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Chapter 1

INTRODUCTION

Filtration is both a process of major contemporary importance and one with its

beginnings rooted in antiquity. Hardly a modern industry exists without some dependence

on a filtering operation. The earliest Chinese writings describe a crude form of filtration,

as do Hebrew scrolls [Matteson, 1987]. The first patent on a filter may be that issued by

the French government in 1789 to one Joseph Amy [Matteson, 1987]. A British patent of

1791 describes an operation identified as filtration by ascent, the invention here being a

vessel containing coarse gravel at the bottom followed by graded sand above.

The complete evaluation of an air filter or filtration installation involves more than

a single measurement of its efficiency in retaining particles of a standard test material,

although it is the particulate efficiency which is generally of prime importance and to

which most of this study and thesis is devoted. Other factors requiring attention are

[Matteson, 1987]:

1. Resistance to air flow.



2. Loading capacity before a resistance to airflow increases to too high a level for proper

functioning ofthe equipment.

3. Chemical and physical characteristics; for example, mechanical strength, capability to

withstand acid mists.

4. Size, cost, ease of replacement.

1.1 Summary ofthe Present Research

This study involved the measurement of local filtration efficiency at 35 points over

the face of a panel filter. The measurements were carried out at different flow rates and

for different particle sizes. The tests were conducted in a housing related to the 11669

housing (Small Angle Diffuser (SAH) housing), the standard 1726 housing (SAE housing),

and a representative model of the actual filter housing (referred to as the Simulated

Automotive Filter (SAF) housing in the later chapters of this thesis) from a Chrysler

minivan. All of the tests were conducted on the Dayco-Purolator A13192 filters. The

results were then compared with those of Jadbabaei [1997J for experimental comparison

and Duran [I 995J for theoretical comparison.

A Laser Doppler Velocimetry (LDV) system was used to make the measurements.

Before taking the efficiency measurements on the filters, several experiments were carried

out to measure the consistency of the equipment that was used during the measurements.

lbis was essential to ascertain the reliability and the repeatability of the measurements.

These included consistency measurements on the power of the laser. which has been

2
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shown to be significantly dependent on the room temperature [Anand, 1997; Jadbabaei.

1997]~ and on the atomizer which feeds particles at a particular rate during the course of

the experiment. To maintain the accuracy of the measurements and prevent any potential

factor for discrepancy in the results, a new Small Angle Diffuser housing (SAH) was built.

since the old housing had several old glued joints and thus were potential places of leakage

in the housing.

1.2 Thesis Layout

Chapter 2 of this thesis is devoted to the literature review on the subject and

discusses certain theoretical predictions based on models developed and results of

previous researchers on the project. The LDV system details are discussed in Chapter 3

of this thesis. Chapter 4 gives a brief description of the consistency measurements that

were made in order to verify the accuracy and repeatability of the measurements. Some 0 f

the filtration efficiency results are presented and discussed in Chapter 5. The conclusions

based on the results of this study, and certain suggestions about areas of future research

are discussed in Chapter 6. Additional results, graphs, and equipment are listed in the

appendices. The data from the consistency measurements has been tabulated in the

Appendix F.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

The process of separating dispersed particles from a dispersed fluid by means of

porous media is known as filtration. While the dispersing media may be a gas or a liquid,

the medium can be either aerosols or lyosols [Pich, 1987]. As part of this literature

review, attention has been limited to aerosol filtration. In the case of a clean filter, the

pressure drop across a filter, L1p, is dependent on the properties ofthe fluid and the porous

filtration media only. As the filter gets dirty, the pressure drop is also dependent on the

properties ofthe particles on or in the filter. For a mono-disperse system of particles, the

filter efficiency 11 is defined as

(2.1)

--

where G1 is the flux of particles into the filter and G1 is the flux of particles exiting from

the filter. The process of filtration involves three objects: the dispersed particles, the
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dispersing medium and the porous filter medium. The characteristics of the dispersed

particles include the diameter of the particle (Dp) , the mass and the density (pp) of the

particle, the electric charge, dielectric constant and the chemical composition. The fluid

flow is characterized by the velocity Do, density Pg, temperature T, pressure p, dynamic

viscosity 1-4, and humidity. The filter media is dependent on its geometrical dimensions 

the filter surface area Ar, filter thickness L, distribution of the media in the filter, porosity,

electric charge, and dielectric constant. The pressure drop ~p and the filter efficiency"

are dependent on nearly all of the factors mentioned above [Pich, 1987].

Theoretically, there are two distinguished phases in the process of filtration [Pich,

1987]. The first phase, known as the' stationary phase, involves the deposition of the

particles on a clean filter of a certain structure. This deposition does not change the basic

structure of the filter and hence does not significantly affect the basic parameters of the

filter: the pressure drop ~p and the filter efficiency Tl. Both ~p and Tl do not vary with

time during this phase. This study involved the efficiency measurements during the

stationary phase of the filtration process. However in reality, once the filter is being used.

the particles get deposited on the filter, and it is not possible to maintain the stationary

phase of the filtration process. There was no appreciable change in the pressure drop

across the filter during the course of the experiments. It is therefore assumed that, during

these experiments the filter did not enter the second phase of the filtration process known

as the non-stationary filtration - which occurs, when the filter is partially plugged. This

chapter introduces the reader to the various aspects of filtration and previous theoretical



and experimental studies in aerosol filtration with fibrous fihers in general and the work

done at Oklahoma State University in particular.

2.2 Mechanisms of Particle Deposition

Essentially, the deposition of particles from a flowing fluid onto bodies of simple

geometry involves an interfacial mass transfer of small particles. In systems with a simple

geometry, the interfacial mass transfer between the gas suspension and a solid body (filter

fiber) is usually described by two quantities: a capture coefficient Er and a local capture

coefficient [Pich, 1987]. The capture coefficient of the body (fiber) is defined by

(2.2)

-

Where ¢f is the number of particles captured by the fiber in a unit time, 1l() is the particle

concentration, Do is the velocity of fluid flow, Dr is the diameter of the fiber placed

perpendicular to the fluid flow.

The particle deposition on the filter medium takes place by several mechanisms;

the most important of which are described below:

2.2.1 Diffusion Deposition

The trajectories of the small particles do not coincide with the streamlines of the

fluid [Fig. 2.1]. This is because the Brownian motion increases with the decrease in

particle diameter causing a corresponding increase in the intensity of diffusion deposition.
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The capture coefficient ED for particle deposition due to diffusion is a function of the

Peclet number

Peclet number is also defined as

Pe = ReSc

(2.3)

(2.4)

--

where Sc = vlD is the Schmidt Number and D is the diffusion coefficient of the particle.

Figure 2.1: Particle Capture Mechanisms: A, Particle Capture by Interception; B, Particle
Capture by Inertial Impaction; C, Particle Capture by Diffusional Deposition
[Brown, 1993]
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There are three regions for theoretical investigation. As shown in Pich [1987],

Stechkina [1964] derived the following equation for small Pe numbers (Pe << 1) and

viscous flow (Re < 1)

E _ 2n
D - Pe(1.502-£nPe)

(2.5)

For Pe » 1 and Re < 1 (a condition usually satisfied in the case of fibrous filters),

Friedlander [1958J has the following relation for this mechanism

E
_ 2.22 -lj

D - 1 Pe
(2 -lnRe)K

(2.6)

Making use of the Kuwabara - Happel velocity field, Stecbkina deduced the following

equation for Pe» 1, Re» 1

E
_ 2.9 P -lj

D - e
(-C-lnP~

where (3 is the packing density ofthe filter and C = 0.75.

(2.7)

2.2.2 Direct. Interception

This mechanism considers the finite size of the particles. This takes place as the

-
particle approaches the collecting surface (following a streamline) and reaches a distance

(from the fiber) equal to its radius [Fig. 2.1]. A special case of this mechanism., called the

sieve effect., occurs when the distance between the fibers is less than the particle diameter

Dp . The interception regime overlaps with the diffusion regime (0.1-0.5 !-lm) and the

8



impaction regime (~ 0.5 J,.lm), respectively. The efficiency due to this mechanism is

described by [Lee and Liu, 1982]:

(2.8)

Where RD is the ratio of the particle diameter Dp to the fiber diameter Dr; K is Kuwahara's

. (1 3 1 2)hydrodynaDllc factor =--In f3 - - + f3 - - fJ
244

2.2.3 Inertial Mechanism

In a flowing fluid, the presence of a body results in a cllfVature of streamlines in

the neighborhood of the body [Fig. 2.1). However the particles due to their inertia do not

follow the streamlines and instead are impinged on the body and are deposited there. The

particle deposition due to this mechanism increases with mcrease in the particle size and

flow velocity. At constant conditions, there is a limiting trajectory separating the

trajectories of particles that are captured, from the trajectories of particles that miss the

fiber and are not captured. The capture coefficient for particles of finite size due to their

inertia, ErR, is defined as the ratio of the number of captured particles to the number of

particles that would be captured lithe particles moved only in a straight line [Pich, 1987).

This coefficient is dependent upon several parameters; the most important of which is the

Stokes number or the inertial parameter.
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(2.9)

For instances where the velocity or particles sizes are so great that the particle drag cannot

be described Stokes' law, another parameter (¢*) is used (¢* = 0 for particles obeying the

Stokes ' law) [Pich, 1987]

Re Pf =-_P =18-g Re;
St Pp

(2.10)

where Re~ is the Reynolds number of the cylinder (fiber) which, as calculated by tbis

author, is Dd(DpCn) (for Eq. 2.10 to be true, Re, does not appear to be a true Reynolds

number), and Rep is the particle Reynolds number and is given by

(2.1 I)

There have been several experimental investigations of the inertial deposition of

particles. Picb [1987] reports that LandabJ and Hermann [1949] expressed their results

for Re = 10 by the empirical relationship

St3

7h =-S-t3-+-O-.7-7-S-,2-+-0.-2-2

2.2.4 Gravitational Mechanism

(2.12)

Particles can deposit from a flowing gas on collector surfaces under the influence

of gravity. This deposition of particles due to gravitational force is expected to be

10



considerable for large particles and small flow velocities. The importance of the

mechanism is described by a dimensionless parameter NG (as calculated by this author NG

has dimensions ofm-I
), which, for Stokes particles is given by [Pich, 1987]

(2.13)

The capture coefficient of a fiber EG describing the rate of particle deposition due to

gravitational forces is a function oftffis parameter i.e. EG=EG(NG).

2.2.5 Electrostatic Mechanism

Aerosol particles and the fibers of a filter often carry electrostatic charges that may

influence the particle deposition. The electrostatic charge usually is unstable. Tbis charge

decreases with time mainly due to fiber conductivity, passage of ionized gas, radioactive

radiation, deposition of charged particles and humidity. A charge on the particle or the

fiber alters the particle trajectory and the extent of particle adherence to the fiber and

hence affects the filtration process. The deviation of the filtration process vanes,

depending upon whether the particle, or the fiber, or both carry a charge. In the case of a

neutral fiber and charged particle, Pich [1987] reports that Gillespie [1955] gives the

interaction between the charge on an aerosol and its image on the fiber as follows

(2.14)

...
11
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where F is the force, D2 is the dielectric constant of the fiber, q is the particle charge, RF is

the fiber radius, L' is the distance between the particle and the fiber. When both the

particle and the fiber carry a charge that is opposite to each other, then we have the

following relation [Gillespie, 1955 as reported by Pich, 1987]

(2.15)

where Q is the charge per unit length of the fiber. The electrostatic mechanism may be

described by a dimensionless parameter (Noq) describing the magnitude of this mechanism.

The dimensionless parameter is described in terms of the ratio between the electrostatic

forces and the drag forces. The dimensionless parameter Noq (valid only for Stokes

particles) describing the deposition due to the like forces in a system composed of neutral

fibers and charged particles [Pich, 1987] is

(2.16)

The capture coefficient Eoq for this system for a viscous flow is given by

(2.17)

2.2.6 Deposition due to London-van der Waals Forces

Molecular interaction between particles and a fiber may affect the deposition rate

when the distance between the fiber and the particle is very smail. Like electrostatic

12



forces, these forces, besides influencing the process of particle deposition, may enable the

particle to stick continuously to the fiber. Pich [1987] mentions that the London van der

Waals attraction force between a plane and a sphere is given by [Hamaker, 1937]

(2.18)

and that Natanson [1957] derived the dimensionless parameter NM characterizing the

intensity of particle deposition due to these forces and described it as

(2.19)

where RF is the fiber radius and Qo is Hamaker's constant of interaction and is typically of

the order of 10-20 to 10-19 J. Pich [1987] explains that the capture coefficient of the fiber

E\-f, due to this force is a function of this dimensionless parameter for a viscous flow is as

described by Natanson [1957] below

[
... ]1/3 1E - ~n N~

M - 2/ M
2 (2 -lnRe)73

(2.20)

-

For small particle sizes, diffusion is the dominant mechanism for particle collection

by the fiber as seen in Fig. 2.2. The importance of this mechanism decreases for higher

particle sizes and for particles between sizes 0.1 - 0.5 !lm the direct interception also

accounts for the particle collection phenomenon. Particle diameter is critical since large

particles, in effect, reach out to intercept the fibers. Particles with diameter ~ 0.5 !lm have

high inertia and also have a large Stokes drag exerted by the air, resulting in the increased

importance of the inertial impaction mechanism as a method of particle collection. The
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importance of different efficiency mechanisms for different particle sizes is shown in Fig.

2.2.
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Figure 2.2 Schematic Diagram of the Collection Efficiencies of Different Particle Capture
Mechanisms [Liu et al., 1985]

2.3 Combined Filtration Mechanisms

During the actual filtration process, particles may be subjected to the simultaneous

effect of all the deposition mechanisms; with each one of them playing different roles

under different conditions. The most widespread approach toward finding the total

capture coefficient of a fiber Er is to assume that the individual capture coefficients Ei (i =

1, 2, ... n) corresponding to different mechanisms are additive [Pich, 1987] i.e.

(2.21 )
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Chen and Yu [1993] have proposed the following relation for the combined effect of any

two mechanisms, where T]l and T]2 are the individual deposition efficiencies for the two

mechanisms.

(2.22)

Davies [1952] derived the following equation for the simultaneous action of diffusion,

interception, inertia for the simultaneous capture coefficient EDRl

(2.23)

..

where NR = DlJ)f is the dimensionless parameter for direct interception mechanism.

2.4 Interference Effect

The capture coefficient of a fiber in a filter Ejp differs from the capture coefficient

of an isolated fiber Ej [j = D, R, I, G and corresponds to different collection mechanisms

(diffusion, interception, inertial, gravitational)] for two main reasons:

a) the velocity field around the individual fibers differs.

This is so because the filters embedded in a filter cannot be treated as being identical to

each other, further their environments will vary considerably in a filter due to the irregular

structure of the filter by itself.

b) the median gas velocity in the filter is higher than that corresponding to an

isolated fiber.
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In the case of an isolated fiber, a limiting trajectory can be defined in such a way that the

particles nearer to this trajectory will be captured by this fiber while the others will not.

However, in the case of fiber in the filter, this trajectory is not defined and the velocity of

the particle and the consequent particle capture phenomenon is affected by the presence of

other fibers in the filter.

The resulting influence of neighboring fibers on the deposition process for any

selected fiber is called an interference effect. Pich [1987] explains that Davies [1952]

using experimental data, concluded that the effect on the filtration process due to a

particular mechanism (e.g. interception) due to the presence of other fibers is expressed as

follows

(2.24)

He also proved that this relation for interference effect is true for different filtration

mechanisms considered individually. Chen [1955] corroborated the concept of the

interference effect on the filtration efficiency by proving that the presence of neighboring

filters led to an increase of filtration efficiency, the increase being a function of the filter

porosity (packing density).

The total capture coefficient 0 f the individual fiber in the filter Erp (effective

capture coefficient with an unknown dependence on ~) is related to the filter efficiency 11

by the following relation [Pich, 1987]

...

I -a17=-e , 4( f3 JLwhere a = S 'Ef13 and S = - -- --
TC 1- f3 Df
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Here a is the coefficient of absorption of particles by the fiher, S' is the solidarity factor

[Whitby, 1965], and L is the filter thickness [Pich, 1987].

2.5 Characteristics ofFilters

As mentioned in Section 2.1 ofthis chapter, three factors take part in the filtration

process. These dependencies or characteristics can be divided into three groups. The first

group includes the particle properties. The second group includes the dependencies of~p

and 11 on the fluid flow. The third group includes the dependencies of ~p and Tl on the

properties of the filter.

2.5.1 Selective Characteristic

The selective characteristic of a fiber, or that of a filter, is defined as the

dependence of the filtration on the particle size. If only the mechanisms of diffusion,

interception, and inertial deposition are assumed to be dominant then we have the

dimensionless diffusion parameter Pe- l which decreases with increasing particle size, and

the interception parameter NR and inertial deposition (dependent on Stokes number, St)

which increase with the particle size. These mechanisms act simultaneously, and hence the

respective capture coefficients increase with the increase in their parameters. It is

therefore expected that the selective characteristic will exhibit a minimum efficiency. Pich

[1987] reports that this was shown theoretically by Langmuir [1942J and experimentally

determined by Fitzgerald and Detwiller [1957]. Pich [1987] reports on one of his earlier
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where v is the kinematic viscosity of the fluid, and T is the absolute temperature. The

velocity. Therefore with increasing velocity, the position of dpm shifts towards small

works [Pich, 1966] wherein the position of the minimum was given by the following

(2.26)
_ 0.85(kTY'4D;/BV I/8

d pm - (3JrfJJl/4
Uo

3/8

equation

position of the selectivity dpm therefore depends both on the fiber diameter and flow

particle sizes.

In most filtration theories, it has been assumed that the particles are spherical in

shape. However, according to Pich [1987], Benarie [1963] theoretically concluded that,

for particle Reynolds numbers Rep s 2. acicular (pointed) particles reach the fibers

completely unoriented and behave like spheres of the same mass having a diameter equal

to the particle length multiplied by 0.285.

2.5.2 Velocity

With increasing velocity, the value of ND (= Pe-1
) decreases and so does the

capture coefficient of diffusion deposition. The interception parameter is independent of

velocity. and parameter St increases with velocity. Therefore there is a velocity

characteristic minimum (in efficiency) here too. Pich [1987] quotes an earlier work [Pich,

1966] wherein he derived the value of the minimum velocity characteristic as follows:

18



of an isoefficiency point at a velocity of about 0.178 mls at ambient pressure and which

and found a distinct minimum for all investigated fibers. He, like Chen [1955], reported a

Lindeken et a1. [1963] measured the velocity characteristics of Whatman No. 41 paper,

(2.27)
2(kTt 3 D V

l13

U = f
Om (3Jr \213 D213

I-la J p

unique velocity where filter efficiency was the same for all particle sizes, i.e., the existence

et a1. [1960] experimented on IPe (Institute of Paper Chemistry) fibrous fihers of average

Hence~ the position of the minimum is dependent on particle size and fiber diameter. Stem

diameter 17 ~m and monodisperse polystyrene particles with Dp from 0.026 to 1.71 ~m,

using monodisperse polystyrene latex particles with particle diameters of Dp = 0.088,

0.188, 0.264,0.365, and 0.557 ~m. He found a well-developed minimum (in efficiency) in

shifted to lower velocity values with a reduction in gas pressure. Pich [1987] reports that

the velocity characteristics in the velocity range of 0.102 to 0.152 mls. These are the

effects of the particle size, fiber diameter and the filter porosity on the capture coefficient

Er or the filter efficiency 11.

2.5.3 Pressure and Temperature

The dependence ofboth basic parameters, ~p and 11, on the pressure of the filtered

fluid is denoted as the pressure characteristic of the filter. The temperature characteristic

of a filter is defined as the efficiency dependence on the temperature of the filtered fluid

while the other conditions remain constant. This dependence was studied by Pich [1971]

(as mentioned by Pich [1987]) based upon the following assumptions:
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a) relatively dry air passes through the filter,

He concluded that the minimum (in filtration efficiency) of the temperature characteristics

b) the particles are not subjected to evaporation or condensation,

(2.28)
1 1 1 2 CsEt 1 C2Tm=kEL+2Cs+ -E +7--+-.. e t k 4 s

c) there is no change in the structure of the filter on account ofhigh temperature.

constant. The position of the minimum is dependent on the particle size and on the flow

is given by the following relationship

velocity. With increasing particle size and increasing velocity, the minimum is shifted

where E k = mV 2 /2 is the kinetic energy of the particle with velocity V, and Cs is a

toward a higher temperature. The filter efficiency decreases with an increase in

temperature, but this decrease is not significant for the temperature (of the flow) range

from -200 to 200°C [Matteson, 1987]. If charged filter media is used, the charge on the

media deteriorates, causing a significant reduction in efficiency as shown in Fig. 2.3. It is

seen that the decrease in efficiency, especially for small particles, is a result of the charge

deterioration. The uncharged filter media however has different efficiency characteristics

and thus responds differently to the temperature variation [Ptak et al., 1994].

Humidity, another factor influencing the filtration, affects the density and viscosity

of the air and hence the pressure drop and the filtration efficiency. High humidity

influences the adhesive forces between the dust particles and the fibers besides affecting

the charge on the media. An increase in the relative humidity increases the adhesive forces

because of the capillary factors [Ptak et al., 1994].
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Figure 2.3: Influence ofHigh Temperature Exposure on Charged Filter Media Efficiency
[Ptak et aL, 1994]

A strong adhesive force reduces the particle rebound and the re-entrainment,

thereby increasing the filtration efficiency. However a very high humidity reduces the

charge on the fiber and thus the efficiency. The effect of humidity as measured by Ptak et

aI. [1994] is shown in Fig. 2.4, where it is seen that, for small particles, the efficiency

decreased slightly with an increase in humidity.

2.6 Experimental Analysis

The majority of the experimental evaluations may be classified under two headings:

1. Verification of theoretical models.

2. Evaluation of filter media.
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Figure 2.4: Influence ofHumidity on Charged Filter Media Efficiency, with Initial
RH = 50% [Ptak et aI., 1994].

2.6.1 Verification ofTheoretical Models

Several experimental studies have been carried out usmg aerosols and dust

particles as the contaminant. In order to study the effect of the stru.cture of the filter, the

method of single fiber efficiency is used. If a fiber in filter is oriented at right angles to the

flow, the area presented to the flow is equal to the product of the length and the diameter

of the fiber. A fiber that has an efficiency of unity removes from the air all of the particles

that would lie within the volume swept out by its area and the velocity vector of the air,

assumed to be flowing uniformly as illustrated in Fig. 2.5. However a fiber does not

remove all of the particles. The single fiber efficiency is defined as the quotient of the

number of particles actually removed to the number that would be removed by a 100%
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efficient fiber [Brown, 1993]. Single fiber efficiency, E5, which is dimensionless, is related

to the layer efficiency as follows

E = _E_LJr._D.:-f

s 4/3 (2.29)

where Es is the single fiber efficiency, EL is the layer efficiency (m-I
) which is related to the

number of particles captured by a layer of filter of thickness ox, assuming that the filter is

made up of a large number oflayers. Yeh [1972] and Lee [1977] used a condensation

aerosol generator to seed DOP (Triphenil Phosphate Dioctyl Phatalate) particles and

Dacron filters with different packing densities as the test filters.

y 1~======---!---L--L

Figure 2.5 illustration of the Concept of Single Fiber Efficiency [Brown, 1993]

Using the single fiber efficiency, Lee compared the experimental results with the

theoretical results of Harrop [1969] in the inertial impaction region (Fig. 2.6). The results

were in good agreement with theory for Re = 0.94, and Dp = 0.7 Ilm particles. Maus and

Umhauer [1996] made use of two optical particle counters to measure the particle flux
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upstream and downstream simultaneously with different aerosols (latex spheres, bacteria

aerosol, and limestone dust) and then found the fractional efficiency for the EUROVENT

class of filters. They had neutralized the charge on the particles after generation and

varied the relative humidity 0 f the air from 10% to 90%. Though they make the efficiency

measurements by making the number density calculations, they assume that the velocity

upstream and downstream of the filter was the same, whereas the results of the present

study and results of previous researchers on this project show that it is not.

The Society of Automotive Engineers (SAE) has defined two types of dust

particles, SAE fine dust and SAE coarse dust. Several experiments were carried out by

Jaroszczyk [1987] using polyacrylonitrile fibers with an average diameter of 27 flID and

different packing densities from 0.0188 to 0.0612.

.,
c;. 0.01
c:

en

--

Figure 2.6 Comparison of Experimental Efficiency Measurements with the Theory of
Harrop [1969] in the Inertial Impaction Regime [Lee, 1977]
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He showed that the efficiency measurements using dust particles were higher than

those obtained by using aerosol particles of smaller diameters. He explained that this may

be due to accumulation of the dust particles on the filter, thus forming a dust cake across

the filter and consequently creating a higher pressure drop across the fiher.

The filter efficiency increases until the weight of the collected dust is less than the

dust holding capacity of the filter. When this is exceeded, the dust cake breaks, and there

is a drop in the efficiency. This is known as re-entrainment. Jaroszczyk et a1. [1994]

showed the effect of the type of dust [ASHRAE and SAE fine] on the pressure drop

across the filter. They also explained the influence of dust [SAE fine] loading on the

fractional efficiency ofthe charged media.

2.6.1.1 Research at OSU

Jadbabaei [1997] and Anand [1997] conducted measurements for finding the local

filtration efficiencies.for the pleated and flat filters respectively using the same setup as in

the present study. They measured the pressure drop several times during the course of the

experiment. These were taken at the start of the experiment, at the end of downstream

measurements, and at the end of the experiment.

Jadbabaei [1997] and Natarajan [1995] conducted experiments on the A13192

pleated filters. Natarajan took measurements on pleated filters, but his results suffered

from inconsistency. He had problems with repeatability of the results and the laser power

variation. He used the model of Duran [1995] to compare with his resuhs and used an
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His results are shown in Figs. 2.7 and 2.8.

arbitrary value of 0.49 and 0.345 (as recommended by Duran) for the packing density.
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Figure 2.7: Elemental Efficiencies over A13192 Filter (Duran's Model, Packing Density =
0.49) [Natarajan, 1995]

Natarajan used the actual flow velocity inside the housing to calculate the Stokes

number for different flow rates. The Stokes number obtained by dividing the flow rate by

the cross-sectional area of the opened (unfolded pleats) filter was about 5% of the value

abtained by Natarajan for the same flow rate [Anand, 1997] .

.As was explained by Jadbabaei and Anand, the laser power was affected by the

temperature variation in the room, and laser power significantly affects the measured

number density by the LDV. Anand and Jadbabaei made certain improvements in the
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measured in the SAE 1726 housing. Natarajan [1995] had shown similar results.

Jadbabaei [1997] conducted experiments on the pleated filter in the Small Angle
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and pleated filters, respectively. Anand compared his results with Lee [1977] as shown in

Diffuser housing with 0.966 IJ.ID particles. He compared his velocity profiles with those of

measurement setup and showed repeatability of their results from experiments on the flat

Fig. 2.9. He showed that the local filtration efficiency values near the center 0 f the filter

Liang [1997] who conducted his experiments on the SAE 1726 housing, and showed that

Figure 2.8: Elemental Efficiencies over A13192 Filter (Duran's Model, Packing Density =
0.345) [Natarajan, 1995]

were quite close to the actual values of the overall filtration values

the velocity profiles for the diffuser housing exhibited smaller local variation than those
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Jadbabaei bad compared his experimental results with the theoretical model of

Figure 2.9: Overall Filter Efficiencies [Anand, 1997] Compared to Lee [1977]

Duran [1995] who had predicted the overall efficiency of the A13l92 filter using a

packing density of 0.235 and for 0.966 ~mparticles. The elemental efficiency as predicted

by Duran was 0.25% for a flow rate of 204 m3/hr. Even though the trend as predicted by

Duran was similar to the trend exhibited by the results of Jadbabaei, the actual values

(72.56%) were different. The experimental values from Duran's model for 2.5 IlID particle
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SIZe, packing density of 0.345 and fiber diameter of 51.75 J.lID. were close to the

experimental values ofJadbabaei for 0.966 JlID. This difference was unexplained.

Anand compared his results with the three point measurements (measurements at

points located to the left and right of the center of the filter~ and located at the center; the

approximately by a factor of 4.

traverse moved along the X = 0.00 axis) of Jadbabaei. The comparison showed [Fig.
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2.10] that the trend was similar, provided that the pleated curve was shifted to the right

Figure 2.10: Comparison ofFilter Efficien.cies [Jadbabaei, 1997]
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Anand had studied the Stokes number calculation for the 204 mJIhr and the actual

velocity measured inside the housing corresponding to this flow rate. He concluded that

neither of the two velocities actually represented the velocity to be used for the Stokes

number calculation. According to him, the correct velocity to be used for that purpose

was about 4 times the velocity calculated using the unfolded filter area, which was about

20% of the average duct velocity.

2.6.2 Evaluation ofFilter Media

The SAE 1726 procedure is used in North and South America to evaluate engine

arr filters [Bugh, 1997]. Japan follows the nS-D-1612, while the ISO-SOlI test

procedure is followed in Europe [Bugli, 1997]. Though these test procedures are

essentially the same and yield comparable results, there is a need to have a common

standard. There is an ongoing effort to commonize the SAE 1726 procedure with the ISO

standard.

Bugli [1997] compared the efficiencies of the three common filter media, Synthetic

/ Felt media, Treated Paper media, and Dry Paper media. The experimental results [Figure

2.11] show that the dust capacity measured using the SAE fine dust was about half the

dust capacity measured with SAE coarse dust for the dry and the treated paper media.

The synthetic media showed only a 20% reduction in dust capacity which is possibly due

to the depth loading and the gradient density characteristics which are less sensitive to the

dust size distributions. In the case of the paper media, the loading capacity depends on the

formation of the dust cake which is affected by the face velocity and the dust size
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distribution [Bugh, 1997]. The initial filtration efficiency for the treated paper media is

better than that of dry and synthetic media with the SAE coarse dust as shown in Figure

2.12.

SyntheticiFett
Media

Treated Paper
Media

Dry Paper
Media

o 50 100 150 200 250 300 350 400 450 500
Dt.-t Capacity I GMs

Figure 2.11: Typical Dust Capacity Performance Levels of Air Induction Filters (AIF)
[Bugh, 1997]

SynthetidFe~
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Figure 2.12: Typical Initial Efficiency Performance Levels of Air Induction Filters (AIF)
[Bugli, 1997]
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Typically filters are evaluated in the laboratory with manipulated (controlled)

conditions, however the actual conditions on the road are different [Gustavsson, 1996].

The SAE recommended test procedure does not take into account the actual driving

conditions, which are difficult to simulate in the laboratory. McDonald et al. [1997]

carried out several tests [Fig. 2.13] in order to determine the test method that best

simulates actual environmental exposure. These tests were shown to discriminate between

various types of filter media that might be used in automobile cabin air filter applications.

According to these tests, it was concluded that exposure to liquid hydrocarbon aerosol

was the most discriminating ofthe tests explored (see Fig. 2.13).

0% 10% 20% 30% 40% 50% 60%

R.nge 01 elliciency ,elenllon v.lues

Figure 2.13: Ability of Tests to Discriminate Between Filter Media [McDonald et
aI., 1997]
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The capacity of the filter for dust holding is dependent 'upon the size distribution of

the particles. Several researchers, Whitby [1973], Wilson [1977] and Poon and Liu

[1997] have demonstrated the bi-modal nature of the atmospheric aerosols. These are the

coarse particles [2.5 - 30 IJID] generated due to grinding and re-suspension of particles and

the fine particles [0.1 - 2.5 J,lID] generated directly or indirectly from the combustion

processes [Poon and Liu, 1997]. Since the relative proportion of these particles in the

atmosphere varies with location, it is necessary to evaluate a bi-modal test dust for a filter

housing which will be more representative of the atmospheric aerosols. Making use of

different proportion of SAE fine and coarse test dusts, Poon and Liu [1997] showed [Figs.

2.14 and 2.15] that even a small percentage of fine particles could substantially increase

the pressure drop as compared to the 100% coarse dust.
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Figure 2.14: Pressure Drop ofFA6005 with Dust Loading [Poon and Liu, 1997]
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Figure 2.15: Pressure Drop ofKE1351 with Dust Loading [poon and Liu, 1997]

2.7 Standard Testing Methods

2.7.1 SAE 1726 Test Code

In order to provide a uniform testing method for different engine air cleaners. the

SAE 1726 Test code [Society of Automotive Engineers, 1987], was established. This

enables a performance report, which permits direct comparison of the basic performance

characteristics of these air filters: overall dust collection weight efficiency; dust capacity to

reach terminal pressure drop; airflow restriction characteristics; and structural integrity.

This code specifies uniform test procedures and test conditions, and standardized test dust

- Arizona Road Dust (SAE) (coarse and fine) with specified chemical analysis and particle
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size distributions. It allows the usage of either one of the two types of test road dusts for

the single stage air cleaner - depending on the application, while the SAE coarse test dust

is used for the multistage air cleaner. The efficiency of an engine air cleaner is expressed

by the percentage of dust captured by the filter element. The dust holding capacity of an

engine air cleaner is the total amount of dust fed to the filter to reach a terminal pressure

drop (approximately 1 - 2.5 kPa) [Stinson et a1, 1988] or airflow restriction. The test

code specifies a dust feed rate of 28 grams per 1000 cfm for a single stage filter and 56

grams per 1000 cfm for a multistage filter.

2.7.2 SAE J1669 Passenger Compartment Air Filtration Code

The objective of this test [SAE, 1993] was to maintain a uniform test method for

evaluating performance characteristics, like pressure drop, overall and fractional

efficiencies, and holding capacity, for airborne particles. Ibis SAE recommended practice

describes the laboratory test methods, consistent test procedures, conditions, equipment,

and performance reports. 1bis test recommends the usage of the SAE 1726 procedure,

gravimetric efficiency, for measuring the filter resistance. This test recommends the use of

SAE ultrafine test dust. It recommends the conditioning of the filter before the test and

heating of the test dust in some cases.

A major difference between the two SAE recommended tests mentioned above,

which has been observed as a result of this study and that of Natarajan [1995] is that, that

the filter is placed in a relatively uniform flow field in the SAE 11669 recommended

housing, but in a non-uniform flow in the SAE 1726 housing. Even though the housing in
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the present study (Small Angle Diffuser housing) is not exactly as per the recommended

specifications of J1669, it is similar to the intent of the SAE J1669 housing; and the results

can be compared to those of 11669.

2.8 Present Work

The present study measures the local filtration efficiency of an automotive air filter

(Dayco-Puro1ator A13192) for different particle sizes (0.497, 0.966, and 2.04 /-lm

particles), at different flow rates (17.1 to 342 m3/hr) and in different housings (Small

Angle Diffuser housing, standard 1726 housing, and Simulated Automotive Filter

housing). The experimental work studied as a part of this literature review invariably has

centered around dust loaded filters and has relied on the overall efficiencies for their

respective cases. This study has tried to examine the process of filtration from a local

viewpoint, in the sense that it has measured the efficiencies at different points on the filter

to determine to what extent the different parts of the filter participate in the process. The

study has compared the local filtration efficiencies for different particle sizes in order to

determine the effect of particle size on the filtration process.
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Chapter 3

FLOW AND EXPERIMENTAL SETUP

3.1 Summary

This chapter explains the Laser Doppler Velocimeter (LDV) system [Aerometrics,

1992]. The construction of different types of housing used for taking the measurements is

also explained. The experimental setup is divided into three parts

1. laser setup;

2. data collection and processing unit;

3. flow setup;

Previous researchers on this project have observed that the power of the laser was

inconsistent with time. This variation of power affected the data collection and reliability

of the results. The variation of power was eventually traced to the variation in the room

temperature [Anand 1997; Jadbabaei 1997]. Several experiments were conducted to

understand how the temperature affects the measured laser power. These are explained in

this chapter.
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3.2 Laser Setup

Bragg cell

Couplers

Fiber driver..........•.........•.
.
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Unshifled beam

Laser

Prism

Steering
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The laser setup includes a 5 watt Argon-Ion laser manufactured by Coherent. This

Steering
mirror

laser generates a multi-line, multi-wavelength beam of light at wavelengths between 457.9

drive as shown in Fig. 3.1.

DID and 514.5 nm. The laser is then guided via two steering mirrors into the fiber optic

-

Shifted beam

Figure 3.1 Schematic Diagram of the Fiber Drive

The single blue colored beam exiting from the laser is split into two separate beams

by a dispersion prism in the fiber drive. Only the 488 DID (blue) and the 514.5 nm (green)

beams are used for the two component LDV. These two beams are further split by a

Bragg cell into two beams - shifted and unshifted, both of them having the same color but

having a frequency shift of 40 MHz. This shift in frequency is used to detect the direction

of particle motion in the probe volume [Liang, 1997].

The four beams are then directed into the optical couplers by means of mirrors. In

the couplers, the beams are focused into the fiber optical cables (each of 4 11m diameter)

--
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with the help of focusing lenses housed in the couplers. The beams travel through the fiber

optic cables to the transceiver head. The transmitted beams form a probe volume where

the signals are generated by the particles crossing the probe volume. This probe volume

concept makes use of the 'swept volume technique' (explained in Appendix G of this

thesis), developed by Liang [1997]. These signals are reflected back to the transceiver.

The transceiver head is so named since it functions both as a transmitter of the four

beams and also as a receptor of the scattered signals generated by the particles. After the

reflected signals are processed, information about the average particle velocity (Vi),

number of particles counted (N;) and the time taken (1;) to count these particles is

obtained. This information is used in calculating the particle concentration above or below

the filter. These measurements are taken at 35 points on a 7x5 matrix as shown in Fig.

3.2. upstream and downstream of the filter. The swept volume technique gives the particle

concentration in units of particles1m3 by the following formula:

N,
n --j-

v,.t;A
(3.1 )

where A = 3.257 x I0-11 m2 is the cross-sectional area of the probe volume [Liang, 1997].

The number density thus calculated gives the local filtration efficiency at that

particular grid location by the following expression:

(3.2)

....

njdoWl and njup are the downstream and upstream number densities at that location.

The layout of the 35 grid point locations is as follows.
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Figure 3.2: Layout of the 7 x 5 ,Measurement Grid on the Filter

At the point of intersection of the shifted and the unshifted beams of the same

color, interference patterns in the form of dark and bright fiinges are observed. When a

seeding particle crosses the probe volume, it scatters the light in the form of bright and

dark fiinge patterns superimposed on a low frequency high amplitude pedestal as sho\VIl in

Figure 3.3.

The direction of the flow pattern is determined by virtue of the 40 MHz shift: in the

frequency ofthe two beams - which results in the formation of a moving fringe pattern. A

movement by the particle in the direction of the fringe movement results in a smaller

frequency of the detected signals. On the other hand, a movement in the opposite

direction results in higher frequency signals. It is imperative that the light intensity of the

probe volume is consistent during the course of the experiment. This is required since the
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edge of the probe volume has to be well defined in ordeI: to get good signals and keep the

rate ofdata collection constant throughout the duration of the experiment.

High Freguency c~onenl

Pedestal

High Frequency Component Riding on the Pedestal

Figure 3.3: A Typical Laser Doppler Signal

A decrease in the power of the laser during the course of the experimental results

in the gradual reduction ofthe probe volume and hence the rate of data collection [Anand,

1997]. A change in the intensity of the laser beam causes the number density to vary,

since the probe volume changes and thus the sample rate at the upstream and the

downstream points of measurement changes. This variation does not provide a consistent

basis for comparison of the number densities at different locations on the grid. Also the

particles scatter less at lower power and more at higher power. Hence it is necessary to

maintain a consistent laser power during the course of the experiment.

Several experiments were carried out to determine the effects of various factors

causing a variation in laser power, as measured at the transceiver head. Measurements

were taken at the exit of the laser head to find out whether the power of the generated
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laser beam varied with time. The power of the beam was measured after the steering

mirrors for studying the effects of any movement of the steering mirrors on the laser

power. The couplers were removed and measurements were taken to find out if the

alignment of the reflecting mirrors and the prism changed with temperature, and thus

caused the power to vary before the laser beam entered the fiber optic cable.

For these measurements, a special cylindrical instrument was fabricated to hold

two pinholes separated at a distance so that a very narrow beam of laser light was visible

to the power meter. This instrument was placed after the fiber drive so that the beam was

measured just before it entered into the optical cable. Any change in the power would be

attributed to the fact that the beam actually shifted in alignment and thus did not focus at

the same spot on the optical fiber at all times.

50 f.lJTI pinhole aper.rture

--------·--.-·-·---.------.-------------tt:~:;;~ -------------- ----.-----_._._. - ---t-- --•.- <J> 6 mm
_•...••••••_•..•.......•...........•.......•..•_ _._ _ _..........•.•..l ..~\•. •.....•..._ .

,

105 TlUl1

Figure 3.4: Cylindrical Instrument for Holding the Pinhole Aperture

With the variation of temperature, the alignment of the beam is affected and it does

not focus on the same spot on the optical fiber. The pinhole apertures used were of

diameters 200 !-lm and 50 !-lm. Any diameter smaller than 50 /.lm truncated the beam

substantially, resulting in a very small reading by the power meter. The measured changes

in the power were not significant to definitely find out the cause of the deterioration of

power with time. However, the results did help in explaining that how the alignment of

...
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the beam was affected by the temperature fluctuations and thus disturbed the power

setting (Appendix F).

Small changes in the power settings can be controlled by three knobs on the

coupler, which ind!i:vidually control the movement of the X, Y and Z axes [Aerometrics,

1992]. It was believed that the blower of the test stand produced strong air currents and

also caused vibrations, which affected the alignment. However after performing the tests,

both when the blower was running and when it was not, tae variation in power appeared

unaffected as is seen in Fig. 3.5, when the power remained constant whether the blower

was running or not. It was then concluded that the blower, with the vibration isolation

around it and the cork sheet on the laser table, did not significantly affect the power

consistency in any way (also see Appendix F).

The laser, external mirrors and the optical fiber drive were mounted on an optical

breadboard as shown in Fig. 3.6. The breadboard, with a honeycomb structure, was

placed on a sheet of cork that helped isolate it from any vibration from the ground. The

cork was glued to the slate top of a heavy metal table base as illustrated in Figure 3.6. In

order to isolate the laser setup, a Plexiglas box was built. lbis box was helpful in isolating

the laser setup thermally and from air currents, while also protecting the delicate optical

system from dust. The room layout is shown in Figure 3.7. In order to find out if air

currents adversely affected the power consistency, a fan was run near the beams. It was

observed that running the fan did not cause changes in the laser power [Appendix F]. All

of the collected data has been tabulated and plotted in Appendix F.
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Figure 3.7: Room Layout

When the blower was running, the room temperature rose by about 2-4 °e, due to

an inadequate air-conditioning system in the rootIL An additional room air-conditioner

was installed in the room, and a partition was installed so as to reduce the volume of the

room (Fig. 3.7) where the air-conditioner was required to maintain the temperature. This

proved to be very effective in maintaining the room temperature constant and helped in

checking the laser power variation. A thermometer (Appendix H) with a range of -20°C

to 80°C was used to monitor the temperature in the Plexiglas box.

Several experiments were conducted wherein the room temperature was increased

and the effect on the beam intensities was noted. These experiments were carned on for

about 3-4 hours at a time - the time taken for an approximate run of an actual experiment.

The temperature increased gradually, and the corresponding plot for different beams

showed a drop in power. It was observed that the drop in power was not the same for all

ofthe four beams for the same variation in temperatures (Fig. 3.8).
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Figure 3.8: Variation of Laser Power at the Transceiver for Uncontrolled Temperature
Inside the Plexiglas box [May 21 - June 10, 1997]

Two power meters with the capacity to measure power levels from 0.1 pW to 2W

[Newport Catalog, 1993] were used simultaneously on different beams, and thus, for the

same environmental conditions, the measurements were taken together. The power meters

were then interchanged but the same results were obtained (Fig. 3.9).

The power drop was evidently caused by the misalignment of the external steering

mirrors and couplers, since realigning the mirrors, and adjusting the knobs on the couplers

attained the original power. When only the steering mirrors were realigned, there was a

significant improvement in power; however the original power could not be restored.
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Figure 3.9: Variation of Laser Power at the Transceiver for Uncontrolled Temperature
Inside the Plexiglas box, with Sensors Interchanged [May 28 - May 29 ~ 1997]

Several experiments were carried where the temperature was kept constant, both

when the blower was running and when it was not. It was observed that the power was

almost constant during these times (Fig. 3.10). Since it is very difficult to keep the room

temperature constant, these experiments were conducted for as long as the ro om

temperature could be kept constant. This time varied between 30 to 90 minutes.

These experiments were helpful in concluding that if the temperature in the room

and in the Plexiglas box was kept constant, then the variation in the laser power during the

course of the experiment would be minimal.
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Figure 3.10: Laser Power Variation at Constant Temperature [May 28 - May 29, 1997]

3.3 Data Collection and Processing Unit

The Digital Signal Analyzer (DSA) has two main components, the hardware and

the software [Fig. 3.11]. The signals that are obtained when the particles cross the probe

volume need to be processed. The back-scattered signals are picked up by the transceiver

and taken back to the Photo Multiplier Tube (PMT). The PMT converts the optical signal

into an electronic signal, which can be handled by the processing hardware present inside

the DSA hardware box [Fig. 3.11]. In order to monitor the signal processing and aid the

adjustment of processing parameters, the signal at various stages of processing is

displayed on an oscilloscope. The software has the process parameters settings which are

needed for controlling the hardware and thus developing the signals to get the requisite

information [Aerometrics, 1992].
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Figure 3.11: Data Collection and Processing Unit
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The oscilloscope displays four different types of signals. These include the raw

unprocessed signal after the PM[ and the amplifier. It displays on the same screen the

Doppler burst without the Gaussian pedestal. In order to increase the amplitude of the

signals caused by the particles, a logarithmic amplification of the signal is carried out and

is displayed on the screen of the oscilloscope. The burst detector serves to locate the

signal and issue a signal to the controller, which then transfers the sampled signal to the

First In First Out (FIFO) buffer. The burst detector operates on the logarithmically

amplified signal after it is rectified and squared. Here, the power of the signal is used for

burst detection. The system uses a Fast Fourier Transform for processing the signal and

calculating the velocity of the corresponding particle. Anand [1997] demonstrated the

effects of various parameter settings on the data collection.

3.4 Flow System

A blower generated the required airflow, The housing was installed on the suction

side of the blower. The room air was taken in through a heater, which was also used to

evaporate the water droplets in the solution, The flow rate was controlled by a pneumatic
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flow control system A six-jet atomizer was used to seed the particles. For the purpose of

this thesis, three different particle sizes were used. They were 2.04 Jlm. 0.966 11m. and

0.497 Jlm These particles, which are available in the form ofa 10% concentrated solution

by volume, are further diluted by using distilled water. The typical dilution ratio used was

as follows:

• 2.04 Jlm: 20 ml of particles and 980 ml of water for making 1000 ml of solution

• 0.966 11m: 10 ml of particles and 980 ml ofwater for making 1000 ml of solution

• 0.497 11m: 5 ml ofparticles and 980 ml ofwater for making 1000 ml of solution

At different flow rates, the number density observed is different. For example, at

high flow when the filtration efficiency is high, the number density below the filter is very

low. Therefore, in order to get measurable data in a reasonable time period, depending on

the flow rate, these concentrations were varied in order to get a greater number of signals.

Compressed air at pressure of40 psig was supplied to the atomizer. The air actually used

in the atomizer was at a pressure of 36 psig. The solution was atomized by passing

through the jet nozzles. Before the actual atomization process, it is possible to mix the

solution with air and then atomize the mixture. 1bis control in the atomizer can also be

used to control the rate at which the particles are seeded into the system

The solution then passed through a mixing chamber which was helpful in providing

a uniform flow for the Small Angle Diffuser Housing (Fig. 3.12). A5 a part of this thesis,

the experiments were carried out using three different housings, the construction of which

is explained below.
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3.4.1 Small Angle Diffuser Housing

Tills housing, which has a small diffuser angle, has been built similar to the one

recommended in the SAE Jl669 cabin air filtration code [SAE, 1993] (Fig. 3.12). Though

not built exactly to the specifications of the code, it has its largest cross-sectional area less

than 13.5% larger than the area of the filter being tested [against less than 10%, as

required by the code] and has diverging wall angles 0 flO and 30 for each pair 0 f diverging

walls [against less than 70
, as required by the code]. This small diffuser angle helps in

providing a uniform flow at the filter plane. Two pressure taps are mounted in the

housing in order to study the effect of the pressure drop across the filter on the efficiency

of the filter. One tap is in the upstream section while the other is on the downstream

section. These are then connected to a V-tube manometer to determine the pressure drop

across the filter at different times during the course of the experiment.

3.4.2 Standard J726 Housing

This housing has been specified under the SAE J726 code [SAE, 1987] for

automotive filter testing. The J726 housing (Fig. 3.13) provides a rapid expansion at the

inlet due to the presence of a large diffuser angle. This housing provides a vertical

entrance for the flow above the filter and a horizontal outlet below the filter. The

presence of a large diffuser angle causes a separation and a non-uniform highly

recirculating flow field as was documented by Sabnis [1993] and then by Natarajan

[1995].
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Figure 3.12: Small Angle Diffuser Housing

3.4.3 Simulated Automotive Filter Housing

This housing has been designed by other researchers on this project for testing the

CFD models of the flow pattern over the filter [Ai Sarkbi et aI., 1997]. This housing has a

long rectangular duct, which provides a horizontal entrance for the flow above the filter

(Fig. 3.14). This housing provides a cross velocity (Fig. 3.14) which is almost equal to or

more than the downward velocity above the filter. The lower half of the housing is the

same as that as used for the Small Angle Diffuser Housing.
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Figure 3.14: Simulated Automotive Filter Housing

A flow bypass system was installed, as shown in Figs. 3.15 and 3.16, by Jadbabaei

[1997J for testing the efficiency at flow rates lower than 25 scfiD, which is the lowest flow
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rate, provided. by the blower. This arrangement allows a lower flow rate from the filter by

adjusting the bypass valves.

f
Inlet

~-

Test Housing

1--

Main Flow

"1
Bypass
Flow

Figure 3.15: Flow By-pass System.

The following table frOID Jadbabaei [1997] gIves the dimensions of the filter

supplied by Dayco-Purolator, which is used in the experiments. The packing density of

the filter and the average fiber density are from Duran [1995].

Table 3.1: A13192 Pleated Filter Dimensions
Overall dimensions 193mmx 121 mm

Pleat pitch 3.125 rom

Pleat height 30mm

Estimated average fiber diameter 51.78 J.l.ID (Approximately)

Estimated packing density 0.345 (Approximately)

The experimental set up that was used during the course of the experiment is as

shown in Fig. 3.16. The solution of PSL particles was made in distilled water. The
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prepared solution was placed in the atomizer. During the test, the solution after

atomization enters the flow system through a bypass above the atomizer as shown in Fig.

3.16.

Mixing Box

Atomizer

Housing

Heater and Fan

Laser Transceiver

- - - - - --=:;;:"""'"""==--- - - - - -

Bypasses

To Blowed' L.J
(

Filter

TSI Flow Meter

Figure 3.16: Experimental Setup

Optical

Table

...

The heater evaporates the water droplets in order to remove all the water droplets

from the atomized solution. The atomized solution passes through the mixing box (only in

the case of the Small Angle Diffuser Housing) for proper mixing and then enters into the

housing before crossing the filter. The TSI Flaw meter was installed dO'WD.Stream of the

housing. Anand [1997] and Jadbabaei [1997] calibrated the flow meter. After the test

filter, there are still same particles in the air, which need to be removed. An absolute filter
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[Fig. 3.17] is provided in the system, which prevents the release of the particles into the

atmosphere.

Absohne
Filler

From the Test
Stand

Figure 3.17: Absolute Filter Used for Preventing the Release ofParticles into the
Atmosphere
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Chapter 4

CONSISTENCY MEASUREMENTS

Before any data is deemed to be correct, it is imperative that the data from the

experiments be repeatable and the results be consistent. In the past, though the results

obtained by earlier researchers Natarajan [1995] and Williams [1996] on this project were

reflective of the expected trend, they had experienced considerable difficulty in providing

consistent results. In a typical case the measured efficiency varied from 28% to 79%

when the same flow rate was run twice.

Anand [1997] and Jadbabaei [1997] had performed several experiments on the

laser to find out the cause of variation of the laser power during the course of the

experiment. This variation of laser power had been shown by Williams [1996] to affect

the number density of the particles. Though he was unable to point to the cause of the

power variation, it was apparent that the fluctuation in the number density was caused by

the power variation. Anand and Jadbabaei reasoned, after carrying out several

experiments, that temperature variation in the room was the cause for the deterioration of

the laser power. They made certain changes (as explained in Chapter 3) in the

experimental setup and the procedure of data collection by optimizing the parameter

settings on the DSA software. They carried out several experiments to check the
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consistency of the atomizer. As a resuh of these experiments, they were able to explain

the inconsistencies of the previous results. Though they were able to maintain the laser

power constant by holding the temperature constant, the power of the laser had worsened

considerably with the power of the blue beams being almost negligible as illustrated in

Chapter 5. Most of the experiments during this study were conducted during the second

half of 1997, and the laser system had been sent to the manufacturer (Aerometrics) for

maintenance during February 1997. After the maintenance, the laser power improved

substantially. The power of the laser before and after the maintenance work, at

Aerometrics, is compared in Chapter 5.

The following experiments were carried out after the laser system was received

from Aerometrics' maintenance to ensure the consistency of the test data and the results:

1. laser power consistency (these experiments were carried out with author's

research partner T. Gebreegziabher [1998])

2. particle seeding rate

4.1 Laser Power

Jadbabaei [1997] had suggested that the vibration from the test stand's blower

(when the blower was running) may be affecting the laser power and hence had installed

vibration isolators below the optical bread board as shown in Fig. 4.1. As part of the

present study, the pneumatic vibration isolators were removed and a cork sheet was used

instead as a vibration isolator as illustrated in Fig 3.6. As part of the consistency

measurements, five experiments were carried out to determine the effect (if any) of

vibration on the laser power as measured at the transceiver head. Two of these
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experiments were performed with the blower shut-off [Fig. 4.2], and in three experiments,

the blower was operating [Fig. 4.3]. The temperature was controlled during all of these

experiments. On comparing Figs. 4.2 and 4.3, it appears that there was no appreciable

change in the laser power due to vibrations from the blower.

Next these experiments were carried out with no control over the temperature

[Figs. 4.4 and 4.5]. It was observed that the variation in the laser power was very similar,

whether the blower was running or not.

Slate

•

! ~ Argon-Jon Laser b
-OpticalB---
.-.-- I-beam

g- AmTIounts - ~
Table

readboard

Figure 4.1: Setup for Isolation ofVibration from the Blower [Anand, 1997]

This showed that either the cork sheet that was being used for vibration isolation was

capable of stopping vibration (if any) from the blower, or that the vibration of the blower

did not appear to have any effect on the laser power. The actual data and the other plots

for the consistency measurements have been provided in Appendix F.
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In order to maintain a constant temperature in· the room, a room air conditioner

was installed as was described in Chapter 3 (Fig. 3.7). The purpose of the room air

conditioner was to aid in maintaining the room temperature constant. In addition it was

desired to lower the working room temperature. Anand and Jadbabaei had worked at

elevated room temperatures of approximately 29°C. Previously the room temperature

increased when the blower was running, and in order to arrest the fluctuation in the room

temperature, Anand [1997] had suggested working at relatively higher room temperature

(29 - 30°C). .Despite working at these temperatures, they had considerable difficulty in

maintaining the room temperature constant, since they did not have any means of cooling

the room once the temperature started to increase.

As part of the present study, several experiments were conducted in order to

ensure that the laser power remained constant during the course of the experiment. It was

observed that the laser power varied by only about 3-5% when the temperature within the

Plexiglas box was kept within a variation of ± 0.2 °C as indicated by the thermocouple

(response time 60 s Omega, [1997]). When no steps were taken to control the

temperature within the Plexiglas box, the laser power variation was in some cases as high

as 30% as shown in Figs. 4.6 and 4.7. As mentioned earlier, Anand and Jadbabaei had

considerable difficulty in maintaining the room temperature constant; therefore a room

airconditioner was installed in the room in order to assist in maintaining the room

temperature constant. Several experiments were conducted in order to ascertain if the

presence of the air currents from the air conditioner affected the laser power consistency.

It was found that that the air currents did not have any significant effect on the laser
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power. All of the data and some other plots for these consistency measurements have

been provided in Appendix F.
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4.2 Atomizer Consistency Tests

Measurements were taken on the spray leaving directly from the atomizer. These

measurements were taken directly in front of the atomizer. These tests were performed

because it was possible that the rate of the particle generation from the atomizer itself was

varying and thus providing inconsistent particle count to the system. These tests were

conducted in order to determine whether the atomizer was generating particles at a

constant rate or not. These tests were required to monitor the sampling rate, since the

measurements were taken at a single point in front of the atomizer as shown in Fig. 4.8.

The number of samples determines the frequency and velocity resolution of the

instrument (LDV). For the LDV the relationship between record length, sampling rate

and the number of samples is given as [Anand, 1997]

R d L h
Number of Samples

ecor. engt =------=-------=--
Sampling Rate

Atomized
Sorav

Laser Beams

Atomizer

Figure 4.8: Consistency Test Setup for the Atomizer

(4.1 )

Almost all of the data taken was within a range of ± 5% as is illustrated for 0.966

J..lm size particles in Fig. 4.9. This is a fairly narrow bandwidth. Two sets of data each
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showed similar trends. All of the actual data and some other plots for these measurements

were taken for 0.497, 0.966 and 0.497 ~m size panicles. All of the experimental data
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Figure 4.9: Atomizer Consistency Results for 0.966 ~m Particles

Jadbabaei [1997] showed that a ± 5% error in the sampling results in a higher error in the

measured efficiencies as explained below. The local filtration efficiency is given by Eg.

(3.2).

(4.2)

The highest efficiency evaluated will be when the value of Ddawn is lower by 5% and that of

Ilupstream is higher by 5%. Then the value of the efficiency will be

0.95
1]rmx =I---Rnd ==}- O.9Rnd

1.05
(4.3)
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Similarly the minimum efficiency is calculated when Iloowu is higher by 5% and Ilapstmun is

lower by 5%,

1.05 R""min =1- -- d == l-l.lRnd0.95
(4.4)

where Rnd is the ratio of the number densities of particles upstream and downstream. The

actual error will therefore depend upon the ratio Rna. The sampling rates were normalized

with the mean of all the measurements in order that different sets of data could be

compared

4.3 Experimental Procedure

The following procedure was followed for data collection for both consistency

tests (explained in this chapter) and filtration efficiency tests (Chapter 5) as part of this

study [see Appendix H for list of equipment]:

1. The filter was changed (for every experiment a new filter was used), and the flow

setup was assembled.

2. The blower was started and the desired flow rate set and the initial pressure drop

reading taken.

3. The heater was started.

4. After the temperature in the room had stabilized to about 23-25°C (depending on

the outside weather conditions), the laser and the LDV system were started and

the laser beams aligned at the fiber drive. The room temperature at the time of

alignment was noted.
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5. The traverse was started and the probe volume was brought to the center position

of the filter.

6. The required solution was prepared and the atomizer was connected to the

compressed air supply after filling the atomizer with solution.

7. The DSA parameters were set. The readings were first taken downstream of the

filter and then upstream of the filter. This was done because, at the beginning of

the experiment, the filter is clean and the pressure drop is a minimum. So when

the particle counts are first taken downstream of the filter, the effect of any change

in efficiency of the filter due to particle deposition on the filter is minimized.

8. During the course of the experiment, care was taken to minimize the room

temperature fluctuation (± O.l°C as indicated by the thermometer kept in the

Plexiglas cover for the laser system). After all of tbe readings (35 points)

downstream of the filter were taken, the laser power was checked again and

adjustments made to restore the original laser power. The power was restored to

the original value, to the extent possible. However no record was kept as to the

extent of the adjustments made to achieve realignment. The drop in the power

was typically on the order of 5-10% (for example, the green shifted beam would

drop from about 65 mW to about 60 mW).

9. The pressure drop at the end of the experiment was noted.

10. During the experiment, when the temperature (+0.1 °C as indicated by the

thermocouple in the Plexiglas box) started to rise, the air conditioner was started.

Once the thermocouple (kept in the Plexiglas box) showed a deviation of -0.1 °C

from the original value, the air conditioner was stopped. It took about 15-20
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minutes for the thermometer device to show a temperature deviation of ± O.I°C

from the original value (alignment temperature). So the air conditioner had to be

started or stopped as the case may be.

11. All of the data was tabulated in an Excel spreadsheet on the 486 MHz computer in

the C:\ AUSERS \ NEWTEST \ <directory name>. The directory was named

depending on the particle size (0.497 or 2.04 J.lm particles) for experiments

conducted in the Small Angle Diffuser Housing. The directory was named as "05

micron" for the 0.497 J.lm particles. The directory was named according to the

name of the housing for the other housings (standard SAE Housing and the

Simulated Automotive Filter Housing). The directory was named as "SAE" for

the standard SAE Housing. The experiments on these two housings were

conducted only on 0.966 !lm; therefore they were not classified according to their

particle size. All of these experiments have then been named according to the flow

rates and the test run for that particular flow rate. Some experiments were

repeated for comparison with the results of Jadbabaei [1997] and were saved

under C:\ AUSERS \ NEWfEST \ REPEAT. SAH75 1 1 is the name of the file

for the test run at 75 cfm (103.69 m3/hr), the first "1" stands for 0.966 !lm

particles, and the second "1" stands for the test run at that flow rate. The

tabulated parameters (by experiment name and date) for each of these experiments

will be presented in Chapter 5.
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Chapter 5

RESULTS AND DISCUSSION

5.1 Summary ofthe Experiments

The experiments on the Dayco-Puro1ator A13192 filters were conducted for

various flow rates on the standard SAE 1726 using 0.966 J...l.m particles, Small Angle

Diffuser housing using 0.497 J.l.ID., 0.966 J...l.m and 2.04 J...l.m particles, and Simulated

Automotive Filter housing using 0.966 J...l.m particles. The LDV parameter settings for

different test conditions were selected as recommended by Anand [1997]. In order to be

assured of the accuracy and repeatability of the measurements, several consistency

measurements, (outlined in Chapter 4 of this thesis and detailed in Appendix F) were

carried out.

The experimental results of this study are also compared with those of Jadbabaei

[1997] for 0.966 J...l.m particles. However during the period when Jadbabaei and Anand

conducted their experiments, the power of the laser beam had deteriorated considerably;

and even though the laser power remained fairly constant during the course of a

69



experiment, the power of the four beams was quite low [Table 5.1]. All the experiments

by Jadbabaei and Anand and those in the present study were conducted at a laser power

0.8 W. However the powers as measUred exiting the transceiver by Jadbabaei and Anand,

and that in the present study were quite different and are tabulated below for comparison.

Table 5.1: Comparison ofLaser Power Exiting the Transceiver Before and After
Maintenance (@0.8 W from the Laser)

Laser Power (roW)

Beam Jadbabaei and Anand [1997] Present Study [1998]

Blue (Shifted) 1.78 31.82

Blue (Unshifted) 3.69 56.28

Green (Shifted) 19.55 64.10

Green (Unshifted) 16.7 80.28

As mentioned in Chapter 4, before the experiments were conducted on the Small

Angle Diffuser housing and the Simulated Automotive Filter housing, the laser system had

been sent to the manufacturer [Aerometrics] during February of 1997 for maintenance.

Therefore in order to ensure that the present results could be compared to those of

previous researchers on this project, another purpose of this study was to find out if there

was any change in the filtration efficiencies as measured by Jadbabaei [1997] from those in

the present work. In order to do this verification, three different flow rates, that had been

run by Jadbabae~ were also run by the author as part of this study.

The experiments were conducted at several different flow rates from 13.61 m3/hr

to 314.73 m3/hr. These and other results of the experiments in the different housings are

discussed in Sections 5.2 - 5.4.
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5.2 Small Angle Diffuser Housing Measurements

For particle diameters of2.04 J..1m and 0.497 IJlD, two runs were recorded at each

location [35 points as shown in Figure 3.2] on the filter. During each of these runs, 300-

1000 particles were counted (as descn"bed in Section 3.2). This was varied depending

upon the flow rate and the particle size. At higher flow rates, when the number density

was low, the sample size number was 300, since every run took a long time

(approximately 150 seconds for 300 particles). The number densities were calculated

based on the mean ofthe particle velocities.

The Swept Volume Technique (Appendix H) was used to calculate the number

densities. At low flow rates, the pressure drop was very low, and any small change in the

pressure drop was not discernible. At high flow rates, the initial pressure drop was about

50 - 70 mm ofwater and the final pressure drop increased by about 5-7 mm ofwater. The

number density, velocity profile, and local filtration efficiency plots for all of the flow rates

[not presented in this chapter] are presented in Appendix B for 0.497 Jlm and Appendix C

for 2.04 11m The overall results for the Small Angle Diffuser are summarized in Table

5.2. Flow rate given in Table 5.2 is the corrected flow rate based on the TSI calibration

[Anand, 1997 and Jadbabaei, 1997]. The expected upstream number density (no) has been

calculated as follows

Number oj Partic/esConsumedinTime, Is I
~ = 0

fsolQjlow
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The pressure drop was measured by the manometer at the start of the measurements and

at the end of the measurements is tabulated along with the number of samples taken and

the approximate LDV sampling time taken for each measurement.

The tests have alphanumeric designations, which specify the housing, flow rates,

particle size and the repeat number. SAH75_05_2 stands for the Small Angle Housing

experiment for 75 coo (cubic feet per minute) with 0.497 J.11D. particles (rounded to 0.5)

and is the second experiment conducted for that flow rate. The Stokes number calculation

[Appendix A] has been based on the mean velocities of the particles as measured by the

LDV system (using housing cross-section, not unfolded filter area) [Jadbabae~ 1997] at

the 35 points. The velocities calculated from the flow rate are obtained by uniformly

distributing the flow over the entire pleated filter sheet (dimensions 114.30 mm x 184.15

mm). The average particle velocity (LDV measurements) is different from the velocity as

measured by the TSI flow meter, since the LDV measurements were taken on a grid that

covered only approximately 55% ofthe total area [Anand, .1997]. The areas very close to

the housing wall were not considered (the velocities are lower in this region), and thus the

LDV measurements covered only the central region of the filter (velocities are higher).

All local measurement results in this chapter are based on the corrected flow rates as per

the calibration of the TSI flow meter [Anand, 1997 and Jadbabae~ 1997]. The local

filtration efficiency, velocity of the particles, and the upstream and downstream number

densities of the particles were plotted and are illustrated in the figures in this chapter and

in the Appendices as explained earlier.
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Table 5.2: Summary of Small Angle Diffuser Housing Results for 2.04 and 0.497 IJ.ID Diameter Particles

Test Number Test Date Flow Upstream Samples Time Pressure Upstream Stokes Average Average
Rate No. Density Taken Taken for Drop Average Number Overall Overall

(m3/hr) Expected Data Initial Particle Based on Efficiency Efficiency
[TSI] (Actual) Collection (Final) Velocity LDV 2.04 ~m 0.497 ~m

(#/m3
) (seconds) (mmof TSI [LDV] Velocity

water) (m/s)
SAH1 0_05_1 ** 11/05/97 13.61 2.15 (2.08) 1000 25 2.54 0.218 0.0038 55.36

x109 (2.54) (0.17)

SAH10_0S_2 11/05/97 13.61 2.15 (1.84) 1000 25 2.54 0.218 0.0043 58.16
x 109 (2.54) (0.19)

SAH12_2_1 11/28/97 16.78 1.97 (2.00) 1000 30 2.54 0.262 0.0802 63.63
x 109 (2.54) (0.33)

SAH12_2_2 12/07/97 16.78 1.97 (1.93) 500 30 2.54 0.262 0.1058 46.57
x 109 (2.54) (0.33)

SAH12_2_3 12/07/97 16.78 1.97 (1.40) 500 30 2.54 0.262 0.1155 56.66
x 109 (5.00) (0.36)

SAH15_05_1 11/02/97 21.55 9.54 (7.12) 500 25 2.54 0.320 0.0068 33.83
x 108 (2.54) (0.30)

SAH15_05_2 11/05/97 21.55 4.36 (3.3) 500 25 5.00 0.320 0.0054 56.84
x 109 (7.50) (0.24)

SAH15_2_1 09/21/97 21.55 1.09 (0.906) 500 30 2.54 0.320 0.1389 48.53
x 109 (2.54) (0.43)

SAH15_2_2 11/23/97 21.S5 1.09 (1.18) 500 30 5.00 0.320 0.1668 40.84
x 109 (5.00) (0.52)

SAH20_0S_1** 11/02197 29.48 7.15 (5.31) 500 2S 7.50 0.436 0.0102 48.82
x 108 (10.2) (0.45)

SAH20_0S_2 03/27/98 29.48 7.15 (9.05) 500 25 7.50 0.436 0.0097 54.5
x 108 (10.2) (0.43)

SAH20_2_1 08/16/97 29.48 3.87 (3.29) 500 30 7.50 0.436 0.2181 40.58
x 108 (10.2) (0.68)

SAH20 2 2 03/26/98 29.48 1.12 (1.12) 500 30 7.50 0.436 0.1924 37.87- - x 109 (10.2) (0.60)
SAH25_05_1 10/03/97 37.42 7.15 (4.54) 500 30 7.50 0.545 0.0222 48.21

x 108 (10.2) (0.98)
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Table 5.2 (contd.): Summary of Small Angle Diffuser Housing Results for 2.04 and 0.497 J.1m Diameter Particles

Test Number Test Date Flow Upstream Samples Time Pressure Upstream Stokes Average Average
Rate No. Density Taken Taken for Drop Average Number Overall Overall

(m3/hr) Expected Data Initial Particle Based on Efficiency Efficiency
[TSI] (Actual) Collection (Final) Velocity LoV 2.04J,lm 0.497 J,lm

(#1m3
) (seconds) (mmof lSI [LDV] Velocity

water) (m/s)
SAH25_05_2** 10/31/97 37.42 7.15 (4.34) 500 30 10.2 0.545 0.0120 44.34

x 108 (13.30) (0.526)
SAH25_2_1 09/22/97 37.42 1.06 (1.06) 500 35 10.2 0.545 (0.68) 0.2181 46.04

x 109 (16.50)
SAH25_2_2 09/22/97 37.42 9.82 (4.68) 500 35 10.2 0.545 (0.75) 0.2405 61.05

x 108 (13.30)
SAH30_05_1 10/02/97 45.35 5.96 (4.04) 500 30 10.2 0.654 0.0248 48.69

x 108 (16.50) (1.095)
SAH30_05_2 03/25/98 45.35 5.96 (5.64) 500 30 10.2 0.654 (1.16) 0.0263 37.48

x 108 (13.30)
SAH40_2_1 09/27/97 61.20 4.09 (4.26) 500 50 25.4 0.873 (0.76) 0.2436 66.15

x 108 (27.5)
SAH40_2_2 03/26/98 61.20 4.09 (3.34) 500 50 25.4 0.873 (1.52) 0.4875 53.08

x 108 (25.4)
SAH50_05_1 10/04/97 77.07 3.58 (2.38) 500 70 34.3 1.09 (2.30) 0.0523 41.3

x 108 (38.1)
SAH50_05_2 10/31/97 77.07 1.59 (1.11) 500 70 34.3 1.09 (2.96) 0.0523 43.8

x 108 (34.3)
SAH50_2_1 09/14/97 77.07 3.64 (3.72) 500 50 34.3 1.09 (1.35) 0.4342 74.06

x 108 (34.3)
SAH50_2_2 09119/97 77.07 3.27 (3.31) 500 50 34.3 1.09 (1.63) 0.5228 70.14

x 108 (36.1)
SAH75_05_1 11/01/97 104.26 3.05 (1.54) 500 90 42.6 1.64 (2.29) 0.0518 41.29

x 108 (45.7)
SAH75_05_2 03/25/98 104.26 1.91 (2.92) 500 90 45.54 1.64(3.10) 0.0702 43.56

x 108 (45.54)
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Table 5.2 (contd.): Summary of Small Angle Diffuser Housing Results for 2.04 and 0.497 Jlrn Diameter Particles

Test Number Test Date Flow Upstream No. Samples Time Pressure Upstream Stokes Average Average
Rate Density Taken Taken for Drop Average Number Overall Overall

(m3/hr) Expected Data Initial Particle Based on EffIciency Efficiency
[TSI] (Actual) Collection (Final) Velocity LDV 2.04 J!m 0.497 J!m

(#/m3
) (seconds) (mmof TSI [LDV] Velocity

water) (m/s)
SAH75_2_1 08/11/97 104.26 2.18 (1.57) 300 70 43.6 1.636 (2.15) 0.6669 83.56

x 108 (45.7)
SAH75_2_2 09/25/97 104.26 2.55 (2.06) 300 70 53.3 1.636 (2.98) 0.9558 60.48

x 108 (55.6)
SAH100_05_1 10/05/97 146.36 1.79 (1.11) 500 120 58.7 2.18 (2.97) 0.0672 43.8

x 108 (61.0)
SAH100_05_2 10/31/97 146.36 1.59 (0.979) 500 150 58.7 2.18 (3.30) 0.0747 37.25

x 108 (61.0)
SAH100_05_3u 11/06/97 146.36 1.43 (1.73) 500 150 56.2 2.18 (2.97) 0.0672 33.64

x 108 (61.0)
SAH125_0S_1 11/08/97 188.45 1.11 (0.942) 300 120 60.8 2.73 (3.98) 0.0907 48.81

x 108 (63.2)
SAH125_05_2 11/09/97 166.45 8.58 (3.64) 300 150 63.2 2.73 (4.00) 0.0901 43.29

x 107 (65.4)
SAH125_2_1 08/12/97 188.45 1.09 (1.01) 300 150 61.1 2.73 (3.67) 1.1771 66.46

x 108 (63.1)
SAH125_2_2·· 03/26/98 188.45 1.09 (.820 300 150 63.58 2.73 (5.09) 1.16325 92.05

x 108 (67.5)
SAH150_05_1 11/01/97 230.54 1.43 (5.74) 300 150 68.5 3.27 (4.71) 0.1084 75.53

x 108 (71.28)
SAH150_05_2 11/08/97 230.54 1.43 (1.42) 300 150 68.5 3.27 (4.79) 0.1066 64.92

x 108 (73.25)

•• For these tests, the traverse had to be moved 0.1 inch away from the edge. towards the center of the mter, because ofnegative velocities along that particular edge.



The upstream number density as shown in Fig.. 5.1 .is. fairly uniform for the low

flow rates. The number density at low flow rates (7.96 ni3/hr) is high (- 109 particies/m3
)

and reduces to a low value (- 107 paiticles/m3
) for high"flow rates (213.75 m3/hr). Very

low number densities led to an increase in the data collection time; and hence at these flow

rates, the sample size was reduced from 1000 to 300 samples for 2.04 J..LDl particles and to

500 samples for 0.497 J.llll particles. The average number density for a flow rate was

calculated by taking the non-weighted average of the number densities at an of the 35

points upstream or downstream ofthe filter as the case may be.

A relatively regular upstream number density profile is observed for the Small

Angle Diffuser Housing [Fig. 5.1]. After the flow passes through the filter, the flow gets

disturbed, and as a consequence, the number density profile downstream of the filter [Fig.

5.2] is relatively irregular.
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Figure 5.1: Upstream. Number Density for Test SAHlO_05_1 at 13.61 m3Jbr
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upstream number density [compare Fig. 5.1 with Fig. 5.2].
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The flow profile is regular upstream of the filter [Fig. 5.3]. This regular velocity

Figure 5.2: Downstream Number D~ity for Test SARlO_05_1 at 13.61 m3/hr
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supports the filter). The downstream number density is therefore not as regular as the

beading is provided for supporting the pleated filter and has an embedded wire mesh that

densities are affected by the change in the velocity profile [compare Figs. 5.3 and 5.4]

presence of the rubber beading of the fiher on the lower side of the filter (this rubber

by the presence of the housing wall. Further there is some interference caused due to the

profile results in uniform number densities above the filter. The downstream number

after the filter. The housing wall is situated at locations approximately Y = ± 95 nun, and

thus the velocities (and hence the local number densities) around this location are affected

-
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Figure 5.3: Upstream Velocity Profile for Test SAHlO_05_1 at 13.61 mJ/br

The velocity profile measured above the fiher exhibits a very regular profile. In

some test runs, the velocities in certain instances, near the wall or edge rows downstream

of the filter were irregular. This was due to the presence of recirculation zones near the

edge of the filter as explained earlier and due to the housing walls, which affected the

velocity profile. When the recirculation zone was found to be strong at a particular

location, the position of the probe volume was shifted slightly away into the center of the

filter (never more than 5 mm). Since this happened only at locations along the edge

downstream of the filter, the corresponding upstream. position of the probe volume was

also shifted. The measurements presented herein are therefore representative of the values

at that location. Recirculation zones affected a total of about 8-10 measurements out of

all of the experiments conducted. Some ofthese experiments have been marked with u**"

in Table 5.2. Others have not been marked since records were not kept for all cases.
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Figure 5.4: Downstream Velocity Profile for Test SAHlO_05_1 at 13.61 m3/hr

The pressure drop was monitored during the course of the experiment. As part of

these experiments, for every test, a new filter was used, since small particles tend to clog

the fiher quickly. The pressure drop was noted at the start of the test and after the end of

the test. After the end ofthe downstream data was taken, the pressure drop was observed

to find out if the filter was getting clogged. This gave an indication of the restriction

caused by the particles.

The filter efficiency variation over the surface of the filter or the local filtration

efficiency for the flow rate 13.61 nf/hr is shown in Fig. 5.5.
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Figure 5.5: Pleated Filter Efficiency for Test SAHI0_05_1 at 13.61 m3/hr

A set of similar data for number a flow rate of 77.07 m3/hr is shown from Figs 5.6

- 5.10. A comparison ofthe number densities upstream ofthe filter, for the two flow rates

shows that, as the flow rate increases, the number density profile becomes flatter. This is

probably because at low flow rates, even a small variation in the flow rate makes a large

change in the number densities. At low flow rates, a change of only 0.05 mls in the

velocity ofthe particle [Fig. 5.3] is equal to a change of25% in the velocity ofthe particle.

This velocity change causes a corresponding approximate change in the number density by

about 25%, thus causing a more variable number density profile than in the case of a

higher flow rate [Fig. 5.7].
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Plots for local filtration efficiency measurements are gwen in Appendix B & C for

81

velocity profiles for different flow rates further reaffirms the conclusion drawn above.
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Figure 5.7: Downstream Number Density for Test SAHSO_05_1 at 77.07 m3/hr

0.497 and 2.04 J.LDl particles. A comparison of the number density profiles and the
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Figure 5.11 shows the variation in the overall filtration efficiency with Stokes

The trend in the efficiencies shows that the bandwidth for the local efficiency plot
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Figure 5.10: Pleated Fiher Efficiency for Test SAH50_05_1 at 77.07 m3/hr
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a paiticle diameter of 2.04 ~ is larger than that of a 0.966 f..lm particle by a factor of

and the velocity were changed. The Stokes number has been calculated using the average

particle velocity [Jadbabaei, 1997] from the LDV measurements. The Stokes number for

are not in a very narrow band [compare Figs. 5.5 and 5.10 and Appendixes B & C].

(2.9), and the overall efficiency is given by Eq. (2.12). In this study, both the particle size

is quite narrow for high flow rates while for low flow rates, the measured local efficiencies

number and Fig. 5.12 shows the variation in the filtration efficiency with the flow rate.

The Stokes number is a function of the particle diameter and velocity as given by Eq.

about 4 for the same flow rate, since the Stokes number is proportional to the square of

the diameter.
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Theoretical studies (as given in Fig. 2.8) have shown that the curve for efficiency

versus Stokes number shows dip at lower values and a plateau at bigh Stokes number.

The efficiencies for 0.497 !lID particles increase very fast after 104.26 m3/hr (St =

0.04466). This trend is not expected [Fig. 5.13]. However small particles clog the filter

very quickly and at high flow rates, the efficiencies increase. More particles are being

deposited on the filter, which causes a faster clogging of the filter. This is also been

demonstrated by the increase in the pressure drop by 9.75 mID ofwater [Table 5.2]. Some

of the possible reasons for this abnormality are discussed in the next chapter. The

variation in the measured filtration efficiencies for 2.04 IJ.m particles are consistent with

the theoretical predictions for flow rates between 29.48 m3tbr and 188.45 m3/br [Fig.

5.13]. However, for lower flow rates (lower than 16.78 m3/s), the efficiency increases

significantly. This may be due to the fact that, at low flow rates, the filtration process due

to diffusion can become important and this possibility needs to be considered and further

investigated.
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Filtration efficiencies for different particle sizes have been plotted individually

against Stokes number in Fig. 5.13.
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Figure 5.13: Comparison ofExperimental Results ofPresent Study with Theoretical
Model Based on Perfect Adhesion Theory (Duran, 1995) for Interception
Parameter = 0.01, Fiber Diameter Dr = 38 IJ.IIl, Packing Density = 0.23
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Table 5.3 compares the results of the experiments carried out on the Small Angle

Ditfuser Housing using 0.966 Jlm particles with those of Jadbabaei [1997]. This

comparison was required because of the modifications the system had undergone, and that

the increase in the laser power might have affected the measured efficiencies. Only three

tests were conducted, since the resuhs from Jadbabaei were found to be in agreement

within about 8% of the measured efficiencies with the results obtained in the present

study. The local efficiency measurements (for the present study and Jadbabae~ 1997) for

the flow rate of 103.69 m31hr have been plotted in Fig. 5.14 and those for 188.45 m31hr in

-" -16.51 (Jadbabaei, 1997')'T- 16.51 (Jadbabaet, 1997)

55 r----------------------------,

8060

I

4020o
Y (mm)

-20-40-60

25 I-----r-------r-----r-----,---,-----.-----,-----j

·80

--- -33.02 (PresentS~ -16.51 (Present Study)--?- 16.51 (Present Study) •

-.6 - 0.00 (Present Study)· ..· 33.02 (Present~.- -33.02 (Jadbabaei, 1997)/'

SOI-----------------------7'-----j

;R451------------..:.....----~---::::::or::---------__j
c-

Figs. 5.15 - 5.16. Other plots for these experiments are shown in Appendix G.

Figure 5.14: Comparison ofLocal Filtration Efficiency Measurements in Small Angle
Diffuser Housing at 103.69 m31hr with Jadbabaei [1997]
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Figure 5.15: Local Filtration Efficiency Measurements in Small Angle Diffuser Housing at
a Flow Rate of 188.45 m3/br [Jadbabae~ 1997]
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Table 5.3: Sununary of Small Angle Diffuser Housing Results for 0.966 ~m Diameter Particles for Comparison with Those
of Jadbabaei [1997]

Test Number Test Date Flow Samples Time Pressure Upstream Stokes Average Average
Rate Taken Taken for Drop Average Number Efficiency EffIciency

(m3/hr) Data Initial Particle Based on (Jadbabaei (Present
[151] Collection (Final) Velocity LDV [1997]) StUdy)

(seconds) (mmof TSI [LDV] Velocity
water) (m/s)

F9 06/19/96 77.07 1000 25 N/A 1.09 (1.38) 0.0792 33.26

SAH50_1_1 10/05/97 77.07 1000 30 58.7 1.09 (1.64) 0.1049 36.01
(61.0)

F19 07/05/96 103.69 1000 35 N/A 1.64 (2.39) 0.1526 37.34

SAH75_1_1 10/31/97 103.69 1000 35 58.7 . 1.64 (2.97) 0.1533 32.3
(61.0)

F1 05/08/96 188.45 1000 40 56.2 2.73 (3.30) 0.1995 44.1
(61.0)

SAH125_1_1 11/08/97 188.45 1000 40 60.8 2.73 (3.98) 0.2589 51.59
(63.2)



5.3 SAE Housing Measurements

Efficiency measurements were carried out on the SAE 1726 Housing [Fig. 3.13].

Table 5.4 shows the flow rates and the efficiencies measured. The plots for SAE200_1_2

are presented in Figs. 5.17 - 5.21, and the remaining plots are presented in Appendix D.

Typical upstream and downstream number density profiles for the SAE housing

have been shown in Figs. 5.17 and 5.18, respectively. The upstream and downstream

velocity profiles for the SAE housing shown in Figs. 5.19 and 5.20 portray a irregular flow

pattern over the filter surface in this housing [Fig. 5.19]. Near the center of the filter, the

velocity is the highest, and the number density is the lowest in the respective rows across

the filter. As seen in Figure 5.19, the velocity near the edges above the filter is very high

and causes recirculation zones near the walls of the filter [Natarajan, 1995]. The effect of

the velocity on the number density at a point has a corresponding effect on the local

filtration efficiency value. A typical local filtration efficiency profile for the SAE 1726

housing is shown in Fig. 5.21. Though the number density profile is affected by the

velocity profile over the filter surface, it is seen from Fig. 5.21 that the local efficiency

profile is unlike the trend apparent in Figs. 5.17 and 5.19. This shows that the flow over

the filter surface is location dependent, even though the overall efficiency of the filter is

not substantially affected. There is a large unexplained difference in the velocities at the

flow rate of 314.73 m3/hr. It is possible that this is due to the presence of recirculation

zones at that flow rate which affected the local velocities for some runs at that flow rate

and not for others at that flow rate.
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Table 5.4: S fSAEH Results for 0.966 urn D' Partiel

\D
tv

Test Number Test Flow Upstream Samples Time Average Average Stakes Initial Final
Date Rate Average Taken Taken for Upstream Efficiency Number Pressure Pressure

TSI Particle Data Actual (%) Based Drop Drop
(m3/hr) Velocity Collection Number onLDV (mmof (mmof

TSI* (seconds) Density Velocity water) water)
[LDV] (#/m3

)

(mls)

SAEI0 1 1 04/08/98 13.61 0.0388 1000 20 7.59 X 109 49.9 0.0293 2.54 2.54
[0.399]

SAElO 1 2 04/09/98 13.61 [0.471] 1000 20 5.29 X 109 41.95 0.0345 2.54 2.54
SAE25 1 1 04/08/98 37.42 0.107 1000 25 1.50 x 109 44.61 0.1020 2.54 2.54

[1.39]
SAE25 1 2 04/09/98 37.42 [1.45] 1000 25 1.46 x 109 38.73 0.1064 2.54 2.54
SAE40 1 1 09/03/96 61.20 0.174 1000 30 6.82 X 108 32.4 0.1225 2.54 3.81

[1.671
SAE40 1 2 11/08/96 61.20 [1.63] 11000 25 2.11 x 109 45.22 0.1130 2.54 3.81

SAE120 1 1 11/09/96 180.03 0.342 500 30 4.97 X lOll 62.91 0.3081 38.10 45.72
[4.20]

SAE125 1 1 09/25/96 188.45 0.356 1000 30 3.99 X 1011 46.17 0.3308 38.10 48.26
[4.51]

SAE125 1 2 04/08/98 188.45 [7.14] 500 30 3.73 X 108 75.55 0.5237 43.18 48.26
SAE200 1 1 09/24/96 314.73 0.570 1000 30 3.23 X 108 78.35 0.3851 68.58 75.8

[5.25]
SAE200 1 2 11/26/96 314.73 [6.48] 1000 30 3.91 X lOll 86.32 0.4753 76.20 80.2
SAE200 1 3 04/08/98 314.73 [l0.101 1000 30 3.2xl08 88.68 0.7408 68.58 73.66

'TSI velocity values are not repeated for test cases with the same flow fate.



Figure 5.17: Upstream Number Density for Test SAE 200_1_2 at 314.73 m3/hr
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Figure 5.18: Downstream Number Density for Test SAE 200_1_2 at 314.73 m3/hr
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Figure 5.19: Upstream Velocity Profile for Test SAE 20o_1_2 at 314.73 m3/hr

Figure 5.20: Downstream Velocity Profile for Test SAE 20o_1_2 at 314.73 m3Jhr
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Figure 5.21: Pleated Filter Efficiency for Test SAE 20o_1_2 at 314.73 m3/hr

The results in the present study are plotted against the Stokes number in Fig. 5.22

and results from Natarajan [1995] are given in Fig. 5.23. The present results show a trend

similar to the expected "s" type curve. However the results of Natarajan do not exhibit

similar trend. Though the efficiencies increase with an increase with the flow rate,

Natarajan did not show a substantial increase in the efficiencies at higher flow rates.

Natarajan [1995] mentions that the filter was not changed for any of the experiments.

Contrary to that, as part of this study, a new filter was used for every experiment. This

was done to guarantee that the filtration process was not affected by the increase in

pressure drop across the filter. Further, the difference in the results may be explained due

to the inconsistent laser power, which may have affected the data collection and hence the

measured efficiencies.
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[Natarajan, 1995]

5.4 Simulated Automotive Fiher Housing Measurements

Co-researchers on this project [Al-Sarkhi et aI., 1997] have designed this housing

[Fig. 3.14]. This housing is used for studying the flow patterns over the filter with a test

housing which is a close representation of an actual filter housing in an automobile. It

provides an opportunity to test the theoretical predictions in the actual test setup. It is

seen in Fig. 5.24 that the number densities measured in this housing tend to exhibit a slight

increase in the local number densities in the direction away from the entrance (Y = 60 mm)

of the housing. The number density profile downstream [Fig. 5.25] of the fiher is fairly

regular since the lower halfof the Small Angle Diffuser housing is used as the bottom half

of this test setup.
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Figure 5.24: Upstream Number Density for Test SAF15_1_1 at 21.55 m3Jbr

Figure 5.25: Downstream Number Density for Test SAF15_1_1 at 21.55 m3/hr

The entrance above the filter ry = -95 mm) is horizontal, and therefore the

transverse component of the velocity is larger than the axial component. Figure 5.26
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shows the upstream velocity profile across the filter smface. At the point where the flow

enters the housing, the velocity is higher than that at the opposite end of the housing.

Equation (H-l) shows the dependence of the local number density on the local velocity.

In the case of the SAP housing, the local velocity decreases substantially across the

surface of the filter; but there is not a very large change in the number densities across the

filter (unlike the change in the SAE housing as seen in Figs. 5.17 and 5.19). It is possible

that the higher transverse component of the velocity in the SAP housing is causing this

different n1lIllPer density variation across the filter surface. The downstream velocity

profile [Fig. 5.27] is fairly regular. The local filtration efficiency profile is shown in Fig.

5.28. The plots for different flow rates in this housing are shown in Appendix E.

As was shown in Figs. 5.11 and 5.22, the overall filtration efficiency for the Small

Angle Diffuser housing and the SAE 1726 housing displays a typical "s" shaped curve.

However in the case of the Simulated Automotive Filter housing, the overall efficiency for

different flow rates does not appear to follow the expected trend (Figs. 5.29 and 5.30).

The overall efficiency continues to be in a range of 20 - 60% over different flow rates

without exhibiting a definite trend (some additional tests need to be conducted around 140

m3/hr in order to be certain about this conclusion). As already mentioned, in the

Simulated Automotive Filter housing, the flow enters with a much larger transverse

velocity component than the axial component. It is possible that this typical flow pattern

is affecting the filtration process and hence causes an atypical variation in the filtration

efficiencies with an increase in flow rates. The velocities plotted in Figs. 5.26 and 5.27 are

the resultant of both the axial and the transverse components of the velocity as measured

by the LDV system with its two channels.
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Figure 5.26: Upstream Velocity Profile far Test SAF15_1_1 at 21.55 m3/hr
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Figure 5.28: Pleated Filter Efficiency for Test SAFI5_1_1 at 21.55 m3/hr

The overall filtration measurements at different flow rates have been tabulated in

Table 5.5. At all of the local measurement points, the resultant of the axial and transverse

component of the velocity (as measured by the LDV system) was used. The average of

this resultant velocity at all the 35 points was computed and- then substituted into Eq. 2.9

for calculating the Stokes number. By this approach, it was ensured that both of the

velocity components were accounted for. Another approach in calculating the Stokes

number could have been the use of only the axial component of the velocity for calculating

the Stokes number, thereby neglecting the transverse component of the velocity. The

author however used the former method of calculating the average particle velocity for all

three housings at different flow rates.

The TSI "Upstream Average Particle Velocity" in Table 5.5 was computed by

dividing the flow rate by the cross sectional area of the filter exposed to the flow, but the
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LDV "Upstream Average Particle Velocity" was computed using the resultant velocity.

(both the axial and transverse velocity) from the LDV. Above a flow rate of 146.36 m3/s,

the flow above the filter is very turbulent, and the velocities are very high in the transverse

direction. Collection of data is very difficult for these flow rates and above, since the

particle rebound off the walls and the data collection may not be accurate because of the

possible double counting of the particles. Because of the large transverse component of

the velocity, the particles may not follow an exact vertical path ofmovement. Instead, the.

particles after rebounding from the wall, may move to different positions above and below

the filter, causing a possible double counting of the particles, thereby affecting the number

density measurements and hence the fihration efficiency values.
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Figure 5.29: Variation of Filtration Efficiency with Stokes Number for Simulated
Automotive Filter (SAP) Housing
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Results for 0.966 urn ParticlFilter Hf Simulated A'Table 5.5: S - -- -

Test Number Test Flow Upstream Upstream Samples Time Expected Average Stokes
Date Rate Average Average Taken Taken (Actual) Overall Number

TSI Particle Axial (seconds) Number Efficiency Based on
(m3/hr) Velocity Particle Density (%) Resultant

TSI Velocity (#/m3
) Velocity

[LDV] (mls) [Axial]
(m/s)

SAF15 1 1 11/13/97 21.55 0.320 0.358 500 20 1.39 (1.07) 41.65 0.0865
n.181 x 109 [0.0264]

SAF15 1 2 11/22/97 21.55 0.320 0.389 500 20 1.39 (1.37) 31.61 0.0887
[1.21] x 109 rO.02861

SAF20 1 1 11/20/97 29.48 0.436 0.681 500 25 8.91 (7.46) 53.31 0.1474
[2.01] x 108 rO.04991

SAF25 1 1 11/13/97 37.42 0.545 0.677 500 25 6.24 (4.71) 42.71 0.1636
[2.23] x 108 rO.04971

SAF25 1 2 11/21/97 37.42 0.545 0.730 SOO 25 8.47 (7.79) 37.23 0.1562
[2.13] x 108 [0.535]

SAF45 1 1 11/14/97 70.07 0.925 1.255 SOO 25 1.66 (9.25) 33.19 0,3015
[4.12] x 109 [0.0921]

SAF60 1 1 11/14/97 79.00 1.37 1.97 500 30 4.62 (3.67) 48.49 0.4423
[6.03] x 108 [0.1445]

SAF60 1 2 11/15/97 79.00 1.37 1.80 500 30 3.25 (2.54) 34.47 0.4405
[6.001 x 108 [0.1320]

SAFI00 1 1 11/21/97 146.36 2.18 3.32 500 30 2.14 (1.84) 37.55 0.6264
[8.541 x 108 [0.2435]

.....
o
w
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Figure 5.30: Variation ofFiltration Efficiency with Flow Rate for SAF Housing

5.5 Glass Beads

The PSL particles, which were used as the test contaminant, are expensive. For a

particle size of 2.04 J..llD. and above and at high flow rates (314.73 m3/hr), more of these

particles are needed for getting good signals. The author carried out a few experiments to

explore the possibility of using glass beads instead of the PSL particles for the

experiments. These glass beads have a specific gravity of 2.5 (other characteristics in

App. 1) and therefore tend to settle quickly with time. Efforts were therefore made to

ensure that the particles remained suspended in solution and a steady number density was

maintained during the course of the experiments. The preliminary results were promising

since reasonable number densities and good quality signals were obtained by using only

about 3 - 7 grams of the glass beads in 1000 ml. of water (which makes it very cost

effective). These results have been tabulated and plotted in Appendix F.
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Chapter 6

SUMMARY AND RECOMMENDATIONS

6.1 Summary

The results and the conclusions that can be drawn from the experiments are

summarized below.

1. The upstream velocity profile for the Small Angle Diffuser Housing above the filter

is reasonably regular. A regular velocity profile results in consistent number

densities above the filter. However at low flow rates (13.61 m3/br) the bandwidth,

over which the number densities are distributed, is not very narrow, but this

bandwidth becomes fairly tight at intermediate (77.07 m3/br) and at higher flow

rates (146.36 m3/br).

2. Small variation in the velocities (say 0.05 mls) at low flow rates (13.61 m3Jhr) can

cause as much as a 25% variation in the number densities, thereby affecting the

measured efficiencies. As a result, the number densities and the measured filtration

efficiency profile at low flow rates are spread over a larger bandwidth than those at

higher flow rates. This accounts for the relatively large bandwidth of number

densities above the filter as mentioned in point #1 above.
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3. The variation in the measured filtration effici~cies for 2.04 IJ.ID particles are

consistent with the theoretical predictions for flow rates between 29.48 mJJhr and

188.45 m3/hr. However, for lower flow rates (lower than 16.78 m3/s), the

efficiency increases significantly. At lower flow rates, the phenomenon ofdiffilsion

may become important. At these flow rates, the anomaly in the results may be

attributable to this additional mechanism of filtration, leading to an increase in the

measured efficiency.

4. The filter appears to get clogged faster by small particles. The filtration efficiency

increases with flow rate. At higher flow rates, more particles get deposited on the

filter and a stronger cake of (0.497 Jlm particles) is formed on the filter, thereby

may be clogging it and thus registering a sharp increase in the measured efficiency.

5. The measured efficiencies in the Small Angle Diffuser housing and the standard

1726 housing vary according to the typical "S" shaped theoretical curve with an .

increase in flow rate. The efficiencies measured in the Simulated Automotive

Filter housing do not appear to vary considerably at different flow rates. The

overall efficiency continues to be in a range of 20 - 60% over different flow rates

without exhibiting a definite trend. It is possible that since in the Simulated

Automotive Fiher housing, the flow enters with a much larger transverse velocity

component than the axial component the flow pattern is affecting the filtration

process and hence the atypical variation in the filtration efficiencies with increase in

flow rates. However as mentioned earlier, some more experiments need to be

conducted at and around the flow rate of ]40 mJ/hr in order to be convinced of

this conclusion (drawn on the basis of the present study).
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6. . Resuhs show that the Small Angle Diffuser housing provided a regular flow across

the filter surface and hence a regular velocity profile above the filter. This regular

flow profile translated into a fairly narrow bandwidth of local filtration efficiency

variation across the filter surface. In the case of the standard SAE 1726 housing,

the velocity profile was dependent on the location across the fiher surface. As is

seen from Eq. (B-1), the measured local number density is dependent upon the

velocity at that point. At the points where the velocity is higher, there should be a

corresponding decrease in the measured number density. This variation in the

number densities consequently affects the measured local filtration efficiency. In

the case ofthe simulated automotive fiher housing, the flow entered the housing in

a horizontal direction. Therefore, the velocity near the entrance to the housing

was higher than the velocity at the end of the housing. The upstream number

densities near the entrance of the filter appear to be lower than the number

densities at points away from the entrance to the housing. However the variation

in the number densities across the filter surface does not appear to be as

pronounced as it is in the case of the SAE 1726 housing. It is possible that

difference in the number density profiles across the filter for the two housings was

due to the vertical entrance of the flow in the SAE 1726 housing (higher axial

component of the velocity) and horizontal entrance ofthe flow in the SAF housing

(higher transverse component of the velocity). This variation in the upstream

number densities had a corresponding effect on the local filtration efficiencies

across the filter.
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6.2 Recommendations for Future Work

For the first time on this project, the efficiencies for different particle sizes were

measured. The resuhs have indicated further studies are needed in certain areas and these

have been outlined below.

1. In the SAH housing the sudden increase in the measured efficiency for 0.497 Ilm

particles at high flow rates has not been explained properly. Since the small

particles tend to clog the filter faster, it is possible that the increase in the efficiency

is attributable to increased pressure drop across the fiher. However-in the absence

of pressure measuring equipment with a least count small enough to display

changes in the pressure less than 3 mm ofwater, it is not possible to authoritatively

state the reason for this sudden jump in the measured efficiency. It is imperative

therefore; that the pressure measuring setup be more sensitive so that the

relationships of the efficiencies to the pressure drop across the filter can be studied

further. At lower flow rates when the pressure across the filter is very small (less

than 3 mm of water), any change in the pressure is not discemable because of the

higher least count of the present manometer.

2. As part of the consistency measurements, it was shown that variation in the room

temperature caused the laser power to vary during the course of the experiment.

This variation of the laser power adversely affected the data collection. A system

for providing more effective room temperature control (as close to ± 0.1 °C as

possible) should be installed.

3. In the SAH housing more experiments are required at lower flow rates (to about

5.68 m3/hr) for 2.04 /lm particles and at higher flow rates (above 104.26 m3/hr) for
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0.497 J..lm particles to correctly identify the reasons for the unexpected deviation in

the measured efficiencies. There was disparity between the expected and the

actual resuhs at and above these flow rates for these particles. It is possible that

discrepancy was there due to the influence of increased pressure drop across the

filter during the course of the experiment. However test runs at higher flow rates

with 0.497 J..lm and smaller particles will enable a definite analysis of the reason for

the deviation in the measured efficiencies.

4. From the literature review, it was found that the temperature and humidity of the

fluid under study have an effect on the efficiency of the filter. A change in these

two characteristics has an effect on the electrostatic charge associated with the

filter fibers and the particles being used for the measurement. This affects the

measured efficiencies ofthe filter. The effect of electrostatics on filtration needs to

be studied further. Since, for larger particle diameter, the charge increases

[Chapter 2], it will have an effect on the measurements. Though humidity and

temperature variation for the fluid by itself do not affect the filtration efficiency

substantially [Chapter 2], the effect of relative humidity and temperature on

electrostatic charge needs to be studied. The usage of an electrostatic charge

discharge system will help in measuring the efficiencies without the effect of

electrostatics on the filtration process.

5. Dust measurements need to be conducted. The present apparatus of feeding dust

to the system is not suitable since the dust cake in the dust feeder cracks when the

dust feeder is in operation, resulting in an irregular feed rate to the system. In

order to form a strong cake in tbis dust feeder, usage of a hydraulic or a pneumatic
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hammer is recommended for enabling the formation of a strong and compact dust

cake, which does not crack when the scraper removes the dust from the dust cake.

6. More tests need to carried out on the Small Angle Diffuser housing, standard SAE

1726 housing and the Simulated Automotive Fiher housing for different particle

sizes (besides 0.497, 0.966 and 2.04 /lID diameter particles) for verifying the

resuhs of this study and understanding the trends thoroughly. For different particle

sizes, it should however be noted that the measured number densities are of the

order of 108 at flow rates of 100-150 m3/hr. If the number densities are lower,

then longer time periods are needed for data collection; and longer test run time

may not be suitable for running the experiment on a clean fiher, since the filter may

start getting partially clogged.

7. PSL particles that are currently used as the contaminant during the experiments are

very expensive (approximately $700 per 100 ml of particles in solution). For

larger particle sizes, a greater quantity of these particles (20 ml per 1000 ml of

solution) is needed in order to obtain sufficient signals. An alternative, in the form

of glass beads, is available from Powder Technologies Inc. (see Appendix 1).

These glass beads are quite inexpensive (available for approximately $50 per 25

gm - an experiment requires about 3-5 gm per 1000 m1 of solution), and are

available in specific size ranges. The normalized size distribution for these glass

beads is not as narrow as that of the PSL particles, but these can still be tried for

the purpose of local efficiency measurements. These glass beads have a specific

gravity (2.5) higher than that ofwater, so they tend to settle after some time. This

problem can however be alleviated by making use of a magnetic stirrer, which will

110



assist in keeping these particles in suspension and thus provide a constant feed rate

of the particles to the system.

8. For making measurements in the Simulated Automotive Fiher housing, it is

imperative that due consideration also be given to the fact that the particles in the

flow have a significant component of transverse velocity. This component causes

the particles to move away from a vertical direction of motion across the filter.

This may result in double counting ofthe particles and hence influence the number

density measurements. It inay be advisable to discuss and investigate the feasibility

of the concept of measuring only the axial velocity and using this for the number

density calculations.
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APPENDIX A

Stokes Number Calculation

An example of the Stokes number calculation using Eq. (2-9) is presented in this

appendix. The variables in Eq. (2-9) are:

• Density ofthe PSL particles (pp), which is within the range of 1000 to 1050 kg/m3
.

• Cunningham slip corrections factor (Cn), which is considered to be one for particle

diameter greater than 1 ~m and is given by the following relation [Brown, 1993]

where A* = 1.246, Q* = 0.42, B* = 0.87, A(mean free path of molecules at NTP) = 0.065

• Air viscosity (~) which is 18.6 x 10~ Pa-s at 30° Centigrade.

• Air velocity (U). As an example, the overall average velocity upstream the filter for

test SAH50_05_1 (flow rate of77.07 m31hr, Fig. 5.8) was used (2.3 mls).

• Fiber diameter. The exact value of the average fiber diameter is not known, but a

value of 38 microns was used (Natarajan, 1995).

From Eq. (2-9), the Stokes number is calculated as:
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· 2
C"Dp Pp USt = -~---'---

18 Jia Df

Substituting in the above listed values, the Stokes number will be:

(1)[(0.497XlO~)]2 (1000)(2.3)
St == == 0.0328

18(18.6)(10-6)(38)(10-6)
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APPENDIXB

RESULTS FOR 0.497 IJlD. DIAMETER PSL PARTICLES IN THE SMALL ANGLE
DIFFUSER HOUSING

Some of the test results for 0.497 J.lm diameter PSL spheres have been shown and

discussed in Chapter 5. The other test results are presented in this appendix. The results

presented here are the upstream and downstream local velocity measurements, the

upstream and downstream local number densities, and the local efficiencies for each of the

additional tests.

The tests have alphanumeric designations, which specify the housing, flow rates,

particle size and the repeat number. SAH75_05_2 stands for the Small Angle Housing

experiment for 75 cfm (104.26 m3/hr) with 0.497 J.lm particles (rounded to 0.5) and is the

second experiment conducted for that flow rate. The files have named as explained in

Chapter 4.
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APPENDIXC

RESULTS FOR 2.04 ~mDIAMETERPSLPARTICLESIN THE SMALL ANGLE
DIFFUSER HOUSING

Some of the test results for 2.04 'J..lm diameter PSL spheres have been shown and

discussed in Chapter 5. The other test results are presented in this appendix. The results

presented here are the upstream and downstream local velocity measurements~ the

upstream and downstream local number densities, and the local efficiencies for each of the

additional tests.

The tests have been alphanumeric designations, which specify the housing~ flow

rates, particle size and the repeat number. SAH75_1_2 stands for Small Angle Housing

experiment for 75 cfm (104.26 m3/hr) with 2.04 !lm particles (rounded to 2) and is the

second experiment conducted for that flow rate. Files have been named as explained in

Chapter 4 of this thesis.
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APPENDIXD

RESULTS FOR 0.966 JlmDIAMETER PSL PARTICLES IN TIffi SAE 1726
HOUSING

Some of the test results for 0.966 J...I.rn diameter PSL spheres have been shown and

discussed in Chapter 5. The other test results are presented in this appendix. The results

presented here are the upstream and downstream local velocity measurements, the

upstream and downstream local number densities, and the local efficiencies for each of the

additional tests.

The tests have alphanumeric designations, which specify the housing, flow rates,

particle size and the repeat number. SAE75_1_2 stands for SAE 1726 Housing

experiment for 75 cfm (104.26 m3/hr) with 0.966 J...I.rn particles (rounded to 1) and is the

second experiment conducted for that flow rate. The files have been named as explained

in Chapter 4.
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APPENDIXE

RESULTS FOR 0.966 ~mDIAMETERPSL PARTICLES IN TIIE SIMULATED
AUTOMOTIVE mTER HOUSING

Some of the test results for 0.966 ~m diameter PSL spheres have been shown and.

discussed in Chapter 5. The other test results are presented in this appendix. The results

presented here are the upstream and downstream local velocity measurements, the

upstream and downstream local number densities, and the local efficiencies for each of the

additional tests.

The tests have alphanumeric designations, which specify the housing, flow rates,

particle size and the repeat number. SAF75_1_2 stands for Simulated Automotive Filter

Housing experiment with 75 cfm (104.26 m3/hr) for 0.966 ~m particles (rounded to 1) and

is the second experiment conducted for that flow rate. The files have been named as

explained in Chapter 4.
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APPENDIXF

CONSISTENCY MEASUREMENTS FOR THE LASER, THE ATOrv£IZER AND THE
GLASS BEADS

The data has been tabulated such that the response of individual beams to the

variation in the temperature of the Plexiglas box (which houses the laser) can be

compared. For this pUIpose, the individual responses have been plotted on the same

graph. The approximate dates on which the experiments were carried out are given along

with the tabulated data. The consistency experiments on the laser have been performed

jointly with author's research partner T. Gebreegziabher.

The consistency measurements for the glass beads were taken, in order to verify

the suitability of the glass beads for filtration efficiency measurements. The normalized

number densities for the glass beads were plotted to ascertain the maximum error in the

number densities which gives an estimate ofthe error in the measured efficiencies (just due

to the glass bead size variation).
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Table TF-la: Data for Figure F-la <Date: May 28 -1:fay 29.1997)

TIME Green Blue Green Blue Temperature
(minutes) (Unshifted) (Shifted) (Shifted) (Unshifted) (OC)

[mW] rmWl (mWl rmWl
5 103.91 41.45 98.53 77.66 24.9

10 103.89 40.6 98.09 77.47 24.9

15 103.12 40.38 98.53 77.01 24.9

20 102.89 40.38 98.4 76.75 24.9

25 102.31 40.52 98.26 76.15 25.0

30 101.65 40.86 96.16 75.96 25.0

35 101.48 41.05 96.67 75.3 24.8

40 101.53 41.24 96.1 75.17 24.9

45 101.58 41.58 96.62 74.88 24.9

50 101.06 42.57 94.65 74.13 24.9

55 100.78 42.3 94.28 74.41 25.0

60· 100.92 42.38 95.64 74.48 25.0

65 100.61 42.58 94.99 74.78 24.9

70 100.42 42.66 95.09 74.1 24.8

75 100 42.89 95.03 74.5 24.8

80 100.89 43.16 95.33 74.61 24.9

85 100.59 95.25 I 74 24.9
I

90 100.28 95.51 74.22 25.0

95 100.02 95.87 74.52 24.9

Table TF-I b: Data for Figure F-lb (Date: Jooe 16 - JWle 22, 1997)

TIME Blue Blue Green Green Temperature
(minutes) (Shifted) (Unshifted) (Unshifted) (Shifted) (OC)

[mWj [mW] rmW] [mWl
5 34.82 56.82 84.2 68.28 24.9

10 34.9 56.92 84.46 68.34 24.9

15 35 56.49 84.6 68.35 24.9

20 35.1 56.12 82.76 68.42 I 25.0

25 35.1'8 55.92 83.92 68.44 25.0

30 35.24 55.85 84.45 68.33 25.0

35 35.26 55.38 84.78 68.49 24.8

40 35.35 55.4 84.52 68.51 24.9

45 35.33 55.17 83.89 68.38 24.9

50 35.22 55.02 83.92 68.14 24.9
I 55 35.3 54.78 83.52 68.48 25.0

60 35.15 54.78 85.65 68.49 25.0

65 35.27 54.71 84.98 68.37 24.9

70 35.22 54.56 83.79 68.56 24.8

75 35.23 54.51 85.17 68.92 24.9

80 35.15 54.53 85.72 69.29 24.8

85 35.12 54.32 24.9

90 35 54.35 24.9
I

95 35.02 54.22 24.9 I,
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Table TF-lc: Data for Figure F-I c (Date: June 23 - July 07, 1997)

TIME Blue BIlle Green Green Temperature
(minutes) (Shifted) (Unshifted) (Unshifted) (Shifted) (OC)

[mW] [mW] [mW] [mW]
5 36.45 51.48 78.35 75.78 25.0
10 36.41 51.13 75.28 75.1 25.0

15 36.38 51.27 75.98 75.18 25.0

20 36.29 51.97 76.71 75.75 25.0

25 36.22 51.13 77.2 75.85 25.0

30 36.27 51.11 78.53 76.78 25.1

35 36.28 51.27 78.87 76.81 25.1

40 36.53 51.97 78.87 76.82 25.0

45 36.53 51.46 79.23 77.1 25.0

50 36.45 50.54 76.71 77.72 25.0

55 36.48 50.12 77.2 77.56 24.9

60 36.48 51.27 78.53 77.87 24.9

65 36.4 51.97 78.87 77.95 25.0

70 36.41 51.27 79.23 77.85 25.0

75 36.33 51.97 76.71 I 77.85 25.0

80 36.45 51.27 77.2 77.86 25.0
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Figure F-2: Laser Power Measured at the Transceiver When the Temperature in the Plexiglas Box Is Not Controlled



Table TF-2a: Data for Figure F-2a (Date: May 21 - Mav 23, 1997)

TIME Blue Blue (Unshifted) Green Green (Shifted) Temperature
(minutes) (Shifted) [mWj (Unshifted) {mW] (0C)

[mWl [mW]
10 40.64 48.68 94.85 76.4 24.6

, 20 40.35 48.51 93.22 75.81 24.7

30 39.68 48.06 93.05 75.58 24.9

40 39.2 47.65 92.8 75.09 25.0

50 38.25 46.97 92.1 74.67 25.2

60 37.35 46.67 90.3 74.02 25.4

70 36.8 46.53 89.71 73.02 25.6

80 35.95 46.01 88.02 72.6 25.7

90 34.8 45.79 87.65 71.25 25.9

100 33.92 45.23 86.7 70.78 26.1

110 32.78 44.83 85.22 69.89 26.2

120 32.28 43.65 83.82 68.65 26.4

130 31.56 43.51 82.7 67.4 26.6

140 30.91 43.21 81.02 67.24 26.7

150 30.45 43.24 80 66.51 26.8

160 30.28 42.95 77.95 64.6 27.0

170 42.75 75.75 64.08 27.1

180 42.55 74.47 63.14 27.2

190 42.33 74.28 61.95 27.4

Table TF-2b: Data for Figure F-2b (Date: May 25 - May 27, 1997)

TIME Blue Blue Green Green Temperature
(minutes) (Shifted) (Unshifted) (Unshifted) (Shifted) (0C)

[mWl [mWl [mWl [mWl
10 37.65 47.28 101.4 78.85 25.8

20 37.58 47.23 99.01 78.04 25.9

30 36.6 47.05 97.72 77.36 25.9

40 36 47.17 96.65 76.54 25.9

50 35.11 46.97 94.65 75.48 26.0

60 34.13 46.67 92.97 74.35 26.0

70 33.36 46.53 91.58 73.35 26.1

80 32.69 46.01 89.3 72 26.2

90 31.65 45.79 87.55 70.6 26.3

100 31.71 45.23 86.03 69.15 26.4

110 31.56 44.83 85.65 67.75 26.5

120 30.91 43.65 83.97 66.43 26.5

130 30.45 43.51 80.98 65.12 26.6

140 30.28 43.21 78.9 63.95 26.7

150 29.95 43.24 76.01 64.02 26.8

160 29.13 42.95 72.09 64 27.0

170 29.3 42.75 69.35 64.13 27.1

180 28.94 42.55 67.63 64.98 27.2

190 28.69 42.33 65.91 63.9 27.3
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Table TF-2c: Data for Figure F-2c (Date: June 06 - June 10. 1997)

TIME Blue Blue Green Temperature
(minutes) (Shifted) (Unshifted) (Unshifted) (OC) ,

ImWl ImWl ImWl
10 35.5 57.2 98.99 27.8

20 35.1 57.07 99.3 27.9

30 34.9 56.95 98.81 27.9

40 34.8 56.75 96.92 28.0

50 34.2 56.16 94.65 28.1

60 33.6 56.06 93.52 28.2

70 32.9 55.95 93.02 28.2

80 32.1 55.5 90.12 28.4
, 90 31.8 55.06 88.35 28.4

100 30.8 54.96 86.17 28.5

110 30.7 54.55 83.98 28.6

120 30.4 54.41 81.5 28.6

130 30 53.58 79.78 28.7

140 29.7 53.2 76.75 28.8

150 29.7 52.52 73.64 28.8

160 29.2 52.05 71.54 28.9

170 29.1 51.68 68.35 29.0

180 28.8 51.05 67.05 28.1

190 28.3 50.5 64.05 29.2
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Table TF-3a: Data for Figure F-3a (Date: May 29 - June 01. 1997)

TIME Laser Power Laser Power Temperature
(minutes) Measured after Measured after (OC)

Steering Mirrors Steering Mirrors
(x 0.1 W) (x 0.1 W)

10 1.9998 1.9846 24.9

20 1.9905 1.9813 24.9

30 1.9854 1.9788 24.8

40 1.9805 1.977 24.8

50 1.9768 1.9755 24.9

60 1.9724 1.974 24.9

70 1.9695 1.9728 24.9

80 1.9672 1.9714 24.9

90 1.9642 1.9703 24.9

100 1.9623 1.9699 24.9

110 1.9618 1.9686 24.9

120 1.9598 1.968 24.9

130 1.9555 1.9671 25.0

140 1.9547 1.9714 25.0

150 1.9519 1.9703 25.0

160 1.9485 1.9699 24.9

170 1.9487 1.9686 24.9

180 1.9476 1.968 25.0

190 1.9466 1.9671 25.1

Table TF-3b: Data for Figure F-3b (Date: June 02 - June 03, 1997)

TIME Blue Blue Green Green Temperature
(minutes) (Shifted) (Unshifted) (Unshifted) (Shifted) (0C)

Measured Measured Measured Measured
After the After the After the After the
Couplers Couplers Couplers Couplers

(mW) (mW) (mW) (mW)
10 25.93 107.1 29.64 4.694 25.6

20 25.73 107.1 29.67 4.675 258

30 25.66 106.85 29.67 4.683 25.7

40 25.54 106.9 29.67 4.662 25.7

50 25.48 106.87 29.67 4.683 25.7

60 25.39 106.69 29.65 4.678 25.7

70 25.36 106.63 29.67 4.665 25.8

80 25.28 107.22 29.71 4.67 25.8

90 25.27 107.04 29.71 4.676 I 25.8

100 25.28 107.12 29.73 4.662 25.8

110 25.3 107.28 29.68 4.675 25.8

120 25.38 107 29.63 4.679 25.8

130 25.41 107.35 29.73 4.664 25.9

140 25.44 107.55 29.75 4.667 25.9

150 25.. 53 107.55 29.6 4.672 25.8

160 25.58 107.95 29.58 4.665 25.8
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Table TF-3c: Data for Figure F-3c (Date: June 04 - Jtme 07. 1997)

TiME Blue Blue Green Green Temperature
(minutes) (Shifted) (Unshifted) (Unshifted) (Shifted) (0C)

Measured Measured Measured Measured
After the After the After the After the
Couplers Couplers Couplers Couplers

(mW) (mW) (mW) (mW)
10 24.78 142.58 26.22 3.914 22.8

20 24.72 142.5 26.17 3.913 22.7

30 24.68 142.62 26.16 3.92 22.9

40 24.63 142.25 26.15 3.922 22.8

50 24.63 142.53 26.08 3.925 22.8

60 24.66 142.58 26.15 3.925 22.9

70 24.75 142.85 26.24 3.925 22.9

80 24.81 142.85 26.27 3.923 22.9

90 24.91 , 143.19 26.22 3.929 22.9

100 24.97 143.19 26.26 3.934 22.8

110 24.97 143.45 26.3 3.937 22.8

120 24.96 143.8 26.45 3.939 22.8

130 24.89 143.98 26.63 3.959 22.8

140 24.81 144.08 26.72 3.963 22.8

150 24.68 145.11 26.89 3.965 22.8

160 24.58 145.5 26.98 3.971 22.9

170 24.48 145.45 27.04 3.971 22.7

180 24.45 145.63 27.12 3.971 22.6

190 24.43 146.23 27.21 3.981 22.7

100 24.43 146.17 27.08 3.981 22.8

105 24.18 145.54 26.93 3.979 22.8

110 24.16 145.89 26.89 3.977 22.9

24.2 145.84 26.82 3.983 22.8

24.27 145.2 26.8 3.984 22.7

24.27 145.23 26.83 3.986 22.7
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Table TF-4a: Data for Figure F-4a (Date: July 11 - July 12. 1997)

TIME Blue Blue Green Temperature
(minutes) (Shifted) (Unshifted) (Shifted) (0e)

(mW) (mW) (mW)
10 33.46 51.48 61.78 25.0

20 33.63 51.13 61.55 25.2

30 33.n 51.27 60.92 25.0

40 33.94 51.97 61.39 25.0

50 33.79 51.13 59.85 25.0

60 33.87 51.11 59.98 25.1

70 33.6 51.27 58.5 25.1

80 33.75 51.97 58.54 25.0

90 33.92 51.46 57.92 25.0

100 33.72 50.54 57.06 25.0

110 33.76 50.12 56.85 24.9

120 33.53 51.27 56.45 24.9

130 33.29 51.97 56.59 25.0

140 32.87 51.27 56.43 25.0
150 32.86 51.97 55.84 25.0
160 32.67 51.27 55.92 25.0

170 32.44 51.97 55.33 25.0

180 32.15 51.13 54.52 25.1

190 32.87 51.27 54.14 25.2

Table TF-4b: Data for Figure F-4b CDate: July 14 - July 15, 1997)

TIME Blue Blue Temperature
(minutes) (Shifted) (Unshifted) (0e)

(mWl (mW)
10 34.95 5505 22.9

20 34.71 55.51 22.9
30 34.74 55.26 22.8

40 34.64 55.08 22.7

50 34.64 54.62 22.8
60 34.34 54.92 22.9
70 34.43 54.81 22.9

80 34.08 54.05 22.9
90 34.21 53.37 23.0,

100 34.12 54.74 23.0

110 34.1 54.22 23.0

120 34.12 53.66 23.0

130 34.27 53.22 22.9

140 34.43 53.4 22.9

150 34.42 53.12 22.9
160 34.55 53.08 22.9

170 34.52 52.05 22.9
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Table TF-4c: Data for Figure F-4c <Date: July 17 - July 18.1997)

TIME Blue Green Green Temperature
(minutes) (Shifted) (Unshitted) (Shifted) (OC)

(mWl' (mWl .(mWl

10 0.4644 0.4172 0.3042 23.1

20 0.464 0.4151 0.3042 23.1

30 0.4638 0.414 0.3039 23.1

40 0.4625 0.4046 0.3037 23.1

50 0.4642 0.4042 0.297 23.2

60 0.4652 0.396 0.2968 23.2

70 0.4656 0.3945 0.2958 23.1

80 0.4614 0.4017 0.3015 23.0

90 0.4559 0.4016 0.3007 23.0

100 0.456 0.4006 0.2937 23.0

110 0.4473 0.399 0.2912 23.1

120 0.4485 0.3982 0.2889 23.1

130 0.4506 0.3972 0.2879 23.1

140 0.4514 0.3965 0.2862 23.1

150 0.453 0.3961 0.2861 23.1

160 0.3955 0.2855 23.1

170 0.3954 0.2817 23.2

180 0.3912 0.282 23.2

190 0.3872 0.2n6 23.1
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TIME Sampling Sampling
(minutes) Rate@ Rate@

25.3°C 24.7°C
5 735.12 1687.33
10 712.79 1704.64
15 666.16 1642.97
20 688.7 1660.53
25 684.18 11675.08
30 700.79 1643.34
35 716.85 1630.23
40 724.31 1630.84
45 733.1 1699,55
50 726.26 1591.97
55 705.42 1568.65
60 686.84 1560.21
65 705.42 1587.66
70 686.84 1614.81
75 736.7 1666.37 I

80 742.8 1618.92
85 693.05 1629.87
90 684.42 1613.4
95 747.27 1718.81
100 678.16 1682.68
105 699.61 1668.11
110 765.56 1661.81
115 744.01 1668.11
120 789.5 1629.98
125 728.57 1594.07
130 702.51 1622.07
135 732.37 1649.67
140 708.84 1622.76
145 764.86 1647.37
155 686.38 1595.23
160 757.02 1593.86
165 675.85 1642.64
170 754.49 1634.06
175 728.81 1629.44
180 748.06 1612.1

Table TF-5a: Sampling Rate for 2.04 Micron Particles
(November 07 1997 - March 28 1998)
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TIME Sampling Sampling
(minutes) Rate@ Rate@

25.4 °C 24.7°C
5 674.07 429.34

10 695.51 486.87
15 660.63 501.29
20 689.74 498.22
25 617.61 494.34
30 732.89 479.39
35 664.93 486.61
40 668.95 470.17
45 740.01 491.44
50 742.87 501.39
55 732.87 ! 474.06
60 693.88 , 472.15
65 646.27 504.39
70 639.91 487.78
75 .617.61 495.2
80 732.89 466.17
85 664.93 492.32
90 668.95 500.99
95 740.01 473.25
100 742.87 485.22
105 732.87 495.5
110 693.88 485.99
115 725.92 520.21
120 644.44 466.48
125 631.8 507.82
130 678.39 478.96
135 694.82 481.18
140 640.83 484.67
145 649.57 498.22
155 615.78 494.34
160 685.59 479.39
165 654.64 486.61
170 616.22 470.17
175 645.39 491.44
180 667.77 501.39

Table TF-5b: Sampling Rate for 0.497 Micron Particles
(November 11 1997 - March 28 1998)
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Table TF-5c: Sampling Rate for 0.966 .Micron Particles
(November 26 1997 - November 27 1997)

TIME Sampling Sampling
(minutes) Rate@ Rate@

25.4°C 25.6°C
5 2102.83 2948.55
10 2100.12 2993
15 1975.78 2797.57
20 1996.39 2812.04
25 1918.33 2823.56
30 1873 2812.46
35 1883.28 2918.72
40 1856.44 2717.65
45 1950.23 2834.55
50 1919.24 2744.65
55 1919.24 2772.76
60 1965.17 2814.19
65 1947.95 2966.79
70 2019.86 2895.74
75 2036.06 2866.61
80 1957.14 2856.01
85 2023.31 2825.44
90 1981.45 2847.81
95 1956.2 2835.84
100 2018.81 2905.37
105 1918.33 2967.7
110 1873 2917.03
115 1883.28 2875.49
120 1856.44 2774.57
125 1950.23 2788.91
130 1919.24 2775.3
135 2036.06 2768.32

I 140 1957.14 2803.25
145 2023.31 2762.41 I

155 1981.45 2662.85
160 1956.2 2708.91
165 1918.33 2751.54
170 1873 2841.43
175 1883.28 2899.46
180 1856.44 2982.63
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Figure F-6: Consistency Measurements for 1.59 Micron Glass Beads at 103.69 m3/hr



Table TF-6: Data for Figure F-6 for Glass Beads

Time Number Number Number Number Number
(minutes) Density Density Density Density Density

(Particleslm~ (Particles/m~ (particleslm~ (Partideslm~ (Partideslm~
Date Date Date Date Date

01/16/97 01/16/97 01/16/97 01/21/97 01/21/97
(a) (b) (e) (d) (e)

5 7.85E+08 8.12E+08 8.19E+08 5.76E+08 4.89E+08

10 8.4E+08 8E+08 7.79E+08 S.65E+08 4.8E+08

15 8.69E+08 7.84E+08 7.85E+08 , 5.79E+08 4.71E+08

20 8.38E+08 8.42E+08 7.84E+08 5.52E+08 4.7E+08

25 8.54E+08 8.11E+08 8.27E+08 5.52E+08 4.59E+08

30 8.12E+08 7.85E+08 8.26E+08 5.51E+08 4.59E+08

35 7.39E+08 7.61E+08 8.35E+08 5.18E+08 4.8E+08

40 7.25E+08 8E+08 8.53E+08 5.06E+08 4.77E+08

45 7.35E+08 7.59E+08 8.43E+08 5.63E+08 4.68E+08

50 7.88E+08 7.21 E+08 8.64E+08 5.67E+08 4.75E+08

55 8.11E+08 7.22E+08 8.61E+08 5.77E+08 4.77E+08

60 8.55E+08 7.44E+08 7.89E+08 5.37E+08 4.63E+08

65 8.18E+08 7.36E+08 7.9E+08 5.28E+08 4.74E+08

70 8.3E+08 7.54E+08 8.67E+08 5.75E+08 4.98E+08

75 8.5E+08 7.77E+08 8.16E+08 5.35E+08 4.99E+08

80 8.64E+08 7.22E+08 7.55E+08 5.22E+08 4.75E+08

85 8.2E+08 7.36E+08 7.48E+08 5.26E+08 4.89E+08

90 7.29E+08 7.31E+08 8.12E+08 4.97E+08 4.91E+08

95 7.38E+08 7.93E+08 8.53E+08 4.66E+08 4.97E+08

100 7.65E+08 7.63E+08 8.71E+08 4.73E+08 4.8E+08

105 7.53E+08 8.45E+08 8.79E+08 4.74E+08 4.7E+08

110 7.97E+08 8.58E+08 9.02E+08 4.98E+08 5.07E+08

115 7.66E+08 8.58E+08 9.29E+08 5.06E+08 4.6E+08

120 7.56E+08 8.61E+08 8.7E+08 5.03E+08 4.75E+08

125 7.72E+08 8.07E+08 9.19E+08 4.9E+08 4.93E+08

130 7.88E+08 8.58E+08 9.16E+08 5.09E+08 4.78E+08

135 7.17E+08 7.71E+08 9.8E+08 5.04E+08 4.81E+08

140 7.65E+08 8.35E+08 8.25E+08 4.94E+08 4.47E+08

145 7.55E+08 8.14E+08 8.59E+08 5E+08 4.65E+08

155 7.84E+08 8.5E+08 8.47E+08 4.93E+08 4.61E+08
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APPENDIXG

EXPER.Th1ENTS CONDUCTED TO VERIFY THE REPEATABILITY OF THE
MffiASUREMENTS

In order to ascertain the repeatability of the measurements after the laser system

had been received from Aerometrics after maintenance, three different flow rates were run

in the Small Angle Diffuser housing; and the results were compared with those of

Jadbabaei [1997] as shown in Table 5.3. Further the filtration efficiencies for test

SAH75_05_1 and SAH75_05_2 have been plotted on the same graph for comparison of

the local efficiencies. As can be seen, almost all of the local efficiencies are fairly close to

those of Jadbabaei [1997].
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APPENDIXH

SWEPT VOLUME TECHNIQUE

The Swept Volume Technique was developed by Liang [1997] to determine the

number density value from the number of particles counted (Ni), their average measured

velocity (Vi), the length of time taken to count these particles, and the area of the probe

(A) swept to form the volume. The method assumes that all of the particles crossing the

probe volume have a velocity equal to the average velocity of all samples measured at a

location. Thus, number density is given as

n.
1 (H-l)

The probe area is 3.257 x 10-11 m2 [Liang, 1997]. Figure H-l shows the concept of the

swept volume.

This technique has been shown to fail at very low velocities [Jadbabaei, 1997]. A

look at Eq. (G-I) indicates that, for very low velocities like those measured near the walls

of the housing, the number density tends to an erroneously large value. Jadbabaei [1997]

explains this observation from a physical point of view and discusses a number of different

modifications to overcome tbis difficulty. ladbabaei [1997] indicates that in regions where

there is a recirculating flow, the average velocity of the particles is close to zero, but the

velocity distribution is comprised of both positive and negative velocity values. This
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technique assumes that the velocity is unidirectional, which is not the case in many

situations (for example a recirculating flow). Jadbabaei [1997] suggests the use of root

mean squared velocity or absolute value average velocity but is unable to mathematically /

physically justify their use. For the present study (Small Angle Diffuser housing, standard

SAE 1726 housing, Simulated Automotive Filter housing) the flow field was assumed to

be uniform in the measurement grid, thus allowing the use ofthe swept volume technique.

L=v-t-s 1 I

Flow mean velocity

wept volume

Cross-sectional area, A
of probe volume

Figure H-I: Swept Volume [Liang, 1997]
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APPENDIX I

ERROR ANALYSIS

The error analysis in Section 4.2 was based on simple analysis of the variation in

the number density calculation. Anand [1997] has presented error analysis as proposed by

Kline and McClintock [1953]. 1bis based on the assumption of a random error in number

density measurements. The error in number density due to errors in N, v, t and A has been

shown to be equal to

(1-1 )

Making use of the error in the number density measurements, the error in the measured

efficiencies will be given by the following equation

(1-2)

Where Ce (any constant) is the value of the fractional error values for the upstream (~) and

downstream number densities (Ild). Anand assumed an error of 2% for the area of the

probe volume of the LDV system.. Using the test data for Test SAH75_05_2 (Fig. B-12),

the error for the various parameters of particle velocity, time taken to take the upstream

data, and number of particles counted, the error for the respective parameters was found
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to be 8%, 3% and 2% respectively. These are the deviations of the measured parameters

assuming a standard deviation of 20" (confidence level of approximately 97%) for the

measured data. Using these error values for the measured values, the error in the

calculated number densities was found to be

dn =[(0.08Y +(-0.03) +(-0.02) +(-0.02)] =0.09 or 9.00%
n

(1-3)

Iftbis error was substituted into Eq. (1-2), then the following relation will give the error in

efficiency

d17 =J2(0.09 )Rnd =(0.1272)R"d
TJ

(I-4)

Thus the above mentioned errors in the measured values'of number count, velocity, time,

and probe cross-sectional area result in an efficiency error given by Eq. (1-4).
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APPENDIXJ

LIST OF EQUIPMENT

1. 5 - Watt Argon Ion laser: Coherent, Model Innova 70-A, Serial No. PIS 92K-1758

2. Remote control for the laser: Coherent, Model 1-70, Serial No. 92411171

3. Fiber drive: Aerometrics, Inc., Model FBD1240, Serial No. 026

4. Bragg cell: IntraActio~ Inc., Model ME-40H, Serial No. 3247

5. Photomultiplier Tubes: Aerometrics, Inc., Model RCM2200L, Serial No. 029

6. Doppler Signal Analyzer: Aerometrics, Inc., Model DSA3220, Serial No. 044

7. Computer and Monitor: Impression 3, IBM compatible 80486 DX2, 66 MHz

8. Computer for Traverse System and MS-Excel Data Acquisition Files: Gateway

2000, IBM compatible, 80486 DX2, 33 MHz

9. Laser Transceiver: Aerometrics, Inc., Model XRV12 I 2, Serial No. 00 I

10. Three Stepper Motors (Sanyo Denki, Type: 103-850-11)

11. Oscilloscope: Hewlett Packard, Model 54501 A

12. Plexiglas Test Housings: a) Similar to SAE 11669 Small Angle Diffuser Housing, b)

Standard 1726 housing, c) Simulated Automotive Filter housing.

13. Pleated Test Filters: Dayco-Purolator, Inc., A13192 (formerly AF3192)

14. TSI Mass Flow Sensor: TSI, Model 2018, Serial No. 30644
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15. Atomizer: TSI Model 9306, six-jet atomizer

16. SAE 1726 Air Stand, Purolator Products, Inc.

17. Rival Compact Heater, Model Tl14

18. Stepper Motor Drives, Model CMD-40

19. 24 V DC - 6 A Power Supply (Acme Electronics)

20. Connector 3 for Digital Output, Model PCLD-780

21. Uhrasonic Humidifier: Pollenex, Model SH55R

22. Room Air Conditioner: Cooling Capacity 12600 Btulhr

23. Polystyrene Latex (PSL) Particles: 0.497, 0.966, 2.04 !-Lm particles, accuracy

(99.99%), Duke Scientific; $700 for 100 mlofthe particles in a 10% solution

24. Glass Beads: 1.59 !-LID diameter beads, Standard Deviation: 0.304, Powder

Technologies Inc.; $50 for 25 gm ofthe particles
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