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Chapter 1 

INTRODUCTION 

1.1 Optimization 

What is optimization? The Merriam-Webster dictionary defines optimization as 

"an act, process, or methodology of making something (as a design, system, or 

decision) as fully perfect, function~ or effective as possible; specifically the mathematical 

procedures (as finding the maximum of a function) invohred in this." 

Most day-to-day problems can be formulated as optimization problems. The 

mathematical formulation of the problem is paramount to the design of appropriate 

algorithms. Hence algorithms for even problems like planning one's day can be designed if it is 

formulated mathematically. Well-formulated optimization problems possess the following 

ingredients: 

- An Objective Function which we want to maximize or tn111lllllZe. For 

instance, we might want to maximize the profit or minimize the cost of a 

manufacturing process. 

- A set of Decision Variables which affect the value of the objective 

function. In the manufacturing process, the decision variables may be the 

amounts of different materials used or the time spent on each activity. 

1 



- A set of Constraints allow the unknown to take certain values but excludes 

others. For the manufacturing process problem, it does not make sense to spend a 

negative amount of time on any activity, so we constrain all the time variables to 

be non-negative. 

Now the optimization problem may be redefined from [38] as: 

"Finding values of the decision variables that minimize or maximize the 

objective function while satisfying the constraints." 

1.2 Constrained Optimization 

Most real world optimization problems involve constraints. Consider a real world 

optimization problem such as maximizing the profits of a particular manufacturing process. 

Here the objective function to be maximized would be a function of various manipulating 

variables, including but not limited to the material consumption, the labor cost, the operating 

hours of the machines, and many additional factors. If the raw materials, manpower, and 

machines can be made available without limitation then there is no limit to the profit that can 

be made. However, in face of real world complications they are most likely limited in the form 

of constraints imposed upon the optimization function. What constitute the difficulties of the 

constrained optimization problem are the various limits on the decision variables, the 

constraints involved, the interference among constraints, and the inter-relationship between 

the constraints and the objective function. 

1.3 Problem Formulation 

The general constrained continuous parameter optimization problem as succinctly 

defined in (24] is to find X so as to 
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(1.1) 

where X e IF ~ S. TI1e objective function f is defined on the search space § b JR n , and the set 

IF b S defines the feasible region. Usually, the search space is an n - dimensional hyper box 

in JR"· The domains of the variables are defined by their lower and upper bounds as, 

I( i) s x, s 11( i), 1 s ; s II 

whereas the feasible region IF is defined by a set of m additional constraints ( m ~ O ), 

g,(X) s 0, (j = 1, ... ,q) 

h,(X) = 0, {i = q + 1, ... ,m). 

where there are q inequality constraints and m-q equality constraints. 

(1.2) 

(1.3) 

(1.4) 

If any point X satisfies all the m constraints, then it is called a feasible point and the set 

of all such points is defined as the feasible region 1F. The inequality constraints that take the 

value of 0, i.e. g,(X)=O at the global optimum to the problem are called the active constraints. We 

assume in our above definition of constrained optimization problem that the decision variables 

in X do not just take some discrete values. Hence the fonnulation in (1.1) applies for all kinds 

of continuous optimization problems. We know that given a function f ( X) for maximization, 

we can transform it to a minimization problem by using max/(X) = min(-/(X)) . Hence in 

the following discussion and in the remaining of this thesis without loss of generality we shall 

consider the minimization of the objective function unless specified otherwise. 
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1.4 Scope Of The Research 

The goal of this thesis is to come up mth a unified method for global optimization 

algorithm for constrained problems of the following kind. 

1) Linear Programming problems: It is the simplest of the constraint optimization 

problems and the methods for solving it are fairly well established. The basic problem of linear 

programming is to minimize a linear objective function of continuous real variables, subject to 

linear constraints. The linear programming problem is fonnulated as, 

lvlinimize /(X) = crX 

with q inequality constraints g1(X) S 0, (j = 1, .. . ,q) 

and n1-q equality constraints hi(X) = 0, (j = q+ 1, .. . ,m). 

The feasible region described by this problem is convex due to the linear functions. The simplex 

algorithm is used to solve these kinds of problems. 

2) Bound Constrained Optimization problems: The only addition to an unconstrained 

problem is the presence of an upper and lower bound on each of the decision variables. This 

limits the possible solution to a particular range and these are the only constraints imposed on 

the problem. 

Minimize /(X) 

/(i) S X; S t1(i), 1 ~ i Sn 

3) Quadratic Programming problems: The quadratic programming problem involves 

the minimization of a quadratic function subject to linear constraints. The following 

formulation is used in most cases, 
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with q inequality constraints g/X) :s; 0, (j = 1, .. . ,q) 

and n1-q equality constraints h1(X) = 0, (J = q+ 1, .. . ,n1). 

where Q E Rnxn is symmetric and both g/X) and hlX) are linear functions of X. 

The difficulty of solving the quadratic programming problem depends largely on the nature of 

the matrix Q. In co11vex quadratic problems which are relatively easier to solve, the matrix Q is 

positive semi definite. If Q has negative eigen values-nonconvex quach:atic programming-then 

the objective function may have more than one local minimum. 

4) Nonlinearly Constrained Optimization problems: The main techniques that have 

been proposed for solving constrained optimization problems are reduced-gradient methods, 

sequential linear and quadratic programming methods, and methods based on augmented 

lagrangian and exact penalty methods. 

5) Non-differentiable Programming problems: In these problems the objective 

function and the constraint functions are not differentiable or defined over finite intervals. 

Though such problems are fairly well-prevalent no method has been known to effectively 

solve such problems. 

1.5 Features Of Conventional Approaches 

1) A local minimizer ( X*} is looked for rather than a global minimizer, the 

computation of which can be difficult. 
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2) Most practical methods require the strong assumption that the first and second 

order derivatives of the objective function and constraint functions exist. A different situation 

arises when the functions f(X) and h .(X) andg .(X) do not have continuous derivatives 
.I J 

which are referred to as non-dtfferentiable or non-smooth optimization. 

3) Methods used for solving the problem are usually iterative so that a sequence 

x<•>, x< 2>, XP> hopefully converging to X* (which is a local minimum). 

1.6 Features Of Genetic Algorithms (GAs) 

While the details of implementation of GAs will be discussed in Chapter 2, we 

enumerate here the features of GAs [37]. This section presents the reasoning behind using 

GAs to solve the constrained optimization problem discussed above. 

1) GAs search a population of points in parallel, not a single point. 

2) GAs use probabilistic transition rules, not deterministic ones 

3) GAs do not require derivative information or other auxiliary knowledge; only the 

objective function and the corresponding fitness levels influence the direction of the search. 

These features make the GA quite different from the traditional methods we 

mentioned above. Thus the reasons why GAs are more suitable for solving the constrained 

optimization problem as opposed to traditional methods is given below, 

1) Since GAs work with a population of solutions selected in a stochastic fashion, GAs 

are capable of escaping the local optima and find the global solution. In fact as t ~ oo , the 

GA guarantees to find the global optimwn to the problem. Hence GAs are Global Optimizers. 

2) Since GAs do not require any derivative information from the problem, this makes 

it suitable for a wide variety of problems. This also makes it possible for us to design one 
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generalized algorithm for all five types of constraint optimization problems we discussed 

before including the 11011-s111ooth optimizatio11 problems. 

On the flip side the following two reasons make GA's a not-so-favorable choice, 

1) Since the GAs are stochastic search techniques, there is no assurance of the quality 

of the final solutions reached. The difficulty in using GA's for constrained optimization 

problems is that the final solution may not even be feasible. Hence multiple runs of the GA's 

are often needed to guarantee feasible optimal solutions from the GA. 

2) GAs are time consuming because they work with a population of solutions over a 

preset nwnber of generations. One way to overcome it is to implement the GA using parallel 

processors. The challenge is to design better algorithms that can make the search more 

efficient and converge faster. 

But the pros weighted over the cons and we decided to use GAs for the Constrained 

Optimization problem discussed above. Following up with decision, we have tried to 

overcome the disadvantages of GAs discussed above. Chapter 5 describes our proposed 

algorithm in detail. 

1. 7 Layout Of The Thesis 
The goal of the thesis is to produce a reliable and fast algorithm which can be applied 

to a wide variety of constrained optimization problems. Towards this end, the research work 

was done in three parts, 

DESIGN: The first part of the thesis deals with design of the appropriate algorithm. 

The desired features of the algorithm are that 
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1) it should assure feasible solutions for every run and 

2) it should be composed of a generic framework that can be applied to any 

constrained optimization problem with the characteristics discussed in Section 1.4. 

Chapter 4 discusses the design of the appropriate algorithm after a literature survey of the 

genetic algorithms used for constrained optimization problems is provided in Chapter 3. 

TESTING: An exhaustive testing of the proposed algorithm as well as comparison 

with other algorithms from literature is presented in Chapter 5. In the first part of the testing, a 

test case generator[31] for constrained optimization problems was implemented from 

literature. The tests were conducted during the design stage to compare two selection schemes 

for the algorithm. The second part of the testing involved eleven test problems taken from 

reference [25] and this helped us to compare our algorithm with many others proposed in 

literature. 

APPLICATION: We implemented our algorithm to solve the econonuc dispatch 

problem for power systems. This happens to be one of the typical applications of the 

algorithm. The economic dispatch problem is a non-linear constrained problem and research is 

srill ongoing to solve it effectively and efficiently. Chapter 6 provides the complete problem 

formulation as well as the results obtained with our proposed algorithm. 
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Chapter 2 

WHAT ARE GENETIC ALGORITHMS? 

2.1 Introduction 

Genetic Algorithms (GAs) are stochastic search techniques that mimic biological evolution. 

GAs are inspired by the mechanism of natural selection as proposed by Darwin, in which 

better-fitted individuals are more likely to be winners in a competing environment. The basic 

principles of GAs were proposed by John Holland in the 1970's. GAs operate on a population 

of potential solutions and this population is replaced by a hopefully fitter population at each 

generation. In other words, starting from a randomly initialized population the genetic 

algorithm proceeds along the generations to produce fitter and fitter solutions that are better 

suited to the problem domain. At every generation a new set of individuals are created by the 

process of selecting individuals according to their levels of fitness in the problem domain. New 

solutions are produced by breeding them together using operators borrowed from natural 

genetics. 1bis process leads to the evolution of populations of individuals which are better 

suited to their environment than the individuals they were created from. 
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2.2 Major Elements of Genetic Algorithms (GAs) 
A GA is defined by five elements: representation, fitness evaluation, selection scheme, 

genetic operations and termination. Let us first analyze a simple genetic algorithm (SGA) from 

[16) given in Figure 2.1, 

Procedure GA 

begin 

end 

t= O; 

initialize P(i); 

evaluate P(t); 

while not finished do 

begin 

end 

t=t+1; 

select P(t) fonn P(i+ 1) 

reproduce pairs in P(t) 

evaluate P(t) 

FIGURE 2.1 A simple genetic algorithm 

The population at time tis represented by the time-dependent variable P, with the 

initial population of random estimates being P(O). Using this outline of a GA, the rest of this 

section describes the major elements of a GA. Most of the material used in this section are 

taken from (3 7]. 

10 
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2.2.1 Population Representation and Initialization: GA's operate simultaneously 

on a number of potential solutions, called a population consisting of some encoding of the 

parameter set. There are two major schemes in representation viz. binary representation and 

real-valued representation. 

Binary Representation: The most commonly used representation in the GA is that of 

single-level binary string. Here, each decision variable in the parameter set is encoded as a 

binary string and these strings are concatenated to form the chromosome. Gray level 

represen tarions of the decision variables are also used. The advantage of the gray level coding 

is that the hamming distance between adjacent values is constant. 

Real valued Representation: The decision variable can be used in the same decimal 

form in the GA without the need for any conversion to binary string. The initial GA's were 

based on binary coding to mimic the generic sequence in natural evolution. However real­

valued solutions offer some distinct advantages, like increased efficiency, less memory 

requirements, direct usage of floating point internal computer representation, no loss in 

precision by discretization to binary or other values and greater freedom to use different 

genetic operators. 

Having decided on the representation, the first step in the GA is to create an initial 

population. Tius is achieved by generating the number of individuals using a random number 

generator which uniformly generates numbers in a given range. 

2.2.2 Objective Function and Fitness Evaluation: The objective function is usually 

defined explicitly in the problem. In some cases we have to design objective functions based 

on the problem domain. In either case, the objective function provides a measure of how 

individuals have performed in the problem domain. In the case of a m.in.imization problem, the 

individual with the lowest numerical value will be considered the fittest. Tius raw measure of 
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fitness is only used as an intermediate stage lll detennining the relative performance of 

individuals in a GA. 

Another function, called the fitness function, is normally used to transform the 

objective function value into a measure of the fitness of the solution, 

F(X) = g(f(X)) 

Where /is the objective function, g transforms the value of the objective function to a 

non-negative number and F is the resulting relative fitness. The :fitness of all individuals are 

usually normalized such that the sum of all the fitness is either unity or another integer value. 

This makes implementing the selection scheme straightforward since the bigger the fitness of 

each individual, the greater the probability of its selection. 

In rank-based fitness scheme, solutions are assigned a rank based on their objective 

function values. Thus the fitness of the solutions are only indirectly dependent on their 

objective function values. This allows the solutions to be scaled linearly or non-linearly as per 

the user's design. 

2.2.3 Selection Scheme: After each solution in the given population is allotted a 

fitness value, the selection scheme detettnines the probabilistic way in which individuals are 

selected. 

Roulette Wheel Selection: Let Q be the sum of the fitness values of all individuals 

popsiZJ' 

such that L F; ( X) = Q . Then the range O - Q is split between all the individuals based on 
i=1 

their fitness value. Thus clearly an individual with a greater fitness value will have a greater 

range in O - Q. Now a random number is selected between O - Q and the individual's fitness 

in whose range it falls is selected. If j is the number of individuals to be selected, then this 

process is repeated j times. 

12 



Stochastic Universal Sampling: Stochastic universal sampling is a single phase 

sampling algorithm with minimum spread and zero-bias. The stochastic universal selection is 

also based on a scheme similar to roulette wheel selection. First a number is randomly 

generated in the range of O - (Q / j) and then the other numbers are found by subsequently 

chosen by adding (Q / j) to it j -1 times. Thus we can say that the range of O - Q will be 

uniformly covered in this selection process. 

2.2.4 Genetic Operators: After the initial population has been generated randomly 

and the selection scheme is designed, it is up to the genetic operators to produce the 

subsequent populations and eventually the final optimal solutions. Hence the genetic 

operators are indeed important and there are two major types. 

Crossover: The basic operation for producing new chromosomes in the GA is that of 

crossover. Like its counterpart in nature, crossover produces new individuals which have 

some features of both parent's genetic material ('O' and '1' bits). 

The popular types of crossover among binary-coded chromosomes are the single­

point crossover, multi-point crossover and the uniform crossover as shown in Figures 2.2, 

2.3 and 2.4 respectively. Let Pl and P2 be the two chromosomes selected for crossover, then 

a point is randomly selected in the chromosome and genetic material after this point is 

exchanged to produce two new chromosomes Cl and C2 respectively. Pl and P2 are called 

the parents and Cl and C2 are the children. 

Pl: 111 01011 Cl: 111 00110 

P2: 011 00110 C2: 011 01011 

FIGURE 2.2 Single-point crossover 
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In multi-point crossover more than one site is chosen for swapp1ng of genetic 

material. Figure 2.3 shows the double-point crossover, a particular case of the multi-point 

crossover. Notice that the genetic material between the two chosen points is swapped from 

Pl and P2 to produce C 1 and C2. 

Pt: 111 01 011 Cl: 111 00 011 

P2: 011 00 110 C2: 011 01 110 

FIGURE 2.3 Multi-point crossover 

In unifonn crossover, a randomly generated masking string is used to swap the 

genetic material between the two parents Pl and P2. For example, if the mask at a particular 

bit position is '0\ then Ct inherits the bit from parent 1 and C2 from parent 2 respectively. 

Otl1erwise if tl1e mask at the particular bit position is '1 ', then Ct inherits the bit from P2 and 

C2 inherits the bit from Pt. 

Pl: 

P2: 

Mask: 

Ct: 

C2: 

11101011 

01100110 

00111010 

11100011 

01101110 

FIGURE 2.4 Unifonn crossover 

When real-coded chromosomes are used crossover can be implemented by 

converting those to binary strings or directly. Intennediate crossover is such a type of 

crossover that is applied directly on the real-valued chromosome. The offspring is produced 

around and between the values of the parent's phenotypes according to, 

O=P.xa(P;,-P.) 

14 



Thus one off-spring is produced for every unique value of a and pair of parents. The 

a is the scaling factor chosen in some interval typically [-0.25, 1.25] . In geometric terms, 

intermediate crossover is capable of producing new variables within a slightly larger hypercube 

than that defined by the parents but constrained by the range of a . 

Mutation: In natural evolution, mutation is a random process where one allele of a 

gene is replaced by another to produce a new genetic structure. In GAs mutation is randomly 

applied with low probability typically in the range of 0.001 and 0.01. The role of mutation is to 

provide a guarantee that the probability of searching any string will never be zero. Mutation 

assures the probability of the GA finding the global optimum given infinite time to be one. 

Figure 2.5 shows the mutation operator on a solution called P to produce a solution C. Here 

the bit in the fourth position (randomly chosen) is flipped to produce C. 

P: 111 

C: 111 
IO I 1011 

1 1011 

FIGURE 2.5 Binary mutation 

For non-binary representations, mutation is achieved by either perturbing the gene 

values or randomly selecting new values within the allowed range. The two important factors 

in mutation is the probability of mutation (which defines the number of chromosomes 

mutated in the population) and the amount of perturbation on each mutated string (which 

depends on the design of the mutation operator). 

2.2.5 Termination of the GA: Because the GA is a stochastic search technique, it is 

difficult to formally specify the convergence criteria. Also because the presence of mutation 

always offers a chance of finding "the solution," it is impossible to decide when to terminate 

the GA. In most cases, the user has no idea about where the global optimum is and hence not 
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in a position to objectively detennine the solution's merit. In [30], the authors used a technique 

wherein the algorithm was tenninated if no appreciable improvement in the quality of 

solutions is found over a preset number of generations. The most commonly used technique is 

to run the GA many times for a particular number of generations and then evaluate the quality 

of the solutions obtained. 

At this point, it has to be acknowledged that this section on the various elements of 

GAs is by no means complete. Rather, the idea has only been to introduce the GA and the 

interested reader is referred to (16] and [37] for a more detailed explanation. Also there are 

many different types of GAs which by themselves demand exhaustive descriptions. So after 

this subtle introduction to GAs, the next section follows up with the features of the particular 

GA used in this research. 

2.3 Three GA Concepts Important To This Research 
Elitism: TI1e most important feature of the algorithm proposed in this research is 

elitism. Elitism assures that a top proportion of the population is carried through to the next 

generation without undergoing any changes. Elitism is defined by a percentage value of the 

population size. For example in a population of size 1 O with elitism of 10%, the best solution 

in the population is copied onto the next generation as it is. When large populations are used, 

elitism is used by maintaining an archive of top solutions and using some of them to perform 

genetic operations with the others in the population. 

Non-dominated Ranking: So far in this chapter, we have been discussing a case 

where only a single objective function that has to be optimized. But what if there are more 

than one objective functions to be optimized simultaneously. Conventionally a weighted sum 

of these objective functions would have been optimized. But how do we determine the 
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weights? To analyze this further let us consider a bi-objective optimization problem (problem 

with two objective functions). Of course the discussion is exactly applicable for any number of 

objective functions to be optimized simultaneously. 

When the objective functions are plotted one vs. the other, then it is called the 

"objective space" of the problem. Figure 2.6 shows the objective space of the bi-objective 

problem where we are simultaneously trying to minimize F1 and F2 simultaneously. Hence the 

optimal solutions should be at the lower left hand of the graph as near to the origin of the 

graph as possible. So the exact objective functions do not affect the desired region of the 

objective space. We have plotted 10 fictional solutions in this objective space :in Figure 2.6. 

F2 
j .. 

3 

... oi 
t'. 

Fl 

FIGURE 2.6 Objective Space of bi-objective problem 
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Then from [13], we have the following definitions which help us to rank solutions, 

Definition 1 (inferiority): A vector u = ( 111, •• • , 11 n) is said to be inferior to v = ( v1 , ••• , v n) if! 

v is partially less than u i.e., 'if i = 1, ... , 11, v; S 11; A 3i = 1, ... , n : v; < II; 

Definition 2 (superiority): A vector u= (11w··,11,,) is said to be supenor to 

v= (Pi,- .. ,vn) ijf vis inferior to u. 

Definition 3 (non-inferiority): Vectors u= (11i,···,11J and v= (vt> .. . ,v11 ) are said to be non­

inferior to one another if v is neither inferior nor superior to u. 

Let us use few solutions from Figure 2.6 and apply these definitions. 

Considering solutions a and b, 

F1 (a)<F1 (b) and F2(b)<F2(a) 

So Definition 3 applies here and solutions a and b are "non-inferior" to each other. 

Considering solutions a and h, 

F1 (a)<F1 (h) and F2(a)=F2(h) 

So Definition 2 applies here and solutions a is "superior" to solution h. Similarly solution b is 

"superior" to solution h. 

Ranking based on non-dominated fronts: We have adapted the ranking scheme like in 

[1 O] where each solution is associated with a particular front. First we try to find the solutions 

which are non-inferior to any other. Solutions which belong to this set belong to the "first 

front" or "non-dominated front". Solutions a,b,c,d,eJ and g belong to this front and are hence 

ranked one. Solutions h and i dominated by one set of solutions (a,b,c,d,ej) and are hence 

ranked 2. Solution j belongs to the third front being dominated by two sets of solutions and is 

hence ranked 3. 
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Niching: Niching is applied in GAs to ensure a diversity of solutions in the 

population. In multi-objective optimization problems niching can be incorporated in either the 

"objective space" or in the "decision space." When applied in the objective space, niching 

helps assure a well-extended and unifonnly distributed Pareto front. We have adopted the 

same niching scheme as in [1 O], where each front is assessed independently for crowdedness of 

solutions. 
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Chapter 3 

CONSTRAINT-HANDLING METHODS IN 

GENETIC ALGORITHMS 

3.1 Need For Constraint-handling Methods In GAs 

Why do we need to adopt specialized methods for handling constraints using GAs? 

Taking a numerical example for illustration, suppose we want to maximize a function 

f(X) = x 1 + x 2 where the two variables are defined by O ~ x1 ~ 1, 0 ~ x2 ~ 1. Under the 

presence of no additional constraint an optimum value of j(X) = 2 can be reached when 

x1 = 1 andx2 = 1. Asswning there is an additional constraint imposed on these variables 

described by g(X) = x 1 - x 2 = 0.5. Considering a resolution of up to two decimal places in 

the discrete search space, there are only 50 feasible solutions among 10,000 possible 

candidates. This implies that feasible region is only 0.5% of the actual parameter space. The 

best objective function value that can be reached is f(X) = 1.5 (for x 1 
= 1 and x

2 
= 0.5 ). The 

problem complexity can be greatly increased by the number of constraints or the types of 

constraints. 
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FIGURE 3.1 Search space of two-variable example 

Notice that the example that we have illustrated here is ahnost trivial Yet, from a 

search algorithms point of view, this problem presents some difficulty due to the framing of 

the constraints. So if we do not incorporate any constraint handling scheme, then obviously 

the algorithm will take a long time to converge to a feasible optimum solution. 

Hence we need algoritluns whose fitness schemes and selection schemes help in 

finding feasible optimal solutions as efficiently as possible. Here also lies the challenge, because 

the objective function and constraints have to be combined to fonn the fitness function. 

3.2 Literature Survey 

In this section we shall go through the various methods and test cases that have been 

proposed for constraint handling using genetic algorithms (GA's). We have broadly 

categorized our methods into i) penalty functions, ii) methods based on preference of feasible 

solutions over infeasible ones, iii) methods based on special operators, (iv) methods based on 

decoders, v) repair algorithms vi) hybrid methods, and vii) methods based on multi.objective 

optimization and viii) the test cases proposed for constrained optimization. We hope to 

21 



present the basic idea underlying the design of each of the above constraint-handling methods 

and refer the reader to [4] for an exhaustive survey. 

Before we can go further into explaining constraint-handling schemes using GA's let 

us define the constraint violation for both equality and inequality constraints, 

!
max(O,g .(X)), if 1 S j Sq) 

1 
,· .(X)= 
1 max(O,( lh /A/1- 6)), if q + 1 -5, j -5, m 

(3.1) 

Notice that the following definition of the constraint violation would have a similar effect, 

l ? ) 

<g . <X)r, if 1 s 1 s q 
1 

C .(X)= 
1 

( lh /Xll- 6)
2

, if q + 1 -5, j -5, m 
(3.2) 

In either case we have to define the value of threshold ( '5) for equality constraints 

which usually takes a small value of either 0.001 or 0.0001. 

3.2.1 Penalty Function Methods: Penalty functions were used in the conventional 

methods of constrained optimization [12] and were amongst the first methods used to handle 

constraints using evolutionary algorithms. In these methods a penalty term directly dependent 

on the constraint violation is added to objective function before evaluating the fitness of the 

individual. Thus between two infeasible solutions with the same objective function, the one 

with a lower constraint violation will have a better chance of survival. 

In death penalty method the infeasible solutions are rejected for selection into the next 

generation and this is the easiest way to handle constraints. The death penalty is the simplest 

constraint handling scheme ever proposed. Since no information regarding the feasibility of 

each solution is used, this technique usually takes longer to converge to the feasible optimum 
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especially in problems with sparse feasible regions. Also when the initial population consists of 

no feasible solution, the whole population will have to be rejected and a new one is randomly 

generated. This technique may work well in problems where the feasible space is convex and 

covers a large part of the search space. 

In static penalty method the penalty is a weighted sum of the constraint violations and 

the modified objective function value to allocate the fitness to an individual is, 

m 
ol?J(X)=f(X)+ L r.c .(X) 

}=1 J J 

f (X)- actual objective function value 

ri - penalty coefficient for each constraint 

c1 (X)- constraint violation corresponding to the individual X 

obj(X) - modified objective function value after adding penalty 

(3.3) 

The success of the static penalty method depends on the penalty coefficients chosen 

for each constraint. This has to be determined carefully based on the difficulty of these 

constraints and values of the coefficients chosen. 

In (17] a dynamic penalty method was proposed where the penalty allotted to each 

individual would depend on the generation number and a scaling constant C in addition to its 

constraint violation. The authors note this as an important difference which applies more 

selective pressure on nearly feasible solution thus making them feasible. However the 

performance of the algorithm depends on the value of the constants chosen. The modified 

objective function is defined as, 

obj(X)= f(X)+(Cxtr xSVC(/3,X) 

'I m-q 

SVC(P,X) = :Z:c/(X)+ Lc/X) 
i:::I J=t 
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I - current generation number 
a,p,C-constants 

Something to note immediately about the dynamic penalty methods is the difficulty in 

tuning the many parameters based on which the results are obtained. 

While the penalty function methods discussed so far are easy to implement they 

require some degree of parameter tuning to tailor for each problem. In [29] some guidelines 

were provided for GA's with penalty methods and some important ones are that (i) penalties 

which are functions of the distance from feasibility perform better than those which are merely 

function of the number of violated constraints (ii) for a problem having few constraints, and 

few full solutions, penalties which are solely function of the number of violated constraints are 

not likely to find solutions and (iii) the more accurately the penalty is estimated, the better will 

be the solutions found. 

As a method to alleviate the difficulty of deciding on the perfect penalty coefficients, a 

self-adaptive penalty function was proposed in [SJ. The method involves the definition of NFT 

("near-feasibility-threshold") which is not only problem specific but also constraint specific. 

Conceptually the NFT is the threshold distance from the feasible region at which the user can 

consider the search to be warming up. Tue prominence of the NFT is that the penalty 

function will encourage the GA to explore within the feasible region and the NFT­

neighborhood of the feasible region and discourage search beyond the threshold. The method 

makes use of feedback about the quality of solutions in the evolutionary process and uses the 

information regarding the difficulty levels of each constraint. Hence the penalty method scales 

itself every generation by varying the NFT associated with each constraint dynamically and 

thus the effect of the difficulty associated with each constraint and the passage of the nwnber 
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of generations can be fed back to the population via the penalty function. By starting with 

some initial values for each constraint the algorithm adapts the penalty function based on its 

associated difficulty levels thus requiring no penalty coefficient definition from the user. 

NFT = NFJ;, 
l+A 

N FT., :::::> upper bound for NFT 

A::::> dynamic search parameter 

(3.6) 

F tom the above definition, we can see that the NFT can be made static or dynamic 

based on the definition of A which can be either zero (static penalty function because the NFT 

is constant through out the algorithm) or a function of the number of generations ( dynamic 

penalty function) or a function of the number of solutions in the population that satisfy each 

particular constraint (a feedback about the difficulty of each constraint is hence used). 

The modified objective function for evaluation is defined as, 

obj( X) = f ( X) + ( F .r,,,,w• - F .u) t, ( ;~:,) )'1 

F1cas,htc - best known feasible objective function value at generation t 

Fa,, - best unpenalized objective function value at generation t 

N F0 (t) - NFT corresponding to constraint j at generation t 

k 1 - adjusts the severity of the penalty for each constraint 

(3.7) 

The advantage of this method is that it may be suitable for problems with active 

constraints because an exhaustive genetic search takes place at the boundary of the feasibility 

region due to the definition of NFT. But even while the penalty method has self-adaptive 

features, the upper limit of NFT has to be defined. Also there could be problems with the 
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selective pressure if none of the solutions are feasible in which case no penalty will be applied 

to all solutions and the selection will be based only on the objective function. 

In (11 ], the authors proposed a two-stage penalty function that requires no explicit 

definition of any parameters. The method was fonnuJated to ensure that slightly infeasible 

solutions with a low objective function value remain fit. The first penalty stage ensures that the 

worst of tl1e infeasible solutions has a penalized objective function that is higher or equal to 

tl1at of the best solution in the population (all other solutions are penalized by a lesser amonnt 

depending on their feasibility). The second penalty increases the penalized objective value of 

the worst of the infeasible solutions to twice the objective value of the best solution. 

In [2], the author proposed a self-adaptive penalty function of the fonn, 

ol?J(X) = f(X)+(coej(X)x1v1 +viol(X)x1v2 ) 

IJI 

coef(X)= Lc/X) 
)=1 

viol ( X) => nt11JJber of violated constraints 

(3.8) 

(3.9) 

Here the author tries to minimize the objective function of the problem, the number 

of violated constraints and the magnitude of the scalar constraint violations simultaneously. 

Two different populations Pt and P2 with corresponding sizes M 1 and M2 was used in 

the approach. The second of these populations (P2) encoded the set of weight combinations 

( w, and w
2

) that would be used to compute the fitness of individuals in Pt. Thus one 

population was used to evolve the solutions while the other was used to evolve the penalty 

coefficients. For each individual A. in P2 there is an instance in Pt. Each individual A 1 
l 

(1 S j S M2) in P2 is decoded and the weight combination is used to evolve P1 for a certain 

number of generations (Gmaxt). The fitness of each individual Bk (1 :s; k :s; M1) is computed 
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uslllg (3.8) keeping the penalty factors constant for every individual instance of Pt 

corresponding to the individual Ai being processed. 

The drawback with this method is the need to define the population sizes (M 1 and 

1\12) and the pre specified number of generation (Gmax1). At the same time diversity in the 

solutions may be naturally maintained because of the two populations evolved simultaneously. 

Because penalty functions combine the objective function value and the constraint 

violation value to decide the fitness of each individual, there is a domination relationship 

between the constraint violation and the objective function in deciding the fitness of the 

individual. In [30], the authors characterize the problem of choosing the appropriate penalty 

function coefficient ( ri) for each constraint and describe how it affects the domination 

between the constraint violation and the objective function optimization in affecting the rank 

of each individual solution. 

TABLE 3.1 Domination relationship based on penalty coefficient 

For a given penalty coefficient ri, let the ranking of A individuals be 

where the individuals are ranked based on the modified objective function 

m 

obj(X) = f(X)+ Lr//X) 
j=l 

Let us examine the adjacent pair i a nd i + 1 in the ranked order 

For a given chioce of ri ~ 0, there are 

three different cases which may give rise to the inequality 

1) f ~ f +l and ci ~ ci+t : the comparison is dominated by the 
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objective function as i is ranked better than i + 1. Since the individual 

i dominates the individual i + 1 with respect to both the constraint 

violation and the objective function, i will always be ranked better 

than i + 1 "irrespettive of ri." 

2) f 2:: ./; +t and C; < C;+i : the comparison is dominated by the 

penalty function only and the "val,1e of ri determines the ranks of i and i + 1." 

3)./; < h+t and '\ < ci+t : the comparison is nondominated and yet 

i is ranked better than i + 1. Here again the "value of ri dete1111ines the ranks 

~( i and i + 1." 

To overcome the problem of choosing an optimal r1 the authors propose introducing 

a probability factor P
1 

which denotes the probability of the objective function used to allocate 

rank to the individual. The ranking method incorporated sees to it that feasible solutions are 

ranked based only on their objective function while the probability factor P_r determines 

whether objective function or constraint violation should be used to rank infeasible 

individuals. A P, value of 0.45 was found to produce very good results. This means that 

infeasible solutions should be ranked less often based on their objective function value (45%) 

and more often on their constraint violation value (55%). 

While the method produced best results for all of the problems tested, there was one 

fundamental drawback. The method did not produce feasible solution for all the runs 

especially for a particular problem from the test case proposed in [20] only 7 out of 30 runs 

could produce feasible solutions itself. 'Ibis can be attributed to the selection scheme in which 

constraint violation does not dominate the objective function even while ranking infeasible 
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solutions. Hence this technique does not support the domination of all infeasible solutions by 

feasible solutions as advocated in Sub-section 3.2.2. 

3.2.2 Preference of feasible solutions over infeasible solutions: In [28], the authors 

proposed a penalty function method in which feasible solutions would always have higher 

fitness than infeasible solution. A rank-based selection scheme was used and the rank was 

based on the objective function values mapped into (-oo, 1) for feasible solutions and the 

constraint violation mapped into (1, co) for infeasible solutions. Hence in this technique all 

feasible solutions dominate the infeasible solutions, infeasible solutions will be compared 

based on their constraint violation only and feasible solutions will be compared based on their 

objective function value only. The fitness allocation is based on the modified objective 

function, 

111 

S(f(X)), i(LC/X)=O 
ol?i(X) = 

j=l (3.10) 
Ill 111 

1+rx Lcj(X), ifLCj(X):t=O 
/=1 j=l 

S - a function which maps f into the open interval ( -co, I). 

This method has some interesting properties (i) as long as feasible solutions are not 

found, the objective function will make no effect on the rank of the individual; (ii) once there 

is a combination of feasible and infeasible solutions in the population then feasible solutions 

will be ranked ahead of all infeasible solutions; and (iii) feasible solutions will be ranked based 

on their objective function value. The major drawback which we could experience in this 

method is a lack of diversity operators either explicitly defined or as part of the selection 

scheme. This could cause difficulties especially in problems with disconnected feasible 
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components in which case the GA may be stuck within one of the feasible components and 

never get to explore. 

The same idea as described above fonned the basis of [9] where in selection was based 

on the following underlying principles (i) Any feasible solution wins over any infeasible 

solutions; (ii) Two feasible solutions are compared only based on their objective function 

values; (iii) two infeasible solutions are compared based on the amount of their constraint 

violations; and Qv) two feasible solutions i and j are compared only if they are within a critical 

distance d,, othenvise another solution j is checked. The authors also argued that real coded 

representation was better suited for constrained optimization problems as it affords a greater 

chance of maintaining feasibility and in addition to used a niching scheme to maintain diversity 

among feasible solutions and binary tournament selection to make pairwise comparisons. The 

penalty approach was different in the sense that the coefficient 1g was unity for all constraints 

and all the constraints were nonnalized to allot equal importance to each constraint. The 

modified objective function before fitness allocation is, 

Obj(X) = m lf ( X), if X is feasible) 
f,."" + ~ciX),othenvise (3.11) 

This method also perfonned very well on a variety of test problems and niching 

operator was incorporated to overcome stagnation. This needed the definition of the critical 

distance d,, and n 1 , the number of different solutions tried which all happen to be within d, 1 

before i is chosen as the winner. 

3.2.3 Methods based on special operators: In [26] a method for systematically 

handling linear constraints was proposed. In this algorithm the q linear equalities were 

30 



eliminated first by solving for the values of q variables and this effectively changed the bounds 

on the other variables as also simultaneously reducing the search space. GENOCOP tries to 

locate an initial feasible solution by sampling the search space. If it is not able to find a feasible 

solution after some trials the user is asked to provide a feasible solution. The genetic operators 

are closed so that the search does not extend into the infeasible regions. An example of a 

closed crossover operator used is the arithmetic crossover, where in the crossover of two 

feasible solutions X and Y always produces feasible children, 

child1 = aX +(1-a)Y 

child2 = (1- a)X + aY 

0Sa;5;1 

(3.12) 

While the GENOCOP is an effective search technique for problems with convex 

search spaces but cannot be extended to problems with nonconvex search spaces. Also if the 

feasibility ( p ) of the search space is low, then feasible solutions will have to be provided by 

the user. 

3.2.4 Methods based on decoders: Decoders work on the principle of "giving 

instructions" to chromosomes on building feasible solutions. Each decoder imposes a 

relationship T between a feasible solution and a decoded one. In [20], the authors proposed a 

homomorphous mapping between the n-dimensional search space and a feasible search space. 

The authors elaborate on how the mapping is achieved for convex and nonconvex space after 

providing 3 important criteria that have to be satisfied to obtain a successful mapping i.e., (i) 

for each feasible solution s there must be a feasible decoded solution d, (ii) each decoded 

solution d must correspond to a feasible solution s, (iii) all feasible solutions should be 

represented by the same number of decodings d Additionally it is reasonable to hope that (i) 
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the transformation Tis computationally fast and (ii) it has locality feature such that small 

changes in decoded solution result in small changes to the solution itself. 

This method includes an additional problem-dependent parameter to partition the 

interval [O, 1] into subintervals of equal length such that the equation of each constraint has, at 

most one solution in each subinterval. The disadvantage with the homomorphous mapping is 

that it requires an initial feasible solution and that all infeasible solutions are rejected. Also the 

locality feature is violated in non-convex search spaces. 

3.2.5 Methods based on repair algorithms: Repair algorithms are especially popular 

m combinatorial optimization techniques where it is relatively easy to repair an infeasible 

individual. The GENOCOP III [23] also incorporates the original GENOCOP system that 

handles linear constraints only and extend it by maintaining two separate populations. The 

first population consists of points which satisfy the linear constraints of the problem: the 

feasibility of these points is maintained by specialized operators. The second population 

consists of fully feasible reference points (which the user may have to provide) and these 

reference points repair any new infeasible points and make them feasible. 

The size of the second population of reference points and probability of replacement 

of the reference solutions were two parameters which had to be set. The GENOCOP-111 is a 

good choice in problems where it is easy to repair an infeasible solution and make it feasible 

but otherwise the genetic search will be heavily biased. 

3.2.6 Hybrid methods: In [18] the authors proposed two hybrid Evolutionary 

Programming (EP) techniques to solve constrained optimization problems. The first technique 

is applicable only when the objective function and its gradient are known and consists of two 

phases: the EP provides the potential solutions for nonconvex optimization to an optimization 

neural network to generate a precise solution under the assumption that the evolutionary 
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search has generated a solution near the global optimum. In the second method a two phase 

Evolutionary Program is used and this removes the restriction on knowledge of the gradient. 

The first phase uses the standard EP while an EP formulation of the augmented lagrangian 

method is employed in the second phase. 

TI1e major drawback with the method is the need to specify so many parameters that is 

needed for the successful execution of the algorithm. 

3.2.7 Methods based on multiobjective optimization techniques: Using a 

Multi.objective Evolutionary Algorithm (MOEA) based on the Vector Evaluated Genetic 

Algorithm (VEGA) to solve constrained optimization problems was proposed in [32) where 

the solutions are first ranked based on non-domination of their constraint violations and then 

also ranked based on their objective function. A Prost factor selects solutions based on objective 

function while the others are selected based on constraint violation. The P ms1 is adjusted 

depending on the target proportion of feasible solutions in the population. In [3] the author 

proposed a subpopulation based approach like in VEGA by using m+ 1 subpopulations where 

n1 denotes the number of constraints and the first subpopulation is devoted to optimizing the 

objective function. 

The obvious drawback of this technique is the high computational complexity 

especially as the number of constraints increases. Also there is not enough evidence to validate 

that treating each constraint independently and ranking them based on Pareto domination is a 

good approach. 

The method differs from [32) in that non-dominated ranking is never employed but 

the fitness function for each problem is changed so that initially the fitness function for each 

subpopulation ( except the first one which is based on the objective function) depends on the 

violation of its constraint. If the solution evaluated does not violate the constraint 
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corresponding to the subpopulation but is infeasible, then the subpopulation will min.imize the 

total number of violations. Finally once the solution becomes feasible it will be merged with 

the first subpopulation and look to minimize the objective function. 

While the results produced were satisfactory, the size of each subpopulation remained 

an open question. 

3.2.8 Test Cases: In (24] the author proposed 5 test problems and used them to 

compare 6 different methods of constraint handling viz. static penalty method, dynamic 

penalty method, the behavioral memory method, modified fonn of Genocop II , superiority of 

feasible to infeasible solutions and death penalty method (rejecting infeasible solutions). In this 

method an experimental way of estimating the feasibility ratio p = jlF f"'\ sf/ j§j was implemented 

by generating 1,000,000 random points from S and checking whether they belong inlF. The 

test problems were extended to 11 in [24] and this paper concludes that the floating point 

representation is better than binary representation for constrained optimization problems. 

Then in (27] a Test Case Generator (fCG) was proposed for constrained optimization 

problems with six tunable features (i) the number of variables of the problem (ii) number of 

optima in the search space (iii) number of constraints (iv) connectedness of the feasible search 

region (v) ratio of feasible to total search space and (vi) ruggedness of the fitness landscape. 

The TCG is available for free download but no experiments with it other than conducted in 

the same paper are reported. In (31], the authors noted some deficiencies with TCG like 

symmetry and equal sized basins of attraction for each subspace and proceeded to propose an 

advanced version that removes these concerns. Also the TCG-2 in addition incorporates the 

number of active constraints and different levels of decay of peaks and widths of the peaks as 

tunable features. The details of the Test Case Generator-2 (fCG-2) are available in (31]. 
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3.3 Need For Further Research In Constrained Optimization 

UsingGAs 

There is certainly a need for further research constrained-handling methods for GAs. 

Th.is has to do with both the way in which algorithms were designed as well as tested. From 

our analyses of the GAs previously proposed to solve the constrained optimization problem, 

we notice four comm.on features: 

1) lack of elitism 

2) require choice of parameters that require a priori knowledge about the problem 

characteristics 

3) lack of an assurance of producing feasible solutions 

4) testing of algorithm limited to a handful of problems which do not give a complete 

insight into algorithm,s performance. 

We shall see in the following Chapters 4 and 5, how our proposed constraint-handling 

scheme is designed to overcome these features. 
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Chapter 4 

DESIGN OF THE PROPOSED AI...GORITHM 

4.1 Design Requirements 

1) Assurance of feasible solutions: From the real world perspective, it is essential 

that the GA used for constrained optimization produces feasible optimal solutions for every 

mn of the algorithm. While this may be too much to ask for we would certainly hope that at 

least the feasibility criteria can be met for every run and that adequate optimization can be 

achieved. 

2) A Generic Framework: There are vanous types of constrained optimization 

problems that we may encounter in the real world and it would be impractical if the GA used 

has to be tuned to fit for each problem or if it uses special operators that cannot be 

implemented in all problem domains. While a generic framework may not be the most 

efficient for each problem setting, it is the most advisable at the algorithm design stage, while 

necessary modifications can be made to tailor for particular problems. 
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4.2 Proposed Constraint-handling Scheme 

GA, being a stochastic search technique can offer no guarantee of producing 

feasible solutions. To address this concern, we have formulated the GA in such a way that 

finding feasible solutions is the primary objective of the GA. Once a feasible solution is found, 

then the best one is maintained in the population using the elitist scheme thus assuring that the 

found feasible solution is not lost. However preferring feasible solutions over infeasible ones 

could cause the GA to be stuck in one particular feasible component where there are 

disconnected feasible components ( especially if there is a local optimum having the feasible 

component as the basin of attraction) and the GA may never get to explore the other feasible 

components containing the global optimwn. So exploring the search space guided by both the 

constraint satisfaction and the objective function optimization will be the secondary objective 

of the GA. The proposed constraint handling scheme consists of two phases and the 

algorithm switches smoothly from the first phase to the second based on a simple conditional 

statement. 

Phase One (Constraint Satisfaction Algorithm): In the first phase of the algorithm 

the objective function is completely ignored and the entire search effort is directed towards 

finding a single feasible solution. Each individual of the population is ranked based on its 

constraint violation (minimization) only and fitness is assigned to each individual based on its 

rank. The elitist strategy is used and the solution with the least constraint violation is copied to 

the next generation. Th.is phase talces care of the feasibility criteria and provides a usable 

solution (one that satisfies all constraints). We find this technique to be especially suitable for 

highly constrained problems wherein finding a feasible solution may be extremely difficult. In 

such problems it would be worthwhile and efficient to explore the search space based on the 

constraints alone without taking the objective function into consideration. 
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Phase Two (Constrained Optimizadon Algodthm). The algorithm switches to this 

phase once at least one feasible solution has been identified. This phase is treated as a bi­

objective optimization problem where the constraint violations and the objective functions 

have to be minimized simultaneously in a modified objective space that we call the "objective 

function - constraint violation space," orfv space for short. We have used a non-dominated 

sorting like in [10] to rank the individuals. We save the feasible individual with the best 

objective function in the population as the elitist solution. We also use a niching scheme in the 

.fv space so that sufficient diversity is maintained and the GA will continue to explore. We 

believe that this MOEA based approach will search to minimize both the objective function 

and constraint violation simultaneously and guide the algorithm in exploring the region 

between the constrained and unconstrained optima and the feasible and infeasible parts of the 

search space. The details of implementation of the algorithm are given below. 

4.3 Implementation Details 

4.3.1 Scalar Constraint Violation: From the problem formulation we have m 

constraints and the constraint violation matrix for an individual is an m-dimensional vector. 

Using a tolerance ( 8) of 0.001 for equality constraints the constraint violation of individual i is 

calculated by, 

{

max(O,g/X)), 
c . . (X) = 
,,j max(O,(,h/X)f-o)), 

if 145: j ~ q} 
if q+15:j5:m 

(4.1) 

Each constraint violation is then normalized by dividing it by the largest violation of 

that constraint in the population. We use normalized constraint violations to treat each 
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constraint equally. First we find the maximum violation of each constraint in the population by 

using ( 4.2), 

(4.2) 

11 => popsiz.e 

c;.,. ( X) => violatio11 of the i th i11divid11al 011 the /h constraint 

These maximum constraint violation values are used to normalize each constraint 

violation. The nonnalized constraint violations are added together to produce a scalar 

constraint violation v(X) for that individual which takes a value between O and 1. 

Ill 

L f c 1 ( X)I I cmax(J) 
·-1 v(X) = __ /_-______ _ 

m 

I · I denotes the magnitude operator 

n1 - number of constraints 

(4.3) 

4.3.2 Rank Based Fitness Allocation: In both phases of the proposed algorithm we 

allotted a fitness to each individual based on their rank in the population. In the first phase all 

the individuals are ranked based on their scalar constraint violation and allotted a fitness value 

r(XJ. The fitness values r(X) are in a range of O to 2 such that the sum of r(X) for all individuals 

equals n, the number of individuals in the population. In the second phase the individuals are 

allotted to different fronts based on non-domination and rank is allotted to each individual 

based on the front it belongs to. 

4.3.3 Crowding-Distance Assignment: It is desirable to have a diverse set of 

solutions in the j:v space to maintain the explorative power of the algorithm and hence a 

39 



niching scheme based on the distance of the nearest neighbors to each solution is applied. To 

get an estimate of the density of solutions surrounding a particular individual in the second 

phase we calculate the nonnalized average distance of two points on either side of this point 

along each one of the dimensions. 1bis quantity d(X) takes a value between O (the individual 

has multiple copies in the population) to 1 (the individual is not crowded). The fitness of the 

individual based on its rank and crowding-distance is given by, 

fit11ess(X)=r(X)+d{X) (4.4) 

Note here that the elitist individual is chosen .irrespective of its fitness but based only on 

the conditions for each of the two phases. The pseudo code of the algorithm is given below 

where g,
11 
denotes the maximum generations used. 

TABLE 4.1 Pseudo code of the proposed al.2orithm 

find </J - 1111mber of feasible sol11tio11s i11 the population 

if (</J == 0) 

// PHASE I 

Of?iective => Minimize v(X) 

elite solution => sol11tion with least v( X) 

r( X) => rank based fitness of individual based on violation v( X) 

fitness( X) = r( X) 

else 

// PHASE II 

f ( X) => given objective function 
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end 

Oijective => Mi11imize (f(X),v(X)) 

elite so/111io11 => feasible solution 1vith least f(X) 

r(X) => 11011-domi11ated rank based fitness of individual 

d( X) => Cr01vdi11g - distance assig11111ent of individual (0-1) 

Ji111ess(X) = r(X) +d(X) 

Appb ge11etic operators 011 cnm11t pop11lation 

ge11erotio11 = gmeratio11 + 1 

In the following section we discuss the algorithm design and how we come up with it 

based on the difficulties associated with different problem scenarios. 

4.4 Constrained Optimization -Algorithm Design 
As discussed before, one of the major challenges for constrained optimization is to 

search for optimal solutions that are feasible with respect to the constraints. One of the 

approaches of effectively solving the constrained optimization problem is to treat the m 

constraints as "objectives with goals" and define preference among individuals as described in 

[14). However this can lead to an extremely high dimensional objective space as the number of 

constraints grows. The computational complexity will become unmanageable. Hence we have 

used a single parameter, the scalar constraint violation (SCJ.1, representing normalized net 

violation of constraints by an individual. To analyze the proposed algorithm further let us 

consider the two phases individually. Let us define the usage of the following terms, 

IF - feasible region, i.e. the domain of the search space § that is feasible 

C, - the i'11 disconnected feasible component in the search space § , i = 1, ... , k 
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CflC ="", ;:;:.jandi,j=l, ... ,k 
I J 'f' 

Phase One - Constraint Sadsfacdon Problem: 

Goal: To £ind a feasible solution from a random initialization. 

Argument: If there are m constraints and k (>0) feasible components then a GA with 

selection based only on constraint violation will find a feasible solution with probability one as 

t ~ oo . This is true because in this case the scalar constraint violation is only a measure of 

distance from the feasible region. As selection favors minimizing this distance, a feasible 

solution will be ultimately reached. Since there are k feasible components, the probability of 

the first feasible solution being found in any one of the feasible components is 1 / k . 

Ne..xt we begin our analysis of the second phase of the algoritlun where the actual 

optimization takes place. During the design of our fitness scheme we could have chosen either 

one of the following two schemes: the preference scheme or the non-dominated scheme. The preference 

scheme based on [26] is defined by, 

(i) Any feasible solution is better than any infeasible solution; and 

(ii) Among two feasible solutions i and j, assign greater probability of selection to the 

solution with the better objective function. 

We shall compare this with the non-dominated scheme in which 

(i) Solutions are ranked based on the non-domination of their constraint violations and 

objective function values. 

Analyzing these two selection schemes we try to draw meaningful conclusions about 

the design of the selection scheme under different problem scenarios. By analyzing the 
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C, (")C, = ¢,, i :1: j and i,j = 1, .. . ,k 

Phase One - Constraint Satisfaction Problem: 

Goal; To find a feasible solution from a random initialization. 

Argument: If there are m constraints and k (>O) feasible components then a GA with 

selection based only on constraint violation will find a feasible solution with probability one as 

t -+ oo . This is true because in this case the scalar constraint violation is only a measure of 

distance from the feasible region. As selection favors minimizing this distance, a feasible 

solution will be ultimately reached. Since there are k feasible components, the probability of 

the first feasible solution being found in any one of the feasible components is I/ k . 

Next we begin our analysis of the second phase of the algorithm where the actual 

optimization takes place. During the design of our fitness scheme we could have chosen either 

one of the following two schemes: the preference scheme or the non-dominated scheme. The preference 

schen1e based on [26] is defined by, 

(i) Any feasible solution is better than any infeasible solution; and 

(ii) Among two feasible solutions i and;~ assign greater probability of selection to the 

solution with the better objective function. 

We shall compare this with the non-dominated scheme in which 

(i) Solutions are ranked based on the non-domination of their constraint violations and 

objective function values. 

Analyzing these two selection schemes we try to draw meaningful conclusions about 

the design of the selection scheme under different problem scenarios. By analyzing the 
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performance of the preference scheme in two different scenarios, we shall be in a better 

position to decide on the better constraint handling scheme. 

Phase Two - Cons'tra.ined Optimizadon Problem: 

Goal: To locate the feasible global optimum after a single feasible solution is found. 

We define the efficiency of a search technique by the speed (with respect to the 

nwnber of function evaluations) at which it can get to the global optimum as opposed to an 

exhaustive brute-force search. 

A major issue in solving the constrained optimization problem is the balance between 

the exploration and exploitation. Let us consider the fv pace. In our algorithm we maintain the 

feasible solution with the best objective function unchanged in our population and this can be 

regarded as an ru.-tificial way of creating a genetic drift phenomenon which helps in 

exploit'ltion. At the same time we maintain a niching scheme in the fv space looking for a well 

extended and uniform Pareto front thus helping the algorithm explore even when it is 

converging. The following cases illustrate why and when this property of the algorithm is 

essential. 

Case 1: There is on!J one faasible component ( k = 1) - a need for exploitation 

In this case our initial feasible solution will belong to this feasible component and the 

global optimum is also present in this component. Selection based on the preference scheme will 

be more efficient in converging to the global optimum than the non-dominated scheme as (i) there 

is no need to explore looking for other feasible components because it does not exist; (ii) the 

infeasible solutions (which carry no useful genetic information in this case) are not encouraged 

in the population and this technique can lead to the global optimum in a lesser number of 

evaluations. 

Case 2: If there are k (>1) disconnectedftasible components- a need for exploration 
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In this case the preference scheme may not be efficient in converging to the global 

optimwn. This is because the chances of the feasible initial solution being located in the 

feasible component with the global optimum is l / k and the magnitude of this value becomes 

lesser as the nwnber of components increase so there may be a need for the GA to search for 

solutions in the other components. This induces a need for exploration to find feasible 

solutions. We analyze the two methods by talcing 2 solutions i and j from the population and 

evaluate the selection scheme that will increase the probability of converging to the global 

optimwn. We also assume in our discussion that the feasible solution with the best objective 

function is saved as the elitist solution in the population. 

1) If solution i is feasible and j is infeasible, we could 

(a) assign a greater probability of selection to i irrespective of the objective function 

values of i and) 

(b) check if j has a better objective function value than i and consider both i and J 

non-dominated if it does. Otherwise assign a greater probability of selection to i. 

In designing our algorithm, we chose option (b ). This is because our elitist scheme 

already saves the best solution in the population. This elitist solution is obviously feasible and 

has an objective function value that is just as good or better then i. So irrespective of whether i 

or J is chosen, the elitist scheme assures that a part of the genetic search proceeds along the 

direction of the feasible solution with the best objective function. Hence by giving} an equal 

probability of selection, we are also favoring genetic search in the infeasible regions that have 

good objective function values. 

2) Among two feasible solutions i and;: consider i and j non-dominated irrespective of 

the objective function values. This helps the algorithm explore more as the best feasible 

44 



solution is already stored as the elitist solution. Hence by givmg both i and j an equal 

probability of selection we are giving the algoritlun a better chance to e>..'Plore. 

f 

0 
V 

FIGURE 4.1 Schematic of the non-dominated ranking used in proposed GA 

Figure 4.1 shows the non-dominated set of solutions in the fv space and all these 

individuals are ranked one. 111e niching scheme assigns a different fitness to these solutions 

based on how crowded tl1ey are. So tl1ere is a greater selective pressure on solutions at the two 

comers. Hence the niching scheme tries to extend the Pareto front along the direction of the 

two arrows. Since the elitist solution is saved unchanged in the population, there is a greater 

probability of solutions around it. Hence we have indicated this solution in Figure 4.1. 

In the next section, we introduce the Test Case Generator-2 (TCG-2) and perform 

actual experiments using the two selection schemes on the problem scenarios discussed above. 

4.5 The GA Used In This Research 

Real-valued representation: We have used real-valued representation in our algorithm 

sirnply because of the fact that th cN\ing is straight-forward and simple. It is easily possible to 

create and maintain individuals in a range using real-valued strings and no effor t is lost in 

decoding. 
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Population Size: In all of our implementations we used a population of only 1 O 

individuals. What does such a small population size mean? Well, first it means much faster 

computation and second it means less randomness in the algorithm. Let us analyze 2 cases 

where there is no selection scheme and only mutation is applied all the individuals of the 

population. Let us assume that there is a fictional number of Il distinct search space solutions. 

Population size= 1: In this case the parallel operation of genetic algorithms is 

completely lost. Since mutation is used, we can assure that at most one random search space 

solution is generated every generation. Even in the possibility that all these solutions are 

distinct, it would still require fl generations to explore the search space thoroughly. As 

I ~ ex:> the GA will converge to the global optimum. 

Population size=100: In this case 100 solutions are evaluated in parallel. Assuming the 

same mutation as discussed in the above case and in the hope that every generated solution is 

unique, we require Il / 100 generations to explore the search space thoroughly. Again, as 

1 ~ ex:> the GA will converge to the global optimum. 

What is the difference between these two cases: the difference is in "the rate of 

exploration." We did not want a very large population size because (i) in the first phase of the 

algorithm we are trying to just find one feasible solution and so we need an "exploitive 

algorithm," one in which the distance towards feasibility is continually minimized. In the 

second phase of the algoritlun we introduce sufficient diversity in the population by using a 

niching scheme and hence a large population is not sought for. 

We used the "xovmp" and "mutbga', command functions from [39] for implementing 

the crossover and mutation in our algorithm. We used stochastic universal selection described 

in Section 2.2.3 for implementing the selection scheme. 
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Chapter 5 

TESTING THE PROPOSED ALGORITHM 

5.1 Selection Scheme Comparison Using TCG-2 

In this section, we have used the Test Case Generator-2 (TCG-2) to simulate different 

problem scenarios and perform the experiments. The TCG-2 is an enhanced version of the 

Test Case Generator (TCG) proposed in [31]. The nine different tunable features of the TCG-

2 are, 

11- dimensionality of the problem, 

m- number of feasible components, 

(!- feasibility of the search space, 

c- complexity of the feasible search space, 

a- number of active constraints, 

p- number of peaks of the objective function, 

u- width of the peaks, 
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a- decay of height of the peaks, 

d- distance between the different feasible components. 

The search space is composed of an n-dimensional hypercube with each dimension 

ranging in the closed interval of[0,1]. The feasible regions of the search space are determined 

by m., ~, c and d The general idea behind the TCG-2 is to randomly create m non-overlapping 

boxes ( or rectangular areas) in the search space. The total occupancy of the m feasible 

components put together is p x ISi x {l-c). Considering 2 dimensions, if the complexity c is zero 

then there are "' feasible components and each one of them is a perfect rectangle. New boxes 

are attached to existing ones maintaining a minimum distance d between the feasible 

components for the remaining pxjsjxcpart of the search space. Figure 5.1 shows the feasible 

components in a two-dimensional search space for n =2, p =0.001, c =0.2, m =8, and d = 

0.1. 
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FIGURE 5.1 Feasible components for n =2, p =0.001, c =0.2, m =8, and d = 0.1. 
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Based on the created feasible components, the constraint violation function is defined. 

The constraint violation value is zero inside the feasible components, while outside the feasible 

components the constraint violation value is the distance to the closest center of all th.e feasible 

components. The constraint violation is defined by, 

{

O, if X is inside a feasible component} 
cv(X) = . 

lccjwiblr - xi, otherwise 

where cc1,,uibl, is the closest center to any feasible component 

X denotes the solution vector to be evaluated 

(5.1) 

The objective function is defined using a set of p randomly placed Gaussians gk (X) , 

where hk is the height of the peak k and is the center of the peak k . In order ro evaluare the 

objective function f (X) , the closest center c, of the solution vector is found and then the 

Gaussian function gk (X) is evaluated. 

All centers ck a.re placed randomly in the search space with the exception of the global 

optimum that is placed such that there are exactly a active constraints at the global optimum. 

All peaks heights are evenly distributed between [a, 1] such that the global optimum has the 

highest peak hk=l while tl1e lowest peak has h1,= a. The global optimmn is placed either inside 

tl1e feasible regions (if a = O) or at the borders (if a>O). Hence the global optimum always 

satisfies the constraints and has a value of 1. The test scenario chosen is a function TCG-2 

(11,m,g,,~a,p,(J,a,d). \Y/e have implemented two tests to verify the results from our previous 

discussions regarding selection schemes for different types of problems. In each of these tests 

we have defined 10 levels of difficulties and the performance of each algoritlun is plotted 

based on how it treats problems of increasing difficulty. 
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To perform this test we increase our problem complexity from a problem with 1 

feasible component and one opti.mutt1 to a problem with 10 disconnected feasible components 

and 10 peaks. All of the other characteristics of the problem such as the feasibility and number 

of active constraints are kept the same. The test scenario is defined by TCG-2 

(2,m,0.005,0.2, 1 J>,0.2,0.5,0.1) where m and pare varied from 1 to 10. We allow the algorithm to 

run a ma.xi.mum of 5,000 generations. Also because we know that the global optimum is 1, we 

stopped the algorithm if the best feasible objective function value reaches 0.999. When 

implementing both the preference scheme and the 11on-dominated scheme, we use niching in the 

second phase of the both algorithms to maintain diversity. The same elitist scheme is 

employed in both algorithms. The following Figures 5.2 and 5.3 compare the results from the 

Pntfere1l(:e sdJeme method and the non-dominated scheme. 
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FIGURE 5.2 number of generations used in 
preference scheme 
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FIGURE 5.3 number of generations used in 
non-dominated scheme 

Starting with the same number of generations required for m and p value of 1, the non­

dominated scheme shows a much better performance when the number of disconnected 

components and the number of peaks increase. Even though the increase in the number of 

generations required to solve the problem does not increase linearly with m and p, we can 
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clearly see that at all stages the non-dominated scheme performs better. Figures 5.4 and 5.5 

show the mean objective function values for various stages of the algorithm. 
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FIGURE 5.4 Mean objective function using a 
maximum of 5000 generations 
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FIGURE 5.5 Mean objective function using 

a maximum of 5000 generations 

Again we notice that better performance has been obtained by the non-dominated scheme 

for all values of m and p greater than 1. By acknowledging that the non-dominated scheme achieved 

these results with a lesser number of generations as shown in Figs. 5.4 and 5.5, we can say with 

certainty that the non-dominated scheme is more efficient. 

In the next section we extend the testing to the eleven test problems form [24] used 

frequently in literature and provide a fair comparison with state-of-the-art approaches. 

5.2 Comparison With Other Algorithms 

We implemented the proposed constraint handling scheme for eleven test cases from 

[24] as shown in Table I using real-coded individuals with probability of mutation of 0.05 and 

that of crossover of 0.9. For all of the problems we used a population size of only 10 

individuals and 10% elitism. We ran our algorithm for 5000 generations in each of 50 runs. 

The characteristics of these test problems are given in Table 5.1 reproduced from [24]. 
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TABLE 5.1 SUMMARY OF TEST CASES 
Function n Type off fl u NE NI a 

Min. Gl 13 Quadratic 0.0111% 9 0 0 6 

Max. G2 k Nonlinear 99.8474% 0 0 2 1 

Max. G3 k Polynomial 0.0000% 0 1 0 1 

Min. G4 5 Quadratic 521230% 0 0 6 2 

Min. GS 4 Cubic 0.0000% 2 3 0 3 

Min.Go 2 Cubic 0.0066% 0 0 2 2 

Min. G7 10 Quadratic 0.0003% 3 0 5 6 

Ma.x. GS 2 Nonlinear 0.8560% 0 0 2 0 

Min. G9 7 Polynomial 0.5152% 0 0 4 2 

Min.GlO 8 Linear 0.0010% 3 0 3 6 

Min. Gl 1 2 Quadratic 0.0000% 0 1 0 1 

LJ - Linear Inequalities, NE-Nonlinear Inequalities, NI-Nonlinear Inequalities, a-active constraints and feasibility 
ratio p = IF"' sl ;Isl . 

The feasibility ratio p = IF n sj / Isl was determined experimentally in [24] by calculating 

the percentage of feasible solutions among 1,000,000 randomly generated individuals. For G2 

and G3, the value of k used was 50 which is different from the 20 used in our experiments. 

Also because we treat our equality constraints by relaxing them using a threshold value, the 

values of e would be slightly different for G3, GS and G 11. From Table 5.1 we can see that we 

have a variety of test functions involving both maximization and m.ini.tn..i.zation problems with 

different types of objective functions and constraints. We have used our constraint handling 

scheme witl1out any modifications for solving all of these 11 problems. The results are shown 

in Table 5.2. 
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TABLE 5.2 RESULTS USING PROPOSED CONSTRAINT HANDLING 
Fu,u:hon OphmmrJ 'IPord !mt nudian stmulard MFG I':foasil,k 

Valu1 
dt:vutum Runs 

Min.Gt -15 -11.9999 -14.9999 -14.9997 0.8514 11.24 0 

Max.G2 0.803553 0.672169 0.803190 0.755332 0.0327 0 0 

Max. G3 1.0 0.7855820 1.00009 0.94899 0.0489 31.68 0 

Min.G4 -30665.5 -30651.9595 -30665.5312 -30663.3642 3.3103 0 0 

Min.GS 5126.4981 6112.2231 5126.5096 5170.5294 341.2248 1807.82 0 

Min.G6 -6961.8 -6954.3186 -6961.1785 -6959.5683 1.2691 289.52 0 

Min.G7 24.306 35.881930 24.410977 26.735666 2.6139 53.22 0 

Max. GS 0.095825 0.095825 0.095825 0.095825 0 9.28 0 

Min.G9 680.63 684.131429 680.762228 681.706290 0.7443 5.84 0 

Min.GlO 7049.33 12097.4078 7060.55288 7723.16672 798.68 99.86 0 

Min. Gll 0.75 0.8094 0.7490 0.7493 0.0093 13.32 0 

t\IFG - 1'1ean generation number when the first feasible solution is fowid. 

One of the first things to be noted is that all of the 50 runs produced feasible 

solutions for all of the test problems and this assures that in a "real-world scenario" we 

produced usable solutions in every run of the algorithm. This is definitely attributable to the 

first phase of our algorithm which treats the constrained optimization problem as a constraint 

satisfaction problem. In problems G2 and G4 a feasible solution was always found in the 

random initial population itself and this certainly implies that the feasible space occupies a 

major part of the search space in these problems. Even though G 1 contained 9 constraints, 

they were all linear and hence the feasible space is convex. Thus by minimizing the distance to 

the feasible regions the constraints could be satisfied effectively and a feasible solution is found 

early in the search process. G3 has only one constraint and it was relaxed a little by using a 

threshold value of 0.001 to help find feasible solutions. Finding feasible solutions was most 

difficult in GS where the combination of nonlinear equalities and linear inequalities caused 
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some challenge in locating feasible solutions. Nonlinear inequalities again caused some delay in 

finding feasible solutions for GS while a combination of linear inequalities and nonlinear 

inequalities caused some delay in finding feasible solutions for G7 and G10. 

Since finding feasible solutions was independent of the objective function in the first 

phase of our algoritlun we can make some conclusions about how constraints affect the GA's 

ability in finding feasible solutions. 

1) Nonlinear constraints in general induce more difficulty in finding feasible solutions 

than linear constraints. This can be understood by acknowledging that GA's are stochastic 

search techniques that work on reinforcement learning based on the fitness values. This fitness 

value is a trustable indicator of how far each solution is from the feasible region when there is 

a linear mapping between the decision variables and the constraints. When the mapping is 

nonlinear then the distance between slightly infeasible solutions and completely feasible 

solutions in the decision space may be disproportionate to the differences in the constraint 

violation values. Hence the one step towards feasibility in the constraint space may involve a 

tedious search in the decision space. 

2) The feasibility ratio and the type of constraints combine together to define the 

difficulty of the constraint satisfaction problem. We know from Table 5.1 that G2 and G4 

have a large (! value and a feasible solution was found in the random initial population on all 

the 50 runs in spite of the fact that nonlinear constraints were present in both problems. At 

the same time even for problems with low e like G 1, feasible solutions could be easily found 

because the constraints were all linear. GS involved a combination of nonlinear constraints and 

very low(! and this probably caused the difficulty in finding feasible solutions. Also G6, G9, 

and G 10 which required relatively more generations to find feasible solutions involve a 

combination of low (! and nonlinear constraints. 

54 



In the results for the best values found by the algorithm from Table 5.3, we see that 

the algorithm has produced results extremely close to the optimum value known for all of the 

11 test problems. For Gl even though the value of -15.0 could not be reached accurately, the 

algorithm consistently produced -14.9999 as the optimal value. In G2 again the optimal value 

of 0.8031 is fairly close to the optimum value of 0.8035. Hitting the optimum in G3 the 

algorithm produced a better than optimum result in G4. In GS, G6, G7 and G9 the best 

results produced by the algorithm differ in decimal places from the optimum value. GS was a 

very easy problem and the optimum results were obtained for all 50 runs. In G 10 again the 

algorithm having produced 7060.55 was quite close to the 7049.33 optimum which apparently 

no GA has reached as seen from Table 5.4. The best value for Gl 1 is only better than the 0.75 

optimum because of the tolerance in the equality constraint used. Also note that the standard 

deviation over 50 runs for all the problems other than GS and G 10 is extremely small and the 

median is very near the best values obtained. This implies that the algorithm is robust in 

obtaining consistent results. As the algorithm has the added attribute of producing feasible 

solutions for every run of the algorithm, we would need very few runs with this algorithm 

when working on a "real-world problem". Table 5.3 reproduced from [11] compares the best 

results obtained from the other algorithm in literature to those obtained with the proposed 

constraint handling scheme in the last column. 
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TABLE 5.3 COMPARISON OF BEST RESULTS 
Function Optimum Koz.idllnd Runar.uon llnd Del, Se!{ Adaptiw Pmposed 

Value Muha/a;,i~ 1999 Yao 2000 Fitness ConstrainJ 

2000 Fomndaiion 200.J Handlin& 

S&heme 

Min.Gt -15 -14.7864 -15.0000 -15.0000 -15.0000 -14.9999 

Max. G2 0.803553 0.799530 0.803515 0.802970 0.803190 

Max. G3 1.0 0.9997 1.0000 1.0000 1.0000 

Min.G4 -30665.S -30664.900 -30665.539 -30665.537 -30665.500 -30665.5312 

Min.GS 5126.4981 5126.4970 5126.9890 5126.63049 

Min.G6 -6961.8 -6952.100 -6961.814 -6961.800 -6961.17856 

Min.G7 24.306 24.620 24.307 24.373 24.480 24.410977 

M~x. GS 0.095825 0.095825 0.095825 0.095825 0.095825 

Min.G9 680.63 680.91 680.63 680.63 680.64 680.7622 

Min.G10 7049.33 7147.90 7054.32 7060.22 7061.34 7060.5528 

Min. Gll 0.75 0.75 0.75 0.75 0.7490 

We can see that the algorithm has performed very well for all of the test problem 

reaching or obtaining values extremely near the global optimum. In fact from the table it is 

obvious that stochastic ranking scheme proposed in [29] has produced the best results known 

so far for all of the test problems. But a downside to that method as pointed out in [11] is that 

for G 10 only 6 runs out of 30 produced feasible solutions. In [11 ], 17 runs out of 20 produced 

feasible solutions while our algorithm produced feasible solutions in all of the 50 runs. We in a 

way have tackled the same problem of domination between the objective function and 

constraint violation in assigning the fitness to the individual brought out in [11 ], but have 

solved it using non-dominated ranking as opposed to using a probability factor P, [29] · 

Overall we believe that the results for these 11 problems which is a variety by itself have 

helped substantiate our claim that the proposed constraint handling scheme is generic and 

reliable. 
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Chapter 6 

APPLICATION TO THE ECONOMIC 

DISPATCH PROBLEM 

6.1 Introduction 

TI1e eco110111ic dispatch problem describes how the real power of each controlled generating 

unit in an area is selected to meet the load demand and to minimize the total operating costs 

while satisfying the operating constraints involved. The formulation of the economic dispatch 

problem is dependent on the various factors considered. In this chapter, we deal with the 

economic dispatch problem considering the ramp rate limits and the prohibited zones, which 

are essential in the actual operation. 

Lambda-iteration [40] is the most commonly used method to tackle the economic 

dispatch problem. However the lambda-iteration method demands a continuous problem 

formulation and hence cannot be directly applied to the economic dispatch problem with 

discontinuous prohibited zones [40]. To overcome this, a genetic algorithm (GA) based 

method was proposed in (40]. This method uses the concept of equal-incremental costs and 

uses the GA to search for the optimal value of the incremental cost. A downside to this 

method is that the prohibited zone is checked for after running the algorithm and appropriate 

correction is made. This can lead to sub-optimal results. Also the incremental cost has to be 
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found by differentiating the cost function of the generating units, and so the cost function has 

to be continuous and differentiable. While this is a worthwhile assumption, this does impair 

the power of the GA because the GA does not require continuity or differentiability of the 

cost function. The authors, in the discussion have hinted a need for further research in this 

direction and in handling the prohibited zones. Even while a variety of constraints were 

considered in the problem formulation, a real-time or dynamic economic dispatch was not 

implemented in any of the test systems. 

The work discussed in this chapter hopes to build on [40] by using an advanced GA 

well crafted to handle constraints. Hence the prohibited zones of the generating units are 

treated as hard constraints, which have to be satisfied before a feasible solution can be reached. 

We have not used the equal incremental cost method because that hampers the generality of 

the algorithm. The equal incremental cost method is unsuitable in problems where the cost 

function of the generating units is not monotonically increasing. We have also solved the 

dynamic economic dispatch problem by building on the example given in [ 40]. We found it 

important to test the GA on the dynamic economic dispatch problem because in the real­

world operation, the load on the power systems varies from one interval to another. Also 

dynamic economic dispatch helps us to test the algorithms ability in overcoming the ramp-rate 

limit constraints. 

In Section 6.2 we give the problem formulation considering only one interval of 

operation. The test system is elaborated in Section 6.3. The implementation of the proposed 

algorithm is discussed in section 6.4. In Section 6.5 we compare the results between the 

proposed algorithm and (40]. In Section 6.6 we further extend the testing of the system from 

one interval to six intervals and thoroughly evaluate the proposed algorithm's performance. 

We finally conclude the chapter in Section 6. 7. 
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6.2 Problem Formulation Considering One Interval Of 

Operation 

In this section we describe the problem formulation of a power system over one 

interval of operation. Here the load demand (in MW) for one interval has to be met while 

satisfying the operating constraints. So we can assume that one interval is the time during 

which the load on the system remains unchanged. Thus one interval can imply different time­

lengths depending upon the operation and load variation on the system. The following sub­

sections describe the problem in detail as formulated in [40]. 

6.2.1 Objective Function: The objective is to minimize the generation costs involved 

while meeting the operational constraints on the system. The objective function is defined as, 

lvli11imiz.e F = ! J, ( ~ ) 
i=I 

where, 

F : total generating cost of the system 

J~ : power generation of unit i 

J, ( 1~ ) : generation const for ~ 

(6.1) 

6.2.2 Consttaints incorporating the power balance equation: The most important 

aspect of economic dispatch is to meet the load demand. This is structured as the power­

balance equation where the transmission losses are also considered. 

II 

2>~ = Pn + P,o.\:r 
(6.2) 

t=I 

where, 

P0 : system load demand 

P,os.~ : system transmission losses involved 
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111c network losses, which are taken into account, are calculated as, 

P,.,u = ttP,B,,P, (6.3) 

where, 

B,, : loss coefficients 

6.2.3 Constraints incorporating upper and lower generating limits: The generating 

units can only be operated within a range of output MW and this forms the second set of 

constraints on the system. 

P,sP,sP, (6.4) 

where, 

P, : minimum generation of unit i 

P, : maximum generation of unit i 

6.2.4 Constraints incorporating the ramp rate limits: The third set of constraints is 

related to the real-rime operational aspect of power systems. Practically it is not possible to 

adjust the unit's output generation instantaneously. The operating range of all on-line units is 

restricted by their ramp-rate limits. The following inequality constraints determine the 

acceptable range of values that can be achieved based upon the previous output MW of the 

generating unit. 

1) if generation increases 

P -P 0 <UR 
I I - i 

(6.5) 

2) if generation decreases 

P, 0 
- P, 5, DR, 

(6.6) 
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where, 

]~

0 

: power generation of unit i at previous hour 

UR, : ramp - rate limit of unit i as generation increases 

DR, : ramp - rate limit of unit i as generation decreases 

6.2.5 Constraints incorporating the prohibited zone of operation: The final set of 

constraints involves the prohibited operating zones for each of the generating units. In 

practice, the best economy is achieved by avoiding the operation in the prohibited zone. 

P ~ p- or P ~ p• 
I N:. I /', 

(6.7) 

where, 

P,:: , P,:: : bounds of a prohibided zone 

6.3 Test System 

The test system used in this study was taken from [40] and is briefly described here. 

There are three controlled generating units in the power system, which is required to meet a 

load demand of 300 MW. The cost function is given by the following quadratic equation, 

J,(P,) = a.P.2 +b P. +c 
I I I I I 

(6.8) 

where, 

a, , b, and c; are constants. 

The data corresponding to the generating units have been directly taken from [40] and 

are listed here for convenience. 
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TABLE61 d ffi . . Generatma, units capacity an coe c1ents 

P, -
a;($/ MW 2

) b;($/ MW) C;($) P, P, -

50 50 250 0.00525 8.663 328.13 

2 5 150 0.00609 10.04 136.91 

3 15 100 0.00592 9.76 59.16 

TABLE62G eneratma, umts ramp rate limits and prohibited zones 
Um't po UR,(MW I h) DR;(MW lh) Prohibited Zones (.M'W) 

I 

1 215 55.0 95.0 [105,117][165,177] 

2 72.0 55.0 78.0 [50,60] [92,102] 

3 98.0 45.0 64.0 [25,32][60,67] 

The matrix given below specifies the loss formula coefficients [40], 

[

0.000136 0.0000157 0.000184] 
Bii = 0.0000175 0.000154 0.000283 

0.000184 0.000283 0.00161 

To loosen the power balance constraints a little, we have allowed a maximum of 1.001 

times the load. So our power balance constraint for this problem is given by, 

II 

300 s LI'; s 300.3 
(6.9) 

i=I 
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6.4 Algorithm Implementation On The Test System 

\Ve used a real-coding of the three generator outputs in the proposed algorithm. We 

have used a population size of 10 and a maximum. of 5000 generations. We have used the 

algorithm described in detail in Chapter 4. Because this is a real-world implementation we have 

used an early stopping criterion to terminate the GA. According to this, if there is no change in 

the best solution for 500 generations, then that run is terminated. The GA was run 50 times 

and the results are discussed below. 

6.5 Results 

Table 6.3 details the results of the proposed algorithm. over 50 runs. We can see that 

the algorithm produced very consistent results by comparing the best, median and worst 

objective function values acheived. Also the standard deviation is extremely small. An 

important factor to notice is that all the runs produced feasible solutions. This combination of 

consistent results and feasible solutions make it unnecessary to run many trials of the algorithm 

in a real-world situation. The mean number of generations to produce feasible solutions is 14. 

This means a very fast implementation since we are using a population size of only 10 

individuals. So a feasible solution even while considering the prohibited zone and ramp rate 

limits is found within 140 objective function evaluations. The last column gives the mean 

number of total generations used. The early stopping criteria saves the algorithm from running 

unnecessary generations after the best solution has remained unchanged for 500 generations. 
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TABLE63 S . um.maryo f ul ts over res 50. d d ails in epen enttr 
Best Median Worst Stand.a.rd 

objective objective objective deviation 

3634.966 3652.503 3743.645 29.658 

FR(%): Percentage of the runs that produced feasible results 
FG: ;\lean feasible generation number 
TG: ;\lean total generations used 

FR(%) FG 

100 14 

TG 

2434.387 

We compare the best results of the proposed algorithm with those from [40] in Table 

6.4. Because multiple runs are not teported in [40], we will limit our comparison to the best 

solution found. As we can see, the proposed algorithm has obtained a major saving in the total 

fuel cost. This is primarily because the proposed algorithm was able to find a solution that 

incurs very low transmission losses. Since the algorithm was implemented on two different 

types of computers, the actual execution time of the algorithm is not compared. 

TABLE64C . ompansono fb est res ul ts 

Pt(Mllry P2(MW) P3(MU7) 

Algorithm 194.265 50.0 79.625 

used in [40] 

Proposed 199.274 79.423 34.143 

algorithm 

P1, P2, P3 (M'lr-J: Power output from the generating units 1,2 and 3 respectively 

~nu (MW) : Total power lost due to transmission losses 

F(S): Total generating cost 
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p""s(MW) 

24.011 

12.841 

F($) 

3737.166 

3634.966 



6.6 Extended Testing Covering Six Intervals 

T'o test the performance of the proposed algorithm in a real-world scenario we 

extended the testing on the system described in section 6.3 to 6 intervals with different load 

demands. Again an upper limit of 1.001 times the load was used in satisfying the power 

balance equations. TI1e load demand on the 6 intervals is given in Table 6.5. 

TABLE65Lo dd . a eman d on test svstem over a1s 6" interv 
Interval I11teroal lnteroal Interval InteroaJ Interoal 

1 2 3 4 5 6 
Load 300 270 322.5 345 375 337.5 

DetJJa11d 
(MU:!') 

The algorithm was run for 50 independent trails to evaluate its performance. In the 

real-world scenario, the algorithm would be run only once for each interval. The best solution 

in the 50 independent runs is given in Table 6.6. 

TABLE 6.6 Best results obtained after 50 runs 
Pt(Mlf/) P2(J\1W) P3(MW) P1os,(MW) " F($) 

L~(MW) 
i=I 

Interval 194.512 81.373 37.511 13.397 313.397 3639.65 
1 

Interval 186.433 76.744 15.000 8.177 278.177 3275.86 
2 

Interval 205.275 113.197 15 10.973 333.473 3886.006 
3 

Interval 219.799 122.647 15 12.447 357.447 4152.685 
4 

Interval 249.913 124.454 15.505 14.873 389.873 4513.704 
5 

Interval 225.512 109.132 15.000 12.145 349.645 4060.768 
6 

Total Cost( L F ): 23528.682 

The table below summarizes the performance of the algorithm over the 50 trials. We 

notice very consistent results with respect to the objective function values obtained. Also the 
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standard de,~iation is very low considering the magnitude of the objective function values. 

·n1cse consistent results make multiple runs of the algorithm unnecessary. The attribute of the 

algorithm is very useful in the real-world implementation. 

TABLE67S . f ul ts ummary o res 
Best objective Median objective Worst objective Standard 

deviation 
23528.682 23603.131 24026.944 99.865 

Table 6.8 summarizes the mean number of generations to find a feasible solution and 

the total nwnber of generations used in the 6 intervals. The mean feasible generations are very 

small in all the intervals. Also all the runs produced feasible solutions. Hence we can say that 

the proposed algorithm is fast and reliable in handling the dynamic economic dispatch 

problem. 

TABLE 6.8 Mean Generations used 
Interval 1 lnte,va/ 2 Interval 3 Interva/4 lnteroal 5 lnteroal 6 

,...-c 13.66 14.80 16.74 16.42 12.44 14.26 

TG 1774.0 1866.5 1958.2 1721.9 1484.8 1560.2 

r"R(%J 100 100 100 100 100 100 

6.7 Summary 

We ran the proposed algorithm to implement the economic dispatch in a 3-unit 

system. The algorithm produced better cost values than [41] on the test problem chosen. 

Extended testing was carried out over 6 inteivals to evaluate the performance of the algorithm 

in a real-time implementation. All runs of the algorithm produced feasible solutions and 

reached very close to the optimal value. This proves that the proposed algorithm is suitable for 

real-world implementation wherein only a single run is needed. 
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Chapter 7 

CONCLUSIONS 

We have implemented a two-phase Genetic Algorithm to solve the constrained 

optimization problem. This algorithm has the advantage of being problem independent and 

does not rely on any parameter tuning. The proposed constraint handling scheme was also 

tested on TCG-2. We assigned various levels of difficulty based on the number of 

disconnected components and peaks in the decision space. We provided the rationale behind 

using a non-dominated ranking scheme for selecting individuals in a modified objective space 

of the objective function plotted versus the constraint violation. This in addition to the elitist 

scheme helps provide the delicate balance between exploration and exploitation of the 

algorithm. We made a fair comparison with a preference scheme of selection wherein feasible 

solutions are always preferred over infeasible ones. We were able to show the more efficient 

performance of our algoritlun as the number of disconnected feasible components and the 

number of peaks increase. We then extended the testing to the eleven test problems used often 

in literature. Apart from finding optimal solutions that are extremely close to the optimum 

values, our algorithm also found feasible solutions for every run of the algorithm. 

We used the proposed algorithm to solve a real-world application known as the 

economic dispatch problem. Our results prove that the algorithm is suited for real-time 

implementation where only a single run is desired. 
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