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Abstract: Recent advancements in genomic technology have made genetic marker panels 

for a variety of economically-relevant beef cattle traits commercially available. Although 

independent validations have found that many of these markers are correlated with the 

traits they are designed to predict, economists have considered few of these markers and 

their value to producers. The objective of this dissertation is to contribute to the 

understanding of the economic value of these markers. 

The first essay estimates the value of using information from genetic marker 

panels characterizing seven economically-relevant traits for management and selection of 

feedlot cattle. The values of using genetic information to sort cattle by optimal days-on-

feed are less than $1/head for each of the traits evaluated, and the values associated with 

using genetic information to select cattle for placement are as much as $38/head. 

Therefore, it would not be profitable at the current cost of testing (about $40/head) to sort 

cattle by optimal days-on-feed, but it could be profitable to use the genetic tests for 

breeding cattle selection. 

 The second essay examines the potential to increase the value of genetic 

information by improving fed cattle marketing decisions. The value of using genetic 

information to selectively market cattle ranges from $1-$13/head depending on how a 

producer currently markets their cattle and the grid structure. Although these values are 

generally higher than those reported in previous research, they are still not enough to 

offset the current cost of genetic testing.  

 The third essay evaluates the potential for reducing the overall cost of genetic 

testing by assuming that, instead of testing each individual animal, a random sample of 

animals could be tested to measure the genetic potential of the group. Using a fully 

Bayesian approach, we determine that an optimal sample size of 10 out of 100 animals 

generated returns from sampling of nearly $10/head. Although sensitivity analysis 

suggests that these values will vary depending on the particular pen of cattle, results 

indicate that random sampling has the potential to provide a context in which the benefits 

of genetic testing outweigh the costs.  
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CHAPTER I 
 

 

INTRODUCTION 

The U.S. beef industry is made up of several disaggregated sectors: seed-stock, cow-calf, 

stocker/backgrounder, feedlot, and processor. As a result, misaligned incentives between 

producers at different points in the supply chain inhibit information flow from beef consumers 

back upstream to cattle producers, resulting in market inefficiency. For example, the revenue of 

cow-calf producers is a function of calf weight rather than feed efficiency or rate of gain potential 

of their calves, traits that are important for stocker and feedlot operators. Similarly, desirable 

traits for feedlots and processors do not always align with consumer preferences.  

The beef industry recognized these issues in the 1990s with the realization that they were 

losing market share to pork and poultry (Fausti, Feuz, and Wagner, 1998). To counter this trend, 

the beef industry introduced a number of programs, the most notable of which was grid pricing 

that was designed to reflect consumer preferences and transmit these signals back up stream to 

producers using a system of premiums and discounts for yield grade and quality grade outcomes. 

However, the benefits of grid pricing, in reality, only extend back to the feedlot, as there is still 

little to no incentive for cow-calf producers to invest in quality traits desired by consumers. In 

addition, returns to grid pricing are consistently more variable than the returns to live weight or 

dressed weight pricing and grid pricing has not become the dominant fed cattle marketing 

strategy as many had projected (Feuz, Fausti, and Wagner, 1993; Schroeder and Graff, 2000; 

Anderson and Zeuli, 2001; Fausti and Qasmi, 2002; Lusk et al., 2003). Therefore, the cattle 
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industry suffers from an asymmetric information problem. One way to alleviate the inefficiency 

created by these information gaps between sectors is to introduce credible information regarding the 

potential of the live animal to efficiently convert feed into products valued by consumers. In this 

dissertation genetic testing is evaluated as a potential source of information for aligning the incentives 

of the beef industry.  

Recent advancements in genomic technology have made genetic marker panels for a variety 

of economically-relevant beef cattle traits commercially available. Although independent validations 

have found that many of these markers are correlated with the traits they are designed to predict (Van 

Eenennaam et al., 2007; DeVuyst et al., 2011; Hall et al., 2011), to date, economists have considered 

few of these markers and their value to producers. Therefore, the objective of this dissertation is to 

contribute to the understanding of the economic value of commercially-available genetic marker 

panels using data from 10,209 animals.  

Previous research on the economic value of genetic testing has been limited to tests for leptin 

genotype (DeVuyst et al., 2007; Lusk, 2007; Lambert, 2008). However, in recent years leptin tests 

have been replaced with more precise genetic data, in the form of genetic marker panels, for a variety 

of economically-relevant traits. These marker panels include several, potentially hundreds or even 

thousands, of single nucleotide polymorphisms (SNP) to better predict phenotypic expressions 

(DeVuyst et al., 2011). Moreover, the availability of marker panels for several traits allows decision 

makers to better consider the chance that selecting for desirable attributes would have adverse effects 

on other economically-relevant traits. Therefore, the first essay, found in Chapter II, estimates the 

expected value of genetic information for seven economically-relevant traits at the feedlot stage, 

which results in two scenarios of value: marker-assisted management (sorting cattle by optimal days-

on-feed) or marker-assisted selection (differentially selecting cattle for placement in the feedlot).  

Results indicate that the values of using genetic information to sort cattle by optimal days-on-

feed are less than $1/head for each of the traits evaluated. However, the values associated with using  
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genetic information to select cattle for placement are as much as $38/head. The most economically 

relevant genetic traits are average daily gain and marbling. However, even with improved accuracy of 

genetic marker panels, the qualitative implications of these results are similar to those reported in 

previous literature evaluating the value of genetic testing for leptin genotype (DeVuyst et al., 2007; 

Lusk, 2007; Lambert, 2008). Therefore, it would not be profitable at the current cost of testing (about 

$40/head) to sort cattle by optimal days-on-feed, but it could be profitable to use genetic tests for 

selecting bulls and cows and determining breeding strategies. 

The results from the first essay indicate that it would not be cost-effective to use genetic 

testing for marker-assisted management. However, marker-assisted management in that case was 

limited to sorting cattle by days-on-feed. Therefore, there still remains potential to increase the value 

of marker-assisted management by using the information derived from genetic testing to improve 

other management decisions within the feedlot that have yet to be evaluated, including how cattle are 

fed and marketed. Therefore, the second essay, found in Chapter III, evaluates for the first time a 

marker-assisted management scenario in which genetic information is used to improve fed cattle 

marketing decisions, including decisions for both marketing method (live weight, dressed weight, or 

grid pricing) and timing to market (days-on-feed) for each marketing group.  

Results indicate that the value of using genetic information to selectively market cattle ranged 

from $1-$13/head depending on how a producer currently markets cattle and the grid structure. 

Although these values of marker-assisted management were generally greater than those reported in 

previous research, they were still not enough to offset the current cost of genetic testing. Nonetheless, 

sorting cattle into marketing groups also led to efficiency gains, including more accurate optimal 

days-on-feed and reduced variability of returns to cattle feeding. Therefore, the use of genetic testing 

to selectively market cattle may encourage producers, who might not otherwise do so, to market cattle 

on a grid (Fausti et al., 2010; Fausti, Wang, and Lange, 2013). This will result in improved quality  

  



4 
 

and consistency of beef products and improved transmission of market signals throughout the beef 

cattle supply chain, and may help address consumer demand problems. 

Despite improved accuracy of genetic marker panels, findings as reported in the first two 

essays consistently indicated that the value of genetic information is still not sufficient to offset the 

cost of testing. Therefore, either the value of genetic information must increase or the cost of testing 

must decrease. While animal scientists are continually progressing towards providing more accurate 

genetic markers that have the potential to increase the value of genetic information (for example, see 

Akanno et al. 2014), producers seeking to use this technology have no control over the pace at which 

these new variations are released. Therefore, the third essay of this dissertation, found in Chapter IV, 

presents a strategy for reducing the overall cost of genetic testing that has yet to be evaluated: random 

sampling. That is, instead of testing each individual animal in a group of cattle, a random sample of 

animals from a given ranch or farm could be tested to measure the genetic potential of the group. 

While appealing in theory, there is a thorny practical question: “What size sample should I take?” To 

answer this question a Bayesian decision theoretic approach to economically-optimal sample size 

determination is introduced (Grundy, Healy, and Rees, 1956; Riffa and Schlaifer, 1961; Lindley, 

1997). Although this method appears to be rarely used in economic research, it is theoretically sound 

and could be useful for a wide range of applied economics problems. 

Results indicate that the marginal benefit to testing is high for small sample sizes indicating 

that a large portion of the additional value for higher-quality cattle can be estimated by testing a 

relatively small portion of a lot of feeder cattle. For example, at the baseline parameter values the 

optimal sample size was 10 animals from a group of 100, and the returns from sampling were nearly 

$10/head, resulting in a 250% return-on-investment. Therefore, random sampling provides a context 

in which the benefits of genetic testing outweigh the costs, making this the first research to 

demonstrate cost-effective genetic testing for the beef industry. This research represents an important  
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contribution to the literature evaluating the economic value of genetic testing for beef cattle and 

potentially more importantly to the beef cattle industry.  

This dissertation provides several important building blocks for evaluating the economic 

value of genetic information in beef cattle production. Most importantly, by providing a context for 

cost-effective genetic testing this research has the potential to have some very big picture implications 

for the beef industry. Genetic testing can provide information that could be useful to incentivize cow-

calf producers to select bulls and cows to produce calves that will efficiently yield products valued by 

consumers. Economically-optimal random sampling and genetic testing has the potential to improve 

the flow of information from beef consumers back upstream to cattle producers and improve 

aggregate welfare.   
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CHAPTER II 
 

 

VALUE OF GENETIC INFORMATION FOR MANAGEMENT AND SELECTION OF 

FEEDLOT CATTLE
*
 

Abstract 

We estimate the value of using information from genetic marker panels for seven economically 

relevant feedlot cattle traits. The values of using genetic information to sort cattle by optimal 

days-on-feed are less than $1/head for each of the traits evaluated. However, the values associated 

with using genetic information to select cattle for placement are as much as $38/head. The most 

economically relevant genetic traits are average daily gain and marbling. It would not be 

profitable at the current testing cost of $38/head to sort cattle by optimal days-on-feed, but it 

could be profitable to use the genetic tests for breeding cattle selection. 

Keywords: Beef cattle, genetics, molecular breeding value, value of information 

Introduction 

Genomic technology has the potential to generate value in each sector of the beef industry – seed 

stock, cow-calf, feedlot, and processing – by aiding in both management and selection decisions 

                                                           
*
 This paper appears as published. Thompson, N.M., E.A. DeVuyst, B.W. Brorsen, and J.L. Lusk. 

“Value of Genetic Information for Management and Selection of Feedlot Cattle.” Journal of 

Agricultural and Resource Economics 39(2014):139-155.  
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(Van Eenennaam and Drake, 2012). Commercial testing services can provide livestock producers 

with a range of genetic information, including parentage assignment, detection of genetic defects, and 

genetic markers, or single nucleotide polymorphisms (SNP) for qualitative traits, such as hide color, 

and quantitative traits, such as marbling score. Many quantitative traits, such as growth and carcass 

characteristics, are economically important but can be difficult to measure preharvest.  

Therefore, genetic markers associated with these traits may provide valuable information to decision 

makers prior to investing considerable time and expense. Although independent validations have 

found that many of these markers are correlated with the traits they are designed to predict (Van 

Eenennaam et al., 2007; DeVuyst et al., 2011; Hall et al., 2011; National Beef Cattle Evaluation 

Consortium, 2013), economists have considered few of these markers and their value to producers to 

date. 

Early interest in genetic testing for beef cattle involved the leptin gene, which is associated 

with fat deposition (Fitzsimmons et al., 1998; Buchanan et al., 2002). Mitchell et al. (2009) found 

leptin genotype to be correlated with calf weaning weight and cow productive life. As a result, 

differences in annualized returns for dams with different genotypes range from $15 to $64 per head. 

Feedlot studies have had differing results with respect to the most profitable leptin genotypes 

(DeVuyst et al., 2007; Lusk, 2007; Lambert, 2008) but report differences in expected profit between 

the best and worst performing genotypes of as much as $60 per head. These same studies found that 

the leptin genotype has little effect on optimal days-on-feed. 

Today, leptin tests have been replaced with more accurate marker panels for a variety of 

economically relevant traits. These panels include several (potentially hundreds) of SNP to better 

predict phenotypic expressions (DeVuyst et al., 2011). Moreover, the availability of marker panels for 

several traits allows decision makers to better consider the chance that selecting for desirable 

attributes would have adverse effects on other economically relevant traits. Previous research has 

found economically meaningful relationships between genetic marker panel scores for average daily 

gain, tenderness, marbling, yield grade, and rib eye area and growth and carcass characteristics such 
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as average daily gain, feed efficiency, days-on-feed, hot-carcass weight, rib-eye area, yield grade, and 

quality grade (see DeVuyst et al., 2011, for an example). However, much remains to be learned about 

the economic value of utilizing such genetic information to improve feedlot profitability. 

Prior research has provided useful, preliminary analysis of the biological and economic 

impacts of genetic marker panels. However, the limited data and simplified approach have failed to 

capture the full value of information obtained from genetic marker panels. To realize the full value of 

genetic information, it is important to determine whether cattle with different genetic makeups 

progress differently throughout the feeding process (Ladd and Gibson, 1978; Lusk, 2007). In other 

words, genetic markers do not directly influence profit, but they influence growth and carcass traits 

that, in turn, determine profitability. Accordingly, this study seeks to provide such an analysis using a 

large sample of cattle with considerable genetic diversity. Genetic information is conveyed as 

molecular breeding values (MBVs), which, like panel scores, represent an animal’s propensity to 

express a given trait. Unlike discrete panel scores, MBVs are continuous, allowing for more precise 

depictions of the traits they characterize. In addition, genetic information is only useful if it conveys 

meaningful information beyond visual appraisal. Therefore, hide color is used to partially control for 

breed effects not considered in previous literature. 

The increasing accuracy of genetic marker panels and the rapidly declining costs of 

genotyping present livestock producers with the opportunity to increase profitability by taking 

advantage of the information derived from genetic testing. However, the usefulness and value of this 

information will vary among the seed stock, cow-calf, feedlot, and processing sectors. The objective 

of this research is to estimate the expected value of genetic information for seven economically 

relevant traits at the feedlot stage, which results in two scenarios of value. First, genetic information 

could be used for marker-assisted management, sorting cattle that are already owned by a feedlot into 

management groups that are likely to perform similarly. Here we specifically focus on the value of 

using this information for choosing optimal days-on-feed. That is, what is the economic benefit of 

being able to feed cattle with differing genetics for different numbers of days-on-feed? Second, 
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genetic information could be used for marker-assisted selection to differentially select cattle for 

placement in the feedlot.
2
 In other words, how much more or less are animals with superior or inferior 

genetics worth compared to their contemporaries? Expected values of genetic information derived in 

this study have important implications, not just for decision makers in the feedlot sector, but for those 

throughout the beef cattle supply chain. 

This study uses data from feedlot cattle to estimate the expected value of genetic information 

at the feedlot stage. Prediction equations for average daily gain, dressing percentage, yield grade, and 

quality grade are estimated using live-animal performance characteristics and MBVs for seven 

economically relevant traits. Prediction equations and a multivariate normal distribution of error 

terms are used as part of a stochastic simulation to estimate expected profits per head. The expected 

value of genetic information is calculated as the difference in expected profit, with and without 

genetic information, for both marker-assisted management and marker-assisted selection. 

Expected Profit Maximization and the Value of Information 

Due to the capacity of large scale feeding operations, management of individual cattle with different 

feed rations or different expected sale dates is cost prohibitive. Therefore, feedlot cattle are managed 

in a group environment, such as pens or lots (Kolath, 2009). We assume that producers maximize 

expected per head profit for each group: 

                                                           
2
 In the animal science literature, marker-assisted selection specifically refers to using the results of 

genetic testing to assist in the selection of breeding stock (Van Eenennaam, Werf, and Goddard, 

2011). However in this analysis, marker-assisted selection at the feedlot stage is defined as using 

genetic information to select feeder cattle for placement in the feedlot based on their genetic makeup.  
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(1)  

max
𝐷𝑂𝐹𝑘≥0

𝐸[𝜋𝑘] =
1

𝑛𝑘
∑𝑃𝑖𝑘

𝑛𝑘

𝑖=1

(𝑌𝐺𝑖𝑘 , 𝑄𝐺𝑖𝑘 , 𝐻𝐶𝑊𝑖𝑘) × 𝐻𝐶𝑊𝑖𝑘(𝑃𝑊𝑖𝑘 , 𝐴𝐷𝐺𝑖𝑘 , 𝐷𝑃𝑖𝑘 , 𝐷𝑂𝐹𝑘)

× (1 −𝑀𝑅) − 𝑃𝐶𝑖𝑘(𝑃𝑊𝑖𝑘, 𝑆𝐸𝑋𝑖𝑘) − 𝐹𝐶𝑖𝑘(𝑊𝑖𝑘 , 𝐷𝑂𝐹𝑖𝑘) − 𝑌𝐶𝑘(𝐷𝑂𝐹𝑘)

− 𝐼𝐶𝑖𝑘(𝑃𝐶𝑖𝑘, 𝐷𝑂𝐹𝑘), 

 

where 𝐷𝑂𝐹𝑘 is days-on-feed for the kth management group; 𝑛𝑘 is the total number of animals in the 

kth group; and 𝑃𝑖𝑘 is dressed fed-cattle price, which is determined in part by yield grade, 𝑌𝐺𝑖𝑘, quality 

grade, 𝑄𝐺𝑖𝑘, and hot-carcass weight, 𝐻𝐶𝑊𝑖𝑘, for the ith animal in the kth group. Hot-carcass weight is 

a function of placement weight, 𝑃𝑊𝑖𝑘, average daily gain, 𝐴𝐷𝐺𝑖𝑘,  and dressing percentage, 𝐷𝑃𝑖𝑘, 

𝐻𝐶𝑊𝑖𝑘 = (𝑃𝑊𝑖𝑘 + 𝐴𝐷𝐺𝑖𝑘 × 𝐷𝑂𝐹𝑖𝑘) × 𝐷𝑃𝑖𝑘. 𝑀𝑅 is mortality rate, which is bounded by 0 and 1, 

𝑃𝐶𝑖𝑘 is the purchase cost of feeder cattle, 𝐹𝐶𝑖𝑘 is feed cost, 𝑊𝑖𝑘 is weight, 𝑌𝐶𝑘 is yardage costs, and 

𝐼𝐶𝑖𝑘 is interest cost on the purchase of feeder cattle. At placement, purchase cost and placement 

weight are the only variables known with certainty. Other profit determinants are a function of 

random growth and carcass characteristics ADG, DP, YG, and QG and the choice variable, DOF. 

Although the producer is assumed to have contracted a guaranteed future price grid, it is unknown 

how animals will develop and therefore what weight and carcass premiums or discounts they will 

receive. Information derived from genetic testing can be used to predict unknown growth and carcass 

characteristics. This information gives the feedlot the opportunity to differentially manage and select 

cattle based on genetic potential. Although acquiring this information incurs costs, it yields 

information that may increase profitability (Stigler, 1961). 

Stigler (1961) first developed the economics of information, which has since been extended 

to many agricultural settings, including the value of genetic information in livestock production (Ladd 

and Gibson, 1978; Hennessy, Miranowski, and Babcock, 2004; DeVuyst et al., 2007; Lusk, 2007; 

Lambert, 2008). Typically, the value of information is calculated as “the difference between expected 

returns (or utility) using the information and expected returns without the information, with both 

expectations taken with respect to the more informed distribution” (Babcock, 1990, p.63). Note that 
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expected profit in equation (1) does not include genetic testing costs. As a result, the improvement in 

the objective function from acquiring genetic information sets an upper limit on the cost of genetic 

testing. 

Data 

Data for 10,209 cattle from six commercial feedlots were provided by Neogen, the parent company of 

Igenity. Animals were weighed at placement, and a hair sample or tissue punch from ear tag 

application was collected for genetic testing. Molecular breeding values characterizing average daily 

gain, hot-carcass weight, yield grade, rib-eye area, marbling, tenderness, and days-on-feed were 

provided. Although many breed associations are working toward developing breed-specific MBVs 

(MacNeil et al., 2010), much as they have done for expected progeny differences (EPDs), the MBVs 

used in this study were developed using a sample of commercial cattle.
3
 Unlike EPDs, which 

represent the genetic potential of an animal as a parent, MBVs represent the genetic potential of an 

animal to express a given trait. Increases in MBVs increase the likelihood of expressing more 

favorable outcomes.
4
 While MBVs (like EPDs) are reported in units of the trait, they “reflect the 

relative differences expected in animals across breeds compared to their contemporaries” (Igenity, 

2013a, p.2). That is, if two animals have marbling MBVs of -100 and 20, we would expect, on 

average, that these two animals’ marbling scores would differ by 120 units. Additional live-animal 

characteristics for gender, hide color, average daily gain, and days-on-feed were also provided. At 

                                                           
3
 For more information on the development and validation of MBVs, see the National Beef Cattle 

Evaluation Consortium, Commercial Genetic Test Validation (National Beef Cattle Evaluation 

Consortium, 2013).  

4
 Intuitively, more favorable outcomes are increases in a given trait (e.g., higher marbling score), 

except for yield grade, for which lower outcomes are more favorable. 
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slaughter, data were collected for final live weight and carcass measurements for hot-carcass weight, 

back fat, rib-eye area, calculated yield grade, and marbling score. 

Missing data were common for a few critical variables. Final live weight was unavailable for 

4,436 observations. Although not used directly, final live weight is essential to the estimation of 

dressing percentage (dressing percentage=hot-carcass weight/final live weight). Additionally, 422 

observations were missing for marbling score. After deleting these and other observations with 

missing data, 5,353 complete records were available for analysis. These data consist of six sets, each 

of which represents a different commercial feedlot or time period.
5
 In addition, each set is divided 

into contemporary groups, which are defined as groups “of animals that have had an equal 

opportunity to perform: same sex, managed alike, and exposed to the same environmental conditions 

and feed resources” (Northcutt, 2005, p.144). The 197 contemporary groups averaged 27 head per 

group with a range from 1 to 202 head. The sample is made up of 74% steers and 68% black-hided 

cattle (table II-1). On average, cattle were fed for 165 days and finished with a yield grade of almost 3 

and a marbling score of 412 (low Choice on the quality grade scale).
6
 

Investigation of the empirical, joint yield- and quality-grade distribution suggests that cattle 

in the sample are of average quality (table II-2). The majority of cattle grade either Select (44%) or 

low Choice (42%) on the quality-grade scale and yield grade two (46%) or three (40%) on the yield-

grade scale, although the sample includes cattle in each yield-grade and quality-grade category. 

                                                           
5
 The majority of the cattle used in this study represent year-round placements in commercial feedlots 

in Iowa and Kansas in the year 2007 with a small number of placements (127 head) in January 2008. 

6
 Marbling scores between 200--299 are said to have traces of intramuscular fat and are graded 

Standard, 300--399 or slight marbling are Select, 400--499 or small marbling are low Choice, 500--

599 or modest marbling are average Choice, 600--699 or moderate marbling are high Choice, and 

scores over 700 are Prime (USDA AMS, 1997, 2006). 
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To remove time-varying effects in our simulation, all animals are assumed to face the same 

market prices for March 2013. Purchase costs for feeder cattle are estimated using feeder cattle prices 

for steers and heifers based on placement weight (U.S. Department of Agriculture, Agricultural 

Marketing Service (USDA AMS), 2013a). Finished cattle are assumed to be priced on a fixed grid 

with a base price of $201.71/cwt. dressed, with appropriate premiums and discounts for yield grade, 

quality grade, and weight (table II-3) (USDA AMS, 2013b). 

Procedures 

Average daily gain (ADG), dressing percentage (DP), yield grade (YG), and quality grade (QG) in 

equation (1) are assumed to be random variables. A mixed model regression equation for each of 

these growth and carcass characteristics is estimated such that the data generating process is specified 

as 

(2)  𝑌𝑖𝑗𝑘𝑙 = 𝛽0𝑙 + 𝑃𝑊𝑖𝑗𝑘𝛽1𝑙 +𝐷𝑂𝐹𝑖𝑗𝑘𝛽2𝑙 + 𝐷𝑂𝐹𝑖𝑗𝑘
2 𝛽3𝑙 + 𝑃𝑊𝑖𝑗𝑘𝐷𝑂𝐹𝑖𝑗𝑘𝛽4𝑙 + 𝑆𝑇𝑅𝑖𝑗𝑘𝛽5𝑙

+ 𝐵𝐿𝐾𝑖𝑗𝑘𝛽6𝑙 + ∑ 𝑀𝐵𝑉𝑖𝑗𝑘𝑚𝛽7𝑙𝑚

7

𝑚=1

+ 𝑣𝑗𝑙 + 𝑢𝑗𝑘𝑙 + 𝜀𝑖𝑗𝑘𝑙 , 

 

where 𝑌𝑖𝑗𝑘𝑙 is the dependent variable for the ith animal in the jth set and the kth contemporary group 

for the lth equation, where l=1,2,3,4 for 𝐴𝐷𝐺𝑖𝑗𝑘, 𝐷𝑃𝑖𝑗𝑘, 𝑌𝐺𝑖𝑗𝑘, and 𝑄𝐺𝑖𝑗𝑘, respectively; 𝑃𝑊𝑖𝑗𝑘 is 

placement weight; 𝐷𝑂𝐹𝑖𝑗𝑘 is days-on-feed; 𝑆𝑇𝑅𝑖𝑗𝑘 is a dummy variable equal to 1 if the animal was a 

steer and 0 otherwise; 𝐵𝐿𝐾𝑖𝑗𝑘 is a dummy variable equal to 1 if the animal had black hide and 0 

otherwise; 𝑀𝐵𝑉𝑖𝑗𝑘𝑚 is the molecular breeding value of the mth economically relevant trait; 

𝑣𝑗𝑙~𝑁(0, 𝜎𝑣𝑙
2 ) is a set random effect; 𝑢𝑗𝑘𝑙~𝑁(0, 𝜎𝑢𝑙

2 ) is a contemporary group random effect nested 

within sets (Greene, 2012); and 𝜀𝑖𝑗𝑘𝑙~𝑁(0, 𝜎𝜀𝑙
2) is an error term, where 𝑣𝑗𝑙, 𝑢𝑗𝑘𝑙, and 𝜀𝑖𝑗𝑘𝑙 are 

independent. A full set of MBV, days-on-feed interactions are also investigated as slope shifters in the 

YG and QG equations. Only the marbling MBV, days-on-feed interaction is statistically significant in 

both equations; all other MBV, days-on-feed interactions are therefore dropped from the models. 
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Dependent variables YG and QG are both represented as continuous variables. Yield grade is a 

continuous variable as a function of backfat; kidney, pelvic, and heart fat; hot-carcass weight; and rib-

eye area (USDA AMS, 1997), and the marbling score is used as a continuous representation of QG. 

Models are estimated independently using Proc Mixed in SAS (SAS, 2012). The D’Agostino-

Pearson K
2
 omnibus test for skewness and kurtosis rejects the null hypothesis of normality in each of 

the four prediction equations, and conditional variance tests identify static heteroskedasticity. Cluster 

robust standard errors are estimated to obtain estimates of standard errors that are consistent in the 

presence of nonnormality and heteroskedasticity (Liang and Zeger, 1986). Given the large sample 

size, asymptotic properties are relevant, and the small sample biases common with generalized 

method of moments estimators should be of little concern. 

Expected Profit 

Feed costs are also needed to calculate expected profits. Given that observations of feed intake were 

unavailable, a dry matter intake (DMI) model is used following the National Research Council’s 

(NRC) Nutrient Requirements of Beef Cattle (NRC, 2000).
7
 The DMI model generates an estimate of 

“standardized” feed intake. That is, we ignore additional factors that may have influenced feed intake 

across different feedlots or time periods, such as weather. Much like holding prices constant, this 

approach places all animals on a level playing field in order to estimate an expected value of genetic 

information. Prior to calculating DMI, a projected live weight for each animal for each day on feed is 

estimated as 

(3)  𝑊𝑖𝑡 = 𝑃𝑊𝑖 + (
𝐿𝑊𝑖 − 𝑃𝑊𝑖
𝐷𝑂𝐹𝑖

) × 𝑡𝑖∀ 𝑡 ∈ {1,… , 𝐷𝑂𝐹𝑖}, 
 

                                                           
7
 A constant cost-of-gain approach could also be used to estimate feed costs. However, such an 

approach is just a parallel shift of the revenue curve. The DMI model reflects that the cost of gain 

goes up as the cattle weight increases and thus provides concavity to the profit function. 
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where 𝑊𝑖𝑡 is the weight of the ith animal at the tth day on feed, 𝐿𝑊𝑖 is final live weight, 𝑃𝑊𝑖 is 

placement weight, and 𝐷𝑂𝐹𝑖 is days-on-feed. The NRC’s DMI equation also allows for adjustment 

factors for breed, percentage of empty body fat, growth hormones, air temperature, and muddy soils 

that may influence growth in the feedlot. Based on available information, a body fat adjustment factor 

(BFAF) is included in the analysis. The BFAF is determined by empty body fat percentage (EBF) 

(Perry and Fox, 1997): 

(4)  𝐸𝐵𝐹𝑖𝑡 =

(

 
 
0.351(0.389(

𝑊𝑖𝑡
2.2
)) + 21.6𝑌𝐺𝑖 − 80.8

0.389(
𝑊𝑖𝑡
2.2
)

)

 
 
× 100. 

 

Essentially, the BFAF corrects for over prediction of DMI as animals become larger (table II-4) 

(NRC, 2000). 

Using this information, we then estimate DMI (lbs/day) for the ith animal for the tth day on 

feed as 

(5)  𝐷𝑀𝐼𝑖𝑡 = (0.96 (
𝑊𝑖𝑡
2.2
))

0.75

×
(0.2435𝑁𝐸𝑚 − 0.0466𝑁𝐸𝑚

2 − 0.1128)

𝑁𝐸𝑚
× 𝐵𝐹𝐴𝐹𝑖𝑡 × 2.2, 

 

where 𝑁𝐸𝑚 is the net energy required for maintenance, which is set to a constant of two megacalories 

per kilogram (NRC, 2000). Finally, cumulative dry matter intake (CDMI) of the ith animal is 

(6)  𝐶𝐷𝑀𝐼𝑖 = ∑ 𝐷𝑀𝐼𝑖𝑡

𝐷𝑂𝐹𝑖

𝑡=1

. 

 

Additional information needed to estimate expected profit includes dry matter cost of $230/ton
 

($0.115/lb.), yardage costs of $0.40/day, a 7% interest rate on the purchase of feeder cattle, and a 
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mortality rate of 1% (Lardy, 2013).
8
 This information can be used in conjunction with equations (2)--

(6) to estimate profit per head. 

However, expected profit in equation (1) is nonlinear. Therefore, because of Jensen’s 

inequality, profit calculated at the expected value of prediction equations will not equal expected 

profit (Greene, 2012). For this reason, stochastic simulation is used to estimate expected profit per 

head. The Cholesky decomposition of the four-by-four variance-covariance matrix of the error terms 

from equation (2) is calculated and used to generate a multivariate normal distribution of 1,000 error 

terms for each of the four prediction equations for each animal in the sample. Profit per head is 

evaluated at each draw using actual live-animal characteristics and MBVs. The average across draws 

is expected profit per head. This process is repeated for days-on-feed from 150 to 200. 

Marker-Assisted Management 

The advantage of genetic testing is the ability to differentially manage or select cattle based on 

unobservable growth and carcass characteristics. As a result of producer interest in which MBVs are 

most economically relevant, the primary objective here is to determine the value associated with each 

individual genetic marker panel. To do so, cattle are divided into quartiles for each of the seven 

MBVs, and the expected profit per head is calculated for each quartile.
9
 A grid search is then 

employed to determine the days-on-feed that maximizes expected profit per head for each group. This 

                                                           
8
 Costs for sick treatments, which are generally assessed on an animal-by-animal basis (for example, 

$1 per head for each pull plus material costs), are not included. Information on animals being pulled 

for sick treatment was not available. 

9
 The choice of four groups used in this analysis is subjective. However, Cargill Cattle Feeders utilize 

a four group management system to “allow for efficient management within a group production 

environment by preventing groups with too few animals, while still allowing us to come close to 

maximizing the genetic potential of each animal” (Kolath, 2009, p.105).  
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approach makes it possible to identify which MBVs capture the most economic value. Marker-

assisted management is the process of using genetic information to sort cattle already in the feedlot 

into management groups that are most likely to achieve similar endpoints (Van Eenennaam and 

Drake, 2012). Although it can include several objectives, such as implant strategies and value-added 

marketing, marker-assisted management for this analysis is limited to optimal marketing dates, or 

days-on-feed. The value of genetic information associated with marker-assisted management 

(𝑉𝑂𝐼𝑀𝐴𝑀) for a given trait is calculated by comparing expected profit when a feedlot can 

differentially choose optimal marketing dates for each quartile of a given trait relative to the case 

where all cattle are fed for the same number of days-on-feed:  

(7)  

𝐸[𝑉𝑂𝐼𝑀𝐴𝑀] =∑
𝐸[𝜋𝑄𝑖]

4

4

𝑖=1

− 𝐸[𝜋𝐴𝐿𝐿], 
 

where 𝜋𝑄𝑖 is maximum profit for the ith quartile and 𝜋𝐴𝐿𝐿 is maximum profit when all cattle in the 

sample are fed for the same number of days-on-feed. 

Marker-Assisted Selection 

At the feedlot stage, marker-assisted selection involves differentially selecting cattle for placement 

based on genetic information. Feedlots are still expected to feed both high- and low-quality cattle. 

However, access to genetic information allows feedlot operators the opportunity to place premiums 

on cattle with superior genetic potential and discounts on cattle with poor genetics. The maximum 

value of genetic information associated with marker-assisted selection (𝑉𝑂𝐼𝑀𝐴𝑆) for a given trait is 

calculated by comparing expected profits for the best performing quartile relative to the case where 

genetic information is unavailable and all cattle are fed for the same number of days-on-feed:
10

 

                                                           
10

 The expected value of marker-assisted selection in some previous studies has been calculated as the 

difference in expected profit per head for the best and worst performing quartiles (or genotypes). 
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(8)  𝐸[𝑉𝑂𝐼𝑀𝐴𝑆] = max{𝐸[𝜋𝑄1], 𝐸[𝜋𝑄2], 𝐸[𝜋𝑄3], 𝐸[𝜋𝑄4]} − 𝐸[𝜋𝐴𝐿𝐿].  

Although currently genetic information is not typically available to feedlots prior to purchasing feeder 

cattle (Kolath, 2009), knowledge of the value associated with marker-assisted selection at the feedlot 

stage is important. These values provide estimates of the premiums or discounts that feedlots could 

place on cattle with varying levels of genetic potential, or a bid-price differential. In addition, 

knowledge of the traits that generate the most value to the feedlot sector may also guide selection 

decisions in the breeding sectors. The values reported here reflect short-run partial equilibrium 

effects. If the majority of feedlots begin selecting for MBVs – or if breeders begin to selecting for 

certain MBVs – then the returns to a genetic trait will change as a result of changes in supply and 

demand for the trait. 

Equations (7) and (8) treat the “base” scenario as the maximum expected profit when all 

cattle are fed for the same number of days-on-feed (𝜋𝐴𝐿𝐿), rather than using actual observed returns.
11

 

This approach allows us to confidently make comparisons across all animals in the sample. 

Alternatively, these same comparisons may not be appropriate when using actual observed returns, 

given that the cattle were fed under different conditions. For example, the dataset consists of animals 

from several commercial feedlots over multiple time periods. Therefore, differences in marketing 

decision rules among feedlots as well as differences in input and output prices over time influence the 

observed days-on-feed decisions and returns to cattle feeding. In addition to these obvious 

differences, unobservable constraints (such as capacity constraints and weather conditions) are also 

                                                                                                                                                                                    
However, this assumes that the original state of nature involves the feedlot owning all cattle from the 

worst performing quartile, which is likely not the case.  

11
 Observed returns based on pen-level cost data were unavailable. However, access to this 

information would not have changed our approach to estimating the expected value of genetic 

information. This additional data may have been used to calibrate the intake equations, but even this 

may have been inappropriate given the potential for differences in feed rations across time and space. 
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likely to influence the observed outcomes. However, feedlots do not have a constant days-on-feed 

expectation with or without genetic information. Therefore, the values reported here are likely upper 

bounds on the value of genetic information. 

Multiple-Trait Marker-Assisted Management and Selection 

Genetic information characterizing economically relevant traits may also be supra- or subadditive. 

That is, managing for multiple traits simultaneously may increase the value associated with marker-

assisted management or marker-assisted selection. If cattle are divided into quartiles for each MBV, 

simultaneously managing for two traits yields sixteen potential management groups. Again, a grid 

search is employed to determine days-on-feed that maximizes the expected profit per head for each 

group. The expected value of marker-assisted management and marker-assisted selection is estimated 

similarly to equations (7) and (8), except that each group no longer makes up an equal proportion of 

the sample. 

Further, there is also interest in the value of utilizing the entire profile of genetic information 

simultaneously. That is, instead of utilizing genetic information for one or two traits, what is the value 

of managing cattle based on their overall performance? This inquiry requires a slightly different 

approach than the procedures described above. First, we must find the days-on-feed that maximizes 

the expected profit per head for each animal in the sample. However, when looking at each animal 

individually, live-animal characteristics other than MBVs will influence optimal days-on-feed. For 

example, animals with lower placement weights will obviously command higher optimal days-on-

feed. For this reason, placement weight, gender, and hide color are held constant at their mean values 

in order to separate these effects from those of genetic information. Following a stochastic simulation 

procedure similar to that described above, we can then determine the expected profit-maximizing 

number of days-on-feed for each animal in the sample. As has been previously discussed, individual 

management is cost prohibitive in a feedlot setting. Therefore, animals are sorted into quartiles based 

on their individual performance (optimal days-on-feed), and a single expected profit-maximizing 
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number of days-on-feed is determined for each quartile. Dividing cattle into quartiles also provides us 

with an estimated value of the entire genetic profile that is comparable to the other values of genetic 

information reported here. 

Results 

Regression estimates for growth and carcass characteristics ADG, DP, YG, and QG are reported in 

table II-5. Missing observations for dependent variables in the sample are deleted so that all four 

equations have the same number of observations (n=5,353).
12

 Coefficients for live-animal 

characteristics generally exhibit expected relationships. Heavier placement weights increase predicted 

values for ADG, DP, YG, and QG. Growth and carcass characteristics ADG, DP, and QG display a 

concave relationship with days-on-feed, increasing at a decreasing rate, but only in the DP equation 

are linear and squared terms both statistically significant. Consistent with expectations, the effect of 

days-on-feed on each of the performance characteristics is diminished as placement weight increases, 

which is suggested by the negative coefficient of the placement weight, days-on-feed interaction 

terms. Steers have higher ADG and lower YG and QG compared to heifers. Additionally, black-hided 

cattle have higher ADG and QG. 

Molecular breeding values influence corresponding fed cattle traits in the expected direction. 

Average daily gain MBV positively influences actual ADG, hot-carcass weight MBV positively 

influences actual DP, yield grade and rib-eye area MBVs negatively influence YG, and marbling 

MBV positively influences actual QG. Each of these effects except for the marbling MBV is 

statistically significant at the 1% level. However, a joint test of the marbling MBV and marbling 

MBV, days-on-feed interaction terms in the QG equation is statistically significant at the 1% level 

(df=2, 5128; F=306.91). Additional effects of MBVs on growth and carcass characteristics offer 

                                                           
12

 Each of the four equations is also estimated with its own maximum number of observations to 

investigate fragility. Differences are minimal, and results are presented as is for conciseness.  



23 

many interesting relationships. Most notably is the significant, inverse relationship between yield and 

quality grade. Higher yield grade and rib-eye area MBVs decrease QG, and higher marbling MBV 

increases YG.
13

 These cross-trait MBV effects suggest the need to consider multiple MBVs when 

making management or selection decisions. 

Prediction equations are used as part of a stochastic simulation to estimate expected profit 

according to equation (1) for days-on-feed from 150 to 200. Results indicate that if a feedlot was 

restricted to pick the same marketing date for all cattle, maximum expected profit of $146.14 per head 

would be realized at 185 days-on-feed. This result is higher than mean actual days-on-feed observed 

in the sample of 165 days,
14

 but is well within the range of observed values, which has a maximum of 

308 days. A variety of circumstances contribute to the discrepancy between predicted and observed 

days-on-feed. One potential explanation is the unobservable constraints faced by feedlot operators 

(Boys et al., 2007), such as differences in input and output prices actually faced when the cattle were 

on feed and the prices we use in this simulation.
15

 In addition, feedlot operators may be risk averse. 

                                                           
13

 Marbling MBV has a negative coefficient in the YG equation. However, the marbling MBV, days-

on-feed interaction is positive. Therefore, the sum of the two effects is positive and jointly significant 

at the 1% level (df=2, 5128; F=41.44) over the range of days-on-feed analyzed (150-200). 

14
 At the mean actual days-on-feed observed in the sample of 165 days expected profit would be 

$135.44 per head. Therefore, an additional twenty days-on-feed increased expected profit by about 

$10.70 per head. 

15
 The corn-to-dressed fed cattle price ratio in 2007 (4.20/146.37 = 0.029) is similar to the price ratio 

used in this analysis (6.44/201.71 = 0.032). However, the current price grid rewards higher quality 

grades, incentivizing feedlot operators to feed cattle longer. The use of a price grid from the period 

when cattle were actually fed may lead to more similar results between predicted and actual days-on-

feed. However, because we are ultimately interested in the current value of genetic information to 

producers, the use of a current price grid is appropriate. 
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Therefore, cattle may be harvested prior to reaching maximum profits in order to avoid the potentially 

large discounts associated with higher yield grades if cattle are overfed. 

Optimal days-on-feed and expected profits per head are determined at the quartiles of MBVs 

for each economically relevant trait (table II-6). Results indicate differences in expected profit among 

quartiles ranging from $8 per head for days-on-feed MBV to $46 per head for marbling MBV. Higher 

MBVs increase expected profit for all traits except yield grade, rib-eye area, and days-on-feed. The 

inverse relationship between expected profit and MBVs characterizing yield grade and rib-eye area is 

likely the result of the inverse relationship between yield grade and quality grade. More favorable 

yield grade and rib-eye area outcomes result in less favorable quality grade. Therefore, for the 

budgeted price grid, yield-grade premiums are insufficient to offset lower quality-grade premiums (or 

higher quality-grade discounts). Despite differences in expected profit, optimal endpoints for the 

quartiles of each trait are similar to the uniform endpoint for all cattle in the sample of 185 days-on-

feed. 

Marker-assisted management increases expected profit for each of the economically relevant 

traits evaluated. The ability to choose optimal marketing dates for each quartile of the rib-eye area 

MBV increases expected profit to $146.63 per head, resulting in the highest value of genetic 

information for marker-assisted management, $0.49 ($146.63-$146.14) per head (table II-7). Rib-eye 

area partially determines yield grade, which is directly reflected in the price grid. However, the value 

of marker-assisted management associated with the yield grade MBV is only $0.03 per head. 

Therefore, the rib-eye area MBV appears to capture markers that are more economically sensitive to 

days-on-feed than the yield grade MBV. The expected value of marker-assisted management for other 

key profit determinants of marbling, average daily gain, and hot-carcass weight are $0.35, $0.20, and 

$0.10 per head. In general, low values associated with marker-assisted management are partially 

influenced by limited differences among optimal days-on-feed for the quartiles of each trait and the 

uniform endpoint for all cattle in the sample. This result is consistent with the findings of previous 
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research (DeVuyst et al., 2007; Lusk, 2007; Lambert, 2008) and supports the finding that agricultural 

profit functions are often flat near the optimum (Pannell, 2006). 

Results also indicate that expected profits could be increased considerably if a feedlot could 

differentially select cattle based on genetic information for each trait. Marker-assisted selection for 

the MBV characterizing average daily gain increases expected profits to $168.35 per head, resulting 

in the highest value of genetic information for selection, $22.21 ($168.35 - $146.14) per head (table 

II-7). The ability to select for animals with higher average daily gain will result in heavier finished 

weights or fewer days-on-feed, both of which increase profitability. Similarly, MBVs characterizing 

marbling and hot-carcass weight generate value for selection of $21.27 and $18.42 per head. These 

results are similar to the findings reported by Lusk (2007), who found values for marker-assisted 

selection at the feedlot stage for leptin genotype of approximately $23 and $28 per head for steers and 

heifers.
16

 

The above results estimate the value of marker-assisted management and marker-assisted 

selection when focusing on a single economically relevant trait. However, the ability to manage or 

select for multiple traits may further increase expected profits and the value of genetic information. 

For example, a feedlot operator could simultaneously manage or select for MBVs characterizing 

average daily gain and marbling (table II-8). When each management group is fed for its own optimal 

number of days-on-feed, expected profits across all sixteen groups increase to $146.62 per head.
17

 

Therefore, the value of multiple-trait marker-assisted management for average daily gain and 

marbling MBVs is $0.47 ($146.62 - $146.14) per head. The group comprising the fourth quartiles for 

                                                           
16

 Other studies either did not report values of marker-assisted selection or reported values that were 

not comparable given differences in the estimation of the value of marker-assisted selection at the 

feedlot stage.  

17
 The sum across groups of each group’s expected profit multiplied by its effective proportion of the 

sample.  
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both traits generates the highest expected profit of $176.57 per head, resulting in a value of multiple-

trait selection for average daily gain and marbling MBVs of $30.43 ($176.57 - $146.14) per head. 

Similar analyses are conducted for each pairwise combination of the seven MBVs to 

determine the value of genetic information when simultaneously managing or selecting for multiple 

economically relevant traits (table II-9). Results indicate that the highest value of multiple-trait 

marker-assisted management is realized when simultaneously managing yield grade and rib-eye area 

MBVs, $0.79 ($146.93 - $146.14) per head. Similar to single-trait management, the economic 

impacts of the rib-eye area MBV appear to be more sensitive to days-on-feed than other economically 

relevant traits. The highest value of multiple-trait marker-assisted selection is realized when selecting 

for MBVs characterizing hot-carcass weight and marbling, $37.56 ($183.70 - $146.14) per head. 

Although selecting cattle based on multiple economically relevant traits increases the expected value 

of genetic information, this information is generally subadditive.
18

 This result is intuitive given the 

positive correlation among many of the marker panels. The values reported in table II-9 may 

underestimate the value of genetic information that would be available if the entire profile of genetic 

information were used. 

We estimate the value of the entire profile of genetic information by “indexing” animals 

based on performance (optimal days-on-feed). Because this approach is slightly different from the 

previous analyses, it requires that we estimate a new “base” scenario. That is, the stochastic 

simulation is reassessed, holding placement weight, gender, and hide color constant at their mean 

values. Results indicate that if a feedlot were restricted to pick a uniform marketing date for all cattle, 

maximum expected profits of $142.68 per head would be realized at 189 days-on-feed. Cattle are then 

indexed based on their individual genetic performance. That is, the expected profit maximizing days-

on-feed is determined for each individual animal in the sample. However, because individual 

                                                           
18

 The value of simultaneously selecting for two traits is less than the sum of the values when 

selecting for each trait individually.  
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management is cost prohibitive, cattle are divided into quartiles based on each animal’s optimal days-

on-feed. The ability to sort cattle into quartiles based on the performance of their entire genetic profile 

increases expected profit to $144.97 per head, resulting in a value of marker-assisted management of 

$2.29 per head ($144.97 - $142.68).
19

 

Conclusions 

This study estimates the expected value of genetic information at the feedlot stage. Using data from 

5,353 feedlot cattle, prediction equations for growth and carcass traits average daily gain, dressing 

percentage, yield grade, and quality grade are estimated using live-animal characteristics and 

molecular breeding values for seven economically relevant traits. Prediction equations and a 

multivariate normal distribution of error terms are used as part of a stochastic simulation to estimate 

expected profit per head for each day-on-feed. A grid search is employed to determine the optimal 

number of days-on-feed and maximum expected profits both with and without genetic information. 

The expected value of genetic information for marker-assisted management is low when 

sorting cattle into management groups for one or two economically relevant traits (less than $1 per 

head) and when cattle are sorted based on their entire profile of genetic information (less than $3 per 

head). However, the value associated with selecting and feeding cattle based on genetic potential is 

rather high (as much as $22 per head for single-trait selection and $38 per head for multiple-trait 

selection). Should feedlots have the opportunity to obtain genetic information prior to purchasing 

feeder cattle, the values of marker-assisted selection reported here may be of value in determining 

                                                           
19

 Dividing cattle into quartiles based on each animal’s individual profit-maximizing number of days-

on-feed allows us to generate a value of the entire profile of genetic information that is comparable to 

the other values of genetic information reported here. However, the expected profit when each animal 

is fed for its own optimal number of days-on-feed is $153.56 per head. This figure results in a much 

higher value of marker-assisted management of $10.88 per head ($153.56 - $142.68).  
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bid-price differentials. Even with improved accuracy of genetic marker panels for economically 

relevant traits, the qualitative implications of these results are similar to those reported in previous 

literature evaluating the value of genetic testing for leptin genotype (DeVuyst et al., 2007; Lusk, 

2007; Lambert, 2008). This study identifies average daily gain and marbling as the most 

economically relevant feedlot cattle traits. The estimated values of marker-assisted management and 

marker-assisted selection reported in this study may be overestimates of their true values if the same 

information could be obtained by visual appraisal. Although a hide-color dummy variable is used to 

partially control for breed effects, additional characteristics, such as frame size and muscling, may be 

observable independent of breed. Therefore, estimated values of genetic information are likely an 

upper bound for traits that may have the potential to be partially determined without genetic testing. 

To put the results of this study into context, consider that the net returns to finishing steers 

and heifers in Kansas have averaged -$31.45 and -$19.32 per head over the past ten years (Tonsor and 

Dhuyvetter, 2013). The values of marker-assisted selection reported here represent meaningful 

economic value to the cattle feeding industry. Comparing the value of information with the cost of 

genetic testing services is also instructive. Currently, Igenity offers a profile of marker panels that 

includes each of the traits evaluated in this study (except hot-carcass weight and days-on-feed) for 

$38.00 per head (Igenity, 2013b).
20

 Despite the low value of using genetic information to sort and 

optimally choose days-on-feed, the potential for using such strategies remains. As genomic testing 

technology continues to advance, the potential for declining costs of genetic testing and the 

development of markers for other important feedlot profit drivers, such as disease resistance and feed 

efficiency, may lead to cost-effective marker-assisted management in the feedlot sector (Van 

Eenennaam and Drake, 2012). In addition, random sampling could be used to measure the genetic 

potential of a group of cattle without having to test each animal. Still, the functional value of genetic 

                                                           
20

 This profile also includes additional traits not included in this study, such as maternal calving ease, 

docility, and stayability. 
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information at the feedlot stage continues to be the ability to improve the genetic distribution of cattle 

entering the feedlot. These improvements will need to take place in the industry’s breeding sectors. In 

particular, selection for desirable traits in the seed-stock sector will accelerate the rate of genetic gain 

(Weaber and Lusk, 2010; Van Eenennaam, Werf, and Goddard, 2011). However, selecting breeding 

stock for traits that are valuable in the feedlot sector may or may not be advantageous in other sectors. 

Although beyond the scope of this research, the impacts of these traits on other sectors must be 

considered.   
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Table II-1. Summary Statistics for Live-Animal, Carcass Performance, and Molecular Breeding 

Value Characteristics (n=5,353) 

Variable Mean 

Standard 

Deviation Minimum Maximum 

Live-Animal and Carcass Performance     

Placement weight (cwt) 6.83 1.22 2.94 11.16 

Steer
a 

0.74    

Black
b 

0.68    

Average daily gain (lbs/day) 3.33 0.77 0.42 6.52 

Days-on-feed 165.45 34.09 81.00 308.00 

Final live weight (cwt) 12.09 1.42 7.06 17.27 

Hot-carcass weight (cwt) 7.58 0.95 4.58 11.06 

Dressing percentage 0.63 0.03 0.49 0.83 

Rib-eye area (in
2
) 12.90 1.66 8.30 20.90 

Calculated yield grade 2.86 0.69 0.06 5.71 

Marbling score 412.32 76.86 190.00 830.00 

Molecular Breeding Values (MBV)
 

    

Average daily gain MBV 0.18 0.10 ‒0.19 0.48 

Hot-carcass weight MBV 27.63 9.24 ‒17.73 55.91 

Yield grade MBV ‒0.06 0.07 ‒0.34 0.21 

Rib-eye area MBV ‒0.63 0.51 ‒2.16 1.59 

Marbling MBV ‒22.53 28.24 ‒119.37 68.26 

Tenderness MBV ‒1.18 1.43 ‒5.90 2.92 

Days-on-feed MBV ‒2.58 2.99 ‒14.35 8.49 

Notes: Molecular breeding values (MBVs) are reported in units of the trait, and reflect the differences 

expected in animals across breeds compared to their contemporaries (Igenity, 2013a). Therefore, 

mean MBVs offer little insight. Instead, the range of MBVs is more informative. For example, the 

range of average daily gain MBVs suggests that the animal with the highest genetic potential for 

average daily gain in the sample would be expected, on average, to gain approximately 0.67 lbs per 

day more than the animal with the lowest genetic potential for average daily gain [0.48 - (-0.19)]. 
a
 Steer is a dummy variable equal to 1 if the animal was a steer and 0 otherwise. 

b
 Black is a dummy variable equal to 1 if the animal was black hided and 0 otherwise. 
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Table II-2. Empirical Distribution of Yield Grade and Quality Grade (n=5,353) 

 Yield Grade  

Quality Grade 1 2 3 4 5 Total 

Standard 0.0118 0.0155 0.0047 0.0006 0.0000 0.0325 

Select 0.0620 0.2285 0.1364 0.0082 0.0002 0.4353 

Low Choice 0.0211 0.1775 0.2057 0.0196 0.0009 0.4248 

Average Choice 0.0024 0.0271 0.0404 0.0058 0.0002 0.0758 

High Choice 0.0013 0.0080 0.0116 0.0041 0.0002 0.0252 

Prime 0.0000 0.0024 0.0032 0.0007 0.0000 0.0064 

Total 0.0986 0.4590 0.4018 0.0390 0.0015 1.0000 
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Table II-3. Yield Grade, Quality Grade, and Carcass Weight Premiums and Discounts for Price 

Grid 

Grid Component Premium/ (Discount)
 

 $/cwt. 

Base Price
a
 $201.71 

  

Yield Grade (YG) Adjustment  

YG < 2 $4.58 

2 ≤ YG < 3 $2.18 

3 ≤ YG < 4 $0.00 

4 ≤ YG < 5 ($9.25) 

YG ≥ 5 ($15.02) 

  

Quality Grade Adjustment  

Prime $19.40 

Choice $0.00 

Select ($2.69) 

Standard ($17.87) 

  

Hot-Carcass Weight (HCW) Adjustment  

HCW < 500 ($25.48) 

500 ≤ HCW < 550 ($19.62) 

550 ≤ HCW < 600 ($3.89) 

600 ≤ HCW < 900 $0.00 

900 ≤ HCW < 950 ($0.24) 

950 ≤ HCW < 1000 ($0.24) 

HCW ≥ 1000 ($21.99) 

Notes: Discounts are designated by parentheses. 

Source: U.S. Department of Agriculture, Agricultural Marketing Service, 2013b. 
a 
The base price is the five-area weighted average for 65%--80% USDA Choice dressed weight for 

mixed lots of steers and heifers. 

  



37 

Table II-4. Dry Matter Intake Empty Body Fat Adjustment Factor for Beef Cattle 

Empty Body Fat Percentage (EBF)
 

Body Fat Adjustment Factor 

(BFAF) 

EBF < 23.8 1.00 

23.8 ≤ EBF < 26.5  0.97 

26.5 ≤ EBF < 29.0 0.90 

29.0 ≤ EBF < 31.5 0.82 

EBF ≥ 31.5 0.73 

Source: National Research Council (2000). 
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Table II-5. Mixed Model Regression Results for Average Daily Gain, Dressing Percentage, 

Yield Grade, and Quality Grade Prediction Equations (n=5,353) 

 Equation 

Variable ADG DP YG QG 

Constant 2.2582* 0.3830** 1.0798 218.1700** 

Placement weight 0.1805 0.0094** 0.2079*** 22.8606*** 

Days-on-feed 0.0097 0.0019* 0.0039 1.2387** 

Days-on-feed
2 

−2.00E−05 −3.55E−06* 2.69E−06 −0.0006 

Placement weight × 

days-on-feed 

−0.0014* −4.00E−05 −0.0006 −0.1145*** 

Steer 0.3923*** 0.0001 −0.1452*** −34.2965*** 

Black 0.0225* −0.0003 0.0217 4.0083** 

Average daily gain 

MBV
 

0.3877*** −0.0055* 0.0081 −11.6896 

Hot-carcass weight 

MBV 

0.0026** 0.0001*** 0.0024 0.3596*** 

Yield grade MBV 0.2221** −0.0089 −0.7557*** −10.1476** 

Rib-eye area MBV −0.0341 0.0023 −0.3241*** −9.3658*** 

Marbling MBV 0.0004 −7.89E−06 −0.0022 0.1504 

Marbling MBV 

× days-on-feed 

— — 2.40E−05** 0.0033*** 

Tenderness MBV 0.0126** 0.0002 0.0018 −0.8510 

Days-on-feed MBV 1.00E−05 −3.00E−05 −0.0040* −0.4305 

     

Random effects
a 

    

Set
 

0.2185* 0.0005* 0.1219 60.8511 

Contemporary group
 

0.1104*** 0.0002*** 0.0370*** 491.6800*** 

Notes: Joint tests for marbling molecular breeding value (MBV) and marbling MBV, days-on-feed 

interactions are statistically significant at the 1% level in both the YG (df=2, 5128; F=41.44) and QG 

(df=2, 5128, F=306.91) equations. Single, double, and triple asterisks (*, **, ***) denote significance 

at the 10%, 5%, and 1% levels. Dependent variables in the four equations are average daily gain 

(ADG), dressing percentage (DP), calculated yield grade (YG), and marbling score (QG). 
a
 Random effects for set and contemporary groups nested within sets are included in the estimation of 

each equation, (i.e., mixed model regression, Greene, 2012). Sets represent a different commercial 

feedlot and/or time period, and contemporary groups are groups of animals that have had an equal 

opportunity to perform. 
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Table II-6. Maximum Expected Profit ($/head) and Optimal Days-on-Feed for Quartiles of 

Economically Relevant Molecular Breeding Values 

 Quartile 

Molecular Breeding Value Q1 Q2 Q3 Q4 

Average daily gain     

Expected profit  $125.19  $140.23 $151.61 $168.35 

Days-on-feed where expected profit is 

maximized 

181 184 185 187 

Hot-carcass weight     

Expected profit  $129.21 $141.46 $149.73 $164.56 

Days-on-feed where expected profit is 

maximized 

185 184 187 186 

Yield grade     

Expected profit  $158.42 $147.69 $143.53 $135.06 

Days-on-feed where expected profit is 

maximized 

187 184 185 185 

Rib-eye area     

Expected profit  $161.83 $154.00 $145.37 $125.34 

Days-on-feed where expected profit is 

maximized 

192 188 185 181 

Marbling     

Expected profit  $121.05 $140.93 $156.57 $167.41 

Days-on-feed where expected profit is 

maximized 

181 185 185 188 

Tenderness     

Expected profit  $143.05 $142.21 $146.47 $152.98 

Days-on-feed where expected profit is 

maximized 

187 185 185 184 

Days-on-feed     

Expected profit  $149.46 $146.65 $146.62 $141.93 

Days-on-feed where expected profit is 

maximized 

187 185 185 183 

Notes: If all cattle are fed for the same number of days-on-feed, maximum expected profit of $146.14 

per head would be realized at 185 days-on-feed.  



40 

Table II-7. Expected Value of Marker-Assisted Management and Marker-Assisted Selection at 

the Feedlot Stage for Molecular Breeding Values Characterizing Economically Relevant Traits 

 Value of Information 

Molecular Breeding Value 

Marker-Assisted  

Management
 

Marker-Assisted  

Selection
 

 —————— $/head —————— 

Average daily gain $0.20 $22.21 

Hot-carcass weight $0.10 $18.42 

Yield grade $0.03 $12.28 

Rib-eye area $0.49 $15.69 

Marbling $0.35 $21.27 

Tenderness $0.04 $6.84 

Days-on-feed $0.02 $3.31 

Notes: The value of marker-assisted management is calculated by comparing expected profit when a 

feedlot can differentially choose optimal marketing dates for each quartile of a given trait relative to 

the case where all cattle are fed for the same number of days-on-feed. The value of marker-assisted 

selection at the feedlot stage is calculated by comparing expected profits for the best performing 

quartile relative the case where all cattle are fed for the same number of days-on-feed. 
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Table II-8. Maximum Expected Profit ($/head), Optimal Days-on-Feed, and Effective 

Proportion of Management Groups for Simultaneous Management of Average Daily Gain and 

Marbling Molecular Breeding Values 

 Quartile for Average Daily Gain Molecular Breeding Value
 

Quartile for Marbling 

Molecular Breeding 

Value Q1 Q2 Q3 Q4 

Q1 $111.13 $120.79 $132.02 $146.40 

 (181)
 

(180) (181) (184) 

 [0.11]
 

[0.07] [0.05] [0.02] 

Q2 $127.58 $139.82 $144.21 $159.82 

 (183) (187) (185) (185) 

 [0.07] [0.07] [0.06] [0.05] 

Q3 $141.66 $148.72 $159.73 $169.56 

 (180) (189) (188) (190) 

 [0.04] [0.07] [0.07] [0.07] 

Q4 $149.80 $161.49 $164.69 $176.57 

 (188) (188) (188) (192) 

 [0.03] [0.04] [0.07] [0.11] 

Notes: Numbers in parentheses are days-on-feed for each group where expected profit ($/head) is 

maximized. Numbers in brackets are the proportion of cattle in the sample for each group. 
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Table II-9. Expected Value of Marker-Assisted Management and Marker-Assisted Selection at 

the Feedlot Stage for Pairwise Combinations of Molecular Breeding Values Characterizing 

Economically Relevant Traits 

 Value of Information 

Pairwise Combinations of Molecular 

Breeding Values 

Marker-Assisted 

Management
 

Marker-Assisted 

Selection
 

 —————— $/head —————— 

Average daily gain-Hot-carcass weight $0.37 $33.58 

Average daily gain-Yield grade $0.39 $31.92 

Average daily gain-Rib-eye area $0.66 $26.44 

Average daily gain-Marbling $0.47 $30.43 

Average daily gain-Tenderness $0.42 $30.07 

Average daily gain-Days-on-feed $0.38 $23.87 

   

Hot-carcass weight-Yield grade $0.22 $31.83 

Hot-carcass weight-Rib-eye area $0.70 $32.61 

Hot-carcass weight-Marbling $0.50 $37.56 

Hot-carcass weight-Tenderness $0.30 $28.80 

Hot-carcass weight-Days-on-feed $0.23 $23.76 

   

Yield grade-Rib-eye area $0.79 $24.38 

Yield grade-Marbling  $0.49 $27.15 

Yield grade-Tenderness $0.26 $16.86 

Yield grade-Days-on-feed $0.15 $16.75 

   

Rib-eye area-Marbling $0.67 $23.08 

Rib-eye area-Tenderness $0.70 $20.25 

Rib-eye area-Days-on-feed $0.62 $22.08 

   

Marbling-Tenderness $0.59 $23.94 

Marbling-Days-on-feed $0.47 $24.00 

   

Tenderness-Days-on-feed $0.23 $10.52 

Notes: The value of marker-assisted management is calculated by comparing expected profit when a 

feedlot can differentially choose optimal marketing dates for each quartile of a given trait relative to 

the case where all cattle are fed for the same number of days-on-feed. The value of marker-assisted 

selection at the feedlot stage is calculated by comparing expected profits for the best performing 

quartile relative the case where all cattle are fed for the same number of days-on-feed. 
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CHAPTER III 
 

 

USING GENETIC TESTING TO IMPROVE FED CATTLE MARKETING DECISIONS

 

Abstract 

We estimate the value of using genetic information to make fed cattle marketing decisions. 

Efficiency gains result from sorting cattle into marketing groups, including more accurate optimal 

days-on-feed and reduced variability of returns to cattle feeding. The value of using genetic 

information to selectively market cattle ranged from $1-$13/head depending on how a producer 

currently markets cattle and the grid structure. Although these values of genetic information were 

generally higher than those reported in previous research, they were still not enough to offset the 

current cost of genetic testing (about $40/head).  

Keywords: Fed cattle marketing, genetics, molecular breeding value, risk aversion, value of 

information 

Introduction  

The beef industry has promoted value-based marketing strategies since the early 1990s in an 

effort to improve the quality and consistency of beef products (National Cattlemen’s Beef 

                                                           

 This paper appears as published. Thompson, N.M., E.A. DeVuyst, B.W. Brorsen, and J.L. Lusk. 

“Using Genetic Testing to Improve Fed Cattle Marketing Decisions.” Journal of Agricultural and 

Resource Economics (in press).  
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Association [NCBA], 1990). Most notably, grid pricing, introduced in the mid-1990s, provides 

transparent price signals. Traditional cash pricing mechanisms, such as live weight and dressed 

weight pricing, are not based on the actual quality and yield grade of carcasses. As a result, above-

average cattle are paid less than their cutout value and below-average cattle are paid more than their 

cutout value. Therefore, traditional pricing mechanisms inhibit information flow from beef consumers 

to cattle producers (Feuz, Fausti, and Wagner, 1993; Fausti, Feuz, and Wagner, 1998). Grid pricing, 

on the other hand, determines value based on the carcass merit of each individual animal. Premiums 

and discounts that make up the grid reflect consumer preferences and transmit these signals upstream 

to cattle producers. Feedback on individual carcass performance and value provides an incentive for 

producers to make necessary changes to “their breeding, feeding, and sorting programs” (Johnson and 

Ward, 2005, p. 562). 

The National Beef Quality Audit (NBQA) reported that the share of fed cattle marketed on a 

grid increased from 15% in 1995 to 34% in 2005 (NCBA, 2006). However, grid pricing has yet to 

become the dominant fed cattle marketing strategy as many projected (Schroeder et al., 2002), 

accounting for only 40%-45% of fed cattle marketings (Fausti et al., 2010). While there is ample 

literature investigating producer incentives and disincentives to adopt grid pricing, the fundamental 

marketing risk created by the system has been identified as the primary barrier to adoption (Fausti, 

Feuz, and Wagner, 1998; Anderson and Zeuli, 2001; Fausti and Qasmi, 2002). Depending on the 

sample period, live weight, dressed weight, or grid pricing can have the highest returns, but variability 

is consistently highest for grid pricing (Feuz, Fausti, and Wagner, 1993; Schroeder and Graff, 2000; 

Anderson and Zeuli, 2001; Fausti and Qasmi, 2002; Lusk et al., 2003). This problem is further 

exacerbated by varying levels of risk aversion among cattle producers (Fausti and Feuz, 1995; Feuz, 

Fausti, and Wagner, 1995; Fausti et al., 2013; Fausti et al., 2014).  

The risk associated with buying and selling fed cattle has two main components: general 

price risk and informational (or carcass) risk (Fausti and Feuz, 1995). In this paper we focus on the 

carcass risk associated with marketing fed cattle. That is, because marketing decisions are made prior 
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to slaughter, carcass merit (yield grade, quality grade, and hot-carcass weight) is unknown. Therefore, 

better predictions of carcass quality may allow decision makers to improve their marketing decisions. 

Recent technological advancements in beef production, such as ultrasound technology and genetic 

testing, have made such information available. However, a producer would only be expected to use 

this technology if its benefits outweigh the costs. As a result, a branch of the agricultural economics 

literature evaluating the economic benefits of these technologies has emerged (Fausti et al., 2010).  

For example, Lusk et al. (2003) and Walburger and Crews (2004) reported that using 

ultrasound technology to selectively market cattle, as opposed to simply marketing all cattle on a live 

weight, dressed weight, or grid basis, increased revenue by $4 to $32/head. However, both of these 

studies held days-on-feed constant when making these comparisons. Koontz et al. (2008) contend that 

such an approach uses additional information to exploit pricing inefficiencies and is unlikely to 

change returns to producers in the long run. Therefore, they argue that improving meat quality and 

beef industry profitability requires changing the product form. They found that using ultrasound 

measurements to sort cattle into groups that were marketed to optimize returns by choosing days-on-

feed was between $15 and $25/head (Koontz et al., 2008).  

Advancements in the field of cattle genomics have made genetic marker panels for a variety 

of traits commercially available. Independent validations have found many of these markers to be 

correlated with the traits they are designed to predict (DeVuyst et al., 2011; National Beef Cattle 

Evaluation Consortium, 2015). While previous literature has found considerable economic value (up 

to $60/head) to using genetic information for selecting feeder cattle for placement in the feedlot 

(DeVuyst et al., 2007; Lusk, 2007; Lambert, 2008; Thompson et al., 2014), this information is not 

typically available prior to purchasing feeder cattle. Therefore, feedlots are limited to using this 

information to sort cattle into management groups that are most likely to achieve similar outcomes, or 

marker-assisted management (Van Eenennaam and Drake, 2012). In previous research, marker-

assisted management has been limited to sorting cattle by optimal days-on-feed. As a result, reported 

values of genetic information for marker-assisted management have consistently been less than 
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$3/head (DeVuyst et al., 2007; Lusk, 2007; Lambert, 2008; Thompson et al., 2014). Still, there 

remains potential for using the information derived from genetic testing to improve other 

management decisions within the feedlot that have yet to be evaluated, including how cattle are fed, 

how technologies such as implants and beta agonists are utilized, and how cattle are marketed. 

Therefore, using the same dataset of genetic information and phenotypic outcomes for 10,209 

commercially-fed cattle as Thompson et al. (2014), we evaluate for the first time a marker-assisted 

management scenario in which genetic information is used to selectively target cattle to different 

marketing methods. The objective of this research is to estimate the expected value of genetic 

information for improving fed cattle marketing decisions, including decisions for both marketing 

method (live weight, dressed weight, or grid pricing) and timing to market (days-on-feed). Although 

several previous studies have attempted to estimate the value of genetic information, none have 

considered the potential of this information to improve fed cattle marketing decisions, other than 

days-on-feed. Therefore, the results of this analysis represent an important and unique contribution to 

the literature evaluating the economic value of genetic testing for beef cattle. In addition, previous 

research evaluating fed cattle marketing decisions examined either marketing method or optimal 

days-on-feed, but did not evaluate both of these decisions simultaneously. This is important because 

accurately targeting cattle to the appropriate marketing method is only economically beneficial if 

cattle are appropriately managed once they are at market. 

Data collected from commercially-fed cattle are used to estimate regression equations 

characterizing phenotypic outcomes for average daily gain, dressing percentage, yield grade, and 

quality grade as a function of live-animal characteristics and genetic information. These equations 

and Monte Carlo integration are used to estimate expected net returns and expected utility for several 

marketing scenarios. Three baseline scenarios are created in which all cattle are marketed in a single 

group on a live weight, dressed weight, or grid basis without using of any genetic information. These 

baseline scenarios are then compared with alternative marketing scenarios in which genetic 

information is known and used to sort cattle into groups to be targeted to specific marketing methods.  
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Conceptual Framework 

Cattle feeders are assumed to maximize expected profit by choosing both how and when to market 

cattle. At placement in the feedlot, placement weight and purchase cost are the only variables known 

with certainty. Other profit determinants are a function of random growth and carcass characteristics, 

including average daily gain (𝐴𝐷𝐺), dressing percentage (𝐷𝑃), yield grade (𝑌𝐺), and quality grade 

(𝑄𝐺). Although we assume that at the time marketing decisions are made output prices are known by 

the decision maker, it is unknown how animals will perform and, as a result, what weight and carcass 

quality they will achieve. Therefore, the feedlot operator’s expected profit maximization problem can 

be written as  

(1)  max
𝑗∈{1,2,3}
𝐷𝑂𝐹𝑗≥0

⨌𝐸𝜋𝑖𝑗(𝐷𝑂𝐹𝑗, 𝐴𝐷𝐺𝑖, 𝐷𝑃𝑖 , 𝑌𝐺𝑖 , 𝑄𝐺𝑖) × 

𝑓(𝐴𝐷𝐺,𝐷𝑃, 𝑌𝐺, 𝑄𝐺)𝑑𝐴𝐷𝐺𝑑𝐷𝑃𝑑𝑌𝐺𝑑𝑄𝐺  ∀ 𝑖 = 1,… , 𝑛. 

where the feeder chooses the 𝑗th marketing method that maximizes expected profit for each 𝑖th 

animal and the optimal days-on-feed for each marketing group (𝐷𝑂𝐹𝑗). 

However, depending on their risk preferences, decision makers may not always prefer the 

alternative that generates the highest expected profit. Instead, preferences may also be influenced by 

the variability, covariance, and higher moments of the joint distribution of returns for each marketing 

alternative and the correlation of these returns among animals. Therefore, the single-animal objective 

function in equation (1) can be converted into an aggregate expected utility maximizing portfolio of 

marketing strategies for a group of 𝑛 animals 

(2)  

max
𝑝𝑖𝑗∈{0,1}

𝐷𝑂𝐹𝑗≥0

𝑖=1,…,𝑛
𝑗=1,2,3

⨌𝐸𝑈[∑∑𝑝𝑖𝑗𝜋𝑖𝑗(𝐷𝑂𝐹𝑗 , 𝐴𝐷𝐺𝑖, 𝐷𝑃𝑖, 𝑌𝐺𝑖, 𝑄𝐺𝑖)

3

𝑗=1

𝑛

𝑖=1

]

× 𝑓(𝐴𝐷𝐺,𝐷𝑃, 𝑌𝐺, 𝑄𝐺)𝑑𝐴𝐷𝐺𝑑𝐷𝑃𝑑𝑌𝐺𝑑𝑄𝐺 
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𝑠. 𝑡.∑𝑝𝑖𝑗 = 1

3

𝑗=1

 ∀ 𝑖, 

where 𝑈[𝜋(∙)] is a constant absolute risk aversion (CARA) utility function and the feeder chooses 

whether or not the 𝑖th animal is targeted to the 𝑗th marketing method (𝑝𝑖𝑗) and the days-on-feed 

(𝐷𝑂𝐹𝑗) for each 𝑗th marketing group. Under the assumption of risk neutrality (𝑈′′ = 0), equation (2) 

reduces to an expected profit maximization problem similar to equation (1) given that the risk-neutral 

solution for the aggregate and individual-animal objective functions are equivalent.  

Fed cattle are primarily marketed by live weight pricing (𝐿𝐼𝑉𝐸), dressed weight pricing 

(𝐷𝑅𝐸𝑆), and grid pricing (𝐺𝑅𝐼𝐷). These three marketing methods differ primarily by whether the 

buyer or the seller bears the risk of carcass outcomes. When using live weight pricing, the packer and 

the feeder generally negotiate a carcass price based on the expected quality traits of a pen of cattle 

assessed through visual appraisal. This carcass price is then converted to a live-animal price by 

multiplying it by the expected dressing percentage. Net return for this scenario can be written  

(3)  𝜋𝐿𝐼𝑉𝐸 = 𝑃𝐿𝐼𝑉𝐸 × 𝐹𝑊𝑇(𝑃𝑊𝑇, 𝐴𝐷𝐺,𝐷𝑂𝐹) × (1 − 𝑃𝑆) × (1 −𝑀𝑅) − 𝑃𝐶(𝑃𝑊𝑇, 𝑆𝐸𝑋)

− 𝐹𝐶(𝐷𝑂𝐹) − 𝑌𝐶(𝐷𝑂𝐹) − 𝐼𝐶(𝑃𝐶, 𝐷𝑂𝐹), 

 

where 𝑃𝐿𝐼𝑉𝐸 is the live weight price, 𝐹𝑊𝑇 is final live weight which is a function of placement 

weight (𝑃𝑊𝑇), 𝐴𝐷𝐺, and 𝐷𝑂𝐹, as 𝐹𝑊𝑇 = 𝑃𝑊𝑇 + 𝐴𝐷𝐺 × 𝐷𝑂𝐹, 𝑃𝑆 ∈ [0, 1] is pencil shrink, 

𝑀𝑅 ∈ [0, 1] is mortality rate, 𝑃𝐶 is purchase cost of feeder cattle, 𝐹𝐶 is feed cost, 𝑌𝐶 is yardage cost, 

and 𝐼𝐶 is interest cost on the purchase of feeder cattle. Under this alternative the buyer takes on all of 

the carcass risk. Because these characteristics can be difficult to predict preharvest, live prices tend to 

undervalue high-quality cattle and overvalue low-quality cattle. Notice that the cost of genetic testing 

is not included in equation (3). Therefore, 𝜋𝐿𝐼𝑉𝐸 is defined as net return and not profit and the 

improvement in the objective function from acquiring genetic information sets an upper limit on the 

cost of genetic testing. 
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Marketing cattle on a dressed basis is similar to live weight pricing, except that the producer 

is paid based on the actual dressed weight, or hot-carcass weight, and the seller assumes the dressing 

percentage risk. In principle, the dressed price will be comparable to the live price adjusted for 

dressing percentage for the same pen of cattle. However, over time the average dressed price is 

expected to be greater than the average live price adjusted for dressing percentage given packers’ 

incentive to offset errors in estimating dressing percentage (Feuz, Fausti, and Wagner, 1993). Net 

return for dressed weight pricing is 

(4)  𝜋𝐷𝑅𝐸𝑆 = 𝑃𝐷𝑅𝐸𝑆 × 𝐻𝐶𝑊(𝑃𝑊𝑇, 𝐴𝐷𝐺,𝐷𝑂𝐹, 𝐷𝑃) × (1 −𝑀𝑅) − 𝑃𝐶(𝑃𝑊𝑇, 𝑆𝐸𝑋)

− 𝐹𝐶(𝐷𝑂𝐹) − 𝑌𝐶(𝐷𝑂𝐹) − 𝐼𝐶(𝑃𝐶, 𝐷𝑂𝐹) − 𝑇𝐶, 

 

where 𝑃𝐷𝑅𝐸𝑆 is dressed weight price and 𝐻𝐶𝑊 is hot-carcass weight which is a function of 𝑃𝑊𝑇, 

𝐴𝐷𝐺, 𝐷𝑂𝐹, and 𝐷𝑃, 𝐻𝐶𝑊 = [𝑃𝑊𝑇 + (𝐴𝐷𝐺 × 𝐷𝑂𝐹)] × 𝐷𝑃, and 𝑇𝐶 is transportation cost. When 

cattle are sold on a dressed weight basis (or grid basis) the seller pays the transportation cost, whereas 

the buyer generally pays for trucking when cattle are sold based on live weight (Ward, Schroeder, and 

Fuez, 2001). So, transportation cost was not included in equation (3) above. 

Lastly, when marketing cattle on a grid, the seller assumes the yield grade, quality grade, and 

dressing percentage risk for each individual animal. Net return is  

(5)  𝜋𝐺𝑅𝐼𝐷 = 𝑃𝐺𝑅𝐼𝐷(𝑌𝐺, 𝑄𝐺, 𝐻𝐶𝑊) × 𝐻𝐶𝑊(𝑃𝑊𝑇, 𝐴𝐷𝐺,𝐷𝑂𝐹,𝐷𝑃) × (1 −𝑀𝑅)

− 𝑃𝐶(𝑃𝑊𝑇, 𝑆𝐸𝑋) − 𝐹𝐶(𝐷𝑂𝐹) − 𝑌𝐶(𝐷𝑂𝐹) − 𝐼𝐶(𝑃𝐶, 𝐷𝑂𝐹) − 𝑇𝐶, 

 

where 𝑃𝐺𝑅𝐼𝐷 is the grid price which is a function of 𝑌𝐺, 𝑄𝐺, and 𝐻𝐶𝑊 outcomes. Although grids 

vary across the packing industry, they generally list a base price (𝑃𝐵𝐴𝑆𝐸) for yield grade 3, Choice 

carcasses weighing between 600-900 pounds. Depending on how each carcass grades this base price 

is then subject to an additive set of premiums and discounts for yield grade, quality grade, and weight 

outcomes, 𝑃𝐺𝑅𝐼𝐷 = 𝑃𝐵𝐴𝑆𝐸 + 𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠/𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑠(𝑌𝐺, 𝑄𝐺,𝐻𝐶𝑊). In practice, packers use a 

variety of methods for determining the base price. Here we use Ward, Feuz, and Schroeder’s (1999) 

formula to determine the base price, 



50 

𝑃𝐵𝐴𝑆𝐸 = 𝑃𝐷𝑅𝐸𝑆 + [(𝐶ℎ𝑜𝑖𝑐𝑒/𝑆𝑒𝑙𝑒𝑐𝑡 𝑠𝑝𝑟𝑒𝑎𝑑) × (𝑝𝑙𝑎𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑆𝑒𝑙𝑒𝑐𝑡)], where we 

assume the plant average percent Select is equal to the percentage of animals that graded Select or 

lower in our data set (45%).  

Stigler (1961) first developed the economics of information, which has since been extended 

to many agricultural settings, including the value of genetic information in livestock production (e.g., 

Ladd and Gibson, 1978). The value of information is calculated as “the difference between expected 

returns (or utility) using the information and expected returns without the information, with both 

expectations taken with respect to the more informed distribution” (Babcock, 1990, p.63).  

Data 

Data for 10,209 commercially-fed cattle from six different Midwestern feed yards were provided by 

Neogen, the parent company of commercial testing service Igenity.
21

 Cattle represented year-round 

placements in the years 2007 and 2008. At placement, animals were weighed and a hair sample or 

tissue punch from ear tag application was collected for genetic testing. Genetic information was 

provided in the form of molecular breeding values (MBVs) for the following seven traits: yield grade, 

marbling, average daily gain (lbs./day), hot-carcass weight (lbs.), rib-eye area (in
2
), tenderness (lbs. of 

Warner-Bratzler shear force [WBSF]), and days-on-feed (days) (Igenity, 2013).
22

 The correlations 

among these seven MBVs are reported in table III-1. Molecular breeding values are a continuous 

representation of an animal’s genetic potential to express a given trait. Similar to expected progeny 

differences (EPDs), MBVs are reported in the units of the trait they represent. However, they are 

interpreted as the “relative differences expected in animals across breeds compared to their 

                                                           
21

 At least half of the cattle were fed in Iowa and Kansas.  

22
 Each of these markers, except hot-carcass weight and days-on-feed, have been found to be 

significantly correlated with the traits they are designed to predict in independent validations 

(DeVuyst et al., 2011; National Beef Cattle Evaluation Consortium, 2015).   
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contemporaries” (Igenity, 2013, p. 2). For example, if two animals exposed to the same 

environmental and management conditions have marbling MBVs of -100 and 100, respectively, we 

would expect, on average, that these two animals’ marbling scores would differ by 200 units (100 - [-

100] = 200). Additional live-animal characteristics for days-on-feed, sex, and hide color were also 

provided, and carcass measurements for calculated yield grade, marbling score, and hot-carcass 

weight were collected at slaughter.  

After deleting observations with missing data for live-animal characteristics and MBVs there 

were 9,465 observations. The data consisted of seven “sets” each of which represented a different 

commercial feedlot, time period, or both. Nested within each set were contemporary groups which 

were groups of animals that had an equal opportunity to perform: same sex, managed alike, and 

exposed to the same feed resources. A total of 242 contemporary groups had an average size of 39 

animals per group.  

Additional missing data were common for growth and carcass performance variables. 

Average daily gain, calculated yield grade, and marbling score had 1,795, 25, and 421 missing 

observations, respectively, and there were 3,692 missing observations for final live weight. Although 

final live weight was not used directly, it was essential to the estimation of dressing percentage 

(dressing percentage = hot-carcass weight/final live weight). Observations with missing data for these 

growth and carcass performance variables were not deleted from the sample. Instead, regression 

equations characterizing these outcomes were estimated with their own maximum number of 

observations. Subsequent simulation analyses used the sample of 9,465 complete observations for 

live-animal characteristics and MBVs. Summary statistics for growth and carcass performance, live-

animal characteristics, and MBVs are reported in table III-2.  

A joint distribution of observed yield and quality grade outcomes for the cattle in our sample 

is reported in table III-3. The majority of cattle graded either yield grade 2 (44%) or 3 (37%) and 

quality grade Choice (54%) or Select (42%), and the single most likely outcome is yield grade 3, 

Choice (24%). This distribution is similar to the distribution of yield grade and quality grade 
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outcomes reported in the 2011 NBQA, which represented 7,941 animals from 28 federally-inspected 

beef processing facilities throughout the United States (Moore et al., 2012, p. 5146). Therefore, our 

sample is representative of the current distribution of carcass quality in the U.S. beef industry.  

The relationship between live weight and dressed weight prices fluctuates throughout the 

year. Therefore, a simple average of weekly prices for the 2014 marketing year was used to avoid 

seasonal fluctuations in live weight and dressed weight prices. Weekly prices were obtained from 

Livestock Marketing Information Center (LMIC) spreadsheets that are based on USDA Agricultural 

Marketing Service (AMS) reports (LMIC, 2015). Live weight and dressed weight prices for steers 

and heifers were obtained from the 5 Area Weekly Weighted Average Direct Slaughter Cattle Report, 

LM_CT150 (USDA AMS, 2015a), and grid premiums and discounts were from the 5 Area Weekly 

Weighted Average Direct Slaughter Cattle Report – Premiums and Discounts, LM_CT169 (USDA 

AMS, 2015b) (table III-4). Two additional grids representing the weeks with the maximum 

(September 22, 2014) and minimum (February 2, 2014) Choice-Select spread for 2014 were also 

evaluated to determine the sensitivity of our results to seasonal changes in the grid (table III-4).  

It is unknown how or when animals were weighed. Therefore, net returns to the baseline live 

weight and dressed weight marketing scenarios were “calibrated” using pencil shrink to impose 

market efficiency between these two marketing methods. That is, any inconsistencies in the 

relationship between actual (not simulated) final live weight and hot-carcass weight were 

standardized by increasing pencil shrink until the net returns for the live weight and dressed weight 

baseline marketing scenarios were equal. Pencil shrink was assumed to be 2%.  

Feed costs were needed to calculate expected net returns. Given that observations of feed 

intake were unavailable, a dry matter intake (DMI) model was used following the National Research 

Council’s (NRC) Nutrient Requirements of Beef Cattle (NRC, 2000).
23

 The DMI model estimates 

“standardized” feed intake. Additional information needed to estimate expected net returns include a 

                                                           
23

 For examples of the dry matter intake model see Lusk (2007) or Thompson et al. (2014). 
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dry matter feed cost of $230/ton ($0.12/lb.), yardage cost of $0.40/day, a 7% interest rate on the 

purchase of feeder cattle, a mortality rate of 1%, and transportation cost of $16/head (Lardy, 2013; 

Ellis and Schulz, 2015).  

Procedures 

Predicting Growth and Carcass Performance Using Genetics 

Mixed model regression equations characterizing phenotypic outcomes for average daily gain (𝐴𝐺𝐷), 

dressing percentage (𝐷𝑃), yield grade (𝑌𝐺), and quality grade (𝑄𝐺) were estimated independently 

using restricted maximum likelihood (REML). Dependent variables in each of the four equations 

were continuous. In particular, 𝑌𝐺 and 𝑄𝐺 are often thought of in terms of discrete outcomes. 

However, calculated yield grade, as defined by the USDA AMS, is a continuous function of backfat, 

kidney, pelvic, and heart fat, hot-carcass weight, and rib-eye area (USDA AMS, 1997), and marbling 

score was used as a continuous representation of quality grade. Marbling scores between 200-299 are 

said to have traces of intramuscular fat and are graded Standard, 300-399 are Select, 400-699 are 

Choice, and scores over 700 are Prime (USDA AMS, 1997, 2006). The models were  

(6)  𝑌𝑖𝑗𝑘𝑙 = 𝛽0𝑙 + 𝑃𝑊𝑇𝑖𝑗𝑘𝛽1𝑙 + 𝐷𝑂𝐹𝑖𝑗𝑘𝛽2𝑙 + 𝐷𝑂𝐹𝑖𝑗𝑘
2 𝛽3𝑙 + 𝑃𝑊𝑇𝑖𝑗𝑘𝐷𝑂𝐹𝑖𝑗𝑘𝛽4𝑙 + 𝑆𝑇𝑅𝑖𝑗𝑘𝛽5𝑙

+ 𝐵𝐿𝐾𝑖𝑗𝑘𝛽6𝑙 + ∑ 𝑀𝐵𝑉𝑖𝑗𝑘𝑚𝛽7𝑙𝑚

7

𝑚=1

+ 𝑣𝑗𝑙 + 𝑢𝑘(𝑗)𝑙 + 𝜀𝑖𝑗𝑘𝑙 , 

 

were 𝑌𝑖𝑗𝑘𝑙 is the dependent variable for the 𝑖th animal in the 𝑗th set and 𝑘th contemporary group for 

the 𝑙th equation, where 𝑙 = 1, 2, 3, or 4 for 𝐴𝐷𝐺𝑖𝑗𝑘, 𝐷𝑃𝑖𝑗𝑘, 𝑌𝐺𝑖𝑗𝑘, and 𝑄𝐺𝑖𝑗𝑘, respectively. The model 

included fixed effects for live-animal characteristics and genetic information, where 𝑃𝑊𝑇𝑖𝑗𝑘 is 

placement weight, 𝐷𝑂𝐹𝑖𝑗𝑘 is days-on-feed, 𝑆𝑇𝑅𝑖𝑗𝑘 is a dummy variable equal to 1 if the animal was a 

steer and 0 otherwise, 𝐵𝐿𝐾𝑖𝑗𝑘 is a dummy variable equal to 1 if the animal had black hide and 0 

otherwise, and 𝑀𝐵𝑉𝑖𝑗𝑘𝑚 are the seven MBVs characterizing yield grade, marbling, average daily 

gain, hot-carcass weight, rib-eye area, tenderness, and days-on-feed. Set random effects, 
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𝑣𝑗𝑙~𝑁(0, 𝜎𝑣
2), contemporary group random effects nested within sets (Greene, 2012), 

𝑢𝑘(𝑗)𝑙~𝑁(0, 𝜎𝑢
2), and a random error term 𝜀𝑖𝑗𝑘𝑙~𝑁(0, 𝜎𝜀

2) are also included in each equation. Yield 

grade MBV by days-on-feed and marbling MBV by days-on-feed interaction terms are also included 

as slope shifters in the 𝑌𝐺 and 𝑄𝐺 equations. In addition, a yield grade MBV by marbling MBV 

interaction is also included in the 𝑌𝐺 and 𝑄𝐺 equations to account for the positive phenotypic and 

genetic correlation between these two carcass traits (DeVuyst et al., 2011; Thompson et al., 2015).  

Models were estimated using Proc Mixed in SAS (SAS Institute Inc., 2013). D’Agostino-

Pearson K
2
 omnibus test for skewness and kurtosis and a conditional variance test identified evidence 

of nonnormality and static heteroskedasticity. Sandwich estimators of the standard errors were 

estimated to obtain estimates of standard errors that were consistent in the presence of nonnormality 

and static heteroskedasticity (White, 1982). Given the large sample size, asymptotic properties are 

relevant, and the small sample biases common with generalized method of moments estimators 

should be of little concern.  

Expected Net Return Maximization for Alternative Marketing Scenarios  

Baseline Marketing Scenarios 

To determine the value of genetic information for improving fed cattle marketing decisions, three 

baseline marketing scenarios were created in which all cattle were marketed in a single group on a 

live weight, dressed weight, or grid basis. Expected net returns are a nonlinear function of the random 

terms. Therefore, because of Jensen’s inequality, net returns calculated at the expected value of 

prediction equations will not equal expected net returns (Greene, 2012). For this reason, the integrals 

in equation (1) were evaluated using Monte Carlo integration. The Cholesky decomposition of the 

four-by-four variance-covariance matrix of the error terms in equation (6) was calculated and used to 

generate a multivariate normal distribution of 200 error terms for each of the four prediction 

equations for each animal in the sample (n = 9,465) using “intelligent,” quasi-random Halton draws 
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(Morokoff and Caflisch, 1995; Greene, 2012). Net returns were evaluated at each draw using 

observed MBVs for each animal in the sample, and the average across animals was expected net 

return. This process was repeated for days-on-feed from 100-200 days, and a grid search was used to 

determine the day at which expected net return was maximized for each of the three marketing 

scenarios.  

Live-animal characteristics other than MBVs may also influence fed cattle marketing 

decisions. In particular, placement weight has a substantial impact on how long cattle are fed, how 

they are marketed, and, as a result, profitability. For this reason, placement weight was held constant 

at its mean value (700 lbs.) to separate this effect from the effect of genetic information.  

Decision makers in the feedlot have access to information that can be used to sort cattle into 

different marketing groups without using genetic testing. However, access to the information 

necessary to imitate a “true” baseline marketing scenario is unavailable. Therefore, similar to 

previous research we assume naïve baseline scenarios in which all animals are marketed in a single 

group using the same marketing method (Schroeder and Graff, 2000; Lusk et al., 2003; Walburger 

and Crews, 2004). As a result, expected net returns for the baseline scenarios may be underestimated 

and the values of information reported here are likely an upper bound on the value of genetic 

information for selectively marketing fed cattle.  

Genetic Information Marketing Scenario 

Baseline scenarios were compared with alternative marketing scenarios in which additional 

information was used to enhance fed cattle marketing decisions. The genetic information marketing 

scenario used the results of genetic testing to sort cattle into marketing groups based on their expected 

performance. To do this, a “decision rule” characterizing the relationship between expected net 

returns for each of the three marketing methods and MBVs for yield grade and marbling was 

developed using a random sample of 1,000 animals. Twenty discrete values for the yield grade and 

marbling MBVs were chosen to represent the range of MBVs observed in our sample, and a Monte 
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Carlo integration procedure similar to the one described above was then used to estimate expected net 

returns for each unique combination of these values (400 times). Plotting the results on a three 

dimensional surface allows us to visualize the decision rule by identifying which of the three 

marketing methods generated the highest expected net returns at various levels of genetic potential for 

yield grade and marbling.  

Applying this decision rule to the data, the full sample of animals (n = 9,465) was sorted into 

three marketing groups (live weight, dressed weight, or grid pricing) based on their actual yield grade 

and marbling MBVs. Monte Carlo integration was used to estimate expected net returns for each 

group for days-on-feed from 100-200 days, and a grid search was used to determine the optimal days-

on-feed. The overall expected net return was calculated as the weighted average expected net return 

across the three groups, where the proportion of cattle that fell into each group was used as the 

weight.  

Perfect Information Marketing Scenario 

While genetic information can be used to improve predictions of animal performance in the feedlot, it 

is not 100% accurate.
24

 Therefore, we evaluated the potential of genetic testing by estimating a 

“perfect information” marketing scenario. This was identical to the genetic information marketing 

scenario described above, except that instead of sorting animals based on genetic information, each 

animal was sorted into the marketing group that maximized its own expected net return.  

Expected Utility Maximization for Alternative Marketing Scenarios 

The risk-return tradeoff associated with fed cattle marketing suggests that it is also important to 

consider how decision makers’ risk preferences affect their marketing decisions. Given nonlinearities, 

the expected utility maximizing solution for a single animal may differ from the solution if that 

                                                           
24

 For further discussion of the accuracy of genetic marker panels see Weber et al. (2012) and Akanno 

et al. (2014).  
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animal was marketed as part of a group. Therefore, the objective function in equation (2) for a group 

of 𝑛 animals is used to determine the optimal portfolio of marketing strategies for the full sample of 

animals (n = 9,465) for several levels of risk aversion.  

Again, three baseline marketing scenarios were created in which all animals were marketed in 

a single group using live weight, dressed weight, or grid pricing. Distributions of net returns were 

used to calculate expected utility assuming a negative exponential utility function (Chavas, 2004), 

𝑈(𝜋) = −𝑒−𝑟𝜋, where 𝑈(𝜋) is the utility of the aggregate net returns for the full sample of n = 9,465 

animals and 𝑟 is the Arrow-Pratt absolute risk aversion coefficient. A range of risk aversion 

coefficients were evaluated, and following Raskin and Cochran (1986) and Anderson and Dillon 

(1992) risk aversion coefficients of 𝑟 = 0.0000003, 𝑟 = 0.0000006, and 𝑟 = 0.0000010 were 

determined to approximately represent slight, moderate, and severe risk aversion, respectively. 

The expected utility maximizing portfolio of marketing methods was then determined using a 

nonlinear mathematical programming model in GAMS (GAMS, 2013). The expected utility 

maximization optimization poses significant computational challenges. The decision problem 

involves at least 3
9465×101

 possible combinations of marketing strategies and days-on-feed. As an 

integer programming problem, this is computationally infeasible to solve. Even after assuming away 

the days-on-feed joint decision,
25

 there are still 3
9465

 possible combinations of marketing methods. We 

explored reducing the number of head of cattle (i.e., genetic profiles) using Gaussian cubature 

(DeVuyst and Preckel, 2007) to a representative sample of 22 head that maintained the mean and 

variance/covariance structure of the data. The result was a discrete choice problem of 3
22

 or about 

31.381 billion combinations of marketing methods. While it may be possible to solve the problem 

                                                           
25

 Previous research has shown that fed cattle profit functions are often flat near the optimal days-on-

feed (Pannell, 2006; Lusk, 2007). Therefore, days-on-feed for each marketing method is held constant 

at their profit maximizing baseline levels (live weight = 151 days, dressed weight = 179 days, and 

grid = 181 days).  
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with several months of computational time, we chose a less computationally intensive approach. We 

approximated the discrete decision problem with a continuous, nonlinear optimization or the 

equivalent of a relaxed nonlinear integer optimization. So, the optimization problem simultaneously 

chose percentages of all animals to market with the three pricing methods. The relaxed nonlinear 

integer problem took considerably less time to solve (20 minutes to two hours), varying with starting 

point and risk aversion level. 

The marketing scenario with the highest expected utility is the preferred marketing strategy 

for a given level of risk aversion. However, these values offer little insight into the value of 

information. For this reason, expected utilities were converted to certainty equivalents, which 

represent the amount of money a producer would have to receive to be indifferent between that payoff 

and a given gamble (Chavas, 2004). Given that the expected utility model is based on aggregate net 

returns, these certainty equivalents were then converted to $/head by dividing by the number of 

animals in the sample (n = 9,465). Differences in certainty equivalents for the expected utility 

maximizing portfolio of marketing scenarios and the three baseline marketing scenarios for a given 

level of risk aversion can then be interpreted as the value of information inclusive of risk preferences. 

Results and Discussion 

Regression Equations 

The mixed model regression estimates are reported in table III-5. Each equation was estimated with 

its own maximum number of observations. Coefficients for live-animal characteristics, including 

placement weight, days-on-feed, sex, and hide color, generally exhibited the expected relationships.  

Molecular breeding values influenced corresponding growth and carcass performance 

variables in expected directions. For example, the average daily gain MBV had a significant, positive 

effect in the average daily gain equation. The relative interpretation of MBVs implies a linear 

relationship with a coefficient of one between MBVs and the traits they characterize (Weber et al., 
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2012). Therefore, we tested the null hypothesis that the marginal effect of the average daily gain 

MBV was equal to one, 𝐻0: 𝜕𝐴𝐷𝐺/𝜕𝑀𝐵𝑉𝐴𝐷𝐺 = 1. Results indicated that the observed marginal 

effect, 0.757, was not statistically different from one (t = -0.79; df = 7,437; P = 0.43).  

The hot-carcass weight MBV had a significant, positive effect on dressing percentage 

outcomes as expected. However, because this MBV does not directly reflect genetic potential for 

dressing percentage, we were unable to test the hypothesis that this effect was equal to one.  

Due to interaction terms, the marginal effect of the yield grade MBV on yield grade outcomes 

was a function of days-on-feed and marbling MBV: 𝜕𝑌𝐺/𝜕𝑀𝐵𝑉𝑌𝐺 = −0.382 − 0.002 × 𝐷𝑂𝐹 +

0.009 ×𝑀𝐵𝑉𝑀𝐴𝑅𝐵. Therefore, the test of the null hypothesis that this marginal effect was equal to 

negative one, 𝐻0: 𝜕𝑌𝐺/𝜕𝑀𝐵𝑉𝑌𝐺 = −1,
26

 was conducted at the mean value of days-on-feed (176 

days) and marbling MBV (-21.661). At these values, the marginal effect was approximately -0.929, 

and we failed to reject the null hypothesis that this value was negative one (t = 0.46; df = 9,169; P = 

0.65).  

Similarly, the marginal effect of the marbling MBV on quality grade outcomes was a function 

of days-on-feed and yield grade MBV: 𝜕𝑄𝐺/𝜕𝑀𝐵𝑉𝑀𝐴𝑅𝐵 = −0.148 + 0.005 × 𝐷𝑂𝐹 − 0.170 ×

𝑀𝐵𝑉𝑌𝐺. Therefore, the test of the null hypothesis that this marginal effect equals one, 𝐻0: 𝜕𝑄𝐺/

𝜕𝑀𝐵𝑉𝑀𝐴𝑅𝐵 = 1, was conducted at the mean value of days-on-feed (176 days) and yield grade MBV 

(-0.054). At these values, the marginal effect was approximately 0.741, and we rejected the null 

hypothesis that this value was one (t = -4.45; df = 8,779; P < 0.01). This was consistent with the 

finding that MBVs underestimate the expected change in phenotypic outcomes relative to a change in 

MBVs (Weber et al., 2012). Despite advancements in the procedures for estimating MBVs, their 

accuracy still depends on the persistency of linkage disequilibrium between single nucleotide 

polymorphisms (SNP) and quantitative trait loci (QTL) and the relationship between training and 
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 The marginal effect of the yield grade MBV on yield grade outcomes had an expected value of 

negative one because lower yield grade outcomes are more favorable.  
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target populations (Akanno et al., 2014). Therefore, it was not surprising that this effect shrunk 

towards zero when the MBV procedure was applied to new data. Nevertheless, the marginal effect of 

the marbling MBV was still statistically different from zero (t = 11.05; df = 8,779; P < 0.01), 

indicating that higher genetic potential for marbling resulted in more favorable quality grade 

outcomes.   

Expected Net Returns for Alternative Marketing Scenarios  

Baseline Marketing Scenarios 

For the set of animals used in this analysis and average 2014 prices, maximum expected net returns 

for the three baseline scenarios in which all animals were marketed in a single group on a live weight, 

dressed weight, or grid basis was -$35.84, -$34.25,
27

 and -$28.03/head, respectively (table III-6). The 

finding that grid pricing generated the highest returns was consistent with Anderson and Zeuli (2001) 

and Walburger and Crews (2004). However, live weight and dressed weight pricing have also been 

found to generate the highest returns in other studies (Feuz, Fausti, and Wagner, 1993; Fausti, Feuz, 

and Wagner, 1998; Schroeder and Graff, 2000; Lusk et al., 2003). As previously discussed, the 

marketing method that generated the highest returns depends on prices and quality characteristics of 

the cattle used in each study. Given the large, representative sample of cattle used in this study, the 

finding that grid pricing generated the highest returns suggests that the market has already started to 

adjust to higher quality animals being targeted towards grid pricing. This is consistent with Fausti et 

al. (2014) who found that the grid premium and discount structure is adjusting market signals to 

encourage producers to market on a grid and discourage live weight and dressed weight pricing.  

                                                           
27

 Calibration of live weight and dressed weight baseline marketing scenarios to market efficiency 

was conducted using actual final live weights and hot-carcass weights. Therefore, when applied to 

simulation analyses values of expected net returns for live weight and dressed weight marketing 

scenarios differed slightly due to differences in optimal days-on-feed.   
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Although grid pricing generated the highest expected net returns, it also had the highest 

standard deviation ($33.49). This result was consistent with the findings of previous research (Feuz, 

Fausti, and Wagner, 1993; Schroeder and Graff, 2000; Anderson and Zeuli, 2001; Fausti and Qasmi, 

2002; Lusk et al., 2003), and has been identified as the primary barrier to the adoption of grid pricing 

(Fausti, Feuz, and Wagner, 1998; Anderson and Zeuli, 2001; Fausti and Qasmi, 2002).  

Genetic Information Marketing Scenario 

The decision rule indicated that net return maximizing decision makers would target animals with 

higher genetic potential for marbling to the grid and animals with lower genetic potential for marbling 

to either live weight or dressed weight pricing (figure III-1). At lower levels of genetic potential for 

marbling, dressed weight pricing generated the highest expected net return for animals with lower 

yield grade MBVs and live weight pricing generated the highest expected net return for animals with 

higher yield grade MBVs.  

Applying this decision rule to the data, 10% of cattle were targeted to live weight pricing, 

17% to dressed weight pricing, and 73% to grid pricing (table III-6). Investigation of the outcomes for 

individual marketing groups indicated that expected net return for live weight (-$57.74/head) and 

dressed weight (-$51.24/head) pricing decreased relative to their respective baseline scenarios, but 

expected net return for grid pricing increased to -$16.71/head. Therefore, the ability to identify 

animals that will perform poorly at slaughter and pull them off of the grid increased expected net 

return for grid pricing by more than $11/head. As a result, overall expected net return for the genetic 

information marketing scenario increased to -$26.68/head. Comparing this value with expected net 

return for the grid baseline marketing scenario, the expected value of genetic information for a 

producer currently marketing cattle in a single group using grid pricing was $1.35/head (-$26.68 - [-

$28.03] = $1.35) (table III-7). While this value is relatively low, it is important to remember that few 

producers currently market all of their cattle on the grid as a result of higher variability. The value of 
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genetic information for producers currently using live weight or dressed weight pricing was $9.16 and 

$7.57/head, respectively.  

In addition to improvements in expected net returns, using genetic information to sort cattle 

into marketing groups also resulted in efficiency gains to cattle feeding. For example, relative to their 

respective baseline scenarios, optimal days-on-feed decreased for live weight (146 days) and dressed 

weight (177 days) pricing and increased for grid pricing (182 days) (table III-6). This indicated that 

when sorted and targeted to their optimal marketing method, animals with lower genetic potential for 

marbling could be fed for fewer days, and animals with higher genetic potential for marbling could be 

fed slightly longer to achieve more favorable quality grade outcomes. 

Furthermore, the standard deviation of expected net return for all three marketing groups 

decreased relative to the standard deviations in their respective baseline scenarios. This is particularly 

important given that one of the primary motivations for sorting cattle into marketing groups was to 

reduce the variability among animals treated alike (Fausti, Wang, and Lange, 2013). More 

importantly, the standard deviation of overall expected net return for the genetic information 

marketing scenario ($31.47) was less than the grid baseline marketing scenario ($33.49). Therefore, 

in addition to improving the returns to cattle feeding, genetic sorting can also reduce the variability, 

or risk, associated with value-based marketing.  

Sensitivity analysis was conducted using the grids associated with the maximum and 

minimum weekly Choice-Select spread for 2014. As expected, the decision rule for the maximum 

grid was similar to figure III-1, with a lower marbling MBV threshold, indicating that a slightly larger 

portion of cattle were targeted to the grid (74%). The decision rule for the minimum grid was also 

similar to figure III-1, with a slightly higher (lower) marbling MBV threshold at lower (higher) levels 

of genetic potential for yield grade. Contrary to expectations, when this decision rule was applied to 

the data the portion of cattle targeted to the grid actually increased (77%). The lower Choice-Select 

spread made yield grade outcomes more economically important relative to quality grade outcomes, 
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and, as a result, animals with higher yield grade MBVs were more likely to be targeted to the grid 

regardless of their genetic potential for marbling.  

Other notable results for the maximum and minimum grid scenarios were qualitatively 

similar to the average pricing scenario described above. However, the values of genetic information 

for the maximum grid increased for each of the three baseline marketing scenarios and ranged from 

$2.47 to $13.00/head depending on how a producer currently markets cattle (table III-7). Conversely, 

the values of genetic information for the minimum grid decreased and ranged from just $0.59 to 

$5.28/head.  

Perfect Information Marketing Scenario 

For the set of animals and prices used, perfect information dictated that 19% of cattle be targeted to 

live weight pricing, 19% to dressed weight pricing, and 62% to grid pricing (table III-6). Expected net 

returns for the perfect information marketing scenario increased to -$24.19/head and the standard 

deviation decreased ($30.88), indicating that more accurate sorting could further increase returns and 

further decrease the variability associated with cattle feeding. As a result, values of perfect 

information were consistently higher than the values of genetic information and ranged from $4.12 to 

$14.75/head depending on how a producer currently markets cattle and which grid was used (table 

III-7).  

Expected Utility for Alterative Marketing Scenarios 

Incorporating risk preferences into the model indicated that as risk aversion increased, decision 

maker’s preferences shifted away from grid pricing towards less risky live weight pricing (table III-

8). For example, certainty equivalents identified live weight pricing as the preferred baseline 

marketing method for moderate (-$75.00/head) and severe (-$104.42/head) levels of risk aversion, 

and the expected utility maximizing portfolio targeted fewer animals to the grid and more animals to 

live weight pricing as risk aversion increased. 
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Despite differences in optimal marketing strategies, the range of values of information for 

selectively marketing cattle was largely unchanged when risk was considered, ranging from $1 to 

$19/head
28

 (table III-9). Instead, as risk aversion increased, values of information for producers 

currently using live weight pricing to market cattle decreased and values of information for producers 

using dressed weight and grid pricing increased. This result is consistent with Lambert (2008) who 

found that certainty equivalents fell as risk aversion increased, but the differences in certainty 

equivalents among cattle with different leptin genotypes did not change significantly. Therefore, our 

results indicate that while risk aversion is important for understanding how producers market cattle, it 

did not have a substantial impact on the value of genetic information.  

Conclusions 

This study examined the value of genetic information for improving fed cattle marketing decisions. 

Results indicated that using genetic information characterizing yield grade and marbling to sort cattle 

into marketing groups (live weight, dressed weight, or gird pricing) and to determine optimal days-

on-feed increased expected net returns by $1 to $13/head depending on how a producer currently 

markets cattle and the grid structure. Despite differences in optimal marketing strategies, the range of 

the values of information was largely unchanged when risk was considered. In addition, the perfect 
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 Thaler’s (1999) discussion of mental accounting indicates that decision makers may fail to 

appropriately quantify risk. That is, instead of maximizing the aggregate expected utility for a group 

of animals, decision makers may maximize expected utility on an animal-by-animal basis (i.e., 

“pockets of money”). Therefore, we also evaluated an expected utility objective function where 

animals were targeted to the marketing method that maximized expected utility for each individual 

animal. Although the values of information for this analysis were slightly lower, as would be 

expected, they were very similar to the results reported here for the aggregate expected utility 

maximizing portfolio.  
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information marketing scenario offered slight improvements over genetic information, but it shows 

that even improved genetic tests would not be economical unless the cost of testing plunged.  Given 

the use of naïve baseline marketing scenarios, the values reported here are likely an upper bound on 

the value of genetic information for selectively marketing fed cattle. 

Previous research examining the value of genetic information for marker-assisted 

management has been limited to sorting cattle by optimal days-on-feed (DeVuyst et al., 2007; Lusk, 

2007; Thompson et al., 2014). In this study, we extend the definition of marker-assisted management 

to include a more holistic view of fed cattle marketing, including decisions for marketing method as 

well as timing to market. As a result, the values of genetic information for marker-assisted 

management reported in this study were generally higher than those reported in previous research. 

However, these values were still not enough to offset the cost of genetic testing.  

Currently, Igenity offers a comprehensive profile of 12 genetic markers for $40/head (Igenity, 

2015). In addition to markers characterizing carcass traits, such as yield grade and marbling, this 

profile also includes markers for maternal traits, docility, growth, feed efficiency, and tenderness. 

While this comprehensive profile is beneficial for producers using this information to make selection 

and breeding decisions (Thompson et al., 2014), most of this information is superfluous in the context 

of managing feedlot cattle. For this reason, commercial testing companies might consider marketing a 

reduced profile of markers relevant to a particular decision. For example, Igenity currently offers a 

reduced profile of six traits relevant to the selection of replacement heifers for a cost of $22/head 

(Igenity, 2015). A similar reduced profile of growth and carcass characteristics may provide the 

opportunity for cost-effective marker-assisted management of feedlot cattle. Additional sorting and 

management costs may be associated with implementing a selective marketing management scheme 

that are not considered here. It may also be possible to use random sampling to reduce the cost of 

genetic testing by measuring the genetic potential of a group of cattle without having to test each 

animal.  
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To put the results of this study into context, consider that because cattle feeding is a 

competitive industry average profitability is close to zero. Therefore, the values of genetic 

information reported here represent meaningful economic value. However, it is important to caution 

that the results presented here are conditional on the set of animals and prices used in this analysis. In 

addition, the values of genetic information reported here will not persist in the long run. First adopters 

and owners of the genetic identification technologies may realize profitability gains (Lusk, 2007; 

Koontz et al., 2008), but eventually selective marketing will signal to buyers that animals marketed 

on a live weight or dressed weight basis are likely lower quality than animals targeted to the grid. As 

a result, the market will adjust by decreasing live weight and dressed weight prices relative to grid 

prices (Schroeder and Graff, 2000; Koontz et al., 2008; Fausti et al., 2014), and the value of 

information to the feedlot will dissipate. In fact, there is already some evidence of these general 

equilibrium effects in the fed cattle market (Fausti et al., 2014).  

Nevertheless, value to consumers will remain. That is, although improved marketing 

decisions will increase returns to the feedlot in the short run, results also indicated the potential for 

long-run efficiency gains that will persist because of changes in the product form. Sorting cattle into 

marketing groups allowed producers to more accurately determine optimal days-on-feed. In addition, 

sorting cattle into marketing groups generally decreased the variability of expected net returns. 

Therefore, the use of genetic testing to selectively market cattle may encourage producers, who might 

not otherwise do so, to market cattle on a grid (Fausti et al., 2010; Fausti, Wang, and Lange, 2013). 

This will result in improved quality and consistency of beef products and improved transmission of 

market signals throughout the beef cattle supply chain, and may help address consumer demand 

problems.   
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Table III-1. Correlation Matrix of the Seven Molecular Breeding Values (n = 9,465) 

 Molecular Breeding Value 

Molecular Breeding Value YG MARB ADG HCW REA TDR DOF 

YG 1.00       

MARB -0.50 1.00      

ADG -0.23 0.34 1.00     

HCW 0.06 0.09 0.35 1.00    

REA 0.73 -0.64 -0.39 0.08 1.00   

TDR -0.33 0.28 0.04 -0.01 -0.19 1.00 

 DOF 0.26 -0.15 -0.18 0.10 0.36 -0.17 1.00 

Notes: Molecular breeding value abbreviations are yield grade (YG), marbling (MARB), average 

daily gain (ADG), hot-carcass weight (HCW), rib-eye area (REA), tenderness (TDR), and days-on-

feed (DOF).   
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Table III-2. Summary Statistics for Growth and Carcass Performance, Live-Animal 

Characteristics, and Molecular Breeding Values 

Variable n Mean 

Standard 

Deviation Minimum Maximum 

Growth and carcass performance      

Average daily gain, lbs/day 7,670 3.390 0.803 0.370 7.383 

Dressing percentage 5,773 0.627 0.028 0.490 0.827 

Yield grade 9,440 2.704 0.853 0.056 5.905 

Marbling score
a 

9,044 416.3 79.5 190.0 830.0 

Live-animal characteristics      

Placement weight, cwt
a 

9,465 7.0 1.2 2.9 11.2 

Days-on-feed, days
a 

9,465 176.0 35.4 81.0 308.0 

Steer 9,465 0.826    

Black 9,465 0.623    

Molecular breeding values (MBV)      

Yield grade MBV 9,465 -0.054 0.073 -0.338 0.210 

Marbling MBV 9,465 -21.661 28.017 -124.020 76.353 

Average daily gain MBV, lbs./day 9,465 0.168 0.100 -0.229 0.482 

Hot-carcass weight MBV, lbs. 9,465 27.231 8.969 -17.728 55.913 

Rib-eye area MBV, in
2 

9,465 -0.572 0.523 -2.172 1.588 

Tenderness MBV, lbs. of WBSF
b 

9,465 -0.991 1.348 -5.900 2.920 

Days-on-feed MBV, days 9,465 -2.628 2.811 -14.351 9.160 

Notes: Molecular breeding values (MBVs) are reported in the units of the trait and reflect the 

differences expected in animals across breeds compared to their contemporaries (Igenity, 2013). 

Therefore, mean MBVs offer little insight. Instead, the range of MBVs is more informative. For 

example, the range of average daily gain MBVs suggests that the animal with the highest genetic 

potential for average daily gain in the sample would be expected, on average, to gain approximately 

0.71 lbs. per day more than the animal with the lowest genetic potential for average daily gain (0.482 

- [-0.229] = 0.711).  
a
 Summary statistics for marbling score, placement weight, and days-on-feed are only reported to one 

decimal place as a result of significant digits.  
b
 Warner-Bratzler shear force.  
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Table III-3. Joint Distribution of Observed Yield and Quality Grade Outcomes (n = 9,029) 

 USDA Quality Grade  

USDA Yield Grade Prime Choice Select Standard Total 

1 <1% 5% 8% 1% 14% 

2 <1% 20% 21% 1% 44% 

3 <1% 24% 12% <1% 37% 

4 <1% 4% 1% <1% 5% 

5 0% <1% <1% <1% <1% 

Total <1% 54% 42% 3% 100% 
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Table III-4. Live Weight Prices, Dressed Weight Prices, and Grid Premiums and Discounts for 

2014 

Marketing Method  

Average 

Prices 

Maximum 

Grid
a 

Minimum 

Grid
b 

  —————— $/cwt —————— 

Live weight     

Steers  $154.31   

Heifers  $154.44   

Dressed weight     

Steers   $244.22   

Heifers  $244.21   

Grid Base price
c 

   

 Steers $248.10 $250.78 $245.16 

 Heifers $248.09 $250.77 $245.15 

 Quality grade adjustment    

 Prime $19.26 $21.33 $18.35 

 Choice $0.00 $0.00 $0.00 

 Select ($8.63) ($14.57) ($2.09) 

 Standard ($20.84) ($23.92) ($17.72) 

 Yield grade adjustment    

 1.0-2.0 $4.58 $4.58 $4.58 

 2.0-2.5 $2.25 $2.25 $2.24 

 2.5-3.0 $2.13 $2.13 $2.11 

 3.0-4.0 $0.00 $0.00 $0.00 

 4.0-5.0 ($8.63) ($8.23) ($9.21) 

 >5.0 ($13.64) ($13.06) ($14.99) 

 Carcass weight adjustment    

 400-500 ($25.42) ($25.40) ($25.49) 

 500-550 ($22.19) ($22.80) ($19.62) 

 550-600 ($2.93) ($2.70) ($3.89) 

 600-900 $0.00 $0.00 $0.00 

 900-1000 ($0.24) ($0.19) ($0.24) 

 1000-1050 ($2.27) ($2.22) ($2.35) 

 >1050 ($23.24) ($23.33) ($23.05) 

Source: Livestock Marketing Information Center (LMIC) spreadsheets based on USDA AMS reports 

LM_CT150 and LM_CT169 (USDA AMS, 2014a; USDA AMS, 2014b; LMIC, 2015).  
a
 The “maximum grid” is the grid from the week with the highest Choice-Select spread for 2014 

(September 22, 2014).  
b
 The “minimum grid” is the grid from the week with the smallest Choice-Select spread for 2014 

(February 2, 2014).  
c
 The base price for the grid was calculated as the dressed weight price plus the Choice-Select spread 

times the percent of cattle that graded Select or lower in our data set (Ward, Feuz, and Schroeder, 

1999). For example, the base price for the average price grid for steers was: 244.22 + 8.63 × 45% = 

248.10.   
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Table III-5. Mixed Model Regression Equations for Average Daily Gain, Dressing Percentage, 

Yield Grade, and Quality Grade 

 Equation 

Variable 

ADG 

(n = 7,670) 

DP 

(n = 5,773) 

YG 

(n = 9,440) 

QG 

(n = 9,044) 

Intercept 1.961 0.340** 1.124 262.200** 

Placement weight 0.205 0.010*** 0.259*** 17.990*** 

Days-on-feed 0.014* 0.002** 0.002 0.646 

Days-on-feed squared -4.00E-5*** -4.16E-6* 1.40E-5 0.001 

Placement weight × days-on-feed -0.002** -5.00E-5* -0.001* -0.078*** 

Steer
a 

0.399*** 0.004 -0.144*** -34.366*** 

Black
b
  0.023*** -9.70E-5 0.008 0.583 

Yield grade MBV
c 

0.152 -0.007 -0.382 -154.670*** 

Yield grade MBV × days-on-feed — — -0.002 0.819*** 

Marbling MBV 0.001 -6.96E-6 0.001 -0.148 

Marbling MBV × days-on-feed — — 6.77E-6 0.005*** 

Yield grade MBV × marbling MBV — — 0.009*** -0.170 

Average daily gain MBV 0.757** -0.006** 0.028 -0.339 

Hot-carcass weight MBV 0.001 1.21E-4*** 0.003* 0.176* 

Rib-eye area MBV 0.017 0.002 -0.345*** -11.406*** 

Tenderness MBV 0.002 1.92E-4 0.007 -1.027* 

Days-on-feed MBV -0.001 -2.00E-5 -9.00E-5 -0.266 

     

Random effects
d 

    

Set 0.236* 4.99E-4 0.136* 52.483 

Contemporary group(Set) 0.101*** 2.93E-4*** 0.040*** 388.960*** 

     

quasi-𝑅2 excluding MBVs
e 0.463 0.562 0.404 0.130 

quasi-𝑅2 including all variables
e 0.470 0.565 0.470 0.193 

Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% 

levels. Dependent variables in the four equations are average daily gain (𝐴𝐷𝐺), dressing percentage 

(𝐷𝑃), calculated yield grade (𝑌𝐺), and marbling score (𝑄𝐺).  
a
 Steer is a dummy variable equal to one if the animal was a steer and zero otherwise. 

b
 Black is a dummy variable equal to one if the animal was black hided and zero otherwise.  

c
 Molecular breeding value.  

d
 Random effects for set and contemporary groups nested within sets are included in the estimation of 

each equation (i.e., mixed model regression equations) (Greene, 2012). Sets represent different 

commercial feedlots, time periods, or both, and contemporary groups are groups of animals that have 

had an equal opportunity to perform. 
e
 Quasi-𝑅2 values are calculated as the squared correlations of the actual and predicted values 

including random effects. 
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Table III-6. Expected Net Returns and Corresponding Optimal Days-on-Feed for Alternative 

Marketing Scenarios for 2014 Average Prices 

Marketing Scenario Proportion 

Optimal Days-

on-Feed 

Expected Net 

Return 

Standard 

Deviation 

   ––––– $/head ––––– 

Baseline marketing scenarios     

Market all live weight  151 -$35.84 $27.07 

Market all dressed weight  179 -$34.25 $27.09 

Market all grid  181 -$28.03 $33.49 

Genetic information marketing 

scenario 

    

Live weight 10% 146 -$57.74 $23.87 

Dressed weight 17% 177 -$51.24 $21.86 

Grid 73% 182 -$16.71 $28.28 

Weighted average   -$26.68 $31.47 

Perfect information marketing 

scenario 

    

Live weight 19% 143 -$26.76 $32.10 

Dressed weight 19% 179 -$50.35 $21.15 

Grid 62% 183 -$15.38 $28.21 

Weighted average   -$24.19 $30.88 
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Table III-7. Expected Value of Information for Alternative Marketing Scenarios Compared 

with Baseline Marketing Scenarios for Three Different Grids 

 Baseline Marketing Scenarios 

Alternative Marketing Scenarios Live Weight  Dressed Weight  Grid  

 ——————— $/head ——————— 

Average grid    

Genetic information $9.16  $7.57  $1.35  

Perfect information $11.65  $10.06  $3.84  

Maximum grid    

Genetic information $13.00  $11.41 $2.47 

Perfect information $14.75 $13.16 $4.22 

Minimum grid    

Genetic information $5.28 $3.69 $0.59 

Perfect information $8.81 $7.22 $4.12 
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Table III-8. Optimal Marketing Portfolios and Certainty Equivalents for Alternative 

Marketing Scenarios for Three Levels of Risk Aversion and 2014 Average Prices 

 

Slight Risk Aversion 

(𝑟 = 0.0000003) 
Moderate Risk Aversion 

(𝑟 = 0.0000006) 
Severe Risk Aversion 

(𝑟 = 0.0000010) 

Marketing Scenario Proportion 

Certainty 

Equivalent Proportion 

Certainty 

Equivalent Proportion 

Certainty 

Equivalent 

  $/head  $/head  $/head 

Baseline marketing scenarios       

Market all live weight  -$58.01  -$75.00  -$104.42 

Market all dressed weight  -$63.38  -$85.49  -$122.81 

Market all grid  -$57.58  -$80.08  -$118.09 

Expected utility maximizing 

portfolio       

Live weight 31%  54%  81%  

Dressed weight 10%  3%  0%  

Grid 59%  43%  19%  

Overall
 

 -$52.02  -$71.54  -$103.34 

Note: Days-on-feed for each marketing method is held constant at their profit maximizing baseline 

levels (live weight = 151 days, dressed weight = 179 days, and grid = 181 days).  
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Table III-9. Expected Value of Information for Alternative Marketing Scenarios Compared 

with Baseline Marketing Scenarios for Three Levels of Risk Aversion and 2014 Average Prices 

 Baseline Marketing Scenarios 

Risk Aversion Live Weight  Dressed Weight  Grid  

 ——————— $/head ——————— 

Slight risk aversion $5.99  $11.36  $5.56  

Moderate risk aversion $3.46  $13.95  $8.54  

Severe risk aversion $1.08 $19.47  $14.75  
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Figure III-1. Three-dimensional surface and corresponding contour plot of the fed cattle 

marketing decision rule using molecular breeding values (MBV) characterizing yield grade and 

marbling for 2014 average prices
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CHAPTER IV 
 

 

A BAYESIAN DECISION THEORETIC APPROACH TO ECONOMICALLY-OPTIMAL 

SAMPLE SIZE DETERMINATION: RANDOMLY SAMPLING BEEF CATTLE FOR 

GENETIC TESTING 

Abstract 

Sample size is often dictated by budget and acceptable error bounds. However, there are many 

economic problems where sample size directly affects a benefit or loss function, and in these 

cases, sample size is an endogenous variable. We introduce an economic approach to sample size 

determination utilizing a Bayesian decision theoretic framework that balances the expected costs 

and benefits of sampling using a Bayesian prior distribution for the unknown parameters. To 

demonstrate the method for a relevant applied economics problem, we turn to randomly sampling 

beef cattle for genetic testing. A theoretical model is developed, and several simplifying 

assumptions are made to solve the problem analytically. Data from 101 pens (2,976 animals) of 

commercially-fed cattle are then used to evaluate this solution empirically. Results indicate that at 

the baseline parameter values an optimal sample size of 𝑛∗ = 10 out of 100 animals generate 

returns from sampling of nearly $10/head, or a return-on-investment of 250%. Therefore, a large 

portion of the additional value for higher-quality cattle can be captured by testing a relatively 

small percentage of the lot. These results vary depending on the actual quality (or profitability) of 

a particular pen of cattle, the homogeneity within the pen, the variance of the buyer’s subjective 

prior distribution of expected profit, and the per-head cost of genetic testing. Nonetheless, results  
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suggest that random sampling has the potential to provide a context in which the benefits of genetic 

testing outweigh the costs, which has not generally been the case in previous research. 

Keywords: Bayesian decision theory, beef cattle genetics, random sampling, sample size 

determination 

Introduction 

The methods for determining sample size can be generally classified into two broad categories: 

frequentist and Bayesian (Adcock, 1997). The debate between proponents of these two approaches 

has occupied entire issues of statistical journals (for example, Journal of the Royal Statistical Society: 

Series D (The Statistician) 46(2), 1997) and is ongoing. In practice, sample size has often been a 

function of budget and acceptable error bounds. Therefore, the commonly used frequentist approach 

determines sample size by specifying a null and alternative hypothesis for the parameter of interest 

and using predetermined specifications of size, power, variance, and a minimum detectible difference 

(Adcock, 1997; Wilan, 2008). However, there are many economic problems where sample size 

directly affects a benefit or loss function. In these cases, sample size is an endogenous variable that 

should be considered jointly with other choice variables in an optimization problem. In this article we 

introduce an economic approach to sample size determination utilizing a Bayesian decision theoretic 

framework. The Bayesian framework for sample size determination appears to be rarely used in 

economic research, but is arguably the theoretically sound approach to determining sampling for 

many applied economic problems. In addition to introducing the method, we develop a practical, 

currently relevant application of the model for randomly sampling beef cattle for genetic testing.  

The issue of endogenous sample size was first identified by Grundy, Healy, and Rees (1956). 

In this seminal piece, the authors acknowledge that in order to determine the economically justifiable 

amount of experimentation, the costs of the experiment must be set against the potential benefits of 

the new process being evaluated. However, they point out that the main difficulty is that the expected 

benefits of the new process depend on the outcome of the experiment. Their model has since been 
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generalized and further developed by Riffa and Schlaifer (1961) and, more recently, by Lindley 

(1997), and has come to be known as the Bayesian decision theoretic approach to sample size 

determination. In this fully Bayesian framework, the economically-optimal sample size is determined 

using an objective function to balance the expected costs and benefits of sampling using a Bayesian 

prior distribution for the unknown parameters.  

Despite its potential for application to a variety of research problems, to date, the use of this 

method has been largely limited to clinical trials in medical research (Gittins and Pezeshk, 2000, 

2002; O’Hagan and Stevens, 2001; Kikuchi, Pezeshk, and Gittins, 2008; Wilan, 2008; Willan and 

Pinto, 2005, 2006) and substantive tests in financial auditing (Smith 1976, 1979; Patterson, 1993; 

Laws and O’Hagan, 2002). Still, there remain many research problems to which this method could, 

and likely should, be applied for determining the economically-optimal sample size. For example, in a 

variety of audit/inspection contexts (for example, internal bank audit, environmental regulation 

compliance audit, Food and Drug Administration [FDA] inspections, health inspections, etc.), it is 

much too costly to examine each individual unit of interest. However, there is significant value 

associated with obtaining a sufficient sample to identify potential losses or costly, undesirable 

outcomes. Therefore, the fully Bayesian approach allows the decision maker to determine the sample 

size that will balance the expected costs and benefits of sampling. In addition, a sampling error of 

±3% in many survey based research methods is dictated by convention. However, researchers rarely 

discuss, or even consider, the tradeoff between the cost and accuracy of a given survey question. 

Likewise, issues of quality control/statistical tolerancing or sampling related problems (for example, 

grain sampling, livestock sampling, soil sampling, etc.) could also benefit from this approach.  

To demonstrate the method for a relevant applied economics problem, we turn to genetic 

testing for market livestock. Recent advancements in genomic technology have the potential to 

generate value throughout the beef industry (Van Eenennaam and Drake, 2012). Previous research 

has shown significant differences in the profitability of animals with different genetic profiles 

suggesting some merit in using the tests for selection (Lusk, 2007; Thompson et al., 2014). However, 



86 
 

economic evaluations of commercially available genetic marker panels have indicated that the value 

of this information for feedlot management is generally not enough to offset the current cost of 

genetic testing (about $40/head; Igenity, 2015). For example, the value of using genetic information 

for sorting feedlot cattle by optimal days-on-feed is less than $3/head (DeVuyst et al., 2007; Lusk, 

2007; Lambert, 2008; Thompson et al., 2014), and the value of using this information to selectively 

market (live weight, dressed weight, or grid pricing) fed cattle is less than $13/head (Thompson et al., 

2016).  

Therefore, in order to achieve a scenario in which genetic testing is cost-effective, the value 

of genetic information must increase or the cost of testing must decrease. While animal scientists are 

continually progressing towards providing more accurate genetic markers that have the potential to 

increase the value of genetic information (for example, see Akanno et al., 2014), producers seeking to 

use this technology have no control over the pace at which these new variations are released. So, we 

introduce a strategy for reducing the overall cost of genetic testing that has been previously discussed, 

but has yet to be evaluated: random sampling (Thompson et al., 2014, 2016). That is, instead of 

testing each individual animal in a group of cattle, a random sample of animals could be tested to 

measure the genetic potential of the group. While appealing in theory, there is a thorny practical 

question: “What size sample should I take?” To answer this question we use a Bayesian decision 

theoretic approach to determine the economically-optimal sample size. 

Unlike previous research evaluating the value of genetic information, which has generally 

focused on marker-assisted management at the feedlot stage, in this research we approach the 

problem from the feeder cattle producer’s perspective. That is, producers who know that their feeder 

cattle have high-value genetics may want to try to convince buyers (for example, wheat stocker 

producers or feedlot owners) that their cattle are higher quality in order to receive a premium. 

However, in order to establish the actual genetic makeup of a lot of feeder cattle the seller must incur 

the cost of genetic testing. Therefore, the objective of this research is to determine if randomly 

sampling a group of feeder cattle for genetic potential is cost-effective and, if so, to determine the 
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economically-optimal sample size. A general framework is introduced, and a theoretical model 

specific to randomly sampling feeder cattle for genetic testing is developed. Several simplifying 

assumptions are made to solve the problem analytically, and the solution is then evaluated empirically 

using data from 101 pens (2,976 animals) of commercially-fed cattle. After estimating the optimal 

sample size and the returns from sampling, sensitivity analysis is conducted to evaluate the robustness 

of these results to varying levels of quality and homogeneity of a particular lot of cattle. Our results 

suggest sampling could be a viable strategy to reduce the costs of genetic testing for beef cattle.  

Conceptual Framework 

The objective of the Bayesian decision theoretic approach to economically-optimal sample size 

determination is to determine how large of a sample (𝑛) to take from a population to make an 

inference/decision about some feature of the population considering that both the costs and benefits of 

sampling are a function of 𝑛 (Grundy, Healy, and Rees, 1956; Riffa and Schlaifer, 1961; Lindley, 

1997). The framework for the fully Bayesian treatment of this problem is set was set out in detail by 

Riffa and Schlaifer (1961) and was later updated by Lindley (1997). Both descriptions approach the 

problem in temporal order: first the sample size 𝑛 is chosen, 𝑛 realizations of random quantity 𝑋 are 

then collected (𝑥1, 𝑥2, … , 𝑥𝑛) where the density of 𝑋 is of a known form dependent on the unknown 

parameter 𝜃, the information from this sample is used to make decision 𝑑 concerning some feature of 

the population, and finally the unknown parameter 𝜃 is considered. The merit of this decision 

sequence is captured by specifying a utility function, 𝑢(𝑛, 𝑥, 𝑑, 𝜃). 

Before performing the optimization the decision maker has a prior distribution of the 

unknown parameter 𝜃, 𝑝𝑝𝑟𝑖𝑜𝑟(𝜃). An application of Bayes rule to 𝜃 and 𝑥 gives the posterior 

distribution of 𝜃 conditional on 𝑥 and 𝑛, 𝑝𝑝𝑜𝑠𝑡(𝜃|𝑥, 𝑛) = 𝑝(𝑥|𝜃, 𝑛)𝑝𝑝𝑟𝑖𝑜𝑟(𝜃)/𝑝(𝑥|𝑛), where 

𝑝(𝑥|𝜃, 𝑛) = ∏𝑝(𝑥𝑖|𝜃) is the usual likelihood function and 𝑝(𝑥|𝑛) = ∫ 𝑝(𝑥|𝜃, 𝑛)𝑝𝑝𝑟𝑖𝑜𝑟(𝜃)𝑑𝜃 is a 

normalizing constant.  
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With the posterior distribution of 𝜃 available, Riffa and Schlaifer’s (1961) resolution of this 

problem is to proceed in reverse time order, taking expectations of utility over random variables 𝜃 

and 𝑥, and maximixing over choice variables 𝑑 and 𝑛. Assuming that utility does not depend on 𝑥 and 

is additive and linear in 𝑛, the utility function can be written as 𝑢(𝑛, 𝑥, 𝑑, 𝜃) = 𝑢(𝑑, 𝜃) − 𝑐𝑛, where 𝑐 

is the cost in utiles of each additional observation (Riffa and Schlaifer, 1961; Lindley, 1997). 

Therefore, the objective function is (Lindley, 1997): 

(1)  
max
𝑛≥0

{∫ max
𝑑≥0

[∫ 𝑢(𝑑, 𝜃)𝑝𝑝𝑜𝑠𝑡(𝜃|𝑥, 𝑛)𝑑𝜃
𝜃

] 𝑝(𝑥|𝑛)𝑑𝑥 − 𝑐𝑛
𝑥

}. 
 

The problem can be solved by taking the expectation over 𝜃 of the utility of 𝑑, given 𝑥 and 𝑛, and 

then maximizing over the decision variable 𝑑. Subsequently, the expectation over 𝑥 of this 

maximized value can be found using 𝑝(𝑥|𝑛), and finally, this expectation can be maximized over 𝑛 to 

answer the original question, “What size sample should I take?” 

Application to Genetic Testing for Beef Cattle 

Although equation (1) offers a well-defined algorithm for solving the general form of the Bayesian 

decision theoretic approach to sample size determination, applications of this method are still limited. 

Most notably, several studies have used the fully Bayesian approach to determine the optimal sample 

size for clinical trials in medical research. Although these studies have been conducted from a variety 

of different perspectives, including societal/public health (Gittins and Pezeshk, 2002; Wilan and 

Pinto, 2005, 2006) and industry/pharmaceutical companies (Gittins and Pezeshk, 2000, 2002; 

O’Hagan and Stevens, 2001; Kikuchi, Pezeshk, and Gittins, 2008; Wilan, 2008), they focus on a 

single market participant. Conversely, there are two participants in the market for feeder cattle: 

buyers and sellers. Therefore, we extend the model to take into account both buyer and seller 

information.  

Suppose 𝑿𝑖 (𝑖 = 1, 2, … ,𝑚) is a column vector of molecular breeding values (MBVs) 

characterizing 𝑝 economically relevant traits for the 𝑖th animal in a lot of 𝑚 feeder cattle. Within a 
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pen of cattle, this vector of genetic markers is assumed to be independent and identically distributed 

across animals with a multivariate normal density (Mrode, 2014):
29

 

(2)  𝑿𝑖~𝑖𝑖𝑑 𝑀𝑉𝑁𝑝(𝜽, 𝚺),  

where the true value of 𝜽 is unknown and the 𝑝 × 𝑝 variance-covariance matrix 𝚺 is known from 

previous experience. Both the buyer (feedlot) and the seller (producer) of a lot of feeder cattle have 

their own subjective prior distributions of the unknown parameter 𝜽. For example, the seller’s prior 

distribution of 𝜽 can be expressed as:  

(3)  𝜽~𝑀𝑉𝑁𝑝(𝝁𝑠, 𝑽𝑠),  

and the buyer’s prior distribution can be written similarly as:  

(4)  𝜽~𝑀𝑉𝑁𝑝(𝝁𝑏 , 𝑽𝑏).  

Given previous experience with their own cattle, the seller is expected to have a narrower distribution 

of 𝜽 than the buyer (i.e., 𝑽𝑠 ≤ 𝑽𝑏). Although buyers often have access to some information about 

how animals will perform, in the extreme case that the buyer is completely uninformed 𝑽𝑏 is 

characterized by the variance-covariance matrix of the MBVs between lots of cattle. 

A model examining the consequences of asymmetric information between buyers and sellers 

was first introduced by Akerlof (1970) using the example of the market for used cars. This model has 

                                                           
29

 The independence assumption is a common simplifying assumption (Hoff, 2009). However, in 

practice genetic markers are likely to be positively correlated across animals. For example, a lot of 

feeder cattle from the same ranch often have a high degree of relatedness with dams frequently being 

cousins and bulls being able to service 20-25 head. Holding all else constant, relaxing the 

independence assumption would likely result in a lower optimal sample size and higher returns from 

sampling as the information collected from each animal is more informative about the pen as a whole. 

Therefore, our model, which assumes independence, represents the extreme case in which animals are 

completely unrelated, and as a result, the optimal sample sizes presented here are likely an upper 

bound on the true profit maximizing sample size.  
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since been extended to a variety of topics, including asymmetric information in cattle auctions (Allen, 

1993; Chymis, 2007). Results indicate that one way to alleviate the inefficiency created by this 

information gap is to introduce credible information to the decision problem. However, as indicated 

by Stigler (1961) a rational decision maker will only obtain additional information if the benefits 

outweigh the costs. Therefore, given the discrepancy between buyer and seller expectations of the 

genetic makeup of a lot of feeder cattle, sellers who know that their cattle have valued genetics may 

want to differentiate their cattle by convincing buyers that they are higher quality. One way to do this 

would be to use genetic testing to establish the actual genetic makeup of the lot. However, previous 

research has consistently found that testing each individual animal is not cost-effective. Therefore, the 

seller may choose to randomly sample a subset of the cattle. The question is how many cattle should 

the seller test to maximize returns? 

An objective function characterizing the costs and benefits of randomly sampling 𝑛 animals 

out of a lot of 𝑚 feeder cattle is specified using a Bayesian prior distribution for the unknown vector 

of parameters 𝜽. The cost of testing is known to be 
𝑐

𝑚
𝑛, where 𝑐 is the cost of commercial testing 

services ($/head). The benefit of persuading the buyer that a pen of cattle has higher quality genetics 

than expected is characterized by the increase in the buyer’s expected profit which is specified as a 

function of genetics, 𝜋(𝜽). For simplicity, the buyer is assumed to be risk neutral so that the seller 

receives the entire surplus profit created from testing. Moreover, in application the presence of a large 

number of buyers would result in the additional value to buyers being bid away given the reasonable 

assumption that the market for feeder cattle is perfectly competitive (Zhao, Du, and Hennessy, 2011). 

As a result, the seller’s objective function 𝑟(𝑛), which is the total expected benefit from the 

resulting improvement in the buyer’s profit function minus the cost of testing, can be written as: 
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(5)  
max
𝑛≥0

𝑟(𝑛) =∫ [∫ 𝜋(𝜽)𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛)𝑑𝜽
𝜽

] 𝑝(𝑿|𝑛)𝑑𝑿
𝑿

−∫ 𝜋(𝜽)𝑝𝑝𝑟𝑖𝑜𝑟(𝜽)𝑑𝜽 −
𝑐

𝑚
𝑛

𝜽

, 

 

where 𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛) is the buyer’s posterior distribution of 𝜽 conditional on the genetic information 

𝑿 collected from a random sample of 𝑛 animals and 𝑝𝑝𝑟𝑖𝑜𝑟(𝜽) is the buyer’s prior distribution of 𝜽 

given in equation (4). An application of Bayes rule indicates that the posterior distribution is 

proportional to the product of the likelihood function and the buyer’s prior distribution of 𝜽, 

𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛) ∝ 𝑝(𝑿|𝜽)𝑝𝑝𝑟𝑖𝑜𝑟(𝜽). Therefore, in order to maximize the returns from sampling in 

equation (5), the seller is assumed to know the buyer’s prior distribution of 𝜽, which could be implied 

from the initial bid received.  

If, for simplicity of exposition, we assume that the buyer’s profit function in equation (5) is 

linear in the MBVs, 𝜋 = 𝛼 + 𝜷𝑿, the multivariate distribution of genetics in equation (2) can be 

transformed into a univariate normal distribution of profit per head within a pen of cattle: 

(6)  𝜋𝑖~𝑖𝑖𝑑 𝑁(𝛼 + 𝜷𝜽,𝜷𝚺𝜷
′),  

where the mean is still unknown. Similarly, buyer and seller subjective prior distributions of genetics 

can also be transformed into prior distributions of profit. For example, the seller’s prior distribution of 

expected profit is a linear transformation of the prior distribution of genetics in equation (3): 

(7)  𝛼 + 𝜷𝜽~𝑁(𝛼 + 𝜷𝝁𝑠, 𝜷𝑽𝑠𝜷
′),  

and the linear transformation of the prior distribution of genetics in equation (4) returns the buyer’s 

prior distribution of expected profit:  

(8)  𝛼 + 𝜷𝜽~𝑁(𝛼 + 𝜷𝝁𝑏 , 𝜷𝑽𝑏𝜷
′).  

Replacing distributions of genetics with distributions of profit, the objective function in 

equation (5) can be rewritten as: 
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(9)  
max
𝑛≥0

𝑟(𝑛) =∫ [∫ (𝛼 + 𝜷𝜽)𝑝𝑝𝑜𝑠𝑡(𝛼 + 𝜷𝜽|𝜋̅, 𝑛)𝑑(𝛼 + 𝜷𝜽)
𝛼+𝜷𝜽

] 𝑝(𝜋̅|𝑛)𝑑𝜋̅
𝜋̅

−∫ (𝛼 + 𝜷𝜽)𝑝𝑝𝑟𝑖𝑜𝑟(𝛼 + 𝜷𝜽)𝑑(𝛼 + 𝜷𝜽) −
𝑐

𝑚
𝑛

𝛼+𝜷𝜽

, 

 

where 𝑝𝑝𝑜𝑠𝑡(𝛼 + 𝜷𝜽|𝜋̅, 𝑛) is the buyer’s posterior distribution of profit conditional on the sufficient 

statistic 𝜋̅ =
1

𝑛
∑ 𝜋𝑖
𝑛
𝑖=1  and sample size 𝑛 and 𝑝𝑝𝑟𝑖𝑜𝑟(𝛼 + 𝜷𝜽) is the buyer’s prior distribution of 

expected profit in equation (8). Given that both the likelihood function and the buyer’s prior 

distribution of expected profit are normally distributed, the posterior distribution is also well known 

to be normally distributed as (Hoff, 2009): 

(10)  
𝛼 + 𝜷𝜽|𝜋̅, 𝑛~𝑁(

(𝜷𝚺𝜷′)(𝛼 + 𝜷𝝁𝑏) + 𝑛(𝜷𝑽𝑏𝜷
′)𝜋̅

(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷
′)

,
(𝜷𝚺𝜷′)(𝜷𝑽𝑏𝜷

′)

(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷
′)
). 

 

From this familiar solution we can see that when 𝑛 = 0 the mean and variance of the posterior 

distribution reduce to the buyer’s prior distribution of profit in equation (8). However, at values of 

𝑛 > 0 the mean and variance of the posterior distribution converge towards the sample mean and 

sample variance. 

Because of the linearity assumption of the profit function, the integrals in equation (9) can be 

evaluated by replacing the random parameters with their expected values. For example, the integrals 

with respect to 𝛼 + 𝜷𝜽 can be evaluated by replacing the unknown values of profit with the expected 

values of the buyer’s posterior and prior distributions of profit, respectively: 

(11)  
max
𝑛≥0

𝑟(𝑛) =∫ [
(𝜷𝚺𝜷′)(𝛼 + 𝜷𝝁𝑏) + 𝑛(𝜷𝑽𝑏𝜷

′)𝜋̅

(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷
′)

] 𝑝(𝜋̅|𝑛)𝑑𝜋̅
𝜋̅

 

−(𝛼 + 𝜷𝝁𝑏) −
𝑐

𝑚
𝑛. 

 

Given that the objective function is from the seller’s perspective, the density of the sample mean is 

known to be 𝜋̅|𝑛~𝑁 (𝛼 + 𝜷𝝁𝑠,
1

𝑛
(𝜷𝑽𝑠𝜷

′)). Therefore, the integral with respect to 𝜋̅ can also be 
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evaluated by replacing 𝜋̅ with its expected value, 𝛼 + 𝜷𝝁𝑠. As a result, equation (11) can be rewritten 

as: 

(12)  
max
𝑛≥0

𝑟(𝑛) =
(𝜷𝚺𝜷′)(𝛼 + 𝜷𝝁𝑏) + 𝑛(𝜷𝑽𝑏𝜷

′)(𝛼 + 𝜷𝝁𝑠)

(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷
′)

− (𝛼 + 𝜷𝝁𝑏) −
𝑐

𝑚
𝑛. 

 

In practice, sample size 𝑛 is an integer. However, if we treat 𝑛 as continuous for ease of 

exposition, we can maximize 𝑟(𝑛) by letting 
𝑑𝑟(𝑛)

𝑑𝑛
= 0. Taking the derivative of equation (12) and 

solving for 𝑛, the optimal sample size, 𝑛∗, is: 

(13)  

𝑛∗ =
√(𝜷𝚺𝜷′)(𝜷𝑽𝑏𝜷

′)(𝜷𝝁𝑠 −𝜷𝝁𝑏) − (𝜷𝚺𝜷
′)√

𝑐
𝑚

(𝜷𝑽𝑏𝜷
′)√

𝑐
𝑚

. 

 

The second order condition indicates that the solution in equation (13) maximizes the seller’s returns 

from sampling for values of 𝜷𝝁𝑠 > 𝜷𝝁𝑏: 

(14)  𝑑2𝑟(𝑛)

𝑑𝑛2
=
−2(𝜷𝚺𝜷′)(𝜷𝑽𝑏𝜷

′)2(𝜷𝝁𝒔 − 𝜷𝝁𝒃)

[(𝜷𝚺𝜷′) + 𝑛(𝜷𝑽𝑏𝜷
′)]3

< 0  ∀ 𝜷𝝁𝑠 > 𝜷𝝁𝑏 . 
 

That is, as long as the seller’s prior expectation of profit is higher than the buyer’s prior expectation 

of profit, 𝑛∗ = agrmax{𝑟(𝑛)}. This makes sense given that a seller who knows that the quality of 

their cattle is lower than the buyer’s prior expectation has no incentive to test.  

Alternative Applications for Genetic Testing of Beef Cattle 

The framework described above is just one of many applications of this method to genetic testing for 

beef cattle. For example, similar to the scenario described above, a producer could use a sample of 

genetic information to determine whether or not to retain ownership of a lot of feeder cattle. Another 

potential alternative is that a feedlot may want to differentially manage cattle based on genetics, or 

marker-assisted management, but cannot collect genetic information until after they have purchased a 

lot of feeder cattle. In this case, the benefit portion of the objective function will be the improvement 

in feedlot profit from improved management decisions, including how cattle are fed, how 
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technologies such as implants and beta agonists are used, and how cattle are marketed (Van 

Eenennaam and Drake, 2012), and the cost portion will remain the same. Therefore, the feeder now 

chooses some feedlot management decision variable (𝑑; e.g., marketing method and/or days-on-feed) 

and the number of animals to be sampled (𝑛), and the objective function in equation (5) can be re-

specified as: 

(15)  
max
𝑛≥0

{∫ max
𝑑≥0

[∫ 𝜋(𝑑, 𝜽)𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛)𝑑𝜽
𝜽

] 𝑝(𝑿|𝑛)𝑑𝑿
𝑿

−∫ 𝜋(𝑑, 𝜽)𝑝𝑝𝑟𝑖𝑜𝑟(𝜽)𝑑𝜽 −
𝑐

𝑚
𝑛

𝜽

}, 

 

where profit is now a function of the feedlot management decision variable 𝑑 and genetics 𝜽, 

𝑝𝑝𝑜𝑠𝑡(𝜽|𝑿, 𝑛) is the feeder’s posterior distribution of 𝜽 conditional on the genetic information 𝑿 

collected from a random sample of 𝑛 animals, and 𝑝𝑝𝑟𝑖𝑜𝑟(𝜽) is the feeder’s prior distribution of 𝜽. 

While it is important to acknowledge alternative applications of this model, for simplicity in this 

paper we focus on the original context discussed above of a seller trying to convince a buyer that their 

cattle are higher quality in order to receive a premium. 

Data 

Data were provided by Neogen, the parent company of commercial testing service Igenity, for 2,976 

commercially-fed cattle from a single feedlot in Iowa. Cattle represented year-round placements in 

the years 2007 and 2008. At placement, animals were weighed and a hair sample or tissue punch from 

ear tag application was collected for genetic testing. Genetic information was provided in the form of 

MBVs for the following seven traits: marbling, yield grade, rib-eye area (in
2
), hot-carcass weight 

(lbs.), average daily gain (lbs./day), tenderness (lbs. of Warner-Bratzler shear force [WBSF]), and 

days-on-feed (days). Each of these markers, except hot-carcass weight and days-on-feed, have been 

found to be significantly correlated with the traits they are designed to predict in independent 

validations (DeVuyst et al., 2011; National Beef Cattle Evaluation Consortium, 2015). Molecular 
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breeding values are a continuous representation of an animal’s genetic potential to express a given 

trait. Similar to expected progeny differences (EPDs), MBVs are reported in the units of the trait they 

represent. However, they are interpreted as the “relative differences expected in animals across breeds 

compared to their contemporaries” (Igenity, 2013, p. 2). For example, if two animals exposed to the 

same environmental and management conditions have marbling MBVs of -100 and 100, respectively, 

we would expect, on average, that these two animals’ marbling scores would differ by 200 units (100 

- [-100] = 200). Additional live-animal characteristics for days-on-feed, sex, and hide color were also 

provided, and carcass performance measurements, including calculated yield grade, marbling score, 

and hot-carcass weight, were collected at slaughter. Summary statistics for carcass performance, live-

animal characteristics, and MBVs are reported in table IV-1.  

The data consist of 101 contemporary groups, which are defined as groups of animals that 

had an equal opportunity to perform: same sex, managed alike, and exposed to the same feed 

resources. These groups ranged in size from 11 to 69 animals with an average group size of 29 

animals. While most of the groups are expected to be from a single producer, the extent to which 

some cattle were comingled from different herds was not recorded. Therefore, the results of our 

analysis are conditional on the data that we use, and may underestimate the value of testing for cattle 

that are known to have homogeneous genetics. Sensitivity analysis is done to provide some context 

for the results presented here.  

Procedures 

Using the data described above we estimate the parameters needed to obtain the optimal sample size 

in equation (13) and the returns from sampling in equation (12). A brief description of each of the 

parameters along with their baseline values and a range of parameter values for sensitivity analysis 

are reported in table IV-2. The procedures for how these parameters and their ranges were estimated 

from the data are discussed below. 
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Expected Profit 

The intercept and slope coefficients in the buyer’s profit equation, 𝛼 and 𝜷, are estimated using a 

mixed model regression of feedlot profit on the MBVs. Prior to estimating these parameters an 

estimate of profit for each animal in the sample was generated using grid pricing: 

(16)  𝜋 = 𝑃(𝑌𝐺, 𝑄𝐺,𝐻𝐶𝑊) × 𝐻𝐶𝑊 − 𝑃𝐶(𝑃𝑊𝑇, 𝑆𝐸𝑋) − 𝐹𝐶(𝐷𝑂𝐹) − 𝑌𝐶(𝐷𝑂𝐹)

− 𝐼𝐶(𝑃𝐶, 𝐷𝑂𝐹), 

 

where 𝑃 is the grid price which is a function of actual yield grade (𝑌𝐺), quality grade (𝑄𝐺), and hot-

carcass weight (𝐻𝐶𝑊), 𝑃𝐶 is the purchase cost of feeder cattle which is a function of placement 

weight (𝑃𝑊𝑇) and sex (𝑆𝐸𝑋), 𝐹𝐶 is feed cost, 𝑌𝐶 is yardage cost, and 𝐼𝐶 is interest cost on the 

purchase of feeder cattle which are all a function of days-on-feed (𝐷𝑂𝐹). Fed cattle prices, including 

grid premiums and discounts, and feeder cattle prices were simple averages of the weekly prices 

reported by the USDA Agricultural Marking Service (AMS) for the 2014 marketing year and were 

obtained from the Livestock Marketing Information Center (LMIC) spreadsheets (LMIC, 2015; 

USDA AMS, 2015). The prices used in this analysis are reported in table IV-3. Observations of feed 

intake were not available. Therefore, a standardized estimate of feed intake was generated for each 

animal in the sample using the dry matter intake model from the National Research Council’s (NRC) 

Nutrient Requirements of Beef Cattle (NRC, 2000). For examples of the National Research Council’s 

dry matter intake model see Lusk (2007) or Thompson et al. (2014). Additional information needed to 

evaluate profit includes a dry matter feed cost of $230/ton ($0.12/lb.), yardage cost of $0.40/day, and 

a 7% interest rate on the purchase of feeder cattle (Lardy, 2013).  

Using equation (16), estimates of profit for the animals in our sample are generally negative. 

This is contradictory to Tonsor (2015), which reported that feedlot net returns in Kansas were positive 

for most of 2014. However, negative returns to cattle feeding are common with average net returns 

over the past 13 years being -$26.77 and -$15.44/head for steers and heifers, respectively (Tonsor, 

2015). The discrepancy between our estimates of profit and those reported by Tonsor (2015) are 
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likely due to differences in the input and output prices used in this analysis and those observed when 

cattle in our sample were actually being fed.  

A mixed model regression equation of profit on MBVs and other live-animal characteristics 

is then estimated as: 

(17)  𝜋𝑖𝑗 = 𝛼0 + 𝛼1𝑃𝑊𝑇𝑖𝑗 + 𝛼2𝐷𝑂𝐹𝑖𝑗 + 𝛼3𝐷𝑂𝐹𝑖𝑗
2 + 𝛼4𝑃𝑊𝑇𝑖𝑗𝐷𝑂𝐹𝑖𝑗 + 𝛼5𝑆𝑇𝑅𝑖𝑗

+ 𝛼6𝐵𝐿𝐾𝑖𝑗 + 𝜷𝑿𝑖𝑗 + 𝑣𝑗 + 𝜀𝑖𝑗 , 

 

where 𝜋𝑖𝑗 is the estimated feedlot profit for the 𝑖th animal in the 𝑗th contemporary group, 𝑃𝑊𝑇𝑖𝑗 is 

placement weight, 𝐷𝑂𝐹𝑖𝑗 is days-on-feed, 𝑆𝑇𝑅𝑖𝑗 is a dummy variable equal to one if the animal was a 

steer and zero otherwise, 𝐵𝐿𝐾𝑖𝑗 is a dummy variable equal to one if the animal was black-hided and 

zero otherwise, 𝑿𝑖𝑗 is a 7 × 1 vector of MBVs characterizing marbling, yield grade, rib-eye area, hot-

carcass weight, average daily gain, tenderness, and days-on-feed, 𝑣𝑗~𝑁(0, 𝜎𝑣
2) is a contemporary 

group random effect, and 𝜀𝑖𝑗~𝑁(0, 𝜎𝜀
2) is a random error term.  

The model is estimated using Proc Mixed in SAS (SAS Institute Inc., 2013). D’Agostino-

Pearson K
2
 omnibus test for skewness and kurtosis and a conditional variance test identified evidence 

of nonnormality and static heteroskedasticity. Sandwich estimators of the standard errors were 

estimated to obtain estimates of standard errors that were consistent in the presence of nonnormality 

and static heteroskedasticity (White, 1982). Given the large sample size, asymptotic properties are 

relevant, and the small sample biases common with generalized method of moments estimators 

should be of little concern.  

Results from the estimation of equation (17) are reported in table IV-4. Live-animal 

characteristics generally exhibited the expected relationships with the only notable result being that, 

on average, fed cattle profit for steers was $75/head less than heifers. While previous research has 

discussed the potential for heifers to generate higher returns (Williams et al., 1993; Tonsor, 2015), 

steers are usually expected to generate higher fed cattle profit. In this case, the discrepancy between 

feedlot profit for steers and heifers is a result of the prices used. Although feeder cattle prices include 
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a premium for steers regardless of the weight class, the average dressed fed cattle prices used as the 

base for the grid were nearly identical for steers and heifers. Fixed effects for live-animal 

characteristics are not of interest in this study, so these variables are set to their mean values and 

absorbed into the intercept, 𝛼 = 𝛼0 + 𝛼1𝑃𝑊𝑇̅̅ ̅̅ ̅̅ ̅ + 𝛼2𝐷𝑂𝐹̅̅ ̅̅ ̅̅ + 𝛼3𝐷𝑂𝐹
2̅̅ ̅̅ ̅̅ ̅̅ + 𝛼4𝑃𝑊𝑇̅̅ ̅̅ ̅̅ ̅ × 𝐷𝑂𝐹̅̅ ̅̅ ̅̅ + 𝛼5𝑆𝑇𝑅̅̅ ̅̅ ̅ +

𝛼6𝐵𝐿𝐾̅̅ ̅̅ ̅̅ . Thus, the profit equation can be written as a linear function of the MBVs, 𝜋 = 𝛼 + 𝜷𝑿. 

Each of the MBV effects, except for the rib-eye area MBV, is positive. This is consistent with 

expectations given that higher MBVs correspond with more favorable outcomes for the traits they 

characterize. The marbling and hot-carcass weight MBVs were the only markers to significantly 

influence fed cattle profitability. The negative effect of the rib-eye area MBV is likely due to genetic 

correlations among the MBVs included in our model. Specifically, the known inverse relationship 

between rib-eye area and marbling is likely the primary driver of this result (DeVuyst et al., 2011). 

That is, more favorable rib-eye area outcomes are often accompanied by less favorable outcomes for 

marbling. Therefore, for the grid used in this analysis, the premiums associated with more favorable 

rib-eye area (yield grade) outcomes are not enough to offset the lower premiums, or higher discounts, 

associated with less favorable marbling (quality grade) outcomes.  

Buyer and seller expectations of profit are estimated from the data using equation (17). We 

assume that the buyer’s expected value of profit, 𝛼 + 𝜷𝝁𝑏, is equal to the mean profit observed in our 

data. Given linearity of the profit function, this is equivalent to profit at the mean values of the seven 

MBVs. If the seller’s expectation of profit is less than or equal to the buyer’s prior expectation of 

profit then the optimal sample size is zero. That is, there is no incentive to test if sellers know that 

their cattle will have below-average profitability. However, for any combination of MBVs that 

𝛼 + 𝜷𝝁𝑠 > 𝛼 + 𝜷𝝁𝑏 there is a potential benefit to testing. Therefore, the baseline value for the 

seller’s expectation of profit is arbitrarily assumed to be equal to the 75
th
 percentile of profit observed 

in our sample, and sensitivity analysis is conducted for values of 𝛼 + 𝜷𝝁𝑠 ranging from the mean to 
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the maximum profit observed in the sample to determine the effect of the quality of a particular set of 

cattle on optimal sample size and the returns from sampling. 

Variance of Profit Between and Within Pens 

The variances of the MBVs between and within lots of cattle (i.e., the diagonal elements of 𝑽𝑏 and 𝚺, 

respectively) can be estimated using a random effects model for each of the seven MBVs:  

(18)  𝑀𝐵𝑉𝑖𝑗𝑘 = 𝜇𝑘 + 𝑔𝑗𝑘 + 𝑒𝑖𝑗𝑘 ,  

where the dependent variable is the 𝑘th MBV for the 𝑖th animal in the 𝑗th contemporary group, 𝜇𝑘 is 

the mean for the 𝑘th MBV, 𝑔𝑗𝑘~𝑁(0, 𝜏𝑘
2) is a contemporary group random effect where 𝜏𝑘

2 is the 

variance of the 𝑘th MBV between groups of cattle, and 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑘
2) is a random error term where 

𝜎𝑘
2 is the variance of the 𝑘th MBV within groups. Models for each of the seven MBVs were estimated 

independently using Proc Mixed in SAS (SAS Institute Inc., 2013).  

Estimates of the between and within variance from the random effects models are reported in 

table IV-5. The variance of the MBVs within contemporary groups was generally higher than the 

variance between groups. As discussed earlier, this result could indicate that some of the cattle in our 

sample were comingled for feeding. That is, cattle from different sources with differing genetics were 

fed in the same contemporary group resulting in higher within pen variability than may be 

experienced by a single producer with a lot of cattle with homogenous genetics. Nonetheless, the 

estimated variances, along with the correlation matrix of the seven MBVs, can be used to calculate 

the covariances, or off-diagonal elements, of 𝑽𝑏 and 𝚺 using the known relationship between them, 

𝐶𝑜𝑣(𝑥, 𝑦) = 𝜌𝑥,𝑦𝜎𝑥𝜎𝑦. Variance-covariance matrices of genetics are then converted to scalar 

estimates of the variance of profit within and between lots of cattle using the vector of parameter 

values 𝜷.  

In addition to their baseline values, the variance of profit between (𝜷𝑽𝑏𝜷
′) and within 

(𝜷𝚺𝜷′) lots of cattle is subjected to sensitivity analysis to determine how the homogeneity or 
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heterogeneity of a particular lot of cattle influences optimal sample size and the returns from 

sampling. The upper and lower bounds for the sensitivity analysis of both 𝜷𝑽𝑏𝜷
′ and 𝜷𝚺𝜷′ were 

approximately set to equal the maximum and minimum variance of profit observed for the 

contemporary groups in our data.  

Cost of Genetic Testing 

The final component to evaluating the optimal sample size in equation (13) is the per-head cost of 

genetic testing, 
𝑐

𝑚
. The current cost of commercially available genetic testing services is 𝑐 = $40/head 

(Igenity, 2015). Therefore, assuming the data collected is applied to a pen of 𝑚 = 100 animals, the 

cost of testing an additional animal is $0.40/head. In addition to this baseline value, sensitivity 

analysis is conducted for costs of testing ranging from $0.10/head to $1.00/head. These values are 

evaluated to account for differing costs of testing due to smaller or larger lots of cattle and to account 

for the potential decreasing cost of genetic testing services.  

Results 

The optimal sample size and returns from sampling are first evaluated at the baseline parameter 

values in table IV-2. A plot of the expected value of sample information (EVSI), total cost, and 

expected net gain (ENG), as a function of sample size (𝑛), are reported in figure IV-1. The EVSI is 

increasing sharply for small sample sizes as the genetic information collected from each additional 

animal contains valuable information. However, as sample size increases above 𝑛 = 20 the EVSI 

levels off at values of $16-$18/head. Given that the cost of testing each additional animal is the same, 

$0.40/head, the total cost function is linear with respect to sample size. The difference in the EVSI 

and total cost is the ENG, or the returns from sampling. Results indicate that in this case an optimal 

sample size of 𝑛∗ = 10 maximized the ENG. Despite only testing 10% of the animals, the returns 

from sampling are $9.79/head compared with not testing any animals and accepting the buyer’s prior 

expectation of the genetic makeup of the pen. Aggregating across the assumed pen size of 𝑚 = 100 
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animals, that is a net return of approximately $1,000 from a $400 investment, or a 250% return-on-

investment. These results indicate that random sampling has the potential to provide a context in 

which the benefits of genetic testing outweigh the costs, which has not generally been the case in 

previous research where each individual animal was tested and the results were used to sort cattle into 

management groups.  

Sensitivity analysis is conducted to evaluate the robustness of these results with respect to the 

parameters 𝛼 + 𝜷𝝁𝑠, 𝜷𝚺𝜷
′, 𝜷𝑽𝑏𝜷

′, and 
𝑐

𝑚
. As expected, holding all else constant, optimal sample 

size and the returns from sampling are both increasing with respect to the seller’s expectation of profit 

(𝛼 + 𝜷𝝁𝑠; figure IV-2, panel i). That is, sellers with higher quality (more profitable) cattle have an 

incentive to test more animals. However, consider that the optimal sample size for a lot of cattle with 

a genetic makeup similar to the most profitable animals in our sample is only about 𝑛∗ = 24. 

Although the returns from testing for such animals are quite high, nearly $60/head, the marginal 

return to testing additional animals beyond 𝑛 = 24 is not enough to offset the marginal cost of 

obtaining additional information. Therefore, at the baseline values for the variance of profit between 

and within lots of cattle and the cost of testing, the benefits of genetic testing can be captured by 

testing a relatively small portion of a lot of feeder cattle (less than 25 out of 100 animals for a set of 

very high-quality cattle).  

Optimal sample size is also increasing with the variance of profit within a lot of cattle (𝜷𝚺𝜷′; 

figure IV-2, panel ii). However, the returns from sampling are simultaneously decreasing. That is, the 

additional noise associated with more heterogeneous lots of cattle make it more difficult to identify 

improvements in the actual quality of a particular set of cattle. As a result, more animals must be 

tested in order to “convince” buyers that a particular set of cattle is actually higher quality. In 

addition, the marginal return to testing each additional animal is decreased relative to more 

homogeneous lots of cattle resulting in decreased returns from sampling. For example, a set of cattle 

with variability similar to the most heterogeneous lot of cattle observed in our sample has an optimal 
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sample size of 𝑛∗ = 12, but the returns from sampling are only about $4/head. On the other hand, 

producers selling feeder cattle that are known to have very homogeneous genetics may be able to 

capture a large portion of the additional value by testing a relatively small percentage of the cattle. 

For example, the returns from sampling for a set of cattle with variability similar to the most 

homogeneous group of cattle in our sample is $15/head with an optimal sample size of just 𝑛∗ = 5. 

In the case that the buyer is completely uninformed, the variance of profit between lots of 

cattle is used to characterize the variance of the buyer’s subjective prior distribution of expected profit 

for a lot of feeder cattle. Contrary to within variability described above, optimal sample size is 

decreasing with the variance of the buyer’s prior distribution of expected profit (𝜷𝑽𝑏𝜷
′), and the 

returns from sampling are increasing (figure IV-2, panel iii). This indicates that as the buyer’s prior 

distribution of expected profit becomes more uninformed (i.e., more diffuse), it is easier to persuade 

their opinion away from their prior expectation towards the seller’s expectation of the actual 

profitability of the pen. As a result, fewer animals need to be tested to “convince” the buyer that the 

cattle are actually higher quality, and the marginal returns from testing each additional animal 

becomes more valuable. For example, if the buyer is completely uninformed (high variance for the 

prior distribution of profit) the optimal sample size is 𝑛∗ = 4, and the returns from sampling are over 

$16/head. However, for buyers with very narrow prior distributions of expected profit the optimal 

sample size is 𝑛∗ = 11 and the returns from sampling are just $8/head.   

Lastly, as would be expected, the per-head cost of testing (
𝑐

𝑚
) is inversely related to optimal 

sample size and the returns from sampling (figure IV-2, panel iv). That is, as the marginal cost of 

testing increases, the ENG of testing each additional animal is reduced, and as a result, optimal 

sample size will decrease. The cost of testing is made up of two components: the cost of genetic 

testing services (𝑐) and the size of the pen to which the information collected is being applied (𝑚). 

Therefore, a lower per-head cost of testing could be the result of either a reduction in the cost of the 

test due to technological advancements or an increase in the number of animals to which the decision 
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is applied. Either way, results indicate that the ability to reduce the cost of testing would enable 

sellers to test more animals allowing them to achieve closer to the full value of their cattle. For 

example, the ability to cut the baseline value of per-head testing cost in half, $0.20/head, increases the 

optimal sample size to 𝑛∗ = 15 and the returns from testing to $12/head. Conversely, doubling the 

per-head cost of testing, $0.80/head, leads to an optimal sample size of 𝑛∗ = 6 animals and returns 

from sampling of less than $7/head.  

Conclusions 

In this article, we introduce an economic approach to sample size determination utilizing a Bayesian 

decision theoretic framework (Grundy, Healy, and Rees, 1956; Riffa and Schlaifer, 1961; Lindley, 

1997). To date, few economic studies explicitly consider the endogeneity of sample size and so this 

method is scarcely used in economic research. However, this method is a theoretically sound 

approach to determining sample size for many economic problems and should be considered in a 

wide range of economic modeling problems. For example, consider a generic scenario in which a new 

policy is to be implemented for the betterment of society. Prior to its implementation, the policy 

maker must determine the optimal level of the policy through an assessment of its effect on the 

population. In most cases, it would be too costly to take a census. However, there is significant value 

associated with obtaining a sufficient sample to determine the level of the policy that will maximize 

the overall benefits. Therefore, sample size is an endogenous variable that needs to be considered 

jointly with other decision variables by utilizing an objective function to balance the expected costs 

and benefits of sampling.  

To demonstrate the method for a relevant applied economics problem, we turn to the problem 

of asymmetric information in the market for feeder cattle. A theoretical model is developed 

characterizing a scenario in which sellers (producers) who know that their feeder cattle have high-

value genetics are trying to convince buyers (feedlots) that their cattle are higher quality in order to 

receive a premium above the prevailing market price. However, in order to establish the actual 
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genetic makeup of a lot of feeder cattle, the seller must incur the cost of genetic testing. Using the 

Bayesian sampling model we determine the economically-optimal sample size and the returns from 

sampling.  

Results from this example indicate that the marginal benefit to testing is high for small 

sample sizes as the genetic information collected from each additional animal contains valuable 

information. However, as the sample size increases the marginal expected value of sample 

information diminishes quickly, indicating that a large portion of the additional value for higher-

quality cattle can be estimated by testing a relatively small percentage of a lot of feeder cattle. For 

example, at the baseline parameter values the optimal sample size is 𝑛∗ = 10 animals out of a lot of 

100 feeder cattle and the returns from sampling are nearly $10/head. Aggregating across the assumed 

pen size of 100 animals, that is a net return of approximately $1,000 from a $400 investment, or a 

250% return-on-investment. Sensitivity analysis was conducted to provide some context, and results 

indicated that the optimal sample size and returns from sampling may increase or decrease depending 

on the actual quality (or profitability) of a particular pen of cattle, the homogeneity within the pen, the 

variance of the buyer’s subjective prior distribution of expected profit, and the per-head cost of 

genetic testing. The only scenario evaluated in which the returns from sampling were not positive was 

if the seller’s expectation of profit was less than or equal to the buyer’s prior expectation of profit, in 

which case the optimal sample size is 𝑛∗ = 0.  

Nonetheless, results suggest that random sampling has the potential to provide a context in 

which the benefits of genetic testing outweigh the costs, which has not generally been the case in 

previous research. Previous research demonstrates that genetic differences generate measurable 

differences in fed cattle profitability. However, the per-head difference in profit has been shown to be 

less than genetic testing costs. So prior to this research, genetic testing of feeder cattle for feedlot 

placement decisions has not been considered economically advisable. Our sampling method 

demonstrates that economically-optimal sampling of feeder cattle can improve profitability. This is 

the first research to demonstrate the potential for genetic testing of feeder cattle to improve net return 
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from testing. So, this research represents an important contribution to the literature evaluating the 

economic value of genetic testing for beef cattle and potentially more importantly to the beef cattle 

industry. While demonstrated for a feeder calf sale, the method can be similarly applied for a fed calf 

sale to packers or boxed beef sale to high-end retailers. 

When interpreting the results presented here consider that we only include the direct cost of 

genetic testing. However, there may be additional management and handling costs associated with 

collecting samples for genetic testing. As indicated in previous research, these additional costs could 

be mitigated, or even eliminated, if samples were collected at a point when animals are already being 

handled (Koontz et al., 2008). Perhaps the more troublesome issue is that if the seller is the one 

making the sampling decision, will they truly select a “random sample?” That is, there is an incentive 

for the seller to selectively sample animals known to be higher quality. This raises the question of 

whether third-party verification would be needed to ensure the cattle being tested are really a random 

sample. This is similar to the third-party verification associated with value-added feeder cattle sales 

(Chymis et al., 2007; Williams et al., 2012), and brings about the potential for some additional costs 

that may need to be considered in order for the application described here to succeed. However, using 

third-party verified value-added feeder calf sales as the metric, this cost is likely much less than 

estimated returns from genetic sampling. 

It is also important to note that the static context described here does not lead to changes in 

the product form, and as a result, does not appear to generate any additional value. Instead, value is 

redistributed between buyers and sellers. However, by better aligning prices received by feeder calf 

producers with traits desired by feedlot operators, economically-optimal genetic testing has the 

potential to reduce misaligned incentives and improve the overall profitability of the beef industry. By 

reducing asymmetric information, cow-calf producers with genetics valued by feedlot operators are 

compensated for those genetics. This provides the incentive to produce more cattle that perform better 

in feedlots with higher value carcasses, so profits for the beef sector improve. While the model 

presented here assumes that profits accrue to the cow-calf producer for tractability, the likely outcome 
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is a division of profits from sampling to both buyer and seller. In addition, if feedlot operators were 

subsequently able to use the genetic information provided by sellers to improve feedlot management 

decisions, including how cattle are fed, how technologies such as implants and beta agonists are used, 

and how cattle are marketed (Van Eenennaam and Drake, 2012), they could generate additional value 

by changing the product form (Koontz et al., 2008). This additional information would lead to 

reduced inefficiencies associated with cattle feeding and could potentially create social welfare gains 

through improved quality and consistency of beef products.  
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Table IV-1. Summary Statistics for Carcass Performance, Live-Animal Characteristics, and 

Molecular Breeding Values (n = 2,976) 

Variable Mean 

Standard 

Deviation Minimum Maximum 

Carcass performance     

Marbling score 414.43 70.87 250.00 830.00 

Yield grade 2.97 0.58 0.31 5.10 

Hot-carcass weight, cwt. 7.20 0.70 4.58 9.83 

Live-animal characteristics     

Placement weight, cwt. 6.55 1.24 2.94 11.16 

Days-on-feed, days 171.51 29.09 106.00 238.00 

Steer
a 

0.74    

Black
b 

0.78    

Molecular breeding values (MBV)     

Marbling MBV -16.44 26.94 -119.37 68.26 

Yield grade MBV -0.06 0.07 -0.28 0.20 

Rib-eye MBV, in
2 

-0.78 0.47 -2.16 1.38 

Hot-carcass weight MBV, lbs. 28.43 9.06 -15.57 55.91 

Average daily gain MBV, lbs./day 0.20 0.10 -0.12 0.48 

Tenderness MBV, lbs. of WBSF
c 

-1.49 1.52 -5.90 2.92 

Days-on-feed MBV, days -2.83 2.95 -14.28 8.35 

Note: Molecular breeding values (MBVs) are reported in the units of the trait and reflect the 

differences expected in animals across breeds compared to their contemporaries (Igenity, 2013). 

Therefore, mean MBVs offer little insight. Instead, the range of MBVs is more informative. For 

example, the range of average daily gain MBV suggests that the animal with the highest genetic 

potential for average daily gain in the sample would be expected, on average, to gain approximately 

0.60 lbs./day more than the animal with the lowest genetic potential for average daily gain (0.48 - [-

0.12] = 0.60).    
a
 Steer is a dummy variable equal to one if the animal was a steer and zero otherwise. 

b
 Black is a dummy variable equal to one if the animal was black-hided and zero otherwise. 

c
 Warner-Bratzler shear force.  
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Table IV-2. Parameter Definitions, Baseline Values, and Ranges for Sensitivity Analysis 

Parameter Definition Baseline Value 

Range for Sensitivity 

Analysis  

𝛼 + 𝜷𝝁𝑠  Seller’s expectation of profit ($/head) -$63.16 -$82.30 to -$3.74 

𝛼 + 𝜷𝝁𝑏  Buyer’s expectation of profit ($/head) -$82.30 — 

𝜷𝚺𝜷′  Variance of profit within a lot of cattle 608.57 100 to 2000 

𝜷𝑽𝑏𝜷
′  Variance of the buyer’s subjective prior 

distribution of expected profit (variance of 

profit between lots of cattle) 

157.01 100 to 2000 

𝑐

𝑚
  Cost of genetic testing ($/head) $0.40 $0.10 to $1.00 
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Table IV-3. Average 2014 Base Price and Yield Grade, Quality Grade, and Hot-Carcass Weight 

Premiums and Discounts for Grid Pricing 

Grid Component Premium/(Discount) 

 $/cwt. 

Base price  

Steers $244.22 

Heifers  $244.21 

Quality grade adjustment  

Prime $19.26 

Choice $0.00 

Select ($8.63) 

Standard ($20.84) 

Yield grade adjustment  

1.0-2.0 $4.58 

2.0-2.5 $2.25 

2.5-3.0 $2.13 

3.0-4.0 $0.00 

4.0-5.0 ($8.63) 

>5.0 ($13.64) 

Hot-carcass weight adjustment  

400-500 ($25.42) 

500-550 ($22.19) 

550-600 ($2.93) 

600-900 $0.00 

900-1000 ($0.24) 

1000-1050 ($2.27) 

>1050 ($23.24) 

Source: USDA Agricultural Marketing Service (AMS) reports LM_CT150 and LM_CT169 obtained 

from the Livestock Marketing Information Center (LMIC) spreadsheets (LMIC, 2015; USDA AMS, 

2015).  
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Table IV-4. Feedlot Profit Mixed Model Regression Estimates (n = 2,976) 

Variable Coefficient Standard Error
a 

Intercept -1151.33*** 353.24 

Placement weight 103.82*** 25.15 

Days-on-feed 8.08** 3.35 

Days-on-feed squared -0.01 0.01 

Placement weight × days-on-feed -0.60*** 0.14 

Steer
b 

-75.25*** 10.88 

Black
c 

2.08 7.58 

Marbling MBV
d 

0.44*** 0.12 

Yield grade MBV 17.54 55.70 

Rib-eye area MBV -23.40** 9.58 

Hot-carcass weight MBV 1.55*** 0.31 

Average daily gain MBV 27.21 32.32 

Tenderness MBV 1.86 2.10 

Days-on-feed MBV 0.30 0.84 

   

quasi-𝑅2e 
0.29  

Note: Dependent variable is estimated feedlot profit ($/head) from equation (16). Single, double, and 

triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% level.  
a
 Standard errors are estimated using “sandwich estimators” to obtain estimates of standard errors that 

are consistent in the presence of nonnormality and static heteroskedasticity (White, 1982).  
b
 Steer is a dummy variable equal to one if the animal was a steer and zero otherwise. 

c
 Black is a dummy variable equal to one if the animal was black-hided and zero otherwise. 

d
 Molecular breeding value.  

e
 The quasi-𝑅2 is calculated as the squared correlation of the actual and predicted values including the 

contemporary group random effect.   
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Table IV-5. Random Effects Model Estimates of Variance of Molecular Breeding Values 

Between and Within Lots of Cattle (n = 2,976) 

Molecular Breeding Value Between Variance Within Variance 

Marbling 191.730*** 543.420*** 

Yield grade 0.001*** 0.004*** 

Rib-eye area 0.046*** 0.173*** 

Hot-carcass weight 11.184*** 72.080*** 

Average daily gain 0.001*** 0.008*** 

Tenderness 1.072*** 1.332*** 

Days-on-feed 0.297*** 8.425*** 

Note: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% 

level.  
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Figure IV-1. Expected value of sample information (EVSI), expected net gain (ENG), and total 

cost as a function of sample size (n) at the baseline parameter values  
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Figure IV-2. Sensitivity analysis of optimal sample size and the returns from sampling with 

respect to (i) the seller’s expectation of profit (𝛂 + 𝛃𝛍𝐬), (ii) the variance of profit within a lot of 

cattle (𝛃𝚺𝛃′), (iii) the variance of the buyer’s prior distribution of expected profit(𝛃𝐕𝐛𝛃
′), and 

(iv) the per-head cost of genetic testing (
𝐜

𝐦
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