
INFORMATION TO USERS

This material was produced from a m icro film copy o f the original document. While
the most advanced technological means to photograph and reproduce d iis document
have been used, the quality is heavily dependent upon the qua lity o f the original
submitted.

The fo llow ing explanation o f techniques is provided to help you understand
markings o r patterns which may appear on th is reproduction.

1. The sign or " ta rg e t" fo r pages apparently lacking from the document
photographed is "Missing Page(s)". I f i t was possible to obtain the rnissing
page(s) o r section, they are spliced in to the film along w ith adjacent pages.
This may have necessitated cutting th ru an image and duplicating adjacent
pages to insure you complete con tinu ity .

2. When an image on the film is obliterated w ith a large round black mark, i t
is an indication tha t the photographer suspected tha t the copy may have
moved during exposure and thus cause a blurred image. You w ill find ja
good image o f the page in the adjacent frame.

3. When a map, drawing o r chart, etc., was part o f the material being
photographed the photographer fo llowed a defin ite method in
"section ing" the material. I t is customary to begin photoing at the upper
le ft hand corner o f a large sheet and to continue photoing from le ft to
right in equal sections w ith a small overlap. I f necessary, sectioning is
continued again — beginning below the firs t row and continuing on until
complete.

4. The m ajority o f users indicate tha t the textual content is o f greatest value,
however, a somewhat higher qua lity reproduction could be made from
"photographs" i f essential to the understanding o f the dissertation. Silver
prints o f "photographs" may be ordered a t additional charge by w riting
the Order Department, giving the catalog number, t it le , author and
specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have ind is tinct p rin t. Filmed as
received.

University Microfilms International
300 North Zeeb Road
Ann Arbor. Michigan 48106 USA
S t John’s Road, Tyler’s Green
High Wycombe. Bucks, England HP10 BHR

77-21.392

OLDROYD, Lawrence Andrew, 1944-
THE ALGEBRA OF A COMPUTER INTEGER
ARITHMETIC SYSTEM.
The University of Oklahoma, Ph.D., 1977
Computer Science

Xerox University Microfilms, Ann Arbor, Michigan 4sio6 |

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

THE ALGEBRA OF A COMPUTER INTEGER ARITHMETIC SYSTEM

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

BY

LAWRENCE ANDREW OLDROYD

Norman, Oklahoma
1977

THE ALGEBRA OF A COMPUTER INTEGER ARITHMETIC SYSTEM

APPROVED BY

DISSERTATION COMMITTEE

ACKNOWLEDGEMENTS

I wish to recognize and thank a number of people for their help

in the successful creation of this dissertation. First, by far, is

Dr. Richard V. Andree, my advisor, without whose untiring assistance,

advice and guidance this paper might never have come to be. Thanks

also to my committee members. Dr. Arthur Bemhart, Dr. John Green,

Dr. Harold Huneke and Dr. Gene Levy. A special note of gratitude goes

to my typist, Claudia Embry, who did an excellent job with very

difficult material.

TABLE OF CONTENTS

Chapter Page
1. INTRODUCTION.......................... 1

2. THE RADIX COMPLEMENT SYSTEM............ 4

3. DIVISION.............................. 23
4. A STUDY OF DIVISION ON C ^ 34

5. THE COMPARISON RELATIONS 43
6. INEQUALITIES WITH C-RELATIONS.......... 59

7. A "RATIONAL" ALGEBRA FOR C ^ 73m
8. ERROR IN C^ CALCULATIONS...............101
9. AN ALGEBRA FOR MIXED FORM RATIONALE . . . 107

10. SUMMARY AND CONCLUSIONS.................. 119
BIBLIOGRAPHY 125

THE ALGEBRA OF A COMPUTER INTEGER ARITHMETIC SYSTEM

CHAPTER 1

INTRODUCTION

Most applied mathematical models assume a number system which is

a field, or at least an integral domain. Models in science and engineer­

ing are generally based on the field of real numbers. Business applica­

tions often do not require such a sophisticated system, but do in general

use the field of rational numbers or an integral domain. Calculations

involving only whole numbers or integers may be performed in the ring of

integers (an integral domain). Computer arithmetic systems were devised

to simulate such arithmetics.

Computers do not use these theoretical mathematical systems.
Physical and economic limitations force many constraints on computer

arithmetic. Principal among these is a restriction to a fixed digital
precision in positional notation; numbers must be represented by some

fixed number of digits in a given radix. High-speed operation implies

that conçuter arithmetic should be no more complicated than necessary.
To simulate arithmetic of the real or rational field and of the ring of

integers within these constraints, computers use two basic arithmetic

forms: floating point and so-called "integer" systems.

Computer floating point arithmetic is used to simulate .operations
1

2

in the real or rational fields. Numbers are represented in a form

closely related to that of "scientific notation," using two con^jonents:

a fixed point mantissa and an integer scaling operator, or exponent.

Arithmetic in such a system is fairly complicated. Addition and subtrac­

tion require comparison of scaling operators, and repositioning of the

mantissas relative to each other (aligning the "decimal point") before

the operation can be performed. Rescaling may be needed afterwards.

Multiplication and division are easier, but they also require operations
on both components of the floating point numbers.

Computer "integer" systems derive their name from simulating
operations of the ring of integers. Integer systems seem simpler than

floating point systems. No scaling operator is used, no alignment of

operands is required before the operation and no rescaling afterwards.

This simplicity makes it the fastest arithmetic to perform. In fact,

computer integer arithmetic is used to implement floating point opera­
tions, particularly on computers lacking built-in floating point hard­

ware.^ Furthermore, integer systems have the advantage of being exact.

As long as a condition called overflow does not occur, conputer integer
arithmetic parallels arithmetic in the ring of integers. This is not

true with floating point. These properties make integer systems most
beneficial in environments, such as accounting systems, where only
integer values are needed.

Integer arithmetic systems are achieving a position of greater

importance lately. In small computers, particularly mini-computers and

^Even on cotputers with built-in floating point operations, these
operations are performed using integer or integer-like arithmetic.

3
the newly emerging microprocessors, integer arithmetic is the only form

available. Floating point arithmetic, a "must" for scientific computing,

is performed by programmed routines using integer arithmetic. Despite

this importance, and despite the fact that most computers offer integer

arithmetic, study of these systems as mathematical algebraic systems has

been limited. It is this important topic, the various systems of com­

puter integer arithmetic, that is the subject of this dissertation.
The study will consider a major system of computer integer arith­

metic called the radix complement system. Its basic structure as a

modular ring of integers will be demonstrated. A division operation,

as performed by computers, will then be investigated; this operation will
be compared to other division operations defined on modular rings. The

extension of algebraic order properties to this system will be considered;

although a modular ring cannot have an order, certain properties of an

algebra of inequalities can be shown. Consideration of the interaction

of computer division with the usual ring operations will then lead to

the development of a non-standard form for representing the rational

numbers. This form may preview a new system for simulating rational

arithmetic having advantages over the floating point system in some ap­
plications.

The first step in this investigation is one of definition. The
radix complement system will be defined, along with its basic ring oper­
ations addition, subtraction and multiplication.

CHAPTER 2

THE RADIX COMPLEMENT SYSTEM

Computer arithmetic systems must be both fast and simple.

Economic constraints give rise to three basic requirements for most

computer arithmetic systems.

First, all elements of the system should be represented in the

same format; this usually means they should all have some fixed num­

ber of digits m in a given radix representation, radix r.

Second, all digits in the representation should, as far as

possible, be treated the same in the logic circuitry of the arithmetic
unit. The primary significance here is that there should be no dis­

tinct sign "digit" appended to the elements, even though they may rep­
resent positive or negative integer quantities.

Finally, all arithmetic should be performed using as few and
as simple operations as possible.

The number of digits in element representations is usually
taken to bo the number of digits that can be stored in one unit of

computer memory, a "word." This may vary from 4 to 8 digits with mini-
and micro-computers to more than 30 digits for large business and

scientific computers. Radices used are usually some power of 2, be­

cause the logic circuitry of their implementation is binary. The most
4

5
common are binary (base 2), octal (base 8), and hexadecimal (base 16).

The decimal radix (base 10) is not in general use on present computers.

A distinct sign "digit" for numbers has two disadvantages.
First, it may require that a decision be made during arithmetic opera­

tions. Addition of operands having opposite signs may involve a dif­

ferent process than adding operands of the same sign, or it might be
necessary to separately determine the sign of the result. Such a de­

cision introduces unavoidable delay into the arithmetic process, vio­

lating the demand for speed. A distinguished sign digit may also re­

quire its own special logic circuitry, meaning greater logical com­

plexity and expense for the arithmetic unit.

The desire to have a simple arithmetic unit creates the third

demand. Hand calculation uses only the operations of addition and sub­

traction. Multiplication and division are performed using algorithms
that repetitively apply one or the other of those operations. If a

suitably simple method of encoding the additive inverse of numbers can

be found, it is possible to do all arithmetic operations using only

addition and negation (complementation); subtraction is done by add­
ing the additive inverse, multiplication and division algorithmically.

The first two of these criteria are clearly satisfied by the
system of integers, modulo b, where b is a positive integer.

(or Z/bZ in another notation) may be thought to consist of the num­

bers 0, 1, 2, ... , b-1, with arithmetic performed modulo b. Lack­

ing a positive class, this system has no need to append signs to any

elements, and all elements can have the same number of digits, radix r,

by including leading zeros as required. The most common computer inte­

6

ger systems in use today are modular, and have a simple technique for

determining the additive inverse of an element.

The three principal computer integer arithmetic systems are
the "sign and magnitude," the "radix complement," and the "diminished

radix complement" systems. The first of these, in form, is rather like

the number representations used in hand calculation. It uses a dis­

tinguished "digit" to represent the sign of its elements, with all the

implied disadvantages, and will not be considered further. The radix

and diminished radix complement system are the most common systems in

use, particularly the radix complement system. On binary computers,

they are known as the "2's complement" and "I's complement," respec­
tively. Both are modular, but differ in the way in which the additive

inverse of an element is determined, and in the logic circuitry re­
quired to perform addition. The diminished radix complement system
uses a very simple method for obtaining the additive inverse of an ele­

ment. However, addition of two elements is a two-step process and re­

quires a decision before the final step may be completed. As before,
a decision imbedded in an operation makes it more complex and slow.

For this reason, the diminished radix complement system is much less

popular than the radix complement system. The latter will be considered

further.

Let stand for the radix complement system, where m is

the number of digits, and r is the radix. An element of the system
will be represented by an m-dimensional vector (d ., d , ..., d_, d_)in-i 1 u
or simply as a string of digits d^ ^d^ g-'-d^dg, where each digit

dĵ is one of the numbers 0, 1, 2, ..., r-1. As such, these elements

m-1 .
may be taken to be unsigned integers, with value given by S d.r .

i=0 ^
This is how they will be treated for addition, subtraction, and

multiplication; their appearance for division and to someone using the

system will be somewhat different. Addition on this system is defined
as unsigned radix addition, modulo r®. That is, if A and B are

m-1 . m-1 .
two elements of C with unsigned values 2 a.r and 2 b.r re-

® i=0 1 i=0 1
spectively, their sum A + B is that element of having unsigned

ni—X ^
value 2 (a. + b.)r mod r . This is the usual radix r integer

i=0 ̂ 1
addition With the result truncated to the least significant m digits.

Indeed, in computers, only the right-most m digits of the sum may

be formed. An important point in this system is that there is no dis­

tinguished digital position, that is no "sign" digit for any number;

all digital positions are treated the same during addition. Further­

more, no allowance need be made for the addition of oppositely signed

arguments, because there are no signs.

The element with all zero digits is an additive identity, and
will be represented in using the symbol 0. For each element A

m-1 ^
of this system, with unsigned value 2 a.r , there corresponds an

^ m ■additive inverse, namely that element with unsigned value r - 2 a.r^.
i=0 ^

This is the radix complement of the element A, and is the "negative"

of A. To avoid having a separate operation of subtraction, we take

the difference A e B to be the element A a B, where B is the

radix complement of B. The utility of this system depends on it being

8

faster and easier to use B than to have a separate subtraction operation.

The formation of the radix complement is relatively easy. It

is found by complementing each digit d^ of an element to r-1 and add­

ing 1 modulo r”* to the result; each d^ is replaced by the digit r-l-d^

and 1 is added into the d^ digital position, with carry propagation

permitted and any carry beyond the m least significant digits ignored.
To see that this process yields the radix complement, let A be an

r m-1 .
element of C with unsigned value 2 a.r and observe that

■" i=0 ^
m-1 . m-1 . m-1 . m-1
2 (r-l-a.)r^ + 1 = 2 (r-l)r + 2 a.r = r“ - 2 a.r .

i=0 i=0 i=0 ^ i=0
In the case of radix 2, as used in most computers, this is simple; each

digit is 0 or 1,, and the complement is found by changing all zeros

to ones and all ones to zeros, adding 1 to the least significant digital

position. The carry propagation necessary in the formation of the radix

complement does not usually slow arithmetic operations, because it nor­

mally occurs concurrently with the carry propagation in an addition.

If the addition of 1 into the least significant digital position is not
performed during complementation, the result is called the diminished

radix complement.

Multiplication for the radix complement system is defined to be
an integer multiplication, modulo r™. Thus, for A and B in C^,

m-1 . m-1 .
with unsigned values 2 a.r and 2 b.r , their product A * B

i=0 ^ i=0 ^
(m-1 I m-1

2 a.r |. 2 b.r
i=0 ^ I \±=0 ^

Again, the usual multiplication takes place by means of repeated addi­

tion and shifting of operands, after v-hich the result is truncated to
the m least significant digits. As with addition, it would be possi­

ble to form only the m right-most digits of the product, although this
is not generally done on computers. The identity for multiplication

is the element 00 ... 01, and will be denoted in by 1.m ^
A couple of examples may now help clarify things.

Example 2.1

The elements of Cg and are shown with their corresponding

unsigned integer values. Note that the unsigned value of an element is

just its value as an integer expressed in radix r.

000
001
010
Oil
100
101
110
111

Unsigned
Value

0
1
2
3
4
5
6
7

00
01
02
10
11
12
20
21
22

Unsigned
Value

0
1
2
3
4
5
6
7
8

Example 2.2

The following table gives two elements from each of the systems
C^, and along with their respective complements.

The System The Element

10

Its Diminished
Radix Complement Its Radix Complement

c: 0110 1001 + 1 = 1010

c: 1101 0010 + 1 = 0011

2117 7882 + 1 = 7883

cr 9926 0073 + 1 = 0074

cf 02FC* FD03 + 1 = FD04

cr D130* 2ECF + 1 = 2ED0

The

Isomorphism to

system described here is Z^m,

Z^m

the integers modulo

where numbers are expressed in radix r. To show this, it will help

to formally define the unsigned value map from to the integers Z.

Definition 2.5

Let n be the unsigned value map, n:C^ Z, defined by
m-1 ,

nCA) = Z a.r for each element A in C , where A = a ,a _...a,a_.1 m m-1 m-2 1 0

Let ->■ Z^m be defined by n*(A) = n(A) + r™Z for each A in c\

These maps are well-defined. Note that n* is the composition of n

with the natural map from Z to Z^m. n is monic (one-to-one) becaus
integer representations in a fixed positive radix r are unique, n*

m-1 . m-1 .
is also monic; if n*(A) = n*(B), then E a.r and Z b.r differ

i=0 i=0

*The digits in the hexadecimal (radix 16) number system are
0, 1, 2, 3, 4, S, 6, 7, 8, 9, A, B, C, D, E, F.

11
by some multiple of r , and this can only happen if = b^ for
each i = 0, 1, m-1.

Furthermore, a counting argument will show that n* must be
epic (onto).

Three elementary theorems of algebra will be used. The nota­

tion used is as follows. To say that (X,@) is a (semi) group means

that X is a (semi) group under operation @. If (X,@,#) is a ring,
then X is a ring, with @ the group operation on X and # the semi­
group operation which distributes over @.
Theorem A .1

Suppose X is a set and (Y,-) is a semi-group. If n;X->- Y

is both monic and epic, and if an operation * is defined on X by

a * b = n ^(n(a) • n(b)) for all a and b in X, then (X,*) is

a semi-group and n is an isomorphism of X to Y .

Theorem A.2

Suppose X is a set and (Y,+) is a group. If n:X ^ Y is

both monic and epic, and if an operation ® is defined on X by
a + b = n ^(n(a) + n(b)) for all a and b in X, then (X,o) is

a group and n is a group isomorphism of X to Y.

These two combine to give the third theorem.
Theorem A.5

Suppose X is a set and (Y, + ,-) is a ring. If n:X -»• Y is

a group isomorphism of (X,®) to (Y,+) as in Theorem A.2, and a

semi-group isomorphism of (X,*) to (Y,.) as in Theorem A.I, then

(X,®,*) is a ring isomorphic to (Y,+,*) by n.

12

Consider now the set C^, the modular ring of integers Z^m,

and the map n*:C^ ->• Z^m. It has been noted that n* is both monic

and epic. The operations of addition and multiplication on were

defined with A o B = n ^Cn(A) + n(B) mod r”*) and A * B =

n ^Cn(A) +n(B) mod r"") , so that A ® B = n*~^Cn*(A) + n*(B)) and

A * B = n* ^(n*(A) • n*[B)) for all A and B in C^. Theorems A.l,

A.2, and A.3 may thus be applied to give
Theorem 2.4

is isomorphic to Ẑ ra as a ring. The map n* is the
isomorphism.

For radix 2, the 2's complement number system, we have

Corollary 2.5

C^ = Z^m as rings.

The Signed Value Map

The radix complement number system was not developed so that
computer integer arithmetic would be modular. The modular system was

used because it allowed the fastest and most efficient arithmetic logic
circuitry. The purpose of the computer integer system is to simulate,

at least in part, the integer arithmetic system; the modular system, in

its unsigned value form, does this rather poorly. Every non-zero

element appears, under the map n, as a positive integer, so a number
and its additive inverse both appear as positive integers, usually of

different magnitudes. In the integers, a non-zero number and its addi­

tive inverse have the same magnitude and opposite signs. Thus, a signed

value map is needed, with the property that for most elements of C^, a

13

number and its negative are assigned integer values of the same magni­

tude and opposite signs. An observation about the unsigned values
will indicate how this may be accomplished.
Lemma 2.6

Let A be an element of with additive inverse A, andm '

r™ — —let h = - ^ . If nCA) < h, then nCA) >h. If n(A) = h, then n(A) = h,
and in this case A = A.

Proof: These follow from the definition of the additive in­

verse, because n yields non-negative values, and n(A) = r™ - n(A).

If nCA3 = n(A), the one-to-one property of n says that A = A.

Lemma 2.6 indicates that the non-zero elements of may be

separated into two sets. The elements with unsigned values greater
].mthan -g— are all additive inverses of the others, so this set with

large unsigned values will be given negative signed values. Elements
_m

with unsigned value less than will be positive, and take their

unsigned value for their signed value. Each element A with unsigned
r”> _value greater than —g— will take -nfAl as Its s.ijzufvLjHaJLue- It—will

be shown that for each element A in Cĵ , the signed values of A

and A defined in this way have the same magnitude and opposite signs.

The foregoing is not valid for an element of Cĵ with unsigned
r*̂value . Can such an element exist? The answer depends on the

radix r. If r is odd, then r”’ is odd, and —^ is not an integerm
2

value; there can be no element having unsigned value —^ . If r is

even (the case for all major computers now in use), then r™ is even,

and there is exactly one element of with this unsigned value. To

■m

14
determine whether it should have positive or negative signed value, con­
sider the radix r representation of this element: (y, 0, 0).

Note that Y is an integer because r is even. All other elements
r mwith leading digit ^ have unsigned values greater than and nega­

tive signed values. It is prudent then to give this element the signed
r”value - — recognizing that it is its own additive inverse, and

there will be no element having the complementary positive signed value.

It is now possible to formally define the signed value map.
Definition 2.7

The signed value map + Z is given by
_m

nCA) if n(A) <
iCA) =

2

nCA) - r"* if nCA3 > ^

for each element A in

Note that n(AJ - r™ = -n(A). The next theorem shows that $(A) and

*(A) have the same magnitude and opposite signs;
Theorem 2.8

Let A be an element of and let A be its radix comple-m ^
T-m _

ment. If n[A) -g— , then $(A) = -*(A). If n(A) = —g— , then
4(A) = 4 (A).

Proof: Using the definition of *,

— _ m
n(A) if n(A) <

♦tÂ) = I _ _ m
n(A) - r™ if n(A) > - ^

15
_ m m _ m

From previous remarks, n(A) < -y- means n(A) > -y— , and n(A) ^ -y-

means n(A) ^ -y- . Since nCA) = r™ - n(A), the equation may be writ­
ten

r™-n(A) if nCA) <

♦ (A3 =
r™ - n(A) if n(A) > ^ •2

Comparing this with Definition 2.7 yields the conclusion.

The terms "positive" and "negative" will be applied to elements
of according to their signed values. It should, however, be care­
fully noted that is not divided into positive and negative classes

as is the system of integers. The radix complement system is modular
and cannot have a positive class. This implies that there is no order

relation on , as there is on Z. Elements of may, nevertheless,

be ranked (not ordered) by their signed integer values as "less than,"
"greater than," and so forth. This will be indicated using the FORTRAN

relational operator symbols .GT., .GE., .EQ., .LE., .LT., and .NE.,

which correspond to the integer relations >,£, =,S, <, and ^ , re­

spectively. It will also be useful to speak of the "absolute value"
of elements of C^. This will be tak£

the signed value given by the map

Example 2.9

Consider the systems C^ and C^ of Example 2.1, and their
signed values.

16
signed , signed
value ^2 value

11 4
oil 3 10 3
010 2 02 2
001 1 01 1
000 0 00 0
111 -1 22 -1
110 -2 21 -2
101 -3 20 -3
100 -4 12 -4

The radix complement system for an odd radix r will have

as many positive as negative elements, taking zero as neither positive

nor negative. The number of non-zero elements, r™ - 1, is even be­
cause r is odd. The signed value map will give exactly half of these

positive values and the rest negative values. An arithmetic system

having the same numbers of positive and negative elements will be
called balanced. For radix r even, the radix complement system is

not balanced; it has an odd number of non-zero elements. This system

would be balanced, except for the one element which is its own addi­

tive inverse. Because that element was taken to have negative signed

value, there is one more negative element than positive elements.

Example 2.8 illustrates both the unbalanced and balanced radix comple­
ment systems, the diminished radix complement system is balanced for

even radix r, and unbalanced for odd radix. The sign and magnitude
system is balanced for any radix.

It is often important to test the sign of a number without

considering its magnitude. As usual, this test should be as simple as

17
possible. In the case of an even radix r, the definition of the

signed value map (J) ensures that any element having a digit ^ or

larger as its most significant digit will be negative. Thus, the value
of a single digit may be used to evaluate the sign of an element. A

system having this property is said to permit a single digit sign test.

If the radix is odd, the element , ..., is positive, but

the element •••» is negative. This follows because

which may be established using induction on m. Thus, the radix com­

plement system for odd radix does not permit a single digit sign test.

The diminished radix complement system has the same property; it permits

a single digit sign test only for even radices. Since the sign and magni­

tude system has a distinguished sign "digit," it will always permit this test.
The radix complement system cannot be balanced and permit a single

digit sign test, simultaneously. Of these two, the sign test is far more

significant concerning the logic circuit complexity of a computer, suggesting

that even radix systems would be more popular. Indeed, the most significant

radices are all even, but this is not the reason; even radices are used be­
cause binary (on-off) logic circuitry is the simplest available. The

sign test in a radix 2 system is particularly simple; the most signifi­

cant digit is either 0 or 1, with 0 indicating positive and 1 in­
dicating negative. If the radix is a power of 2, such as radix 8 or

radix 16, the sign test may be equally simple. In such a system, the

digits are usually coded as binary numbers, and the sign test is per-

18

formed as in radix 2 by inspecting the most significant bit (binary

digit) of the most significant digit.

Using the single digit sign test in the even radix case, it

is possible to give a simpler expression for the signed value function:

4(A)

m-1 .
■ 2 a.r
i=0

m-1

i=0

if *m-l

^m-1 — 2

where A = (a^_^, ..., a^, a^) and r is even. With a binary system,

this becomes

= -=m-l2*"' + °z]ai2i .1=0

The elements having largest positive and negative magnitudes

will be used quite often. For this reason, they will be denoted by
and N^, respectively. If the radix is unimportant, or understood

from context, these will be simplified to Pm and Nm. The definition

of positive and negative for this modular system implies that Pm e 1 = Nm.
For even radix,

r r”Pm = C-x-l, r-1, — , r-1) with *(Pm) = —= 1,

and
Nm = (^,0, ..., 0) with (jiCNm) --

19
For odd radix.

Pm = ^ , 3 ^) with <j)(Pra) =

and

Nm = with $(Nm) = - - .

For radix 2, these become Pm = (0, 1, ..., 1) with <ji(Pm) = 2”’” ̂- 1,

and Nm = (1, 0, ..., 0) with *(Nm) = -2”"̂ .
It is important to note that the set of signed values pro­

duced by (j) is equivalent, modulo r™, to the set of unsigned values

produced by n- For each element A in C^, *(A) = nCA) mod r™.
This is clear from Definition 2.7. Let = {*(A): A is an element of C^}

be the set of signed values. Because c z, the usual integer opera­

tions +, -, and • apply to elements of S^, although they are not in

general closed on the set. The arithmetic operations modulo r"* may be
defined as follows.

Definition 2.10

by
Let A and B be elements of S^. Define operations ®, e and *

A ® B = A + B + ir”.
A e B = A - B + jrm,

and
A * B = A • B + kr",

where integers i, j, and k are chosen so that

(j)(Nm) j< A e B ̂ OfPrn) ,
*(Nm) ^ A e B < (j>CPm),

and
(j)(Nm) ^ A * B ̂ (J>(Pm), respectively.

20
The set S^, together with the operations ®, e, and *, are one repre­

sentation of Z^m, so for these operations, — Z^m. Because

Z^m = C^, it follows that ^ C^. This gives the next theorem.
Theorem 2.11

Let be the set of signed integer values of elements of

C^, and let ® and * be the modular operations on given in

Definition 2.10. Then the ring (Ŝ , ®, is isomorphic to the
ring (Ĉ , ®, *), and the signed value map ij> is the isomorphism.

Elements of are usually seen as signed integers, particularly by

users of a high-level programming language. The isomorphism means

that it will not generally be necessary to distinguish between an

element of and the corresponding element of S^; an expression

over may be considered an expression over S^. If such distinction

is needed, the map if) may be used.

There are thus two sets of operations defined for elements of

S^: the usual integer operations +, -, and , and the corresponding

modular operation », e, and *. The integer operations will not be

closed on S^. An expression over may involve operations from

either set, but for simplicity, not from both sets.

Overflow

The map ■* Z is one-to-one, but not a ring morphism for
the integer operations; it will fail in many cases to preserve integer
addition or multiplication. There are, however, many instances in

which <j> appears to act like one. In particular, if A and B are

elements of and 4>CNm) < (j>(A) + <p(B) < (j>(Pm), then

21

(j>(A e B) = <PCA) + . Similarly, if $(Nm) ^ <P(A) • ÿCQ ̂ $(Pm),
then = <()(A3 . $(B). These both follow because ÿ is one-to-one.

At such times, Cĵ , through its signed values, exactly simulates the

usual signed integer system. This is of such importance to the normal

user of the computer integer system that those situations where <(> fails

as a morphism are identified by a special term overflow.
Definition 2.12

Let A and B be elements of C^, and let stand for any
one of the operations ®, e, or * on C^, with the corresponding

operation +, -, or • on Z. If $ (A B) /t <|) (A) , then the

operation A@c ® is said to overflow.

Theorem 2.11

The operation A@cB on overflows if and only if the cor­

responding operation ^(A) S,z #(B) on Z gives a value greater than
(j>(Pm) or less than <)>CNm) .

Proof: This follows from the remarks above, because 4> is monic.

If #(A) @2 <f>(B) > <j>CPm] , it is called positive overflow; the other
case is called negative overflow.

Computer Integer Arithmetic

Most binary computers use 2's complement arithmetic. The sys-
2tem is isomorphic to Zgm. Does this mean that a binary computer

using 2's complement arithmetic and having m bits per word functions
as an arithmetic system isomorphic to Zgm? The answer is no, but can
be taken for yes under one very simple constraint.

22
The reason for the "no" answer can be illustrated using the

IBM System/360 integer arithmetic system. IBM/360 binary addition is

modular; the problem arises with multiplication. In the integers,
the product of the two numbers having at most m digits each will have
at most 2m digits, and this upper bound on the number of digits can

be attained. For. example, in radix 10, the product of 9999 and 9999

is 99899001, an eight-digit result produced by multiplying two four-digit
numbers. Binary integer multiplication on the IBM/360 actually works

this way; multiplication of two m bit 2's complement numbers produce
a 2m bit 2's complement result. (The number of digits m for the

IBM/350 may be either 16 or 32.) This is not the multiplication opera­
tion defined for the system.

However, this view is looking too closely into the machine, and

not into how the machine's arithmetic is used. For higher-level,

user-oriented computer languages, such as FORTRAN, the machine's inte­

ger arithmetic results are truncated to the lowest order m bits before

being used in subsequent operations. Thus, the integer arithmetic
system used in these higher-level languages is indeed the radix comple­

ment system C^. This is the restriction under which there is an arith­
metic system isomorphic to Zgm.

This completes the definition of the radix complement system
with the operations addition, subtraction, and multiplication. The

fourth elementary arithmetic operation, division, will be considered
next.

CHAPTER 3

DIVISION

The division operation, defined on the ring of integers, Z,

is a distinct third operation, only partly related to addition and

multiplication. In a field, division is taken to be the "inverse" of

multiplication in exactly the same sense as subtraction is the "inverse"

of addition. However, except in trivial instances, multiplicative in­
verses do not exist in Z, so it does not have this inherent division

operation. Lacking such a constraint, it is possible to define a num­

ber of different operations that present some characteristics of field

division. One of the most basic of these is the standard "long division"

of elementary arithmetic, modified to permit signed operands. This

operation approximates division in the field of rational numbers by
producing the integer part of the field quotient. A very important

advantage is associated with this division; the algorithm used to per­

form it is easily implemented using the ring operation addition and

is essentially the same as the algorithm used for floating point division.
For that reason, it will be the division operation defined on Cĵ .

Division in Z

The development begins with the ring of integers. Part of it

will be done using rational numbers, and confusion over division sym-
23

24

bols could result. To avoid this, the symbol ■=■ or the horizontal

fraction bar — will indicate the rational quotient, or the rational
number determined by the ratio of two integers. The slash mark /

will be used for division on the integers.
Definition 3.1

For integers a and b, with b # 0, the primary quotient
a/b is given by

r r,_,i
if a and b have the same sign

a/b = ^ and

if a and b have different signs.

The greatest integer function [x] for a rational number x ̂ 0 is

defined to be the greatest integer less than or equal to x. The

primary quotient may be considered in the following way: express the
rational number y- in signed radix r digital form, and truncate

the fractional part. Alternately, if g- is expressed in mixed num­

ber form, where the fraction has magnitude less than one, the primary
quotient represents the integer part.

Ihe next theorem is basic for much that follows. It characterizes
this quotient.
Theorem 3.2 (the primary division theorem)

Let a and b be integers, and q be their primary quotient.

Then there exists an integer r, with |r| < |b| and r either zero
or having the same sign as a, such that a = q b + r.

Proof: q = 0 if and only if |a| < |b|. Thus, if q = 0,

take r = a. If q / 0, then q-b will have the same sign as a, but

25'

with |a| - |b| < |q-b| < |a|. In this case, take r = a - q-b.

The integer r is called the primary remainder, and is related to the

fractional part when ^ is expressed in mixed number form as q + ^ .

It will frequently be necessary to test the sign of a number,
and for this it will help to have a special "sign" function. Define
s : Z + {-1, 0, 1} by

1 if a > 0,
0 if a = 0,

= ^ and
-1 if a < 0.

Extending s to the radix complement system is done using the signed

value map; s(A} = s((|i(A)) for each element A in C^.
The utility of the primary division algorithm in studying division

arises because the representation it provides is unique.
Theorem 3.3

Let a and b be integers, with primary quotient q = a/b
and remainder r. If c and d are integers such that a = c-d + d
with |d| < |b| and either d = 0 or s(d} = s(a), then c = q and
d = r.

Proof: The primary division algorithm gives a = q-b + r, where

|r| < |b| and either r = 0 or s(r] = s(a). Thus, q-b + r = c-b -i- d,
which may be written as (q - c)-b = d - r. If a = 0, then clearly

q = r = c = d = 0. If either d = 0 or r = 0, then |d - r| < (b|,

so d = r = 0 since the left side of the equation is divisible by b.
This means that q = c. If neither d nor r is zero, then s(d) = s(r].

26
so once again |d - r| < |b|, inç)lying that d = r and q = c.

Primary division resembles Euclidean division on Z. The

integers are a Euclidean domain, and have a division defined as

follows: if a and b are integers, b ^ 0, then there exist
integers q and r, with 0 ̂ r < |b|, such that a = q’b + r. The

difference between this and primary division is that the Euclidean re­

mainder is non-negative, while the other remainder takes the sign of

the dividend. If the primary remainder is non-negative, the two

quotients are the same; if it is negative, they differ by one.
Theorem 5.4

Let q and r be the primary quotient and remainder for in­

tegers a and b, and let q® and r® be the Euclidean quotient
and remainder. Then

a) if r ̂ 0, then q = q^ and r = r®,

b) if r < 0 and b > 0, then q = q® + 1
and r = r® - b,

and

c) if r < 0 and b < 0, then q = q® - 1
and r = r® + b.

Proof: a) This is clear from the definitions of the two algorithms.

b) With r < 0, the primary division form a = q-b + r

is not quite correct for Euclidean division. However, if b > 0, then

0 < r + b < |b|. Thus a = (q - 1)-b + (r + b) is the Euclidean form,
with q® = q - 1 and r® = r + b.

c) This is similar to b), except 0 < r - b < |b|. Then
the Euclidean form is a = (q + 1)-b + (r - b), so q® = q + 1 and r® = r - b.

■ 27

Division in _____________m_
Division in the radix complement system will be defined to be

the restriction of the primary division for Z to the set of

signed integer representatives of C^.

Definition 5.5

Let <j>: ->■ Z be the signed value map of Chapter 2, and let

= A(C^). Note that C Z. If A and B are elements of suchm m m m
that the primary quotient $(A)/$(B) is in then the radix comple­

ment quotient A/B is given by

A/B = *"1(*(A)/*(B)).

With this definition, the map <j) is not only an isomorphism from

(Ĉ > ®> *3 to CŜ , e, *}, but a morphism for division as well, with

(j)(A/B) = (ji(A}/(ji(B} . Elements of are almost always used in their

signed value form, and the quotient in is the quotient of signed

values. Because of this, the same symbol is used for division in

as for the primary quotient in Z. If distinction between the two opera­
tions is required, the type of operand will determine the system in

question. For this to be effective, the following conventions will be
used; elements of or will be represented by capital letters,

and integers by lower case letters. Elements expressed as *(X) repre­
sent integers, of course, and because this notation will become cumber­

some at times, the underline symbol)C may be used for .

The definition suggests that there may be elements A and B

in for which A/B is not defined. This is indeed the case, but

there is only one exception other than the usual restriction to B / 0.

28

To see that this is true, suppose A and B are elements of C^, with

B ^ O . Then |*(A)/$(B)| j: |i))(A)|, with equality only if |b | = 1.
This means

f < |*(A)|.

and, in particular,

-|$(Nm) I < 4,(A)/*(B) < |*(Nm)| .

Since -|<j>(Nm) | = *(NmJ, this may be written

Cl) *(Nm) < *CA)/*CB) < |*(Nm)|.

If is balanced, (<|)CNm) [= |ij)(Pm)] = $CPm), and (1) becomes

*(Nm) £ (j)CA)/(j>CB) < *(Pm).

The set is defined as = {x e 2: 4>CNm) ^ x ̂ *(Pm)}, so the

inequality implies that <J)(A)/(j)(B) is in S^. Thus, A/B is defined

for all A and B, with B / 0, in a balanced system.

If is not balanced, then |<j>CNti) | = 4i(Pm) + 1, so (1)
becomes

ij>CNm) _< *CA)/$(B) ± <i>(Pm) + 1.

If (p(A)/(p(B) ^ <)>CPm) , then A/B is defined as shown above, but if
4iCA)/*(B) = ij)(Pm) +1, then A/B is not defined. This can only hap­

pen with A = Nm and B = -1. Therefore, A/B is defined for all A
and B, B / 0, except when A = Nm and B = -1. This completes the

proof of
Theorem 3.6

If is balanced (radix r odd), then A/B is defined for
all A and B in C^, with B / 0.

29

If is not balanced (radix r even), then A/B is.de­
fined for ail A and B in C^, with B / 0, except when A = Nm

and B = -1.

In the 2's complement arithmetic on the IBM/360, an attempt to

divide -2147483648 = -2^^ = -2147483648) by -1 produces a

"divide exception;" the result would be 2147483648, a positive number

too large to be a signed value (*(^32) “ ̂ - 1 = 2147483647) for
any element of With the operations of addition, subtraction,

and multiplication, this could not happen, because the result modulo 2^^
would be produced; division is not a modular operation. The division

algorithm finds the quotient by a process of repeated subtraction, and

essentially keeps count of the number of subtractions performed; the

count becomes the quotient. When the number of subtractions, taken with
the correct algebraic sign, no longer represents a signed value for any

element in Cgg, the division algorithm fails.

This criterion for division algorithm failure is needed because
the IBM/360 actually uses a 64 bit divisor. It is quite easy to have

a quotient that cannot be expressed in 32 bits. In a higher-level pro­
gramming language like FORTRAN, the 32-bit dividend argument (an ele­

ment of C22) is converted to a 64-bit dividend having the same signed

value. Thus, only one exceptional case occurs for a non-zero divisor

i n C 3 2 -

IBM/360 FORTRAN also allows the use of 16-bit integers, so that
2arithmetic may be performed in In this system, the only division

2 2exceptions recognized are attempts to divide by zero. Here, N^g/(-l) = N^g.

30

The reason that this occurs is that division on the IBM/360 cannot be

performed with 16-bit operands; the dividend must have 64-bits and the
2

divisor 32. To perform division in the arguments are first

converted to 64 and 32-bit 2's complement numbers having the same signed

values, respectively. The 32-bit result is truncated to the 16 least

significant bits, reducing it modulo 2^^. Since = -2^^, divid­

ing this number by -1 yields 2^^ as the signed value of an element

in Cgg- This number reduced modulo 2^^ gives -2^^ as its signed
2 2 value in C^g, making the quotient N^g.

The Division Theorem and Uniqueness in cf

The development of the primary division theorem and uniqueness

theorem for Z will not carry over to C^. The division theorem will
be the same for those cases where the quotient is defined, but

uniqueness is generally not obtained.
Theorem 3.7 (the division theorem in C^)

Let A and B be elements of C^, and let Q = A/B be their

quotient. Then there exists an element R in C^, with |R| < |B|

and R either zero or having the same sign as A, such that A = Q*B œ R.

Proof: Note that <(>CQ)<j)(B) = i)>(Q*B), so there is no overflow

in this multiplication. The proof then follows exactly as for the in­
tegers. R is called the remainder.

The form A = Q*B ffl R will not be unique, but if Q = A/B,
then the remainder R will be unique.

Theorem 3.8

Let A, B, C and Q be elements of C^, such that Q = A/B and

31
A = Q*B ® C. If R is the remainder from A/B, then C = R.

,Proof: The division theorem in gives A = Q*B ffl R.

Thus Q*B © C = Q*B ffl R and C = R.

Distinct values of Q may satisfy A = Q*B ® R with given A,
B and R in C^. Indeed, for fixed A and B, solutions having dis­

tinct values of Q and distinct values of R exist. This may be seen

in the following example from the system.
Example 3.9

The elements in the system are -8,
Let A = 7 and B = 4. The division theorem for A/B gives Q = 1

and R = 3, with 7 = 1*4 ffl 3. However, it is also true that 7 = 5*4 9

and 7 = (-7)*4 ffl 3. For the integers, 7 = 1*4 + 3 is the unique

representation in this form, but in C^, there is no unique representa­

tion .

If A = 7 and B = 5 in C^, then Q = 1 and R = 2, with
7 = 1*5 ffl 2. However, 7 = 4*5 ffl 3 also. Thus A.= Q*B ffl R and

A = C*B ffl D, while Q / C and R / D. Note that D = 3 satisfies
the conditions for a remainder term, with the signs of 3 and 7 the
same and |3| < |5|.

The failure to exhibit uniqueness comes from the modular struc­
ture of cĵ . Its explanation requires some elementary number theory.

It is well-known that for a p-modular system, a linear con­
gruence XU = V mod p may have zero, one or multiple solutions for x.

If g = (u,p) is the greatest common divisor of u and p, and g|v,

then there are g distinct solutions to the congruence. If gfv.

, 32
there are no solutions. It is also true that when g|p, there are

exactly p/g elements in the p-modular system which are divisible by g.

Consider now elements A and B of C^. Let Q = A/B and

R be the remainder, so A = Q*B e R. Suppose X and Y are elements

of such.that A = X*B e Y. Then CQ ® X)*B = Y e R. In the inte­

gers this becomes [Q - X)B = Y - R mod r*". Let g = (B,r™). For each

Y such that g|(Y - R), there are exactly g distinct values of X

such that A = X*B ® Y. If g"f (Y - R), then there is no X such that

A = X*B ® Y. Note that the value of Y - R varies over all of
as Y varies over C^. Since there are exactly r™/g elements of

which are divisible by this g, there are r^/g distinct values of Y
for which g|(Y - R). This means there are g« (r̂ '̂ /g) = r™ pairs X, Y

such that A = X*B ® Y. This proves the following theorem.
Theorem 5.10

Let A and B be elements of C^. Then there are exactly

r™ pairs X, Y of elements from such that A = X*B ® Y.

The lack of the uniqueness property in Cĵ will not be a handi­

cap. Expressions over may be translated to S^, and the modular

operations to integer operations using Definition 2.10. The uniqueness
property in Z will establish results for C^.

As with multiplication, the division operation on a cotçuter

usually gives results which are not strictly in the system. The

computer produces both quotient and remainder when A/B is performed.

Closure occurs in higher-level programming languages because only the
quotient is kept. The remainder is then accessible by calculation.

33
The four basic arithmetic operations on the radix complement

system are now defined. Addition, complementation (subtraction), and
multiplication are modular ring operations and are well understood.

Division is not modular and requires further consideration.

CHAPTER 4

A STUDY OF DIVISION ON m

Division on the radix complement system is a distinct third

operation. It is not reversible by multiplication, as in a field.

In general, (A*B)/B ^ A and (A/B)*B ^ A. This operation will be

considered from three viewpoints.

First, division is preserved by the signed value map

Z, which is an isomorphism from ®, *) to (S^, ®, *),

with S^ c z. Going the other way, the natural ring homomorphism

Ç: Z -»■ Z^m may be composed with an isomorphism between Ẑ ra and

to give a ring homomorphism ij): Z C^. Will this map also preserve

division? The answer is no, and in fact, there is no extension of Z

for which a ring homomorphism to will preserve division. It is,

however, possible to define a new division on Z, which will be preserved

by <l>.

The second viewpoint is a comparison to a division operation
defined on Z^m. This operation may be defined using the linear con­

gruence BX = A mod r™. When the congruence has a unique solution,
this solution is taken as the quotient "A divided by B." Since

= Ẑ ra, how does this division relate to division on C^? The re­
lation is not close; modular division is not always defined, and even

34

35

when it is, the corresponding quotient must be exact (remainder

zero) before the two quotients agree. Furthermore, modular division

may be "un-done" by multiplication, but this is possible for

division only if exact. Reciprocals exist for some elements of Z^m,
while only trivial reciprocals are non-zero in c \

An evaluation of classical group axioms, applied to the operation

of division on C^, constitutes the third approach. For this, the
system (C^^/) will be studied. It is hot a group, or even a semi­

group; most of the group axioms fail for division on C^.

Comparison to Division in Z
An overview of the entire setting may help. There is the un­

signed value map n: C ^ + Z , which is one-to-one, with its associated

map n*: + Z^m, a ring isomorphism. The signed value map
<(>: -*■ Z is also one-to-one, and a ring isomorphism to its image

when operations a and * are defined modulo r™ on S^. There

is also the natural ring homomorphism g: Z Z^m. These are shown in
the diagram below.

m

From the definition of it*, both Ç o n = n* and Ç o ij) = n*. The homo­
morphism Ç is the modulo r™ transformation, so n and (j> are

equivalent maps, modulo r”*.

The map n* is a ring isomorphism, so the composition
= n*"^ o Ç is a ring homomorphism. This means

*(a + b) = #(a) e î(b) and t|i(ab) = ^(a) * *(b]
for all integers a and b; the homomorphism preserves both addition

(and subtraction) and multiplication. However, ijj does not preserve

division, and is thus not a morphism for division. This is seen in
the following example.

Example 4.1

Let Nm and Pm be the maximal negative and positive ele­

ments of Cĵ , respectively, and assume |Nm| > 2. Let a and b be

integers, with a = Pm + 1 and b = 2. Pm represents its own signed

value. Then 0 < a/b < Pm, so tp(a / b) >0. But i/;Ca) = Nm and

rpCb) =2, so Ifi(a) / *(b) < 0, and *(a) / i/)(b) / $(a / b). This
shows i(> is not a morphism for division.

Would it then be possible to imbed Z in another system T
with a morphism from T to preserving all operations? This
is not possible, because any extension of Z which preserved division

and the ring operations would carry with it the same counter-examples

used in Example 4.1. This is formalized in the next theorem and corollary.
Theorem 4.2

Suppose T is a system with maps p: Z -*■ T and t: T ->•
satisfying these three properties:

1) p is an imbedding of Z into T that preserves division.

37

2) T is a morphism from T to that preserves division.
and

3) T 0 p = l().

Then is a morphism for division.
Note: Hypothesis 3) says that the results of operations in Z should

be the same when viewed in C^, regardless of whether they come directly

from Z or indirectly through T. The following diagrams the relations
between Z, T, and c \

» c;

Proof of theorem: Let a and b be elements of Z, b ^ 0.

It must be shown that *(a) / %f<(b) = i|)(a / b) . Now p(a) and p(b)

are in T, so p[a) / y(b) = p(a / b) by hypothesis 1). By hypothesis 2),
T(P(a) / p(b)) = T(p[a)) / T(p(b)) . But tCpCa)) = \jj[a.') and similarly

for b by hypothesis 3), and t(p(a) / U(b)3 = t(p(a / b)) = rpÇa / b),
so i(;(a) / *(b) = <(j(a / b) .

Thus, any such extension of Z would lead to a contradiction, because
tjj does not preserve division.
Corollary 4.3

There is no extension T of the integers such that a ring

homomorphism from T to will preserve division.

38

By defining a new division operation for Z, it is possible

to force il> to preserve division. The fact that i(< o ^ is the

identity map on will be used.

Definition 4.4

Let a and b be integers such that ip(a) / i()(b) is de­

fined in Then a b = ipĈ C)̂ / 'J'(b)) .

This division operation is closely related to the original division of

Z. It is the old operation with the operands reduced modulo r™ to

values in S^. This new division is preserved by ip.

Theorem 4.5

>PCa. b) = ipCa) / ip(b) .
Proof: This is clear, because :p o p is the identity on C^.

Comparison to Modular Division

The divisions in Z and are not inverse operations for

multiplication. This is seen from the forms À = Q-B + R and

A = Q*B e R in which the quotient Q = A/B appears. Because of the
remainder R, it is not in general possible to "un-do" a division by

multiplying by the denominator; there are numbers A and B such
that (A/B)B /A. In Z you have also the property for any integers

and B, with B / 0, that (A-B)/B = A, while in this will not
be generally true, because in the product is modular. In C^,

let A = 5 and B = 3. Then 5/3 = 1, while (5/3)*3 = 3, so
(A/B)*B JÉ A. Also, 5*3 = -1, so (5*3)/3 = 0 and (A*B)/B / A.

The fact that and Z^m are isomorphic as rings brings up

the question of how division in relates to modular "division" in

39
Z^m. Recall that a linear congruence BX = A mod p has a unique solu­

tion for X if and only if B and p are relatively prime. This

unique value is taken to represent A/B in Z^m. To avoid confusing
the two division operations, the symbol % will be used to indicate
the modular quotient.

The first significant difference between the divisions is that,

when defined, modular division is the opposite of multiplication. If

division by B is defined, then A % B satisfies B(A % B) = A mod p

because that is how the operation was defined. It is also true that
CAB) % B = A, because the number (AB) % B is the solution of the

congruence B-X = A'B mod p. Neither of these are true in unless

the division is exact and there is no overflow.

Supposing both quotients are defined, when do they agree and

disagree? The division A/B is defined for all pairs of numbers
A and B with B / 0, while the modular division A % B of Z^m

is defined only for those pairs where (B,r™) =1. If A/B is exact,
if the remainder R = 0, then B-(A/B) = B*(A/B) = A, so B-(A/B)e A mod r™.

If CB,r”') = 1 as well, then A/B = A % B. On the other hand, if the divi­
sion A/B is not exact, if R / 0, then B-(A/B) = B*(A/B) / A, and

A/B does not satisfy the congruence B-X = A mod r™. Thus, A/B / A % B

for those cases where A % B is defined. This proves the following.
Theorem 4.6

A/B = A % B mod r™ if and only if (B,r™) = 1 and A/B has
remainder R = 0.

40

Another aspect of this difference is the lack of correspondence

between the reciprocal (1/A or 1 % A) of a number A and its multi­

plicative inverse. In Z^m, the congruence AX 5 1 mod r”" has a

solution if and only if A and r™ are relatively prime; the solution

is unique, and is the reciprocal 1 % A. By its definition, 1 % A is

the inverse of A. This will not be the case in c \ Because of the
isomorphism n* : Z^m, the element A in will have multiplicative

inverse B if and only if n*(A) in Z^m has the inverse n*(B).

However, if |a | > 1 and B is the inverse of A, then 1/A = 0 and

|b | > 1. Thus, for C^, in only the trivial case of +1 or -1 will

the reciprocal and multiplicative inverse of an element be the same.
2This situation is observed in the 2's complement system

used on computers. Each odd number A has a multiplicative inverse,
because A and 2™ are relatively prime. An even number B has no

inverse because (B,2™) / 1, meaning BX 5 1 mod 2"' has no solution.

The inverse of an odd number A is also odd, but if |a | > 1, then
1/A = 0; zero is not the multiplicative inverse for any element of C^.

On the IBM/370, in Cj2’ inverse of 3 is -1431655765, because
3 * (-1431655765) = 1, while the reciprocal 1/3 = 0.

The System (cĵ , /)

Consider the system consisting of the numbers together

with one operation, division. It will be seen, and not surprisingly,

that most of the classical algebraic axioms are not true for this

system. The first to investigate is closure. Division was defined on

Cĵ only for those pairs (A,B) where the integer result A/B represented

41
 ̂ran element of C^. This excluded division by zero, and, in an un­

balanced system, the pair (Nm,-1). An attempt to reduce the system

so division is defined for all pairs will not succeed. This would re­

quire that the element zero not be included, but zero is the result of

any division where the denominator has larger magnitude than the numera­

tor. Thus, the system is not closed for division.

To avoid this "closure" problem, it is possible to extend
the definition of division. For those pairs (A,B) in for which

A/B is not defined, let the quotient Q = A with remainder R = 0.

For convenience, the symbol A/B will be used for this quotient also.

This gives closure under division, and is not without precedent; IBM/370

FORTRAN language, using operates this way. When a "divide ex­

ception" occurs and the computer recognizes a failure of its division

algorithm, FORTRAN prints an error message and continues program execu­
tion. The unchanged dividend becomes the quotient with a remainder of

zero. (The term "closure" is not quite valid here, because most FORTRAN
systems will only allow this extension to be invoked a limited number

of times.) In principle, this division could be used in most high-level
programming languges; in practice, it is not.

The properties of associativity and commutativity do not generally

hold for division operations. That is true here. Associativity is seen

to fail when (4/3)/2 = 0 and 4/(3/2) = 4. Commutativity fails with
3/4 = 0 and 4/3 =1.

Under the extended definition of division, there are two right

identities for the system, the numbers 1 and 0. This is because

X/1 = X and X/0 = X for any X in C^. Zero is a right identity

42

only under the extended definition. There is, however, no left identity;

for an element X with sufficiently large magnitude, and any other ele­

ment A in C^, the number A/X has smaller magnitude than X, so that

A/X # X. Both left and right inverses exist for all elements X of

except X = 0, which has no right inverse. In fact, if X 0,

then X is its own inverse, since X/X =1. A = 1 is the left inverse

of X = 0, because 1/0 = 1 under the extended definition. But

0/A = 0 for each element A in C^, so zero has no right inverse.

Neither the left inverse nor right inverse is unique, in general. Be­

cause any element except zero is its own inverse, repeated division

associated to the left yields zero, as CX/X)/X = 0 if X / ±1. The

multiple quotient (CCA/B)/C) ... /D)/E will be zero if |a | is

less than the magnitude of any other argument. Associating to the

right gives X/(X/X) = X and X/(X/(X/X)) = 1 for any X in C^;

a multiple quotient X/CX/C ... (X/X] ...)] will be X or 1 de­
pending on the number of arguments.

Division on is distinct from addition and multiplication.

It is not modular, and does not derive from primary division on the

integers by means of a modular homomorphism. The next step in the
study of division will consider its interaction with the other operations.

First, however, the comparison relations on will be investigated.

CHAPTER 5

THE COMPARISON RELATIONS

The ability to compare any two numbers, and to determine

which, if either, is larger, is a vitally important characteristic of

the integers. Occurring because the ring of integers is ordered, it

is one of many significant properties deriving from the order on Z.

The radix complement system, simulating a subset of the integers,
would be of much less value if it did not reflect, at least in part,

this order. Unfortunately, the modular nature of C^ precludes it

having an order, so most order-related properties cannot hold. The

comparability of numbers can, nevertheless, be retained.

The concept of an ordered ring generalizes that of an ordered
field and is expressed in the following definitions.

Definition R.1

Let R be a ring. A non-empty subset P of R is called a
positive class if it satisfies each of the following:

i) P is closed under addition in R,

ii) P is closed under multiplication in R, and

iii) each element X in R satisfies exactly one of the

relations X e P, X = 0, or X (f P U {0}.

43

44
Definition R.2

A ring R is said to be ordered if it contains a positive

class P. An element A of R which is in P is called positive.
and this situation is denoted by the symbol A > 0 (or 0 < A).

If an element A is either positive or zero, the symbol A ̂ 0 (or

0 ̂ A) is used. For elements A and B of R, if A - B s P then

A is greater than B (B is less than A] and this is written as
A > B (B < A). If A - B may also be zero, the symbol A ̂ B (B ̂ A)

is used.

Definition R.2 establishes the means for comparing integers.

The characteristics of the positive class expressed in Definition R.1

then lead to the other order-related properties of Z, including the

algebraic techniques needed to manipulate and solve equations of in­

equality.

The radix complement system has both positive and nega­
tive integers among its signed value representatives. It is not, however,

an ordered ring; it cannot satisfy Definition R.l and has no positive

class. This is because is modular. Of the two elements 1 and
-1, exactly one must be positive, the other non-positive. Since each

of these elements additively generates the entire ring C^, and a

positive class is closed under addition, both of them would be positive,

a contradiction.

The term "positive" might cause confusion. The radix comple­

ment system, in its usual signed value form, contains a subset of

"positive" elements. This name, however, is applied only to distinguish

45

those elements of which represent numbers from the positive

class of Z. It does not imply the existence of a positive class in

c \ This usage is quite handy and will not be discarded.
Cĵ does not have a positive class, so Definition R.2 cannot be

applied to provide relations for comparing elements. These relations can

be derived indirectly by restricting the integer order relations

<, > and > to Sĵ , the set of signed integer values for c \ Pro­

duced in this way, they do not come from an order on C^, and are thus

not proper order relations.. To emphasize this fact, they will be
called comparison relations, or c-relations.
Definition 5.1

Let A and B be elements of C^. The relation A .LT. B is

true (.LE., .GE., .GT.) if and only if the relation $(A) < *(B) is

true CS 2» correspondingly), where (j) is the signed value map
from to Z. The relations .LT., .LE., .GE., and .CT. are

called the comparison relations (c-relations) on C^. The relations

.EQ. and .NE. are defined as the relations = and ^ on C^,
respectively.

The last two relations, although not c-relations, are included

for consistency, because the entire group of six (.LT., .LE., .EQ., .GE.,
.GT., and .NE.) often appear in high level programming languages as

relational operators. Other symbols may be used for them in various

languages. The relation X .LE. Y is true if either X .LT. Y or

X. EQ. Y is true. Similarly, X .GE. Y if either X .GT. Y or

X .EQ. Y. These follow from Definition 5.1 and the order properties

46
on Z. Note also that X .LT. Y if and only if Y .GT. X and

X .LE. Y if and only if Y .GE. X.

None of these relations provides an order for the ring Cĵ .

However, two of them do form topological orderings on the set .

Topological orderings deal with elements of a system as abstract

"points," ignoring any algebraic structure of the system. They are

relations concerned with "maximal" and "minimal" elements of subsets
within the system. The three to be considered are the partial order,

the total (linear) order, and the "well-ordering."

A partial order Q on a set T is a relation on T having

the properties of reflexivity (xQx for each x in T), anti-sym­
metry (xQy and yQx imply x = y for x and y in T), and

transitivity (xQy and yQz imply xQz for x, y and z in T).

If Q is a partial order on T, and has the property that either

xQy or yQx for each x and y in T, then Q is a total (lineai)

order. The set T is well-ordered by Q if Q is a total order, and

T has the property that each non-empty subset U of T has a "first
point" under the order Q; by "first point" is meant a point x in

U such that xQy for each y in U.
Theorem 5.2

1) .LE. is a partial order on c \

2) .LE. is a total order on C^.

3) is well-ordered by .LE. .

Proofs: 1) If A is in then i|)(A) _< <j>(A), so A .LE. A
and .LE. is reflexive. For À and B in c][, if A .LE. B and

47
B .LE. A, then *(A) < *(B) and <(>(3) ̂ <(>(A), so $(A) = *(B). Since
(j) is one-to-one, this implies A = B, and so .LB. is anti-symmetric.

With A, B and C in C^, if A .LE. B and B .LE. C, then $(A] ^ #(B)

and 4(B) ^ <j)CC). But then <j>CA) ^ *(C), so A .LE. C, and .LE. is

transitive.

2) Part 1) shows .LE. is a partial order. If A and B
are elements of Cĵ , then either #(A) ^ $(B) or $(B) ^ t|i(A) must

hold. Because (j> is one-to-one this means either A .LT. B or
B .LT. A. Therefore, .LE. is a total order.

3) This follows because is finite and has a total order.

Corollary 5.3

1) .GE. is a partial order on C^.

2) .GE. is a total order on C^.m
3) is well-ordered by .GE. .

The relations .LT. and .GT. have the transitive property, but

fail to exhibit reflexivity or anti-symmetry.

Computer Evaluation of C-Relations

It is important to be able to evaluate the comparison relations
using the radix complement system and its operations. Definition R.2
specified the order relations on Z by saying x > y if and only if

x - y > 0. Since the sign of an element in cĵ may be tested, this

suggests using subtraction to establish the c-relations. This will

not always work, unless certain other constraints are met. Before

investigating those conditions, some further information concerning

48

the homomorphism i(/: Z the signed value map <(>: + Z, and

the c-relations may prove useful. In-what follows, no distinction will

be made between elements of and their corresponding integer signed

values, unless clarity demands. Use of an integer order relation im­

plies its arguments should be taken as signed integer values.

Lemma 5.4

If X is an integer such that Nm ̂ x ̂ Pm, then 4>C'('Cx)) = x.

Proof: This should be clear from the definitions of <}i and ij).

Lemma 5.5

If X and y are integers such that Nm £ x < y ̂ Pm, then

i(<(x) .LT. 'PCy). The same is true if < is replaced by any other order

relation on Z, and .LT. by the corresponding c-relation on Cĵ .

Proof: By contradiction. Suppose ^(x) .GE. ^(y). Then, by

definition of .GE., <ji(:(>(x))2. Since 14̂ _< x _< P^ and
y ̂ P^, the preceeding lemma gives x ̂ y, a contradiction. The

proof for the other relation-comparison relation pairs is similar.

Corollary 5.6

Let X be an integer. If 0 < x < Pm then .GT. 0, and
if IWm < X < 0 then #(x) .LT. 0. [And similarly for the other rela-

tion-comparison relation pairs.)

Proof: Note that ^ is a homomorphism, so #[0) = 0.

Lemma 5.7

1) If X is an integer with Pm < x _< Pm - Nm, then i|:[x) .LT. 0.

49

2) If X is an integer with Nm - Pm ̂ x < Nm, then #(x) .GT. 0.

Proofs: 1} This is clear because is a modular system

isomorphic to Z^m, and Nm in some sense "follows" Pm, as Pm ® 1 = Nm.

Thus, #(Pm + 1) = Nm, ^(Pm + 2) = Nm ® 1, ... , tfifPm - Nm) = -1.

2) The argument here is similar, except Pm "preceeds" Nm, as

Nm 0 1 = Pm. Hence, ipfNm - 1) = Pm, ^(Nm - 2) = Pm e 1, ... , tpCNm - Pm) = 1.

The Subtraction Test

To see how important this is to computer users, we examine the

subtraction test. Subtraction alone will not always correctly deter­

mine the c-relations between two elements of cĵ . If X e Y over­

flows, it will have the opposite sign from that required for a valid

comparison of X and Y. In C^, the subtraction gives (-7) e 6 = 3,
indicating -7 .GT. 3, which is false.
Theorem 5.8

Let X and Y be elements of C^. If X e Y does not over­
flow, then X .GT. Y if and only if (X e Y) .GT. 0. (The same is

true if .GT. is replaced by .GE. .)

Proof: If X .GT. Y, then X > Y and 0 < X - Y. Since

X o Y does not overflow, X - Y ̂ Pm, so 0 < X - Y ̂ Pm, and by
Lemma 5.6, ̂ (X - Y) .GT. 0. Since %fi(X - Y) = X e Y, this gives
(X e Y) .GT. 0.

If (X 9 Y) .GT. 0, then (j)CX e Y) >0. Since X e Y does

not overflow, <(>(X e Y) = X - Y , so X - Y > 0 and X > Y. Thus
X .GT. Y.

A similar proof holds for the .GE, c-relation.

50
Theorem 5.9

Let X and Y be elements of C^. If X e Y overflows, then

X .GT. Y if and only if (X e Y) .LT. 0.

Proof: If X .GT. Y, then 0 < X - Y. Then, since X 9 Y
overflows, P m < X - Y _ < P m - Nm. Lemma 5.7 now shows that i()(X - Y) .LT. 0,

and this gives (X e Y) .LT. 0.

If (X e Y) .LT. 0, then (f)(X e Y] <0. The overflow condition

and bounds on subtraction imply Nm - Pm _< X - Y < Nm or Pm < X - Y ̂ Pm - Nm.

If Nm - Pm ̂ X - y < Nm, then Lemma 5.7 gives (X e Y) .GT. 0, a contra­

diction. Thus, Pm < X - Y ̂ Pm - Nm, so 0 < X - Y. Therefore, X > Y
and X .GT. Y.

It is not necessary to extend Theorem 5.9 to the .GE. c-relation.
If X 0 Y overflows, then X .NE. Y.

This last theorem specifies exactly when the subtraction test

fails. It fails when the subtraction overflows. Thus, to have a better
idea of when the test succeeds, it will be useful to characterize over­

flow for subtraction.
Theorem 5.10

Suppose X and Y are elements of C^, such that X .GT. Y.

Then X e Y does not overflow if any of the following occur:

1) X and Y have the same sign,

2) Y .GE. (X 0 Pm), or
3) Y .LT. (X 0 Pm) and (X e Pm) .GE. X.

The subtraction X e. Y will overflow if

4) Y .LT. (X 0 PM) and (X e Pm) .LT. X.

51

Conditions 1), 2) and 3) are not mutually exclusive. The first is a
partial combination of the other two. It is included because of the

simple relation between X and Y. Conditions 2), 3) and 4) are

both exhaustive and mutually disjoint.

The next two lemmas will be useful in the proof of Theorem 5.10.

Lemma 5.11

Suppose X and Y are elements of C^, with Y .GT. 0. Then

(X e Y) .LT. X if and only if Nm ̂ X - Y < Pm.

Proof: Suppose (X e Y) .LT. X. If X - Y < Nm, then

Nm - Pm X - Y < Nm. Lemma 5.7 then implies ipCX - Y) .GT. 0, so

(X e Y) .GT. 0. It also follows that X < Nm + Y, and, because
Nm + Y ^ 1 for either a balanced or unbalanced system, that X ^ 0

and X .LE. 0. The transitive property of .LT. then implies

X .LT. (X e Y) . This contradiction means Nm ̂ X - Y. Since Y > 0,

it follows that X - Y < X, so X - Y < Pm, and therefore, Nm X - Y < Pm.

Now suppose Nm < X - Y < Pm. As before, X - Y < X, so

Nm < X - Y <X_< Pm. Lemma 5.5 then implies tpCX - Y) .LT. X, so
(X 0 Y) .LT. X.

Lemma 5.12

If X and Y are elements of C^, with Y .GT. 0 and

X .LE. (X 0 Y), then X - Y < Nm.

Proof: This is essentially the contrapositive of one part of

Lemma 5.11. X .LE. (X 0 Y) implies that Nm ̂ X - Y < Pm is not
true. As in Lemma 5.11, X - Y < Pm, so it must be true that
X - Y < Nm.

52

Proof of Theorem 5.10:

1) In this case, either 0 .LT. Y .LT. X .LE. Pm or

Nm .LE. Y .LT. X .LT. 0. Thus, either 0 < Y < X Pm or

Nm _< Y < X < 0. The range restrictions in both cases guarantee .

Nm ̂ X - Y Pm, for either a balanced or unbalanced system, so there

is no overflow in X e Y. The condition X .GT. Y is not needed here.

2) If X and Y have the same sign, case 1) provides the

conclusion. Suppose X and Y do not have the same sign. Then,
since X > Y, it must be true that X ̂ 0 and Y ^ O . Thus X - Y ̂ 0,

and Nm ̂ X - Y. Now, with X .GT. Y and Y .GE. (X e Pm), it follows

that X .GT. (X 8 Pm) or (X e Pm) .LT. X. Because Pm .GT. 0,
Lemma 5.11 gives Nm ̂ X - Pm < Pm. This means X e Pm does not

overflow, so (j>(X e Pm) = X - Pm. Then Y 2 *CX e Pm) , so Y X - Pm

and X - Y ̂ Pm. Therefore, Nm ̂ X - Y ̂ Pm, and X e Y does not
overflow.

3) As in part 2), it is only necessary to consider when X

and Y have opposite signs, with Nm ̂ X - Y. For the other bound

on X - Y, the hypothesis gives X .LE. (X e Pm), so applying Lemma 5.12

yields X - Pm < Nm. Since Nm ̂ Y, this becomes X - Pm < Y, and

X - Y < Pro. Thus Nm X - Y ̂ Pm, so X e Y does not overflow.

4) Here, Y < *(X 0 Pm). As in part 2), (X e Pm) .LT. X im­

plies that (J>CX e Pm) = X - Pm, so Y < X - Pm. Thus, Pm < X - Y and
X 8 Y overflows. The overflow is positive because X .GT. Y.

Part 4) of Theorem 5.10 shows that precisely when

Y .LT. (X 8 Pm) and (X 8 Pm) .LT. X, the subtraction test will

53

yield (X e Y) .LT. 0 when Y .LT. X. This is exactly the opposite
of what one would hope to have; the subtraction test fails to pro­

vide the proper c-relation. The condition under which this will occur
may be loosely stated as being when X and Y are "too far apart"

in the "positive" direction.

the significance of the failure of subtraction to correctly

determine the comparison relations lies in the fact that in some

major computer languages and on some computers, particularly the smaller

mini- and micro-computers, users frequently rely on subtraction to pro­

vide these comparisons. In the larger computers, where the complexity
of arithmetic logic circuitry is less a factor, there is often a

single machine instruction which will make valid algebraic comparisons
between any two elements of C^. This comparison may actually use a

subtraction process, but extra logic circuitry is provided to com­

pensate when overflow occurs.

As an example, consider the IBM/360 and 370 computers. On these

machines, single instruction comparisons are available to provide

the correct c-relations between any two elements in Cgg or . The

FORTRAN IV language on these machines makes use of this compare instruction
in the "logical IF" statement to permit testing the c-relations. The

"relational operators" .GT., .GE., .EQ., .LE.,.LT. and .NE. provide
valid comparisons between any two 2’s complement numbers. FORTRAN

also permits comparisons to be attempted indirectly using the less
reliable "arithmetic IF" statement. This statement does not actually

test the c-relations. Instead, it tests a number, perhaps the result

of evaluating an arithmetic expression, to see if it is negative, zero

54

or positive. A test of c-relations is implemented by performing a

subtraction and testing the result. As shown in Theorem S.10, this

procedure using the arithmetic IF can fail to provide the correct

c-relation. The logical IF will never fail. This situation may

be seen in the two programs below, with the output from their exe­
cutions.

Example 5.13

This program uses the logical IF statement.

10 C EXAMPLE USING LOGICAL 'IF'
20 C
30 lA = 1500000000
WO IB = -1500000000
50 IF (lA .GT. IB) GO TO 10
to URITE(tnlOO) IBnIA
70 100 F0RMAT[//////lXnI12n' IS GREATER THAN 112)
80 STOP
10 10 WRITE (tn 100) IA-.IB
100 STOP
110 END
END OF DATA

RUN
1500000000 IS GREATER THAN -1500000000

EDIT

Example 5.14

This program attempts to compare the same two numbers using the
arithmetic IF statement.

55

10 C EXAMPLE USING ARITHMETIC 'IF'
20 C
30 lA = 1500000000
MO IB = -1500000000
50 IFCIA - IB) 10,20-,30to 10 WRITE(tnlOO) IB,IA
70 100 FORMAT C//////1X-.I12-,' IS GREATERao STOP
40 20 WRITE (t-, 101) lAiIB
100 101 FORMATClXiIia,' EdUALS '-.112)
110 STOP
120 30 WRITECtn 100) lA-iIB
130 STOP
IMO END
END OF DATA

RUN
-1500000000
EDIT

IS GREATER THAN 1500000000

Many FORTRAN IV programmers use the arithmetic IF for comparisons,

even when the logical IF is available. Older versions of FORTRAN or

versions for smaller computers may not offer the logical IF statement.

In such languages, no single statement can perform valid comparisons

for all pairs of radix complement numbers. To be fair, computer manu­

facturers have never claimed that comparison by subtraction with the

arithmetic IF gave valid results with radix complement numbers. Some
early versions of FORTRAN would not even permit such usage; the arith­
metic IF could not be applied to elements of C^, but only to float­

ing point numbers.

The situation with mini- and micro-computers is different.

These small machines have rather severe restrictions on the complexity
of their arithmetic circuitry. As a result, they are not usually able

to implement the valid single operation "compare" of larger machines.

Many of these do, nevertheless, have a "compare" operation; it con­

56
sists of performing à subtraction of the two arguments (radix comple­

ment integers) and setting a collection of indicators or "flags" ac­

cording to the result. The flags set usually include "result positive,"

"result negative," "result zero," and "overflow." The latter is

very important because it indicates if the subtraction comparison is

in the failure situation.

Avoiding Subtraction Error

The subtraction error in radix complement comparisons is
fairly subtle. It can only occur when numbers of opposite sign are

compared, and not always then. There are several ways it can be over­

come .

The simplest approach is probably to avoid it. If the numbers

to be compared all have the same sign, the subtraction test will not

fail. Similarly, if magnitudes of the numbers are restricted so that

subtraction overflow cannot happen, then this test will suffice. If

the system has a great many elements, restriction may not prove a

hardship. In the IBM/370, integer values run from -2147483548

C-2^^ = through 2147483647 (2^^ - 1 = P32)• If the numbers
to be compared always lie between -1073741824 (-2^^) and 1073741823

(2^^ - 1), then subtraction will not overflow and may be used for
comparisons. However, for C^g on the IBM 1130, a valid comparison

would require restriction to numbers in the range from -16384 (-2^^)
to 16383 (2^^ - 1). This is a severe limitation.

Magnitude and sign restrictions may be feasible in particular
situations, but unacceptable in more generalized cases, such as in

57

high-level programming languages. To have comparison by subtraction

valid for arbitrary pairs in C^, it must be done in two steps. One

possibility is to first check signs of the values being compared. The
second step is then subtraction, but need be performed only if the

signs checked were the same. The subtraction will yield a valid com­

parison. Alternatively, the subtraction could be done first, followed

by a check for overflow. The presence of overflow demands reversal
of the c-relation indicated by the subtraction; .LT. (.LE.) for

.GT. (.GE.) or vice-versa. The choice between these schemes is

hardware dependent, and rests on the relative ease of comparing signs

or checking for overflow.

Another way to avoid the subtraction error is to imbed the

system in the system for the comparison subtraction, where k > m.

This is a relatively simple procedure if the logic circuitry is so de­
signed; k - m extra digits are added as the most significant digits

to each number being compared. The new digits added to a positive
number are all zero, and all r-1 for a negative number. The signed

integer value is thus unchanged for an element imbedded in this fashion.

if of two elements from k mFurthermore, subtraction in cf of two elements from will not

overflow; elements from may be validly compared by subtraction in

C^. Computers allowing double precision integer arithmetic may take

k - 2m. This technique could be used for built-in comparison operations;
one extra digit (k = m+1) is sufficient.

In what follows, the comparison relations will be assumed as
part of C^; how they are determined will not matter. Because the

c-relations do not arise from an order, many properties of the order

58

relations on Z will not hold for C^. The algebra of inequalities

in Z is, however, quite useful, and it would be interesting to see
how much of it, if any, can be carried over to

CHAPTER 6

INEQUALITIES WITH C-RELATIONS

The algebra of inequalities provided by the order relations
on Z allows the manipulation and solution of equations of inequality.

Included are such theorems as these. (In Theorems 1.1, 1.2, and 1.3,

X , y and a represent integers from Z.)

Theorem 1.1
If

Theorem 1.2
If

If

Theorem 1.3

If X < y, and a > 0, then x/a < y/a.

If X < y, and a < 0, then x/a 2 y/a.

The division is the primary quotient in Z.

The first two of these will only partly carry over to C^, and
that with some difficulty. The problem, illustrated by Theorem 5.9, arises
when overflow occurs. Theorem 1.3 has an unusual form (with because

the division is the primary quotient, rather than the rational quotient.

Overflow does not occur in division, and this theorem carries over,
59

60

mutatis mutandis to Inequalities using the c-relations will be

called c-inequalities.

The Modulo Reduction Factor

Since overflow will play an important role with c-inequalities,

further consideration of it may prove helpful.

Lemma 6.1
Let X and Y be elements of C^, and let @ be any of them c

arithmetic operations in Cĵ , with the corresponding operation in
the integers. Then iJ)(X Y) = <|)CX) *(Y) + kr"', for some integer k.

This just expresses the modular nature of arithmetic in as in

Definition 2.10. Again, the distinction between X and ÿ(X) is often

ignored; the equation in Lemma 6.1 then appears as (ji(X Y) = X Y + kr"".

The integer k provides information concerning overflow, and will be called
the modulo reduction factor (m.r.f.).

Lemma 6.2

1) There is overflow if and only if k ^ 0.

2) There is positive overflow if and only if k < 0.

3) There is negative overflow if and only if k > 0.

Proof: 1) If there is overflow, then <t>(X Y) ^ X Y,
so it must be true that kr™ 0. Thus k 0. If k ^ 0, then
<J)(X Y) X Y, and there is overflow.

2) If there is positive overflow, then X Y > Pm, and
-(X Y) < -Pm. Since Nm ̂ (j)(X Y) ^ Pm, it follows that

X @2 Y + kr™ £ Pm. Then kr™ £ Pm - (X Y) < 0, so k < 0.

61

On the other hand, if k < 0, the bounds on 4>(X Y) force

X Y > Pm, and there is positive overflow.

3) The proof here is similar to that in 25.

For the operation of addition, it is possible to give values

for the modulo reduction factor k.

Lemma 6.3

Let X and Y be elements of C^. Then X ® Y gives positive

overflow if and only if $(X ® Y) = X + Y - r™ (k = -1), and negative

overflow if and only if (j)CX ffi Y) = X + Y + r™ (k = 1).
Proof: Because Nm ̂ X ̂ Pm and Nm ̂ Y ̂ Pm, we have that

2*Nm ̂ X + Y 2 "Pm. Since Pm - Nm + 1 = r™, this implies that

-r™ ̂ X + Y ̂ r™. This in turn, with the bounds on <j)(X ® Y), forces

|k| _< 1. Application of the previous Lemma 6.2 completes the proof.

The modulo reduction factor with multiplication depends more on

the operands, and may have large value. It is closely related to the
digits truncated (or not formed) when the product is produced. To

see this, a more general definition of the modulo reduction factor will

be introduced. Mappings used are those of Chapter 2: the signed
value map <t>; -*■ Z, the unsigned value map p: ■* Z, and the
natural homomorphism ij/: Z -*■ C^.

Definition 6.4

Let a be an integer, so that %|;(a) is in c \ Then
<(>C'J'(a)) = a + kr™, and k is the modulo reduction factor.

The definition of the modulo reduction factor in Lemma 6.1 is

62
a special case of this. If A and B are elements of C^, then

and <(i(B) are integers. Let and be corresponding

operations in and Z, respectively. Taking a = *CA) $(B)
gives tpCa) = A B, because ijj o (j) is the identity m^. The ex­

pression for k then becomes *(A @ B) = *(A] @ <j>(B) + kr"', as in
Lemma 6.1.

Many computers, including the IBM/360 and 370, form a double

precision result for integer multiplication. With operands in C^,
the product is produced in truncating the m most significant

digits of the extended result gives the product in C^. The digits

truncated, taken as an element of C^, will help provide the modulo

reduction factor for the multiplication. Signed and unsigned values
from both and will be needed. These will be provided by

$ and ri, each applied to both systems.

Let A be an element of with digital form

*2m-l“2m-2 ' ' ' “m+l^m"m-rl ' ' ' “l“0‘

The digits &2m-1^2m-2 ' ' ' ^m+l^m the m most significant
digits. They can be taken as an element of this element will be

represented by A^. The digits a^ ̂ . . . a^a^ also represent an

element A^ in C^. If A is the machine product of two elements

from Cĵ , then A^ is the part truncated to give the radix complement
result Aĵ .
Lemma 6.5

Suppose A is an element of with most and least signifi­
cant parts A^ and A^ as described. Then *(A^) = *(A) + kr"".

where

63

k = <
-nCA^D + r '

-n(A^) - 1

-n(A„) 1 + r

if 4CA^) ^ 0 and ())(A) >0,

if X A ĵ) > 0 and *(A) < 0,

if 4CA^) < 0 and ^(A)^ 0, or

if *(A^) < 0 and *(A) < 0.

Proof: #(#(A)) = so k is the modulo reduction factor

of Definition 6.4, with = *CA) + kr From Definition 2.7,

*(X) = n(X) if *(X) _> 0, and <j>CX) = dCX) - r” if *(X) < 0. This
may be applied to the equation for k in four cases.

Case 1. Suppose *(A^] = nCA^) and (j>(A) = q(A). Then

n(Aĵ) = nCA) + kr™, so kr™ = -n(A) + n(A^) . Since nCA) = n(A^)r™ + n(A^),
this gives kr -n(A^)r , so k = -TI(Â).

Case 2. *(A^) = q(A^) and *(A) = n(A]
kr™ = -n(A^)r™ + r^™, so k = -n(A^) + r™.

2m Here,

Case 3. *[A^) = n(A^] r and $(A) = n(A) . Then

kr™ = -n(A^)r™ - r™ and k = -n(A^) - 1.
Case 4. *(A.) = .D(A,) - r™ and *(A) = n(A) - r^™. Then

k = -n(A^) - 1 + r .

Lemma 6.5 gives the value of k in terms of the unsigned
value nCAjj). Ordinarily, the unsigned value is not accessible in a

high-level programming language. Thus, it may be better to express k

using the signed value ÿ(Â). The next theorem does this.
Theorem 6.6

Let A, A^ and A^ be given as in Lemma 6.5. Then

64

if>(Â) = <(>CA) + kr , where k is the modulo reduction factor.

If A and A have the same sign, or A is zero, then u ° u

k =
-<l>CAĵD if *(Â) 2 °> or
-*(AJ - 1 if *(A^) < 0.

If A^ and A have opposite signs, then

-<j)(Â] + sCA^)*r"' if ((i(Â) > 0, or

-<j>CAJ - 1 + sCAj-r"" if (A^) < 0.

Proof: The sign function s: {1, 0, -1}. The expressions

for k are obtained from Lemma 5.5 by substituting ÿCA^) or

*(A^) + r™ for n(A^), depending on whether A^ is non-negative or
negative, respectively.

The form of this theorem makes the next corollary obvious. In

an unbalanced radix complement system, the most significant digit de­

termines the sign of a number. This means the signs of A and A^
will be the same.

Corollary 6.7

Let be unbalanced [r even), and let A, A^ and A^ be

given as before. Then the modulo reduction factor k is given by

-‘f>(Â) if <|)CAĵ) ^ 0, or
k =

-*(A^) - 1 if (JiCAj) < 0.

Most significant radices in use are even, and the modulo reduction factor

is closely related to the digits truncated when a double precision re­

sult is reduced to The situation is more complicated for odd

65

radix. Both parts of Theorem 6,6 must be used. This is illustrated in
the following example.

Example 6.8
Consider the four digit 3's complement system, C^. It is

balanced, and elements appear as four digit numbers in base 3. Let

A = 1000. Then = 10 in C^. Since *C1000) = 27 and t̂ (lO) = 3,

the numbers A and A^ have the same sign. If A = 1120, then

A^ = 11 in C^. Now, however, t|i(1120) = -39 and (|i(ll) = 4, so A

and A^ have opposite signs. Note that P® = 1111 and N^ = 1112

while 1*2 = and N^ = 12.

Applying Theorem 6.6 to obtain the modulo reduction factor for
a product X*Y of elements from requires that A = i|){cti(X)'((«CY)},

where ip: Z ->■ Then A is the double precision machine product of

X and Y.

C-Inequalities with Addition and Multiplication
The next lemma provides some insight into a relationship between

positive and negative overflow. Because is a ring, it is true

that (X © Y) © (-Y) = X. The lemma indicates how overflow comes into

play in the intermediate results as (X © Y) © (-Y) is calculated.

Lemma 6.9

Let X and Y be elements of C^, such that Y ^ -Y.

rdoes not overflow, 1
If X © Y < has positive overflow,> then

1 has negative overflow
j does not overflow, [

(X © Y) © (-Y) < has negative overflow,>
I has positive overflow.!

66
Proof: If X ® Y does not overflow, then <|)(X ® Y) = X + Y.

The restriction on Y implies ÿ(-Y) = -Y. Thus there is an integer

k, with |k| 1, such that

*[(X ® Y) ® C-Y)] = <i)(X ® Y) + *(-Y) + kr™ = X + Y - Y + kr“ = X + kr".

Since #[(X ® Y) ® (-Y)] = i|)(X) = X, this means that k = 0, so

(X ® Y) @(-Y) does not overflow.

Suppose X ® Y has positive overflow. Then

i(i(X ® Y) = X + Y - r". As before, there is some integer k, with

|k| _< 1, such that

X = (f)C(X ® Y) ® C-Y)] = CX + Y - r") - Y + kr" = X - r™ + kr".

This means k = 1, so CX ® Y) ® (-Y) has negative overflow. The
case where X ® Y has negative overflow is similar.

The next theorem establishes a basic property for c-inequalities

involving addition.

Theorem 6.10

Let X, Y and A be elements of C^.

1) If neither X ® A nor Y ® A overflow, or both do, then

X .LT. Y if and only if [X ® A) .LT. (Y ® A).

2) If exactly one of X ® A or Y ® A overflows, then
X .LT. Y if and only if (X ® A) .GT. (Y ® A).

Proof: We begin with two observations. First, X .LT. Y means
that X < Y. Second, to have positive overflow from a sum requires

both summands to be positive, while negative overflow requires both
to be negative.

67

Proof of 1): Suppose that X .LT. Y. Then X < Y and

X + A < Y + A. If neither X ® A nor Y ® A overflow, then
Nm < X + A < Y + A ̂ Pm, and Lemma 5.5 gives (X ffi A) .LT. (Y ffi A).

If both X ® A and Y ® A overflow, then they must both have positive

overflow or both have negative overflow. This is seen by the remark

above; if X ® A has positive (negative) overflow, then A must be

positive (negative), implying that Y ® A must also have positive

(negative) overflow. Suppose they both have positive overflow,

then (j)(X ® A) = X + A - r"* and (f)(Y ® A) = Y + A - r*”. However,
X + A - r ™ < Y + A - r™, so (X ® A) .LT. (Y ® A). The argument for
negative overflow is similar.

Conversely, suppose (X ® A) .LT. (Y ® A) , so (ji(X ® A) < c()(Y ® A.)
If neither X ® A nor Y ® A overflow, this implies X + A < Y + A.

Thus X < Y and X .LT. Y. On the other hand, if both X ® A and

Y ® A have positive overflow, then i(i(X ® A) = X + A - r”* and
*(Y @ A) = Y + A - r™. This again gives X < Y, so X .LT. Y. As

before, the argument with negative overflow is similar.

Before beginning the proof of the second statement in the theorem,

another fact should be noted. If B, C and D are elements of C^,

with B .LT. C, such that exactly one of B ® D and C ® D overflow,

then either C ® D has positive overflow, or B ® D has negative over­
flow. This is easily seen, because B .LT. C implies that B + D < C + D;

to have exactly one term overflow, either C + D > P m or B + D < Nm.
Proof of 2): Suppose X .LT. Y. As noted above, if only one of

68

X ® A and Y ® A overflow, then either X ® A has negative overflow,

or Y ® A has positive overflow. Suppose X ffi A has negative overflow.

This means ()>CX ffi A) = X + A + r™ . Since Y ffi A does not overflow, we

have <()(Y ffi A) = Y + A. It must be shown that X + A + r™ > Y + A.

With X < Y, bounds on X and Y give Y - X Pm - Nm < r™. Thus,

X + r" > Y, and so X + A + r"’ > Y + A. Therefore, CX ® A) .GT. CY ® A).

Suppose, instead, that Y ffi A has positive overflow. Then
<p(X ffl A) = X + A and 4>(Y ffi A) = Y + A - r™, so it is necessary to

prove X + A > Y + A - r™. The argument above established that
Y - X < r™. Thus, X > Y - r™, so X + A > Y + A - r™, and again

(X ffi A) .GT. (Y ffi A) .

For the converse in 2), assume CX ffi A) .GT. CY ffi A). We will

then suppose that X .GE. Y and attempt to produce a contradiction.

If X .EQ. Y, then CX ffi A) .EQ. CY ® A), which clearly cannot be true.
Thus, X .GT. Y, which is equivalent to Y .LT. X. Applying the first

half of the proof for part 2J to this gives CY ffi A) .GT. CX ® A).
This is equivalent to CX ffi A) .LT. CY © A), and also clearly false.

Therefore, it must be true that X .LT. Y.

This concludes the proof of Theorem 6.10.

The preceding theorem characterizes the preservation of the

c-relation .LT. under addition. Similar statements may be made for
the other c-relations. The question should now be raised as to whether
a similar result will hold for the operation of multiplication. Un­

fortunately, if overflow is present, no such simple statement may be
made. Without overflow, the situation is like that in the integers Z.

■ - V / /.y / V vi .y
Theorem 6.11

Let X, Y and A be elements of C^. If neither X*A nor

Y*A overflow, then the following are true:

1) If A .GT. 0 then X .LT. Y if and only if (X*AD .LT. (Y*A),

2) If A .LT. 0 then X .LT. Y if and only if CX*A) .GT. (Y*A) .

Proof: These both follow directly from the condition that there

be no overflow. Because of this *(X*A) = X-A and i|)(Y*A) = Y-A,
so the c-relation .LT. is equivalent to the relation < in the
integers.

With overflow in X*A or Y*A, or both, there is no simple

solution. Success was achieved for addition because the amount of

overflow was strictly limited; the modulo reduction factor had magni­

tude less than two. The m.r.f. in X*A or Y*A is not so restricted.
It depends on both the signs and magnitudes of the operands. An example

will illustrate this.

Example 6.12

Consider the 2's complement system with four digits (bits). In

signed integer form, = {-8, -7, -6, ... , -1, 0, 1, 2, — , 6, 7}.
The modulo reduction factor k is determined from (j>CX*Y) = X-Y + kr™, where
<j>: -*■ Z is the signed value map. In this system, it is true that

3 .LT. 7, and the c-relation between 3*A and 7*A is shown in the fol­

lowing table for various values of A.

70

c-relation of modulo reduction factors
A 5*A 7*A 5*A and 7*A : of 5*A of 7*A______

1 3 7 .LT. 0 0
3 - 7 5 .LT. - 1 - 1
4 - 4 - 4 .EQ. -1 -2
5 -1 3 .LT. -1 -2
6 2 -6 .GT. -1 -3
7 5 1 .GT. -1 -3

Depending on the magnitude of A, A .GT. 0, any c-relation is possi­
ble between 3*A and 7*A.

C-Inequalities with Division

Division on is not a modular operation, and does not pro­

duce overflow. Except for the undefined quotient Nm/C-1) in an un­

balanced system, it is the same as the primary quotient in Z.

Theorem 6.13

Let X, Y and A be elements of C^, such that both X/A and

y/A are defined, with A .GT. 0. If X .LT. Y then (X/A) .LE. (Y/A),

and the latter c-inequality cannot be more strict.

Proof: Again, no distinction will be made between an element B

of and its signed value <|)CB) . If X and Y have opposite
signs, then X/A and Y/A have opposite signs, unless one or both of

them are zero. Since A .GT. 0, the quotients have the same sign as their

respective numerators, so (X/A) .LE. (Y/A). If either of X or Y

are zero, take them as having opposite signs.

Consider the situation when X and Y have the same sign, letting
Rĵ and R^ be the remainders from X/A and Y/A, respectively. From

Chapter 3, X/A satisfies the integer equation X = #(X/A)'A + R^.

71
Similarly, Y = <(>(Y/A)*A + Rg. Since X < Y, it follows that

*(X/A)'A + Rj < 4>.CY/A)"A + R2 s o

1) WCX/A) - *(Y/A)]A < - Rj.

Suppose (Y/A) .LT. (X/A) . Then *(Y/A) < *(X/A), and <()(X/A) - (J>(Y/A) > 0.
Because these inequalities involve integers, this implies

*(X/A) - iJ)(Y/A) 2 and with 1) above gives

2) 0 < A < R2 - Rj.
Since X and Y have the same sign, the remainders R^ and R^

have the same sign also. The division theorem in also shows

|Rj | < |a | and [Rg] < |A|, so it must be true that |Rg - Rĵ | < A.
This contradicts inequality 2), implying that (Y/A) .LT. (X/A) is

false. Hence, (X/A) .LE. (Y/A).

To see that this c-inequality cannot be more strict, consider

the following example. Let A be any element of Cĵ , such that

1 .LT. A .LT. Pm. Then take X = A and Y = A ® 1, so X .LT. Y.

The choice of A insures no overflow occurs in deriving Y. The
quotients are (X/A) = 1 and (Y/A) = 1, so that (X/A) .EQ. (Y/A).

Theorem 6.14

Let X, Y and A be elements of C^, such that both quotients
X/A and Y/A are defined, with A .LT. 0. If X .LT. Y then

(X/A) .GE. (Y/A), and this second c-inequality cannot be made more
strict.

Proof: This follows in essentially the same way as Theorem 6.13.

The counterexample will have Nm .LT. A .LT. -1, with X = A e 1 and
Y = A, to give X/A .EQ. Y/A .EQ. 1.

72

In these basic results, the c-inequalities exactly simulate the

integer inequalities when overflow is absent. The occurence of

overflow causes difficulty. There are many directions which could now
be persued with c-inequalities, but will not. Instead, attention will

be returned to division in C^, and its interaction with other radixm
complement operations in more con^licated expressions.

CHAPTER 7

A "RATIONAL" ALGEBRA FOR C^

The division operation in the radix complement system is dis­
tinct from both of the ring operations addition and multiplication.

In particular, it is not the "inverse" of multiplication. Any study

of C^, then, should investigate interactions between division and the

other two operations. This will be done in two parts. ' The first con­

siders only division and multiplication.

Division and Multiplication

In a field, division and multiplication are closely related.

Division is the "inverse" of multiplication in the sense that it is

multiplication by the multiplicative inverse; ^ = x*y” .̂ Division
in Cjl̂ does not have this property; it is a distinct third operation

on the ring. Nevertheless, there is some relationship between multi­
plication and division in C^. Certain properties of field operations

are approximated by radix complement operations.

Consider the field properties 1) a = x, 2) “ x

and 3) ^ = y if and only if x = a-y, where a ^ 0 in each case.

73

74
None of these hold in C^. Studying them in may yield insight

into the relationship between division and multiplication. To simplify

notation involving the remainder in division, the function rem will

be used; rera(A/B) gives the remainder from the quotient A/B, for

A and B in either or Z. It is defined when its argument is

a defined quotient. The expression rem(A/B) = A e (A/B)*B gives

its value for c \ That is,if A = Q*B ® R and A/B = Q, then
rem(A/B) = R.

Theorem 7.1
Let X and A be elements of C^, such that X/A is defined.

Then (X/A)*A = X if and only if rem(X/A) = 0.

Proof: The division theorem of Chapter 3 gives X = (X/A)*A ® rem(X/A),

The result here follows directly. Note that (X/A]*A does not overflow.

Theorem 7.2

Let X and A be elements of Then (X*A)/A = X if and

only if X*A does not overflow.

Proof: If X*A does not overflow, then X*A = X*A. Elements
of and their signed values are not distinguished. Since (X*A)/A = X

in 2, it follows that (X*A)/A = X in C^.

Suppose (X*A)/A = X. The note in the proof above implies that
[(X*A)/A]*A does not overflow. Thus X*A does not overflow.

75
These theorems may be used directly to prove the following.

Theorem 7.3

Let X, Y and A be elements of C^, such that X/A Is defined.

1) If rem(X/A) = 0, then X/A = Y implies X = A*Y.

2) If there is no overflow in A*Y, then X = A*Y implies X/A = Y.

Corollary 7.4

Let X, Y and A be elements of C^, such that X/A is defined
and exact (rem(X/A) = 0) and Y*A does not overflow. Then X/A = Y

if and only if X = A*Y.

The restriction to an exact quotient is quite severe. It is

needed because information is lost when the division remainder is dis­

carded. This loss is essentially from the low order significant digits.

Overflow represents a loss of information in the high order digits.

Overflow loss is generally associated with large magnitude arguments,

while remainder loss occurs with all magnitudes.

A result of some utility is included here.
Theorem 7.5

Let X and A be elements of C^, such that X/A is defined
and A .GT. 0. Then X o (X/A)*A = X mod A.

Proof: X o (X/A)*A = rem(X/A). This is how X mod A is often

defined.

Theorem 7.5 also holds for primary division in the integers.

Another property of fields (actually of integral domains) must
be restricted in C^. The radix complement system is a ring, but not

76
an integral domain; divisors of zero do exist (262144 * 16384 = 0 in C^g)'

This means the cancellation law of multiplication will not generally hold,

so A*X = A*Y does not always imply X = Y. For example, in C^,
4 * 3 = 4 * 7, but 3 ^ 7; in 262144 * 16384 = 0 * 16384,

while 262144 ^ 0. It can be shown that the cancellation property does

hold if there is no overflow.

Theorem 7.6
Let X, Y and A be elements of C^, and suppose neither A*X

nor A*Y overflow. If A*X = A*Y, then X = Y.

Proof: Because there is no overflow, (j)CA*X) = A*X and

tp(X*Y) = A'Y. Since (p is one-to-one, A-X = A*Y, so X = Y in both

Z and C^.m

The Algebra of Fractions

Division in approximates the rational field division.

For integers x and y, the primary quotient x/y and the rational

quotient ~ differ by less than one. The primary quotient has the
smaller magnitude because it represents the integer part of the rational

quotient. From its definition, division in will have the same
property.

This suggests another way of investigating the operations:
evaluate the basic rules of rational arithmetic in C^, particularly

those involving division. Quantizing the approximation leads to a
non-standard form for expressing rational numbers.

In the work to follow, elements of the integer system Z will

be represented using lower case letters, and elements of Cĵ using

77
upper case letters. An exception to this will occur when no distinction

■ ris made between an element A in and its signed integer value

*(A); in this case, A may be either an element of or the signed

integer value, depending on context. The function s: Z + {1, 0, -1}

is the sign function. It is applied to the signed values for elements

Before considering rules of algebra, a tool of considerable

utility will be derived. It is a method of reducing integer equations

into the quotient-remainder form a = q*b + r of Chapter 3, where

q = a/b and r is the remainder from the division.

Theorem 7.7 (the reduction theorem)

Let a, b, c and d be integers, such that a = cb + d and

a/b is defined. Then there exist unique integers f and r such

that a = (c + f)b + r, where c + f = a/b, r has the same sign as a,
and |r| < |b|. The value of f is given by

d/b if s(d) = s(a) or a = 0 or rem(d/b) = 0,
f = ■̂ d/b - 1 if s(d) / s(a) and s(a) = s(b), or

d/b + 1 if s(d) / s(a) and s(a) / s(b),

where s is the sign function. The value of r is given by r = d - fb.

Proof: If the equation a = cb + d can be put into the form

a = (c + f)b + r, with s(r) = s(a) and |r| < |b|, then Theorem 3.3

gives the uniqueness of r and that c + f = a/b. Since a/b is
unique, f is unique. It must be shown that the transformation can
be made.

If either a = 0 or d = 0, then the result is trivially

78
true. Suppose a ^ 0 and d ̂ 0. Then the primary division algorithm
shows that.

d = (d/b)h + r ',

where r' = rem(d/b), s(r') = s(d), and |r'| < |b|. This means that

a = cb + d = cb + Cd/b)b + r', or

(1) a = (c + d/b)b + r'.

If s(d) = s(a), then s(r') = s(a), and the proof is complete with

f = d/b and r = r'. The same is true if r' = 0.

If r ' / O and s(d) / sCa), then s(r') / s(a), so equation (1)
above is not quite in the form of the primary division theorem. That

form may be achieved by adding ±b to remainder r ', with corresponding
adjustment to the other terms. If s(a) = s[b), then s(b) / s(r').

This means s(r' + b) = s(a) and |r' + b | < |b|. Thus, taking

f = d/b - I and r = r' + b completes the proof. If, on the other
hand, s(a) / s(b), a similar argument will show f = d/b + I and

r = r' - b produce the desired conclusion. The desired value for r
is achieved by expanding the right side of a = (c + f)b + r to

get a = cb + (fb + r) . Because a = cb + d, it follows that

r = d - fb. This proof also shows that the value of r may be given
by

rem(d/b) if s(d) = s(a) or a = 0 or rem(d/b) = 0,

r = ^ rem(d/b) + b if s(d) ^ s(a) and s(a) = s(b), or

rem(d/b) - b if s(d) / s(a) and s(a) / s(b).

79
Theorem 7.8

Under the hypotheses of the preceding theorem, if there exist

elements A and B in C^, such that a = <j>(A) and b = #(B),

and the quotient A/B is defined, then c + f = <ji(A/B) and there is

an element R in with r = <j)(R).

Proof: The proof of the previous theorem will not carry over

to because the form A = Q*B ® R in does not provide a unique

value for Q. However, in the integers we have

A = cB + d.

Reduction in Z now provides

A = (c + f)B + r,

where c + f = A/B, s(r) = s(A) and |r| < |B|. It was noted before

that OCA/B) = A/B, so c + f = 4i(A/B) . The bound on the magnitude

of r shows there is an element R in such that r = <j>CR)-m

Theorem 7.8 gives a reduction theorem in paralleling

Theorem 7.7 in the integers. For it to work, particularly to pro­

vide the uniqueness of f, the intermediate stages must be performed

in Z. This will prove useful in many proofs to follow.

The definition and theorems below, taken from the algebra of

the rational numbers, will serve as the basis for studying the inter­

action of division with multiplication and addition. It is assumed
that the denominators are not zero.

80

I. ^ ^ if and only if AD = BC (Definition)

l = . f | = - c ^) , = - C r |)

I"- -I = -C5|) = ^ = r f
IV. ^ C ^ O (Fundamental Principle of Fractions)

V.

VI.

Vll.

A C A + C
B B B

A C AD + BC
B D BD
A Ç ̂ ^
B ' D BD

VIII-

I. ^ if and only if AD = BC

The definition of equality between rational numbers (1. above)

is fundamental to the rational number system, so it might be good to

see how closely this property carries over to C^. Substantial modi­

fication can be expected; the loss of the remainders from the A/B and

C/D suggest this, even before considering overflow in A*D and B*C.

Theorem 7.9

Let A, B, C and D be elements of C^, such that both the

quotients A/B and C/D are defined. Let and be the re­
spective remainders, and suppose that none of the products

A*D, B*C, Rj*D or R2*B overflow. Then

A*D = B*C if and only if A/B = C/D and R^D: = Rg*B.

81
Before proving this theorem, it may help to have a lemma concern­

ing the rational numbers. This will also provide further insight,into

the nature of the primary division operation.

Lemma 7.10

Let a and b be integers, with b ^ O , and let r be the

remainder from a/b. Then ^ = (a/b) +

Proof: Note that a/b is an integer, and by the primary division

theorem a = (a/b)b + r . This is an integer equation, but taken as

an equation in the rationals, both sides may be divided by b to give

F = (a/b) + f

The form (a/b) + g is just the "mixed" form of the rational number

^ , and the primary quotient of two integers is, as noted before, the

integer part of that rational quotient. With this in mind, it follows

that for integers a, b, c and d (b / 0 and d / 0), we have ^ j

if and only if a/b = c/d and -Zl = Zz., where r and r areb d 1 z
the remainders from a/b and c/d, respectively. Furthermore, = ̂

if and only if r^d = rgb, so that

(1) F ~ F if and only if a/b = c/d and r^d = r^b.

Proof of Theorem 7.9: From the no-overflow conditions,

A*D = B*C is equivalent to A*D = B-C. This in turn is equivalent to
^ which by (1) above, is the same as A/B = C/D and R^D = RgB.

Again, by the no-overflow conditions, and because cJ>(A/B) = A/B and

0(C/D) = C/D, this last is equivalent to A/B = C/D and R^*D = R2*B.

82

The chain of equivalences gives

A*D = B*C if and only if A/B = C/D and R^*D = RgfB.

The overflow conditions required in Theorem 7.9 seem fairly severe.

They can be weakened considerably if the theorem is not stated as

an equivalence.

Theorem 7.11

Let A, B, C and D be elements of C^, such that both A/B

and C/D are defined. Let R^ and R^ be the respective remainders.

1) If the modulo reduction factors of A*D and B*C are the

same, then A*D = B*C implies A/B = C/D and R^*D = R2*B.
2) A/B = C/D and R^*D = RgtB imply A*D = B*C.

Proof: 1) Let k^ and k^ be the modulo reduction factors

for A*D and B*C, respectively, so that A*D = A*D + k^r™ and

B*C = B'C + kgt^^ Then A*D = B*C implies that A-D + k̂ r"' = B*C + kgt™.

By hypothesis, k^ = k^, so A*D = B-C. From the proof of Theorem 7.9,

this implies that A/B = C/D and R^D = RgB. Because of the ring

this will make R^*D = R^*homomorphism into C^, this will make R * D = R*B, so A/B = C/D
and R^*D = Rg*B.

2) The division theorem in C^ gives A = (A/B)*B œ R^ and

C = (C/D)*D ® Rg. Then A*D = (A/Bj*B*D ® R^*D and B*C = (C/D)*B*D ® R2*B.
Because A/B = C/D, it is true that (A/B)*B*D = (C/D)*B*D. The hypothesis
provides R^*D = R2*B, so A*D = B*C.

The need in part 1) of Theorem 7.11, to have both modulo reduc­

83
tion factors the same is shown in.this example.
Example 7.12

Consider the four bit 2's complement system, = {-8, -7, ... , 6, 7}.

Let A = 5, B = 4, C = 1 and D = 4. Then A/B = 1 with remainder

R ^= l , and C/D = 0 with remainder Rg = l . Note that A*D = 5 * 4 = 4 ,

0.
The remainders give R^*D = 1 * 4 = Rj*^. Thus A*D = B*C and
Rj*D = R2*B, while A/B / C/D. Note that / kg.

Most users assume the radix complement system is (or at least

simulates) a subset of the integers, and that C^ x C^ simulates a“ m m
subset of Z x Z. It might then be possible for Cĵ x C^ to model

a subset of the rational numbers. The work above does not deny the

possibility, when overflow is absent. Theorem 7.9 also suggests that

a subset of C^ x C^ x C^ might be used for the same purpose. One m m m
component of the ordered triple corresponding to ^ would represent

the integer part A/B, another component the remainder, and the third,

the denominator B. All three would be needed to test equality of
triples, as indicated in Theorem 7.9. Such a set of ordered triples

would simulate the rationals in mixed form. This will be considered
shortly.

I =^ =

These properties translate almost directly into the radix com­

plement system, providing the divisions are defined. Differences arise

84
when is unbalanced, because then Nm = eNm.m
Theorem 7.13

Let A and B be elements of C^, such that A/B is defined.m
r ■ r1) If C_ is balanced, or if C is unbalanced andm m

A / Nm, then

A/B = sA/eB = e(eA/B) = e(A/oB) and

e(A/B) = e(0A/eB) = eA/B = A/eB.

2) If is unbalanced, A = Nm, and B / Nm, then

A/B = e(eA/eB) = eA/B = e(A/eB), and

e(A/B) = eA/eB = e(eA/B) = A/eB.

3) If is unbalanced and A = B = Nm, then

A/B = eA/eB = eA/B = A/eB, and

e(A/B) = 0 (eA/eB) = e(eA/B) = e(A/eB).

To avoid ambiguity, the unary minus sign e is taken to have

higher precedence than any other arithmetic operator; it will be ap­

plied before any other operator. This reduces the number of parentheses
required in an expression.

Proof: 1) If the system is unbalanced and B = Nm, then all
the quotients are zero, yielding both sets of equalities. If the

system is balanced, or if it is unbalanced and B Nm, then both
'(>C®A) = -A and #(eB) = -B. Since eA/B / Nm and A/eB Nm, it

85
follows that <()CeC®A/B)] = -ip(eA/B) and $[e(A/eB)] = -#(A/eB).

Consider the four integer quotients A/B, -A/-B, -(-A/B) and -(A/-B).
To see that these are equal note that the primary quotient x/y

Ixltakes as magnitude the integer part of -j-yj- . This means all four

quotients have the same magnitude. If the magnitude of x/y is not

zero, its sign is taken to be the algebraic sign of the rational
number y. Thus A/B - -A/-B = -(-A/B) = -(A/-B) in Z, and

A/B = eA/eB = e(oA/B) = e(A/eB) in Cm- The other set of equalities

is derived by negating each term.

2) In an unbalanced system, with A = Nm, we have A = eA.

Thus eA/eB = A/eB and eA/B = A/B. Since B / -1 (else A/B is

not defined), the sign and magnitude argument of part 1) applies to

give A/B = 0(eA/eB) = eA/B = e(A/eB). Negating each term again pro­

vides the second set of equalities.

3) If A = B = Nm in an unbalanced system, then both A = eA

and B = eB. This means A/B = eA/eB = eA/B = A/eB, where each quotient

is equal to one. The second set of equalities is obtained as before.

IV. | = § , ,C / 0

This property is known as the Fundamental Principle of Fractions

for a field. It is only approximately true in the radix complement

system if there is no overflow;in this case, the two expressions will

differ by no more than one. Overflow changes this considerably.

The difference between A/B and (A*C)/(B*C) may be charac­

terized in more than one way. It may be taken as an element of C^,

given by subtracting the expressions, or it may be given by subtracting

86

the signed values of the expressions as The

value in is equivalent modulo r"’ to the integer value, so this
latter will be developed first.

Theorem 7.14

Let A, B and C be elements of C^, such that both A/B and

CA*C)/(B*C) are defined. Let and be the modulo reduction

factors for A*C and B*C, respectively, and let R be the remainder
from (A*C)/CB*C). To simplify notation, let d be the integer

d = (R + k2r™*{[A*C)/(B*C)} - k^r™)/C. Then

$(A/B) = *{(A*C)/CB*C)} + f,

where

if s(d) = s(A), or A = 0, or rem(d/B) = 0

f = d/B - 1 if s(d) / s(A) and s(A) = s(B), or
if s(d) / s(A) and s(A) / s(B).

Proof: Let Q = (A*C)/(B*C). Then the primary division theorem

implies

$(A*C) = Q'4(B*C) + R.

Introducing the modulo reduction factors k^ and k^ gives

A-C + k^r"’ = QCB-C + kgr™) + R,

which simplifies to

A-C = Q-B-C + (R + kgr"^ - kĵ r™) .

Since this is an equation in the integers, and two of the terms are

evenly divisible by C, the third term must also be divisible by C.

d/B + 1

87

Thus

A = Q*B + (R + k^r^Q - k^r™)/C.

Note that the right-hand term is the integer d used in the state­

ment of the theorem. The reduction theorem 7.7 now implies there is

an integer f, given by the expression above, such that (Q + f) = A/B.
This is the same as

*(A/B) = *{(A*C)/CB*C)} + £,
and the proof is complete.

The next lemma is for the special case when there is no overflow.
Lemma 7.15

Let X , y and c be integers. If | x | < |yc|, then |x/c| < |y].

Proof: Note the hypothesis implies c / 0 and y / 0. From
the primary division theorem, x = (x/c)c + r, where s(r) = s(x)
and |r| < |c|. If |x| < |yc|, then

I (x/c)c + r| < |yc|.

Consider this integer inequality as a rational inequality. Dividing
both sides by |c| gives

Cl) I (%/c) + |-| < |y| .
If r = 0, the conclusion |x/c| < |y| follows immediately from Cl).

It also follows if x/c = 0, because y / 0. Suppose neither x/c
rnor r are zero. Since x and r have the same sign, x/c and —

also have like signs. Thus

|x/c| < I(x/c) + ||,

and combining this with (1) gives |x/c| < |y|.

88
Corollary 7.16

Under the hypotheses of Theorem 7.14, if neither A*C nor
B*C overflow, so that = 0, then

where

<i>(A/B) = 4>{(A*C]/(B*C)} + f,

if sCR/C) = s(A), or A = 0, or R/C = 0,

if sfR/C) sCA) and s(A) = s(B), or

if s (R/C) ^ s(A) and s(A) ^ s(B).

Proof: Since ~ ~ Theorem 7.14 applies with d = R/C.
Because R is the remainder from (A*C)/CB*C), we have |r | < |$(B*C)|
The no-overflow condition means *(B*C) = B*C, so |r | < |B*c |. By

Lemma 7.15, this implies |R/C| < |b |, which gives d/B = (R/C)/B = 0

and remCd/B) = R/C. Using this in Theorem 7.14 yields the desired
form for f.

It might be noted that Corollary 7.16 also applies to the in­
tegers; integer products never overflow.

Corollary 7.17

Under the hypotheses of Theorem 7.14, and with the integer f
given there,

(A/B) e {(A*C)/CB*C)} = *(f).

Proof: If) is the ring homomorphism from Z to Cĵ with
ip o (j> the identity map.

89

B B B

VI. A + AD + BC
B D BD

These are the addition rules for fractions, and it will be

seen that they are also approximately true in when overflow is

absent.
Theorem 7.18

Let A, B and C be elements of C^, such that A/B, C/B and
(A * C)/B are defined. Let and R^ be the remainders from

A/B and C/B, respectively, and let k be the modulo reduction factor

for A ® C. If d = + R2 + kr”, then

*{(A ® C)/B} = 4>(A/B) + *(C/B] + f,
where

d/B if s(d) = s(A ® C) or A ® C = 0 or rera(d/B) = 0,

d/B - 1 if s(d) / s(A ® C) and s(A © C) = s(B), or

d/B + 1 if sCd) / sCA ® C) and s(A ® C) / s(B).

Proof: The primary division theorem allows us to write

A = <t>(A/B)B + Rj and C = ip(C/B)B + Rg. The definition of ip yields

*CA ® C) = A + C + kr” .

Substituting,

(|)(A ® C) = (PCA/B)B + Rj + <f>CC/B)B + Rg + kr™,

which simplifies to

()>(A ® C) = {*(A/B) + *(C/B)}B + CRj + «2 + kr™).

90

The right-hand term is d, and <j)(A ® C)/B = #{(A ® C)/B}, so

Theorem 7.7 provides the conclusion.

Corollary 7.19

If no overflow occurs in A ® C and the hypotheses of Theorem 7.18

are satisfied, then

(j){(A ® C)/B} = *(A/B) + <i>(C/B) + f,

where f takes on one of the values +1, 0 or -1.
Proof: This comes from Theorem 7.18, with the modulo reduction

factor k = 0, and d = + R^. Note that |d/B| ^ 1. If d/B ^ 0,

then the magnitude restrictions on R^ and R^ imply s(R^) = sCRg) ̂ 0.
This means s(A) = s(C), so that s(d) = s(R^ + R^) = s[A ® C). The

contrapositive of this argument is that s(d) ^ s(A ® C) implies
d/B = 0. Hence, the values of f given by the expression in Theorem 7.18

must be +1, 0 or -1.

Corollary 7.19 shows again that, in the absence of overflow, field

properties may hold approximately in the radix complement system.

Corollary 7.20
(A ® C)/B = (A/B) ® (C/B) ffi t/)(f)

Theorem 7.18 may be proved in a completely different way. The

argument does not require Theorem 7.7, but is algebraic and rather
tedious, involving the signs and relative magnitudes of various quantities.

Theorem 7.21
Let A, B, C and D be elements of C^, such that

91

A/B, C/D, and [(A*D) © (B*C)]/(B*D) are defined. Let be the

modulo reduction factor for the expression (A*D) © CB*C), and k^

be the m.r.f. for B*C. If and are the remainders for
A/B and C/D, respectively, then

4){[(A*D) ffi (B*cn/CB*D)} = <J)(A/B) + 4>CC/D) + f,

where

d/<J>CB*D) if sC(A*D) ffi (B*C)] = s (d) or CA*D) ffi CB*C) = 0
or rem(d/*(B*D)] = 0,

£ = ^ d/*(B*D) - 1 if s[(A*D) ffi (B*C)] ̂ s(d) and s[(A*D) ffi CB*C)] = s(B*D),

d/*CB*D) + 1 if s[(A*D) ffi (B*C)] / s(d) and s[(A*D] ffi (B*C)] f s(B*D),

with d = R^D + RgB + {k^ - k^C^CA/B) + *(C/D)]}r™.

Proof: This will follow the pattern of Theorem 7.18. For sim­

plicity, let = <j>(A/B) and q^ = ipQC/D). The primary division theorem

gives A = q^B + R^ and C = q^D + R^. With

*[(A*D) ffi CB*C)]= A'D + B-C + k^r™,

substitution gives

*[(A*D) ffi (B*C)] = fq^B + R^)D + (qgD + RgDB + k^r™.

Simplifying this,
*[(A*D) ffi (B*C)3 = Cq̂ + qglB'D + (R^D + R^B + k^r”) .

Since <|)(B*D) = B*D + k^r™, we have B*D = ij)fB*D) - kgt™, so
*[(A*D) ffi (B*C)] = (qj + q2)C<t>(B»D) - k^r™] + (R^D + R^B + k^r®) .

Another simplification gives

*[(A*D) ffi CB*C)3 = Cq^ + q2)'*(B*D) + CRĵ D + R^B + kĵ r® - k^Cq^ + q^) r®].

92

The right-most term is the integer d above. Taking note of the

definitions of and q^. Theorem 7.7 again completes the proof.

Corollary 7.22

If there is no overflow in Theorem 7.21, then

® CB*CD:/CB*D)} = + (t>CC/D) + f,

where f takes a value +1, 0 or -1.
Proof: The condition of "no overflow" may be interpreted two

ways. It may mean the modulo reduction factors k^ and k^ in

Theorem 7.21 are both zero, or that none of the radix complement opera­

tions in the equation overflow. The first case is more general. If

none of the operations overflow, then k^ = kg = 0; the converse does
not hold. The weaker interpretation will be taken.

Assume k^ = kg = 0. Then (|){(A*D) ® (B*C)} = A'D + B*C and
<J>CB*D) = B*D. Theorem 7.21 gives d = R^D + R^B. Note that

ICRj’D + RgB)/(B'D) I _< 1, because |R̂ | < |b | and |R̂ | < |d |.

Suppose (Rĵ 'D + R2*B)/(B-D) ^ 0. Since R^ and R^ are re­

mainders, sCRĵ 3 = s(A) and sCR^) = s(C). This means sCRj’D) = s(A*D}
and s(Rg'B) = s(C'B), so s(A«D] = sfB-C). Thus

sCd) = s(Rj^*D + Rg'B) = sCA'D + B*C) = s{(A*D) ® CB*C)}. The contra­

positive of this says that s(d) ^ s{(A*D) ® (B*C)} implies d/<ji(B*D) = 0.
Therefore, considering the bounds for d/4>(B*D), the value of f will

be +1, 0 or -1, given by the expression in Theorem 7.21.

Corollary 7.25

{[(A*D) ® CB*C)3/(B*D}} a [(A/B) ® (C/D)] = :fi(f) .

, 93 . .

In the no-overflow case, ^(fj = +1, 0 Or -1. Moreover, this

value does not involve overflow in the subtraction.

l*ïï=§
This property, and property VIII, will not translate to the

radix complement system with the facility of those already considered.

Even in the no-overflow case, the values of the expressions (A/B)*(C/D)

and (A*C]/(B*D) may differ by quite significant amounts. For example,
(1/2)*(Pm/1) = 0 while (l*Pm)/(2*l) = Pm/2. On the IBM/370,

2Pm = Pj2 = 2147483647, and these two expressions become
(1/2)*(2147483647/1) = 0 and (1*2147483647)/(2*1) = 1073741823.

The problem occurs because division remainder is lost. When two quo­

tients are multiplied, this loss, in effect, is multiplied also. In

previous theorems, the loss was additive. Overflow, as usual, further

complicates the picture.

Theorem 7.24

Let A, B, C and D be elements of C^, such that A/B, C/D
and (A*C)/(B*D) are defined. Let and k^ be the modulo reduc­

tion factors for A*C and B*D, respectively, and and R^ be

the remainders from A/B and C/D, respectively. Define the integer
d by

d = 4>CA/B)B*R2 + (KC/D)D*Rj + Rj*R2 + k^r™ - k2<l>(A/B)<)>(C/D)x'".

Then *[(A*C)/(B*D)] = $ (A/B)* (C/D) + f.

94 ,

where

/d/ij)(B*D) if sCd) = SCA*C). or A*C = 0, or rem(d/$(B*D)) = 0.

f =< d/iJ>CB*D) - 1 if s(d) ^ sCA*C), and s(A*C) = s(B*D), or
d/*(B*D) + 1 if sCd) ?! s(A*C), and sCA*C) ?! s(B*C).

Proof: This will follow the established pattern. We have

A = *[A/B)B + and C = (j)(C/D)D + R^. Furthermore, <j)(A*C) = A*C + k^r™
and (j)(B*D) = B*D + kgr™, the latter giving B*D = $(B*D) - kjr”*. Elemen­

tary algebraic manipulation then yields

<f>(A*C) = [<j>(A/B)B + R^][*(C/D)D + R^] + k^r*.

*CA*C) = [*CA/B]*(C/D)]B'D + [ÿCA/BjB'Rg + $(C/D)D'R^ + R^Rg + k̂ r"*],

*(A*C) = [*(A/B)*(C/D)][*(B*D) - k̂ r""] + [$CA/B)B" R^ + *CC/D)D'R^ + R^R^ + k^r”'].

and

$(A*C) = [$(A/B)*(C/D)]*(B*D) + d,

where d is the given integer expression. Theorem 7.7 provides the
conclusion.

The form of the "pseudo-romaindoi" d is somewhat more cumber­

some than before, particularly that part involving the modulo reduction

factors. It can be simplified by noting that ^(A/B)B = A - R^ and

4i(C/D)D = C - Rg. Substituting these gives

d = A'Rg + C'R^ - R^R^ + kjr" - kjifrCA/B)<|)(C/D)r"'.

Corollary 7.25

If neither A*C nor B*D overflow in Theorem 7.24, then

*[[A*C]/[B*D)] = $ (A/B)* (C/D) + f.

f =<

95

where

CA*R2 + C'Rj - R^Rgl/CB'D) if s(d) = s(A*C), or A*C = 0
or remCd/CB*D)) = 0,

CA'Rg + C«Rj - R^R^D/CB-D) - 1 if s(d) ̂ s(A*C) and
sCA*C) = s(B*DD, or

(A'Rg + C'R^ - R^Rgj/CB'CO + 1 if s(d) ̂ s(A*C) and
s(A*C) ^ sCB*D).

This expression for f shows how the loss of remainders is multiplied.

Even in the no-overflow case, the value of f may be large.

To investigate a maximum value for f in Corollary 7.25, consi­

der the original form of the "pseudo-remainder" d in Theorem 7.24,

d = 4>CA/B)B*R2 + (p(C/D)D‘R + R^'Rg. (k^ = kg = 0 in the no-overflow
case.) The rational number

d *(A/B)Rg *(C/D)Ri Ri'Rg(1) B'D D B B-D

is, in magnitude, an upper bound for the magnitude of the integer d/CB*D);

and d/CB*D) differ by less than one. Thus, the maximum value

of will give the maximum for d/fB-D) and, in turn, the maximum
for f.

If is to be maximal, then all three terms on the right of

equation (1) must have the same sign. For simplicity, consider only

the case where A, B, C and D are positive, so each term in (1)

will be non-negative. The remainders R^ and Rg will then both be
non-negative, and the terms in (1) will be maximal when the remainders
have their greatest values. This will happen when R^ = B - 1 and

Rg = D - 1. Substituting these values into expression (1) and simpli-

96

fying gives

C2) B ^ = 4(A/B)(1 - i) + *(C/D)(1 - 1) + Cl - Cl - 5).
Since all the terms are non-negative, equation C2) shows that

(3) B ^ < <)>CA/B) + 4>CC/D) +1.

Rewriting (2) another way gives

= {*CA/B) + 4CC/D) + 1}(1 - ^ K 1 - |0 + (1 - §) + - -̂̂ ^ (1 - |o.

Again, the terms are non-negative, so omitting two of them gives a lower

bound,

C4) ^ > UCA/B) + (f)(C/D) + 1}(1 - |0C1 - §3.

Equality may occur in [4] when B = D = 1, because then d = 0. Com­

bining inequalities (3) and (4) shows

{*CA/B) + OCC/D) + 1>C1 - |d C1 - < *(A/B) + *CC/D) + 1.

The following result has been established.

Theorem 7.26
Let A, B, C and D be non-negative elements of Cĵ satisfying

the hypotheses of Corollary 7.25. Then the value of f given there

is strictly bounded above by ^(A/B) + $[C/D) + 1. The maximal
value of f, achieved when Rj and R^ are maximal, is bounded below

by

C*CA/B) + 4CC/D0 + 1}C1 - |d C1 -

Note that the maximal value of f in Corollary 7.25 will ap­

proach <t>(A/B) + ^(C/D) + 1 when B and D are large. At the same

97

time, both A/B and C/D will be small for large values of B and D.
Corollary 7.27

Let A, B, C and D be elements of Cĵ satisfying the hypotheses
of Theorem 7.24. Then

(A*C)/CB*D) = (A/B)*(C/D) @ ip(f),
where f is the integer expression given in the theorem.

VIII- W * § = I#
For this property, the standard technique will not be used. It

would lead to a very difficult derivation, with the resulting formula­
tion so involved as to impede evaluation.

Let d be the integer such that

(1) <t>(A/B) = $[(A*D)/(B*C)]'$(C/D) + d.

When A/B, C/D and (A/B)/(C/D) are defined, none of C, D or C/D

may be zero. This means D/C will be defined, and Theorem 7.24 says
that

*[(A*D)/(B*C)] = *CA/B)'$CD/C) + g,

where g is the integer expression given in the theorem. Substituting

this into equation (1) gives

OCA/B) = *(A/B).*(D/C)'*(C/D) + g-*(C/D] + d.

{0 if [c[[d(, or

1 if |c| = |d|,

it follows that

98

g'*(C/D) + d if |C| ^ |d |,
♦ (A/B) =

g'*(C/D) + d + OCA/B) if |C| = |d |.

Solving this for d yields

♦(A/B) - g-^(C/D) if |C| / |d |,

-g-^(C/D) if |C| = 1d |.

Note that |c| 2 1̂ 1» because otherwise, C/D = 0. With this expression

for d. Theorem 7.7 is applied to equation (1), proving

Theorem 7.28

Let A, B, C and D be elements of C^, such that A/B, C/D

and (A/B)/(C/D) are defined. Let g be the integer expression defined

in Theorem 7.24 such that ♦C(A*D)/(B*C)] = ♦(A/B)^(D/C) + g. Then

♦C(A/B)/(C/D): = ♦[(A*D)/(B*C)] + f,

where

' d/^(C/D) if s(d) = s(A/B), or A/B = 0
or rem(d/^(C/D)) = 0,

d/^(C/D) - 1 if s(d) ̂ s(A/B) and s(A/B) = s(C/D), or

d/^(C/D) + 1 if s(d) 7« s(A/B) and s(A/B) / s(C/D),

with

' ♦(A/B) - g*^(C/D) if |C| / |d |,
d =

-g-^(C/D) if |C| = |D|.

f =1

99
The expression for d involves the integer expression g

quite directly, and indicates that the values of f and g should

be linked rather closely. In the case where |c| = |d|, it follows

that f = -g + t, where t may be -1, 0, or +1. If [c| ^ |D|,

a bit more work is involved, but Corollaries 7.19 and 7.20 of Theorem

7.18 may be used to show f. = <1)CA/B)/())(C/D) - g + t, where t may again

be +1, 0 or -1. Maximal values of g occur when and *(C/D)

both have large magnitude and the same signs. In this situation,

(̂A/B)/i(>CC/D) will have relatively small magnitude, indicating f

may attain magnitudes approximately equal to those attained by g.
When, overflow does not occur in either A*D or B*C, the statement

of Theorem 7.28 will suffice, except that the integer expression g
must be from Corollary 7.25 (or Theorem 7.24 with all modulo reduction

factors zero).

Corollary 7.29

Let A, B, C and D be elements of C^ satisfying the hypotheses

of Theorem 7.28. Then

(A/B)/(C/D) = CA*D)/(B*C) ® i|)(f),

where f is the integer expression given in that theorem.

The properties shown here all involve division and a second

radix complement operation. If the second operation is addition or

subtraction, and if overflow does not occur, then the radix complement
property resembles the corresponding field property, except for a small

additive constant. If overflow occurs, or if the second operation is
multiplication or division, the radix complement and field properties

. 100
differ greatly.

It is important to note that some results in this chapter are

true in the system of integers. When there is no overflow, the four

arithmetic operations in are equivalent to the corresponding

operations in Z. Each corollary for the no-overflow case applies

directly to the integers. This will be exploited to develop a system

for mixed form rational numbers. Another application will be seen

first, however.
The radix complement system is often used to simulate the in­

tegers without regard to the modular nature of C^. Overflow is con­

sidered to be error. The next chapter will quantize this "error."

CHAPTER 8

When the radix complement system is used in place of the in­
tegers, overflow often is considered an error by users. If an ex­

pression over involves only the operations of addition, subtrac­

tion, and multiplication, any such error can be evaluated using the

modulo reduction factors in Definition 2.10. The error will be some

multiple of r™. The situation is more complicated if division is in­

volved.

The problem may be stated in the following way. Suppose E^

is an arithmetic expression over C^, involving operations of addition,

subtraction, multiplication and/or division. The expression E^ will

be called the corresponding integer expression to E^ if it is obtained

in this way; each element of appearing in E^ is replaced by its
signed value, and each operation ®, e, * or / is replaced by the cor­

responding integer operation +, -, • or /. If no distinction is made
between an element A of and its signed value <|>(A), the first part
of this correspondence does nothing.
Definition 8.1

Let X be the result of evaluating E^ in C^, and let x be the

value of E^. The error in E is given by the integer x - ^(X).

101

102

As an example, consider the expression A ® B- in Cĵ . Its

corresponding integer expression is <)>CA) + <t>(B) . The error in

A ffi B is then given by *(A) + *(B) - *(A ® B). Lemmas 6.1, 6.2 and

6.3 show <fCA ® B) = $(A) + 4>CB) + kr”*, where k takes a value
+1, 0 or -1, so the error is -kr™. When A ® B has positive overflow,

k = -1 and the error is r”*; negative overflow gives an error of -r™.
The next theorems describe the error when two expressions, each

with error, are combined using one of the ring operations ®, e or *.

In each case, and are expressions over having errors e^

and Og, respectively. and F^ are the corresponding integer ex­

pressions. Note that e^ = F^- *(E^) and ®2 ~ ^2 ~ and no
distinction is made between an expression and its value.

Theorem 8.2

The error in ® E^ is e ^ + O g - kr™, where k is the

modulo reduction factor for ® Eg.

Proof; From Definition 8.1, the error in E^ ® E^ is given by

F^ + Fg- ® Eg) . Previous work has shown

4>CEj ® Eg) = 4>(Ej) + *(Eg) + kr",

where k is the modulo reduction factor for E^ ® Eg. Combining
these and using the definitions of e^ and Og gives the error in
E^ ffi Eg as e ^ + O g - kr”*.
Theorem 8.5

The error in E^ e Eg is e ^ - O g - kr™, where k is the modulo

reduction factor for E^ e Eg.
Proof: This is essentially the same as in Theorem 8.2.

103
Theorem 8.4

The error in is e^Fg + ®2^1 ~ ®1®2 ” where k is
the modulo reduction factor for E^+Eg.

Proof: The error is F^-Fg - 4>(Eĵ *Eg) . Then

F^-Fg - <j.(Ej*EgD = FjFg - {4.(Ej)-(j)CEg)} + kr’m

= *1^2 + ®2’’l - ®1°2 - kr™-

Chapter 7 shows the modulo reduction factor in radix complement

addition (or subtraction) is +1, 0 or -1. The error in a sum or dif­

ference of elements of is then +r™, 0 or -r™. On the IBM 1130

in C^g, this error is +32768, 0 or -32768, while in C^g on the

IBM/370, it is +4294967296, 0 or -4294967296. In these cases, any

error introduced by addition or subtraction has twice the magnitude of

the largest number in the system. Error in the arguments may increase
this.

Multiplication of two radix complement numbers may give extremely
large error. The greatest overflow (and largest error) for multiplica­

tion occurs with Nm*Nm. On the IBM/370, N^g = -2147483648 (-2^^) and

Ngg* Njg = 0, with modulo reduction factor k = -1073741824 (-2^®). The

error in N^g+N^g is thus 4,611,686,018,427*387,904 (2®^). This is
about S X 10^®; the largest element of C^g is approximately 2 x 10®.

The error in an expression E will be some multiple of r™ when

the operations in E are all additions, subtractions and multiplications.

To see this, note that the error in a single element of (an expression

104
with no operations) is zero. The error in E is obtained by repeated
application of the theorems above, and will therefore be composed

of sums, differences and products of multiples of r™.

Division will not cause overflow error; it does not overflow.

However, it may modify and propagate error from its operands. Note that

error in this context refers to differences between integer arithmetic
and radix complement arithmetic, and not to differences with arithmetic

in the rational numbers. The quotient 5/9 = 0 and has no error, be­

cause it is the same in and Z. Comparison to the rational quotient
5-g- would have little meaning; rational division is not comparable to

integer or radix complement division.

Before stating the theorem for division, the following lemma may
help. It represents a generalization of many results from Chapter 7.

Lemma 8.5

Let x,y,a and b be integers such that x/y and (x + a)/(y + b)

are defined. If r = rem{(x + a)/(y + b)} and d = {[(x + a)/Cy + b)]-b + r - a},

then x/y = Cx + a)/(y + a) + f, where

d/y if s(d) = s(%) or x = 0 or rem(d/y) = 0,

f = d/y - 1 if sCd) / sCx) and s(x) = s(y), or
d/y + 1 if s(d) / s(x) and s(x) / s(y).

Proof: . Let q = (x + a)/(y + b). The primary division theorem

gives X + a = q*Cy + b) + r, where r = rem{[x + a)/(y + b)}. Then

X = q*y + (q'b + r - a). With d = q»b + r - a, the reduction theorem
provides the conclusion.

105
Theorem 8.6

Let the expressions and errors be as given for Theorems 8.2, 8.3

and 8.4 and assume E^/Eg and F^/Fg are defined. If r = remCE^/E.,)
and d = r + e^ - , then the error in E^/Eg is given by

^ d/?2 if s(d) = s(F^) or F^ = 0 or remCd/F^) = 0,

d/Fg - 1 if sCd) f sCF^) and sCFj) = sCFg), or

d/Fg + 1 if s(d) f s CFj) and s (F̂) ^ s CF̂) .

Proof: The error is F^/Fg - OCÊ /EU,) . This becomes

F^/Fg - *(E^)/*(E2) and F^/Fg - (F^- e^j/CFg - e^). Taking x = F^,
y = Fg, a = -Oj and b = -e^ in Lemma 8.5 will complete the proof.

The table below summarizes the results. No distinction is made
here between X and #(X), or Y and *(Y).

Value in cf "Correct" Value in Z Errorm

X X + a a
y Y + b b

® Y) + a + b -
(k = 1. 0. -ID

X ffi Y <t>CX ffi Y) + a + b - kr”*

X a Y *(X a YD + a - b - kr™
(k - 1, 0, -ID

X*Y *(X*YD + Xb + Ya - ab - kr"
(k an integerD

X/Y 4CX/YD + f
(f given in Theorem 8.6D

These rules suggest an inductive process for determining the error

in any finite expression over C^. However, the conditions governing the

choice of the value for k (or fD are sufficiently complicated to

106

make this impractical in general. Specific expressions may be evaluated
for error on a case by case basis.

The next application will draw heavily on results in Chapter 7

to produce a representation in Z x Z x Z of the rational numbers in
mixed form.

CHAPTER 9

AN ALGEBRA FOR MIXED FORM RATIONALE

The rational numbers are usually defined as a set of ordered

pairs of integers. In "mixed form,” a rational number [a,b) or

^ is expressed as q + p , where q = a/b is an integer, and p =

is a rational fraction having magnitude less than one and sign the same

as ^ . This suggests representing the rational numbers, in mixed form,

as a subset of the set of ordered triples of integers, Z x Z x Z . Such
a representation for ^ will require that one component be the integer
part a/b, one the remainder rem(a/b), and one the denominator b.

Many results from Chapter 7 will be used in developing this sys­

tem of ordered triples. Because all arithmetic will be performed in the

integers, the no-overflow condition will hold throughout. The theory in
Chapter 7 for the no-overflow case applies directly to the integers.

The Ordered Triples
The following defines a map from a set of ordered pairs of in­

tegers (rational numbers] to the set of ordered triples of integers.
Definition 9.1

Let div*: Z x {Z - 0} -*■ Z^ be defined for (a,b) in

Z X {Z - 0} by div*(a,b) = (q,r,b), where q = a/b and r = rem(a/b).

(rem is the remainder map defined in Chapter 7.)
107

108
The map is well-defined, because the quotient q and the

remainder r associated with the primary quotient a/b are unique.
It is also one-to-one. This is seen by noting that if

div (a',b') = div (a,b) = (q,r,b), then b = b'. The primary division

algorithm shows that a = qb + r, so a = a', and therefore, Ca',b') = (a,b).

It must be carefully noted here that the = symbol used with the pairs

and triples represents thé usual equivalence relation on sets of ordered

tuples; two ordered n-tuples are equal if and only if their correspond­
ing components are equal. This is not the same as the equivalence

relation on Z x {Z - 0}, denoted by =q , which produces the system of
rational numbers.

The entire set of ordered triples of integers 7? will not be

of interest, because many triples cannot be derived from an ordered pair

using Definition 9.1. In particular, the primary quotient requires

that the remainder r have the same sign as qb + r, and that

|r| < |b|. Thus, attention will be restricted to those triples which
lie in the range of div .
Definition 9.2

Let D* = div*(Z X {Z - 0}).

D is the set of ordered triples which will make up the mixed form

rational system. Before preceding, it might be helpful to formally
characterize those triples in D .
Theorem 9.3

Let q, b and r be integers. Then (q,r,b) e D if and only

if s(r) = s(qb + r] and |r| < |b|, where s is the sign function

109

defined previously.

Proof: This follows directly from the definitions of div

and the primary quotient. Uniqueness of the form qb + r is used
for the sufficiency.

A Rational System for D

From Definition 9.2 and earlier remarks, the map div is one-
to-one onto the set of triples D in Z. Thus, this map may be used

to create an algebraic structure in D which is a copy of the struc­

ture in Z X {Z - 0} called the rational number system. The defini­

tions required in D are an equivalence relation, an addition, and

a multiplication. The next three definitions form the backbone of the
usual rational number system.

Definition Q.l

Let (a,b) and (c,d) be elements of Z x {Z - 0}. Then

(a,b) (c,d) if and only if ad = be.

Definition Q.2

Let (a,b), (c,d) and (x,y) be elements of Z x {Z - 0}. Then

Ca,b) + (c,d) =Q Cx,y) if and only if (x,y) (ad + bc,bd).

Definition Q.3

Let (a,b), (c,d) and (x,y) be elements of Z x { Z - O}. Then

(a,b]" (c,d) =Q (x,y) if and only if (x,y) (ac,bd).

* *The map div is used to duplicate these definitions in D .
*

Because div is one-to-one and onto, they are well defined.

110

Definition 9.4

Let Cq,r,b) and (q',r',b') be elements of D , and let

(a,b) and [a',b') be the elements of Z x {Z - O} for which

div (a,b) = Cq,r,b) and div (a',b') = (q',r',b'). Then define

(q,r,b) =p Cq'.t'.b') if and only if Ca.b) =q Ca'.b')-

Note that the symbol is used for this relation on D*; the nature
* * of div makes an equivalence relation on D.

Definition 9.5

Let (q,r,b) and (q',r',b') be elements of D , with (a,b]
and (a’,b'3 the pre-images of (q,r,b) and (q',r',b'), respectively.

Then

(q,r,b) + (q'.r'.b') = div C(a,b) + Ca'.b')].

The one-to-one nature of div ensures that this sum is well-

defined. To show this, suppose that (q.r.b) (x,y,z) and
Cq'.r'.b') =p (x'.y'.z'). Let (c.d) and (c'.d') be the correspond­

ing pairs for [x.y, z) and (x'.y'.z'). Then (a.b) (c.d) and

(a'.b') =Q (c'.d'). so that

(a.b) + (a'.b') =q (c.d) + (c'.d').

Thus div [(a.b) + (a'.b')] =p div*[(c,d) + (c'.d')].

and (q.r.b) + Cq'.r'.b') (x.y.z) + (x'.y'.z').

Definition 9.6

Let (q.r.b) and Cq'.r'.b') be elements of D . with (a.b)
and (a'.b') as before. Define (q.r.b)-Cq'.r'.b') = div [(a.b)-(a'.b')].

Ill

The proof that this product is well-defined follows in the
same way as that for the sum.

These definitions may now be characterized in terms of the
elements of D , so it will not be necessary to use Z x {Z - 0} and

div in working with D . This is done as follows.
Theorem 9.7

Let Cq,r,b) and Cq',r',b') be elements of D . Then

(q.r.b) =jj Cq'.r'.b') if and only if q = q' and (r.b) =q (r'.b').

Proof: Suppose that (q.r.b) =p (q'.r'.b'). Then there are

pairs (a.b) and (a'.b') such that div (a.b) = (q.r.b).

div (a'.b') = Cq'.r'.b'). and (a.b) =q (a'.b'). This last fact implies

that ab' = a'b. From the definition of div .

a = qb + r and a' = q'b' + r.
so ab' = qbb' + rb' and a'b = q'b'b + r'b.

Since ab' = a'b. it follows that

(1) ab' = qbb' + rb' = q'bb' + r'b.

The primary quotient ensures that |r| < |b|. and |r'| < |b'|. so

(2) |rb'I < Ibb'I and |r'b| < |bb'|.

Now. if either r or r' is zero, equation (1) above shows that
the integer ab' is divisible by bb'. The magnitude restrictions on

rb' and r'b then imply that both r and r' must be zero. This

means that (r.b) =q (r'.b'). It also means qbb' = q'bb', which im­
plies q = q'. completing this part of the proof for the case when r

or r' is zero.

112

Suppose neither r nor r* is zero. The magnitude restrictions

in (2) still apply. In addition, neither a nor a' can be zero, and

the primary quotient asserts that s(rj = s[a) and s(r') = s(a'),

where s is the sign function. Thus, s(rb') = s(ab’) and s(r'b) = s(a'b).
Because ab' = a'b, it follows that sCrb') = s(r'b) = sCab']. Under

these conditions, it must be true that equations

ab' = qbb' + rb' and ab' = q'bb' + r'b

both represent the quotient (ab')/(bb'). The uniqueness property
(Theorem 3.3) then says that q = q' and rb' = r'b. This latter pro­

vides (r,b) =Q (r',b'), so this part of the proof is complete.

Now, suppose q = q' and (r,b) =q (r',b') for elements
*(q,r,b) and (q',r',b') of D . As before, there are pairs (a,b)

and (a',b') such that a = qb + r and a' = q'b' + r '. This means

ab' = qbb' + rb' and a'b = q'bb' + r'b. Since q = q' gives

qbb' = q'bb', and (r,b) (r',b') gives rb' = r'b, it follows that

ab' = a'b. Thus, (a,b) =q (a',b'), which itçilies (q,r,b) =p (q',r',b')

and completes the proof of Theorem 9.7.

This theorem provides the first clear indication that the system D

is the rational number system in mixed form.

Characterization of addition and multiplication is done in two
steps. First, the resulting triple is expressed using components of

ordered pairs; the ordered pairs correspond under div to the ordered
triple arguments of the sum or product. The results of Chapter 7 are

then used to remove the ordered pairs from the picture.

113
Lemma 9.8

■ *Let Cq>r,b) and (q',r',b'3 be elements of D , with cor­

responding pairs (a,b) and Ca'.b'}. respectively. Then
Cq.r.b] + Cq'.r'.b') = Cx.y.z). where

X = Cab' + a'b)/Cbb'},

y = ab' + a'b - xbb'. and
z = bb'.

Proof: This follows from the definition of div . The sum
gives

(q.r.b) + Cq'.r'.b') = div (Ca.b) + Ca'.b')].

Since Ca.b) + Ca'.b') = Cab' + a'b.bb'). application of div to this

pair yields the conclusion.

Theorem 9.9

Let Cq.r.b) and Cq'.r'.b') be elements of D . Then

Cq.r.b) + Cq'.r'.b') = Cx.y.z).

where x = q + q' + f.

y = rb' + r'b - fbb'. and

z = bb'.

with f the integer function defined in Corollary 7.22. CCorollary 7.22
is the no-overflow version of Theorem 7.21.)

Proof: Lemma 9.8 gives x = Cab' + a'b)/Cbb'). Corollary 7.22
shows that Cab' + a'b)/Cbb') = Ca/b) + Ca'/b') + f. where f is the
integer function defined in that corollary. Since q = a/b and

q' = a'/b'. it follows that x = q + q' + f. The expression for f

114
in Theorem 7.21 contains references to a and a'. These may be

eliminated using a = qb + r and a' = q'b' + r'.

Expanding y = ab' + a'b - xbb' using the expression for x,
with a = qb + r and a' = q'b' + r', gives

y = (qb + r)b' + (q'b' + r')b - (q + q' +f)bb '.

Simplifying this shows y = rb' + r'b - fbb'.

The expression for z comes directly from Lemma 9.8.

As noted in Chapter 7, the function f may take any of the values

+1, 0 or -1.
Lemma 9.10

Let (q.r.b) and (q'.r'.b') be elements of D . with cor­

responding pairs (a.b) and (a'.b'). respectively. Then.

(q.r.b) "(q'.r'.b') = (x.y.z).

where x = (aa')/(bb').

y = aa' - xbb'. and

z = bb'.

Proof: This follows again from the definition of div . the

definition of the sum of triples, and the fact that (a.b)"(a'.b') = (aa'.bb').

Theorem 9.11

Let (q.r.b) and (q'.r'.b') be elements of D . Then

(q.r.b) "(q'.r'.b') = (x.y.z).

where x = qq' + f.

y = qbr' + q'b'r + rr' - fbb'. and
z = bb'.

115
with f the integer function defined in Corollary 7.25. [Corollary 7.25
is the no-overflow version of Theorem 7.24.)

Proof: The lemma shows x = [aa')/[bb'), and Corollary 7.25

gives [aa')/[bb') = [a/b) • [a'/b') + f, where f is the integer function
defined in the corollary. Because q = a/b and q' = a'/b', it fol­

lows that X = qq' + f. The expression for y is derived as in

Theorem 9.9, and that for z from Lemma 9.10. References to a and

a' in f may be eliminated using a = qb + r and a' = q'b' + r'.

The Mixed Form Rationals

div is a bimorphism for both addition and multiplication.

This follows from the definitions of the relation and operations
*+ and in D .

Theorem 9.12
* %The set of triples D c z is isomorphic to the set of rational

numbers Q as a field, div is the isomorphism.

The following examples demonstrate some basic properties of
the field D .

Example 9.13

The zero and unity elements are preserved by the isomorphism
div . Since the rational number 0 is represented by [0,b), with

b / 0, the zero in D is represented by [0,0,b), for b / 0. Any

triple equivalent to this under =p also represents 0. The number

1 is expressed as [a,a) in Q, if a / 0. This means (1,0,a),

with a / 0 , is the unit element in D . Its negative -1 is given by
C-1.0,a).

116
Example 9.14

The additive inverse of an arbitrary element (q,r,b) of
* *D may be found using div . If (a,b) is the ordered pair cor­

responding to (q,r,b), then (-a.b) corresponds to its negative.

Thus -Cq.r.b) C-q.-r. b).

Example 9.15

The multiplicative inverse of Cq.r.b) has a more complicated

expression. If div C^.b) = Cq.r.b), with a ^ 0. then

div Cb.a) =j) Cq.r.b)” .̂ This means

Cq.r.b)"! =p Cb/Cqb+r). rem{b/Cqb+r) }.qb+r) .

where rem is the remainder map. This may be simplified by using

three cases.

If |q| > 1. or if |q| = 1 and r ^ O . then |a| > |b|.

Since a = qb + r. this means b/Cqb+r) = 0 and rem{b/Cqb+r)}= b .

If |ql = 1 and r = 0. then a/b = b/a. so b/Cqb+r) = q and
rem{b/Cqb+r)} = 0. Third, if q = 0. then qb + r = r. so

b/Cqb+r) = b/r and rem{b/Cqb+r)} = 0. Summarizing these.

CO.b.qb+r) if |q|>l. or |q |= l and r ^ O ,

or
Cb/r.remCb/r) .r) if q = 0.

Cq.r.b)"! i Cq,0.qb+r) if |q| = 1 and r = 0.

Extension to C

The construction of D uses theory developed for the radix

complement system and its division operation. The radix complement

117
system was not, however, directly involved; D was based on Z,

not Furthermore, an attempt to duplicate this for a system of
radix complement triples fails.

The failure happens because is modular. It appears when
overflow occurs; in the absence of overflow, triples from behave

exactly like triples from Z. Zero divisors exist in C^, so the

addition and multiplication operations provided by Theorems 9.9 and 9.11

are not always closed. In on the lBM/370, the sum of (0,1,262144)

and (0,1,16384) is not defined. In Theorem 9.9, division by

262144 * 16384 must be defined, but 262144 * 16384 = 0. For the

same reason, the product of (0,1,262144) and (0,1,16384) given by
Theorem 9.11 is undefined.

A more subtle failure in the equivalence relation of Theorem 9.7

is illustrated in the following example.

Example 9.17

Consider Cg = {-32, -31, ..., 30, 31}. In this system, addi­

tion and multiplication are performed modulo 64. Take triples

X = (1,3,7), y = (1,6,14) and z = (1,1,13) in x Cg x Cg, and let
be a relation defined as in Theorem 9.7. This means

(Q,R,B) (Q',R',B*) if and only if Q = Q' and R*B' = R'*B,
where overflow may occur because Cg is modular.

Now X =j, y because 3*14 = -22 = 7*6 (mod 64). Since

6*13 = 14 = 1*14, it also follows that y z. However, 3*13 = -25 ^ 7*1,
so X jSj, z. Transitivity fails for because x y and y z

with X z. Therefore, is not an equivalence relation on Cg.

118
It may be interesting to note that each triple used in

Example 9.17 is derived from an element of x {C^ - 0} using a

map equivalent to div . The pairs and corresponding triples are

(10,7) (1,3,7),
(20,14) + (1,6,14) and

(14,13) + (1,1,13) .

These examples indicate that a system of triples based on the
radix complement system will have to differ substantially from the

D system of integer triples. Meaningful definitions may not be possi­

ble in the case of overflow. Examination of this situation could never­

theless prove valuable. A system of ordered triples from the radix

complement system which simulates the rational numbers might offer

advantages over the usual computer floating point arithmetic. This

extension will not, however, be pursued here.

CHAPTER 10

SUMMARY AND CONCLUSIONS

The radix complement system used for integer arithmetic on most

modem computers is described in any text dealing with computer archi­
tecture or computer arithmetic. However, these descriptions are usually

limited to an explanation of how the arithmetic is performed, and a hint

that the conçuter arithmetic, within constraints, appears similar to

arithmetic in the ring of integers. Conç>uter multiplication and division

are generally described in terms of the corresponding integer operations.

The modular structure of the radix complement system is mentioned by

Rao [13] and Tremblay [15]; Rao sketches a proof. Because of the grow­

ing importance of computer integer systems, a deeper study of them was
undertaken as the subject of this dissertation.

Believed by many users to represent integers (from the mathe­

matical system of integers), computer integers are, in fact, a modular

system isomorphic to the ring of integers modulo k for some k. The
value of k depends both on the radix (base) and on the number of

digits with which elements are represented. Most common radices are
small powers of 2 (2, 8 or 16). The number of digits used may depend

on both the computer word size, and the programming (multiple precision).

If numbers are represented using m digits in radix r, the radix
119

120
complement system is equivalent to the integers modulo r™.

Although it is a modular system, the primary use of the radix

complement system is to simulate operations from the mathematical ring

of integers. Because of this, the class representatives used in the

modular system are not the usual non-negative values, but include a

range of positive and negative numbers (about the same number of each)

which straddles zero. If a condition called "overflow" does not occur,
arithmetic in this system exactly simulates that of the ring of integers.

With overflow, the simulation breaks down because the modular structure

comes into play; high-order integer digits must be truncated to give
modular closure. Most users consider obtaining a sum of positive

squares which is negative to be an error; it is nothing more than the

proper operation of an integer modular system.

Division in the radix complement system, introduced in Chapter 3,

duplicates the standard "long division" of the integers for a restricted

set of arguments. This long division closely resembles Euclidean
division in the ring of integers. Computer division is defined using

integer division with the signed integer representatives of the modular

classes from the radix complement system. The primary division theorem

for the ring of integers, an important tool for later use, provides a
unique form for the quotient and remainder in division. While the
division theorem carries over to the radix complement system, the

uniqueness property fails there because that system is modular.
Computer integer division is not a modular operation. This is

shown in Chapter 4 where computer division is studied in greater depth.
The modular homomorphism from the ring of integers onto the radix comple-

121
ment system is not a morphism for division, and, significantly, cannot

be extended to become such. A comparison of computer division and

modular division is also made. The radix complement system is modular,

so non-trivial multiplicative inverses exist; 3*(-1431555765) = 1 on the

IBM 370 FORTRAN. The modular quotient, defined using these inverses, is

generally distinct from the computer quotient. Finally, the elements

of the radix complement system, together with the division operation,
are considered as an algebraic system; few of the classical algebraic

axioms are satisfied, but new insight into this division is gained.

An order relation on the ring of integers is a very useful

feature. Two integers may be compared, and the smaller or larger

identified. The usual algebra of inequalities applies, so that equations

of inequality may be solved. The radix complement system, however, is

modular and cannot have an order. It is not even possible to compare

elements using subtraction, because overflow will invalidate the

conclusion. This last fact is known by computer manufacturers, but not

by most current users. The possibility of extending some form of

"quasi-order" to the radix complement system is discussed in Chapter 5.
Restricting the integer order relations to the signed values of

the modular classes provides a useful "quasi-order" for the radix

complement system. This quasi-order gives the comparison relations of
Chapter S. These c-relations can compare computer integers, but do not

permit the usual algebra of inequalities. The comparison of elements
can be implemented either by a special comparison operator, or by
subtraction with a logical correction for overflow.

Chapter 6 extends this work to provide a limited algebra of

122
inequalities. When overflow is absent, this system of "quasi­

inequalities" (c-inequalities) exhibits the same properties as do
inequalities in the ring of integers. With overflow, the results are
considerably different. If the amount of overflow is minimal, as with

addition or subtraction, then manipulation of these c-inequalities is

possible, although complicated. If overflow is more than minimal, as
may occur in multiplication, little can be done. Division does not

involve overflow, so for this operation, c-inequalities mimic integer

inequalities. Because of the importance of overflow, it is quantized by

means of the modulo reduction factor. Significant in its own right,

this factor is an important component in much of the work of succeeding

chapters, and permits us to derive several new theorems related to the

actual behavior of computer integer arithmetic.

The focus returns in Chapter 7 to computer integer division.

Division is considered in relation to the ring operations addition,

subtraction and multiplication. In either the radix complement system

or the ring of integers, division is a distinct operation. It is not
related to multiplication in the way that division in a field is related

to field multiplication. The law of cancellation for products holds if

overflow does not occur. Other field-related rules involving multipli­
cation and division fail unless the division is exact. One use of
computer division is to test for divisibility; the denominator (exactly)

divides the numerator if and only if the computer remainder is zero.

A significant step is made in Chapter 7 by considering, in the
radix complement system, rules of fractions for a field. This study

uses the primary division theorem of Chapter 3 to evaluate computer

123 .
integer division in the presence of other radix complement operations.

If overflow does not occur during evaluation of expressions, a rule of
fractions for field may be true for parts of the computer integer system.

However, that field property may also fail badly. This last is the case

when overflow occurs during evaluation. Of particular note, this failure

is quantized in both the overflow and non-overflow cases. The quanti­

zation for overflow strongly involves the modulo reduction factor of

Chapter 6.

The occurrence of overflow is usually considered an error by
computer users. This "error," a natural characteristic of the modular

system, is considered in Chapter 8. Overflow in one of the operations

addition, subtraction or multiplication produces error that is a

multiple of the modular base of the system. If division is involved,
further error is not introduced, but any error present may be modified

and passed on. Techniques developed in Chapter 7 for dealing with

division in relation to the other operations allow a quantization of this
error propagation. This type of error is truly catastrophic. The

magnitudes involved are often greater than the largest values which may
be represented in the system.

The modified rules of "fractions," developed in Chapter 7 for

the radix complement system, are used in Chapter 9 to devise a non­

standard representation for the rational number field in a mixed number
(integer plus fraction) form. The fraction part is given by a pair of

integers, so the rational number is represented by an ordered triple of

integers. The rules for arithmetic in this field are derived. If the

ordered triple is taken from the radix complement system, a computer

124
representation of rational numbers is possible.

Although our problem was restricted to computer integer systems,

a system for simulating rational arithmetic, based on ordered triples of

computer integers, could be useful. It would resemble the triple system

based on the integers, but allowance would have to be made for overflow;

the very real problem of zero divisors and zero denominators in fractions

would have to be solved. As a rational-like system, its range of values

would be approximately the same as the range of signed values available

in the computer integer system. This would be considerably less than the

dynamic range in a floating point system. However, the distribution of

values would be much more uniform than in either the floating point
system or a rational system based on ordered pairs of computer integers.

The arithmetic for such a system of triples would be complicated.

This is a question for the future. It is not one of the

problems examined by this dissertation and will not be persued here.

It is hoped that the results and techniques presented here will prove

useful in the consideration of other computer arithmetic systems.

BIBLIOGRAPHY

1. Amdahl, G. M., G. A. Blaauw, F. P. Brooks, Jr. "Architecture of the
IBM System/360," IBM Journal of Research and Development, v.8,
no.2, April 1964, pp.87-101.

2. Cardenas, A. F., L. Presser, M. A. Marin, eds. Computer Science.
New York: Wiley-lnterscience, 1972.

3. Chinai, J. Design Methods for Digital Systems. New York: Springer-
Verlag, 1973.

4. Chu, Yaohan. Computer Organization and Microprogramming. New Jersey:
Prentice-Hall, 1972.

5. Davenport, H. The Higher Arithmetic. New York: Harper, 1952.

6. Dudley, Underwood. Elementary Number Theory. San Francisco:
W. H. Freeman, 1969.

7. Ehri'iian, J. R. "'Logical' Arithmetic on Computers with Two's
Complement Binary Arithmetic," Communications of the ACM,
v.ll, 1968, pp.517-520.

8. Falkoff, A. D., K. E. Iverson, E. H. Sussenguth. "A Formal
Description of System/360," IBM Systems Journal, v.3, no.3,
1964, pp.198-262.

9. Flores, Ivan. Computer Organization. New Jersey: Prentice-Hall.
1969.

10. Gear, C. William. Computer Organization and Programming. New York:
McGraw-Hill, 1969.

11. IBM System/370 Principles of Operation. Fourth Ed. (January 1973)
IBM System Products Division.

12. Knuth, Donald E. The Art of Computer Programming. v.2. Semi-
numerical Algorithms. Reading: Addison-Wesley, 1969.

13. Rao, T. R. N. Error Coding for Arithmetic Processes. New York:
Academic Press, 1974.

125

126

14. Struble, George. Assembler Language Programming: The IBM System/360.
Reading,Mass.; Addison-Wesley, 1969.

15. Tremblay, J. P., R. Manohar. Discrete Mathematical Structures
with Applications to Computer Science. New York: McGraw-Hill,
1975.

16. User's Manual, Programmer's Reference, microNOVA Computers.
Data General Corporation, 1976.

17. Weiss, Eric. A., ed. Computer Usage/Fundamentals. New York:
McGraw-Hill, 1969.

18. Wilkinson, J. H. Rounding Errors in Algebraic Processes. New Jersey:
Prentice-Hall, 1964.

