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CHAPTER 1 

GENERAL INTRODUCTION AND LITERATURE REVIEW1 

 The northern bobwhite (Colinus virginianus; hereafter, bobwhite) is an important game 

species over much of its range.  Although declines have been noted since at least the 1880s 

(Errington and Hamerstrom 1936), bobwhite abundance typically follows a boom-or-bust 

pattern with considerable variation in numbers between and among years (Stoddard 1931, 

Stanford 1972, Roseberry and Klimstra 1984:130).  Possible factors influencing long-term 

trends in bobwhite abundance include climate change, habitat loss, and land-use changes 

(Edwards 1972, Klimstra 1982, Brady et al. 1993, Schemnitz 1993, Rotenberry 1998).  

Further, harvest may be an additive, rather than compensatory, source of mortality in years of 

low production (Pollock et al. 1989, Johnson and Braun 1999, Guthery et al. 2000).  Before 

harvest and habitat management can be effective at maintaining stable, huntable populations, 

an understanding of the factors influencing bobwhite abundance that are not amenable to 

management, such as weather and climate, is required.  It is further required that the 

interactions between climate, weather, and land use be elucidated, because it is against the 

backdrop of these effects that habitat and harvest management must operate.   

 Another issue of some importance is the effects of global change on wildlife, especially 

in the arid and semiarid regions of the United States (Guthery et al. 2000).  As such, global 

change is an issue of concern to both conservation and wildlife management.  With the 

knowledge garnered from investigations of the responses of bobwhite abundance to current 

climate, weather, and land-use patterns, managers may be better able to plan for the effects of 

                                                           
1 This chapter was written to place the remaining chapters into a common context.  It is not 
intended for publication. 
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future climate, as predicted by various global-change models.  Such planning will be a 

necessary part of any long-term management program (Irwin 1998), and could involve 

reserve-site choice or habitat manipulations designed to ameliorate the effects of climate.   

 In the United States, bobwhites range over much of the eastern and central parts of 

the country (Kaufman 1996).  According to data from the North American Breeding Bird 

Survey (NABBS), bobwhite populations in the US show a long-term rate of decline of 2.40% per 

year (Church et al. 1993, Sauer et al. 1997).  This rate of decline increased between 1982 

and 1991 to 3.50% per year (Church et al. 1993).  In Oklahoma, the long-term rate of decline 

has not been as severe, averaging only 0.20% per year (Sauer et al. 1997).  However, short-

term trends indicate a significant decline.  The 10-year population trend for the period 1986-

1996 indicates a 3.88% per year decline, and the 3-year trend (1993-1996) indicates 

populations are declining at a rate of 7.26% per year (Sauer et al. 1997).  In Texas, the long-

term rate of decline is 2.00% per year, with short-term declines of 6.43% per year (10-year 

trend) and 20.09% per year (3-year trend) (Sauer et al. 1997).   

 Although the above-cited declines may be cause for concern among wildlife managers, 

these changes in average abundance through time provide a reference frame from which to 

determine population status.  As mentioned previously, bobwhite populations tend toward 

boom-or-bust dynamics across their range (Stoddard 1931, Stanford 1972, Roseberry and 

Klimstra 1984:130).  In the US, the mean number of bobwhites counted per NABBS route 

over the years 1966�1996 was 20.95.  In Oklahoma and Texas, the mean was 47.12 and 

33.21, respectively (Sauer et al. 1997).  Considering shorter intervals, the 10-year mean in 

Oklahoma is 44.59 bobwhites per NABBS route, and in Texas 26.37 bobwhites per NABBS 

route.  The 3-year means for 1993�1995 are 37.83 and 21.55 bobwhites per NABBS route 

in Oklahoma and Texas, respectively (Sauer et al. 1997).  Therefore, trends in bobwhite 

populations may not be as severe as suggested by the percent declines. 

 The importance of various weather factors in determining avian abundance varies both 

with the species being considered and with latitude.  Temperature is a controlling factor in 
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northern latitudes, especially over the winter period.  In southern latitudes, rainfall and 

moisture tend to be more important than temperature (Newton 1998:288), but summer 

temperature can also have important effects on the reproductive biology of a species (Leopold 

1933, Robinson and Baker 1955, Speake and Haugen 1960, Guthery et al. 2001), thereby 

influencing abundance measured in the autumn.  Among gallinaceous birds, young are often 

susceptible to both rainfall and temperature (Sumner 1935, Newton 1998:288).   

 Weather effects may manifest both through direct and indirect means.  Direct effects 

such as hyper- and hypothermia are obvious, but weather�s indirect effects may be more 

difficult to detect.  Weather may act indirectly on abundance through both food availability and 

habitat suitability (Swank and Gallizioli 1954, Sowls 1960, Newton 1998), and may be 

moderated or accentuated by both the length and intensity of the weather event (Leopold 

1931, Elkins 1995).  For example, insect prey is essential for successful brood-rearing among 

quail (Hurst 1972), and the availability of such prey is determined, in part, by rain and 

temperature (Elkins 1995).  Periods of drought and high temperature will reduce the amount 

of insect prey available and, therefore, reduce production (Newton 1998:289).  Further, these 

impacts on production might increase in magnitude with the length of the drought.  In addition, 

the effects of weather on a species are not constant, but vary with the average physical 

condition of the local population.  If a drought is of sufficient duration, the population may be 

food stressed and less able to withstand the vagaries of weather than a population that has 

not experienced a food shortage, but exposed to the same weather conditions (Newton 

1998:289).   

 Rainfall and temperature both influence quail dynamics (Edwards 1972, Stanford 

1972, Campbell et al. 1973, Roseberry and Klimtstra 1984, Giuliano and Lutz 1993), but the 

effects vary with region.  Investigations of weather effects also differ in how they define 

weather variables, such as summer rain, and in the estimates of population parameters used.  

Consequently, reported results are not directly comparable and often lead to confusion about 

the exact effects of weather on quail production and population status.   
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 In arid regions, rainfall is the most influential weather component for avian survival and 

production (Newton 1998), is an important determinant of abundance, and can affect various 

demographic components of bobwhites.  In drier environments in south Texas, the bobwhite�s 

breeding season ends 2 months earlier than in more mesic environments (Guthery et al. 

1988).  Summer rainfall (April�August) was highly, positively correlated with hunter success 

for scaled quail (Callipepla squamata) in eastern New Mexico (Campbell 1968).  Rainfall may 

be more critical during certain periods of the life cycles of quail species than during other 

periods.  Heffelfinger et al. (1999) found that mid-winter (December�January) rainfall affected 

calling behavior of Gambel�s quail (Callipepla gambelii) more than rainfall during early (October�

November) or late (February�March) winter.  In arid and semiarid regions of Oklahoma and 

Texas, spring and summer rainfall might be particularly important (Stanford 1972).  However, 

Campbell et al. (1973) did not find a significant correlation between May�June or April�July 

rainfall and scaled quail production in New Mexico.  A lack of linear correlation between 

environmental and response variables may not necessarily indicate a lack of relationship 

between the variables (Laasko et al. 2001).  Summer rainfall (July�August) had the greatest 

influence on scaled quail production (Campbell et al. 1973), with most of the response due to 

August rainfall alone (Campbell 1968).  Percent juveniles in the fall bobwhite harvest was 

positively related to the average total rainfall between May and August in Alabama (Speake and 

Haugen 1960).  Bobwhite production in Louisiana responded positively to increasing summer 

precipitation, with highest production occurring when precipitation exceeded 762 mm (Reid 

and Goodrum 1960).  June rainfall in Texas was only weakly related to bobwhite abundance 

(Giuliano and Lutz 1993). 

 Recent work by Bridges et al. (2001) in Texas showed that, although 12-month rainfall 

totals were positively correlated with bobwhite abundance in the South Texas Plains, the 12-

month Modified Palmer Drought Severity Index (PMDI; an index of rainfall that accounts for soil 

type and moisture, temperature, and evaporation) was more strongly correlated with bobwhite 

abundance.  They also reported that monthly PMDIs were positively correlated with bobwhite 
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abundance in the Cross Timbers and Prairies (November�February, rs ≥ 0.57), Edwards 

Plateau (September�November, rs ≥ 0.59), Rolling Plains (September�February, April, June; rs 

≥ 0.56), and South Texas Plains (October�July, rs ≥ 0.56), whereas raw rainfall amount was 

positively correlated with bobwhite abundance only in the South Texas Plains. 

 Although snowfall sufficient to kill bobwhites occurs in parts of their range, snowfall is 

probably not a major concern in arid and semiarid regions.  In these regions, however, winter 

rainfall can still influence quail production.  The effects of winter rain, again, vary by species and 

region.  Percent juveniles in fall populations of scaled quail showed a non-significant, negative 

relationship with winter (October�March) rainfall both in pre- and post-harvest samples 

(Campbell et al. 1973).  However, in an earlier study of scaled quail in the same area, winter 

rainfall (October�March) showed non-significant, positive correlation with hunter success, 

which is assumed to be an index of abundance (Campbell 1968).  Giuliano and Lutz (1993) 

found that scaled quail abundance in Texas was positively correlated to winter rainfall.  

Bobwhite harvest in Illinois was positively related to winter rainfall (Edwards 1972), whereas, in 

Texas, abundance showed a non-significant, negative correlation with winter rainfall (Giuliano 

and Lutz 1993).  California quail (Callipepla californica) age ratios were positively correlated 

with winter (January�March) rainfall in California (Francis 1970).   

 Temperature may be a less important factor in quail production than rainfall (Edwards 

1972), or may only be important below some critical threshold of precipitation (Robinson and 

Baker 1955, Heffelfinger et al. 1999).  However, this might not hold for arid and semiarid 

regions where operative temperatures may exceed the thermotolerance limits of many 

species (Forrester et al. 1998, Heffelfinger et al. 1999, Guthery et al. 2001).  In such areas, 

high temperatures reduce the amount of space�time available for use by a species (Guthery 

1997, Forrester et al. 1998, Heffelfinger et al. 1999).  Klimstra and Roseberry (1975) 

reported that July�August (summer) temperatures affected the end of the bobwhite nesting-

season.  Therefore, the effects of temperature will be of critical importance to bobwhite 
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production in the more southern areas of its range, if temperatures increase due to global 

change.   

 Forrester et al. (1998) found that bobwhites avoided patches in which the operative 

temperature (a metric that takes account of the ambient air temperature plus the heating 

effects of sunlight and the cooling effects of airflow) exceeded 39 °C and, as a result, 50% of 

the available habitat space�time was unusable to bobwhites during all seasons.  The age ratio 

of bobwhite populations in Louisiana in winter responded positively to mean maximum monthly 

temperature in all months, but responded negatively with the highest maximum monthly 

temperature (Reid and Goodrum 1960).  Therefore, high seasonal temperatures can affect 

production.  For example, the length of the laying season in Illinois was reduced by 12 days for 

every 1 °C increase in the July�August temperature (Klimstra and Roseberry 1975).  In 

Alabama, the percent juveniles in the fall harvest was negatively correlated with the total 

deviation from mean monthly temperatures from May through August (Speake and Haugen 

1960).  Reid and Goodrum (1960) reported that bobwhite production was suppressed in hot 

years compared with cooler years.  Hot, dry conditions reduced the percentage of female 

bobwhites in laying condition in south Texas (Guthery et al. 1988).  Male bobwhites reduced 

calling behavior by 86.4% in a hot year compared with a cooler year (Guthery et al. 2001).  It 

seems likely that bobwhites adjust their reproductive activities based on ambient weather 

conditions in a particular year, thereby favoring long-term survival and maximizing lifetime 

reproductive output.  However, other studies in higher latitude areas lacked a strong effect of 

temperature on production and recruitment.  For example, Edwards (1972) did not find 

consistent effects of mean monthly temperature on bobwhite harvest in Illinois.  Further, 

Roseberry and Klimstra (1984) found no relationship between bobwhite recruitment and 

mean average daily temperature or mean maximum daily temperature.  Although temperature 

reduced the length of the bobwhite breeding-season, it did not decrease the proportion of 

those young produced in a given year from entering the breeding population.  That is, juvenile 

survival was not reduced. 
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 The effects of temperature and rainfall can interact in influencing bobwhite abundance.  

Rainfall masked the effects of temperature on bobwhite production in Kansas (Robinson and 

Baker 1955).  When precipitation was below some threshold amount, temperatures above 

23.3 °C reduced bobwhite production, but there was little effect when rainfall exceeded this 

threshold (Robinson and Baker 1955).  Combinations of low rainfall (drought) and high 

temperatures reduced bobwhite recruitment (Stanford 1972, Hurst et al. 1996).  Guthery et 

al. (2002) report that temperature and rainfall influence age ratios of bobwhites in south 

Texas in complex, non-linear ways, and suggest that low temperatures can mitigate the 

negative effects of drought and that high temperatures can eliminate the positive effects of 

rainfall.   

 Habitat provides all life requisites for an individual organism (Hall et al. 1997), and is, 

therefore, an important factor in understanding a species abundance and distribution.  Human 

use of the landscape can have considerable effects on its suitability as habitat for wildlife.  

Whereas the amount of land area converted for human use influences population dynamics, 

the spatial pattern of this fragmentation is also of concern (Hanski 1999).  Further, different 

land uses will affect wildlife populations to different extents.  That is, not all land-use practices 

are incompatible with wildlife.  Human land use practices fall into 2 broad categories: 1) urban 

development resulting in land being converted to residential, commercial, or industrial use, and 

2) agricultural development resulting in land being converted to the production of food for 

humans or domesticated animals.   Although cropland is a dominant agricultural land use in 

the northern and eastern portions of the bobwhite�s range, in the west, grazing may be more 

pervasive.  Around 70% of western land area is grazed (Fleischner 1994).  In Texas, 

approximately 53,140,000 ha, or 76.8% of the land area, is in agriculture, with 65.5% of that 

area rangeland and 28.7% cropland (USDA NASS, Census of Agriculture 1997).  In Oklahoma, 

approximately 13,443,000 ha, or 74.2% of the land area, is agricultural land, of which 46.5% 

is rangeland and 44.7% is cropland (USDA NASS, Census of Agriculture 1997).  Therefore, 

grazing and cultivation are important land uses that affect the amount of usable habitat 
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space�time (Guthery 1997) available for bobwhites.  As the predominant land use in these 

states, livestock grazing and cultivation undoubtedly influence the abundance, distribution, and 

population dynamics of a variety of wildlife species (Barnes et al. 1991).   

 The conversion of habitat from native vegetation to row crops often converts what was 

once a heterogeneous landscape into a monoculture.  Early agricultural practices, typified by 

many, small family-owned farms, resulted in a pattern of land use referred to as patchwork 

agriculture and was believed to enhance wildlife abundance through the creation of edge 

between cultivated fields and windbreaks and fencerows (Leopold 1933).  Modern agricultural 

practices, however, are managed using �clean farming� practices, which favor large fields with 

few fencerows or windbreaks.   

 Cultivated crops may serve as a food source for some wildlife species.  Roseberry and 

Klimstra (1984) report that unharvested grain served as the only food source for bobwhite 

coveys during a prolonged snow cover in southern Illinois.  The benefit to bobwhites from these 

unharvested grains depends on the juxtaposition of standing crops to suitable bobwhite winter 

habitat.  In southern Illinois, much of the agricultural landscape is still in a patchwork 

arrangement (J. Lusk, personal observation) and, therefore, such juxtapositions occur 

frequently.  However, the value of food plots and cultivated cropland for bobwhites in other 

areas where such juxtapositions are rare is probably nil, mostly because bobwhite populations 

cannot survive in such landscapes.   

 Livestock grazing does not usually result in the total transformation of the vegetation 

community, but, depending on the intensity and periodicity, can alter the structural complexity 

and species composition of the habitat and thereby affect its suitability (Fleischner 1994).  

Whether these habitat changes will increase or decrease suitability depends on the magnitude 

of the changes (Severson and Urness 1994).  Further, changes that favor a particular species 

may disfavor another species (Barnes et al. 1991, Severson and Urness 1994).  Structural 

changes include changes in vegetation stratification leading to a reduction in structural 

complexity (Fleischner 1994).  Grazing can also reduce the amount of litter and increase the 
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amount of bare ground, which in some cases can alter plant phenology (Kaufman et al. 1983).  

Changes in litter and ground cover can increase soil compaction and thereby reduce water 

infiltration (Orr 1960, Orodho et al. 1990), which can have nontrivial effects on plant 

communities, especially in arid and semiarid regions (Fleischner 1994).  Grazing was the 

primary influence on grassland species composition in the Edwards Plateau ecoregion in Texas 

(Fuhlendorf and Smeins 1997, Fuhlendorf et al. in press).  However, interannual precipitation 

was correlated with plant basal area (Fuhlendorf et al. 2001).  Precipitation and grazing also 

interacted in determining species composition, where moderately and ungrazed areas were 

more resilient to the effects of severe drought than heavily grazed areas (Fuhlendorf and 

Smeins 1997).  These grazing effects on the vegetation community will indirectly affect 

bobwhite abundance. 

 Bobwhites have adapted to a variety of habitats from the eastern coast of the United 

States west to the Rocky Mountains.  Within these longitudes, bobwhites have adapted to 

conditions from temperate latitudes in Wisconsin to subtropical, semiarid, and arid latitudes 

throughout the southern US and south to Costa Rica.  Within the array of habitats the 

bobwhite occupies, there are many configurations of habitat types that are equally optimal 

(Guthery 1999).  Many authors have qualitatively described bobwhite habitat in various 

regions.  For example, Edminster (1954) reported bobwhite habitat included grassland, 

cropland, brushy cover, and woodland habitat types.  In south Texas, optimal habitat 

configuration typically consisted of 53% woody canopy coverage, 38% herbaceous canopy 

coverage, and 44% bare ground (Kopp et al. 1998).  In southern Illinois, bobwhites were 

associated with patchy landscapes with moderate levels of grassland and row crops, and high 

levels of woody edge (Roseberry and Sudkamp 1998).     

 Although there is a great deal of ecological slack in the optimal composition of 

bobwhite habitat (Guthery 1999), the structural changes brought about by grazing could have 

the greatest impact on bobwhite abundance.  Grazing may increase the amount of bare 

ground in an area (Fleischner 1994) and decrease amounts of certain grass species 
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(Severson and Urness 1994).  These changes have been associated with increases in 

bobwhite use (Schulz and Guthery 1988).  Peak bobwhite abundance occurred in pastures 

using a rapid-rotation grazing system compared to abundances under continuous grazing 

(Hamerquist and Crawford 1981, Schulz and Guthery 1988).  Given that the optimal seral 

stage for bobwhites varies with the overall productivity of the habitat (Spears et al. 1993), the 

effects of grazing on bobwhite abundance may also vary among areas and habitat types.   

 The research reported herein was intended to address several issues of importance to 

bobwhite management in the arid and semiarid regions of their range, and attempted to 

address some of the current ambiguity apparent in previous investigations of bobwhite�

weather relationships.  I employed an artificial neural network technique to model bobwhite 

abundance in relation to climate, weather, and land use.  I then used these models to predict 

the changes in bobwhite abundance that could be expected under equilibrium climate expected 

under 2x the current CO2 concentrations in the atmosphere (IPCC 1998).   

 The research reported herein is important for several reasons.  First, little research 

into the population dynamics of grassland birds has been undertaken to date, despite the fact 

that declines among these species have been of greater magnitude and of a more persistent 

trend than for the more-studied, neotropical-migrant forest species (Herkert and Knopf 1998, 

Rotenberry 1998).  Conservation efforts for many grassland species-of-concern are hampered 

by a lack of data on aspects of their ecology (Herkert and Knopf 1998).  Further, because 

indirect methods are commonly used to obtain demographic data, estimates of demographic 

parameters based on these data might be biased or imprecise (Pollock et al. 1989, Shupe et 

al. 1990, Clobert and Lebreton 1991, Roseberry and Klimstra 1992).  The nature of the 

relationship between bobwhite production and climate, weather, and land use is unclear at this 

time.  This lack of clarity results from a multitude of studies with largely contradictory results.  

These contradictions might result from differences in variable definition and selection, or from 

the use of linear analysis techniques.  Linear analyses, such as correlation and regression, are 

not conducive for determining functional relationships among variables when the functional 
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relationship is nonlinear.  For example, correlation coefficients may indicate a positive or 

negative response to variation in another variable, but the lack of a strong correlation may not 

be indicative of a lack of relationship between the variables (Laasko et al. 2001).  Furthermore, 

nonlinear biological responses to environmental variation can sometimes result in either 

spurious positive or negative correlations depending on the functional response of the 

biological system and the pattern of environmental variation (Laasko et al. 2001).  For 

instance, if bobwhite abundance varies in a symmetric, unimodal fashion with temperature, 

then, depending on the observed range of temperatures with respect to the abundance�

response function, there may be positive, negative, or no relation apparent from the correlation 

coefficients, even when temperature is a strong forcing variable for bobwhite abundance (Fig. 

1.1).  Therefore, a nonlinear analysis approach is necessary to clarify these relationships and 

to confirm or reject results obtained using traditional linear approaches.   

 Second, the neural models resulting from my analyses were used to predict bobwhite 

abundance in the fall, prior to the hunting season.  As such, the Oklahoma Department of 

Wildlife Conservation and the Texas Parks and Wildlife Department can use them to forecast 

fall harvests in advance of their fall roadside counts, thereby giving them more time to act on 

this information.  This information may also be used by managers and conservation biologists 

to develop proactive management plans in the light of global climate change.  Because the 

bobwhite is an important game species, its management and conservation are of immediate 

concern to state wildlife managers.  Declining bobwhite populations could lead to decreased 

revenue from the sale of hunting licenses and decreased funding from contributions to the 

Federal Aid in Wildlife Restoration program, and, therefore, these state agencies must begin 

planning to minimize the impact climate change might have on bobwhite populations within 

their jurisdictions.   

 Third, research is only a part of the management process.  To be useful for 

management, research must be conveyed to managers in a manner in which they can apply it 

to the decision-making process (Hejl and Granillo 1998, Young and Varland 1998).  My  
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Fig. 1.1.  Hypothetical relationship between abundance and temperature showing how the 

range over which a variable is measured in the field can determine the response type.  Even if 

sampling crosses the depicted zones, the overall correlation might still be negative, positive, or 

nonexistent.    
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research will provide managers with both a method for forecasting fall bobwhite harvests and 

for understanding bobwhite responses to weather conditions.  The former provision will assist 

in setting bag limits, season lengths, and in redirecting hunters from low abundance areas.  In 

addition, the results can be used to develop long-term management plans.   

 Finally, the results of this research can be used to better understand the impacts of 

climate change on species abundance and distribution in the central United States.  Evidence 

for the effects of climate change on species ecology continues to mount.  Changes in plant 

phenology will have concomitant effects among vertebrate species that rely on them for food 

or shelter.  Many species have evolved life-history characteristics synchronized with seasonal 

changes in resource availability, but that are only weakly coupled to actual changes in the 

resource (Myers and Lester 1992, Root 1993).  That is, species might synchronize their life 

history with resource availability via proximate cues (e.g., photoperiod).  Changes in climate 

might alter or negate the relationship between the cue and the underlying resource (e.g., plant 

seed abundance), resulting in a decoupling of life history from resource base, and reduction in 

production and abundance.  Community structure will also likely be affected by climate change, 

because each species in the community will respond to changes differently.  However, such 

changes in community structure will result in changes in community dynamics, which will also 

affect the individual species.   

 Although the models presented herein cannot address all of the complexities of the 

impacts of climate change on bobwhite populations, they can show how abundance and 

distribution will change in response to climate change alone.  From this base, management 

actions can be focused on areas in which bobwhite abundance is predicted to be greatest or 

the least.  Also, further research can begin to investigate the interactions between climate, 

land-use, and community reorganization.   
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CHAPTER 2 

NEURAL NETWORK MODELING: AN APPROACH TO DISCRIMINATION AND PREDICTION1 

Abstract 

Neural network modeling offers wildlife biologists a powerful technique for finding patterns in 

large, multivariate datasets.  Because neural network modeling is appearing more frequently in 

the ecological literature, we provide a descriptive overview of this approach to data analysis in 

wildlife research, and discuss its merits and drawbacks.  Neural networks offer a powerful 

alternative to traditional prediction and discrimination models, especially where little or no a 

priori information about the relationships among variables exists.  Neural networks are 

nonparametric, can model linear and non-linear relationships, are unaffected by 

multicollinearity, and can be applied to prediction and discrimination problems; the same model 

can simultaneously predict multiple dependent variables or discrimination classes.  However, 

because of the structure of neural networks, biological interpretation of model output is not 

straightforward and requires additional simulations.  Further, neural models can become 

overfit and lose the ability to generalize to new data.  Focusing on 1 type of neural network, the 

backpropagation, multi-layer perceptron, we provide a prediction and a discrimination example 

of the technique using published data.  

 
Introduction 

 An artificial neural network (ANN) is one of a suite of machine learning techniques 

currently being applied in ecology (Fielding 1999b).  Other machine learning techniques include 

                                                           
1 Manuscript prepared for submission to Wildlife Society Bulletin.  Second author: Dr. Fred S. 
Guthery. 
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genetic algorithms (Mitchell 1998, Jeffers 1999) and cellular automata (Dunkerley 1999).  

Although other types of ANNs exist (Boddy and Morris 1999), the type we describe is a feed-

forward, backpropagation multi-layer perceptron (Smith 1996; hereafter MLP).  We chose the 

MLP because it is the simplest and most widely used technique in the ecological literature.  

This type of neural network was originally developed as a model of cognition and learning in the 

human brain (Rumelhart et al. 1986, Smith 1996, Boddy and Morris 1999, Stevens-Wood 

1999).  As such, the associated terminology borrows heavily from neurobiology (Table 2.1). 

 The use of neural network models in ecology is increasing and current applications 

include statistical modeling.  The technique is non-parametric and, therefore, makes no 

distributional assumptions about the data.  Applications thus far have dealt with comparing the 

performance of MLPs with that of traditional statistical methods.  These comparisons have 

typically shown that MLP models out-perform more traditional analyses such as linear 

regression based on accuracy of predictions (Recknagel et al. 1997, Maier et al. 1998).  For 

example, Olson and Cochran (1998) applied a MLP to model aboveground biomass in the 

tallgrass prairie.  Compared to a regression model, their MLP model more accurately 

predicted standing biomass and predicted changes in biomass with greater accuracy (Olson 

and Cochran 1998).  An MLP predicted the species diversity of arthropod assemblages in wet-

soil habitats more accurately than a multiple linear regression analysis (Lek-Ang et al. 1999). 

Özesmi and Özesmi (1999) compared the performance of a MLP with that of logistic 

regression in the classification of locations in a GIS database. These locations represented 

either nest or non-nest sites for red-winged blackbirds (Agelaius phoencies) and marsh wrens 

(Cistothorus palustris).  They reported that in all but 1 case the MLP outperformed logistic 

regression (Özesmi and Özesmi 1999).  Manel et al. (1999) compared MLPs with logistic 

regression and multiple discriminant analysis for predicting bird-species occurrences, and  
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Table 2.1.  Definitions of terms used in neural modeling, listed alphabetically.   

 

Term        Definition 

 

Backpropagation   An algorithm that sends errors detected in the   

     output sequentially back thought the model to adjust  

     synaptic and bias weights (parameters) 

Bias weight    Weights attached to each neuron in the neuron and  

     output layers; analogous to an intercept in a regression 

     equation 

Hidden layer(s)    One or more layers of neurons in a multi-layer   

     perceptron; also called a neuron layer and the layer of 

     processing elements 

Input layer    Layer containing the input nodes (independent   

     variables) in a multi-layer perceptron 

Input node    Data used as predictors; synonymous with   

     independent variables in traditional statistical models 

Learning    The iterative change in synaptic weights resulting in a  

     reduction of the mean square prediction error; the  

     process of finding relationships among variables and  

     producing an appropriate response for a give set of  

     input data; also called training 

Learning rate    A value determining the magnitude of changes made  

     to the synaptic weights during the training process 

Learning rule    A rule governing how a synaptic weight can be   

     adjusted to minimize the mean square prediction   
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Table 2.1. Continued. 

 

Term        Definition 

 

Learning rule, Con�t   error; examples include steepest descent and   

     conjugate gradient 

Momentum    A value determining the number of past iterations to  

     consider when adjusting synaptic weights; reduces  

     instabilities and oscillations in the prediction error 

Multi-layer perceptron   A type of neural network model which uses a   

     backpropagation technique to simulate cognition and  

     learning in the brain; used in statistical modeling to  

     find non-linear and linear patterns in large,   

     multivariate datasets without assumptions inherent in  

     parametric techniques 

Neural network    A machine learning technique used to simulate the  

     function of the brain 

Neuron     A component of the neuron layer of a multi-layer  

     perceptron; transforms the weighted sum of the input  

     variables using a transfer function such as the sigmoid  

     transfer function 

Neuron  layer    One or more layers of neurons in a multi-layer   

     perceptron; also called the hidden layer and the layer  

     of processing elements 

Output layer    Layer containing the output node(s) in a multi-layer  

     perceptron 
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Table 2.1.  Continued. 

 

Term        Definition 

 

 

Output node    Data being predicted by a multi-layer perceptron;  

     synonymous with the dependent variable in traditional  

     statistical models 

Overfitting    A problem in modeling in general and neural   

     modeling in particular in which a model too closely  

     approximates the data used for model development,  

     and which, therefore, generalizes poorly to new data 

Processing elements   One or more layers of neurons in a multi-layer   

     perceptron; also called the hidden layer or neuron  

     layer 

Relevance    An index of the contribution of each input variable to  

     the predictions; a measure of the importance of an  

     input node based on the synaptic weights 

Logistic transfer function  A transformation applied to the weighted sum of input  

     variables in order to approximate the underlying  

     function or relationships among input and output  

     variables 

Stimuli     Another way of referring to the input data in a neural  

     network model which maintains the neurological  

     analogy 
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Table 2.1.  Continued. 

 

 Term         Definition 

 

Synaptic weights   Weights applied to the input variables and neurons in  

     order to produce accurate predictions of the output  

     variable and which are adjusted during the learning  

     process; contain information about the relationships  

     among  input and output data; analogous to regression  

     coefficients 

Training    See learning. 

Training data    Data used during the training process to determine  

     patterns among input and output variables and to  

     adjust synaptic weights to minimize the mean   

     square prediction error; a portion of the total dataset  

     from which the MLP learns 

Validation data    Data used during or after the training process to  

     evaluate the MLP�s performance to prevent   

     overfitting and determine how well the MLP predicts  

     from novel data; data not used to adjust synaptic  

     weights during training 
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found that the MLP correctly classified more cases than the other 2 methods.  However, they 

concluded that, based on Receiver Operating Characteristic plots (Fielding 1999a), the logistic 

model was the better model, but that it was sensitive to the prevalence of positive cases 

(occupied sites) in the data (Manel et al. 1999).  Using an adjusted sum-of-squares technique, 

which penalizes models for their complexity (Hilborn and Mangel 1997), we found that a 

multiple linear regression model outperformed a neural model in predicting bobwhite (Colinus 

virginianus) abundance based on weather and land-use characteristics (Lusk et al. 2002).  

However, the neural model provided a better understanding of how bobwhite populations 

respond to climate. 

 In addition to the above comparisons between traditional statistical techniques, other 

researchers have applied MLP models to a variety of research questions.  Multi-layer 

perceptron models successfully predicted call counts and age ratios for Gambel�s quail 

(Callipepla gambelii) from precipitation and temperature data (Heffelfinger et al. 1999); 

occurrences of 3 small-bodied fish in freshwater streams in >80% of the cases (Mastrorillo et 

al. 1997); and abundances of trout (Salmo trutta) based on habitat characteristics (Baran et 

al. 1996, Lek et al. 1996a).  A MLP model allowed wildlife managers in southern France to 

predict the impact of wild boar (Sus scrofa) damage to agricultural crops allowing more-

efficient use of limited funds (Spitz and Lek 1999).  In our research, we have applied MLP 

models to predict northern bobwhite abundance in western Oklahoma (Lusk et al. 2002) and 

to determine the relative importance of long-term climate and short-term weather patterns in 

determining their abundance (Lusk et al. 2001).   

 Multi-layer perceptrons can provide accurate predictions for management planning 

and decision making (Lein 1997), and a deeper insight into the ecological and biological 

processes at work (Colasanti 1991, Edwards and Morse 1995, Lek et al. 1996b).  The main 

advantage of the MLP is that it can find patterns in large, multivariate datasets without the 

assumptions inherent in regression and other techniques.   This is true because a MLP 

represents a function as a sum of terms, and any continuous function, under mild constraints, 
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can be represented as a sum of terms.  Wildlife researchers may be familiar with other sum-

of-terms models, such as the kernel estimator used in home-range estimation (Worton 1989) 

and the Fourier series used in line transect analyses (Buckland et al. 1993). 

 Our objective is to introduce MLP modeling to wildlife managers and scientists.  We 1) 

briefly explain the theory behind neural modeling, 2) describe the structure and terminology of 

the neural modeling method, with specific regard to the MLP, 3) provide examples of the 

application of neural models to the problems of prediction and discrimination, and 4) discuss 

the strengths and weaknesses of the approach.   

 
Model Description 

Neural Model Architecture 

 The MLP may be arranged in a series (≥ 3) of layers (Fig. 2.1).  The first layer is called 

the input layer, which contains 1 input node for each independent variable.  Input nodes are 

homologous to the independent variables in multiple regression.  The input nodes can be 

considered stimuli in the neurological sense.  The second layer is referred to as the hidden 

layer, the neuron layer, or the layer of processing elements. The neuron layer contains ≥ 1 set 

of neurons, the number of which determines the complexity of patterns that can be detected 

(Smith 1996:25).  The neuron layer processes the data to predict the dependent variable(s) in 

the third layer, called the output layer.  The output node(s), or dependent variable(s), represent 

the desired response.  Elements in each layer may be connected to every element in the 

preceding layer via synaptic weights.  The synaptic weights store the information learned (see 

below) by the network during the training process, and are analogous to regression 

coefficients (Heffelfinger et al. 1999), but their interpretation is not as straightforward.  

Typically, each node in 1 layer is connected to every node in the preceding layer (Fig. 2.1), and, 

as such, the neural network is termed fully connected (Smith 1996, Boddy and Morris 1999). 
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Fig. 2.1.  A diagrammatic representation of a generic multi-layer perceptron, neural network 

model.  This MLP is a 3-2-1 network (3 input nodes, 2 neurons, and 1 output node) consisting 

of 3 layers: an input layer (A), a neuron layer (B), and an output layer (C).  Nodes in 1 layer are 

connected to nodes in the preceding layer via synaptic weights (D).  Each neuron also has an 

associated bias weight (E).   
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The Training Process 

 The development of a MLP model can be thought of as a process in which a network 

attempts to learn an appropriate response (e.g., a population abundance or a classification of 

used or unused) to a given set of stimuli.  Training (or learning) is simply the rote method (see 

below) of adjusting parameters (biases and synaptic weights) such that prediction or 

discrimination becomes more accurate as parameters are iteratively adjusted.  Biologists are 

familiar with least-squares regression using linear models, which attempt to maximize 

prediction accuracy by minimizing the sum-of-squared errors. The MLP operates under the 

same error minimization goal.  However, because of non-linearity and other model 

complexities, there is no analytical solution for minimization; the model must minimize error by 

using a learning rule that changes synaptic weights iteratively, so that the mean squared error 

may be reduced each iteration.  During this process, which is called training (or learning), the 

synaptic weights begin to represent the relationships among input and output variables.  In this 

way, the model is said to learn.  

 Initially, a MLP has little or no ability to predict or discriminate because synaptic 

weights are set at small, random values (Smith 1996:22).  Each neuron processes the 

incoming stimuli by first multiplying each input by the appropriate synaptic weight (Hagan et al. 

1996:2-7�2-8).  These products are then summed together and a bias weight is added 

(Hagan et al. 1996, Smith 1996).  The bias weight is analogous to the intercept in regression 

analysis.  This result, u, is then transformed using a transfer function.  The most widely used 

transfer function is the logistic transfer function 

     ( )
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The use of a logistic transfer function allows non-linear relationships between the independent 

and dependent variables to be detected and learned.  The processed stimuli, g(u), are then 

sent to an output node.  At the output node, another transformation is applied to the 

processed stimuli, the result of which is a scaled prediction of the dependent variable(s) (Smith 
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1996).  This second transformation can be the same as that applied at the neurons, but more 

often a linear transformation is applied (Hagan et al. 1996). The model predictions can be 

considered a response to the incoming stimuli.  Next, the predictions generated by the model 

are compared with the actual values of the dependent variable(s).  The prediction error is 

calculated and backpropagated through the network to adjust the synaptic weights.  

Backpropagation means that the biases and synaptic weights are first adjusted for the 

synapses between the neurons and the output nodes, and then adjusted for the synapses 

between the neurons and the input nodes; i.e., information on error is sent backwards through 

the model.  The error is apportioned among the various synaptic weights using the chain rule 

of calculus (Haykin 1999:162).   

 The adjustment of synaptic weights is governed by 3 factors.  The first is the learning 

rule, which determines how the MLP will adjust the synaptic weights.  There are several types 

of learning rules, the most popular of which are steepest descent and the conjugate gradient 

learning rules.  The steepest-descent rule alters the synaptic weights after each pass through 

the entire dataset so that the error decreases the fastest (Smith 1996:78).  A variation to the 

steepest-descent rule involves adjusting synaptic weights after each data point is processed, 

rather than after all data points have been processed.  The conjugate gradient rule involves the 

second-order derivative (i.e., the derivative of a derivative) of the error, which measures the 

rate at which that slope is changing, or, in other words, the rate at which the change in error is 

decelerating (Smith 1996:184).  The other techniques all involve the first-order derivative of 

the error, which gives the slope of the error surface (see below) for a given set of synaptic 

weights.  The conjugate gradient technique, therefore, allows more accurate and sensitive 

adjustment of the synaptic weights, but is more computationally intense.  

 Related to the learning rules is the learning rate. The learning rate determines the 

absolute magnitude of the changes in the synaptic weights based on the direction and 

magnitude of the prediction error (Smith 1996:77).  So whereas the learning rules determine 

how the synaptic weights are changed, the learning rate determines how much the synaptic 
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weights are changed given a specific learning rule.  The selection of an appropriate learning 

rate is important in neural model construction.  If the learning rate is too small, then it will take 

longer for the network to learn the patterns in the data (i.e., converge to a minimal error), 

because only small adjustments are made to the synaptic weights.  If the learning rate is too 

large, then the error will tend to oscillate and the network will be unstable (i.e., the predictive 

accuracy of the model will change from good to poor repeatedly), because the large changes 

to the synaptic weights will often increase the error rather than reduce it (Hagan et al. 

1996:9-5, Smith 1996:81-82).  We recommend using a steepest-descent learning rule with 

an adaptive learning rate that will allow the learning rate to be adjusted as needed during the 

training process (Hagan et al. 1996:12-12�12-14, Smith 1996:88-90).  For example, if 

during training, the error begins to oscillate, the algorithm will reduce the learning rate until 

the oscillations are dampened and the error decreases.   

 The final factor governing synaptic weight changes is called momentum and 

determines the degree of influence past changes in the synaptic weights have over current 

changes (Smith 1996: 85-88).  Momentum is a kind of filter, which reduces the amount of 

oscillations in the prediction error (Hagan et al. 1996:12-10).  The momentum can have a 

value between 0 and 1.  The larger the momentum, the stronger the effect of past error 

changes in determining current weight changes.  Therefore, the change in the error rate after 

the most recent iteration will tend to continue in the direction of previous changes, even if the 

error begins to increase in an opposite direction.  This allows weight changes to track the 

average error rate (Hagan et al. 1996:12-10).  Because oscillations in the error rate reduce 

the efficiency of the training process, a high momentum, usually 0.9, is most often used (Smith 

1996: 86).   

 
Data Considerations  

 General Considerations.  Although the specific formatting of a dataset will depend on 

the specific neural network application being used, there are some common data 
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requirements.  First, all data in the neural model must be numeric (i.e., consist of numbers 

rather than letters).  Categorical and other non-numeric data, therefore, must be coded (using 

dummy coding, for example) for use in a neural network.  Multi-layer perceptron models can 

predict multiple dependent variables simultaneously (Smith 1996: 165).  For example, Özesmi 

and Özesmi (1999) used a MLP with 3 output nodes to simultaneously predict the probability 

that a given location was suitable as a red-winged blackbird nest site, suitable as a marsh wren 

nest site, and not suitable as a nest site based on habitat variables.  Dependent variables can 

be continuous values (e.g., abundance indices) or class factors (e.g., present vs. absent; poor, 

fair, or good) to be predicted by the model.  However, the manner in which the data are coded 

differs slightly from typical coding schemes.  For example, presence and absence data are 

commonly coded as either 0 (absent) or 1 (present).  This coding scheme is appropriate if 

these data are to be used as independent variables in a MLP model.  However, if the purpose 

is to discriminate presence from absence based on some habitat features, the data should be 

recoded as some value <1 and >0, such as 0.1 (absent) and 0.9 (present).  This coding 

scheme is necessary because the logistic transfer function approaches but does not reach 0 

or 1 (Smith 1996:166), and therefore, a MLP can never predict presence or absence with 

complete accuracy if 1 or 0 are used for coding the dependent variable(s).  A benefit of the 

MLP approach to discrimination is that, unlike logistic regression, MLPs can discriminate >2 

classes simultaneously.  For example, an MLP can discriminate poor, good, fair, and excellent 

habitats based on sets of habitat features.   

 Sample size is also an important consideration for the application of neural network 

models.  The larger the sample size, the more information there is in the data about the 

relationship between the independent and dependent variable(s) for the network to learn.  

Therefore, it is desirable to have as large a database as possible.  This is especially true if the 

relationships are complex or if the data are noisy (Smith 1996:115, Boddy and Morris 

1999:57).  For neural networks, the sample size required for a given level of accuracy is a 

function only of the noise in the data (Smith 1996:135).    



29 

 Because neural network models become increasingly complex as the number of 

neurons and predictors increases (see below), the choice of variables used to predict the 

dependent variable should be selected with care based on extensive literature review and 

current knowledge about the factors affecting the system.  Further, although multicollinearity is 

not a problem for neural models (they simply learn the redundancies in the predictors), 

including several correlated variables will unnecessarily increase model complexity.    

 Training and Validation Data.  The development of a neural network model requires 2 

datasets, 1 set for training the network and 1 set for validation.  Training data are used during 

the learning phase to develop the network�s synaptic and bias weights.  The validation data are 

not used in model development (i.e., the prediction errors associated with validation data are 

not used to adjust synaptic weights), but are used to gauge the network�s ability to respond 

appropriately to novel data.   

 Although model validation is an important part of the modeling exercise, including 

statistical modeling, few authors attempt to validate their models.  Ideally, the data used in 

model validation should be independent of those used in model development (Conroy 1993, 

Conroy et al. 1995, Haefner 1996:157).  However, in practice, data are a precious commodity 

and obtaining an independent dataset may be logistically or fiscally impossible.  Furthermore, 

the intended purpose for the model must be considered when selecting a model validation 

approach (Rykiel 1996).   

 Because independent data are often lacking, data obtained during a research project 

must be partitioned into training and validation sets (Fielding 1999a:219).  The first decision to 

be made in the partitioning of the dataset is what percentages of the total dataset should be 

allocated to training and validation.  With more training data, a neural network has more 

information about the relationships among variables on which to base its predictions; 

therefore, as many data as possible should be allocated to the training dataset (Fielding 

1999a:219).  We generally use 80% of our data for training and 20% for validation.   
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After choosing the number of data points to apportion to each dataset, cases must be 

selected.  Data may be randomly assigned to the validation dataset.  However, because there 

are no assumptions of normality for data used for neural network training, a random sample 

may result in unrepresentative training and validation datasets, which has been linked to the 

poor generalization ability of MLPs in some applications, especially discrimination (Ripley 

1994).  We, therefore, recommend that the selection of training and test cases be performed 

using a systematic approach.  For example, Lusk et al. (2002) ordered their data based on the 

dependent variable and systematically selected every fifth case for the validation dataset.  This 

ensured that the training and validation data were representative of the whole dataset, and, by 

assumption, of the range of possible datasets.  

  
Usage Considerations 

 The Error Surface.  Consider a simple neural network model consisting of 2 input 

nodes, 1 neuron, and a single output node.  The prediction error for such a model can be 

represented graphically as a 3-dimensional surface, where the error rate is presented as a 

function of the synaptic weights of each input node (Fig. 2.2).  This surface represents the 

theoretical range of possible prediction errors for a given range of synaptic weights.  Such 

surfaces can either be relatively flat (Fig. 2.2a) or can contain many hills and valleys (Fig. 2.2b).  

Because the initial synaptic weights are assigned randomly, where the network starts learning 

on the error surface varies.  If the error surface has a relatively flat slope, the network will 

continue learning until the lowest point on the error surface (the global minimum) is reached.  

If, however, the error surface is irregular, the network will continue learning until it reaches a 

minimum error rate (i.e., changing synaptic weights in any direction will lead to an increase in 

error), but there is no guarantee that this minimum is the global minimum (Fig. 2.2b).  The 

network may be stuck in a local minimum if other synaptic weight combinations can provide a 

lower prediction error.   However, this problem can be ameliorated by selecting the  
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Fig. 2.2.  Hypothetical error surfaces resulting from particular combinations of synaptic 

weights.  In (a), the error surface is relatively flat, and a MLP with initial synaptic weights 

randomly assigned any value in this range will eventually find the combination of synaptic 

weights that gives the global minimum prediction error.  In (b), the error surface is hilly.  A MLP 

may not be able to find the combination of connection weights resulting in a global minimum, 

but instead may become stuck in a local minimum. 
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appropriate number of neurons in the neuron layer (Smith 1996:62).  As the number of 

neurons in the network increases, the error surface smoothes out and becomes more flat.  

Selecting the appropriate number of neurons can be accomplished by training several neural 

models on the same data, with the same learning rate and momentum, but with varying 

numbers of neurons.  The network with the appropriate number of neurons will be the network 

with the smallest prediction error for both the training and the validation datasets and for 

which the addition of more neurons does not greatly increase the network�s performance.   

 Complexity and Parsimony.  Any modeling attempt must balance the costs of added 

complexity in terms of loss of generalization ability and the benefit of added complexity in terms 

of reduced variance.  This is often called the bias-variance dilemma (Geman et al. 1992).  The 

solution is based on the principle of Occam�s razor (principle of parsimony) which suggests that 

the appropriate model is the one that is just complex enough to adequately represent the 

relationships in the data but no more complex (Burnham and Anderson 1998:23).  However, 

there is no inherent reason that a simple model should be better than a more complex model, 

especially if the system is known to be complex (Maurer 1999), and the choice of a model will 

depend on the objectives of the researcher (e.g., prediction or understanding processes).  That 

is, if a model is used solely to predict in the realm of management, then the most accurate 

model may be optimal, whether or not it represents the best compromise between bias and 

variance.   

 With regards to neural networks, we need to ask if the increase in complexity that 

accompanies neural networks provides sufficient increases in understanding or predictive 

power to warrant their use instead of a simple, linear model.  As some authors have noted, 

directly comparing the predictive accuracy of both types of models is biased because the 

number of parameters in each model is not considered (Lek-Ang et al. 1999).  Although Haykin 

(1999:219-222) offered several methods to limit the complexity of neural networks during 

training, we employ a simpler, post hoc method for ranking models.  This technique adjusts the 
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sum-of-squared errors based on the number of parameters in the model (Hilborn and Mangel 

1997:114-117): 

        ( )mn 2

SS
SS j

a −
= , 

where SSa is the adjusted sum-of-squares, SSj is the sum-of-squares for model j, n is the sample 

size, and m is the number of parameters in the model.  The best model is the one with the 

smallest adjusted sum-of-squares.  For a multiple linear regression, the number of parameters 

equals the number of regression coefficients in the model plus the intercept.  Given a 

regression equation with 5 independent variables and 1 dependent variable, there are 6 

parameters in the model.  For fully connected MLPs, the number of parameters equals the 

number of synaptic weights and biases according to  

       m = N (I + 1) + O (N + 1), 

where N = the number of neurons, I = the number of input nodes, and O = the number of 

output nodes.  For example, a fully connected MLP with 5 input nodes, 3 neurons, and 1 output 

node would have m = 22 parameters.  It is apparent that neural networks quickly grow in 

parameterization with the addition of predictors and neurons.   

 
Neural Model Interpretation 

 Once a neural network has been trained, it can be used to generate predictions, 

including discrimination scores, based on new data.  In addition to generating predictions, 

neural models can be used to increase understanding about the patterns and relationships in 

the data, and to generate hypotheses for further testing.  There are several methods for 

obtaining such information from neural models.  First, you can calculate the relevance 

(importance) of each input variable (Özesmi and Özesmi 1999): 

         

( )

[ ]∑ ∑

∑

= =

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1 1

2

1

2

w

w

n j
i

j
i

iR , 



35 

where, for a MLP with n input nodes and j neurons, Ri is the relevance of the ith input variable 

and wi is the synaptic weight(s) associated with the ith input variable.  Therefore, the relevance 

is the sum of squared synaptic weights for the ith input node divided by the sum of squared 

synaptic weights of all input nodes, and is a measure of the relative contribution of each input 

variable to the determination of network predictions.  Variables with larger relevance values 

have stronger relationships with the dependent variables than those with smaller relevance 

values, i.e., they contain more information about the variation in the dependent variable than 

less relevant variables.  This is true because input variables with larger synaptic weights exert 

more control over the network�s response to a given stimulus.   

 The second method for obtaining biologically significant information from a neural 

network model is using neural interpretation diagrams (NID) (Özesmi and Özesmi 1999).  

These diagrams appear similar to Fig. 2.1, but the lines representing the synaptic weights are 

of varying widths and colors.  The width of the synapses is determined by the relative values of 

the synaptic weights and the color of the lines by the sign (+ or �) of each synaptic weight.  

Therefore, the NID indicates which variables are exerting more influence over network 

predictions, as well as whether they are having a positive or negative influence.  However, as 

the number of input nodes and neurons increases, the interpretation of the diagrams 

becomes less straightforward. 

 Simulation with a trained MLP model offers another alternative for interpreting the 

output of a neural network (Lek et al. 1996a).  This method offers a view of how each input 

variable influences the value of the dependent variable.  Some neural modeling software 

packages contain modules for automatically running a simulation analysis (e.g., Neural 

Connections, SPSS, Inc.).  For other neural packages, a little more work is involved.  First, a 

series of datasets must be constructed in which the independent variable of interest is allowed 

to vary between its minimum and maximum value, or over ±1 SD of the mean, while all other 

independent variables are held constant at their mean, or some other biologically meaningful 

value.  These datasets are then presented to the trained model and a set of predictions is 
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produced.  By plotting these predicted values against the range of values for the input variable 

of interest, we obtain a picture of how the dependent variable responds to variation in the 

independent variable being considered, all else being equal.  If the interactive effects of 2 

variables are of interest, a dataset in which values for these variables are allowed to vary 

together while the remaining variables are held constant can be constructed and presented to 

the trained network.  Predictions can then be plotted in 3-D, producing a response surface.   

 
Accuracy Assessment 

 Because there are no significance tests associated with MLPs, there are no P -values 

by which to judge a model�s performance and extract biologically significant information.   

Depending on whether you are using the neural network to predict or to discriminate, there 

are several options for assessing the performance of the network.  The most commonly used 

method for predictive models is to calculate the squared correlation (r2) between predicted 

and observed values.   

 Simulation analyses offer a way of visualizing the effect of a single variable on the 

dependent variable.  However, simulations actually represent the effect of the variable of 

interest when all other variables are at their mean.  It is theoretically unlikely that such average 

conditions will be experienced in nature, rendering the usefulness of simulations in making 

management decisions uncertain.  The data used to train the model can be used to determine 

how well the simulations represent reality, however.  We can filter the observed data for cases 

in which all observations of independent variables are within ± 1 SE of the mean.  These cases 

can then be plotted with the simulation data to give a measure of the accuracy of the 

simulation predictions.  With small datasets with a large number of independent variables, it 

might be necessary to increase the range of SE used so that there are sufficient cases 

available to plot.   

 There are several methods of determining the accuracy of discrimination models, 

many of which are summarized by Fielding and Bell (1997), all of which are applicable to neural 
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network output (Fielding and Bell 1997, Fielding 1999b).  The simplest method for assessing 

the accuracy of a classification model is to calculate the percent correctly classified.  However, 

if misclassification errors are more important to the application, then an alternative method, 

called receiver operator characteristic (ROC) plots, are a better alternative, because they use 

all available information about the performance of the neural model (Fielding 1999b), and do 

not rely on a specific cut-off threshold (e.g., 0.5; Fielding and Bell 1997).  The area under the 

ROC curve (AUC) is a measure of the performance of the network and varies between 1 and 

0.5.  As values approach 1, the model�s performance increases.  That is, if you drew a random 

case from both classes (i.e., 0, 1), the AUC would give the probability that the discrimination 

score for the case from class 1 would be greater than the score for the case from class 0 

and, therefore, allow you to accurately discriminate the pair independent of a threshold cutoff.  

Both ROC plots and the AUC can be produced with standard, desktop statistical software (e.g., 

SIGNAL module in SYSTAT; SPSS Inc. 1999). 

 
Examples 

 Here we provide 2 simple examples of the application of MLP modeling.  The first 

example uses data on the relationship between Gambel�s quail production and December�

April precipitation (Swank and Gallizioli 1954).  The second example shows how the same 

modeling technique can be used for discrimination, using data on habitat use by masked 

bobwhites (C. v. ridgwayii) (Guthery et al. 2001).  These examples are intended to illustrate the 

application of the MLP technique to the analysis of ecological data as well as to show the 

benefits of their application.   

 
Gambel�s Quail and Winter Precipitation 

 We used data from Swank and Gallizioli (1954) on a study conducted between 1941 

and 1953 in Arizona.  These data consisted of total winter (December�April) precipitation 

(cm) and the age ratio (juveniles/adult) in the subsequent fall harvest.  Therefore, we had 1 
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input (total winter rainfall) and 1 output (fall age ratios) node in the network.  Because we had 

only 1 predictor variable (rainfall), we trained a network that consisted of a single neuron (Fig. 

2.3 inset).  Therefore, the network consisted of 4 parameters (1 synaptic weight between the 

input node and the neuron, 2 bias weights for the neuron and output node, and 1 synaptic 

weight between the neuron and the output node).  The network was trained for 400 iterations 

with an adaptive learning rate and a momentum of 0.6.  Because of the small sample (n = 13), 

we did not partition the data into training and validation sets; doing so would have reduced the 

performance of the network (Fielding 1999a:219).  The network accounted for 81% of the 

variation in the age ratios.  Although the original analysis by Swank and Gallizioli (1954) did not 

include an estimation of trend, the authors concluded that precipitation during winter was the 

factor limiting abundance during their study.  Our simulation analysis (Fig. 2.3) indicated that 

there was a relationship between fall age ratios and the previous winter�s total precipitation.  

However, this relationship appears to be a curvilinear, logistic-like relationship (Fig. 2.3).   

Production (as represented by fall age ratios) was low over a wide range of total winter rainfall, 

but increases sharply when winter rainfall exceeds 12 cm.  However, there appears to be an 

upper threshold of approximately 20 cm, after which there is no further increase in production 

with increasing precipitation.  This pattern makes sense, since there is likely an upper limit to 

the production in any year based on time and physiological constraints (Guthery and Kuvlesky 

1998).  Although the relationship could have been modeled using a variety of logistic growth  

functions, the strength of the MLP technique is that we did not have to specify the form of the 

function a priori.  Had the relationship been merely asymptotic rather than logistic, the MLP 

would have performed equally well.   

 
Nest-site Characteristics of Northern Bobwhites 

 The same technique used above for prediction can, with minor modifications, be used 

in a discrimination analysis.  We used data collected on the Mesa Vista Ranch in Roberts 

County, Texas, USA, during 2001 and 2002.  Data were collected at northern bobwhite nest  
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Fig. 2.3.  Simulation results from the Swank and Gallizioli (1954) MLP model showing the 

predicted change in fall age ratio over the observed range of variation in total winter rainfall 

(cm).  Data points represent observed fall age ratios.  Inset: a diagrammatic representation of 

the 1-1-1 MLP used to model the data presented in Swank and Gallizioli (1954).  The MLP 

contained 1 input node in the input layer (total winter rainfall), 1 neuron in the neuron layer, 

and 1 output node in the output layer (fall age ratio). 



40 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40

Total winter (Dec--April) rainfall (cm)

P
re

di
ct

ed
 a

ge
 r

at
io

 

Total 
winter 
rainfall Neuron 

Fall age 
ratio



41 

sites and random locations and included vegetation canopy height (cm), percent cover by 

dominant tallgrass, percent cover by shrubs, bare ground exposure (%), and mean screening 

cover over 3 cover classes.  The MLPs developed for this analysis contained 5 inputs, 2 

neurons, and 1 output resulting in 15 parameters in the model.  The output node represented 

nest sites and random locations and was coded 0.9 for nest sites and 0.1 for random 

locations.  The network was trained with an adaptive learning rate for 500 iterations using a 

momentum of 0.8.  The data were partitioned into training (88 cases) and validation (22 

cases) sets before analysis.  We measured accuracy using the area under the curve of the 

receiver operating characteristic (ROC) plot (Fielding and Bell 1997, Fielding 1999b).  This 

method provides a threshold-independent method for measuring accuracy.  However, for our 

graphical presentation of the results, we used an arbitrary threshold of 0.5 for discriminating 

nest sites from random locations.  We report results here only for the 3 most important 

variables in the model (relevance > 10%).   

 The MLP accounted for 40.1% of the variation in the training data and 43.6% of the 

variation in the validation data.  The area under the ROC curve was 0.842 for the training data 

and 0.768 for the testing data.  That is, there was an 84.2% probability of correctly classifying 

a randomly selected pair of nest and random points based solely on the relative difference in 

their classification scores.  The simulation analyses showed the change in suitability of a given 

location for use as a nest site as vegetation canopy height, percent cover by shrubs, and bare-

ground exposure (relevance = 32.9%, 31.2%, and 26.9%, respectively) each varied while all 

other variables were held at the mean (Fig. 2.4).  One of the important pieces of information 

revealed by the simulations is the transition points between suitable and unsuitable.  At the 

Mesa Vista Ranch, locations with canopies >40 cm were suitable for nesting (Fig. 2.4a).  

Locations with shrub cover >20% were also suitable as nest sites (Fig. 2.4b).  However, bare-

ground cover in excess of 30% rendered a particular location unsuitable for nesting (Fig. 2.4c).   
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Fig. 2.4.  Simulation results from the trained neural network model for differentiating random 

and nest locations based on vegetation characteristics on the Mesa Vista Ranch in Roberts 

County, Texas, 2001�2002.  Results are presented only for variables with >10% contribution 

to the model�s output: A) canopy height (cm), B) percent shrub cover, and C) bare-ground 

exposure (%).  Dashed horizontal lines represent an arbitrary 0.5 cutoff threshold between 

suitable and unsuitable. 
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Caveats 

 Although we have attempted to discuss limitations and peculiarities of the MLP 

technique in the text, there are a few more considerations when using MLPs for predictive or 

discriminant analysis.  First, although MLPs models can be used for statistical modeling, they 

lack a statistical background for ascribing confidence limits to their predictions.  An 

approximation can be achieved via bootstrapping (M. T. Hagan, Oklahoma State University, 

Department of Electrical and Computer Engineering, personal communication), although this 

can be computationally intensive depending on the complexity of the neural model.  Further, a 

trained neural network does not have an associated P �value, although some of the associated 

measures of accuracy (e.g., r 2) can have P �values associated with them.  However, as many 

authors have pointed out, the rampant use of P-values in the scientific literature is often 

uninformative (Cohen 1994, Anderson et al. 2000). 

 The ability of a MLP to find patterns in noisy data is both a strength and a weakness of 

the technique.  Because of the power with which they can find patterns, MLPs are sensitive to 

outliers in the training data.  A MLP will learn the appropriate responses necessary to predict 

an outlier.  However, this may weaken the model�s ability to generalize when presented with 

new data.  The MLP�s response will be distorted by the outlier, resulting in inaccurate 

predictions.  This is similar to the effect that outliers can have on the slope or intercept of a 

regression line.  Therefore, screening outliers from training and validation data will increase 

the accuracy of the models predictions when presented with new data.   

 A related problem is that of overfitting (also called overtraining; Smith 1996:113-114).  

Overfitting occurs when model predictions match the observed data too closely, resulting in a 

reduction in the model�s ability to generalize.  Although other techniques, such as multiple 

regression, are also susceptible to overfitting, it is not as great a concern because these 

techniques are generally restricted to linear relationships (Smith 1996:114).  The MLP 

technique is especially susceptible to overfitting because a MLP can approximate any function 

(Hagan et al. 1996), and can, therefore, map a dataset exactly.   
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 There are 3 techniques to prevent overfitting.  The easiest method is to gauge the 

MLP�s accuracy in predicting the validation dataset.  Since the validation data have not been 

used in model training, the MLP�s ability to accurately predict validation data can indicate when 

the model has overfit the training data (an overfit MLP would show excellent performance on 

training data, but weak performance on validation data).  Limiting the number of training 

iterations can also reduce the danger of overfitting, but there are no quantitative guidelines for 

this approach. Finally, MLPs lose power as the number of neurons, and hence the number of 

parameters, is reduced.  So elimination of neurons in the presence of overfitting may result in 

an MLP that generalizes better. 

 Finally, ANN models are phenomenological models and provide no information on the 

underlying mechanisms.  However, traditional regression and discrimination models usually 

suffer the same limitation.  Researchers must develop hypotheses for experimentation and 

testing to confirm relationships discovered in any model.  Further, although trained MLP 

models can produce accurate predictions, the model parameters (i.e., synaptic and bias 

weights) are not as readily interpretable as coefficients from a multiple regression equation.  

This has been referred to as a lack of transparency and, as such, MLPs are considered black-

box models (Boddy and Morris 1999).  We have described 3 methods for obtaining further 

biologically significant information from neural networks that can ameliorate this limitation.  

Furthermore, this lack of transparency is not as much an issue in management, where making 

accurate decisions and predictions may be paramount. 

 
Management Considerations 

 We have described an alternative method of data analysis to traditional statistical 

techniques.  Multi-layer perceptrons are non-parametric, can approximate linear and non-linear 

functions, are not constrained by multicollinearity, and can be used for both prediction and 

discrimination.  In addition, MLPs can predict and discriminate simultaneously.  Although an 

extremely powerful tool, the lack of transparency and parsimony has discouraged some 
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researchers from applying the ANN technique to their data.  We believe that this hesitancy is 

misplaced and hope that we have demonstrated not only the mechanics of the method, but 

also its usefulness.  Neural network modeling offers not only a method for elucidating complex 

relationships from multivariate datasets, but also can serve as a basis for making more 

accurate and efficient management and conservation decisions.   
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CHAPTER 3 

A NEURAL NETWORK MODEL FOR PREDICTING NORTHERN BOBWHITE ABUNDANCE IN THE  

ROLLING RED PLAINS OF OKLAHOMA1 

Introduction 

 More accurate predictions of species abundance are necessary for management and 

conservation to be effectively implemented (Leopold 1933, Peters 1992, Schneider et al. 

1992). Such predictions are increasingly important as human impacts on the environment 

increase. Artificial neural network (ANN) models are extremely powerful and allow the 

investigation of linear and non-linear responses. As such, ANN models offer ecologists a 

powerful new tool for understanding the ecologies of declining species, which can lead to more-

effective management (Colasanti 1991, Edwards and Morse 1995, Lek et al. 1996, Lek and 

Guégan 1999).  

 Current applications of ANN models include statistical modeling (Smith 1996). In this 

capacity, ANN models have considerable advantages over traditional statistical models, such 

as regression. Artificial neural networks are extremely powerful due to their capacity to learn 

from the data used during training. Another advantage of ANN models over traditional models 

is that ANNs are inherently non-linear (Haykin 1999:2). Because most ecological phenomena 

are non-linear (Maurer 1999:110), this property of ANN models makes them more useful 

than standard statistical models that are often limited to linear relationships (Lek et al. 

1996b). Even minor non-linearities in the response of one variable to another can reduce the 

                                                           
1 Lusk, J. J., F. S. Guthery, and S. J. DeMaso.  2002.  A neural network model for predicting 
northern bobwhite abundance in the Rolling Red Plains of Oklahoma.  Pages 345�355, in J. M. 
Scott, P. J. Heglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, and F. B. Samson, 
Editors, Predicting species occurrences: issues of accuracy and scale.  Island Press. Covello, 
California, USA. 
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predictive power of traditional statistical techniques (Paruelo and Tomasel 1997). Neural 

networks also do not require any a priori knowledge of the nature of the relationship between 

predictor and response variables, which makes available non-linear methods cumbersome 

(Smith 1996:19-20). ANNs find the form of the response in the data presented to them and, 

as such, are not constrained to simple curves, as are curvilinear regression techniques 

(Pedhazur 1982:406, Smith 1996:20). Finally, ANN models are non-parametric (Smith 

1996:20). Use of non-normal data for neural model development will not bias the results 

(Baran et al. 1996). 

 Much is known about bobwhite ecology, so it offers an effective means of evaluating 

the ANN technique and its applicability to management and conservation. Furthermore, an 

understanding of bobwhite climate relationships is an important component of management 

and conservation of bobwhites. Bobwhite abundance has declined over much of their range 

during the past several decades (Koerth and Guthery 1988, Brennan 1991, Church et al. 

1993, Sauer et al. 1997). Bobwhite declines may be accelerated by climate change in some 

regions of their range (Guthery et al. 2000). Although we cannot manage the weather, we can 

factor in its effects when making management plans. By working in cooperation with state 

management agencies, the results of our research can be directly and immediately applied in 

the field, completing the research � management cycle (Hejl and Granillo 1998, Kochert and 

Collopy 1998, Young and Varland 1998).  

 We developed an artificial neural network model to investigate the influence of weather 

patterns on the abundance of northern bobwhites (Colinus virginianus; bobwhites hereafter) in 

a semi-arid region of western Oklahoma, United States. An understanding of the effects of 

weather on species abundances is warranted in the light of global climate change (Root 1993, 

Schneider 1993). We also sought to evaluate the ANN modeling technique. Specifically, we 1) 

compared ANN model output with that of a traditional multiple regression model, 2) 

determined which model was better using a sums of squares criterion (Hilborn and Mangel 

1997), and 3) conducted simulation modeling using the ANN and regression models. 
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Methods 

 We modeled bobwhite abundance in the Rolling Red Plains ecoregion of Oklahoma. 

This ecoregion is in western Oklahoma, excluding the panhandle (Peoples 1991), and occupies 

5.7 million ha. Mean annual precipitation is 58 cm (Oklahoma Climatological Survey, 

unpublished data). 

 Biologists from the Oklahoma Department of Wildlife Conservation counted bobwhites 

in each county in Oklahoma. Survey routes were established in typical quail habitat (Peoples 

1991). Each 32-km route was surveyed twice annually beginning in 1991: once in August and 

once in October. Surveys were conducted either at sunrise or 1 hr before sunset. Total 

number of bobwhites observed per 32-km route was used as an index of bobwhite abundance. 

Although roadside counts such as these are prone to biases, these surveys are positively 

related to the fall harvest in Oklahoma (r > 0.70, S. DeMaso, unpublished data).   

 
Artificial Neural Networks 

 Artificial neural networks are mathematical algorithms developed to imitate the 

function of brain cells for the study of human cognition (Hagan et al. 1996:1-8, Smith 1996:1, 

Haykin 1999:6-9). However, early techniques were handicapped by their inability to handle non-

linear relationships (Hagan et al. 1996:1-4, Smith 1996:8). In the 1980s, neural network 

modeling experienced a renaissance of sorts with the development of a backpropagation 

algorithm (see below) that is capable of handling non-linear relationships (Smith 1996:20).   

 Because of their foundations in cognitive science, many of the terms used to describe 

aspects of ANNs are derived from neurobiology. What follows is a short explanation of the 

terminology of neural network modeling and a brief description of how a typical neural model 

works. A neural network typically consists of 3 layers: the input nodes, the neurons (also called 

hidden nodes or processing elements), and the output nodes. However, ANNs with more than 

one neuron layer are possible. Typically, each node in each layer is connected to each node in 

the previous layer by synapses (connection weights), and, as such, is termed fully connected 



50 

(Smith 1996:21). The synapses store the information learned by the model (Haykin 1999:2), 

and are analogous to regression coefficients (Heffelfinger et al. 1999). Each input node 

represents an independent variable. Values of input nodes are scaled so that they range 

between zero and one (Smith 1996:67). Each neuron processes the input nodes by computing 

a logistic function from the sum of the inputs:  

     ( )
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u
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1
g

+
= , 

where u is the weighted sum of the inputs (wjxj) plus a bias weight (wb): 
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(Smith 1996:40).  The logistic function above is the most widely used, but is not the only 

function available (Smith 1996:35). The values calculated by the neurons, g(u), are transferred 

to the output nodes. The output nodes perform a similar calculation and their output is 

detransformed to obtain a prediction of the independent variable (Smith 1996:22). In 

backpropagation ANNs, the error between the predicted output and the actual output is 

calculated and propagated back through the model where it is used to adjust the values of the 

synaptic weights according to one of a variety of learning rules (Hagan et al. 1996:11-40; 

Smith 1996:67). The adjustment of the synapses is termed learning (Smith 1996:59). This 

process continues iteratively, with synapses adjusted after each forward pass, and is termed 

training. With each iteration, the ANN learns more about the relationship between inputs and 

outputs and, therefore, the prediction error decreases. Training is stopped before the model 

maps the relationship between inputs and outputs exactly. When this occurs, the network is 

said to be over-trained and the model�s predictive abilities are diminished when presented with 

novel data (Hagan et al. 1996:11-22, Smith 1996:113). The use of ANNs in the ecological 

sciences requires predictability, and there is a trade-off between model generality and 

accuracy of prediction.   

 Because ANN models begin training with randomly selected connection weights, the 

minimum error achieved by a network may not be the global minimum, but only a local 
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minimum (Smith 1996:62). Therefore, there may exist an error minimum lower than the one 

achieved by the network. However, Smith (1996:62) reported that the probability of such local 

minima existing decreases as more neurons are added to the model. Determining the 

optimum number of neurons should, therefore, maximize the chances of finding the global 

minimum in the error surface. 

 
Database Construction 

 Roadside quail counts were initiated in Oklahoma in 1991, and therefore, our database 

comprised the 1991 � 1996 bobwhite surveys. We averaged each year�s August and October 

count for our models. The database also included weather and land-use data as independent 

variables. Weather data were obtained on CD-ROM from EarthInfo, Inc. (Boulder, Colorado). 

We extracted mean monthly temperature data for June, July, and August. Seasonal 

precipitation data were calculated from total monthly precipitation. We divided the year as 

follows: winter = December, January, and February; spring = March, April, and May; and 

summer = June, July, and August. Therefore, seasonal precipitation equaled total monthly 

precipitation averaged for each 3-mo period. We grouped climate data into these periods 

because they represent ecologically important phases of the bobwhite�s life cycle (breeding, 

recruitment, and winter survival). We did not include any time lag for the effects of rainfall on 

quail abundance because other networks we developed indicated this lag effect was not 

important to model predictions (J. Lusk, unpublished data). We used weather stations closest 

to each survey route for obtaining weather data. As measures of land-use and human impacts, 

we used cattle density on nonagricultural lands (total head/km2) and the proportion of county 

area in agricultural crop and hay production (hereafter, agricultural production). We selected 

these variables because they are likely to have the greatest effect on bobwhite abundance 

(Murray 1958, Roseberry and Sudkamp 1998). Bobwhite abundance in Florida varied directly 

with cultivated acreage and inversely with acreage grazed (Murray 1958). These land-use 
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variables were determined at the county level and were extracted from the Oklahoma 

Department of Agriculture�s annual crop statistics for each survey year in the database.  

 The final variable included in the data set was the number of bobwhites counted during 

the previous year�s survey.  The number of bobwhites present in 1 yr is dependent on the 

number of bobwhites present the previous year. Furthermore, survival and reproduction may 

be density dependent (Roseberry and Klimstra 1984).  

 
ANN Construction, Training, and Validation 

 Network Architecture.  We used a three-layered, backpropagation neural network. 

The network consisted of a layer of input nodes representing the independent variables, a layer 

of neurons, and an output node representing the dependent variable. Our model was fully 

connected (Smith 1996:21). We used a commercial neural-modeling software package (QNet 

for Windows, v97.02, Vesta Services, Winnetka, Illinois) for ANN development. Including too 

many neurons in the neuron layer may result in reduced prediction ability and including too few 

will limit the complexity the network can accurately learn (Smith 1996:120-123). Therefore, 

we determined the optimal number of neurons experimentally by training models in which the 

same data set and model parameters were used, but the number of neurons was varied. We 

developed models that contained 2 through 9 neurons. We limited the maximum number of 

neurons to the number of input variables in the model. We selected the model with best 

performance gauged as the correlation between the predicted counts obtained from the 

model and the actual counts in the validation data set. 

 Training Parameters.  We used an adaptive learning rule during model training (Smith 

1996). In addition, 3 parameters were adjusted to optimize model performance. These 

parameters were the number of iterations, the learning rate, and the momentum. The values 

we selected for the learning rate and momentum were within the range of those found to be 

most effective in a wide variety of neural network applications (Smith 1996:77-90). The 

number of iterations controls how long the model has to learn the pattern and relationships 
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among the variables in the model. The larger the number of iterations, the more attempts the 

network has to minimize prediction errors. We trained our model for 10,000 iterations. We 

believed that 10,000 iterations would allow the network to find the error minimum and allow 

us to stop training if the network began to over-fit the data. The learning rate controls the 

magnitude of the corrections of the synaptic weights per iteration based on the direction and 

magnitude of the change in the prediction error during past iterations (Smith 1996:77). 

Selection of too small a learning rate will increase the number of iterations necessary to reach 

an error minimum. However, selection of too large a learning rate may make the network 

unstable, resulting in oscillations in the prediction error (Hagan et al. 1996:9-5). We used a 

learning rate of 0.05. The final network parameter was momentum. Momentum determines 

how many past iterations are used in determining synaptic-weight adjustments in the current 

iteration (Smith 1996:85-88). Momentum keeps the error corrections moving in the same 

direction along the error surface (Smith 1996:85). If a large momentum value is used, it will 

take longer for weight corrections to respond to changes in the prediction error. In other 

words, synaptic weight adjustments are based on the long-term trend in prediction error, and 

momentum determines the number of iterations used in determining the long-term trend. We 

used a momentum of 0.90. This momentum is appropriate for most types of models (Smith 

1996:86). 

 Validation.  To assess the predictive ability, accuracy, and reliability of our ANN model, 

we presented the trained model with data not used in network training. We created a 

validation data set by extracting 20% of the data from the original data set. Data were rank-

ordered by the number of quail counted, and every 5th record was assigned to the validation 

data set. There were 98 records in the original database, resulting in 20 records in the 

validation data set. The systematic removal of the validation data allowed us to gauge the 

performance of the network over the entire range of the original bobwhite count data. Because 

the validation data were derived from the original data set and were, therefore, obtained under 
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the same conditions as those used for network training, the network can be considered only 

validated for this particular ecoregion in Oklahoma (Conroy 1993, Conroy et al. 1995).   

 In addition to our validation data set, we tested our model with data collected in the 

same ecoregion but not part of the training or validation data sets.  Because this model will 

eventually be used by managers to predict bobwhite abundance, this test will determine the 

utility of the model.  We presented the trained model with the 1997 data and recorded the 

accuracy of the predictions.  

 
Regression Analysis 

 We performed a multiple regression analysis to compare ANN performance with that 

of this traditional statistical model. We used the same data set used for training and validating 

the ANN model for the regression analysis. The full-model, multiple linear regression included 

all the independent variables and the dependent variable used in the ANN model. We used the 

statistical software package Statistix (Analytical Software 1996). We used the Student�s t-test 

for determining which variables were contributing (P < 0.05) to the model predictions 

(Analytical Software 1996). The correlation between each model�s predicted and actual 

bobwhite count was used as an indicator of the relative performance of each model.  

 
Model Comparison 

 We used the percent contribution of each variable to the ANN model�s predictions to 

identify important variables (Özesmi and Özesmi 1999). The percent contribution is calculated 

by dividing the sum-of-squared synaptic weights for the variable of interest by the total sum-of-

squared synaptic weights for all variables. For the regression model, we determined each 

variable�s contribution to the total, unadjusted R2 using a forward stepwise regression 

(Wilkinson 1998). We calculated the increase in R2 after each variable was entered into the 

model to apportion the amount of variance accounted for to each variable. We then divided 

each individual R2 by the total unadjusted R2 for the model.  This gave the percentage 
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contribution of each variable in the regression model to the model�s response. This percentage 

is, therefore, homologous to the percent contribution of the ANN model. Although these 

percentage contributions are not directly comparable, they allowed us to determine what 

variables were driving each model.  

 To determine if the differences in performance were due to the increased power of the 

ANN modeling technique, or to the increased parameterization of the ANN model, we used a 

sum-of-squares criterion for model comparison (Hilborn and Mangel 1997:114-117). This 

technique adjusts the sum of squared deviations (SS) by penalizing parameterization: 

     
( )mn 2
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where SSm is the sum of squared deviations for the model of interest, n is the sample size used 

to develop the model, and m is the number of parameters in the model (Hilborn and Mangel 

1997:115). This sum-of-squares criterion is similar to Mallow�s Cp (Hilborn and Mangel 

1997:116). As such, the model with the lowest adjusted sum-of-squares is selected as the 

best predictor of the dependent variable (Hilborn and Mangel 1997:116). The SS deviations 

for each model were calculated from the observed and predicted values of the bobwhite 

counts. We calculated the SS from the training data only, resulting in an n of 78. The ANN 

model had 34 parameters (one for each synapse: nine inputs x three neurons = 27, an 

additional three synapses connecting each of the neurons to the output node, and four bias 

weights, one for each neuron and output node), and the regression model had ten parameters 

(regression coefficients, one for each independent variable, and the constant).  

 
Simulation Analyses 

 Following model training and validation, we used simulations to explore the effects of 

each independent variable on ANN model predictions (Lek et al. 1996a, Heffelfinger et al. 

1999). This allowed us to further evaluate model performance. We constructed simulation 

data sets in which 1 independent variable was allowed to vary incrementally between its 

maximum and minimum value and all other variables were held constant at their mean value. 
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These data sets were then processed through the trained neural network to generate 

predicted bobwhite counts. Predicted counts were then plotted against the range of the 

variable allowed to vary to determine the response of network predictions to that particular 

variable. 

 
Results 

 We determined that 3 neurons were optimal for the data set. The ANN model 

accounted for 78% (R2) of the variation in bobwhite counts in the training data and 32% of the 

variation in bobwhite counts in the validation data (Fig. 3.1). The lower R2 for the validation data 

resulted mainly from a single outlier (Fig. 3.1). With this outlier removed, the amount of 

variation accounted for by the ANN model increased to 52%. However, we could find no 

reason for the large prediction error associated with this data point and so provide both 

results here.  Our test of the network model accounted for 17% of the variation in the 1997 

data (R2 = 0.17). The full-model regression was not significant and accounted for 6% of the 

variation in bobwhite counts (F9,68 = 1.50; P = 0.17; Fig. 3.2). The regression model accounted 

for 37% of the variation in the validation data set (R2 = 0.37; Fig. 3.2). The sum-of-squares 

criterion indicated that the regression model (SSA = 223.3) was the better predictor of 

bobwhite abundance than the ANN model (SSA = 282.1; Table 3.1). In other words, the 

increased predictive power of the ANN model was not enough to warrant increased 

complexity.  

 Although it is not possible to determine statistically the significance of the variables in 

the ANN model, we assume that the importance of independent variables is related to the 

magnitude of its contribution to predictions. Each of the independent variables contributed 

some information to the model predictions (Table 3.2). Mean August temperature and 

summer precipitation had the highest individual contributions to the network outputs, with a 

combined contribution of 32% (Table 3.2). The remaining variables also contributed to the 

ANN model�s predictions, but to a lesser extent (Table 3.2). There was one variable significant 
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Table 3.1. Parsimony analysis of the artificial neural network model and the regression model 

using the adjusted sum-of-squares (Hilborn and Mangel 1997). 

    

Model Number of 

Parameters 

Sum-of-squares Adjusted  

Sum-of-squares 

    

    

Artificial Neural Network  34   2,821.64 282.1 

Regression 10 12,950.90 223.3 
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Table 3.2. Contribution of each independent variable to the artificial neural network and 

regression models� predictions of bobwhite abundance in the Rolling Red Plains of Oklahoma.  

 
       
  Neural Network  Regression model 
       
       
Independent variable  Percent 

contribution 
 Percent 

contributiona 

t P 

       
       
Mean June temperature (C)  12.5  2 -0.75 0.4568 
       
Mean July temperature (C)  13.5  1 -0.31 0.7540 
       
Mean August temperature (C)  16.0  5  0.57 0.5702 
       
Winter precipitation (cm)  12.5  54  2.30 0.0245 
       
Spring precipitation (cm)    7.0  15 -1.47 0.1462 
       
Summer precipitation (cm)  16.0  9 -1.06 0.2913 
       
Proportion croplandb    7.0  3  0.14 0.8928 
       
Cattle densityc    7.5  0  0.17 0.8637 
       
Previous year�s bobwhite count    8.0  11  1.57 0.2218 
       
 

 a Individual R2 expressed as a percent of the total R2 (0.166) accounted for by the 

model. 

 b Proportion of county area in agricultural production. 

 c Total head per hectare of non-agricultural land. 



59 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Predicted bobwhite counts from the artificial neural network model plotted against 

the actual values in the (a) training data set and (b) the validation data set, for the Rolling Red 

Plains of western Oklahoma. The trend line represents the linear model regression of 

predicted bobwhite count on the actual bobwhite count. 
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Figure 3.2. Predicted bobwhite counts from the full model regression plotted against the 

actual values in (a) �training� data set and (b) the validation data set, for the Rolling Red Plains 

of western Oklahoma. The trend line represents the linear model regression of predicted 

bobwhite count on actual bobwhite count.   
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for the regression model: winter precipitation (Table 3.2). Winter precipitation also accounted 

for 54% of the total R2 of the regression model (Table 3.2). Only spring precipitation and the 

previous year�s bobwhite counts contributed more than 10% to the overall R2 (15% and 11%,  

respectively; Table 3.2). The density of cattle on non-agricultural land contributed nothing to the 

overall R2.  

 The Student�s t-test we used to determine significant variables in the regression model 

was limited to linear relationships. Such linear relationships did not exist for all variables as 

indicated by the ANN model. Predicted bobwhite counts increased non-linearly with increasing 

June and August mean monthly temperature. Predicted bobwhite counts increased with 

increasing June temperature until approximately 30 C, after which, predicted counts 

decreased (Fig. 3.3a). Predicted counts also increased with increasing August temperature 

until approximately 34 C, after which predicted counts also decreased (Fig. 3.3c). The 

regression model predicted a steadily decreasing count with increasing June temperatures, 

and a steadily increasing bobwhite count with increasing August temperatures (Figs. 3.3a and 

3.3c, respectively). As July temperature increased, the ANN model predicted bobwhite counts 

decreased non-linearly. However, the regression model predicted bobwhite counts would not 

respond strongly to July temperature, although the regression predictions did decrease with 

increasing July Temperature (Fig. 3.3b).  

 There was a near-linear relationship between winter precipitation and bobwhite counts 

as predicted by the ANN model (Fig. 3.4a). The regression model predicted a positive linear 

relationship (Fig. 3.4a). Increases in winter precipitation increased bobwhite counts, but counts 

decreased with both spring and summer precipitation (Figs. 3.4b and 3.4c, respectively). 

These predictions matched those of the regression model, in that they predicted decreases.  

However, the ANN model suggested non-linearities in the responses.  

 Predicted bobwhite counts reached their maximum value at mid-levels of the 

proportion of county area in agricultural production and the number of bobwhites counted  
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Fig. 3.3. Neural network simulation analyses (solid line) and regression predictions (dashed 

line) of the response of bobwhite counts in the Rolling Red Plains of western Oklahoma to 

mean monthly temperature in (a) June, (b) July, and (c) August.  Temperature is reported in 

degrees Celsius, and the same scale was used for each plot. 
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Figure 3.4. Neural network simulation results (solid line) and regression predictions (dashed 

line) of the response of bobwhite counts to seasonal precipitation in the Rolling Red Plains of 

western Oklahoma. Winter months (a) included December, January, and February; spring 

months (b) included March, April, and May; and summer months (c) included June, July, and 

August. Precipitation is reported in centimeters, but each plot has its own scale.  
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Figure 3.5. Neural network simulation results (solid line) and regression predictions (dashed 

line) of the response of bobwhite counts in the Rolling Red Plains of western Oklahoma to (a) 

the proportion of county area in agricultural production, (b) cattle density on non-agricultural 

lands, and (c) the previous year�s bobwhite count. Cattle density is reported as total number of 

head per km2 of non-agricultural land.  
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during the previous year�s survey (Figs 3.5a and 3.5c, respectively). The regression model 

predicted little response of bobwhite counts to the proportion of county area in agriculture, but  

there was a positive trend (Fig. 3.5a). The regression model also predicted a linear increase in 

bobwhite counts with increasing previous year�s counts (Fig. 3.5c). Predicted bobwhite counts 

also increased near-linearly with increasing cattle density, although the regression model 

showed little effect of cattle density on bobwhite counts (Fig. 3.5b). 

 
Discussion 

 The application of ANN modeling techniques to the study of ecological phenomena has 

great potential for understanding complex, dynamic processes (Colasanti 1991, Edwards and 

Morse 1995, Lek et al. 1996b). However, to date, little research has made use of this tool. 

When applied to an ecological research problem, ANN models have consistently out-

performed traditional statistical models (Recknagel et al. 1997, Maier et al. 1998). Artificial 

neural networks have proved highly effective in predicting aboveground biomass in the 

tallgrass prairie (Olson and Cochran 1998). Compared to regression models, ANNs predicted 

biomass and described changes in standing biomass with substantially greater accuracy. 

Heffelfinger et al. (1999) used ANNs to accurately predict call counts and age ratios for 

Gambel�s quail (Callipepla gambelii) in Arizona from precipitation and temperature data. Other 

studies have used ANNs to accurately predict trout (Salmo trutta) abundance (Baran et al. 

1996, Lek et al. 1996a). Mastrorillo et al. (1997) used a neural model to correctly predict the 

presence of three small-bodied fish in freshwater streams in >80% of cases. Özesmi and 

Özesmi (1999) compared ANNs with logistic regression to classify locations in a GIS database 

as nest or non-nest sites for red-winged blackbirds (Agelaius phoencieus) and marsh wrens 

(Cistothorus palustris) based on site characteristics.  Their ANN models out-performed logistic 

regressions in all but one case. The better performance of the ANN model resulted because 

nest-site selection by these marsh-nesting species was a non-linear process.  
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 For our data set, the regression model performed better than the ANN model based 

on the adjusted sum-of-squares criterion. Our neural model also performed poorly when 

presented with 1997 data, but the weather in 1997 was outside the range of conditions used 

to train the model.  We have found that the magnitude of deviations from long-term mean 

conditions may have a greater effect on bobwhite populations than yearly weather conditions 

(Lusk et al. 2001).  This may in part be responsible for the network�s poor performance in 

1997.  However, the additional knowledge gained by using the ANN modeling technique is 

essential for successful management. Management and conservation decisions based on 

incomplete or misleading information can only harm the species of concern. Simplicity is only 

one criterion by which to judge a model�s performance. Also important is the ability of the 

model to approximate the process under investigation (Burnham and Anderson 1998:23). The 

ANN model provided more biologically meaningful predictions of responses, because the ANN 

was able to find the non-linear elements of the responses. We believe that the length of the 

data set may have limited our results.  The six years for which we have data may not have 

sufficiently captured the response of bobwhites to climate variables. Dynamics in semiarid 

areas are characterized by episodic events that require long-term data. Model accuracy is a 

function of sample size (Smith 1996:134). Furthermore, with small sample sizes, such as 

those used in our study, the effects of noise on the model�s performance is amplified, especially 

if the relationship being modeled is complex (Smith 1996:115). Too small of a sample size can 

reduce the ability of the ANN model to generalize, but there are no sample-size restrictions  to 

the application of neural networks (Paruelo and Tomasel 1997). 

 Using simulations (Lek et al. 1996a, Heffelfinger et al. 1999, Özesmi and Özesmi 

1999), ANN models provide information on the effects of the independent variables on 

bobwhite abundance. This provides not only a better understanding of bobwhite ecology, but 

also allows us to evaluate the ANN model�s explanatory ability. June, July, and August 

temperatures were important contributors to the model�s predictions (Table 3.2); however, 

August temperature contributed more than June or July temperatures. The higher 
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importance of August temperature may be an artifact of counting quail in the fall. Because 

climate conditions can affect the daily activity patterns of bobwhites (Roseberry and Klimstra 

1984), conditions during the roadside counts may have a larger influence on the network�s 

predictions. This influence is the result of the more direct effect of the conditions during the 

count on the count�s outcome. Our model predicted that bobwhite abundance would increase 

with June and August temperature, but only to a certain temperature, after which counts 

declined. The increase in counts predicted at high June temperatures is probably the result of 

too few data points in that part of the range, making the predictions susceptible to outliers. 

Had we limited our simulation data set to within 1 sd of the mean, the effects of outliers may 

have been reduced. Predicted bobwhite counts decreased with increasing July temperature. 

Summer heat decreased California quail (Callipepla californica) chick survival in California 

(Sumner 1935). Quail productivity was negatively associated with summer temperature in 

northwest Florida (Murray 1958), and July-August temperature was negatively associated with 

the length of the nesting season and positively associated with nest abandonment in southern 

Illinois (Klimstra and Roseberry 1975). July temperature decreased the age ratios of Gambel�s 

quail in Arizona (Heffelfinger et al. 1999). Bobwhites in Texas avoided habitat space-time 

(Guthery 1997) in which the operative temperature was >39 C (Forrester et al. 1998). 

 Our ANN model indicated a near-linear, positive relationship between winter 

precipitation and predicted bobwhite counts.  This near-linearity probably accounts for the 

significance of this variable in the regression model (Table 3.2). Winter precipitation may 

indirectly influence bobwhite abundance through increased spring vegetation, seed, and insect 

production (Swank and Gallizioli 1954, Sowls 1960). Scaled quail (Callipepla squamata) 

abundance in Texas (Giuliano and Lutz 1993) and bobwhite harvest in Illinois (Edwards 1972) 

were strongly, positively correlated with January-March precipitation. Spring and summer 

precipitation had negative curvilinear relationships with bobwhite abundance. Among 

gallinaceous birds, young are susceptible to precipitation for the first few days of life (Newton 

1998) and increased rain early in the hatching season may lead to increased juvenile mortality 
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(Sumner 1935). Although most studies of the effects of spring precipitation on quail 

abundance report a non-significant relationship (e.g., Campbell 1968, Campbell et al. 1973, 

Heffelfinger et al. 1999), spring rain might affect breeding behavior adversely, therefore, 

reducing fall abundance. 

 Similar to the findings of Roseberry and Sudkamp (1998), our model predicted 

bobwhite abundance to be greatest at intermediate levels of agricultural land use. As 

agricultural land increases, initially there may not be a net loss of usable space-time for quail. 

Bobwhite abundance at low proportions of agricultural use may result from an abundance of 

mid- to late-successional habitat, less suitable for bobwhites. Similar to the intermediate 

disturbance hypothesis (Connell 1978), intermediate levels of agriculture may provide 

bobwhites with more of the habitat components necessary to support large populations than 

less agriculturally developed lands. Other research has indicated that bobwhites are 

associated with patchy heterogeneous landscapes with moderate levels of grassland, row 

crop, and woody edge (Roseberry and Sudkamp 1998). However, as the proportion of 

agricultural land increases, there is a net loss of usable space-time, any further edge becomes 

redundant (Guthery and Bingham 1992), and quail abundance declines.  

 Predicted bobwhite counts increased with increasing cattle density.  This is counter to 

other research that indicates grazing negatively influences quail habitat (Schemnitz 1961). 

However, Spears et al. (1993) found that site productivity governs the seral stage most 

important to bobwhites. Early successional stages are favorable for bobwhites on more 

productive sites, whereas late seral stages are favorable on less productive sites. Because 

western Oklahoma is semi-arid, and therefore, less productive, the positive response we found 

(Fig. 3.5b) is not consistent with expectations.  

 Predicted bobwhite abundance showed a weak but discernible density-dependent 

effect in relation to the previous year�s bobwhite count. For bobwhite counts higher than 

approximately 25, predicted counts for the next fall decreased. The implication of this result is 

that at current levels of habitat space-time availability, bobwhite abundances above a certain 
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level will adversely affect the population as a whole. In other words, the available habitat space-

time can only support a given number of bobwhites, regardless of climate conditions beneficial 

to bobwhite increase.  

 
Conclusions 

 We believe ANN modeling techniques offer wildlife managers and conservationists with 

a valuable and powerful tool for managing species of concern. Although the ANN model did not 

outperform the regression model based on the adjusted sum-of-squares criterion, the ANN 

model did provide a better understanding of how bobwhite abundances in the Rolling Red 

Plains of Oklahoma respond to climate and land-use variables. Non-linear relationships, 

although widespread in nature, are often ignored by researchers (Gates et al. 1994). The 

ability of the ANN technique to find the non-linear responses of quail abundance to climate 

variables makes ANN models preferred to traditional linear and non-linear techniques, that 

require the specification of the curvilinear response variable. A lack of knowledge of the 

ecologies of many species makes specification of the correct polynomial term a matter of trial 

and error.  

 Model validation indicated that the ANN technique was accurate for this region of 

Oklahoma, but the increase in power was only due to the increased parameterization of the 

ANN model. However, use of linear modeling techniques may result in a misunderstanding of 

the factors influencing a particular process.  Our regression analysis was only able to identify 

the linear relationship between winter rain and bobwhite abundance. Any management or 

conservation plan must take into account climatic factors if it is to be successfully 

implemented. Furthermore, the ANN model we described can continue to learn as more data 

become available, and can, therefore, be used as part of an adaptive management plan 

(Morrison et al. 1998).  Our analysis was limited to a 5-yr data set that may not have 

represented the entire spectrum of response by bobwhites to climate variables. The 

predictions of the simulation analyses can be used to generate hypotheses suitable for 
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empirical testing (Recknagel et al. 1997). Simulations also can be used to judge the biological 

realism of the ANN predictions and increase the understanding of the factors influencing a 

species� abundance. The use of ANN models also can allow more cost-effective management 

because the data used to generate the predictions are readily available and cheaply obtained. 

Our model will be used by the Oklahoma Department of Wildlife Conservation to estimate 

bobwhite abundances for the management of the fall harvest. A similar modeling effort is 

underway for Texas Parks and Wildlife Department. We will develop a model that will be used 

by managers in better managing bobwhites in Texas. 
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CHAPTER 4 

NORTHERN BOBWHITE (COLINUS VIRGINIANUS) ABUNDANCE IN RELATION TO YEARLY 

WEATHER AND LONG-TERM CLIMATE PATTERNS1 

Abstract 

 We used a multilayered, backpropagation neural network to investigate the relative 

effects of yearly weather and long-term climate patterns on the abundance of northern 

bobwhites (Colinus virginianus: hereafter, bobwhite) in Oklahoma, USA.  Bobwhite populations 

have been declining for several decades across the United States, and predicted global climate 

change might accelerate the rate of decline.  We were interested in whether bobwhite 

abundance was more responsive to yearly precipitation and temperature, or to annual 

deviations from long-term mean climate patterns.  We used roadside count data collected over 

a 6-year period (1991-1997) by the Oklahoma Department of Wildlife Conservation as a 

measure of bobwhite abundance.  We standardized quail counts among counties by calculating 

the standard normal deviate for each county.  Weather data were obtained from weather 

stations closest to the roadside-count route.  We had 280 training cases and 68 test--

validation cases.  Two data sets were constructed; one using yearly weather data (actual 

rainfall and temperature) and the second using annual deviations from long-term mean values.  

We conducted simulation analyses to determine the nature of the relationship between each 

dependent variable and the standardized bobwhite counts.  A neural network with 8 neurons 

was most efficient for the yearly weather data, accounting for 25% of the variation in the 

training data.  The adjusted sum-of-squares for this model was 2.42.  A 4-neuron network was 

                                                           
1 Lusk, J. J, F. S. Guthery, and S. J. DeMaso.  2001.  Northern bobwhite (Colinus virginianus) 
abundance in relation to yearly weather and long-term climate patterns.  Ecological Modelling 
146: 3�15. 
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selected for the deviation-from-normal data set, accounting for 23% of the variation in the 

training data.  The adjusted sum-of-squares for the deviation model was 1.44, indicating it 

performed better than the model for yearly weather patterns.  Deviation from long-term mean 

July and August temperatures combined contributed 31.5% to the climate network�s 

predictions, and deviations from mean winter, spring, and summer precipitation combined 

contributed 42.8% to the network�s predictions.  As July temperature increased over the long-

term mean, the number of bobwhites counted increased over the route mean, but the 

relationship decelerated at high July temperatures.  Predicted increases in bobwhites were 

highest when August temperatures were below the mean and decreased rapidly for all 

temperatures greater than the mean. Predicted bobwhite counts increased asymptotically as 

winter rain increased over the long-term mean, but were greatest at mean spring-rainfall 

amounts and at below average amounts of summer rainfall.  We conclude that the absolute 

changes in yearly weather pattern predicted by some global change models will not have as 

great an impact on bobwhite abundance as will the magnitude of the deviations of these values 

from the climate bobwhites are adapted to in this portion of their range. 

 
Introduction 

Global climate-change scenarios predict an increase in the mean annual temperature of 1�4 

°C by the middle of next century (Peters, 1992; Schneider, 1993).  Concurrent with these 

changes, overall climate patterns will shift.  Global climate change may result in changes in 

frequency and timing of rainfall, increases in the frequency of catastrophic weather events 

(Houghton et al., 1990), and changes in diurnal temperature patterns (Easterling et al., 1997).  

Regional patterns in climate change also may vary (LaRoe, 1991).  For the Great Plains, 

climate change is predicted to bring an overall decrease in precipitation, increased 

evapotranspiration, and mean annual temperatures greater than the predicted global mean 

(LaRoe, 1991).   



78 

 The impacts of these climate changes on wildlife species may result either from direct 

impacts of weather events or through an inability of particular species to adapt to rapid 

changes in climate patterns.  First, wildlife species may not be able to physiologically tolerate 

certain weather conditions (Dawson, 1992; Dunham, 1993).  The increased temperatures 

may be lethal to some species that exist near the upper limits of their thermal tolerance 

(Tracy, 1992).  Further, there may be direct losses due to flooding, blizzards, drought, and 

heavy rains (weather events) in certain areas.  As they increase in frequency, these 

catastrophic factors could become significant sources of mortality.  Alternatively, wildlife 

species may not be able to adapt their life-history strategies, breeding phenology, or behavior 

rapidly enough to keep pace with climate change (Rubenstein, 1992).  In some species, the 

timing of breeding is tied to peak food availability.  Changes in rainfall seasonality could shift 

peak food abundance outside the breeding and rearing periods.  An inability to track such shifts 

would result in reduced production.  In some cases, climate changes may have positive effects 

for production by increasing the length of the breeding season (Brown et al., 1999).    

 Although both effects of weather and climate patterns likely play a role in the 

abundances of species within their ranges, an understanding of the relative strengths of each 

factor may help managers better prepare for the coming changes to the biosphere.  We 

investigated the effects of climate and weather on population abundances of northern 

bobwhites in Oklahoma using artificial neural networks.  We also employed simulation analyses 

to explore the effects of individual weather and climate variables on bobwhite abundance and 

to help evaluate network predictions.  Specifically, we attempted to determine whether annual 

indices of bobwhite abundance were more sensitive to weather conditions within years or to 

the deviations of these weather patterns from long-term trends.  We accomplished this using 

a neural network modeling technique (Smith, 1996; Haykin, 1999).  This modeling technique 

allows for non-linear and linear relationships between predictor and response variables without 

a priori specification of the form of the relationship.  Further, because it adapts and learns 
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from the data presented to it, it typically out-performs traditional statistical modeling 

techniques (Smith, 1996).   

 
Methods 

Northern Bobwhites 

 The northern bobwhite is a quail of the order Galliformes, family Phasianidae (Gill, 

1995).  The bobwhite ranges over much of the southeastern and central United States, with 

populations as far north as Wisconsin (Kaufman, 1996).  Typical habitat characteristics for 

bobwhites include grasslands, crop fields, and brushy cover (Edminster, 1954), but the optimal 

configurations and proportions of habitat components for bobwhites can vary widely over most 

of their range (Guthery, 1999).   

 Annual indices of bobwhite abundance estimated using data from the North American 

Breeding Bird Survey (Bystrak, 1981) indicate a consistent long-term decline of 2.4%/year 

(Church et al., 1993; Sauer et al., 1997).  However, the rate of decline accelerated between 

1982 and 1991 to 3.5%/year (Church et al., 1993).  In Oklahoma, the long-term rate of 

decline has not been as severe, averaging only 0.20%/year (Sauer et al., 1997), but during 

the period between 1993 and 1996, the rate of decline in Oklahoma accelerated to 

7.36%/year (Sauer et al., 1997).  

 
Abundance Indices 

 We used roadside count data collected by the Oklahoma Department of Wildlife 

Conservation (ODWC) in each county in Oklahoma, excluding Oklahoma and Tulsa counties, 

which had large urban areas (Peoples, 1991).  Data have been collected by ODWC since 

1991.  Biologists from ODWC established each 32-km route along secondary roads in what 

they determined to be typical quail habitat (Peoples, 1991) resulting in 78 routes across the 

entire state.  Routes remained the same each year of the survey.  ODWC biologists conducted 

bobwhite counts by driving each route either at sunrise or 1 hr before sunset, and counting 
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the number of bobwhites observed along the route.  Surveys were conducted twice each year, 

once in August and once in October.  We used the total number of bobwhites observed per 

route as an index of abundance.  This index is positively correlated with fall hunter-harvest (r > 

0.70, S. DeMaso, unpublished data).  We averaged the August and October count for each 

year and standardized counts among counties by calculating the standard normal deviate for 

each averaged count.  The standard normal deviate is calculated by subtracting the mean 

count for each route from each individual yearly average, and dividing this value by the 

standard deviation for all routes.  Therefore, this normalization expresses bobwhite counts as 

deviations from the route mean per unit standard deviation.  Positive values indicate a count 

that was greater than the mean for a particular year corrected for variation in the data.  

Negative values indicate the opposite.   

 
Climate and Weather Variables 

 Although they are often used interchangeably in the literature, we differentiate 

between weather, which we define as short-term rainfall and temperature patterns within 

years, and climate, which we define as the long-term pattern in precipitation and temperature 

across years.  We used data from the National Climate Data Center (NCDC) from weather 

stations closest to each route (EarthInfo, Inc., Boulder, Colorado, USA 1997).  We used mean 

monthly maximum temperature for June, July, and August.  We selected these months 

because they occur during the peak of hatching and brood-rearing (Klimstra and Roseberry, 

1975; Roseberry and Klimstra, 1984).  We chose the maximum daily temperature rather 

than the minimum because these months are typically the hottest in this region of the country 

and, therefore, bobwhites are more likely to respond to maximum temperatures.  Previous 

research has indicated that bobwhites avoid operative temperatures >39°C (Forrester et al., 

1998), where operative temperature is a composite of air temperature, radiant energy input 

from the sun, and wind (Campbell and Norman, 1998, pp. 198-200).  Case and Robel (1974) 

reported that exposure to temperatures ≥40°C was lethal for bobwhites.  We used total 
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monthly precipitation averaged for winter (December, January, and February), spring (March, 

April, and May), and summer (June, July, and August).  We selected these months because 

they correspond to biologically important phases of the bobwhite�s life cycle (winter survival, 

breeding, and recruitment).   

  Data were obtained for each year of the bobwhite survey (1991-1997).  We 

constructed 2 databases for analyses.  The first contained the actual weather values for a 

particular year for each of the above-described categories.  This was the weather-effects 

database.  The second database was the climate-effects database, and contained the deviation 

of yearly weather values from the long-term mean.  We calculated these deviations by 

subtracting the long-term means (i.e., the mean for the entire record history [range: 30--100 

years]) from the yearly data.  For each year in each database, we included the standard normal 

deviate of the previous year�s count.  We included this variable to account for density-

dependent effects on bobwhite production (Errington, 1945; Roseberry and Klimstra, 1984).  

Inclusion of this variable reduced our sample size because we had no counts prior to 1991 

from which to calculate previous-year�s counts.   

 
Land-use Variables 

 In addition to the weather and climate data, each database also included land-use 

variables that may also contribute to bobwhite abundance.  Modeling for the variation in quail 

abundance contributed by land-use variables permitted greater sensitivity in analyses of 

weather and climate effects.  We used the proportion of each county�s area that was in crop 

production.  These data were obtained from the Oklahoma Department of Agriculture�s annual 

crop statistics reports (Oklahoma Agricultural Statistics Service, 1991-1997).  These reports 

list county-level hectarages for a variety of crops, but do not report hectarages below 

approximately 202 ha.  Therefore, our analysis may slightly underestimate the true proportion 

of each county in cultivation.   Another major land use in Oklahoma is livestock grazing.  We 

used the total head of cattle per km2 of non-cultivated land as an estimate of grazing intensity.  
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Livestock data also were obtained from the Oklahoma Department of Agriculture (Oklahoma 

Agricultural Statistics Service, 1991-1997).   

 
Neural Networks 

 We used a multilayered, backpropagation neural network architecture (Hagan et al. 

1996, Smith 1996).  Models were constructed and trained using QNet for Windows (v97.02, 

Vesta Services, Winnetka, Illinois, USA).  Our networks had 3 layers: an input layer containing 

the independent variables, a neuron layer, and an output layer containing the dependent 

variable.  Our network was fully connected (Smith, 1996, p. 21).  The number of neurons in the 

neuron layer was experimentally determined by allowing the number of neurons to vary 

between 2 and 9 in a series of networks, where all other parameters were held constant.  We 

selected the model with the highest correlation between predicted counts and the validation 

data set (see below).  Including too few or too many neurons may result in low accuracy of the 

network�s predictions (Smith, 1996, pp. 120-123).  The neurons applied a sigmoid transfer-

function (Smith, 1996, p. 40; Hagan et al., 1996, pp. 2 � 3-2 � 6) to the inputs using an 

adaptive learning rule (Haykin, 1999).   

 Before network training commenced, we divided the data into 2 subsets.  The first 

subset was used to train the model.  Model training is the process by which the network learns 

the response patterns of the dependent variable or variables to variation in the independent 

variables (Smith, 1996, p. 50).   During training, the network learns by adjusting the values of 

the connection weights to minimize the mean square error during the next forward pass 

through the network.  The second subset was used to validate the model, and was not used in 

network training.  Although not a true validation of the model (Conroy, 1993; Conroy et al., 

1995; Rykiel, 1996), we believe that this technique provided a means of assessing accuracy 

and reliability of the network�s predictions.  To subdivide the data, we rank-ordered cases by 

normalized counts, then selecting every 5th case.  Therefore, roughly 20% of our total database 
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was used to evaluate model accuracy.  There were 280 cases in the training data subset and 

68 in the validations data subset. 

 Neural networks were trained for 5,000 iterations.  Preliminary analyses indicated 

that the change in network error had reached a plateau by this time.  We used a learning rate 

of 0.05 and a momentum of 0.90.  These values provided the best relative performance 

during preliminary runs.  The learning rate controls the magnitude of the changes made to the 

connection weights, and therefore, controls the speed at which the network learns (Smith, 

1996, p. 77; Hagan et al., 1996, p. 9�5).  The momentum controls how many past iterations 

to consider when making connection-weight adjustments, and therefore, prevents the network 

from repeating past mistakes (Smith, 1996, pp. 85-88).  The momentum also affects the 

speed at which the network can learn.   

 Trained models were used in simulation analyses to determine the nature of the 

relationship between predictor and response variables (Lek et al., 1996).  We constructed 

data sets in which the variable of interest was allowed to vary between its minimum and 

maximum value.  All other variables were held constant at their mean value.  We arbitrarily 

decided on using the mean value because it represents, by definition, the average condition for 

that variable.  However, it should be noted that the response we obtained using the mean value 

of non-target variables in the simulations may differ quantitatively from those we could have 

obtained using the median, for example.  We did not expect major qualitative differences 

between the responses, however.  In addition to these simulations, we also calculated the 

percent contribution of each individual variable to each network�s predictions (Özesmi and 

Özesmi, 1999).  This is calculated by summing the squared connection weights of each 

independent variable and dividing this by the sum of squared weights for all independent 

variables, and is a measure of the influence of each variable in the model.   

 To determine the relative effects of weather and climate on bobwhite abundance, we 

used an adjusted sum-of-squares technique (Hilborn and Mangel, 1997).  This adjusts the sum-

of-squares by penalizing the addition of parameters (Hilborn and Mangel, 1997).  Networks 
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with the lowest adjusted sum-of-squares account for the most variation in the data among a 

group of selected models, in the simplest manner.  Our logic was akin to that of �Occam�s 

Razor�: we selected the model that accounted for the most variation in annual normalized 

bobwhite counts corrected for the level of parameterization.  The adjusted sum-of-squares 

criterion (SSA) is calculated as: 

     
( )mn 2

SS
SS m

a −
= , 

where SSm is the sum-of-squared deviations for the model of interest, n is the sample size used 

to develop the model, and m is the number of parameters in the model (Hilborn and Mangel, 

1997).  We used the sum-of-squares from the training data only for making these calculations.  

We considered all connection and bias weights as parameters in this analysis. 

 
Results 

Neural Models 

 A network with 8 neurons was the best predictor of normalized bobwhite counts from 

weather data.  This network accounted for 25% of the variation in the training data (r = 0.50).  

Maximum daily temperature in June, July, and August contributed 37% to the weather 

network�s predictions (Table 4.1).  The single greatest contributor to the weather network�s 

predictions was cattle density on non-cultivated land (18%, Table 4.1).   

 A 4-neuron network performed best for the climate data, accounting for 23% of the 

variation (r = 0.48).  Deviations from mean July and August daily maximum temperatures 

collectively contributed 31.5% to the climate network�s predictions, and July was the single 

largest contributor at 18.3% (Table 4.1).  Deviations from mean total winter, spring, and 

summer precipitation contributed 42.8% to the network�s predictions (Table 4.1). 

 The adjusted sum-of-squares analysis indicated that the climate network predicted the 

normalized bobwhite counts better than the weather model when parameterization was taken  
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Table 4.1.  Independent variable contributions to neural network predictions of normalized 

bobwhite counts (1991-1997) in Oklahoma based on weather and climate data.  Percent 

contribution reflects the importance of a particular variable in determining a neural network�s 

predictions relative to other variables. 

    
Variablea Percent Contributionb 

    
   
 Weather Network  Climate Network 
    
    
June Temperature/Deviation 12.0    5.0 
    
July Temperature/Deviation 14.5  18.5 
    
August Temperature/Deviation 11.5  13.5 
    
Winter Precipitation/Deviation 11.0  17.0 
    
Spring Precipitation/Deviation   2.0  13.0 
    
Summer Precipitation/Deviation 13.0  12.5 
    
Proportion of County Area in Cultivation 11.0    7.0 
    
Cattle Density on Non-cultivated Land 18.0    5.5 
    
Previous Year�s Normalized Bobwhite 
Count 

  6.0    7.0 

    
  

 a  Variables for the weather network were the observed weather values (mean 

maximum temperature, mean total precipitation) for each year.  Variables for the climate 

network were the deviations of the yearly weather values from the long-term mean weather 

values. 

 b  Percent contribution is calculated by dividing the sum of the squared connection 

weights for a particular independent variable by the sum of the squared connection weights of 

all independent variables combined. 
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into account.  The sum-of-squares for the weather model was 291.0 and for the climate model 

was 286.5.  Each model had a sample size of 279 training cases.  There were 80 parameters  

in the weather network and 40 parameters in the climate model.  These values resulted in 

adjusted sum-of-squares for the weather network of 2.43 and for the climate network of 1.44.  

  
Simulation Analyses 

 Although all variables contributed to network predictions, some variables had relatively 

minor contributions.  For our weather network, spring precipitation and last year�s normalized 

counts both contributed <10% (Table 4.1).  We therefore restrict our discussion to the 

remaining variables for the weather simulations.  However, we provide the simulation results 

for the low-contribution variables in Figure 4.1.   

 As June temperature increased past approximately 31°C, the weather network 

predicted that bobwhite counts will be less than the route mean (Fig. 4.1a).  Below this 

temperature, counts were predicted to be slightly more than the route mean (Fig. 4.1a).  An 

opposite trend was observed for July temperature (Fig. 4.1b).  At July temperatures below 

33°C, counts were predicted to be less than average, but above this temperature bobwhite 

counts increased above the mean count (Fig. 4.1b).  August temperature had a more 

predictable effect, similar to that of June temperature.  Bobwhite counts increased above the 

mean with increasing August temperature, but were less than the mean below approximately 

26°C and above approximately 33°C (Fig. 4.1c).   

 The weather network�s predictions for winter precipitation indicated that counts 

continued to increase above the mean as precipitation increased above 50 mm (Fig. 4.1d).  

The effects of summer precipitation showed counts above the mean, except when precipitation 

was between approximately 110 and approximately 170 mm (Fig. 4.1f).   

 Land-use variables contributed substantially to the network�s predictions (Table 4.1).  

The weather network predicted that bobwhite counts that were greater than the mean count  
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Fig. 4.1.  Results of simulation analyses of the independent variables� effects on normalized 

bobwhite counts in Oklahoma using the weather neural network.  Variables of interest are the 

observed weather conditions and landscape variables for a particular year: June (a), July (b), 

and August (c) mean maximum temperature; winter (d), spring (e), and summer (f) mean total 

precipitation; and the proportion of county area in cultivation (g), density of cattle on non-

cultivated land (h), and the previous year�s normalized bobwhite count (i). 
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when the proportion of area in cultivation exceeded 0.15 (Fig. 4.1g), and this relationship was 

nearly linear.  The negative relationship between cattle density on non-cultivated lands and  

normalized quail counts was also nearly linear, but counts were predicted to be lower than the 

mean for almost all cattle densities (Fig. 4.1h).   

 Like the weather network, some variables in the climate model contributed relatively 

little to the network�s predictions (Table 4.1).  For the climate model, all land-use variables, last 

year�s normalized counts, and June temperature contributed <10%.  Again, we restricted our 

discussion to variables contributing >10%, but provide simulation results for all variables in 

Figure 4.2.   

 Positive deviations of July temperature from the long-term mean resulted in higher 

bobwhite counts (Fig. 4.2b).  Predicted counts did not fall below the mean counts until 

temperature deviated more than �4°C from normal (Fig. 4.2b).  However, August 

temperatures below the mean resulted in increased predicted bobwhite counts and 

temperatures above the mean by more than 2°C resulted in below average counts (Fig. 4.2c).   

 Positive deviations from long-term winter precipitation resulted in predicted counts 

above the mean (Fig. 4.2d).  Counts did not fall below the mean until precipitation fell 30 mm 

below normal (Fig. 4.2d).  Above-average counts were predicted over a wide range of 

deviations from mean spring rain, but were highest near the mean (Fig. 4.2e).  Both excessive 

(>70 mm above mean) and insufficient (<55 mm below mean) spring rain resulted in below 

average counts.  A similar pattern was observed for summer rain (Fig. 4.2f).  However, the 

peak increase in predicted counts occurred when rain was approximately 40 mm below the 

summer mean.  Bobwhite counts less than the mean were predicted only when precipitation 

was 130 mm or more above the summer mean.   

 
Discussion 

 Climate changes predicted by the current generation of simulation models, if accurate, 

will undoubtedly have consequences for wildlife species in almost every ecosystem.   



90 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Results of simulation analyses of the independent variables� effects on normalized 

bobwhite counts in Oklahoma using the climate neural network.  The variables in this network 

were the deviations of annual weather conditions from long-term mean conditions and 

landscape variables: deviation from long-term mean June (a), July (b) and August (c) mean 

maximum temperature; deviation from long-term mean winter (d), spring (e), and summer (f) 

mean total precipitation; and the proportion of county area in cultivation (g), density of cattle on 

non-cultivated land (h), and the previous year�s normalized bobwhite count (i).   
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Understanding the ways in which particular species are susceptible to climate change is an 

important first step in preparing for future management decisions.  Our results showed that  

the climate network was more parsimonious than the weather network.  Therefore, bobwhite 

population abundance may be more sensitive to the variation in weather from long-term mean 

climate conditions than to the magnitude of the weather variables.  In other words, it may not 

be so much how much rain falls, as it is how much more or less rain falls than normal.  The 

magnitude of the deviation from normal conditions may limit quail production or survival if 

bobwhites have a small thermal-tolerance around mean conditions to which they have adapted.   

Although the thermal neutral zone of a particular species is relatively invariant across their 

ranges, a species may still adapt to local, mean conditions within the thermal neutral zone.  

This is not to say that weather conditions do not impact populations; direct losses to weather 

conditions undoubtedly occur (Errington, 1936, 1939, 1941; Roseberry, 1964).   

 Our simulation analyses also provided insights into the relationships between climate 

and weather patterns and bobwhite abundance, and provided a method for assessing the 

accuracy of the network�s predictions.  Although weather effects were of secondary 

importance in our analyses, they can still impact survival and production.  Further, most 

research has only investigated weather-pattern effects.  So, we include the simulations from 

the weather network here.  For June temperatures higher than approximately 31°C and 

August temperatures higher than approximately 33.5°C, bobwhite abundance was predicted 

to be below the mean abundance over the entire survey period.  There was also a decrease in 

bobwhite abundance observed when August temperatures exceeded 1.5°C above the long-

term mean.  These results are in general agreement with previous research.  Bobwhite 

production in northwestern Florida, USA, was negatively associated with summer temperature 

(Murray, 1958).  The length of the nesting season, during a long-term study of bobwhites in 

southern Illinois, USA, was negatively associated with July-August temperature (Klimstra and 

Roseberry, 1975).  This same study reported an increase in nest abandonment with 

increasing July-August temperature (Klimstra and Roseberry, 1975).  Bobwhites avoided 
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habitat space�time (Guthery, 1997) in which operative temperatures exceeded 39°C in Texas, 

USA (Forrester et al., 1998; Guthery, 2000), 32°C in Sonora, Mexico, and 29°C in Arizona, 

USA (Guthery, 2000).  Other quail species have been reported to have similar responses to 

summer heat.  Chick survival decreased with increasing summer heat among California quail 

(Callipepla californica) in California, USA (Sumner, 1935) and Gambel�s quail (Callipepla 

gambelii) production declined with increasing July temperature in Arizona, USA (Heffelfinger et 

al., 1999).  Simulations for July temperature showed an increase in bobwhite counts above the 

mean as July temperature increased or increased above the mean.  Klimstra and Roseberry 

(1975) reported that 75% of bobwhite hatchings occur during the 9-week period between 17 

June and 18 August in southern Illinois, USA.  Because of the surge in juveniles during this 

period, temperature effects may be muted to some extent.  However, high temperatures 

during the breeding season have been linked to reduced laying periods for bobwhites (Kilmstra 

and Roseberry, 1975), and female bobwhites stop laying at high temperatures (Guthery, 

1988).  Furthermore, excessive temperatures, although detrimental to chicks, may be more 

detrimental to incubating eggs (Wilson et al., 1979).  Our climate and weather networks, 

therefore, gave a biologically reasonable representation of summer heat effects on quail 

abundance.  Further, our networks also indicated a possible threshold temperature below 

which there is little effect on production or survival.  This thermal threshold may indicate the 

upper limit of the bobwhite�s thermal-tolerance in this area of their range.  We suspect that 

some of the above-reported results from other studies may indicate the effects of climate 

rather than weather.  However, because these authors did not evaluate climate effects, this 

remains conjecture.   

 There was a positive effect of winter precipitation on bobwhite counts.  Winter rains in 

excess of 50 mm and all positive deviations of winter rain resulted in higher than average 

bobwhite counts.  Winter precipitation may enhance bobwhite production indirectly through 

increased spring vegetation, seed abundance, and insect densities (Swank and Gallizioli, 1954; 

Sowls, 1960).  Other quail research supports our results.  In Illinois, USA, bobwhite harvest in 
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the fall was strongly, positively related to January and March precipitation (Edwards, 1972).  

Research on scaled quail (Callipepla squamata) in Texas, USA, indicated that abundances 

increased with increasing winter precipitation (Giuliano and Lutz, 1993).  Summer precipitation 

exceeding 100 mm generally reduced predicted bobwhite counts in our network simulations.  

Predicted counts were higher than the mean when spring and summer rains were around the 

long-term mean amount.  This may indicate that, for these climate variables, bobwhites have 

adapted to the local conditions.  Brown (1978) suggested that bobwhites had evolved under a 

�continental� type climate where winter rainfall is less variable and deviations from summer 

rain determine breeding success.  Our analyses agreed somewhat with Brown�s (1978) 

predictions.  There was less variation in winter rain than in spring or summer rain.  

Furthermore, normalized bobwhite counts tended to be highest near mean spring and 

summer rain, indicating that bobwhites abundance was most sensitive to the variation in 

spring and summer rain.  Deviations too far from the local means resulted in decreased 

bobwhite abundance.  Sumner (1935) reported increased juvenile mortality when rains 

increased during the hatching season.  Excessive rain in the spring and summer may increase 

chick mortality, especially among gallinaceous birds, whose young are poor thermoregulators 

the first few days after hatching (Newton, 1998).  Further, because rain may limit transmission 

of sound waves or inhibit calling behavior, increased spring rain may depress breeding effort.  

However, the breeding success of Attwater�s prairie chickens (Tympanuchus cupido attwateri) 

was not affected by precipitation during May, or between March and June (nesting season) 

(Peterson and Silvy, 1994).  Again, our results were generally supported by previous research, 

but give an added understanding of the non-linearity in bobwhite population responses.   

 Land-use variables (proportion of cultivated land and cattle density on non-cultivated 

land) were only important contributors to the weather network�s predictions, not the climate 

network�s.  Because the same land-use variables were used in both the climate and the 

weather models, this was somewhat surprising.  However, it may indicate that there was more 

information about the response of bobwhite populations among the climate variables than was 
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available among the weather variables.  This supports our contention that deviations from long-

term normal conditions may be more relevant to species management.   

 The weather network predicted bobwhite counts greater than the mean over the 

entire range of the proportion of cultivated land.  This linear increase does not agree with other 

research.  Bobwhite abundance in Illinois, USA, was greatest at intermediate levels of 

cultivation (Roseberry and Sudkamp, 1998).  Within this intermediate zone, usable habitat 

space�time may be maximized and increased edge may favor bobwhites.  At higher levels of 

cultivation, usable space�time decreases and edge becomes redundant (Guthery and 

Bingham, 1992).  We are unable to clearly explain why our network predicted ever-increasing 

counts with increasing cultivation.  Increasing cultivation should lead to a decrease in habitat 

space�time (Guthery, 1997).  One possible explanation may be the method of route selection.  

Routes were established in areas containing typical bobwhite habitat (Peoples, 1991); 

therefore, cultivation effects may have been decoupled from bobwhite abundance.  The effects 

of cattle density, and therefore, grazing intensity, were more straightforward.  As cattle density 

increased, our network predicted that bobwhite counts would be lower than the mean.  This 

agrees with other research.  Grazing negatively influenced scaled quail habitat in Oklahoma, 

USA (Schemnitz, 1961).  Interactive effects between site productivity and grazing indicated 

that on highly productive sites, bobwhite abundance is favored by the early successional stages 

maintained by more intensive grazing (Spears et al., 1993).  However, on less productive sites, 

bobwhite abundance is higher at later successional stages (Spears et al., 1993).  Because 

productivity forms an east-west gradient from high to low productivity, and because grazing 

intensity forms an east-west gradient from low to high (pers. obs.), our simulations fit this 

pattern.   

 
Conclusions 

 Our analyses indicated that bobwhite abundance might be more sensitive to the 

deviation of climate from the normal conditions to which they have become adapted under 
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climate-change scenarios.  Although the weather conditions within a given year can also be 

important, most species have probably adapted to some variation around mean conditions.  

Furthermore, the effects of deviations in some variables may be more important than others 

(Brown, 1978).  It is when these deviations exceed the bobwhite�s ability to cope, that survival 

and productivity are affected.  The pace at which climate change occurs also may affect how 

bobwhites respond to predicted climates. 
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CHAPTER 5 

RELATIVE ABUNDANCE OF BOBWHITES IN RELATION TO WEATHER AND LAND USE1 

Abstract 

 Weather and land use are important factors influencing the population dynamics of 

northern bobwhites (Colinus virginianus) in Texas and elsewhere. Using an artificial neural 

network, we studied the effects of these factors on an index of bobwhite abundance (hereafter, 

index) in 6 ecoregions in Texas. We used roadside-count data collected by the Texas Parks and 

Wildlife Department (TPWD) during 1978�1997. Weather variables were June, July, and 

August mean maximum temperatures, and winter (December―February), spring 

(March―May), summer (June―August), and fall (September―November) rainfall. We also 

included the proportion of county area in cultivation, the number of livestock per hectare of 

non-cultivated land, and the previous year�s bobwhite count in the analyses. The data were 

partitioned into training and validation data sets prior to analyses. The neural model explained 

65% of the variation in the training data (n = 72) and 61% of the variation in the validation 

data (n = 17). The most important variables contributing to network predictions were July 

temperature, fall rainfall, cattle density, and the previous year�s bobwhite count. State-level 

simulation results indicated that the bobwhite index decreased with increasing June 

temperature and livestock density. The bobwhite index increased with July and August 

temperature, fall rainfall, and the previous year�s bobwhite count. Bobwhite abundance 

increased with the proportion of county area in cultivation up to approximately 20% cultivation 

and then declined. Winter, spring, and summer rainfall had little effect on the bobwhite index. 

                                                           
1 Lusk, J. J., F. S. Guthery, R. R. George, M. J. Peterson, and S. J. DeMaso.  2002.  Relative 
abundance of bobwhites in relation to weather and land use.  Journal of Wildlife Management 
66: 1040�1051. 
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Although many relationships appeared approximately linear or were decelerating, proportion of 

county area in cultivation and livestock density on non-cultivated land showed strongly 

curvilinear responses. Therefore, cultivation up to approximately 20% of county area was 

beneficial, but the benefits disappeared as cultivation increased beyond this level. Further, at 

low livestock densities, between 0.15 and 0.40 head/ha, small increases in head/ha resulted 

in a decrease in the bobwhite index of 156.4%/head/ha. The results also indicated that a 

potential bias might exist in the survey protocol resulting in artificially inflated counts under 

some weather conditions. 

 
Introduction 

 The northern bobwhite (hereafter, bobwhite) is an important game species in many 

parts of its range. Although declines have been noted since at least the 1880s (Errington and 

Hamerstrom 1936), bobwhite abundance typically follows a boom-or-bust pattern, with 

considerable variation among years (Stoddard 1931, Stanford 1972, Roseberry and Klimstra 

1984:130). Possible factors influencing the long-term trends in bobwhite abundance include 

climate change, habitat loss, and land-use change (Edwards 1972, Klimstra 1982, Brady et al. 

1993, Schemnitz 1993, Rotenberry 1998). Although typically regarded as compensatory, 

harvest may be an additive source of mortality in years of low production (Pollock et al. 1989, 

Johnson and Braun 1999, Guthery et al. 2000). Before harvest and habitat management can 

be effective at maintaining harvestable populations, an understanding of the factors influencing 

bobwhite abundance that are not amenable to management, such as weather, is required. It is 

against the backdrop of weather effects that habitat and harvest management must operate.  

 Although catastrophes such as blizzards and droughts can devastate bobwhite 

populations (Errington and Hamerstrom 1936, Leopold 1937, Roseberry 1964), non-

catastrophic weather events may be important determinants of bobwhite abundance (Edwards 

1972, Stanford 1972, Roseberry and Klimstra 1984, Giuliano and Lutz 1993). In arid and 

semiarid regions, precipitation is an important component of avian survival and reproduction 
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(Newton 1998:288). However, temperature can also affect bobwhite production (Leopold 

1933, Robinson and Baker 1955, Speake and Haugen 1960, Stanford 1972, Guthery et al. 

2001). Precipitation and temperature can act directly through increased mortality (Leopold 

1931, Sumner 1935, Newton 1998), changes in the length of the breeding season (Klimstra 

and Roseberry 1975, Guthery et al. 1988), and reduction in reproductive effort (Murray 

1958, Guthery et al. 1988, Guthery et al. 2001); or indirectly through its effects on habitat 

and food availability (Swank and Gallizioli 1954, Sowls 1960, Newton 1998). Further, weather 

effects can interact with habitat conditions to influence bobwhite abundance. For example, Rice 

et al. (1993) modeled bobwhite abundance as a function of habitat variables and weather 

conditions. Although the model including only weather effects accounted for more variation 

than the habitat-only model, a combined model accounted for almost twice as much variation 

as either separate model (Rice et al. 1993). Similarly, better site quality ameliorated the 

effects of drought on bobwhite density compared with poorer quality sites (Webb and Guthery 

1982).  

 Recent work by Bridges et al. (2001) in Texas showed that, although 12-month 

precipitation was positively correlated with bobwhite abundance in the South Texas Plains, the 

12-month Palmer Modified Drought Index (PMDI) was more strongly correlated with bobwhite 

abundance. These authors also reported that monthly PMDIs were positively correlated with 

bobwhite abundance in the Cross Timbers and Prairies (Nov�Feb, rs ≥ 0.57), Edwards Plateau 

(Sep�Nov, rs ≥ 0.59), Rolling Plains (Sep�Feb, Apr, Jun; rs ≥ 0.56), and South Texas Plains (Oct�

Jul, rs ≥ 0.56), whereas raw precipitation was positively correlated with bobwhite abundance 

only in the South Texas Plains. Although the PMDI is a composite index containing more 

information than precipitation alone, Bridges et al. (2001) did not explicitly represent 

temperature (although temperature is used to calculate the PMDI), land use, stocking density, 

or broodstock. Further, as a composite index, the separate effects of individual components 

(e.g., temperature and precipitation) cannot be assessed. Although Bridges et al. (2001) 

demonstrated the importance of weather to bobwhite population dynamics, an analysis 
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explicitly considering the separate effects of rainfall, temperature, land use, stocking density, 

and broodstock could be useful to bobwhite managers. For example, Guthery et al. (2001) 

reported heat loads in southern Texas sufficient to alter bobwhite breeding behavior and 

physiology. They found that during the hotter year of a 2-year study, heat loads were sufficient 

to reduce calling activity of male bobwhites by approximately 84%. Therefore, it appears that 

temperature, as represented by heat loads, might play an important role in bobwhite 

production. Furthermore, Guthery (1999) suggested that any number of habitat configurations 

could result in the maximization of demographic potential, as long as these configurations 

permitted fully saturated habitat space�time (Guthery 1997). That is, the exact configuration 

of the habitat patch is not important as long as the configuration meets the bobwhite�s habitat 

requirements. Several authors have attempted to determine such optimal habitat conditions 

for bobwhites (e.g., Edminster 1954, Schroeder 1985). Spears et al. (1993), for example, 

found that habitat suitability varied with land productivity, such that earlier successional stages 

were more suitable for bobwhites in more productive areas and later successional stages 

were more suitable in less productive areas. 

 There are 2 additional reasons why the non-linear approach described below should 

add to our knowledge regarding how weather influences bobwhite abundance. First, although 

correlative analyses, such as those of Bridges et al. (2001) and most other published studies, 

can indicate general relationships among predictor and response variables, they are not 

necessarily conducive to determining the functional relationships among the variables. That is, 

correlation coefficients may indicate a positive response to increasing values of the other 

variable, but the lack of a strong correlation may not be indicative of a lack of a relationship 

between the variables. Second, non-linear biological responses to environmental variation 

sometimes can result in spurious correlations depending on the functional response of the 

biological system and the pattern of the environmental variation (Laasko et al. 2001). For 

example, if bobwhite abundance varies in a symmetric, unimodal fashion with temperature, 

then, depending on the observed range of temperatures with respect to the abundance-
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response function, there may be positive, negative, or no relation apparent from the 

correlations, even when temperature is a strong forcing variable for bobwhite abundance. 

 For these reasons, we investigated the relationship between bobwhite abundance in 6 

ecoregions in Texas and rainfall, temperature, land use, and broodstock using a non-linear, 

neural network algorithm to obtain a more complete understanding of bobwhite population 

dynamics. We also addressed the relative importance of each variable in determining region-

level bobwhite abundance in Texas. We then used simulations to investigate the pattern of 

bobwhite response to each environmental variable. Finally, we investigated regional patterns of 

abundance to determine potential limiting factors at the ecoregion level.  

 
Methods 

Neural Network Architecture 

 We used a 3-layer network architecture and trained neural models using QNet 2000 

(Vesta Services, Inc., Winnetka, Illinois, USA) backpropagation neural modeling software. The 

first layer consisted of the input (independent) variables. Our database contained 10 input 

variables (7 weather, 2 land use, 1 population). To optimize model performance, we 

experimentally varied the number of neurons between 2 and 10 in a series of models while 

holding all other training parameters constant. We selected the model that produced output 

with the highest correlation with actual counts for both the training data and the validation 

data (see below). The selected model, therefore, provided the best trade-off between predictive 

power and generalizability.  The output layer consisted of a single output node (dependent 

variable) representing mean bobwhite count/route/ecoregion/year. We trained the networks 

for 2,000 iterations and used an adaptive learning rate that varied between 0.01 and 0.30. 

The learning rate determines how fast the network learns by limiting the magnitude of changes 

to the synaptic weights during training (Smith 1996:88�90). To prevent overtraining, which 

occurs when the network has learned to predict the data exactly, we stopped training when 

the decrease in the error began to approach an asymptote.  



102 

 
Database Construction 

 We obtained bobwhite abundance data from TPWD records for the years 1978 

through 1997. These data were collected annually during the first 2 weeks of August along 

randomly placed and permanently marked 32.2-km routes (Perez 1998). Routes were 

traveled at 32 kph, and total quail observed was recorded at 1.6-km intervals. We used data 

from those ecoregions (Gould 1975) where bobwhites were consistently counted during 

1978�1997: the Gulf Prairies, Cross Timbers, South Texas Plains, Edwards Plateau, Rolling 

Plains, and High Plains. Although the database contained data for 156 routes, some were not 

run every year, so 2,624 route-by-year combinations, of a potential 3,120, were available. Raw 

counts from all routes within an ecoregion were averaged for each year to produce a 

composite index (bobwhite count/route/ecoregion/year), resulting in a final sample size of 89 

cases. Although this composite index reduced the amount of variation in the abundance data, it 

is an appropriate level for the analysis of broad-scale weather effects (O�Neill et al. 1986).  

 We obtained weather data from the National Atmospheric and Oceanic 

Administration�s National Climatic Data Center records (EarthInfo, Boulder, Colorado, USA; 

1998) for the weather stations closest to each route�s starting point using latitude and 

longitude coordinates provided by TPWD. We constrained selection to those weather stations 

with ≥90% complete data for 1977�1997 and that were within ≤1° of latitude and longitude. 

We then averaged the mean maximum temperature in June, July, and August and total winter, 

spring, summer, and fall rainfall in the same way we did count data. 

 We also addressed land use in our analyses. We used the proportion of cultivated land 

and the number of livestock per hectare of non-cultivated land in each county in which a survey 

route was located as land-use indices. We obtained crop and livestock data from the Texas 

Department of Agricultural Statistics. Cropland was summed for each county, and then 

averaged within each ecoregion for each year. Similarly, livestock densities for each year were 

averaged within ecoregions. Livestock data were not available for 1988 through 1992 
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(inclusive), because funding for the livestock statistics program was not available (R. Roark, 

Texas Agricultural Statistics Service, personal communication).  Although the database we 

used in this analysis did not include 1988 through 1992, models excluding all livestock data 

and including these years resulted in qualitatively similar results for the remaining variables. 

We recognize that this measure of grazing pressure does not account for the temporal 

distribution and intensity of grazing livestock, but should give a relative estimate of grazing 

pressure among ecoregions. The final independent variable in our analyses was the number of 

bobwhites counted the previous year averaged for each ecoregion. We included this variable to 

account for possible density-dependent effects, which also vary spatially.  

 We partitioned the data (n = 89) into training and validation data sets. We first ranked 

the data according to mean bobwhite count/ecoregion/year, then systematically selected 

every fifth record and assigned it to the validation data set. This resulted in a validation data set 

that was approximately 20% of the total. We did not use a random assignment protocol, 

because neural networks learn from the data presented to them in the training data set. For 

this reason, it is necessary that both training and validation data represent the full range of 

variation in the complete database (Fielding 1999:25�26). Training cases were used to adjust 

the synaptic weights during the training process. Validation cases were presented to the 

model during the training process to assess the models performance but were not used to 

adjust the synaptic weights. Validation cases, therefore, indicated how well the model 

performed when presented novel data. Although this was not validation in the strict sense 

(Conroy 1993, Oreskes et al. 1994, Conroy et al. 1995), this method allowed us to assess 

model performance (Rykiel 1996).  

 
Model Interpretation 

 Although neural network models often perform well as predictors or discriminators, 

the nature of their architecture makes the synaptic weights difficult to interpret (Anderson 

1995, Lek et al. 1996). There are 2 approaches to overcome this difficulty. The first is to 
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estimate the relevance (Özesmi and Özesmi 1999) of each input variable, which assigns an 

importance value for each input (independent) variable to the model�s overall prediction. 

Relevance is calculated as the sum of squared synaptic weights from 1 input node divided by 

the sum of squared synaptic weights for all input nodes. Input nodes with larger synaptic 

weights exert more control over a model�s response to a given stimulus.  

 The second method for dealing with the difficulty in interpretation of the synaptic 

weights is through simulations (Lek et al. 1996). We used this approach by creating a series of 

databases that allowed the variable of interest to vary between the maximum and minimum 

value on record while all other variables were held constant at a mean value for pooled data or 

individual regions. We also created individual data sets for each variable in the model using the 

overall database means. These data sets were presented to the trained model and the model�s 

predictions revealed the nature of response to variation in the variable of interest when all 

other variables were held constant at mean values. Results report approximate values for the 

variable of interest obtained from the simulation analysis. 

 We then presented the trained model with both state- (for only those ecoregions used 

in these analyses) and ecoregion-level means (Table 5.1) to determine how ecoregion-level 

counts varied from state-level counts when conditions were average. The resulting predictions 

allowed us to evaluate populations in each ecoregion when conditions are average and to 

compare these predictions with state-level predictions. We further investigated the 

relationship between bobwhite abundance and the variables in our model by evaluating our 

simulation results with regard to mean (i.e., average) conditions. We did this by plotting the 

mean value for each variable on the graph of its simulation results, allowing us to determine 

possible predictive factors for bobwhite abundance in the region. For example, if the mean  

 value for a particular variable falls below the peak in the bobwhite index, then relative 

abundance would be higher for any greater value for that variable. Therefore, such a variable 

might be constraining, or limiting, relative abundance. 
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Table 5.1. State- and ecosystem-level means for independent variables used to develop a 

predictive model for northern bobwhite abundance in Texas, 1978�1997.  

   
  Ecoregiona 

Variable Statewide 2 5 6 7 8 9 

        
Maximum temperature (°C)        

Jun 32.9 32.6 32.7 34.0 33.1 32.7 32.6 

Jul 35.4 34.4 35.7 36.2 35.6 35.8 34.8 

Aug 34.9 34.4 35.7 36.3 35.4 34.8 32.9 

Seasonal rainfall (mm)        

Winter 111.4 215.2 133.3 101.2 101.2 74.7 44.3 

Spring 193.0 268.2 250.1 177.3 171.1 180.3 115.0 

Summer 201.7 289.2 195.4 184.0 168.3 192.3 180.1 

Fall 203.3 340.1 241.4 189.1 175.2 158.4 131.4 

Croplandb 0.15 0.22 0.08 0.1 0.04 0.18 0.28 

Livestock densityc 0.30 0.33 0.35 0.23 0.34 0.23 0.33 

Previous year�s bobwhite 

count 

14.0 6.0 18.0 22.6 13.0 21.4 3.5 

  

 aEcoregions: 2 = Gulf Prairies, 5 = Cross Timbers, 6 = South Texas Plains, 7 = 

Edwards Plateau, 8 = Rolling Plains, 9 = High Plains. 

 bMean proportion of county area in cultivation. 

 cMean head of livestock per hectare of non-cultivated land. 
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Results 

 A 4-neuron model was optimal for the overall data set and explained 65% of the 

variation in the training data (Fig. 5.1a) and 61% of the variation in the validation data (Fig. 

5.1b). The variables most important to the network�s predictions (relevance >10%) were July 

temperature, fall rainfall, livestock density on non-cultivated land, and the previous year�s 

bobwhite count (Table 5.2). The proportion of county area in cultivation was also important, but 

its relevance score was below (9.3%; Table 5.2) our arbitrary 10% cutoff point. The remaining 

variables also influenced the index of abundance, but to a lesser extent (see Discussion). We 

report, therefore, the results for all simulations below, but focus discussion on the most 

relevant variables.  

 The index declined linearly with increasing mean maximum June temperature (Fig. 

5.2a). Given that all other conditions were average, the network predicted counts of 21 

bobwhites when maximum June temperatures averaged 30 °C. However, at an average of 37 

°C, only 10 bobwhites would be counted. This translated into a decline of 1.6 bobwhites/°C 

increase in mean maximum June temperature. In contrast, the bobwhite index increased 

linearly with increasing mean maximum July temperature (Fig. 5.2b). Predicted counts 

increased by 3.1 bobwhites/°C increase in July temperature, with peak abundance of 30 

bobwhites at 40 °C. Increases in mean maximum August temperature were also associated 

with linear increases in the index (Fig. 5.2c). At August temperatures of 31 °C, the bobwhite 

index was 10 bobwhites, but reached a maximum of 21 bobwhites at 38 °C. Predicted counts 

increased by 1.4 bobwhites/°C increase in August temperature.  
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Table 5.2. Relevance (importance) of input variables in a 4-neuron neural model developed to 

predict the abundance of northern bobwhites in Texas based on data collected during 1978�

1997. Relevance is calculated as the sum of the squared weight of the variable of interest 

divided by the sum of squared weights for all inputs. The higher the relevance score, the more 

the variable contributes to the model�s predictions and, therefore, gives the relative 

importance of each variable. 

  
Input variable Relevance 

  
Maximum temperature (°C)  

Jun 8.4 

Jul 15.7 

Aug 7.6 

Seasonal rainfall (mm)  

Winter 8.1 

Spring 5.9 

Summer 3.0 

Fall 15.9 

Croplanda 9.3 

Livestock densityb 11.9 

Previous year�s bobwhite count 14.4 

  

 aMean proportion of county area in cultivation. 

 bMean head of livestock per hectare of non-cultivated land. 
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Fig. 5.1. Predicted versus observed northern bobwhite counts recorded by Texas Parks and 

Wildlife Department biologists during annual August surveys (1978�1997) for training data 

(A) and validation data (B) using a 4-neuron neural network. The trend line indicates the linear 

relationship between predicted and observed counts. 
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Fig. 5.2. Predicted northern bobwhite counts from simulation analyses of the effects of June 

(A), July (B), and August (C) mean maximum temperature (°C) generated from the trained 

neural model using a data set in which the independent variable of interest varies between its 

minimum and maximum, and all other independent variables are held constant at their 

statewide mean (Table 5.1). Dashed vertical lines indicate the mean value of the independent 

variable. The same scale was used for each plot�s Y-axis to provide information on sensitivity. 
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Fig. 5.3. Predicted northern bobwhite counts from simulation analyses of the effects of winter 

(A), spring (B), summer (C), and fall (D) rainfall (mm) generated from the trained neural model 

using a data set in which the independent variable of interest varies between its minimum and 

maximum, and all other variables are held constant at their statewide mean (Table 1). Dashed 

vertical lines indicate the mean value of the independent variable. The same scale was used for 

each plot�s Y-axis to provide information on sensitivity. 
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 The network predicted that increases in winter rainfall were non-linearly related to the 

bobwhite index, although the effect was slight (Fig. 5.3a). The bobwhite index was unresponsive 

to either spring (Fig. 5.3b) or summer (Fig. 5.3c) rainfall in our simulations. Increasing fall 

rainfall resulted in increased bobwhite counts, but the relationship was slightly decelerating  

(Fig. 5.3d). When fall rainfall was 27 mm, the bobwhite index was predicted to be 8. When fall 

rainfall reached 500 mm, the index was predicted to be 24.  

 The bobwhite index varied curvilinearly with the proportion of county area in cultivation 

(Fig. 5.4a), and increased by 25% with increasing cultivation until 20% of county area was 

under plow at which point predictions peaked at 16 bobwhites. Further increases in cultivation 

reduced the bobwhite index 43.8%, to a low of 9, at 48% of county area in cultivation. In 

contrast, increases in livestock density on non-cultivated land were followed by declines in the 

index (Fig. 5.4b). The bobwhite index dropped rapidly from 23 at 0.15 head/ha to 14 

bobwhites at 0.4 head/ha. This represents a decline of 39.1% for a 0.25 head/ha increase in 

livestock density or a decline of 156.4%/head/ha increase in livestock density. Declines 

thereafter were less dramatic, reaching a low of 7 bobwhites when livestock density reached 

1.2 head/ha. The index in the current year increased with increases in the previous year�s 

count, but at a slightly decelerating rate (Fig. 5.4c), indicating potential density dependence. 

When the previous year�s count was 0, our model predicted a current-year count of 10 

bobwhites. Current-year counts were highest at 30 bobwhites when the previous year�s count 

was 66 bobwhites.  

 Predictions generated using state- and ecoregion-level means as independent (input) 

variables indicated that, if all conditions were at their statewide average, relative abundance 

would be expected to be 16 bobwhites/route/ecoregion. Because of the range of variation in 

weather conditions across Texas, this number can serve as a benchmark for comparing 

ecosystem responses. Based on average conditions in the Gulf Prairies, the network predicted 

3 bobwhites/route. Similarly, average conditions in each remaining ecoregion produced 

predictions of 20 bobwhites/route in the Cross Timbers, 19/route in the South Texas Plains,  
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Fig. 5.4. Predicted northern bobwhite counts from simulation analyses of the effect of the 

proportion of county area in cultivation (A), head of livestock per hectare of non-cultivated land 

(B), and previous year�s bobwhite count (C). Predictions were generated from the trained 

neural model using a data set in which the independent variable of interest varies between its 

minimum and maximum, and all other independent variables are held constant at their 

statewide mean (Table 5.1). Dashed vertical lines indicate the mean value of the independent 

variable of interest. The same scale was used for each plot�s Y-axis to provide information on 

sensitivity. 
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11/route in the Edwards Plateau, 20/route in the Rolling Plains, and 5/route in the High 

Plains. Predicted counts based on ecoregion-level means were smaller than predicted counts 

based on the statewide means in the Gulf Prairies, Edwards Plateau, and the High Plains. 

Comparing means for the 5 most important variables in the model (Tables 5.1 and 5.2) 

between these ecoregions and the state level does not indicate any consistently different 

trends, except that the mean of the previous year�s counts were lower in these 3 ecoregions 

than the statewide mean (Table 5.1). Likewise, the mean previous year�s count for the Cross 

Timbers, South Texas Plains, and the Rolling Plains, where predicted counts were larger than 

the count based on the statewide means, were larger than the statewide mean previous year�s 

count.  

 Our analysis of potential limiting factors indicated that several environmental variables 

might be limiting population growth at the state level. For instance, simulation results indicated 

that abundance might be limited by fall rainfall (Fig. 5.3d). If average years are frequent, then 

the 203.3 mm of rainfall in the average autumn is below the amount at which the bobwhite 

index achieved maximum level in our results. In contrast, there appears to be excessive 

grazing, as measured by livestock density/ha of non-cultivated land (Fig. 5.4b). The index was 

greatest when livestock density was less than the statewide mean of 0.30 head/ha. Overall, 

current levels of cultivation in Texas appear to be appropriate for bobwhites (Fig. 5.4b), since 

the statewide mean (15% of county area) is near the density at which the bobwhite index 

peaked (but see Discussion). 

 
Discussion 

 Although networks with more neurons tended to produce slightly better agreement 

between predictions and observations, the 4-neuron network used in this analysis contained 

fewer parameters while still accurately predicting an index of bobwhite abundance at an 

ecoregion level in Texas, based on weather and broad-scale, land-use variables. Further, our 
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training procedure insured that the network we obtained made the best compromise between 

bias and variance (Lek et al. 2000).  

 July temperature was an important determinant of the bobwhite index in our model. 

These results are contrary to expectations based on previous work. For example, age ratios of 

Gambel�s quail (Callipepla gambelii) decreased with increasing July temperature in Arizona 

(Heffelfinger et al. 1999). Similarly, in Oklahoma, bobwhite abundance declined with increasing 

July temperature (Lusk et al. 2002). Both of these studies used the same analytical technique 

as we employed in our analysis, so differences in results do not relate to differences in 

techniques. It is possible that the differences in results between the Gambel�s quail study and 

the current study result from differences in the ecologies of Gambel�s quail and bobwhites. 

Gambel�s quail are native to the arid Southwest (Kaufman 1996) and, as such, might respond 

differently to weather than bobwhites. The differences between the results of the current study 

and Oklahoma study are more difficult to explain, but may reflect latitudinal differences in 

weather conditions and possibly land use.  

 One hypothesis that may explain our contradictory results is that bobwhites may 

congregate along roadsides during hot, dry conditions, where vegetation may be more lush, 

green, and ungrazed, similar to conditions in more central parts of their range. Because 

detection and behavior are affected by weather (Roseberry and Klimstra 1984), conditions 

both before and during roadside counts can affect the number of bobwhites counted, and, 

therefore, the number of bobwhites predicted by the model. For example, Guthery et al. (2001) 

found that calling behavior of bobwhite males was coincident with the thermal environment 

measured on different days. Therefore, detectability, and not just abundance, may vary in time 

due to environmental conditions at different temporal scales. Temperatures >35 °C stimulated 

heat dissipative behaviors in captive bobwhites (Spiers et al. 1983), and the range of observed 

values in our data set bounded this landmark temperature. Roadsides may provide a thermal 

refuge for bobwhites along the less intensely grazed verges. This may occur because cattle 

grazing may exacerbate the impacts of drought on primary production in grazed pastures, 
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resulting in greater apparent stocking rate (Fuhlendorf and Smeins 1997). Conversely, if high 

temperatures are accompanied by low amounts of rainfall (i.e., drought), then vegetation 

density along roadsides may decrease, rendering bobwhites more detectable. However, 

drought had little influence on the composition of ungrazed pastures in the Edwards Plateau 

(Fuhlendorf and Smeins 1997) although rainfall influenced both plant basal area and total plant 

density (Fuhlendorf et al. 2001). These 2 hypotheses are not mutually exclusive and other 

hypotheses are possible. Although vegetation along roadsides can be sparse in drought years, 

it may still provide the only cover available, thus drawing bobwhites to the roadsides. 

Immediately after a rain shower, detection may increase as bobwhites move out onto the 

roadway to dry. It is also possible that the observed response in the bobwhite index to July 

temperature was an artifact of the data we used and, therefore, the predicted relationship 

might be spurious (Anderson et al. 2001). Further research should be directed at testing the 

above hypotheses to determine their validity and to assuage any concerns of state natural 

resource agencies that may conduct similar types of surveys.  

 Although spring and summer, and to a lesser extent winter, rainfall had little effect on 

model predictions, fall rainfall was an important determinant of the relative abundance of 

bobwhites in Texas. The strongly positive effect of fall rainfall was consistent with our prior 

expectations based on previous research. In particular, Bridges et al. (2001) reported a 

positive correlation between PMDIs for fall months and the number of bobwhites counted 

during the next August in the Edwards Plateau, Rolling Plains, and the South Texas Plains. 

Similarly, age ratios for Gambel�s quail in Arizona responded positively to variation in October�

November (fall) rainfall, but predicted increases were only 0.5�0.6 juveniles/adult/mm rainfall 

(Heffelfinger et al. 1999).  

 Relative abundance declined with increasing livestock density in our model. These 

declines might have resulted not only from higher livestock densities, per se, but also from 

changes in land use and cover associated with these densities. Grazing can reduce the 

structural diversity of rangelands (Archer and Smeins 1991, Fleischner 1994), can alter the 
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competitive interactions among the plant species leading to woody encroachment (Archer and 

Smeins 1991), and can alter the amount and effectiveness of thermal cover (Barnes et al. 

1991). A livestock density of <0.2 head/ha (>5 ha/head) indicated native pasture in a 

primarily rangeland setting; conversely, a livestock density of 1.2 head/ha (0.8 ha/head) 

indicated introduced pasture in regions of higher rainfall. Although relative bobwhite 

abundance is positively correlated with rangeland within their historic range (Brady et al. 

1998), heavy grazing over the long term lowers the successional status of the vegetation. 

Specifically, heavy grazing in the Edwards Plateau resulted in decreases in native bunchgrasses 

and increases in shorter sodgrasses (Fuhlendorf and Smeins 1997). In semiarid 

environments, bobwhites on rangelands tend to be more abundant in higher seres than in 

lower seres (Spears et al. 1993). Rangelands in south Texas, for example, can support 

bobwhite densities >5 bobwhites/ha (Leopold 1933:59, Guthery 2000:19) on native pasture. 

Conversely, introduced pastures, often planted to exotic grasses and managed intensively, 

usually provide wholly unsuitable habitat for bobwhites. Further, because nest predation rates 

tend to be lower in areas with more ground cover (Cooper and Ginnett 2000), one might 

expect higher stocking densities on rangelands to be associated with higher nest predation 

rates, thus reducing production and the subsequent count during the August survey. 

 Our model predicted that the current year�s relative abundance increases at a 

decelerating rate with increasing previous year�s abundance, suggesting a density-dependent 

response. Oklahoma bobwhites also exhibited an apparent density-dependent response, but 

predictions of current year�s relative abundance declined with increases in previous year�s 

index >25 bobwhites (Lusk et al. 2002). Similarly, Roseberry and Klimstra (1984:96) reported 

a negative correlation between production (measured as percent summer gain) and the 

previous year�s breeding population size in Illinois. They suggested that hunting mortality 

maintained the study population below levels where density effects could impact bobwhite 

production (Roseberry and Klimstra 1984:102). Therefore, hunting might mask density-

dependent patterns of production in heavily exploited populations. Further research is needed 
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to determine whether harvest pressure is sufficient in Texas to account for the different 

results, or whether other factors are involved.  

 Our analysis indicated that average conditions were sufficient within each ecoregion to 

support bobwhite populations. However, predicted indices in the Gulf Prairies and the High 

Plains were below 10 bobwhites/route. This indicates that average weather and land-use 

conditions in these ecoregions, over the period of this study, were less optimal for bobwhites 

than other parts of Texas. An analysis of mean weather conditions in these ecoregions (Table 

5.1), with respect to our simulation results, indicated that for the High Plains bobwhite 

abundance might be limited by low winter and fall rainfall (44.3 mm and 131.4 mm, 

respectively). Reasons for low abundance in the Gulf Prairie, based on ecoregion means, are 

less clear.  

 Although our results indicated that mean statewide levels of cultivation appeared 

optimal in Texas, agricultural development is not uniform across the state (Table 5.1) and, 

therefore, suitability will depend on the regional context. That is, ecoregion level means for 

cultivation will differ from the statewide mean and from the optimal level of cultivation as 

indicated by our model. Further, both the statewide and regional means do not reflect the 

spatial distribution of the cultivated lands in the landscape. Therefore, predictions based on 

these means must be interpreted with some caution.  

 
Management Implications 

 Our results have 2 implications for management. First, we identified a potential bias 

inherent to the roadside quail survey conducted by TPWD. The increased counts associated 

with increased maximum temperatures in July are inconsistent with biological expectations. 

This apparent paradox may be explainable by simple processes of bobwhite behavior and 

visibility. Alternatively, it could also be an artifact of the data (Anderson et al. 2001). If not, it 

could lead to overestimates of relative abundance during hot July days. One might question 

whether the increased variability resulting from such a bias would be important to state wildlife 
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agencies considering all the other inconsistencies already inherent in such surveys (e.g., 

changing land use along routes, different observers on a given route, or changing observer skill 

over time). We maintain, however, that it is important for managers to realize such a bias 

might exist. For example, one might want to temper predictions of bobwhite abundance during 

the next hunting season after a particularly hot summer. Further research seems warranted 

to test the hypotheses regarding these observed and paradoxical responses, so that we can 

garner a more reliable understanding of bobwhite�weather relationships. 

 The second implication of our results to management is at the statewide and 

ecoregion level. As weather is beyond the control of the resource manager, management 

efforts must focus on land-use practices. We included 2 relatively broad-scale measures of 

land use in our model. Simulation results provided insights into the responses of the bobwhite 

index to variation in land use when weather patterns were controlled. Patterns in long-term 

data indicated that region-wide reductions in livestock density result in commensurate region-

wide increases in the bobwhite index. Further, bobwhite relative abundance was greatest when 

the amount of cultivation was 20% of county area and bobwhites generally declined across the 

landscape as cultivation approached 50% of county area. Therefore, reducing grazing intensity 

and maintaining low levels of cultivation appear to be appropriate management options for 

bobwhite populations in Texas. 



123 

CHAPTER 6 

EFFECT OF CLIMATE DEVIATIONS ON NORTHERN BOBWHITE ABUNDANCE IN TEXAS1 

Introduction 

 Climate and weather patterns can both affect the abundance of a species (Chapter 4).  

The relative importance of each factor, however, can determine how a species in a particular 

locale will respond to climate change.  Some weather conditions might be physiologically 

intolerable for the species (Dawson 1992, Dunham 1993), especially those species that exist 

near the upper limits of their thermal tolerances in certain portions of their range (Tracy 

1992).  However, if a species has adapted to local conditions, deviations from the normal 

conditions might have a more important effect on abundance.  Therefore, a change in mean 

annual temperature of 1-4 ûC (Peters 1992, Schneider 1993) might affect populations in 

different portions of the species� range differently.  In some areas, depending on the 

seasonality of the temperature shift and its magnitude in the region (IPCC 1998), the actual 

deviation from normal conditions might be small, resulting in minor changes in species 

abundance.  However, the magnitude of the temperature changes in North America are 

expected to be at least 40% greater than the global average (IPCC 2001) 

 Here I model the effects of deviations from long-term climate conditions on bobwhite 

abundance in Texas.  I compare the results of this model with those reported in Chapter 5 on 

the effects of weather and land use on bobwhite abundance.   

 

                                                           
1 This chapter is intended to provide a compliment to Chapter 4�s analysis of the relative 
effects of climate and weather in Oklahoma for the analysis of abundance in relation to 
weather in Texas (Chapter 5).  
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Methods 

 Bobwhite abundance data were obtained from Texas Parks and Wildlife Department 

(TPWD) for 1978 through 1997.  These data were collected annually during the first 2 weeks 

of August along permanently marked 32.2-km routes (Perez 1998, Chapter 5).  The total 

number of bobwhites observed at 1.6 km intervals along the routes was recorded.  I used 

routes from ecoregions (Gould 1975) in which bobwhites had a consistent presence over the 

period of study.  That is, there was at least one non-zero count along each route contained in 

the final dataset.  Raw counts from each route within ecoregions were averaged for each year.  

This composite index of bobwhite abundance was used as the dependent variable in the model 

(Chapter 5).   

 Weather data were obtained from the National Oceanic and Atmospheric 

Administration�s National Climate Data Center (EarthInfo, Boulder, Colorado, USA).  Weather 

stations closest to the starting point of each survey route were selected for inclusion in the 

database.  I determined proximity using the latitude and longitude coordinates of the weather 

stations and survey routes, and included a weather station only if it was within 1ûof latitude and 

longitude, and if the weather records were ≥90% complete.  June, July, and August mean 

maximum temperature and total winter, spring, summer and fall precipitation were extracted 

from the data for each year and route.  To estimate deviations from long-term climate 

conditions, I averaged the weather data over the entire period of record (range: 30-100 years) 

for each weather station in the database.  The yearly weather values were then subtracted 

from the long-term averages and the differences were averaged within ecoregions for each 

year, to match the indices of bobwhite abundance.  These deviations were then used as 

predictor variables in the neural model. 

 Also included in the database were 2 variables describing land use: proportion of 

cultivated land and the number of livestock per hectare of uncultivated land within the county 

through which each survey route passed. I obtained the crop and livestock statistics from the 

Texas Department of Agricultural Statistics.  Cropland was summed over each county and 
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averaged within each ecoregion for each year.  Livestock densities were treated in an 

analogous manner.  However, as reported in Chapter 5, livestock data were unavailable for 

1988 through 1992.  Again, these years were not included in the final database, as a result.  

The final variable in the model was the index from the previous year�s count for each ecoregion.  

This variable accounted for density dependence in bobwhite abundance. 

 I used a 3-layer network architecture and developed the neural model using Statistica�s 

Neural Networks (SNN; StatSoft, Tulsa, Oklahoma, USA).  See Chapter 2 for a detailed 

description of neural modeling architecture used in this chapter.  The database contained 10 

independent variables (7 climate, 2 land-use, and 1 population).  These data were partitioned 

into training and validation data subsets.  Training data were comprised of 80% of the original 

data, and were used to adjust the synaptic weights during training (Smith 1996).  The testing 

and validation data were comprised of the remaining 20% of the original data, and were used 

as a diagnostic against overfitting and for measuring the accuracy of the model when 

presented with novel data (Rykiel 1996, Fielding 1999).  The testing data were not used to 

adjust the synaptic weights.   

 The modeling procedure varied somewhat from that used in Chapter 5.  Statistica�s 

Neural Networks carries out many of the training procedures automatically. Using the 

thorough search method, SNN examined all possible combinations of independent variables 

and number of neurons, and selects the best performing model based on predictive 

performance and model complexity.  Therefore, the final model included only those variables 

that significantly improved model performance.  The variables included in the model are ranked 

by importance to model predictions based on relevance scores.  These scores are calculated 

as the sum of the squared synaptic weights of the variable of interest divided by the sum of 

squared synaptic weights for all variables in the model (Özesmi and Özesmi 1999). 

 I used simulations to interpret model output (Lek et al. 1996).  Simulation data were 

generated in SNN by allowing the variable of interest to vary incrementally between its 

maximum and minimum values while holding all other variables constant at their mean value.  
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These data were then processed using the model and the predicted abundance was plotted 

against the variable of interest.  These response curves showed how abundance responded to 

variation in a particular independent variable.   

 I compared the performance of the climate model with the performance of the 

weather model reported in Chapter 5 using the adjusted sum-of-squares method.  The 

adjusted sum-of-squares divides the model sum-of-squares (SSm) by the sample size (n), 

reduced by 2x the number of parameters (m): 

     
( )mn 2

SS
SS m

a −
=  

This method corrects the sum-of-squares for the level of parameterization and allowed me to 

compare models with different numbers of parameters (Hillborn and Mangel 1997).  The 

model with the lowest adjusted sum-of-squares is the best-performing model after accounting 

for parameterization (Hillborn and Mangel 1997). 

 
Results 

 The best model for predicting bobwhite abundance contained 5 neurons and 3 input 

variables, and accounted for 49.5% of the variation in the data (Fig. 6.1).  The variables 

included in the model included the previous year�s bobwhite count (relevance = 61.6%), 

deviation from long-term mean June temperature (relevance = 27.8%), and livestock density 

on noncultivated land (relevance = 10.6%).   

 The unadjusted, model sum-of-squares for the climate model was 5473.8 and for the 

weather model reported in chapter 5 it was 4037.2.  The weather model had an adjusted 

sum-of-squares of 576.74 and the climate model reported here had an adjusted sum-of-

squares of 146.97.  Therefore, the climate model was the better predictor of bobwhite 

abundance than the weather model (Chapter 5).   

 Predicted bobwhite count was a decelerating positive function of the previous year�s 

count (Fig. 6.2).  Predicted counts increased rapidly in a nearly linear fashion with increasing 

previous year�s count until previous year�s count reached approximately 15 bobwhites, at  
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Fig. 6.1.  Predicted versus observed bobwhite abundance for counts recorded by Texas Parks 

and Wildlife Department during annual August surveys (1978�1997) for both training and 

testing datasets combined using a 5-neuron neural network.  
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Fig. 6.2.  Predicted bobwhite abundance as a function of (a) the previous year�s bobwhite count, 

(b) deviations from long-term mean June temperature, and (c) livestock density on 

noncultivated lands generated by the 5-neuron neural network.  The variable of interest was 

varied incrementally from the maximum observed value to the minimum observed value while 

the remaining variables were held constant at their means.  The scale of the y-axis in each 

graph is identical to provide information on the sensitivity of the model.  
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which point, the model predicted that current abundance would near 14 bobwhites.  Between 

previous year�s counts of 15 through 30, the predicted bobwhite count was approached a 

maximum predicted count of 16 bobwhites.  Previous year�s counts >30 bobwhites resulted in 

a slight decline in predicted bobwhite abundance.  It appeared that the decline was 

accelerating, but at 65 bobwhites counted in the previous year, the predicted count had 

declined only by approximately 1 bobwhite from the high of 16.   

 Predicted bobwhite counts were a decreasing function of the deviation from long-term 

mean June temperature (Fig. 6.2).  Predicted bobwhite counts increased with cooler than 

normal conditions.  When mean June temperature was 3 degrees cooler than normal, 

predicted bobwhite abundance was highest at approximately 26 bobwhites.  Predicted 

bobwhite counts declined as mean June temperature approached the long-term mean in a 

slightly decelerating fashion.  When mean June temperature was at its long-term mean, 

predicted abundance was approximately 11 bobwhites.  As mean June temperature increased 

over normal, bobwhite counts steadily declined to a low of 5 at 3 degrees above the long-term 

mean.   

 Predicted bobwhite abundance was also a decreasing function of the density of 

livestock on uncultivated lands (Fig. 6.2).  This relationship was also slightly decelerating over 

the range of observed values.  Bobwhite abundance was predicted to be highest when livestock 

density was <0.25 head/ha.  At 0.25 head/ha, abundance is predicted to be approximately 

16 bobwhites.  At higher livestock densities, bobwhite abundance steadily declines.  At >1 

head/ha, abundance is at approximately 5 bobwhites.   

 
Discussion 

 Bobwhite populations in Texas, like those in Oklahoma (Chapter 4), appear to be more 

sensitive to the magnitude of deviations from normal conditions than to actual weather 

patterns.  The climate model contained only a single climate variable: deviation from long-term 

mean June temperature.  Similarly, only July temperature and fall precipitation were highly 
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relevant in the weather model (Chapter 5, Table 5.2), with other weather variables contributing 

<10% to the weather model�s predictions.  Livestock density and previous year�s counts were 

highly relevant in the weather and climate models (Table 5.2).   

 The variable that contributed the most to climate model predictions was previous 

year�s bobwhite count (Fig. 6.2).  The results indicated that density dependent processes 

influence bobwhite population dynamics.  Predicted abundance increased when previous year�s 

count was <15 bobwhites.  At previous year�s counts >30 bobwhites, predicted bobwhite 

abundance began to decline, albeit slowly (Fig. 6.2).  The weather model predicted a similar but 

weaker pattern of density dependence (Fig. 5.4c).  Roseberry and Klimstra (1984) believed 

that bobwhite harvest maintained populations at densities below those at which density 

dependence reduced production.  Our results suggest that at low densities, population density 

had a positive effect on production.  At intermediate and high densities, negative effects begin 

to manifest and production and/or survival begins to reduce abundance.   

 Deviation from long-term mean June temperature was the second largest contributor 

to climate model predictions.  However, deviation from normal June temperature had a higher 

relative effect on bobwhite abundance than previous year�s count or livestock abundance (Fig. 

6.2).  At June temperatures below the long-term mean, predicted abundance can be as much 

as 2.5× the abundance when June temperature is normal.  Over the entire 6ûC range of 

temperature deviations, abundance varied nearly 7 fold.  Below average June temperatures 

also had a greater impact on abundance than did hotter than average temperatures.   

 As stated in Chapter 4, the data suggest that bobwhites have adapted to the local 

climate conditions.  However, it is also clear that bobwhites might occupy an area where 

conditions are near the upper limits of their thermal tolerance, because abundance rapidly 

increased as June temperature became cooler than normal.  If the climate in Texas was more 

amenable to bobwhites, one would expect that cooler temperatures would have a weak positive 

or negative effect, or a neutral effect.   
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 The final variable in the model was livestock density (head/ha) on noncultivated land.  

Both the weather (Chapter 5) and the climate model predicted that bobwhite abundance 

should decline with increasing livestock density.  However, the decline predicted by the climate 

model was more gradual than that from the weather model.  Bobwhite abundance increased 

dramatically below nominal livestock densities according to the weather model predictions (Fig. 

5.4).  The climate model predicted a nearly linear decline in abundance with increasing 

livestock density (Fig. 6.2).   

 Although grazing does not usually lead to a total transformation of the vegetation 

community, grazing can influence both the structure and species composition of the landscape 

(Fleischner 1994).  The magnitude of the effects depends on the intensity and periodicity of the 

grazing.  Further, whether the structural and compositional changes negatively or positively 

affect habitat suitability will depend on the magnitude of the changes (Severson and Urness 

1994).  My results support the idea that increasing the intensity of grazing, as indexed by 

livestock density, results in greater habitat alteration to the detriment of bobwhite production 

and survival.  Although the optimal habitat configuration and composition for bobwhites varies 

across their range (Guthery 1999), structural components necessary for successful 

production and survival may decline with increasing grazing pressure (Archer and Smeins 

1991, Fleischner 1994).  Further, the amount and effectiveness of vegetation as thermal 

cover might be reduced by grazing (Barnes et al. 1991).  The effect of grazing, therefore, could 

intensify the effects of June temperature on abundance, particularly when June temperature is 

higher than normal (Fig 6.2).   

 Although the climate model better accounted for the variation in bobwhite counts, 

weather events, particularly weather catastrophes, undoubtedly impact abundance (Errington 

1936, 1939, 1941; Roseberry 1962, 1964).  However, weather conditions, by virtue of the 

presence of bobwhite populations, must be at least tolerable for them.  In fact, climate is one of 

the major factors limiting the geographic distribution of species (Gaston 2003:27).  Within 

their geographic range boundaries, species can acclimate to local climate conditions (Gaston 
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2003:36).  It is not surprising, therefore, that bobwhite populations responded more strongly 

to deviations from the conditions to which they have adapted.   
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CHAPTER 7 

POTENTIAL EFFECTS OF GLOBAL CLIMATE CHANGE ON NORTHERN BOBWHITE  

ABUNDANCE1 

Abstract 

 Predicted changes in global and regional climate are expected to impact the 

distribution and abundance of wildlife species.  The northern bobwhite is no exception.  Given 

the importance of the bobwhite to local and state economies, understanding how climate 

change might impact the species is important.  Further, changes in the distribution of 

bobwhites could render management policies ineffectual if climate pushes bobwhites out of 

areas where management is currently focused.  I used neural network models to examine the 

impacts of changes in temperature and precipitation under 2 climate change scenarios: the 

Goddard Institute for Space Studies (GISS) and the Oregon State University (OSU) general 

circulation models.  These models predict monthly temperature and precipitation under 

varying assumptions given a two-fold increase in atmospheric concentrations of CO2.  

Predictions were available at a 0.5×0.5° latitude--longitude grid for Oklahoma and Texas.  I 

used these predictions as inputs and used the trained neural network weather models 

developed in Chapters 4 and 5.  For Texas, in addition to the climate change predictions, I also 

used the long-term mean weather conditions as inputs in the model.  I estimated the deviation 

of bobwhite abundance predicted from the climate change data from abundance predicted 

from the long-term mean weather data. The neural models predicted only declines in bobwhite 

abundance in Texas and Oklahoma.  In some parts of Texas, declines could reach >30 

bobwhites per route. 

                                                           
1 This chapter has not been previously published.   
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Introduction 

 Global change encompasses changes in land cover and land use, and changes in 

climate and weather patterns (Walker and Steffan 1999).  Although land use and cover 

changes might be the more immediate threat to species and the ecosystems they inhabit and 

maintain (Walker and Steffan 1999), climate change, because of its global scope and long-

term, persistent effects, will have a greater overall impact.  Current-generation general 

circulation models (GCM) predict increases in the global mean temperature of between 1.4 

and 5.8 ûC by the year 2100 over 1990 mean temperature.  Although these predictions are 

controversial, the National Research Council of the National Academy of Science (NRC 2000: 

2) stated, �[i]n the opinion of the panel, the warming trend in global-mean surface temperature 

observations during the past 20 years is undoubtedly real and is substantially greater than the 

average rate of warming during the twentieth century.�  The Intergovernmental Panel on 

Climate Change concurred (IPCC 2001).  Therefore, there is consensus among the scientific 

community regarding the validity of climate change.   

 Global climate change is thought to be driven by increases in carbon dioxide (CO2) and 

other greenhouse gas concentrations in the atmosphere (Schneider 1993, Bryant 1997, 

IPCC 2001).  The concentration of CO2 has increased in the Earth�s atmosphere by 31% since 

the 1750s and is higher than at any other point in the last 400,000 years (IPCC 2001), and 

concentrations of other greenhouse gases have also increased at unprecedented rates in 

recent history (Walker and Steffan 1999, IPCC 2001).  Normal fluctuations in CO2 

concentrations have ranged between 190 ppmv (parts per million by volume) to 280 ppmv, 

but have only increased to the high end of this range since the advent of the Industrial 

Revolution (NRC 2001).  The role of these greenhouse gases in climate change results from 

their absorption of long-wave radiation emitted from the earth�s surface (Bryant 1997), 

thereby reducing the amount of heat energy that is radiated into space.  This is called the 

greenhouse effect and results in increased surface temperature.   
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 Models of climate change, called general circulation models (GCMs), are collections of 

simultaneous, nonlinear equations based on some basic laws of physics, which describe the 

behavior of the atmosphere and oceans as influenced by the earth�s rotation and temperature 

gradients between polar and equatorial regions (Schneider 1993, Bryant 1997).  Current 

generations of GCMs incorporate factors for other variables that can affect climate (Gates 

1993).  The differences between various models, therefore, are the differences in which of 

these other factors are taken into account.  The GCMs, as applied in climate-change research, 

are based on the assumption that concentrations of greenhouse gases, particularly CO2, will 

double over the historic mean levels within the next century (Schneider et al. 1992, Schneider 

1993, IPCC 2001).  The GCMs give a picture of the potential future climate, assuming that CO2 

and other greenhouse gas concentrations have stabilized and that the new climate is at an 

equilibrium state (i.e., the climate is no longer in the process of changing, but has reached its 

new steady state).  Given human reluctance to curb CO2 emissions, it is possible that the GCM 

predictions will on the low side of the range of possible oucomes.  Although the GCMs perform 

relatively well at predicting current climate, their performance depends on the controlling 

factors included in the model and, as a result, there often are discrepancies between model 

predictions and climate observations (NRC 2000).  These discrepancies are undoubtedly the 

result of the complex nature of the global climate system in addition to the different underlying 

assumptions (Schneider et al. 1992).  However, discrepancies limit the ability to accurately 

model species responses.  If the magnitude of the discrepancies is small, the predictions are 

likely to be accurate.  This is why it is important to understand how species respond to weather 

and climate, as has been attempted here.  Such understanding can be applied to each new 

generation of GCMs to provide increasingly accurate estimates of the effects of climate 

change on bobwhites. 

 Regional and local changes in temperature and precipitation are expected to vary 

substantially across the globe (Watson et al. 1998).  There is a >90% chance that continental 

interior regions of North America will experience temperature increases greater than the 
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global mean by as much as 40% (IPCC 2001).  Further, the diurnal temperature differential 

will decrease (Easterling et al. 1997).  Over the past century, the global mean temperature has 

already increased by 0.6 ûC, with the greatest periods of warming occurring between the 

periods 1910-1945 and 1976-2000 (IPCC 2001).  Because of the increase in the global 

mean temperature, the extent of snow cover has decreased by 10% since the 1960s and the 

thickness of the arctic sea ice has declined by 40% since the 1950s (IPCC 2001).  Concurrent 

with the increases in the temperature, global mean rainfall and evaporation are predicted to 

increase in proportion to the temperature increase (Schneider 1993).  Again, the magnitude 

and seasonality of the increases will vary regionally (Watson et al. 1998).  Over the mid-

latitudes during the past century, annual rainfall has increased by 0.5 to 1.0%/decade (IPCC 

2001).  In the sub-tropic areas of the northern hemisphere, rainfall has decreased by 

0.3%/decade.  Further, the frequency of heavy rainfall has increased by 2-4% over the last 

century (IPCC 2001), indicating an increase in the number and frequency of catastrophic 

storms. 

 My objective was to determine the potential consequences of global climate change for 

bobwhite distribution and abundance in Texas and Oklahoma, based on the current best-

estimate of regional changes in temperature and precipitation.  I used a neural network 

modeling approach and climate change predictions from 2 GCMs: the Goddard Institute for 

Space Studies model (GISS) and the Oregon State University model (OSU).  I predicted 

abundance (Texas) and standard normal deviate of abundance (Oklahoma) as dependent 

variables and mean monthly values for June, July, August mean maximum temperature and 

spring, summer, and fall mean total precipitation from the GCMs.  The resulting output can be 

used by wildlife managers to improve their management plans by taking into account possible 

changes in distribution and abundance of bobwhites that could result from climate change.   
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Methods 

 To predict potential bobwhite abundance and distribution under global climate change 

scenarios, I used neural network models.  The models were developed to predict bobwhite 

abundance as a function of various weather variables and land-use patterns.  A complete 

description of the models and how they were developed appears in Chapters 4 (Oklahoma) and 

5 (Texas).  Briefly, the Oklahoma neural model predicted the standard normal deviate of 

bobwhite counts based on mean maximum June, July, and August temperature (ûC); mean 

total winter (Dec�Feb), spring (Mar�May), and summer (Jun�Aug) precipitation (mm); and 

proportion of county area in cultivation, livestock density on noncultivated land (head/ha), and 

the standard normal deviate of last year�s bobwhite count.  The Texas model predicted 

bobwhite abundance (bobwhites/route/ecoregion/year) with the same suite of predictor 

variables, except for the addition of fall (Sep�Nov) precipitation and the substitution of previous 

year�s bobwhite count for the standard normal deviate of the previous year�s count.   

 I used climate change scenarios produced by the VEMAP Phase I database project 

(Kittel et al. 1996).  The database contained climate change scenarios from 8 different GCMs, 

all of which were based on a doubling of atmospheric CO2.  I selected 2 models for use based 

on the climate variables predicted by the GCMs.  Using 2 models also provides information on 

how the underlying assumptions of the various GCMs might influence the inferences drawn 

regarding changes in bobwhite abundance.  The 2 models selected were the Goddard Institute 

for Space Studies (GISS; Hansen et al. 1988) model and the Oregon State University (OSU; 

Schlesinger and Zhao 1989) model.  The VEMAP (Vegetation/Ecosystem Modeling and 

Analysis Project) used the existing models to produce datasets of long-term mean climate, 

soils, vegetation, and climate change scenarios for the conterminous United States (Kittel et al. 

1996).  These datasets contain mean monthly climate variables (precipitation and 

temperature) at a 0.5 ûlatitude--longitude scale.   

 I extracted data for temperature and precipitation for Texas and Oklahoma.  However, 

the data points were not in a usable form when extracted from the database.   Temperature 
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data were represented as temperature at 2×CO2 minus temperature at 1×CO2.  Precipitation 

data were represented as the ratio between rainfall at 2×CO2 and 1×CO2 concentrations.  To 

obtain usable data, I also extracted base climate conditions (1×CO2) gridded to the same 0.5 û 

latitude/longitude scale as the climate change scenarios.  Using these base-condition data, I 

was able to calculate monthly values for mean maximum monthly temperature and mean total 

monthly rainfall under 2×CO2 concentrations.  After obtaining usable data, I extracted June, 

July, and August mean maximum temperatures, and estimated mean total winter, spring, 

summer, and fall precipitation for use as inputs into the trained neural models.  I used the 

mean values for the proportion of county area in cultivation, the density of livestock on 

noncultivated land, and the previous year�s bobwhite count (or, in the case of Oklahoma, the 

mean standard normal deviate of the bobwhite counts), because there were no models 

available to predict changes in these values by 2100.   

 Climate change scenarios were presented to the trained neural networks to obtain 

predicted bobwhite abundance (Texas) or the standard normal deviate of bobwhite abundance 

(Oklahoma).  As discussed above, the Oklahoma model predicted the deviation of the bobwhite 

count from the long-term mean (represented as the standard normal deviate].  The output 

from the Oklahoma model was imported into ArcView 3.3 (ESRI, Redmond, California, USA).  I 

used the Kriging Interpolator (Nieuwland Automatisering, Amsterdam, Netherlands) and the 

Spatial Analyst (ESRI, Redmond, California, USA) extensions to interpolate the point output onto 

a surface, where the surface represents the standard normal deviate of bobwhite abundance 

under a 2×CO2 climate change scenario.   

 A similar process was employed for the Texas predictions, with the addition of a few 

steps.  To obtain deviations from normal bobwhite counts in Texas, I also presented the base 

weather data (plus the means of the land-use and population variables) to the trained neural 

model.  I then estimated the difference between predicted abundance under 1×CO2 and 2×CO2 

scenarios.  These differences were then imported into ArcView 3.3 and an interpolated 

surface was generated as for Oklahoma.   
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 To assist with interpreting the graphical output, I also imported the original climate 

change variables (temperature deviation from 1×CO2 and precipitation change ratio) into 

ArcView and interpolated surfaces across Texas and Oklahoma.  Precipitation change ratios 

were averaged over the 3-month seasonal intervals to obtain a seasonal estimate of 

precipitation change and to facilitate comparison with neural model predictions of bobwhite 

abundance.  Because the results from both GISS and OSU models were qualitatively similar, I 

focused on the results from the GISS model.   

 
Results and Discussion 

 The neural network models for Texas and Oklahoma predicted declines when 

presented with climate change data from the GISS (Fig. 7.1 and 7.2) and OSU GCMs.  The 

magnitude of the declines varied across states.  In Texas, the declines were predicted to be 

greatest in the southern part of the state (South Texas Plains; Fig. 7.1).  Reductions were 

predicted to be lower in the Panhandle and northern Texas.  Predicted climate changes 

reduced bobwhite abundance across the state (Fig. 7.1).  That is, there were no areas of Texas 

for which bobwhite abundance was predicted to improve or stay at current levels.  In southern 

portions of Texas, the declines are predicted to be quite significant (Fig. 7.1), with some areas 

suffering >20 bobwhites/route reductions.   

 Reductions in bobwhite abundance were also the norm in Oklahoma, where the 

predicted standard normal deviate of bobwhite abundance was negative across the state (Fig. 

7.2).  The pattern of decline varied from that predicted by the Texas model, however.  Declines 

were predicted to be greatest in north central and western parts of Oklahoma and lowest in 

southeastern Oklahoma (Fig. 7.2).  This latter area of the state includes portions of the 

Ouachita National Forest, where bobwhite abundances are low because forest habitat is not 

preferred by bobwhites (Cram et al. 2002).  The neural model, however, is spatially naïve.  That 

is, it makes it predictions only on the information provided to it.  As a result, it cannot take into 

account factors, such as forest cover, that might limit bobwhite abundance independent of the  
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Fig. 7.1.  Predicted changes in northern bobwhite abundance in Texas based on climate 

change scenarios developed from the Goddard Institute of Space Science general circulation 

model (GISS GCM).  Predictions were based on a 0.5×0.5° latitude/longitude grid and 

interpolated over the entire state using universal kriging.  
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Fig. 7.2.  Predicted changes in standard normal deviate of bobwhite counts in Oklahoma based 

on climate change scenarios developed from the Goddard Institute of Space Science general 

circulation model.  The predictions were based on a 0.5×0.5° latitude/longitude grid and 

interpolated across the state using universal kriging.
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factors included in the model.  The prediction, therefore, that bobwhite declines would be 

lowest in the southeast implicitly assumes that suitable habitat is available for bobwhites.   

 The interpolated contours for June, July, and August temperature under 2×CO2 

concentrations showed the month-to- month variation in the magnitude and spatial distribution 

of temperature increases in Oklahoma (Figs. 7.3�7.5).  These figures show the predicted  

change (°C) in temperature from baseline GCM (1×CO2 concentrations) predictions for 

Oklahoma.  June temperature is predicted to increase between 3.2 and 3.7 °C, with the 

greatest increases in the southeastern portion of the state.  This is the region where 

deviations in bobwhite abundance were lowest under the climate change scenario (Fig. 7.2).  

July and August temperature increases were highest in the western portions of Oklahoma 

(Figs. 7.4 and 7.5); again, areas where bobwhite declines are only moderately high under the 

climate change scenario.   

 Patterns of change in seasonal precipitation regimes are equally as varied, both in 

magnitude and in spatial distribution in Oklahoma (Figs. 7.6�7.9).  The change ratios depicted 

in the figures represent the ratio between rainfall at 2×CO2 atmospheric concentrations and at 

1×CO2 concentrations.  Values >1.0 indicate rainfall higher than current levels and values <1.0 

indicate rainfall below current levels.  The GCMs predicted that winter rainfall would be below 

current levels in western, and higher than current levels in eastern Oklahoma (Fig. 7.6).  Spring 

rainfall was predicted to be below current levels statewide, with the greatest declines in the 

west (Fig. 7.7).  Summer (Fig. 7.8) and fall (Fig. 7.9) rainfall were predicted to increase over 

current levels, with the greatest increases in the eastern parts of Oklahoma in summer and 

western parts in fall.  The pattern of precipitation change for Oklahoma, therefore, will be for 

relatively drier conditions in the west and increasingly wetter conditions in the east.  Patterns 

of decline in bobwhite abundance (Fig. 7.2) indicated an east�west gradient, albeit less distinct, 

with greater decreases in the southwest. 

 In Texas, all temperature changes were predicted to be positive.  June temperature 

increases were predicted to be greatest in south Texas, although the increases were  
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Fig. 7.3.  Change in June temperature for Oklahoma as predicted by the Goddard Institute for 

Space Science general circulation model.  The values represent the difference between model 

predictions at 2×CO2 and 1×CO2 concentrations.  
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Fig. 7.4.  Change in July temperature for Oklahoma as predicted by the Goddard Institute for 

Space Science general circulation model.  The values represent the difference between model 

predictions at 2×CO2 and 1×CO2 concentrations.  
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Fig. 7.5.  Change in August temperature for Oklahoma as predicted by the Goddard Institute 

for Space Science general circulation model.  The values represent the difference between 

model predictions at 2×CO2 and 1×CO2 concentrations.  
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Fig. 7.6.  Change in winter rainfall for Oklahoma as predicted by the Goddard Institute for 

Space Science general circulation model.  The values represent the ratio of model predictions 

at 2×CO2 and 1×CO2 concentrations.  
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Fig. 7.7.  Change in spring rainfall for Oklahoma as predicted by the Goddard Institute for 

Space Science general circulation model.  The values represent the ratio of model predictions 

at 2×CO2 and 1×CO2 concentrations.  
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Fig. 7.8.  Change in summer rainfall for Oklahoma as predicted by the Goddard Institute for 

Space Science general circulation model.  The values represent the ratio of model predictions 

at 2×CO2 and 1×CO2 concentrations.  
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Fig. 7.9.  Change in fall rainfall for Oklahoma as predicted by the Goddard Institute for Space 

Science general circulation model.  The values represent the ratio of model predictions at 

2×CO2 and 1×CO2 concentrations.  
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moderate (Fig. 7.10).  Temperatures were predicted to increase the least in the northern part 

of Texas in June, coincident with those areas where bobwhite abundance was predicted to 

decline the least.  Temperature increases in Texas were more dramatic in July (Fig. 7.11) and 

August (Fig. 7.12), and were greatest in north-central (July) and central (August) Texas.   

 Like Oklahoma, variation in seasonal precipitation patterns varied spatially in Texas 

(Figs. 7.13�7.16).  Winter precipitation was predicted to be below current levels (Fig. 7.13) 

over most of the state, except for extreme west Texas.  The localized pattern of increased 

precipitation shifted to the south of Texas in spring (Fig. 7.14), and precipitation in northern 

Texas was predicted to be well below current levels.   Most of central Texas was predicted to 

be drier than it is currently in summer (Fig. 7.15), but eastern and western portions of Texas 

were predicted to experience precipitation above current levels (i.e., precipitation at 1×CO2).  

Comparing changes in August temperature and summer precipitation, note that summer 

precipitation was predicted to decrease in a large portion of central Texas (Fig. 7.15) where 

August temperature was predicted to increase the most (Fig. 7.12).  This confluence of 

conditions might produce the high predicted declines in central Texas (Fig. 7.1).  Fall 

precipitation was also predicted to be below current levels in southern and central Texas (Fig. 

7.16).  Areas where precipitation levels were predicted to be above current levels coincided 

with areas where bobwhite abundance was predicted to decline the least (Fig. 7.1). 

 Many of the above-described changes in temperature and precipitation regimes in 

Texas and Oklahoma were dramatic when compared with current climate conditions.  Through 

what processes these changes will affect bobwhite abundance is a complex question.  There 

are several direct and indirect mechanisms through which global change could bring about the 

changes listed above.  The biotic and abiotic environments are important determinants of 

species� ecology.  Therefore, any change to that environment, by definition, will have some 

impact on the species involved, especially if changes occur at a rate faster than the species 

can adapt either genetically.  Behavioral adaptations, such as earlier nesting, could help 

maintain bobwhite populations until genetic adaptation occurs.   
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Fig. 7.10.  Change in June temperature as predicted by the Goddard Institute for Space 

Science general circulation model for Texas.  The values represent the difference between 

model predictions at 2×CO2 and 1×CO2 concentrations.  
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Fig. 7.11.  Change in July temperature as predicted by the Goddard Institute for Space Science 

general circulation model for Texas.  The values represent the difference between model 

predictions at 2×CO2 and 1×CO2 concentrations.  
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Fig. 7.12.  Change in August temperature as predicted by the Goddard Institute for Space 

Science general circulation model for Texas.  The values represent the difference between 

model predictions at 2×CO2 and 1×CO2 concentrations.  
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Fig. 7.13.  Change in winter rainfall as predicted by the Goddard Institute for Space Science 

general circulation model for Texas.  The values represent the ratio of model predictions at 

2×CO2 and 1×CO2 concentrations.  
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Fig. 7.14.  Change in spring rainfall as predicted by the Goddard Institute for Space Science 

general circulation model for Texas.  The values represent the ratio of model predictions at 

2×CO2 and 1×CO2 concentrations.  
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Fig. 7.15.  Change in summer rainfall as predicted by the Goddard Institute for Space Science 

general circulation model for Texas.  The values represent the ratio of model predictions at 

2×CO2 and 1×CO2 concentrations.  
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Fig. 7.16.  Change in fall rainfall as predicted by the Goddard Institute for Space Science 

general circulation model for Texas.  The values represent the ratio of model predictions at 

2×CO2 and 1×CO2 concentrations.  
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 Part of the biotic environment of an animal species is the plant community in which it 

exists.  The responses of plants to global change, therefore, will influence the abundance and 

distribution of the animals that exploit them, either for food or for shelter (Huntley 1997).  

Terrestrial plants will respond not only to changes in climate and land use, but also to the 

increased concentrations of CO2 in the atmosphere (Woodward 1992).  Because CO2 is an 

essential component of the photosynthetic process, increased concentrations might increase  

net primary production (Woodward 1992, Tilman 1993, Bazzaz 1996, Mooney et al. 1999).  

Grassland ecosystems experimentally exposed to 2×CO2 showed increased mean above 

ground biomass of approximately 14%, but there was considerable variation in individual 

species responses, which were dependent on water and nutrient availability (Mooney et al. 

1999).  The specific species differences in responses might lead to changes in a species� 

competitive interactions that might further lead to changes in community composition (Davis 

et al. 1998).  Further, the effects of changes in mean daily minimum temperature might differ 

from the effects of mean daily maximum temperature reported here.  For example, Alward et 

al. (1999) reported that increases in mean daily minimum temperature reduced net primary 

productivity in a C4 grass, but increased net primary productivity in C3 forbs.   

 In addition to changes in the physiological responses of plants, shifts in species ranges 

are also expected to occur (Woodward 1987, 1992).  A model developed to predict forest-

tree distributions under various climate change scenarios indicated that range shifts or range 

expansions were likely for most species investigated (Iverson and Prasad 1998).  The 

composition of plant communities under global change will, therefore, depend on the individual 

migration speeds of each species (Iverson and Prasad 1998, Iverson et al. 1999; but see Post 

2003), as well as the competitive abilities of each species (Davis et al. 1998).  In many cases, 

the migration speeds of the various plant species will not be sufficient to keep up with the rate 

of climate change (Peters 1992).  Human land-use decisions will complicate the issue, 

however.  In forest ecosystems, tree migration was hampered by fragmentation (Iverson et al. 

1999).   
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 The climate-change scenario used here assumed that the proportion of cultivated land 

and the density of livestock on non-cultivated land would remain at their current mean levels.  

This is an unlikely assumption, since global change also encompasses change in land cover and 

land use (Walker and Steffen 1999).  Changes include conversion of land to cultivated crops, 

livestock production, timber harvesting, urban sprawl, and industrial development (Gregory et 

al. 1999).  Landscape changes result from complex interrelationships among population size, 

economics, socio-political factors, and regional context (Gregory et al. 1999, Walker and 

Steffen 1999).  As the human population grows at an estimated rate of 0.8�1.0 

billion/decade (Walker and Steffen 1999), more lands will have to be converted to food 

production, either through cultivation or livestock production, in order to meet basic food 

requirements (Gregory et al. 1999).  To meet the needs of these growing populations, it is 

estimated that grain production will have to increase by 32 million ton/year.  The amount of 

area in rangeland or pastureland is also expected to decline as such areas are converted to 

cultivated cropland (Gregory et al. 1999).   

 Conversion of rangeland and native vegetation to row crops often converts what was 

once a heterogeneous landscape into a monoculture.  Early agricultural practices typified by 

many small, family-owned farms, resulted in a pattern of land use referred to as patchwork 

agriculture.  This patchwork was believed to enhance wildlife abundance through the creation 

of edge between cultivated fields, windbreaks, and fencerows (Leopold 1933).  If such land-use 

changes occur in Oklahoma and Texas, then bobwhite declines predicted here are likely to be 

conservative.   

 Changes in climate patterns will affect the flowering phenology of plant species in 

temperate regions, because seasonal plant phenology is governed by not only photoperiod, but 

ambient temperature (Galston et al. 1980).  The effects of warmer winters and springs on 

flowering have already been observed.  In Washington, D. C., the mean first-flowering times for 

the local plant community advanced 2.4 days over a 30-year period (Abu-Asab et al. 2001).  
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The advancement for 89 of the species was highly correlated with increased local minimum 

temperature.   

 Changes in seasonal plant phenology can have major impacts on animal species that 

have evolved life-history characteristics synchronized with these seasonal changes, but that 

are weakly coupled to actual seasonal changes (Myers and Lester 1992, Root 1993).  For 

example, in many bird species, the timing of breeding coincides with peak food abundance (Gill 

1995).  However, breeding among these species precedes actual peaks in food abundance 

and these species must therefore rely on some proximate cue as a signal to begin breeding.  

As a result, there might be insufficient food available for young once hatched if the proximate 

cue used by the bird (e.g., photoperiod) no longer accurately signals when the peak in food 

abundance will occur.  Production and, therefore, abundance might be reduced.  If the rate of 

decline in abundance is more rapid than the rate of adaptation to the new climate conditions 

(i.e., adaptation cannot keep pace with the rate of climate change), populations might become 

extinct (LaRoe 1991).  How much of an effect such a shift in plant phenology will have on 

bobwhites is unclear.  Some species appear to be able to behaviorally adjust the hatch date of 

their clutches to maintain the synchronization with peak food abundance (Cresswell and 

McCleery 2003).   

 Some bird species could be able to track changes in climate better than others, 

depending on mobility and rate of adaptation.  Among many species of birds, the initiation of 

egg laying has become earlier over the last half century.  Of 65 bird species investigated in 

England over a 25-year period, 31% exhibited trends toward earlier nest initiation, with nests 

being started an average of 8.8 days earlier (Crick et al. 1997).  Only 1 species showed 

significantly later laying dates (Crick et al. 1997).  A later study that spanned 57 years and 

investigated 36 English bird species found that 38% had trends in long-term nest initiation 

towards earlier dates and the earlier laying was related to climate change (Crick and Sparks 

1999).  In the United States, the mean date of first clutch for the Mexican jay (Aphelocoma 

ultramarina) decreased by 10.1 days (Brown et al. 1999).  These changes were related to 
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long-term increases in mean minimum monthly temperatures during the onset of the breeding 

season.  The egg-laying date for the North American tree swallow (Tachycineta bicolor) 

advanced by 9 days between 1959 and 1991, and was associated with increases in mean 

temperature during the breeding season (Dunn and Winkler 1999).  These changes in the 

start of the breeding season might increase the total length of the breeding season for these 

species, as long as there is not a concomitant changes in the end of the breeding season and  

increased temperatures do not adversely affect the breeding physiology of the species 

(Dawson 1992), resulting in higher production.  However, temperature is known to adversely 

affect the breeding physiology of the bobwhite (Klimstra and Roseberry 1975, Guthery et al. 

1988).  High temperatures during the breeding season can reduce the effective nesting 

season for bobwhites and increase the rate of nest abandonment (Klimstra and Roseberry 

1975).  Guthery et al. (1988) reported that gonadal recrudescence began up to 2 weeks 

earlier and a breeding season 2 months shorter in dry hot environments than in wetter, cooler 

areas.  The percent of hens in breeding condition also declined throughout the summer in 

south Texas (Guthery et al. 1988).   

 Global change can affect animal species in a variety of other ways, as well.  The arrival 

date of the American robin (Turdus migratorius) on its breeding grounds in the Colorado Rocky 

Mountains was 14 days earlier in 1999 than in 1981 (Inouye et al. 2000).   Distributions of 

some bird species will shift due to their physiological tolerances and, as noted above, because 

of changes to the plant communities to which they are adapted.  Root (1988) reported that 

the northern range boundaries of 148 North American bird species were determined by mean 

minimum January temperature, the length of the frost-free period, and the potential vegetation 

of the sites.  As these environmental conditions change, communities will become 

disassociated as species migrate to suitable areas at their own individual rates (LaRoe 1991).  

During this period of flux, new species interactions will occur and some species will be lost.  It is 

clear that in some area of their current range, bobwhites will be lost.   
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 Finally, I offer a caveat on the predicted declines described above.  As detailed in the 

methods section, the GCMs on which predictions were based varied in the assumptions and 

factors taken into considerations.  As a result, the predicted climate patterns under 2×CO2 

concentrations also varied.  The predicted declines are, therefore, subject to the assumptions 

of the underlying GCM.  Although the 2 GCMs used in this analysis were qualitatively similar, 

they were not quantitatively identical.  Given this caveat, the predictions presented here are 

best understood as qualitative.  That is, the neural model predictions are useful more for 

gauging the qualitative changes in abundance than in exactly measuring observed changes.   

 Aside from underlying differences in GCM structure, the models might also err in their 

presumption that the climate will reach a new equilibrium state once atmospheric 

concentrations of CO2 reach twice 1991 levels.  However, the effects of elevated CO2 

concentrations have a level of momentum that will propel climate change for several centuries 

after the emissions have occurred (IPPC 2001).  Therefore, it is likely that the climate will not 

be stabilized for some time to come, especially if greenhouse gases continue to be added to 

the atmosphere (IPCC 2001).  That is, the GCMs used in this analysis assume that CO2 levels 

have doubled and the climate has adjusted to the new CO2 concentrations. 

 The results reported here indicate that bobwhite abundances will decline in both 

Oklahoma and Texas as a result of climate change caused by elevated atmospheric CO2 

concentrations.  The exact magnitude of these declines is uncertain and dependent on the 

underlying GCM used to generate the climate change scenario.  However, as climate models 

continue to be refined, a more realistic depiction of the effects of climate change might 

emerge.  Therefore, these results are a temporary tool for wildlife managers concerned with 

protecting bobwhite populations as the earth�s climate changes.  
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CHAPTER 8 

CONCLUSIONS 

 The results of the present work, as well as many others, showed the usefulness of the 

neural network modeling for understanding complex ecological phenomena.  I used it to 

develop predictive models of bobwhite abundance in Oklahoma (Chapters 3 and 4) and Texas 

(Chapters 5 and 6), and elsewhere to discriminate nest sites from random points for northern 

bobwhites in Texas (unpublished manuscript) and for lark sparrows (Chondestes grammacus) 

in Oklahoma (Lusk et al. 2003).  In each case, my coauthors and I have found relationships 

among predictor and response variables that would not have been detected using orthodox 

statistical techniques.  In Chapter 3, most of the relationships were non-linear and were 

missed by the linear regression technique.  In fact, one of the chief benefits of neural network 

modeling is that it does not require a priori specification of the type of relationships (Smith 

1996).  This feature is useful when little is known about relationships among variables, as is 

often the case with endangered species, or where there is a strong suspicion that the 

relationships among predictors and responses are non-linear.  Further, neural models offer a 

method for model selection that is not biased by human preconceptions of the underlying 

functional relationships.  That is, the specification of the functional form of the relationships 

among predictors and responses is done independently of user input.  Although some authors 

have derided such techniques as �data dredging� (Burnham and Anderson 1999), neural 

network models can provide hypotheses that can subsequently be tested with empirical data.  

Neural models also provide methods for discovering ecological patterns within systems where 

various influencing factors are not given to easy experimental manipulation (e.g., weather) and 

to cases where vast amounts of data are available (Mitra and Acharya 2003).    
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 Another strength of neural modeling for wildlife management is that it lends itself to an 

adaptive management approach to conservation.  As more information becomes available, the 

neural models can be updated to provide more accurate predictions.  Alternatively, the new 

data can be used to test the accuracy of the neural models (Chapter 3).  In either case, the 

result is more informed management practices and more effective conservation. 

 The weather models (Chapters 4 and 5), although not directly comparable because of 

differences in the type of response variable being modeled, revealed a number of similar 

response patterns.  For example, bobwhite indices (relative abundance, standard normal 

deviate) declined with increasing June temperatures.  In the case of the Oklahoma model, 

temperatures greater than approximately 31 °C resulted in below average counts, whereas it 

was mean maximum June temperatures above 33 °C that resulted declines in bobwhite 

counts in Texas.  Similarly, neural models for both states predicted increases in bobwhite 

counts with increasing July temperatures above approximately 35 °C.  Although this result 

might seem counter intuitive, there are plausible explanations for the results (Chapter 5) 

dealing with detectablity and the concentration of bobwhites along roadways during hot, dry 

conditions.  Overall, both weather models indicated that summer heat was an important factor 

in determining fall abundances.  Indeed, heat loads high enough to cause the cessation of 

breeding are commonly experienced by bobwhites in south Texas (Guthery et al. 2001).    

 The month during which temperatures were most critical varied between the two 

weather models.  In Texas, July temperature was the only variable with a relevance score 

above 10%.  In Oklahoma, temperatures during all 3 summer months were important 

contributors to the model predictions.  It is likely that bobwhite responses to the temporal 

pattern of summer temperatures vary latitudinally.  The further one travels north, for example, 

the later in the year the onset of high summer temperatures.  However, June and August 

temperatures in Texas neared the arbitrary 10% relevance threshold (8.4 and 7.6%, 

respectively) and could, therefore, be said to be important variables.   
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 As mentioned in Chapter 1, there is no shortage of studies on the effects of weather 

and climate on bobwhites.  Although response and predictor variables differed among the 

published studies, the most significant shortcoming is the use of linear analysis methods.  It is 

axiomatic that nature is non-linear.  This is because many biological and ecological rates are 

bounded by definition (e.g., survival bounded by 0 and 1) or by the physical and biological 

properties of the system (e.g., age ratios of bobwhites).  This could be the reason for 

ambiguous or null relationships among predictors and responses.  For example, Edwards 

(1972) found no relationship between mean monthly temperatures and fall harvest.  Further, 

recruitment was not influenced by mean daily temperature or mean maximum daily 

temperature in southern Illinois (Roseberry and Klimstra 1984), but age ratios were in south 

Texas (Guthery et al. 2002).   

 The weather models also revealed consistent patterns among the land-use variables.  

In Texas, increasing livestock density decreased bobwhite abundance, whereas in Oklahoma, 

below average counts attended all but the lowest livestock densities.  There were also clear 

density dependent responses to previous year�s bobwhite populations.  In Oklahoma, 

abundance peaked at intermediate previous year�s counts and declined with increases in 

previous year�s counts >30 bobwhites.  Likewise, in Texas, increases in bobwhite abundance 

decelerated as previous year�s counts increased.  The climate-change modeling in Chapter 7 

also included land-use variables.  However, I made the simplifying assumption that land use 

under future climate changes would approximate the long-term averages of the variables 

(Chapter 7).  This is likely to be false, since increases in land area under cultivation or 

dedicated to livestock production will be necessary to support the expanding human population 

(Gregory et al. 1999) 

 Another consistency in the results was the finding that climate, measured as the 

deviation from long-term weather patterns, was a more important determinant of bobwhite 

abundance than short-term weather patterns (Chapters 4 and 6).  This has important 

implications for understanding the effects of climate change reported in Chapter 7, since 
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temperature and precipitation are both expected to significantly deviate from current 

conditions (IPCC 2001).  As the magnitude of the change in climate increases, so will its 

effects on bobwhite abundance.  This will especially be true if the pace of the changes is more 

rapid than the adaptive response of the bobwhites to the new local conditions.  The reason that 

climate was a better predictor might be an artifact of the definition of the climate variables.  

That is, representing climate as deviations from long-term mean conditions might have 

reduced the noise in the data, allowing the actual weather signal to be more apparent.   

 The results have practical ramifications for bobwhite management, particularly with 

respect to management on the current network of wildlife management areas and preserves.  

Changes in plant and animal communities across the globe are expected due to climate 

change; lands currently managed as nature preserves and wildlife management areas are no 

exception.  It might come to pass that areas now set aside as prime bobwhite habitat will be 

uninhabitable when temperatures rise, thus losing their conservation value.  These areas might 

become uninhabitable not only because they are no longer within the climate tolerances of 

bobwhites, but also because the habitat types associated with the presence of bobwhites 

might no longer exist under the new climate regime (Dockerty et al. 2003).  In fact, there is 

little consideration given to climate change impacts when management plans are being 

devised (but see Guthery et al. 2000).  Climate change trend analyses in conjunction with the 

neural models employed here can be used to identify specific sites where bobwhite populations 

might be able to be maintained (Dockerty et al. 2003), even if at reduced abundance.  It might 

be that no current land holdings will be suitable for bobwhites in 100 years.  In such a situation, 

land-management strategies will likely need to shift focus and more money and effort devoted 

to acquisition or management of privately held lands.   

 Unfortunately, no amount of effort will be sufficient to manage climate for some time to 

come.  But, armed with the knowledge of how climate and weather influence bobwhite 

dynamics, habitat management aimed at ameliorating the effects might prove useful, especially 

in the short term,   
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 It is worth inserting a few words of caution, however.  As discussed in Chapter 7, the 

GCMs used to generate the climate change scenarios are not perfect and include different 

forcing variables assumed to play roles in climate.  Although not perfect, the current 

generation of GCMs has demonstrated improvement on predicting climate change over a 

range of spatial and temporal scales (IPCC 2001).  The uncertainty in the predicted climate 

outcomes are magnified when those outcomes are used to predict the responses of various 

organisms (in this case, bobwhites) using neural models, which themselves have considerable 

uncertainty associated with them.  

 In addition to the limitations imposed by the accuracy of the GCMs used in Chapter 7, 

there are also a limitations imposed by the grain or scale of the GCM predictions.  The models 

used here had a minimum grain size of 0.5 × 0.5°.  It is likely that climate change will manifest 

at a finer scale due to topographic and edaphic factors.  The fine-scale details in the predicted 

responses of bobwhites are thus lost at this scale, but larger-scale patterns still offers 

managers a picture of what to expect as the climate begins to shift toward a new equilibrium.  

As more fine-grained GCMs are developed and tested, they can be used to refine our 

understanding of these processes.   

 One factor not included in my assessment of the impacts of climate change on 

bobwhite abundance is catastrophic weather events, such as thunderstorms, tornados, and 

blizzards and ice storms.  Such weather events have been known to cause die offs among 

bobwhite populations (Errington 1936; Errington and Hamerstrom 1936; Leopold 1937; Scott 

1937; Roseberry 1962, 1964).  Further, such events are expected to increase in frequency 

with climate change (NRC 2001, IPCC 1998, 2001).  Again, however, weather catastrophes 

occur at too fine a scale to be obtained from the climate models currently available (IPCC 

2001).  It will become increasingly important to consider the impacts of weather catastrophes 

as they become more frequent and their impacts on abundance more persistent.   

 Given the uncertainties inherent in the available GCMs and in neural models, it is 

perhaps better that the results of the climate-change scenarios be regarded as possible 
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outcomes and not as predictions.  There will undoubtedly be unforeseen impacts of climate 

change resulting simply from the complexity of the climate system (NAST 2000).  Although 

imperfect, the climate-change results are still useful as a preliminary projection for mitigation 

planning, especially when considered along with the knowledge gained regarding bobwhite 

responses to weather factors.  Such regional analyses are essential for understanding how 

climate change will impact the earth�s biota, especially since temperature increases in North 

America could be up to 40% higher than the global mean (IPCC 2001).   
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