jacent elements, which ensure a smooth transition from one element to the next
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Figure 6.4: Large cylindrical phased array antenna - Scheme I

throughout the array. Subsequent to this assembly, the process of near-field to

far-field transformation is computed to simulate the far-field radiation pattern of

an arbitrarily large finite-by-finite array.

Figure 6.4 illustrates the proposed scheme for cylindrical array. The scheme is

much simpler than planar finite-by-finite array since the cylindrical array can be

considered as a semi-infinite array. The only issue, which has not been addressed

in this dissertation is that the boundary between excited and unexcited array

elements has not been correctly modeled in this scheme. Hence more work has to

be done to introduce a new model for current densities on the surfaces in +φ and

−φ directions. As mentioned previously faceted-cylindrical array can be modeled

for the infinite-by-infinite array only. Thereupon this scheme of the second scheme

discussed in section 6.3.2 can not be implemented for a faceted-cylindrical array.
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(a) Horizontal principal plane cut

(b) Vertical principal plane cut

Figure 6.5: Principal plane cuts of 8×8 array simulations and measurements.

6.3.1.2 Simulation

The first scheme can be used to simulate any finite planar array simulation with

an arbitrary number of elements. One of the benefits in using this algorithm

and the algorithm discussed in section 6.3.2 is the ability to store the current

information and reuse them in a new simulation of an array with same element

designing and a different number of elements. In this section, simulation results

of two arrays are presented with 64 and 1024 elements. The 8-by-8 array is the

same planar array measured in this research. In consequence, the compassion of

measurements, HFSS simulations, and PASim simulations are presented in this
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number of variables simulation time (min)
8-by-8 array ∼ 4.32× 108 453
32-by-32 array ∼ 4.38× 108 521

Table 6.1: Benchmark of the simulation with the first scheme

subsection. The figure 6.5(a) and 6.5(b) are the horizontal and vertical principal

plane cut of the 8x8 array. Both HFSS and PASim simulation of Co-polarization

are having an excellent agreement. Due to imperfect model in both HFSS and

PASim, the directivity of measurement is 1.2dB high than simulations. The cross-

polarization level has a larger disagreement between measurement and simulations.

The disagreement between HFSS and PASim simulations (15dB) can be minimized

using the correct grid for modeling the problem space.

The number of variables, that have been solved in both simulations are given in

Table 6.1. The number of variables is almost similar for both 8-by-8 array and

32-by-32 array. If the 8-by-8 array and 32-by-32 array simulations are not using

the proposed scheme, the number of variables will be 5.62 × 108 and 98.23 × 108

respectively. A substantial reduction of unknown variables can be achieved by

utilizing this scheme.

6.3.2 Second Proposed Scheme to Simulate Large Finite

Array Antennas

6.3.2.1 Algorithm

For the convenience, the elements are annotated according to the location of cur-

rent densities, which will be filled in the large array. Hence current densities of N

(North) element will be filled in the upper edge of the large array, current densi-

ties of NE (Northeast) will be filled in the upper-right corner of the large array,

and etc. Subsequently the nine elements are labeled as NH (North), SH (South),

WT (West), ET (East), NW (Northwest), NE (Northeast), SW (Southwest), SE

(Southeast), and IN (Inside). The sizes of NH, SH, ET, and WT are n-by-1,
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Figure 6.6: Abstract Functional Illustration of PASim for simulating finite
array using the second scheme

NE, NS, SE, and SW are n-by-n, and IN is an active element. The simulations

performed and presented in this dissertation are using n=2.

The NH element has CPML in +ẑ, −ẑ, and +ŷ directions, periodic boundary in

+x̂ and −x̂ directions, and so called X boundary in −ŷ direction. The X boundary

in −ŷ are updated using equations 6.14a and 6.14b. All the boundary information

of 9 arrays can be found in Table 6.2.

In the time-marching-loop, electric field component in IN element, which is the
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Figure 6.7: Large finite phased array antenna - Scheme II

independent element (no X boundaries) will be updated as the first priority task.

The second is updating electric field components of NH, SH, ET, and WT, which

have one X boundary. The relevant X boundaries are updated using equations

6.14a, 6.14b, 6.15a, 6.15b, 6.16a, 6.16b, 6.17a, and 6.17b. The final task is updat-

ing electric field components of NW, NE, SW, and SE. These arrays are having

two X boundaries, which are updated using equation 6.6a, 6.6b, 6.7a, 6.7b, 6.8a,

6.8b, 6.9a, 6.9b, 6.10a, 6.10b, 6.11a, 6.11b, 6.12a, 6.12b, 6.13a, 6.13b. The up-

dating process of magnetic fields and voltage sources, which are independent can

be performed in any order. The near-field current probes are also independent

processes.
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Figure 6.8: Large cylindrical phased array antenna - Scheme II

Element CPML surfaces PBC surfaces X boundary surfaces
NH +ẑ, −ẑ, and +ŷ +x̂ and −x̂ −ŷ
SH +ẑ, −ẑ, and −ŷ +x̂ and −x̂ +ŷ
ET +ẑ, −ẑ, and +x̂ +ŷ and −ŷ −x̂
WT +ẑ, −ẑ, and −x̂ +ŷ and −ŷ +x̂
NW +ẑ, −ẑ, −x̂, and +ŷ None +x̂ and −ŷ
NE +ẑ, −ẑ, +x̂, and +ŷ None −x̂ and −ŷ
SW +ẑ, −ẑ, −x̂, and −ŷ None +x̂ and +ŷ
SE +ẑ, −ẑ, +x̂, and −ŷ None −x̂ and +ŷ
IN +ẑ and −ẑ +x̂, +ŷ, None

−x̂, and −ŷ

Table 6.2: Boundary conditions of all the building-block arrays (Unit vectors
are perpendicular to the surfaces)

6.3.2.2 Updating X Boundary

Updating A Boundary :Electric field components in ŷ and ẑ direction at pur-

ple color A boundary of the Northwest element can be updated with the electric

field components in ŷ and ẑ direction at red color A boundary of the West element.

En+1
y (NNW

x + 1, iy, iz)|NW = En+1
y (1, iy, iz)|NH (6.6a)

En+1
z (NNW

x + 1, iy, iz)|NW = En+1
z (1, iy, iz)|NH (6.6b)
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Updating B Boundary : Electric field components in x̂ and ẑ direction at pur-

ple color B boundary of the Northwest element can be updated with the electric

field components in x̂ and ẑ direction at red color B boundary of the West element.

En+1
x (ix, 1, iz)|NW = En+1

x (ix, N
WT
y + 1, iz)|WT (6.7a)

En+1
z (ix, 1, iz)|NW = En+1

z (ix, N
WT
y + 1, iz)|WT (6.7b)

Updating C Boundary : Electric field components in x̂ and ẑ direction at pur-

ple color C boundary of the NE element can be updated with the electric field

components in x̂ and ẑ direction at red color C boundary of the ET element.

En+1
x (ix, 1, iz)|NE = En+1

x (ix, N
ET
y + 1, iz)|ET (6.8a)

En+1
z (ix, 1, iz)|NE = En+1

z (ix, N
ET
y + 1, iz)|ET (6.8b)

Updating D Boundary : Electric field components in ŷ and ẑ direction at pur-

ple color D boundary of the NE element can be updated with the electric field

components in ŷ and ẑ direction at red color D boundary of the NH element.

En+1
y (1, iy, iz)|NE = En+1

y (NNH
x + 1, iy, iz)|NH (6.9a)

En+1
z (1, iy, iz)|NE = En+1

z (NNH
x + 1, iy, iz)|NH (6.9b)

Updating E Boundary : Electric field components in x̂ and ẑ direction at pur-

ple color E boundary of the SW element can be updated with the electric field

components in x̂ and ẑ direction at red color E boundary of the WT element.

En+1
x (ix, N

SW
y + 1, iz)|SW = En+1

x (ix, 1, iz)|WT (6.10a)

En+1
z (ix, N

SW
y + 1, iz)|SW = En+1

z (ix, 1, iz)|WT (6.10b)
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Updating F Boundary : Electric field components in ŷ and ẑ direction at pur-

ple color F boundary of the SW element can be updated with the electric field

components in ŷ and ẑ direction at red color F boundary of the SH element.

En+1
y (NSW

x + 1, iy, iz)|SW = En+1
y (1, iy, iz)|SH (6.11a)

En+1
z (NSW

x + 1, iy, iz)|SW = En+1
z (1, iy, iz)|SH (6.11b)

Updating G Boundary : Electric field components in ŷ and ẑ direction at pur-

ple color G boundary of the SE element can be updated with the electric field

components in ŷ and ẑ direction at red color G boundary of the SH element.

En+1
y (1, iy, iz)|SE = En+1

y (NSH
x + 1, iy, iz)|SH (6.12a)

En+1
z (1, iy, iz)|SE = En+1

z (NSH
x + 1, iy, iz)|SH (6.12b)

Updating H Boundary : Electric field components in x̂ and ẑ direction at pur-

ple color H boundary of the SE element can be updated with the electric field

components in x̂ and ẑ direction at red color H boundary of the ET element.

En+1
x (ix, N

SE
y + 1, iz)|SE = En+1

x (ix, 1, iz)|ET (6.13a)

En+1
z (ix, N

SE
y + 1, iz)|SE = En+1

z (ix, 1, iz)|ET (6.13b)

Updating I Boundary : Electric field components in x̂ and ẑ direction at pur-

ple color I boundary of the NH element can be updated with the electric field

components in x̂ and ẑ direction at red color I boundary of the IN element.

En+1
x (ix, 1, iz)|NH = En+1

x (ix, N
IN
y + 1, iz)|IN (6.14a)

En+1
z (ix, 1, iz)|NH = En+1

z (ix, N
IN
y + 1, iz)|IN (6.14b)
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Updating J Boundary : Electric field components in x̂ and ẑ direction at pur-

ple color J boundary of the SH element can be updated with the electric field

components in x̂ and ẑ direction at red color J boundary of the IN element.

En+1
x (ix, N

SH
y + 1, iz)|SH = En+1

x (ix, 1, iz)|IN (6.15a)

En+1
z (ix, N

SH
y + 1, iz)|SH = En+1

z (ix, 1, iz)|IN (6.15b)

Updating K Boundary : Electric field components in ŷ and ẑ direction at pur-

ple color K boundary of the WT element can be updated with the electric field

components in x̂ and ẑ direction at red color A boundary of the IN element.

En+1
y (NWT

x + 1, iy, iz)|WT = En+1
y (1, iy, iz)|IN (6.16a)

En+1
z (NWT

x + 1, iy, iz)|WT = En+1
z (1, iy, iz)|IN (6.16b)

Updating L Boundary : Electric field components in ŷ and ẑ direction at pur-

ple color L boundary of the ET element can be updated with the electric field

components in ŷ and ẑ direction at red color L boundary of the IN element.

En+1
y (1, iy, iz)|ET = En+1

y (N IN
x + 1, iy, iz)|IN (6.17a)

En+1
z (1, iy, iz)|ET = En+1

z (N IN
x + 1, iy, iz)|IN (6.17b)

6.3.2.3 Simulation

The second scheme shares the same capability of simulating any finite planar

array with an arbitrary number of elements. Array with 64 elements and 1024

elements will be simulated using the scheme introduced in this section. As in

the subsection 6.3.1.2, the compassion of measurements, HFSS simulations, and

PASim simulations are plotted for 64 element array. The figure 6.9(a) and 6.9(b)
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(a) Horizontal principal plane cut

(b) Vertical principal plane cut

Figure 6.9: Principal plane cuts of 8×8 array simulations and measurements.

number of variables simulation time (min)
8-by-8 array ∼ 1.96× 108 242
32-by-32 array ∼ 2.01× 108 304

Table 6.3: Benchmark of the simulation with the Second scheme

are the horizontal and vertical principal plane cut of the 64-element array. Co-

polarizations produced from both first and second methods are almost the same.

In average 0.02dB are reduced between co-polarizations from the simulations of

first and second methods. The maximum disagreement between cross-polarization

levels from HFSS and PASim simulations is 10dB.

The number of unknown variables been solved and elapsed for completing both
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(a) Horizontal principal plane cut

(b) Vertical principal plane cut

Figure 6.10: Principal plane cut of 32 × 32 array simulation using PASim
program.

simulations is presented in Table 6.3. Although the number of variables is almost

same for both 64-element array and 1024-element array, there is a huge deduction

in both unknown variables to solve and elapsed time to complete simulation. The

64-element array and 1024-element array simulations using the second scheme

exhibit reduction of the number of unknown variables significantly (so elapsed

time). The method is more elegant than the first method since it simulates the

minimum number of variables and still manages to produce improved simulation

results.

The Figure 6.10 presents the compassion of 32×32 array antennas simulation by
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both proposed schemes. The co-polarization patterns are having very good agree-

ment and cross-polarization prediction from the second scheme is higher than the

prediction from the first scheme.

Note: The reason for considering only two elements at the edges and corners in

both schemes can be explained using the simulations of AEP of 17-by-infinity array

as shown in Figure 6.11. The co-polarization and cross-polarization patterns of

Element (1) and Element (2) are drastically different. But patterns of Element

(3),Element (4), and Element (5) are slightly different. It is not required to limit

the number of element to be two at the edges and corners. One can use high

number of elements and gain nearly the same results after huge consumption of

computational resources for the simulation.

Figure 6.11: Active element pattern of 17-By-Infinite array simulated by
PASim
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Chapter 7

Conclusions and Future Work

7.1 Conclusions of The Dissertation

This research has been involved with both measurements and simulation of phased

array antennas. The measurements of CPAD-I were taken in the old far-field cham-

ber and the measurements of CPAD-II were taken in the new near-field chamber.

The nine achievements of this research are listed below:

1. Derivation of the FDTD equations for anisotropic media in cylindrical coor-

dinate system (Section 3.2.1).

2. Adaptation of constant horizontal wavenumber approach in periodic bound-

aries of φ̂ and ẑ in cylindrical coordinate system (Section 3.2.3).

3. Derivation of the FDTD equations for isotropic media in nonorthogonal un-

structured coordinate system (Section 3.3.1).

4. Adaptation of constant horizontal wavenumber approach in periodic bound-

aries of β̂ and γ̂ in nonorthogonal unstructured coordinate system (Section

3.3.3).
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5. Successful implementation of PBC FDTD in rectangular, cylindrical, and

nonorthogonal unstructured grids for simulating active elements of planar,

cylindrical and faceted-cylindrical array antennas (Section 3.4).

6. Successful implementation of a simulation model (scheme 1) for radiation

pattern prediction of large finite array based on finite, semi-finite, and infinite

arrays (Section 6.3.1).

7. Successful implementation of a simulation model (scheme 2) for radiation

pattern prediction of large finite array based on infinite array and small

chunk of arrays with so called X-Boundary (Section 6.3.2).

8. Comparison of simulated data with measurements taken from configurable

array systems (CPAR)(Section 6.3.1 and Section 6.3.2).

9. Integration of genetic algorithm with the PASim program to optimized the

array antenna elements.

All the source code of PASim program can be found on GitHub (https://github.

com/sudanthaperera/PASim.git).

7.2 Proposed Further Improvements of PASim

The PASim program developed in this work is in the prototype stage and can be

further improved to become an open source software supported by a community

of developers. Different from other existing FDTD tools, the simulator is more

specifically for phased array antenna designing, which will be more useful in very

demanding future applications. Four specific areas of improvements for PASim

are further described in the following sections.
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7.2.1 Parallel Computing Capability

Full parallel computing capability can be enabled in future PASim program in

three important steps. The first step is switching from Java to C++ implemen-

tations. The second step is using both CPU and GPU. The program will be op-

timized for hardware resource usage after the accomplishment of the second step.

If the PASim should be targeted to run on a cluster of computers, the third step

must be implemented, which is enabling the functionality of distributed memory

usage.

7.2.1.1 PASim in C++ Programming Language

The PASim was originally written in C programming language. The GNU GCC is

used to compile the C code written in ANCI C99, and GNU Linux system was the

targeted system to run the compiled executable code. Debugging the code after

introducing a new feature or functionality was time-consuming. Then the program

was rewritten in Java programming language (SE8). Although that was 3 times

slower than the program written in C and JVM is a memory hog, the debugging

and developing time was shorter. Then Java was used as the choice of prototyping

programming language. Since most of the scientific computing libraries and par-

allel computing libraries are written in C++ programming language, and most of

the professional scientific programmers in the field of computational electromag-

netic prefer to use C++, the choice of the language will have to be switched from

Java to C++. Additionally, C++ has operator overloading, complex arithmetic,

tiny objects [135] and many other features that can create layers of abstractions

and allow the writing of codes in different programming styles. An even more

important benefit will appear in introducing the parallel computing capabilities in

new PASim versions.
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7.2.1.2 Utilization of Graphics Processing Units Acceleration

Even though central processing unit (CPU) is the proceeding unit used tradi-

tionally for many computational tasks, other hardware acceleration units such as

graphics processing units (GUPs) and field programmable gate arrays (FPGAs) are

increasingly used in the field of scientific computing. Since special-purpose FPGA

hardware acceleration will need more attention on hardware designing and imple-

mentation, GPU is more suitable for PASim targeted to run on mass-produced

hardware. GPUs are built with many processing units with low computational

speed and main memories. On the other hand, memory bandwidth and memory

widths are larger in most of the excellent GPUs available today. GPUs are also

more optimized for parallel or stream processing with large memory bandwidth.

There are few options available to use as the framework for CPU and GPU pro-

cessing. The Open Computing Language (OpenCL) is the option with OpenCL

specification license. ATI Close-To-Metal (CTM) is an another specialized lan-

guage for GPU programming. Brook programming language is an extension of

ANSI C developed by Stanford University Graphics Lab. Unlike other GPU pro-

gramming frameworks, Brook is not vendor-specific. Nvidia CUDA C is a freeware

(proprietary), which is more popular in GPU programming. CUDA C is essentially

C programming language with a few extensions. Parallel computing with CUDA

C programming is easier than the other options. CUDA C will be a possible option

for building fast FDTD co-processor using GPU.

7.2.1.3 Enabling to Run on Systems with Shared and Distributed

Memory

Message Passing Interface (MPI) can be considered to utilize in the future de-

velopment of this project, if PASim is aiming to run on a cluster or distributed

system where the distributed memory is available. MPI will provide good porta-

bility and efficiency to the PASim program. There are many incarnations of MPI
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[136]. Open Multi-Processing (OpenMP) is another option that can be used in

small scientific computing programs running on shared-memory machines. The

parallelization of PASim program can be more effective using a combination of

MPI and OpenMP.

7.2.2 Introducing Advanced Algorithm

7.2.2.1 Subgridding Technique

The method to make the grid in this work is good for evaluating the new al-

gorithm introduced in Chapter 6 and benchmark problems. Real world phased

array antennas have more complicated geometrical details, such as feed port and

manufacturing imperfections. Even though those minor geometrical details might

not significantly affect the simulation, implementing a space lattices conform to

the boundary of complicated structures will give more accurate results. The rect-

angular, cylindrical, nonorthogonal, unstructured, nonuniform, locally conformal

curvilinear, and irregular grids have to be used in the antenna elements of some

proposed phased array systems. Therefore, a more sophisticated algorithm will

need to be implemented for making a better simulation program for designing

phased array with an arbitrary geometry of radiating elements.

7.2.2.2 An Adaptive Stopping Criterion

Current PASim will run for a given time specified by the number of steps or

converge to a given value of electric field or magnetic field. These two may not be

the only options available and are definitely not the accurate and efficient way to

terminate the time-marching-loop. The vector fitting algorithm [137, 138] can be

implemented in time-marching-loop to terminate the loop properly. This method

had been very accurate and robust in applications.
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7.2.3 User Friendly Interface

The PASim developed in this work has no user interface. If there is a new model

of antenna, which needs to be simulated, the source code has to be changed. An

implementation of proper graphical user interface (GUI) or module for high-level

scripting language are valid ways to avoid changing and compiling source code

before every time the simulation has to be run.

7.2.4 Build a Community of Developers

After achieving above objectives, this program can be published or released under

proper OpenSource or Free software license. Accordingly, a community of devel-

opers can be created for this open source FDTD, electromagnetic solver. There

will be mutual benefits for each and every developer, including original developers,

by making it an open source project. Since the software is being peer-reviewed by

the community, the reliability of the software will be increased gradually without

much burden to its original developers.
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Appendix A

FDTD Updating Equations for

an-isotropic media in Rectangular

Coordinate System

All the FDTD equation in rectangular coordinate system are in the same format as

them in cylindrical coordinate system. The electric (magnetic) field component on

the left hand side is the future value to be predicted from the past value of electric

(magnetic) field component, past electric (magnetic) current density component,

and past magnetic (electric) field components which are perpendicular to electric

(magnetic) field and surrounded by electric (magnetic) field.

En+1
x (ix, iy, iz) can be computed using equation A.1.

En+1
x (ix, iy, iz) = Cexe(ix, iy, iz)× En

x (ix, iy, iz)

+ Cexhz(ix, iy, iz)×
(
H
n+ 1

2
z (ix, iy, iz)−H

n+ 1
2

z (ix, iy − 1, iz)
)

+ Cexhy(ix, iy, iz)×
(
H
n+ 1

2
y (ix, iy, iz)−H

n+ 1
2

y (ix, iy, iz − 1)
)

+ Cexj(ix, iy, iz)× J
n+ 1

2
x (ix, iy, iz)

(A.1)

The updating coefficients Cexe(ix, iy, iz), Cexhz(ix, iy, iz), Cexhy(ix, iy, iz), and

Cexj(ix, iy, iz) of the equation (A.1) can be computed as in equations (A.2a),
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(A.2b), (A.2c), and (A.2d).

Cexe(ix, iy, iz) =

(
2εx(ix, iy, iz)− σex(ix, iy, iz)∆t

2εx(ix, iy, iz) + σex(ix, iy, iz)∆t

)
(A.2a)

Cexhz(ix, iy, iz) =

(
2∆t

∆y (2εx(ix, iy, iz) + σex(ix, iy, iz)∆t)

)
(A.2b)

Cexhy(ix, iy, iz) =

(
−2∆t

∆z (2εx(ix, iy, iz) + σex(ix, iy, iz)∆t)

)
(A.2c)

Cexj(ix, iy, iz) =

(
−2∆t

2εx(ix, iy, iz) + σex(ix, iy, iz)∆t

)
(A.2d)

En+1
y (ix, iy, iz) can be computed using equation A.3.

En+1
y (ix, iy, iz) = Ceye(ix, iy, iz)× En

y (ix, iy, iz)

+ Ceyhx(ix, iy, iz)×
(
H
n+ 1

2
x (ix, iy, iz)−H

n+ 1
2

x (ix, iy, iz − 1)
)

− Ceyhz(ix, iy, iz)×
(
H
n+ 1

2
z (ix, iy, iz)−H

n+ 1
2

z (ix − 1, iy, iz)
)

+ Ceyj(ix, iy, iz)× J
n+ 1

2
y (ix, iy, iz)

(A.3)

The updating coefficients Ceye(ix, iy, iz), Ceyhx(ix, iy, iz), and Ceyhz(ix, iy, iz) of the

equation (A.3) can be computed as in equations (A.4a), (A.4b), (A.4c), and (A.4d).

Ceye(ix, iy, iz) =

(
2εy(ix, iy, iz)− σey(ix, iy, iz)∆t

2εy(ix, iy, iz) + σey(ix, iy, iz)∆t

)
(A.4a)

Ceyhx(ix, iy, iz) =

(
2∆t

∆z (2εy(ix, iy, iz) + σey(ix, iy, iz)∆t)

)
(A.4b)

Ceyhz(ix, iy, iz) =

(
−2∆t

∆x (2εy(ix, iy, iz) + σey(ix, iy, iz)∆t)

)
(A.4c)

Ceyj(ix, iy, iz) =

(
−2∆t

2εy(ix, iy, iz) + σey(ix, iy, iz)∆t

)
(A.4d)
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En+1
z (ix, iy, iz) can be computed using equation A.5.

En+1
z (ix, iy, iz) = Ceze(ix, iy, iz)× En

z (ix, iy, iz)

+ Cezhy(ix, iy, iz)×
(
H
n+ 1

2
y (ix, iy, iz)−H

n+ 1
2

y (ix − 1, iy, iz)
)

− Cezhx(ix, iy, iz)×
(
H
n+ 1

2
x (ix, iy, iz)−H

n+ 1
2

x (ix, iy − 1, iz)
)

+ Cezj(ix, iy, iz)× J
n+ 1

2
z (ix, iy, iz)

(A.5)

The updating coefficients Ceze(ix, iy, iz), Cezhy(ix, iy, iz), Cezhx(ix, iy, iz), and

Cezj(ix, iy, iz) of the equation (A.5) can be computed as in equations (A.6a),

(A.6b), (A.6c), and (A.6d).

Ceze(ix, iy, iz) =

(
2εz(ix, iy, iz)− σez(ix, iy, iz)∆t

2εz(ix, iy, iz) + σez(ix, iy, iz)∆t

)
(A.6a)

Cezhy(ix, iy, iz) =

(
2∆t

∆z (2εz(ix, iy, iz) + σez(ix, iy, iz)∆t)

)
(A.6b)

Cezhx(ix, iy, iz) =

(
−2∆t

∆y (2εz(ix, iy, iz) + σez(ix, iy, iz)∆t)

)
(A.6c)

Cezj(ix, iy, iz) =

(
−2∆t

2εz(ix, iy, iz) + σez(ix, iy, iz)∆t

)
(A.6d)

H
n+ 1

2
x (ix, iy, iz) can be computed using equation A.7.

H
n+ 1

2
x (ix, iy, iz) = Chxh(ix, iy, iz)×H

n− 1
2

x (ix, iy, iz)

+ Chxez(ix, iy, iz)× (En
z (ix, iy + 1, iz)− En

z (ix, iy, iz))

+ Chxey(ix, iy, iz)×
(
En
y (ix, iy, iz + 1)− En

y (ix, iy, iz)
)

+ Chxm(ix, iy, iz)×Mn
x (ix, iy, iz)

(A.7)

The updating coefficients Ceye(ix, iy, iz), Ceyhx(ix, iy, iz), Ceyhz(ix, iy, iz) and

Chxm(ix, iy, iz) of the equation (A.7) can be computed as in equations (A.8a),
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(A.8b), (A.8c), and (A.8d).

Chxh(ix, iy, iz) =

(
2µx(ix, iy, iz)− σmx(ix, iy, iz)∆t

2µx(ix, iy, iz) + σmx(ix, iy, iz)∆t

)
(A.8a)

Chxez(ix, iy, iz) =

(
−2∆t

∆y (2µx(ix, iy, iz) + σmx(ix, iy, iz)∆t)

)
(A.8b)

Chxey(ix, iy, iz) =

(
2∆t

∆z (2µx(ix, iy, iz) + σmx(ix, iy, iz)∆t)

)
(A.8c)

Chxm(ix, iy, iz) =

(
−2∆t

2µx(ix, iy, iz) + σmx(ix, iy, iz)∆t

)
(A.8d)

H
n+ 1

2
y (ix, iy, iz) can be computed using equation A.9.

H
n+ 1

2
y (ix, iy, iz) = Chyh(ix, iy, iz)×H

n− 1
2

y (ix, iy, iz)

+ Chyez(ix, iy, iz)× (En
z (ix + 1, iy, iz)− En

z (ix, iy, iz))

+ Chyex(ix, iy, iz)× (En
x (ix, iy, iz + 1)− En

x (ix, iy, iz))

+ Chym(ix, iy, iz)×Mn
y (ix, iy, iz)

(A.9)

The updating coefficients Ceye(ix, iy, iz), Ceyhx(ix, iy, iz), Ceyhz(ix, iy, iz), and

Chym(ix, iy, iz) of the equation (A.9) can be computed as in equations (3.28a),

(3.28b), (A.10c), and (3.28d).

Chyh(ix, iy, iz) =

(
2µy(ix, iy, iz)− σmy(ix, iy, iz)∆t

2µy(ix, iy, iz) + σmy(ix, iy, iz)∆t

)
(A.10a)

Chyez(ix, iy, iz) =

(
2∆t

∆x (2µy(ix, iy, iz) + σmy(ix, iy, iz)∆t)

)
(A.10b)

Chyex(ix, iy, iz) =

(
−2∆t

∆z (2µy(ix, iy, iz) + σmy(ix, iy, iz)∆t)

)
(A.10c)

Chym(ix, iy, iz) =

(
−2∆t

2µy(ix, iy, iz) + σmy(ix, iy, iz)∆t

)
(A.10d)
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H
n+ 1

2
z (ix, iy, iz) can be computed using equation A.11.

H
n+ 1

2
z (ix, iy, iz) = Chzh(ix, iy, iz)×H

n− 1
2

z (ix, iy, iz)

+ Chzex(ix, iy, iz)× (En
x (ix, iy + 1, iz)− En

x (ix, iy, iz))

+ Chzey(ix, iy, iz)×
(
En
y (ix + 1, iy, iz)− En

y (ix, iy, iz)
)

+ Chzm(ix, iy, iz)×Mn
z (ix, iy, iz)

(A.11)

The updating coefficients Chzh(ix, iy, iz), Chzex(ix, iy, iz), Chzey(ix, iy, iz), and

Chzm(ix, iy, iz) of the equation (A.11) can be computed as in equations (A.12a),

(A.12b), (A.12c), and (A.12d).

Chzh(ix, iy, iz) =

(
2µz(ix, iy, iz)− σmz(ix, iy, iz)∆t

2µz(ix, iy, iz) + σmz(ix, iy, iz)∆t

)
(A.12a)

Chzex(ix, iy, iz) =

(
2∆t

∆y (2µz(ix, iy, iz) + σmz(ix, iy, iz)∆t)

)
(A.12b)

Chzey(ix, iy, iz) =

(
−2∆t

∆x (2µz(ix, iy, iz) + σmz(ix, iy, iz)∆t)

)
(A.12c)

Chzm(ix, iy, iz) =

(
−2∆t

2µz(ix, iy, iz) + σmz(ix, iy, iz)∆t

)
(A.12d)
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Appendix B

Mathematical Equations

B.1 Vector Calculus

The curl of a vector in cylindrical coordinate system:

∇× ~A =

∣∣∣∣∣∣∣∣∣∣
r̂ 1
r

φ̂ ẑ 1
r

∂
∂r

∂
∂φ

∂
∂z

Ar rAφ Az

∣∣∣∣∣∣∣∣∣∣
=

(
1

r

∂Az
∂φ
− ∂Aφ

∂z

)
r̂ +

(
∂Ar
∂z
− ∂Az

∂r

)
φ̂+

1

r

(
∂rAφ
∂r
− ∂Ar

∂φ

)
ẑ

(B.1)

B.2 The Finite Difference Equations

first order accurate finite difference equations are used to discretized electric and

magnetic field derivations with respect to space and time.

B.2.1 The finite differences equations for the time and

space derivation of electric field components

Equations B.2, B.3, B.4 and B.5 are the finite difference equations for evaluat-

ing the approximation to partial differentiations of En
r (r, φ, z) with respect to the
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spatial and temporal variables. Similar equation can be given for partial differ-

entiations of En
φ(r, φ, z) and En

z (r, φ, z) with respect to the spatial and temporal

variables. Forward difference formulas are used for derivations of electric field

components.

∂En
r (r, φ, z)

∂r
=
En
r (r + ∆r, φ, z)− En

r (r, φ, z)

∆r

(B.2)

∂En
r (r, φ, z)

∂φ
=
En
r (r, φ+ ∆φ, z)− En

r (r, φ, z)

∆φ

(B.3)

∂En
r (r, φ, z)

∂z
=
En
r (r, φ, z + ∆z)− En

r (r, φ, z)

∆z

(B.4)

∂En
r (r, φ, z)

∂t
=
En+1
φ (r, φ, z)− En

φ(r, φ, z)

∆t

(B.5)

B.2.2 The finite differences equations for the time and

space derivation of magnetic field components

Equations B.6, B.7, B.8 and B.9 are the finite difference equations for for eval-

uating the approximation to partial differentiations of H
n+ 1

2
r (r, φ, z) with respect

to the spatial and temporal variables. Similar equation can be derived for partial

differentiations of H
n+ 1

2
φ (r, φ, z) and H

n+ 1
2

z (r, φ, z) with respect to the spatial and

temporal variables. Backward difference formulas are used for the space deriva-

tions of magnetic field components and central difference formulas are used for the

time derivations of magnetic field components.

∂H
n+ 1

2
r (r, φ, z)

∂r
=
H
n+ 1

2
r (r, φ, z)−Hn+ 1

2
r (r −∆r, φ, z)

∆r

(B.6)

∂H
n+ 1

2
r (r, φ, z)

∂φ
=
H
n+ 1

2
r (r, φ, z)−Hn+ 1

2
r (r, φ−∆φ, z)

∆φ

(B.7)
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∂H
n+ 1

2
r (r, φ, z)

∂z
=
H
n+ 1

2
r (r, φ, z)−Hn+ 1

2
r (r, φ, z −∆z)

∆z

(B.8)

∂H
n+ 1

2
r (r, φ, z)

∂t
=
H
n+ 1

2
r (r, φ, z)−Hn− 1

2
r (r, φ, z)

∆t

(B.9)

B.2.3 Average of the field components

This averaging equation is useful to express the field components at the time n+ 1
2

in field components at the time n and n+ 1.

E
n+ 1

2
φ (r, φ, z) =

En+1
φ (r, φ, z) + En

φ(r, φ, z)

2
(B.10)
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Appendix C

Supplementary Plots

(a) Element at (4,1) (b) Element at (4,2) (c) Element at (4,3) (d) Element at (4,4)

Figure C.1: Measured AEP of (5,1) and (5,5) element in the 8×8 Cylindrical
Phased array antenna - co-polar (top) and cross-polar (bottom).
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(a) Element at (4,1) (b) Element at (4,2)

(c) Element at (4,3) (d) Element at (4,5)

Figure C.2: Measured AEP of (5,1) and (5,5) element in the 8×8 Cylindrical
Phased array antenna - co-polar (top) and cross-polar (bottom).
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Figure C.3: CPAD-II Planar Antenna Measurement - Radiation Patterns
With θ = 20◦ and φ = 40◦ Beam Steering
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Figure C.4: CPAD-II Cylindrical Antenna Measurement - Radiation Patterns
With θ = 20◦ and φ = 40◦ Beam Steering

163



(a) Azimuth Principal Cut (b) Elevation Principal Cut

Figure C.5: Azimuth and Elevation Principal Cut of the patch antenna with
slots (HFSS simulation data and Measurements)

164


	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Phased Array Antennas and Applications in Radar and Communication Systems
	1.1.1 History
	1.1.2 Applications
	1.1.3 Ongoing Research in Phased Array Antennas

	1.2 Various Types of Phased Array Antennas and Manifolds
	1.3 Importance of Antenna Modeling for MPAR
	1.4 The Approach Used in the Work 
	1.5 Dissertation Outline and Objectives

	2 Overview of EM Simulation
	2.1 Solving Maxwell's Equations in Time & Frequency Domains
	2.1.1 The Finite Difference Method
	2.1.1.1 The Basic Idea of The Finite Difference Method
	2.1.1.2 The FDTD Algorithm in 1D problem

	2.1.2 The Finite Element Method
	2.1.2.1 Discretization of the Domain
	2.1.2.2 Selection of the Interpolation Functions
	2.1.2.3 Formulation of the System of Equations
	2.1.2.4 Solution of the System of Equations

	2.1.3 The Method of Moments
	2.1.4 High-Frequency Asymptotic Techniques
	2.1.5 Hybrid Techniques

	2.2 General Comparison of EM Solvers
	2.3 Phased Array Simulator (PASim)
	2.3.1 Motivation to Develop another EM Solver
	2.3.2 Capabilities of PASim
	2.3.3 Abstract Functional Illustration of PASim


	3 FDTD Simulation of Infinite Array Antenna with Different Manifolds
	3.1 The FDTD Method with Rectanguler Grid
	3.1.1 Numerical Dispersion and Stability
	3.1.2 Periodic Boundary Condition

	3.2 The FDTD Method for Cylindrical Grid
	3.2.1 Derivation of FDTD Updating Equations for  Diagonally Anisotropic Media in Cylindrical  Coordinate System
	3.2.2 Numerical Stability
	3.2.3 Periodic Boundary Condition
	3.2.3.1 Periodicity in  Direction
	3.2.3.2 Periodicity in  Direction
	3.2.3.3 Treatment at the Corners


	3.3 The FDTD Method for Nonorthogonal and Unstructured Grid
	3.3.1 Derivation of FDTD Updating Equations
	3.3.2 Numerical Stability
	3.3.3 Periodic Boundary Condition
	3.3.3.1 Periodicity in  Direction
	3.3.3.2 Periodicity in  Direction
	3.3.3.3 Treatment at the Corners


	3.4 Simulation of Active Element Patterns
	3.5 Applications and Validation of FDTD  Simulations
	3.5.1 A Simple Patch Antenna
	3.5.2 Patch Antenna with Arc-Shaped Slots
	3.5.3 Multilayer Patch Antenna Designed by MIT Lincoln Laboratory


	4 Laboratory Measurements
	4.1 Coordinate systems
	4.1.1 Coordinate System for Far-Field Data Acquisition
	4.1.1.1 Direction Cosine
	4.1.1.2 Polar Spherical
	4.1.1.3 Azimuth Over Elevation
	4.1.1.4 Elevation Over Azimuth

	4.1.2 Coordinate System for Near-Field Data Acquisition
	4.1.2.1 Planar Near-Field Scanner (PNFS)
	4.1.2.2 Cylindrical Near-Field Scanner (CNFS)
	4.1.2.3 Spherical Near-Field Scanner (SNFS)

	4.1.3 Cross Polarization Definitions
	4.1.3.1 Ludwig I
	4.1.3.2 Ludwig II
	4.1.3.3 Ludwig III


	4.2 Measurement Setups in Near and Far-Field Chambers
	4.2.1 Measurement Setups in Near-Field Chamber
	4.2.1.1 Isolated Patch Antennas
	4.2.1.2 Active Element Pattern

	4.2.2 Measurement Setups in Far-Field Chamber
	4.2.2.1 Measurement Set-up in Old Chamber
	4.2.2.2 Measurement Set-up in New Chamber
	4.2.2.3 Old & New Far-Field Chamber Measurements


	4.3 Data Processing and The Array Pattern  Generation Using Active Element Patterns
	4.3.1 Data Processing
	4.3.2 Generation of The Array Pattern Using AEP
	4.3.2.1 Planar Array
	4.3.2.2 Faceted-Cylindrical Array



	5 Lab-Scale, Reconfigurable Testbed Systems
	5.1 Concept of Configurable Phased Array  Demonstrator (CPAD)
	5.2 CPAD-I : 16-Elements Planar Subarray
	5.3 CPAD-I : 4-Elements Planar Mirrored Array Configuration
	5.4 CPAD-I : 16-Element Ring Array with the Excitation of Four and Eight Elements
	5.5 CPAD-II : 64-Elements Planar Array  Antenna
	5.6 CPAD-II : 64-Elements Cylindrical Array  Antenna

	6 Scalable Finite Array Antenna Simulation and Validation 
	6.1 Goals and Requirements
	6.2 The Basic Theory and Technique
	6.2.1 Far-Field, Radiating Near-Field, and Reactive  Near-Field Regions
	6.2.2 Surface Equivalence Theorem
	6.2.3 Frequency Domain Near-Field to Far-Field  Transformation

	6.3 Large Finite Array Simulation
	6.3.1 First Proposed Scheme to Simulate Large Finite  Array Antennas
	6.3.1.1 Algorithm
	6.3.1.2 Simulation

	6.3.2 Second Proposed Scheme to Simulate Large Finite Array Antennas
	6.3.2.1 Algorithm
	6.3.2.2 Updating X Boundary
	6.3.2.3 Simulation



	7 Conclusions and Future Work
	7.1 Conclusions of The Dissertation
	7.2 Proposed Further Improvements of PASim
	7.2.1 Parallel Computing Capability
	7.2.1.1 PASim in C++ Programming Language
	7.2.1.2 Utilization of Graphics Processing Units Acceleration
	7.2.1.3 Enabling to Run on Systems with Shared and Distributed Memory

	7.2.2 Introducing Advanced Algorithm
	7.2.2.1 Subgridding Technique
	7.2.2.2 An Adaptive Stopping Criterion

	7.2.3 User Friendly Interface
	7.2.4 Build a Community of Developers


	Bibliography
	A FDTD Updating Equations for an-isotropic media in Rectangular Coordinate System
	B Mathematical Equations
	B.1 Vector Calculus
	B.2 The Finite Difference Equations
	B.2.1 The finite differences equations for the time and space derivation of electric field components
	B.2.2 The finite differences equations for the time and space derivation of magnetic field components
	B.2.3 Average of the field components


	C Supplementary Plots



