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PREFACE 

This dissertation proposes a novel method to perform a quantitative analysis of 

message complexity and applies this method in comparing the message complexity 

among the mobile ad hoc network (MANET) address autoconfiguration protocols. The 

original publications on the address autoconfiguration protocols had many incomplete 

parts making them insufficient to use on practical MANETs. Therefore, the first objective 

of the executed research was to complete the address autoconfiguration protocols by 

filling in all the missing gaps to make them operational. The missing procedures that 

were filled in have been developed based on the most logical procedures being faithful to 

the original protocol publications. In this dissertation, to obtain the upper bound of the 

message complexity of the protocols, the O-notation of a MANET group of N nodes has 

been applied. To asymptotically calculate the total number of messages generated by a 

protocol's step or procedure, an investigation on the nodes broadcasting, unicasting, 

relaying, and receiving messages is conducted and used in obtaining the upper bound of 

the message complexity for each protocol. 
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1. INTRODUCTION 

 

1.1. Background 

Wireless communication systems continue to show rapid growth as a result of significant 

advancements in digital communications, commercial laptop computers, and 

semiconductor technologies. The most popular networks of the traditional wireless model 

are cellular and mobile IP networks, which have been configured with a wired backbone, 

where the last hop is a wireless link, essentially a point-to-point wireless channel between 

the base station and the mobile user. In the wireless cell domain, the base station provides 

centralized control for the mobile users to access the medium. Some representative 

specifications are IS-54 (the first generation of the digital standard with TDMA 

technology), IS-95 (the standard for CDMA), GSM, cdma2000, and W-CDMA. 

For the past few years, mobile ad hoc networks (MANETs) have been emphasized as an 

emerging research area due to the growing demands for mobile and pervasive computing, 

where the dynamic topology for the rapid deployment of independent mobile users 

becomes a new factor to be considered. For instance, mobile users across a campus can 

transmit data files to each other, group members of a search, disaster rescue, recovery 

team, or military solders in a battlefield can communicate in order to coordinate their 

actions, without using a base station. Especially, in battlefield circumstances, the 

infrastructure may not be built in advance for soldiers to communicate with each other. 

These example networks are called ad hoc wireless networks where centralized and 



 2

organized connectivity can not be possible. The examples show that MANETs need to 

have the ability to provide for establishing survivable, efficient, dynamic communication 

for emergency, search-and-rescue operations, disaster relief efforts, law enforcement in 

crowd control and military networks. One of the outstanding features of MANETs could 

be the self-creating, self-administrating, self-organizing, and self-configuring multihop 

wireless network characteristic.  

MANETs differ from conventional cellular networks because all links are wireless and 

the mobile users communicate with each other without using a base station. Several basic 

properties of MANETs are described below. An autonomous collection of mobile users 

composes a MANET, where they communicate over relatively bandwidth constrained 

wireless links. MANETs use peer-to-peer wireless connections, where the packets from a 

source node are transmitted via intermediate nodes called relay nodes towards a 

destination node. A MANET topology dynamically changes as mobile users join, leave, 

or rejoin the network. Sometimes, radio links in a MANET may not be usable due to the 

node mobility.  

Most research and development (R&D) funding for MANET applications are for military 

applications for defense and security systems, where the Office of Naval Research (ONR) 

and the Defense Advanced Research Project Agency (DARPA) of the U.S. Department 

of Defense (DoD) have been leading the research in this area. Other MANET related 

applications are found in government-industry funded projects such as the R&D of 

Intelligent Transportation Systems (ITS). One important issue in MANETs is the time-

varying network topology which may be unpredictable over time and, therefore, MANET 

routing algorithms must keep updating their neighbor discovery data and inform the 
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nodes of the network topology change due to node mobility. The MANET working group 

(WG) of the Routing Area of the Internet Engineering Task Force (IETF) has defined and 

standardized IP routing functionality suitable for MANET wireless routing applications 

within both static and dynamic topologies. Several MANET routing protocols ([1] and 

[2]) have been accepted as Internet Standards or are under development as Internet drafts 

([3], [4], [5], [6], and [7]) under the IETF. 

MANET routing protocols can be classified into proactive and on-demand. Proactive 

routing protocols, using periodic Neighbor Discovery message and Topology Update 

message, give route information to each node before a node sends data packets to a 

destination. The Fisheye Scope Routing (FSR) [3], Topology Broadcast Based on 

Reverse Path Forwarding (TBRPF) [4], Fuzzy Sighted Link State Routing (FSLS) [5], 

Optimized Link State Routing Protocol (OLSR) [1], and Landmark Ad Hoc Routing 

(LANMAR) [6] are currently being developed as MANET proactive routing protocols. 

On-demand routing protocols, such as Dynamic Source Routing (DSR) [7] and Ad hoc 

On-demand Distance Vector (AODV) [2], issue Route Discovery mechanism messages 

only when a node needs to send data to a destination node. Because these protocols do 

not use any periodical message exchange such as the neighbor discovery message used in 

proactive routing protocols, they do not hold any route information at each node before a 

node sends data towards a destination node. Therefore, they need Route Request and 

Route Reply messages to find out and maintain a route until it is needed. Based on [1], [2], 

[3], [4], [5], [6], and [7], the advantages and disadvantages of the proactive and on-

demand routing protocols can be summarized below. The main advantage of the 

proactive routing protocols is that whenever a node sends a data packet, it obtains route 
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information to a destination by searching its route table. Therefore, the route is already 

known and can be used immediately. In addition, there is no delay time to determine the 

route in the source node. However, a portion of network resources in MANETs should be 

allocated to handle the periodic Neighbor Discovery and Topology Update messages, and 

this increases the network traffic load. The main advantage of On-demand routing 

protocols is that because there are no message exchanges before the start of data 

communications, the network traffic overhead can be reduced. However, the delay time 

caused by Route Discovery mechanism to find a route to a destination could be a 

significant factor when considering MANETs routing performance. As the node 

population and mobility increase, the routing control overhead in the MANET area is also 

increased, and this is an important factor to be considered in limited wireless bandwidth 

applications. The authors of [8] studied the scalability issues in MANET's proactive and 

on-demand routing protocols. 

 

1.2. Motivation  

MANET nodes have the capability to cooperate in routing each others' data packets. Due 

to the lack of any centralized control and possible node mobility in MANETs, many 

issues at the network, medium access, and physical layers currently become new research 

topics since no counterparts in the wired networks like Internet, or in cellular networks 

can satisfy these MANET requirements. 
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1.2.1. Network Layer in MANET 

At the network layer, the main problem is that of routing, which is awfully deteriorated 

by the time-varying network topology, power constraints, and the characteristics of the 

wireless channel. MANET routing protocols can be categorized into proactive, reactive, 

hybrid, hierarchical and location-based protocols. For a MANET to have trustworthy 

routing protocol, several factors should be considered. 

1. The mechanisms for neighbor discovery, topology update, route discovery, route 

maintenance, data forwarding, link error-checking, and link error recovery when 

nodes power up, reboot, join, leave and rejoin the network, could be definitely 

one consideration factor in MANET routing protocols.  

2. Performance issues such as network-imposed delay, delay variance, reliability 

defined as the average loss ratio of the medium by the routing/switching design, 

the number of hops per route, route discovery time, routing traffic (bps), end-to-

end delay, hop-by-hop and end-to-end packet delivery ratio, number of data 

packets transmitted, number of control bytes transmitted, effect of the traffic load 

on the routing protocol, and effect of node mobility on the routing protocol 

should also be studied to satisfy a guaranteed QoS.  

3. The technology to setup self-organized wireless interconnection of 

communication devices in dynamic topologies also needs to be considered.  

4. Standardization for different MANET routing protocols to implement 

interoperability in heterogeneous MANET networks will be demanded to be 

incorporated within other MANET routing protocols. As node mobility increases, 

the control routing overhead also increases dramatically, which causes problems 
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with the allocation of network resources. The scalability issues in MANET 

routing protocols have been continuously studied to reduce routing control 

overhead. Due to the different link characteristics in opposite directions in a 

wireless link, the implementation of a symmetric route from a source to a 

destination in MANET routing protocol becomes one challenging research topic.  

5. With well-defined MANET protocol models, wireless network capacity could be 

mathematically analyzed to define the maximum network throughput. One of the 

on-going research areas focuses on defining the maximum throughput in 

MANETs to be used as a reference guide.   

6. Interoperability issues with the other layer stacks such as TCP/UDP protocols, 

and RSVP/LDP signaling protocols, is one of the primary challenges to design 

compatible MANET routing protocols.   

7. To reduce the number of vulnerabilities, security mechanisms which include 

authorization and admission control are being developed, and it is an open 

research area.  

8. Assigning IP address to mobile nodes can be expanded as another research topic 

in MANETs. 

9. Another research topic in MANETs focuses on the implementation of 

multicasting, in which a MANET node can send a data packet to multiple 

destinations in a group. 
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1.2.2. Medium Access Control Layer in MANET  

MANETs consist of a number of mobile users that communicate with each other over a 

wireless channel, which causes an issue regarding on how to share a wireless medium 

among all the users. Due to the time-varying network topology and the lack of centralized 

control, the choice of the medium control access (MAC) scheme technology is also 

difficult in ad hoc networks. The ultimate purpose of the MAC is to establish the 

mechanism for traffics, and to provide the classification for the different requirements of 

each traffic class. Two types of multiple access protocols such as the contention-based 

protocol and the contention-free protocol have been developed. TDMA (Time Division 

Multiple Access), FDMA (Frequency Division Multiple Access), CDMA (Code Division 

Multiple Access), Token Ring, and DQDB (Distributed Queue Dual Bus) are widely used 

as the contention-free multiple access protocols. On the other hand, Contention-based 

protocols can be classified into random access and collision resolution methods based on 

the methods used to resolve the packet collisions. ALOHA, CSMA (Carrier Sensing 

Multiple Access), BTMA (Busy Tone Multiple Access), ISMA (Idle Signal Multiple 

Access) are well-known random access contention-based protocols, in which they use a 

random delay before resending conflicted packets. The TREE and WINDOW protocols 

use a sophisticated method to solve the packet retransmission instead of using a random 

delay. The increasing complexity in TDMA due to the non-centralized control or 

dynamic assignment of frequency bands in FDMA could not be the best solution in 

MANETs. The FDMA scheme in MANETs tends to be inefficient when the MANET 

becomes densely populated. One issue in CDMA is the need to keep track of frequency-

hopping patterns and/or spreading codes of the time-varying neighborhood. CSMA/CA 
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(Carrier Sensing Multiple Access/Collision Avoidance) has been standardized in the 

IEEE 802.11 (IEEE stands for Institute of Electronics and Electrical Engineering) and 

can be one of the possible MAC protocols for MANETs. Since the birth of the ALOHA 

protocol, several variants have been developed. The difference between ALOHA and 

CSMA is that in ALOHA protocol, when a sender transmits a packet, it does not check 

whether the channel is busy or not. However, in CSMA protocol when the transmitter 

sends a packet, it listens and checks whether the channel is busy or not in order to prevent 

potential packet collisions. Therefore, the CSMA protocol could achieve a better 

throughput accomplished by listening to the channel before transmitting a packet. Even 

though two transmitters in the CSMA protocol detect the collision when they transmit 

packets, they don't stop transmitting packets, but continue sending packets and complete 

the packet transmission, and this transmission occupies the wireless medium uselessly for 

an entire packet time and the transmitted packets eventually collide. However, in the 

CSMA/CD protocol, whenever two nodes detect a collision when transmitting packets, 

they stop the transmissions immediately. CSMA/CD can only detect packet collisions and 

there is no collision avoidance mechanism. However, CSMA/CA protocol has a special 

request to send (RTS) and clear to send (CTS) hand-shaking mechanism to avoid packet 

collisions before sending a packet. The distributed coordination function (DCF) defines 

the mechanism of RTS and CTS frames prior to the transmission of the actual data frame. 

Based on the above discussions, for a MANET to have trustworthy medium access 

control protocol, several factors should be considered as follows. 

1. The selection of the layer 2 mechanisms among TDMA, FDMA, DTDD 

(Dynamic Time Division Duplex), CDMA, ALOHA, CSMA/CD and CSMA/CA 
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is a difficult choice for MANET medium access control. Many simulation results 

based on OPNET, MATLAB, ns-2, GlomoSim and QualNet with various 

scenario analyses are published to show the various performances of the MAC 

schemes. 

2. Performance issues such as utilization of bandwidth, packet delay rate, channel 

busy probability, packet blocking rate, packet dropping rate, packet error rate, 

and throughput could be measured to evaluate the various MAC schemes. 

3. Various scheduling issues have also been studied to provide QoS differentiation 

over the scheduling switch.  

4. The technology of preemptive or nonpreemptive priority-based access control 

scheme for broadband MANETs has also been considered by many researchers. 

5. Error control schemes such as automatic repeat request (ARQ) to achieve reliable 

data transmission over wireless transmission links have been proposed. 

 

1.2.3. Physical Layer in MANET 

At the physical layer, power control is one of the most important issues, and the focus is 

on getting the sufficient transmission range of a node, which needs to be controlled so 

that it is wide enough to reach the intended receiver, while causing minimal interference 

to other nodes.  

1. Based on the parameters coming from the physical layer, several efficient power-

aware routing protocols and battery cost routing protocols have been proposed. 
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2. To get higher wireless channel capacity, Multi-Input-Multi-Output (MIMO) 

systems, in which both the transmitter and the receiver have multiple antennas, 

are currently under study by many researchers. 

3. To get different QoS levels in the physical layer, Dynamic Time Division Duplex 

(DTDD) can be used, where portions of the downlink and uplink bandwidth in 

cellular network are dynamically assigned. In Static TDD (STDD) the portions of 

downlink and uplink bandwidth in cellular networks are fixed. This could be one 

challenging research topic. 

4. To get better signal-to-interference (SIR) ratio at the receiver, many research 

studies to avoid the co-channel interference (CCI) and inter-symbol interference 

(ISI) have been addressed.  

 

1.3. Dissertation Outline 

In this dissertation, the technical review of several MANET routing protocols based on 

their messages is analyzed and message complexity analysis of MANET address 

autoconfiguration protocols is studied. Due to the lack of any centralized control and 

possible node mobility in MANETs, many issues at the network, medium access, and 

physical layers currently remain as research topics since no counterparts in the wired 

networks or cellular networks can satisfy these MANET requirements. 

Therefore, the objective of this research is to propose a novel method to perform a 

quantitative analysis of message complexity as one of performance measures to 

overcome the issues at the network, medium access, and physical layers. The contribution 

of this research is that the analytical framework used in deriving the upper bound of the 
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message complexity, which is represented in this dissertation, can be widely adapted to a 

wide variety of protocols. The remainder of this dissertation is organized as follows. 

Chapter 2 gives the technical review of 12 MANET routing protocols based on their 

messages. In chapter 3, the comparison of the message complexity among the MANET 

address autoconfiguration protocols is studied. Chapter 3 also presents several Lemmas 

and their proofs used in deriving the message complexity of Strong DAD (Duplicate 

Address Detection), Weak DAD, and MANETconf respectively and it contains the 

numerical results, performance analysis and conclusion. 
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2. MANET ROUTING PROTOCOLS 

 

2.1. Introduction 

This chapter introduces the technical review of several MANET routing protocols based 

on their messages. To come up with the dynamic topology of networks in proactive 

routing protocols, the Topology Update message is one of the essential messages used to 

update the MANET topology. On-demand Routing protocols need the Route Request 

message to set up a path to a destination.  

Fisheye State Routing (FSR) is a link state proactive routing protocol. Instead of using 

Link State flooding over the network, update routing table in ad hoc network is 

periodically broadcasted to its neighbor. Depending on the hop distance from the current 

node, the frequency update is different such that the FSR produces accurate information 

about the immediate neighbor nodes but less accurate information about the nodes that 

are farther away from the current node. A change in link state outside predefined scope 

from the current node does not necessarily cause a change in the routing table at the 

current node. Each node running FSR maintains a topology table and a routing table. Link 

state messages construct the topology table where the distance information is calculated 

from the routing table and is used to classify the node similar to a fisheye scope [3]. 

Topology Broadcast Based on Reverse Path Forwarding (TBRPF) is a link state proactive 

routing protocol composed of the TBRPF neighbor discovery module (TND) and the 

TBRPF routing module. The TND only senses one hop neighbors; however the TBRPF 
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routing module discovers two-hop neighbors. The TND is periodically performed through 

differential Hello messages that report only the changes in neighbors. With the different 

fields of Neighbor_Request, Neighbor_Reply and Neighbor_Lost_of_Hello messages, 

each TBRPF node detects the bi-directional links between its local interface and its 

neighbor interface, detects loss of such links and keeps links to its one hop neighbors. In 

the TBRPF routing module, based on the periodic and differential topology updates with 

Hello message, each node creates the shortest paths to all reachable nodes. Link State 

updates that form the spanning tree in the reverse direction from the source are 

propagated. Full topology updates and differential topology updates are two types of 

topology updates of the TBRPF with the Topology_Update message, Interface, Host and 

Network Prefix Association messages. Differential topology updates are sent more 

frequently to update the link changes such as additions and deletions of nodes [4]. 

Fuzzy Sighted Link State Routing (FSLS) is a link state proactive routing protocol for a 

flat network structure where a balance between the proactive link update overhead and 

the overhead due to suboptimal routing is considered. In FSLS, the nodes transmit Link 

Status Updates (LSU) only at particular instants that are multiples of some constant time 

value. Several link changes are collectively sent in a single packet with a Time to Live 

(TTL) value [5]. 
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Dynamic Source Routing (DSR) is an on-demand (reactive) routing protocol which does 

not need any periodic routing advertisement, link status sensing or neighbor detection 

packet. DSR is composed of a Route Discovery procedure and a Route Maintenance 

procedure. 

When node S wants to send a packet to node D, but does not know a route to D, node S 

initiates a Route Discovery with Route Request (RREQ) message flooding. Each node 

adds its own identifier when a RREQ is forwarded by each node. If the node is the 

destination node of the RREQ, it stops forwarding the RREQ, and the destination replies 

by sending a Route Reply (RREP) message which is sent on a route obtained by receiving 

the route appended to receive RREQ if a bi-directional link is allowed. Otherwise, RREP 

may need to scan a new route discovery for S from node D unless node D already knows 

a route to S. If a route discovery is initiated by D for a route to S, the RREP is 

piggybacked on the RREQ generated from D. RREP includes the route from S to D on 

which RREQ was received by node D. When S receives the RREP, it caches the route 

from S to D included in the RREP. When S sends a data packet to D, the entire route is 

included in the data packet header from which the name of Source Routing comes. 

Intermediate nodes use the source route included in the packet header to determine to 

whom a packet should be forwarded to. With the use of Route Caching at each node, 

which learns a new route and caches it, the performance of DSR can be optimized. If a 

node finds a broken link when it attempts to forward the data packet, the node initiates 

and sends a Route Error (REER) message in the reverse path along the source route. The 

nodes that hear the REER update their route cache to remove the broken link [7]. 
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Zone Routing Protocol (ZRP) is a hybrid routing protocol that provides a balance 

between the proactive and reactive routing protocols. Within the network area of the 

routing zone, a distance-vector and a link state of the proactive IntrAzone Routing 

Protocol (IARP) is used to deliver the topology update. When a change occurs in the 

topology, IARP packets (messages) are exchanged and appropriate changes are made in 

the routing tables of the nodes in the zones. The packets are restricted from being 

transmitted to nodes outside a zone with the help of the hop count parameter. The 

IntErzone Routing Protocol (IERP) is responsible for acquiring routes to destinations that 

are located beyond the routing zone. The IERP uses Route Query/Route Reply fields of 

the IERP message to discover a route to nodes located outside the Zone [9]. 

Optimized Link State Routing Protocol (OLSR) is a link state proactive routing protocol, 

in which the topology information of the network is exchanged periodically. Each node 

selects a set of nodes in its neighborhood which is called the Multipoint Relay (MPR) set 

of that node. Only MPRs of node N can send the Link State broadcast message and the 

neighbor nodes of node N which are not in the set of N's MPR can receive and process 

broadcast messages but do not retransmit Link State broadcast messages received from 

node N. Therefore, OLSR can reduce duplicate retransmissions of flooding messages in 

the same region. Since only MPR nodes can send routing messages that flood the network 

and only partial Link States are flooded, the number of Link State Updates and the length 

of the Link State Updates are reduced. A Hello message is used for neighbor discovery 

mechanism. To get the local link information and the neighborhood information, periodic 

exchange of Hello messages is performed. Each node with multiple interfaces should 

periodically announce information describing its interface configuration to other nodes in 
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the network using the message Multiple Interface Declaration (MID). The Topology 

Control (TC) message is used for the distribution of topology update information of each 

node. A node which is associated with hosts or/and networks should periodically generate 

the Host and Network Association (HNA) message, containing pairs of (network address, 

netmask) corresponding to the connected hosts and networks [1]. 

Landmark Ad Hoc Routing (LANMAR) is a proactive routing protocol, which combines 

the features of Fisheye State Routing (FSR) and Landmark Routing. Landmarks are 

selected for each set of nodes that move as a group. A packet that has to reach a remote 

destination initially aims at the landmark of the remote group and then as it gets closer to 

the landmark, it switches to Fisheye State Routing that is more accurate. Both scalability 

and mobility problems are solved as the line and storage overhead are kept low. To 

periodically update the landmark distance vector (LMDV) and the drifter list (DFDV), the 

LANMAR Update message is exchanged with the neighbors [6]. 

Location-Aided Routing (LAR) is a geographical routing protocol that uses location 

information supported by Global Positioning System (GPS) to limit the scope of Route 

Request flood. Expected zone is calculated as a region that is expected to hold current 

location of the destination. Assume that there is a node S that needs to communicate with 

a destination node D. Suppose S knows the location L of D at time t0, then the Expected 

Zone of the node D can be estimated at time t1 and is given by the circular region of 

radius v(t1- t0) centered at location L, where v is the average speed of node D. Route 

Request message is limited to a Request Zone that contains the Expected Zone and the 

location of the sender node. The Request Zone is usually larger than the Expected Zone to 

increase the probability of the message reaching the destination. When receiving Route 
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Request message, the destination node responds by sending a Route Reply message to the 

sender. A node along the path sends a Route Error message if the node finds that there is 

a broken link on the route to its next hop [10]. 

Greedy Perimeter Stateless Routing (GPSR) is a geographical routing protocol which 

uses only positions of a router's immediate neighbors and a packet's destination to make 

routing decisions. In cases where Greedy forwarding is not possible, routing around the 

perimeter of the region takes place. Geographic routing helps routers to be almost 

stateless. A GPSR node just has to know the neighboring nodes by exchange of the 

Beacon message which is periodically broadcasted to its neighbor nodes. The GPSR has 

two kinds of method for forwarding packets - greedy forwarding and perimeter 

forwarding. Greedy forwarding is used as much as possible and only in cases where 

Greedy forwarding is not possible Perimeter forwarding is used [11]. 

Ad hoc On Demand Distance Vector (AODV) is a distance vector on-demand (reactive) 

routing protocol. DSR includes the source routes in packet header which results in large 

header and degrading performance. AODV provides the mechanism to hold the routing 

table at the nodes, so that data packets do not have to contain source routes in its header. 

The Hello message is periodically exchanged with neighbor nodes for connectivity. The 

absence of the Hello message for Allowed_Hello_Loss  Hello_Interval milliseconds 

results in an indication of link failure. When node S wants to send a packet to node D, but 

does not know a route to D, node S sends a Route Request (RREQ) message which is 

flooded into the network. When the destination receives a RREQ, it replies by sending a 

Route Reply (RREP) message which travels along the reverse path set up when a RREQ is 

forwarded. Forwarding links at each intermediate node are installed when RREP travels 



 18

along the reverse path. When a RREP arrives at source node S, S sends Route Reply 

Acknowledgement (RREP-ACK) message to D. Each node along the reverse path caches 

the next hop links in its routing table. Whenever link failures to the next hop are found at 

each node, the Route Error (RERR) message is propagated to all active nodes including 

the source node S. When the node S receives the RERR, it initiates a new route discovery 

destined for D [2]. 

Hierarchical State Routing (HSR) is a hierarchical link state routing protocol in which the 

networks are managed by a hierarchical structure. Two types of node partition are 

provided in HSR. Physical partitioning is based on geographical node position whereas 

the logical partitioning is based on node functionality. Two address schemes are used in 

HSR network. An IP address is used for identification for packet delivery and a 

Hierarchical ID (HID) address is used for routing in HSR. The home agent keeps up-to-

date mobility binding for each subnet member based on the HID registration process, 

which is triggered in periodic and event driven circumstances. To register a HID at the 

home agent, each subnet member sends a Registration message to its home agent. Upon 

receiving a Registration message, the home agent creates a mobility binding for the 

mobile node, or modifies the mobility binding accordingly. If the registered HID address 

is not refreshed within a certain time, it is timed out and erased from the home agent. To 

send a data packet from source S to destination D, S sends the packet directly to the 

destination if S has the valid HID address of the destination. Otherwise, through HID 

Reply message from the home agent, S knows the registered address of D and this 

mechanism is called the HID finding process [12]. 
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Clusterhead Gateway Switch Routing (CGSR) is a hierarchical distance vector routing 

protocol in which a cluster member table and a distance vector (DV) routing table are 

updated at the each mobile node. When S sends a data packet, S initially finds the 

clusterhead of the destination node D from the cluster member table. Then S looks up its 

routing table to find the next hop to the clusterhead of the destination and forwards the 

packet to the clusterhead of the destination. When the CGSR network forwards the 

packets, it routes packets alternatively between clusterheads and gateways. When the 

packets finally reach the clusterhead of the destination, the clusterhead of the destination 

forwards the packet to the destination node D [13]. 

 

2.2. Fisheye State Routing (FSR) 

2.2.1. Introduction 

FSR is a proactive routing protocol for the flat network structure and it is a variation of 

the Link State type routing protocol where each node periodically updates its Link State to 

other nodes instead of being event driven. The events are usually triggered by the Link 

State exchange such as link breaks. If this mode of exchange was followed in the unstable 

mobile ad hoc network (MANET), it will lead to many Link State updates. To reduce 

Link State overhead in FSR, even though the Link State updates are sent periodically, not 

all the updates are sent at the same frequency. The frequency of the updates depends on 

the hop distance from the current node. Due to the different period of Link State update in 

FSR, there is accurate information about the immediate neighborhood but less accurate 

information about the nodes that are farther away from the current node [3] [14].  
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2.2.2. Topology representation of FSR 

The network is modeled as a undirected graph, G(V,E), where V is the set of nodes and E 

is the set of links that connect nodes in V. A unique identifier identifies each node. An 

undirected link is formed between two nodes, say i and j, if they are within the 

transmission range. In FSR routing algorithm, each node maintains three tables and a list. 

There is a neighbor list Ai, a topology table TTi, a next hop table NEXTi, a distance table 

Di. Ai is the set of nodes that are one hop away from the node i. Each destination j has an 

entry in NEXTi comprising of two parts – the link state information sent by j and the time 

stamp at which the information was generated by j. NEXTi (j) represents the next hop 

from i to node j through the shortest path. Di (j) represents the distance of the shortest 

path between i and j. 

 

2.2.3. Link State (LS) message  

FSR is composed of one Link State (LS) message that not only gives a neighbor discovery 

mechanism but also yields a topology update mechanism for a node to calculate the 

efficient routes. Based on topology map at each FSR node, the node calculates the 

efficient routes in MANET. 

FSR nodes are classified with a different hop distance from a source node which 

generates Link State message. The source node uses a different period to update the Link 

State message to its scoped destination nodes based on the classified hop distance. The 

node sends the Link State message within the smallest scope with highest frequency. The 

rest of the scoped nodes will receive the Link State message with lower frequencies. After 

performing neighbor discovery, a node can send a Link State update message to a 
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destination node to which the node can calculate the efficient route based on the 

information of the discovery. If the node does not receive a Link State message from its 

neighbor within a Neighbor_Timeout interval, the node deletes the neighbor from its 

neighbor list. After receiving a Link State message from its neighbor, the node updates its 

topology. Based on the information of the topology table, the node calculates the shortest 

path towards each destination and stores the path information in its routing table. The 

distance information for each destination in the node's routing table is used to classify the 

scope of each destination node. The node uses the next hop information in its routing 

table to forward the packets destined for a certain destination. 

Fig. 1 shows the Link State message of FSR. Destination Address in the Link State 

message is the node’s IP address which is located at the hop distance which is equal to 

the hop distance of the source node's neighbor. The hop distance of the source node's 

neighbor is used in neighbor discovery mechanism or beyond the hop distance of the 

source node's neighbor, which is used in the topology update mechanism. Destination 

Sequence Number is the last sequence number received from the destination in the past 

by the source. N_neighbors n indicates the number of neighbors of the destination node n. 

Neighbor Address 1, , Neighbor Address N_neighbors n is the list of neighbors of the 

destination node n [3] [14]. 
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0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Packet Length Reserved 
Destination Address 1 

Destination Sequence Number 1 N_neighbors 1 
Neighbor Address 1 

   
Neighbor Address N_neighbors 1 

Destination Address 1 
Destination Sequence Number 2 N_neighbors 2 

Neighbor Address 1 
   

Neighbor Address N_neighbors 2 
   

Figure 1 FSR Link State Messag 

Refer to the field description in [3] for further details. 

 

2.2.4.  Algorithm for FSR 

1. Each node is initialized with the following values.  

A. An empty neighbor list Ai.  

B. An empty topology table TTi.  

C. All the entries in the distance table Di are set to infinity. 

D. All the entries in the NEXTi (j) table are set to –1.  

E. All the entries of the time stamps in the topology table are also set to –1. 

2. From each packet received, the node i tries to learn about its neighbors from the 

Sender ID 

A. It reads the ID of the received packet and adds it to the neighbor list Ai. 

B. The node i tries to determine if the information from the node j is the latest 

by examining the time stamp information in the packet. 
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C. If the timestamp in the received packet is later than that is there in the 

topology table TT, then the link state information and the timestamp 

information from the received packet are updated. 

3. After knowing the neighbors and updating the topology table, the node will use 

Dijkstra’s algorithm to find the shortest path and updates the distance table Di. 

4. The entries in the distance table are compared with the fisheye radius, whichever 

node has a distance less than the fisheye radius, and then the link state 

information of that node will be included in the update message. 

5. This message is broadcasted to all the nodes in the set Ai. The update message is 

sent out to the nodes in the fisheye radius based on the distance of the nodes from 

the node i. Information about nodes that are nearer are sent out very often and 

those which are farther away are not sent that very often.  

 

2.2.5. Pseudo Code for FSR 

While TRUE do 

 For each node I in the network 

  Ai = φ 

TTi = φ 

Di = ∞ 

NEXTi (j) = -1 

TTi.SEQ(j) = -1 

Next Node 
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             For each received Packet Pkt 

  Ai = Ai ∪ Pkt.SenderID 

  If Pkt.SEQ(j) > TTi.SEQ(j)  

   TTi.SEQ(j) = Pkt.SEQ(j) 

TTi.LS(j) = Pkt.LS(j) 

  End if 

              Next Packet   
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2.3. Topology Broadcast Based on Reverse Path Forwarding 

(TBRPF) 

2.3.1. Introduction  

Topology Broadcast Based on Reverse Path Forwarding is a proactive routing strategy in 

which each node has the information about the entire network. The messages are not 

flooded into the network, but are forwarded along the reverse path forwarding mode. The 

Dijsktra Topology Broadcast Based on Reverse Path Forwarding (TBRPF) comprises of 

two modules namely the neighbor discovery module and the routing module. Each node 

selects its next hop on the minimum hop path to reach the source node S. The link state 

updates are not flooded through the network and only those updates that form the 

spanning tree in the reverse direction from the source are propagated.  There are also two 

types of topology updates used in TBRPF – full topology update and differential topology 

update. Differential topology updates are sent more frequently to update the link changes, 

such as additions and deletions [4] [15]. 

 

2.3.2. Message Summary  

TBRPF is composed of a neighbor discovery message (Hello message) and routing 

messages (Topology Update, Interface, and Host and Network Prefix Association 

Messages). TBRPF nodes periodically report Hello message to their neighbors for the 

discovery of neighbors. TBRPF node updates the Topology Update message periodically 

to report the partial source tree at each node to its neighbors. Interface, Host and Network 

Prefix Association messages inform the neighbors of the information of the interface, 
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host and network prefix. All these messages are constructed between the initiator node of 

messages and initiators' neighbor nodes and are periodically updated [4] [15]. 

 

Hello message 

The TBRPF Hello message as shown in Fig. 2 includes the fields of the Neighbor 

Interface to represent the interface addresses of the neighbor nodes. For example, it is 

assumed that when the network is powered up, there are only two neighboring nodes A 

and B, node A can send a Hello Neighbor Request message including no list of neighbor 

interface address. As soon as node B receives the Hello Neighbor Request message, it 

knows that the link between node B and node A is a unidirectional, and that node A is its 

neighbor and sends a Neighbor Request message including A's address as the neighbor 

interface address to respond to A's Hello Neighbor Request. After node A receives the 

Hello Neighbor Request message from node B, node A can decide the link between node 

A and node B is bi-directional since it receives a Hello Neighbor Request and sends a 

Hello Neighbor Request on its interface. Node A sends the next periodic Hello Neighbor 

Request message including no list of neighbor interface address. The message piggybacks 

a Hello Neighbor Reply message including one neighbor interface address which 

represents B's interface address. After node B receives the Hello Neighbor Request 

message from node A, node B can decide that the link between node B and node A is bi-

directional since it receives a Hello Neighbor Request and sends a Hello Neighbor 

Request on its interface. If B moves away to out-of-range of node A, and therefore, node 

A does not receive Hello messages from node B within the NBR HOLD TIME, node A 

sends a Hello Neighbor Request message including no list of neighbor interface address. 
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The message piggybacks a Hello Neighbor Lost message including one neighbor 

interface address which represents B's interface address. The role of the neighbor 

interface address list in a Hello Neighbor Request message is to convert the status from 

unidirectional link to bidirectional link if the nodes successfully receive a Hello Neighbor 

Reply in response to the Hello Neighbor Request.  

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 TYPE HSEQ PRI n 
Neighbor Interface Address (1) 
Neighbor Interface Address (2) 

 
Neighbor Interface Address (n) 
Figure 2 TBRPF Hello message 

Refer to the field description in [4], [15] for further details. 

 

Topology Update message  

Topology Update (TU) message as shown in Fig. 3 includes the metrics of the links 

belonging to the sending router's reported subtree RT and this message is sent to the 

neighbors. 

0         1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
M D 0 0 TYPE n NRL NRNL 

Router ID of u 
Router ID of v_1 

 
Router ID of v_n 

Metric 1 Metric 2  
Figure 3 TBRPF Topology Update message 

Refer to the field description in [4], [15] for further details. 
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Interface Association (IA) message or Host Association (HA) message  

Interface Association (TYPE=8) message or Host Association (TYPE=9) message as 

shown in Fig. 4 contains the router ID and IP addresses of Interfaces or Hosts that are 

associated with the router ID to inform the neighbor nodes. 

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
ST 0 TYPE Reserved n 

Router ID 
IP Address 
IP Address 

 
Figure 4 TBRPF Interface Association message 

Refer to the field description in [4], [15] for further details. 

 

Network Prefix Association message 

Network Prefix Association (NPA) message shown in Fig. 5 includes the router ID of the 

originator, and network prefixes to inform the neighbor nodes. 

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
ST 0 TYPE Reserved n 

Router ID 
PrefixLength Prefix byte 1 Prefix byte 2  

 PrefixLength Prefix byte 1 Prefix byte 2 
 

Figure 5 TBRPF Network Prefix Association message 

Refer to the field description in [4], [15] for further details. 
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2.3.3. Pseudocode for TBRPF  

The following pseudocode describes the network-level procedures performed at node i by 

TBRPF [4], [15]. The notation LSU(update_list) represents a link-state-update message 

that includes the updates (u,v,c,sn) in update_list. 

 

Process_Update(i, nbr, in_message) 

{ 

 (Called when an update message in_message is received from nbr.) 

 Update_Topology_Table(i, nbr, in_message, update_list). 

 Update_Parents(i). 

 For each node src in TT_i  

 { 

          Let update_list(src) consist of all tuples (k,l,c,sn)  in update_list  

such that k = src. 

  If update_list(src) is nonempty 

  { 

   Send message LSU(update_list(src)) to  

   children_i(src). 

  } 

 } 

} 
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Update_Topology_Table(i, nbr, in_message, update_list) 

{ 

 Set update_list to empty list. 

      For each ((u,v,c,sn) in in_message)  

 { 

         If (p_i(u) == nbr)  

  { 

   If ((u,v) is in TT_i and sn > TT_i(u,v).sn)  

   { 

    Add (u,v,c,sn) to update_list. 

    Set TT_i(u,v).sn = sn. 

    Set TT_i(u,v).c = c. 

               If (sn > sn_i(u)) Set sn_i(u) = sn. 

   } 

   If ((u,v) is not in TT_i)  

   { 

    Add (u,v,c,sn) to TT_i. 

    Add (u,v,c,sn) to update_list. 

    If (sn > sn_i(u)) Set sn_i(u) = sn. 

   } 

  } 

 } 

} 
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Link_Change(i,j) 

{ 

 (Called when the cost of link (i,j) changes.) 

 If (|TT_i(i,j).c - cost(i,j)|/TT_i(i,j).c > epsilon)  

 { 

         Set TT_i(i,j).c = cost(i,j). 

         Set TT_i(i,j).sn = current time stamp SN_i. 

         Set update_list = {(i, j, TT_i(i, j).c, TT_i(i, j).sn)} 

         Send message LSU(update_list) to children_i(i). 

 } 

} 

 

Link_Down(i,j) 

{ 

 (Called when link (i,j) goes down.) 

 Remove j from N_i. 

 Set TT_i(i,j).c = infinity. 

 Set TT_i(i,j).sn = current time stamp SN_i. 

 Update_Parents(i). 

 For each (node src in TT_i) remove j from children_i(src). 

 Set update_list = {(i,j, infinity, TT_i(i,j).sn)}. 

 Send message LSU(update_list) to children_i(i). 

} 
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Link_Up(i,j) 

{ 

 (Called when link (i,j) comes up.) 

 Add j to N_i. 

 Set TT_i(i,j).c = cost(i,j). 

 Set TT_i(i,j).sn = current time stamp SN_i. 

 Update_Parents(i). 

 Set update_list = {(i, j, TT_i(i,j).c, TT_i(i,j).sn)}. 

 Send message LSU(update_list) to children_i(i). 

} 

 

Update_Parents(i) 

{ 

 Compute_New_Parents(i). 

      For each (node k in N_i) 

         Set cancel_src_list(k), src_list(k), and sn_list(k) to empty. 

 For each (node src in TT_i such that src != i) 

 { 

         If (new_p_i(src) != p_i(src)) 

  { 

   If (p_i(src) != NULL) 

   { 

    Set k = p_i(src). 
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               Add src to cancel_src_list(k). 

   } 

            Set p_i(src) = new_p_i(src). 

            If (new_p_i(src) != NULL) 

   { 

    Set k = new_p_i(src). 

    Add src to src_list(k). 

               Add sn_i(src) to sn_list(k). 

   } 

  } 

 } 

 

 For each (node k in N_i) 

 { 

         If (src_list(k) is nonempty) 

            Send message NEW PARENT(src_list(k), sn_list(k)) to k. 

         If (cancel_src_list(k) is nonempty) 

            Send message CANCEL PARENT(cancel_src_list(k))  to k. 

 } 

} 

 

Compute_New_Parents(i) 

{ 
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 For each (node src in TT_i such that src != i) 

         Set new_p_i(src) = NULL. 

      Compute min-hop paths using Dijkstra. 

      For each (node src in TT_i such that src != i) 

         Set new_p_i(src) equal to the neighbor of node i along the minimum hop 

path from i to src.} 

 

Process_New_Parent(i, nbr, src_list, sn_list) 

{ 

 (Called when node i receives a  

 NEW PARENT(src_list, sn_list) message from nbr.) 

 Set update_list to empty list. 

 For each (node src in src_list)  

 { 

         Let sn_list.src denote the sequence number 

         corresponding to src in sn_list. 

         Add nbr to children_i(src). 

         Set new_updates = {(k,l,c,sn) in TT_i such that k = src 

         and sn > sn_list.src}. 

         Add new_updates to update_list. 

 } 

      Send message LSU(update_list) to nbr. 

} 
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Process_Cancel_Parent(i,nbr,src_list ) 

( 

    (Called when node i receives a CANCEL PARENT(src_list) message from nbr.) 

      For each (node src in src_list) remove nbr from children_i(src). 

} 

 

Send_Periodic_Updates(i) 

{ 

 Set update_list to empty. 

      For each (j in N_i such that TT_i(i,j). c != infinity) 

 { 

         Set TT_i(i,j).sn = current time stamp SN_i. 

         Add (i, j, TT_i(i,j).c, TT_i(i,j).sn) to update_list.  

 } 

      Send message LSU(update_list) to children_i(i). 

} 

 

2.4. Fuzzy Sighted Link State Routing (FSLS) 

2.4.1. Introduction  

A balance between the proactive link update overhead and the overhead due to 

suboptimal routing is struck in FSLS. FSLS is a proactive routing protocol for the flat 

network structure. In FSLS, the nodes transmits Link Status Updates (LSU) only at 

particular instants that are multiples of some constant time value te. Several link changes 
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are collectively sent in a single packet with a TTL value. The node wakes up every 2i-1 * 

te (i =1,2,3…) seconds and transmits a LSU with TTL set to si if there has been a link 

status change in the last 2i-1 * te seconds [5].  

 

2.4.2. Message Summary  

 

Fuzzy Sighted Link State (FSLS) routing protocol uses the space and time limitation to 

reduce the control overhead in MANET. A FSLS node propagates messages to the nodes 

based on the value of the TTL field, which is called as the Space Limitation. Also FSLS 

disseminates messages at particular time instants (te), which is called as the Time 

Limitation. FSLS is composed of one LSU message whose exact format is not defined yet 

[5].  

 

2.4.3. Pseudocode  

 

Node Set Si comprise of the nodes that are located at a Distance Si  from the node of 

interest [5] 

For I = 0 to 1000 

 WakeUp_Time = (2i-1 * te) 

 If (Link change in the Wakeup_Time) then 

             Transmit a TTL to the node Set Si 

Else 

  Wait for (2i * te) Time to send the TTL 
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 End if 

Next I 

 

If Si  is greater than the distance from any other node  

 TTL value is set to infinity – a Global LSU 

 Reset all the Counters and Timers 

A Periodic Timer is started which transmits the Global LSU at regular intervals 

End if 

 

2.5. Dynamic Source Routing (DSR) 

2.5.1. Introduction 

To send a packet to another host, the sender constructs a source route in the packet’s 

header, giving the address of each host in the network through which the packet should 

be forwarded in order to reach the destination host. The sender then transmits the packet 

over its wireless network interface to the first hop identified in the source route. When a 

host receives a packet, if this host is not the final destination of the packet, it simply 

transmits the packet to the next hop identified in the source route in the packet’s header. 

Once the packet reaches its final destination, the packet is delivered to the network layer 

software on that host. There are two basic operations that take place in DSR – namely, 

route discovery and route maintenance [7], [16]. 

 

 



 38

2.5.2. Message Summary  

 

DSR protocol is composed of the mechanisms of Route Discovery and Route 

Maintenance which operate totally on-demand. When a source node (S) wants to send a 

packet towards a destination (D), S finds out an explicit source route to follow on its way 

to D in its Route Cache. When a route out of the Route Cache provides the route to D, S 

can use the route to send packets if the Route Cache has the valid route. If S can not find 

the route in its Route Cache, S initiates the Route Discovery mechanism via a DSR Route 

Request (RREQ) and a DSR Route Reply (RREP) options. S propagates the RREQ option 

that includes the destination address to its neighbors. When intermediate nodes propagate 

the RREQ option, they record their addresses to the Address fields of the RREQ option. 

When D receives the RREQ option, it should reply with the DSR RREP option that 

includes a copy of the accumulated route record list from the RREQ option. When S 

receives the RREP option, S stores the route record list in its Route Cache, puts the source 

route into the header of the packets, and sends the packet that has the routing information 

in their headers [7], [16]. 

 

RREQ message 

When S can not find the route in its Route Cache, S initiates the Route Discovery 

mechanism via a Route Request (RREQ) message. The Target Address field indicates the 

IP address of a destination. Address [1], Address [2], …, Address [n] fields are 

accumulated when a RREQ is relayed at one of the relaying nodes between S and D.  
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0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Option Type Opt Data Len Identification 
Target Address 

Address [1] 
Address [2] 

 
Address [n] 

Figure 6 DSR Route Request message 

Refer to the field description in [7], [16] for further details. 

 

RREP message 

When D receives the RREQ option, it should reply with the DSR RREP option that 

includes a copy of the accumulated route record list from the RREQ option. S uses 

Address [1], Address [2], …, Address [n] fields as a  source route in order to send data 

packet to D. 

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
        Option Type Opt Data Len L Reserved 

Address [1] 
Address [2] 

 
Address [n] 

Figure 7 DSR Route Reply message 

Refer to the field description in [7], [16] for further details.  

 

RERR message 

When a node finds a link error while it attempts to forward a packet, it generates a RERR 

option. Error Source Address field indicates a node which generates a RERR message. 
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Error Destination Address field indicates a node to which a RERR message should be 

delivered. Type-Specific Information includes the detail of error contents.  

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Option Type Opt Data Len Error Type Reserved Salvage 
Error Source Address 

Error Destination Address 

Type-Specific Information 

Figure 8 DSR Route Error message 

Refer to the field description in [7], [16] for further details. 

 

DSR Source Route message 

Data packet includes a DSR Source Route option. Each active node forwards the data 

packet based on the DSR Source Route option.  

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Option Type Opt Data Len F L Reserved Salvage Segs Left 
Address [1] 
Address [2] 

 
Address [n] 

Figure 9 DSR Source Route message 

Refer to the field description in [7], [16] for further details. 

 

2.5.3. Algorithm for DSR  

Originating a Data Packet  
 
   When node A originates a packet, the following steps must be taken before transmitting 

the packet: 
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    1. If the destination address is a multicast address, piggyback the data packet on a 

Route Request targeting the multicast address. The following fields must be initialized as 

specified: 

           IP.Source_Address      = Home address of node A 

           IP.Destination_Address = 255.255.255.255 

           Request.Target_Address = Multicast destination address 

    2. Otherwise, call Route_Cache.Get() to determine if there is a cached source route to 

the destination. 

    3. If the cached route indicates that the destination is directly reachable over one hop, 

no Routing Header should be added to the packet.  Initialize the following fields: 

           IP.Source_Address      = Home address of node A 

           IP.Destination_Address = Home address of the Destination 

    4. Otherwise, if the cached route indicates that multiple hops are required to reach the 

destination, inserts a Routing Header into the packet. 

    5. Otherwise, if no cached route to the destination is found, insert the packet into the 

Send Buffer and initiate Route Discovery 

 

Processing a Route Request Option 

   When a node A receives a packet containing a Route Request option, the Route Request 

option is processed as follows: 

    1. If Request.Target_Address matches the home address of this node, then the Route 

Request option contains a complete source route describing the path from the initiator of 

the Route Request to this node. 
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       (a) Send a Route Reply. 

       (b) Continue processing the packet in accordance with the Next Header value 

contained in the Destination Option extension header. 

    2. Otherwise, if the combination (IP.Source_Address, Request.Identification) is found 

in the Route Request Table, then discard the packet, since this is a copy of a recently seen 

Route Request. 

    3. Otherwise, if Request.Target_Address is a multicast address then: 

       (a) If node A is a member of the multicast group indicated by            

Request.Target_Address, then create a copy of the packet, setting 

IP.Destination_Address = REQUEST.Target_Address, and continue processing the copy 

of the packet in accordance with the Next Header field of the Destination option. 

       (b) If IP.TTL is non-zero, decrement IP.TTL, and retransmit the packet. 

       (c) Otherwise, discard the packet. 

    4. Otherwise, if the home address of node A is already listed in the Route Request 

(IP.Source_Address or Request.Address[ ]), then discard the packet.  

    5. Let  

             m = number of addresses currently in the Route Request option 

             n = m + 1 

    6. Otherwise, append the home address of node A to the Route Request option 

(Request.Address[n]). 

    7. Set Request.IN_Index[n] = index of interface packet was received on. 

    8. If a source route to Request.Target_Address is found in our Route Cache, return a 

Cached Route Reply  
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    9. Otherwise, for each interface on which the node is configured to participate in a 

DSR ad hoc network: 

       (a) Make a copy of the packet containing the Route Request.  

       (b) Set Request.OUT_Index[n+1] = index of the interface. 

       (c) If the outgoing interface is different from the incoming interface, then set the C 

bit on both Request.OUT_Index[n+1] and Request.IN_Index[n] 

       (d) Link-layer re-broadcasts the packet containing the Route Request on the interface 

jittered by T milliseconds, where T is a uniformly distributed, random number between 0 

and BROADCAST_JITTER.  

 

Originating a Route Reply 

    1. If REQPacket.Request.Address[ ] does not contain any hops, then node A is only a 

single hop from the originator of the Route Request.  Build a Route Reply packet as 

follows: 

 

           REPPacket.IP.Source_Address       = REQPacket.Request.Target_Address 

           REPPacket.Reply.Target                 = REQPacket.IP.Source_Address 

           REPPacket.Reply.OUT_Index[1]   = REQPacket.Request.OUT_index[1] 

           REPPacket.Reply.OUT_C_bit[1]   = REQPacket.Request.OUT_C_bit[1] 

           REPPacket.Reply.Address[1]         = The home address of node A 

 GOTO step 3. 

    2. Otherwise, build a Route Reply packet as follows: 

           REPPacket.IP.Source_Address         = The home address of node A 
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           REPPacket.Reply.Target                   = REQPacket.IP.Source_Address 

           REPPacket.Reply.OUT_Index[1..n] = REQPacket.Request.OUT_index[1..n] 

           REPPacket.Reply.OUT_C_bit[1..n] = REQPacket.Request.OUT_C_bit[1..n] 

           REPPacket.Reply.Address[1..n]       = REQPacket.Request.Address[1..n] 

    3. Send the Route Reply jittered by T milliseconds, where T is a uniformly distributed 

random number between 0 and BROADCAST_JITTER [7], [16]. 

 

2.6. Zone Routing Protocol (ZRP) 

2.6.1. Introduction 

Zone Routing Protocol is a mix of both proactive and reactive schemes. It is proactive 

with respect to the neighborhood and reactive with respect to the whole network. Each 

node has and maintains a routing zone comprising of its neighbors using the MAC layer 

protocols or through MAC-level Neighbor Discovery protocol. The routing zones of the 

neighbors overlap. ZRP maintains the zones using a protocol called IntrAzone Routing 

Protocol (IARP) where zones are defined by Zone Radius. Zone radius is nothing but 

number of hops. All nodes that can be reached within this zone radius belong to a zone. 

When a change occurs in the topology, IARP packets are exchanged and appropriate 

changes are made in the routing tables of the nodes in the zones. The packets are 

restricted from being transmitted to nodes outside a zone with the help of hop count. The 

IntErzone Routing Protocol (IERP) is responsible for acquiring routes to destinations that 

are located beyond the routing zone. The IERP uses route query (RREQ) / route reply 

(RREP) packets to discover a route to modes outside the Zone [9]. 
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2.6.2. Message Summary  

The ZRP is composed of proactive and reactive routing protocols. Proactive protocols use 

a routing zone which is defined in hops as the minimum distance from a node. Distance 

Vector (DV) IARP message or Link State (LS) IntrAzone Routing Protocol (IARP) 

message have the characteristic of proactive routing protocols. ZRP IARP node sends the 

IARP messages to nodes whose distance from the source node is exactly same as the 

radius of the source node's routing zone. This mechanism can reduce the packet control 

overhead compared to the conventional neighbor flooding. To send packets to the 

peripheral node, ZRP nodes use a series of IP unicast or an IP multicast, which is called 

bordercasting.  

Distance Vector (DV) IntErzone Routing Protocol (IERP) message has the characteristic 

of a reactive routing protocol. ZRP nodes use the proactive maintenance within the 

routing zones through its proactive IARP messages and support the on-demand route 

determination between nodes located at distances beyond the routing zones by using 

reactive IERP Query/Reply messages. For example, when a destination is within a 

routing zone, the path to the destination is already known. If the destination is not within 

source's routing zone, the source bordercasts a Route Query to its peripheral nodes. All 

the peripheral nodes check if the destination is within their routing zones. If one of the 

peripheral nodes finds the destination, it replies by sending Route Reply towards the 

source. Otherwise, the peripheral nodes forward the query to its peripheral nodes, which 

performs the same routing zone algorithm. While bordercasting the Route Query, the 

accumulated route to the destination is stored in the query packet which is used for the 

destination to send back the Route Reply to the sender. The Route Reply packet follows 
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the reverse sequence of IP addresses specified in the Route Query packet. To reduce the 

size of the Route Query in the intermediate nodes, the nodes can buffer the address 

information accumulated in the Route Query. Therefore, the address information can be 

removed from Route Query packet, which reduces the size of the Route Query packet and 

improves the query traffic and query response time. 

 

Distance Vector (DV) IARP message 

In the routing zone, each node periodically exchanges DV IARP message including the 

routing table of each node in order to update the network topology and calculate the 

shortest path.  

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Destination Address 
Destination Subnet Mask (Optional) 

Next Hop #1 Address 
Next Hop #2 Address 

Reserved Metric Type Metric Value 
 

Reserved Metric Type Metric Value 
Hop Count         

Figure 10 ZRP Distance Vector IARP message 

Refer to the field description in [9] for further details. 

 

Link State (LS) IARP message 

ZRP nodes depend on the Neighbor Discovery/Maintenance (NDM) protocol for the basic 

neighbor discovery. Each node knows the nodes within the routing zone. After 

discovering its neighbors, each node can calculate the shortest path to a certain 

destination node within the routing zone. To report the shortest path and Link State 
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information between a source node and a destination node within the routing zone, ZRP 

nodes use LS IARP message. Link Source Address indicates the IP address of the source 

node which propagates the Link State update. Link Destination Address indicates the IP 

address of the destination node to which the LS IARP Link State update message should 

be delivered. Packet Source Address indicates the IP address of the intermediate node 

within the source's routing zone which relays the source's LS IARP. Zone Radius 

indicates the Routing Zone Radius of the link's source node. 

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Link Source Address 
Link Destination Address 
Packet Source Address 

Link State ID Zone Radius Flags 
Link Destination Subnet Mask (Optional) 

Reserved Metric Type Metric Value 
Reserved Metric Type Metric Value 

 
Reserved Metric Type Metric Value 

Figure 11 ZRP Link State IARP message 

Refer to the field description in [9] for further details. 

 

IERP message 

 

The IERP messages are based on the query/reply mechanism, which are used to find out 

and maintain routes to source and destination nodes that are beyond a node's routing zone. 

ZRP nodes use source routes accumulated in the IERP packets and cached routes stored 

in ZRP nodes. The cached routes in ZRP nodes provide a faster response to find out the 

destination, because queries are terminated before reaching the query destination based 

on the cached routes of node which finds the query destination. The Query Extension can 
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be implemented for the node which reported cached routes to inform the destination 

about getting the reverse path towards the source. The requested Quality of Service (QoS) 

may need the explicit source route to propagate the QoS packets, which is provided by 

the source route mechanism from the IERP packets. The type in IERP packet indicates 

the type of IERP packet which can be Route Query, Query Extension or Route Reply. TTL 

shows the number of hops that a Route Query may continue to propagate. Hop count 

indicates the hop count from the source to the current node in Route Query, Query 

Extension messages or the hop count from the source to route destination in Route Reply, 

Route Accumulation and Route Optimization messages [9]. 

 

0          1  2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type TTL Hop Count Flags 
Current ROF Ptr Num Dests = D Num Nodes = N 

Query ID Reply ID 
Query/Route Source Address 

Replying Node Address 
Bad Link Source Address 

Query/Route Destination (1) Address 
Query/Route Destination (2) Address 

 
Query/Route Destination (D) Address 

Next IERP Address 
Next BRP Address 
Prev IERP Address 

Intermediate Node (1) Address 
Intermediate Node (2) Address 

 
Intermediate Node (N) Address 

Node Metric Type D Metric Value 
Node Metric Type D Metric Value 

 
Node Metric Type D Metric Value 

Route Optimization Flags (Node 0 == Source) 
Route Optimization Flags (Node 1) 

 
Route Optimization Flags (Node N) 

Route Optimization Flags (Node N +1== Dest) 
Figure 12 ZRP IERP message 
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Refer to the field description in [9] for further details.  

 

Bordercasting Resolution Protocol  

To forward IERP route queries, ZRP nodes use BRP providing the bordercasting 

message delivery service. A bordercasting node relays the BRP messages to its peripheral 

nodes. 

 

2.6.3. Pseudocode 

 

Update Intrazone Routing Table 

 

if (packet arrived) 

      {host, route->next_hop,route->hop_count} <-- packet 

else 

{ 

{host} <-- intrpt 

 route->next_hop=host 

 if (type(intrpt) == "Neighbor Found") 

 // indicates that direct contact with the host has been confirmed 

{  

for recorded_host = each host in Intrazone_Routing_Table 

{ 

best_route = Intrazone_Routing_Table[recorded_host,0]  

     if (best_route->hop_count <  ROUTING_ZONE_RADIUS) 
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     { 

          packet <-- {recorded_host,my_id,hop_count+1} 

            send(packet,host) 

    // send is the standard function used in IP 

     } 

} 

       route->hop_count=1 

} 

 else 

// Neighbor lost-> used by the neighbor Discover/Maintenance  

//Protocol to indicate that direct with the connection host is lost. 

  route->hop_count=INF 

}  

 

former_best_route = Intrazone_Routing_Table[host,0]  

if (route->hop_count < INF) 

add(Intrazone_Routing_Table[host], route) 

else 

remove(Intrazone_Routing_Table[host],route) 

      best_route = Intrazone_Routing_Table[host,0] 

      if (best_route != NULL) 

      { 

  if (best_route->hop_count != former_best_route->hop_count 
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   && best_route->hop_count < ROUTING_ZONE_RADIUS) 

       { 

        packet <-- {host, my_id, best_route->hop_count+1} 

          broadcast(packet) 

       }   

} 

      else 

      { 

       force_intrpt("IERP","Host Lost",{host}) 

// “Host Lost” is used by IARP to notify IERP that node no longer exists  

        packet <-- {host, my_id, INF} 

       broadcast(packet) 

} 

 

Intrazone Node Lost 

 

{lost_host} <-- intrpt 

for host = each host in Interzone Routing Table 

{ 

m=0 

 while (Interzone_Routing_Table[host,m] != NULL) 

 { 

  route=Interzone_Routing_Table[host,m] 
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       if (lost_host (EXISTS IN) route) 

   remove(Interzone_Routing_Table[host,m]) 

else 

   m++ 

 } 

}  

force_intrpt("IERP","repair",{lost_host}) 

Initiate Route Discovery 

{dest} <-- intrpt 

req_id++ 

route(0)=my_id 

last_hop=0 

if (type(intrpt) == "repair") 

max_hops=MAX_REPAIR_HOPS 

else 

max_hops=MAX_REQUEST_HOPS 

 

packet<-- {REQUEST, req_id, last_hop, NULL, max_hops, dest, route} 

bordercast(packet)  

add (Processed_Request_List, {my_id, req_id}) 

 

Report Route Failure 

{route,dest} <-- intrpt 
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last_hop=0 

while (route(last_hop) != my_id) 

last_hop++  

packet <-- {FAILURE, NULL, last_hop, last_hop, NULL, dest, route} 

send(packet, route(last_hop-1)) 

 

 

Receive IERP Packet 

 

{pk_type, req_id, last_hop, bad_hop, max_hops, route} <-- packet 

{overheard} <-- intrpt 

switch(pk_type) 

{ 

case:  REQUEST 

 add({Processed_Request_List, source, req_id) 

 LSP1_terminate = FALSE 

 n=0 

 while (!LSP1_terminate && n < last_hop) 

 { 

  if (Intrazone_Routing_Table[route(n)]!=NULL) 

   LSP1_terminate = TRUE 

n++ 

 }  
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 LSP2_terminate = (Processed_Request_List[source,req_id]!= NULL) 

if (!overheard && !LSP1_terminate && !LSP2_terminate && 

      last_hop < max_hops) 

 { 

  last_hop++ 

  route(last_hop)=my_id 

  if (dest (EXISTS IN) Intrazone_Routing_Table) 

  { 

   packet<--{REPLY,req_id,last_hop,bad_hop,max_hops, 

                                                             dest,route}    

send(packet, route(last_hop-1)) 

  } 

  else 

  { 

   packet<--{REQUEST,req_id,last_hop,bad_hop,max_hops, 

                                                             dest,route} 

       bordercast(packet) 

  } 

 } 

 break 

  

case:   REPLY 

 case:   FAILURE 
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  if (route(0) == my_id) 

       { 

        if (pk_type == ROUTE_REPLY) 

      add(Interzone_Routing_Table, route) 

          else 

   { 

      link(0)=route(bad_hop) 

      link(1)=route(bad_hop+1) 

     remove(Interzone_Routing_Table,link) 

   } 

       } 

       else 

       { 

        last_hop -- 

   packet <-- {pk_type,req_id,last_hop,bad_hop,max_hops, 

                                                             dest,route} 

   send(packet, route(last_hop-1)) 

       } 

} 
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2.7. Optimized Link State Routing Protocol (OLSR) 

2.7.1. Introduction 

The OLSR protocol uses Multipoint relays (MPR). MPRs are the set of nodes that connect 

the current node to nodes that are 2 hops away. This MPR set information is passed to the 

neighbors. By using MPRs, the number of Link State Updates and the length of the Link 

State Updates are reduced. The length of the Link State Updates are reduced because not 

all the links in the network are advertised and only the links that lead to the MPR set are 

sent to the neighbors. OLSR is optimal for dense networks rather than for sparse networks.  

In a fast changing mobile environment, the frequency at which the control packets are 

transferred can be increased in OLSR [1]. 

 

2.7.2. Message Summary  

Optimized Link State Routing Protocol (OLSR) node selects Multipoint Relays (MPRs) 

which are the nodes within one hop range of the node. Only the MPR set can resend the 

node's broadcast messages to reduce the control overhead in the classical flooding 

mechanism. The neighbors which are not selected as the MPR node receive and process 

the node's broadcast messages but do not retransmit the messages.  

 

Hello message 

The node selects the MPR set based on the value of the willingness field of Hello 

message flooded from the node's neighbors. OLSR has characteristics of a proactive and a 

hop-by-hop routing algorithms for mobile ad-hoc network (MANET), where the route 

could be prepared immediately at the OLSR node and each OLSR node should decide the 
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next hop to forward the data packet based on its local routing information, without any 

information of source route in the header of the data packet. A MPR selector node can 

use a Hello message to inform its neighbors of a new MPR set if MPR selector node 

selects another MPR set due to a change in the previous MPR set over time. 

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Reserved Htime Willingness 
Link Code Reserved Link Message Size 

Neighbor Interface Address 
Neighbor Interface Address 

 
Link Code Reserved Link Message Size 

Neighbor Interface Address 
Neighbor Interface Address 

 
Figure 13 OLSR Hello message 

Refer to the field description in [1] for further details.  

 

Topology Control message  

Topology Control (TC) message advertises the all the main addresses of the MPR 

selectors of the originator node. 

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

ANSN Reserved 
Advertised Neighbor Main Address 
Advertised Neighbor Main Address 

 
Figure 14 OLSR Topology Control message 

Refer to the field description in [1] for further details.  
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Host and Network Association message 

OLSR node uses a Host and Network Association (HNA) message to advertise the 

interface addresses of the associated networks and hosts that do not support the OLSR 

routing protocol to other nodes in the MANET network. 

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Network Address 
Netmask 

Network Address 
Netmask 

 
Figure 15 OLSR Host and Network Association message 

Refer to the field description in [1] for further details. 

 

2.7.3. Pseudocode  

Thus, upon receiving a basic packet, a node performs the following tasks for each 

encapsulated message: 

 

1. If the time to live of the message is less than or equal to'0' (zero), the message 

MUST silently be dropped. 

2. If there exists a tuple in the duplicate set, where: 

D_addr == Originator Address, AND 

D_seq_num == Message Sequence Number 

then the message has already been completely processed and MUST silently be 

ignored. 

3. Otherwise, if the node implements the Message Type of the message, the message 

MUST be processed according to the specifications for the message type. 
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4. Otherwise, if the node does not implement the Message Type of the message the 

message SHOULD be processed according to the following algorithm: 

1. If the sender interface address of the message is not detected to be in the 

symmetric neighborhood of the node, the message MUST silently be dropped. 

2. If the sender interface address of the message is detected to be in the 

symmetric neighborhood of the node, an entry in the duplicate set is recorded 

with: 

                    D_addr = originator address 

                      D_seq_num = Message Sequence Number 

                    D_time = current time + D_HOLD_TIME. 

3. If the sender interface address is an interface address of a MPR  selector of 

this node and if the time to live of the message is greater than '1', the message 

MUST be forwarded according to the following: 

                           3.1 The TTL of the message is reduced by one. 

               3.2 The hop-count of the message is increased by one 

               3.3 The message is broadcasted on all interfaces                    

 

The Neighbor Set should be updated as follows: 

     1.    Upon receiving a HELLO message, if there exists no neighbor tuple with 

N_if_addr == Sender Interface Address and N_if_id == identifier of the Receiver 

Interface,  a new tuple is created with 

               N_if_addr   = Sender Interface Address 

               N_if_id     = identifier of the Receiver Interface 
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               N_SYM_time  = current time - 1 (expired) 

               N_time      = current time + NEIGHB_HOLD_TIME 

 

     2.    The tuple (existing or new) with:  

 N_if_addr == Sender Interface Address and 

 N_if_id == identifier of the Receiver Interface, 

 is then modified as follows: 

2.1 N_main_addr = Originator Address. 

2.2 N_willing = Originator Willingness 

2.3 N_time      = max (N_time, current time + NEIGHB_HOLD_TIME); 

2.4 N_ASYM_time = current time + NEIGHB_HOLD_TIME; 

2.5 if the node finds the Receiver Interface Address among the addresses listed 

in the HELLO with:  

Link Interface Address == Sender Interface Address,  then, the tuple 

is modified as follows: 

 if Link Type == LOST_LINK then N_SYM_time = current time - 1 

(i.e. expired) 

                    else: 

                          N_SYM_time = current time + NEIGHB_HOLD_TIME, 

          N_time     = current time + 2 *NEIGHB_HOLD_TIME. 
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The rule for setting N_time is the following: a link loosing its symmetry should still be 

advertised during at least NEIGHB_HOLD_TIME.  This allows neighbors to detect the 

link breakage. 

The 2-hop Neighbor Set is updated as follows: 

 

1.    For each 2-hop interface address listed in the HELLO message with Link 

Type SYM_LINK or MPR_LINK, a 2-hop tuple is created with: 

               N_main_addr      = Originator Address; 

               N_if_addr           = Link Interface Address corresponding to the 2-hop interface 

address; 

               N_2hop_addr      = the interface address of the 2-hop neighbor; 

               N_time                = current time + 2HOP_HOLD_TIME. 

  N_2hop_main_addr = the main address of the node, extracted from the multiple 

interface association information base; if no address is available, the interface 

address N_if_addr is used. 

             This tuple may replace an older similar tuple with same N_if_addr and 

N_2hop_addr values. 

 

2.    For each 2-hop interface address listed in the HELLO message with Link 

Type LOST_LINK or ASYM_LINK, all the 2-hop tuples where: 

               N_if_addr == Link Interface Address corresponding to the 2-hop interface 

address, and 

               N_2hop_addr == the 2-hop interface address are deleted. 
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Based on the information obtained from the HELLO messages, each node constructs its 

MPR selector set. 

 

Thus, upon receiving a HELLO message, if a node finds one of its interface addresses in 

a list with a link type of "MPR", it MUST update the MPR selector set to contain updated 

information about the sender of the HELLO message: 

 

     1.    If there exists no MPR selector tuple with: 

                    MS_if_addr   == Link Interface Address and 

                    MS_main_addr == Originator Address 

 

     2.    If there exists no MPR selector tuple with: 

               MS_if_addr   == Link Interface Address then a new tuple is created with: 

               MS_if_addr   = Link Interface Address 

 

     3.    The tuple is then modified as follows: 

               MS_main_addr = Originator Address, 

               MS_time      = current time + NEIGHB_HOLD_TIME [1]. 
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2.8. Landmark Ad Hoc Routing (LANMAR) 

2.8.1. Introduction 

LANMAR is a proactive routing scheme, which combines the features of Fisheye State 

Routing (FSR) and Landmark Routing. Landmarks are used for each set of nodes that 

move as a group. A packet that has to reach a remote destination initially aims at the 

landmark of the remote group and then as it gets closer to the landmark, it switches to 

Fisheye State Routing that is more accurate. Both scalability and mobility problems are 

solved as the line and storage overhead are kept low.  

Each node has a unique physical identifier such as a 48-bit Ethernet address, a unique 

logical identifier consisting of a subnet field and a host field and a landmark ON/OFF 

flag. The flag shows whether the node is a landmark or not. There is a list and three tables 

for each node i. There is a neighbor list Ai , a topology table TTi , a next hop table NEXTi 

and a distance table Di. TTi consists of two parts – link state information provided by a 

node j and a time stamp indicating the age of the link state information [6]. 

 

2.8.2. Landmark Election  

Initially no landmarks exist. FSR functionality is used and a node will then learn from the 

FSR table that a particular number of group members are in the group. This node then 

becomes the landmark of the group. In case more than one node declares itself as the 

landmark, the node whose group has a larger number of members wins. In case of a tie, 

the lowest ID wins. A landmark may lose its role as the structure of mobile networks 

keeps changing. Death of landmarks is detected using timeouts. This results in a new 

landmark election. 
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2.8.3. Message Summary  

Landmark Routing Protocol (LANMAR) uses landmarks which are selected in each 

logical subnet. Each node knows routes to all nodes within a scoped range predefined by 

the maximum number of hops. Above the scoped range, a node sends a packet to a 

landmark node representing a destination subnet. When the landmark node receives the 

packet, it forwards the packet to the destination node in its subnet. The routing table in 

each node includes the nodes within the scope and the landmark nodes to reduce the 

routing traffic overhead. The routing update packets are propagated only within the 

scoped area. LANMAR uses only one LANMAR Update (LMU) message. N_landmarks 

field indicates the number of landmarks in a subnet. N_drifters field indicates the number 

of drifters in a subnet. Landmark Address 1 field indicates the IP address of a landmark 

of a subnet. Next Hop Address field indicates one of the neighboring nodes of the 

landmark node. Distance 1 field indicates the distance between a landmark and Next Hop 

Address 1.  Drifter Address 1 field indicates the IP address of the drifter of a subnet. 

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Landmark Flag N_landmarks N_drifters Reserved 
Landmark Address 1 
Next Hop Address 1 

Distance 1 N_numbers 1 Sequence Number 1 
 

Drifter Address 1 
Next Hop Address 1 

Distance 1 Drifter Sequence Number 1  
 

Figure 16 LANMAR Update message 

Refer to the field description in [6] for further details. 
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2.8.4. Pseudocode  

//Choosing landmarks 

choose-landmark(id,level) 

 selected = -1 

 closest = 0 

 for each landmark l in DV table 

  if(l.level == level) 

  d=abs(hash(l.id)-hash(id)) 

  if (d<closest or selected == -1) 

  closest = d 

  selected = l.id 

 return selected 

 

//Choosing childs for landmarks 

choose-child(id,parent,level) 

 selected = -1 

 closest = 0 

 for each landmark l in DV table 

  if(l.level == level and l.parent == parent) 

  d=abs(hash(l.id)-hash(id)) 

  if (d<closest or selected == -1) 

  closest = d 

  selected = l.id 

 return selected 

 

//Print landmark table. 
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RoutingLanmarPrintLandmarkTable(Node *node, LanmarData *lanmar) 

start 

    char addrString[MAX_STRING_LENGTH] 

    char clockStr[MAX_STRING_LENGTH] 

    LanmarLandmarkTableRow *row 

 

    row = lanmar->landmarkTable.row 

    print "Landmark table content:" 

    begin if (row == NULL) 

            print "empty" 

    end if 

    begin while (row != NULL) 

         IO_ConvertIpAddressToString(row->destAddr, addrString) 

        Print “destAddr = ", addrString 

        IO_ConvertIpAddressToString(row->nextHop, addrString) 

        Print "nextHop = ", addrString 

  assert(row->nextHop != 0); 

        print "numLandmarkMember =”, 

               row->numLandmarkMember) 

        print "distance = ", 

               row->distance 

        print "sequenceNumber = ", 

               row->sequenceNumber 

        ctoa(row->timestamp, clockStr) 

        print "timestamp =", clockStr 

        row = row->next; 
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     end while 

end 

 

//Print drifter table. 

RoutingLanmarPrintDrifterTable(Node *node, LanmarData *lanmar) 

begin 

    char addrString[MAX_STRING_LENGTH] 

    char clockStr[MAX_STRING_LENGTH] 

    LanmarDrifterTableRow *row 

    row = lanmar->drifterTable.row 

    print "Drifter table content:" 

    begin if (row == NULL) 

            print "empty" 

    end if 

    begin while (row != NULL) 

        IO_ConvertIpAddressToString(row->destAddr, addrString); 

        Print "destAddr = ", addrString 

        IO_ConvertIpAddressToString(row->nextHop, addrString); 

        Print "nextHop =", addrString 

        Print "distance = ", 

               row->distance 

 Print "sequenceNumber = ", 

               row->sequenceNumber 

        ctoa(row->lastModified, clockStr) 

 Print "timestamp = ", clockStr 

        row = row->next 
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     end while 

end [6] 

 

 

2.9. Location-Aided Routing (LAR) 

2.9.1. Introduction 

In Location-Aided Routing (LAR), location information is used to narrow down the 

routing area to a “Request zone”. This reduces the routing overhead. The Global 

Positioning System (GPS) may be used to provide the required location information. In 

the real world, some amount of error is associated with the location information. The 

errors that occur are the differences between the actual coordinates that give the location 

and the coordinates calculated by GPS. Assume that there is a node S that needs to 

communicate with a destination node D. Suppose S knows the location L of D at time t0, 

then the “Expected zone” of the node D can be estimated at time t1 and is given by the 

circular region of radius v(t1 - t0) centered at location L, where v is the average speed of 

node D. The “Request zone” is usually larger than the “Expected zone” to increase the 

probability of the message reaching the destination. 

 

2.9.2. Message Summary  

LAR uses the GPS as the Route Discovery mechanism to limit the number of flooding 

messages of route discovery. It is assumed that a source S wants to find a route to a 

destination D. At time t0, S knows the location L of D by using GPS position information. 

If D moves with velocity v, at time t1, S could expect the location of D by using the 
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equation of v(t1 - t0). The circular region with radius of v(t1 - t0) centered at the location L 

is the Expected Zone of D. Therefore, Route Request message from S can flood to this 

limited Expected Zone to find out the route to D. Only the nodes located in the Request 

Zone can forward the Route Request to D. The nodes outside the Request Zone discard 

the Route Request. When D receives the Route Request, D replies by sending a Route 

Reply towards S. The path of Route Reply follows the reverse path of the Route Request. 

After S finds the route to D, S starts sending data packet. If the intermediate node finds 

that its next hop is broken, it generates the Route Error message and the Route Error 

message is forwarded to S. The exact formats of LAR messages are not defined yet. 

 

2.9.3. Pseudocode 

//Flooding 

check 

begin if  

     node ∈ request zone  

      forward request to node 

else  

      do not forward 

end if  

 

//s is the source and i is the next hop, δ is a parameter 

nexthop(δ,d)  

begin 

 begin if  
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ds +δ>= di 

request forwarded 

else 

request discarded 

end if  

end 

 

2.10. Greedy Perimeter Stateless Routing (GPSR) 

2.10.1. Introduction 

Greedy Perimeter Stateless Routing (GPSR) uses only positions of a router’s immediate 

neighbors and a packet’s destination to make routing decisions. Greedy forwarding is 

implemented in cases where Perimeter forwarding is not possible. Geographic routing 

helps routers to be almost stateless, they just have to know the neighboring routers and 

they need not have any other information on network topology.  

The Greedy Perimeter Stateless Routing comprises of two methods for forwarding 

packets – greedy forwarding and perimeter forwarding. Greedy forwarding is used as 

much as possible and only in cases where Perimeter forwarding is not possible.  

By keeping only the local topology state, GPSR scales better in per-router state than 

shortest-path and ad hoc routing protocols as the number of network destinations 

increases. When topology changes frequently due to mobility, GPSR can use local 

topology information to find the new correct routes quickly. 
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2.10.2. Message Summary 

Greedy Perimeter Stateless Routing (GPSR) uses a Beacon message piggybacked by data 

packets to update a node's topology with node's neighbors only. GPSR uses GPS as the 

Route Discovery mechanism. The advantage of using GPS is that a source node trying to 

find a route to a destination knows the coordinates of the destination's physical location 

in advance. Therefore, the source can use the position information of the designation to 

calculate the shortest path from the one of its neighbors to the destination. The source 

node knows its neighbor information by using periodical Beacon message. Therefore, the 

source can select the one of its neighbor nodes which provides the source node with the 

shortest path between the neighbor and the destination. The format of GPSR Beacon 

message is not defined yet. 

 

2.10.3. Pseudocode 

 

//comparing neighbors 

function static int NeighbEntCmp(const void *a, const void *b) 

start 

  nsaddr_t ia = ((const NeighbEnt *) a)->dst 

  nsaddr_t ib = (*(const NeighbEnt **) b)->dst 

  begin if  

   (ia > ib) return 1 

  end if 

  begin if  

(ib > ia) return –1 
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  end if  

  return 0 

end 

 

function NeighbTable(GPSR_Agent *mya) 

start 

  int i 

  nents = 0 

  maxents = 100 

  tab = new (NeighbEnt *)[100] 

  a = mya 

  for (i = 0; i < 100; i++) 

    tab[i] = new NeighbEnt(a) 

  end for 

end 

 

begin case   

    switch (mode) 

     case GPSRH_BEACON: 

      begin if (address()) 

 // don't receive my own beacons; I'm not my neighbor 

 beacon(p, gpsrh) 

      break 
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    case GPSRH_PPROBE: 

      peri(p, gpsrh) 

      break 

    case GPSRH_DATA_GREEDY: 

      as = Address::instance().print_nodeaddr(addr_) 

      print(stderr, "greedy data pkt @ %s:GPSR_PORT!\n",  as) 

      fflush(stderr) 

      delete[ ] as 

      break 

    case GPSRH_DATA_PERI: 

      as = Address::instance().print_nodeaddr(addr_) 

      print(stderr, "peri data pkt @ %s:GPSR_PORT!\n",  as) 

      fflush(stderr) 

      delete[ ] as 

      break 

    default: 

      as = Address::instance().print_nodeaddr(addr_) 

      print(stderr, "unk pkt type %d @ %s:GPSR_PORT!\n", gpsrh->mode_, as) 

      fflush(stderr) 

      delete[ ] as 

      break 

     

 end case   
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  else 

    forward Packet 

 

2.11. Ad hoc On Demand Distance Vector (AODV) 

2.11.1. Introduction 

AODV is capable of both unicast and multicast routing. AODV uses sequence numbers to 

ensure the freshness of routes. It is self starting, loop-free, and scales to large numbers of 

mobile nodes.  AODV builds routes using a route request / route reply query cycle. When 

a source node desires a route to a destination for which it does not already have a route, it 

broadcasts a Route Request (RREQ) packet across the network. Nodes receiving this 

packet update their information for the source node and set up backwards pointers to the 

source node in the route tables. In addition to the source node's IP address, current 

sequence number, and broadcast ID, the RREQ also contains the most recent sequence 

number for the destination of which the source node is aware. A node receiving the 

RREQ may send a Route Reply (RREP) if it is either the destination or if it has a route to 

the destination with corresponding sequence number greater than or equal to that 

contained in the RREQ. If this is the case, it unicasts a RREP back to the source. 

Otherwise, it rebroadcasts the RREQ. Nodes keep track of the RREQ's source IP address 

and broadcast ID. If they receive a RREQ that they have already processed, they discard 

the RREQ and do not forward it.  

As the RREP propagates back to the source, nodes set up forward pointers to the 

destination. Once the source node receives the RREP, it may begin to forward data 

packets to the destination. If the source later receives a RREP containing a greater 
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sequence number or contains the same sequence number with a smaller hop count, it may 

update its routing information for that destination and begin using the better route.  

The route is maintained as long as there are data packets periodically being sent from the 

source to the destination along that path. Once the source stops sending data packets, the 

links will time out and eventually be deleted from the intermediate node routing tables. If 

a link break occurs while the route is being used for transmission of data, the node 

upstream of the break propagates a Route Error (RERR) message to the source node to 

inform it of the now unreachable destination(s). After receiving the RERR, if the source 

node still desires the route, it can reinitiate route discovery [2].  

 

2.11.2. Message Summary  

Ad hoc On-demand Distance Vector (AODV) routing protocol is composed of a Hello, a 

Route Request (RREQ), a Route Reply (RREP), a Route Error (RERR), and a Route Reply 

Acknowledgement (RREP-ACK) message. To reduce the data packet overhead, AODV 

nodes store routing information in the node routing table instead of using source route 

added into the data packet such as in DSR. AODV nodes check the link status of next 

hops in active routes for the route maintenance. If a link break is detected, the node which 

finds the link break sends a RERR message to notify other nodes that the link was broken. 

 

Route Request message  

An AODV node increases the sequence number by one whenever the node triggers an 

action to do RREQ, RREP, RERR, or RREP-ACK. It is assumed that when a source node 

finds a route towards a destination, previous valid route to the destination is expired in its 
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routing table, and it does not have a valid route to the destination. The destination 

sequence number in RREQ message is copied from the source's routing table which stores 

the last known destination sequence number. If a source node generating a RREQ 

message does not know the sequence number of the destination, it sets the U bit 

(unknown sequence number) in its RREQ message. The field of RREQ ID is increased by 

one from the last RREQ ID issued by the source node. When the source node receives the 

RREQ message again from its neighbors due to the local broadcasting property of 

MANET, it just discards the RREQ message after comparing the RREQ ID and originator 

IP address in the received RREQ message and the RREQ ID and originator IP address 

stored in the source node's Path_Discovery_Time buffer.  

To make the bidirectional communication between a source node and a destination node, 

the source node must not only know the route to the destination, but also the destination 

node should know a route back to the source node. As one of RREQ propagation 

scenarios, one of the intermediate nodes having a valid route to the destination can reply 

by sending a RREP, therefore, the destination node does not receive the RREQ message 

from the source node and can not make a route back to the source node. To compensate 

this situation, the source node sends the RREQ message including the bit of G (gratuitous 

RREP flag) that is set, which notifies the intermediate node generating the RREP message 

to unicast a gratuitous RREP to the destined destination node.  To find out a destination, a 

source node uses an expanding ring search algorithm to avoid the network-wide 

dissemination of RREQs, which can be implemented by the TTL value in the RREQ IP 

header. If a source node does not receive a RREP message, it resends a RREQ message 

with the TTL increased by TTL_Increment. This will continue until the value of TTL in 
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the RREQ reaches TTL_Threshold. The first-in, first-out (FIFO) scheme is used to buffer 

the data packet which waits for a RREP after a RREQ has been sent. 

A source node should wait for a RREP message by using a binary exponential backoff 

mechanism to reduce network congestion. If the source node does not receive a RREP 

message within the Net_Traveral_Time after sending a RREQ message, the source node 

resends the second RREQ message. In this case, the source node should wait for the 

RREP message for a duration of 2*Net_Traveral_Time which is two times longer than 

the first Net_Traveral_Time. If the source node does not receive the RREP message, it 

can resend the third RREQ message up to RREQ_Retries. For this case, the new waiting 

time for the source node is calculated by multiplying 2 into the previous waiting time, 

which is 4* Net_Traveral_Time. When an intermediate node receives a RREQ message, it 

checks whether it receives a RREQ with the same Originator IP Address and RREQ ID. It 

discards the RREQ if it receives such a RREQ. If it did not receive such a RREQ before, it 

first increases the value of the hop count field in the received RREQ by one, then it search 

a reverse route to the Originator IP Address. If it finds a reverse route to the Originator 

IP Address, the sequence number of the route in its routing table is copied from the value 

of the current sequence number of the RREQ. When the intermediate node receives a 

RREP message for the response of the RREQ message, it should have a reverse route to 

send the received RREP message towards the Originator IP Address. To carry out the 

refresh mechanism of the reverse route, when an intermediate node receives a RREQ 

message, it sets the value of the lifetime of the reverse route entry for the Originator IP 

Address as the maximum of (ExistingLifeTime, MinimalLifeTime). 

 



 78

 

0          1   2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type J R G D U Reserved Hop Count 
RREQ ID 

Destination IP Address 
Destination Sequence Number 

Originator IP address 
Originator Sequence Number 

Figure 17 AODV Route Request message 

Refer to the field description in [2] for further details. 

 

2.11.3. Route Reply message  

When a destination receives a RREQ message or an intermediate node which has an 

active route to a destination, it should respond by sending a RREP message towards the 

source node. The following section describes the case that the destination receives the 

RREQ. The fields of Destination IP Address and the Originator IP Address of the RREP 

message come from the corresponding fields in the RREQ message. The unicast route for 

the RREP towards the source follows the reverse path from which the RREQ is delivered. 

The value of the Hop Count field is increased by one at each intermediate node towards 

the source. The value of My_Roure_Timeout in the destination is copied into the value of 

Lifetime field. When the intermediate node sends the RREP message, the field value for 

the Destination Sequence Number comes from the value of its destination sequence 

number which can be extracted from its routing table. The value of the Hop Count field is 

calculated from the distance in hops from the destination to the intermediate node. The 

value obtained from subtracting the current time from the expiration time in the route 

table entry can be the value of the Lifetime field. The forward route entry in the precursor 

list is copied from the source IP address of the received RREQ, which indicates the last 
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hop node from which the intermediate node receives the RREQ. The reverse route entry 

in the precursor list is copied from the next hop towards the destination stored in its 

routing table.  

 

0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type R A Reserved Prefix Sz Hop Count 
Destination IP Address 

Destination Sequence Number 
Originator IP Address 

Lifetime 
Figure 18 AODV Route Reply message 

Refer to the field description in [2] for further details. 

 

Route Error message 

Whenever a node detects a failure of next link in an active route, it should generate a 

RERR message which is broadcasted if there are many precursors or unicasted if there is 

only one precursor. The fields of the Unreachable Destination IP Address and 

Unreachable Destination Sequence Number are the Destination IP Address and 

Destination Sequence Number in an active route where the next link of this node is 

broken to its neighbor. The node runs a local recovery and it does not receive any RREP 

message within a recovery period; it informs a source node of the link failure destined for 

the destination by sending a RERR message. 
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0          1 2      3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type N Reserved DestCount 
Unreachable Destination IP Address (1) 

Unreachable Destination Sequence Number (1) 
Additional Unreachable Destination IP Address (if needed) 

Additional Unreachable Destination Sequence Number (if needed) 
Figure 19 AODV Route Error message 

Refer to the field description in [2] for further details. 

 

Route Reply Acknowledgment message 

Whenever the node receives a RREP message which sets the bit of 'A' field, it should 

respond with Route Reply Acknowledgement message. 

 

0   1  
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

Type Reserved 
Figure 20 AODV Route Reply Acknowledgment message 

 

Hello message 

An AODV node, which is one of the members on an active route, can use either an 

appropriate layer 2 message or a RREQ with TTL value of one in the RREQ IP header, 

which can be used as a Hello message. AODV nodes should send a RREQ or an 

appropriate layer 2 message for every Hello_Interval to refresh the active link to its 

neighbor node. If it does not send any RREQ message within the last Hello_Interval, it 

should broadcast a RREP with TTL value of one with the following modifications, which 

is called as an AODV Hello message. The field value of Destination IP Address in RREP 

message is the node's IP address. The field value of Destination Sequence Number is the 

node's latest sequence number. The field value of Hop Count is zero. The field value of 



 81

Lifetime is Allowed_Hello_Loss * Hello_Interval. If a node does not receive any AODV 

Hello or other messages from its neighbors within Allowed_Hello_Loss * Hello Interval, 

it can decide the link to its neighbor is broken. 

 

2.11.4. Pseudocode  

 

Action taken at a node that desires to forward data Packets 

1. Check if there is route to the node of interest 

2. If yes, send the message 

3. If no, Broadcast a RREQ Packet through the Network 

4. And wait for a RREP to forward the data packets 

5. Upon receiving the RREP forward the data packets to the destination 

6. If another RREP is received with a greater sequence number or same sequence 

number with a smaller hop count, start using this better route 

 

Action taken at a node on receiving a RREQ Packet 

1. Update the information for the source node 

2. Set up backwards pointers to the source node in the route tables 

3. Check if the current node is the destination or it has a route to the destination with 

corresponding sequence number greater than or equal to that contained in the RREQ 

4. If yes, send a unicast RREP back to the source and set the forward pointers to the 

source. 

5. If no, rebroadcast the RREQ. 
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6. Keep track of the RREQ's source IP address and broadcast ID. 

7. If the received RREQ has been already processed, discard the RREQ and do not 

forward it. 

 

 

2.12. Clusterhead Gateway Switch Routing (CGSR) 

2.12.1. Introduction 

This protocol is a multicast protocol based on the Core Based Tree approach for Internet. 

In this protocol multicast groups are initiated and maintained by a multicast server. 

Whenever a node wants to join a multicast group it will query the server. All the entries 

about the members of a particular multicast group are maintained in the server. The 

construction and maintenance of the tree is by using ‘graft’ and ‘prune’ messages [13], 

[17]. 

 

2.12.2. Message Summary 

The exact format of CGSR message is not defined yet. 

 

2.12.3. Pseudo code for electing the Cluster head   

Check if the member is within the transmission range of the node of reference 

If yes then the member falls into the same cluster 

If no it falls into a different cluster 

 

//Code to elect the Clusterhead 
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For each node in the cluster 

 Is the ID of the node lowest? 

 If yes store the value as possible clusterhead 

 If no proceed to the next node 

Next node 

 

Set the cluster head as the node that is stored as the possible clusterhead 

 

Criterion for changing the cluster is  

If two cluster heads come within range of each other  

If the existing clusterhead gets disconnected [13], [17] 

 

2.12.4. Pseudocode for the CGSR algorithm  

1. Use lowest-id cluster algorithm or highest-connectivity cluster algorithm to create 

initial clusters. 

2. When a non-clusterhead node in cluster i moves into a cluster j, no clusterhead in 

cluster i and j will be changed (only cluster members are changed). 

3. When a non-clusterhead node moves out its clusters and doesn't enter existing cluster, 

4. It becomes a new clusterhead, forming a new cluster. 

When clusterhead C(i) from cluster i moves into the cluster j, it challenges the 

corresponding clusterhead C(j). Either C(i) or C(j) will give up its clusterhead position 

according to lowest-id or highest-connectivity (or some other well defined priority 

scheme). 
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5. Nodes which become separated from a cluster will recompute the clustering according 

to lowest-id or highest-connectivity [13], [17]. 

 

2.12.5. Pseudocode for channel access 

1. Initially, the clusterhead gets the permission token to access the radio channel. It 

transmits any messages it has in its transmission queue. 

2. The clusterhead passes the token to one of its neighbors according to a separately 

defined scheduling algorithm. 

3. The cluster node (regular node or gateway) returns the token to its clusterhead after it 

has transmitted its message(s) (if any). 

4. Repeat 1 to 3 [13], [17]. 

 

2.12.6. Multicast Tree graft and prune  

The construction and maintenance of the Core Based Tree is receiver-oriented. When 

node i wants to join a multicast group G, it first gets the corresponding Mid and MSid 

either from its database or from the directory server. Then, it sends a Join Request to 

MSid. The Join Request will be routed to MSid (core) , using CGSR, until it reaches any 

node j which is already a member of the host group of G. Node j terminates the Join 

process by sending a Join Ack back to node i. A node joins the multicast group and grafts 

a branch to the multicast tree (core-based tree) upon being traversed by Join Ack. Since 

CGSR routing is used, the internal nodes of the multicast tree are all clusterheads and 

gateways. Regular nodes can be found only at the leaves of the tree. When internal node 

n (a clusterhead or gateway) is traversed by Join Ack, it records the upstream and 
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downstream node of Join Ack. This information will be used to reconstruct the tree when 

the links in the tree break due to mobility or crash. The clusterhead of node i will record 

node i as a member of G after it forwards Join Ack to node i. When a leaf node wants to 

quit the group G, it sends a Quit Request to its clusterhead. The clusterhead will update 

its membership information and then acknowledge this request with a Quit Ack. A leaf 

clusterhead leaves G and sends a Quit Request to its upstream member when all of its 

downstream members have quit G. A nonleaf node cannot quit until it becomes a leaf. 

We allow Join Ack to follow a different path (from Join Request), if so provided by 

routing tables; and use Join Ack to graft links into the tree. The Join Ack strategy is more 

adaptive to a higher mobile situation where routes may change between Req and Ack. In 

this case, we want to choose the most current route [13], [17].  

 

2.12.7. Member migration   

It is necessary to reconfigure the multicast tree when its group members move or change 

node-type. A group member can detect the change of its multicast tree by monitoring its 

connectivity to upstream and downstream members. A member node reconnects to the 

tree by sending a Join Request to its multicast server (core) when its upstream member 

moves out of range or changes node type. For example a cluster head member will send a 

Join Request to the MSid in order to reconstruct the tree, if its upstream member (a 

gateway) changes to a regular node, or becomes disconnected. When a regular node 

member (a leaf) moves out of a cluster Ci and enters into a cluster Cj, the clusterhead of 

Ci will drop it from its descendant list. The regular node will send a Join Request to its 
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new clusterhead of Cj. The clusterhead of Ci will send a Quit Request to its upstream 

member if it has become a leaf itself [13], [17]. 

 

 

2.13. Hierarchical State Routing 

2.13.1. Introduction 

HSR is a hierarchical link state based routing protocol. There are two types of partitioning 

in HSR, namely physical and logical. Physical partitioning is based on geographical 

position whereas the logical partitioning is based on functionality. Logical partitions play 

a key role in mobility management. The physical portioning has a dotted representation 

of the address and this hierarchical address is sufficient to deliver a packet to its 

destination from anywhere in the network using HSR tables. The drawback of HSR with 

respect to flat link state routing is the need of continuously updating the cluster hierarchy 

and the hierarchical address as nodes move. Nodes are also assigned logical addresses of 

the type- <subnet, host > where members of a subnet have common characteristics.  The 

advantage of this logical partition is the separation of mobility management from 

physical hierarchy. The mobility management in HSR involves the maintenance of a 

dynamic mapping database for the hierarchical address of each IP subnet member at the 

home agents. Two functional components namely HID registration and HID finding are 

described in the following sections [12], [18], [19]. 
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2.13.2. HID registration 

HID registration is the process of updating the HID address database of a logical IP 

subnet member at its home agent. The other is the HID used for routing in HSR. Through 

the HID registration process, the home agent maintains up-to-date mobility binding for 

each subnet member. 

Each subnet member registers with its home agent by sending a Registration message to 

the home agent. The Registration message contains two fields: its own host ID and 

current HID. Each member of a logical subnetwork knows the HID of its home agent; 

therefore, it uses that HID to send the Registration message to the home agent directly.  

Upon receiving a Registration message, the home agent creates a mobility binding for the 

mobile node if there is none, or modifies the mobility binding accordingly. Registration is 

both periodic and event driven. At the home agent, the registered address is timed out and 

erased if not refreshed. Since, in most applications, the members of the same subnet 

move as a group, they tend to reside in neighboring clusters. Thus, registration overhead 

is modest. 

Instead of sending the small Registration messages individually by each node, the cluster 

head can in fact periodically send to the home agent of a subnet. Registration message 

includes the registration information for all mobile nodes from the same subnet in the 

cluster. The aggregation of small individual Registration messages into larger blocks 

improves the MAC (medium access control) layer efficiency by minimizing the large per 

block overhead in most wireless MAC layers [12], [18], [19]. 
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2.13.3. HID finding 

HID finding is the process for the sender to learn the HID of the destination node it wants 

to communicate with. Each node maintains a HID mapping cache. When a source wants 

to send a packet to a destination of which it knows the IP address, it first checks its local 

HID cache. It will send the packet directly to the destination if its cache has the valid HID 

of the destination. Otherwise, it extracts the subnet address from the IP address. From its 

internal list (or from the top hierarchy) it obtains the hierarchical address of the 

corresponding home agent (recall that all home agents advertise their HIDs to the top 

level hierarchy). It then sends the packet to the home agent using the obtained 

hierarchical address. The home agent finds the registered address from the host ID (in the 

IP address) and delivers the packet to the destination. The home agent then sends the 

registered address to the sender through the HID Reply message. Once the source and 

destination have learned each other’s hierarchical addresses, packets can be delivered 

directly without involving the home agent. HSR utilizes the address mapping cache to 

avoid the need to perform the HID finding for every packet. Aggressive caching helps 

minimizing the cost incurred by routing the packets through the home agent first. We 

assume that nodes can operate in a promiscuous receiving mode on their wireless 

network interface hardware, causing the interface to pass all heard packets to the network 

layer without filtering based on the destination address. Although our mobility 

management does not require this feature to work properly, this facility is common in 

current LAN hardware for broadcast media, including wireless. Overheard control packets 

do help the optimization of the mobility management. Whenever a node overhears the 

Registration and HID Reply messages, it will update its cache entries accordingly. 
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Furthermore, when the home agent sends the HID Reply message to the sender, it could 

return multiple most recently refreshed HIDs besides the HID for the destination the 

sender is interested in. It could include as many HIDs as the payload allows for a MAC 

frame. The penalty for caching is primarily due to the wasted effort in delivering a packet 

using an incorrect address. We adopt soft state approach to maintain the cache, i.e., each 

entry of the HID address (mobility binding) is purged if it is not refreshed [12], [18], [19]. 

 

2.13.4. Message Summary 

HSR uses the mechanism of physical and logical hierarchical clustering to achieve 

scalability in MANET. The Physical partitioning of HSR is composed of a cluster-head 

node, a gateway node, and an internal node. The logical partitioning of HSR is composed 

of a home agent node and a subnet member node. HSR nodes have both Hierarchical 

Identifier (HID) address and logical IP address. The HID of each node is the sequence of 

the MAC addresses of the nodes on the path from the top hierarchy to the node itself. The 

logical IP address of each node has the format of [subnet, host] that follows the scheme 

of private IP address. Each subnet has its own home agent and contains the group 

definition for different mobility formations. HSR node uses a Registration message to 

refresh its HID in its home agent, which has the property of periodicity and to inform the 

new home agent of its HID when the node moves to the new cluster area, which has the 

property of event driven. The exact formats of HSR Registration and HSR Reply 

messages are not defined yet [12], [18], [19]. 
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2.13.5. Pseudocode  

[12], [18], [19] 

Update_All() 

{ 

// Called periodically every MIN_UPDATE_INTERVAL seconds 

        Set msg_list = empty. 

        Generate_HELLO(msg_list). // Adds HELLO to msg_list. 

        Expire_Links(). 

        Update_Routes(). 

        Update_RN(). 

        If (current_time >= next_periodic) { 

          Generate_Periodic_Update(msg_list). 

          Set next_periodic = current_time + PER_UPDATE_INTERVAL.} 

       Else Generate_Diff_Update(msg_list). 

         Broadcast msg_list to neighbors. 

         Set old_T = T and old_RN = RN. 

      } 

 

      Update_Routes() { 

        For each node v in TT { 

          Set d(v) = INFINITY, pred(v) = NULL. 

          Set old_p(v) = p(v), p(v) = NULL. } 
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         Set d(i) = 0, p(i) = i, pred(i) = i. 

         Set S = {i} (labeled nodes). 

       For each node j in N { 

          // c(u,v) = 1 for min-hop routing 

          Set d(j) = c(i,j), pred(j) = i, p(j) = j. } 

        While there exists a node u in TT - S s.t. d(u) < INFINITY { 

          Let u be a node in TT - S that minimizes d(u). 

          // A heap should be used to find u efficiently. 

          Add u to S. 

          If p(u) != old_p(u) {  // parent has changed 

            For each link (u,v) in TG { 

              If (p(u) is not in r(u,v) AND reported(u,v) = 1) { 

                Set reported(u,v) = 0. // (u,v) is not reported by p(u) 

    Set nr_expire(u,v) = current_time + PER_UPDATE_INTERVAL.}} 

            If (p(u) is in r(u)) { 

              Set tg_expire(u) = rt_expire(j,u). 

              For each link (u,v) such that p(u) is in r(u,v) { 

                Add (u,v) to TG. 

                Set reported(u,v) = 1. }} // (u,v) is reported by p(u) 

          } 

          For each node v s.t. (u,v) is in TG { 

            // Penalize links (u,v) not reported by p(u). 

            If (reported(u,v) = 0 OR p(u) is not in r(v)) 
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              Set cost = c(u,v) + NON_REPORT_PENALTY. 

            If (d(u) + cost < d(v) OR 

                [d(u) + cost = d(v) AND ID(u) < ID(pred(v))]) { 

              Set d(v) = d(u) + c(u,v). 

              Set pred(v) = u. 

              Set p(v) = p(u). }} 

        } 

        Set T = empty set. 

        For each node u in TT - i { 

          Set dist(u) = d(u).  // route metric 

 

If p(u) != NULL, set next(u) = p(u). // route table entry 

          Add link (pred(u), u) to T. } 

      } 

 

      Update_RN() { 

        // RN is the set of nodes reported by node i. 

        Set RN = empty. 

        // A neighbor j is in RN if some other neighbor s 

        // would select node i as p(j). 

        For each neighbor s in N s.t. j is in r(s) { 

          // Initialize to run Dijkstra for source s, for 2 hops 

          For each node j in N+{i}, 
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            Set d(j) = INFINITY, par(j) = NULL. 

          Set d(s) = 0, par(s) = s. 

          For each link (s,j) s.t. s is in r(s,j) and j is in N+{i} { 

 

            Set d(j) = 1, par(j) = j. 

            For each link (j,k) s.t. j is in r(j,k) and k in in N { 

              Set cost = 1. 

              If (1 + cost < d(k) OR 

                  (1 + cost = d(k) AND ID(j) < ID(par(k)))) { 

                Set d(k) = 1 + cost, par(k) = j. }}} 

          // End of Dijkstra for source s 

          For each neighbor j in N { 

            // Add neighbor j to RN if its parent is i. 

            If par(j) = i, add j to RN. } 

        } // End of selection of neighbors in RN 

        Add i to RN. // Node i is always in RN 

        // A non-neighbor node u is in RN if p(u) is in RN. 

        For each node u in TT - i, 

          If p(u) is in RN, add u to RN. 

      } 

 

      Generate_Periodic_Update(msg_list) { 

      // Generates updates describing the reportable subtree RT. 
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        For each node u in RN that is not a leaf of T, 

        add the update (FULL, n, NRL, NRNL, u, v_1, , v_n) 

        to msg_list, where: 

          v_1, , v_n are the nodes v such that (u,v) is in T, 

          the first NRL of these are nodes in RN that are leaves of T, 

   the next NRNL of these are nodes in RN that are not leaves of T, 

          and the last n-(NRL+NRNL) of these are not in RN. 

      } 

 

      Generate_Diff_Update(msg_list) { 

      // Generates updates reporting changes to the reportable 

      // subtree RT. 

        For each node u in RN { 

          If u is not in old_RN and is not a leaf of T { 

            // u was added to RN 

            Add the update (FULL, n, NRL, NRNL, u, v_1, , v_n)  to msg_list, where v_1, , 

v_n, NRL, and NRNL are defined  as above for periodic updates. 

          } 

          Else if u is in old_RN and is not a leaf of T { 

            Let v_1, , v_n be the nodes v s.t. (u,v) is in T AND { 

              [(u,v) is not in old_T] OR 

              [v is in RN - old_RN AND v is a leaf] OR 

              [v is in old_RN - RN] } 
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            If this set of nodes is nonempty { 

              Add the update (ADD, n, NRL, NRNL, u, v_1, , v_n) 

              to msg_list, where NRL and NRNL are defined as above.} 

          } 

          If (u is in old_RN) { 

            Let v_1, , v_n be the nodes v s.t. (u,v) is in old_T - TG 

            AND [pred(v) is NULL or is not in RN]. 

            // If pred(v) is in RN, the delete is implied by an add. 

            If this set of nodes is nonempty, add the update 

            (DELETE, n, u, v_1, , v_n) to msg_list. 

          } 

        } 

      } 

 

      Process_Updates(j, msg_list) { 

      // Processes a list of update messages from node j. 

        Set update_routes_flag = 0. 

        // Flag will be set to 1 if a link in T is deleted. 

        For each update = (subtype, n, NRL, NRNL, u, v_1, , v_n) 

        in msg_list { 

          Create an entry for u in TT if it does not exist. 

          Create an entry for u in TT_j if it does not exist. 

          If (subtype = FULL) 
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            Process_Full_Update(j, update). 

          If (subtype = ADD) 

            Process_Add_Update(j, update). 

          If (subtype = DELETE) 

            Process_Delete_Update(j, update). 

          // Set update_routes_flag. 

          If update_routes_flag = 0 { 

            For each link (u,v) in TT(u) { 

              If (u,v) is in T but not in TG { 

                Set update_routes_flag = 1. 

                Break. }}} 

        } // End for each update 

        If (update_routes_flag = 1) Update_Routes(). 

      } 

 

      Process_Full_Update(j, update) { 

        // update = (FULL, n, NRL, NRNL, u, v_1, , v_n) 

        Add u to RN. 

        Set rt_expire(j,u) = current_time + TOP_HOLD_TIME. 

        For each link (u,v) s.t. j is in r(u,v) { 

 

Remove j from r(u,v). 

         If pred(j,v) = u, set pred(j,v) = NULL. } 
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        If (j = p(u) OR p(u) = NULL) { 

          Set tg_expire(u) = current_time + TOP_HOLD_TIME. 

          For each v s.t. (u,v) is in TG, 

            // Delete old reported links before adding new ones. 

            If reported(u,v) = 1, remove (u,v) from TG. 

        } 

        Process_Add_Update(j, update). 

      } 

 

      Process_Add_Update(j, update) { 

        // update = (subtype, ADD, n, NRL, NRNL, u, v_1, , v_n) 

        For m = 1, , n { 

          Let v = v_m. 

          Create an entry for v in TT if it does not exist. 

          Create an entry for v in TT_j if it does not exist. 

          Add j to r(u,v). 

          If (j = p(u) OR p(u) = NULL) { 

            Add (u,v) to TG. 

            Set reported(u,v) = 1. 

          } 

          // Process implicit delete 

          Set w = pred(j,v). 

          Set pred(j,v) = u. 



 98

          If (w != NULL AND w != u) { 

            Remove j from r(w,v). 

            If (j = p(w)) remove (w,v) from TG. 

          } 

          If (m <= NRL) { // v is a reported leaf 

            Set leaf_update = (FULL, 0, 0, 0, u) 

            Process_Full_Update(j, leaf_update). 

          } 

          If (m > NRL + NRNL) { // v is not reported by j 

             Remove j from r(v). 

             Set rt_expire(j,v) = 0. 

             For each node w s.t. j is in r(v,w) 

               Remove j from r(v,w). 

             If (j = p(v)) 

               For each node w s.t. (v,w) is in TG { 

                 Set reported(v,w) = 0. // (v,w) is not reported by p(v) 

                 Set nr_expire(u,v) = current_time + PER_UPDATE_INTERVAL.} 

          } 

        } 

      } 

 

      Process_Delete_Update(j, update) { 

        // update = (DELETE, n, NRL, NRNL, u, v_1, , v_n) 
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        For m = 1, , n { 

          Let v = v_m. 

          Remove j from r(u,v).  

If pred(j,v) = u, set pred(j,v) = NULL. 

          If (j = p(u)) remove (u,v) from TG. 

        } 

      } 

 

      Link_Up(j) { 

      // Called when a link to j is discovered 

        If j is not in N { 

          Add j to N. 

          Add (i,j) to TG. 

          Set report(i,j) = 1. 

        } 

      } 

 

      Link_Down(j) { 

      // Called when the link to neighbor j is lost 

        If j is in N { 

          Remove j from N. 

          Remove (i,j) from TG. 

          If lost link is due to link-layer failure indication { 
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            Update_Routes(i). 

            Update_RN(i). 

            Set msg_list = empty. 

            Generate_Diff_Update(i, msg_list). 

            Broadcast msg_list to neighbors. 

            Set old_T = T and old_RN = RN. 

          } 

          Else Update_Routes(i). 

        } 

      } 

 

      Expire_Links() { 

        For each node u in TT - i { 

          If (tg_expire(u) < current_time) { 

            For each v s.t. (u,v) is in TG, 

              Remove (u,v) from TG. } 

          Else for each v s.t. (u,v) is in TG { 

            If (report(u,v) = 0 AND nr_expire(u,v) < current_time) 

              Remove (u,v) from TG. } 

          For each node j in r(u) { 

            If (rt_expire(j,u) < current_time) { 

              Remove j from r(u). 

              For each link (u,v) s.t. j is in r(u,v) 
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                Remove j from r(u,v). }} 

        } 

      }  
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3. Message Complexity Analysis of Mobile Ad Hoc 

Network (MANET) Address Autoconfiguration 

Protocols 

 

3.1. Introduction 

 

MANETs are self-organizing wireless networks where mobile nodes have routing 

capabilities to be able to forward packets to communicate with one another over multi-

hop wireless links without any fixed communication infrastructure, such as a base station 

or an access point [20]. Therefore, it is essential for all nodes to be able to perform the 

operations required for configuration of unique addresses to execute proper routing of 

data packets in a MANET.  Address autoconfiguration is an important issue in MANETs 

since address pre-configuration is not always possible. MANETs currently depend on the 

mechanism of checking IP addresses of nodes to decide whether the connection and 

identification of nodes participating in a MANET are established or not [21]. 

In conventional networks, address autoconfiguration can be classified as either a stateless 

or stateful protocol [22]. The stateless approach is used when a network is not especially 

required to control the exact IP address assignments provided that the addresses are 

unique and routable. The stateful approach is used when a network demands exact IP 

address assignments [23]. Dynamic Host Configuration Protocol (DHCP) is an example 
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of a stateful protocol where a DHCP server assigns unique addresses to unconfigured 

nodes and keeps state address information in an address allocation table. However, in 

stateless protocols, a node can select an address by itself and verify its uniqueness in a 

distributed manner using duplicate address detection (DAD) algorithms [24]. By using 

DAD algorithms, a node in a MANET, which lacks an IP address in the MANET, can 

determine whether a candidate address selected by itself is available or not. A node 

already equipped with an IP address also depends on DAD in order to protect its IP 

address from being accidentally used by another node in the MANET [25].  

Based on the conventional method stated in [26], DAD can be classified as Strong DAD 

and Weak DAD. Strong DAD uses an address discovery mechanism where a node 

randomly selects an address and requests the address within a MANET by checking if the 

address is being used in the MANET. Based on a reply for the claimed request, which 

needs to arrive at the node within a finite bounded time interval, the node can detect an 

address duplication in the MANET [21]. Weak DAD is proposed by [26], where ad hoc 

routing protocols are used to detect address duplication by modification of the routing 

protocol packet format. MANET routing protocols can be classified into proactive and 

on-demand. Proactive routing protocols using periodic neighbor discovery messages and 

topology update messages give route information to each node before a node sends data 

packets to a destination. The Fisheye Scope Routing (FSR) [3], Topology Broadcast 

Based on Reverse Path Forwarding (TBRPF) [4], Fuzzy Sighted Link State Routing 

(FSLS) [5], Optimized Link State Routing Protocol (OLSR) [1], and Landmark Ad Hoc 

Routing (LANMAR) [6] are currently being developed as MANET proactive routing 

protocols. On-demand routing protocols such as Dynamic Source Routing (DSR) [7] and 
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the Ad hoc On Demand Distance Vector (AODV) [2] issue route discovery mechanism 

messages only when a node needs to send data to a destination node. Because these 

protocols do not use any periodical message exchange, such as the neighbor discovery 

message used in proactive routing protocols, they do not hold any route information at 

each node before a node sends data towards a destination node. Therefore, they need 

Route Request and Route Reply messages to find and maintain a route when it is needed. 

As a stateful protocol, MANETconf [27] uses a mutual exclusion algorithm for a node to 

acquire a new IP address. Therefore, if a requester wants to acquire an IP address, the IP 

address should be granted by all nodes in a MANET.  

In other related research, Weniger and Zitterbart summarized the current approach and 

future directions of address autoconfiguration in MANETs [24]. Jeong et al. studied 

hybrid ad hoc IP address autoconfigurations in [25]. The authors of [28] proposed an IP 

address configuration for Zeroconf. Mohsin and Prakah [29] introduced IP address 

assignment in a MANET. Zhou and Mutka [30] investigated prophet address allocation 

for large scale MANETs. Additionally, Weniger proposed a passive autoconfiguration for 

MANETs [22]. 

Due to the lack of any centralized control and possible node mobility in MANETs, many 

issues at the network, medium access, and physical layers currently remain as research 

topics since no counterparts in the wired networks or cellular networks can satisfy these 

MANET requirements. At the network layer, the main problem is that of routing, which 

is awfully deteriorated by the time-varying network topology, power constraints, and the 

characteristics of the wireless channel. MANETs consist of mobile users that 

communicate with each other over a wireless channel, which cause an issue with regards 



 105

to sharing a wireless medium among all the users. Due to the time-varying network 

topology and the lack of centralized control, the choice of the medium access control 

(MAC) scheme technology is also challenging in ad hoc networks. The ultimate purpose 

of the MAC is to establish the mechanism that can support multiuser traffic, and provide 

services for the different requirements of each traffic class. At the physical layer, power 

control is one of the most important issues, and focuses on getting the required 

transmission range of a node and quality of a communication link, which needs to be 

controlled so that it is wide enough to reach the intended receiver, while causing minimal 

interference to other nodes.  

Based on the many considering factors of a MANET, the reduction of routing overhead is 

a main concern when a MANET routing protocol is developed. Therefore, one essential 

measure of the quality of a MANET routing protocol is the scalability in regards to an 

increase of the MANET nodes. Message complexity is defined as a performance measure 

where the overhead of an algorithm is measured in terms of the number of messages 

needed to satisfy the algorithm's request. The authors of [31] use the message complexity 

and synchronization delay to measure the performance of a mutual exclusion algorithm 

which is used to effectively share resources in distributed systems. In [32], Shen uses the 

message complexity to statistically measure the performance of the Cluster-based 

Topology Control (CLTC) protocol. The authors in [8] calculate the storage complexity 

and communication complexity to analyze the scalability of various MANET routing 

protocols and introduce the routing overhead of periodically updated LS messages, which 

follow the order of O(N2), where N indicates the number of nodes in a MANET. However, 

the detailed investigation to derive the upper bound of LS messages has not been justified 
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by a mathematical form and currently the message complexity analysis and comparison 

among the IP address autoconfiguration protocols for MANETs has not been conducted 

yet. Therefore, in this chapter, the upper bounds of the message complexity of the IP 

address autoconfiguration protocols for MANETs are derived. 

The analytical framework used in deriving the upper bound of the message complexity, 

which is represented in this chapter, can be widely adapted to a wide variety of protocols. 

The general methodology of analysis is based on [33], which uses a flowchart to analyze 

the time complexity of an image segmentation algorithm based on the recursive shortest 

spanning tree (RSST). The authors of [34] point out that time complexity is one of the 

most important factors to measure or compare the performance of different algorithms, 

and therefore, should be considered when an algorithm is being developed. Based on the 

complexity analysis method of [33], the message complexity of MANET address 

autoconfiguration algorithms is investigated. Each node strictly follows a procedure, 

which is a sequence of steps in the algorithm, where each step guides a node to make a 

general decision such as whether to generate a message or not, whether to take a same 

procedure or not (which is called a recursive procedure), whether to branch to a different 

procedure or not, and whether to stop a step or not. The method of adding the upper 

bounds of the time complexity measured at each step can be adapted in the proposed 

algorithm since MANET address autoconfiguration algorithms are composed of a 

sequence of discrete distinctive procedures where each step has its own message 

complexity. Therefore, by adding the message complexity measured at each step, the 

message complexity of a procedure can be calculated. Correspondingly, the method of 

adding the time complexity measured at each node to get the time complexity of n nodes 
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can be adapted in the proposed algorithm since MANET address autoconfiguration 

algorithms are composed of recursive procedures. Therefore, by adding the message 

complexity measured at each procedure for each node, the message complexity of a 

MANET operation can be calculated. 

 

This chapter is organized as follows. Section 3.2 summarizes the related work from 

existing publications. Section 3.3 presents a system model that is used in the derivations 

and analysis of the following sections and introduces the approach method used in 

analyzing the message complexity in this chapter. Sections from 3.4 to 3.6 present several 

Lemmas and their proofs used in deriving the message complexity of Strong DAD, Weak 

DAD, and MANETconf, respectively. Section 3.7 contains numerical results and 

performance analysis. Section 3.8 states the conclusion. 

 

3.2. Summary of Address Autoconfiguration Protocols 

The acronyms of messages and nomenclatures of the retry count variables used in this 

chapter are summarized in Table 1. 



 108

 

Table 1 Acronym Table [*: Variable] 

Acronym Message Acronym Message 

AB Abort IQ Initiator Request 

AC Address Cleanup LS Link State 

AD Advertised NR Neighbor Reply 

AE Address Error NQ Neighbor Query 

AL Allocated RR Route Reply 

AO Allocation RQ Route Request 

AP Address Reply RT Requester Request 

AQ Address Request M 
DAD retry count 

limit* 

IR Initiator Reply n retry count limit* 
 

To perform address discovery, Strong DAD depends on the messages of address 

autoconfiguration such as AQ and AP. When a node needs to verify an IP address, it 

broadcasts an AQ to check if there is another node having the requested address. When a 

node finds a duplicated address, it replies by sending an AP message in response to the 

requested address. However, Strong DAD does not guarantee the uniqueness of an IP 

address in partitioned networks [21]. In addition, in [21], to consider the scalability issue 

in the Strong DAD protocol, the broadcast storm of DAD messages is mentioned but the 

method to either measure the scalability or solve the broadcast storm of DAD messages 

have not been provided. 

In Weak DAD, when a node receives a LS message as a normal routing procedure, it 

compares the IP address and the associated key of the IP address of the LS message just 

received to the IP addresses and the keys of the IP addresses which already have been 
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stored in its entries of the routing table, where the comparison is repeated for the number 

of IP addresses in the LS message. If the values of two keys per an IP address are 

different, it decides that the IP address is duplicated, otherwise, it keeps running the 

normal routing procedure. Since the unique key plays an important role in the routing 

table of a node, it is necessary for MANET nodes to keep the unique key in their routing 

tables in order to take additional steps [26] or to issue messages (such as the AE [25]) 

when a node detects a duplicated IP address. To make the mutual exclusion algorithm 

possible in MANETconf, an Initiator, which is one of the neighbor nodes of the 

Requester, broadcasts an IQ message towards all nodes in the MANET. Recipient nodes 

should reply with an affirmative or a negative message in response to the IQ message. 

When the Initiator receives affirmative replies from all nodes, the Initiator assigns the IP 

address to the Requester. If the initiator receives a negative response, the initiator selects 

another IP address and repeats the broadcasting of an IQ message until the retry count 

reaches n. When the initiator does not receive any reply from the nodes, it defines the 

nodes which do not reply a response as the abruptly departed nodes. The Initiator 

unicasts IQ messages to the abruptly departed nodes until the retry count reaches a 

threshold. After the Initiator finishes the repetition, it concludes that the nodes which did 

not reply a response as the nodes that abruptly left a MANET and broadcasts an AC 

message. However, since a Requester should wait a certain amount of time before it gets 

an approved IP address, MANETconf may have a significant time delay before being 

able to transmit urgent data. Moreover, MANETconf is composed of many steps or 

procedures, which results in broadcasting or unicasting of messages, which causes a 

severe overhead in MANET.  Figs. 24, 25, 26, and 27 show the protocol operational 
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flowcharts of Strong DAD, Weak DAD, and MANETconf in single node joining and 

MANET groups merging cases respectively. 

 

 

3.3. Message Complexity Analysis 

A MANET is represented as an undirected graph G(V, E) where V is a finite nonempty 

set of nodes, which can be represented as V= { GV1 , GV2 , , G
WV } where |V|=W and E is a 

collection of pairs of distinct nodes from V that form a link, which can be represented as 

E= { GE1 , GE2 , , G
WE } [35]. A connected, acyclic, undirected graph which contains all 

nodes is defined as a free tree. V can be partitioned into several subgraphs V1, V2, , 

Vk, ,Vn where each partition subgraph is called as a free tree and |V1+V2+ +Vn|= W. A 

partitioned subgraph Vk is represented as a free tree P(V,E), in which a node set V is 

represented as {V1,V2, , VN}and |V| equals N containing all nodes in the partitioned 

subgraph Vk, where N≤W. Fig. 21 shows MANET nodes at an instantaneous time where 

it is composed of six partitioned subgraphs. 
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Figure 21 Mobile ad hoc network example (MANET nodes are represented as dots and the dashed lines 

represent connected wireless links) 

To observe the effects of message complexity based on the procedures of the protocol's 

flowcharts, this chapter is organized into several subsections as per MANET address 

autoconfiguration protocol. Each subsection represents a scenario composed of a step or a 

procedure which consists of several steps where a step makes a decision and 

correspondingly broadcasts or unicasts a message. Each subsection includes several 

Lemmas and their proofs to verify the message complexity derivations of the steps and 

the procedures. When a node triggers a message based on a protocol's step, the number of 

nodes in a free tree to perform the step are first calculated. When all or some nodes in a 

free tree trigger a message from the network layer, the nodes identically adapt to one of 
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the contention-based protocols or contention-free protocols at the MAC layer to 

effectively share the wireless medium channel to communicate with each other. 

Moreover broadcasting, unicasting, relaying, or receiving a message is defined as a 

considerable activity. A node receiving a NQ message replies with a NP message in 

MANETconf. Based on the number of nodes, the maximum number of messages is 

calculated where the duplicated messages that have been already counted are not counted 

again in the number of messages. In order to derive an upper bound of the message 

complexity of each subsection, the maximum number of messages is calculated through 

an O-notation. In a procedure, the message complexity analysis of the next step is based 

on the message complexity analysis of the current step analyzed by the worst case 

scenario. In [32], the average number of nodes per cluster is used to calculate the 

message complexity. Therefore, it is assumed that the nodes in each step is independent 

of the dynamic network topology in order to make it possible to analyze and compare the 

message complexities among the steps or the procedures of the corresponding MANET 

address autoconfiguration protocols.  

Fig. 22 shows the key steps of a single node joining case in address autoconfiguration 

protocols. In steps 1 and 2, a node I which needs to join the MANET group broadcasts an 

AQ message in Strong DAD; LS or RQ message in Weak DAD; or unicast RR message in 

MANETconf. In step 3, node A (Initiator) broadcasts an IQ message in MANETconf or 

node A relays an AQ message in Strong DAD; or LS/RQ message in Weak DAD. In step 

4, all nodes in the MANET group relay AQ, LS, RQ, or IQ messages. In step 5, when 

node B finds a duplicated IP address, it will unicast an AP message towards the node I in 
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Strong DAD, or AE message in Weak DAD. In step 6, every node in MANETconf 

unicasts an IR message towards node A (Initiator) in MANETconf. 

 

Figure 22 The key steps of a single node joining node case in address autoconfiguration protocols. 

 

Fig. 23 shows the key steps of a MANET group merging case in MANETconf. In step 1, 

when the two nodes I and J in two different MANET groups become neighboring nodes 

to each other, they exchange their Partition Identity. In step 2, each MANET group (N1 

and N2) broadcasts AL messages to the other MANET group. In step 3, node A (Initiator), 

whose neighbor node (Requestor) finds a duplicated IP address, will broadcast an IQ 

message. In step 4, all recipient nodes will unicast IR messages in response to the IQ 

message towards node A (Initiator).  
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Figure 23 The key steps of MANET group merging case in MANETconf 

 

Based on the above structure in a MANET, the following terms can be defined. 

 

Definition 1  In a free tree P(V,E), broadcasting an Address Query (e.g., AQ message in 

Strong DAD, LS and RQ messages in Weak DAD, or IQ message in MANETconf) 

message by a node is defined as a trial.                                                   

1. A success trial is defined as an event in which after a node broadcasts an Address 

Query message, it does not receive any Address Reply message (e.g., AP message 

in Strong DAD, AE in Weak DAD, or negative IR message in MANETconf) 

within a specific time period. 
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2. A failure trial is defined as an event in which after a node broadcasts an Address 

Query message, it receives at least one Address Reply message within a specific 

time period. 

3. A successful IP verification procedure is defined from m consecutive success 

trials. 

A. Therefore, for a node to get a verified IP address, the node has to perform a 

sequence of m independent trials where each trial has to become a success 

trial. 

B. In Strong DAD, m is defined as a positive number which is greater than 1 

(m>1).  

C. In Weak DAD and MANETconf, since m is set to one (m=1), the successful 

IP verification procedure is same as the success trial. 

4. An IP verification procedure including any failure trial results in a failure IP 

verification procedure. 

A. In Strong DAD, a failure IP verification procedure is composed of 

consecutive x-1 times of success trials and a failure trial at the xth trial where 

x = 1,2, , m. 

B. In Weak DAD and MANETconf, since m is set to one (m=1), the failure IP 

verification procedure is same as the failure trial. 

5. A session is defined as a sequence of successful or failure procedures. The 

maximum number of procedures executed in the session is limited by n in Strong 

DAD, Weak DAD, and MANETconf.  
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A. When computing the upper bound in Strong DAD, the worst case of a 

successful session composes of n-1 consecutive failure IP verification 

procedures and a successful IP verification procedure at the nth IP 

verification procedure. A failure session is composed of n failure IP 

verification procedures.  

B. When computing the upper bound in Weak DAD and MANETconf, the 

worst case of a successful session composes of n-1 consecutive failure trials 

and a success trial at the nth IP verification procedure. A failure session 

composes of n failure trials.                                                                            

The most common flooding method is used to broadcast an Address Query message 

where every node retransmits an Address Request message to its entire 1-hop neighbors 

whenever it receives the first copy of the Address Query message [36]. 

Based on a node that broadcasts an Address Query message in a free tree P(V,E), the 

notations of broadcasting nodes are ascendingly rearranged such that u nodes, which are 

{V1, V2, , Vu}, broadcast or relay an Address Query message and N-u nodes, which are 

{Vu+1, Vu+2, , Vn}, relay Address Query messages. Since each member node in a free 

tree will relay the Address Query message initiated at node Vi, assuming that the 

duplicated packet discard scheme is applied, the maximum number of nodes relaying an 

Address Query message is N-1, where the rule of discarding duplicated messages at a 

node is adopted. Therefore, the maximum number of Address Query messages 

broadcasted or relayed in the free tree is N, which can be represented as O(N). The above 

content can now be generalized into the following definition. 
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Definition 2 For a MANET with N nodes, O(N) is the upper bound of the maximum 

number of broadcasted or relayed Address Query messages when a node broadcasts the 

Address Query message.                                                                                                      

Next we consider the case where a node unicasts an Address Reply message in response 

to an Address Query message in a free tree P(V,E). The variable t is defined as the largest 

number of nodes in a communication path based on the routing tree, including the source 

node. In addition, the maximum iteration number of the routing path setup algorithm at a 

node denotes the largest path length, which is t. If an address duplication is detected at 

node Vj, based on the t nodes which give a node set {Vj, Vk, , Vi}, an Address Reply 

message will be sent through the reverse path where  Vj  becomes the source node of the 

Address Reply message. The maximum number of nodes in a path which unicast or relay 

an AP message is denoted by d(j,i), which equals the number of hops between the node Vj 

unicasting an Address Reply message and the node Vi which broadcasts an Address Query 

message. 

 

Lemma 1 For a MANET routing tree with t nodes in the maximum length path, O(t) is 

the upper bound of the maximum number of unicasted or relayed Address Reply 

messages when a node unicasts an Address Reply message. 

Proof. Since each member node in a path of d(j,i) hops relays an Address Reply message 

initiated by an Address Reply source node, the maximum number of nodes relaying an 

Address Reply message is t-2 where the rule of discarding duplicated messages at a node 

is adapted and the node Vi  does not relay an Address Reply message. Therefore, the 
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maximum number of Address Reply messages unicasted or relayed in the free tree is t-1, 

where the message complexity bound can be represented as O(t).                                     

 

3.4. Strong DAD 

In order to derive the upper bound of the message complexity of the Strong DAD 

protocol, the flowchart of Strong DAD, as shown in Fig. 24, is used. The message 

complexity of Strong DAD can be considered in two cases, the single node joining case 

and the MANET group merging case. 
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Figure 24 The flowchart of Strong DAD operations 
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3.4.1. A single node joining case in Strong DAD 

In this section, a single node joining case is considered. To compute the upper bound of 

the message complexity, a scenario where a node experiences a failure IP verification 

procedure is considered. Since the procedure is composed of a total of (m-1) number of 

success trials and a failure trial at the mth trial, the message complexity of a failure IP 

verification procedure can be represented as mO(N)+O(t). Based on the above result, the 

following Lemma is given. 

 

Lemma 2 In an IP address verification procedure, mO(N)+O(t) is the upper bound of the 

maximum number of broadcasted/relayed AQ messages and unicasted/relayed AP 

messages when a node needs to verify its IP address in a MANET with the Strong DAD 

protocol. 

Proof. The IP verification procedure including a failure trial at the mth trial is composed 

of m-1 success trials, which gives (m-1)O(N) number of broadcasted or relayed AQ 

message based on Definition 2, and a failure trial at the mth trial, which gives O(N) 

number of broadcasted or relayed AQ message based on Definition 2, and O(t) unicasted 

or relayed AP message based on Lemma 1. Therefore, the message complexity of the 

failure IP verification procedure can be represented as (m-1)O(N)+O(N)+O(t), which 

sums the upper bound of the maximum number of broadcasted, unicasted, and relayed 

AQ and AP messages in m-1 success trials and a failure trial at the mth trial. Rearranging 

(m-1)O(N)+O(N)+O(t) yields mO(N)+O(t). 
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Lemma 3 In a session, n(mO(N)+O(t)) is the upper bound of the maximum number of 

broadcasted/relayed AQ messages and unicasted/relayed AP messages using the Strong 

DAD protocol. 

Proof. Strong DAD has a session and the maximum number of retries of the IP 

verification procedure is limited by n in the session. Since the session consists of n 

maximum number of IP verification procedures and the upper bound of the maximum 

number of IP verification procedures is mO(N)+O(t), based on Lemma 2, the message 

complexity of the session can be represented as n(mO(N)+O(t)).                                      

 

3.4.2. MANET group merging case in Strong DAD 

In this section, the MANET group merging case is considered. A scenario is considered 

where two MANET groups Vi and Vj, where |Vi| = N1,  |Vj| = N2, and  N1 ≤  N2 , merge 

into each other and a node in the MANET group Vi finds an IP address that is duplicated 

based on the AQ message received. Since the message complexity in the MANET group 

Vj already has been defined as n(mO(N2)+O(t)) based on Lemma 3 in the worst case, all 

nodes in MANET group Vi can find the duplicated IP addresses. Therefore, the message 

complexity of a MANET group merging case in Strong DAD can be represented as 

nN1(mO(N2)+O(t)). Based on the results, the following Lemma can be derived. 

 

Lemma 4 For a two MANET group merging case where each group has N1 and N2 nodes 

respectively (where N1 ≤  N2), nN1(mO(N2)+O(t)) is the upper bound of the maximum 

number of broadcasted/relayed AQ messages and unicasted/relayed AP messages of the 

two MANET groups merging case with Strong DAD. 
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Proof. Since the message complexity of the MANET group Vj is defined as 

n(mO(N2)+O(t)) based on Lemma 3, and N1 nodes need to verify their IP address in a 

merged MANET with Strong DAD, the message complexity of the MANET group 

merging case can be represented as nN1(mO(N2)+O(t)), where each node in Vi generates 

the message complexity of n(mO(N2)+O(t)).                                                                      

 

3.5. Weak DAD 

In order to derive the upper bound of the message complexity of the Weak DAD protocol, 

the flowchart of Weak DAD, as shown in Fig. 25, is used. The message complexity of 

Weak DAD can be considered in two cases, the single node joining case and the MANET 

group merging case.  

 

3.5.1. A single node joining case in Weak DAD 

In this section, a single node joining case is considered. In Weak DAD with proactive 

MANET routing protocols, nodes periodically broadcast LS messages to inform other 

nodes of the network topology. In Weak DAD with on-demand MANET routing 

protocols, only when a source node needs to send data to a destination node where the 

source node does not have a route to the destination, the source node broadcasts a RQ 

message to find a route to a destination node and a node which is the destination node or 

a node having a fresh enough route unicasts a RR messages in response to the RQ 

message. 
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Figure 25 The flowchart of Weak DAD operations 

When a node finds an IP address that is duplicated with an entry in its routing table after 

investigating an IP address in a LS, RQ, or RR message, the node takes additional steps to 
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inform other nodes of the duplicated address [26]. In such a case, the node that was 

already using the IP address will unicast an AE message to the node that has the 

duplicated IP address [25]. If a node does not find any duplicated IP address after 

investigating an IP address in a LS, RQ, or RR message, the node normally relays the LS, 

RQ, or RR message. Based on the above specifications, the following Lemmas can be 

derived. 

 

Lemma 5 In an IP verification procedure, O(N)+O(t) is the upper bound of the maximum 

number of broadcasted/relayed LS messages and unicasted/relayed AE messages when a 

node needs to verify its IP address in a MANET using Weak DAD with proactive routing 

protocols. 

Proof. The maximum number of messages occurs when the IP verification procedure 

results in a failure trial. Since, the failure trial gives O(N) number of broadcasted or 

relayed LS messages based on Definition 2, and O(t) unicasted or relayed AP message 

based on Lemma 1, the message complexity of the failure trial can be represented as 

O(N)+O(t), which sums the upper bound of the maximum number of broadcasted and 

relayed LS messages and unicasted and relayed AE messages.                

 

Lemma 6 In a session, n(O(N)+O(t)) is the upper bound of the maximum number of 

broadcasted/relayed LS messages and unicasted/relayed AE messages using Weak DAD 

with proactive routing protocols.  

Proof.  Weak DAD with proactive routing protocols has a session and the maximum 

number of retries of the IP verification procedure is limited by n in the session. Since the 
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session consists of n maximum number of IP verification procedures and the upper 

bound of the maximum number of an IP verification procedure is O(N)+O(t) based on 

Lemma 5, the message complexity of the session can be represented as n(O(N)+O(t)), 

where n is the number of retry count of the IP verification procedures.                            

 

In Weak DAD with on demand routing protocols, a node broadcasts or relays a RQ 

message and it can unicast a RP message if it is a destination node based on the normal 

routing procedure. In addition, it unicasts an AE message when a node finds a duplicated 

IP address. Based on the above results, the following Lemma is given. 

 

Lemma 7 In an IP verification procedure, O(N)+2O(t) is the upper bound of the 

maximum number of broadcasted/relayed RQ messages and unicasted/relayed RP 

messages and AE messages when a node wants to verify its IP address in a MANET 

using Weak DAD with on demand routing protocols. 

Proof. The maximum number of messages occurs when the IP verification procedure 

results in a failure trial. Since, the failure trial gives O(N) number of broadcasted or 

relayed RQ messages based on Definition 2, and 2O(t) unicasted or relayed RP messages 

and AE messages based on Lemma 1, the message complexity of the failure trial can be 

represented as O(N)+2O(t), which sums the upper bound of the maximum number of 

broadcasted and relayed RQ and unicasted and relayed RP and AE messages. 

 

Lemma 8 In a session, n(O(N)+2O(t)) is the upper bound of the maximum number of 

broadcasted/relayed RQ messages and unicasted/relayed RP messages and AE messages 

in Weak DAD with on demand routing protocols. 
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Proof. Weak DAD with on demand routing protocols has a session and the maximum 

number of retries of the IP verification procedure is limited by n in the session. Since the 

session consists of n maximum number of IP verification procedures and the upper 

bound of the maximum number of an IP verification procedure is O(N)+2O(t) based on 

Lemma 7, the message complexity of the session can be represented as n(O(N)+2O(t)) 

where n is the number of retry count of the IP verification procedure.                              

 

3.5.2. MANET group merging case in Weak DAD 

In this section, the MANET group merging case is considered. A scenario is considered 

where two MANET groups Vi and Vj, where |Vi| = N1,  |Vj| = N2, and  N1 ≤  N2 , merge 

into each other and a node in the MANET group Vi finds an IP address that is duplicated 

based on the LS, RQ, or RR message received. Since the message complexity in the 

MANET group Vj has been defined as n(O(N2)+O(t)) already, in the worst case, all nodes 

in the MANET group Vi can find duplicated IP addresses. Therefore, the message 

complexity of a MANET group merging case in Weak DAD with proactive routing 

protocols can be represented as N1(n(O(N2)+O(t))). Based on the results, the following 

Lemmas can be derived. 

 

Lemma 9 For a two MANET group merging case where each group has N1 and N2 nodes 

(where N1 ≤  N2), then nN1(O(N2)+O(t)) is the upper bound of the maximum number of 

broadcasted/relayed LS messages and unicasted/relayed AE messages of the two MANET 

groups merging case using Weak DAD with proactive routing protocols. 
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Proof. Since the message complexity of the MANET group Vj is defined as 

n(O(N2)+O(t)) based on Lemma 6, and N1 nodes need to verify their IP address in a 

merged MANET with Weak DAD with proactive routing protocols, the message 

complexity of the MANET group merging case can be represented as N1(n(O(N2)+O(t))) 

where each node in Vi generates the message complexity of n(O(N2)+O(t)). Rearranging 

N1(n(O(N2)+O(t))) yields nN1(O(N2)+O(t)).                                                                       

 

Lemma 10 For a two MANET group merging case where each group has N1 and N2 

nodes (where N1 ≤  N2), respectively nN1(O(N2)+2O(t)) is the upper bound of the 

maximum number of broadcasted/relayed RQ messages and unicasted/relayed RP 

messages and AE messages of the two MANET groups merging case using Weak DAD 

with on demand routing protocols. 

Proof. Since the message complexity of the MANET group Vj is defined as 

n(O(N2)+2O(t)) based on Lemma 8, and N1 nodes need to verify their IP address in a 

merged MANET with Weak DAD with on demand routing protocols, the message 

complexity of the MANET group merging case can be represented as N1(n(O(N2)+2O(t))) 

where each node in Vi generates the message complexity of n(O(N2)+2O(t)). Rearranging 

N1(n(O(N2)+2O(t))) yields nN1(O(N2)+2O(t))                                                                    

 

3.6. MANETconf 

The message complexity of MANETconf can be considered in two cases, the single node 

joining case and the MANET group merging case. 
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Figure 26 The flowchart for message complexity derivation of MANETconf protocol for a single node 

joining case 
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3.6.1. A single node joining case in MANETconf 

In this section, the single node joining case is considered. In order to derive the upper 

bound of the message complexity of the single node joining case in MANETconf, the 

flowchart as shown in Fig. 26 is used. When a node (which is a Requestor) tries to join a 

MANET and to obtain a verified IP address, it broadcasts a NQ message to its neighbors. 

When the Requestor does not receive any NR messages before the neighbor reply timer 

expires, it repeats broadcasting the NQ message by a threshold number. After finishing 

the repetition, the Requestor decides that there is only one node and configures itself with 

an IP address. The Initialization procedure of MANETconf described above is not 

considered into the message complexity since the message complexity is focused on the 

procedures of a single node joining into a MANET group and MANET group merging 

case. 

If the Requestor receives NR messages, the Requestor selects an Initiator and unicasts a 

RR message to the Initiator. The message complexity of unicasting the RR message can 

be represented as O(1). After receiving a RR message, the Initiator broadcasts an IQ 

message to all nodes of the MANET group in order to verify the IP address of the 

Requestor. The message complexity of broadcasting the IQ message can be represented 

as O(N) based on Definition 2. Recipient nodes will reply with an affirmative or a 

negative response through the IR message, to the Initiator. The message complexity of 

unicasting the IR message by all nodes in the MANET group can be represented as O(tN), 

since all N nodes unicast IR messages and each IR message has the message complexity 

O(t) based on Lemma 1. 



 130

If the Initiator receives positive IR messages from all the recipient nodes, it broadcasts an 

AO message to all the recipient nodes of the MANET group. The message complexity of 

broadcasting the AO message can be represented as O(N) based on Definition 2. 

If the Initiator receives negative IR messages from the recipient nodes, it selects another 

IP address and repeats the step of broadcasting IQ and receiving IR messages until the 

retry count reaches the Initiator Request Retry which is set to n in this chapter. Based on 

the above results, the following Lemma can be derived. 

 

Lemma 11 In an IP verification procedure of a single node joining case, O((t+1)N) is the 

upper bound of the maximum number of broadcasted/relayed IQ messages and 

unicasted/relayed IR messages when a node needs to verify its IP address in a MANET 

with MANETconf. 

Proof. The maximum number of messages occurs when the IP verification procedure 

results in a failure trial. Since, the failure trial gives O(N) number of broadcasted or 

relayed IQ messages based on Definition 2, and O(tN) unicasted/relayed IR messages 

based on Lemma 1, the message complexity of the failure trial can be represented as 

O(N)+O(tN), which sums the upper bound of the maximum number of broadcasted and 

relayed IQ and unicasted and relayed IR messages. This can be rearranged as O((t+1)N).   

                                                                                                                                              

 

Therefore, the message complexity of broadcasting an IQ message and receiving IR 

messages until the retry count reaches n can be represented as nO((t+1)N). After n times 

of repetitions, if the initiator receives negative IR messages, it sends AB messages to the 
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Requestor. The message complexity of unicasting the AB message can be represented as 

O(1). 

Therefore, the message complexity of a single node joining case can be represented as  

nO((t+1)N)+O(N)+O(2) where O(2) indicates the message complexity of unicasting RR 

and AB messages. Based on the above results, the following Lemma can be derived. 

 

Lemma 12 In a session of a single node joining case, nO((t+1)N)+O(N)+O(2) is the upper 

bound of the maximum number of broadcasted or relayed IQ and AO messages and 

unicasted or relayed IR, RR, and AB messages in MANETconf. 

Proof. MANETconf has a session and the maximum number of retries of the IP 

verification procedure is limited by n in the session. Since the session consists of n 

maximum number of IP verification procedures and the upper bound of the maximum 

number of an IP verification procedure is O((t+1)N) based on Lemma 11, the message 

complexity of the session can be represented as nO((t+1)N)+O(N)+O(2) where n is the 

number of IP verification procedures, O(N) indicates the message complexity of 

broadcasting the AO message and O(2) indicates the message complexity of unicasting 

RR and AB messages.                                                                                                          

 

3.6.2. MANET group merging case in MANETconf 

In this section, the MANET group merging case is considered. In order to derive the 

upper bound of the message complexity of the MANET group merging case in 

MANETconf, the flowchart as shown in Fig. 27, is used.  
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Figure 27 The flowchart for message complexity derivation of MANETconf protocol for MANET group 

merging case 
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When the two nodes I and J associated in two different MANET groups, which are Vi, 

and Vj respectively, become neighboring nodes to each other, they exchange their 

Partition Identity. The message complexity of exchanging their Partition Identity can be 

represented as O(2). In this section, the MANET group merging case is considered.  

All nodes of a MANET group know their group's (Lowest IP, UUID), where the 

Universal Unique ID (UUID) is the MAC address of the lowest IP address node. The 

nodes I and J can detect the merger of two different MANET groups when the two nodes 

(I and J of each group) exchange their AL sets of IP addresses, which must contain the 

MANET group's Partition Identity (Lowest IP, UUID). 

Since the AL message is composed of a list of IP addresses of a MANET group, the size 

of the AL message will be much larger than the Maximum Transfer Unit (MTU) permitted 

in a MANET. It is assumed that in the worst case, each IP address in the AL message is 

equivalent to the MTU size message permitted in a MANET packet if the other layers' 

overhead is considered. Therefore, in the upper bound case, an AL message from 

MANET group Vj is segmented into N2 number of MTU sized messages and transmitted 

in MANET group Vi. In addition, the AL message from MANET group Vi is segmented 

into N1 number of MTU sized messages and transmitted in MANET group Vj. 

The algorithm requires all nodes in MANET group Vi to broadcast the AL messages 

transferred from MANET group Vj, all nodes in MANET group Vi have to broadcast N2 

number of AL messages. As a result, the message complexity can be represented as  

N2O(N1).  

Likewise, all nodes in MANET group Vj need to broadcast the AL messages transferred 

from MANET group Vi, and therefore, all nodes in the MANET group Vj have to 
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broadcast N1 number of AL messages. As a result, the message complexity can be 

represented as N1O(N2). 

Therefore, the message complexity due to broadcasting the AL messages in MANET 

groups Vi and Vj  can be represented as N1O(N2)+ N2O(N1). 

The duplicated address node with the higher Partition Identity will become the Requestor 

asking its neighboring node to become its Initiator. Among the duplicated addresses 

nodes, the node of the MANET group that has the higher partition identity (i.e., 

comparing the lowest IP address of each group first, and if needed, also by comparing the 

UUID of each MANET group) will become the Requestor and chooses one of its 

neighbors with a non-conflicting address as its Initiator to send an IQ message. 

Any nodes detecting conflicted IP addresses become Initiators, when each Initiator 

broadcasts an IQ message to all nodes of the MANET group with the address of the 

Requester. The message complexity upper bound of broadcasting IQ messages can be 

represented as O(N1+ N2) since the IQ message is broadcasted into the merged MANET. 

Recipient nodes will reply with an affirmative or a negative response (using IR message) 

to the Initiator. Therefore, the message complexity upper bound of unicasting IR 

messages can be represented as O(t(N1+ N2)) since all nodes (N1+ N2) unicast the IR 

message and each IR message has the message complexity upper bound of O(t) based on 

Lemma 1. 

If the initiator receives positive IR messages from all recipient nodes, it broadcasts an AO 

message to all recipient nodes of the MANET group. The message complexity upper 

bound of broadcasting the AO message can be represented as O(N1+ N2) based on 

Definition 2. 
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Lemma 13 In an IP verification procedure of the MANET group merging case, 

O((t+1)(N1+ N2)) is the upper bound of the maximum number of broadcasted or relayed 

IQ messages and unicasted or relayed IR messages when a node needs to verify its IP 

address in a MANET with MANETconf. 

Proof. The maximum number of messages occurs when the IP verification procedure 

results in a failure trial. Since, the failure trial gives O(N1+ N2) number of broadcasted or 

relayed IQ messages based on Definition 2, and O(t(N1+ N2)) unicasted or relayed IR 

message based on Lemma 1, the message complexity of the failure trial can be 

represented as O(N1+ N2)+ O(t(N1+ N2)), which sums the upper bound of the maximum 

number of broadcasted and relayed IQ and unicasted and relayed IR messages, and can be 

rearranged as O((t+1)(N1+ N2)).                                                                                     

 

If the initiator receives any negative IR messages from its recipient nodes, it selects 

another IP address and repeats the steps of broadcasting IQ and receiving IR messages 

until the retry count reaches the retry count limit (n). Therefore, the message complexity 

of broadcasting AO messages and receiving IR messages until the retry count is less than 

n can be represented as n(O(N1+ N2)+O(t(N1+ N2))). After n times of repetition, if the 

initiator receives negative IR messages, it sends an AB message to the requestor. The 

message complexity of unicasting the AB message can be represented as O(1). 

Based on the above results, the following Lemma can be derived. 
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Lemma 14 In a session of a MANET group merging case, nO((t+1)(N1+ N2))+O(N1+ 

N2)+O(1) is the upper bound of the maximum number of broadcasted or relayed IQ and 

AO messages and unicasted or relayed IR and AB messages in MANETconf. 

Proof. MANETconf has a session and the maximum number of retries of the IP 

verification procedure is limited by n in the session. Since the session consists of a 

maximum number of n IP verification procedures and the upper bound of the maximum 

number of an IP verification procedure is O((t+1)(N1+ N2)) based on Lemma 13, the 

message complexity of the session can be represented as nO((t+1)(N1+ N2))+O(N1+ 

N2)+O(1) where n is the number of the retry count limit of the IP verification procedures,  

O(N1+ N2) indicates the message complexity of broadcasting the AO message, and O(1) 

indicates the message complexity of unicasting the AB message.                                      

 

The above session procedure per a duplicated address node should be repeated until all 

duplicated address nodes are resolved. The repetition number of the session procedure in 

a merged MANET can be expressed as min(N1, N2). Therefore, the message complexity 

of the MANET group merging case can be represented as min(N1, N2){nO((t+1)(N1+ 

N2))+O(N1+ N2)+O(1)}.   

Based on the above results, the following Lemma can be derived.  

 

Lemma 15 In resolving all duplicated addresses of a MANET group merging case with 

MANETconf, min(N1,N2){nO((t+1)(N1+N2))+O(N1+N2) + O(1)} +O(2) +N1O(N2)+ 

N2O(N1) is the upper bound of the maximum number of messages.  
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Proof. Resolving all duplicated addresses of the MANET group merging case consists of 

the steps of unicasting the Partition Identity, and broadcasting the AL message. The 

session procedures are repeated min(N1,N2) times for all the duplicated addresses nodes, 

and the message complexity of resolving all duplicated addresses of the MANET group 

merging case can be obtained from the summation of the complexity of the session 

procedures (repeated min(N1,N2) times), unicasting the Partition Identity, and 

broadcasting the AL message, which can be represented as  min(N1,N2){nO((t+1) 

(N1+N2))+O(N1+N2)+O(1)}+O(2)+N1O(N2)+N2O(N1).                                                      

 

 

3.7. Numerical Results 

 

To show the message complexity of each address autoconfiguration protocols in a 

standalone MANET where a MANET has no connection to an external network like the 

Internet [27], a computer based simulation where nodes are randomly distributed with 

uniform density in a network area of 1km2 is adopted. A discrete-event MATLAB 

simulator was developed in order to verify the various network topologies and to 

calculate the message complexity of each address autoconfiguration protocol. The 

random node generator in the MATLAB simulator was verified so that the average 

number of nodes per cluster in the ADB algorithm [32] was matched with the results in 

[32] performed by QualNet.  

In [32], when the numbers of nodes are 100, 125, 150 and 175, the average numbers of 

nodes per cluster in the ADB algorithm are calculated as 7.79, 9.87, 12.36 and 13.94 
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respectively by using QualNet. In the simulator performed in this dissertation, with the 

same simulation environment, the average numbers of nodes per cluster are 7.94, 9.57, 

11.26, and 12.88. A random generator provided in QualNet is used in [32] and a random 

generator provided in Matlab is used by the simulator in this thesis. Therefore, the 

simulation results performed in Duplicate Address Detection (DAD) algorithms, such as 

Strong DAD, Weak DAD with Proactive routing protocols and On Demand routing 

protocols and MANETconf could be verified based on Table 2 since error permission 

range is considered in the random generators in QualNet and Matlab and the maximum 

number of total nodes in a MANET is 50. 

 

Table 2 Average numbers of nodes per cluster in ADB algorithms performed at QualNet and Matlab 

No. of total Nodes 
in a network 

The average 
numbers of nodes 
per cluster in ADB 

(QualNet, [32]) 

The average 
numbers of nodes 
per cluster in ADB 

(Matlab) 

|Difference|, (%) 

100 7.79 7.94 0.15, (1.9%) 
125 9.87 9.57 0.27, (3.0%) 
150 12.36 11.26 1.1, (8.9%) 
175 13.94 12.88 1.04, (7.6%) 

 

Based on the randomly distributed nodes in a network area and their transmission range, 

a MANET has been configured as several subgroups. At least two subgroups are 

generated in the simulator and considered in this simulation in order to analyze the single 

node joining case and the MANET group merging case. In addition, the two subgroups 

that are composed of the maximum number of nodes in MANET are considered. The 

following definition can be defined in order to explain the simulator for the MANET 

group merging case in detail.  
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Definition 3 

Several terms related with a graph, which are used in the computer based simulation, are 

defined as below. A MANET group can be represented as G(V,E) and its subgraphs can 

be represented as P(Vi,Ei) and Q(Vj,Ej) [32]. 

1. A MANET G is k-connected, represented by CONN(G,k), where deleting any k-1 

vertices results in a graph that is still connected [32].   

2. Disjoint subgraphs P and Q are neighboring subgraphs in G, represented by 

NEIGHBORG(P, Q), if ∃u∃v(u∈Vi∧v ∈Vj∧(u,v) ∈ E) [32]. 

3. Disjoint subgraphs P and Q are neighboring k-connected subgraphs in G, 

represented by NBRCONNG(P, Q, k), if CONN(P,k), and CONN(Q,k) and 

∃(u1,v1), , (uk,vk) such that u1, , uk ∈ Vi and v1, , vk ∈ Vj. Therefore, 

NBRCONNG(P, Q, 1)  equals NEIGHBORG(P, Q) [32].                                       

Based on the above Definition 3, NBRCONNG(P, Q, 1), which is same as NEIGHBORG(P, 

Q), is used in the computer simulation in order to perform the MANET group merging 

case. 

A conflict probability is defined as the probability that a node requests its IP address, and 

the requested IP address is duplicated in a MANET group. The conflict probability 

depends on the size of the address and the number of nodes in a MANET group [22]. The 

conflict probability is selected from among 0.1, 0.3, 0.5, 0.7, 0.9 and 1. When the conflict 

probability is one, the selected or reselected IP address is always duplicated with one of 

the IP addresses in a MANET group, and this is called as the message complexity in the 

worst case scenario. It can be expected that in the simulation of running Weak DAD with 
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on demand routing protocols, different occurrence probability of unicasting a RP message 

at a certain conflict probability will have various results in the message complexity. 

Therefore, it is assumed that the occurrence probability of unicasting a RP message in a 

node is not zero and is the same as the conflict probability of the requested IP address in 

the node for simplicity. 

The most common flooding method is used in the simulation where every node 

retransmits an Address Request message to its entire one-hop neighbors whenever it 

receives the first copy of message [36]. 

Dijkstra's shortest path algorithm at each node is used to calculate the number of hops in 

unicasting or relaying a unicasted Address Reply message from a destination node to a 

source node. The transmission range of the nodes changes the number of hops. The upper 

bound of the message complexity is calculated based on the derived Lemma’s equation 

where the maximum number of nodes in a reverse path at each unicast case is used to 

calculate O(t) in each upper bound Lemma’s equation. 

In the Strong DAD protocol, five is used for retry count limit (n) and three is used for 

DAD retry count limit (m). In the Weak DAD and MANETconf protocols, five is used for 

retry count limit (n) and one is used for DAD retry count limit (m). 

100m is selected as the transmission range of nodes. The number of nodes is varied from 

10 to 50 for the transmission range. 

Based on a random network topology scenario, the number of nodes and the network 

topology are not changed during the simulation in order to analyze the message 

complexity of each protocol and compare the mathematical derivation and the simulation 

result. Each node has its own scenario based on the steps of the flowchart step. Monte 
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Carlo computer simulation performing 2,000 iterations at each conflict probability is used 

to evaluate various network topologies for random scenarios and to calculate the average 

number of messages for each scenario where each topology is composed of a different 

number of free trees. In this chapter, based on the calculation of the control overhead 

(message complexity), the scalability issue of MANET address autoconfiguration 

protocols is analyzed with the increase in the number of nodes in a MANET [32].  

 

3.7.1. Strong DAD: Single Node Joining Case 

 

Figure 28 The message complexity (Single Node Joining Case: Strong DAD) 

 

Fig. 28 shows the message complexity of the single node joining case in the Strong DAD 

protocol based on the different conflict probabilities. From Fig. 28 to Fig. 35, the 



 142

horizontal axis shows the number of nodes in the network area and the vertical axis 

shows the number of messages at each case. As shown in Fig. 28, the different conflict 

probability and the different number of nodes result in different number of messages. As 

conflict probability is increased, it is shown that the number of messages to resolve the 

duplicated IP address is also increased. When the conflict probability equals one, the 

number of message complexity is under the upper bound message complexity, 

n(mO(N)+O(t)),  which is derived in Lemma 3. 

 

3.7.2. Strong DAD: MANET Group Merging Case 

 

Figure 29 The message complexity (MANET Group Merging Case: Strong DAD) 

Fig. 29 shows the message complexity of the group merging case in the Strong DAD 

protocol based on the different conflict probabilities. As shown in Fig. 29, the different 
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conflict probability and the different number of nodes result in different number of 

messages. As conflict probability is increased, it is shown that the number of messages to 

resolve the duplicated IP address is also increased. When the conflict probability equals 

one, the number of message complexity is under the upper bound message complexity, 

nN1(mO(N2)+O(t)),  which is derived in Lemma 4.  

 

3.7.3. Weak DAD with Proactive Routing Protocols: Single Node Joining 

Case  

 

Figure 30 The message complexity of Weak DAD with Proactive Routing Protocols: Single Node 

Joining Case 

Fig. 30 shows the message complexity of the single node joining case in the Weak DAD 

with proactive routing protocols based on the different conflict probabilities. As shown in 
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Fig. 30, the different conflict probability and the different number of nodes result in the 

different number of messages. As conflict probability is increased, it is shown that 

number of messages to resolve the duplicated IP address is also increased. When the 

conflict probability equals one, the number of message complexity is under the upper 

bound message complexity, n(O(N)+O(t)),  which is derived in Lemma 6. 

 

3.7.4. Weak DAD with Proactive Routing Protocols: MANET Group 

Merging Case 

 

Figure 31 The message complexity of Weak DAD with Proactive Routing Protocols: MANET Group 

Merging Case 

Fig. 31 shows the message complexity of the group merging case in the Weak DAD with 

proactive routing protocols based on the different conflict probabilities. As shown in Fig. 
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31, the different conflict probability and the different number of nodes result in different 

number of messages. As conflict probability is increased, it is shown that the number of 

messages to resolve the duplicated IP address is also increased. When the conflict 

probability equals one, the number of message complexity is under the upper bound 

message complexity, nN1(O(N2)+O(t)),  which is derived in Lemma 9. 

 

3.7.5. Weak DAD with On Demand Routing Protocols: Single Node Joining 

Case  

 

Figure 32 The message complexity of Weak DAD with On Demand Routing Protocols: Single Node 

Joining Case 

Fig. 32 shows the message complexity of the single node joining case in the Weak DAD 

with on demand routing protocols based on the different conflict probabilities. As shown 
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in Fig. 32, the different conflict probability and the different number of nodes result in 

different number of messages. As conflict probability is increased, it is shown that the 

number of messages to resolve the duplicated IP address is also increased. When the 

conflict probability equals one, the number of message complexity is under the upper 

bound message complexity, n(O(N)+2O(t)),  which is derived in Lemma 8. 

 

3.7.6. Weak DAD with On Demand Routing Protocols: MANET Group 

Merging Case  

 

Figure 33 The message complexity of Weak DAD with On Demand Routing Protocols: MANET Group 

Merging Case 

Fig. 33 shows the message complexity of the group merging case in the Weak DAD with 

on demand routing protocols based on the different conflict probabilities. As shown in 
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Fig. 33, the different conflict probability and the different number of nodes result in 

different number of messages. As conflict probability is increased, it is shown that the 

number of messages to resolve the duplicated IP address is also increased. When the 

conflict probability equals one, the number of message complexity is under the upper 

bound message complexity, nN1(O(N2)+2O(t)),  which is derived in Lemma 10. 

 

3.7.7. MANETconf: Single Node Joining Case  

 

Figure 34 The message complexity of MANETocnf: Single Node Joining Case 

 

Fig. 34 shows the message complexity of the single node joining case in the MANETconf 

protocol based on the different conflict probabilities. As shown in Fig. 34, the different 

conflict probability and the different number of nodes result in different number of 
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messages. As conflict probability is increased, it is shown that the number of messages to 

resolve the duplicated IP address is also increased. When the conflict probability equals 

one, the number of message complexity is under the upper bound message complexity, 

nO((t+1)N)+O(N)+O(2),  which is derived in Lemma 12. 

 

3.7.8. MANETconf: MANET Group Merging Case  

 

Figure 35 The message complexity of MANETocnf: MANET Group Merging Case 

Fig. 35 shows the message complexity of the MANET group merging case in the 

MANETconf protocol based on the different conflict probabilities. As shown in Fig. 35, 

the different conflict probability and the different number of nodes result in different 

number of messages. As conflict probability is increased, it is shown that the number of 

messages to resolve the duplicated IP address is also increased. When the conflict 
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probability equals one, the number of message complexity is under the upper bound 

message complexity, min(N1,N2){nO((t+1)(N1+N2))+O(N1+N2)+O(1)}+O(2)+ 

N1O(N2)+N2O(N1),  which is derived in Lemma 15. 

 

 

3.8. Percentage overhead in the Single Node Joining Case 

3.8.1. Percentage overhead comparison (Conflict probability of 0.5) 

 

Figure 36 The percentage overhead comparison (Single Node Joining Case, p=0.5, R=100) 

 

Fig. 36 shows the percentage overhead comparison among the Weak DAD with proactive 

routing protocols, Weak DAD with on demand routing protocols, MANWTconf and 

Strong DAD in single node joining case with a conflict probability of 0.5. It is shown that 



 150

as the number of nodes increases, the message complexity of Weak DAD with on 

demand routing protocols tends to converge to the message complexity of Weak DAD 

with proactive routing protocols.   

The percentage overheads of message complexity of Weak DAD with on demand routing 

protocols are 29.30 % and 20.22 % compared to the Weak DAD with proactive routing 

protocols at the maximum percentage overhead and the average percentage overhead 

respectively. Table 3 shows the details of the percentage overhead between Weak DAD 

with on demand routing protocols and Weak DAD with Proactive routing protocols. 

 

Table 3 Percentage Overhead (Weak DAD with on demand routing protocols, p=0.5) 

Percentage Overhead (Weak DAD with on demand routing protocols vs. Weak DAD with 
Proactive routing protocols, p=0.5) 

No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

28.42 24.15 28.60 27.38 29.30 19.53 20.36 23.39 23.91

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

24.16 29.19 20.80 23.32 22.42 23.80 20.72 28.19 23.60

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

26.64 22.90 18.23 25.94 22.51 18.03 20.45 20.64 21.43

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

19.90 19.58 21.95 13.06 8.08 11.31 19.88 10.65 19.67

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

11.24 14.05 9.20 8.75 3.72 29.30 20.22 
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The percentage overheads of message complexity of MANETconf are 174.04 % and 

134.43 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 4 shows 

the details of the percentage overhead between MANETconf and Weak DAD with 

Proactive routing protocols.  

 

Table 4 Percentage Overhead (MANETconf, p=0.5) 

Percentage Overhead (MANETconf vs. Weak DAD with Proactive routing protocols, p=0.5) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

104.8 103.16 100.51 99.02 103.93 105.55 106.15 110 111.37

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

105.5
2 

116.46 114.39 132.64 129.25 128.84 129.99 135.22 137.64

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

141.8
6 

132.45 125.77 142.63 155.2 146.29 150.66 146.99 152.39

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

155.6
5 

162.79 166.82 144.55 155.25 148.88 160.7 151.66 174.04

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

163.1
9 

148.87 141.77 132.84 136.15 174.04 134.43 

 

The percentage overheads of message complexity of Strong DAD are 407.18 % and 

360.08 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 5 shows 
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the details of the percentage overhead between Strong DAD and Weak DAD with 

Proactive routing protocols. 

 

Table 5 Percentage Overhead (Strong DAD, p=0.5) 

Percentage Overhead (Strong DAD vs. Weak DAD with Proactive routing protocols, p=0.5) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

348.4
1 

347.80 342.52 341.74 358.56 339.28 337.22 345.99 334.91

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

338.1
7 

359.11 348.76 357.42 354.64 357.83 342.82 368.38 355.39

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

354.9
0 

354.33 333.02 352.67 359.88 355.49 364.65 351.41 356.90

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

357.6
9 

365.16 368.90 346.95 357.25 354.83 375.42 374.84 393.16

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

407.1
8 

392.11 402.35 403.95 401.48 407.18 360.08 

 

Therefore, it can be said that at a conflict probability of 0.5, Weak DAD with proactive 

routing protocols has the smallest message complexity and Strong DAD has the largest 

message complexity in the single node joining case. However, since the proactive routing 

protocols depend on a periodic message to update the network topology and on demand 

routing protocols does not have a periodic message, it is not fair for the two routing 

protocols to be compared using the number of messages. The result above can be used 
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only in the case where Weak DAD protocol uses MANET routing protocols for nodes to 

configure its IP address and solve the duplicate IP address detection. 

 

3.8.2. Percentage overhead comparison (Conflict probability of 0.7) 

 

Figure 37 The percentage overhead comparison (Single Node Joining Case, p=0.7, R=100) 

Fig. 37 shows the percentage overhead comparison among the Weak DAD with proactive 

routing protocols, Weak DAD with on demand routing protocols, MANWTconf and 

Strong DAD in single node joining case with a conflict probability of 0.7.  It is shown 

that as the number of nodes increases, the message complexity of Weak DAD with on 

demand routing protocols is inclined to converge to the message complexity of Weak 

DAD with proactive routing protocols.   
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The percentage overheads of message complexity of Weak DAD with on demand routing 

protocols are 36.15 % and 24.86 % compared to the Weak DAD with proactive routing 

protocols at the maximum percentage overhead and the average percentage overhead 

respectively. Table 6 shows the details of the percentage overhead between Weak DAD 

with on demand routing protocols and Weak DAD with Proactive routing protocols. 

 

Table 6 Percentage Overhead (Weak DAD with on demand routing protocols, p=0.7) 

Percentage Overhead (Weak DAD with on demand routing protocols vs. Weak DAD with 
Proactive routing protocols, p=0.7) 

No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

31.03 26.85 36.15 31.86 28.00 28.03 28.86 29.71 31.75

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

27.36 30.10 27.10 25.93 30.46 30.16 32.14 32.20 30.26

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

30.02 33.68 25.19 26.23 23.79 21.97 25.36 27.00 24.35

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

24.50 21.66 22.65 22.53 21.80 18.43 18.05 17.03 15.68

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

17.49 13.01 14.03 10.76 6.13 36.15 24.86 

 

The percentage overheads of message complexity of MANETconf are 174.56 % and 

130.92 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 7 shows 
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the details of the percentage overhead between MANETconf and Weak DAD with 

Proactive routing protocols.  

 

Table 7 Percentage Overhead (MANETconf, p=0.7) 

Percentage Overhead (MANETconf vs. Weak DAD with Proactive routing protocols, p=0.7) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

74.27 79.71 83.82 88.32 87.25 100.11 93.21 106.37 111.94

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

105.2
7 

101.05 100.54 105.66 123.53 126.80 124.52 126.52 135.12

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

134.0
5 

139.18 139.92 131.17 139.43 152.29 149.39 158.64 151.88

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

159.0
4 

163.75 163.88 164.18 174.56 164.84 158.85 165.49 152.01

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

160.1
0 

152.06 148.41 137.62 132.82 174.56 130.92 

 

The percentage overheads of message complexity of Strong DAD are 374.24 % and 

315.46 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 8 shows 

the details of the percentage overhead between Strong DAD and Weak DAD with 

Proactive routing protocols. 

 



 156

Table 8 Percentage Overhead (Strong DAD, p=0.7) 

Percentage Overhead (Strong DAD vs. Weak DAD with Proactive routing protocols, p=0.7) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

283.6
0 

289.67 301.33 289.04 285.70 297.85 299.74 303.05 309.74

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

292.8
6 

288.86 286.40 294.18 314.93 308.94 308.13 307.40 304.87

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

302.5
0 

312.84 303.90 296.04 303.31 299.58 314.67 316.49 310.53

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

317.1
4 

315.20 319.83 319.90 330.78 358.57 328.50 351.07 341.05

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

361.3
7 

353.59 374.24 367.55 368.73 374.24 315.46 

 

Therefore, it can be said that at a conflict probability of 0.7, Weak DAD with proactive 

routing protocols has the smallest message complexity and Strong DAD has the largest 

message complexity in the single node joining case. 
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3.8.3. Percentage overhead comparison (Conflict probability of 0.9) 

 

Figure 38 The percentage overhead comparison (Single Node Joining Case, p=0.9, R=100) 

 

Fig. 38 shows the percentage overhead comparison among the Weak DAD with proactive 

routing protocols, Weak DAD with on demand routing protocols, MANWTconf and 

Strong DAD in single node joining case with conflict probability of 0.9. 

It is shown that as the number of nodes increases, the message complexity of Weak DAD 

with on demand routing protocols tends to converge to the message complexity of Weak 

DAD with proactive routing protocols.  

The percentage overheads of message complexity of Weak DAD with on demand routing 

protocols are 38.41 % and 28.70 % compared to the Weak DAD with proactive routing 

protocols at the maximum percentage overhead and the average percentage overhead 
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respectively. Table 9 shows the details of the percentage overhead between Weak DAD 

with on demand routing protocols and Weak DAD with Proactive routing protocols. 

 

Table 9 Percentage Overhead (Weak DAD with on demand routing protocol, p=0.9) 

Percentage Overhead (Weak DAD with on demand routing protocols vs. Weak DAD with 
Proactive routing protocols, p=0.9) 

No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

37.36 36.19 35.64 33.98 38.41 32.26 35.53 30.32 32.38

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

36.90 35.16 35.49 38.41 32.69 33.80 32.67 36.29 29.19

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

30.04 28.18 29.40 31.22 27.94 30.20 32.91 28.77 26.09

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

27.76 26.85 26.46 22.37 22.36 21.92 24.15 23.39 18.75

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

21.11 16.70 16.21 9.78 11.53 38.41 28.70 

 

The percentage overheads of message complexity of MANETconf are 171.28 % and 

127.74 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 10 shows 

the details of the percentage overhead between MANETconf and Weak DAD with 

Proactive routing protocols.  
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Table 10 Percentage Overhead (MANETconf, p=0.9) 

Percentage Overhead (MANETconf vs. Weak DAD with Proactive routing protocols, p=0.9) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

67.31 67.33 69.70 74.18 79.64 78.85 88.41 79.92 92.38

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

102.8
3 

105.85 103.59 109.26 111.46 118.39 121.13 125.95 124.34

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

131.9
9 

129.31 140.96 137.88 145.91 158.24 160.01 158.93 149.26

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

157.5
3 

162.72 163.13 163.34 171.27 165.94 165.07 168.86 157.30

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

152.2
8 

155.36 151.53 134.75 135.25 171.28 127.74 

 

The percentage overheads of message complexity of Strong DAD are 292.58 % and 

229.43 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 11 shows 

the details of the percentage overhead between Strong DAD and Weak DAD with 

Proactive routing protocols. 
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Table 11 Percentage Overhead (Strong DAD, p=0.9) 

Percentage Overhead (Strong DAD vs. Weak DAD with Proactive routing protocols, p=0.9) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

212.0
0 

210.11 212.24 207.72 214.80 207.85 214.08 201.85 211.02

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

219.3
0 

215.09 215.22 218.45 215.39 216.71 219.74 223.78 216.68

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

220.7
4 

218.85 219.68 219.23 225.45 227.11 230.09 227.20 218.43

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

226.9
7 

221.60 233.40 235.22 230.80 242.09 249.14 258.44 261.42

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

269.2
4 

275.00 284.12 267.66 292.58 292.58 229.43 

 

Therefore, it can be said that at a conflict probability of 0.9, Weak DAD with proactive 

routing protocols has the smallest message complexity and Strong DAD has the largest 

message complexity in the single node joining case. 
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3.8.4. Percentage overhead comparison (Conflict probability of 1) 

 

Figure 39 The percentage overhead comparison (Single Node Joining Case, p=1, R=100) 

 

Fig. 39 shows the percentage overhead comparison among the Weak DAD with proactive 

routing protocols, Weak DAD with on demand routing protocols, MANWTconf and 

Strong DAD in single node joining case with conflict probability of one. 

It is shown that as the number of nodes increases, the message complexity of Weak DAD 

with on demand routing protocols is inclined to converge to the message complexity of 

Weak DAD with proactive routing protocols.  

The percentage overheads of message complexity of Weak DAD with on demand routing 

protocols are 33.71 % and 26.31 % compared to the Weak DAD with proactive routing 

protocols at the maximum percentage overhead and the average percentage overhead 
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respectively. Table 12 shows the details of the percentage overhead between Weak DAD 

with on demand routing protocols and Weak DAD with Proactive routing protocols. 

 

Table 12 Percentage Overhead (Weak DAD with on demand routing protocol, p=1) 

Percentage Overhead (Weak DAD with on demand routing protocols vs. Weak DAD with 
Proactive routing protocols, p=1) 

No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

33.71 31.21 32.82 31.09 32.98 32.87 31.30 31.26 30.86

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

31.10 31.87 29.82 31.52 30.28 28.25 29.67 29.85 28.23

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

28.09 28.31 27.55 29.57 28.42 28.67 28.33 25.79 27.65

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

24.82 27.05 26.00 25.40 22.25 20.47 22.63 20.12 20.67

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

15.78 12.40 10.55 9.38 10.05 33.71 26.31 

 

The percentage overheads of message complexity of MANETconf are 136.64 % and 

97.89 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 13 shows 

the details of the percentage overhead between MANETconf and Weak DAD with 

Proactive routing protocols. 
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Table 13 Percentage Overhead (MANETconf, p=1) 

Percentage Overhead (MANETconf vs. Weak DAD with Proactive routing protocols, p=1) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

44.29 47.60 51.37 52.60 56.79 59.91 62.00 68.03 67.12

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

72.85 75.82 78.67 83.77 83.75 84.71 89.93 92.72 100.57

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

99.96 108.44 107.70 110.15 113.59 117.79 119.42 120.83 128.48

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

128.5
6 

134.91 136.64 132.95 133.22 127.17 129.07 130.14 127.68

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

118.9
4 

111.38 103.69 102.42 98.05 136.64 97.89 

 

The percentage overheads of message complexity of Strong DAD are 180.99 % and 

142.30 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 14 shows 

the details of the percentage overhead between Strong DAD and Weak DAD with 

Proactive routing protocols. 
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Table 14 Percentage Overhead (Strong DAD, p=1) 

Percentage Overhead (Strong DAD vs. Weak DAD with Proactive routing protocols, p=0.9) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

129.8
4 

128.51 128.86 126.09 129.16 129.14 130.39 128.38 131.32

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

132.8
6 

133.77 134.50 135.33 132.37 133.57 136.23 134.30 131.02

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

132.7
7 

135.02 137.29 138.57 137.49 137.36 138.60 137.38 143.35

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

143.3
1 

148.94 146.11 148.78 150.07 148.90 163.10 155.86 170.74

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

173.0
2 

171.80 161.96 167.25 180.99 180.99 142.30 

 

Therefore, it can be said that at a conflict probability of one, Weak DAD with proactive 

routing protocols has the smallest message complexity and Strong DAD has the largest 

message complexity in the single node joining case. 

 

3.8.5. Observations in the single node joining case 

Based on the observations from section 3.8.1 to section 3.8.4, it is shown that with the 

increase of the conflict probability from 0.5 to 1, the maximum overhead percentage of 

the message complexity of Weak DAD with on demand routing protocols is changed 
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from 29.30 %, to 36.15 %, to 38.41 %, and to 33.71 %, the maximum overhead 

percentage of the message complexity of MANETconf is changed from 174.04 %, to 

174.56 %, to 171.28 %, and to 136.64 % and the maximum overhead percentage of the 

message complexity of Strong DAD is decreased from 407.18 %, to 374.24 %, to 

292.58 %, and to 180.99 % as shown in Table 15.  

Table 15 Maximum overhead percentage [%] 

p 
Weak DAD with on 

demand routing 
protocols 

MANETconf Strong DAD 

0.5 29.30 174.04 407.18 
0.7 36.15 174.56 374.24 
0.9 38.41 171.28 292.58 
1 33.71 136.64 180.99 

 

As shown in Table 16, with the increase of the conflict probability from 0.5 to 1, the 

average overhead percentage of the message complexity of Weak DAD with on demand 

routing protocols is changed from 20.22 %, to 24.86 %, to 28.70 %, and to 26.31 %, the 

average overhead percentage of the message complexity of MANETconf is decreased 

from 134.43 %, to 130.92 %, to 127.74 %, and to 97.89 %, and the average overhead 

percentage of the message complexity of Strong DAD is decreased rapidly from 

360.08 %, to 315.46 %, to 229.43 %, and to 142.30 %.  
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Table 16 Average overhead percentage [%] 

p 
Weak DAD with on 

demand routing 
protocols 

MANETconf Strong DAD 

0.5 20.22 134.43 360.08 
0.7 24.86 130.92 315.46 
0.9 28.70 127.74 229.43 
1 26.31 97.89 142.30 

 

Since Strong DAD uses a DAD retry count limit m=3,, it can be expected that the 

percentage overhead of Strong DAD will be three times larger than the one of Weak 

DAD with proactive routing protocols. Therefore, the average overhead percentages with 

conflict probability of 0.5, 0.7, and 0.9 tend to follow the expected result (behavior); 

however, the average overhead percentage with conflict probability of one does not 

follow the expected result (behavior).  

The maximum or average percentage overhead of the message complexity in the case of 

conflict probability of one has a little difference in value between MANETconf (97.89 %, 

in the case of average percentage overhead) and Strong DAD (142.30 %, in the case of 

average percentage overhead), which means that when the conflict probability is close to 

one, there is not much difference in the message complexity between MANETconf and 

Strong DAD. 

Based on the percentage overhead of the message complexity of MANETconf, unicasting 

by all nodes causes approximately 135 % (175 %, from the results of maximum overhead 

percentage) more overhead than unicasting by a single node in the single node joining 

case. 



 167

Based on the percentage overhead of the message complexity of Weak DAD with on 

demand routing protocols, another unicasting mechanism causes approximately 29 % 

(39 %, from the results of maximum overhead percentage) more overhead compared to 

one of a single unicasting mechanism in the single node joining case. 

Therefore, based on the maximum or average percentage overhead of the message 

complexity, a broadcast is a complex operation in comparison to a unicast since a 

broadcast causes more traffic messages and procedural operations than a unicast 

operation in MANETs.  
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3.9. Percentage overhead in MANET Group Merging Case 

3.9.1. Percentage overhead comparison (Conflict probability of 0.5) 

 

 

Figure 40 The percentage overhead comparison (MANET Group Merging Case, p=0.5, R=100) 

Fig. 40 shows the percentage overhead comparison among the Weak DAD with proactive 

routing protocols, Weak DAD with on demand routing protocols, MANWTconf and 

Strong DAD in MANET group merging case with a conflict probability of 0.5. It is 

shown that as the number of nodes increases, the message complexity of Weak DAD 

with on demand routing protocols converges to the message complexity of Weak DAD 

with proactive routing protocols.  The percentage overheads of message complexity of 

Weak DAD with on demand routing protocols are 28.41 % and 17.66 % compared to the 
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Weak DAD with proactive routing protocols at the maximum percentage overhead and 

the average percentage overhead respectively. Table 17 shows the details of the 

percentage overhead between Weak DAD with on demand routing protocols and Weak 

DAD with Proactive routing protocols. 

Table 17 Percentage Overhead (Weak DAD with on demand routing protocols, p=0.5) 

Percentage Overhead (Weak DAD with on demand routing protocols vs. Weak DAD with 
Proactive routing protocols, p=0.5) 

No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

24.85 27.35 22.98 19.84 28.41 24.07 19.47 24.33 18.01

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

22.78 21.73 21.71 18.15 21.58 15.03 20.87 19.12 18.88

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

15.42 20.35 20.00 19.30 16.83 16.99 20.42 12.44 16.09

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

13.50 15.68 13.60 13.83 11.94 13.80 12.95 11.53 12.16

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

12.33 10.95 9.71 13.97 11.17 28.41 17.66 

 

The percentage overheads of message complexity of MANETconf are 328.10 % and 

241.72 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 18 shows 
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the details of the percentage overhead between MANETconf and Weak DAD with 

Proactive routing protocols.  

Table 18 Percentage Overhead (MANETconf, p=0.5) 

Percentage Overhead (MANETconf vs. Weak DAD with Proactive routing protocols, p=0.5) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

179.0
2 

196.30 191.08 187.64 201.41 199.96 190.02 209.25 198.70

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

208.2
9 

208.69 215.31 215.95 214.04 224.15 228.92 228.92 231.72

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

227.0
3 

243.75 250.97 246.27 255.45 250.58 267.10 261.65 261.07

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

257.0
9 

266.14 276.78 283.48 272.48 266.19 265.23 276.32 282.56

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

281.8
2 

277.13 300.61 293.28 318.10 318.10 241.72 

 

The percentage overheads of message complexity of Strong DAD are 408.38 % and 

363.36 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 19 shows 

the details of the percentage overhead between Strong DAD and Weak DAD with 

Proactive routing protocols. 

 



 171

Table 19 Percentage Overhead (Strong DAD, p=0.5) 

Percentage Overhead (Strong DAD vs. Weak DAD with Proactive routing protocols, p=0.5) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

356.1
3 

356.13 337.32 343.25 359.76 352.92 339.01 343.48 348.86

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

354.4
3 

351.19 359.41 353.74 360.16 355.00 363.00 351.11 355.28

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

355.0
3 

370.25 362.46 366.01 362.79 368.22 367.66 364.35 374.74

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

368.6
0 

370.33 377.56 375.01 357.72 363.95 371.29 366.82 370.65

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

370.9
7 

388.85 380.96 395.08 408.38 408.38 363.36 

 

Therefore, similar to the case of single node joining case, it can be said that at the conflict 

probability of 0.5, Weak DAD with proactive routing protocols has the smallest message 

complexity and Strong DAD has the largest message complexity in MANET group 

merging case. However, since the proactive routing protocols depend on a periodic 

message to update the network topology and on demand routing protocols does not have 

a periodic message, it is not fair for the two routing protocols to be compared using the 

number of messages. The result above can be used only in the case that Weak DAD 

protocol uses MANET routing protocols for nodes to configure its IP address and solve 

the duplicate IP address detection in the MANET group merging case. 
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3.9.2. Percentage overhead comparison (Conflict probability of 0.7) 

 

Figure 41 The percentage overhead comparison (MANET Group Merging Case, p=0.7, R=100) 

 

Fig. 41 shows the percentage overhead comparison among the Weak DAD with proactive 

routing protocols, Weak DAD with on demand routing protocols, MANWTconf and 

Strong DAD in MMANET group merging case with conflict probability of 0.7. It is 

shown that as the number of nodes increases, the message complexity of Weak DAD 

with on demand routing protocols converge to the message complexity of Weak DAD 

with proactive routing protocols.   

The percentage overheads of message complexity of Weak DAD with on demand routing 

protocols are 30.22 % and 22.15 % compared to the Weak DAD with proactive routing 

protocols at the maximum percentage overhead and the average percentage overhead 
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respectively. Table 20 shows the details of the percentage overhead between Weak DAD 

with on demand routing protocols and Weak DAD with Proactive routing protocols. 

 

Table 20 Percentage Overhead (Weak DAD with on demand routing protocols, p=0.7) 

Percentage Overhead (Weak DAD with on demand routing protocols vs. Weak DAD with 
Proactive routing protocols, p=0.7) 

No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

30.02 25.86 23.99 24.70 30.22 28.13 27.20 26.81 23.88

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

26.44 27.74 24.40 26.08 23.80 19.05 27.57 22.47 21.14

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

19.45 25.27 22.50 26.13 24.78 21.86 20.70 20.56 20.85

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

20.34 22.25 18.85 18.19 18.14 20.13 16.22 17.32 19.43

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

15.64 14.75 12.53 16.03 16.92 30.22 22.15 

 

The percentage overheads of message complexity of MANETconf are 302.70 % and 

225.34 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 21 shows 

the details of the percentage overhead between MANETconf and Weak DAD with 

Proactive routing protocols.  
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Table 21 Percentage Overhead (MANETconf, p=0.7) 

Percentage Overhead (MANETconf vs. Weak DAD with Proactive routing protocols, p=0.7) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

146.4
6 

148.97 148.44 152.17 165.56 166.45 163.46 172.71 166.40

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

187.2
8 

184.98 190.83 190.73 195.81 185.25 204.57 209.22 223.15

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

209.2
3 

221.99 231.70 235.37 234.26 247.20 243.21 249.88 248.36

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

262.8
0 

258.20 257.78 278.77 268.09 277.80 280.27 269.14 290.90

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

289.1
9 

293.81 287.52 298.35 302.70 302.70 225.34 

 

The percentage overheads of message complexity of Strong DAD are 363.88 % and 

324.03 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 22 shows 

the details of the percentage overhead between Strong DAD and Weak DAD with 

Proactive routing protocols. 
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Table 22 Percentage Overhead (Strong DAD, p=0.7) 

Percentage Overhead (Strong DAD vs. Weak DAD with Proactive routing protocols, p=0.7) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

287.2
8 

302.01 291.56 289.20 311.65 310.48 288.42 313.21 302.23

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

311.0
5 

305.28 319.88 321.24 321.20 298.67 313.06 317.78 324.51

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

320.4
7 

330.44 331.43 331.60 331.89 327.66 331.77 329.65 338.06

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

333.5
8 

325.98 327.95 340.36 313.84 341.73 350.11 338.73 340.60

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

347.8
0 

355.83 348.71 354.60 363.88 363.88 324.03 

 

Therefore, it can be said that at the conflict probability of 0.7, Weak DAD with proactive 

routing protocols has the smallest message complexity and Strong DAD has the largest 

message complexity in the MANET group merging case. 
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3.9.3. Percentage overhead comparison (Conflict probability of 0.9) 

 

Figure 42 The percentage overhead comparison (Single Node Joining Case, p=0.9, R=100) 

 

Fig. 38 shows the percentage overhead comparison among the Weak DAD with proactive 

routing protocols, Weak DAD with on demand routing protocols, MANWTconf and 

Strong DAD in MANET group merging case with conflict probability of 0.9. 

It is shown that as the number of nodes is increased, the message complexity of Weak 

DAD with on demand routing protocols tends to converge to the message complexity of 

Weak DAD with proactive routing protocols. In addition, the message complexity of 

MANETconf goes beyond the message complexity of Strong DAD when the number of 

nodes is around 35 nodes.  
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The percentage overheads of message complexity of Weak DAD with on demand routing 

protocols are 35.96 % and 26.02 % compared to the Weak DAD with proactive routing 

protocols at the maximum percentage overhead and the average percentage overhead 

respectively. Table 23 shows the details of the percentage overhead between Weak DAD 

with on demand routing protocols and Weak DAD with Proactive routing protocols. 

 

Table 23 Percentage Overhead (Weak DAD with on demand routing protocol, p=0.9) 

Percentage Overhead (Weak DAD with on demand routing protocols vs. Weak DAD with 
Proactive routing protocols, p=0.9) 

No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

35.96 28.84 33.60 28.75 31.11 30.30 31.49 31.07 31.33

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

30.43 29.96 29.09 29.94 31.42 25.59 26.09 34.15 27.18

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

25.44 25.25 27.09 26.88 27.14 24.01 24.43 24.22 24.31

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

28.47 23.45 21.18 20.42 23.86 23.42 22.29 21.73 20.06

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

17.33 19.03 18.81 15.84 15.95 35.96 26.02 

 

The percentage overheads of message complexity of MANETconf are 289.03 % and 

210.55 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 24 shows 
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the details of the percentage overhead between MANETconf and Weak DAD with 

Proactive routing protocols.  

 

Table 24 Percentage Overhead (MANETconf, p=0.9) 

Percentage Overhead (MANETconf vs. Weak DAD with Proactive routing protocols, p=0.9) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

116.7
7 

120.91 122.78 122.98 133.64 143.16 143.63 147.02 158.11

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

156.5
1 

162.68 161.45 175.36 181.88 178.77 189.93 206.76 203.21

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

195.0
9 

193.99 214.64 209.03 227.74 230.76 233.60 240.48 244.21

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

254.3
4 

254.63 262.18 256.64 266.43 269.43 268.44 288.35 285.52

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

270.2
7 

287.88 282.45 281.72 289.03 289.03 210.55 

 

The percentage overheads of message complexity of Strong DAD are 270.16 % and 

238.16 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 25 shows 

the details of the percentage overhead between Strong DAD and Weak DAD with 

Proactive routing protocols. 
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Table 25 Percentage Overhead (Strong DAD, p=0.9) 

Percentage Overhead (Strong DAD vs. Weak DAD with Proactive routing protocols, p=0.9) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

212.4
3 

214.98 218.72 215.26 216.22 216.10 222.64 223.12 223.04

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

221.4
2 

227.02 222.75 235.25 235.84 229.41 231.58 239.07 238.69

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

236.2
1 

225.32 234.46 233.04 239.28 240.58 241.65 234.65 244.64

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

256.3
6 

244.29 248.46 238.16 261.51 244.43 249.60 258.50 258.64

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

264.8
3 

266.63 265.11 264.69 270.16 270.16 238.16 

 

Therefore, it can be said that at the conflict probability of 0.9, Weak DAD with proactive 

routing protocols has the smallest message complexity and Strong DAD has the largest 

message complexity in the MANET group merging case between 10 and 35 nodes. 

However, the message complexity of MANETconf is the largest when the number of 

nodes is above 35. 
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3.9.4. Percentage overhead comparison (Conflict probability of 1) 

 

Figure 43 The percentage overhead comparison (Single Node Joining Case, p=1, R=100) 

 

Fig. 39 shows the percentage overhead comparison among the Weak DAD with proactive 

routing protocols, Weak DAD with on demand routing protocols, MANWTconf and 

Strong DAD in MANET group merging case with conflict probability of one. 

It is shown that as the number of nodes is increased, the message complexity of Weak 

DAD with on demand routing protocols is inclined to converge to the message 

complexity of Weak DAD with proactive routing protocols. In addition, the message 
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complexity of MANETconf goes beyond the message complexity of Strong DAD when 

the number of nodes is around 25. 

The percentage overheads of message complexity of Weak DAD with on demand routing 

protocols are 33.52 % and 23.22 % compared to the Weak DAD with proactive routing 

protocols at the maximum percentage overhead and the average percentage overhead 

respectively. Table 26 shows the details of the percentage overhead between Weak DAD 

with on demand routing protocols and Weak DAD with Proactive routing protocols. 

 

Table 26 Percentage Overhead (Weak DAD with on demand routing protocol, p=1) 

Percentage Overhead (Weak DAD with on demand routing protocols vs. Weak DAD with 
Proactive routing protocols, p=1) 

No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

28.73 30.62 26.76 30.81 33.52 28.59 27.88 27.32 28.47

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

27.48 26.76 29.71 26.70 23.65 24.30 25.37 19.95 23.97

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

22.42 24.80 23.65 23.19 24.32 22.37 23.37 22.03 22.96

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

21.22 19.55 20.80 21.21 17.85 18.50 16.66 16.70 17.89

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

19.26 16.99 15.36 13.55 16.99 33.52 23.22 
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The percentage overheads of message complexity of MANETconf are 232.48 % and 

163.06 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 27 shows 

the details of the percentage overhead between MANETconf and Weak DAD with 

Proactive routing protocols. 

 

Table 27 Percentage Overhead (MANETconf, p=1) 

Percentage Overhead (MANETconf vs. Weak DAD with Proactive routing protocols, p=1) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

77.59 84.59 82.43 91.80 102.47 106.69 101.77 111.75 105.85

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

117.6
5 

125.52 126.06 131.59 130.24 132.33 145.81 145.45 152.53

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

154.1
8 

164.04 166.66 171.65 173.17 186.91 192.66 185.58 196.95

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

202.1
4 

200.99 207.61 208.96 205.43 212.82 213.12 213.16 225.86

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

226.5
2 

231.11 222.97 232.48 218.52 232.48 163.06 

 

The percentage overheads of message complexity of Strong DAD are 172.29 % and 

146.98 % compared to the Weak DAD with proactive routing protocols at the maximum 

percentage overhead and the average percentage overhead respectively. Table 28 shows 
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the details of the percentage overhead between Strong DAD and Weak DAD with 

Proactive routing protocols. 

 

Table 28 Percentage Overhead (Strong DAD, p=1) 

Percentage Overhead (Strong DAD vs. Weak DAD with Proactive routing protocols, p=0.9) 
No. of 
Nodes 

10 11 12 13 14 15 16 17 18 

Overhead 
(%) 

124.9
6 

126.03 127.45 130.59 135.15 141.51 135.32 139.52 134.27

No. of 
Nodes 

19 20 21 22 23 24 25 26 27 

Overhead 
(%) 

136.3
2 

132.71 142.96 143.73 140.13 136.97 145.34 141.09 147.81

No. of 
Nodes 

28 29 30 31 32 33 34 35 36 

Overhead 
(%) 

140.0
9 

150.37 143.80 148.55 148.81 148.38 157.39 143.89 152.11

No. of 
Nodes 

37 38 39 40 41 42 43 44 45 

Overhead 
(%) 

156.3
2 

152.19 156.80 156.64 154.19 157.85 154.89 155.20 158.78

No. of 
Nodes 

46 47 48 49 50 Max Average 

Overhead 
(%) 

165.0
6 

160.17 161.60 169.01 172.29 172.29 146.98 

 

Therefore, it can be said that at the conflict probability of one, Weak DAD with proactive 

routing protocols has the smallest message complexity and Strong DAD has the largest 

message complexity in the MANET group merging case between 10 and 25 nodes. 

However, the message complexity of MANETconf is the largest when the number of 

nodes is above 25. 
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3.9.5. Observations in the MANET group merging case 

Based on the observation from section 3.9.1 to section 3.9.4, it is shown that with the 

increase of the conflict probability from 0.5 to 1, the maximum overhead percentage of 

the message complexity of Weak DAD with on demand routing protocols is changed 

from 28.41 %, to 30.22 %, to 35.96 %, and to 33.52 %, the maximum overhead 

percentage of the message complexity of MANETconf is decreased from 318.10 %, to 

302.70 %, to 289.03 %, and to 232.48 % and the maximum overhead percentage of the 

message complexity of Strong DAD is decreased rapidly from 408.38 %, to 363.88 %, to 

270.16 %, and to 172.29 % as shown in Table 29.  

Table 29 Maximum overhead percentage [%] 

p 
Weak DAD with on 

demand routing 
protocols 

MANETconf Strong DAD 

0.5 28.41 318.10 408.38 
0.7 30.22 302.70 363.88 
0.9 35.96 289.03 270.16 
1 33.52 232.48 172.29 

 

As shown in Table 30, with the increase of the conflict probability from 0.5 to 1, the 

average overhead percentage of the message complexity of Weak DAD with on demand 

routing protocols is changed from 17.66 %, to 22.15 %, to 26.02 %, and to 23.22 %, the 

average overhead percentage of the message complexity of MANETconf is decreased 

from 241.72 %, to 225.34 %, to 210.55 %, and to 163.06 %, and the average overhead 

percentage of the message complexity of Strong DAD is decreased rapidly from 

363.36 %, to 324.03 %, to 238.16 %, and to 146.98 %. 
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Table 30 Average overhead percentage [%] 

p 
Weak DAD with on 

demand routing 
protocols 

MANETconf Strong DAD 

0.5 17.66 241.72 363.36 
0.7 22.15 225.34 324.03 
0.9 26.02 210.55 238.16 
1 23.22 163.06 146.98 

 

Since Strong DAD uses DAD retry count limit n=3, it can be expected that the percentage 

overhead of Strong DAD will be three times (300 %) larger than that of Weak DAD with 

proactive routing protocols. Therefore, the average overhead percentages with conflict 

probability of 0.5, 0.7, and 0.9 tend to follow the expected behavior (result); however, the 

average overhead percentage with conflict probability of 1 does not follow the expected 

behavior (result).  

The maximum or average percentage overhead of the message complexity in the case of 

conflict probability of 1 has a little difference in value between MANETconf (232.48 %, 

163.06 %, from the cases of maximum and average percentage overhead) and Strong 

DAD (172.29 %, 146.98 %, from the cases of maximum and average percentage 

overhead), which means that when the conflict probability is close to one, there is not 

much difference in the message complexity between MANETconf and Strong DAD. 

Based on the percentage overhead of the message complexity of MANETconf, unicasting 

by all nodes causes approximately 242 % (319 %, from the results of maximum overhead 

percentage) more overhead than unicasting by a single node in the MANET group 

merging case. 
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Based on the percentage overhead of the message complexity of Weak DAD with on 

demand routing protocols, another unicasting mechanism causes approximately 27 % 

(36 %, from the results of maximum overhead percentage) more overhead compared to 

one of a single unicasting mechanism in the MANET group merging case. 

Especially, based on the maximum or average percentage overhead of the message 

complexity as shown in Tables 29 and 30, it can be seen that as the conflict probability is 

increased (for example, when the conflict probability equals one) and the number of 

nodes is also increased, MANETconf has the largest message complexity in the MANET 

group merging case. Therefore, it could be said that even though a broadcast is a complex 

operation in comparison to a unicast, since a broadcast causes more traffic messages and 

procedural operations than a unicast operation in MANETs, in the MANET group 

merging case with MANETconf protocol, a unicast by all nodes becomes a complex 

operation in comparison to a broadcast when the conflict probability is increased and the 

number of nodes is also increased at the same time.  

 

3.9.6. Comparison of percentage overhead difference between Single Node 

Joining Case and MANET Group Merging Case 

Table 31 shows the maximum percentage overhead difference, where SNJC indicates 

Single Node Joining Case, MGMC indicates MANET Group Merging Case and |D| 

indicates the absolute value of the maximum percentage overhead difference between 

SNJC and MGMC at each protocol.  
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Table 31 Maximum percentage overhead difference [%] 

 
Weak DAD with on 

demand routing protocols
MANETconf Strong DAD 

p SNJC MGMC |D| SNJC MGMC |D| SNJC MGMC |D| 
0.5 29.30 28.41 0.89 174.04 318.10 144.06 407.18 408.38 1.2 
0.7 36.15 30.22 5.93 174.56 302.70 128.14 374.24 363.88 5.36 
0.9 38.41 35.96 2.45 171.28 289.03 117.75 292.58 270.16 22.42
1 33.71 33.52 0.19 136.64 232.48 95.84 180.99 172.29 8.7 

 

Based on |D|, MANETconf shows big differences between the SNJC percentage 

overhead and MGMC percentage overhead. The difference varies from 95.84 % to 

144.06 %. However, Weak DAD with on demand routing protocols and Strong DAD do 

not show much variance between the SNJC percentage overhead and MGMC percentage 

overhead. The difference varies from 0.19 % to 22.42 %. Therefore, it could be said that 

when a MANET performs MGMC, MANETconf has the largest of increase rate in 

analyzing the message complexity among the Weak DAD with on demand routing 

protocols, Strong DAD and MANETconf. Table 32 shows the average percentage 

overhead difference for each protocol.  

 

Table 32 Average percentage overhead difference [%] 

 
Weak DAD with on 

demand routing protocols
MANETconf Strong DAD 

p SNJC MGMC |D| SNJC MGMC |D| SNJC MGMC |D| 
0.5 20.22 17.66 2.56 134.43 241.72 107.29 360.08 363.36 3.28 
0.7 24.86 22.15 2.71 130.92 225.34 94.42 315.46 324.03 8.57 
0.9 28.70 26.02 2.68 127.74 210.55 82.81 229.43 238.16 8.73 
1 26.31 23.22 3.09 97.89 163.06 65.17 142.30 146.98 4.68 
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4. Conclusion 

 

The main focus of this dissertation is to propose a novel method to perform a quantitative 

analysis of message complexity and to compare the message complexity among the 

mobile ad hoc network (MANET) address autoconfiguration protocols. To conduct a 

quantitative analysis of message complexity, the analysis of the worst case scenario is 

conducted in this dissertation. In the analysis procedures, each node or a set of nodes in a 

MANET is affiliated with steps in a flowchart of a MANET node operation of generating 

messages, which ultimately makes it possible to derive the upper bound of the message 

complexity. 

Several results are derived in order to compare the performance of the address 

autoconfiguration protocols. First, the maximum number of messages is calculated since 

when the number of messages grows, the probability of message loss or corruption 

increases, and the time delay for a successful step also increases. Based on the analysis of 

the maximum number of messages, it was found that for a MANET group of N nodes 

operating under address autoconfiguration protocols, the message complexity of the 

single node joining case in Strong DAD, Weak DAD with proactive routing protocols, 

Weak DAD with on-demand routing protocols, and MANETconf is respectively n 

(mO(N)+O(t)), n(O(N)+O(t)), n(O(N)+2O(t)), and nO((t+1)N), where m is the DAD retry 

count limit, n is the retry count limit, and t is the maximum length path. 
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In addition, the message complexity of the MANET group merging case in Strong DAD, 

Weak DAD with proactive routing protocols, Weak DAD with on-demand routing 

protocols, and MANETconf has been derived as nN1(mO(N2)+O(t)), nN1(O(N2)+O(t)), 

nN1(O(N2)+2O(t)), and min(N1,N2){nO((t+1)(N1+N2))+O(N1+N2) +O(1)}+O(2)+N1O(N2) 

+ N2O(N1) respectively.  

Based on a comparison of the message complexity between the single node joining case 

for a conflict probability value of one or less than one and the MANET group merging 

case for a conflict probability value of less than 0.9, it can be concluded that with the 

increase of the number of nodes, the message complexity of Strong DAD has the highest 

message complexity, while MANETconf and Weak DAD with the on demand routing 

protocol have the second highest message complexity. Weak DAD with the proactive 

routing protocol shows the lowest message complexity. In MANET group merging case, 

with the increase of the number of nodes, when the conflict probability equals 0.9 and 

above, the message complexity of MANETconf has the highest message complexity, 

while Strong DAD and Weak DAD with the on demand routing protocol have the second 

highest message complexity. Weak DAD with the proactive routing protocol shows the 

lowest message complexity. 

Second, the number of unicast and broadcast messages is calculated and the analysis of 

this dissertation indicates that for a MANET group of N nodes operating the address 

autoconfiguration protocols, the upper bound of the message complexity broadcasting is 

O(N), the upper bound message complexity of all nodes unicasting in response to a 

broadcast message is O(tN), and the upper bound message complexity of some nodes 

unicasting in order to check the status of other nodes is O(tN). It is known that a step that 
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needs for all nodes to unicast a message is a complex operation since the results of this 

dissertation in the case of MANET group merging case when the conflict probability 

equals 0.9 or 1 show that the steps which requires for all nodes to unicast a message in 

response to a broadcast message and the steps where some nodes unicast in order to 

check the status of other nodes caused a lot of traffic messages and procedural operations 

in MANETs. This result is explained in section 3.9.5. 

Third, since the number of recursive procedures is one of the main factors determining 

the time delay in a protocol, the effect of the number of recursive execution on the 

message complexity is studied. Since the number of recursive procedures has been 

suggested as a fixed value in the protocols, it was found that the number of recursive 

procedures is not related with an increase in the polynomial order in the O-notation, but it 

is strongly related with an increase in the total number of messages. 

Based on a comparison of the worst case scenario in Strong DAD, MANETconf, Weak 

DAD with proactive routing protocols, and Weak DAD with on-demand routing 

protocols, when the network is composed of a large density of nodes, the maximum 

complexity of Strong DAD tends to increase linearly with an increase of MANET nodes 

compared to Weak DAD with proactive routing protocols. This is mainly because Strong 

DAD chooses broadcasting schemes in steps (or procedures) that cause the most traffic 

messages than other protocols. 

In addition, the maximum complexity of MANETconf tends to increase linearly with an 

increase of MANET nodes compared to Weak DAD with proactive routing protocols. 

This is mainly because MANETconf uses a mutual exclusion algorithm to acquire a new 

IP address for a Requestor, and all nodes unicast IR messages to inform the Initiator of 



 191

the duplication status of a requested IP address. Unicasting a message by all nodes results 

in the operation complexity upper bound case of a MANET.  

Therefore, in the view point of the message complexity, when a MANET area is 

composed of a high density of communicating nodes, Weak DAD with MANET routing 

protocols becomes a more suitable protocol than MANETconf and Strong DAD since 

Weak DAD with MANET routing protocols can provide messages that can be used for 

both routing and address autoconfiguration and has much less message complexity in 

address autoconfiguration compared to MANETconf and Strong DAD. However, the 

reliability issue in duplicate address detection is a future research topic. 

In the view point of the message complexity, when a MANET area is composed of a high 

conflict probability, Weak DAD with MANET routing protocols becomes a more suitable 

protocol than MANETconf and Strong DAD since Weak DAD with MANET routing 

protocols provides both routing and address autoconfiguration and much less message 

complexity compared to MANETconf and Strong DAD. 

Tables 33 and 34 summarize the message complexity of a single node joining case and 

MANET group merging case in Strong DAD, Weak DAD with proactive routing 

protocols, Weak DAD with on demand routing protocols, and MANETconf respectively. 

Based on the observation in section 3.9.6, when a MANET performs MANET group 

merging case, MANETconf has the largest rate of increase in analyzing the message 

complexity among Weak DAD with on demand routing protocols, Strong DAD and 

MANETconf. 
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Table 33 Comparison of the message complexity in single node joining case 

Address Autoconfiguration Protocols Message Complexity 

Strong DAD n(mO(N)+O(t)) 

Weak DAD with proactive routing 

protocols 
n(O(N)+O(t)) 

Weak DAD with on demand routing 

protocols 
n(O(N)+2O(t)) 

MANETconf nO((t+1)N) 
 

 

Table 34 Comparison of the message complexity in MANET group merging case 

Address Autoconfiguration Protocols Message Complexity 

Strong DAD nN1(mO(N2)+O(t)) 

Weak DAD with proactive routing 

protocols 
nN1(O(N2)+O(t)) 

Weak DAD with on demand routing 

protocols 
nN1(O(N2)+2O(t)) 

MANETconf 
min(N1,N2){nO((t+1)(N1+N2))+O(N1+N2) 

+O(1)}+O(2)+N1O(N2) + N2O(N1). 
 

In this chapter, the address autoconfiguration protocols (i.e., Strong DAD, Weak DAD, 

and MANETconf) have been investigated. The main contributions of this dissertation are 

based upon the following accomplishments. 

1. The original publications on the address autoconfiguration protocols had many 

incomplete parts making them impossible to use on practical MANETs. 

Therefore, the first objective of the executed research was to complete the 
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address autoconfiguration protocols by filling in all the missing gaps to make 

them operational. The missing procedures that were filled in have been 

developed based on the most logistic procedures being trustful to the original 

protocol publications.  

A. By introducing the retry count limit (n) of a session in Strong DAD, the 

possibility of an infinite loop from the original Strong DAD has been 

removed. The original Strong DAD does not prepare the maximum number 

of retries of the IP verification procedure. 

B. By adapting the mechanism of the replying AE message introduced in [25], 

the additional step defined in the original Weak DAD protocol has been 

more accurate when a node finds a duplicated IP address. 

C. In MANETconf, the duplicated address node with the higher Partition 

Identity will become the Requestor asking its neighboring node to become its 

Initiator. 

2. So far, except for MANETconf computer simulation, none of the address 

autoconfiguration protocols have been investigated in reference to their 

complexity and scalability in MANET based operations. Therefore, the 

conducted research provides a detailed derivation of single node joining and 

partitioned group merging message complexity and extends the results to 

scalability and complexity analysis. Based upon the results, the following 

comparison on complexity and scalability can be concluded.  

A. The advantages of Strong DAD are as follows. 
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i. Since Strong DAD has been configured with m number of DAD retry 

count limit in the verification procedure in order to verify the required 

duplicated IP address in a MANET, the results are reliable compared to 

Weak DAD or MANETconf, and the results after executing the 

verification procedure could be more reliable compared to the Weak 

DAD or MANETconf. 

ii. Strong DAD has been configured with a simple messaging scheme such 

as Address Request and Address Reply compared to MANETconf. 

Therefore, with this simple messaging scheme, it is able to complete its 

required operations. 

B. The advantages of Weak DAD are as follows. 

i. Weak DAD does not need any new message for the address 

autoconfiguration since the routing messages have been modified to 

include the functionalities needed for address autoconfiguration.  

ii. In heavily dense networks, since Weak DAD provides both routing and 

address autoconfiguration mechanisms at the same time, Weak DAD 

with proactive routing protocols have good scalability characteristic 

compared to Strong DAD or MANETconf.  

iii. From the message complexity comparison, Weak DAD with proactive 

routing protocol has the lowest message complexity.  

C.  The advantages of MANETconf are as follows. 

i.  MANETconf has a definite mechanism of partition and merging by 

using the Partition Identity of MANET groups. Therefore, partition and 
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merging are handled through stable systematic procedures in group 

based activities.  

ii. MANETconf has moderate message complexity even though it is a 

stateful approach.  

D. The disadvantages of Strong DAD are as follows. 

i. In addition to the large overhead of acquiring IP addresses by strong 

DAD, MANET nodes generate routing overhead to update their network 

topology by using MANET routing protocols procedures.  

ii. Since Strong DAD uses m number of DAD retry count limit in the 

verification procedure in order to verify the required duplicated IP 

address in a MANET, it has the highest message complexity in both a 

single node joining case when the conflict probability is one or less than 

one and a MANET group merging case when the conflict probability is 

less than 0.9.  In addition it could have a problem of a significant time 

delay in acquiring an IP address (especially for large values of m) 

compared to Weak DAD or MANETconf. 

iii. Practically in Strong DAD, there is no identified procedure for group 

based partitioning or merging. In addition, there is no partition group ID 

that the nodes record. If MANET groups were to merge, each node 

would have to proceed with a joining procedure as a single node 

individually. Therefore, the concept of partition group control and 

management is weak compared to that of MANETconf. 
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E.  The disadvantages of Weak DAD are as follows. 

i. Weak DAD has a problem in the size of each node's routing table since 

the routing table should include the unique key value (MAC address) of 

each node. 

ii. Practically in Weak DAD, there is no identified procedure for group 

based partitioning and merging. In addition, similar to Strong DAD, 

there is no partition group ID that the nodes record. If MANET groups 

were to merge, each node would have to proceed with a joining 

procedure as a single node individually. Therefore, the concept of 

partition group control and management is weak compared to the 

MANETconf protocol. 

 

F. The disadvantages of MANETconf are as follows. 

i. In addition to the overhead of acquiring an IP address using 

MANETconf, MANET nodes generate routing overhead to update their 

network topology by using MANET routing protocol procedures. 

ii. When the conflict probability and network size grow in MANETconf, 

since all nodes reply with IR messages in response to the IQ message, 

the message complexity abruptly increases in comparison to the message 

complexity of Strong DAD and Weak DAD leading to scalability 

problems.  
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iii. When two networks merge in MANETconf, the total number of 

messages rapidly increases since all nodes reply with IR messages in 

response to the IQ message. 

 

3. The following section introduces the observation based on the results of message 

complexity of Strong DAD, Weak DAD, and MANETconf. 

A. Strong DAD has two retry count limits which are the DAD retry count limit 

(m) and the retry count limit (n). The retry count limit (n) is used to indicate 

the maximum number of retries of the session procedure in Strong DAD, 

and the DAD retry count (m) is used to indicate the maximum trial number in 

an IP verification procedure in Strong DAD. Weak DAD has only one retry 

count limit which is the retry count limit (n) since the DAD retry count limit 

(m) equals one. Based on the Lemmas 2 (mO(N)+O(t)) and 5 (O(N)+O(t)), to 

verify an IP address, Strong DAD needs to run m trials, however, Weak 

DAD with proactive routing protocols needs to run one trial. Therefore, (m-

1)O(N) number of Address Query messages can be reduced in Weak DAD 

compared to Strong DAD. Therefore, the message complexity of Weak DAD 

(O(N)+O(t)) is much less than the message complexity of Strong DAD 

(mO(N)+O(t)). However, Strong DAD may have more accurate duplicate 

address detection than the one of Weak DAD but with a higher cost of 

message complexity.  

B. Based on the Lemmas 3 (n(mO(N)+O(t))) and 6 (n(O(N)+O(t))), when the 

message complexity in a session is compared, the message complexity of 
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Strong DAD is larger than the message complexity of Weak DAD since each 

session in Strong DAD includes a maximum of m IP address verification 

procedures, however, each session in Weak DAD is composed of only one 

IP address verification procedure. 

C. By introducing the retry count limit (n) of a session in Strong DAD, the 

possibility of an infinite loop from the original Strong DAD has been 

removed. The original Strong DAD does not prepare the maximum number 

of retries of the IP reselection and its IP verification procedure.  

D. When comparing the message complexity between Weak DAD with 

proactive routing protocols and Weak DAD with on demand protocols based 

on Lemmas 5 (O(N)+O(t)) and 7 (O(N)+2O(t)), and since a node can send a 

RP message during the IP verification procedure period when it is the 

destination node of other nodes, Weak DAD with on demand protocols has 

O(t) more messages compared to Weak DAD with proactive routing 

protocols. To compare equal complexity, the periodicity of the LS messages 

is not considered. However, since the proactive routing protocols depend on 

a periodic message to update the network topology and on demand routing 

protocols does not have a periodic message, it is not fair for the two routing 

protocols to be compared with the number of messages. The result above can 

be used only in the case that Weak DAD protocol uses MANET routing 

protocols for nodes to configure its IP address and solve the duplicate IP 

address detection. 
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E. Based on the mathematical derivation in Lemma 2 (mO(N)+O(t)), Lemma 5 

(O(N)+O(t)), Lemma 11 O((t+1)N), since MANETconf has the mechanism 

that all recipient nodes must unicast IR messages when they receive RQ 

messages, it is shown that the message complexity of unicasting IR messages 

is linearly increased based on the number of MANET nodes (N) in 

MANETconf compared to unicasting AP and IR messages in Strong DAD 

and Weak DAD. Therefore, the comparison of the message complexity 

between the unicasting by all nodes in MANETconf and the broadcasting by 

a limited time in Strong DAD could be considered. Based on the simulation 

results, in single node joining case for a conflict probability which equals 

one or less than one and in MANET group merging case for a conflict 

probability which is less than 0.9, even though MANETconf has the 

mechanism that all recipient nodes must unicast IR messages when they 

receive RQ messages, it is shown that the message complexity of 

MANETconf has the second largest message complexity among Weak DAD, 

Strong DAD and MANETconf. Therefore, when a network demands an 

exact IP assignment, MANETconf can be used since it generates a moderate 

message complexity compared to Strong DAD.  

4. Based on the simulation results and analysis of the message complexity in Tables 

14 and 15, when nominal n, m, t, N values and transmission range have been 

assigned in a single node joining case with p≤1 , the message complexity can be 

compared as follows: 
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A. Weak DAD with proactive routing protocol < Weak DAD with on demand 

routing protocol < MANETconf < Strong DAD.  

 

5. Based on the simulation results and analysis of the message complexity in Tables 

28 and 29, when nominal n, m, t, N values and transmission range have been 

assigned in a MANET group merging case with p = 0.5 and 0.7 (from the results 

of the maximum overhead percentage) and p = 0.5, 0.7 and 0.9 (from the results 

of the average overhead percentage), the message complexity can be compared 

as follows:  

A. Weak DAD with proactive routing protocol < Weak DAD with on demand 

routing protocol < MANETconf < Strong DAD. 

 

6. However, when conflict probability equals 0.9 and 1 (from the results of the 

maximum overhead percentage) and the conflict probability equals one (from the 

results of the average overhead percentage), the message complexity in a 

MANET group merging case can be compared as follows:  

A. Weak DAD with proactive routing protocol < Weak DAD with on demand 

routing protocol < Strong DAD < MANETconf. 
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