By
DENNIS K. KUHLMAN
11
Bachelor of Science Kansas State University
Mankattan, Kansas 1970
Master of Science Kansas State University
Manhattan, Kansas
1975

```
Submitted to the Faculty of the Graduate College of the Okl ahoma State University in partial fulfillment of the requirements
for the Degree of DOCTOR OF PHILOSORHY July, 1985
```

Thes:s

$$
195 D
$$

Mobu

$$
\operatorname{cop} 2
$$

Thesis Approyed:

PREFACE

The work reported in this thesis deals with the computer modeding of sprays released rrom agricultural airceaft. The major purpose of this study was to examine the existing technical knowledge pertaining to the aerial application of agrichemicals and to apply this information to obtain undform field deposition through modification of boom and nozzle placement.

T mish to express my sincere gratitude to the faculty and stafe of the Acricultural Engineering Department who assisted me in this work and during my stay at oklahoma State Univegeity. My gratitude goesto Dr. Richard W. Whitney, my thesis adviser, for his encouragement, guidance, interest, and constructve critioism in the course of this work. I am also grateful to Dr. Whitney and Dr. Lawrence 0 . Roth for the teamwork proressional acoomplishment, and worldly insights gained from their expertise.

I want to thank Dre Lawrence O. Roth, Dr. Wayne B. Powell, and Dr. Bruce J. Holmes for sarving on my committee and reviewtng the inal draft. Special thanks are due to Dana Morgis Dunham for her kind help with the NASA Agdiap computer code and wind tunnel pressure belt data.

I wish to express my appreedation for the financial
assistance provided by Ollahoma State University, for my sabbatical leave granted by Ransas State University, and for the aircraft, fuel, and pilots provided by Melex USA Inc., and MidmContinent Aircraft (Richard Reade).

I am especialdy grateful to my wife, Carol, and my two sons, Brock and Les, for their unselfish support, unquestioning love, encouragement, and patience during the difficult periods of this work. A special thanks to my parents, Erkin and Vera Kuhlman, without whose support and encouragement, I might not have entered the academic world.

TABLE OF CONTENTS
Chapter page
I. INTRODUCTION 1
Statement of Problem 1
Objectives 2
Approach 2
II. REVIEW OF LITERATURE 4
Turbulence 6
Temperature and Relative Humidity 11
Alroraft Wake or Mechanical Turbulence 12
Wing Geometry 16
Wind Conditions 17
Droplet Size 19
Droplet Dynamics 20
ITI. PREDICTING DEPOSITION 25
Model Development .. Airoraft toGround27
Module One 27
Module l'wo 28
Module Three 32
Modules Four and Five 35
Model Development - Ground to Aireraft 37
Emperical Relationship Development 38
Module One 48
Modules Two and Three 49
IV. PRESENTATION AND ANALYSIS OF DATA 51
Particle Trajectory 51
Deposition Centroid Prediction 52
Aircraft to Ground Algorithm 52
Ground To Aircrate Algorithm 67
Chapter Page
V. MODEL VERTFICATION 74
VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIOAS 79
Conclusions 81
Recommendations for Improverent 82
Suggestions for Further Study 83
A SELECTED BTBLIOGRAFHY 85
APPENDIXES 89
APPENDIX A - SIMULATION CODE FOR AIRCRAFT TO GROUND ALGORTTHM 90
APPENDI甘 B - SIMULATION CODE FOR GROUND TO AIAGRAFT ALGORITHM 150

LIST OF TABLES

Table Page
I. Data Response Characteristic Analysis.. . . 42
II. Initial Regression Results............ 43
III. Best Stepkise Regression Models. 46
IV. Nozzle Placement Recommendations, Cessna . 6

LIST OF RIGURES

Figures Page

1. Droplet Size Distribution 33
2. Formation of Predicted Deposition Matrix 36
3. Efrective Swath Width Determination 39
4. A Single Nozzle Test 39
5. Particle Trajectories for V. 1 Droplets 53
6. Particle Trajectories for V. 5 Droplets 54
7. Partiode Trajectoriea for V. 9 Droplets 55
8. Vortex Movement in Crosswind 56
9. Observed Centroid Deposition Locations Agcat 57
10. Observed Centroid Deposition Locations, Melex 58
11. Predicted Centroid Deposition Locations from Two Algorithms for Agcat, 164B+ 59
12. Predicted Centroid Deposition Locations from Two Algorithms for Melex, M-18 60
13. Airoraft to Ground Algorithm Accuracy 62
14. Predicted and Observed Deposition from An to Ground Aderorithm 68
15. Ground to Alroraft Adgorithm Acouracy 71
16. Propeller Induced Error 72
17. Predicted and Observed Deposition from Ground to Ajr Algorithm 73
18. Predicted and Observed Deposition Cessna Ag-Truck, Final Trial 77

$R 1$	Richardson number
g	grayitational acceleration
T	absolute temperature
τ	adiabatic lapse rate
z	height
u	average velocity
wd	vortex decending velocity
I^{\prime}	circulation strength
b^{\prime}	spacing between vortex centers
V	velocity
20	roughness height
0 X	friction velocity
Ψ	atabilsty parameter
k	Vonkarman's constant
$L^{\prime \prime}$	scaling length
Cp	speciflo heat at constant pressure
Dvol	droplet diameter at 10% cumulative volume
Dv. 5	droplet diameter at 50% cumulative volume
DV. 9	droplet diameter at 90% cumulative volume
V d	particle settling rate
n	v1scosity
ρ	density

${ }^{1}$
p
particle radius
static pressure
time
horizontal distance
droplet diameter
dynamic viscosity

CHAPTER I

IN TR ODUCTION

The current world fleet of agricultural aireraft consists of an estimated 24,000. About 300 new agricultural aircraft are built each year in the united States and about 300 million crop acres are treated. Improvements in the design, comfort and safety of today's modern aircraft are evidenced by the declining rate of accidents and injuries. Many innovations have been Incorporated lato the adreraft designs since 1950. However, little has bean done to improve the spray system being used on today's modern agricultural airoraft. The spray systems and spray technology being applied today are approximately the same as in 1950. The agricultural aircraft liquid spray boom and nozzle configuration used by many applicators is based on past experience, observation of other alreraft, hearsay, and trial and error test procedures.

statement of Problem

The purpose of this study was to utilize existing and new information to formulate a computerized procedure which will predict the spray deposition position and amount of
spray deposited from particular fixedming aireraft designs and predict the nozzle locations on the spray boon which will produce uniform spray deposition.

Objectives

The objectives of this study mere to:

1. Predict the trajectory of spray particles released from an alreraft.
2. Predict the finaj deposition positions of the released spray particles.
3. Combine the information generated in objectives 1 and 2 to determine the correct nozale placement on an aircraft boom to produce a uniform deposition.

Approach

The deposition characteristios of two different aircraft were determined. Tests were conducted to determine the location and shape of deposition of spray released from various points along an agrioultural aircraft spray boon and thejr relationship to various physioal and meteorological variables. This data was used to develop and/or verify the deposition model and to develop a deposition reference matrix.

The deposition reference matrix was used to predict the total deposition of the aireraft and to select the locations for nozzle placement along the spray boom to achieve a wide, uniform spray deposition the predicted
output was then compared with field data to determine the acceptability of the procedure.

REVIEN OF LITERATURE

Agricultural aviation is g growing, dynamic segment of the American Agricultural Industrye Its inpact on United States farm production and the economy of the country is quite large, including seeding, fertilizing, insecticiding, herbiciding, and in various other forest and agricultural management techniques. The major contribution of aeriad application is the support of agricultural production, promasily food produotion. The most scarce resource used In the production of food is Iand inddeating that increased return per acre of land has and will continue to be of paramount importance in agrioultural production. However, approximately 30 percent of the total agricultural yield is lost to pests each year. Improved aerial application techniques will help to recover some of this inmense loss (1).

When usjng aerial application techniques, many physical and meteorologioal parametors can adversely affect the quantity of material deposited at the desired location. Since the first dry material was discharged from a HufoDeland adrplane shorty after World War I, a continuous effort has been made to predict the distribution of
particles discharged from various kinds of devices mounted underneath agricultural aireraft. Hundreds of experiments have been conducted and thousands of swath distribution patterns have been measured, but no systematic variation of swath pattern has been attributed to any single factor, elther aircraft design or operation. For example, suath patterns of an airplane operating at a given air speed at full gross weight and the same airplane operating at the same air speed with minimum gross weight, i.e., nearly empty hopper, have not differed sufficiently so as to make either one of the swath patterns unacceptable for commercial application. This duplies that for any given airplane the factors which can be controlled by inaflight techniques or operating oonditions are not sufficient by themselves to produce a commercially signjifant change in swath width or distribution pattern. The uniformity of material within a single swath is influenced strongly by the system set-up, boom and nozzle placement, the wing flow field, the propeller helly, ground speed, weight of the airplane, and flow rate of the spray material (2).

The basic objective of any application is to deposit the active material entirely on the target area. However, due to micrometeorological conditions, the dymaics of spray droplet behavior, the physical properties of the spray formulation, and the height at which the spray is emitted, the recovery of the active material on the target area will generally be less than one hundred percent (3).

Transport of particles by atmospheric movement is a direct cause of particle drift and varying rates of deposition. Measurements of these conditions and an understanding of their influence may resultin meaningful improvements in spray deposition. Major factors Iimiting progress in the technology are the acquisition of knowledge concerning the biological. factors involved. understanding the exact mechandes of transport of small particles to the target surface, and the complex interrelationships in this connection between the physical, biological, and meteorological factors (4). Even though all fundamental relationships for predicting spray deposition are not yet fully established, parametric studies of the major meteorological parameters can give considerable insight into the solution of this complex problem (5).

Turbulence

The main difficulty of analyming the drift and deposition of particles in the atmosphere stems from the fact that the motion or spreading of any particles (solid or liquid) in the atmosphere takes place in a plow field that is almost invariably turbulent. Even though turbulence has proven to be an interesting subject in its own respect, it has proven to be one of the most untractable problems of the physical sciences and a complete understanding is still outside the grasp of technology. Turbulent motion of the atmosphere becomes
even more so when there is particle interaction (5). Turbulent atmospheric flow does affect the drift and deposition of materials but the effect depends on the particle concentration as well as the particle density, shape, and size relative to the characteristic soale (length) of turbulence in the atmosphere. Turbulence in turn is related to the ground surface roughness, temperature gradiont with height, and the uind velocity gradient (wind shear) with height. The turbulence near the ground is partially induced by the surface roughness and is dependent on the size and distance between the surface roughness edements.

Vertical and horizontal eddies are mechanically produced as the afxstream flows over and around the roughness elements. In addition, nechanioaluy produced turbulence is incuced by the gradient of wind velocity as it produces wind shear. The wind shear is generally greatest near the ground, increases with wind speed, and is also affected by the surface roughness elements. The temperature gradient is important since it represents the energy avallable for producing or suppressing eddies by bouy ance forces. The temperature chenge with height, or thermal stratificationg is one of the most critical factors that control atrospheric stability, turbulence or vertical mixing. Temperature inversions are produced by several means. The most common is radiation inversion caused by heat transfer due to radiation from the ground to a cool
sky (when the sun is low or below tho horixon); this heat loss cools the ground and the air close to it. Another jmportant inversion cause is the influx over land of a late afternoon sea breeze along cosstal areas. This cold adr pushes under the warm air and causes a temperature inversion condition. A thisd cause of temperature inversion conditions is subsidence, the phenomena by which adr from a higher elevation is forced down into a lower level, such as a valley. This drop in eleyation warms the air and places a warm layer of air over a valley to produce temporature dnversion conditions.

The turbulent atructure of the armosphere is sometimes analyzed relative to atmospheric stabllity. The Richardson numbers R1, 1 frequontiy used to characterize atability conditions and 1 g given by the following rolationship (5):

$$
\begin{equation*}
R i=g / t\{(\Delta T / \Delta z)+t\} /\{\Delta u / \Delta z\}^{2} \tag{1}
\end{equation*}
$$

where gis the gravitational accoleration, 1 is the absolute temperatures t is the adiabatic lapae rate, is the hefght, and u is the average horizontal wind velocity. The Bichardson number is a dimensiondess parameter that relates the rate of bouyancymproduced turbulent energy to the sate of wind-shearaproduced turbulent energy. Under stable conditions, turbulence is suppressed; whereas, with unstable conditions, turbudence is entanced. It is, therefore, an indicator of the increase or suppression of
turbulent motion in variable height and density gradient. A large negative value indicates that convection pradominates and is associatedwith strong vertical and lateral motion which would increase the rate of turbulent diffusion of the particles. Mechanloally produced turbulence predominates as the Richardson number approaches zero. Large positive values represent conditions mhere the vertical or lateral motions are dampened, thus minimiaing particle spread in other than the mean ind direction. However, the Richardson number applies mainly to a particular surface roughness and has dimited userulness for comparing measurements over surfaces of varying roughness. Quantitative calculations of the Richardson nurber also require sophisticated instrumentation to accurately measure wind velocity and temperature gradients. When such dnstruments are available, the Rtchasdson number appears to be good parameter or indicator for predicting dispersion of spray particles released from agricultural alreraft.

The Stability Ratio ($S R$), another measure of atmospheric stability, ls a somewhat simplified index. Requiring less sophisticated instrumentation than the Richardson number, the S has been satisfactorily correlated with drift deposit characteristics. It is given by the following relationship (1):

$$
\begin{equation*}
S R=\left\{\left(T_{2}-T_{1}\right) / u^{2}\right\} 10^{5} \tag{2}
\end{equation*}
$$

Where T is temperature and u is average velocity measured at a hejght equal distance from locations two and one on a logarithmic scale, with position one being lower than position two.

The stability ratio ls not affected as much by changes In surface roughness as the Richardson numbere Also, average wind velocity can be measured more easily than a velocity gradient. Drift tests from previous investigations have established four generel categories of atmospheric stability using the stability Ratio:

Ungtable	$-1.7 \leq S R \leq-0.1$
Neutral	$-0.1 \leq S R \leq 0.1$
Stable	$0.1 \leq S R \leq 1.2$
Very Stable	$1.2 \leq S R \leq 4.9$

With high wind velocities the stability ratio will tend towards 1ow values for tuo reasons: the temperature difference between positions 1 and 2 will be less due to turbulent mixing and the square of the mean velocity will increase which in turn reduces the atability ratio. The stability ratio has its aimitations and oartainly cannot replace the close examination of such variables as wind direction, wind speed, thermal stratification, turbulence, relatiye bumidity, etc. (5).

Another appeoach to characterszing the turbulent.
"state" of the atmosphere is to measure the threemdimensional varietions of velocity. By observing the
fine details of the atmospheric motion, the concept of turbulence "intensity" can be visualized. this approach requires a rather sophisticated instrument system to measure the thpee varying signals simultaneously without influeneing any of the neasurements by insertion of the probe into the flow field. It is inportant to recognize that the values of the turbulence intensities are dependent on averaging times and experience is required to select the appropriate ayeraging period for the type and scale of difusion under consideration.

Iemperature and Redative Humidity

Temperature and relative humidity may also affect the spray deposjtion, Relative humidity is defined as the ratio of the quantity of water vapor present to the quantity required for saturgtion at a glyen texperature and promsure Caution must be used since the relatdve humidity involves the ratio of two vapor pressures, the actual and the saturation. The actual vapor pressure changes with the pressure, and saturation vapor pressure varieswith temperature. Generally, effects due to humidity relate to evaporation rates. Solid and nonaqueous materials dispersed from agrioultural aireraft may not be slgnificantly affected by the humidity in the atomphere. The drop size, after dispersal of an aqueous solution, will vary depending on the humidity and other related factora (temperature, relative velocity of the drop, etc.). as the
particle evaporates, the diameter reduces which causes the terminal velocity to reduce. A reduction in size, therefore, increases the total auspension tire of the drop for a given release height.

One important detail relating to evaporation is the relative velocity between drop and adr. Both the rate of evaporation and the rate of conduction of the heat to a drop which is cooled by latent beat loss are increased when the drop experiences relative motion to the medium in which it is placed. The rate of mass and heat transfer then becomes convective in place of diffusive No olosed mathematical solution exists for the foreed convective tranafer because of the complex manner which the flow field past the drop changes with Reynolds number (5).

Adreraft Wake or Mechandeal Turbulence

A significant mount of mechandcal turbulence is produced by the physical forees involved in producing aiforaft slight. A fiow field is produced around each of the aisoraft surfaces during flight. The wings generate turbulence as the air mass flows around the airefl surfaces. To this turbulent wake, the turbulence generated by the fuselage, landing geas, gump, pump whamill, boom and boom hangers, elevator, rudder, adleron and flap control surfaces, and the propeller must be combined to form a three-dimensional mechanical wake which exists benind the airoraft in flight.

In close ground proximity, the ground exhibits a significant influence on the aireraft wake system by restricting normal vertical descent and inducing a rapid lateral outward moverent of the system over the ground. The speed with which the lateral transport oceurs is a function of the height of the aircraft over the ground and decreases as the height of the aircraft increases. In a relatively nonmturbulent (stable) atmosphere where mechanical turbulence will dominate, the lift generated wing-tip vortex initially descends and then begins to move spanulse as it interacts with the ground. Lateral separation of the vortex pair increases. The vortex is predicted to reach a constant altitude by an inyiseid mathematical prediction, while the yiscous prediction is that the vortex aill rise slightyy as it moves along the ground. Vorter rebound has been observed in which the Viscous action between the ground and the yortex systen causes the primary vortex to "bounce" upward after it has come close to the ground. This indicates that a viscous prediction method may be more indicative of actual field condttions. Particle concentration petterns become increasingly more diffuse for the particles ejected from the more outboard locations because of the stronger Influence of the tip circulation in these regions (6).

The distribution of veloodty in the wing.tip vortices is primarily dependent on the aireraft wejght distribution across the wing span. The circulation strength is a
function of the afperaft weight, wing span, and indlated air speed, The vortex pair does not remain at the altitude of the wing but descends downward with a velocity glyen by:

$$
\begin{equation*}
w d=r / 2 \pi b^{\prime} \tag{3}
\end{equation*}
$$

where b^{\prime} is the spacing between the vortices and l^{\prime} is the circulation strength. For estimation purposes, the vortex center for airplanes with straight, untapered ings can be assumed to be located at the wing tipa (7).

The swirling circulation velocities are significantly reduced by the presence of large (1n relation to the aircraft wing span) canopies, as in application over forests. This effect is caused by the interperence of the canopy with most of the wake vorticity. This affect 13 strong when the hedght of the canopy is of the game order of magnitude as the wing seinispan (7).

When a cross shear is present near the ground the symmetries of the secondary vortilees generated by the interaction of the main vortices and the ground surface are distroyed. On the upwind side, the boundary layer interacts with the shear so that the main vortex rises but does not move outboard. on the downwind side, the vorticity in the shear and the boundary layer are of the same sign so that the boundary layer remains atoched longer. Thus the secondary vortex is show to form and the effect on the main vortex is to induce an outward motion
but no upward motion. The vortex not intoracting with the canopy continues to move as it slowly diffuses, while the vortex interacting with the canopy has little motion. The lateral motion of the vortex along the ground is slowed by the presence of a canopy (8).

In the region of outward particle transport, operation at a low lift coefficient decreases the amount of lateral transport with the influence increasing as the ejector location moves outboard. In the region of inboard transport, it is difficult to observe a significant effect due to the variation in operational lifs coefficient. Qualitatively, operation of the afreraft closer to the ground allows less lateral transport to oceur than when the aircraft operates at hither altitudes. The direction of the propeller rotation is clockwise (with a majority of engines) as viewed from the rear such that a right-hand helical flow-field is induced. This results in the rightward shifting of the more inboard partiole trajectories (6).

While it has beea definitely shown that liquid droplets can be entralned in tip vortex and that the vortex strength and position does influence liquid droplet drift, no such effect has been found in application of dry materials, where particle sioes range from 500 to 3500 microns. The trailing vortex velocity field behind existing aipplanes is not strong enough to materially affect the lateral transport of large particles (9).

Wing Geometry

Wing geometry will also affect the deposition of materials. One wing geometry of interest in the analysis of particle trajectories is a wing with a partial-span flap. As bound circulatton decreases progressively from the uing root to the tip, the shed circulation increases. The largest change in bound circulation occurs at the point of the largest change in wing lift. Thus, at the end of a derlected flap or at the wing tip, the large change in bound ciroulation produces a rolledmp vortex. The magnitude of shed vorticity is a function of wing loading and atroraft speed. A constant wing area with increased gross weight of the girplane must be reflected in increased power and stall speed. Wing loading, therefore, is not an independent variable and it cannot be changed without affecting major design parameters of the airplane, namely powermloading and stall speed (9).

The basic feature of the flow field behind a fixed wing aircraft is at least one pair of countermrotating vortices which originates near the wing tips. There are vortices trailed from the lifting tail surfaces as well, but these are of lesser strength and influence the particle trajectories $2 n$ ondy a winor way when the particles are released near the wing (T). The position of the shed vortex will also be influenced by wing twist, one way to secure aerodynamic wing twist is to deflect flaps.

When this is done the bound ofrculation is increased oyer the extent of flap span and decreased over the portion of the wing outboard of the flap. This is equivalent to a reduction in aerodynamic aspect ratio and the trailing vortex shed at the flap end is closer to the centerline. A discharged particle from the mid-semispan area will be closer to the vortex core and therefore will be in a higher velocity field. This particle is transported further laterally than when the vortex is disposed at or near the wing tip. From this it can be seen that increased particle transport from a given discharge point will oceur when an airplane is flown with deflected flaps with the outboard wing panel unloaded. It is evident that the change in airplane weight, and therefore wing loading, between the first and last swath will affect particle transport. Thus some means of control of the effect of vorticity on particle transport would be required to maintain constant swath widths (9).

Wind Conditions

Under calm conditions of the surface layer of air (very unlikely), a drop or particle would fall vertically under the effect of gravity and there would be no drift. If there is wind during the settilng time, droplets released will be carried a distance in the direction of the horizontal wind velocity component. The horizontal wind velocity, however, normally increases with altitude being
effectively zero at the ground。 Partioles mill be subject to different wind conditions as a function of height. The relationship between the horizontal wind velocity and altitude is generally a logarithmic profile. It should be noted that the wind profile is dependent upon where one measures the wind and the surface roughness.

Investigations haye shown that the wind profile, near the surface of the earth, can be closely represented by an equation which is logarithmic and is oxpressed by (1):

$$
\begin{equation*}
v=u_{x} / k\left(\ln \left[\left(z+z_{0}^{5}\right) / z_{0}\right]+\Psi\left(z / L^{\prime}\right)\right) \tag{4}
\end{equation*}
$$

where V dis the velocity of the wind at some altitude $z \quad V$ is also a function of surface roughness length, Zo; friction velocity, U_{x}; a stability parameter, Ψ; and k, Von Karman's comstant which 1 s generally taken as 0.4. The stability parameter is dependent on the altitude and a scaling length L^{\prime} where:

$$
\begin{equation*}
L^{\prime}=\left\{U_{x} T(\partial V / \partial z)\right\} / k g\{(\partial T / \partial z)+(g / C p)\} \tag{5}
\end{equation*}
$$

where $\&$ is the gravitational acceleration, T is the absolute air temperature; k is yon Karman's constant, V is the hozimontal wind speed, and Cp is the specific heat at constant pressure.

Wind direction is a very obvious and easily recognized
parameter which is Lmportant in the prediction of particie deporition. The mean wind direction can be used to predict the direction of particle deposition from the time it is released until it reaches the target.

The wind speed is a critical factor in determining transport distances. Under neutral and stable conditions the ind speed can provide an estimate of the drift distanoes berore spraying begins (5).

Dropdet Size

The uniformity of the droplet size spectrum is a major physical factor that affects both the blological efficacy and the environmental contamination from aerial application of pesticides. It is apparent that narrow droplet size spectrums are required it aerial applicators are to achieve procision target applications with aminsmun loss due to drift and at the same time an optimum size that provides efficient eoverage, It is also impostant to recognize that there is no single optimum spray system for ald treatments. Thus it is important to understand the atomezation characteristics and apply the informetion to each specific field condition.

The American Society of Testing Materials comattee on 1 Lquid particle sis measurenent suggests the use of "Relative Spantas a general measure of the uniformity of a spray. The value is defined as:

$$
\begin{equation*}
\text { Relative Span }=\{D v .9-D v .1] / D V .5 \tag{6}
\end{equation*}
$$

where: Dv.9, Dv.5, AND Dv. 1 refer to the drop diameter such that the cumulative volume fraction is less than $0.9,0.5$ and 0.1 respectively. The Relative span can be readijy calculated from the cumulative percent volume plot and represents the ratio of the range of drop sizes that contain 80 percent (from 10 percent to 90 percent) of the spray volume to the volume median diameter (10).

The use of droplet size information in field simulations poses sampling problens that can be encountered when using coated slides, cards, or water sensitive paper. With existing technology, accurate field image sining ds exceedingly difficult. Moreover, it appears that there are inconsistencies and a lack of information on the correction factors that must be applied because of droplet spreading or Impact (11).

Droplet Dynamics

After leaving the aircraft, the velocyty of the droplets is a vector quantity depending on nozzle orientation relative to the adroraft, the local flow velocity, and the initial particle velocty. This velocity is diminished by the resistance of the opposing airflow, the particle falls into the turbulent zone behind the alreraft, and then lags behind the aircraft. A rough estimate of particle trajectories from an airoraft can be
made by using a number of simplifying assumptions. The particle is assumed to be spherical, to not experience rotational or oscillatory motions, and the air medium is assumed to be fixed. For rough calculation of the vertical stoady-statosetting rate of fine particles assuming the above conditionsp one can use stoke's formula (1):

$$
\begin{equation*}
V d=4 g r^{2}\left(\rho_{\ell}-\rho_{a}\right) / 18 n \tag{7}
\end{equation*}
$$

Where Vdis the steady state settling rate of the particle, gis the acceleration of gravity, n is the viscosity of air, $\rho_{\ell} 1 s$ the 1 iquid density, ρ_{a} is the air density, and r is the particle radius. The liquid density of water is much greater than sir; consequently the density of air can be ignored in the above equation. The setting yelocity in the atmosphere is actually the particle velocity minus the wind velocity. Esperimentally deternined terminal fiall velocities indicate that Stokes law over-estimates the actual terminal velocity in air for droplets larger than 20 microns. The conditions for which stoke's law may be accurately applied, in the case of water dropletsin still air, is restricted to droplets less than 20 microns dianeter.

Steady-state conditions are rarely present in the atmosphere. When turbulence and wind variation erfects on the particle are taken into acoount, the governing equation
of particle motion becomes a function of the velocities of the fludd and solid particle (the mean velocity of the fluid encountered by the particie, not the distributed fluid around the particle), the particle radius, densities of the fluid and solid particle, the external force due to the potential field, the static pressure, the time, the viscosity of the fluid material, and the time constant (inverse relaxation time) for momentum transfer due to drag force.

Along with consideration of the vertical gettilng rate of particles, there is also interest in the horizontal path over which the ejectied partiole can move until it is stopped by the opposing air current. The maximum horizontal path of a particlewith an initial velooity (V) can be calculated by:

$$
\begin{equation*}
S \max =\rho_{d} d^{2} v / 18 n \tag{8}
\end{equation*}
$$

where Smax is the maximum horimontal path of the drop; ρd is the density of the drop; d is the drop diameter; and n is the absolute viseosity of the air (1). The indtial horizontal velocity of a small particle is quenched in the ais within a fraction of a seconds and such a pertiole, even for large dnitial velocities, can move ony small distances before it is stopped by the opposing air current (7).

In general, most environmental conditions applicable
to particle drift will be such that the only other force, other than gravity, will be the force due to viscous drag. The viscous drag force is actually a nonlinear expression, but if stoke's law is assumed, the equations of motion (vertleal aud horlzontal) are given as (5):

$$
\begin{equation*}
d V p z / d t+A(V p z)=g \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
d V p x / d t+A(V p x-V x)=0 \tag{10}
\end{equation*}
$$

Where Vpa is the particle velocity in the z direction, Vpx is the particle velocity in the x direction, Vx is the wind velocity in the x direction, g is the accelaration due to gravity, and:

$$
\begin{equation*}
A=(9 / 2)\left\{U q /\left(p p r_{p}^{2}\right)\right\} \tag{11}
\end{equation*}
$$

where Ug is the dynamic yiscosity of the gas medium (in this case, afr), ppis the density of the particle, and r is the radius of the particle.

If the particle is assumed to be released at an initial beight, Zi, and to have an initial velocity of zero in the vertical direction, solving Equation 9 for 2 :

$$
\begin{equation*}
z=g / A\left\{t+1 / A e^{-A t}\right\}+Z i-g / A \tag{12}
\end{equation*}
$$

In a similar manner the distance trayeled dounstream by the particle will be calculated from Equation 10 . If the initial x position is assumed to bero and the initial velocity of the particle in the x direction (Vpx) is zero, then x can be oxpressed as the double integral:

$$
\begin{equation*}
\left.x=A \int_{0}^{t} \int_{0}^{t^{\prime \prime}} e^{A\left(t^{\prime}-t^{\prime \prime}\right)} v x z_{(t)}\right) d t^{\prime} d t^{\prime \prime} \tag{13}
\end{equation*}
$$

where t in the outer integral of Equation 13 is determined from Equation 12 by setting z equal to zero and solving for t. The wind velocity profile for neutral stablidty conditions (Greek $\psi=0$) is given as:

$$
\begin{equation*}
V x_{(z)}=(U x / k) \ln \{(z+20) / Z 0\} \tag{14}
\end{equation*}
$$

and z is given in Equation 12 as a function of time. The time required to reach the surface is dependent on the radius and density of the particle. These two parameters are combined in the constant A. As the density or radius increases, the value of A decreases which in turn reduces the drift time for a given release height (5).

An accurate metrod of predicting the fingl deposition location of spray released from spectfic nozzle locations has long been desirable. Manuals have been prepared for characterizing spray released from agrioultural adreraft. The technology has not been available to determine spray characteristics and deposition amounts when released in and subjected to aircraft wake turbulence. A computer simulation of the spray deposition would enable manufacturers and usexs of their products to evaluate the Qffecta of mozale plaogment or conitguration end could make possible a reduction in ofintarget chenical movement win wider swaths and better deposition uniformity. Aircraft manufacturers could potentially determine the most desirable nozzle and boom placements to achieve the optimum deposition for each alrframe model. Presently, little or no test work is done prior to delivery of a new aigeraft to insure unfform deposition of agricultural syrays.

Two approaches to the problem of predicting the final deposition of spray released from agrioultural adraraft were considered. Thefirst was tomathematicaldy describe the aircraft in such a way that would allow the prediction
of the aireraft wake profile that exists behind the aircraft in flight and to follow spray particle trajectories through that wake profile until inpact with the ground. The second approach was to measure the actual deposition location and the independent variable values that existed at the time of the test with a sufficient number of replications to make the observations statistically credible. Statistical and numerical analysis was then applied to the data to examine the relationships between the independent and dependent variatles to predict deposition locations. In short, the first approach was fron the "aircraft to the ground" while the second approach was from the "ground to the aireraft".

A modular programing approach was utilized in the development of both algorithms to allow flexability within the program structure for ease of modification due to updated information. Hl modules resided and executed on an Apple If microcomputer with the exception of Module Two of the Aircraft to Ground algorithm which resided on a Digital Electronics Corporation PDP $11 / 34 \mathrm{~A}$ minicomputer. The modular approach allowed the algorithms to be applied in remote locations. A complete listing of the Aircraft to Ground algorithm may be found in Appendix A, and the Ground to Aireraft algorithm in Appendix B.

Model Developnent - Airoraft to Ground

Module One

Operation of the model required that the physical simulation system including the aircraft and environmental factors be inftialized. Module one prepared the input parameters into the format required for the execution of the remaining modules. Inputs requiring initialization included aircraft wing loading, height or the wing above the ground surface, flight speed of the aircraft, aircraft wing conitguration, wing eirculation strength (determined from aireraft weight, wing semi-span, air density, and flight speed), crosswind velocity, wind velocity measurement height, ground surface roughness, drag coefficient of the aircraft, planform area, propeller efficiency, propeller RPM, propeller blade radius, propeller shaft centerline distance above or below the particle release height, background turbulence velocities, maximum background turbulence macroscale, canopy plant area profile, particle release position, diameter of released particle, specific gravity of released particle, initial velocity vectors of released particle, wetmbulb teraperature depression, and minimum particle size at which particle is assumed to have evaporated. The computer code was developed in Applesoft basic with input parameters in English units. A numerical solution, of the Lagrangian form particle dynames equations, is then required.

Module Iwo

The development of a module two to predict the deposition position of spray released from specific nozzle locations on an agricultural aircraft was completed by modifying the NASA developed Agdisp coraputer simulation. The formated output of Module One remained compatable with Versions One and Two of the Agdisp simulation code. The modified code resides on a Digital Electronics Corporation PDP $1 / / 34 A$ mind computer. The romated output of Module one was transfered directly via remote modum to the PDP 11/34A for execution of the numerical prediction of deposition. The modular format allowed the microcomputer equipped with a remote modum complete access to the faster, larger capabilitjes of the minicomputer from remote locations. The development of the NASA computer model for predicting the deposition and trajectory of spray particles released from an aireraft is beyond the scope and objectives of this thesis. However, a brief background is presented.

In an early attempt to quantify insecticide coverage while spraying for mosquito control, LaMer and Hochberg (22) observed that the deposition of acute material appeared to be an inverse exponential function of distance from the spray generator for droplet sizes less than 60 microns. Johnstone et al. (23) give relationships for vertical and horizontal penetration of an aerosol through a forest canopy. They also consider aerodynamic downash
effects on spray coverage. semsmith et al. (24) provide experimental spray deposit distributions cor both orwtarget and orfotarget areas for a spray rormulation having a spay droplet mass median diameter of 210 miorons, and ange of 20 to 450 microns. Coutts and Xates (25) reported drirt deposition data as a function of noz \quad ar orientation in relation to the chord dine of the wing. Umback and Lembke (26) presented a comprehengive wind tunnel study in an effort to quantigy acrial drift by using dinensional analysis which related drift as a function of neight of release, wind velogity, and spray droplet adaneter ror a specifie system. Garrett (27) studied single particle dynamics and droplet drag oharacteristios in order to estinate distanoe to ground impaot when droplets are released above grounc lopel jn a flowing air stream. Friediander and Johnstom (28) exsmined deposition of suspended partioles in turbulent ges streams whthin enclosed ducts. Threadgill and gmith (29) determined the impact distance of vaious nonevaporating droplet sizes releesed from a helght of ten feet in an airstream havine a Unreemale per hour hordzontal velocity happle and Shepard (30) developed the equationa of motion, deseribing single partiole trajectories in gtill airg utiliadug experimentally determined drag cosfficients. Hughes and Gildiland (31) applied this work to their investigation of motion of small droplets in a gaseous medium.

Based on bhis work, a twoudmensional stream function
model in terms of velocity and position in a figed coordinate system was developed and simultaneously integrated to obtain the trajectory of a single particle. However, this procedure ignored any deposition velocity contribution due to inertial effects and diffusion. Other factors that must be considered include turbulence, changes in horizontal wind velocity with height above the grade, evaporation, coagulation, and deformation of particles. The NASA Agdisp model has expanded these basic models and developed the technology required to predict the deposition of sprays (or particles) released into the atmospherefrom both fixed and rotary wing alrerart.

A dispersal code developed by Reed (32) demonstrated the importance of the vortex wake in establishing particle trajectories and hence deposition patterns. However, no consideration was given to the effects of dispersion or particles resulting from atmospherlc and airceatt generated turbulence. The Reed model was added to by Trayford and Welch (33), by Bragg (34), by Bilanin (35), by Jordan (36), and by Morsis (8). The Agdisp computer code has been developed to simulate the viscous, turbulent interaction of the multiple vortices in an aircraft wake. The code is a twoodimensional, unsteady, incompressible modeling of the Reynolds stress equations which initializes the computation downstream of the trailing edge of the wing. The two-dimensional approximation was justified for these flows since gradients in the flight direction are very small
compared with the changes in the vertical and lateral directions. Therefore, the numerical simulation mas equivalent to observing a wake flowfield in a plane which is both perpendioular to the aircraft's flight direction and fixed to the ground. Incompressibility was justified since the Mach number of the swirling velocities in the wake is small. Constants were evaluated by comparison with measurements of fundamental fluid laws. The computations Idealized the neutral atmosphere by assuming constant shear and homogeneous turbulence in the absence of a vortex wake. The background turbulence levels were determined by the Iimit of the turbulent transport model. This 1 indt was approached at high Reynolds number when timemratesmofmohange and diffusion of secondmorder correlations were negligible. Fhe numerleal solution schene was an Alternating Direotion Implacit (ADI) technique. The mean equations fere in stream function-vorticity veriables, eliminating the need to compute the pressure. A direct solver calculated the stream function from which the velocity fields were determined. A uniform velocity gradient mesh was used except near the ground where additional resolution wat needed to define the large graddents. To reduce grid point requirements, half-plane computations were made when possjble. Initial distributions of vorticity vere determined from experimental wake surveys or estimated based on measured or calculated wing span load (18).

The output of this module was the particle position at each small time increment in the aircraft wake which allowed the plotting of the particle trajectory, the final position of deposition at the ground, and the droplet diameter ratio which was an indication of the volume loss due to volatilization.

Module Three

One of the major shortcomings of the numerical solution of Module Two was that the solution could only be performed on one droplet size during each simulation. Sprays released from hydraulic atomization contain a spectrum of sizes. Therefore, multiple numerical solutiong must be employed to adequately desoribe the trajectory and final deposition of the spray spectrum. A numerical solution was completed for three droplet sizes representing the droplet size at whioh 90 percent of the spray by volume Was composed of spray droplets smaller than that size (V.9), the droplet size at which 50 percent of the spray by volume was composed of spray droplets smaller than that size (V.5), and the droplet size at which 10 percent of the spray by volume was composed of spray droplets smaller than that size (V.1) as illustrated on a logarithmic graph of the cumulative volume droplet size distribution shown in Figure 1. These droplet sizes were corrected by linear interpolation for simulated aircraft ground speed. Each of the numerical solutions resulted in the output of droplet

[^0]diameter ratios, and deposition locations for each nozale position.

The individual runs were then combined into a single nozzle deposition distribution by Module Three. Each of the three distributions was described as triangular in shape with the deposition span forming the base and the neight being determined by the simulation predicted droplet deposit diaxneter ratio multiplied by the fraction of the theoretical flow rate of the nozale tip represented by that respective droplet size range. The deposition span was assumed to be 25 feet as indicated by the mean of the deposition span of spray released from 125 nozzie positions on two alroraft. A final predicted spray deposition was then formed by adding the three triangular distributions as shown in Figure 2. The final deposition distribution was ther placed into matrix form with the matrix elements representing the actual flow rate in gallons per minuto for a six inch segment of the deposition span. When elements are totaled, the percent spray deposition based on the individual nozzleflow rate was computed. The final deposition matriz then contadns the deposit atart position in feet, the deposit stop position in feet, the doposition span in feet, and the deposit amounts (in gallons per minute) for each six inch increment starting at the start position up to a maximum of 60 matrix elements. In the event that the predioted deposition contained more than the allowable 60 elements, a routine was employed to center the
deposition and to delete those elements that were beyond the matrix limits from both ends of the deposition. (This truncation procedure introduced an error into the actual deposition amounts that averaged 0.0001 gallons per minute.) A nozzle matrix is then formed and stored which contains the nozzle locations, and the deposition matrix for all of the individual nozzle locations.

Modules Four and Eive

From the deposition matrix, all nozzles with positions between the 25 percent and 75 percent aircraft wingspan locations were turned mon" and a total deposition matrix formed by adding the individual amplitudes from each nozzle matrix position to the correct total deposition locations beginning with the start position and continuing for each of the matrix positions across the deposition span. The estimated swath width of the composite matrix was then calculated by determining the distance between left and right intercept points which were equal to one half the maxjmum deposition value as shown in Figure 3. The coerficient of variation was calculated for the deposition amounts found within the erfective swath width just determined. Each nozzle position, beginning with the first nozzie left of the aircraft centerline, was then turned "on" or "off", depending on which state the nozzle was in before the process began, and a new coefficient of variation computed then compared to the original value. If

Figure 2. Formation of Predicted Deposition Matrix
the new coefficient of variation was less than the old coefficient of variation, then the new nozzle status became the standard for fupther comparison. If the new coefficient of variation was greater than the old, then the nozale was returned to its original state and the prooess continued with the next nozzle The testing sequence procecded from the centerline outward on the left wing, then centeriine outward on the right wing. Once this procedure was completed for all nozale positions, a final deposition matrix was formed from which a predjeted total deposition pattern was constructed, plotted, estimated percent deposition computed, effective swath width and estimated calibration computed, and predicted multiple swath deposition plotted.

Model Development - Ground to Aircraft

The development of a computer model to predict the final deposition of spray based on field date was completed by statistical and numerical analysis of field deposition data. The field deposition data was collected through a series of single nozzle spray tests to determine the deposition location from nozzle release points in a field situation. Only three nozales, separated by enough distance to avoid deposition overlap, were operated during a minimum of four replications of each pest series as illustrated in Figure 4. The spray solution, consisting os water and Rhodaminew red fluorescent dye, was collected on
a 100 foot paper strip supported by an alumum test track, (Each replication was collected separately and analyzed for fluorescent dye by means of a Turner model 111 Filter Fluorometer, by feeding the continuous 100 root length of paper tape containing the collected deposition and recording the levels of dye present as indicated by the Fiuorometer output on a strip chart recorder.) The output signal of the Fluorometer was entered simultaneously into an Apple IIt microcomputer and the deposition analyzed to determine deposition location, amount, and deposit span. Test conditions for each replication were also recorded via a flight line computer which recorded the aircraft ground speed, wind direction, wind speed, and calculated crosswind component for each test replication, and dry and wet bulb temperatures for each test series. Height and centerline location of the aircraft above the collection surface was determined photographically. Deposition tests were completed on two airframes, an Ageat $164 \mathrm{~B}+$ and Melex Mm18.

Emperical Relationship Development

The Statistical Analysis System (SAS) computerized analysis software was used to determine the characteristic relationships among the collected data. Variables involved in the analysis included spray depost centroid, spay deposit span, spray deposit peak amplitude, aircraft load, nozzle location with respect to the aircraft centerline, crosswind component, relative humidity, aircraft altitude,

Figure 3. Effective Swath Width Determination

Figure 4. A Single Nozzle gest
lateral displacement, and aireraft speed. Statistical analysis was performed on the data in three sections: Agcat alone, Melex alone, and all data combined, Of particular interest was the determination of relationships among variables with respect to the deposition centroid and any chapacteristic shape of the deposition as a function of the spray deposition span and the spray deposition peak amplitude (or maximum deposit amount).

Using the variables of deposition centroid, span, and amplitude as dependent varlables with the remaining variables of nozzle location, gross weight, crosswind, relative humidity, altitude, laterial displacement, and aircraft apeed designated independent, the response characteristics of the data are shown in table I. Nonlinear approaches were also explored with unfavorable results. In the case of the deposition centroid location, a strictly linear response is indicated as being the most favorable. The relatively high R-Square value of .94 indicates that a majority of the variation in the data can be attributed to a linear model response rather than to random error. The high F-Ratio also supports this conclusion by rejecting the hypothesis that all parameters in the linear model terms are zero. The addition of quadratic or crossproduct response models would not make a significant contribution as indicated by their low R-Square and F-Ratio values. In the case of deposit spray span, the linear response model produced a significant response at
the .005 confidence level according to the F-Ratio with the remaining quadratic and crossproduct terms being rejected. However, the low R-Square value of .0837 indicated that while the linear response model was significant, it also accounted for a very small portion of the variation in the data. The same general trend was also apparent for the deposition peak amplitude with both linear and quadratic response models being significant at the . 005 confidence levels, but both models exhibited low Rosquare terms.

An additional indication of the model significance can be obtained by dividing the total error sum of squares into a lack of fit and pure error (SAS Lack of Fit test) and comparing the two values. When lack of fit is significantly diferent from pure error, then there is variation in the model not accounted for by random error. This analysis further supported the conclusion that the Iinear model was the best for the variable deposition centroid, and that any of the models for the deposition span and amplitude were extremely weak. Based on these conclusions, a multiple linear regression was performed on the data to further examine the linear response model. The results are shown in Table II. The R-Square and F-Ratio terms for the variable spray centroid were significant at the . 001 confidence level for all three data sets; Ageat, Melex and total data.

The R-Square and F-Ratio terms for the variables spray span and peak amplitude were not significant at even the

TABLE I

DATA RESPONSE CHARACTERISTIC ANALYSIS

TYPE RESPONSE	VARIABLE	R SQUARE	FRTIO
Linear	Centroid	.9356	1323.86
Quadratic	Centroid	.0074	10.45
Crossproduct	Centroid	.0140	6.62

Linear	Spray Span	.0837	6.76
Quadratic	Spray Span	.0143	2.14
Crossproduct	Spray Span	.0283	3.69

Linear	Amplitude	.1452	16.24
Quadratic	Amplitude	.2091.	23.40
Crossproduct	Amplitude	.1019	3.80

TABLE II

INITIAL REORESSION RESULTS

Fotal	229.73	. 104	. 002	. 32	. 96	1.27	1.49	8.11	. 9320	¢1.013
AgCat	5.22	. 23	. 028	. 14	. 76	3.21	. 70	. 078	. 8515	7.862
Melex	252.80	. 04	. 0032	. 88	2.75	3.31	. 54	.72	. 2223	8.801

. 005 confidence levels for any of the regression attempts. The low yalues of the R-Square terms indicated that a low portion of the variation in data response was attributed to the independent variables included in the analysts. The variables used in the regression were not indicative of and were not good indicators of the spray span and deposition amplitude. These results led to the conclusion that the possibility of predicting the shape of the deposition patterns from the approach of the "ground to the airplane" was not high when using only these independent measurements as the basis for future predictions. There may have been several reasons for this lack of deposition shape response.
(1) The Fluorometer "full-scale" response to the larger droplets may have minimized small droplet contributions to the shape response thereby masking the effects of the measured independent variables.
(2) The background turbulence was not neasured in the field tests. This turbulence would have a strong influence on the span and deposition amplitude due the ease of movement of the small droplets.
(3) Evaporation would also be of major importance to span and amplitude due to the ease of movement of the smaller droplets; however, measurement of these effects would be minimized by the presence of the large drop size spectrum.
(4) The surface or canopy effects around the collection surface may have allowed the small particles to
skip or bounce over the deposit surface. Collection efficiency was not determined in these field tests to evaluate the deposit of the small droplets.
(5) The measurement of the independent variables may not have been of sufficient quality to adequately correlate with the collected data. More likely was the possibility that the $n o s t$ significant physical variable relating to the deposition span and amplitude simply was not measured.

Therefore, these values were set at constant values equal to the mean of all observations, 25 feet for deposition spray span and 51 units for peak amplitude.

A stepwise linear regression was performed to attempt to obtain the best linear model for the available independent variables and to include only those variables Which contributed significantly to the model response. The results of that analysis are given in Table III. The bestmfit model was the six-variable model:

$$
\begin{gather*}
y=20.06+2.10(\mathrm{LOC})+.0017(\mathrm{LD})+2.56(\mathrm{CA}) \tag{15}\\
+.297(\mathrm{ALT})+1.39(\mathrm{DSP})-.337(\mathrm{MPH})
\end{gather*}
$$

where Y is the deposition centroid position (feet), LOC is the nozzle location (feet), Lis is the aircraft gross weight (lbs.), CR is the crosswind component (MPH), ALT is the aircraft altitude (feet), DSP is the aircraft lateral displacement (feet), and MPH is the aircraft flight speed (MPH). This linear combination of variables was justified

TiAEEIII
EEST STEPMISE REGRESSIOR MODELS

Turber Eariablea	Iztarcept	Locatioz	$\begin{array}{r} \text { Gross } \\ \text { Yeigit } \end{array}$	Crossuxau	Lxcerel Dieplaceneat	MPE	Aitituce	$\begin{aligned} & \text { Relesive } \\ & \text { Eumidity } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { sqe } 8: 0 \end{aligned}$	secse^{F}
Parsmeter Ercisates										
$!$	2.094	2.064							.9037	4316
2	1.849	2.068		2.45					- 2280	2677
3	1.05%	2.07		2.23	1.62				. 8286	9984
4	26.70	2.09	. 2099	2.75		. 389			. 9307	1533
5	28.84	2.09	. 0096	2.55	8.319	-322			. 9351	1313
6	20.05	2.80	. 0087	2.56	4.39	. 337	. 2972		. 9356	1109
7	20.03	2.10	. 0017	2.56	8.39	. 336	.2972	. 00034	. 9358	94:

If some basic assumptions were made.
(1) The general wake resulting from the combination of wing, propeller, and fuselage interactions moved in one continuous direction in relation to a constant nozzle position. Therefore, a droplet released from specific nozzle location continued to move in the same general direction in its path to deposition. The exception to this assumption would be those nozzles which released spray in the region of maximum wingotip vortex drculation.
(2) The effect of the change in adroraft gross weight was a linear effect from full gross weight to basle empty wedght. The gross welght affected the strength of the wake and the turbulent levels wathin the wake, but one would expect a linear pelationship with each specific nozzie location.
(3) The effect of eroaswind was a direct linear relationship based on the droplet mass, suspension time, and lateral movement. As the released spray from each nozzie position contadned the entire spectrum of droplet, sizes, the crosswind effect noted on the centroid position was the cumulative effect of all the evaporation, momentum, lateral velocity, and vertical velocity changes for all of the dropiat sizes. Therefore, the relatively short suspension times of the larger droplets in the specific area of the centroid posichon tended to mask the nonijnear effects introduced by the other factors.
(4) Altitude was a linear function with the
assumption that each nozzle position had a unique and constant trajectory angle, 6, where θ was defined as the angle formed between a vertical vector directed downward and the trajectory vector after particle release, such that a change of altitude simply changed the base length of the right triangle formed with the constant angle, θ.
(5) Lateral displacement was expected to be a linear relationship as this variable was a direct correction for aireraft position error (pilot induced) relative to the fixed coordinates of the ground collection apparatus.
(6) Aircraft flight speed was a linear function assuming that increased speed caused a decrease in the trajectory angle, 0, that is unique to each nozzle positione This change was in response to the decreased angle of attack at the higher airspeed and the corresponding change in the velocity vectors in the trailing wake.
(7) Relative humidity was not a significant factor in the centroid model. This was explained by the facts that the field tests were carried out over a relatively narrow range of relative humidities and that the majority of the deposit in the centroid area was composed of the larger droplet sizes on which the relative humidity effect would have been minimized.

Module One

The computer algorithm prepared using the modular
format and based on the relationship of equation 16 was used to predict the spray deposition locations. Module one interactively requested the needed simulation inputs and calculated the deposition centroids based on the input parameters. A deposition matrix was then formed by the assumpution of a triangular shaped pattern for each nozzle position with the span, fixed at 25 feet, forming the triangle base centered around the centroid predicted by equation 16 , with the height being equal to the amplitude, fixed at 51 units. The matrix values represented theoretical maximum deposition, as the sum of the units under the triangular deposition pattern equaled the nozzle How rate in gallons per minute. The deposition matrix contained the deposition start position, deposition end position, span, and amplitude values for each six-inch increment of the span.

Modules Two and Three

From the deposition matrix, all nozme locations positioned between the 25 percent to 75 percent ajreraft wingspan locations were turned "on" and a total deposition matrix formed by adding the individual amplitudes from each nozale matrix position to the correct total deposition location starting with the start position and continuing for each of the matrix positions across the deposition span. The estimated swath width of the composite matrix was calculated by the determination of the distance between
lert and right intercept points which equaled one half the maximum deposition value as shown in figure 3. The coefficient of variation was calculated for the deposition amounts found in the effective swath width as determined above. Each nozzle position, beginning with the first nozzle left of the aircraft centerline was turned "on" or Noff", depending on which state the nozzle was in before the process began, and a new coefficient of variation computed then compared to the original value. If the new coerficient of variation was less than the old, then the new nozale status beame the standard for further comparison. If the new coefficient of variation was greater than the old, then the nozzle was returned to its original state and the process continued with the next nozzle. The testing sequence proceeded trom the centerline outward on the left wing, then centerline outward on the right wing. Once this procedure was completed for all nozzle positions, a final deposition matrix was formed from which a predicted total deposition pattern constructed, plotted, swath width and estimated calibration computed, and predicted multiple swath deposition plotted.

PAESENTATION AND ANALYSIS OP DATA

The ultimate usefulness of any computer simulation of Eield situations is determined by the acouracy and effectiveness of the predioted result. To evaluate these factors, the two predictive procedures were compared to actual field data from tests performed on two types adreraft; the Melex, M-18 and the AgCat, 164 Bt .
partiode mrajectory

One of the advantages of the Adroraft to ground rethod is the ability to track the particle as it passes through the wake following the aircraft. Howevers a disadvantage is that only one particle size may be followed during any individual simulation plots of the particle trajectories for each of the three droplet sizes, V.1, V.5, and V.9, and for each of the two airoraft types may be found in figures 5 through 7. It 1 . interesting to note the overall shapes of the trajectories and to note the areas of the most Intensive wake/partiele interactions, namely the wingtip and propeller helix areas. It was beyond the resources of the researcher to attempt to verify the actual track of particles suspended in the wake. Therefore, the usefulness
of this portion of the modeling output is limited to explaining "what-if" situations or attempting to locate areas of greatest disturbances in the particle/wake interactions. It is significant to note that the movement of particles entrained in the vortex in a crossmind as observed by Morris (8) was predicted by the atreraft to ground method as shown in Figure 8.

Deposition Centroid prediction

The effectiveness of the centroid position prediction algorithms can be evaluated by direct comparison of the predicted to the observed measured deposition centroid locations from the fleld tests for the two prediction algorithms. Figures 9 through 12 present the eentroid positions predicted by the two modeling techniques and by actual measurement for the two aireraft types, The lines on the figures were drawn from the point of initial particle release to the position of final centroid deposition and do not represent the trajectory of the particles.

Aircraft to Ground Algorithm

It is difficult to compare the accuracy of modeling methods by direct comparison. An idea of the closeness of fit may be obtained by plotting the actual measured centroid location versus the predicted centroid location for both modeling methods. A plot of the predicted value

A. AGCAT, $164 \mathrm{~B}+$

B. MELEX, M-18

Figure 5. Particle Trajectories for v. 1 Droplets

A. AGCAT, 164B+

B. MELEX, M-18

Figure 6. Paridele Trajectordes for V. 5 Droplets

A. AGCAT, 164B+

B. MELEX, M-18

Figure 7. Particle Trajectories for V. 9 Droplets

Figure 8. Vortex Movement in Crossuind

SINGLE NOZZLE ANALYSIS FOR
 AGCAT MODEL $164 \mathrm{~B}+$

DATE: 8/17/32
HAKE: AGCAT
MODEL: 164B+
NOZZLE TYPE OB/45
PRESSURE: 35 PSy
PRTTERN HEIGHT: 7 FT
AIR SPEEDI 105 MPH

Figure 9. Observed Centroid Deposition
Locations, Agcat

SINGLE NOZZLE ANALYSIS FOR
 MELEX MODEL M-18

DATE: E/10/94
MAKE: MELEX
MODEL: M-19
NOZZLE TYPE: D8/45
PRESSURE: 35 PSI
PATTERN HEIGHT: 7 FT
\&1R SFEEU: 120 MPH

Figure 10. Observed Centroid Deposition
Locaticns, Melex

A. AIR TO GROUND ALGORITHM

B. GROUND TO AIR ALGORITHM

Figure 11. Predicted Centroid Deposition Locations from Two Algorithms for Ageat, $164 \mathrm{~B}+$

A. AIR TO GROLND ALGORITHM

B. GROUND TO AIR ALGORITHM

Figure 12. Predicted Centroid Deposition Locations from Two Algorithms for Melex, Mo18
versus the observed value for both alreraft using the aircraft to ground method is shown in figure 13. As is readily apparent, the statistical relationship between predicted and observed values does not exhibit a particularly high correlation. The relationship between the predicted and observed values may be expressed by the equation:

$$
\begin{equation*}
\text { Predicted Value }=.6036 \text { (Observed Value) }-5.26 \tag{16}
\end{equation*}
$$

which exhtbited an Rosquare of .6619 and a standard erfor of 14.4 reet. This does not present a very strong indication of agreement. Removal of approximately ten percent of the prediction points which were in the greatest error increased the general agreement significantly (R-Square increasing from.6619 to .95). However, the removal of these points can not be justified. The points of largest error occurred during data runs on both types of aircraft and were inconsistent with respect to nozzle position.

The low correlation between the observed and predicted values in the aircraft to ground method should not be taken as an indication that the computer modeling algorithm is in error. Previous unpublished test data completed by Oklahoma State Undversity on an Ayers Bull Thrush produced a predicted versus observed centroid location Rmane of 95. The inputs to this modeling method are such that many

assumptions must be made. Possible input error sources include:
(1) The overall aircraft drag coefflcient must be entered. When many components are combined on an airoraft, the projected frontal area is used for estimations rather than the wing surface area. The drag coefficient could have a significant amount of variation depending on the method used to estimate or evaluate variables.
(2) The propeller efficiency must be estimated. This value will change with respect to the flight characteristics being used. The propelier efficiency is also affected by the aircraft drag coeficicient with an aerodynamically dirty aircraft producing a higher propeller efficiency (assuming other factors constant).
(3) An error in either the airoraft drag coefficient or the propeller efficiency will produce a change in the propeller disk swirl velocities which will in turn affect the turbulence levels in the wake due turbulent diffusion.
(4) The background turbulence was not measured in the actual field deposition tests. Therefore, the input values for background turbulence, and turbulence macroscale could have been significanty different than those actually encountered during the field tests.
(5) The input droplet sizes utilized by the modeling process may contain significant errors. The droplet data that is currently available is taken in steady-state airstreams at the reported slipstream velooities (forward
airspeed). However, preliminary unpublished data completed by Oklahoma State University (Effects of Soybean Oil on the Deposition from Agricultural Aircrart) on a Rockwell S2R-R600 Thrush flying at 120 miles per hour indicate that the actual airspeed across the boom ranged from 130 miles per hour at locations near the wingtips and increased at locations near the fuselage to a maximum airspeed in excess of 165 miles per hour at the left-fuselagewing junction area. These boom location airspeed differences will introduce significant droplet size error using the present algorithm. Stmulations for this work were completed using droplet size data presented by yates (18) as being representative of droplet size characteristics of the D8/45 disc and core nozzle tips used in the field tests.

Howeyer, this data also indicates that the difference between the assumed 120 miles por hour and the possible 165 miles per hour slipstreams across the nozzle bodies could potentially introduce an error or 16 percent in input droplet size.
(6) The initial velocity vector of the released droplet is unknown. It has been assumed that the effect of the boom on the aerodynamic model is insignificant. This may not be the case. The literature indicates that this information is not available. Considerable theoretical conflict exists in attempting to mathematically predict the interaction between a wing airfoil and a boom with nozzle bodies suspended behind and below the main wing surface.

If the boom were being shielded by the larger wing, it would actually be possible for the boom to exhibit a negative draf coefficient (theoretically possible up to a separation distance of more than 2 effective diameters). In the case of two struts operatirg one behind the other, the drag on the rear strut increases due to the flow separation from the rear of the second strut because of the momentum deficjency within the wake from the first strut. Two struts operating side by side will result in a positive pressure gradient along the rear surface associated with an increase in velocity and would be responsible for a considerable increase in the drag coefficient (21). Each of these approaches assumes that the bodies in question are of the same or similar size. Such is not the case with a spray boom and an aireraft wing. However, it has been noted in previous flight tests that a hockivell S2R-R600 Thrush flew at an average of 115 miles per hour indicated airspeed with booms mounted and at 122 miles per hour Lndicated airspeed without booms at the same engine performance settings. The thrust for these conditions can be estimated by (20):

$$
\begin{equation*}
T=n P / V \tag{17}
\end{equation*}
$$

Where I is the aircraft estimated thrust, n is the propeller efficiency (0.85), P is the engine power, and V is the velocity. (Utilizing equation 17 and assuming that
the engine was producing 450 shaft hossepower with a propeller efficiency of 0.85 and that in steady state flight, the thrust equals the drag, the estimated drag coefficients for the aireraft were 097 with the boom and . 082 without the boom.) The approximately 19 percent increase in drag coefficient with the boom would definitely rule out any shielding effects from the presence of a large wing. This indicates that the boom and nozales must be located in a turbulent mixing zone between the large wake from the wing above and a smaller but significant wake from the boom and nozzles. This wake interaction is not accounted for in the algorithm.
(7) Compressibility of the fluid can generally be ignored within the range of speeds used in agricultural operations. However, this is not true in the area of the propeller blade tips and an error source may result.
(8) It was noted that the downind deposition pattern of the experimental data had more lateral spread than the upwind pattern. This may be caused by increased turbulence experienced by the downind particles due to serubbing over the ground of the downind vortex. This viscous interaction is not accounted for in the simple wake model used in the aircraft to ground method.

The characteristics of the prediction error was examined by comparing the differences between the predicted and observed centroid locations with the corresponding nozzle locations. However, the relationship between the
error and the nozale location is not well defined as indicated by a 4 th order polynomial R-Square of only .109. A statistical "lack of fit" test which divides the total error sum of squares into lack of fit and pure error was performed. The lack of fit portion was significantly different from the pure error which indicates that there is variation in the model not accounted for by random error.

In view of the above mentioned factors, it may be concluded that the eristing algorithm does not provide an adequate prediction of the final deposition centroid. The large variation in the prediction data may indicate that the algorithm is 1) extremely sensitive to small input errors, 2) does not address some eritical factors in the wake interactions following an agricultural aircraft, 3) that the particle transport phenomena may not be clearly understood, or 4) a combination of all of these. The magnitude and significance of these errors are illustrated in Figure 14 which shows the field deposition and the predteted deposition from the same nozzle locations. The magnitude of error between the two plots is clearly defined enough to make this method unacceptable for widespread field use in the form used in this study.

Ground to Aiccraft Algorithm

A plot of the predicted centroid location versus the observed centroid location for both aircraft resulting from the Ground to Alperaft algorithm is shown in figure 15.

Figure 14. Predicted and Observed Deposition

The plot exhlbits a fairly strong statistical relationship described by the relationship:

$$
\begin{equation*}
\text { Predicted Value }=.9564 \text { (Observed Value) }+.1684 \tag{18}
\end{equation*}
$$

A perfect relationship would appear as a straight line on a 45 degree angle. This relationship exhibited a R-Square of . 966 and a Standard Error of 8.5. The relatively hagh standard error is of concern. Analysis of the predicted/observed error versus nozzle location revealed three significant areas of error; one at each wingtip and one in the area of the propeller. Close examination of the wingtip errors revealed that the high prediction errors occurred on those nozzle locations that were less than 25 gercent or greater than 75 percent of the total wingspan. These nozzle locations are not used in the nozzle selection portion of the algorithm due to the high probability of spray released from these locations becoming producers of large quantities of driftable fines. The relationship between prediction error and nozzle location in the propeller influence area is shown in Figure 16. The correction factor evolving from this data is described by:

$$
\begin{align*}
C F= & -4.4-2.0(x)+.38\left(x^{2}\right)+.15\left(x^{3}\right) \tag{19}\\
& -.0075\left(x^{4}\right)-.0024\left(x^{5}\right)-.0000033\left(x^{6}\right)
\end{align*}
$$

where CF is the correction factor and X is the nozzie
location This correction factor is applied to any nozzle location in the center 30 percent of the wingspan (15 percent from centerline) in the ground to atroraft algorithm. The addition of the propuash corvection term reduced the standarderror of the predicted versus the observed centroid locations comparison to 5.3 feet witb an R-Square of. 96.

Simulations using the algorithm with the propeller correction term produced outputs very similat to those measured in field situations. Figure 17 is an illustration of the predicted and actual fold deposition patterns resulting from operation and simulation with the same nozzle locations and conditions. The too curves contain the same characteristic shapes. Deposition patterns from several nozzle configurations from both the Melex and AgCat data have consistently exhjbited practically identical characteristic curves. In view of these factors, it was concluded that the ground to alreraft algordthm exhibited sufficient corelations to warrant continued investigation.

Figure 15. Ground to Aircraft Algorithm Accuracy

MODEL VERIFICATION

To be an acceptable method of determining nozzle placement, any of the algorithms must have the flexibility of bejng applied to alrcraft in field situations where no data base exists, Both algorithms in this study were developed and tested using two specific types of aircraft; the Melex, $M-18$ and the AgCat, $164 B+$

A field situation developed which allowed the direct application and testing of the algorithms. The objective Was to properiy place nozzles on an aireoll type boom mounted three inches behind and twelve inches below the wing trailing edge of a Cessna AgwTruck aircraft. It was desired to use 24 nozzles, use short booms with the outermost possible nozzle position being 11.5 fect (semispan of approximately 21 feet), and maintadn an efrective swath width of at least 50 feet. The short boom Was desired to limit potential drift from field applications Numerous simulations were run using both algorithms.

The predicted deposition patterns which would result from the recommended nozzle placenents from both algorithms were compared. Due to the fact that the field situation
involved an active agricultural aircraft with all operational and equipient costs furnished by the aireraft operator, there was no opportunity to test both of the recommaded nozmle placemente from which a scientific basis for acceptance or rejection could be formed. Based on the analysis of Chapter IV, the output of the Ground to Aircraft algorithm was selected for field verification.

The Ground to Air algorithm produced a recommended nozzle placement as indicated in Table IV. Nozzles were mounted on the aircraft booin at these locations and deposition measured. Figure 18 illustrates the predicted and the observed deposition resulting from spray application with this nozzle placement. The predicted deposition contained an area of underapplication in the center portion of the distribution. The observed deposition contained a slight tendency toward the center gap, but was not nearly as severe as predicted. The field deposition was acceptable and produced an effective swath width of 51 feet compared to the predicted effective swath width of 53 feet.

The differences between the predicted and observed deposition may come from many sources. These algorithms were developed and tested using data from aircraft having large radial engines. These engine mountings are aerodynameally inefficient as compared to the Cessna fully cowled engine mounting. There is also a large difference in the propelier characteristics on the two aircraft with

TABLE IV
NOZZLE PLACEMENT RECOMMENDATIONS, CESSNA

NOZ ZLE	BEGIN	END	CENTROID
LOCATION	DEPOSITION	DEPOSITION	LOCATION
(feet)	(feet)	(feet)	(feet)
-11.5	-41.4	-16.4	-29.1
-11.0	-40.3	-15.3	-27.9
-10.5	-39.3	-14.3	-26.8
-10.0	-38.2	-13.2	-25.8
-9.5	-37.2	-12.2	-24.7
-8.5	-35.1	-10.1	-22.6
-7.5	-33.0	-8.0	-20.5
-6.5	-30.9	-5.9	-18.4
-5.5	-30.5	-5.5	-18.1
-4.5	-26.7	-1.7	-14.3
-3.5	-23.6	-1.4	-11.2
2.0	-18.9	6.1	-6.4
3.0	-15.0	10.0	-2.6
3.5	-12.6	12.4	0.1
4.5	-7.3	17.7	5.1
5.5	-3.6	21.3	8.8
6.5	-3.6	21.4	8.9
7.5	-1.5	23.5	11.0
8.5	0.6	25.6	13.1
9.5	2.7	27.7	15.2
10.0	3.8	28.8	16.2
10.5	4.8	29.8	17.3
11.0	5.9	30.9	18.3
11.5	6.9	31.9	19.4
All Distances Relativ		Aircraft Ce	rline

```
CESSNA. AG-TRUCK OBSERVED
SHORT BOOM
24 NOZZLES
_ ___ PAEDICTED
```


$$
\begin{array}{r}
\text { Figure 18. Predicted and Observed Deposition } \\
\text { Cessna Ag-Truck, Final Trial }
\end{array}
$$

different propeller tip angular velocities. The predicted deposition with the gap in the center that was not observed in field tests suggests that there may be a lack of predictive accuracy in the propeller helix area. In addition, wing/fuselage juncture vortex flows are not accurately modeled and can affect the particle trajectories in this region. However, the usefulness and general predictive capabilities have been demonstrated. The nozzle placement described above was used in the 1985 application of 1200 acres of fall applied herbicides with no observed loss of efricacy due field streaks or skips.

CHAPTER VI

SUMMARX, CONCLUSIONS, AND RECOMMENDATIONS

The objectives of this study were to 1) Predict the trajectory of spray particles released from agricultural aircraft, 2) Predict the final deposition positions of released spray particles, and 3) Incorporate the information from 1) and 2) above into a procedure to determine the correct nozzie placement on an adrerart boom to ensure a uniform deposition.

Two mathematical simulation algorithms were developed to meet these objectives. The first algorithm, based on the NASA developed Agdisp code and referred to in this thesis as the MArcraft to Ground method, attempted to predict the spray particle trajectoly and final deposition position by releasing a particle into the wake following an agricultural airoraft and tracking it to the ground. A Lagrangian approach was used to develop equations or motion of discrete particles peleased from an ajreraft, and a predictorecorrector solution scheme used to solve the resulting set of ordinary differential equations. This code computed the averaged mean motion of the material and the dispersion about this mean motion resulting from turbulent fluid fluctuation, These fluctuations reault
from turbulence generated by the aircraft itself or present normally in the atmosphere. By repeating this procedure for droplet sizes representing the V.1, V.5, and V.9 positions on a curve of cumulative drop size distribution by volume, a predicted deposition distribution was obtained for each nozzle position, and a deposition matrix formed from which final recommended nozzle placements and predicted depositions were obtained. These predictions were then compared to field data obtained from single nozzle spray tests, for a Melex, M-18 and an AgCat, 164B+, to determine the predioted centroid position acouracy and to eqaluate the potential for prediction depostions as a result of full boom spray release.

From the sinele nozzle qest data on the Melex and AgCat aircraft, a second predictive algorithm, referred to as the "Ground to Alroraft" method, was developed by exploring the statistical relationshaps between the measured variables. Dependent variables included spray span, spray peak amplitude, and spray deposition centroid position while the independent variables included nozzle location, aireraft gross weight, crosswind conditions, aireraft ground speed, spray altitude, relative humddity, and aircraft lateral displacement (ajroraft pilot positioning error during tests). Examination of the statistical relationships revealed a linear response as the most favorable. It was determined that a correction factor was needed for nozzles located in the area of the propeller
helix influence, This correction term was added to the code and applied to all nozzles located in the center 30 percent of the wingspan (+15 percent from centerinine). The output from this relationship was used to form a deposition matrix, predict deposition patterns and to select nozzle placements.

Both simulation algorithms were applied to a pield case, involving a cessna Ag-Truck aircraft on wheh no database existed, with the objective of determining the optimum placement of 24 nozzles on an aircoil type boom to obtain the widest effective swath width while maintaining a uniform deposition。

Conclusions
(1) The Alreraft to Ground algorithm is useful for the comparison of "what-jf situations on a relative basis.
(2) The Adroraft to Ground algorithm exhibited significant lack of correiation when compared with the single nozzle deposition test data for the two ajreraft; Melex, Mos and AgCat, $164 B+$ This suggests that the algorithm is extremely sensitive to small input errors, that the vortex core locations, strengths or the viscout wake turbulence may not be accurately defined in the input parameters, that the partiole transport phenomena may not be clearly understood, or a combination of all these.
(3) The Aircrapt to Ground algoritha appears to be accurate when the actual wake profile is known. However,
the actual wake profile is seldom known in field situations. Therefore, errors in the predicted/observed centroid positions may be caused by the unavailability of specifications or the inability to precisely measure required input parameters. These errors tend to magnjey greatly in a numerical solution schere.
(4) The Ground to Airoraft algorithm with the propeller correction terms produced acceptable agreement between the predicted and observed centroid locations.
(5) No strong statistical relationship could be found for deposition span or deposition peak amplitude with the measured $\dot{\text { u udependent }}$ vasiables. Statistical testa indicated that the variation in the data was more due to random error than to the measured independent variables.
(6) The application of the Ground to Aireraft algorithm to a field situation did prove the concept of computer simulation for nozzle placement recommendations by predicting an aceeptable deposition pattern for recomended nozzle placements on a prev lously untested adroraft. While the results were encouraging, additional fine tuning may be required for widespread applications.

Recommendations for Improvement

Both algorithms need additional refinement before the Widespread use in field applications. The addition of correction routines should be added to correct for the distortions caused by the various components protruding
into the slipstream of the aircraft. These could be developed for each section of the wingspan where distortions are known to occur. The outputs of the algorithms should be compared to many types and gross welghts of aireraft to obtain more precise analysis of the applicability of each single algorithm to a wide variety of aircraft, operation, and environmental factors. Data from additional aircraft might also allow the mathematical descriptions of evaporation as a function of nozmle location, temperature, and relative humidity.

Suggestions for Furtber Study
(1) Determine a more precise estimation of the inftial droplet size spectrum by measuring the slipstream velocity vectors over the boom/nozzle configurations in actual flight conditions.
(2) Determine the amount and character of the wake interaction due the wing and trailing boom/nozzle configuration.
(3) Develop a method of determining the height and magnitude of the background turbulence macroscale.
(4) Develop a procedure for determining the aircraft drag coefficient and propelier efficiency for inputs into the algorithms.
(5) Expand the verification/development of the deposition algorithms to include rotary wing aireraft.
(6) Develop a fuselage interaction (wing/fuselage
juncture vortices) relationship for inclusion in the prediction process.

A SELECTED BTBLIOGRAPHY

(1) Christensen, Larry S. and Frost, W. "A Review of the Meterological Parameters which Affect Aerial Application." NASA Contractor Feport 156840. 1979.
(2) Gerlach, John C. and Carr, Robert E. "NASA Instrumentation Research for Aerial Spray Accountancy." A.S.A.E. Paper No. 78-1508, 1978.
(3) Grumbles, J.B., Jacoby, P.W., and Wright, W.G. "Deposition of Herbicides from FixedmWing Aircratt". Doun to Rarth, Vol. 36, No. 3, summer, 1980.
(4) Southweli, P. H. "progress in the Technology of Chemical Applications by Aircraft." A.S.A.E. Paper No. 72-652. 1972.
(5) Steely, Sidney L., Jr. and Christensen, Larry S. "Effect of Meterological Parameters on Chemical Deposition." A.S.A.E. Paper No. 79-1012, 1979.
(6) Ormsbee, Allen I., Eragg, Michael B., and Maughmer, Mark D. "The Development of Methods for Predicting and Measuring Distribution Patterns of Aerial Sprays." Aviation Research Laboratory, Institute of Aviation Report ARL 79-1, University of Illinois, 1979.
(7) Morris, D.J., Croom, C.C., and Holmes, B.J. "NASA Aerial Applications Wake Interaction Research." A.S.A.E Paper No. AA-82-005, 1982.
(8) Morris, Dana J. MAnalytical Prediction of Agricultural Aircraft Wakes." A.S.A.E. Paper No. 78-1506, 1978.
(9) Holmes, Bruce J. and Morris, Dana J. MData and Analysis Procedures for Improved Aerial Applications Mission Performance." A.S.A.E. Paper No. AA 79-001, 1979.
(10) Yates, W.E., Cowden, R.E., and Akessong N.B.
"Effect of Nozzle Design on Uniformity of Droplet Size from Agricultural Atreraft." A.S.A.E. Paper No. AA-81-002, 1981.
(11) Saunders, W.J., Tate, R.W., and Ware G.W. Manalysis of Aerlal Sprays from Conventional and Drift-Reduction Nozzles." A.S.A.E. Paper No. 76-1062, 1976 .
(12) Carlton, J.B., Bouse, L. F., O'Neal, H.P., and Walla, W.J. Mechanical Factors Affecting Aerial Spray Coverage of Soybeans." Transactions of the ASAE, 1983, 1605-1607.
(13) Burt, E.C. and Smith, D.B. EEffects of Droplet. Sizes on Deposition of ULV Spray." Journal of Economie Entomology, Vol. 67, No. 6 (1974), 751-754.
(14) Mokinley, K.S., Ashford, R., and Ford, R.J. "effects of Drop Size, Spray Volume, and Dosage on Paraquat Toxicity." heed Science, Vol. 22, (1974), 31-34.
(15) Isler, D.A. and Carlton, J.B. 日Effect of Mechanical Factors on Atomization of Oil-Base Aerial Sprays." A.S.A.E. Paper No. 64-608, 1964.
(16) Lemont, Harold E. "Agricultural Helicopters." American Helicopter Society Paper No. 79-60, 1979.
(17) Miller, Conrad O. M. M Mathematical Model of Aerial Deposition of Pesticides from Aircraft." Environmental Science \& Technology, Vol. 14, (1980), 824.
(18) Bilanin, Alan J., Teske, Milton E., and Morris, Dana J. "Predicting Aerially Applied Particle Deposition by Computer." S.A.E. Paper No. 810607, 1981.
(19) Yates, W.E., Cowden, R.E., and Akesson, N.B. "Drop size Spectra from Nozzles in High-Speed Airstreams." A.S.A.E. Paper No. AA83-005, 1983.
(20) Hoerner, S.F., and Borst, H.V. Fluid-Dynamic Lift. Hoerner Fluid Dynamies, Brick Town, N.J. 1975.
(21) Hoerner, S.F. Eluidmpynamic Drag. Hoerner Fluid Dynamies, Brick Town, N.J. 1965.
(22) LaMer, V.K. and Hochberg, S. TThe Laws of

Deposition and the Effectiveness of Insecticide Aerosols." Chemical Feyiew, Vol. 44 , (1949), 341-352.
(23) Johnstone, H. F., Winsche, W.E., and Smith, L.W. "The Dispersion and Deposition of Aerosols." Chemical Revien, Vol. 44, (1949), 353-371.
(24) Sexsmith, J.J., Hopwell, W.W., Anderson, D.T., Russel, G.c., and Hurtig, H. "Characteristics of Spray Deposits Resulting from Aireraft Applications of 0il-Carrier Sprays," Can. Joural R1ant Science, Vol. 37. (1957), 85-96
(25) Coutts, H. H. and Yates, W.E. Manalysis of Spray Droplet Distributions from Agricultural Aircraft." A.S.A.E. Paper No. $65 \% 157,1965$.
(26) Umback, C.R. and Lembke, W.E. MEffects of Wind on Falling Drops." A.S.A.E. Paper No. 65-702, 1965.
(27) Garrett, A.J. MThe Effect of Aerodynamic Forces and Liquid Physical Properties on the Drag Characteristics of Spray Droplets in Aerial Application." A.S.A.E. Paper No. 68-138, 1968.
(28) Friedlander, S.K. and Johnston, H.F. "Deposition of Suspended Particles from Turbulent Qas Streams." Industrial Engineering Chemistry. Vol. 49, (1957), 1151-1156.
(29) Threadgill, E.D. and Smith, D.B. "Effect of Physical and Meteorological Parameters on Drift of Controlled Size ULV Drops." A.S.A. E. Paper No. 71-663. 1971.
(30) Lapple, C.E. and Shepherd, C.B. "Calculation of Particle Trajectories." Industrial Engineering Chemistry, Vol. 32, (1940), 605-617.
(31) Hughes, R.R. and Gilliland, E.R. "Mechanics of Drops." Chemical Engineering Rrogress, Vol. 48, No. 10, (1952), 497-504.
(32) Reed, W.H. III. MAn Analytical Study of the Effect of Airplane Wake on the Lateral Dispersion of Aerial Spray." NACA TN 3032, (Oct.), 1953.
(33) Trayford, R. S. and Welch, L.W, "Aerial Spraying: A Simulation of Factors Influencing the Distribution and Recovery of Liquid Droplets." Journal Agricultural Engineering Researah, 1977. 183-196.
(34) Bragg, M. B. "The Trajectory of a Liquid Droplet Injected into the Wake of an Aircraft in Ground Effect." (Unpub. M.S. thesis, University of Illinois, 1977.)
(35) Bilanin, A.J., Teske, M.E. and Hirsh, J.E. "Neutral Atmospheric Effects on the Dissipation of Aircraft Vortex Wakes." AIAA Journal, Vol. 16 , (Sept. 1978), 956-961.
(36) Jordan, F.L., Jr., McLemore, H. C., and Bragg, M.B. "Status of Aerial Applications Research in the Langley Vortex Research Facility and the Langley Full Scale Wind Tunnel." NASA TM 78760 , Aug., 1978.
(37) Bilanin, Alan J. and Teske, Milton E. "Numerical Studies of the Deposition of Material Released From Fixed and Rotary Ving Aireraft." NASA CR 3779, Mar., 1984.
(38) Teske, Milton E. "Computer Program for Prediction of the Deposition of Material Released from Fixed and Rotary Wing Adreraft." NASA CR 3780 , Mar., 1984.

APPENDIXES

APPENDIX A

SIMULATION CODE FOR A」RCRAFT

TO GROUND ALGORITHM

Module One

```
10 REM NASA DATA PREPERATION PROGRAM
20 REM THIS PROGRAM WILL PREPARE THE
30 REM INPUT DATA IN THE CORRECT FORM
40 REM FOR SUBMISSION TO THE
50 REM DEC PDP11/34A COMPUTER AT THE
60 REM KSU DEPT AG. ENGINEERING
70 REM CARD 0000
80 REM COMMENT CARDS
90 PRINT "INPUT IDENTIFIER TATLE"
100 PRINT " FOR COMPUTER SIMULATION"
110 PRINT
120 INPUT C&
130 C$ = "0000 " + C $
140 REM CARD 0010
150 REM FROGRAM CARD
160 PRINT "INPUT THE MAXIMUM TIME FOR SIMULATION*: PRINT
"TIME SHOULD BE IN FORMAT 5.0"
170 INPUT TM$
180 PRINT : PRINT
190 PRINT "THE FULL-PLANE SOLUTION": PRINT "SHOULD BE USED
ONLY IF": PRINT "A CROSSWIND OR A": PRINT "PROPELLER
EXISTS. SINGLE"
200 PRINT "PARTICLE RELEASE WITHOUT AN": PRINT "AIRCRAFT
SHOULD USE A FULL": PRINT "PLANE SIMULATION": PRINT
210 INPUT "HALF OR FULL-PLANE SIMULATION% ";A$
220 IF A$ = "H" THEN GOTO 250
230 IF A$ = "F* THEN GOTO 270
240 GOTO 210
250 A$ = "1"
260 GOTO 280
270 A$ = "2"
280 PP$ = "0010n+TM$+"M+A$
290 AA$ = A$
300 REM CARD 0020
310 REM AIRCRAFT CHARACTERISTICS
320 HOME : PRINT : PRINT
```

330 PRINT : PRINT "THE AIRCRAF'T CHARACTERISTICS": PRINT
"WILL NOW BE DESCRIBED": PRINT: PRINT
340 PRINT "WHICH OF THE FOLLOWING TYBES IS DESIRED?"
350 PRINT " $3=$ HELICOPTER ENTRY"
360 PRINT" $2=$ RECTANGULARLY LOADED"
370 PRINT " FULLY ROLLED UP TIP VORTEX"
380 PRINT $\quad 1=$ TRIANGULARLX LOADED"
390 PRINT n FULLY ROLLED UP TIP VORTEX"
400 PRINT" $0=B E T Z$ ROLL UP FROM A GIVEN"
410 PRINT CIRCULATION PATTERN"
420 PRINT $\quad-1=W A K E$ PLOT FILE ENTRYn
430 PRINT " (CARD 0050-REFER TO 81-14)\%
440 PRINT* $-2=$ NONAIRCRAFT RUN (SINGLE"
450 PRINT ${ }^{4}$ PARTICLE RELEASE)": PRINT: PRINT
460 INPUTA
470 IFA >3 ORA< 2 THEN GOTO 340
$480 \mathrm{VF} \$=\mathrm{STR} \$(\mathrm{~A})$
490 PRINT
500 INPUT MCROSSWIND DESIRED (Y / N)? ";A\$
510 IFA\$ $=$ "YMTHEN GOTO 540
520 TFA $=$ WN" $2 H E N$ GOTO 560
530 GOMO 500
$540 \mathrm{CF}={ }^{11}$
550 GOTO 570

570 PRINT : PRINT "THE NEXT ENTRY IS THE WINGSPAN OF THE"
580 PRINT "AIRCRAFT IN FEET": PRINT: PRINT " (ROTOR
DIAMETER FOR A HELICOPTER, "
590 PRINT "THE INITIAL Y COORDJNATE OF A": PRINT
"RECTANGULARLY LOADED, FULLY ROLLED-UP"
600 PRINT "TIP VORTEX GENTERLINE": PRINT ${ }^{5} A N D$ TWICE THE
INITIAL Y COORDINATEN
610 PRINT MOF A TRIANGULARLY LOADED, FULLY": PRINT VROLLED
UP TIP VORTEX CENTERLINE)
620 PRIMT : PRINT
630 PRINT EFORMAT 36.6"
640 PRINT : PRINT
650 INPUT $A: A=A / 2$. 3048
$660 \mathrm{~A}=\mathrm{INT}(\mathrm{A} 100) / 100$
670 SS $\$=$ STR $\$(A)$
680 PRINT: PRINT "INPUT THE HEIGHT OF THE AIRCRAFT WING *:
PRINT "ABOVE THE SURFACE IN FEET": PRINT
690 PRINT " (RELEASE HEIGHT FOR SINGLE PARTICLES)": PRINT
"THIS HEIGHT IS THE INITIAL Z COORDINATE": PRINT ${ }^{17}$ FOR FULLY
ROLLED-UP TIP VORTICES"
700 PRINT "AND THE Z COORDINATE FOR THE BETZ": PRTNT
MROLL-UP VORTEX SHEET": PRINT
710 INPUT A
$720 \mathrm{~A}=\mathrm{INT}((\mathrm{A} .3048 \mathrm{~N}+10)+.5) / 10$
730 WH $\$=S T R \(A)
740 PRINT: PRINT "INPUP THE FLIGHT SPEED OF THE": PRINT
"AIRCRAFT IN MPH"
750 INPUT A
$760 \mathrm{~A}=\mathrm{INT}(\mathrm{A}=.44704 * 10) / 10$

```
770 FS$ = STR$ (A)
780 PRINT : PRINT "IS THE AIRCRAFT A BIPLANE OR": PRANX "A
SINGLE WING? (B/S) "
790 INPUT A$
800 IF A$ = "B" THEN GOTO 830
810 IF A$ = "S" THEN GOTO 850
820 GOTO 780
830 BF$ = "1"
840 GOTO 860
850 BF$ = "0"
860 AC $ = "0020n+VF$+" "+CF$+" "+SS$+n "+WH$
+"n+FS$ + "n+ BF$
870 REM CARD 0021
880 REM BIPLANE CONFIGURAYION
890 HOME
900 IF BF$ = "O" THEN GOTO 1020
910 PRINT : PRINT "INPUT THE VERTICLE DISTANCE (FEET)":
PRINT "FROM THE MAIN WING SPECIFIED EARLIER": PRINT "TO THE
BIPLANE WING"
920 INPUT A:A = INT (A . 3048* 10) / 10
930 WD$ = STR$ (A)
940 PRINT : PRINT "INPUT THE SEMISPAN OF THE BIPLANE
WING": PRINT "AS A FRACTION OF THE SEMISPAN OF THE LOWER":
PRINT "WING (IF WINGS ARE OF EQUAL LENGTH,": PRINT "ENTER
1.0)": PRINT
950 INPUT A
960 SB$ = STR$ (A)
970 PRINT : PRINT "INPUT THE YORTEX STRENGTH OF THE":
PRINT "BIPLANE WING AS A FRACTION OF THE": PRINT "MAIN
VORTEX STRENGTH (1.0 IF THEY": PRINT "ARE EQUAL"
980 INPUT A
990 SV$=STR$ (A)
1000 BC$ = "0021" + WD$ + "M + SB$ +" n+SV$
1010 REM CARD 0022
1020 REM CIRCULATION YALUE
1030 HOME
1040 A = VAL (VF$)
1050 IF A < 1 OR A > 2 GOTO 1150
1060 PRINT "INPUT THE SIMULATED WEIGHT OF THE"
1070 INPUT "AIRCRAFT (LBS) ";L
1080 L = L * 4.448
1090 S = VAL (SS$)
1100 V = VAL (FS$)
1110 CV = L / (2*S *V* 1.2266)
1120 CV = INT (CV 110) / 100
1130 CV$ = "0022 " + STR$(CV)
1140 REM CARD 0025
1150 REM BETZ WING LOAD DISTRIBUTION
1160 HONE
1170 IF VAL (VF$) < > O THEN GOTO 1370
1180 PRINT : PRINT "INPUT THE REQUIRED INFORMATION": PRINT
"TO DESCRIBE THE BETZ LOADING": PRINT "A MAXTMUM OF 100
ENTRIES MAY BE USED": PRINT : PRINT "USE A NEGATIVE
IDENTIFIER TO TERMINATE": PRINT "THIS INPUT SECTION"
```

```
1190 CT = 0:S$ = " "
1200 FOR I = 1 TO 100
1210 CT = CT + 1
1220 PRINT
1230 INPUT "INPUT IDENTIFIER NUMBER M;A
1240 IF A < O THEN S$ = " -"
1250 PRINT
1260 PRINT "INPUT THE POSITION (FEET) MEASURED FROM":
PRINT "THE WING ROOT TOWARDS THE TIPN: PRINT "FOR POSITION
";CT
1270 INPUT PO:PO = PO . 3048
1280 PO = INT (PO 10) / 10
1290 PRINT : PRINT "INPUT THE CIRCULATION VALUE FOR"
1300 PRINT "POSITION ";CT;" IN FTR/SEC"2"
1310 INPUT CV
1320 CV = INT (CV *.3048 * 110) / 100
1330 BZ$(CT) = "0025" + S$ + STR$ (CT) +" " + STR$ (PO)
+ " " + STR$ (CV)
1340 IF S$=" -" THEN GOTO 1370
1350 NEKT I
1360 REM CARD 0028
1370 REM CROSSWIND CARD
1380 HOME
1390 IF VAL (CFW) = 0 THEN GOTO 1510
1400 PRINT : PRINT "INPUT THE REQUESTED CROSSWIND VALUES":
PRINT "TO DESCRIBE THE NEUTRAL": PRINT "CROSSWIND VELOCITY
PROFILE SHAPE"
1410 PRINT
1420 PRINT "INPUT THE MEAN WIND VELOCITY ": INPUT "IN MPH
";V
1430 PRINT
1440 PRINT "INPUT THE HEIGGT OE MEAN vELOCITY": INPUT "(
OR MEASUREMENT HEICHT-FEET) ";H
1450 PRINT
1460 RRINT mINPUT THE SURFACE HEIGHT ROUGHNESS (FEET)":
INPUT Z
1470V=V . 4470:H=H . 3048:Z = Z . 3048
1480 V = INT (V* 10)/ 10:H = INT (H*10) / 10:Z = INT
(z 100) / 100
1490 CW$ = "0028" + STR$(V) + " " + STR$(H) + " " +
STR$ (Z)
1500 REM CARD 0030
1510 REM HELICOPTER CARD
1520 HOME
1530 IF VAL (VF$) < > 3 THEN GOTO 1610
1540 PRINT : PRINT "INPUT THE TWO VALUES AS REQUESTED TU":
PRINT "DESCRIBE THE HELICOPTER FLOW EIELD": PRINT
1550 INPUT "INPUT THE WEIGHT OF THE HELICOPTER (LBS) ";W
1560W = W * 4.448: PRINT
1570 W = INT (W % 10) / 10
1580 INPUT "INPUT THE FORWARD ADVANCE RATIO (> ZERO) ";A
1590 HC$ = "0030" + STR$ (W) + " " + STR$ (A)
1600 REM CARD 0040
1610 REM PROPELLER DATA CARD
```

1620 HOME
1630 PRINT
1640 PRINT "WILL THIS SIMULATION INCLUDE A PROPELLER"
1650 INPUT " (Y/N) \& ";A\$
1660 IF A $\$=$ "N" THEN GOTO 1810
1670 PRINT : PRINT MINPUT THE REQUESTED VALUES TU
DESCRIBE": PRINT "THE PROPELLER INTERACTION": PRINT
1680 PRINT "INPUT THE DRAG COEFFICIENT OF"
1690 INPUT \#THE AIRCRAFT ";DC
1700 PRINT : PRINT "INPUT THE PLANFORM AKEA OF THE"
1710 INPUT "AIRCRAFT (FEET*\#2) ";PA
1720 PRINT : INPUT "INPUT THE PROPELLER EFFICIENCY n;PE
1730 PRINT : INPUT "INPUT THE SHAFT RPM ";RPM
1740 PRINT : INPUT "INPUT THE BLADE RADIUS (FEET) ";BR
1750 PRINT : PRINT "INPUT THE INCREMENTAL DISTANCE
(FEET)": PRINT HOF THE SHAFT CENTERLINE ABOVE": PRINT "OR
BELOW THE NOMINAL BELEASE": PRINT "HEIGHT GIVEN EARLIER"
1760 INPUT ID:ID = ID *. 3048
$1770 \mathrm{BR}=\mathrm{BR} * .3048: \mathrm{PA}=\mathrm{PA} .0929$
1780 ID $=I N T(I D \# 100) / 100: B R=I N T((B R M 10)+.5)$
/ 10:PA $=I N T(P A$ 10) / 10

$\operatorname{STR} \$(P E)+" n+S T R \$(R P M)+\# \#+S T R \$(B R)+" \#+$
STR \$ (ID)
1800 REM CARD 0050
1810 REM TURBULENCE CARD
1820 HOME
1830 PRINT : PRINT "SELECT THE DESIRED TURBULENCE BASE":
PRINT
1840 PRINT "-1 = SUPEREQUILIBRIUM"
1850 PRINT $\%$ = ASSUMES FIXED VALUE"
1860 PRINT
1870 PRINT " 1 SPECIFIES THE TURBULENT COMPONENTS"
1880 PRINT " $2=$ IN THE ATTACHED WAKE PLOT FILE"
1890 PRINT $n 3$ INVOKED WITH EARLIER ENTRY"
1900 PRINT: FRINT "A -1 OR 0 IS USUALLY USED IN THE"
1910 FRINT "ABSENCE OF A WAKE PLOT FILE": PRINT
1920 INPUT "INPUT TURBULENCE BASE ${ }^{\circ} ; T B$
1930 PRINT: IF TB < - 1 OR TB > 3 THEN GOTO 1810
1940 PRINT "INPUT THE VALUE OF THE MAXIMUM VALUE"
1950 PRINT " (IN FT**2/SEC**2)"
1960 INPUT MOF THE BACKGROUND TURBULENCE ";MT
1970 PRINT : PRINT "INPUT THE MAXIMUM VALUE OF' THE
BACKG ROU ND"
1980 PRINT "TURBULENT MACROSCALE": INPUT "(FEET) "; MH
$1990 \mathrm{MT}=\mathrm{MT}$. $0929: \mathrm{MH}=\mathrm{MH}$. 3048
$2000 \mathrm{MT}=\mathrm{INT}(\mathrm{MT}$ 10) / $10: \mathrm{MH}=\mathrm{INT}(\mathrm{MH} * 10) / 10$

STR \$ (MH)
2020 REM CANOPY PLANT PROFILE
2030 HOME : PRINT : PRINT "THE PLANT CANOPY PROFILE CAN ":
PRINT "NOW BE DESCRIBED"
2040 PRINT "WILL A PLANT PROFILE EE USED IN: $: ~ I N P U T$ "THE SIMOLATION (Y / N) ";A\$

```
2050 IF A$ = "Y" THEN GOTO 2080
2060 IF A$ = "N" THEN GOTO 2220
2070 GOTO 2040
2080 PRINT : PRINT "INPUT A NEGATIVE ENTRY NUMBER": PRINT
"TO TERMINATE INPUT": PRINT
2090CP=0:S$="n
2100 PRINT : PRINT "INPUT THE Z POSITION AND": PRINT "THE
PLANT AREA DENSITY": PRINT "(FT^2/FT^3) CORRESPONDING TU
THE Z": PRINT "POSITION";" STARTING AT THE SURFACE AND":
PRINT "INCREASING "#MONOTONICALLY TO THE TUP": PRLNT
2110 PRINT "INPUT A NEGATIVE ENTRY NUMBER TO END INPUT"
2120 FOR I = 1 TO 100
2130 CP = CP + 1
2140 INPUT "INPUT THE ENTRY NUMBER";A
2150 IFA<0 THEN S = = - = 
2160 INPUT "INPUT POSITION AND DENSITY n;PP,PA
2170 PP = PP . 3048
2180 CP$(CP) = "0055" + S$ + STR$(CP) + " % STR$(PP)
+ "n + STR$ (PA)
2190 IF S$ = " -" THEN GOTO 2220
2200 NEXT I
2210 REM CARD 0060
2220 REM PARTICLE DATA CARD
2230 HOME
2240 PRINT : PRINT "INPUT THE TOTAL NUMBER OF PARTICLES":
PRINT "TO BE RELEASED (NOT COUNTING THE CENTER)"
2250 PRINT "IN THE HALF-. PL ANE CONFIGURATION"
2255 PRINT : PRINT n**** MUST BE INTEGER VALUE
2260 INPUT TN
2270 PRJNT : PRINT MDO YOU WANT A PARTICLE RELEASED AM"
2280 INPUT "THE CENTER OF THE ADRCRAFT m;A$
2290 IF A$ = "YM THEN GOTO 2320
2300 IF A$ = "N" THEN GOTO 2340
2310 GOTO 2270
2320 CN$ = "1"
2330 GOTO 2350
2340 CN $ = "O"
2350 T = TN: IF VAL (AA$) = 1 THEN GOTO 2370
2360 T = T * 2
2370 PRINT : PRINT "DO YOU DESIRE SPECIFIC NUZZLE": PRINT
"POSITIONING OR AUTOMATIC UNIFORM"
2380 INPUT "SPACING? ENTER S OR A ";A$
2390 IF A$ = "A" THEN GOTO 2430
2400 CN$ = "-" + CN$
2410 T = T + VAL (CN$)
2420 TN = - TN
2430 PRINT : PRINT "INPUT THE VERTICLE POSITION
OFFSETING": PRINT "THE PARTICLE RELEASE POINT FROM": PRINT
"THE HEIGHT OF THE WING GIVEN EARLIER"
2440 PRINT "(IN FEET)"
2450 INPUT PO
2460 PO = PO . .3048
2470 PO = INT ((PO 10) +.5) / 10
2480 DD$ = "0060n+STR$(TN) + "#+CN$+"#+STR$
```

(PO)
2490 PRINT : INPUT "INPUT THE MICRON SIZE OF THE INITIAL PARTICLET;PS

2510 PRINT : PRINT "INPUT THE SPECIFIC GRAVITY OF THEn:
INPUT "RELEASED PARTICLE "; SG

2530 PRINT : PRINT UDO YOU DESIRE EVAPORATION TU BE
CONSIDERED": INPUT "IN THE SIMULATION? (Y/N) ";A\$
2540 IF A ${ }^{2}=" N "$ THEN EF $=0$
2550 IF A $=$ "Y"THEN EF $=1$

2570 REM CARD 0061
2580 REM DISCRETE PARTICLE LOCATION CARDS
2590 IF TN $>=0$ THEN GOTO 2790
2600 HOME
2610 PRINT : PRINT "YOU MUST ENTER ";T;" PARTICLE LOCATION
CARDS": PRINT
2620 PRINT : FRINT : PRINT "A PARTICLE RELEASED AT THE":
PRINT "CENTERLINE SHOULD BE ENTERED LAST"
2630 PRINT : PRINT : PRINT
2640 PRINT MINPUT THE Y POSITION ALONG THE WING ${ }^{2}$: PRANT "(ZERO IS AT THE CENTERLINE)": PRINT "AND THE VERTICLE OFF-SET OF THE PARTICLE": PRINT "EROM TEE WING IN FEET FOR EACH": PRINT "PARTICLE POSITION"
2650 PRINT : PRINT : PRINT
$2660 \mathrm{FOR}=1$ TOT
2670 PRINT "INPU' THE Y POSITTON FOR LOCATION ";
2680 INPUT X
$2690 Y=Y * .3048$
$2700 \mathrm{Y}=\mathrm{INT}((\mathrm{Y}$ 10) +.5) / 10
2710 PRINT "INPUT THE Z POSITION (VERTICLE OFF-SET": PRINT "OF THE "; I;"IH POSITION"
$2720 \mathrm{HV}=\mathrm{INT}(\mathrm{HV} * 10) / 10$
2730 INPUT Z
$2740 \mathrm{Z}=\mathrm{Z}$ * . 3048
$2750 \mathrm{Z}=\operatorname{INT}((\mathrm{Z} 10)+.5) / 10$
2760 PL $\$(I)=" 0061 "+S T R \$(I)+n \#+S T R \$(X)+n n+$ STR ${ }^{2}$ (Z)
2770 NEXT I
2780 REM CARD 0062
2790 REM PARTICLE INITIAL CONDITION CARDS
2800 HOME : PRINT : PRINT "WOULD YOU LIKE TO DEFINE A
PARTICLE": PRINT "INITIAL CONDITION? (Y/N) "
2810 INPUT " IF NO, ALL CONDITIONS WILL BE SET TU ZERO
"; A
2815 IF A $=$ "Y" THEN GOTO 2830
2820 IF A = ${ }^{2} N$ " THEN GOTO 2960
2825 GOTO 2800
2830 PRINT "INPUT THE INITIAL HORIZONTAL VELOCITY": INPUT " IN FEET/SEC ";HV
$2840 \mathrm{HV}=\mathrm{HV} * .3048$
2850 PRINT : PRINT "INPUT THE INITIAL VERTICAL VELOCITY":
INPUT MIN FEET/SEC ";VV

```
2860 VV = VV *.3048
2870 VV = INT (VV * 10) / 10
2880 PRINT : PRINT "INPUT THE INITIAL SFATIAL VARIANCE":
INPUT " OF THE PARTICLE PATH IN FEET** ";SV
2890 SV = SV .09290304
2900 SV = INT (SV * 10) / 10
2910 PRINT : PRINT "INPUT THE INITIAL VELOCITY VARIANCE OF
THE": INPUT "PARTICLE IN FEET*2/SEC"2 ";IV
2920 IV = IV *.09290304
2930 IV = INT (IV * 10) / 10
2940 IC$ = "0062" + STR$ (HV) + " " + STR$ (VV) + " " +
STR$ (SV) + " " + STR$ (IV)
2950 REM CARD 0065
2960 REM EVAPORATION DATA CARD
2970 HOME
2980 IF EF = O THEN GOTO 3060
2990 HOME : PRINT : PRINT "ENTER THE TEST DRY BULB
TEMPERATURE": INPUT "IN DEGREES F ";DB
3000 PRINT : PRINT "ENTER THE TEST WET BULB TEMPERATURE":
INPUT "IN DEGREES F ";WB
3010 DB = (5 / 9) (DB - 32)
3020 WB = (5 / 9) * (WB - 32)
3030 DB = INT (DB * 10) / 10
3035 WB = INT (WB 10) / 10
3040 PRINT : PRINT "INPUT THE SIZE OF THE DROPLET
(MICRONS)": INPUT "AT WHICH EVAPORATION HAS OCCURRED ";MS
3050 EC$ = "0065" + STR$ (DB - WB) + " % + STR$ (MS)
3060 REM END OF INPUTS
3070 HOME : PRINT "END OF INPUT SLCTION": PRINT : PRINT
3075 PRINT : PRINT : PRINT "* INSERT DATA DISK INTO DRIVE
2***
3080 PRINT "INPUT THE DESIRED NAME OF*: INPUT "THE DATA
SET ";A$
3100 D$ = ""
3110 PRINT D$;"OPEN ";A$;",D2"
3120 PRINT D$;"WRITE ";A$
3130 IF C$ = "" THEN GOTO 3160
3140 PRINT C $ 
3150 IF PP$ = N" THEN GOTO 3170
3160 PRINT PP串
3170 TF AC$ = m THEN GOTO 3190
3180 PRINT AC*
3190 IF BC$ z "" THEN GOTO 3210
3200 PRINT BC$
3210 IF CV $ = "" THEN GOTO 3230
3220 PRINT CV $
3230 IF CT = 0 THEN GOTO 3270
3240 FOR I = 1 TO CT
3250 PRINT BZ$(I)
3260 NEXT I
3270 IF CW$ = "" THEN GOTO 3290
3280 PRINT CW W
3290 IF HC$ = "" THEN GOTO 3310
3300 PRINT HC$
```

3310 IF PC $\%$ \# THEN GOTO 3330
3320 PRINT PC $\$$
3330 IF TC $=$ NT THEN GOTO 3350
3340 PRINT TC $\$$
3350 IF CP $\$=17$ TREN GOTO 3370
3360 PRINT CP\$
3370 IFCP $=0$ THEN GOTO 3390
$3380 \mathrm{FOR} \mathrm{I}=1 \mathrm{TOCP} \mathrm{CRINT} \mathrm{CP} \$(I): \mathrm{NEXT} \mathrm{I}$
3390 IF DD $=$ "n THEN GOTO 3410
3400 PRINT DD $\$$
3410 IF T $=0$ THEN GOTO 3430
3420 FOR $=1$ TO T: PRINT PL $\$(I): N E X T I$
3430 IF IC $\$=\|$ THEN GOTO 3450
3440 PRINT IC $\$$
3450 TFEC $=$ W" THEN GOTO 3470
3460 PRINT EC\$

3480 PRINT D\$; "CATALOG"
3485 PRINT: PRINT
3490 PRINT "THE DATA FILE HAS BEEN ESTABLISHED": PRINT
3500 PAINT MEXECUTE THE MODEL BY TKANSFERING : PRINT "THE DATA FILE TO THE DEC PDP1//34AG: PAINT WAND EXECUTING MODI OR MOD2"

Module Two

C AERIAL APPLICATION SIMULATION BASED ON THE
C NASA-LANGLEY COMPUTATIONAL WAKE INTERACTIONS ANALYSIS
C BY CONTINUUM DYNAMICS, INC., MOD 2.0
C

```
    DIMENSION CV (19), ICV (400), XOV (10,60),XV(2)
    CHARACTER*4 P2V,P3V
    DIMENSION LJV(11),P2V(2),P3V(3,5),LCV(11)
    COMMON /AREA/ NPAD, ZV(100),AV(100)
    COMMON /BETZ/ NGAM,YV(100),GV(100),DGV(100), PGBP,PSBP
    COMMON /EVAP/
```

C
LEVAP, DTEMP, DIAM, DCUT, DENF, DMCV (60), TMCV (60)
COMMON /HELI/ WHEL, HHEL, RHEL, YHEL, ZHEL.
COMMON /MEAN/
LMV EL, LMCRS, NV OR, RLIM, ZO, USK, HTPAD, ZOPAD, UO, XO
COMMON /MEAN/ YBAR(8), ZBAR(8),YBAL(8), ZBAL(8),G2PI(8)
COMMON /MEAN/
FACR (8), FACL (8), SRV (8), DSYM (8), DSYP (8), GSAV (8)
COMMON / NORM/ DTAU, TMAX, DT, EDOV (60), EDNV (60)
COMMON /OUTP/ NOUT, NPLT, NPRT, NSAV, NVAR
COMMON /PROP/
$L P R P, ~ Y P R P, Z P R P, R P R P, V P R P, Q Q P R P, C P Q, C P R, X P R$
COMMON /TERR/CTA,STA
COMMON /TURB/ LQQSE, QQMX, SLMX
common /mdata/
cv, tem, ninc, lhfpl, lzero, s, dist, dzbp, time, n,

```
    # ndat,ce,xov,ta
C
        EQUIV ALENCE (XV(1), XOV (1,1))
        EQ UIV AL ENCE
(LV(1),L10),(LV (2),L20),(LV(3),L21),(LV (4),L22)
        EQUIVALENCE (LV(5),L25),(LV(6),L28),(LV(7),L30)
        EQUIVALENCE
(LV (8),L50),(LV (9),L60),(LV(10),L61),(LV (11),L65)
C
        DATA TFI/6.2831853/
        DATA R2V/4HHALF,4HFULL/
        DATA P3V/6*' ','QQ ',2*' ',' QQ ','SL ','
',
        $ ' QQ ','SL V','V WW'/
        DATA LCV/10,20,21,22,25,28,30,
    $ 50,60,61,65%
C
1000 FORMAT(I4,19A4)
1010 FORMAT(47H *** AGDISP CODE DOES NOT SUPPORT CARD
NUMBER: ,I4)
1020 FORMAT(20A4)
1030 FORMAT( 36H *# INSUFFICIENT DATA BEFORE CARD: ,I4)
1040 FORMAT(35H *# INCORRECT NUMBER OF PARTICLES:,2I3)
1050 FORMAT(37H ** ERROR IN CIRCULATION DATA INPUT:,2I3)
1060 FORMAT(47H SNPUT DOES NOT FULLY INITIALIZE AGDISP
RUN/
    * 5%,19HMISSING dATA CARDS:,11(2X,I4))
1070 FORMAT(39H E&BREROR IN FLANT AREA DENSITY
INPUT:,2I3)
1080 FORMAT(45H ##* CARD ORDER INCONSISTENT AT CARD
NUMBER: ,I4)
1090 FORMAT(/38H NASA AGDISP (MOD 2.0) PROGRAM RESULTS/)
1100 FORMAT(38H1NASA AGDISP (MOD 2.0) PROGRAM RESULTS//
    $ 17H INPUT DATA DECK:/)
1110 FORMAT(I4,2H:, 20A4)
1120 FORMAT(/34H NASA AGDISP (MOD 2.0) PROGRAM END)
1130 FORMAT(/28H DEPOSITION DIAMETER
RATIOS:/5X,1H#,6X,2HDR,
    $ 9X,4HTIME,9X,1HY,11X,2HYY)
1140 FORMAT(I6,4E12.4)
1150 FORMAT(23X,3HSEC,10X,1HM,10X,4 HM #2//
    $ 21H DEPOSITION FRACTION:,E12.4)
2010 FORMAT(19H INITIAL TIME STEP:,E13.5,4H SEC/
    $ 14H MAXIMUM TIME:,E13.5,4H SEC/)
2020 FORMAT(21H TERRAIN SLOPE ANGLE:,E13.5,4H DEG)
2030 FORMAT(1X, A4,18H-PLANE CALCULATION)
2040 FORMAT(32H AIRCRAFT' SEMI-SPAN/DISK RADIUS:,E13.5,2H
M/
    $ 18X,14H FLIGHT SPEED:, E1 3.5,6H M/SEC)
2050 FORMAT(24H NOMINAL RELEASE HEIGHT:,E13.5,2H M)
2060 FORMAT(38H RECTANGULARLY LOADED WING WITH GAMMA:,
    $ E13.5,9H M**2/SEC)
2070 FORMAT(37H TRIANGULARLY LOADED WING WITH GAMMA:,
    $
    E13.5,9H M**2/SEC)
```

```
2080 FORMAT(22H PROPELLER HUB HEIGHT:,E13.5,2H M/
    15X,7HRADIUS:, E13.5,2H M/
    7X,15HSNIRL VELOCITY:,E13.5,6H M/SEC/
    11X,11HTURBULENCE:, E13.5,11H(M/SEC)*2)
2090 FORMAT(28H HELICOPTER FORWARD ADVANCE:,E13.5/
    $ 10X,18HDOWNWASH VELOCITY:,E13.5,6H M/SEC/
    $ 12X,16HEFFECTIVE GAMMA:, E13.5,9H M**2/SEC)
2100 FORMAT(21H CROSS-WIND VELOCITY:,E13.5,6H M/SEC/
    $ 18X,3H Z:, E13.5,2H M/17X,4H Z0:, E13.5,2H M)
2110 FORMAT(28H BIPLANE INCREMENTAL HEIGHT:, E13.5,2H M/
    $ 14X,14HSPAN FRACTION:, E13.5/
    $ 13X,15HGAMMA FRACTION:,E13.5)
2210 FORMAT(35H VARIABLES FROM WAKE PLOT FILE: V W,3A4)
2220 FORMAT(24H TURBULENCE FIXED VALUE:,E13.5,11H
(M/SEC)**2)
2230 FORMAT(33H TURBULENCE FROM SUPEREQUILIBRIUM)
2250 FORMAT(28H SCALE LENGTH MAXIMUM VALUE:, E13.5,2H M)
2300 FORMAT(27H TOTAL NUMBER OF PARTICLES:,I3/
    $ 17X,10H DIAMETER:, E13.5,8H MICRONS/
    $ 9X,18H SPECIFIC GRAVITY:,E13.5)
2310 FORMAT(25H EVAPORATION TEMPERATURE:, E13.5,6H DEG C/
    $ 8X,17H CUTOFF DIAMETER:, E13.5.8H MICRONS)
3090 FORMAT(/21H INTEGRATION COMPLETE)
4000 FORMAT(36H $$ WARNING: SMALL PARTICLE INYOKED)
4010 FORMAT(49H $$$ WARNING: SUPEREQUILIBRIUM TURBULENCE
INV OKED)
4020 FORMAT(33H $$$ WARNING: EVAPORATION INVOKED)
4030 FORMAT(36H $$$ WARNING: MANY PARTICLES INVOKED)
4040 FORMAT(42H $$$ WARNING: LONG SIMULATION TIME INVOKED)
4050 FORMAT(36H $$$ WARNING: WAKE PLOT FILE INVOKED)
C
        NDAT=4
        NOUT=6
        NPRT=9
C
C SET ALL NECESSARY dEfAULT FLAGS
C
        NPAD=0
        HTPAD=0.0
        LOCA=0
        NGAM=0
        LOCB=0
        NV OR=0
        LPRP=-1
        DZBP=0.0
        PSBP=0.0
        TA=0.0
        CTA=1.0
        STA=0.0
        WRITE (NPRT,1100)
        WRITE (NOUT,1090)
```

```
    ICARD=0
    READ (NDAT, 1000, END=40) INUM,CV
    ICARD = ICARD+1
    ICV(ICARD)=INUM
    GO TO 20
40 REWIND NDAT
    ICMX= ICARD
    ICARD=0
42 READ (NDAT, 1020,END=44) CC,CV
    ICARD=ICARD +1
    WRITE (NPRT,1110) ICARD,CC,CV
    WRITE (NOUT,1110) ICARD,CC,CV
    GO TO 42
44 WRITE (NPRT,1110)
    WRITE (NOUT,1110)
    REWIND NDAT
    DO 45 I=1,11
    LV (I) =0
    CONTINUE
    L10= - 1
    ICARD=0
    ICARD=ICARD+1
    IF (ICARD.GT.ICMX) GO TO 400
    IF (ICV(ICARD).EQ.0) GO TO 100
    IF (ICV(ICARD).EQ.10) GO TO 120
    IF (ICV(ICARD).EQ.15) GO TO 125
    IF (ICV(ICARD).EQ.20) GO TO 130
    IF (ICV(ICARD).EQ.21) GO TO 135
    IF (ICV(ICARD).EQ.22) GO TO 140
    IF (ICV(ICARD).EQ.25) GO TO 150
    IF (ICV(ICARD).EQ.28) GO TO 160
    IF (ICV(ICARD).EQ.30) GO TO 180
    IF (ICV(ICARD).EQ.40) GO TO 190
    IF (ICV(ICARD).EQ.50) GO TO 200
    IF (ICV(ICARD).EQ.55) GO TO 210
    IF (ICV(ICARD).EQ.60) GO TO 220
    IF (ICV(ICARD).EQ.61) GO TO 230
    IF (ICV(ICARD).EQ.62) GO TO 240
    IF (ICV(ICARD).EQ.65) GO TO 250
    WRITE (NOUT,1010) ICV(ICARD)
    STOP
C
C 0000 COMMENT CARD
C
100 READ (NDAT,1000,END=300) I,CV
        IF (I.NE,ICV(ICARD)) GO TO 300
        GO TO 50
C
C 0010 TIME AND SPACE PROGRAM CARD
C
120 READ (NDAT, END=300) I,TMAX,LHFPL
    IF (I.NE.ICV(ICARD)) GO TO 300
    L1 0=0
    L2 0=-1
```

```
        WRITE (NOUT,2030) P2V(LHFPL)
        GO TO 50
C
C 0015 TERRAIN SLOPE CARD
C
125 READ (NDAT,*,END=300) I,TA
        IF (I.NE.ICV(ICARD)) GO TO 300
        IF (L20.EQ.0) GO TO 370
        WRITE (NOUT,2020) TA
        TA=TA*TPI/360.0
        CTA=COS(TA)
        STA=SIN(TA)
        GO TO 50
C
C 0020 AIRCRAFT CHARACTERISTICS CARD
C
130 READ (NDAT,*,END=300) I,LMVEL,LMCRS,S,DIST,UO,LBP
        IF (I.NE,ICV(ICARD)) GO TO 300
        IF (L20.EQ.O) GO TO 370
        L20=0
        LPRP=0
        L50=-1
        IF (LMV EL,EQ . 3) L30=-1
        IF (LMVEL.EQ.1.OR.LMV EL.EQ.2) L22=-1
        IF (LMV EL.EQ.0) L25=-3
        IF (LMCRS.EQ.1.AND.LMVEL.NE, (-1)) L2 8=-1
        IF (S.NE,0.0) WRITE (NOUT,2040) S,vO
        WRITE (NOUT,2050) DIST
        IF (LBP.NE.0) L21=-1
        GO TO 50
C
C 0021 BIPLANE CHARACTERISTICS CARD
C
135 READ (NDAT, #, END=300) I, DZBP,PSBP, PGBP
        IF (I.NE.ICV(ICARD)) GO TO 300
        IF (L21.EQ.0) GO TO 370
        L21=0
        WRITE (NOUT,2110) DZBP,FSBP, PGBP
        GO TO 50
C
C 0022 TRIANGULAR/RECTANGULAR LOADING CARD
C
140 READ (NDAT,*,END=300) I,GAMMA
    IF (I.NE.ICV(ICARD)) GO TO 300
    IF (L21.NE.O) GO TO 370
    IF (L22.EQ.O) GO TO 370
    L2 2 = 0
    NV OR=1
    G2PI(1)=GAMMA/TPI
    Y=0.5%S*FLOAT(LMVEL)
    Z=DIST
    YBAR(1)=Z*STA+Y*CTA
    ZBAR(1)=Z*CTA-Y*STA
    YBAL(1)=Z要TA-Y#CTA
```

```
    ZBAL(1)=Z#CTA+Y*STA
    FACR(1)=1.0
    FACL ( 1) =1.0
    GSAV (1)=0.0
    SRV (1)=S
    IF (LMM EL.EQ.1) SRV (1)=0.5*S
    IF (LBP.EQ.0) GO TO 145
    NV OR=2
    G2PI(2)=PGBP*G2PI(1)
    Y=PSBP*Y
    Z=Z+DZBP
    YBAR(2)=Z#STA+Y*CTA
    ZBAR(2)=Z类TA-Y*STA
    YBAL(2)=Z*STA-Y*CTA
    ZBAL(2)=Z*CTA+Y要TA
    FACR(2)=1.0
    FACL(2)=1.0
    GSAV (2)=0.0
    SRV (2)=PSBP*SRV(9)
145
    RL IM=0.0
    IF (LMVEL.EQ.1) RLTM=0.5*S
    IF (LMVEL.EQ.2) WRITE (NOUT,2060) GAMMA
    IF (LMVEL.EQ.1) WRITE (NOUY, 2O70) GAMMA
    GO TO 50
C
C 0025 BETZ DATA CARDS AND INITIALIZATION
C
150 READ (NDAT, *,END=300) I,YY,GG
    IF (I.NE.ICV(ICARD)) GO TO 300
    IF (L21.NE.O) GO TO 370
    IF (L25.EQ.O.AND.LOCB.EQ.0) GO TO 370
    IF (LOCB.LT.O) GO TO 330
    LOCB=LOCB+1
    IF (YY.LT.O.0) LOCB=-LOCB
    L25=MINO(L25+1,0)
    NGAM= NGAM+1
    IF (NGAM.GT.100) GO TO 330
    YV (NGAM)=ABS(YY)
    GV (NGAM)=GG
    IF (LOCB.LT.O) CALL AGBZG(DIST,DZBP)
    GO TO 50
C
C 0028 CROSS WIND CARD
C
160 READ (NDAT, *,END=300) I, U, Z,ZO
        IF (I.NE.ICV(ICARD)) GO TO 300
        IF (L28.EQ.0) GO TO 370
        L2 8=0
        USK=U/ALOG((Z+ZO)/ZO)
        WRITE (NOUT,2100) U,Z,ZO
        GO TO 50
C
C 0030 HELICOPTER INPUT CARD
C
```

```
180 READ (NDAT,*,END=300) I,WT,XMU
    IF (I.NE.ICV (ICARD)) GO TO 300
    IF (L30.EQ.O) GO TO 370
    L3 0=0
    RHEL=S
    HHEL=DIST
    NV OR=1
    GAMMA = XMU *WT/RHEL/UO/2.4532
    G2PI(1)=GAMMA/TPI
    YBAR (1)=HHEL *STA+RHEL *CTA
    ZBAR(1)=HHEL *CTA-RHEL *STA
    YBAL (1) = HHEL*STA-RHEL *CTA
    ZBAL(1)=HHEL *CTA+RHEL *STA
    FACR(1)=1.0
    FACL(1)=1.0
    GSAV (1)=0.0
    RL, IM=0.0
    SAV ( 1) =RHEL
    WHEL=SQRT((1.0-XMU)*WT/TPI/1.2266)/MHEL
    YHEL=HHEL NTA
    Z HEL = HHEL *CTA
    WRITE (NOUT,2090) XMU,WHEL,GAMMA
    DZBP== DIST
    GO TO 50
C
C 0040 PROPELLER INPUT CARD
C
190 READ (NDAT,*,END=300) I,CD,AS,ETA,TDOT,RPRP,DZ
    IF (I.NE.ICV(ICARD)) GO TO 300
    IF (LPRP.EQ. (-1).OR.LMVEL.EQ.(-1)) GO TU 3T0
    LPRP=1
    APRP=0.5%TPIWRPRP**2
    UI=0.5*UO#(-1.0+SQRT(1.0+CD#AS/APRP))
    QQPRP=0.72*UI*UI
VPRP=60.0*CD*AS*UO**3/(TPI*ETA*TDOT*APRP*RPRP*(UO+UI))
    XPR=0.857*RPRP*UO/SQRT(QQPRP)
    CPQ=0.857*SQRT(QQPRP)*UO*RPRP*XPR**0.18
    CPR=1.167/U0
    Z=DIST+DZ
    YPRP=Z*STA
    ZPRP=Z*CTA
    WRITE (NOUT,2080) DZ, RPRP,VPRP,QQPRP
    GO TO 50
C
C 0050 TURBULENCE DATA CARD
C
200 READ (NDAT,*,END=300) I,LQQSE,QQMX,SLMX
    IF (I.NE.ICV(ICARD)) GO TO 300
    IF (L50.EQ.O) GO TO 370
    IF (LQQSE.GT.O.AND.LMVEL.NE.(-1)) GO TU 3T0
    L5O=0
    L6 0=-1
    IF (LQQSE.EQ.O.AND.LMCRS.EQ.1) QQMX=QQMK+0.845*USK**2
```

IF (LMVEL.EQ. (-1)) WRITE (NOUT, 2210)
(P3V(I,LQQSE+2), $I=1,3$)
IF (LQQSE. EQ.0) WRITE (NOUT, 2220) QQMX
IF (LQQSE.EQ. (-1)) WRITE (NOUT,2230)
IF (LMVEL.NE. (-1).OR.LQQSE.LE.1) WRITE (NOUT, 2250)
SLMX
C
C WAKE PLOT FTLE INITIALIZATION C

IF (LMVEL.EQ. (-1)) CALL AGWKS(LQQSE)
GO TO 50
C
C 0055 CANOPY INPUT CARDS AND INITIALIZATION
C
210 READ (NDAT, *, END=300) I, ZZ, AA
IF (I.NE.ICV(ICARD)) GO TO 300
IF (LMVEL.EQ. (-1)) GO TO 370
IF (LOCA.LT.O) GO TO 360
$L O C A=L O C A+1$
IF (ZZ.LT.0.0) LOCA $\mathrm{I}_{-\mathrm{LO}} \mathrm{LOCA}$
$N P A D=N P A D+1$
IF (NPAD.GT.100) GO TO 360
$Z V(N P A D)=A B S(Z Z)$
$A V(N P A D)=A A$
IF (LOCA.LT.O) CALL AGPAD(HTPAD, ZOPAD)
GO TO 50
C
C 0060 PARTICLE DATA CARD
C
220 READ (NDAT, *, END 200)
I, LPART, LZERO, DZ, DIAM, DENF, LEVAP
IF (I.NE.ICV(ICARD)) GO TO 300
IF (L60.EQ.0) GO TO 370
$\mathrm{L} 60=0$
IF (LPART.LT.0) $L 61=L H E P L$ WPART $+L Z E R O$
IF (LEVAP.EQ.1) \quad. $65=-1$
IF (IABS(LPART+LZERO).GT.30) GO TO 310
DO $222 I=1,600$
$\mathrm{XV}(I)=0.0$
222 CONTINUE
DO $223 I=1,60$
$\operatorname{DMCV}(I)=0.0$
$\operatorname{EDOV}(I)=\operatorname{DAM}$
223 CONTINUE
NV AR $=0$
IF (LPART.LT.0) GO TO 228
$\mathrm{Z}=\mathrm{DIST}+\mathrm{DZ}$
IF (LPART.GT.0) GO TO 224
NV AR $=1$
$\operatorname{XOV}(1,1)=2 * S T A$
$\operatorname{XOV}(6,1)=Z^{* C T A}$
WRITE (NOUT, 2300) NVAR, DIAM, DENF
GO TO 50
224 DS $=$ S/FLOAT (LPART +1)

```
DO 226 N=1,LPARI
Y=DS*FLOAT(N)
XOV(1,N)=Z*STA+Y*CTA
IF (LHFPL.EQ.2) XOV(1,N+LPART)=Z#STA-Y*CTA
XOV (6,N)=Z*CTA-Y*STA
IF (LHFPL。EQ.2) XOV (6,N+LPART)=Z#CTA+Y*STA
226
CONTINUE
NVAR=I,PART
IF (LHPPL.EQ.2) NVAR=2WLPARI
IF (LZERO.EQ.O) GO TO 228
NV AR=NVAR+1
XOV (1,NVAR)=Z*STA
XOV (6,NVAR)=Z*CTA
228 N=IABS(LPART)
IF (LHFPL.EQ.2) N=2*N
IF (LZERO.NE.O) N=N+1
WRITE (NOUT,2300) N,DIAM,DENF
GO TO 50
C
C 0061 PARTICLE LOCATTON DATA CARDS
C
230 READ (NDAT,*,END=300) I,IIII,YY, DZ
    IF (I.NE.ICV(ICNRD)) GO TO 300
    IE (L.6 1.EQ.O) 6O TO 370
    L.6 1=L L 1+1
    NVAR=NVAR+1
    IF (NVAR.GT.(mLHFPL*LPART-LZERO)) GO TO 320
    Z=DIST+DZ
    XOV(1,NVAR)=Z*STA+YY*CTA
    XOV (6,NVAR)=Z#CTA*YY*STA.
    GO TO 50
C
C 0062 PARTICLE INITIAL CONDITION DATA CARD
C
240 READ (NDAT:*,END=300) I,V,W,XS,VS
        IF (I.NE.ICV (ICARD)) GO TO 300
        DO 242 N=1,NVAR
        XOV (2,N)=W*STA+V*CTA
        XOV (3,N)=XS
        XOV (5,N)=VS
```



```
        XOV (8,N)=XS
        XOV (10,N)=VS
242 CONTINUE
    GO TO 50
C
C 0065 EVAPORATION DATA CARD
C
250 READ (NDAT,*,END=300) I,DTEMP,DCUT
    IF (I.NE.ICV(ICARD)) GO TO 300
    JF (L65.EQ.0) GO TO 370
    L65=0
    WRITE (NOUT,2310) DTEMP, DCUT
    GO TO 50
```

```
C
C ERROR/WARNING MESSAGES
C
300 WRITE (NOUT, 1030) ICARD
    STOP
310 WRITE (NOUT, 1040) LPART
    STOP
320 WRITE (NOUT,1040) LOC,NVAR
    STOP
330 WRITE (NOUT,1050) LOCB,NGAM
    STOP
340 I=0
    DO 350 L= 1,11
    IF (LV(L).EQ.0) GO TO 350
    I=I+1
    LV(I)=LCV(L)
350 CONTINUE
    WRITE (NOUT,1060) (LV(L),L=1,I)
    STOP
360 WRITE (NOUT,1070) LOCA,NPAD
    STOP
370 WRITE (NOUT,1080) I
    STOP
400 IF (LOCA.GT.O) GO TO 360
    IF (LOCB.GT.O) GO TO 330
    LTOT=L10+L20+L21+L22+L25+L28+LS 30+L50+L60+L61+L65
    IE (LTOT.NE.O) GO TO 340
    IF (DIAM总DENF**2.LT.50.0) WRITE (NOUT,4000)
    IF (LQQSE.EQ.(\infty1)) WRITE (NOUT,4010)
    IF (LMVEL.EQ.(-1)) WRTTE (NOUT,4050)
    IF (LEVAP.EQ.1) WRITE (NOUT,4020)
    IF (NVAR.GT.10) WRITE (NOUT,4030)
    IE (TMAX/DIAM/DENF每2.GT.0.1) WRITE (NOUT,4040)
call dump
stop
end
subroutine dump
    DIMENSION CV(19),ICV (400), XOV (10,60),XV (2)
    CHARACTER鿓4 P2V,P3V
    DIMENSION LV(11),P2V(2),P3V(3,5),LCV(11)
C
    COMMON /AREA/ NPAD,ZV(100),AV(100)
    COMMON /BETZ/ NGAM,YV(100),GV(100),DGV(100),PGBP,PSBP
    COMMON /EVAP/
LEVAP, DTEMP, DIAM, DCUT,DENF, DMCV (60),TMCV (60)
    COMMON /HELI/ WHEL,HHEL, RHEL,YHEL,ZHEL
    COMMON /MEAN/
LMV EL, LMCRS,NV OR, RLIM, ZO,USK, HTPAD, ZOPAD, UO, XO
    COMMON /MEAN/ YBAR(8), ZBAR(8),YBAL(8),ZBAL(8),G2PI(8)
    COMMON /MEAN/
```

FACR (8), FACL (8), SRV (8), DSYM (8), DSYP (8), GSAV (8)
COMMON /NORM/ DTAU, TMAX, DT, EDOV (60), EDNV (60)
COMMON /OUTP/ NOUT, NPLT, NPRT, NSAV, NVAR
COMMON /PROP/
LPRP, YPRP, ZPRP, RPRP, VPRP, QQPRP, CPQ, CPR, XPR
COMMON /TERR/ CTA,STA.
COMMON /TURB/ LQQSE, QQMX, SL.MX
common /mdata/
cv, tem, ninc, $\operatorname{lnf} p l, l z e r o, s, d i s t, d z b p, t i m e, n$,
\$ ndat, cc, xov, ta
integer tmpfil
tmpfid $=19$
call setfil(19, 'agdisp.int')
write (tmpiil) npad,zy, av
write (tmpfil) ngam,yv, gv, dgv, pgbp, psbp
write (tmpfil) levap, dtemp, diam, dout, denf, dmov, tmov
write (tmpfil) whel, hhel, rhel,yhel, zhel
write (tmpfil)
lmvel, 1 mors, nyor, rlim, zo, usk, htpad, zopad, uo, ro
write (tmpfil) ybar,zbar,ybal,zbal, g2pi
write (tmpfil) facr,facl,srv,dsym,dsyp,gsav
write (tmpfil) dtau,tmax, dt, edov, ednv
write (tmpfil) nout, nplt, nprt, nsav, nvar
Write (tmpfil)
$\operatorname{lprp,yprp,zprp,rprp,vprp,qqprp,~cpq,~epr,xpr}$
write (tmpfil) cta,sta
write (tmpfil) lqase, qqmx, simx
write (topfid)
ev, tem, ninc, lhepl, lzero,s, dist, dzbp,time,n,
\$ ndat, ce, xov, ta
return
end
C SECTION TWO PDP11/34A VERSION
C
DIMENSION CV(19), $\operatorname{ICV}(400), \operatorname{XOV}(10,60), \operatorname{XV}(2)$
C
COMMON /AREA/ NPAD, ZV(100), AV (100)
COMMON /BETZ/ NGAM, YV (100), GV(100), DGV(100), PGBP, PSBP COMMON /EVAP/
LEVAP, DTEMP, DIAM, DCUT, DENF, DMCV (60), TMCV (60) COMMON /HELI/ WHEL, HHEL, RHEL, YHEL, ZHEL COMMON /MEAN/
LMVEL, LMCRS, NV OR, ALIM, ZO, USK, HTEAD, ZOPAD, UO, XO COMMON /MEAN/ YBAR(8), ZBAR (8), YBAL(8), ZBAL (8), G2PI (8) COMMON /MEAN/
FACR (8), FACL (8), SRV (8), DSYM (8), DSYP (8), GSAV (8)
COMMON / NORM/ DTAU, TMAX, DT, $\operatorname{EDOV}(60), \operatorname{EDNV}(60)$
COMMON /OUTP/ NOUT, NPLT, NPRT, NSAV, NVAR
COMMON /PROP/

```
LPRP, YPRP, ZPRP, RPRP,VPRP, QQPRP, CPQ,CPR, XPR
        COMMON /TERR/ CTA,STA
        COMMON /TURB/ LQQSE,QQMX, SLMX
        common /mdata/
cv,tem,ninc,lhfpl,lzero,s,dist, dzbp,time,n,
    $ ndat,ce,xov,ta
C
        EQUIVALENCE (XV (1), XOV (1,1))
C
1020 FORMAT(20A4)
1120 FORMAT(/34H NASA AGDISP (MOD 2.0) PROGRAM END)
1130 FORMAT(/28H DEPOSITION DIAMETER
RATIOS:/5X, 1H#,6X,2HDR,
    * 9X,4HTIME,9X,1HY,11X,2HYY)
1140 FORMAT(I6,4E12.4)
1150 FORMAT(23X,3HSEC,1 0X, 1HM, 10X,4HM**2//
$ 21H DEPOSITION FRACTION:, E12.4)
2010 FORMAT(19H INITIAL TIME STEP:,E\3.5,4H SEC/
    $ 14H MAXIMUM TIME:, E13.5,4H SEC/)
3090 FORMAT(/21H INTEGRATION COMPLETE)
C
call restor
C
C ESTABLISH STEP SIZE MAXIMUM
C
        DT=0.0
        CALL AGDEC(0,0,0.0,TEM,1)
        DT=0.5*AMIN1(DTAU,0.2)
        NINC=MAXO(10,IFIX(1.0/DT))
        NSAV = NINC/10
        WRITE (NOUT, 2010) DT, TMAX
C
C INTEGRATE THE EQUATIONS TO MAXIMUM TIME
C
        CALL AGINT(XOV)
        WRITE (NPRT,3090)
        WRITE (NOUT,3090)
        TIME=-1.0
        WRITE (NPRT,1130)
        DO 410 N=1,NVAR
        IF (DMCV(N).EQ.0.0) WRITE (NPRT,1140) N, DMCV(N)
        IF (DMCV (N).GT.O.0) WRITE (NPRT,1140)
N, DMCV (N),TMCV(N),
    $
XOV (1,N), MOV (3,N)
410 CONTINUE
    TEM=0.0
        DO 450 N=1,NVAR
        TEM=TEM+DMCV (N)
        IF (LHFPL.EQ.2) GO TO 450
        IF (N.EQ.NVAR.AND.LZERO.NE.0) GO TU 450
        TEM=TEM+DMCV(N)
```

CONTINUE
$\mathrm{N}=\mathrm{NVAR}$
IF (LHFPL.EQ.1) $\mathrm{N}=2 \mathrm{NVAR}=\mathrm{IABS}(\mathrm{LZERO})$
TEM=TEM/FLOAT(N)
WRITE (NPRT, 1150) TEM
WRITE (NPRT,1120)
WRITE (NOUT, 1120)
480
STOP
END
subroutine restor
DIMENSION CV (19), $\operatorname{ICV}(400), \operatorname{XOV}(10,60), X V(2)$
C
COMMON /AREA/ NPAD, ZV(100), AV (100)
COMMON /BETZ/ NGAM, YV (100), GV(100), DGV(100), PGBP, PSBP
COMMON /EVAP/
LEVAP, DTEMP, DIAM, DCUT, DENF, DMCV (60), TMCV (60)
COMMON /HELI/ WHEL, HHEL, RHEL, YHEL, ZHEL
COMMON /MEAN/
LMV EL, LMCRS, NV OR, RLIM, ZO, USK, HTPAD, ZOPAD, UO, XO
COMMON /MEAN/ YBAR(8), ZBAR (8), YBAL (8), ZBAL (8), G2PI (8)
COMMON / MEAN/
$\operatorname{FACR}(8), \operatorname{FACL}(8), \operatorname{SPV}(8), \mathrm{DSYM}(8), \operatorname{DSYP}(8), \operatorname{GSAV}(8)$
COMMON /NORM/ DTAU, TMAX, DT, EDOV (60), EDNV (60)
COMMON /OUTP/ NOUT, NPLT, NPRT,NSAV, NVAR
COMMON /PROP/
LPRP, YPRP, ZPRP, RPRP, VPRP, QQPRP, CPQ, CPR, XPR
COMMON /TERR/ CTA,STA
COMMON /TURB/ LQQSE, QQMX, SLMX
common /mdata/
cv, tem, ninc, lhfpl, lzero,s, dist, dzbp, time, n,
\$ ndat, ce, xov, ta
integer tmpfil
tmpfil $=19$
call setfil(19, 'agdispoint ')
read (trofil) npad,zv,av
read (tmpril) ngam, yv, gv, dgv, pgop, psbp
read (tmpfil) Jevap, dtemp,diam, dcut, denf,dmev,tmov
read (tmpfil) whel, hhel, rhel,yhel, zhel
read (tmpril)
lmvel, Imers, nvor, rlim,zo, usk, htpad, zopad, uo, xo
read (tmpfil) ybar,zbar,ybal,zbal, g2pi
read (tmpfil) facr, facl, srv, dsym, dsyp, gsav
read (tmpfil) dtau,tmax,dt, edov, ednv
read (tmpfil) nout, nplt, nprt, nsav, nvar
read (tmpril)
lprp,yprp,zprp,rprp,vprp,qqprp,opq, opr, xpr
read (tmpfil) cta,sta
read (tmpfil) lqqse,qqmx, slmx
read (tmpfil)
cv, tem, ninc, lhfpl, lzero,s, dist, dzbp,time, n,
\$ ndat, cc, xov, ta
close(tmpfil)
return
end
SUBROUTINE AGBZD(XV, DV , MS, MX, ME, MT)
C
EVAL UATE DERIVATIVES FOR BETZ ROLL UP
C
DIMENSION XV (2), DV (2)
COMMON /BETZ/ NGAM, YV (100), GV(100), DGV(100), PGBE, PSBP
DATA TPI/6.2831853/
IF (XV (1).EQ.0.0)
$\$$
$\operatorname{DV}(1)=2.0$ ABS(AGBZT(MT, YV(MS), DGV(MS), YV(MX)))/TPI
$I F(X V(1) . G T, 0.0) \quad D V(1)=A B S(X V(2)) / X V(1) / T F I$
$X 1=Y V(M X)-X V(1)$
D $1=0.0$
TF (Y1.GT,YV(MS)) D $1=A G B Z T(M T, T V(M S), D G V(M S), Y 1)$
$\mathrm{Y} 2=Y V(M X)+X V(1)$
D 2 $=0.0$
IF (Y2.LT,YV(ME)) D $2=A G B Z T(M T, Y V(M S), D G V(M S), Y 2)$
$\operatorname{DV}(2)=-\operatorname{DV}(1)(\mathrm{D} 1+\mathrm{D} 2)$
RETU RN
END
C
SUBROUTINE AGBZG(DIST, DZ)
C ANALYZE INPUT DISTRIBUTION AND INITIALIZE BETZ ROLL UP PROCEDURE

DIMENSION AGV(102), LGV(100)
COMMON/BETZ/ NGAM, YY (100),GV(100), DGV(100), PGBP, PSBP COMMON / MEAN/
LMV EL, LMCRS, NV OR, RLIM, ZO, USK, HTPAD, ZOPAD, UO, XO
COMMON /MEAN/ YBAR (8), ZBAR (8), YBAL (8), ZBAL (8), G2PI (8) COMMON /MEAN/
FACR (8), FACL (8), SRV (8), DSYM (8), DSYP (8), GSAV (8)
COMMON /OUTR/ NOUT, NPL,T, NPRI, NSAV, NVAR
COMMON /TERR/ CTA, STA
COMMON /VORT/ MSV(4), MXV (4), MEV (4), DTV (4), NBTZ
COMMON /VORT/ XOV (2,4), $\operatorname{DOV}(2,4), Y O V(4), Z O V(4)$
DATA TPI/6.2831853/
DATA LB,LM,LX/2H , $2 \mathrm{HMN}, 2 \mathrm{HMX} /$
1000 FORMAT (/29H BETZ ROLL UP INITIALIZATION:/
\$ $4 \mathrm{X}, 1 \mathrm{HN}, 9 \mathrm{X}, 1 \mathrm{HY}, 12 \mathrm{X}, 5 \mathrm{HGAMMA}, 10 \mathrm{X}, 5 \mathrm{HDEHIV})$
1010 FORMAT (I5,3E15.6,3X, A2)
1020 FORMAT (/22H BETZ ROLL UP SUMMARY:/
\$
$4 \mathrm{X}, 6 \mathrm{HV}$ ORTEX, $5 \mathrm{X}, 5 \mathrm{HSTART}, 3 \mathrm{X}, 7 \mathrm{HMAXIMUM}, 7 \mathrm{X}, 3 \mathrm{HEND}, 13 \mathrm{X}, 2 \mathrm{HYB}$,
$\$ 12 \mathrm{X}, 5 \mathrm{HGAMMA}, 15 \mathrm{X}, 3 \mathrm{HDY}-12 \mathrm{X}, 3 \mathrm{HDY}+, 11 \mathrm{X}, 5 \mathrm{HAVEG} \mathrm{G})$
1030 FORMAT (4I10,5X,2E15.6,4X,3E15.6)
1040 FORMAT (5H*** I2, 37 H NONDISCRETE DISTRIBUTION

LOCATION(S))
1050 FORMAT(43H ** BETZ WILL ROLL UP MORE THAN 4 VORTICES
1060 FORMAT(39H BETZ ROLL UP INVOKED, MAXIMUM ENTRIES:, I4)
C COMPUTE SLOPES
NG AMM = NG AM-1
$\operatorname{AgV}(1)=0.0$
$\operatorname{DGV}(1)=(\operatorname{GV}(2)-G V(1)) /(Y V(2)-Y V(1))$
$\operatorname{AGV}(2)=\operatorname{ABS}(\operatorname{DGV}(1))$
$\operatorname{DGV}(\operatorname{NGAM})=(\operatorname{GV}(\operatorname{NGAM})-G V(\operatorname{NGAM-1})) /(Y V(N G A M)-Y V(N G A M-1))$
$A G V(N G A M+1)=A B S(D G V(N G A M))$
$A G V(N G A M+2)=0.0$
DG MM $=0.0$
DO $10 \mathrm{~N}=2$, $\mathrm{NG} A \mathrm{MM}$
DYM $=Y V(N)-Y V(N-1)$
$D Y P=Y V(N+1)=Y V(N)$
$D Y T=D Y M+D Y P$
FYM= $-D Y P / D Y M / D Y T$
FYP $=D Y M / D Y P / D Y T$
$F Y=-F Y M-F Y P$
$\operatorname{DG} V(\mathbb{N})=F Y M G V(N-1)+F Y \mathbb{*} V(N)+F Y P G V(N+1)$
$A G V(N+1)=A B S(D G V(N))$
DGMM=AMAX1(DGMM, AGV(N+1))
10 CONTINUE
DG MM $=0.005^{*} \mathrm{DGMM}$
C DETERMINE LOCATION OF MINIMA/MAXIMA
LERF=0
DO $20 \mathrm{~N}=1$, NGAM
$D G M=A G V(N+1)-A G V(N)$
$D G P=A G V(N+2)-A G V(N+1)$
$\operatorname{LGV}(N)=L B$
IF (DGM.GE. DGMM. AND. DGF.LE. DGMM) LGV(N)=LX
IF (DGM.LT. DGMM. AND. DGP.GT. DGMM) LGV(N) $=L M$
IF (N.EQ.1) GO TO 20
IF (LGV(N), EQ.LX. AND.LGV(N-1).EQ.LM) LERF=LERF+1
IF (LGV(N),EQ.LM,AND.LGV(N-1).EQ.LK) LEAF=LERF+1
20 CONTINUE
WRITE (NOUT, 1060) NGAM
WHITE (NPRT, 1000)
WRITE (NPRT,1010)
($N, Y V(N), G V(N), D G V(N), L G V(N), N=1, N G A M)$
IF (LERF.EQ.0) GO TO 30
WRITE (NOUT, 1040) LERF
STOP
$30 \quad N V O R=1$
$\mathrm{N}=1$
$40 \quad \operatorname{MSV}(N V O R)=N$
$\operatorname{IF}(L G V(N) \cdot E Q \cdot L X) \quad M X V(N V O R)=N$
$\mathrm{N}=\mathrm{N}+1$
$50 \quad \operatorname{IF}(\operatorname{LGV}(N) \cdot E Q \cdot L X) \quad M X V(N V O R)=N$
IF (LGV(N).EQ.LM) GO TO 60
$\mathrm{N}=\mathrm{N}+1$
IF (N.LE.NGAM) GO TO 50
$N=N G A M$

```
60 MEV(NVOR)=N
    IF (N.EQ.NGAM) GO TO TO
    NV OR=NV OR+1
    IF (NV OR.LE.4) GO TO 40
    WRITE (NOUT,1050)
    STOP
C BETZ INTEGRATION INITIALIZATION
70 WRITE (NPRT,1020)
    RL IM=0.0
    DO 80 N=1,NVOR
    XOV ( 1,N ) =0.0
    XOY (2,N)=0.0
    MS=MSV (N)
    MX=MXV (N)
    ME=MEV (N)
    MT= ME-MS+1
    CALL AGBZD(XOV (1,N), DOV (1,N),MS,MX,ME,MT)
    YOV(N)=YV(MX)
    ZOV(N)=0.0
    YBAR(N)=DIST#STA+YV(MX)*CTA
    ZBAR(N)=DIST*CTA-YV(MX)*STA
    YBAL(N)=DIST*STA-YV (MX)*CTA
    ZBAL(N)=DIST*CTA+YV(MX)*STA
    G2PI(N)=0.0
    FACR(N)=1.0
    FACL}(N)=1.
    SRV (N)=0.0
    DSYM(N)=YV(MX)-YV(MS)
    DSYP(N)=YV(ME)=aYV(MX)
GSAV (N)=AGBZQ(MT, YV (MS),GV(MS),YV(MS),YV(ME),O)/(YV(ME)-YV(
MS))**2
    DG=GV(MS)-GV(ME)
    DY=AMAXI(YV (MX)-YV(MS),YV(ME)-YV(MX))
    DTV(N)=0.01*IPI责Y*2/ABS(DG)
    WRITE (NPRT,1030)
N,MS,MX,ME,YV(MX),DG,DSYM(N),DSYP(N),GSAV (N)
80 CONTINUE
    WRITE (NPRT,1030)
    NBTZ = NV OR
    IF (DZ.EQ.0.0) RETURN
    DO 90 N=1,NBTZ
    MX=MXV (N)
    Y=PSBP*YV(MX)
    Z=DIST+DZ
    NN=NBTZ+N
    YBAR(NN)=Z*STA+Y*CTA
    ZBAR(NN)=Z*CTA-Y*STA
    YBAL(NN)=Z*STA-Y*CTA
    ZBAL}(NN)=Z*CTA+Y*STA
    G2 PI (NN) =0.0
    FACR(NN)=1.0
    FACL(NN)=1.0
    SRV (NN) =0.0
```

```
    DSYM(NN)=PSBPMDSYM(N)
    DSYP(NN)=PSBP*DSYP(N)
    GSAV (NN)=PGBP*GSAV (N)
90 CONTINUE
NV OR=2*NBTZ
RETU RN
END
SUBROUTINE AGBZI(TIME,DELT)
C TIME DEPENDENT BETZ ROLL UP STEP INTEGRATION
DIMENSION XNV (2),DNV (2)
COMMON /BETZ/ NGAM,YV(100),GV(100),DGV(100),PGBP,PSBP
COMMON /MEAN/
LMV EL, LMCRS,NV OR, RLIM, ZO, USK, HTPAD, ZOPAD, UO, XO
    COMMON /MEAN/ YBAR(8), ZBAR(8), YBAL(8), ZBAL (8),C2PI (8)
    COMMON /MEAN/
FACR(8),FACL(8),SRV(8),DSYM(8),DSYP(8),GSAV (8)
    COMMON /OUTP/ NOU'R,NPLT,NPRT,NSAV,NVAR
    COMMON /TERR/ CTA,STA
    COMMON /VORT/ MSV(4),MXV (4),MEV (4),DTV (4),NBTZ
    COMMON /VORT/ XOV(2,4), DOV (2,4),YOV(4),ZOV(4)
    DATA TPI/6.2831853/
1000 FORMAT(14H BETZ VORTEX #, I2,15H RULLS UP AJ T:, E12.4,
    $ 14H SEC WITH R:,E12.4,2H M)
C DETERMINE BETZ TIME STEP
    DT=DELT
    K=0
    DO 10 N=1,NBTZ
    IF (GSAV (N).EQ.0.0) GO TO 10
    DT=AMIN1(DT,DTV(N))
    K=K+1
10 CONTINUE
    IF (K.EQ.0) RETURN
    NSTP=IELX(DELT/DT)+1
    DT=DELT/FLOAT(NSTP)
    HDT=0.5 DT
    DO 80 NS=1,NSTP
    T=TIME+DT WFLOAT(NS)
C LOOP ON VORTICES SOLVED
    DO 70 N=1,NBTZ
    IF (GSAV (N).EQ.0.0) GO TO 70
    MS=MSV (N)
    MX=MXV (N)
    ME=MEV (N)
    MT=ME-MS+1
C PREDICTOR
    DO 15 I=1,2
    XNV (I) =XOV (I,N)+DT*DOV (I,N)
15 CONTINUE
C CORAECTOR
    DO 30 K=1,2
    CALL AGBZD(XNV,DNV,MS,MX,ME,MT)
    DO 20 I= 1,2
    XNV(I)=XOV(I,N)+HDT*(DOV (I,N)+DNV(I))
20
    CONTINUE
```

```
30 CONTINUE
        DO 40 I=1,2
        XOV (I,N)=XNV (I.)
        DOV(I,N)=DNV(I)
4 0 ~ C O N T I N U E ~
C CENTROID CALCULATION
    Y1=YV(MX)-XNV(1)
    YS=AMAX1(Y1, XV(MS))
    G1=GV(MS)
    X 1=0.0
    IF (Y1.LT. YV(MS)) GO TO 50
    G1=AGBZT(MT,YV(MS),GV(MS),Y1)
    X1=AGBZQ(MT,YV(MS), DGV(MS), YV (MS), Y1,1)
50 Y 2 = YV (MX) +XNV (1)
    YE=AMIN1(Y2,YV(ME))
    G2=GV(ME)
    X2=0.0
    IF (Y2.GT.YV(ME)) GO TO 60
    G2=AGBZT(MT,YV(MS),GV(MS),Y2)
    X2=AGBZQ(MT, YV (MS ), DGV(MS ), Y2, YV (ME),1)
60 DG=GV(ME)-GV(MS)
TEM=G2*YE**2-G1*YS**2-2.0*AGBZQ(MT,YV(MS),GV(MS),YS,YE,1)
    YNV = SQRT(ABS(TEM/(G1-G2)))
    ZNV=0.0
C UPDATE VORTEX PARAMETERS FOR THIS INCREMENTAL SXEP SIZE
    DY=YNV-YOV(N)
    DZ=ZNV=ZOV(N)
    YBAR(N)=YBAR(N)+DZ*STA+DY*CTA
    ZBAR(N)=ZBAR(N)+DZ*CTA-DY*STA
    YBAL(N)=YBAL(N)+DZ*STA-DY*CTA
    ZBAL(N)=ZBAL(N)+DZ*CTA+DY*STA
    G2PI(N)=(G1-G2)/TPI
    IF (NBTZ.EQ.NVOR) GO TO 65
    NN=NBTZ+N
    DY= PSBP*DY
    DZ=PSBP*DZ
    YBAR(NN)=YBAR(NN)+DZ*STA+DY*CTA
    ZBAR(NN)=ZBAR(NN)+DZ*CTAmDY*STA
    YBAL(NN) = YBAL (NN)+DZ*STA-DY*CTA
    ZBAL(NN)=ZBAL(NN)+DZ*CTA+DY*STA
    G2PI(NN)=PGBP*G2PI(N)
65 YOV (N)=YNV
    ZOV(N)=ZNV
    IF (Y1.GT.YV(MS)) GO TO 70
    IF (Y2,L,T,YV(ME)) GO TO T0
    DSYM(N)=0.0
    DSYP(N)=0.0
    GSAV (N)=0.0
    SRV(N)=AMAX1(YV (ME)-YV(MX),YV(MX)-YV(MS))
    WRITE (NPRT,1000) N,T,SRV(N)
    IF (NBTZ.EQ.NVOR) GO TO 70
    NN=NB TZ +N
    DS YM(NN)=0.0
```

```
        DSYP(NN)=0.0
        GSAV (NN) =0.0
        SRV (NN)=PSBPSRV(N)
70 CONTINUE
80 CONTINUE
C UPDATE VORTEX PARAMETERS FOR THIS COMPLETE STEP
    DO 90 N=1,NBTZ
    IF (GSAV(N).EQ.0.0) GO TO 90
    SRV (N)=XOV (1,N)
    MS = MSV (N)
    MX=MXV(N)
    ME=MEV (N)
    MT=ME - MS + 1
    DSYM(N)=AMAX1(0.0,YV (MX) - YV (MS) = SRV (N))
    DSYP(N)=AMAXI(0.0,YV (ME) =YV (MX) = SRV (N))
    IF (NBIZ,EQ.NVOR) GO TO 90
    NN=NBTZ+N
    SRV (NN)=PSBP贾RV(N)
    DSYM(NN)=PSBPEDSYM(N)
    DSYP(NN)=PSBP要DSYP(N)
90 CONTINUE
    RETURN
    END
    FUNC'ION AGBZQ(N,YV,ZV,YS,YE,M)
C GAUSS-LEGENDRE QUADRATURE INTEGRATION FOR BETZ ROLL UP
    DIMENSION ZT(8),WT(8),YV(2),ZV(2)
    DATA ZT/O.0
,0.201194094,0.394151347,0.570972173,
    $
0.724417731,0.848206583,0.937273392,0.987992518/
    DATA
WT/0.202578242,0.198431485,0.186161000,0.166269206,
    $
0.139570678,0.107159221,0.070366047,0.030753242/
    XS=(YE-YS )/2.0
    XA=(YE+YS)/2.0
    IF (M,EQ,0) X=WT(1)*AGBZT(N,YV,ZV,XA)
    IF (M.EQ.1) X=WT(1)*XA*AGBZT(N,YV,ZV,XA)
    DO 10 J=2,8
    XP=XA+XS*ZT(J)
    XM=XA-XSWZT(J)
    IF (M,EQ.O)
X=X+WT(J)*(AGBZT(N,YV,ZV,XM)+AGBZT(N,YV,ZV,XP))
    IF (M.EQ.1)
```



```
10 CONTINUE
    AGBZQ=X%XS
    RETURN
    END
    FUNCTION AGBZT(N,YV,ZV,Y)
C TABLE INTERPOLATION FOR BETZ ROLL UP
    DIMENSION YV (2), ZV(2)
    IF (Y.GT.YV(1)) GO TO 10
    AGBZT=ZV(1)
```

RETURN
10 DO 20 I=2,N
IF (Y.LE.YV(I)) GO TO 30
20 CONTINUE
AGBZT=ZV(N)
RETURN
30
$\operatorname{AGBZT}=(Z V(I-1) *(Y V(I)-Y)+Z V(I) *(Y-Y V(I-1))) /(Y V(I)-Y V(I-1))$
RETU RN
END
SUBROUTINE AGCOR(T, DTAU, WTAU, UX, UV)
C ANALYTIC TURBULENT CORRELATIONS
$\mathrm{C}=\mathrm{T} / \mathrm{WTAU}$
$\operatorname{EXPC}=\operatorname{EXP}(-\mathrm{C})$
$\operatorname{EXPT}=\operatorname{EXP}(-T / D T A U)$
$B=(D T A U / W T A U) * 2$
IF (ABS (B-1.0).LE.0.01) GO TU 10
SUM1 $=0.5 *(3.0-B) /(B-1.0) * 2$
SUM2 $=0.5 /(B-1.0)$
XK1=-SUM1*DTAU/WTAU + SUM1+SUM2
सK2 $2-$ SUM1*EXPT*DTAU/WTAU + SUM1*EXPC+SUM2*EXPC* ($1.0+\mathrm{C})$
XK3 $=-$ SUMT*EXPT+SUM1:EXPC+SUM2*C \#EXPC
GO TO 20
$10 \quad \mathrm{XKI}=0.375$
$\mathrm{XK} 2=\left(3.0+3.0^{*} \mathrm{C}-\mathrm{C} * \mathrm{C}\right) * \mathrm{EXPC} / 8.0$
XK $3=(5.0-\mathrm{C}) * \mathrm{C} * \mathrm{EXPC} / 8.0$
$20 \times K 4=0.5+\operatorname{EXPC}$

RETURN
END
SUBROUTINE AGDEC(T, DU, EPS, I)
C ZIME DECAY EVALUATION
COMMON /EVAP/
LEVAP, DTEMP, DIAM, DCUT, DENF, DMCV (60), TMCV (60)
COMMON /NORM/ DYAU, TMAX, DT, EDOV (60), EDNV (60)
$\mathrm{D}=\operatorname{EDOV}(\mathrm{I})$
$D T A U=3.12 E-06 * D$ D ${ }^{2}$ DENF
IF (DU.EQ.0.0) GO TO 10
REYN $0=0.0688^{*} \mathrm{D}^{* D J}$
DTAU $=$ DT AU $/(1.0+0.197 *$ REYN O* $0.63+0.00026 * R E Y N O * 1.38)$
10 EPS=1.0/DTAU
IF (LEVAP.EQ.O) RETURN
IF (D.LE.DCUT) REIURN
ETAU = D WD/DTEMP/84.76
IF (DU.EQ.0.0) GO TO 20
ETAU $=$ ETAU $/(1.0+0.27 * S Q R T(R E Y N O))$
$20 \operatorname{EDNV}(I)=\mathrm{D} * \operatorname{SQRT}(1.0-D T / E T A U)$
$E P S=E P S-1.5 /(E T A U-T)$
RETURN
END
SUBROUTINE AGDTF(XV,DV,T, DTMN)
C DIFFERENTIAL EVALUATION

```
    DIMENSION XV (10,2),DV(10,2)
    COMMON /NORM/ DTAU,TMAX,DT,EDOV(60),EDNV(60)
    COMMON /OUTP/ NOUT,NPLT,NPRT,NSAV,NVAR
    COMMON /TERR/ CTA,STA
    DATA UX,UV/2*0.0/
C LOOP FOR ALL PARTICLES
    DTMN = TMAX
    DO 20 N=1,NVAR
C DETERMINE MEAN vELOCITy AT THE PARTJCLE POSITION
    CALL AGVEL(XV(1,N),XV(6,N),V,W)
C DETERMINE DECAY CONSTANT
    CALL
AGDEC(T, SQRT((XV (2,N)-V)**2+(XV(7,N)-W)**2),DECAX,N)
    DTMN = AMIN1(DTMN, DTAU)
C DETERMINE TURBULENCE AND SCALE AT THE PARTICLE POSITION
    CALL AGTUR(XV ( 1,N),XV(6,N),QQ,SL,VV,WW)
    IF (QQ.EQ.0.0) GO TO 10
C DETERMINE ANALYTIC TURBULENT CORRELATTONS WITH THE
PARTICLE
WTAU=SL/(SQRT((XV (2,N)-V)**2+(XV (7,N)-W)**2)+0.375*SQRT(QQ)
)
CALL AGCOR(T, DTAU, WTAU, UX, UV)
\(Q Q=Q Q / 3.0\)
C EVALUATE DERIVATIVES
C 1:Y 2:V 3:YY 4:YV 5:VV 6:Z 7:V 8:ZZ 9:ZW 10:WW
\(10 \quad \operatorname{DV}(1, N)=X V(2, N)\)
\(\operatorname{DV}(2, \mathrm{~N})=(\mathrm{V}-\mathrm{XV}(2, \mathrm{~N}))^{*} \mathrm{DECAY}-9.8^{4} \mathrm{STA}\)
\(\operatorname{DV}(3, N)=2.0^{*} \mathrm{XV}(4, N)\)
\(\operatorname{DV}(4, N)=\operatorname{XV}(5, N)+(U X Q Q-X V(4, N)) \operatorname{ADECAY}\)
\(\operatorname{DV}(5, N)=2.0^{*}(U V Q Q-X V(5, N)) * D E C A Y\)
\(\operatorname{DV}(6, N)=X V(7, N)\)
\(\operatorname{DV}(7, N)=(W-X V(7, N)) * D E C A Y-9.8^{* C T A}\)
\(\operatorname{DV}(8, N)=2.0 * X V(9, N)\)
\(\operatorname{DV}(9, N)=\operatorname{XV}(10, N)+\left(U X Q^{*} Q-X V(9, N)\right) * D E C A Y\)
\(\operatorname{DV}(10, N)=2.0^{*}\left(U V{ }^{*} Q Q-X V(10, N)\right)^{* D E C A Y}\)
20 CONTINUE
RETURN
END
SUBROUTINE AGINT(XOV)
C INTEGRATE THE EQUATIONS
DIMENSION
\(\operatorname{XOV}(10,60), \operatorname{XNV}(10,60), \operatorname{DOV}(10,60), \operatorname{DNV}(10,60), \operatorname{LV}(4)\)
COMMON /EVAP/
LEVAP, DTEMP, DIAM, DCUT, DENF, DMCV (60), TMCV (60)
COMMON /HELI/ WHEL, HHEL, RHEL, YHEL, ZHEL
COMMON /MEAN/
LMV EL, LMCRS, NV OR, RLIM, ZO, USK, HTPAD, ZOPAD, UO, XO
COMMON /MEAN/ YBAR(8), ZBAR (8), YBAL (8), ZBAL (8), G2PI (8)
COMMON /MEAN/
FACR (8), \(\operatorname{FACL}(8), \operatorname{SRV}(8), \operatorname{DSYM}(8), \operatorname{DSYP}(8), \operatorname{GSAV}(8)\)
COMMON /NORM/ DTAU, TMAX, DT, EDOV (60), EDNV (60)
COMMON /OUTP/ NOUT', NPLT, NPRT, NSAV, NVAR
COMMON /PROP/
```

```
\(\angle P R P, Y P R P, Z P R P, R P R P, V P R P, Q Q P R P, C P Q, C P R, X P R\)
        COMMON /SAVE/ ISWC, ISW(60), IOUT
        COMMON /TERR/ CTA, STA
        DATA LV/3,5,8,10/
C SAVE INITIAL POSITIONS
        ISWC \(=\) NVAR
        DO \(10 I=1\), NV AR
        \(\operatorname{ISW}(I)=1\)
10 CONTINUE
        IOUT=0
        CALL AGSAV (XOV,0.0)
C INITIALIZE INTEGRATION
        \(X 0=0.0\)
        CALL AGDIF (XOV,DOV, O.0,DTMN)
        \(T=0.0\)
C INTEGRATE TO TMAX
        \(\mathrm{N}=0\)
\(20 \quad \mathrm{~N}=\mathrm{N}+1\)
        DT \(=0.5\) *AMIN 1 (DTMN, 0.2)
        HDT \(=0.5^{*} D T\)
        \(T=T+D T\)
        \(\mathrm{XO}=\mathrm{UO} * \mathrm{~T}\)
        IF (LMVEL. EQ. ( -1 ) ) CALL AGWKR(T)
        IF (LMVEL.EQ.0) CALL AGBZI(T-DT, DT)
        IF (HTPAD.GT.0.0) CALL AGPAC(DT)
        IF (LPRP.NE.O) CALL AGPRP(XO)
        IF (LMVEL.NE.3) GO TO 25
        2N=HHEL *CTA*E XP ( - WHEL *T / HHEL)
        \(\mathrm{YHEL}=\mathrm{YH} E L+(Z N-Z H E L) S T A / C T A\)
        \(Z \mathrm{HEL}=\mathrm{ZN}\)
C PREDICTOR
25 DO \(40 \mathrm{I}=1, \mathrm{NVAR}\)
        IF (ISW (I), EQ.O) GO TO 40
        DO \(30 \mathrm{~J}=1,10\)
        \(\operatorname{XNV}(J, I)=X O V(J, I)+D T * D O V(J, I)\)
        CONTINUE
        DO \(35 \mathrm{~L}=1,4\)
        \(\mathrm{J}=\mathrm{LV}\) (L)
        \(\mathrm{XNV}(J, I)=\operatorname{AMAX1}(0.0, X N V(J, I))\)
35 CONTINUE
40 CONTINUE
C CORRECTOR
        DO \(70 \mathrm{~K}=1,2\)
        CALL AGDIF(XNV, DNV, T, DTMN)
        DO \(65 \mathrm{I}=1\), NVAR
        IF (ISW(I)。EQ.0) GO TO 65
        DO \(50 \mathrm{~J}=1,10\)
        \(\operatorname{XNV}(J, I)=\operatorname{XOV}(J, X)+\operatorname{HDT}(D O V(J, I)+\operatorname{DNV}(J, I))\)
50 CONTINUE
        DO \(55 \mathrm{~L}=1,4\)
        \(J=L V(L)\)
        \(\operatorname{XNV}(J, I)=\operatorname{AMAXI}(0.0, X N V(J, I))\)
55 CONTINUE
        IF (XNV \((6, I) . G E .0 .0)\) GO TO 65
```

```
    RATE=XOV (6,I)/(XOV (6,I)-XNV (6,I))
    DO 60 J=1,10
    XNV (J,I) =XOV (J,I) +RATE#(XNV (J,I)=XOV (J,I))
60 CONTINUE
    XNV (6,I)=0.0
65 CONTINUE
70 CONTINUE
C DETERMINE NEW POSITIONS OF ROLLED UP VORTICES
    IF (LMV EL.GE.O) CALL AGVCH(DT)
C CHECK SOLUTION AND CONTINUE
    ISHC=0
    DO 90 I=1,NYAR
    IF (XNV (6,I).EQ.0.0) ISV(I)=0
    ISW C= ISWC+ISW (I)
    DO 80 J=1,10
    XOV (J,I)=XNV (J,I)
    DOV (J,I)=DNV(J,I)
80 CONTINUE
    IF (LEVAP.EQ.1) EDOV(I)=AMAX1(EDNV(I)&DCUT)
    IF (ISW(I).NE,O) GO TO 90
    IF (DMCV(I).NE.O.O) GO TO 90
    DMCV (I) =(EDOV (I)/DIAM)***3
    TMCV(I)=T
90 CONTINUE
    I=0
    IF (MOD(N,NSAV).EQ.0) I=1
    IOUT=0
    IF (MOD(N,1ONNSAV).EQ.O) IOUT=1
    IF (T.GE.TMAX) ISWC=0
    IF (ISWC.EQ.O) I=1
    IF (I.EQ.1) CALL AGSAV (XNV,T)
    IF (ISWC.NE,O) GO TO 20
    RETURN
    END
    SUBAOUTINE AGLQD(A,XLU,IPVT,EQUIL,IER)
C LINEAR DECOMPOSITION FOR SUPEREQUILIBRIUM
    DIMENSION A(6,2),XLU(6,2),IPVT(2),EQUIL_(2)
    DAIA
ZERO, ONE,FOUR,SIXTN,SIXTH/0.0,1.0,4.0,16.0.0.0625/
    IER=0
    WREL=ZERO
    D I=ONE
    D2= ZERO
    BIGA=ZERO
    DO 20 I= 1,6
    BIG=ZERO
    DO 10 J=1,6
    P=A(I,J)
    XLU(I,J)=P
    P=ABS(P)
    IF (P.GT.BIG) BIG=P
10 CONTINUE
    IF (BIG.GT.BIGA) BIGA=BIG
    IF (BIG.EQ.ZERO) GO TO 110
```

```
    EQUIL(I)=ONE/BIG
    = ZERO
    DO 70 I= J,6
    SUM= XL U(I, J)
    IF (JM1.LT.1) GO TO 65
    DO 60 K=1,JM1
    SUM= SUMmXLU(I,K)* XLU(K,J)
    CONTINUE
    XLU(I,J)=SUM
65 Q=EQUIL(I)*ABS(SUM)
    IF (P.GE.Q) GO TO 70
    P=Q
    IMAX=I
    CONTINUE
    IF (P,EQ.ZERO) GO TO 110
    IF (J.EQ.IMAX) GO TO 80
    D 1=-D 1
    DO 75 K=1,6
    P=XLU(IMAX,K)
    XLU(IMAX,K) =XLU(J,K)
    XLU(J,K)=P
    CONTINUE
    EQ UIL (IMAX)= EQUIL (J)
    IPVT(J)=IMAX
    D1=D1*XLU(J,J)
    IF (ABS(D1).LE.ONE) GO TO 90
    D1=D1*SIXTH
    D2=D 2+FOUR
    GO TO 85
    IF (ABS(D1).GE.SIXTH) GO TO 95
    D1=D1*STXTN
    D2=D2-FOUR
    GO TO 90
    JP!=J+1
    IF (JP1.GT.6) GO TO 105
    P=XLU(J,J)
    DO 100 I=JP1,6
    XLU(I,J) =XLU(I,J)/P
    100
    105 CONTINUE
    RETU RN
```

```
110 IER=1
            RETURN
            END
                            SUBROUTINE AGLQS(A,B,IPVT,X)
C LIMEAR SUBSTITUTION FOR SUPEREQUILIBRIUM
    DIMENSION A(6,2),B(2),IPVT(2),X(2)
    DO 10 I= 1,6
    X(I)=B(I)
10 CONTINUE
    TW=0
    DO 22 I=1,6
    IP=IPVT(I)
    SUM=X(IP)
    X(IP)=X(I)
    IF (IW.EQ.0) GO TO 15
    IM1=I-1
    D0 12 J=IW,IM1
    SUM=SUM-A(I,J) X(J)
12 CONTINUE
    GO TO 20
15 IF (SUM.NE.0.0) IW=I
20 X (I) =SUM
22 CONTINUE
    DO 32 IB=1,6
    I=7-IB
    IP1=I+1
    SUM=X(I)
    IF (IP1.GT.6) GO TO 30
    D0 25 J=IP1,6
    SUM= SUMmA(I,J)#X(J)
25 CONTINUE
30 X (I) =SUM/A(I,I)
32 CONTINUE
    RETU RN
    END
    FUNCTION AGMAT(Q)
C SUPEREQUILIBRIUM MATRIX FOR UIUS
    DIMENSION AV (6,6),WK(6)
    COMMON /OUTP/ NOUT,NPLT,NPRT,NSAV,NVAR
    COMMON / SUPR/ UY,UZ,VY,VZ,WY,WZ,DV(6)
    DATA B/0.125/
1000 FORMAT(44H LNEAR SOLVER ERROR IN
SUPEREQUIL, IBRIUM)
    DO 20 J=1,6
    DO 10 I= 1,6
    AV (I,J) =0.0
10 CONTINUE
    DV (J)=0.0
20 CONTINUE
    QL1=Q
    QL2=(1.0-2.0*B)*Q**3/3.0
    AV (1,1)=QL1
    AV (1,4)=2.0%UY
    AV (1,5)=2.0*UZ
```

```
    DV(1)=QL2
    AV (2,2)=QL1+2.0*V Y
    AV (2,6)=2.0 %V Z.
    DV (2)=QL2
    AV (3,3)=QL1+2.0#WZ
    AV}(3,6)=2.0*W
    DV (3)=QL2
    AV (4,2)=UY
    AV (4,4)=QL1+VY
    AV (4,5)=V Z
    AV (4,6)=UZ
    AV (5,3)=UZ
    AV (5,4)=WY
    AV (5,5)=QL1+WZ
    AV (5,6)=UY
    AV (6,2)=WY
    AV (6,3)=VZ
    AV (6,6)=QL1
    CALL AGLQD(AV,AV,WK,WK,IER)
    IF (IER.EQ.O) CALL AGLQS(AV,DV,WK,DV)
    IF (IER.NE.0) WRITE (NOUT,1000)
    AGMAT=Q*Q - DV (1) - DV (2) - DV (3)
    RETURN
    END
    SUB ROUTINE AGPAC(DELT)
C COMPUTE PLANT AREA DENSITY CIRCULATION CORRECTION
    DIMENSION ASV(100)
    COMMON /AREA/ NPAD,ZV(100),AV(100)
    COMMON /INTG/ FPR(8),FL(8),TFR(8),IFL(8)
    COMMON /MEAN/
LMV EL, LMCRS,NV OR, RLIM, ZO, USK, HTPAD, ZOPAD, UO, XO
    COMMON /MEAN/ YBAR(8),ZBAR(8),YBAL(8), ZBAL (8),G2PI(8)
    COMMON /MEAN/
FACR (8),FACL ( 8),SRV (8),DSYM(8),DSYP(8),GSAV (8)
    COMMON /OUTP/ NOUT, NPL,T, NPRT,NSAV,NYAR
    DATA CD/0.16/,TPI/6.2831853/
1000 FORMAT(15H RIGHT VORTEX #,I2,14H LEAVES CANOPY)
1010 FORMAT(15H RIGHT VORTEX #, I2,14H ENTERS CANOPY)
1020 FORMAT(15H LEFT VORTEX #, T2,14H LEAYES CANOPY)
1030 FORMAT(15H LEFT VORTEX 非,T2,14H ENTERS CANOPY)
    IF (NVOR.EQ.0) RETURN
    DO 60 N=1,NVOR
C RIGHT VORTEX
    IF (ZBAR(N) -SRV(N).LT.HTPAD) GO TO 10
    IF (IFR(N),EQ.1) WRITE (NPRT,1000) N
    IFR(N)=0
    GO TO 30
10 IF (IFR(N).EQ.0)WRITE(NPRT,1010)N
    IFR(N)=1
    DO 20 J=1,NPAD
    SQ=SRV(N)娄2-(ZV(J)-ZBAP(N))**2
    IF (SQ.LE.0.0) ASV (J) =0.0
    IF (SQ.GT.0.0) ASV(J)=AV(J)*SQRT(SQ)
20 CONTINUE
```

```
CDA=4.0*CD*AGBZQ(NPAD,ZV,ASV,ZV(1),ZV(NPAD),0)/TPI/SRV(N)**
2
    FR(N)=FR(N)+DELT*CDA
    FACR(N)=1.0/(1.0+FR(N)*ABS(G2PI(N))/SRV(N))
C LEFT VORTEX
30 IF (ZBAL(N)-SRV(N).LT.HTPAD) GO T0 40
    IF (IFL(N).EQ.1) WRITE (NPRT,1020) N
    IFL (N)=0
    GO TO 60
40 IF (IFL(N).EQ.0) WRITE (NPRT,1030) N
    IFL(N)=1
    DO 50 J=1,NPAD
    SQ=SRV(N)**2-(ZV(J)-. ZBAL(N))**
    IF (SQ.LE.O.0) ASV (J) =0.0
    IF (SQ.GT.0.0) ASV(J)=AV(J)#SQHT(SQ)
50 CONTINUE
CDA=4.0*CD*AGBZQ(NPAD,ZV,ASV,ZV(1),ZV(NPAD),0)/TPI/SRV(N)*
2
    FL(N)=FL(N)+DELTFCDA
    FACL (N)=1.0/(1.0*FL(N)*ABS(G2PI(N))/SRV(N))
60 CONTINUE
    RETURN
    END
    SUBROUTINE AGPAD(HT,ZO)
C COMPUTE PLANT AREA DENSITY DISPLACEMENT THICKNESS
    COMMON /AREA/ NPAD, ZV(100), AV (100)
    COMMON /INTG/ FR(8),FL(8),IFR(8),IFL(8)
    COMMON /OUTP/ NOUT,NPLT, NPRT,NSAV,NVAR
1000 FORMAT(33H CANOPY INVOKED, MAXIMUM ENTRIES:, I4)
1010 FORMAT( 27H PLANT AREA DENSITY HEIGHT:, E13.5,2H M/
        $ 3X,24H DISPLACEMENT THICKNESS:,E13.5,2H M)
        HT=ZV(NPAD)
        ZO=AGBZQ(NPAD,ZV,AV,ZV(1),ZV(NPAD),1)/
        $ AGBZQ(NPAD,ZV,AV,ZV(1),ZV(NPAD),0)
            DO 10 I=1,8
            FR(I)=0.0
            FL(I) =0.0
            IFR(I)=0
            IFL(I)=0
10 CONTINUE
    WRITE (NOUT,1000) NPAD
    WRITE (NOUT,1010) HT, ZO
    RETURN
    END
    SUBROUTINE AGPRP(X)
C UPDATE PROPELLER VARIABLES
    COMMON /PROP/
LPRP, YPRP,ZPRP,RPRP,VPRP,QQPRP,CPQ,CPR,XPR
    QQPRP=CPQ/(X+XPR)**1.18
    RN=CPR*SQRT(QQPRP)*(X+XPR)
    VPRP=VPRP*(RPRP/RN)**2
    RPRP=RN
```

```
        RETURN
        END
        SUBROUTINE AGRTF(F,EPS,NSIG,X,ITMAX,IER)
    C ROOT FINDER FOR SUPEREQUILIBRIUM
        DATA TEN,ONE, ZERO, P9,P11,HALE,PP1,F4
    $ /10.0,1.0,0.0,0.9,1.1,0.5,0.1,4.0/
        IER=0
    DIGT=TEN**(~NSIG)
    P=-ONE
    F1=ONE
    P2= ZERO
    H=ZERO
    JK=0
    IF (X.EQ.ZERO) GO TO 10
    P= Pg*X
    P1=P11*X
    P2=X
    RT=P
    GO TO 65
12 IF (JK.NE.1) GO TO 15
    RT=P1
    X0=FPRT
    QO TO 65
15 IF (JK,NE,2) GO TO 20
    RT=P2
    X = = F'PRT
    GO TO 65
20 IF (JK.NE.3) GO TO 55
    X2=FPRT
    D= = HALF
    IF (X.EQ.ZERO) GO TO 25
    H=-PPT*X
    GO TO 30
25
    BI=X0*D*2-X1*DD** 2+X2*(DD+D)
    DEN=BI**2-F4*X2*D*DD*(XO*D-X1*DD+X2)
    IF (DEN.LE.ZERO) GO TO 35
    DEN=SQRT(DEN)
    GO TO 40
    DEN=ZERO
40 DN=BI+DEN
    DM=BI-DEN
    IF (ABS(DN).LE.ABS(DM)) GO TO 45
    DEN=DN
    GO TO 50
4 5 ~ D E N = D M
50 IF (DEN,EQ.ZERO) DEN=ONE
    DI=mDD*(Y2+K2)/DEN
    H=DI*H
    RT=RT+H
    IF (ABS(H).LT.ABS(RT)*DIGT) GO TO 90
    G0 T0 65
55 IF (ABS(FPRT).GE.ABS(X2*10.0)) GO TO 60
```

```
    X0=X1
    X1=X2
    X2=FPRT
    D=DI
    GO TO 30
60 DI=DI*HALF
    H=H*HALF
    RT=RTmH
65 JK=JK+1
    IF (JK.LT.ITMAX) GO TO 75
    IER=1
    X=-1.0
    GO TO 95
75 FPRT=F(RT)
    IF (ABS(FPRT).GR.EPS) GO TO 12
90 X = RT
95 ITMAX=JK
    RETURN
    END
    SUBROUTTNE AGSAV(XV,T)
C SAVE THE CURRENT RESULTS FOR PLOTTING
    DIMENSION XV (10,60)
    COMMON /EVAP/
LEVAP, DTEMP,DIAM,DCUT,DENF,DMCV (60),TMCV (60)
    COMMON /MEAN/
LMV EL, LMCRS, NY OR, RLIM, ZO,USK,HTPAD, ZOPAD, UO, XO
    COMMON /MEAN/ YBAR(8),ZBAR(8), YBAL(8),ZBAL(8),G2PI(8)
    COMMON /MEAN/
FACR(8),FACL( 8), SRV ( 8), DS YM (8), DSYP(8),GSAV (8)
    COMMON /NORM/ DTAU,TMAX,DT, EDOV (60), EDNV (60)
    COMMON /OUTP/ NOUT,NPLT,NPRT,NSAV,NVAR
    COMMON /PROP/
LPRP,YPRP,ZPRP,RPRP,VPRP,QQPRP,CPQ,CPR, XPR
    COMMON /SAVE/ ISWC,ISW(60),IOUT
    DATA JVOR/O/
1000 FORMAT(6H TIME;,E12.4,4H SEC)
2000 FORMAT(/6H TIME:, E12.4,4H
SEC/5X,1H#,6X,1HY, 11X,1HV,11X,2HYY,10X,
    $
2HYV,10X,2HVV,10X,1HZ,11X,1HW,11%,2HZZ,10X,2HZW,10X,2HWW)
2010 FORMAT(I6,10E12.4)
2020 FORMAT(14H VORTEX (Y,Z):,8E14.5)
2030 FORMAT(19H PROP (Y,Z,R,V,QQ):,5E14.5)
    IF (ISWC.EQ.O) RETURN
    WRITE (NPRT,2000) T
    IF (IOUT.EQ.1) WRITE (NOUT,1000) T
    DO 40 N=1,NVAR
    IF (ISW(N).NE.0) WBITE (NPRT,2010) N, (XV (I,N),I=1,10)
40 CONTTNUE
    IF (JVOR.EQ.0) RETURN
    WRITE (NPRT,2020) (YBAR(N), ZBAR(N),N=1,NVOR)
    WRITE (NPRT, 2020) (YBAL(N),ZBAL(N),N=1,NVOK)
    IF (LPRP.NE.0) WRITE (NPRT,2030)
```

YPRP, ZPRE, RPRP, VPRP, QQPRP

```
        RETU RN
        END
        SUBROUTINE AGSUP(XL,DVDY,DWDZ,DWDY,DWDZ,UU,VV,WW)
C DETERMINE QQ BY SUPEREQUILIBRIUM ITERATION
    COMMON /OUTP/ NOUT,NPLT,NPRT,NSAV,NVAR
    COMMON /SUPR/ UY,UZ,VY,VZ,WY,WZ,DV(6)
    EXTERNAL AGMAT
    DATA EPS/0.1/
1000 FORMAT(42H ** ROOT FINDER ERROR IN SUPEREQUILIBRIUM)
    UY=0.0
    UZ=0.0
    VY=DVDY
    VZ=DVDZ
    WY=DWDY
    WZ=DWDZ
DMAX=AMAX1(ABS(UY),ABS(UZ),ABS(VY),ABS(VZ),ABS(WY),ABS(WZ))
    IF (DMAX.LE.O.O001) GO TO 30
    UY=UY/DMAX
    UZ=UZ/DMAX
    VY=VY/DMAX
    VZ=VZ/DMAX
    WY=WY/DMAX
    WZ=WZ/DMAX
    XM=AMAX1(EPS,2.0*ABS(WZ))
    SM=AGMAT (XM)
    IMAX=0
    IMAX=IMAX+1
    XP=MM+EPS
    SP=AGMAT(XP)
    IF (SM.LE.O.O.AND.SP.GE.O.O) GO TO 20
    KM=XP
    SM=SP
    IF (IMAX.LT.20) G0 TO 10
    GO TO 30
20 IMAX=20
    CALL AGRTF(AGMAT,0.001,4,XM,IMAK,TER)
    IF (IER.NE.O) GO TO 25
    XL D=(XL *DMAX)* *
    UU=DV(1)*XL,D
    VV=DV(2)*XL,D
    WW=DV(3)*XLD
    RETURN
25 WRITE (NOUT,1000)
30 UU=0.0
    VV=0.0
    WW=0.0
    RETURN
    END
    SUBROUTINE AGSVE(XN, YN,ZN,S,G,V,W)
C COMPUTE UNROLLED UP SHEET VELOCITY EFFECT
    DATA TPI/6.2831853/
    TEMC=0.01#S
    TEMS=0.1%S
```

```
    X=AMAX {(XN,TEMC)
    IF (ABS(ZN).LE,TEMC) GO TO 10
    Z=ZN
    IF (Z.LT.0.0.AND.Z+TEMS.GT.0.0) Z=-TEMS
    IF (Z.GT.0.0.AND.Z.WEMS.LT.0.0) Z=TEMS
    TEMV =ATAN2(S=YN,Z)+ATAN2(YN,Z)
```



```
    V=V-TEMV *G ZN/Z/TPI/2.0
    IF (YN+TEMC.GE.O.O.AND.YN-S-TEMC.LE.O.O) RETURN
    Y=YN
    IF (Y.LT.0.0.AND.Y+TEMS.GT.0.0) I=-TEMS
    IF (Y-S.GT.0.O.AND.Y-S-TEMS,LT.0.0) Y=S+TEMS
    RP2=Y㸓+ZN*ZN
```



```
    XF=SQRT((Y-0.5*S)##2+ZN*ZN)
    IF (K.GT.10.0%XF) GO TO 20
    TEMW=ALOG(RP2*(SQRT(RP2+X*X)-X)*(SQHT(RM2+X*X)+X)/
    $ RM2/(SQRT(RP2+X*X)+X)/(SQRT(RM2+X*X)mH))
    GO TO 30
    TEMW=2.0*ALOG(RP2/RM2)
    TEMC=YN/Y
    IF (Y.GT.0.O) TEMC=(YN-S)/(Y-S)
    W=W+TEMW*G#TEMC/TPI/4.0
    RETURN
    END
    SUBROUTINE AGTUR(X,Z,QQ,SL,VV,WW)
C TURBULENCE AND SCALE EVALUATION
    COMMON /MEAN/
LMV EL, LMCRS, NV OR, RLIM, ZO, USK,HTPAD, ZOPAD, UO, XO
    COMMON/MEAN/ YBAR(8),ZBAR(8),YBAL(8),ZBAL(8),G2PI(8)
    COMMON /MEAN/
FACR(8),FACL (8),SRV (8),DSYM(8),DSYP(8),GSAV (8)
    COMMON /PROP/
LPRP, %PRP,ZPRP,RPRP,VPRP,QQPRP,CPQ,CPR, KPR
    COMMON /TURB/ L,QQSE,QQMX,SLMX
    DATA DELTA/0.05/
C SCALE LENGTH
    IF (LQQSE.EQ.2.OR.LQQSE.EQ.3) GO TU 20
    SL= AMIN1(0.65*Z,SLMX)
    IF (NYOR.EQ.O) GO TO 30
    DO 10 N=1,NVOR
    R=SQRT((Y-YBAR(N))#2+(Z-ZBAR(N))
    SL=AMIN1(SL,0.6*R)
    R=SQRT((Y YBAL, (N))**2+(Z-ZBAL (N))**2)
    SL=AMIN1(SL,0.6*R)
    CONTINUE
    GO TO 30
    CALL AGWKI(Y,Z,4,SL)
    IF (SL.GT.0.0) GO TO 40
    QQ:0.0
    VV=0.0
    WW=0.0
    RETU RN
```

C TURBULENCE
40 IF (LQQSE.EQ.(-1)) GO TO 60
IF (LQQSE.EQ.0) $Q Q=Q Q M X$
IF (LQQSE. GE. 1) CALL AGWKI (Y, Z, 3, QQ)
IF (LQQSE. EQ.3) GO TO 50
IF (LPRP.EQ.O) GO TO 45
$R=S Q R T((Y-Y P R P) * * 2+(Z-Z P R P) * * 2)$
$I F$ (R.LE. RPRP) $Q Q=Q Q+Q Q P R P$
$45 \quad V V=Q Q / 3.0$
$W W=Q Q / 3.0$
IF (HTPAD.EQ.0.0) RETURN
GO TO 70
50 CALL AGGKI (Y, Z,5,VV)
CALL AGWKI (Y, Z,6,WW)
RETURN
C SUPEREQOILIBRIUM
60 CALL AGVEL (Y+DELTA, Z, VPY,WPY)
CALL AGVEL (Y -DELTA, Z,VMX, WMY)
CALL AGYEL (Y, Z+DELTA, VPZ,WPZ)
CALL AGVEL(Y, Z=DEL.TA, VMZ,WMZ)
DVDY=(VPY-VMY)/DELTA/2.0
$D V D Z=(V P Z-V M Z) / D E L T A / 2.0$
DW DY = (WPY-WMY)/DELTA/2.0
$D W D Z=(W P Z-W M Z) / D E L T A / 2.0$
$E P S=0.5^{\circ}(D V D Y+D W D Z)$
DVDY=DVDY-EPS
$D W D Z=D W D Z-E P S$
CALL AGSUP(SL, DVDY, DVDZ, DWDY, DWDZ, UU,VV, WW)
$Q Q=U U+V V+W W$
IF (HTPAD.EQ.0.0) RETURN
C CORRECTION FOR CANOPY
70 IF (Z.GE.HTPAD) RETURN
$Q Q=Q Q * / H T P A D$
$V \nabla=V V$ \%/ATPAD
WW= WWHZ/HTPAD
RETURN
END
SUBROUTINE AGVCH(DELT)
C CORRECTION OF ROLLED UP VORTEX POSITIONS IN TIME
DIMENSION YNR(8), ZNR(8), YNL (8), ZNL (8)
COMMON /HELI/ WHEL, HHEL, RHEL, YHEL, ZHEL
COMMON /MEAN/
LMV EL, LMCRS, NV OR, RLIM, ZO, USK, HTPAD, ZOPAD, UO, XO
COMMON /MEAN/ YBAR(8), ZBAR (8), YBAL (8), ZBAL (8), G2PI (8)
COMMON /MEAN/
FACR (8), FACL (8), SRV (8), DS YM (8), DSYP (8), GSAV (8)
COMMON /EROR/
$\angle P R P, Y P R P, Z P R P, R P R P, V P R F, Q Q P R E, C P Q, C E R, X P R$
IF (NV OR. EQ.0) RETURN
DO $10 \mathrm{~N}=1$, NV OR
CALL AGVEL(YBAR(N), ZBAR(N), VBAR, WBAR)
$\mathrm{YN}(\mathrm{N})=\mathrm{YBAR}(\mathrm{N})+\mathrm{DEL} \mathrm{T}$ V BAR
$\mathrm{ZNR}(\mathrm{N})=\mathrm{ZBAR}(\mathrm{N})+\mathrm{DELT}$ TWBAR
CALL AGVEL(YBAL (N), ZBAL(N),VBAL, HBAL)

```
    YNL(N)=YBAL(N)+DET,TVVBAL
    ZNL}(N)=ZBAL(N)+DEL,TVBAL
10 CONTINUE
    IF (LPRP.EQ.0) GO TO 15
    CAIL AGVEL (YPRP, ZPRP,VBAR,WBAR)
    YPRP=YPRP+DELT*VBAR
    ZPRP=ZRRP+DELT *WBAR
15 DO 20 N=1,NVOR
    YBAR(N)=YNR(N)
    ZBAR(N)=ZNR(N)
    YBAL(N)=YNL(N)
    ZBAL (N)= ZANL(N)
    CONTINUE
    IF (LMVEL,NE.3) RETURN
    NV OR=0
    CALL AGVEL(YHEL, ZHEL,VBAR,WBAR)
    YHEL=YHEL + DELT*VBAR
    NVOR=1
    RETURN
    END
    SUBROUTINE AGVEL(Y,Z,V,W)
C MEAN VELOCITY DETERMINATION AT (Y, %) LOCATION
    COMMON /HEL I/ WHEL, HHEL, RHEL, YHEL,ZHEL
    COMMON /MEAN/
LMV EL, LMCRS,NV OR, RLIM, ZO, USK, HTPAD, ZOPAD, UO, XO
    COMMON /MEAN/ YBAR(8),ZBAR(8),YBAL(8),ZBAL(8),G2PI(8)
    COMMON /MEAN/
FACM(8),FACL (8),SRV(8),DSYM(8),DSYP(8),GSAV (8)
    COMMON /PROP/
LPRP, XPRP,ZPRP,RPRP,VRRR,QQPRP,CPQ,CPR, KPR
    COMMON/TERH/ CTA,STA
    IF (LMY EL, EQ.(-1)) GO TO 30
    V=0.0
    W=0.0
    IF (Z.LE.O.0) RETURN
    IF (NVOR.EQ,O) GO TO 20
    DO 10 N=1,NVOR
C QUADRANT 1 VORTEX
```



```
    B=G2PI (N) FACR(N)/AMAX1(R,RLIM)/R
    V=V-B*(Z-ZBAR(N))
    W=W+B* (Y-YBAR(N))
C QUADRANT 2 VORTEX
    R=AMAX1(0.01,SQRT((Y-YBAL(N))**2*(Z-ZBAL(N))**2))
    B=G2PI(N)RGACLS(N)/AMAXI(R;RLIM)/R
    VmV+B曐(Zam ZBAL (N))
    W=W-BN(Y - YBAL (N))
C QUADRANT 3 VORTEX
    R=AMAX1(0.01,SQRT((Y-XBAL(N))**2+(Z+ZBAL(N))
    B=G2PI(N)*FACL(N)/AMAXI(R,RLIM)/R
    V=V-B (Z+ZBAL (N))
    W=W+B*(Y-YBAL(N))
C QUADRANT 4 VORTEX
    R=AMAX1(0.01,SQRT((Y-YBAR(N))**2+(Z+ZBAR(N))**2))
```

```
    B=G2PI(N)FFACR(N)/AMAX1(B,RLIM)/R
    V=V+B*(Z+ZBAR(N))
    W=W-B** (Y = YBAR(N))
C UNROLLED UP SHEET EFFECT
    IF (GSAV (N).EQ.0.0) GO TO 10
    YE=0.0
    WE=0.0
    S=DSYM(N)+DSYP(N)
    YE=(Y-YBAR(N))*CTAm(Z-ZBAR(N))*STA
    ZE=(Y-YBAR(N))軙STA+(Z-ZBAR(N))*CTA
    CALL AGSVE(XO,YE+DSYM(N),ZE,S,GSAV (N)*FACR(N),VE,WW)
    YE=(Y-YBAL(N))*CTA-(Z-ZBAL (N))*STA
    ZE=(Y-YBAL (N))*STA+(Z-ZBAL (N))*CTA
    CALL AGSVE(XO,YE+DSYP(N),ZE,S, -GSAV(N)NFACL(N),VE,WE)
    YE=(Y-YBAL(N)) CTA-(Z+ZBAL (N))STA
    ZE=(Y-YBAL(N))*STA+(Z+ZBAL(N))*CTA
    CALL AGSVE(XO,YE+DSYP(N),ZE,S,GSAV (N) FACL(N),VE,WE)
    YE=(Y-YBAR(N))带CTA-(Z+ZBAR(N))*STA
    ZE=(Y~YBAR(N))*STA+(Z+ZBAR(N))*CTA
    CALL AGSVE(XO, YE+DSYM(N),ZE,S m-GSAV (N)MFACR(N),VE,WE)
    V=V+WE*STA+VE*CTA
    W=W+WE*CTA=VE是TS
10 CONTINUE
C HELICOPTER ROTOR
    IF (LMVEL,NE.3) GO TO 15
    IE (%.GT. ZHEL) GO TO 20
    HZ = HHEL CTA
    B=SQRT(1.0-(Z/HZ)聯2)
    YS=RHEL**TA-HZ*B+HZ*ALOG((1.0+B)悉HZ/Z)
    IF (ABS(Y-YHEL).GT.YS) GO TO 20
    V=V+WHEL#CTA#B*(Y -YHEL)/YSmWHEL*STA*Z/HZ
    W=W-WHEL, CTA**/ / HZ
    GO TO 20
C PROPELLER
15 IE (LPRP.EQ.0) GO TO 20
    R=SQRT((Y = YPRP)*2+(Z-2PRP)*2)
    IF (R,GT.RPRP) GO TO 20
    V=V+VPRP*(Z-ZPRP)/RPRP
    W=W-VPRP%(Y - YPRP)/RPRP
C MEAN CROSS WIND
20 IF (LMCRS.EQ.0) RETURN
    IF (HTMAD.GT.0.0) GO TO 25
    V=V+USK*ALOG((Z+ZO)/ZO)
    RETURN
25 B=USK*ALOG((AMAX1(Z,HTPAD)+ZOPAD)/ZORAD)
    IF (Z.L.T.HTPAD) B=B#Z/HTPAD
    V = V +B
    RETURN
C WAKE RLOT FILE
30 CALL AGWKI (Y,Z,1,V)
    CALL AGWKI(Y,Z,2,W)
    RETURN
    END
    SUBROUTINE AGWKI(X,Z,N,X)
```

C ARRAY INTERPOLATOR FOR WAKE PLOT FILE COMMON /OUTP/ NOUT, NPLT, NPRT, NSAY, NVAR
COMMON /WAKE/ NEXTF,NY,NZ, YV (16), $\operatorname{ZV}(16), \operatorname{AV}(16,16,6)$
1000 FORMAT(48H * ${ }^{\circ}$ WARNING: IST WAKE PLOT FILE EXTRAPOLATION (,
\$ E12.4,2H, E12.4.4H) M)

C EXTRAPOLATION CHECK
IF (Y.LT, YV (1).OR. Y, GT. YV (NY)) NEXTF=NEXTF+1
IF ($Z . \operatorname{LT}, \mathrm{ZV}(1), O R . Z . G T, Z V(N Z)) \quad N E X T F=N E X T F+1$
C LOCATE RECTANGLE AROUND (Y, Z) DATA POINT
DO $10 \mathrm{IY}=2, \mathrm{NY}$
IF (Y.LE.YV(IY)) GO TO 20
10 CONTINUE
IY=NY
20 DO 30 IZ $=2, \mathrm{NZ}$
IF (Z.LE.ZV(IZ)) GO T0 40
30 CONTINUE
$I Z=N Z$
C INTERPOLATE

$X M=\operatorname{AV}(I Y-1, I Z \propto 1, N)+\operatorname{RATE}(A V(I Y, I Z-1, N)-A V(I Y-1, I Z-1, N))$
$X P=A Y(I Y=1, I Z, N)+\operatorname{RATE}(A V(I Y, I Z, N)-A V(I Y-1, I Z, N))$
$X=X M+(X P-X M)(Z-Z V(I Z-1)) /(Z V(I Z)-Z V(I Z-1))$
IF (NEXTF.GT.0) GO TO 50
IF (NEXTF.LT.0) NEXTF=-3
RETU RN
50 WRITE (NPRT,1000) Y,Z
NEXTR=-3
RETU RN
END
SUBROUTINE AGWKR(T)
C RETRIEVAL FOR WAKE PLOT FILE
DIMEN STON AV S (19)
COMMON /OUTP/ NOUT, NPLT, NPRT, NSAV, NVAR
COMMON /WAKE/ NEXTF, NY, NZ, YV (16), $\mathrm{ZV}(16)$, $\mathrm{AV}(16,16.6)$
COMMON / WLOC/ NWPF, NWPV, TR, NENDF
1000 FORMAT (24H WAKE PLOT FILE ACCESS: , E12.4,4H SEC)
C CHECK WHETHER NEXT, $1 / 10 T H$ INTERPOLATE IS NEEDED
IF (T.LT.TR) RETURN
C CHECK END-OF-PLOT-FILE
IF (NENDF.EQ.(-1)) RETURN
C READ PLOT FILE UNTJL DESIRED TIME IS BRAGKETED
REWIND NWPF
READ (NWPF) (AVS(I), I=1,19)
DO $10 \mathrm{~K}=1,3$
READ (NWPF) N
READ (NWPF) (AVS(I), $I=1, N$)
10 CONTINUE
$\mathrm{NF}=0$
20 READ (NWPF) TFE
IF (TFE.LT.O.0) GO TO 50
$\mathrm{NF}=\mathrm{NF}+1$
IF (NENDF.LT, NF) WRITE (NPRT, 1000) TFE

```
    NENDF=MAXO(NENDF,NF)
    IF (TFE.GT.T) GO TO 60
    DO 40 N=1,NWPV
    DO 30 K=1,NZ
    READ (NWPF) (AV (J,K,N),J=1,NY)
30 CONTINUE
40 CONTINUE
    TFS=TFE
    GO TO 20
C END-OF-PL,OT-FILE REACHED
50 NENDF=-1
    WRITE (NPRT,1000) TFE
    TR=TFS
    RETURN
C INTERPOLATE BETNEEN TWO PLOT FILE ENTRIES
60 NDLT=IFIX(10.0N(T-TFS)/(TFE-TFS))
    IF (NDLT.EQ.0) GO TO 100
    FCT=0.1*FLOAT(NDLT)
    DO 90 N=1,NW PV
    DO 80 K=1,NZ
    READ (NYPF) (AVS(J),J=1,NY)
    DO 70 J=1,NY
    AV}(J,K,N)=\operatorname{AV}(J,K,N)+FCT*(AVS(J)=AV(J,K,N)
70 CONTTNUE
80 CONTINUE
go CONTINUE
100 TR=TES*0.15FLOAT(NDLT+1)*(TFE-TES)
    BETURN
    END
    SUBROUTINE RGWKS(LQQ)
C STAPT RECOVERY OF WAKE PLOT FILE DATA
        DIMENSION CMNT(19),NV(5)
        COMMON /OUTP/ NOUT,NPLT,NPRT,NSAV,NVAR
        COMMON /WAKE/ NEXTF,NY,NZ,YV(16),ZV(16),AV(16,16,6)
        COMMON /WLOC/ NWPF,NWPV,TR,NENDF
        DATA NV/2,2,3,4,6/,NMAX/16/
1000 FORMAT(22H WAKE PLOT FJLE TITLE:/2X,1 9A4)
1010 FORMAT(35H *** WAKE PLOT FJLE VARIABLE ERROR:/2X, I4,
        $ 38H VARIABLES APPEAR WHEN AGDISP EXPECTS:,I4)
1020 FORMAT(29H WAKE PLOT FILE MESH SIZES: (,I3,2H ,,I3,2H
))
1030 FORMAT(32H * WAKE FLOT FILE Y MESH SIZE:,I4/
    # 42H OUT OF RANGE m- SHOULD BE BETWEEN: 2.
AND,I4)
1040 FORMAT(32H *** WAKE FLOT FILE Z MESH SIZE:,I4/
        * 42H OUT OF RANGE -. SHOULD BE BETWEEN: 2
AND,I4)
1050 FORMAT(5X,6HY (M):,10E12.4)
1060 FORMAT(5X,6 HZ (M):,10E12.4)
1070 FORMAT(22H WAKE PLOT FILE TIMES:)
1080 FORMAT(4X,E12.4,4H SEC)
1090 FORMAT(44H ** PREMATURE END OF WAKE PLOT FILE
REACHED)
C READ PLOT FILE HEADER AND VERIFX DATA
```

```
    NWPF=10
    READ (NWPF) CMNT
    WRITE (NOUT,1000) CMNT
    READ (NWPF) NWPV
    READ (NWPF) (CMNT(N),N=1,NWPV)
    IF (NWPV.EQ.NV(LQQ+2)) GO TU 20
    WRITE (NOUT,1010) NWPV,NV(LQQ+2)
    STOP
C READ MESH DATA
20 READ (NWPF) NY
    IF (NY.LT.2.OR.NY.GT.NMAX) GO TO 70
    READ (NWPF) (YV (N),N=1,NY)
    READ (NWPF) NZ
    IF (NZ.LT.2.OR.NZ.GT.NMAX) GO TO 80
    READ (NWPF) (ZV(N),N=1,NZ)
    WRITE (NOUT, 1020) NY,NZ
    WRITE (NOUT,1050) (YV(N),N=1,NY)
    WRITE (NOUT,1060) ( }\textrm{ZV}(N),N=1,NZ,
C CHECK FILE CONTENTS
    WPITE (NOUT,1070)
30 READ (NWPF,END:90) TR
    WRITE (NOUT,1080) TR
    IF (TR.LT,O.0) GO TO 60
    DO 50 N=1,NWPV
    DO 40 K=1,NZ
    READ (NWPF,END=90) (AV (J,K,N), J=1,NY)
40 CONTINUE
50 CONTINUE
    GO TO 30
C INITIALIZE FOR START OF RUN
60 TR=-1.0
    NENDF=0
    CALL AGWKR(0.0)
    NEXTF=0
    HETURN
C ERROR EXITS
70 WRITE (NOUT, 1030) NY, NMAX
    STOP
80 WRITE (NOUT,1040) NZ,NMAX
    STOP
90 WRITE (NOUT,1090)
    STOP
    END
```

Module Three

8	REM	INPUT METRIC VALUES
10	REM	NOZZLE DEPOSITION DATA FILE
20	REM	MAKER ***
21	REM	MAX OF 75 NOZZLE POSITIONS
22	REM	NOZZLE POSITIONS $=Y(I, 1)$
23	REM	D/RV10\% $=Y(I, 2)$

```
24 REM D/R V50% = Y(I,3)
25 REM D/R V 90% = Y(I,4)
26 REM V10% BEGIN POSITION = Y(I,5)
27 REM V10% MID POSITION = Y(I,6)
28 REM V10% END POSITION = Y(I,7)
29 REM V50% BEGIN POSITION = Y(I,8)
30 REM V50% MID POSITION = Y(I,9)
31 REM V5O% END POSITION = Y(I, 10)
32 REM V90% BEGIN POSITION = Y(I,11)
33 REM V90% MID POSITION = Y(I,12)
34 REM V90% END POSITION = Y(I,13)
35 DIM Y(75,13),NZ(75,60),TE(300)
36 INPUT "INPUT AVERAGE DEPOSITION SPREAD (FT) ";ZS:ZS =
ZS / 3.28084
40 PRINT " DO YOU WISH TO READ AN EXISTING": INPUT "RAW
DATA FILE? ";A$
42 IF A$ = "YM THEN GOTO 10200
50 IFA$< > "N" THEN GOTO 40
100 INFUT MINPUT THE TYPE AIRCRAFT ";TA$
110 INPUT "INPUT THE FLIGHT SPEED ";FS自
120 INPUT RINPUT THE GROSS WEIGHT ";GW$
130 INPUT "INPUT THE SPRAY HEIGHT ";SH$
140 INPUT "INPUT THE CROSSWIND CONDITIONS ";CW$
150 INPUT "INPUT THE NOZZLE FLOW RATE (GPM) ";GPM
200 INPUT "INPUT THE NUMBER OF TESTED NOZZLES ";TN
220 HOME : PRINT "INPUT THE FOLLOWING RESULTS": PRINT
"FROM THE COMPUTER SIMULATIONS"
225 PRIN'N "YALUES SHOULD BE METRIC"
230 PRINT
240 FOR I = 1 TO TN
250 PRINT "INPUT THE w;I;" NOZZLE POSITION ": INPUT Y(I, 1)
255 PRINT : PRINT : PRINT %** V 10% DROPLETS **n
260 PRINT "INPUT THE DEPOSITION DR FOR THE"S INPUT "V.q
DROPLET SIZE m;Y(I,2)
270 INPUT "INPUT THE STMOLATED DEPOSITION LOCATION
";Y(I,6)
300 PRINT : PRINT : PRINT *** V 50% (VMD) DROPLETS ***
310 PRINT "INPUT THE DEPOSITION DR FOR THEN: INPUT NV.5
DROPLET SIZE ";Y(I,3)
320 INPUT "INPUT THE SIMULATED DEPOSITION LOCATION
";Y(I,9)
350 PRINT : PRINT : PRINT W#* V 90% DRUPLETS ***
360 PRINT "INPUT THE DEPOSITION DR FOR THEN: INPUT NV.g
DROPLET STZE ";Y(I,4)
370 INPUT MINPUT THE SIMULATED DEPOSITION LOCATION
";Y(I, 12)
395 HOME
400 NEXT I
410 REM CHANGE SECTION
420 HOME : PRINT "**** INPUT VALUES ****"
422 PRINT "TOTAL NUMBER NOZZLES IN DATA = ";TN
425 INPUT *IS RAW DATA CHECKING DESIRED? ";A$
426 IF A$ = "N" THEN GOTO 1050
427 IFA$< > #Y# THEN GOTO 425
```

```
430 PRINT : PRINT "CHECK FOR CORRECT VALUES*
435 PRINT
440 PRINT "AIRCRAFT TYPE= %TA$
450 PRINT "FLIGHT SPEED= ";ES$;" MPH*
460 PRINT "GROSS WEIGHT = ";GW$
470 PRINT "CROSSWIND CONDITIONS OF ";CW$
475 PRINT "THE NOZZLE FLOW RATE (GPM) = ;GPM
476 PRINT
480 INPUT MARE THESE VALUES CORRECT? NA$
490 IFA$ = "Y% THEN GOTO 600
495 IFA$= "N" THEN QOTO 500
497 GOTO 480
500 PRINT "WHICH OF THE FOLLOWING IS INCORRECT? "
510 PRINT : PRINT "TYPE AIRCRAFT (TA)": PRINT "FLIGHT
SPEED (FS)": PRINT "GROSS WEIGHT (GW)": PRINT "CROSSWIND
CONDITIONS (CW)"
515 PRINT MNOZZLE FLOW RATE (GPM)': PRINT
520 INPUT A$
530 IFA$< > "TA" THEN GOTO 540
535 INPUT "TNPUT CORRECT TYPE AIRCRAFT ";TA$
540 IFA串< > "FSN THEN GOTO 550
545 INPUT "INPUT CORRECT FLIGHT SPEED TGFS事
550 IFA$< > MGWN THEN GOTO 560
555 INPUT "INPUT CORRECT GROSS WEIGHT'*;GW$
560 IF A$ < > "CW" THEN GOTO 567
565 INPUT "INPUT CORRECT CROSSWIND CONDITIONS *;CW$
567 IF A$ < > "GPM" THEN GOTO 500
570 INPUT "INPUT CORRECT NOZZLE FLOW RAZE ";GPM
580 GOTO 430
600 HOME : PRINT NCHECK EACH NOZZLE POSITION": PRINT RFOR
CORAEGT VALUES"
610 FOR I % TO TN
620 PRINT MNOZZLE POSITION N;I;"###Y(I,I)
630 INEUT "CORABCT? ";A$
640 IFA & = 年THEN GOTO660
645 TF A $ < > NN" THEN GOTO 630
650 INPUT MNPUT CORRECT VALUE *; Y(I, 1)
655 GOTO 620
660 PRINT MTHE DEPOSITION DR FOR THE V.1 DROPLET SIZE =
"; Y(I, 2)
670 INPUT MCORRECT? N;A$
680 IF A$ #YM THEN GOTO 720
690 IF A$< > "N" THEN GOTO 670
700 INPUT "INPUT CORRECT VALUE ";Y(I,2)
710 GOTO 660
720 PRINT "THE DEPOSTTION LOCATION EOR V. I% = %;Y(I,6)
730 INPUT wCORRECT? %;A$
740 IF A = NY'THEN GOTO 770
750 IF A$< > "N"THEN GOTO 730
760 INPUT "INPUT CORRECT VALUE *;Y(I,6)
765 GOTO T20
70 PRINT "THE DEPOSITION DR FOR THE V.5 DROPLET SIZE =
";Y(I, 3)
780 INPUT "CORRECT? ";A$
```

```
790 IF A$ = "Y" THEN GOTO 830
800 IF A$ < > "N" IHEN GOTO 780
810 INPUT "INPUT CORRECT VALUE ";Y(I,3)
820 GOTO 770
830 PRINT " THE DEPOSITION LOCATION FOR V.5% = ";Y(I,9)
840 INPUT "CORRECT? ";A$
850 IF A $ = "Y" THEN GOTO 900
860 IF A$< > "N" THEN GOYO 840
870 INPUT "INPUT CORRECT VALUE ";Y(I,9)
895 GOTO 830
900 PRINT MTHE DEPOSITION DR FOR THE V.9 DRUPLET SIZE =
";Y(I,4)
910 INPUT "CORRECT? :;A$
920 IF A$ = "Y" THEN GOTO 960
930 IF A$ < > "N" THEN GOTO 910
940 INPUT "INPUT CORRECT VALUE ";Y(I,4)
950 GOTO 900
960 PRINT " THE DEPOSITION LOCATION FOR V.9% = ";Y(I,12)
970 INPUT "CORRECT? ";A$
980 IF A$ = "Y" THEN GOTO 1040
990 IFA$ < > "N" THEN GOTO 970
1000 INPUT "INPUT CORRECT VALUE ";Y(I,12)
1030 GOTO 960
1040 NEXT I
1050 INPUT "DO YOU WISH TO SAVE THE BAW DATA FILE? ";A⿻
1060 IF A$ = "Y' THEN GOTO 10000
1070 REM PROCESS RAW DATA
1080 HOME : PRINT "THE DATA IS NOW BEING TRANSFORMED":
PRINT "INTO A DEPOSITION MATRIX"
1090 FOR I = 1 TO TN
1092 PRINT "WORKING ON NOZZLE NUMBER ";I
1095 FOR J = 1 TO 300:TE(J) = 0: NEXT J
1100 A1 = GPM . . }0\mathrm{ ( Y (I,2)
1110 A2 = GPM . 40 Y (I, 3)
1120 A3 = GPM .50 I (I,4)
1121 SD = (ZS *.90) / 2
1122Y(I,5)=Y(I,6) = SD:Y(I,7)=Y(I,6) + SD
1123 SD = (ZS .50) / 2
1124 Y(I,8)=Y(I,9) SD:Y(I,10)=Y(I,9) + SD
1125 SD = (ZS *.30) / 2
1126 Y(I,11) = Y(I,12) - SD:Y(I,13) = Y(I,12) + SD
1130 B = INT (Y(I,5)* 3.28084 2 + 150.5)
1140 M = INT (Y(I,6) 3.28084 * 2 + 150.5)
1150 E = INT (Y (I,7)*3.28084*2 + 150.5)
1153 IF (E - B)<=O THEN GOTO 1260
1155 A1 = (A1 / (E - B)) 2
1160 FOR J = B TO M
1162 IF J < O THEN GOTO 1200
1163 IFJ > 300 THEN GOTO 1200
1165 IF (M - B) < = O THEN GOTO 1200
1170 AM=A1 (J - B) / (M - B)
1180 TF J = B THEN AM=0
1190 TE(J) = TE(J) + AM
1200 NEXT J
```

```
1210 FOR J = (M+1)TOE
1212 IFJ > 300 THEN GOTO 1250
1213 IF J < O THEN GOYO 1250
1215 IF (E - M) < = O THEN GOTO 1250
1220 AM = (A1 (E-J)/ (E-M))
1230 IFJ = E THEN AM = 0
1240 TE (J) = TE(J) + AM
1250 NEXT J
1260 B = INT (Y (I, 8) 3.28084 2 + 150.5)
1270M=INT (Y(I,9) 3.28084 2 + 150.5)
1280E= INT (Y(I,10) 3.28084 2 + 150.5)
1283 IF (E - B) < = 0 THEN GOTO 1390
1285 A2 = (A2 / (E-B)) 2
1290 FOR J = B TO M
1292 IF \ < THEN GOTO 1330
1293 IFJ> 
1295 IF (M-B) < = 0 THEN GOTO 1330
1300 AM=A2* (J-B)/(M*B)
1310 IFJ = B THEN AM = 0
1320 TE(J) = TE(J) + AM
1330 NE&T J
1340 FOR J = (M+1) TO E
1342 IF J > 300 THEN GOTO 1380
1343 IF J.< O THEN GOTO 1380
1345 IF (E - M) < = O THEN GOTO 1380
1350 AM = (A2 * (E m J) / (E - M) )
1360 IF J = E THEN AM = 0
1370 TE(J) = TE(J) + AM
1380 NEXT J
1390 B=INT (Y(I,11) 3.28084 2 + 150.5)
1400M=INT (X(I,12) 3.28084 N 2 + 150.5)
1410E=INT (Y(I,13) 3.28084 2+150.5)
1413 IF (E-B)< = 0 IHEN GOTO 1520
1415 A3=(A3/(E-E)) 2
1420 FOR J = B TO M
1422 TF J < O THEN GOTO 1460
1423 IF J > 300 THEN GOTO 1460
1425 IF (M - B ) < = O THEN GOTO 1460
1430 AM = A3 (J - B) / (M-B)
1440 IF J = B THEN AM = 0
1450 TE(J) = TE(J) + AM
1460 NEXT J
1470 FOR J = (M + 1) TOE
1472 IFJ > 300 THEN GOTO 1510
1473 TFJ< J THEN GOTO 1510
1475 IF (E - M) < = 0 THEN GOTO 1510
1480 AM = (A3 (E - J) / (E - M) )
1490 IF J = E THEN AM = 0
1500 TE(J) = TE(J) + AM
1510 NEXT J
1520 FOR J = 1T0 300
1530 IF TE(J) > 0 THEN GOTO 1550
1540 NEXT J
1550 B = J = 1
```

```
1560 FOR J = 1 TO 300
1565 K= 300 - J + 1
1570 IF TE(K) > 0 THEN GOTO }159
1580 NEXT J
1590 E = K + 1
1605 IF (E - B) > 60 THEN GOSUB 11000
1610Y(I,2)=INT (B)
1620 Y(I,3)=INT (E)
1630 Y(I,4) = (E - B)
1640 FOR J = 1 TO 60
1650 NZ(I,J) = TE(B)
1660 IF B = E GOTO 1690
1670 B = B + 1
1680 NEXT J
1690 NEXT I
1700 REM WRITE OUT PROCESSED FILE
1702 HOME : PRINT : PRINT : PRTNT : PRINT
1704 FRINT "NOW SAVING THE PROCESSED FILEN: PRINT : PRINT
" UNDEA THE NAME TEMPFILE"
1710 REM PROCESSED FILE HAS NAME OF TEMPFILE
1711 REM Y(I,2) = BEGIN DEPOSIT
1712 REM Y(I,3) = END DEPOSIT
1713 REM Y(I,4) = DEPOSIT SPAN
1720 D $ = ""
1730 PRINT D&:"OPEN TEMPFILE, D2"
1740 PRINT D$:"WRITE TEMPFILE"
1750 PRINT TN
1752 PRINT TA$
1754 PRINT FS$
1756 PRINT GW$
1758 PRINT CW$
1759 PRINT GPM
1760 FOR I = 1 TO TN
1765Y(I,1)=INT (Y(I,1) 3.28084*10)/10
1770 FOR J = 1 TO 4
1780 PRINT Y(I,J)
1790 NEXT J
1800 FOR J = 1 TO 60
1810 PRTNT NZ(I,J) ,
1820 NEXT J
1830 NEXT I
1840 PRINT D$; "CLOSE TEMPFILE"
1845 HOME : PRINT : PRINT : PRINT : PRINT MLOADING NEXT
PROGRAM SEGMENT AND DATAM
1850 REM END OF THIS SECTION
1860 PRINT D$;"RUN MODEL3,D1"
1870 END
10000 REM WRITE RAW DATA FILE
10010 D$ = ""
10020 INPUT MINPUT SAVE FILE NAME T;NE$
10030 PRINT D$;"OPEN ";NF$;" RAW,D2"
10040 PRINT D$;"WRITE ";NF$;" RAW"
10041 PRINT TN
10042 PRINT TA$
```

```
10044 PRINT FSS $
10046 PRINT GW$
10048 PRINT CW $
10049 PRINT GPM
10050 FOR I = TO TN
10060 FOR J = TO 13
10070 PRINT Y (I,J)
10080 NEXT J
10090 NEXT I
10100 PRINT D$; "CLOSE ";NF$;" RAW"
10110 GOTO 1070
10200 REM READ RAW DATA FILE
10210 D$= n*
10212 HOME : PATNT D$; "CATALOG,D2"
10213 PRINT
10220 INPUT WINPUT READ FILE NAME ";NE%
10230 PRINT D$;"OPEN ";NF$;",D2"
10240 PRINT D$;"READ %;NF$
10241 INPUT TN
10242 INPUT TA$
10244 INPUT FS$
10246 INPUT GW$
10248 INPUT CW $
10249 INPUT GPM
10250 FOR I = TO IN
10260 FOR J = TO 13
10270 INPUT Y(I,J)
10280 NEXT J
10290 NEXT I
10300 PRINT D$; "CLOSE ";NF$
10310 GOTO 410
11000 REM SPAN GREATER THAN 30 FT.
11010 REM CENTER AND CHOP THE
11020 REM END MATERTAL
11030CE=TNT ((E + B)/2)
11040 B = CE - 30
11045 IFB<0 THEN B = 0
11050 E = B + 60
11090 RETURN
```


Module Four

```
2 HOME : PRINT : PRINT : PRINT : PRINT NENTERING MODEL,3":
```

PRINT : PRINT
$3 \mathrm{ZC}=50$
10 DIM $Y(75,5), N Z(75,60), \operatorname{TE}(300)$
100 REM READ IN PROCESSED FILE
110 REM PROCESSED FILE HAS NAME OF TEMPFILE
$120 \mathrm{D} \$=\mathrm{H}$
130 PRINT D\$; "OREN TEMPFILE, D2"
140 PRINT D\$; "READ TEMPFILE"
150 INPUT TN

```
152 INPUT TA$
154 INPUT FS$
156 INPUT GW$
158 INPUT CW$
159 INPUT GPM
160 FOR I = 1 TO TN
170 FOR J = 1 TO 4
180 INPUT Y(I,J)
190 NEXT J
200 FOR J = 1 TO 60
210 INPUT NZ(I,J)
220 NEXT J
230 NEXT I
240 PRINT D$;"CLOSE TEMPFILE"
300 HOME : PRINT WWHTCH ANALYSIS PROCESS IS DESIRED:"
310 FRINT "1. INDIVIDUAL CENTROID ANALYSIS*
315 TI=0
320 PRINT "2. FULL BOOM NOZZLE PLACEMENT ANALTSIS*
330 PRINT W3. SPECJFIC BOOM NOZZLE PLACEMENTM
500 INPUT A
510 IF A < 1 OR A > 3 GOTO 300
520 ON A GOTO 1000,2000,2800
1000 REM INDIVIDUAL CENTROID ANALYSIS
1010 HOME: PRINT "PRINTER NDST BE INSTALLED IN SLOT #{"
1020 PRINT : PRINT : PRINT
1025 SF = 80/(GPM . 50)
1026 INPUT "PRINT OUT INDIVIDUAL NOZZLE HISTOGRAM? ";A$
1027 INPUT MOUTPUT HARDCOPY? ";Z%年
1028 IF ZZ$ = "Nn THEN GOTO 1030
1029 D* = ": PRINT D$;"PR#1"
1030 FOR I m TO TH
1035 T = 0:40=0
1036 ARM=Y(I,2)
1040 FOR T = TO 60
1050 T = T + |Z(I,J)
1060 MO =MO + (NZ (I,J) (ARM +J))
1070 NEXT J
1075 IF T = O THEN GOTO 1090
1080 CENTROID = INT ((((MO/T T) - 150)/2) 10)/10
1090 PRINT "NOZZLE NUMBER = ' 'I
1100 PRINT "NOZZLE FOSITION=N;Y(I,1);'mTM
1110 PRINT MDEPOSITION CENTROTD = ";CENTROID;" FT"
1120 PRINT "DEPOSITION SPAN = ";(Y(I,4)) / 2;" FT"
1130 PRINT "% DEPOSITION = ";((T / GPM) % 100);" %"
1131 IF ZZ% = "Y" THEN GOTO 1140
1132 SF=0: IFT=0 THEN GOTO 1150
1133 FOR J = TO 60
1134 IF SF<NZ(I,J) THEN SF = NZ(I,J)
1135 NEXT J
1136 SF=35/SF
1140 PRINT : PRINT
114" %$= ":": IFA$= NN" THEN GOTO 1150
1142 FOR J = TO 60
1144z=INT (NZ(I,J) SF)
```

```
1146 FORK=1 TOZ:IFZ = O THEN GOTO 1148
1147 z$ = Z$ + "#": NEXT K
1148 PRINT Z $:Z$= ":"
1149 NEXT J
1150 PRINT "IE": NEXT I
1160 PRINT D$;"PR#O"
1200 GOTO 300
2000 REM FULL BOOM ANALYSIS
2010 INPUT "INPUT A/C WINGSPAN (FT) ";WS
2020 2$ = "FULL BOOM ANALYSIS"
2030 PRINT : PRINT MFULL BOOM PATTERN ANALYSIS": PRINT :
PRINT "UNDERWAY---STANDBY": FRINT
2040 LE = - (WS / 2) ".75
2050 RE = + (WS / 2) *.75
2060 FOR L = 1 TO TN
2070 IF Y (L, 1) >LE GOTO 2090
2080 Y (L,5) = 1
2090 IFY(L,1) < RE GOTO 2110
2100 Y(L,5)=1
2110 NEXT L
2120 GOSUB 12000
2130 GOSUB 13000
2140 GOSUB 14000
2150 S1 = SW:A1 = AV:D1 = DV
2160 REM START NOZZLE ANALYSIS
2170 FOR LL = 1 TO TN
2171 L = TN / 2 + 1 - LL
2172 TF L < 1 THEN GOTO 2174
2173 GOTO 2176
2174L=TN / 2 + (LL - TN / 2)
2975 IF L > TN THEN GOTO 2500
2176 IF Y (L, 1) < LE GOTO 2500
2177 IFFY(L,1) > RE GOTO 2500
2180 PRINT : PRINT WWOREING ON NOZZLE ";L: PRINT
2190 IF X(L,5) = THEN GOTO 2250
2200 IF Y(L,5) = 0 THEN GOTO 2220
2210 PRINT MERROR IN DATA FLLE ON NOZZLE ";L: PRINT
2220 REM TURN NOZZLE OFF
2225 I = L
2230 GOSUB 15000
2240 GOTO 2270
2250 REM TURN NOZZLE ON
2255 I = L
2260 GOSUB 16000
2270 GOSUB 14000
2272 PRINT SW,S1
2273 PRINT DV,D1
2280 IF SW > S1 THEN GOTO 2330
2290 IF DV < D1 THEN GOTO 2330
2295 I = L
2300 IF Y(L,5) = O THEN GOTO 2302
2301 GOTO 2310
2302 I = L
2304 GOSUB 16000
```

```
2310 IF Y(L,5) = 1 THEN GOTO 2312
2311 GOTO 2320
2312 I = L
2314 GOSUB 15000
2320 GO'NO 2500
2330 IF Y(L,5) = 1 THEN GOTO 2370
2340 IF Y(L,5) = O THEN GOTO 2410
2350 PRINT EERROR LINE 2320 ON NOZZLE ";L
2360 GOTO 2500
2370 Y (L,5) = 0
2380 I = L
2385 GOSUB 12000
2387 I = L
2390 IF Y (L,5) = THEN GOTO 2392
2391 GOTO 2400
2392 I = L
2394 GOSUB 15000
2400 GOTO 2420
2410 Y(L,5) = 1
2420 GOSUB 14000
2430 S1 = SW:D1 = DV
2480 L = 1
2490 CT = CT + 1
2500 NEXT. LL
2520 GOTO 5000
2530 FOR I = 1 TO 300:TE(I) = 0: NEXT I
2540 GOTO 2130
2800 REM SPECIFIC NOZZLE LOCATION
2805 Z$ = "SPECIFIC NOLZLE LOCATIONS"
2810 REM DEPOSITION GENERATOR
2820 HOME : PRINT : PRINT "DEPOSITION PATTERN FROM
SELECTED"
2830 PRINT NNOZZLES WILL NOW BE PREPARED": PRINT
2840 PRINT : PRINT : PRINT MINDICATE WHICH NOZZLES SHOULD
BE TURNED ON"
2850 PRINT : PRINT "THIS IS THE ";TA&;" TEST SERIES":
PRINT
2860 PRINT *A TOTAL OF ";TN;" NOZZLES ARE AVATLABLE IN THE
DATABASE": PRINT
2870 INPUT "WOULD YOU LIRE TO TURN NOZZLES OFF? ";A$
2880 IF A$ = "NM THEN GOTO 5000
2890 IF A & < > "Y" THEN GOTO 2870
2900 INPUT "INPUT POSITION NUMBER OF NOZZLE TU TURN OFF
";I
2910 PRINT "NOZZLE NUMBER ";I;" NOW TURNED OFF": PRINT :
PRINT
2920 Y(I,5) = 1
```



```
2940 IF A = "N" THEN GOTO 5000
2950 GOTO 2900
5000 REM OUTPUT OR MORE ANALYSIS
5005 HOME
5006 INPUT MHARDCOPY OUTPUT? ";A$
5007 IF A$ = "N" THEN GOTO 5010
```

```
5008 PRINT D$;"PR#1"
5010 PRINT "NOZZLE STATUS": PRINT
```



```
5030 PRINT "POSITION ON/OFF BEGIN END SPAN"
5035 PRINT " FEET FT FT FT"
```



```
5050 FOR I = 1 TO TN
5060 F= Y(I,1):B=(Y(I,2)-150) / 2:E : (Y(I,3)-150) /
2:S = Y(I,4)/2
5070 IF Y (I,5) = O THEN ST$ = "ON"
5080 IF Y (I,5) = 1 THEN ST$ = "OFF"
5090 PRINT " ";F;" n;ST$;" ";B;" ";E;" ";S
5100 NEXT I
```



```
5120 REM ESTIMATED CALIBRATION
5122 IF S1 = O THEN GOTO 5210
5125 C = 0
5130 FOR I = 1 TO TN
5140 IF Y(I,5) < > O THEN GOTO 5160
5150 C = C + 1
5160 NEXT I
5170 NU = GPM C # 43560
5180 DE = S1 * (VAL (FS$) / 60) * 5280
5190 CAL = NU / DE
5200 PRINT : PRINT MESTIMATED CALIBRATION = ";CAL
5205 PRINT D$;"PR跡O"
5210 REM MAKE DISTRIBUTION FILE TO SAVE
5215 FOR I = 1 TO 300:TE(I) = 0: NEXT I
5220 FOR I = 1 TO TN
5230 IF Y(I,5) < > O THEN GOTO 5290
5240 B = Y(I,2)
5250 FOR J = T TO 60
5260 TE (B) = TE(B) + NZ(I,J)
5270 B = B + 1
5280 NEXT J
5290 NEXT I
5300 PRINT D$;"OPEN PLOTFILE, D2"
5310 PRINT D$;"WRITE PL,OTFILE"
5320 PRINT TN
5330 PRINT TA&
5340 PRINT FS$
5350 PRINT GW$
5360 PRINT CW$
5370 PRINT GPM
5380 FOR I = 1 TO TN
5390 FOR J = 1 TO 5
5400 PRINT Y(I,J)
5410 NEXT J
5420 NEXT I
5430 FOR I = 1 TO 300
5440 PRINT TE(I)
5450 NEXT I
5452 PRINT Z$
5453 FOR I = 1 TO TN
```

```
5454 FOR J = 1 TO 60
5455 PRINT NZ(I,J)
5456 NEXT J
5457 NEXT I
5460 PRINT D$;"CLOSE PLOTFILE"
5470 PRINT D$;"RUN MODEL4,D1"
12000 REM SUBROUTINE TO TURN OFF NOZ&LES
12002 REM WITH LOW DEPOSITION
12010 T = 0
12030 FOR J = 1 TO 60
12040 T = T + NZ(I,J)
12050 NEXT J
12060 IF ((T / GPM) * 100) > ZC THEN RETURN
12070 Y(I,5) = 1
12080 RETURN
13000 REM FORM DEPOSIT MATRIX
13030 FOR I = 1 TO TN
13040 IF Y(I,5) = 1 THEN GOTO 13100
13050 B = Y (I,2)
13060 FOR J = 1 TO 60
13070 TE(B)=TE(B) + NZ(I,S)
13080 B = B + 1
13090 NEXT J
13100 NEXT I
13110 RETURN
14000 REM DETERMIHE STAT PARAMETERS
14010 FOR I = 1 TO 300
14020 IF TE(I) > TE(I ... 1) THEN MAX = TE(I)
14030 NEXT I
14040 FOR I = 1 TO 300
14050 IF TE(I) > MAX / 2 THEN GOTO 14070
14060 NEXT I
14070 BE = I
14080 FOR K = 1 TO 300
14090 I = 301 - K
14100 IFTE(I) > MAX / 2 THEN GOTO 14120
14110 NEXT K
14120 EN = I
14130 SW = (EN - BE) / 2
14140 PRINT "SWATH WIDTH = ";SW: PRINT : FRINT
14150 AV = 0:DV = 0
14160 FOR I = BE TO EN
14170 AV = AV + TE(I)
14180 NEXT I
14190 AV = AV / (I - 1)
14200 FOR I = BE TO EN
14210 DV = DV + ((TEP(I) - AV) a 2)
14220 NEXT I
14230 DV = (DV - .5) / AV
14240 RETURN
15000 REM TURN NOZZLE OFF
15010 C = Y (I,2)
15020 FOR J = 1 TO 60
15030 TE(C) = TE(C) - NZ(I,J)
```

```
15040 C = C + 1
15050 NEXT J
15060 RETURN
16000 REM TURN NOZZLE ON
16010 C = Y (I, 2)
16020 FOR J = 1 TO 60
16030 TE (C) = TE(C) + NZ(I,J)
16040 C = C + 1
16050 NEXT J
16060 RETURN
```


Module Eive

10 LOMEM: 16384
20 DIM YY(75,5)
40 DIM X(450),Y(450),L(300),A(300)
50 GOSUB 1170
$68 \mathrm{~T} 1=0: \mathrm{D} 2=0$
260 GOSUB 1130
$300 \mathrm{TT}=0: \mathrm{C}=0$
310 FOR N = 1 TO 300
$320 \mathrm{X}(\mathrm{N})=\mathrm{L}(\mathrm{N})$
$330 X(N)=A(N)$
$335 \mathrm{TT}=\mathrm{TT} \div \mathrm{A}(\mathrm{M})$
340 NEXT N
342 FOR $I=1$ TO TN
$344 \operatorname{IFXY}(I, 5)=0$ THEN $C=0+1$
346 NEXT I
$348 \mathrm{ED}=\mathrm{INT}(((T T /(\mathrm{C}$ (GPM)) 1000$)+.5) / 10$
$349 \mathrm{~S} \mathrm{\%}=300$
350 GOSUB 1770
360 gosub 2000
370 SET = 3
380 HCOLOR: SET
390 HPLOT X(1), Y(1)
400 FOR K = 2 TO 300
410 HPLOT TO X(K),Y(K)
420 NEXT 8
$430 \mathrm{p} \%=150$
$440 \mathrm{P}=\mathrm{P} \%$
450 HCOLOR= 3
460 HPLOT X(P), 159 TO X(P),0
$470 \mathrm{TM}=0$
480 FOR K $=1$ TO 14
$490 \mathrm{~L}=(\mathrm{TM}+(\mathrm{K} 10)$ 2) / XCV
500 HPLOT Z, 0 TO Z, 5
510 NEXT K
515 PRINT EESTIMATED DEPOSITION = "ED;" ${ }^{\prime \prime \prime}$
520 INPUT "HARDCOPY? (Y / N)";A\$
530 IF A ${ }^{\text {¢ }}=$ "N" THEN GOTO 610
$540 \mathrm{D} \$ \mathrm{mH}$: REM CTRL $\propto \mathrm{D}$
550 Q ${ }^{2}=$ nIHM: REM CTRL-IH

```
560 PRINT D$;"PR#1"
570 PRINT Z$: PRINT
572 IF ZZ< > 1 THEN GOTO 575
573 PRINT "SWATH WIDTH IS NOT UNIFORM AND MAY POSSIBLY
PRODUCE FIELD STREAKS": PRTNT : PRINT "SWATH WIDTH = ";PS%
574 GOTO 589
575 IF ZZ < > 2 THEN GOTO 579
576 PRINT "PATTERN UNIFORMITY SHOULD BE IMPROVED BEFOHE":
PRINT " SWATH WIDTH DETERMINATION CAN BE MADE'
5 7 7 ~ G O T O ~ 5 8 9 ~
579 PRINT "SWATH WIDTH = ";PS%
589 PRINT "ESTIMATED DEPOSITION = ";ED;" &": POKE -
12524,0: REM INVERSE
590 PRINT Q 
600 PRINT D$;"PR#O"
610 REM PLOT MULTTPLE PATHS
615 GOSUB 1130
620 SW = PS%
630 P% = 150
640 P = P%
650 SW% = SW * 2
660 0L% = SW%
680 PW% = 300
690 N = 1
700 X(N) = L(N)
710 Y(N) = A(N)
720N=N+1
730 IF L(N) > = OL% THEN GOTO T50
740 GOTO 700
750 B = 1
760 X(N)=L(N)
770Y(N)=(A(N)+A(B))
780 B = B + 1
790N=N+1
800 IFL(N) > = PW% THEN GOTO 820
810 GOTO T60
820 X(N) = (SW% + L(B))
830 Y(N)=A(B)
840 B = B + 1
850N=N+1
860 IF (L(B) + SW%) > = (PW% + SW%) THEN GOTO 880
870 GOTO 820
880 X(N) = L(B) + SW%
890 Y(N) = A(B)
895 EC = (GPM * C 5940) / (VAL (FS$) FS% 12)
896 S% = N
900 GOSUB 1770
910 GOSUB 930
920 GOTO 1000
930 SET = 3
940 HCOLOR= SET
950 HPLOT X(1),Y(1)
960 FOR K = 2 TO N
970 HPLOT TO X(K),Y(K)
```

```
980 NEXT K
9 9 0 ~ R E T U R N
1000 HCOL OR= = 
1010 HPLOT X(P),159 TO X(P),30
1020 C = (L(P) + SW%) / XCV
1030 HPLOT C, 159 TO C,30
1035 PRINT "ESTIMATED CALIBRATION:= %EC;" GPA"
1040 INPUT "HARDCOPY ? (Y/N) ";A$
1050 IF A$= "N" THEN GOTO 5000
1052 D$ = Wn: REM CTRL-D
1054 Q$= "IH":REM CTRL-IH
1060 PRINT D$;"PR非"
1070 PRINT Z串;" SWANH WIDTH= ";SW
1080 PRINT FESTIMATED CALTBRATION= ";EC; 'GPA*: PRINT
1090 POKE - 12524,0: REM INVERSE
1100 PRINT Q $
1110 PRINT D$;"PR圱0"
1120 GOTO 5000
1130 HG R
1140 HCOLOR=3
1150 HPLOT 0,0 TO 279,0 TO 279,159 TO 0,159 TO 0,0
1160 RETURN
1170 D$= N#: REM CTRL-D
1190 FRINT D寈;"OPEN PLOTEILE, D2"
1200 PRINT D$; "READ PLOTEILEM
1210 INPUT TN
1220 INPUT TA$
1230 INPUT FS$
1240 INPUT GH$
1250 INPUT CW $
1255 INPUT GPM
1256 FOR I = 1 TO TN
1257 FOR J = 1 TO 5
1258 INPUT YY(I,J)
1259 NEXT J
1268 NEXT I
1269 FOR J = TO 300
1270 L(J) = J
1280 INPUT A(J)
1290 NEXT J
1295 INPUT Z$
1300 PRINT D$;"CLOSE PLOTFILE"
1310 RETURN
1770 AMAX = 0:LMAX = 0
1780 FOR I = 1 TO S%
1790 IF AMAX < Y(I) THEN AMAX = Y(I)
1800 IF LMAX < K(I) THEN LMAX = X (I)
1810 NEXT I
1820 XCV = LMAX / 279
1830 YCV = AMAX / 120
1840 FOR I = 1 TO S%
1850 Y(I) = 159-Y(I)/ICV
1860 X(I) = X(I) / XCV
1870 NEXT I
```

```
1880 RETURN
2000 REM SWATH WIDIH DETERMINATION
2005 ZZ = 0
2010 LOW = AMAX / 2
2020 FOR I = 1 TO 300
2030 IFA(I) < LOW THEN NEXT I
2040 P1 = L(I)
2050 FOR J = TO 300
2051 I = 301 - J
2060 IF A(I) < LOW THEN NEXS J
2070 P2 = L(I)
2080 PS% = (P2 - P1) / 2
2090 IF PS% < 35 THEN GOTO 2120
2091 FOR J = P1 TO P2
2092 IFA(I) < LOW THEN GOTO 2095
2093 NEXT I
2094 GOTO 2100
2095 PRINT "DEPOSITION IS NOT UNIFORM AND MAY": PRINI
"PRODUCE POSSIBLE FIELD STREAKS":ZZ = 1
2096 PRINT "SWATH WIDTH = ";PS%;" FEET"
2097 RETURN
2100 PRINT *SHATH WIDTH= ";PS&;" FEET"
2110 RETURN
2120 PRINT "PATTERN SHOULD BE IMPROVED BEFORE": PRINT
"SWATH WIDTH DETERMINATION CAN BE MADE':ZZ = 2
2130 RETURN
5000 TEXT
5005 HOME : PRINT : PRTNT : PRINT WWOULD YOU LIKE TO TRX
ANOTHER NOZZLE"
5010 INPUT " SET-UP OR STOP (A/S)S";A$
5020 IF A$ = "A" THEN GOTO 5050
5030 IF A$< > "SW THEN GOTO 5000
5040 FRINT "END SIMULATION*: END
5050 HOME : PRINT: PRINT : PRINT : PRINT " LOADING
MODEL PART THREEN
5060 PRINT CHR$ (4); "RUN MODEL3,D1"
```


APPENDIX B

SIMULATION CODE FOR GROUND
TO AIRCRAFT ALGORITHM

Module One

1 REM REGRESSION MODEL 1
35 DIM $\mathrm{X}(75,5), \mathrm{NZ}(75,60), \mathrm{TE}(300)$
$36 \mathrm{ZS}=25$
40 PRINT " DO YOU WISH TO READ AN EXISTING": INPUT "RAW
DATA FILE? ";A\$
42 IF A ${ }^{2}=$ "Y" THEN GOTO 10200
50 IFA 4 < > "N" THEN GOTO 40
100 INPUT "INPUT THE TYPE ATRCRAFT "; TA A
105 INPUT "INPUT AIRCRAFT WINGSPAN (FT) ";WS
110 INPUT "INPUT THE FLIGHT SPEED ";FS $\$$
120 INPUT "INPUT THE GROSS WEIGHT "; GW\$
130 INPUT "INPUT THE SPRAY HEIGHT ";SH\$
140 INPUT "INPUT THE CROSSWIND CONDITIONS \because; CW $\$$
150 INPUT "INPUT THE NOZZLE FLOW RATE (GPM) ";GPM
160 INPUT "INPUT THE NUMBER OF TESTED NOZZLES ";TN
170 INPUT MAUTOMATIC OH MANUAL NOZZLE POSITIONING A/M?
"; A \$
180 IF A $=$ "M" THEN GOTO 240
185 PRINT : PRINT "BEGIN AT THE LEPTMOST POSITION": PRINT
" (- POSITION)": PRINT
190 INPUT "INPUT INITIAL NOZZLE POSITTON "; IP: INPUT
"INPUT NOZZLE SPACING ";NS
$200 \mathrm{X}(1,1)=I P$
210 FOR I = 2 TO TN
$220 Y(I, 1)=Y(I-1,1)+N S$
230 NEXT I
235 GOTO 395
240 FOR I $=1$ TO TN
250 PRINT "IHFUT THE "; I; ${ }^{*}$ NOZZLE POSITION ": INPUT $Y(I, 1)$
260 NEXT I
395 HOME
410 REM CHANGE SECTION
420 HOME : PRINT "**** INPUT VALUES ****
422 PRINT "TOTAL NUMBER NOZZLES IN DATA = "; TN
425 INPUT "IS RAW DATA CHECKING DESIRED? ";A $\$$
426 IF A $=$ "N" THEN GOTO 1050

```
427 IFA$< > "Yn THEN GOTO 425
430 PRINT : PRINT "CHECK FOR CORRECT VALUES"
4 3 5 ~ P R I N T
440 PRINT "AIRCRAFT TYPE = ';TA$
445 PRINT "WINGSPAN = ";WS;" FT."
450 PRINT "FLIGHT SPEED= ";FS$;" MPH"
460 PRINT "GROSS WEIGHT= ";GW$
470 PRINT "CROSSWIND CONDITIONS OF ";CW$
475 PRINT "THE NOZZLE FLOW RATE (GPM) = ";GPM
476 PRINT
480 INPUT "ARE THESE VALUES CORRECT? ";A$
490 IE A$ = "Y'THEN GOTO 600
495 IF A$= "NN THEN COTO 500
497 GOTO 480
500 PRINT "WHICH OF THE FOLLOWING IS INCORRECT? "
510 PRINT : PRINT "TYPE AIRCRAFT (TA)": PRIN'T "AIRCRAFT
WINGSPAN (WS)": PRINT "FLIGHT SPEED (FS)": PRINT "GRUSS
WEIGHT (GW)": PRINT "CROSSNIND CONDITIONS (CW)"
515 PRINT "NOZZLE FLOW BATE (GPM)": PRINT
520 INPUT A$
530 IFA$< > WTA" THEN GOTO 540
535 INPUT UINPUT CORRECT TYPE AIRCRAFT N:TA$
540 IF A$ < > "FS* THEN GOTO 54T
545 TNPUT "INPUT CORRECT FLIGHT SPEED ";FS弯
547 IFA$< > OWS" THEN GOTO 550
548 INPUT "INPUT COFRECT AIRCRAET NINQSPAN ";WS
550 IF A < < > "GW" THEN GOTO 560
555 INPUT MNPUT CORRECT GROSS WEIGHT #;GW$
560 IF A$< > "CW" THEN GOTO 567
565 INPUT "INPUT CORRECT CROSSWIND CONDITIONS ";CW$
567 IF A$< > "GPM" THEN GOTO 580
570 INPUT "INPUT CORRECT NOZZLE FLOW RATE %GPM
580 GOTO 430
600 HOME : PRINT MCHECK EACH NOZZLE POSITION": PRINT :
PRINT "FOR CORRECT VALUES"
610 FOR I = 1 TO TN
620 PRINT MNOZZLE POSITION n;I;'m=o%Y(I,1): PRINT
630 PRINT MCORRECT? "
640 GET A $
650 IFA$= "NM THEN GOTO 670
660 NEXT I
665 GOTO 690
670 INPUT "INPUT THE CORRECT VALUE %;Y(I, 1)
680 GOTO 620
690 REM CONTINUE
1050 INPUT "DO YOU WISH TO SAVE THE RAW DATA FILE? ";A⿻⿱口口丨心
1060 IF A$ = '⿴囗' THEN GOTO 10000
1070 REM PROCESS RAW DATA
1080 HOME : PRINT "THE DATA IS NOW BEING TRANSFORMED":
PRINT "INTO A DEPOSITION MATRIX"
1090 EOR I = 1 TO TN
1092 PRINT "WORKING ON NOZZLE NUMBER ";I
1095 FOR J = 1 TO 300:TE(J) = 0: NEXT J
1110CY=20.06+2.10% Y(I,1) +.001T% VAL (GW$) + 2.56
```

```
* VAL (CR$) +. 297* VAL (SH$) - . 337* VAL (FS$)
1113 IF Y(I,I)>((WS . 30) / 2) THEN GOTO 1120
1114 IF Y (I,1)< - ((WS*.30)/ 2) IHEN GOTO 1120
1115 CZ = - 4.4-2.0 Y (I, 1) +. 38% Y(I,1) N 2 +. 15*
Y(I,1)* 3-.0075% Y(I,1) < 4 m.0024% Y(I, 1) 5 m
.0000033 Y(I, 1) ^6
1116 CY = CY + CZ
1120 Y(I,2)=(CY 2) + 125
1130Y(I,3)=Y(I,2)+50
1140 Y(I,4)=50
1150 IC = 51 / 27
1155 NZ(I,I)=0
1160 FORJ=2TO49
1170 IF J = 26 THEN IC= - IC
1180 NZ(I,J)=NZ(I,J - 1) + IC
1185 IF NZ(I,J) < O THEN NZ(I,J) = 0
1190 NEXT J
1200 NZ(I,50)=0
1690 NEXT I
1700 REM WRITE OUT PROCESSED FTLE
1702 HOME : PRINT : PRINT : PRINT : PRINT
1704 PRINT "NOW SAVING THE PROCESSED FILE": PRINT : PRINT
" UNDER THE NAME TEMPFILE'
1710 REM PROCESSED FILE HAS NAME OF TEMPFILE
1711 REM Y(I,2) = BEGIN DEPOSIT
1712 REM Y(I,3) = END DEPOSIT
1713 REM Y(I,4) = DEPOSIT SPAN
1720 D$= N#
1730 PRINT D$;"OPEN BGTEMP,D2*
1740 PRINT D$; "WRITE RGTEMP%
1750 PRINT.TN
1751 pRINT WS
1752 PRINT I'A$
1754 PRINT FS$
1756 PRINT GW$
1758 PRINT CW $
1759 PRINT GSM
1760 FOR I = 1 TO TN
1770 FOR J = 1 T0 4.
1780 PRINT Y(I,J)
1790 NEXT J
1800 FOR J = T TO 50
1810 PRINT NZ(I,J)
1820 NEXT J
1830 NEXT I
1840 PRINT D$;"CLOSE RGTTMME"
1845 HOME: PRTNT: PRINT : PRINT : PRINT MLOADING NEXT
PROGRAM SEGMENT AND DATA"
1850 REM END OF THIS SECTION
1860 PRINT D$;'RUN REGBESS2,D1"
1870 END
10000 REM WRITE RAW DATA FILE
10010 D$= "|
10020 INPUT "INPUT SAVE FILE NAME ";NF'$
```

```
10030 PRINT D$;"OPEN ";NF$;" RGRAW,D2"
10040 PRINT D$;"WRITE ";NE完;" RGRAW"
10041 PRINT TN
10042 PRINT WS
10043 PRINT TA$
10044 PRINT FS$$
10045 PRINT GW$
10050 PRINT CW $
10055 PRINT GPM
10060 FORI=1 TO TN
10070 PRIN'T Y(I,1)
10090 NEXT I
10100 PRINT D$;"CLOSE ";NF$;" RGRAW"
10110 GOTO 1070
10200 REM READ RAW DATA FILE
10210 D$ = "#
10212 HOME : PAINT D$; "CATALOG,D2"
10213 PRINT
10220 INPUT "INPUT READ FILE NAME #;NF$
10230 PRINT D$; MOPEN ";NF$;",D2"
10240 PRINT D&;"READ a;NF;
10241 INPUT TN
10242 INPUTWS
10243 INEUT TA$
10244 INPUT ES$
10246 INPUT GW$
10248 INPUT CW$
10249 INPUT GPM
10250 FOR I = 1 TO TN
10270 INPUT Y(I,1)
10290 NEXT I
10300 PRINT D$;"CLOSE N;NE*
10310 GOTO 410
```


Module Two

```
1 REM REGRESS SECTION 2
2 HOME : PRINT : PRINT : PRINT : PRINT RENTERING SECTTON
2": PRINT : PRINT
3ZC=50
10 DIM Y(75,5),NZ(75,60),TE(300)
100 REM READ IN PROCESSED FILE
110 REM PROCESSED FILE HAS NAME OF TEMPFILE
120 D$=m#
130 PRINT D$; OPEN RGTEMP,D2"
140 PRINT D$; "READ RGTEMP"
150 INPUT TN
151 INPUT WS
152 INPUT TA$
154 INPUT FS$$
156 INPUT GW$
158 INPUT CW$
```

```
159
    INPUT GPM
160 FOR I = 1 TO TN
170 FOR J = 1 TO 4
180 INPUT Y(I,J)
190 NEXT J
200 FOR J = 1 TO 50
210 INPUT NZ(I,J)
220 NEXT J
230 NEXT I
240 PRINT D$;"CLOSE RGTEMP"
300 HOME : PRINT "WHICH ANALYSIS PROCESS IS DESIRED?"
310 PRINT "1. INDIVIDUAL CENTROID ANALYSISN
315 TI = 0
320 PRINT "2. FULL BOOM NOZZLE PLACEMENT ANALYSIS"
330 PRINT "3. SPECIFIC BOOM NOZZLE PLACEMENT"
500 INPUT A
510 JF A < OR A > 3 GOTO 300
520 ON A GOTO 1000,2000,2800
1000 FEM INDIVIDUAL CENTROID ANALYSIS
1010 HOME : PRINT "PRINTER MOST BE INSTALLED IN SLOT #1"
1020 PRINT : PRINT : PRINT
1025 SF = 80 / (GPM . 50)
1026 INPUT "PRINT OUT INDIVIDUAL NOZZLE HISTOGRAM? ";A$
1027 INPUT "OUTPUT HARDCOPY? ";ZZ$
1028 IF ZZ事 = "N" THEN GOTO 1030
1029 D$ = "m: PRINT D$; *PR芷1"
1030 FOR I = 1 TO TN
1035 T = 0:MO = 0
1036 ARM = X(I,2)
1040 FOR J = 1 TO 50
1050T = T + NZ(I,J)
1060 MO = MO + (NZ(I,J) (ARM + J))
1070 NEXT J
1075 IF T = O THEN GOTO 1090
1080 CENTROID = INT ((((MO / T) - 150) / 2) * 10) / 10
1090 PRINT "NOZZLE NUMBER = ";I
1100 PRINT WNOZZLE POSITION = ";Y(I,1);" FT"
1110 PRTNT #DEPOSITION CENTROID = ";CENTROID;" FT"
1120 PRINT "DEPOSITION SPAN = ";(Y(I,4)) / 2;" FT"
1131 IF Z&& = "Y" TH&N GOTO 1140
1132 SF=0: IF T = O THEN GOTO 1150
1133 FOR J = 1 TO 50
1134 IF SF<NZ(I,J) THEN SF=NZ(I,J)
1135 NEXT J
1136 SF = 35 / SF
1140 PRINT : PRINT
1141 Z$ = ":": IF A = "N" THEN GOTO 1150
1142 FOR J = 1 TO 50
1144 Z = INT (NZ(I,J) SF)
1146 FORK=1 TOZ:IFZ = 0 THEN COTO 1148
1147 Z$ = Z串 + "%":NEXT X
1148 PRINT Z$:Z$= ":"
1149 NEXT J
1150 PRINT "IE": NEXT I
```

```
1160 PRINT D$;"PR非O"
1200 GOTO 300
2000 REM FULL BOOM ANALYSIS
2020 z$ = "FULL BOOM ANALYSIS"
2030 PRINT : PRINT "FULL BOOM PATTERN ANALISIS": FRINT :
PRINT WUNDERWAY---STANDBY": PRINT
2040 LE = - (WS / 2) . . 75
2050 RE = + (WS / 2)*.75
2060 FOR L = 1 TO TN
2070 IF Y(L,I) >LE GOTO 2090
2080 Y (L,5) = 1
2090 IF Y(L,1) < RE GOTO 2110
2100 Y(L,5) = 1
2110 NEXT L
2130 GOSUB 13000
2140 GOSUB 14000
2150 51 = SW:A1 = AV:D1 = DV
2160 REM START NOZZLE ANALYSIS
2170 FOR LL = 1 TO TN
2171L= INT (TN/2 + 1 - LL)
2172 IF L < 1 THEN GOTO 2174
2173 GOTO 2176
2174 L = TN / 2 + (LL - TN / 2)
2175 IFL, \ TN THEN GOTO 2500
2176 J.F Y (L,1) < LE GOTO 2500
2177 IF Y(L,1) > RE GOTO 2500
2180 PRINT : PRINT "WORKING ON NOZZLE m;L: PRINT
2190 IF Y (L,5) = 1 THEN GOTO 2250
2200 IF Y(L,5) = 0 THEN GOTO 2220
2210 PRINT "ERROR IN DATA FILE ON NOZZLE ";L: PRINT
2220 MEM TURN NOZZLE OFF
2225 I = L
2230 GOSUB 15000
2240 GOTO 2270
2250 REM TURN NOZZLE ON
2255 I = L
2260 GOSUB 16000
2270 GOSUB 14000
2272 PRINT SN,S1
2273 PRINT DV,D1
2290 IF DV < DI THEN GOTO 2330
2295 I = L
2300 IF Y(L,5) = O THEN GOTO 2302
2301 GOTO 2310
2302 I = L
2304 GOSUB 16000
2310 IF Y(L,5) = 1 THEN GOTO 2312
2311 GOTO 2320
2312 I = L.
2314 GOSUB 15000
2320 GOTO 2500
2330 IF Y(L,5) = 1 THEN GOTO 2370
2340 IF Y(L,5) = 0 THEN GOTO 2410
2350 PRINT "ERROR LINE 2320 ON NOZZLE ";L
```

```
2360 GOTO 2500
2370 Y(L,5)=0
2380 J = L
2387 I = L
2390 IFY(L,5) = THEN GOTO 2392
2391 GOTO 2400
2392 I = L
2394 GOSUB 15000
2400 GOTO 2420
2410 Y (L,5)=1
2420 GOSUB 14000
2430 S1 % SW:D1 = DV
2480 L = 1
2490 CT = CT t 1
2500 NEXT LL
2520 GOTO 5000
2530 FOR I = 1 TO 300:TE(I) = 0: NEXT I
2540 GOTO 2130
2800 BEM SPECIFIC NOZZLE LOCATION
2805 Z安 = WSPECIFIC NOZZLE LOCATIONS"
2810 REM DEPOSITION GENERATOR
2820 HOME : PRINT : PRINT NDEPOSITION EATTERN FROM
SELECTED"
2830 FRINT #ROZZLES WILL NOW BE PREPAREDF: PRINT
2840 PRINT : PRINT : PRINT MINDICATE WHICH NOZZLES SHOULD
BE TURNED ON"
2850 PRINT : PRINT "THIS IS THE ";TA$;" TEST SERIES":
PRINT
2860 PRINT "A TOTAL OE ";TN;" NOZZLES ARE AVAILABLE IN THE
DATABASE": PRINT
2870 INPUT WOULD YOU LIEE TO TURN NOZZLES OFF? #A $
2880 IF A $ ※ "N" THEN GOTO 5000
2890 IF A $ < > "Y# THEN GOTO 2870
2900 INPUT "INPUT POSITION NUMBEF OF NOZZLE TO TUHN OFE
";I
2910 PRINT "NOZZLE NUMBER ";I;" NOW TURNED OFF'#: PRINT :
PR INT
2920I(I,5)=1
2930 INPUT "MORE (Y/N)? ";A$
2940 IF A$ = "N THEN GOYO 5000
2950 GOTO 2900
5000 FEM OUTPUT OR MORE ANALXSIS
5005 HOME
5006 INPUT "HARDCOPY OUTPUT? ";A$
5007 IFA$= "N" THEN GOTO 5010
5008 PRINT D$;"PR年1"
5010 PRINT MNOZZLE STATUS": PRINT
```



```
5030 PRINT "POSITION ON/OFF BEGIN END SPAN"
5035 PRINT n FEET FT FTM
```



```
5050 FOR I = TO TN
5060F=Y(I,1):B=(Y(I,2)-150)/2:E=(Y(I,3)-150)/
2:S = Y(I,4)/ 2
```

```
5070 IF Y (I,5) = 0 THEN ST$= RON"
5080 IF Y(I,5)=1 THEN ST$ = "OFF"
5090 PRINT," ";F;" ";ST$;" ";B;" ";E;" #;S
5100 NEXT I
```



```
5120 REM ESTIMATED CALIBRATION
5122 IF ST = O THEN GOTO 5210
5125 C = 0
5130 FOR I = T TO TN
5140 IF Y(I,5) < > O THEN GOTO 5160
5150 C = C * 1
5160 NEXT I
5170 NU = GPM #C 43560
5180 DE = S1 * (VAL (FS$) / 60) * 5280
5190 CAL = NU / DE
5200 PRINT : PRINT "ESTIMATED CALIBRATION = ";CAL
5205 PRINT D$;"PR#O"
5 2 1 0 ~ R E M ~ M A K E ~ D I S T R I B U T I O N ~ F I L E ~ T O ~ S A V E ~
5215 FOR I = 1 TO 300:TE(I) = 0: NEXT I
5220 FOR I = 1 TO TN
5230 IF Y(I,5) < > O THEN GOTO 5290
5240 B = Y (I,2)
5250 FOR J = 1 TO 50
5260 TE(B)=TE(B) + NZ(I,J)
5270 B = B * 1
5280 NEXT J
5290 NEXT I
5300 PRT星 D$;"OPEN PLOTEILE, D2*
5310 PRINT D$: 'WRITE PLOTFILEN
5320 PRINT TN
5330 PRINT TA$
5340 PRINT FS$
5350 PRINT GW$
5360 PRINT CW $
5370 PRINT GPM
5380 FOR I = 1 TO TN
5390 FOR J = 1 TO 5
5400 PRINT Y(I,J)
5 4 1 0 ~ N E X T ~ J ~
5420 NEXT I
5430 FOR I = 1 T0 300
5440 PRINT TE(I)
5450 NEXT I
5452 PRINT Z$
5453 FOR I = 1 TO TN
5454 FOR J = 1 TO 60
5455 PRINT NZ(I,J)
5456 NEXT J
5457 NEXT I
5460 PRINT D$;"CLOSE PLOTFILEM
5470 PRINT D$;"RUN REGRESS3,D1"
13000 REM FORM DEPOSIT MATRIX
13030 FOR I = 1 TO TN
13040 IF Y (I,5) = 1 THEN GOTO 13100
```

```
13050 B = Y(I,2)
13060 FOR J = TO 50
13070 TE(B) = TE(B) + NZ(I,J)
13080 B = B + 1
13090 NEXT J
13100 NEXT I
13110 RETURN
14000 REM DETERMINE STAT PARAMETERS
14010 FOR I = 1 TO 300
14020 IF TE(I) > TE(I - 1) THEN MAX = TE(I)
14030 NEXT I
14040 FOR I = 1 TO 300
14050 IFTE(I) > MAX / 2 THEN GOTO 14070
14060 NEXT I
14070 BE = I
14080 FOR K = T TO 300
14090 I = 301 - K
14100 IF TE(I) > MAX / 2 THEN GOTO 14120
14110 NEXT K
14120 EN = I
14130 SW = (EN - BE) / 2
14140 PRINT "SWATH VIDTH = ";SW: PRINT : PRINT
14150 AV = 0:DV = 0
1.4160 FOR I = BE TO EN
14170 AV = AV + TE(I)
14180 NEXT I
14190 AV = AV / (I - 1)
14200 FOR I = BE TO EN
14210 DV = DV + ((TEP(I) - AV) n 2)
14220 NEXT I
14230 DV = (DV ^ .5) / AV
14240 RETURN
15000 REM TURN NOZZLE OFF
15010 C = Y(I.2)
15020 FOR J = 1 TO 50
15030 SE(C) = TE(C) - NZ(I,J)
15040 C = C + 1
15050 NEXT J
15060 RETU RN
16000 REM TURN NOZZLE ON
16010 C = Y (I,2)
16020 FOR J = 1 TO 50
16030 TE (C) = TE(C) + NZ(I,J)
16040 C = C + 1
16050 NEXT J
16060 RETURN
```


Module Three

1 REM REGRESS 3
10 LOMEM: 16384
20 DIM YY(75,5)

```
40 DIM X(550),Y(550),L(300),A(300)
50 gosub 1170
68T1 = 0:D2 = 0
260 GOSUB 1130
300 TT = 0:C = 0
310 FOR N = 1 TO 300
320 X(N) = L(N)
330 Y(N)=A(N)
340 NEXT N
342 FOR I = 1 TO TN
344 IF YY(I,5) = 0 THEN C = C + 1
346 NEXT I
349 S% = 300
350 GOSUB 1770
360 GOSUB 2000
370 SET = 3
380 HCOLOR= SET
390 HPLOT X(1),Y(1)
400 FOR K = 2 TO 300
410 HPLOT TO X(K),Y(K)
420 NEXT K
430 p% = 150
440 P = P%
450 HCOLOR= 3
460 HPLOT X(P),159 TO X(P):0
470 TM = 0
480 FOR K = 1 TO 14
490 Z = (TM+(K 10) 2) / XCV
500 HPLOT Z,0 TO Z,5
510 NEXT K
520 INPUT "HARDCOPY? (Y/N)m;A⿻⿱口口丨女刂
530 IF A = "N" THEN GOTO 610
540 D$ = "*: REM CTRL D D
550 Q$ = "IH": REM CMRS-IH
560 PRINT D$;"Pli#1"
570 PRINT Z$: PRINT
572 IF ZZ< > 1 THEN GOTO 575
573 PRINT "SWATH WIDTH IS NOT UNIFORM AND MAY POSSIBLY
PRODUCE FIELD STREAKS": PRINT : PRINT "SWATH WIDTH = ":PS%
574 GOTO 589
575 IF ZZ < > 2 THEN GOTO 579
576 PRTNT "PATTERN UNIFORMITY SHOULD BE IMPROVED BEEORE":
PRINT " SWATH WIDTH DETERMINATION CAN BE MADE"
577 GOTO 589
579 PRINT "SWATH WIDTH = ";PS%
589 POKE - 12524,0: REM INVERSE
590 PRINT Q $
600 PRINT D$; "PR年O"
610 REM PLOT MULTIPLE PATHS
615 GOSUB 1130
620 SW = PS%
630 P% = 150
640 P = P%
650 SW% = SW 2
```

```
660 OL% = SW%
680 PW% = 300
690 N = 1
700 X(N)=L(N)
710 Y(N)=A(N)
720 N = N + 1
730 IF L(N) > = OL% THEN GOTO 750
740 GOTO 700
750 B = 1
760 X(N) = L(N)
770Y(N) = (A(N) + A(B))
780 B = B + 1
790N=N+1
800 IFL(N) > = PW% THEN GOTO 820
810 GOTO 760
820 X(N) = (SW% + L(B))
830 Y(N) = A(B)
8 4 0 ~ B = B + 1
850N=N + 1
860 IF (L(B) + SW%) > = (PW% + SW%) THEN GOTO 880
870 GOTO 820
880 X(N) = L(B) + SW%
890 Y(N)=A(B)
895 EC = (GPM C 5940) / (VAL (FS$) PS% 12)
896 S% = N
900 GOSUB 1770
910 gosub 930
920 GOTO 1000
930 SET = 3
940 HCOLOR= SET
950 HPLOT X(1),Y(1)
960 FORK = 2 TO N
970 HPLOT TO X(K),Y(K)
980 NEXT K
990 RETURN
1000 HCOLOR= 3
1010 HPLOT X(P),159 TO X(P),30
1020 C = (L(E) + SW%) / XCV
1030 HPLOT C,159 TO C,30
1035 PRINT "ESTIMATED CALIBRATION = ";EC;" GPA"
1040 INPUT MHARDCOPY ? (Y/N) m;A$
1050 IF A$ = 'N" THEN GOTO 5000
1052 D$="W: REM CTRL-D
1054 Q$ = "IH": REM CTRL-IH
1060 PRINT D$; "PR韭1"
1070 PRINT Z$;" SWATH WIDTH = ";SW
1080 PRINT "ESTIMATED CALIBRATION = ";EC;" GPA": PRINT
1090 POKE - 12524,0: REM INVERSE
1100 PRINT Q$
1110 PRINT D&;"PR#O"
1120 GOTO 5000
1130 HGR
1140 HCOLOR= 3
1150 HPLOT 0,O TO 279,0 TO 279,159 TO 0,159 TO O,0
```

```
1160
    RETURN
1170 D$ = "%: REM CTRL-D
1190 PRINT D$;"OPEN PLOTELLE, D2"
1200 PRINT D$;"READ PLOTFILE"
1210 INPUT TN
1220 INPU'T TA$
1230 INPUT FS$
1240 INPUT GU$
1250 INPUT CW$
1255 INPUT GPM
1256 FOR I = 1 TO TN
1257 FOR J = 1 TO 5
1258 INPUT YY(I,J)
1259 NEXT J
1268 NEXT I
1269 FOR J = 1 TO 300
1270 L(J) = J
1280 INPJT A(J)
1290 NEXT J
1295 INPUT Z$
1300 PRINT D$;"CLOSE PLOTFILE"
1310 RETURN
1770 AMAX = 0:LMAX = 0
1780 FOR I = 1 TO S%
1790 IF AMAX < Y(I) THEN AMAX = Y(I)
1800 IF LMAX < K(I) THEN LMAX = X(I)
1810 NEXT I
1820 XCV = LMAX / 279
1830 YCV = AMAX / 120
1840 FOR I = 1 TO S%
1850 Y(X)=159-Y(I)/XCV
1860 X(I) = Y(I) / XCV
1870 NEXT I
1880 RETURN
2000 REM SWATH WIDTH DETERMINATION
2005 zZ = 0
2010 LOW = AMAX / 2
2020 FOR I = 1 TO 300
2030 IF A(I) < LOW THEN NEKT I
2040 P1 = la(I)
2050 FOR J = 1 TO 300
2051 I = 301-J
2060 IF A(I) < LOW THEE REXT J
2070 P2 = L(I)
2080 PS% = (P2 - P1) / 2
2090 IF PS% < 35 THEN GOTO.2120
2091 FOR I = P1 TO P2
2092 IF A(I) < LOW THEN GOTO 2095
2093 NEXT I
2094 GOTO 2100
2095 PRINT "DEPOSITION IS NOT UNIFORM AND MAY": PRINT
"PRODUCE POSSIBLE FIELD STREAKS":ZZ = 1
2096 PRINT "SWATH WIDTH = "PS%;" FEET"
2097 RETURN
```

```
2100 PRTNT "SWATH WIDTH = N;PS%;" FEETM
2110 RETURN
2120 PRINT *PATTERN SHOULD BE IMPROVED BEFOHE": PRINT
"SWATH WIDTH DETERMINATION CAN BE MADE":ZZ = 2
2130 RETURN
5000 TEXT
5005 HONE : PAIMT : PRINT : PRINT WOOLD YOU LIEE TO TRY
ANOTHER NOZZLE:
5010 INPUT SET-UP OR STOP (A/S)T*;A$
5020 IF A$ = "A " THEN GOTO 5050
5030 IF A$< > "SN THEN GOTO 5000
5040 PRINT "END SIMULATION": END
5050 HOME : PRINT : PRINT : PRINT : PRINS : LOADING
MODEL PART THREE'
5060 PRINT CHR$ (4); "RUN REGRESS2,D17
```


VITA 2

Dennjs K. Kuhlman
Candidate for the Degree of

Doctor of philosophy

Thesis: UNIFORM AERIAL APPLICATION USING COMPUTER SIMULATION

Major Field: Agricultural Engineering
Biographioal:
Personal Data: Born in Qarden City, Kansas, November 20, 1948 , the son of Erwin R. and Vera A. Kuhlman. Married to Carol Ao Singer on July 8 , 1972.

Education: Graduated from Lakin Rural High School, Lakin, Kansas, in May 1966; recelved Associate of Science degree from Garden City Junior College in May, 1968 ; received Bachelor of Science degree in Agricultural Engineering from Kansas State University in December 1970; received Master of Science degree in Agricultural Engineering from Kansas State University in May 1975; conpleted the requirenents for the Doctor of Philosophy degree at Oklahoma State Unjversity in July, 1985.

Professional Experience: Garden City Branch Agricultural Experiment Station, Garden City, Kansas, May, 1967 to August, 1968 ; Graduate Research Assistant, Department Agricultural Engineering, Kansas State University, January, 1971 to Oetober, 1971 and August 1975 , to December, 1975 ; United States Navy, October, 1971 to August, 1975; Research Assistant, Department Agricultural Engineering, Kansas State University, January, 1976 to September, 1977 ; Assistant Professor and Associate Professor, Department Agricultural Engineering, Kansas State

University, September, 1977 to present.
Professional Organizations: Member of American Society of Agricultural Engineers; Sigma Xi; Epsilon Sigma Phi; Gamma Sigma Delta; Alpha Epsilon; Kansas Registered Professional Engineer 9033.

[^0]: Figure 1. Droplet Size Distribution

