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Major Field: NUTRITIONAL SCIENCES 

 

Abstract: Dietary supplementation with dried plum has been shown to improve bone 

health in clinical and pre-clinical studies. This is due to the fruit’s anabolic and anti-

resorptive properties. A crude ethanol polyphenolic extract from dried plum has been 

found to enhance bone formation and suppress bone resorption in vitro and in vivo, but 

the components within this crude extract that exert these anabolic and anti-resorptive 

effects are not known. These studies were designed to identify the most bioactive 

components of the total polyphenolic extract of dried plum in enhancing osteoblast 

activity and reducing osteoclast activity under normal and inflammatory conditions. In 

addition, mechanisms by which the bioactive components of the polyphenolic extract 

affect osteoblast and osteoclast function were examined. Extraction with increasing 

methanol concentration was used to yield six polyphenolic fractions from the total 

polyphenolic extract of dried plum. It was determined that the two fractions with the 

lowest organic content enhanced osteoblast activity under normal conditions in primary 

bone marrow-derived osteoblasts. This was due to increased BMP signaling and Runx2 

expression. DP-FrA and DP-FrB did not have as robust of an effect on osteoblast activity 

under inflammatory conditions. The fractions with the higher organic content were the 

most bioactive in suppressing osteoclast differentiation and activity. These fractions 

downregulated the expression of Nfatc1 under normal and inflammatory conditions in 

mono-cultures of bone marrow-derived osteoclasts, as well as under inflammatory 

conditions in osteoblast and osteoclast co-cultures. The downregulation of Nfatc1 was 

due to a suppression of MAPK and calcium signaling. In addition, the fractions 

downregulated Rankl expression in the co-culture system, thereby suppressing the 

differentiation signal to osteoclast precursors. These studies are the first to identify 

fractions of the polyphenolic extract of dried plum that are most bioactive in enhancing 

osteoblast activity and suppressing osteoclast activity in primary cell culture models. 

These findings provide valuable insight into the mechanisms by which dried plum 

improves bone health in vivo, as well as the types of dietary compounds that should be 

targeted for use as potential preventative or treatment measures for osteoporosis. 
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CHAPTER I 
 

 

BACKGROUND 

Osteoporosis is a major public health threat, with approximately 9 million Americans 

diagnosed with the condition and another 48 million considered at risk with low bone 

density or osteopenia [1]. It is estimated that 60% of people 50 years and older are either 

affected by osteoporosis or are at increased risk for developing osteoporosis [2]. 

Osteoporotic fractures result in approximately $19 billion in annual health care costs in 

the United States, with fracture occurring in postmenopausal women accounting for 76% 

of those costs [2].  Aside from the economic burden of osteoporosis, overall health and 

quality of life are also significantly affected.  Importantly, an increase in all-cause 

mortality has been reported in the first year following fracture of the hip. Additionally, an 

overall decline in functional status and an individual’s ability to live independently 

results from fracture of the hip, vertebra, and humerus [2-4]. Treatments to improve 

skeletal health exist, but compliance is often low due to cost, potential side effects and 

perceived lack of benefit. The greatest impact on osteoporosis prevention is realized with 

the achievement of an optimal peak bone mass during the first 2-3 decades of life [5], but 

from that point forward the focus shifts to slowing or delaying bone loss. Therefore, the 

development of a low cost, effective treatment to slow the rate of bone loss and improve 
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skeletal health is desirable. 

Maintenance of a healthy skeleton in adults requires that bone is periodically 

remodeled [6].  It has been estimated that this remodeling process results in the 

replacement of human skeleton every 10 years [7].  Bone remodeling occurs within a 

basic multicellular unit (BMU) where bone is first resorbed by osteoclasts via acidic 

degradation of surface mineral and enzymatic digestion of the underlying extracellular 

matrix [8]. Following resorption, osteoblasts are known to be recruited to the resorption 

site by products released during matrix degradation, including transforming growth 

factor-beta (TGF-β), insulin-like growth factor-2 (IGF-2), and platelet derived growth 

factor (PDGF) [9, 10]. Osteoblasts secrete collagen and non-collagenous extracellular 

matrix proteins that form osteoid within the resorbed area, providing a surface for 

hydroxyapatite to bind [11]. In addition, osteoblasts regulate osteoid mineralization by 

secreting membrane-bound matrix vesicles, inside of which is an optimal environment for 

initiation of calcium and phosphate crystallization [8, 12]. Hydroxyapatite formation 

within matrix vesicles is also enhanced by enzymatic elimination of inhibitors of 

mineralization, such as pyrophosphates and proteoglycans [12]. The duration of the 

remodeling cycle is approximately 6 months in humans, with the resorptive phase 

requiring ~1 month and the much longer formation/mineralization phase persisting for an 

additional 5 months [13]. By comparison, the bone remodeling cycle is much shorter in 

rodent models such as the mice, requiring 2-4 weeks [14, 15]. Bone loss occurs when the 

normal cycle of resorption and formation is uncoupled, and the rate of bone resorption 

exceeds that of bone formation [11]. A persistent increase in the rate of bone remodeling 
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can result in osteoporotic bone due to the relatively brief period of time required for bone 

resorption and the substantially longer period of time required for bone formation [16].   

Classically, two types of primary osteoporosis are clinically recognized—senile or 

age-related osteoporosis and postmenopausal osteoporosis [11, 17].  While a reduction in 

the rate of bone formation is the primary metabolic change associated with aging that 

leads to bone loss [18], estrogen deficiency initially results in a rapid increase in both 

bone resorption and, to a lesser extent, bone formation (i.e., bone turnover) [17].  Over 

time, bone formation and mineralization cannot compensate for the accelerated rate of 

bone resorption and bone loss occurs.  Additionally, following the relatively short-term 

increase in overall bone turnover, postmenopausal women eventually experience a 

decline in osteoblast activity and bone formation [19]. This imbalance in bone 

remodeling is primarily attributed to the direct effects of estrogen deficiency on 

osteoclast, osteoblast, and osteocyte [20]. Estrogen’s effect on bone cells is complex, but 

in general it alters key regulators of osteoblast and osteoclast differentiation and activity, 

as well as osteoclast and osteocyte apoptosis [21-24]. Osteoblast differentiation is 

mediated by estrogen in part via mothers against decapentaplegic homolog 1/5/8 (Smad 

1/5/8) and runt-related transcription factor 2 (Runx2) signaling. Estrogen also increases 

the expression of genes associated with the activity of osteoblasts, including alkaline 

phosphatase (ALP) and osteocalcin (OCN) [25-27]. Additionally, estrogen decreases 

osteoclast number by altering key regulators of differentiation expressed by osteoblasts 

and immune cells, including receptor activator of NF-κB ligand (RANKL) and 

osteoprotegerin (OPG), as well as by inducing apoptosis of osteoclasts via upregulation 

of Fas ligand (FasL) and caspases 3 and 8 [28, 29].  Therefore, estrogen deficiency 
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increases the number of osteoclasts and their lifespan, and decreases osteoblast 

differentiation and activity.  The process through which estrogen affects bone cells will 

be reviewed in detail in Chapter 2.   

In addition to direct effects on bone cells, estrogen indirectly alters bone 

metabolism by modulating immune responses [30-33]. Estrogen receptors are expressed 

in a number of different immune cell populations, including monocytes, B cells, and both 

CD4
+
 and CD8

+
 T cells [32]. Estrogen receptor-alpha (ER-α) is predominantly expressed 

by CD4
+ 

T cells, while ER-β is more highly expressed by B cells [32]. No difference in 

ER-α and ER-β expression by monocytes has been reported in premenopausal women, 

but following menopause monocyte expression of ER-α is upregulated [32]. Monocyte 

production of interleukin (IL)-1, IL-6 and tumor necrosis factor- α (TNF-α), as well as 

the proliferation of TNF-α- and IL-17-producing CD4
+ 

T cells plays a role in the 

pathophysiology of postmenopausal osteoporosis, suggesting a major role of ER-α 

signaling in the regulation of the immune response that alters bone metabolism [30, 31, 

33, 34].  

Dietary components known to have immunomodulating properties have been 

found to protect against bone loss [51-55]. For instance, green tea polyphenols have been 

shown to reduce bone loss under estrogen deficiency and inflammatory conditions [55-

59].  Blueberries prevented bone loss in ovariectomized (OVX) models of osteoporosis, 

and decreased the inflammatory response, including inhibition of IL-6 and IL-1β 

production, in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells 

[53, 60, 61]. Soy consumption improved bone parameters in estrogen deficiency models 

of osteoporosis [51, 62]. Dried plums, rich in phenolic compounds [63], have been shown 
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to attenuate and even reverse bone loss due to aging and gonadal hormone deficiency in 

pre-clinical and clinical studies [52, 64-67]. These effects on BMD and bone 

microarchitecture result from a temporal suppression of osteoblast activity and sustained 

suppression of osteoclast activity (i.e., bone turnover) following dried plum consumption 

[68, 69].  In a clinical study of postmenopausal women, daily consumption of 100 g of 

dried plum resulted in a higher BMD of the ulna and spine [68]. This improvement in 

BMD was attributed to a reduction in bone turnover, as evidence by suppression of bone-

specific ALP, a marker of bone formation, and tartrate-resistant acid phosphatase 5b 

(TRAP5b), an indicator of osteoclast activity. In a follow up study, 6 months of 50 g of 

dried plum daily was as effective as 100g of dried plum in protecting postmenopausal 

women from bone loss, and this was attributed to a decrease in serum TRAP5b, an 

indicator of bone resorption [70].  In an animal model of male osteoporosis, dried plum 

restored trabecular bone in the vertebra and distal femur metaphysis to a similar extent as 

intermittent parathyroid hormone (PTH) treatment, currently the only FDA-approved 

anabolic treatment for osteoporosis [52].  Dried plum supplementation altered the 

systemic immune response in estrogen deficient mice protected from bone loss, including 

a decrease in splenocyte TNF-α production and a decrease in bone marrow lymphoblast 

numbers [67].  

Efforts to begin to identify the bioactive components in dried plum responsible for 

these osteoprotective effects have involved both in vivo and in vitro studies.  In a study 

utilizing aged, osteopenic OVX rats, a crude ethanol extract of the polyphenolic 

compounds restored bone to a similar extent of that of dried plum (unpublished data). 

This extract has also been shown to increase osteoblast activity and decrease osteoclast 
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differentiation under normal and inflammatory conditions [71, 72].  Although previous in 

vivo and in vitro studies have supported that this crude polyphenolic extract accounts for 

the majority of the bioactivity of dried plum on bone, studies are needed using a more 

refined extract (i.e., removal of residual carbohydrates) to determine the types of 

polyphenolic compound(s) responsible for these effects and their mechanisms of action.  

Identifying the bioactive component(s) in dried plum responsible for these 

beneficial effects on bone is an important step in determining if dietary supplementation 

could be a component of an osteoporosis prevention or treatment strategy.  In addition, 

understanding the extent to which these bioactive components alter bone metabolism will 

allow for better understanding of the pathophysiology of osteoporosis and how dietary 

bioactive components may be used as a part of prevention and treatment strategies.  

 

Purpose 

The purpose of this project is to determine the bioactive component(s) in dried 

plum responsible for the beneficial effects on bone metabolism and the mechanisms 

through which these components enhance osteoblast activity and suppress osteoclast 

activity. 

  

Central Hypothesis:  Polyphenolic compounds in dried plum favorably affect bone 

metabolism by suppressing osteoclast activity and increasing osteoblast activity. These 

effects are mediated by alterations in calcium and MAPK signaling in osteoclasts and 

BMP signaling in osteoblasts. 

 



7 
 

Specific Aim 1:  To investigate the effects of different fraction(s) of a dried plum 

polyphenol extract on osteoclasts in vitro under normal and inflammatory 

conditions and how these effects are mediated. 

 

Sub-Aim 1.1:  To determine the fraction(s) and dose of the dried plum polyphenol 

extract that most effectively reduces osteoclastogenesis in a murine immortal cell line. 

 

Sub-Aim 1.2:  To examine how the active polyphenolic fraction(s) alter osteoclast 

differentiation (i.e., quantification of TRAP
+
 cells) and activity (i.e., resorption pit 

formation) using primary bone marrow-derived osteoclast cultures. 

 

Sub-Aim 1.3:  To examine the extent to which the active polyphenolic fraction(s) alter 

key regulators of osteoclast differentiation by way of calcium and MAPK signaling 

pathways. 

 

Sub-Aim 1.4:  To examine how the fraction(s) of the dried plum polyphenolic extract 

alter osteoclast differentiation using murine primary co-cultures, a system that allows 

osteoblast and osteoclast interaction. 

 

Working Hypothesis 1:  The phenolic compounds in dried plum will attenuate the 

increase in osteoclast differentiation and activity in normal and inflammatory cell culture 

conditions by suppressing intracellular calcium and MAPK signaling. 
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Specific Aim 2:  To investigate the effects of different fraction(s) of a dried plum 

polyphenol extract on osteoblasts in vitro under normal and inflammatory 

conditions and how these effects are mediated. 

 

Sub-Aim 2.1:  To determine the fraction(s) and dose of a dried plum polyphenol extract 

that results in the greatest increase in osteoblast activity (i.e., ALP) and function (i.e., 

formation of mineralized nodules) in a murine immortal cells line. 

 

Sub-Aim 1.2:  To examine how the active polyphenolic fraction(s) alter osteoblast 

activity (i.e., ALP) and function (mineralized nodule formation) using primary osteoblast 

cultures. 

 

Sub-Aim 2.2: To examine the mechanisms (i.e., BMP and MAPK signaling pathways) 

by which the most bioactive fraction(s) of the dried plum polyphenolic extract increases 

osteoblast differentiation and activity. 

 

Working Hypothesis 2: The phenolic compounds in dried plum will attenuate the 

reduction in osteoblast differentiation and activity by enhancing BMP and MAPK 

signaling in normal and inflammatory cell culture systems.  

 



9 
 

CHAPTER II 
 

 

LITERATURE REVIEW 

 

Introduction 

Osteoporosis is a costly and frequently debilitating disease that affects individuals 

of all ages, but primarily adults over the age of 65 years [2].  Data from the United States 

Census Bureau indicates that the number of adults aged 62 and older increased by 21% 

from the year 2000 to the year 2010, the largest increase of any age group [73].  As the 

age demographic shifts to a higher percentage of older adults, it is expected that the 

annual incidence of osteoporotic fracture will increase 50% by the year 2025 [2, 74].  

Because females have a lower peak bone mass than males [75] and due to accelerated 

bone loss during the onset of menopause [76], postmenopausal women are likely to 

experience approximately 75% of these fractures [2].  

Coinciding with the increase in fracture incidence, osteoporosis-related health 

care costs are expected to increase from $16.9 billion in 2005 to an estimated $25.3 

billion by the year 2025 [2-4].  Aside from the economic burden of osteoporosis, 

fractures are associated with a significant increase in all-cause mortality, especially 

within one year of hip fracture [3, 4]. Whether this increased risk of mortality is due
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to complications associated with treatment of fracture (e.g., surgical risks, immobility) or 

due to comorbidities that contribute to the pathophysiology of fracture (i.e. dementia, 

kidney disease, neurologic disease, etc.) is not clear [3].  To date, treatment options have 

not been as successful at reducing the prevalence of osteoporosis as anticipated because 

of poor adherence due to side effects, lack of perceived benefit and/or cost of treatment 

[77].  Effective strategies are needed to prevent fracture from occurring in at-risk 

populations and to improve treatment outcomes, both of which will ultimately reduce 

healthcare costs and mortality.   

 

Bone Metabolism 

To develop better prevention and treatment strategies, the fundamental 

pathophysiology of bone loss must be understood. Bone remodeling involves bone 

degradation by osteoclasts coupled with bone formation by osteoblasts and these events 

occur within a canopy of bone lining cells that provide a physical barrier which forms the 

BMU [78-80].  This remodeling process is required for the maintenance of a healthy 

adult skeleton.  Bone loss occurs when there is an uncoupling of bone remodeling by 

osteoblasts and osteoclasts [81]. While signaling from osteocytes, another bone cell 

population, is now recognized as having a role in the activation of the remodeling 

process, the focus here will be on the study of the osteoclast and osteoblast in bone 

resorption and bone formation, respectively. [78, 82, 83].   

Bone Resorption 

Upon activation of bone remodeling, bone marrow mononuclear 

monocyte/macrophage osteoclast precursors, derived from hematopoietic stem cells 
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(HSCs), are recruited by monocyte chemoattractant protein-1 (MCP-1) [84]. MCP-1 is 

produced by osteoblasts in response to signals from osteocytes or endocrine hormones, 

such as PTH [84]. The formation of osteoclasts from bone marrow HSCs requires at least 

two known cytokines, macrophage-colony stimulation factor (M-CSF) and receptor 

activator of NF- κB ligand (RANKL) [85-87].  Both of these proteins are produced by 

cells of the osteoblast lineage, as well as some immune cells (e.g., T cell populations). To 

regulate osteoclast differentiation, osteoblasts secrete osteoprotegerin (OPG), a soluble 

decoy receptor for RANKL that inhibits HSC differentiation to osteoclasts [11]. 

Proliferation of osteoclast precursors requires M-CSF binding to its receptor, c-Fms, 

which results in the interaction and nuclear localization of transcription factors 

micropthalmia-associated transcription factor (MITF) and PU.1 [86-89].  Treatment of 

murine HSCs with M-CSF results in translocation of MITF from the cytoplasm to the 

nucleus [90]. While PU.1 is localized in the nucleus in the absence of M-CSF, it is not 

present in the promoter regions of target genes related to the resorptive capacity of 

osteoclasts, such as tartrate resistant acid phosphatase (TRAP), cathepsin K (Ctsk) and 

carbonic anhydrase II (CAII) [90]. In fact, treatment with M-CSF results in recruitment 

of both MITF and PU.1 to the promoter regions of target genes. Despite inducing the 

localization of these transcription factors to the promoter regions of genes essential to the 

function of osteoclasts, M-CSF alone is not sufficient to induce osteoclastogenesis [90].  

Differentiation of osteoclast precursors to mature osteoclasts is initiated by 

RANKL interaction with the receptor activator of NF- κB (RANK) on HSCs [86, 87, 89].  

Interference with RANKL/RANK binding with the treatment of the RANKL antibody, 

denosumab, has been shown to improve BMD and reduce risk of fracture in 
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postmenopausal women, and this has been attributed to a decrease in bone resorption [91-

93]. The binding of RANKL to RANK activates tumor necrosis factor receptor-

associated factor 6 (TRAF6)-mediated signaling cascades, including NF-κB, c-Jun N-

terminal kinase (JNK), mitogen activated protein kinase (MAPK) p38, and extracellular 

signal-regulated kinase (ERK) cascades, that result in the differentiation and activation of 

osteoclasts (Figure 1) [94].  Inhibition of NF-κB, p38 and ERK activation by the 

phytochemical phenethyl isothiocyanate found in cruciferous vegetables downregulates 

osteoclast differentiation, demonstrating the necessary role of these signaling cascades in 

osteoclastogenesis [95]. 

 
Figure 1. Upon RANKL/RANK binding, TRAF6 forms a complex with TAK1 and 

TAB2. The TRAF6/TAK1/TAB2 complex phosphorylates NIK. NIK activation leads to 

the phosphorylation of IκB, marking the NF-κB inhibitor for proteosomal degradation 

and allowing NF-κB to translocate to the nucleus, where it acts as a transcription factor, 

inducing cFos expression. The TRAF6/TAK1/TAB2 complex also activates p38, JNK 

and ERK signaling cascades, leading to the activation of transcription factors necessary 

for the induction of Nfatc1 expression.  
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Upon RANKL binding to RANK, TRAF6 forms a complex with the MAP3K TGF-β-

activating kinase 1 (TAK1) and the adaptor protein TGF-beta activated kinase 

1/MAP3K7 binding protein 2 (TAB2) (Figure 1) [96]. The formation of this complex 

results in the activation of TAK1, which then phosphorylates NF-κB-inducing kinase 

(NIK) [97]. Activated NIK phosphorylates IκB kinase (IKK) in the cytoplasm, which in 

turn leads to the phosphorylation of IκB, an NF-κB inhibitor protein. Phosphorylation of 

IκB induces proteosomal degradation of the protein, allowing for translocation of NF-κB 

to the nucleus, where it acts as a transcription factor [97].  

Translocation of NF-κB to the nucleus induces expression of c-Fos, a major 

component of the transcription factor activator protein-1 (AP-1) [98]. The AP-1 complex 

consists of homodimers of c-Fos or heterodimers of c-Fos and c-Jun. Activation of AP-1 

occurs via ERK-mediated phosphorylation of c-Fos and JNK-mediated phosphorylation 

of c-Jun [98]. AP-1 activation is essential for the expression of nuclear factor of activated 

T-cells, calcineurin-dependent 1 (Nfatc1), a transcription factor necessary for the terminal 

differentiation of osteoclasts [99-104]. The presence of activated AP-1 at the promoter 

regions of genes essential to osteoclast function (e.g., TRAP and CtsK) also suggests a 

role for this transcription factor in the activation of these genes [105]. In fact, activation 

of TRAP and Ctsk requires the presence of MITF/PU.1 complex, Nfatc1, and phospho-

p38 in their promoter regions, indicating a convergence of multiple signaling pathways to 

induce differentiation and activation of osteoclasts [90]. 

In addition to initiating NF-κB signaling cascades in preosteoclasts, RANKL also 

stimulates the TRAF6- and TAK1-mediated activation of JNK, ERK, and p38 MAPK 

signaling cascades [104, 106]. Phosphorylation of TAK1 induces the p38 MAPK 
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signaling cascade, including upregulation and activation of MKK3, MKK6, and p38 

within 1 day of soluble RANKL treatment of murine bone marrow monocytes [106]. 

Activated p38 phosphorylates and activates MITF at the promoter regions of target genes, 

including Nfatc1 [90, 101-103]. The activation of MAPK signaling cascades in RANKL-

stimulated RAW 264.7 cell and bone marrow monocyte/macrophages can also be 

induced by TRAF6-mediated reactive oxygen species (ROS) production [107].  The 

ROS, produced by the plasma membrane bound NADPH oxidase Nox1, initiate JNK, 

ERK and p38 MAPK signaling cascades, and treating with an antioxidant has been 

shown to inhibit these signaling pathways and the differentiation of osteoclasts [107]. 

Blocking RANKL-induced JNK, ERK and p38 activation in RAW 264.7 cells with 

treatment of caffeic acid 3,4-dihydroxy-phenethyl ester, a compound found in various 

medicinal plants, suppressed osteoclast differentiation, demonstrating the necessity of 

these signaling cascades in osteoclastogenesis [108] 

Also essential to osteoclast differentiation, the binding of RANKL to RANK 

stimulates intracellular Ca
2+ 

flux (Figure 2). A sustained Ca
2+

 oscillation has been 

reported approximately 24 hours after soluble RANKL stimulation of 

monocyte/macrophage RAW 264.7 cells in vitro [109]. These Ca
2+ 

oscillations are 

essential for sustained activation and auto-amplification of Nfatc1, due to the Ca
2+

-

dependent calcineurin pathway necessary for Nfatc1 induction [109].  In fact, inhibition 

of calcium signaling with treatment of the calcium chelator BAPTA-AM or with the 

calcineurin inhibitors FK506 and cyclosporin A, blocks RANKL induced osteoclast 

differentiation in bone marrow-derived monocyte/macrophage precursor cells [110].   
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Takayanagi et al. Nature Reviews Rheumatology (2009) 5, 667-676. 

Figure 2. Calcium signaling is initiated upon activation of the DAP12- and FcRγ-

associated co-stimulatory receptors OSCAR, PIR-A, TREM2, and SIRPβ1. Activation of 

DAP12 and FcRγ results in Syk kinase recruitment and subsequent PLCγ activation. 

PLCγ initiates calcium release from the ER as well as extracellular calcium influx. The 

increase in intracellular calcium activates CaMK, which phosphorylates ERK and CREB, 

leading to the induction and activation of cFos. Intracellular calcium also activates 

calcineurin, which will dephosphorylate Nfatc1, allowing Nfatc1 to translocate to the 

nucleus to act as a transcription factor [111]. 

 

 Calcium oscillations are mediated, in part, by the costimulatory receptor 

osteoclast-associated receptor (OSCAR), which is preferentially expressed on osteoclast 

precursors, as well as the myeloid receptors paired Ig-like receptor A (PIR-A), triggering 

receptor expressed on myeloid cells 2 (TREM2), and signaling regulatory protein β1 

(SIRPβ1) [112, 113]. Stimulation of membrane-bound OSCAR and PIR-A by binding of 
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ligands expressed by osteoblasts results in activation of Fc receptor-gamma (FcRγ) [112, 

113]. Similarly, stimulation of membrane-bound TREM2 and SIRPβ1 by ligands 

constitutively expressed on myeloid cells and osteoclast precursors activates the adaptor 

protein DNAX activation protein of 12 kDa (DAP12) [114]. DAP12 and FcRγ are 

immunoreceptor tyrosine-adaptation motif (ITAM)-containing adaptor proteins necessary 

to initiate calcium signaling in myeloid cells [113]. Interfering with these signaling 

cascades by inhibiting the adaptor proteins or the membrane-bound receptors they 

associate with impairs osteoclast differentiation and function [113-117].  For example, 

IL-10 treatment inhibited Trem2 transcription and downregulated osteoclastogenesis in 

human osteoclasts in vitro [114]. Activation of these ITAM-containing adaptor proteins 

results in the recruitment of Syk family kinases and subsequent phosphorylation and 

activation of phospholipase Cγ (PLCγ) in the cytoplasm [113]. Activated PLCγ releases 

inositol 1,4,5-triphosphate (IP3) from the plasma membrane, which then binds IP3 

receptors on the ER membrane, initiating calcium release from the ER [118]. Calcium 

release from the ER as a result of DAP12 and FcRγ signaling is essential for osteoclast 

differentiation, as mice deficient in both adaptor proteins fail to produce osteoclasts 

[117]. Calcium depletion from the ER induces a conformational change in the ER 

transmembrane protein stromal interaction molecule-1 (STIM1), which allows for 

oligomerization of the protein [118]. This oligomerization of STIM1 results in activation 

of calcium release-activated calcium channel 1 (Orai1) at plasma membrane-ER 

junctions. STIM1 activates Orai1, and the calcium channel opens, resulting in calcium 

influx through the plasma membrane. This extracellular calcium influx is required for the 

fusion of osteoclast progenitors into multinucleated osteoclasts [109].   
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An increase in cytoplasmic calcium concentration activates the calcium binding 

protein calmodulin [119]. Calmodulin then binds Ca
2+

/calmodulin dependent kinases 

(CaMK), inducing a conformation change that results in the activation of the CaMK. 

Phosphorylation of the activated CaMK is required for maintenance of maximal function 

of the kinase. Downstream targets of CaMK in osteoclast differentiation include ERK 

and cAMP response element-binding protein (CREB) [120, 121]. Both ERK and CREB 

are involved in expression and activation of c-Fos [100]. CREB functions as a 

transcription factor necessary for the induction of c-Fos expression while ERK 

phosphorylates and activates c-Fos as a component of AP-1 [100, 120]. Due to the role of 

c-Fos in Nfatc1 induction, inhibition of either ERK or CREB results in downregulation of 

Nfatc1 expression and osteoclast differentiation [120].  Adequate auto-amplification and 

upregulation of Nfatc1 occurs after approximately 5 days of RANKL stimulation of 

cultured splenic hematopoietic precursor cells [90]. Nfatc1 then binds to the promoter 

region of multiple genes necessary for osteoclast differentiation and function, including 

genes essential to osteoclast fusion (e.g., ATP6v0d2 and DC-STAMP) [109, 122], as well 

as genes essential to the activity of osteoclasts (e.g., TRAP and Ctsk) [90]. Inhibition of 

calcium signaling via binding of calmodulin by the polyphenolic compound praeruptorin 

A, isolated from the dried root of Peucedanum praeruptorum Dunn, resulted in a 

decreased activation of CREB and a reduction in auto-amplification of Nfatc1, as well as 

a decrease in osteoclast number [123].  

Following mature cell formation, the osteoclast attaches to the bone surface via 

αvβ3 integrins, which recognize specific amino acid sequences in bone matrix proteins 

[124]. Osteoclasts form a sealed microenvironment and begin the resorption process 
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[124].  The sealed microenvironment becomes acidified, in part, by the actions of the 

cytoplasmic and membrane-bound metalloenzyme CAII, which generates protons (H
+
) 

and bicarbonate (HCO3
-
) from water (H2O) and carbon dioxide (CO2) [125]. Vacuolar 

H
+
-ATPase pumps localized to the ruffled border of the resorptive surface use energy 

from the conversion of ATP to ADP to transport the H
+
 across the ruffled border [125]. 

To maintain intracellular pH, the HCO3
-
 is exchanged with Cl

-
 at the basolateral 

membrane. The Cl
- 
is then transported through Cl

-
 channels at the ruffled border to 

maintain cell polarity [125]. The acidification within the sealed microenvironment results 

in the mobilization of the mineralized matrix, which exposes the underlying organic 

matrix consisting largely of type I collagen. The lysosomal enzyme, cathepsin K, the 

predominant cathepsin expressed by osteoclasts, is responsible for the degradation of type 

I collagen at resorption sites [126]. In addition to cathepsin K, tartrate-resistant acid 

phosphatase, matrix metalloproteinase 9 and gelatinase also aid in the osteoclasts’ ability 

to digest the organic matrix of bone [127]. The resorption phase lasts approximately 2 to 

4 weeks in humans and approximately 1 week in mice [14, 15]. This phase of bone 

remodeling concludes when the multinucleated osteoclasts undergo apoptosis [128, 129]. 

Bone Formation 

Following bone resorption, the “reversal phase” of bone remodeling occurs which 

is characterized by removal of matrix debris and recruitment of osteoblast progenitors, 

derived from pluripotent mesenchymal stem cells, to the resorbed surface [8, 130].  While 

it’s not entirely clear where the osteoblast progenitor cells in the BMU migrate from, an 

increase in capillary density around the canopy cells of the BMU is observed during bone 

resorption [131]. This increase in capillary density coincides with an increase in 
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proliferating osteoprogenitor cells within the canopy. In addition, there is evidence of 

cells expressing osteoblast specific genes migrating between the canopy and the bone 

surface [131]. The signaling molecules involved in this process remain a point of 

investigation, but it has been suggested that some proteins released from the bone matrix 

during degradation, such as insulin-like growth factors (IGFs), bone morphogenetic 

proteins (BMPs), TGF-β, and platelet-derived growth factor (PDGF) signal osteoblasts to 

begin bone formation [132-134]. However, there is evidence to suggest that TGF-β1, one 

of 3 isoforms of TGF-β and an abundant cytokines in bone matrix, is also responsible for 

the chemotaxis of osteoblast precursors to the site of resorption [9]. Osteoprogenitor cell 

migration has been reported to be significantly inhibited by an antibody specific to TGF-

β1 in vitro. Additionally, inhibition of IGF-2, one of two isoforms of IGF, and PDGF 

reduces migration of these cells, but to a lesser degree [9]. Furthermore, antibody 

inhibition of TGF-β2 or TGF-β3, as well as IGF-1 and BMPs, has no effect on the 

migration of osteoblast precursors. The influence of TGF-β1 on preosteoblast migration 

is mediated by TGF-β receptor-1 (TGFBR1) activation of Smad3, which is required for 

the formation of the lamellipodia-like protrusions essential for cell migration [9]. In 

addition to TGF-β1-mediated recruitment of preosteoblasts to the site of resorption, there 

is evidence that osteoclasts signal to osteoblasts via “coupling factors” (i.e., sphingosine 

1-phosphate and EphB4/ephrin-B2), which are not associated with any products of 

resorption [135-137].  While it’s not clearly understood and remains topic of further 

investigation, the reversal phase prepares the bone surface for the next step of bone 

remodeling, bone formation [130]. 
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The formation of mineralized bone involves proliferation of osteoblast 

progenitors and matrix maturation and mineralization by differentiating and maturing 

osteoblasts [138]. Proliferation of pre-osteoblasts provides a pool of precursor cells for 

the bone formation process. Gene expression of H4 histone, an indicator of DNA 

synthesis, as well as regulators of cell growth such as c-myc and c-Fos, are upregulated 

during the proliferation phase [139]. This phase is dependent on ERK phosphorylation 

and activation [140]. Activation of ERK has been shown to upregulate cyclin D1, a 

protein that promotes progression from the G1 phase of cell cycle to the S phase [140].  

Cells entering the S phase of cell cycle duplicate their DNA and eventually divide into 

two daughter cells. ERK phosphorylation also activates runt-related transcription factor 2 

(Runx2), which will regulate the transition from the proliferative stage to the matrix 

maturation stage by downregulating cyclin D1 and inhibiting proliferation in favor of 

maturation of the pre-osteoblasts [141, 142]. Runx2 stimulates the expression of 

osteoblast-related genes, including type 1 collagen and osteocalcin, by binding to their 

promoter regions and activating transcription [143]. The layering of collagen signals the 

termination of proliferation, resulting in a downregulation of histone expression and 

DNA synthesis [139]. This transition from collagen-producing osteoblast precursor to a 

mature osteoblast is due, in part, to interactions between collagen and α2-integrins 

expressed by osteoblast progenitors [144]. Type 1 collagen and α2-integrin interactions 

result in increased DNA binding activity of Runx2 at promoters of osteoblast-specific 

genes.  

Further differentiation of pre-osteoblasts into mature osteoblasts requires 

expression of the transcription factor osterix, a downstream target of Runx2 [145, 146]. 
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Osterix is involved in stimulating alkaline phosphatase (ALP) and osteocalcin 

production. In fact, the cessation of DNA synthesis by osteoblast progenitors at the end of 

the proliferative stage is immediately followed by a ~10-fold increase in ALP mRNA 

expression, marking the induction of osteoblast differentiation and the matrix maturation 

phase [147]. The MAPK, p38, plays an essential role in the differentiation and activity of 

mature osteoblasts, as treatment with a specific p38 inhibitor results in downregulation of 

both ALP production and mineralized matrix formation in mouse primary calvarial 

osteoblasts [148]. Conversely, treatment with PTH, a known anabolic osteoporosis 

treatment, induces p38 activation and ALP production [149]. 

Activation of p38 in pre-osteoblasts is initiated by BMP receptor signaling at the 

plasma membrane [150]. Ligand-activated BMP receptors are serine/threonine kinases 

that initiate osteoblast differentiation by phosphorylating Smad 1/5/8 and TAK1 [150, 

151]. Activation of TAK1 initiates a signaling cascade that results in the phosphorylation 

and activation of p38. Activated p38 in turn phosphorylates Runx2, enhancing the 

activity of this osteogenic transcription factor. In addition, TAK1 phosphorylates Smad1 

at the same site targeted by the BMP receptor, amplifying the BMP signaling cascade 

in differentiating osteoblasts [152]. Activated Smad 1/5/8 induces the expression of the 

transcription factor Dlx5, which in turn activates Runx2 (Figure 3) [151]. The ability of 

Runx2 to induce osteogenic gene expression and therefore osteoblast differentiation 

requires activation of both Smad and p38 signaling. Treatment with PTH, currently the 

only FDA-approved anabolic osteoporosis treatment, enhances osteoblast differentiation 

via the BMP signaling pathway by inducing the expression of BMP-2 in a CREB-

dependent manner [154].  
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Figure 3. Upon ligand binding, BMP receptors phosphorylate Smad1/5/8 and TAK1. 

Activation of Smad1/5/8 results in the recruitment of Smad4 and the translocation of the 

complex to the nucleus, where it acts as a transcription factor. Activation of TAK1 results 

in the phosphorylation of p38, and activated p38 phosphorylates Runx2, enhancing the 

activity of the transcription factor. TAK1 can also phosphorylate Smad1 at the same site 

that targeted by the BMP receptor [153]. 

 

In preparation for matrix mineralization, mature osteoblasts deposit non-

collagenous proteins such as osteocalcin, bone sialoprotein, and osteopontin, which 

regulate hydroxyapatite formation [155]. More specifically, osteocalcin, the most 

abundant non-collagenous protein in the extracellular matrix, is a vitamin K-dependent γ-

carboxyglutamic (Gla) acid protein with high affinity for calcium binding [156]. While 

osteocalcin increases bone mineralization, it limits production of extracellular matrix, 
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suggesting a major role in regulating bone formation [157]. Bone sialoprotein (BSP) is a 

phosphoprotein containing an Arginine-Glycine-Aspartic Acid (RGD) motif that interacts 

with αvβ3 integrins on osteoblasts to promote maturation and mineralization of the 

extracellular matrix [158]. Like BSP, osteopontin also contains an RGD binding domain, 

as well as serine- and arginine-rich peptide (ASARM) with a high affinity for calcium, 

causing the protein to bind tightly to hydroxyapatite [159]. The ASARM peptide inhibits 

hydroxyapatite crystal growth, indicating the protein’s role in regulating bone 

mineralization [160, 161]. However, the protease Phex cleaves the ASARM peptide of 

osteopontin, which eliminates its ability to inhibit mineralization [161]. Deposition of 

these non-collagenous matrix proteins by mature osteoblasts prepares the extracellular 

matrix for mineralization. 

The signals that induce the transition to the mineralization phase of bone 

formation are not clearly understood [139].  Initiation of mineralization occurs within 

matrix extracellular vesicles produced by osteoblasts [8].  Within these vesicles, calcium 

and phosphate concentrations increase until formation of hydroxyapatite 

(Ca10(PO4)6(OH)2) occurs. Availability of inorganic phosphate (Pi) in matrix vesicles has 

been shown to be a limiting factor in the formation of hydroxyapatite [162, 163]. In fact, 

in vitro data using MC3T3-E1 cells indicates surpassing a threshold of Pi concentration 

and availability is necessary for the initiation of HA nucleation [164]. Therefore, ALP 

and Pi transporters are essential to bone mineralization because both increase local Pi 

concentration. ALP provides Pi via phosphatase activity and improves hydroxyapatite 

formation by removing pyrophosphates, phosphate-containing inhibitors of crystal 

growth [8, 165, 166]. Transport of the Pi generated by ALP into the matrix vesicles 
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requires the BMP2-induced Na
+
-Pi cotransporter Pit1 [163]. In fact, evidence suggests 

that extracellular Pi concentration is not a limiting factor of mineralization but instead the 

ability of cells to transport Pi into the cell is the limiting factor. Much like the initiation of 

mineralization, the signals responsible for the cessation of bone mineralization are still 

under investigation. Signaling from osteocytes, such as an increased expression of 

sclerostin, at least in part, initiates the cessation of bone mineralization [130]. At the end 

of the bone remodeling cycle, osteoblasts either undergo apoptosis, become bone lining 

cells, or are embedded in the mineralized matrix and become osteocytes [130] 

Maintenance of healthy bone requires coupling of bone resorption and bone 

formation so that bone is being replaced at the same rate at which it is being resorbed. 

Bone integrity is threatened when the balance of bone resorption and bone formation is 

disrupted.  While there are many factors that can disrupt the balance between the 

catabolic and anabolic phases of bone metabolism, osteoporosis most often occurs within 

the context of aging and altered gonadal hormone status [167]. 

 

Hormonal Regulation of Bone Metabolism 

Various hormones play a role in the regulation of bone metabolism, including 

gonadal hormones (e.g., estrogen and testosterone), PTH, and pituitary hormones (e.g., 

growth hormone, GH, and follicle-stimulating hormone, FSH) [28, 168-173].  The role of 

estrogen in regulating bone metabolism has been extensively studied due to its role in 

postmenopausal osteoporosis [23, 28, 174-177].  Estrogen, a steroid hormone, is 

produced primarily in the ovaries, but also in the adrenal cortex and some peripheral 

tissues (e.g., adipose tissue) [178]. There are 3 forms of naturally occurring estrogen: 
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17β-estradiol, estrone, and estriol. The most abundant form and the estrogen that has the 

highest affinity for estrogen receptors (ERs) is 17β-estradiol. Estrone and estriol, which  

are metabolites of 17β-estradiol,  have a much lower affinity for ERs [178]. 17β-estradiol 

is transported in the serum bound to sex hormone binding protein (SHBP) [36]. It is 

thought that free estrogen, which is lipophilic, can easily diffuse through the cell 

membrane of a target cell. Estrogen bound to SHBP is recognized by the receptor 

megalin and binding of the estrogen/SHBP complex to megalin induces endocytosis of 

the complex [35]. Once inside the cell, SHBP is degraded in the lysosome while estrogen 

diffuses through the nuclear membrane, where it interacts with estrogen receptors (ERs).  

The presence of ERs has been reported in various cells, including osteoblasts, 

osteoclasts, and their progenitor cell populations [179-181]. Estrogen directly affects both 

bone resorption and bone formation by regulating osteoclast and osteoblast 

differentiation, activity and lifespan [23, 174, 175, 177]. Classical estrogen signaling is 

mediated via ligand binding to one of two nuclear receptors, ER-α or ER-β [182]. Both 

ER-α and ER-β are expressed by osteoblasts and osteocytes [183]. Estrogen can increase 

osteoblast differentiation and activity predominantly via ER-α mediated signaling in bone 

marrow mesenchymal stem cells and differentiating osteoblasts, respectively [174, 177, 

184, 185]. Estrogen also increases bone formation by reducing apoptosis and prolonging 

the lifespan of mature osteoblasts [174, 176, 177]. Ligand-bound ERs can affect gene 

transcription directly by binding to estrogen response elements (EREs) in the promoter 

region of target genes, or indirectly by binding the transcription factors AP-1 and 

specificity protein 1 (Sp1), at the promoter region of target genes (e.g., Col1a1, TGF-β, 

OPG, IGF-1) [38, 41, 175, 186-190]. Estrogen also affects osteoclast differentiation and 
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lifespan [23, 175, 189]. ER-β expression has been reported in osteoclasts, but the 

presence of ER-α in osteoclasts is controversial [183]. Estrogen primarily regulates 

osteoclast differentiation by reducing the production of RANKL by osteoblasts, T-cells 

and B-cells [23] and increasing OPG production by osteoblasts, B cells and bone marrow 

stromal cells [175]. Estrogen also decreases bone resorption by inducing apoptosis of 

osteoclasts [28, 189]. Therefore, although accompanied by a relatively short-term 

increase in overall bone turnover, the reduction in estrogen that occurs with menopause 

can directly affect bone formation due to a decrease in the differentiation and activity of 

osteoblasts and an increase in osteoblast apoptosis [19, 174, 177, 184, 185]. Furthermore, 

estrogen deficiency results in an increase in osteoclast differentiation and lifespan [23, 

175, 189].   

In addition to a direct effect of estrogen deficiency on bone cells, a decrease in 

estrogen results in a reduction in endogenous antioxidant capacity and increase in 

oxidative stress that affects osteoclast and osteoblast differentiation and apoptosis, 

respectively [191, 192]. Decreasing systemic estrogen levels results in an increase in lipid 

peroxidation and hydrogen peroxide production in the bone marrow [192]. This increase 

in oxidative stress results in a reduction in endogenous antioxidants in the bone marrow, 

such as glutathione peroxidase and superoxide dismutase [192]. Upregulation of reactive 

oxygen species (ROS) has been shown to induce osteoclast differentiation [193]. 

Therefore, estrogen deficiency affects bone metabolism directly by influencing osteoblast 

differentiation and activity and osteoclast differentiation and lifespan, and indirectly via 

an increase in oxidative stress. As a result of the effects of estrogen on bone metabolism, 

postmenopausal osteoporosis is characterized by an acceleration of bone loss in the first 



27 
 

4-8 years after estrogen begins to decline, with an estimated 10.5% reduction in BMD of 

the spine, 7.7% reduction in whole body BMD, and a 5.8% reduction of BMD in the 

femoral neck [171, 194]. 

While the acceleration of bone loss due to the decline of estrogen during the peri-

menopausal and initial postmenopausal periods results in significantly more women 

developing osteoporosis, men also are at increased risk of fracture with increasing age 

[76].  Approximately 30% of all hip fractures occur in men [195].  The primary gonadal 

hormone in men is testosterone, and there is evidence that testosterone can directly inhibit 

osteoclast differentiation via androgen receptor signaling on monocyte precursors [170].  

However, age-related bone loss in men is primarily due to a decrease in serum 17β-

estradiol [196-198].  Serum total and bioavailable 17β-estradiol and estrone are correlated 

with forearm BMD in young and elderly men, whereas there is no correlation between 

testosterone and forearm BMD in these populations [199].  Serum 17β-estradiol below 

the threshold of 40 pmol/L has been associated with a significant increase in the rate of 

bone loss and bone resorption markers in elderly men [199]. These studies indicate that 

estrogen plays an important role in regulating bone health in both women and men. 

Bone metabolism is highly regulated by direct effects of estrogen on bone cell 

populations, as well as the indirect effects of estrogen on reducing oxidative stress in the 

bone marrow.  Additionally, immunological alterations associated with estrogen 

deficiency can also indirectly contribute to bone loss. Understanding how the immune 

system and bone metabolism are connected is important in developing novel osteoporosis 

treatments 
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The Role of the Immune System in the Pathophysiology of Postmenopausal Osteoporosis 

A link between the immune system and bone metabolism was first introduced 

when it was discovered that monocyte/macrophage cells could differentiate into 

osteoclasts [200, 201]. Following this finding, Pacifici and colleagues provided further 

evidence of the link between bone metabolism and the immune system by demonstrating 

that peripheral blood mononuclear cells isolated from osteoporotic men and women 

produced significantly more IL-1 than PBMCs isolated from age-matched controls[202].  

In 1990, Imai and colleagues observed an increase in the ratio of circulating CD4
+ 

:CD8
+
 

T cells in osteoporotic, postmenopausal women compared to non-osteoporotic controls 

[203]. The importance of T cells in estrogen deficiency-related bone loss was first 

demonstrated when nude mice, which lack T cells, failed to lose bone following OVX 

[33]. Furthermore, when T cells from wild type mice were transferred to nude mice, bone 

loss due to OVX occurred. However, if the T cells from TNF-α knockout mice were 

transferred to nude mice, no OVX-induced bone loss was observed, suggesting a major 

role of TNF-α [33]. However, these findings are controversial. Lee and colleagues 

demonstrate that various models of T-cell deficient mice experience OVX-induced 

trabecular bone loss [10]. Moreover, Choi and colleagues demonstrated that IL-17, 

produced by CD4
+
 Th17, was one of the major pro-inflammatory cytokine regulating 

postmenopausal osteoporosis by stimulating osteoclast differentiation and upregulating 

TNF-α production by macrophage [204]. Inhibiting IL-17 signaling by deleting its 

receptor or treating with a blocking antibody specific to IL-17 protects OVX mice from 

bone loss.  
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The increase in T cell proliferation and activation associated with estrogen 

deficiency is due, at least in part, to the upregulation of major histocompatibility complex 

II (MHCII) expression on macrophages and dendritic cells [30]. Upregulation of MHCII 

occurs in response to increased production of IFNγ by T-helper 1 cells, which are 

stimulated by IL-12 and IL-18 production from bone marrow monocytes [30, 205]. IL-12 

and IL-18 are induced in a NF-κB- and AP-1-dependent manner, and estrogen directly 

inhibits the activity of these transcription factors [29, 206]. In estrogen deficiency, the 

increase in IFNγ can also be attributed to an increase in IL-7, a potent stimulator of B and 

T cells, and a decrease in the immunosuppressive cytokine, TGF-β [207-210]. 

Upregulation of IL-7 results in an expansion of RANKL-expressing B cell precursors that 

contribute to the uncoupling of osteoblast and osteoclast activity [211, 212]. Conversely, 

estrogen stimulates TGF-β production via ER-mediated activation of the ERE in the 

promoter region of TGF-β, which prevents bone loss due to a reduction in T cell 

proliferation and activation [210, 213].  

Activation of T cells results in an increase in cytokine production, including but 

not limited to TNF-α, IL-1β and IL-6 [214, 215].  The increase in TNF-α observed in 

ovarian hormone deficiency negatively affects both bone formation and bone resorption 

[216-221]. Osteoclast differentiation is upregulated by TNF-α indirectly by inducing 

stromal cell and osteoblast production of M-CSF and RANKL, as well as directly by 

upregulation of RANK and activation of NFκB and AP-1 in osteoclast precursors, 

thereby enhancing their sensitivity to RANKL stimulation [216, 218, 220, 221]. 

Additionally, while not as potent as RANKL, TNF-α can induce the differentiation of 

osteoclasts by binding the p55 TNF receptor on bone marrow monocytes [222, 223]. 
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TNF-α also increases the osteoclast activity by enhancing the ability of mature 

osteoclasts to form an actin ring [224]. Likewise, osteoblast differentiation is also 

negatively affected by TNF-α via a reduction in expression and stability of Runx2 [217, 

219, 225, 226]. TNF-α-induced NF-κB signaling suppresses BMP signaling by inhibiting 

the binding of the activating Smad complex to the Runx2 promoter region [226]. In 

addition, TNF-α upregulates expression of Smad6, a repressor of BMP-induced Smad 

signaling, as well as Smad ubiquitination regulatory factor 1 (Smurf1), a ubiquitin ligase 

that marks Smad1 and Runx2 for proteosomal degradation [217, 219, 225]. TNF-α also 

induces apoptosis of mature osteoblasts in a caspase 8-dependent manner [227, 228]. The 

net effect of TNF-α on bone metabolism is an increase in osteoclast number and activity 

and a decrease in osteoblast number. Because TNF-α is a major contributor to the 

uncoupling of osteoblast and osteoclast activity that occurs in estrogen deficiency, in 

vitro experiments with TNF-α treatment of osteoblast and osteoclast cultures is often 

used as a model to study estrogen deficiency-induced bone loss. 

While TNF-α is a major player in estrogen deficiency-induced bone loss, other 

cytokines have also been found to play a role. IL-1β signaling has been implicated in the 

pathophysiology of estrogen deficiency-induced osteoporosis, as OVX IL-1R knockout 

mice fail to lose bone [215]. While IL-1β cannot directly induce differentiation of 

osteoclasts in in vitro models of osteoclastogenesis, it does enhance the response of 

osteoclast precursors to TNF-α [229]. Additionally, IL-1β induces stromal cell and 

osteoblast expression of RANKL, indirectly upregulating osteoclast differentiation  

[230]. The production of IL-1 by bone marrow stromal cells is induced by IL-6 [231]. 

Inhibiting IL-6 reduces TNF- and IL-1-induced osteoclast differentiation in human bone 
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marrow cultures, indicating a role for IL-6 in mediating pro-inflammatory 

osteoclastogenesis [231]. It is clear that the immune system plays a major role in the 

development of osteoporosis. Potential treatments that can attenuate inflammation or the 

response of bone to inflammation are desirable options for osteoporosis treatment. 

 

Current Osteoporosis Treatments 

Osteoporosis treatments currently approved by the United States Food and Drug 

Administration (FDA) are designed to counter abnormalities in bone metabolism by 

reducing bone resorption or increasing bone formation.  These drugs include hormone or 

estrogen therapy, calcitonin, bisphosphonates, intermittent PTH therapy, denosumab, and 

selective estrogen receptor modulators (SERMS).  However, bisphosphonates, 

intermittent PTH therapy, denosumab, and SERMS are the most commonly prescribed 

drugs due to their efficacy and lower risk of side effects, and will be the focus of this 

review.  

Bisphosphonates, a family of anti-resorptive agents, are currently the most widely 

prescribed osteoporosis medication [18].  Bisphosphonates, including alendronate, 

risedronate, and zoledronate, function by binding to the hydroxyapatite of bone and 

impairing the bone resorption activity of osteoclasts by inducing osteoclast apoptosis 

[246-248].  Treatment regimens include the administration of bisphosphonates via daily, 

weekly, or monthly oral intake or annual injection.  Bisphosphonate treatment results in 

increased BMD of the spine and hip within the first year of treatment, but this increase in 

BMD in the vertebra is not maintained following cessation of treatment [249, 250].  For 

example, women who discontinue bisphosphonate treatment experience a decrease in 
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BMD of the vertebra and an increased risk of vertebral fracture within 3 to 5 years 

compared to women who continued with bisphosphonate therapy.  Importantly, there are 

no differences in fracture risk at the femoral neck, total hip or distal radius in this 

population [249, 250]. These findings indicate that women at high risk for fracture may 

benefit from continuous bisphosphonate treatment, but long-term use of bisphosphonates 

is not without risk. The most frequent side effect associated with bisphosphonate 

treatment is adverse gastrointestinal events, especially since oral treatment should occur 

in the fasting state due to the poor intestinal absorption of the drug [251]. However, 

development of a once weekly treatment regimen for both alendronate and risedronate 

has resulted in improved patient adherence with the same bone response as daily 

treatment [252, 253].  Additionally, treatment regimens of a once monthly oral 

preparation or a once yearly infusion of zoledronate have been developed with favorable 

outcomes on fracture risk [254].  Other side effects associated with bisphosphonate use 

include esophageal irritation and cancer [255], atypical femur fracture [256], and 

osteonecrosis of the jaw [257].  Of these, atypical femoral fracture is the only side effect 

claim substantiated by recent studies, and the benefit of reduction in classical fractures 

generally outweighs the risks of atypical femoral fracture [258-260].  Today, 

bisphosphonates continue to be widely used due to their ability to reduce the risk of 

fracture in a relatively short period of time but long-term use remains a concern.  

Currently, the only anabolic medication approved by the FDA is intermittent PTH 

or a synthetic 1-34 fragment of PTH (teriparatide) [261].  Intermittent PTH treatment 

increases osteoblast proliferation and differentiation, and reduces pre-osteoblast and 

osteoblast apoptosis [261-263].  PTH also increases bone resorption via osteoclast 
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activation, but the net effect of intermittent PTH treatment is anabolic [264, 265].  

Teriparatide is prescribed for those with established osteoporosis who are at a particularly 

high risk for fragility fractures or have pre-existing fractures [266].  Daily injections of 

PTH for up to 18 months results in improved BMD and bone strength much more quickly 

and to a greater magnitude than any other osteoporosis treatment [261].  While PTH is an 

attractive osteoporosis treatment option, it is cost-prohibitive for many patients and 

severe side effects have been reported, including increased risk of gout [266], 

hypercalcemia [266], hypercalciuria [267], and potentially osteosarcoma [268].  

However, limiting the use of PTH treatment to those who are not at increased risk for 

osteosarcoma, as well as the duration of treatment to a maximum of 2 years, has resulted 

in a relatively low risk of these more severe side effects [259, 269, 270].  

One of the more recently FDA-approved drugs for the treatment of osteoporosis is 

the human monoclonal antibody for RANKL, denosumab.  Given by injection every 6 

months, Denosumab inhibits RANKL from binding to RANK, therefore attenuating 

osteoclast differentiation and bone resorption [271].  Denosumab has been found to 

increase BMD at the hip and vertebra, reduce risk of fracture, and decrease markers of 

osteoclast activity and bone turnover (i.e., serum C-telopeptide or CTX, tartrate-resistant 

acid phosphatase-5b or TRAP-5b, and intact N-terminal propeptide of type 1 procollagen 

or P1NP) in postmenopausal women [91-93].  Side effects associated with denosumab 

use include increased risk of upper respiratory and urinary tract infections [271].  

Use of hormone replacement therapy (HRT) solely for the treatment of 

postmenopausal osteoporosis is no longer recommended practice due primarily to 

findings from the Women’s Health Initiative (WHI) Study [272].  In that study, HRT 
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increased risk for coronary heart disease, stroke, breast cancer, and pulmonary embolism 

[272].  However, selective estrogen receptor modulators (SERMs), which can act as 

agonists or antagonists of the estrogen receptor depending on tissue, are a promising 

alternative to HRT [273].  Raloxifene, an estrogen receptor antagonist in breast tissue and 

agonist in bone, is effective in reducing vertebral fracture risk in postmenopausal women 

[274].  However, a comparison of treatment of osteopenic postmenopausal women with 

raloxifene or the bisphosphonate, alendronate, indicates that alendronate is more effective 

in increasing BMD of the hip and lumbar spine [275]. Side effects associated with 

raloxifene use include occurrence of hot flashes and leg cramps, along with the more 

serious increased risk of venous thromboembolic events and fatal stroke [276, 277]. 

Recently, the SERM bazedoxifene, in combination with conjugated estrogens, was 

approved by the FDA for the treatment of postmenopausal symptoms, including severe 

hot flashes and bone loss [278]. The bazedoxifene/conjugated estrogens combination 

improves total hip and lumbar BMD in postmenopausal women without the undesirable 

and dangerous side effects of HRT.  However, bazedoxifene/conjugated estrogen use is 

only approved for women with an intact uterus and only recommended for treatment of 

osteoporosis in those with significant risk of fracture [278]. 

Despite a variety of osteoporosis treatment options, lack of adherence to the 

different treatment regimens and cost are significant problems.  Reasons for 

noncompliance include fear of side effects, perceived lack of benefit, and cost of 

treatment [279].  Since osteoporosis is frequently asymptomatic until a fracture occurs, 

complying with often costly preventative treatments that are associated with various side 
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effects is not desirable. Therefore, more cost-effective treatment options with fewer side 

effects are needed. 

 

Alternative Osteoporosis Treatment Options 

Development of more desirable and efficacious osteoporosis treatments should 

include more natural options that are also beneficial to overall health. Inflammation is a 

component of the pathophysiology of most chronic diseases, including osteoporosis. 

Foods rich in anti-inflammatory phytochemicals may have the capacity to reduce risks 

associated with various chronic diseases, including diabetes, heart disease, cancer and 

osteoporosis [280-283].  For these reasons, consuming foods or food components that 

contain compounds that benefit bone health may be more desirable than complying with 

a pharmacological regimen.  

 Prevention of bone loss was demonstrated with dietary supplementation of certain 

plant-based foods rich in phenolic compounds, including green tea, soy products, 

blueberries and dried plum [52, 53, 55, 59, 61, 62, 65-67, 284-289]. Isoflavones from soy 

products, such as daidzein and genistein, as well as the microbial metabolite of these 

isoflavones, equol, prevented OVX-induced reduction in rat femoral BMD [62, 284, 

286].  Green tea consumption also increased whole body and femoral BMD, as well as 

trabecular bone in the proximal tibia, in various models of bone loss, including bone loss 

associated with OVX, aging, inflammation, and obesity [55, 59, 62, 284, 286-289].  Diets 

supplemented with 10% blueberry prevented the OVX-induced decrease in whole body 

and tibia BMD as well as trabecular bone in rat tibias [53, 61].  The ability of each of 

these foods to affect bone metabolism has been attributed to their phytochemical content. 
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Dried plums are a rich source of phytochemicals, especially phenolic acids [63]. 

Dietary supplementation with dried plum has been shown to improve bone density and 

bone microarchitecture in osteoporosis models of aging, gonadal hormone deficiency, 

inflammation and ionizing radiation and the mechanisms involved have been investigated 

in vivo and in vitro [52, 65-67, 285, 290-292].  In OVX-induced model of 

postmenopausal osteoporosis, a diet supplemented with 25% (w/w) dried plum was most 

effective at preventing bone loss [67, 290].  Dried plum attenuates the increase in bone 

turnover and inflammation that occurs as a result estrogen deficiency [67].  The 

suppression of osteoblast activity can be attributed to a downregulation of Runx2 and 

osteocalcin gene expression, which are indicators of osteoblast differentiation and bone 

mineralization, respectively. Additionally, dried plum suppresses Nfatc1 gene expression, 

and therefore osteoclast differentiation and bone resorption. [67]. Furthermore, TNF-α 

production, a major factor in the pathophysiology of postmenopausal osteoporosis, is 

suppressed in ex vivo cultures of splenocytes from the OVX mice fed 25% dried plum. 

These studies suggest that dried plum affects bone metabolism directly by altering 

osteoblast and osteoclast differentiation and activity, and indirectly by modulating the 

immune response to estrogen deficiency. 

Studies of dried plum’s effect on age-related bone loss also demonstrate the 

ability of dried plum supplementation to result in suppression of bone turnover. 

Histomorphometric and biochemical data demonstrated a suppression of bone formation 

and osteoclast surface in aged mice supplemented with dried plum at 4 weeks [69].  

However, following 12 weeks of dried plum supplementation, bone formation increased 

by 54% compared to control and urinary pyridinoline was suppressed, indicating a 
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reduction in bone resorption.  These findings indicate dried plum has a biphasic effect on 

bone formation.  Together, these findings in OVX and age-related models of bone loss 

indicate that dried plum protects bone by suppressing bone turnover, at least initially, in 

aged mice. 

 Even more remarkable than preventing bone loss due to aging and ovarian 

hormone deficiency, is the ability of dried plum supplementation to reverse bone loss. In 

aged C57Bl/6 male mice, a diet supplemented with 25% dried plum increased trabecular 

bone volume and cortical thickness [285]. In both male and female models of gonadal 

hormone deficiency-induced bone loss, dried plum has been compared to intermittent 

PTH therapy [52, 291].  In osteopenic, orchidectomized (ORX) Sprague Dawley rats, 

dried plum supplementation restored trabecular bone in the vertebra to a similar extent of 

that of intermittent PTH treatment [52]. Dried plum also improved cortical bone 

thickness compared to ORX controls, but the magnitude of response was not as great as 

that of the PTH treated group.  Biomechanical testing of the vertebra indicated that the 

dried plum had similar effects on bone strength as PTH.  In a comparison between dried 

plum supplementation and PTH treatment in osteopenic, OVX Sprague Dawley rats, it 

was demonstrated that the bone’s physiological response to dried plum and PTH differ 

[291].  Histomorphometric (i.e., bone formation rate or BFR and mineralizing surface or 

MS/BS) and biochemical data (i.e., urinary deoxypyridinoline or DPD, and serum P1NP) 

demonstrates that 6 weeks of dried plum supplementation resulted in an overall 

suppression of osteoblast and osteoclast activity, although a modest increase in 

endocortical mineral apposition rate (MAR) was observed [291].  Conversely, 

intermittent PTH treatment stimulated an increase in bone formation and mineral 
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apposition rate.  These studies indicate that dried plum is an attractive alternative 

treatment option for osteoporosis due to its ability to benefit bone microarchitecture and 

strength to a similar extent of that of costly PTH treatment.   

To determine whether other commonly consumed dried fruits that were processed 

similarly to the plum had bone-protective properties comparable to dried plum, diets 

supplemented with 25% w/w dried apple, dried apricot, dried grape, or dried mango were 

administered to osteopenic OVX C57BL/6 mice [66].  Dried plum supplementation 

resulted in a trabecular BV/TV greater than that of all other OVX treatment groups in the 

vertebra and tibia, and was comparable to that of the sham-operated controls.  This study 

demonstrates that dried plums have a unique composition of nutrients and 

phytochemicals that exert bone-protective properties in various models of bone loss.  

To examine whether the effects of dried plum supplementation seen in animal 

models translates to humans, clinical trials were conducted in postmenopausal women 

[64, 68, 70]. Postmenopausal women supplementing their diets with dried plum 

(100g/day) for one year experienced a significantly greater increase in BMD of the ulna 

and spine compared to their counterparts supplementing with dried apple [68].  Dried 

plum consumption resulted in an initial suppression of serum TRAP5b after the first 3 

months and a decrease in serum bone-specific ALP (BSAP) and sclerostin, as well as an 

increase in serum OPG following 12 months of supplementation [68, 293]. More 

recently, it was found that 6 months of 50 g of dried plum daily was as effective as 100g 

in protecting postmenopausal women from bone loss, and this was attributed to a 

decrease in serum TRAP5b levels and bone resorption [70]. Interestingly, an earlier 

short-term clinical study (90 days) in postmenopausal women found an increase in 
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BSAP, as well as IGF-1 [64].  The discrepancies in results in these studies may provide 

further support of dried plum’s biphasic effect on bone formation observed in animal 

studies.   

Studies designed to study the effects of dried plum on bone in ovarian hormone 

deficiency have revealed consistent results. In vivo studies and clinical trials have 

demonstrated that dried plum supplementation improves bone mineral density and 

trabecular and cortical bone volume [64, 66-68, 70, 291, 293]. A total polyphenolic 

extract from dried plum increases osteoblast differentiation and mineralization activity 

and decreases osteoclast differentiation and bone resorption in an inflammatory 

environment [71, 72]. However, the bioactive components responsible and the exact 

mechanisms by which they affect bone metabolism remain unclear. 

 

Bioactive Components in Dried Plum 

The initial rationale for evaluating the bone protective effects of dried plums was 

based on their high oxidant radical absorbance capacity (ORAC) score compared to other 

commonly consumed fruits and vegetables [294].  Certain bioactive components in foods 

act as antioxidants by donating hydrogen ions to free radicals, thereby neutralizing these 

potentially damaging compounds [295].  Compounds that contain aromatic rings, such as 

phenolic acids and flavonoids, effectively donate a hydrogen ion to free radicals while 

remaining a stable compound [295].  The phenolic compounds rich in dried plums are 

likely major contributors to its high antioxidant capacity, with chlorogenic acid and its 

isomers being especially abundant [296].  The most abundant phenolic compounds in 

dried plum are shown in Table 1.   
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Table 1.  The phenolic compounds in greatest abundance in dried plum. 

 
 

While the antioxidant capacity of the phenolic compounds in dried plum make 

them an attractive component to study, there are other potential bioactive components 

found in dried plum.  Non-digestible carbohydrates (e.g., pectin and hemicellulose) make 

up approximately 11-12% of the dry matter of dried plum [297].  Non-digestible 

carbohydrates, such as inulin and fructo-oligosaccharides, have been found to be 

beneficial in other disease states where inflammation plays a role in the pathophysiology, 

such as heart disease and diabetes [298, 299].  There is emerging evidence that non-

digestible carbohydrates may also be beneficial in other inflammatory disease states, such 

as osteoporosis [300, 301].  Aside from the functional food components, dried plums are 

a good source of nutrients that may benefit bone health, including potassium, boron and 

vitamin K (Table 2) [302, 303]. While there are a number of potential bioactive 

components in dried plum, in vitro and in vivo data indicate that the phenolic compounds 
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are in large part responsible for the beneficial alterations in bone metabolism observed 

with dried plum supplementation [71, 72]. 

 

                                   Table 2.  Nutrient content of dried plum. 

 

 
USDA Nutrient Database For Standard Reference Release 28 

 

 

 

 

The effects of an ethanol polyphenolic extract from dried plum on the 

differentiation and activity of osteoblasts and osteoclasts in normal and inflammatory 

environments was examined in vitro. It was demonstrated that 10-30 μg/ml of the 

polyphenolic extract attenuated the LPS-induced increase in TNF-α and nitric oxide in 

the murine monocyte/macrophage cells, RAW 264.7, during osteoclast differentiation 

[72].  These anti-inflammatory effects coincide with the polyphenolic extract attenuating 

the LPS-induced increase in osteoclast differentiation and activity in both RAW 264.7 

cells and primary bone marrow monocyte/macrophages [72].  Furthermore, the phenolic 

extract attenuates osteoclast differentiation in cells under oxidative stress, treated with 

hydrogen peroxide, in a dose-dependent manner [72]. Gene expression analyses reveal 

Nutrient per 100g dried plum

Total kcal 240

     Protein (g) 2

     Fat (g) 0.4

     Carbohydrate (g) 64

           Fiber (g) 7

           Sugars (g) 38

Calcium (mg) 43

Magnesium (mg) 41

Phosphorus (mg) 69

Potassium (mg) 732

Vitamin K (µg) 60
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that the phenolic extract decreases osteoclast differentiation and activity at least in part by 

downregulating expression of Nfatc1.  These findings indicate that a crude phenolic 

extract from dried plum is able to directly reduce osteoclast differentiation and activity 

under both normal and inflammatory conditions. 

 In addition to suppressing osteoclast differentiation and activity, the crude extract 

of dried plum polyphenolics also increased ALP production and mineralized nodule 

formation in murine pre-osteoblastic MC3T3-E1 cells under normal and inflammatory 

conditions [71]. The polyphenolic extract increased the gene expression of Runx2 and 

Osterix, which play important roles in osteoblast differentiation [71].  These findings 

suggest that the polyphenols from dried plum can also protect differentiating osteoblasts 

from the detrimental effects of TNF-α in an osteoblast cell culture model.  

 In addition to in vitro evidence of the efficacy of phenolic compounds, a dietary 

supplement of a total polyphenolic extract of dried plum also improved bone parameters 

in vivo. Dietary supplementation with the total polyphenolic extract resulted in ~82% 

increase in vertebral trabecular bone volume in aged, osteopenic OVX Sprague Dawley 

rats (unpublished data). Coinciding with the increase in trabecular bone volume, 

consumption of the total polyphenolic extract also resulted in an ~18-fold increase in 

total force necessary to induce fracture in the vertebra. Supplementation with a 

combination of potential bioactive components of dried plum, including the total 

polyphenolic extract, vitamin K and potassium, further improved vertebral trabecular 

bone volume. In fact, consumption of the combination of bioactive components resulted 

in restoration of trabecular bone in the vertebra comparable to that of dried plum.   

Interestingly, only the polyphenol extract, and not the combination of bioactive 
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components, results in greater femoral cortical bone thickness. This restoration of bone 

can at least partially be attributed to a reduction in the bone resorption marker, urinary 

DPD. The polyphenolic-supplemented group has lower urinary DPD than the OVX 

control, but not to the level of the dried plum group. These findings indicate the phenolic 

compounds in dried plum account for the majority of the bioactivity of the fruit, and that 

dietary supplementation of these compounds can improve bone health. 

 Evidence from in vitro and in vivo studies indicate that the polyphenols in dried 

plum are the primary bioactive components. Current in vitro evidence indicates that the 

polyphenols from dried plum directly benefits bone metabolism by increasing osteoblast 

differentiation and activity and decreasing osteoclast differentiation and activity [71, 72].  

The total polyphenolic extract also restored trabecular and cortical bone volume in vivo 

(unpublished data).  While there is evidence to support that phenolic compounds are 

absorbed and transported to the bone microenvironment where they can directly interact 

with osteoblasts and osteoclasts, the bioavailability of some of these compounds may be 

limited.  Thus it stands to reason that another potential site where their biological effects 

could be exerted that could ultimately affect bone metabolism is within the local immune 

system of the gut.  

 

Conclusion 

The role of the immune system in postmenopausal bone loss has been appreciated 

for many years.  Despite advances in the field of osteoporosis, there is still a need for 

treatments that are lower in cost and have fewer side effects.  Dried plum 

supplementation has been shown to be an effective treatment option, but the bioactive 
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components of dried plum and the physiological mechanisms by which it improves bone 

health are unknown. Both in vitro and in vivo data indicate that the phenolic compounds 

in dried plum are primarily responsible for the beneficial alterations in bone metabolism. 

However, it is unclear whether a combination of phenolic compounds is necessary or 

whether there is a single phenolic compound that provides the bioactivity of dried plum. 

Determining which compounds in dried plum are responsible for altering bone 

metabolism, and determining the mechanisms by which this occurs, is necessary to 

develop an efficacious and desirable osteoporosis treatment option. 
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CHAPTER III 
 

 

IDENTIFICATION OF POLYPHENOLIC FRACTIONS OF A TOTAL POLYPHENOLIC 

EXTRACT OF DRIED PLUM WHICH ATTENUATE OSTEOCLAST DIFFERENTIATION 

BY DOWNREGULATING NFATC1 

 

Authors: Jennifer L. Graef and Brenda J. Smith 

Abstract: 

Clinical and pre-clinical studies have shown that dietary supplementation with dried 

plums improves bone health. These osteoprotective effects are a result, in part, of the 

fruit’s anti-resorptive properties, which are mediated by its polyphenolic compounds. 

This study was designed to determine if certain types of polyphenols are responsible for 

anti-resorptive effects of dried plum and their mechanisms of action. Extraction with 

increasing methanol concentration was used to yield six semi-purified polyphenol 

fractions from the total polyphenolic extract of dried plum. Initial screening, using an 

immortalized cell line, revealed that the two fractions with the highest organic content 

had most marked capacity to downregulate osteoclast differentiation under normal and 

inflammatory.  This decrease in osteoclastogenesis and osteoclast activity was confirmed 

in primary bone marrow-derived osteoclast cultures. Calcium signaling, which is 

essential to the auto-amplification of Nfatc1 and therefore the differentiation of 

osteoclasts, was suppressed in the primary bone marrow-derived osteoclasts under
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both normal and inflammatory conditions. Intracellular calcium concentrations, as well as 

mRNA expression of co-stimulatory receptors involved in calcium signaling, including 

Oscar, Sirpb1, and Trem2, were suppressed under normal conditions, while only Sirpb1 

was downregulated under inflammatory conditions. In addition to calcium signaling, 

phosphorylation of Erk and p38 MAPK signaling, involved in the expression and 

activation of Nfatc1, was also suppressed by the polyphenolic fractions. Additionally, the 

polyphenolic fractions reduced osteoclast number in an osteoblast and osteoclast co-

culture system under both normal and inflammatory conditions. This study shows that 

polyphenolic fractions of dried plum suppressed osteoclast differentiation by 

downregulating calcium and MAPK signaling, resulting in suppression of Nfatc1 

expression. Therefore, the polyphenolic fractions were able to suppress bone resorption 

in these cell culture models. 

 

Introduction   

 

Osteoporosis is a major public health threat, with an estimated 60% of people 

over the age of 50 diagnosed are at an increased risk (i.e., osteopenic) [1]. Of the $19 

billion in annual healthcare costs associated with osteoporotic fracture, 76% of those 

costs are incurred by postmenopausal women [1]. Estrogen deficiency results in an 

uncoupling of the activity of bone resorbing osteoclasts and bone forming osteoblasts, 

resulting in a net effect of bone loss [1, 2]. The prominent metabolic shift in bone 

remodeling that leads to estrogen deficiency-induced bone loss is an increase in 

osteoclast differentiation and activity [3, 4]. This is due, in part, to the increase in 

immune cell activation, including proliferation of osteoclast precursors and a systemic 
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increase in the pro-inflammatory cytokines TNF-α, IL-1, IL, and IL-17 [5-7]. These same 

cytokines are also known to play a role in bone loss that occurs in inflammatory 

conditions such as rheumatoid arthritis and periodontal disease [8, 9].  

Enhanced osteoclast differentiation is observed in inflammatory environments 

[10]. For example, TNF-α increases the sensitivity of osteoclast precursors to receptor 

activator of nuclear factor-kappaB ligand (RANKL) stimulation by inducing upregulation 

of RANK and activating nuclear factor-kappaB (NF-κB) [11, 12]. The differentiation of 

osteoclasts requires the activation and auto-amplification of the transcription factor 

nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1) [13]. 

Upon RANKL stimulation of osteoclast precursors, expression of Nfatc1 is regulated by 

TNF receptor-activated factor 6 (TRAF6)-mediated signaling cascades, as well as by 

calcium-regulated signaling pathways [13, 14]. Activation of TRAF6 initiates various 

signaling cascades that are essential to the initial upregulation of Nfatc1 expression, 

including mitogen activated protein kinase (MAPK) and NF-κB signaling cascades [14]. 

The auto-amplification of Nfatc1 necessary for late stage osteoclast differentiation is 

further modulated by calcium-regulated signaling pathways [13]. Co-stimulatory 

receptors, such as osteoclast-associated receptor (OSCAR), triggering receptor expressed 

on myeloid cells 2 (TREM2), and signaling regulatory protein β1 (SIRPβ1), regulate 

calcium oscillations in the differentiating osteoclast [15, 16]. Inhibition of TRAF6-

mediated or calcium-regulated signaling pathways interferes with osteoclast 

differentiation [16-20]. 

Reducing bone resorption is essential to attenuating the loss of bone, especially in 

postmenopausal osteoporosis. Clinical trials, as well as pre-clinical studies in animal 
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models, have demonstrated the anti-resorptive effects of supplementing the diet with 

dried plum in order to prevent or reverse bone loss due to estrogen deficiency [21, 22]. 

Postmenopausal women consuming dried plum (50 g) per day for 6 months had increased 

bone mineral density (BMD) of the spine and ulna, and this was attributed to a decline in 

serum TRAP5b, which is secreted by osteoclasts during the resorption phase of bone 

remodeling [21]. In an ovariectomized mouse model, dietary supplementation with dried 

plum attenuated bone loss and this was attributed, in part, to a decrease in the systemic 

immune activation due to estrogen deficiency, including a suppression of splenocyte 

production of TNF-α and alterations in bone marrow immune cell populations [22]. Dried 

plum supplementation prevented the ovariectomy-induced decrease in granulocyte and 

committed monocyte (i.e. CD115
+
 or M-CSFR

+
) numbers. In addition, dried plum 

supplementation reduced the number of lymphoblasts in the bone marrow [22]. Perhaps 

even more intriguing than dried plum’s ability to prevent bone loss is the finding that 

dried plum supplementation can reverse bone loss due to estrogen deficiency and age 

[23-27].  Dried plum has been shown to suppress bone resorption and restore trabecular 

bone volume in vivo in an aged, osteopenic model of osteoporosis [28]. In osteopenic 

OVX Sprague Dawley rats, dried plum supplementation improved whole body bone 

mineral density, vertebral trabecular bone volume and cortical thickness [27]. These 

improvements were attributed to a reduction in bone resorption, as indicated by 

downregulation of Nfatc1 expression in the distal femur metaphysis and decreased 

urinary deoxypyridinoline levels, as well as in increase in bone formation, as indicated by 

upregulated mRNA expression of Bmp4 and Igf1 in the distal femur metaphysis and 

histomorphometric evidence of increased tibial endocortical mineral apposition rate. 
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However, the bioactive components in dried plum that are responsible for improved bone 

metabolism remain unclear.  

Much of the focus of investigating the bioactive components in dried plums has 

been on the polyphenols. Dried plums are a rich source of polyphenolic compounds that 

have potent antioxidant and anti-inflammatory properties [29]. The anti-resorptive 

properties of these compounds extracted from dried plum have been demonstrated in 

vitro and in vivo. For instance, an ethanol extract of dried plum’s polyphenols attenuated 

osteoclast differentiation and resorption activity under inflammatory conditions in the 

murine monocyte/macrophage cells, RAW 264.7, as well as in primary bone marrow 

cells [30]. This decrease in osteoclast differentiation and activity was attributed to, at 

least in part, a downregulation of Nfatc1 gene expression.  In vivo, this crude polyphenol 

extract was also able to restore BMD and reverse vertebral trabecular bone loss in aged, 

osteopenic OVX Sprague Dawley rats to a similar degree as that of dried plum, a 

response coinciding with a decrease in the biomarker of bone resorption, urinary 

deoxypyridinoline (unpublished data).  While the ability of this polyphenolic extract to 

restore bone to a similar extent as the whole fruit is a promising advancement in 

determining the bioactive components, it remains unclear if there are certain types of 

polyphenolic compounds that are responsible for the decrease in osteoclast activity. 

Moreover, elucidating the mechanisms by which these compounds suppress the 

differentiation of osteoclasts and their activity is necessary in fully understanding its 

potential as a therapeutic option for osteoporosis.  

The purpose of this study was to determine the types of polyphenols within the 

ethanol polyphenolic extract that suppress osteoclast activity using primary cell culture 
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systems. Furthermore, because bone loss is often the result of inflammation, the 

mechanisms responsible for the downregulation of osteoclast activity were examined 

under normal and inflammatory conditions. 

 

Methods 

 

Reagents 

The dried plum powder from which the extracts were derived was supplied by the 

California Dried Plum Board, the same source of dried plum used in previous in vivo 

experiments [22-24, 27, 28, 30, 31]. Murine macrophage/monocyte cells, RAW 264.7, 

were purchased from American Type Culture Collection (ATCC, Rockville, MD). 

Dulbecco’s modified Eagle medium (DMEM), Minimum Essential Medium, alpha-

modification (α-MEM), penicillin/streptomycin (P/S), L-glutamine, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), receptor activator of NF-

κB ligand (RANKL), macrophage colony stimulating factor (M-CSF), lipopolysaccharide 

(LPS), tumor necrosis factor-α (TNF-α), and phosphate buffered saline (PBS) were 

purchased from Sigma-Aldrich (St. Louis, MO). Fetal bovine serum (FBS) was 

purchased from Gibco (Grand Island, NY). Collagenase was purchased from 

Worthington (Lakewood, New Jersey).  

 

Animal procedures for primary-derived cells for mono-cultures and co-cultures 

All procedures involving the use of animals to derive primary bone marrow cells 

or neonatal calvarial cells were approved by the Oklahoma State University Institutional 

Animal Care and Use Committee. 

 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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Isolation polyphenolic fractions from dried plum 

Chromatography using HP-20 resin (Sigma-Aldrich, St. Louis, MO) was utilized 

to extract semi-purified polyphenolic fractions from dried plum powder. First, a crude 

polyphenol extract was derived from sonicating 500 g dried plum powder in 80% 

methanol under pulsated nitrogen gas two times. The liquid phase was subjected to 

column chromatography using 300 g of HP-20 resin. The column was then rinsed 5 times 

with 200 ml of deionized water to yield a water soluble carbohydrate-rich extract. 

Following the water rinses, the column was washed with 100% methanol to yield a water 

insoluble total polyphenolic-rich extract which was subjected to additional column 

chromatography using 200 g HP-20 resin. Six semi-purified polyphenol fractions with 

similar solubility properties were eluted from the column with increasing concentration 

of methanol (i.e. 0, 20, 40, 60, 80 and 100% methanol). These fractions were lyophilized 

and the weight of each fraction was as follows:  DP-FrA=17.85 g; DP-FrB=4.42 g; DP-

FrC=3.27 g; DP-FrD=4.14 g; DP-FrE=2.16 g; and DP-FrF=1.39 g. 

 

Screening of the polyphenolic fractions  

 RAW 264.7 cells, immortalized monocyte/macrophages, that can be differentiated 

into osteoclasts with RANKL treatment, were used to screen the capacity of the fractions 

to reduce osteoclast differentiation. Cells were maintained in DMEM supplemented with 

10% FBS and 1% P/S. The effects of the polyphenolic fraction on cell growth were 

assessed in doses ranging from 0.005 μg/ml – 20 μg/ml using the MTT assay.  

Based on the results of the MTT assay, the capacity of the fractions to reduce 

osteoclastogenesis at doses of 0.1, 1, and 10 μg/ml were examined. Cells were plated at a 
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density of 2 x 10
3
 cells/well in a 96-well plate and treated with RANKL (30 ng/ml) to 

induce osteoclast differentiation. The cells were treated with polyphenolic fractions (0, 

0.1, 1, or 10 μg/ml) beginning 24 hours after RANKL treatment. Following 5 days of 

RANKL treatment, the cells were washed with PBS and fixed in a 1:1 mixture of ethanol 

and acetone for 5 minutes. After 5 minutes of fixation, the cells were rinsed with 

deionized water and the osteoclasts were stained for tartrate-resistant acid phosphatase 

(TRAP; Sigma-Aldrich, St. Louis, MO) expression. Large, multi-nucleated, TRAP
+
 cells 

were quantified by counting the number of cells per well using an inverted light 

microscope (Nikon Instruments Inc, Melville, NY).   

In order to confirm the fractions and doses of polyphenols that reduced osteoclast 

differentiation under normal conditions would have similar effects under inflammatory 

conditions, a second set of experiments were performed.  Briefly, RAW 264.7 cells were 

plated and cultured as described above and then treated with 0 or 1 ng/ml of LPS on day 

4 of RANKL treatment. The cells were then fixed, TRAP stained and the number of 

osteoclast quantified per well.  

All screening experiments with RAW 264.7 cells were repeated a minimum of 2-

3 times to confirm results. The mean number of osteoclasts per treatment was expressed 

relative to the mean of the control group in each experiment (i.e., no polyphenol or LPS).   

 

Polyphenolic fractions and primary osteoclast differentiation   

The fractions with the greatest bioactivity in suppressing osteoclast differentiation 

were further examined in primary bone marrow-derived osteoclast cultures. To obtain 

primary osteoclasts, bone marrow was flushed from long bones of 4-6 week old C57Bl/6 
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mice (Charles River, Wilmington, MA). Collected cells were cultured in α-MEM 

supplemented with 10% FBS, 2 mM L-glutamine, and 1% P/S for 2 days prior to 

collecting the non-adherent, hematopoietic bone marrow cells for experiments.  

To examine the ability of the polyphenolic fractions to reduce osteoclast 

differentiation and activity in murine primary bone marrow-derived osteoclasts under 

normal and inflammatory conditions, non-adherent bone marrow cells were plated (1 x 

10
5
 cells/well) in α-MEM supplemented with 10% FBS, 2 mM L-glutamine, 1% P/S and 

30 ng/ml M-CSF in 96-well plates. Following 3 days of MCSF treatment, the media was 

replaced and supplemented with 50 ng/ml RANKL. On the 4
th

 day of RANKL treatment, 

the cells were treated with 0, 1 or 10 μg/ml polyphenolic fractions with or without TNF-α 

(1 ng/ml). The following day, the cells were stained for TRAP and multinucleated, 

TRAP
+
 osteoclasts were quantified.  

 

Polyphenolic fractions alter osteoclast activity   

The effect of the polyphenolic fractions on osteoclast activity was assessed using 

a resorption pit assay.  Dentin discs were soaked in culture media in a 96-well plate for 1 

hour prior to the experiment. Non-adherent bone marrow cells were plated in α-MEM 

supplemented with 10% FBS, 2 mM glutamine, 1% penicillin/streptomycin, and MCSF 

(30 ng/ml) at a density of 2.5 x 10
5
cells/well. Following 3 days of culture, the media was 

replaced and RANKL (50 ng/ml) was added. On day 4 of RANKL treatment, the cells 

were treated with the polyphenolic fractions identified as having the greatest effect on 

osteoclastogenesis (i.e., DP-FrE and DP-FrF) at doses of 0, 1, or 10 μg/ml, with or 

without TNF-α (1 ng/ml). After 7 days of treatment, the cells were removed from the 
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dentin discs by incubating in 10% bleach in PBS for 30 minutes at room temperature. The 

discs were then washed 3 times with DI water and stained with 1% toluidine blue in 0.5% 

sodium tetraborate for 3 minutes. The excess stain was removed and the discs were rinsed 

in DI water until no excess stain remained. Resorption pit area was determined by 

evaluating light microscopy images using ImageJ software (NIH, Bethesda, MD) and the 

data was expressed as a percentage of the total area of the dentin disc. 

 

Intracellular calcium in primary bone marrow-derived osteoclasts 

For intracellular calcium measurement, bone marrow cells were plated in 96 well 

plates and osteoclasts were generated as described above. On day 4 of RANKL treatment, 

the cells were incubated in Fluo-4 dye (ThermoFisher, Waltham, MA) for 1 hour prior to 

treatment with 0 or 10 μg/ml of polyphenolic fraction, DP-FrE or DP-FrF, with or 

without 1 ng/ml TNF-α. To assess changes over time, intracellular calcium was 

determined at 5, 30 and 60 minutes post-treatment with polyphenolic fractions by 

measuring fluorescence at excitation wavelength of 494 nm and emission at 516 nm. 

 

Analysis of gene expression related to osteoclast differentiation and calcium signaling 

For gene expression analyses, non-adherent bone marrow cells were plated in 24-

well plates at a density of 6 x 10
5 

cells/well and treated with M-CSF as describe above. 

Following 3 days of culture, the media was replaced and additionally supplemented with 

RANKL. On day 4 of RANKL treatment, the cells were treated with polyphenolic 

fractions, DP-FrE or DP-FrF (0 or 10 μg/ml) with TNF-α (0 or 1 ng/ml). Total RNA was 

extracted from cells following 1 hour of treatment using Trizol reagent (Life 



55 
 

Technologies, Carlsbad, CA) according to the manufacturer’s protocol. The concentration 

and quality of the RNA was assessed via optical density determination at 260 and 280 

nm, as well as agarose gel electrophoresis. The relative abundance of mRNA for genes 

related to osteoclast differentiation and calcium signaling (Table 1) was assessed using 

SYBR-Green technologies (Life Technologies, Carlsbad, CA) and real-time quantitative 

reverse transcription polymerase chain reaction (qRT-PCR). All mRNA expression levels 

were evaluated via the comparative cycle threshold (CT) method (User Bulletin #2, 

Applied Biosystems, Foster City, CA) using glyceraldehyde-3-phosphate dehydrogenase 

(Gapdh) as an invariant control.  

 

Protein expression analyses 

 For protein expression analyses, bone marrow cells were plated in 24-well plates 

and osteoclasts were generated as described above in the gene expression analyses 

experiments. On day 4 of RANKL treatment, the cells were treated with 0 or 10 μg/ml of 

DP-FrE or DP-FrF with and without 1 ng/ml TNF-α. Total protein was harvested from 

the cells following 30 minutes and 1 hour of treatment by first aspirating the media and 

washing the cells with sterile PBS. Radioimmunoprecipitation assay (RIPA, Cell 

Signaling, Danvers, MA) buffer was then added to each well and the cells were collected. 

The lysate was sonicated 6 x 15 sec and centrifuged at 16,000 x g to remove cellular 

debris. Total protein (40 μg) was denatured in Laemmli sample buffer at 95°C for 5 

minutes. Protein was separated on a 4-20% gradient polyacrylamide gel by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred 

onto a polyvinylidine fluoride (PVDF) membrane. Ponceau S staining confirmed equal 
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transfer of all samples. The PVDF membranes were then blocked in 5% nonfat milk or 

bovine serum albumin (BSA) in tris buffered saline (TBS) and 0.1% Tween-20. Next, the 

membranes were incubated with either p-p44/42 (pERK), p44/42 (ERK), p-p38, or p38 

antibodies (Cell Signaling Technology) with gentle shaking overnight at 4°C. Actin 

(Santa Cruz Biotech) was used as a loading control. After overnight incubation with 

primary antibody, the membranes were washed and incubated with secondary antibody 

for 1 hour prior to signal detection using SuperSignal West (ThermoFisher) 

chemiluminescent substrate. The blots were exposed using the ProteinSimple Fluorchem 

R (San Jose, CA). Density of the bands was assessed using UN-SCAN-IT gel analysis 

software (Silk Scientific Inc, Orem, UT).  

 

Polyphenolic fractions on osteoclast differentiation in a co-culture system 

To determine the most bioactive extract or extracts in reducing osteoclast 

differentiation in an environment that more closely mimics the coupled activity of 

osteoblasts and osteoclasts in vivo, murine primary co-cultures were used. Osteoblasts 

were isolated from the calvaria of 3-5 day old C57BL/6 neonates using sequential 

collagenase digestion. Briefly, the calvaria were rinsed in 0.05% EDTA (pH 7.4) for 20-

30 minutes followed by six 12-minute incubations in 0.6 mg/ml collagenase in α-MEM at 

37°C on a shaker. Following the first collagenase digestion, the media was discarded. 

The cells liberated during the 2
nd

-6
th

 rounds of collagenase digestion were collected and 

centrifuged at 2000 rpm for 6 minutes at 25°C. The cells were cultured in α-MEM 

supplemented with 10% FBS, 1% P/S, and 2 mM L-glutamine until used for co-culture 
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experiments.  Non-adherent, hematopoietic bone marrow cells were collected as 

described above for the generation of osteoclasts.  

The ability of DP-FrE and DP-FrF to reduce osteoclast differentiation in murine 

primary co-cultures was examined. Calvarial-derived osteoblasts were plated in α-MEM 

supplemented with 10% FBS, 1% P/S, 2 mM L-glutamine, and 10 nM 1,25-

dihydroxyvitamin D3 at a density of 5 x 10
4
 cells on 6.5 mm polycarbonate inserts (1 x 

10
8
 0.4-μm pores; Corning, Tewksbury, MA) and bone marrow cells were plated at a 

density of 1.0 x 10
6
 cells/well in a 24-well plate. Osteoblasts were treated with 0 or 10 

μg/ml of polyphenolic fractions DP-FrE and DP-FrF with or without TNF-α (1 ng/ml) for 

10 days and then as described previously TRAP staining of the bone marrow cells was 

performed.  The number of TRAP+, multinucleated large osteoclasts was quantified per 

well. 

To assess gene expression in primary co-culture experiments, calvarial osteoblasts 

and non-adherent bone marrow cells were cultured together at a density of 5.0 x 10
5
 cells 

and 1.5 x 10
6
 cells, respectively, in a 24-well plate in α-MEM supplemented with 10% 

FBS, 1% penicillin/streptomycin, 2 mM L-glutamine, and 10 nM 1,25-dihydroxyvitamin 

D3. Following 6 days of treatment 0 or 10 μg/ml of DP-FrE or DP-FrF under normal or 

inflammatory (1 ng/ml TNF-α) conditions, RNA was extracted and qRT-PCR completed 

as described above. 

 

Identifying phytochemicals present in DP-FrE nd DP-FrF 

The fractions were assessed for the presence of 14 phytochemicals known to be 

present in dried plum (Table 3) [32]. Liquid chromotagraphy (LC) and mass 
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spectrometry (MS) were used to determine the presence of the phytochemicals using 

methods previously described [33]. Briefly, known standards of the phytochemicals were 

used to identify the presence of any of the compounds in the fractions. Quantification of 

the detected compounds was done using a standard curve derived from the pure standard 

of the compound.  

 

Statistical Analyses 

Statistical analyses were performed using SAS Version 9.3 (SAS Institute, NC). If 

the data were not normally distributed, log transformation was completed prior to 

statistical analysis. For the screening assays, doses within a given fraction were compared 

using ANOVA with Bonferroni adjustment, due to the number of comparisons, when the 

overall ANOVA is p < 0.05. For all other assays, the effect of polyphenolic fraction 

treatment at a given dose was analyzed using ANOVA and Fisher’s least significant 

difference (LSD) post hoc analyses. Each experiment was repeated a minimum of 2-3 

times. Values are expressed as means ± standard error (SE) unless otherwise indicated. 

 

 

 

Results  

 

Screening of the polyphenolic fractions in RAW 264.7 cells 

 

To determine the most bioactive polyphenolic fraction(s) in reducing osteoclast 

differentiation, a dose response study was performed using RAW 264.7 cells treated with 

RANKL. The polyphenolic fractions that reduced osteoclast differentiation compared to 

control under normal conditions were DP-FrA, DP-FrE, and DP-FrF. DP-FrA reduced 
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osteoclast number at the 10 μg/ml dose, while DP-FrE and DP-FrF reduced osteoclast 

numbers at treatment doses of 0.1 μg/ml, 1 μg/ml, and 10 μg/ml (Table 2).  To assess 

whether these most bioactive fractions could also suppress osteoclast differentiation 

under inflammatory conditions, the cells were treated with LPS 24 hours prior to TRAP 

staining. Under inflammatory conditions, each of the three fractions significantly reduced 

osteoclast differentiation at treatment doses of 1 μg/ml and 10 μg/ml, while DP-FrA and 

DP-FrF also reduced osteoclast differentiation at a dose of 0.1 μg/ml compared to that of 

the LPS-treated control (Table 2). From these assays, it was determined that DP-FrA, 

DP-FrE and DP-FrF were able to reduce osteoclast differentiation and that this response 

occurred under normal as well as inflammatory conditions. Based on these results, the 

bioactivity of these three fractions was further assessed in subsequent primary osteoclasts 

experiments. 

 

DP fractions on primary osteoclast differentiation and activity under normal conditions 

Next, the capacity of DP-FrA, DP-FrE and DP-FrF to alter osteoclast 

differentiation in primary bone marrow-derived osteoclasts was assessed. Both the 1 

μg/ml (p = 0.0033) and 10 μg/ml dose (p = 0.0010) of DP-FrE and DP-FrF reduced the 

number of multinucleated TRAP
+
 osteoclasts (Figure 1a). DP-FrA was not able to 

significantly decrease osteoclastogenesis in the primary cell cultures and as a result of 

this observation, all subsequent experiments focused on DP-FrE and DP-FrF fractions. 

To determine if the decrease in osteoclast number observed with polyphenolic 

fraction treatment resulted in a decrease in the activity of osteoclasts, primary bone 

marrow-derived osteoclasts were cultured on dentin discs to assess resorption pit area. 
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DP-FrE and DP-FrF at both doses (i.e., 1 and 10 μg/ml) significantly reduced resorption 

pit area compared to the control (Figure 1b).  

 

Effects of DP fractions on osteoclast differentiation and activity under inflammatory 

conditions 

The ability of DP-FrE and DP-FrF to reduce osteoclast differentiation and activity 

in an inflammatory environment was also assessed. Osteoclast differentiation was 

significantly upregulated in TNF-α stimulated cultures, and both DP-FrE and DP-FrF at 1 

and 10 μg/ml attenuated this response (Figure 2a). In fact, osteoclast differentiation was 

suppressed by 36% by the higher dose of DP-FrE and by 43% by DP-FrF in TNF-α-

treated cultures. These responses resulted in the number of osteoclasts being reduced to 

the level of the control cells cultured under normal conditions.   

To determine whether DP-FrE and DP-FrF could also reduce osteoclast activity in 

an inflammatory environment, primary bone marrow-derived osteoclasts were cultured 

on dentin discs and treated with the polyphenolic fractions and TNF-α. TNF-α increased 

osteoclast activity as indicated by resorption pit area by ~4-fold (p = 0.0009) compared to 

the untreated control cells (Figure 2b). Treatment with DP-FrE at the 1 μg/ml attenuated 

the TNF-α-induced increase (p = 0.0028) in resorption pit area, although not to the same 

magnitude as that of DP-FrF. Treatment with DP-FrF at 1 μg/ml of resulted in a 73% 

decrease (p = 0.0004) in resorption pit area compared to TNF-α-treated control, and this 

reduction in resorption resulted in a resorbed area similar to that of the control not 

stimulated with TNF-α. At a treatment dose of 10 μg/ml, both DP-FrE and DP-FrF 

attenuated TNF-α –induced bone resorption to the level of the control not stimulated with 
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TNF-α. Because a dose of 10 μg/ml of DP-FrE was more effective than a dose of 1 

μg/ml, all subsequent experiments examining mechanisms by which the polyphenolic 

fractions downregulate osteoclast differentiation are treated with 10 μg/ml of DP-FrE or 

DP-FrF. 

 

DP fractions alter gene and protein expression related to osteoclast differentiation under 

normal conditions 

To examine alterations in regulators of osteoclast differentiation, mRNA 

expression of genes essential to the differentiation of osteoclasts was assessed. The 

relative abundance of Nfatc1, a key transcription factor that regulates osteoclastogenesis 

was also suppressed by DP-FrE and DP-FrF (Figure 3a). Upstream of Nfatc1, expression 

of Traf6, which upon RANKL binding to RANK initiates signaling cascades (e.g., 

MAPK and NF-κB) essential to osteoclast differentiation was not altered with either DP 

fraction (Figure 3b). However, cFos, which heterodimerizes with cJun to form the 

transcription factor AP-1 that induces Nfatc1, was downregulated by both DP-FrE and 

DP-FrF (Figure 3c).  

Protein analyses were performed to determine if RANKL-stimulated MAPK 

activation was suppressed with DP fraction treatment and representative blots are shown 

in Figure 3d. Following 30 minutes of treatment with the polyphenolic fractions, 

phosphorylation of p38 was not significantly altered (Figure 3e) and phosphorylated 

Erk1/2 tended (p = 0.0712) to be suppressed (Figure 3f). After 1 hour of treatment, DP-

FrF tended (p = 0.0737) to suppress p38 phosphorylation (Figure 3g). Phosphorylation of 

Erk1/2 was decreased by DP-FrE and to a lesser extent by DP-FrF, compared to control 
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(Figure 3h). This data indicates that DP-FrE and DP-FrF downregulated Nfatc1, and this 

is in part due to suppression of cFos upstream of Nfatc1, as well as reduced activation of 

p38 and Erk1/2.  

 

DP fractions alter gene and protein expression related to osteoclast differentiation under 

inflammatory conditions 

To determine the effects of DP-FrE and DP-FrF on regulators of osteoclast 

differentiation in an inflammatory environment, the relative abundance of mRNA for 

genes encoding for proteins that are essential to the differentiation of osteoclasts was 

assessed following 1 hour of treatment with DP-FrE or DP-FrF with or without TNF-α. 

Expression of Nfatc1 was upregulated by TNF-α treatment, but DP-FrF was able to 

attenuate this response (Figure 4a). Upstream of Nfatc1, the expression of Traf6 was 

upregulated by TNF-α, but both DP-FrE and DP-FrF were able to attenuate this response 

(Figure 4b). In fact, mRNA expression of Traf6 in DP-FrE and DP-FrF treated cultures 

stimulated with TNF-α was similar to that of the control, under normal conditions. In 

addition, cFos expression, which is induced by TRAF6 and NF-κB signaling and results 

in the induction of Nfatc1, was not altered by either TNF-α or DP phenolic fraction 

treatment at (Figure 4c).  Expression of Ikbkb, a kinase that is upregulated during 

inflammation and activates NF-κB signaling, was suppressed by DP-FrF in TNF-α 

stimulated cultures to a level lower than that of the untreated control and the TNF-α 

treated control (Figure 4d). In summary, gene expression indicative of osteoclast 

differentiation was suppressed by treatment with the polyphenolic fractions under 

inflammatory conditions.  Next, protein analyses were performed to determine if 
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RANKL-stimulated MAPK activation was suppressed with DP fraction treatment under 

inflammatory conditions and representative blots are shown in Figure 4e. 

Phosphorylation of p38 was not significantly altered by TNF-α or either of the fractions 

following 30 minutes of treatment (Figure 4f). Phosphorylation of Erk1/2 was 

significantly upregulated by TNF-α following 30 minutes of treatment, and both DP-FrE 

and DP-FrF attenuated this response (Figure 4g). Likewise, after 1 hour of treatment p38 

was not significantly altered by TNF-α or the fractions, although there was a strong trend 

(p = 0.0512) for the upregulation of phosphorylated p38 with TNF-α and a suppression of 

this response with both fractions (Figure 4h). Both DP-FrE and DP-FrF suppressed 

phosphorylation of Erk1/2 following 1 hour of treatment compared to the TNF-treated 

control (Figure 4i). This data indicates that under inflammatory conditions, DP-FrE and 

DP-FrF downregulated Nfatc1, and this is in part due to suppression of Traf6 and cFos 

upstream of Nfatc1, as well as reduced activation of p38 and Erk1/2, which is similar to 

observations under normal conditions. 

 

Calcium signaling in primary bone marrow-derived osteoclasts under normal conditions 

 Differentiation of osteoclasts requires calcium oscillations regulated by co-

stimulatory membrane-bound receptors, including OSCAR, SIRPβ1, and TREM2. 

Treatment of primary bone marrow-derived osteoclasts with DP-FrF for 5 minutes and 1 

hour resulted in a significant decrease in intracellular calcium concentration compared to 

control following 5 minutes and one hour, with DP-FrE treatment having an intermediate 

effect (Figure 5a). DP-FrF treatment resulted in a ~2-fold downregulation of Oscar 

(Figure 5c), an osteoclast-specific receptor that is transcriptionally regulated by Nfatc1 
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and activated by collagen, and is important in the auto-amplification of Nfatc1 via its role 

in activating phospholipase Cγ and calcium signaling. Additionally, DP-Fr treatment 

resulted in a decreased mRNA expression of Sirpb1, a co-stimulatory receptor expressed 

by myeloid cells that is known to regulate calcium signaling (Figure 5d). Furthermore, 

treatment with both DP-FrE and DP-FrF resulted in an ~2-fold downregulation of Trem2, 

which regulates calcium signaling by activating phosphoinositide 3-kinase and 

subsequently calcium release from the endoplasmic reticulum (Figure 5e). This data 

shows that the DP-FrE and DP-FrF reduce osteoclast differentiation at least in part by 

inhibiting calcium signaling in the differentiating osteoclast. 

 

Calcium signaling in primary bone marrow-derived osteoclasts under inflammatory 

conditions 

Similar to the response under normal conditions, intracellular calcium was 

suppressed by the treatment with the fractions in an inflammatory environment. 

Following 30 minutes of treatment with TNF-α and the fracitons, DP-FrE significantly 

reduced intracellular calcium (Figure 5b). Additionally, intracellular calcium was 

robustly upregulated following 2 hours of treatment with TNF-α, but DP-FrF attenuated 

this response. Examination of mRNA expression of the co-stimulatory receptors that 

initiate calcium signaling in osteoclasts indicated that Sirpb1 was suppressed by both DP-

FrE and DP-FrF in TNF-α stimulated cultures compared to the TNF-α treated control 

(Figure 5g). In fact, DP-FrF suppressed Sirpb1 to a level even lower than that of the 

untreated control. Unlike in the osteoclast cultures under normal conditions (i.e., no TNF-
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α), treatment with the DP-phenolic fractions did not alter the expression of Oscar (Figure 

5f) or Trem2 (Figure 5h).  

 

Effects of DP fractions on osteoclast differentiation in primary co-cultures  

To assess the bioactivity of the fractions in a system that allows for osteoblast and 

osteoclast interaction, primary osteoblasts derived from fetal murine calvaria and primary 

bone marrow-derived osteoclasts were co-cultured. Under normal conditions, osteoclast 

differentiation tended to be suppressed (p = 0.0530) with treatment with the DP fractions 

(Figure 6a).  Regulators of osteoclast differentiation are produced by the osteoblasts in 

the co-culture system in response to stimulation by 1,25-dihydroxyvitamin D3 and TNF-

α. Therefore, the effect of the DP fractions on osteoblast expression of signaling 

molecules that affect osteoclast differentiation was assessed. The relative mRNA 

abundance of Opg and Rankl was not altered by either DP-FrE or DP-FrF in the co-

cultures (Figure 6b and 6c). The relative mRNA abundance of regulators of osteoclast 

differentiation was also assessed. Expression of Nfatc1 was downregulated by both DP-

FrE and DP-FrF following 6 days of co-culture and treatment with the polyphenolic 

fractions (Figure 6d). However, Traf6 and cFos were not altered by treatment with DP 

fractions in the osteoblast and osteoclast co-cultures in normal conditions at this time 

point (Figure 6e and 6f).  

In an inflammatory environment, TNF-α upregulated osteoclast differentiation in 

the co-cultures and treatment with DP-FrF reduced the number of multinucleated TRAP+ 

cells compared to the TNF-α control (p = 0.0001; Figure 7a). In fact, the number of 

multinucleated TRAP+ osteoclasts in the DP-FrF-treated cultures was similar to that of 
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the control (i.e., no TNF-α). While mRNA expression of Rankl was not altered in the co-

cultures under normal conditions, both DP-FrE and DP-FrF downregulated Rankl 

expression in TNF-α stimulated co-cultures (Figure 7b). The expression of Opg was not 

altered by DP fractions or TNF-α (Figure 7c). Further explanation for the reduction in 

osteoclast number was the expression of Nfatc1, which was upregulated by TNF-α, and 

both DP-FrE and DP-FrF were able to attenuate this response (Figure 7d). Similar to the 

co-cultures under normal conditions, Traf6 expression was not altered by DP fractions or 

TNF-α. However, cFos expression was upregulated by TNF-α, and both DP-FrE and DP-

FrF attenuated this response (Figure 7f). In fact, expression of both cFos and Nfatc1 

were suppressed in co-cultures treated with TNF-α and DP-FrE or DP-FrF to the level of 

the untreated control. These findings suggest that the polyphenolic fractions may both 

directly and indirectly reduce osteoclast differentiation in a co-culture model, in which 

osteoblast and osteoclast activity are coupled. The suppression of Rankl expression 

suggests the polyphenolic fractions can downregulate osteoclast differentiation by 

reducing the production of stimulatory molecules by osteoblasts, while Nfatc1 expression 

data from the mono-cultures and these co-cultures suggest that the DP fractions can also 

directly downregulate differentiation pathways in osteoclast precursors.  

 

Characterization of polyphenolic compounds in DP-FrE and DP-FrF 

 Dried plums are rich in polyphenols, and especially phenolic acids. The presence 

of 14 phytochemicals known to be in dried plums was assessed in DP-FrE and DP-FrF 

(Table 3). Interestingly, of the 14 compounds, only cryptochlorogenic acid, 

neochlorogenic acid, and rutin were detected in each fraction. Each of the chlorogenic 
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acid isormers was more abundant in the fraction with the highest content of organics, DP-

FrF, than in DP-FrE. 

 

Discussion 

This study is the first to examine the fractions of a polyphenolic extract of dried 

plum that reduce osteoclast differentiation and activity. The fractions of a total 

polyphenolic extract from dried plum with the highest organics content downregulate 

osteoclast differentiation and activity in primary bone marrow-derived osteoclasts, and 

this is due to suppression of Nfatc1 expression, the master regulator of osteoclast 

differentiation. These results are similar to those previously reported in RAW 264.7 cells 

treated with an ethanol extract of dried plum’s polyphenols [30]. The expression of 

Nfatc1 is regulated by TRAF6-mediated and calcium-dependent signaling pathways. 

TRAF6-mediated NF-κB activation results in the induction of cFos expression, a major 

component of the transcription factor activator protein-1 (AP-1) that regulates Nfatc1 

expression [14]. In the current study, the fractions downregulated expression of cFos 

under normal and inflammatory conditions. The fractions also suppressed the TNF-α-

induced upregulation of Traf6 expression.  

The induction of Nfatc1 expression is additionally regulated by TRAF6-mediated 

MAPK signaling, including the activation of p38 and Erk [14]. Activation of AP-1 by 

Erk-mediated phosphorylation induces Nfatc1 mRNA expression [34]. Furthermore, the 

presence of p38 at the promoter region of Nfatc1 is required for its transcription [35]. 

Inhibition of any of these pathways can result in the downregulation of Nfatc1. Plant-

derived polyphenolic compounds have been demonstrated to inhibit MAPK signaling and 
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subsequent osteoclast differentiation in vitro [19, 20]. For example, the polyphenol 

phenethyl isothiocyanate found in cruciferous vegetables downregulates NF-κB, Erk and 

p38 activation and results in a decrease in osteoclast differentiation in RAW 264.7 cells 

[19]. In addition, the polyphenolic compound caffeic acid 3,4-dihydroxy-phenethyl ester, 

found in various medicinal plants, can inhibit the activation of Erk and p38 in bone 

marrow monocytes and RAW 264.7 cells, resulting in a suppression of osteoclast 

differentiation [20]. In our study, treatment with DP-FrE and, to a lesser degree DP-FrF, 

both of which contain the phenolic compounds neochlorogenic acid and 

crytpochlorogenic acid, as well as the flavanol rutin, attenuated the RANKL-stimulated 

phosphorylation of Erk and tended to reduce the phosphorylation of p38 under normal 

and inflammatory conditions. The inhibition of MAPK activation and cFos expression 

can, at least in part, provide explanation for the suppression of Nfatc1 mRNA levels and 

osteoclast numbers. 

While the initial expression of Nfatc1 requires TRAF6-mediated signaling 

cascades, sustained intracellular calcium oscillations are essential for the calcium-

dependent auto-amplification of Nfatc1, and subsequently osteoclast differentiation [13]. 

Co-stimulatory receptors expressed by osteoclast precursors, including OSCAR, TREM2, 

and SIRPβ1, as well as calcium stores in the endoplasmic reticulum, mediate calcium 

oscillations in the differentiating osteoclast [15, 16]. An increase in intracellular calcium 

is required to activate calcium-dependent enzymes that regulate the dephosphorylation 

and subsequent auto-amplification of Nfatc1 [36]. Therefore, it was important to 

investigate the role of intracellular calcium in the observed suppression of Nfatc1 with 

treatment with the fractions, and how this response may be mediated by co-stimulatory 
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receptors. Under normal conditions Treatment with DP-FrF significantly reduced mRNA 

expression of Oscar, Trem2, and Sirpb1, and, subsequently, intracellular calcium 

concentration, in differentiating osteoclasts derived from primary bone marrow cells. 

Treatment with DP-FrE also downregulated expression of these co-stimulatory receptors 

and intracellular calcium concentration, but to a lesser extent as DP-FrF. Likewise, the 

fractions attenuated the TNF-α-induced increase in intracellular calcium, and this was 

due, in part, to a downregulation of Sirpb1. Ligands expressed by osteoblasts and 

myeloid cells activate these co-stimulatory receptors (e.g. collagen and semaphorin 6D), 

which are associated with immunoreceptor tyrosine-adaptation motif (ITAM)-containing 

adaptor proteins Fc receptor-gamma (FcRγ) and DNAX activation protein of 12 kDa 

(DAP12) [15, 16, 18]. The activation of DAP12 and FcRγ initiates a signaling cascade 

that results in calcium release from the endoplasmic reticulum [37]. Depletion of 

endoplasmic reticulum calcium stores induces extracellular calcium influx through 

calcium channels on the plasma membrane [13, 37]. The increase in cytoplasmic calcium 

concentration is essential to the function of the calcium-dependent calcineurin pathway 

necessary for Nfatc1 auto-amplification [13].  Osteoclast differentiation is impaired if the 

adaptor proteins or the membrane-bound co-stimulatory receptors they associate with are 

inhibited [16-18, 38, 39]. Therefore, inhibition of calcium signaling may provide further 

explanation for the suppression of Nfatc1 expression and reduction in osteoclast number. 

Osteoclast differentiation and activity is enhanced in an inflammatory 

environment. The inflammatory cytokine TNF-α, the production of which is increased 

with estrogen deficiency and in inflammatory diseases such as rheumatoid arthritis, is 

known to upregulate osteoclast differentiation and activity [3, 6, 8]. Treatment with the 
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fractions attenuated the TNF-α-induced increase is osteoclast differentiation and activity. 

This enhanced differentiation is due, in part, to an increased expression of RANK by 

osteoclast precursors [40]. Additionally, TNF-α increases the activation of NF-κB and 

AP-1 in osteoclast precursors, enhancing their sensitivity to RANKL stimulation [3, 11, 

12, 41]. The TNF-α-induced increase in osteoclast number was suppressed by both DP-

FrE and DP-FrF. The expression of Traf6 was also significantly downregulated by both 

DP-FrE and DP-FrF, suggesting the treatments may attenuate the TNF-α-enhanced 

sensitivity of osteoclast precursors to RANKL stimulation. Furthermore, treatment with 

DP-FrF significantly reduced the mRNA expression of Ikbkb, the enzyme that activates 

NF-κB, allowing for its translocation to the nucleus where it induces the expression of the 

AP-1 component c-Fos. Surprisingly, cFos expression was not significantly altered by 

either TNF-α or treatment with DP-FrF. However, Nfatc1 expression was significantly 

suppressed with treatment of DP-FrF, and this may be due, in part, to downregulation of 

NF-κB activation.  

To further examine mechanisms by which Nfatc1 expression may be suppressed, 

intracellular calcium and the expression of co-simulatory receptors was examined in the 

presence of TNF-α. The fractions attenuated the increase in intracellular calcium that 

resulted from TNF-α treatment. However, the expression of costimulatory receptors 

involved in calcium signaling was not altered to the same magnitude by DP-FrE and DP-

FrF in the inflammatory conditions compared to the normal conditions. In fact, only 

Sirpb1 was significantly downregulated by the polyphenolic fractions in the TNF-α 

treated cultures. Both SIRPβ1 and TREM2 are DAP12-associated receptors, while 

OSCAR is linked with the adaptor protein FcRγ [16]. There is evidence to suggest that 
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DAP12 is a predominant regulator of calcium signaling over FcRγ in osteoclasts, and so 

it is possible that downregulation of SIRPβ1 results in a suppression of DAP12 signaling 

of enough magnitude to significantly reduce calcium signaling [42]. 

While assessing how the polyphenolic fractions alter signaling pathways in a bone 

marrow-derived osteoclast population provides valuable insight into the mechanisms 

involved in the anti-resorptive capacity of dried plum, supra-physiological doses of 

RANKL are traditionally used to stimulate osteoclast differentiation. Furthermore, the 

mono-culture system does not allow for the study of coupled osteoblast and osteoclast 

activity that occurs in vivo. Therefore, the ability of the polyphenolic fractions to reduce 

osteoclast differentiation in osteoblast and osteoclast co-cultures was assessed. There was 

a trend for reduced osteoclast differentiation with polyphenolic fraction treatment under 

normal conditions, and this can be attributed, at least in part, to a significant 

downregulation of Nfatc1 by both DP-FrE and DP-FrF. Under inflammatory conditions, 

the magnitude of response to DP-FrF was greater than that of DP-FrE in downregulating 

osteoclast differentiation. In this co-culture system, it is likely that osteoclast 

differentiation was upregulated by TNF-α by both direct and indirect effects, including 

induced stromal cell and osteoblast production of M-CSF and RANKL, as well as 

increased sensitivity of osteoclast precursors to RANKL stimulation [5, 11, 12, 41]. Both 

DP-FrE and DP-FrF reduced Rankl expression in the co-culture system. Furthermore, 

both fractions downregulated cFos, and subsequently, Nfatc1 expression. Therefore, it is 

not clear why only DP-FrF significantly reduced osteoclast numbers, and indicates that 

other signaling mechanisms are likely involved. 
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In summary, this study is the first to examine fractions of a polyphenolic extract 

from dried plum that downregulate osteoclast differentiation and activity in murine 

primary cells under normal and inflammatory conditions. While both fractions were able 

to suppress osteoclast differentiation and activity, DP-FrF appeared to have a more robust 

effect, especially under inflammatory conditions. Of the polyphenols analyzed, these 

fractions are rich in neochlorogenic acid, crytpocholorogenic acid, and rutin. We have 

demonstrated for the first time that these fractions downregulate Nfatc1 expression at 

least in part, by suppressing MAPK and calcium signaling pathways. We have also 

demonstrated that at least DP-FrF can downregulate osteoclast differentiation in the 

osteoblast and osteoclast co-culture system. However, the mechanisms involved in 

attenuating osteoclast differentiation in the co-culture system remain unclear. Further 

investigation is needed to determine how these fractions of the polyphenolic extract of 

dried plum affect bone metabolism in vivo. Because osteoclasts are derived from 

monocytes, and activated immune cells use similar MAPK and calcium signaling 

mechanisms, it is possible that these fractions can attenuate bone loss by both directly 

affecting osteoclast differentiation as well as indirectly downregulating inflammatory 

immune responses that induce bone resorption. Further characterization of the bioactive 

compounds within the fractions is needed if a treatment option for osteoporosis is to be 

developed from these fractions. 
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Table 1. Primer sequences for qRT-PCR. 

  

Transcript Sequence (5'-3')

Traf6 F:  CAG CAG TGT AAC GGG ATC TAC

R:  CTG TGT AGA ATC CAG GGC TAT G

cFos F:  GGA CAG CCT TTC CTA CTA CCA TTC C

R: AAA GTT GGC ACT AGA GAC GGA CAG A

Nfatc1 F:  GCG AAG CCC AAG TCT CTT TCC

R:  GTA TGG ACC AGA ATG TGA

Oscar F:  CGT GCT GAC TTC ACA CCA ACA 

R:  CAC AGC GCA GGC TTA CGT T

Sirpb1 F:  ​G​T​C ​A​C​T​ C​C​T ​G​C​T​ G​A​T ​T​C​G ​G​

R:  G​T​C ​A​C​T​ G​T​C​ T​G​C​ T​G​A ​G​G​G​ A​C​

Trem2 F:  TCC CAA GCC CTC AAC ACC A

R:  TTC CAG CAA GGG TGT CAT CTG CGA

Ikbkb F:  GCG AGC AGC CAT GAT GAG T

R: GGA GGC CAT GGC GTT CT

Opg F:  TCC CGA GGA CCA CAA TGA AC

R: TGG GTT GTC CAT TCA ATG ATG T

Rankl F:  TCT GCA GCA TCG CTC TGT TC

R: AGC AGT GAG TGC TGT CTT CTG ATA TT
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Table 2.  Screening of the polyphenolic fractions on osteoclast differentiation using RAW 

264.7 cells  

 
Data representative of 2-3 repeated experiments and expressed relative control and 

presented as mean ± SE (n = 6). Statistically significant differences are indicated by 

difference in superscript letters, p < 0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

Treatment dose: CON LPS CON 0.1 µg/ml 1 µg/ml 10 µg/ml p-value

Normal

DP-FrA 100.0 ± 7.0a 97.1 ± 11.0a 82.3 ± 4.6ab 72.3 ± 6.0b 0.0487

DP-FrB 100.0 ± 7.0 91.6 ± 7.3 83.8 ± 3.8 75.6 ± 6.2 0.0991

DP-FrC 100.0 ± 7.0 80.4 ± 3.1  89.7 ± 6.2 81.8 ± 8.0 0.1612

DP-FrD 100.0 ± 7.0  89.0 ± 6.2 85.5 ± 4.5 73.6 ± 5.3 0.0506

DP-FrE 100.0 ± 7.0a 78.5 ± 3.7b 77.6 ± 6.0b 73.6 ± 5.4b 0.0343

DP-FrF 100.0 ± 7.0a 79.3 ± 1.9b 74.1 ± 3.8bc 65.5 ± 2.4c 0.0007

Inflammatory

DP-FrA 100.0 ± 4.3b 134.6 ± 6.7a 106.3 ± 8.7b 97.0 ± 3.4b 92.6 ± 2.8b
0.0008

DP-FrE 100.0 ± 4.3b 134.6 ± 6.7a 127.3 ± 2.4a 103.2 ± 4.7b 99.3 ± 3.2b <.0001

DP-FrF 100.0 ± 4.3b 134.6 ± 6.7a 102.2 ± 4.6b 100.2 ± 5.8b 87.7 ± 3.8b 0.0002



79 
 

Table 3. The most bioactive fractions contained a combination of phytochemicals. 

 
 

 

  

DP-FrE DP-FrF DP-FrE DP-FrF

Chlorogenic acid n.d. n.d.

Cryptochlorogenic acid 8.69 22.02 55.5 49.7

Neochlorogenic acid 5.96 21.45 38.1 48.4

Caffeic acid n.d. n.d.

Quinic acid n.d. n.d.

o-Coumaric acid n.d. n.d.

m-Coumaric acid n.d. n.d.

Ferulic acid n.d. n.d.

Cyanidin 3-rutinoside n.d. n.d.

Cyanidin 3-glucoside n.d. n.d.

Quercetin n.d. n.d.

Rutin 1.01 0.85 6.4 1.9

Sorbic acid n.d. n.d.

5-Hydroxymethyl-2-furaldehyde n.d. n.d.

mg/100 g total phenolic extract % of total compounds analyzed
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Figure Legends 

 

 

Figure 1. DP-FrE and DP-FrF, but not DP-FrA reduced osteoclast differentiation in 

primary bone marrow-derived osteoclasts. Primary non-adherent bone marrow cells were 

treated with 30 ng/ml MCSF and 50 ng/ml RANKL for 5 days. On day 4 of 

differentiation, the cells were treated with 1 or 10 μg/ml of the fractions. (a) On day 5 the 

cells were stained and the multi-nucleated, TRAP-positive osteoclasts were quantified. 

(b) On day 10, resorption pits were stained and resorbed area was quantified. (c) Large, 

multinucleated osteoclasts are indicated with arrows. (d) Resorption pits are indicated by 

arrows. Bars represent the mean ± SE. Bars that do not share the same superscript letter 

are statistically different from each other, p < 0.05. 

 

 

Figure 2. DP-FrE and DP-FrF reduced osteoclast differentiation and osteoclast activity 

under inflammatory conditions. On day 4 of differentiation, the cells were treated with 

TNF-α (1 ng/ml) and then 1or 10 μg/ml of the fractions. (a) On day 5, cells were stained 

and the multi-nucleated, TRAP-positive osteoclasts were quantified. (b) On day 10, 

resorption pits were stained and resorption pit area was quantified. (c) Large, 

multinucleated osteoclasts are indicated with arrows. (d) Resorption pits are indicated by 

arrows. Bars represent the mean ± SE. Bars that do not share the same superscript letter 

are statistically different from each other, p < 0.05. 

 

 

Figure 3. DP-FrE and DP-FrF downregulated expression of genes essential to osteoclast 

differentiation, as well as MAPK signaling. On day 4 of differentiation, RNA was 

extracted from osteoclasts treated for 1 hr with DP polyphenolic fractions (10 μg/ml). 

Relative mRNA expression of (a) Nfatc1, (b) Traf6 and (c) cFos was assessed with qRT-

PCR using Gapdh as an invariant control. Additionally, on day 4 of differentiation, 

protein was extracted from osteoclasts treated for 30 min or 1 hr with DP polyphenolic 

fractions (10 μg/ml). Relative abundance of phosphorylated p38 and ERK was examined 

via immunoblotting and (d) shows representative blots. Western blot results for relative 

phosphorylation of p38 are quantified following (e) 30 min and (g) 1 hr of treatment with 

the fractions.  Western blot results for relative phosphorylation of pErk1/2 are quantified 

following (f) 30 min and (h) 1 hr of treatment with the fractions. Bars represent the mean 

± SE. Bars that do not share the same superscript letter are statistically different from 

each other, p < 0.05. 

 

 

Figure 4. DP-FrE and DP-FrF downregulated expression of genes essential to osteoclast 

differentiation. On day 4 of differentiation, the cells were treated with TNF-α (1 ng/ml) 

and then the DP polyphenolic fractions (1 or 10 μg/ml). RNA and protein was extracted 

from osteoclasts treated for 1 hr with 1ng/ml TNF-α and 10 μg/ml of DP polyphenolic 

fractions. Relative mRNA expression of (a) Nfatc1, (b) Traf6, (c) cFos, and (d) Ikbkb was 

assessed with qRT-PCR using Gapdh as a control. Additionally, on day 4 of 

differentiation, protein was extracted from osteoclasts treated for 30 min and 1 hr with 
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TNF-α (1 ng/ml) and DP polyphenolic fractions (10 μg/ml). Relative abundance of 

phosphorylated p38 and ERK was examined via immunoblotting and (e) shows 

representative blots. Western blot results for relative phosphorylation of p38 are 

quantified following (f) 30 min and (h) 1 hr of treatment with the fractions.  Western blot 

results for relative phosphorylation of pErk1/2 are quantified following (g) 30 min and (i) 

1 hr of treatment with the fractions. Bars represent the mean ± SE. Bars that do not share 

the same superscript letter are statistically different from each other, p < 0.05. 

 

 

Figure 5. Treatment with DP polyphenolic fractions altered calcium transport in primary 

bone marrow-derived osteoclasts. On day 4 of differentiation, the cells were incubated in 

Fluo-4 dye for 1 hour prior to treatment with DP-FrE or DP-FrF (10 μg/ml). Intracellular 

calcium was assessed under (a) normal and (b) inflammatory conditions. Additionally, 

RNA was extracted following treatment with the DP fractions (10 µg/ml) for 1 hr. 

Relative mRNA abundance of (c) Oscar, (d) Sirbp1, and (e) Trem2 under normal 

conditions, and (f) Oscar, (g) Sirbp1, and (h) Trem2 under inflammatory conditions, was 

assessed with qRT-PCR using Gapdh as an invariant control. Bars represent the mean ± 

SE. Bars that do not share the same superscript letter are statistically different from each 

other, p < 0.05. 

 

 

Figure 6. Alterations in osteoclast differentiation in co-cultures treated with DP 

polyphenolic fractions under normal conditions. Primary calvarial osteoblasts were 

treated with 1,25-hydroxy vitamin D3 (10 nM) and DP polyphenolic fractions (0 or 10 

μg/ml) and co-cultured with non-adherent bone marrow cells. (a) Cells were stained and 

the multinucleated TRAP
+
 osteoclasts were quantified following 10 days of co-culture. 

RNA was extracted from co-cultures following 6 days of treatment with DP polyphenolic 

fractions. Relative mRNA abundance of (b) Rankl, (c) Opg , (d) Nfatc1, (e) Traf6 and (f) 

cFos, was assessed with qRT-PCR using Gapdh as a control.  Bars represent the mean ± 

SE. Bars that do not share the same superscript letter are statistically different from each 

other, p < 0.05. 

 

Figure 7. Treatment with DP-FrF suppressed osteoclast differentiation in TNF-α 

stimulated co-cultures. Primary calvarial osteoblasts were treated with 1,25-hydroxy 

vitamin D3 (10 nM) and DP polyphenolic fractions (10 μg/ml) and TNF-α or vehicle and 

co-cultured with non-adherent bone marrow cells. (a) Cells were stained and the 

multinucleated TRAP
+
 osteoclasts were quantified following 10 days of co-culture.  RNA 

was extracted from co-cultures following 6 days of treatment with DP polyphenolic 

fractions and TNF-α. Relative mRNA abundance of (b) Rankl, (c) Opg, (d) Nfatc1, (e) 

Traf6, and (f) cFos was assessed with qRT-PCR using Gapdh as a control.  Bars 

represent the mean ± SE. Bars that do not share the same superscript letter are statistically 

different from each other, p < 0.05. 
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Figure 2.  
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Figure 3. 
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Figure 4. 
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Figure 5.   
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Figure 6. 
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Figure 7.  
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CHAPTER IV 
 

 

FRACTIONS OF A POLYPHENOLIC EXTRACT OF DRIED PLUM ENHANCE BMP 

SIGNALING AND MINERALIZATION ACITIVITY OF OSTEOBLASTS 
 

Authors: Jennifer L. Graef and Brenda J. Smith 

Abstract: 

 

Dried plum supplementation has been shown to increase bone formation in vivo and in 

clinical studies. A crude ethanol polyphenolic extract from dried plum has been found to 

enhance bone formation, but it is unclear if certain types of polyphenolic compounds are 

responsible for stimulating osteoblast activity. This study was designed to examine the 

most bioactive components of the total polyphenolic extract of dried plum in enhancing 

osteoblast activity and function, and to examine mechanisms involved. Increasing 

methanol concentration was used to yield six polyphenolic fractions from the crude 

polyphenolic extract of dried plum. Initially, the fractions were screened based on their 

capacity to increase ALP activity and mineralized nodule formation in MC3T3-E1 cells, 

followed by a series of experiments using primary bone marrow-derived osteoblasts to 

confirm this bioactivity and assess mechanisms of action. The fractions with the lowest 

organics content (DP-FrA and DP-FrB) enhanced osteoblast activity and function under 

normal conditions as indicated by an increase in extracellular ALP activity and 

mineralized nodule formation, but to a lesser extent under inflammatory conditions. 

Under normal conditions, both fractions increased Bmp2 gene expression. DP-FrB was 
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most effective at upregulating Tak1 and Smad1, as well as protein levels of phospho-p38. 

Under inflammatory conditions, TNF-α upregulated the gene expression of Smad6, 

resulting in a suppression of BMP signaling, and neither fraction was able to attenuate 

this response. In conclusion, this study identifies fractions of the polyphenolic extract of 

dried plum that upregulate osteoblast activity and this response results from the 

upregulation of BMP signaling and Runx2 expression. Treatment with DP-FrA and DP-

FrB increased mRNA expression of Bmp2. Furthermore, DP-FrB, and to a lesser extent 

DP-FrA, upregulated expression of Tak1 and Smad1, as well as p38 activation, within the 

BMP signaling cascade. In conclusion, this study identifies fractions of the polyphenolic 

extract of dried plum that upregulate osteoblast activity in primary bone marrow-derived 

osteoblasts under normal conditions, and to a less extent, under inflammatory conditions. 

Osteoblast activity is enhanced by these fractions via upregulation of BMP signaling and 

Runx2 expression. Since osteoporosis often occurs as a result of inflammation, further 

investigation is needed to determine whether a higher dose of DP-FrA or DP-FrB, or 

perhaps a combination of polyphenolic fractions, is able to significantly improve 

osteoblast activity and function under inflammatory conditions. 

 

Introduction 

 

Maintenance of a healthy skeleton requires the continual remodeling of bone 

throughout adult life, with the removal of bone tissue by osteoclasts and the formation 

and mineralization of new bone matrix by osteoblasts [1]. Bone loss occurs when there is 

an imbalance in the rate of bone formation compared to the rate of bone resorption. 

Currently, most of the FDA-approved osteoporosis treatments demonstrate primarily anti-

resorptive activity by decreasing the differentiation of osteoclasts or inducing osteoclast 
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apoptosis [2]. In contrast, strontium ranelate, a drug with anabolic and anti-catabolic 

properties is currently approved for use in European countries by not the United States 

[3]. Furthermore, the FDA-approved treatment teraperatide, a synthetic fragment of 

parathyroid hormone, is known to promote bone formation and result in increases in bone 

mineral density and strength [4]. The relatively prohibitive cost and unknown long-term 

efficacy and safety of these pharamacological agents results in a need for development of 

other anabolic therapeutic options. 

Typically, an increase in bone formation results from an increase in osteoblast 

number or their activity. Osteoblast differentiation is initiated by bone morphogenetic 

protein (BMP) signaling [5]. The activation of BMP type I receptors by the binding of 

osteogenic BMPs (e.g., BMP2 and BMP4) induces osteoblast differentiation by 

activating the Smad 1/5/8 complex and the MAP3K TGF-β-activating kinase 1 (TAK1) 

[5-7]. Activated Smad1/5/8 induces the expression of runt-related transcription factor 2 

(Runx2), an essential osteogenic transcription factor that induces the expression of 

osteoblast-related genes, such as type I collagen and osteocalcin [6, 8]. Activation of 

TAK1 initiates a MAPK signaling cascade that results in the activation of p38, which 

then phosphorylates and enhances the activity of Runx2 [7]. Runx2 induces the 

expression of genes related to osteoblast differentiation and bone formation, including 

type 1 collagen and osteocalcin, by binding to their promoter regions and activating 

transcription [8]. The ability of Runx2 to induce osteogenic gene expression requires both 

activated Smad and p38 signaling. Conversely, inhibition of extracellular regulated 

kinase (Erk) promotes osteoblast differentiation and matrix mineralization, indicating 

phase specific roles for MAPK proteins [9].  
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Osteoblast differentiation and activity is suppressed in diseases of inflammation 

that lead to bone loss. Inflammation such as that occurring from periodic increases in 

TNF-α observed early in estrogen deficiency or with flares in rheumatoid arthritis, 

negatively affects bone formation [10-15].  Differentiation of osteoblasts is inhibited by 

TNF-α due to a reduction of the expression and stability of Runx2 [11, 13-15]. This is 

due, in part, to TNF-α induced inhibition of BMP signaling via activation of NF-κB and 

upregulated expression of BMP-inhibitory Smad6, both of which result in inhibition of 

BMP-induced Runx2 expression [14, 15]. In addition to inhibiting the differentiation of 

osteoblasts, TNF-α also induces apoptosis of mature osteoblasts in a caspase 8-dependent 

manner [10, 12]. Therefore, TNF-α negatively regulates bone formation by inhibiting the 

differentiation of osteoblasts, as well as by inducing apoptosis of mature osteoblasts. 

Consumption of dried plums has been found to improve bone health in aged 

models of osteoporosis as well as in gonadal hormone deficient models of osteoporosis, 

in which bone loss is attributed, at least in part, to an increase immune cell activation or 

inflammation [16-18]. Dried plum supplementation prevented from bone loss in estrogen- 

deficient C57BL/6 mice, and this was partially attributed to a reduction in OVX-induced 

immune cell activation, as evidence by attenuated TNF-α production ex vivo from 

stimulated splenocytes [19]. Restoration of trabecular bone in osteopenic, OVX Sprague 

Dawley rats was observed with dried plum consumption, and histomorphometic analyses 

indicated a slight increase in endocortical mineral apposition rate (MAR) [18]. 

Furthermore, in aged, osteopenic C57Bl/6 male mice, dietary supplementation with dried 

plum increased trabecular bone volume and cortical thickness, and this was attributed to a 

biphasic response to dried plum, in which initially (4 weeks) both bone resorption and 
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bone formation was suppressed, but following 12 weeks of supplementation, bone 

formation rebounded [17]. In a model of gonadal hormone deficiency in males, dried 

plum restored trabecular bone to a similar extent as that of intermittent PTH in 

osteopenic, orchidectomized (ORX) Sprague Dawley rats [16]. These studies suggest that 

dried plum supplementation may improve bone health by enhancing bone formation in 

addition to suppressing bone resorption. 

Currently, the bioactive components of dried plum responsible for the anabolic 

effects observed in bone are not known. Compositional analyses reveal that dried plums 

are a good source of potassium, Vitamin K and boron, as well as non-digestible 

carbohydrates [20-22]. Dried plums are also a rich source of polyphenolic compounds, 

especially chlorogenic acid isomers, and much of the focus on dried plum’s bioactive 

components has focused on these compounds [23]. A recent study in aged, ovarian 

hormone deficient Sprague Dawley rats showed that dietary supplementation with a 

crude ethanol extract of dried plum’s polyphenols resulted in restoration of BMD and 

vertebral trabecular bone to a similar level as that of dried plum supplementation 

(unpublished data). Furthermore, in vitro studies demonstrated that this extract induced 

osteoblast activity as indicated by ALP production and increased mineralization in the 

murine calvarial pre-osteoblast MC3T3-E1 cells [24]. The polyphenolic extract also 

attenuated the negative effects of TNF-α on osteoblast differentiation and activity. These 

studies suggest that polyphenolic compounds within dried plum can improve bone 

formation, even in an inflammatory environment. However, whether there are certain 

types of compounds within the polyphenolic extract that are responsible for these effects 
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and the mechanisms by which they enhance osteoblast activity and mineralization 

capacity are not known. 

The bioactivity of the polyphenolic compounds found in plants has largely been 

attributed to antioxidant and anti-inflammatory capabilities [23, 25-27].  Green tea 

polyphenols have been found to protect against bone loss in in vivo models of chronic 

inflammation [28, 29]. The phenolic compound, oleuropein, in olive oil and the 

flavonoid, phlorizin, rich in apples, have each been shown to prevent inflammation-

induced bone loss in estrogen deficiency models [30-32]. In addition to their anti-

inflammatory properties, plant-derived polyphenolic compounds have been reported to 

affect signaling pathways that induce osteoblast differentiation and activity [33, 34]. The 

flavanone hesperitin, in citrus fruits, induced differentiation of rat primary osteoblasts in 

vitro by stimulating the BMP signaling pathway [34]. Myricetin, a flavonol commonly 

found in various edible plants, including walnuts, onions, berries and red grapes, 

upregulated ALP activity and type 1 collagen and osteocalcin protein, resulting in 

increased mineralization, in in vitro models of human osteoblasts [33]. This stimulation 

of osteoblast differentiation and activity was attributed to upregulation of the BMP 

signaling pathway and activation of Smad 1/5/8 and the mitogen-activated protein kinase 

(MAPK) p38 [33]. The ability of these polyphenolic compounds to enhance osteoblast 

differentiation activity suggests that foods rich in these compounds may be able to 

enhance bone formation.  

Dried plum is rich in polyphenols, including the phenolic acids chlorogenic acid, 

neochlorogenic acid, cryptochlorogenic acid, caffeic acid and p-coumaric acid, as well as 

the flavonol glycoside rutin [23]. Based on the evidence from previous animal and in 
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vitro studies, it is possible that polyphenolic compounds in dried plum improve osteoblast 

activity by stimulating BMP signaling and enhancing mineralization activity. The 

purpose of this study was to begin to examine which polyphenolic compounds in dried 

plum are the most bioactive in increasing osteoblast differentiation and function and to 

assess whether BMP signaling pathways are altered in response to treatment with these 

phenolic compounds. Due to the role of the inflammatory response in the inhibition of 

bone formation, a series of studies was designed to investigate the osteoblast response 

under normal and inflammatory conditions. 

 

Methods 

 

Isolation of phenolic fractions from dried plum 

 

Fractions of polyphenolic compounds were derived from a crude polyphenolic 

extract of dried plum powder (California Dried Plum Board) based on solubility. In short, 

dried plum powder (500 g) was dissolved in 80% methanol and sonicated under nitrogen 

gas flow for 20 minutes to derive a total polyphenolic extract, rich in both polyphenols 

and carbohydrates. Following filtration, the powder was rinsed from the filter and 80% 

methanol was added and the sonication repeated. The total polyphenolic extract was 

subjected to column chromatography using 300 g of HP-20 resin. The HP-20 resin was 

washed five times with 200 ml of deionized (DI) H20 to remove carbohydrates. Next, the 

HP-20 resin was washed five times with 200 ml of methanol to elute a polyphenol-rich 

extract, and this extract was again subjected to column chromotagraphy using 200 g of 

HP-20 resin. The weights of six semi-purified polyphenolic fractions eluted from the 

resin with increasing concentrations of methanol (0 – 100%) are as follows: DP-FrA, 
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17.85 g; DP-FrB, 4.42 g; DP-FrC, 3.22 g; DP-FrD, 4.14 g; DP-FrE, 2.16 g; and DP-FrF, 

1.39 g.  

 

Screening the bioactivity of the polyphenolic fractions in enhancing osteoblast activity 

and function 

 A commercially available pre-osteoblastic cell line (MC3T3-E1; RIKEN, Japan) 

was used to screen the effects of the fractions on osteoblast activity and function. Murine 

calvarial pre-osteoblastic cells were seeded at a density of 2.5 x 10
5 

in a 24-well plate in 

alpha-modified minimum essential medium (α-MEM; Sigma-Aldrich, St. Louis, MO) 

supplemented with 10% fetal bovine serum (FBS; Gibco, Grand Island, NY), 2 mM L-

glutamine, and 1% penicillin/streptomycin (Sigma-Aldrich). To assess dosage 

limitations, proliferation assays (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide, or MTT) utilizing a dose response of the polyphenolic fractions were completed 

to determine doses that did not negatively affect cell growth (data not shown).  

The bioactivity of the fractions in enhancing osteoblast activity was screened by 

measuring extracellular ALP production and mineralization capacity in MC3T3-E1 cells. 

The cells were plated at a density of 2.5 x 10
5 

in a 24-well plate in α-MEM supplemented 

with 10% FBS, 2 mM L-glutamine, and 1% penicillin/streptomycin. When the cells 

reached ~95% confluence, 25 μg/ml ascorbic acid and 10 mM β-glycerophosphate 

(Sigma-Aldrich, St. Louis, MO) were added to the complete α-MEM described above to 

induce osteogenesis. The media was replaced every 2-3 days until the designated 

endpoints. To examine the dose-dependent effects of the phenolic fractions on osteoblast 

activity and function, extracellular ALP and nodule formation were assessed under 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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normal conditions.  Extracellular ALP was analyzed in the media using a fluorometric 

assay kit (Biovision, Milpitas, CA) following 7 days of MC3T3-E1 treatment with 

osteogenic media and phenolic fractions. Briefly, the conditioned media was incubated 

with a 4-methylumbelliferyl phosphate disodium salt (MUP) substrate, and ALP within 

the media cleaves a phosphate group on the MUP substrate, resulting in a fluorescent 

signal measured at an excitation wavelength of 360 nm and an emission wavelength of 

440 nm. The 7-day time point was selected because ALP production has been reported to 

peak in MC3T3-E1 cells between days 7-14 of treatment with ascorbate [35]. 

Extracellular ALP was expressed relative to the control cells not treated with phenolic 

compounds. Mineralization was assessed as an indicator of osteoblast function in 

response to the different fractions of the dried plum extract. Alizarin red S staining, in 

which alizarin red S forms a chelate with calcium cations, was used to assess 

mineralization activity of MC3T3 cells following 28 days of culture in osteogenic media 

and treatment with phenolic fractions. Briefly, the media was removed and cells were 

fixed with 10% neutral buffered formalin (NBF) for 15 minutes and then incubated in 40 

mM of alizarin red S (pH 4.2) for 20 minutes at room temperature. Excess stain was 

washed from the wells with DI water and the alizarin red S stain was eluted from the 

mineralized nodules with 10% acetic acid and heated to 85°C for 10 minutes. Samples 

were kept on ice prior to centrifugation to remove cellular debris. The pH of the samples 

was neutralized with the addition of 150 μl of 10% ammonium hydroxide, and alizarin 

red S was quantified in the supernatant by assessing the absorbance at a wavelength of 

405 nm and using a standard curve. The fractions and doses that resulted in the greatest 

increase in ALP activity and nodule mineralization were identified from these screening 
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assays (10 µg/mL of DP-FrA and DP-FrB), which were used in all subsequent 

experiments with primary osteoblasts.  

 

 

ALP activity and mineralization capacity in primary osteoblasts 

 

To prepare primary osteoblast cultures, bone marrow was flushed from 4-week-

old C57Bl/6 female mice. All animal procedures were approved by the Oklahoma State 

University Institutional Animal Care and Use Committee.  Bone marrow cells were 

cultured in α-MEM supplemented with 10% fetal bovine serum, 2 mM l-glutamine, and 

1% penicillin/streptoymycin in 75 mm flasks for two days.  The media was then removed 

and adherent cells were trypsinized with 0.25% Trypsin-EDTA (Sigma-Aldrich, St. 

Louis, MO) and collected. The cells were seeded at a density of 5 x 10
5 

in a 24-well plate 

and maintained in the supplemented α-MEM until reaching ~95% confluence after which 

50 μg/ml ascorbic acid and 3 mM β-glycerophosphate was added to the α-MEM to 

induce osteoblastic differentiation.  Media was replaced every 2-3 days until designated 

study end points. Cells were allowed to differentiate in osteogenic media for 7 days prior 

to any treatment with DP-FrA or DP-FrB (10 μg/ml) with or without TNF-α (1 ng/ml) to 

study the osteoblast response to treatments under normal or inflammatory conditions.  

To determine the effect of treatment on osteoblast activity and function, 

extracellular ALP and calcified nodule formation was assessed.  Following 3 and 7 days 

of treatment with DP-FrA or DP-FrB with 0 or 1 ng/ml TNF-α, extracellular ALP was 

analyzed in the media using a fluorometric assay kit (Biovision, Milpitas, CA), as 

described above. To assess nodule formation of primary osteoblasts following 14 days of 

treatment with DP-FrA or DP-FrB (10 μg/ml) with or without TNF-α (1 ng/ml), von 
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Kossa staining was utilized. Due to non-specific staining known to occur with von Kossa 

in MC3T3-E1 cultures, alizarin red S staining was used to assess mineralization in those 

cultures [36]. However, von Kossa staining, in which silver ions bind the anions of 

calcium salts (e.g. phosphate, carbonate, or sulfate), is an accepted measurement of 

calcified nodules in osteogenic primary cultures, and was therefore used in these 

experiments. Briefly, cells were fixed for 5 minutes at room temperature in 10% NBF 

prior to incubating in 5% silver nitrate for 20 minutes under an ultraviolet light. The cells 

were then washed and incubated in 5% sodium thiosulfate for 3 minutes, followed by 

counterstaining with Nuclear Fast Red solution for 5 minutes. The cells were then rinsed 

and allowed to dry at room temperature prior to imaging using CellSens software 

(Olympus Life Science, Center Valley, PA).  Mineralization area was quantified using 

ImageJ software (National Institutes of Health, Bethesda, MD). 

 

Western blotting 

 

Primary bone marrow-derived osteoblasts were cultured as described previously. 

Because of the more diverse and uncommitted cell populations in the bone marrow 

cultures compared to the more purified and committed pre-osteoblastic MC3T3-E1 cells, 

the cells were differentiated in osteogenic media for 7 days prior to treatment with DP-

FrA or DP-FrB. Total protein was harvested after 15 minutes, 1 hour, or 4 hours of 

treatment by washing the cells in sterile PBS and adding radioimmunoprecipitation assay 

(RIPA) buffer (Life Technologies, Carlsbad, CA) with protease inhibitors (Cell Signaling 

Technology, Danvers, MA) directly to the wells. Cells were dislodged from the well 

surface with a rubber cell scraper prior to collection. Sonication and vortexing were 
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alternately done in 5 minute increments for a total of 60 minutes to ensure proteins were 

liberated from cells. Following the final vortex, the cells were centrifuged at 16,000 x g 

for 10 minutes to remove cellular debris and the supernatant was collected. Protein 

concentration was determined using the bicinchoninic acid assay (BCA) assay.  

Expression of proteins of interest were analyzed by separating 20 μg of total protein on a 

denaturing sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) and then 

transferring to a polyvinylidine fluoride (PVDF) membrane. Equal transfer of samples 

was confirmed with Ponceau staining prior to blocking the membrane with either 5% 

nonfat milk or 5% bovine serum albumin (BSA) for one hour. The membrane was then 

incubated at 4°C overnight with antibodies (Cell Signaling Technology, Danvers, MA) to 

p38, phospho-p38, p44/42 (Erk 1/2), or phospho-p44/42 (phospho-ERK1/2). Actin (Santa 

Cruz) was utilized as a loading control. Following an overnight incubation with primary 

antibody, the membranes were washed and incubated with secondary antibody for 1 hour 

prior to signal detection using SuperSignal West (ThermoFisher) chemiluminescent 

substrate. The blots were developed using the ProteinSimple Fluorchem R (San Jose, CA) 

and the density of the bands was assessed using UN-SCAN-IT gel analysis software (Silk 

Scientific Inc, Orem, UT).  

 

 

Gene expression analyses 

 

For gene expression analyses, primary bone marrow derived osteoblasts were 

cultured for 7 days in osteogenic media and then treated with DP-FrA or DP-FrB, with or 

without TNF-α. Total RNA was harvested after 15 minutes, 1 hour, or 24 hours of 

treatment by washing the cells in sterile PBS, adding Trizol (Life Technologies) to the 
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well and then following the extraction protocol provided by the manufacturer. To ensure 

complete collection of cells from the well, a rubber cell scraper was used to scrape the 

cells. The concentration of the RNA was obtained via spectrophotometry (NanoDrop) 

and the quality of the 28S and 18S rRNA bands was confirmed via agarose gel 

electrophoresis. Reverse transcription of cDNA was performed using 2 μg of RNA and 

the relative abundance of mRNA of interest (Table 1) via real-time quantitative reverse 

transcription polymerase chain reaction (RT-qPCR; Applied Biosystems, Foster City, 

CA) using SYBR Green technologies (Life Technologies, Carlsbad, CA). The 

comparative cycle threshold (CT) method (User Bulletin #2, Applied Biosystems, Foster 

City, CA) was used to evaluate mRNA expression levels, using glyceraldehyde-3-

phosphate dehydrogenase (Gapdh) as an endogenous control.  

 

Identifying phytochemicals present in DP-FrA nd DP-FrB 

The presence of 14 phytochemicals known to be present in dried plum (Table 2) 

were was determined in DP-FrA and DP-FrB using liquid chromatography-mass 

spectrometry (LC/MS) methods previously described [31][32]. Briefly, compounds 

detected via MS in the fractions were compared to known standards of the 

phytochemicals to identify the presence of any of the compounds in the fractions. 

Quantification of the detected compounds was done using a standard curve derived from 

the pure standard of the compound.  

 

Statistical analyses 

All statistical analyses were performed using SAS Version 9.3 (SAS Institute, 

NC). For data not normally distributed, log transformation was completed prior to 
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statistical analysis. For the screening assays with MC3T3-E1 cells, polyphenolic fraction 

treatments, including an untreated control, were compared using ANOVA with 

Bonferroni adjustment, due to the number of comparisons, when the overall ANOVA is p 

< 0.05. For all other assays, the effect of polyphenolic fraction treatment at a given dose 

was analyzed using ANOVA and Fisher’s least significant difference (LSD) post hoc 

analyses. Each experiment was repeated 2-3 times. Values are expressed as means ± 

standard error (SE). 

 

 

Results  

 

Identifying the fractions that improve osteoblast activity in MC3T3-E1 cells 

 

To identify the fractions and doses of the dried plum phenolic fractions with the 

greatest effect on osteoblast activity, extracellular ALP activity was assessed in the media 

of MC3T3-E1 cells. Extracellular ALP activity was upregulated by DP-FrB (p < 0.05) 

~2-fold compared to control with treatment at both the 5 μg/ml and 10 μg/ml dose 

(Figure 1a). Treatment with DP-FrA resulted in a 19.5% increase in ALP activity with a 

treatment dose of 10 μg/ml, but did not differ statistically from control. No other phenolic 

fractions improved extracellular ALP production compared to control.  

Based on the results of the ALP assay in which DP-FrA and DP-FrB appear to 

enhance ALP activity most at the 10 μg/ml dose, the effects of 10 μg/ml of the 

polyphenolic fractions on MC3T3-E1 cell function was evaluated based on Alizarin red 

staining. Following 28 days of culture in osteogenic media, treatment with both DP-FrA 

and DP-FrB increased mineralized nodule formation (p < 0.05) compared to the control. 

The magnitude of response was greater in DP-FrA than DP-FrB treated cultures (Figure 
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1b). DP-FrE treatment significantly decreased mineralized nodule formation compared to 

control and no other treatments altered mineralization. 

The results of these screening assays using MC3T3-E1 cells revealed that DP-FrA 

and DP-FrB at a dose of 10 µg/ml had the greatest potential for increasing osteoblast 

activity and function. Therefore, the focus of all subsequent experiments was on 

understanding how DP-FrA and DP-FrB altered primary osteoblasts under normal and 

inflammatory conditions and the mechanism through which these responses were 

mediated. 

 

DP-FrA and DP-FrB enhance ALP activity and mineralization in murine primary bone 

marrow-derived osteoblasts 

 

 The ability of DP-FrA and DP-FrB to enhance osteoblast activity was assessed 

after 3 and 7 days of treatment.  At day 3, ALP activity was significantly increased (i.e., 

~2-fold) by both DP-FrA and DP-FrB compared to the control (Figure 2a). ALP 

continued to be elevated in response to DP-FrA and DP-FrB at day 7 compared to the 

control, but to a lesser extent (i.e., ~1.5-fold). To determine if the increase in ALP 

translated to improved, mineralized nodule formation, Von Kossa staining was performed 

following 14 days of treatment.  Representative images of von Kossa staining are shown 

in Figure 2b. Both DP-FrA and DP-FrB significantly increased mineralized nodule 

formation in bone marrow-derived osteoblasts (Figure 2c).  

Gene expression analyses were performed to assess alterations in the relative 

abundance of genes that are involved in osteoblast differentiation and mineralization in 

response to the polyphenolic fractions. Following 1 hour of treatment, DP-FrA and DP-

FrB both increased Bmp2 mRNA expression, which stimulates osteoblast differentiation 
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by initiating the BMP/Smad signaling cascade, compared to control (Figure 2d). By 24 

hours post-treatment with the phenolic fractions, Bmp2 expression normalized to that of 

the control. Likewise, expression of Runx2, a target of BMP/Smad signaling and an 

essential transcription factor for activation of genes related to osteoblast differentiation 

was upregulated by both DP-FrA and DP-FrB compared to control following 1 hour of 

treatment, and normalized by 24 hours post-phenolic fraction treatment (Figure 2e). In 

addition, Bsp, a phosphoprotein that promotes the mineralization of the extracellular 

matrix by interacting αvβ3 integrins on osteoblasts, was upregulated by DP-FrA following 

1 hour of treatment and by DP-FrB following 24 hours of treatment (Figure 2f). 

Similarly, Phex, which promotes matrix mineralization by cleaving the inhibitory serine- 

and arginine-rich peptide of osteopontin that binds tightly to calcium, was also 

upregulated by DP-FrA after 1 hour of treatment and by DP-FrB after 24 hours of 

treatment (Figure 2g). These data show that the dried plum phenolic fractions can 

increase bone formation by inducing the gene expression of regulators of differentiation 

and mineralization activity of osteoblasts.  

 

BMP and MAPK signaling is enhanced by phenolic fractions 

Next, gene expression was assessed to examine whether activation of BMP 

signaling in primary bone marrow-derived osteoblasts could explain the upregulation of 

Runx2 and osteoblast activity. Following 15 minutes of treatment with the phenolic 

fractions, gene expression of Tak1, a kinase that activates MAPK signaling cascades and 

also phosphorylates Smad1 protein, was upregulated by DP-FrB compared to control 

(Figure 3a).  Expression of Smad1, a transcription factor that induces osteoblast 
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differentiation, was also upregulated by DP-FrB compared to control (Figure 3b). 

Treatment with Dp-FrA resulted an upregulation of Smad1 that did not reach the 

magnitude of response of that of DP-FrB. Smad5 gene expression was not altered by 

treatment with either dried plum phenolic fraction (Figure 3c).  

To assess whether proteins within the osteogenic BMP signaling cascade were 

altered with treatment with DP-FrA and DP-FrB, phosphorylation of p38, Erk, and 

Smad1/5 were examined over time. Representative blots are shown in Figure 3d. While 

15 minutes of treatment with DP-FrB did not alter activation of p38, which stimulates 

ALP production and matrix mineralization, 1 hour of treatment increased 

phosphorylation of p38 (Figure 3e). Similarly, treatment with DP-FrA did not alter p38 

phosphorylation following 15 minutes of treatment, but enhance phosphorylation of p38 

after 1 hour of treatment, although not to the same degree as DP-FrB. By 4 hours post-

treatment, p38 phosphorylation was not different in cells treated with DP-FrA or DP-FrB 

compared to control. Interestingly, activation of Erk1/2, which is essential for pre-

osteoblast proliferation and osteoblast differentiation, but negatively regulates bone 

mineralization, was decreased after 1 hour of treatment with both DP-FrA and DP-FrB 

(Figure 3f). Similar to the phospho-p38 response, phosphorylation of Erk1/2 was not 

altered by DP-FrA or DP-FrB after 15 minutes or 4 hours of treatment. Finally, the 

upregulation of phosphorylation of Smad1/5 was observed following 15 minutes of 

treatment with both DP-FrA and DP-FrB (Figure 3g). These findings demonstrate that 

BMP signaling is enhanced with treatment of the polyphenolic fractions. 
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Effects of phenolic fractions on TNF-α-treated primary bone marrow-derived osteoblasts  

 

To examine whether DP-FrA and DP-FrB could induce bone formation in 

osteoblast under inflammatory conditions, cells were treated with the phenolic fractions 

in the presence of TNF-α. Following 3 and 7 days of treatment, TNF-α suppressed 

extracellular ALP production compared to an untreated control (Figure 4a). Treatment 

with dried plum phenolic fractions did not improve extracellular ALP compared to TNF-

α treated control. Furthermore, treatment with TNF-α suppressed mineralization and, 

neither DP-FrA nor DP-FrB did not significantly reverse this suppression as indicated by 

the representative von Kossa staining (Figure 4b). Quantification of mineralization area 

showed a trend (p = 0.0674) for increased mineralization with polyphenolic fraction 

treatment, but neither DP-FrA or DP-FrB were able to significantly improve 

mineralization in the presences of TNF-α (Figure 4c). This data demonstrates that while 

the phenolic fractions were not able to rescue osteoblast ALP activity from the 

detrimental effects of TNF-α at the dose studied, there was a trend for improved 

osteoblast function. 

To explore why DP-FrA and DP-FrB did not significantly improve osteoblast 

activity and function under inflammatory conditions, regulators of BMP signaling were 

examined in primary bone marrow-derived osteoblasts treated with TNF-α and the 

polyphenolic fractions. Treatment with TNF-α for 1 hour did not affect transcription of 

Tak1, Smad1, or Smad5 (Figure 4d-f). However, mRNA expression of Smad6, an 

inhibitor of BMP/Smad signaling, was upregulated by TNF-α, and neither DP-FrA or 

DP-FrB were able to attenuate this response (Figure 4g). Furthermore, Bmp2 expression 

was suppressed by TNF-α, and DP-FrA and DP-FrB could not reverse this suppression 
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(Figure 4h). Runx2 expression was unaltered following 1 hour of treatment with TNF-α 

and the dried plum phenolic fractions (Figure 4i). 

 

Identification of phenolic acids present in DP-FrA and DP-FrB 

 Both DP-FrA and DP-FrB were analyzed for the presence of some of the 

polyphenols previously reported in dried plum extracts. DP-FrA and DP-FrB both 

contained cryptochlorogenic acid and neochlorogenic acid (Table 2) and both fractions 

contained a greater percentage of neochlorogenic acid than cryptochlorogenic acid 

(Figure 5). Chlorogenic acid, caffeic acid, quinic acid, o-coumaric acid, m-coumaric 

acid, ferulic acid cyanidin 3-rutinoside, cyanidin 3-glucoside, quercetin, rutin, sorbic 

acid, and 5-hydroxymethyl-2-furaldehyde were not detected in either fraction. This data 

indicates that neochlorogenic acid and cryptochlorogenic acid may be, at least in part, 

responsible for the beneficial effects of dried plum on osteoblast activity and function. 

 

Discussion 

 

Previously, it was demonstrated that a crude ethanol extract of polyphenols from 

dried plum enhanced activity of osteoblasts derived from MC3T3-E1 cells by 

upregulating the expression of Runx2 [24]. In the current study, we identify fractions of 

the polyphenolic extract from dried plum that induce upregulation of Runx2 expression in 

differentiating primary bone marrow-derived osteoblasts. The upregulation of Runx2 

occurs as a result of BMP signaling [5]. The BMP receptors, activated in pre-osteoblasts 

by binding of osteogenic BMPs including BMP2 and BMP4, are serine/threonine kinases 

that initiate osteoblast differentiation by phosphorylating Smad 1/5/8 and TAK1 [5, 7]. 
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The phosphorylation of Smad1/5/8 induces nuclear translocation of the protein complex, 

where it acts to induce Runx2 expression [5]. An upregulation of Bmp4 expression has 

been demonstrated in OVX Sprague Dawley rats in response to dried plum 

supplementation [18]. Furthermore, activation of TAK1 initiates a signaling cascade that 

results in the phosphorylation and activation of p38 [37]. Activated p38 enhances 

osteoblast differentiation by phosphorylating Smad1 at the same site targeted by the BMP 

receptor, thereby amplifying the BMP signaling cascade. Additionally, p38 

phosphorylates and activates Runx2 protein, enhancing the activity of this osteogenic 

transcription factor [5, 37]. The activation of p38 is essential to inducing osteoblast 

activity, as treatment with a p38 inhibitor results in downregulation of ALP production 

and mineralized matrix formation in mouse primary calvarial osteoblasts [38]. The 

upregulation of BMP signaling and the activation of p38 by plant-based polyphenolic 

compounds have been demonstrated in vitro [34, 39-41]. The current study demonstrates 

an increase in Bmp2, Tak1 and Smad1 gene expression, as well as an upregulation in p38 

and Smad1/5 phosphorylation, which suggests the polyphenolic fractions enhanced BMP 

signaling in differentiating bone marrow-derived osteoblasts. Conversely, while the 

activation of Erk is important in the proliferation of osteoblast precursor cells [42], 

phosphorylated Erk negatively regulates bone mineralization in vitro [43]. In the current 

study, treatment with both DP-FrA and DP-FrB resulted in a suppression of Erk 

phosphorylation, indicating that the polyphenolic fractions increase osteoblast 

mineralization activity, at least in part, by inhibiting Erk. 

The differentiation and maturation of osteoblasts results in an increase in 

mineralized bone formation [44]. In aged, osteopenic male C57Bl/6 mice, a 54% increase 
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in bone formation rate in trabecular bone of the distal femur metaphysis was observed 

following 12 weeks of dried plum consumption [45]. In addition, dried plum 

supplementation resulted in an increase in endocortical mineral apposition rate in OVX 

Sprague Dawley rats, providing further evidence that dried plum can enhance bone 

formation in vivo [18]. Mature osteoblasts produce collagen, creating an extracellular 

matrix, as well as non-collagenous proteins, such as bone sialoprotein and osteopontin, in 

preparation of matrix mineralization [46]. Bone sialoprotein (Bsp) promotes maturation 

and mineralization of the extracellular matrix via the interaction of an Arginine-Glycine-

Aspartic Acid (RGD) motif with αvβ3 integrins on osteoblasts [44]. Likewise, osteopontin 

also contains an RGD binding domain, as well as serine- and arginine-rich peptide 

(ASARM) with a high affinity for calcium, resulting in tight binding of the protein to 

hydroxyapatite [47]. The binding of the ASARM peptide of osteopontin to 

hydroxyapatite functions to inhibit crystal growth, indicating the protein’s role in 

regulating bone mineralization [48, 49]. However, the protease Phex cleaves the ASARM 

peptide of osteopontin, which eliminates its ability to inhibit mineralization [49]. In the 

current study, both DP-FrA and DP-FrB upregulated the expression of Bsp and Phex, 

suggesting a mechanism for the observed increased mineralization capacity of osteoblasts 

treated with these polyphenolic fractions. 

A decline in osteoblast activity, and therefore bone formation, is observed in 

conditions of inflammation, including that which occurs with estrogen deficiency and 

rheumatoid arthritis [11, 14, 15]. The inflammatory cytokine, TNF-α, is known to 

suppress osteoblast differentiation by reducing the expression and stability of Runx2 [11, 

13-15]. TNF-α-upregulates NF-κB signaling, which in turn suppresses BMP signaling by 
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inhibiting the binding of Smad1/5/8 to the Runx2 promoter region [15]. Furthermore, 

TNF-α upregulates expression of Smad6, a repressor of BMP-induced Smad signaling, as 

well as Smad ubiquitination regulatory factor 1 (Smurf1), a ubiquitin ligase that marks 

Smad1 and Runx2 for proteosomal degradation [11, 13, 14]. Previously, it was 

demonstrated that a crude ethanol extract of dried plum polyphenols could attenuate the 

TNF-α-induced decline in osteoblast activity and function using the MC3T3-E1 cell line 

[24].  Likewise, the crude polyphenolic extract from dried plum reversed bone loss in 

osteopenic, OVX Sprague Dawley rats (unpublished data). In the current study, fractions 

of the polyphenol extract from dried plum were not able to significantly alter the TNF-α- 

induced reduction in ALP activity and mineralization capacity in primary bone marrow-

derived osteoblasts, although there was a trend for improved mineralization with 

treatment with the fractions. This is due, at least in part, to the upregulation of inhibitory 

Smad6 with TNF-α treatment, which neither DP-FrA or DP-FrB was able to attenuate. 

It’s possible that a higher dose of the fractions or a combination of the fractions is needed 

to protect the differentiating osteoblasts from the detrimental effects of TNF-α. 

Conversely, the dose of fractions used in this study may be able to protect osteoblasts 

from a lower dose of TNF-α.  

In conclusion, this study is the first to identify fractions of a polyphenolic extract 

of dried plum that enhance osteoblast activity and function in murine primary bone 

marrow-derived osteoblasts under normal conditions. The effects are mediated, at least in 

part, by enhanced BMP signaling and an upregulation of Runx2, as well as an increase in 

gene expression related to mineralization activity of osteoblasts.  However, these 

fractions were not able to significantly alter the TNF-α-induced suppression of ALP and 
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mineralization activity of differentiating osteoblasts, and this is due, in part, to a 

suppression of BMP signaling by Smad6. Further investigation is needed to determine 

whether a higher dose of the fractions would enhance osteoblast activity and function 

under inflammatory conditions. In addition, because these fractions may contain more 

than just neochlorogenic acid and cryptochlorogenic acid, further characterization of the 

components of DP-FrA and DP-FrB is needed to elucidate the bioactive compounds 

within dried plum. Furthermore, the capacity of these fractions to enhance bone 

formation in vivo is a necessary step in developing a potential treatment option for 

osteoporosis. 
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Table 1. Primer sequences for qRT-PCR. 

  

Transcript Sequence (5'-3')

Bmp2 F: GGA CAT CCG CTC CAC AAA

R: GGC GCT TCC GCT GTT T

Runx2 F: TCT ACA GGC CCT GGT TCT 

R: ATG TTC CAC TCT CCT CTT CTC TTG

Bsp F:  ACA CCC CAA GCA CAG ACT TTT G

R:  TCC TCG TCG CTT TCC TTC ACT

Phex F:  GGC ATG ACT GCT GTA AGA TCA GAT

R:  AGC TCC ATT GAC ATA AGG CAC T

Tak1 F: CGT CTT CTG CCA GTG AGA TG

R: ATC TTT TGC TCT CCA CTT AGC TT

Smad1 F:  GCC CAT GGA CAC GAA CAT G

R: TGA ACA TCT CCT CTG CTG ATT TCA 

Smad5 F: AGT GAC AGC AGC ATC TTT GTT CA

R: GTG GGA TGG AAG CCA TGG T

Smad6 F: CTG TCC GAT TCT ACA TTG TCT TAC ACT

R: CAT GCT GGC ATC TGA GAA TTC A
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Table 2. Assessment of phytochemical content in DP-FrA and DP-FrB. 

  

DP-FrA DP-FrB DP-FrA DP-FrB
Chlorogenic acid n.d. n.d.
Cryptochlorogenic acid 16.9 86.9 24.0 40.9
Neochlorogenic acid 53.6 125.7 76.0 59.1
Caffeic acid n.d. n.d.
Quinic acid n.d. n.d.
o-Coumaric acid n.d. n.d.
m-Coumaric acid n.d. n.d.
Ferulic acid n.d. n.d.
Cyanidin 3-rutinoside n.d. n.d.
Cyanidin 3-glucoside n.d. n.d.
Quercetin n.d. n.d.
Rutin n.d. n.d.
Sorbic acid n.d. n.d.
5-Hydroxymethyl-2-furaldehyde n.d. n.d.

mg/100 g total phenolic extract % of total compounds analyzed



118 
 

Figure legends 

Figure 1. Dried plum phenolic fractions DP-FrA and DP-FrB improve osteoblast activity 

and function in MC3T3-E1 cells. Cells were treated with osteogenic media (alpha-MEM 

+ 10% FBS, 2 mM L-glutamine, 1% penicillin/streptomycin, 25 μg/ml ascorbic acid and 

10 mM β-glycerophosphate). a) Extracellular ALP was assessed following 7 days of 

treatment with DP-FrA and DP-FrB (n=6). b) Calcified nodules were stained with 

alizarin red following 28 days of treatment with osteogenic media and DP fractions (10 

μg/ml) and then the stain was eluted and quantified (n=6). Bars represent the mean ± SE. 

Bars that do not share the same superscript letter are statistically different from each 

other, p < 0.05. 

 

Figure 2. DP-FrA and DP-FrB induce ALP activity and mineralization in primary bone 

marrow-derived osteoblasts. Primary bone marrow stromal cells were treated with 

osteogenic media (alpha-MEM + 10% FBS, 2 mM L-glutamine, 1% 

penicillin/streptomycin, 50 μg/ml ascorbic acid and 3 mM β-glycerophosphate) and 

allowed to differentiate for 7 days. Cells were then treated with the polyphenolic fractions 

on day 7 of differentiation. Extracellular ALP a) was assessed in the media following 3 or 

7 days of polyphenolic treatment (10 μg/ml). Mineralized nodules were stained using 

Von Kossa staining following 14 days of treatment with of DP-FrA and DP-FrB (10 

μg/ml).  b) Representative wells treated with DP-FrA and DP-FrB show increased von 

Kossa staining and c) increased the percentage of mineralized area (n=6). RNA was 

extracted following treatment with DP fractions for one hour or 24 hours. Relative 

mRNA expression of d) Bmp2, e) Runx2, f) Bsp, and g) Phex was assessed using qRT-

PCR with Gapdh as a control (n=6). Bars represent the mean ± SE. Bars that do not share 

the same superscript letter are statistically different from each other, p < 0.05. 

 

Figure 3. DP-FrA and DP-FrB upregulate BMP signaling in primary bone marrow-

derived osteoblasts. Primary bone marrow stromal cells were treated with osteogenic 

media and allowed to differentiate for 7 days. Cells were then treated with the DP 

fractions and RNA was extracted after 15 minutes. Relative mRNA expression of a) 

Tak1, b) Smad1, and c) Smad5 was assessed with qRT-PCR using Gapdh as a control 

(n=6). Protein was extracted following treatment with the phenolic fractions for 15 

minutes, 1 hour or 4 hours. d) Representative western blots are shown at each time point. 

The relative abundance of e) phosphorylated p38, f) ERK, and g) Smad1/5 (n=3) are 

presented. Bars represent the mean ± SE. Bars that do not share the same superscript 

letter are statistically different from each other, p < 0.05. 

 

Figure 4. DP fractions failed to rescue primary bone marrow-derived osteoblasts from the 

detrimental effects of TNF-α. Primary bone marrow stromal cells were treated with 

osteogenic media and allowed to differentiate for 7 days. Cells were then treated with 

TNF-α (1 ng/ml) and the DP fractions on day 7 of differentiation. a) Extracellular ALP 

was measured in the media following 3 or 7 days of treatment. Mineralized nodules were 

assessed using Von Kossa staining following 14 days of treatment with the DP fractions 

(10 μg/ml).  b) Representative wells treated with DP-FrA and DP-FrB show increased 
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von Kossa staining and c) increased percentage of mineralized area (n=6). RNA was 

extracted following treatment with DP fractions for 1 hour. Relative mRNA expression of 

Tak1 (d), Smad1 (e), Smad5 (f), Smad6 (g), Bmp2 (h), and Runx2 (i) was assessed with 

qRT-PCR using Gapdh as a control. Bars represent the mean ± SE. Bars that do not share 

the same superscript letter are statistically different from each other, p < 0.05. 

 

Figure 5. The relative abundance of neochlorogenic acid and crytopchlorogenic acid in 

DP-FrA and DP-FrB is represented. Bars represent the percentage of detected compounds 

in each fraction that is neochlorogenic acid or cryptochlorogenic acid. 
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Figure 1.   
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Figure 2. 
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Figure 4. 
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Figure 5. 
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CHAPTER V 
 

 

SUMMARIES, CONCLUSIONS, AND RECOMMENDATIONS 

Previous studies have demonstrated that a crude ethanol extract of the polyphenols in 

dried plum restores bone in osteogenic animals and can simultaneously increase 

osteoblast activity and decrease osteoclast activity. However, the type of polyphenolic 

compounds within the extract and the mechanisms by which they influence bone cell 

activity have remained in question. The current studies were conducted to determine 

which fraction(s) of the polyphenolic extract were able to positively affect osteoblast and 

osteoclast differentiation and activity in primary cell cultures, and the mechanism through 

which these effects are mediated. Screening assays revealed that DP-FrE and DP-FrF 

downregulated osteoclast differentiation under normal and inflammatory conditions. 

These effects on osteoclast differentiation were confirmed in primary bone marrow-

derived osteoclasts in conjunction with a decrease in osteoclast resorption pit formation 

resulting from the downregulation of Nfatc1, the master regulator of osteoclastogenesis. 

Mechanisms by which DP-FrE and DP-FrF downregulated Nfatc1 expression included 

the suppression of Erk1/2 and p38 MAPK signaling, as well as a reduction in intracellular 

calcium levels in the differentiating osteoclast. The decreased calcium levels can be  
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attributed, at least in part, to a downregulation of costimulatory receptors involved in 

calcium signaling, including OSCAR, TREM2, and SIRPβ1.  Importantly, the effects of 

DP-FrE and DP-FrF on down-regulating Nfatc1 were confirmed in an osteoblast and 

osteoclast co-culture system.  In terms of bone formation, DP-FrA and DP-FrB improved 

osteoblast activity under normal conditions. Mechanisms by which osteoblast activity 

were improved included an upregulation of Runx2, which is essential to osteoblast 

differentiation. The upregulation of Bmp2 mRNA expression indicates that an increase in 

Runx2 is at least in part due BMP signaling. Providing further support of enhanced BMP 

signaling was the increased activation of the MAPK p38, the signaling cascade of which 

is initiated upon BMP receptor stimulation, with treatment with the fractions. Coinciding 

with these alterations in BMP signaling, mineralized nodule formation was increased by 

both DP-FrA and DP-FrB. This is due, in part, to the upregulation of Bsp and Phex 

expression, both of which are involved in matrix mineralization, by DP-FrA and DP-FrB. 

However, when the osteoblast precursors were challenged with TNF-α, creating an 

inflammatory environment, neither DP-FrA or DP-FrB were able to significantly restore 

osteoblast function, although there was a trend for improved mineralization. These 

studies demonstrate that fractions of a polyphenolic extract from dried plum improve 

bone health by suppressing osteoclast differentiation and activity, as well as by increasing 

osteoblast activity. 
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Conclusions 

 

Purpose: The purpose of this project was to determine the bioactive component(s) in 

dried plum responsible for the beneficial effects on bone metabolism and the mechanisms 

through which these components enhance osteoblast activity and suppress osteoclast 

activity under normal and inflammatory conditions. 

 

Central Hypothesis:  Polyphenolic compounds in dried plum favorably affect bone 

metabolism by suppressing osteoclast activity and increasing osteoblast activity. These 

effects are mediated by alterations in calcium and MAPK signaling in osteoclasts and 

BMP signaling in osteoblasts. 

 

Specific Aim 1:  To investigate the effects of different fraction(s) of a dried plum 

polyphenol extract on osteoclasts in vitro under normal and inflammatory 

conditions and how these effects are mediated. 

 

Working Hypothesis 1:  The polyphenolic compounds in dried plum will attenuate the 

increase in osteoclast differentiation and activity in normal and inflammatory cell culture 

systems by suppressing calcium and MAPK signaling. 

 

Sub-Aim 1.1:  To determine the fraction(s) and dose of the dried plum polyphenol 

extract that most effectively reduces osteoclastogenesis in murine immortal cell lines. 
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Preliminary experiments were performed to determine the ability of the 

polyphenolic fractions to dose-dependently downregulate osteoclast differentiation using 

the murine immortalized macrophage/monocyte cell line, RAW 264.7 cells. DP-FrA, DP-

FrE and DP-FrF most effectively downregulated the number of TRAP
+
 osteoclasts per 

well at doses of 1 μg/ml and 10 μg/ml under normal as well as inflammatory conditions. 

These fractions and doses were then further examined in murine primary bone marrow-

derived osteoclast cultures to confirm these findings and to begin to investigate their 

mechanism of action. 

 

Sub-Aim 1.2:  To examine how the active polyphenolic fraction(s) alter osteoclast 

differentiation (i.e., quantification of TRAP
+
 cells) and activity (i.e., resorption pit 

formation) using primary bone marrow-derived osteoclast cultures. 

 

 Under normal conditions, only DP-FrE and DP-FrF suppressed 

osteoclastogenesis. The ability of DP-FrE and DP-FrF to alter osteoclast activity was 

examined via a resorption pit assay. Both fractions reduced the area of dentin disc 

resorbed by osteoclasts at doses of 1 and 10 μg/ml indicating that the reduction in 

osteoclast numbers translated to a decrease in osteoclast activity. 

 Next, due to the role of TNF-α in upregulating osteoclast differentiation and 

activity, and therefore bone resorption, the capacity of DP-FrE and DP-FrF to reduce 

osteoclast number and activity in the presence of TNF-α was investigated. Both DP-FrE 

and DP-FrF reduced osteoclast number and activity compared to the TNF-α treated 

control to a level similar to that of the control not treated with TNF-α. These findings 
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indicate that DP-FrE and DP-FrF can attenuate the TNF-α-induced increase in osteoclast 

differentiation and activity, making the fractions a promising potential component of 

prevention or treatment strategies for inflammation-induced bone loss. 

 

Sub-Aim 1.3:  To examine the extent to which the active polyphenolic fraction(s) alter 

key regulators of osteoclast differentiation by way of calcium and MAPK signaling 

pathways. 

 

 To identify potential mechanisms by which DP-FrE and DP-FrF downregulate 

osteoclast differentiation and activity, calcium and MAPK signaling pathways essential 

to osteoclast differentiation were examined. Our data demonstrate that the DP-FrE and 

DP-FrF suppress osteoclastogenesis under normal and inflammatory conditions by 

downregulating Nfatc1 in murine primary bone marrow-derived osteoclasts. Both 

calcium and MAPK signaling play a role in the regulation of Nfatc1 expression. DP-FrF, 

and DP-FrE to a lesser extent, suppressed intracellular calcium levels in differentiating 

osteoclasts under normal conditions. Coinciding with this finding was the downregulation 

of costimulatory receptors known to play a role in calcium signaling, including OSCAR, 

SIRPβ1, and TREM2. These findings suggest that Dp-FrE and DP-FrF downregulate 

osteoclast differentiation, in part, by suppressing the calcium oscillations required for the 

function of calcium-dependent enzymes that regulate Nfatc1 auto-amplification. In 

addition to suppressing calcium signaling, the phosphorylation and activation of Erk1/2, 

was also suppressed by treatment with the fractions. A downregulation of activated 

Erk1/2 provides an additional mechanism by which the polyphenolic fractions reduce 
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osteoclast number, as Erk1/2 is known play a role in the proliferation and survival of 

osteoclasts. These findings demonstrate that DP-FrE and DP-FrF reduce osteoclast 

numbers, at least in part, by suppressing MAPK and calcium signaling pathways essential 

to osteoclast differentiation and survival. 

 

Sub-Aim 1.4:  To examine how the fraction(s) of the dried plum polyphenolic extract 

alter osteoclast differentiation using murine primary co-cultures, a system that allows 

osteoblast and osteoclast interaction, in normal and inflammatory conditions. 

 

 While a mono-culture of bone marrow-derived osteoclast cells provides important 

insights for examining signaling mechanisms involved in osteoclastogenesis, the culture 

system does not account for the coupled activity of osteoblasts and osteoclasts that occurs 

in vivo. Therefore, to begin to address whether these polyphenolic fractions can reduce 

osteoclast differentiation in an environment that more closely reflects the bone 

microenvironment in vivo, a co-culture system was used. Under normal conditions, DP-

FrE and DP-FrF tended (p = 0.0530) to suppress osteoclast differentiation. Under 

inflammatory conditions, the fractions attenuated the TNF-α-induced increase in 

osteoclast number, although the magnitude of response was much greater in DP-FrF than 

in DP-FrE. The reduction in osteoclast number under both normal and inflammatory 

conditions can be attributed, in part, to a downregulation of Nfatc1 expression. 

Furthermore, under inflammatory conditions, suppression of Rankl expression suggests 

there is a decrease in RANKL binding to RANK on osteoclast precursors, which is 

required to initiate the signaling cascades that upregulate Nfatc1 expression. Increased 
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osteoclast differentiation in the presence of TNF-α can be attributed both to the 

upregulation of RANKL production by osteoblasts and some immune cell populations, as 

well as enhanced sensitivity of osteoclast precursors to RANKL stimulation. These 

findings suggest that the fractions may reduce osteoclast differentiation indirectly by 

influencing the production of RANKL by osteoblasts, as well as by acting directly on 

osteoclast precursors by downregulating Nfatc1 expression, similar to the observations in 

the bone marrow-derived osteoclast mono-cultures. 

In summary, fractions of a crude polyphenolic extract of dried plum that 

suppressed osteoclast differentiation and activity and enhanced osteoblast activity and 

function were identified. The fractions most effective in reducing osteoclast 

differentiation and activity exerted these effects, at least in part, by suppressing calcium 

and MAPK signaling in differentiating osteoclasts. These fractions were able to suppress 

osteoclast differentiation and activity under both normal and inflammatory conditions, 

demonstrating their potential as a component of a treatment strategy for inflammatory 

conditions of bone loss, such as that observed with estrogen deficiency and rheumatoid 

arthritis. 
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Specific Aim 2:  To investigate the effects of different fraction(s) of a dried plum 

polyphenol extract on osteoblasts in vitro under normal and inflammatory 

conditions and how these effects are mediated. 

 

Working Hypothesis 2: The polyphenolic compounds in dried plum will enhance 

osteoblast differentiation and activity by enhancing BMP signaling and altering MAPK 

signaling in normal and inflammatory cell culture systems.  

  

Sub-Aim 2.1:  To determine the fraction(s) and dose of a dried plum polyphenol extract 

that results in the greatest increase in osteoblast activity (i.e., ALP) and function (i.e., 

formation of mineralized nodules) in murine immortal cells lines. 

 

 The ability of the polyphenolic fractions to increase osteoblast activity and 

function was screened in the murine immortalized calvarial pre-osteoblast cell line, 

MC3T3-E1 cells. Six initial polyphenolic fractions were assessed for their effects on 

osteoblast ALP production and mineralized nodule formation. Two of the fractions, DP-

FrA and DP-FrB, increased osteoblast activity and mineralized nodule formation 

compared to control. Therefore, the bioactivity of these two fractions in enhancing 

osteoblast activity and function was further assessed in murine primary bone marrow-

derived osteoblasts. 
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Sub-Aim 2.2:  To examine how the active polyphenolic fraction(s) alter osteoblast 

activity (i.e., ALP) and function (mineralized nodule formation) using primary osteoblast 

cultured under normal and inflammatory conditions. 

 

 Based on the results of the screening assay, the ability of DP-FrA and DP-FrB to 

enhance osteoblast activity and function was assessed in murine primary bone marrow-

derived osteoblasts.  Under normal conditions, both DP-FrA and DP-FrB increased ALP 

production and mineralized nodule formation. However, under inflammatory conditions, 

neither DP-FrA or DP-FrB were able to attenuate the suppressive effect of TNF-α on 

ALP production and mineralized nodule formation.  

  

Sub-Aim 2.3: To examine the mechanisms (i.e., BMP and MAPK signaling pathways) 

by which the most bioactive fraction(s) of the dried plum polyphenolic extract increase 

osteoblast differentiation and activity. 

 

 Alterations in BMP and MAPK signaling pathways by DP-FrA and DP-FrB were 

examined using gene and protein expression analyses to determine the mechanisms by 

which osteoblast activity is increased. Within one hour of treatment, both fractions 

significantly upregulated the gene expression of Bmp2 and Runx2. To further examine 

signaling pathways that could provide explanation for the upregulation of Runx2 and 

osteoblast activity, genes and proteins within the BMP signaling pathway were assessed. 

Within 15 minutes of treatment, gene expression of Tak1, which is activated upon BMP 

receptor stimulation and initiates MAPK signaling within the BMP signaling cascade, 
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was upregulated by DP-FrB only. Additionally, gene expression of Smad1, which also is 

activated upon BMP receptor stimulation, was also upregulated by the fractions, although 

the magnitude of response was greatest with DP-FrB. Providing further evidence of 

upregulated BMP signaling was the increased phosphorylation of the MAPK p38, the 

activation of which relies on TAK1 activation. Interestingly, phosphorylation of Erk1/2 

was suppressed by treatment of the fractions. However, while Erk1/2 plays an essential 

role in the proliferation and early differentiation of osteoblast precursors, the activation of 

Erk1/2 is inhibitory to the maturation and mineralization activity of osteoblasts. In 

addition to the upregulation of signaling involved in osteoblast differentiation, genes 

involved in bone mineralization (i.e., Bsp and Phex) were significantly upregulated by 

DP-FrA within one hour of treatment and by DP-FrB following 24 hours of treatment. 

 Under inflammatory conditions, while neither of the fractions was able to 

attenuate the TNF-α-induced suppression of ALP production, there was a trend (p = 

0.0674) for increased mineralized nodule formation with DP-FrA and DP-FrB compared 

to the TNF-α treated control in primary bone marrow-derived osteoblasts. While TNF-α 

did not significantly affect Runx2 gene expression following one hour of treatment, Bmp2 

was significantly downregulated. Neither fraction was able to fully rescue the cells from 

this suppression of Bmp2. In addition, TNF-α significantly upregulated the expression of 

Smad6, which is inhibitory to osteogenic Smad1/5/8 signaling, and neither fraction was 

able to attenuate this response. 

  Previously, it was demonstrated that a crude ethanol extract of the polyphenols 

from dried plum upregulated Runx2 and mineralization capacity in MC3T3-E1 cells. This 

study is the first to show that the most hydrophilic fractions of the crude polyphenolic 
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extract from dried plum had similar effects on osteoblast activity and function in murine 

primary bone marrow-derived osteoblasts. Furthermore, the enhanced BMP signaling 

observed with treatment with these polyphenolic fractions advances our understanding of 

how dried plums up-regulate osteoblast’s ability to form calcified nodules. However, 

while the crude ethanol extract of polyphenols from dried plum was able to attenuate the 

detrimental effects of TNF-α on osteoblast activity and function in MC3T3-E1 cells, the 

magnitude of response to the polyphenolic fractions in an inflammatory environment was 

not the same in primary bone marrow-derived osteoblasts.  

In summary, the fractions most bioactive in enhancing osteoblast activity were 

identified. These fractions increased osteoblast activity, at least in part, by upregulating 

BMP signaling in osteoblasts. However, while osteoblast activity was enhanced by 

treatment with the fractions under normal conditions, the fractions were unable to protect 

the osteoblasts from the suppressive effects of TNF-α. These are the first studies 

identifying the most bioactive components of the crude polyphenolic extract of dried 

plum. In addition, these studies are the first to show alterations in calcium and MAPK 

signaling in osteoclasts and BMP signaling in osteoblasts with treatment of components 

of dried plum.  

 

Recommendations for Future Research 

 These studies advance the understanding of the bioactive components of dried 

plum that are responsible for improving bone metabolism, as well as the potential 

mechanisms by which these components affect osteoclast and osteoblast function. Further 
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investigation is necessary to fully elucidate the bioactive components in these fractions 

and the mechanisms by which they affect bone metabolism in vivo.  

While previous findings that a crude polyphenol extract could protect osteoblasts 

from the suppressive effects of TNF-α, the magnitude of response to DP-FrA and DP-FrB 

in primary bone marrow-derived osteoblasts treated with TNF-α was not as prominent in 

this study. It may be that higher doses or the possibility of a combination of fractions is 

required to restore bone formation under inflammatory conditions. Alternatively, the 

identification of certain components of the polyphenolic extract from dried plum that are 

most bioactive in improving osteoblast activity and in reducing osteoclast activity in this 

study provides insight into certain types of dried plum or other fruits (i.e., those high in 

these particular polyphenols or bioactive components) that could be consumed as a 

preventative or treatment measure for osteoporosis. Further investigation is needed to 

characterize the types of polyphenols that should be targeted.  

In addition to characterizing the types of compounds within these fractions that 

are responsible for the enhance osteoblast activity and suppressed osteoclast activity, 

further understanding of the mechanisms by which they may do so in vivo is necessary. 

The in vitro monoculture systems used in these studies are valuable systems to examine 

signaling mechanisms. However, they do not allow for the coupling of osteoblast and 

osteoclast activity that occurs in vivo. The co-culture system allowed for a more 

physiologically relevant environment in that osteoblasts and osteoclasts are able to 

communicate with each other. In this system, it was determined that the fractions 

downregulated osteoclast differentiation under inflammatory conditions. There was a 

trend for reduced osteoclast numbers under normal conditions, but unlike in the mono-
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culture system in which osteoclast precursors are bombarded with RANKL treatment to 

induce differentiation, osteoclast differentiation is solely induced by signaling from the 

osteoblasts in the co-culture system. Therefore, in an environment that more closely 

mimics the in vivo environment, significant downregulation of osteoclast differentiation 

may not be desirable, as some osteoclast activity is required for maintenance of bone 

integrity. The mechanisms by which the fractions downregulate osteoclast differentiation 

in the co-culture system are not yet clear, and further investigation is warranted. In 

addition, the immune system plays a major role in bone metabolism in vivo, and 

osteoclasts are derived from the same lineage as monocyte/macrophages. Therefore, 

investigation of how the fractions affect activation of these immune cells much like they 

do osteoclasts may provide another mechanism by which the fractions are beneficial to 

bone health. Finally, it must be determined whether alterations in bone metabolism due to 

treatment with the fractions observed in murine models of osteoporosis translate to 

humans. This could be accomplished by examining whether consumption of certain 

cultivars of dried plum which contain a higher amount of the components within these 

fractions provides a greater improvement in bone health than is currently observed with 

the cultivar of dried plum most commonly consumed. The future investigations suggested 

above will assist in the progression of potential treatment development.
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