
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

FEEDBACK AND REQUIREMENT BIASING FOR ENHANCING
ROBUSTNESS OF SCHEDULING ALGORITHMS FOR DISTRIBUTED

SYSTEM PROCESSING

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

NICOLAS GENE GROUNDS
Norman, Oklahoma

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215260724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FEEDBACK AND REQUIREMENT BIASING FOR ENHANCING
ROBUSTNESS OF SCHEDULING ALGORITHMS FOR DISTRIBUTED

SYSTEM PROCESSING

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. John Antonio, Chair

Dr. Sridhar Radhakrishnan

Dr. S Lakshmivarahan

Dr. Sudarshan Dhall

Dr. Kash Barker

c© Copyright by NICOLAS GENE GROUNDS 2018
All Rights Reserved.

Acknowledgements

First, I wish to express my gratitude to my research advisor, Dr. John Antonio,

for teaching me a great deal about research and about life. The years I have

known and worked with him have been incredible and I owe him much more than

this humble attempt at gratitude. He will forever be a mentor and close friend.

I also wish to thank the other members of my disseration research committee:

Dr. Sridhar Radhakrishnan, Dr. S Lakshmivarahan, Dr. Sudarshan Dhall, and

Dr. Kash Barker. Thank you for your service as committee members and for all

the time and energy you put into reviewing my research materials and providing

your feedback. Thank you also for the various courses which you’ve taught and

I have taken over the years. From each of you I’ve learned a great deal.

I also wish to thank my employer and various managers throughout the past

nine years who have allowed me the flexibility to pursue this research and my

involvement in academics even though it at times interfered with my normal work

activities. Thank you especially to Jeff Muehring, a friend and mentor as well as

manager, who first allowed and encouraged me to pursue a doctoral degree.

Finally, thank you to my family who had to endure my absence or absence-

mindedness especially at times when deadlines loomed and my research interested

consumed so much of my mind, energy, and time.

iv

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Measures of Performance . 5
1.3 Sources of Error . 6
1.4 Measures of Robustness . 7
1.5 Main Results and Outline of Dissertation 8

2 Previous Work & Literature Review 9
2.1 Overview . 9
2.2 Cloud Computing . 11
2.3 Previous Research . 13

3 Simulation Software 15
3.1 Overview . 15
3.2 Workflow Model . 18
3.3 Workflow Generation . 20
3.4 Machine and Resource Representation 24
3.5 Model Subsystem . 25
3.6 Scheduling Algorithms . 27

4 Cost-Minimization Scheduling Algorithm 32
4.1 Overview . 32
4.2 The Algorithm . 34
4.3 Comparison of Behavior . 39

5 Framework for Evaluating Scheduling Robustness 45
5.1 Overview . 45
5.2 Actual Platform Feedback . 47
5.3 Applying Error Bias . 52

6 Numerical Studies 58
6.1 Overview . 58
6.2 Dimensions of Perturbation . 62

v

6.3 Results Concerning the Impact of Feedback 63
6.4 Effect of Error Biasing . 74

7 Conclusions 100
7.1 Future Research Ideas . 101

vi

Abstract

Scheduling tasks in a distributed system (e.g., cloud computing) in order to opti-

mize an objective such as minimizing deadline misses has been a topic of research

for decades. Such a problem is proven NP Complete even with perfect knowledge

of tasks’ requirements and their arrivals to the distributed system for process-

ing. However, a realistic approach to distributed systems scheduling as part of a

cloud computing service provider requires development of scheduling algorithms

that can accomodate tasks arriving dynamically having requirements that are

not accurately known.

In this dissertation, a framework is proposed for handling dynamic schedul-

ing of tasks where scheduling algorithms decision-making is based on execution

within a modeled system of modeled tasks with inaccurate requirements with

respect to the actual tasks running on an actual system. Tasks are arranged

into directed-acyclic graphs representing execution precedence constraints called

workflows, which have a known deadline or time by which all contained tasks

should complete processing. Various scheduling algorithms are evaluated and

compared using simulation software (simulating both the model and actual sys-

tems) according to their ability to complete workflows relative to their deadline

as well as their robustness to the amount of error in the model tasks’ require-

ments. Simulation conditions are varied with respect to the amount of error in

vii

model tasks’ requirements. Finally, feedback from the actual system to the model

system regarding task processing completion and model error biasing techniques

are evaluated and shown to be useful in enhancing the robustness of scheduling

algorithms to model errors.

viii

Chapter 1

Introduction

1.1 Overview

Scheduling or mapping tasks of heterogenous requirements to a collection of re-

sources with the capabilities of processing the tasks in order to achieve an objec-

tive (e.g., minimizing makespan, which is the last completed task’s completion

time) is, even in its simplicity, an intractable problem, akin to the bin-packing

problem [3]. Common extensions to this scheduling problem include dependency

(i.e., precedence) constraints between some tasks and an objective of finishing

some or all tasks by a specified deadline. Further extensions considered here

include exploiting the opportunity for parallelism in task processing (which may

reduce the performance of each individual task based on a non-linear processor

efficiency model), and uncertainty (or error) in the estimations of task require-

ments. These extensions take what was already a “hard” problem and make it

far harder. This is the problem to be addressed in this dissertation.

For the purpose of this research, computational work to be scheduled is di-

vided into units known as tasks. Each task has certain requirements of computing

1

resources (e.g., CPU cycles and memory allocation). A scheduling decision de-

termines when a task’s execution should begin and upon which machine (i.e.,

hardware or server) the task should be executed. Tasks are assigned to machines

composed of the same resources for which tasks have requirements, but also have

an efficiency function that governs how quickly a unit of work can be executed

for a task, based on the amount of resources consumed by all tasks executing

concurrently on that machine. For example, a task with substantial memory re-

quirements can place more strain on the memory management subsystem of the

machine and thus take longer to execute than a similar task with an equal amount

of computational work to be done, but which requires less memory. Additionally,

as machines’ resources may be shared there may be multiple tasks executing con-

currently on the machine, thereby raising the aggregate resource utilization and

driving the machine efficiency even lower. A scheduling decision may attempt to

increase productivity by increasing the number of tasks executing concurrently in

order to make progress on each task equally as opposed to sequentially executing

the tasks and finishing some tasks far sooner than others.

Some tasks may be associated with others via precedence constraints. These

precedence relationships lend themselves to modeling the aggregate of all associ-

ated tasks in a directed, acyclic graph (DAG). These superstructures of all tasks

related through precedence are termed a workflow. Workflows are representative

of overall jobs that are to be executed as a collection of tasks which may be

scheduled semi-independently (a task may not begin execution until all prece-

dent tasks have completed execution). Figure 1.1 depicts a simple workflow in

the form of a DAG. Note that this research makes no assumptions about the

nature or structure of the precedence relationships between tasks in a workflow.

For example, a workflow may be more than a single, linear chain of tasks (i.e.,

2

Figure 1.1: Example workflow depicted as a DAG of tasks.

more than one task may share a single, precedent task). This allows scheduling

decisions that execute more than one task of the same workflow in parallel so long

as all precedent tasks are completed. For example, from Figure 1.1 once task 3

has completed, tasks 4, 4′, and 4′′ may each be scheduled to begin at the same

or different times as neither of the number 4 tasks have a precedence constraint

on another number 4 task.

Each workflow, as a representation of a job, has an associated deadline, or

time by which the workflow (i.e., all its tasks) should be completed. One basic

assumption in this research is that the computing capacity of all available ma-

chines is insufficient for processing the tasks of all workflows as they arrive to

be executed in the overall system. If this were not the case and all workflows’

tasks could be executed immediately upon arrival (whether as the first task of

the workflow, or immediately after all precedent tasks have completed) then there

would be no need for any decision-making about when to begin execution of a

3

task, nor even the machine upon which to begin its execution. This creates a

need for a schedule (or set of scheduling decisions) determining whether each

task should begin as soon as ready or delayed in order to allow other, executing

tasks to complete their execution first. The performance of a schedule is mea-

sured, ultimately, by whether or to what degree it completes workflows by their

deadlines.

A scheduling algorithm is an algorithm that determines scheduling decisions

for a start time of execution and machine upon which to execute each task asso-

ciated with all workflows. This set of all scheduling decisions is also known as a

schedule. A schedule thus is a static set of decisions, meaning a start time and

machine assignment for each task. Thus, a static schedule is only suitable for a

particular scenario of workflows, tasks, and a given set of machines; whereas a

scheduling algorithm could be applied to different contexts in order to produce

appropriate schedules. A scheduling algorithm that requires knowledge of all

workflows and tasks ahead of executing any scheduling decision is known as a

static scheduling algorithm. A dynamic algorithm, on the other hand, is able to

make scheduling decisions given only a subset of information (e.g., only knowl-

edge of workflows that have tasks executing, previously executed, or ready to

begin executing, but no knowledge of workflows which may arrive in the future)

[15]. A dynamic scheduling algorithm could be used “online” during the execu-

tion of a system of machines, workflows and their tasks. In contrast, a static

scheduling algorithm is designed to operate “offline,” with the resulting schedule

being applied in the “online” environment.

4

1.2 Measures of Performance

Performance of a dynamic scheduling algorithm may be measured by its degree

of achieving a desired outcome such as minimizing the number of workflows com-

pleted “late” (after their deadline). Another typical performance metric is to

minimize the maximum lateness (or tardiness) of any workflow. Because dif-

ferent workflows may have different magnitudes of overall processing time, it is

useful to normalize tardiness by the time difference (or other function) between

the worflow’s deadline and arrival time into the system.

Naturally, some algorithms may prioritize optimizing one performance metric

over another, though it often comes at the expense of sacrificing performance

measured by other metrics. For example, in a system overloaded and incapable

of finishing all workflows before their deadline one scheduling algorithm may

prefer to maximize the number of late workflows by “sacrificing” one workflow

and not processing it at all until after all other workflows are completed. In this

way all but one worflow may be completed on time, but the sacrificed workflow’s

tardiness is substantial. Another algorithm’s behavior may be to minimize the

maximum tardiness across all workflows and thus to prevent any one worflow

from being very late, it incrementally processes subsets of all workflows, making

them all late by a small amount.

Achieving optimal performance may be prevented for several reasons. First,

the granularity of division of work among various tasks of a workflow may be

such that no scheduling decisions can, for example, work at equal rates on all

workflows in order to achieve equally-minimalized tardiness across all workflows.

Furthermore different required resources of tasks in different workflows such as

simply CPU vs. memory requirements may cause the efficiency of processing for

5

different tasks to be unequal, or in the case of resources which may be unshared-

able or require synchronized access could cause bottlenecks in processing due to

sequentialized access. Finally, it may be that the information about workflows

and their tasks available to the scheduling algorithm may have error, which is

discussed more in the following section.

1.3 Sources of Error

When a scheduling algorithm makes scheduling decisions of which workflow’s

task(s) to begin processing and on which machine it may require knowledge both

about the workflow such as how many remaining tasks must be processed in order

to complete processing of the workflow and characteristics about the task(s) of the

workflow such as their resource requirements in order to predict their processing

time. In many systems it may be impractical to have such knowledge available

a priori. For example, in systems where the exact nature of the tasks to be

processed as a workflow are in part based on the input data being processed

it may not be possible to know a priori how many or what tasks will make up

the workflow. Furthermore even the resource requirements of known (e.g., non-

conditional or required) tasks may be based in part on values of input data that

are not known at runtime.

In addition, for systems in which multiple tasks may be executed concurrently

on shared resources (e.g., such as time-sharing a CPU resource) the cumulative

effect of processing more than one task may be a source of uncertainty [4]. Where

two tasks each require a fixed number of CPU cycles for processing and may in

isolation have predictable processing time, the effect of allowing both tasks to

execute concurrently may not be easily predictable because factors such as the

6

cost and periodicity of context switching may not be known. Where tasks require

synchronized (i.e., exclusive) access to a shared resource, they could cause delays

in processing other tasks concurrently executing.

Therefore, the information provided to scheduling algorithms about workflows

and the nature of each of workflow’s tasks may be conceptualized as a “model”

of the actual workflow and tasks in which there is error that causes the model

to deviate from its “actual” counterpart. The distribution of this error may be

estimated in some cases. For example, based on past observation of the running

system, the distribution of tasks’ resource requirements or workflow structure

may be bounded (or even estimated as a random number distribution with an

estimated distribution function such as uniform or Normal distribution).

1.4 Measures of Robustness

In the presense of error in the “model” a scheduling algorithm’s robustness to

that error may be measured in two ways. First, one may measure how many

scheduling decisions are made differently in a scenario with error vs. a scenario

without error. In effect this is a measurement of how different of a schedule is

produced by the algorithm when error is present as opposed to having perfect

information. This measurement while conceptually interesting may be of little

practical use because even though a fundamentally different set of scheduling

decisions is made, the algorithm may still achieve the same or similar outcome

of performance.

The second measurement of robustness is to measure the effect of model error

on the quality of scheduling decisions produced by the algorithm with respect to

the chosen performance metric(s). In this case one or more performance metrics

7

are measured and compared between the scenario with model error present vs. a

model with no error.

The purpose of this research is to explore the performance characteristics of

several dynamic scheduling algorithms, and the robustness of these algorithms

with respect to their performance in the presence of error or uncertainty in the in-

formation available to the algorithm. One of the scheduling algorithms evaluated

is also introduced in Chapter 4.

1.5 Main Results and Outline of Dissertation

The main results of this research are a demonstration that feedback from the “ac-

tual” system to the model of task completions is critical in achieving robustness

to even small errors in the model. Without such feedback of all tasks’ comple-

tions some amount of robustness to certain levels of error can be achieved by

biasing the model task requirements to prevent model error from underestimat-

ing task requirements (and thus modeling tasks finishing earlier than the “actual”

system). These results are based on simulation studies of a distributed system

scheduling framework presented in Chapter 3 and presented for scheduling al-

gorithms developed in previous research as well as a novel scheduling algorithm

presented in Chapter 4.

In Chapter 5 the framework for measuring and evaluating robustness as well

as the approach to using task completion feedback and biasing strategies to in-

crease robustness are described. Results of simulation studies are presented and

discussed in Chapter 6. Chapter 7 contains final conclusions of the research

presented.

8

Chapter 2

Previous Work & Literature

Review

2.1 Overview

Research into various methods and algorithms for scheduling tasks in comput-

ing environments has been well-established for several decades. Early research

focused on task scheduling in constrained environments where machines (i.e., re-

sources for executing tasks) were capabable of executing only a single task at

a time (e.g., scheduling tasks for processing on embedded systems [3]). More

recently research has focused on “cloud computing” in which such a restriction

is removed and systems are presumed to be both multi-tenant (i.e., many clients

submitting work loads to the system for processing) and capable of processing

multiple tasks concurrently. In this chapter a brief review of outside literature is

provided as well as a summary of past research by this author related directly to

the research presented in later chapters.

Early research into task scheduling in computing environments focused on

9

simple tasks (not workflows of tasks) [6, 25]. This and similar research also

focused on operating system-level scheduling for a single machine or embedded

system with very limited processing resources (e.g., CPUs) that support only a

single task executing at a given time [27]. Even under these conditions scheduling

to achieve optimal task completions is proven NP-hard [3, 27]. Even in cases

where tasks have interdependence or predecessor constraints such that one task

must be completely executed before another can begin work such as [17] still only

considered problems where processors can execute a single task at a time.

As task execution times (or resource utilization) increasingly became viewed

as stochastic, evaluating scheduling “robustness” to such uncertainty became a

more studied topic. In work such as [5] this robustness was defined as whether a

static schedule (i.e., the set of scheduling decisions for which tasks to execute on

which nodes of a heterogeneous environment of computing systems, produced by

various scheduling algorithms) still achieved a similar makespan (time at which

the last task was finished executing) despite task execution time uncertainty. In

[22] robustness of dynamic scheduling is measured with respect to the amount of

tasks completing ahead of their deadline.

In later years as distributed systems became more prolific task scheduling

research naturally shifted to consider these distributed systems. Research also

began focusing on the performance and impact of scheduling multiple tasks to a

single distributed system node in order to achieve better resource utilization and

meet more demanding scheduling constraints (e.g., deadlines) [8].

Similarly, as task scheduling research has evolved over the years so too has the

degree of complexity of scheduling algorithms. Early scheduling algorithms were

simple and considered only innate properties of tasks or workflows such as First-

Come, First-Served (FCFS), which schedules based on which task or workflow

10

arrived at the system for scheduling earliest. Another is the Earliest Deadline

First (EDF) heuristic, which prioritizes tasks based on which has a deadline (or

belongs to a workflow with a deadline) that occurs soonest [3, 24]. More advanced

heurstics using techniques such as particle swarms [21], generic algorithms [30],

and ant colony optimization [16] have also been applied to task scheduling prob-

lems. Such heuristics for scheduling can be used to build a schedule (a complete

set of scheduling decisions) offline if all tasks’/workflows’ arrival for scheduling

is known a priori. This kind of offline scheduling algorithm is known as a static

algorithm.

Later research into scheduling algorithms began to consider more complex

properties of tasks such as a prediction of when tasks may complete [29], which

ultimately rely on further heuristics to predict arrival of tasks (if not known a

priori), their resource requirements, and even the impact of future scheduling

decisions. Such algorithms are by nature dynamic [15] and rely on computa-

tions and predictions based on the current state of the system in order to make

scheduling decisions. Many such algorithms focus on minimizing some notion of

cost associated with either the inefficiencies of poor scheduling decisions, or the

cost to operate system resources used in the execution of tasks [28], or the cost of

not meeting scheduling objectives such as completing tasks or workflows by their

deadline (e.g. failing to meet service-level agreements, SLAs, under contractual

obligation with the customer submitting the task/workflow) [1, 7].

2.2 Cloud Computing

Largely within the past ten years research into scheduling of tasks has shifted in

both terminology and focus into a computing paradigm known as “cloud com-

11

puting.” In it computing resources are abstracted away from the application

software (typically via technologies known as virtual machines) and as such the

computing resources are transformed into a kind of public utility that can be

shared among customers whose work loads may be static or change over time.

One of the primary concerns of such systems [2] is around performance of cus-

tomer workflows (i.e., completion time relative to “hard” or “soft” deadlines) in

such a dynamic system, which is complicated by the dynamic nature of having

multiple customers submitting work loads to the system having unpredictable re-

quirements and timing. Thus resource utilization and prioritization of workflows

and tasks must be a primary feature of any algorithm or system responsible for

scheduling tasks for execution in cloud computing machines.

Another concern within a “cloud computing” paradigm revolves around the

monetary cost of operating the system, which is passed on as the cost of cus-

tomers degree of system use (i.e. the amount of computing resources utilized by

a customer’s workflow of tasks). Thus many scheduling algorithms within “cloud

computing” environments have been augmented or designed to account for bud-

getary constraints in addition to traditional objectives such as completing work

before a deadline [26, 28].

In [1] a summary of scheduling algorithms and approaches are reviewed and

organized into various taxonomies based on their focus on domain for scheduling,

measurement of the quality of service (i.e., metric used to measure scheduling

outcome fitness), and features of the tasks and system resources used to make

scheduling decisions (e.g., resource utilization and/or allocation, task estimation,

load balancing).

12

2.3 Previous Research

In this section, a summary of prior research by the author is given as it relates

to research presented in future chapters.

Beginning in [24] scheduling algorithm research focused on measurements of

scheduling algorithm performance such as dealine miss percentage and maximum,

normalized tardiness (how much earlier or later than the deadline that the work-

flow was completed, normalized by the workflow’s size and deadline tightness).

In this work heuristics-based scheduling algorithms that simply prioritized which

tasks should be executed next were considered (e.g., FCFS, EDF). A newly pro-

posed Proportional Least Laxity First (PLLF) algorithm which prioritized tasks

based on projected finish times and normalized tardiness was shown to achieve

better performance relative to the other scheduling algorithms investigated.

In [11] the Cost-Minimization Scheduling Algorithm (CMSA) detailed later

in Chapter 4 was first proposed. It’s performance was benchmarked against

algorithms from [24] and shown to be superior. It also features the ability to

customize it’s behavior in terms of desired outcome performance metrics based

on a chosen cost function that maps a workflow’s predicted or final-outcome

normalized tardiness to a cost. Two such cost functions show how the algorithm

can be tailored to achieve fewer missed deadlines or reduced maximum (among

all workflows) normalized tardiness.

The most recent research has focused on use of a model of distributed system

resources and the effect of error (or innaccuracies) in a model with respect to the

“actual” system and how scheduling algorithms are affected by such modeling

error. In [10] it is shown that feedback from the “actual” system to correct

certain aspects of model error can be critical to scheduling performance for all

13

studied algorithms.

The machine model used in previous research as the combination of CPUs

and memory as resources capable of supporting concurrently executing tasks (a

relaxing of the “one task at a time” assumption, which separates this research

from most other scheduling research) was in part validated in [12]. In it the

predictability of CPU performance of executing various combinations of tasks

concurrently was measured, which validated the modeled performance used in

the simulation software developed and employed throughout this and previous

research [24, 11, 10] and also described in Chapter 3.

14

Chapter 3

Simulation Software

3.1 Overview

For all numeric results presented herein as with previous research [24, 11, 19, 18,

10] the same scheduling simulation software primarily developed by the author

was used. This software is available as open-source software [9]. It constitutes

about 17,000 lines of Java code. This chapter will describe this simulator soft-

ware’s capabilities and features.

At its heart the simulation software represents a set of tasks where each task

has a finite set of resource requirements and is associated with a larger “job”

represented as a directed acyclic graph (DAG) of tasks known as as workflow.

Furthermore, the simulator represents a cluster (grid, or cloud) of machines each

with finite resource capacities. Figure 3.1 depicts a basic UML Class diagram

of these main components of the Simulator code base (many utility, helper, and

other classes that aid proper object-oriented design of the software are omitted

for brevity).

15

Figure 3.1: UML Class diagram of the main component classes of the Simulator software beginning with the Simulator
class which references a SelectionPolicy (scheduling algorithm), collection of Machines and ModelMachines (the actual
and model platforms for a distributed system), queue of Requests (the ready tasks which may be scheduled), and a pool
of Workflows which have arrived at the Simulator at a given point in time of the simulation.

16

The purpose of the simulator is to determine which queued tasks to begin

executing on which machine and at what time. For this research the primary

component of the software is the representation of a scheduling algorithm which,

given the queue of tasks and a list of machines, will determine which tasks to

immediately begin executing and on which machine. The scheduling algorithm

is repeatedly invoked until either no tasks are left in the queue or the scheduling

algorithm indicates it wishes to begin execution of no tasks.

The simulation is then driven forward by computing the next time in the

simulated system when either a task completes execution or a new workflow

arrives and its first task is enqueued for scheduling. The simulator then jumps to

that future ‘simulated’ time, computes and effects the changes to executing tasks

of how much ‘work’ was accomplished, adds any new workflows’ ready tasks to

the queue and allows the scheduling algorithm to once again determine which,

if any, queued tasks should begin execution. This framework for event-driven

simulation assumes that the “state” of the system that all scheduling algorithm

use to determine whether to begin execution on any queued task consists only of

the queue of ready tasks and the cumulative resource load of each machine (i.e.

the cumulative effect of all currently executing tasks on a machine). Thus once

a scheduling algorithm determines not to be begin executing any of the queued

tasks, their is no need to invoke the algorithm again until either the queue of

tasks is modified by a newly arriving workflow or an executing task completes.

The following sections describe in more detail various sub-components of the

simulation software. Section 3.2 describes how workflows are modeled as an DAG

of tasks. Section 3.3 describes how the arrival of new workflows occurs. Section

3.4 covers the model of resources and machines’ resource capacities. Section 3.5

describes how a separate model for tasks and machines is used in the simulator.

17

Finally, Section 3.6 presents both how scheduling algorithms are defined and the

four basic scheduling algorithms used in the simulation results in Chapter 6.

3.2 Workflow Model

A task is an individual, schedulable block of work. Tasks are defined by their

resource requirements (i.e., amount of CPU utilization during each CPU clock

cycle, number of CPU cycles required to complete the task’s work, and amount

of memory allocated). Tasks also belong to a workflow, which is a DAG of tasks.

Each workflow is endowed with a deadline. Workflows represent the collection of

work (i.e., tasks) necessary to accomplish a user’s desired outcome or output in

the distributed system.

As defined in [24] workflows are made up of various chains of tasks. Within

a chain of tasks, each tasks must complete execution before the next task of the

chain is ready for scheduling (i.e., placed in the queue of ready-to-execute tasks).

Each workflow begins with a single chain of tasks (the length of the chain and

the requirements of the tasks vary between various simulated types of workflows).

Workflows also end with a chain of tasks. In between these chains are alternating

blocks of parallel chains and single chains. Where task chains are executable in

parallel the corresponding tasks are assumed to have equal resource requirements.

This is used to represent parallel blocks of execution which are performing the

same function (using the same amount of resources) on varying data input values.

Figure 3.2 (taken from [24]) illustrates how tasks are combined into chains and

chains into sequential and parallel blocks to make up the DAG of a workflow.

For related research [18, 19] tasks can also be associated with one another as

in a call tree. For example, one task, T1, may complete a portion of its work but

18

Fig. 3: Representation of the WFG of Fig. 2 using compound nodes.

1

2

3

4

5

6

4’

5’

6’

4’’

5’’

6’’

7

8

9

1

2

3

Figure 3.2: Figure 2 from [24] illustrating task chains (on the left) in parallel and
sequential blocks (represented on the right)

19

then invoke another service of the distributed system which becomes a new task,

T2, to be scheduled for execution on any available machine. The execution of T1

may synchronously block waiting for the result of T2 during which time task T1

may still consume some resource(s) (e.g., memory) though no longer consuming

others (e.g., CPU). When T2 completes, T1 will resume execution immediately

(i.e. without scheduling and on the same machine where it previous executed).

This invocation concept can be nested resulting in a tree-structure known as a

call tree. For the purpose of the simulator software call trees are ‘unrolled’ into

chains of tasks where some tasks (i.e., the subsequent execution of a task after an

invocation has been made, executed, and results returned) are marked such that

they are not placed in the task queue for scheduling; instead they resume on the

same machine where the work executed prior to the invocation. In the research

results presented in Chapter 6, call trees are not present or used. In [18, 19] this

capability of the Simulator was used to study detection and mitigation strategies

for deadlock; a highly undesirable state in which all executing tasks are blocked

waiting on invocations whose tasks cannot be scheduled because not enough

resources are available in the distributed system.

3.3 Workflow Generation

The primary inputs into the Simulator are a configuration file describing the

various types of workflows with their corresponding task resource requirements

and a configuration file describing the number of machines and their resource

capacities. The former is described further here and the latter in Section 3.4.

For convenience in parameterization, configuration of workflows can be di-

vided into any number of “types” of workflows. Each type describes how indi-

20

vidual workflows may be generated (number of tasks, chains, and blocks) and

the simulated time at which they first arrive to be scheduled in the Simulator.

For example, one workflow type may be for relatively small workflows of few

tasks which arrive relatively often whereas another type may be for workflows

consisting of a relatively large number of tasks, which arrive less frequently.

The arrival rate of each configured workflow type is specified as a parameter-

ized mathematical function (or combination of functions). The functions imple-

mented and provided in the Simulator software include one based on a Poisson

distribution, an exponentially decaying function, a piecewise linear function, a

simple predetermined arrival time list function, and a constant rate function. Ad-

ditionally a combination function can be used to “overlay” multiple instances of

the other functions as a sort of union of workflow arrivals from all those functions.

At each time instant indicated by this arrival rate function a new, independent

workflow is generated and its first task added to the Simulator’s task queue.

The parameterization of the number of tasks for a generated workflow is

specified as a minimum and maximum bounds (for a uniform distribution) for

the various “abstraction levels” of the workflow. The last level specifies how many

task objects will be generated in a single chain. The next-to-last level specifies

how many chains may be combined in parallel blocks. A separate configuration

parameter indicates whether two blocks of parallel chains may occur back-to-

back as opposed to every block of parallel chains being preceeded and followed

by a block consisting of a single chain. The next level specified how many blocks

will be generated. Although the Simulator allows nesting more levels than these

three, all past and current research has found no need for including levels beyond

three.

Finally, the specification of individual tasks’ resource requirements is specified

21

in an XML configuration file where various task templates are specified. Each

template parameterizes a random number distribution, the first for the work re-

quirement (i.e., how many CPU cycles must be executed for the task to complete

execution), and subsequently for the usage of each resource (e.g., memory, CPU).

In past and current research only uniform distributions have been used for each re-

source requirement for all tasks (however, non-uniform distributiosn are assumed

later in Chapter 6 when modeling errors in assumed resource requirements). As

used in [18] (but not in this reasearch), the simulator also supports a nested set

of tasks representing the invocation(s) made in a call tree. For each generated

task either a random template is chosen, or by configuration the templates may

be used in a round-robin fashion. An example XML configuration of a single task

template (with no nested invocation tasks) is given in Figure 3.3

The work requirement of a task specifies how many units of the resource

(CPU) must be executed in order to complete execution of the task. The CPU

resource usage of a task specifies how many units of work the task completes on

an ideal CPU in a unit of time. It is assumed the remaining time is spent in

use of another, unspecified resource (e.g., input/output) when the CPU usage

factor is less than 1.0. If two tasks were simultaneously executing on the same

machine of a single CPU, and their cumulative CPU usage was less than or equal

to 1.0, the Simulator assumes their ‘time-sharing’ of the CPU is ideal and both

tasks’ rate of work is no different than if they were executing in isolation on the

machine. More details on how the efficiency of CPU and memory resources are

modeled is discussed in the following subsection.

22

<CallTrees>

<CallTree>

<Request>

<Requirement>

<Resource>CPU</Resource>

<distribution name="uniform">

<minValue>1.0</minValue>

<maxValue>2.5</maxValue>

</distribution>

</Requirement>

<Usages>

<Usage>

<Resource>Memory</Resource>

<distribution name="uniform">

<minValue>0.05</minValue>

<maxValue>0.15</maxValue>

</distribution>

</Usage>

<Usage>

<Resource>CPU</Resource>

<distribution name="uniform">

<minValue>0.5</minValue>

<maxValue>1.0</maxValue>

</distribution>

</Usage>

</Usages>

</Request>

</CallTree>

</CallTrees>

Figure 3.3: Sample XML configuration of a single request template

23

3.4 Machine and Resource Representation

Other than the configuration of tasks and workflows as described in Section 3.3,

the other primary input to the Simulator software is the parameterization of

resources and machines. This occurs in a single configuration file that specifies

the number and names of the resources that will be located on each machine, and

the number of machines and each machine’s capacity for those resources.

Generally, resources are assumed to be indepedent across machines. This is

the case in past and current research where two resources, CPU and Memory,

were simulated. However, the Simulator also supports configuration of “global”

or shared resources that can be used to represent shared or centralized resources

of a distributed system such as a relational database or distributed cache.

The number of machines is configurable. For each machine simulated an

identification number is configured along with the capacity and function for com-

puting efficiency for each of the independent (non-global) resources. In past and

current research the simulated distributed system was compose of 16 machines

each with identical capacities: 4 CPUs and a normalized memory capacity of 1.

For the CPU resource an ideal efficiency function is used (i.e., if the cumulative

usage of executing tasks was less than or equal to the capacity, 4, the efficiency

is 100%, if usage was 8 then efficiency was 50%, usage of 12 was 33% efficient,

and so on). Equation 3.1 formally defines this ideal CPU efficiency, ecpu, as a

function of cumulative CPU load of all executing tasks, `cpu, and CPU capacity,

C.

ecpu = min

(
1,

C

`cpu

)
(3.1)

For the memory resource, the function to compute efficieny iss non-linear and

24

first presented in [24]. The memory efficiency function used assumed memory

was managed and that increasing usage had a negligible effect at low levels of

usage but efficience decreases dramatically for even small increases at high usage

[13, 14]. Equation 3.2 defines the memory resource efficiency, ememory, given

cumulative memory load of all executing tasks, `memory.

ememory =
K

K + 1
1

`memory
−1

(3.2)

The ideal efficiency function used to model CPU resource efficiency is illus-

trated in Figure 3.4, originally presented in [24]. Figure 3.5, also from [24],

illustrates the efficiency function used for the Memory resource.

The overall efficiency of a machine, e, is thus computed as the product of

both CPU (ecpu) and Memory (ememory) resource efficiencies, as in Equation 3.3.

This efficiency value, e, is then multiplied by the CPU utilization requirement of

a task to compute how much actual CPU work is accomplished on that task per

unit of time.

e = ecpuememory (3.3)

3.5 Model Subsystem

In the Simuator there are two distinct incarnations of the resources, machines,

and workflows. The first is referred to as the actual platform; the second is the

model platform. The model platform is used by the scheduler component for

making scheduling decisions; the actual platform is used for measuring outcomes

and performance of those scheduling decisions. The purpose of distinct platforms

25

1

(total CPU loading)

ec

4
0

8 12

idealized

typical

Figure 3.4: From [24] illustrating CPU resource’s ideal efficiency function used
by Simulator.

Total memory loading (M)

0.5

1.0

0
0 0.2 0.4 0.6 0.8 1.0

em

K = 100

K = 10

K = 1

K = 0.1

Figure 3.5: From [24] illustrating Memory resource’s non-linear efficiency function
used by Simulator.

26

within the Simulator is so that scheduling algorithms may be developed which

may use a model of the platform for which they are scheduling tasks for execution

which differs from the actual platform on which those scheduling decisions are

realized. These differences may be intentional in that the model may be a sim-

plified form of the actual platform to decrease the complexity requirement of the

scheduling algorithm. The differences may also be incidental as in the model may

have known errors or deviations due to the actual platform being too complex to

model perfectly or having uncertainty due to external factors not related to the

scheduler or executing tasks.

For the numeric results presented in Chapter 6 the performance of scheduling

algorithms is measured on the actual platform for scenarios where the model

platform has deliberate error terms applied to some or all resource requirements

of all tasks, in order to measure the robustness of algorithms’ ability to achieve

similar performance in the presence of such modeling error vs. an error-free

model.

3.6 Scheduling Algorithms

The heart of the Simulator is the scheduler component, which utilizes a scheduling

algorithm to decide which ready tasks to begin executing and on which machine.

As input scheduling algorithms are given the set of ready tasks and the set of

machines from the model platform. Scheduling algorithms may return zero or

more pairings of task-and-machine representing the decision to begin execution

of task(s) on the machine(s). The scheduler component repeatedly invokes the

scheduling algorithm until either the set of ready tasks is empty or the algorithm

returns zero pairings.

27

There are four foundational scheduling algorithms implemented in the Simu-

lator software. All four of these algorithms differ only in how they select which

ready task is the highest priority task to begin executing next. Each of these

four algorithms must also be paired with a secondary algorithm component to

decide which machine to execute the highest priority task on, or whether no

machine is either capable or all machines are too highly loaded to be desirable

to begin execution of the task. In [24] some of these machine selection policies

are discussed and ultimately the best-performing is one which selects the least

loaded machine which would be above a static threshold for machine efficiency

assuming the task were to begin execution immediately. The threshold represents

a minimum preferred machine efficiency throughout the simulation scenario and

prevents overloading machines during times when the queue of ready tasks is

large.

The first of the four foundational scheduling algorithms is first-come-first-serve

(FCFS), which selects tasks purely based on their time to become ready. This

algorithm effectively renders the ready task queue a true FIFO (first-in-first-out)

queue.

The second algorithm is earliest-deadline-first (EDF), which uses information

about the workflow containing the task to determine the task’s priority. The

highest priority task is the one which originates from a workflow whose deadline

is sooner than all other ready tasks’ workflows’ deadlines. For tasks from the

same workflow their relative priority is randomly determined.

The name of the third algorithm is least-laxity-first (LLF). Here, laxity refers

to the difference between the projected finish time of the task’s workflow and the

workflow’s deadline [20, 23]. Intuitively, this algorithm expands on the previous

EDF algorithm and handles better the case of a task from a workflow whose

28

deadline is nearest but the workflow is near completion vs. another task whose

workflow deadline may be further away but which has far more tasks and work

left to complete which, unless the task execution is begun sooner, will risk missing

its deadline. Of course, LLF requires a model to predict when a workflow will

complete, which naturally relies on what scheduling decisions will be made in the

future of the simulation. Although several proposals were originally formulated

and tested, the most advantageous formulation determined by simulation studies

and comparing results was a simple one that merely projecting the finish time us-

ing the past rate-of-execution for the workflow’s completed tasks as the expected

rate-of-execution for all remaining tasks. This formula is listed in Equation 3.4

using tasks, t, from workflow, w, their CPU work requirement, Ct, and the work-

flow birth/generation time, wborn. In it tasks previously executed and completed

are denoted as tc ∈ w and tasks not yet executed or remaining as tr ∈ w.

projected finish time of w =
remaining work

rate of completed work
=

∑
tr∈w

Ct∑
tc∈w

Ct

now−wborn

(3.4)

The fourth algorithm is an improvement upon LLF. As LLF improves upon

EDF by distinguishing between a deadline soon approaching versus a tighter

deadline, the proportional-least-laxity-first (PLLF) algorithm represents laxity

(the difference of projected finish time of a workflow and its deadline) as a pro-

portion of the total amount of work required among all tasks of the workflow.

Use of this proportion serves to distinguish large and complex workflows from a

smaller workflow with the same laxity (under the assumption that a larger work-

flow will have more/longer parallel chains of tasks for which parallelism can be

29

exploited). PLLF uses the same calculation for projected workflow finish time

as LLF and same calculation of laxity, but divides it by the difference of the

workflow’s deadline and its generation/born time. This equation of normalized

tardiness is given in Equation 3.5 where for worfklow w its normalized tardiness,

τw is based on the its actual (or projected) finish time, fw, deadline, dw, and

generation/birth time, bw.

τw =
fw − dw
dw − bw

(3.5)

In both LLF and PLLF algorithms, the projected finish time of workflows

computed by Equation 3.4 assume some work of the workflow has previously

been completed (otherwise the equation would attempt to divide by zero). In

the case where the first task of the workflow is being considered for scheduling

Equation 3.4 cannot be used and instead the computation of laxity and projected

finish time relies on a rudimentary guess at the amount of possible parallelism

which may be exploited to execute the tasks of the workflow. For results in

Chapter 6 the duration of tasks is assumed to be the execution time in ideal

circumstances (resources operating at 100% efficiency) and tasks which may be

executed in parallel are assumed to be executed with a constant amount of paral-

lelism (depending on the type/category of workflow). Future research into more

sophisticated mechanisms for computing projected finish time of workflows with

no task yet completed could be conducted.

These four foundational scheduling algorithms, FCFS, EDF, LLF, and PLLF

each differ in how they prioritize the next task to be executed from the ready

task queue but each share the concept of a need to determine which machine to

execute upon or whether to forego starting execution until a future time. A more

30

complex scheduling algorithm may combine the selection of task and machine

as a holistic approach to making scheduling decisions. In Chapter 4 one such

algorithm is presented.

31

Chapter 4

Cost-Minimization Scheduling

Algorithm

4.1 Overview

This chapter defines a scheduling algorithm first presented by this author in [11].

The Cost-Minimization Scheduling Algorithm (CMSA) is, as its name suggests,

an algorithm for making scheduling decisions based on information about tasks to

be scheduled and their associated “cost.” The cost function is defined by the user

of the CMSA. For our studies we employ a cost function based on the tardiness

(amount of deadline miss) of the workflow. Whenever the algorithm is invoked to

make a scheduling decision, the algorithm must weigh whether the cost savings

of starting any ready task and thus speeding up the projected completion of its

workflow is more advantageous than the cumulative cost incured by slowing the

progress being made on all other running tasks on the same machine (if any) by

committing that machine’s resources to additional load of the to-be-scheduled

task.

32

CMSA is heuristic-based, in part because it must estimate finish times of

tasks (or tasks which follow it) in order to compute the proportionate miss of

their deadline, but also because it measures only the impact of scheduling a

ready task versus delaying the start of the ready task (increasing the cost of its

workflow by delaying its projected finish time) until an estimated future time:

the earliest projected finish time of any of the currently running tasks.

LetW denote the set of all workflows to be scheduled for execution. For each

w ∈ W there is assumed to be a cost function, zw(τw), which maps a normalized

measure of w’s tardiness, τw, to a cost value. The total cost of the system,

denoted by z(τ), is defined by summing the costs of all workflows:

z(τ) =
∑
w∈W

zw(τw) (4.1)

where τ = [τw]w∈W and τw is the normalized tardiness of workflow w from Equa-

tion 3.5.

Because τw is normalized, it is straightforward to compare the relative tardi-

ness values of workflows of different sizes and/or expected durations. For instance,

an actual tardiness of fw − dw = 10 seconds is relatively insignificant if the over-

all allocated duration is dw − bw = 1 hour, i.e., τw = 10
3600

= 0.0028. However, a

tardiness of 10 seconds could be quite significant if the overall allocated duration

is defined to be 40 seconds, i.e., τw = 10
40

= 0.25.

In order to derive an effective cost-minimizing scheduler, it is convenient to

assume that the workflow functions zw(τw) are non-decreasing functions. This is

a reasonable assumption in practice because a sensible SLA (service-level agree-

ment) should not allow greater tardiness to be less costly than any lesser tardiness.

33

4.2 The Algorithm

The function of CMSA is to decide which, if any, of the “ready” tasks present in

the scheduling pool should be assigned to a machine to begin execution. Recall

from Chapter 3 that scheduling decisions are allowed only when one of two events

occur in the system: (1) when a task finishes execution or (2) when a new workflow

arrives in the system and its first task is placed in the ready queue. During the

time period between two such consecutive events, the currently executing tasks

continue executing and the states of the machines, executing tasks, and tasks in

the queue do not change. Regarding the state of the machines, specifically, based

on the machine resource model described in Section 3.4, the efficiency value, e, of

each machine does not change during the time period between consecutive events.

At each scheduling instance, and for each ready task in the queue, CMSA de-

cides whether to start a task on a machine, based on the outcome of cost function

analysis. Specifically, the scheduler estimates the cost associated with starting a

ready task immediately or holding the task in the queue until the next soonest

time at which any other task currently executing on the machine will finish. Cen-

tral to the algorithm’s decision-making process is the ability to estimate the costs

associated with competing scheduling options. A primary source of uncertainty

in estimating a workflow’s cost, zw(τw), is estimating the finish time, fw, of the

workflow. Recall from Eq. 3.5 that τw is directly proportional to fw.

Predicting the exact value of fw (before w has finished execution) is generally

not possible because all scheduling decisions, including those yet to be made,

ultimately affect the values of fw for all workflows. Fig. 4.1 visually represents

the amount of work remaining to be done on an individual task r (initially Cr).

As is apparent from Fig. 4.1, the issue of how to best estimate the finish time,

34

e(Mr , t)

1

t0

cr(t)

t0

Cr

tsr
0

frti ti+1

Figure 4.1: Example depiction of the effect of machine/resource efficiency on task
finish time.

fr, of even a single task is not obvious because its value depends on factors in

addition to the request’s start time sr, including how the efficiency of the machine

on which it is executing varies with time such as before time ti and between ti

and ti+1 because of other tasks which may be started or completed on the same

machine during the processing of r.

For the purposes of the present discussion, an estimate is assumed to be

available for w’s finish time at scheduling instance ti, and this estimate is denoted

by f̃w(ti). A description of the particular method used to calculate f̃w(ti) in the

simulation studies is provided in Section 3.6 and Equation 3.4.

LetM denote the set of machines and M(ti) denote the set of tasks currently

executing on machine M ∈M at time ti. Let R(ti) denote the set of ready tasks

in the queue at time ti, and let w(r) denote the workflow associated with task r.

35

Basic Scheduling Decision: A basic decision made by the scheduling al-

gorithm involves deciding whether to start executing a ready task at a current

scheduling instance or to wait until a future scheduling instance. This basic

decision assumes a candidate ready task and a candidate machine are specified.

For ready task r ∈ R(ti) and machine M ∈ M, determine whether

it is less costly to start r on M at the current time ti or wait until a

future time tM > ti.

The value of tM is defined to be the next (soonest) time at which one of M ’s

executing tasks will complete. The value of tM is itself dependant upon whether

a particular ready task r∗ is started at time ti. The formulas for the two possible

values of tM , denoted twaitM and tstartM , are given by:

twaitM = ti + min
r∈M

{
cr(ti)

Urewait

}
(4.2)

tstartM = ti + min
r∈M∪{r∗}

{
cr(ti)

Urestart

}
(4.3)

where ewait = e(M(ti), ti) is the efficiency of machine M if the decision is made

to wait to start r∗ and estart = e(M(ti) ∪ {r∗}, ti) is the efficiency of machine M

as if the decision is made to start executing r∗.

For convenience, define ∆twait = twaitM − ti and ∆tstart = tstartM − ti. The cost

associated with waiting until twaitM to begin executing r∗ on M is defined by:

zwait
r∗,M = zw(r∗)

(
f̃w(r∗) + ∆twait − dw(r∗)

dw(r∗) − bw(r∗)

)
+
∑
r∈M

zw(r)

(
f̃w(r) − dw(r)

dw(r) − bw(r)

)
(4.4)

The cost associated with starting r∗ on M at time ti is defined by:

36

1 for scheduling instance ti
2 minPenalty←∞, rmin ←∞, Mmin ←∞
3 for each r ∈ R(ti)
4 for each M ∈M
5 compute ∆zr,M = zstart

r,M −zwait
r,M

6 if ∆zr,M ≤ 0

7 compute zpenalty
r,M

8 if zpenalty
r,M < minPenalty

9 minPenalty← zpenalty
r,M

10 rmin ← r
11 Mmin ←M
12 if minPenalty =∞
13 exit
14 assign request rmin to machine Mmin

15 R(ti)← R(ti)− {rmin}
16 goto line 2

Figure 4.2: Pseudocode for CMSA.

zstart
r∗,M =

∑
r∈M∪{r∗}

zw(r)

(
f̃w(r) + ∆tstart

(
1

estart
− 1

ewait

)
− dw(r)

dw(r) − bw(r)

)
(4.5)

For each ready task in the queue at time ti, r ∈ R(ti), and each machine

M ∈M, the cost-minimizing algorithm computes the difference in costs ∆zr,M =

zstart
r,M − zwait

r,M . If ∆zr,M > 0 for all r ∈ R(ti) and for all M ∈ M, then the

scheduler will not start any task now (at scheduling instance ti). However, if there

exists one or more combinations of requests and machines for which ∆zr,M ≤ 0,

then the scheduler will start the task on the machine having the smallest starting

penalty, defined as follows:

zpenalty
r,M = ∆zr,M + zw(r)

(
f̃w(r) + ∆twait − dw(r)

dw(r) − bw(r)

)
(4.6)

Fig. 4.2 provides the precise description of CMSA. For a given scheduling

37

instance ti, CMSA first performs computations for all combinations of ready

tasks and machines, refer to lines 3 through 11. After completing this phase of

computation, CMSA then determines whether there exists a task that can be

started on a machine. If the answer is no, then the algorithm exits, refer to

lines 12 and 14. However, if the answer is yes, then the selected task is assigned

to the selected machine (line 14), the selected task is removed from the set of

ready tasks (line 15), and the algorithm again performs computations for all

combinations of remaining ready tasks and machines (line 16). The complexity

associated with performing computations for all combinations of ready tasks and

machines is O(|R(ti)||M|). Because it is possible that these computations may

be performed up to |R(ti)| times, the worst case computational complexity of

CMSA is O(|R(ti)|2|M|).

Note that if the system is highly loaded, then |R(ti)| will tend to be large.

This is because a highly loaded system implies there are limited machine resources

available to assign ready tasks, thus ready tasks will tend to accumulate in the

queue. Because of this, it is likely that CMSA will exit soon under the highly

loaded assumption, meaning that while |R(ti)| is large, the actual complexity of

CMSA may be closer to O(|R(ti)||M|) than O(|R(ti)|2|M|). On the other hand,

if the system is lightly loaded, then |R(ti)| will tend to be small. This is because

a lightly loaded system implies there are ample machine resources available to

assign ready tasks, thus ready tasks will tend to be removed quickly from the

queue. Thus, in the lightly loaded case, the complexity of CMSA tends to be

characterized by O(|R(ti)|2|M|). However, because |R(ti)| is relatively small, the

actual complexity for the lightly loaded case may be comparable to, or even less

than, the complexity of CMSA under high loading.

38

 0

 20

 40

 60

 80

 100

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

W
o
rk
fl
o
w

 P
e
rc

e
n
ta

g
e

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
FCFS

Small
Medium

Large

Figure 4.3: Histogram of percent of workflows completed (by workflow type) for
various ranges of normalized tardiness for FCFS.

4.3 Comparison of Behavior

In order to compare the behavior of CMSA to algorithms such as FCFS and

PLLF a histogram of workflows completed within various ranges of normalized

tardiness by workflow type is shown for FCFS, PLLF, CMSA with a sigmoid cost

function, and CMSA with a quadratic cost function in Figures 4.3, 4.4, 4.5, and

4.6, respectively.

As illustrated CMSA, with either cost function, generally performs better

than FCFS or PLLF (which itself performs better than FCFS) in terms of more

workflows completed at or below a normalized tardiness of zero (i.e. finished at

or before their deadline). Furthermore, CMSA with the quadratic cost function

keeps the maximum normalized tardiness of any workflow below that of PLLF

39

 0

 20

 40

 60

 80

 100

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

W
o
rk
fl
o
w

 P
e
rc

e
n
ta

g
e

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
PLLF

Small
Medium

Large

Figure 4.4: Histogram of percent of workflows completed (by workflow type) for
various ranges of normalized tardiness for PLLF.

40

 0

 20

 40

 60

 80

 100

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

W
o
rk
fl
o
w

 P
e
rc

e
n
ta

g
e

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Sig)

Small
Medium

Large

Figure 4.5: Histogram of percent of workflows completed (by workflow type) for
various ranges of normalized tardiness for CMSA with a sigmoid cost function.

41

 0

 20

 40

 60

 80

 100

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

W
o
rk
fl
o
w

 P
e
rc

e
n
ta

g
e

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Quad)

Small
Medium

Large

Figure 4.6: Histogram of percent of workflows completed (by workflow type) for
various ranges of normalized tardiness for CMSA with a quadratic cost function.

42

(and FCFS). However, the results also show distinct differences in how CMSA

performs generally for each workflow type.

First, where FCFS and PLLF tend to cause small workflows to be completed

the latest (highest normalized tardiness), CMSA for either cost function tends

to perform much better for small workflow and instead let some large workflows

finish latest. Furthermore, CMSA tends to finish the majority of small workflows

just at or before their deadline (i.e. a normalized tardiness of 0 or below).

Second, CMSA for both cost functions achieved roughly the same outcome

for medium workflows (the majority completed 25% or more before their deadline

and the rest completed between 0% and 25% before the deadline). PLLF achieves

a similar result though with about 20% of medium workflows up to 50% after the

deadline. FCFS also completes a majority (nearly 60%) of medium workflows

early but with about 20% of medium workflows several times later than their

deadline.

Finally, one of the biggest distinctions in behavior is the treatment of large

workflows. FCFS tends to complete nearly equal amounts of large workflows

at all intervals between 50% early and 100% late. PLLF keeps large workflows

below 50% late with the majority completed between 25% early and 25% late.

CMSA’s treatment of large workflow differs depending on the cost function. The

sigmoid cost function, because it assigns nearly equal cost to a late workflow vs.

a very late workflow, tends to cause CMSA to essentially “give up” working on a

workflow expected to be completed “too late” while other workflows are present

in the system (which can benefit from being prioritized and possible go from

being completed late to being completed early). As a result, CMSA with the

sigmoid cost function tends to complete most large workflows early or on time,

but a few large workflows are “neglected” until the system is loaded lighter and

43

thus are completed up to four times later than their deadline. CMSA with the

quadratic cost function, on the other hand, treats workflows as more costly the

later their completion becomes and thus tries to minimize the worst tardiness of

all workflows. As a result only a small number of large workflows are completed

up to 100% late.

44

Chapter 5

Framework for Evaluating

Scheduling Robustness

5.1 Overview

Robustness of a scheduling algorithm to the presence of error can be measured

in two ways. The first is to quantitatively measure the difference in scheduling

decisions the algorithm makes with and without error. This may be measured

as the difference in order the algorithm chooses to begin execution of tasks (i.e.,

because of error the algorithm begins execution of task t1 ahead of task t2 where

if no error were present the opposite order would be selected). Difference in

scheduling decisions can also be measured by examining the actual times when

tasks begin executing. By this measure of robustness, however, a simple algorithm

such as first-come-first-served (FCFS) may be considered perfectly (or maximally)

robust because the presence of error in the task requirements does not change the

order in which the workflows arrive and thus their starting and subsequent tasks

are add to the queue (recall from Section 3.6 that FCFS treats the queue of ready

45

tasks as a FIFO data structure and scheduled tasks in the order they were placed

in the queue). On the other hand, for other scheduling algorithms, even though

different scheduling decisions may be made due to model error the performance

objective of scheduling algorithms (e.g., to complete workflows by or ahead of

their deadline) may still be achieved (i.e., many potential static schedules may

achieve the same objective).

Measuring the difference in performance objective in the presense of model

error vs. an error-free model is the second means for measuring robustness.

Because this research is focused on dynamic scheduling algorithms and not static

schedules and also focused on practical outcomes, this second approach of defining

robustness is the one adopted in this research.

Multiple potential performance objectives are practically considered in other

research such that scheduling algorithms’ robustness with respect to each may

be measured and compared with and without the presence of error in the model.

Such objectives include:

• Percent of workflow completed late (after their deadline)

• Average and Maximum tardiness of workflows

• Average cost (e.g., as defined in Chapter 4)

• Latest completion time of all workflows (i.e., makespan)

In the present research, results will focus primarily on the percent of workflows

completed early vs. late (and also at various proportions of earliness and late-

ness) as well as maximum normalized tardiness as the objectives against which

robustness to error will be measured.

46

5.2 Actual Platform Feedback

As results in Chapter 6 will show one of the most important aspects in achiev-

ing robustness is the utilization of feedback from the “actual” platform to the

“model” platform. Consider a simple example scenario where two tasks, t1 and

t2, are to scheduled for execution in a platform with only a single machine. The

resource requirements of each task is substantial enough that to execute both

tasks concurrently would result in an efficiency of less than 50% the efficiency of

executing either task alone. It would thus generally be best to execute the tasks

sequentially to achieve any reasonable objective (e.g., shortest makespan, lowest

percent of tardiness). Because of the presense of error, however, the “model” plat-

form will model the first scheduled task as completing at a different time than

it does in the actual platform. In the case that the modeled task completion

time is later than the actual platform, feedback of the actual task’s completion

prevents the actual machine from wastefully being idle because in the “model”

platform the task is still executing. Figure 5.1 illustrates a scenario such as this

one and the effect on “model” and “actual” machine efficiencies as well as how

the remaining work (C1 and C2) of both the “model” and “actual” tasks, t1 and

t2 are decreased over time. This kind of scenario will lead to generally worse

performance for scheduling algorithms as they make poor use of resources by un-

derutilizing them (e.g., the period in Figure 5.1 where “actual” machine efficiency

is at 1.0.

In the other case the modeled task’s completion time is earlier than the actual

platform. This scenario is generally worse because without feedback from the ac-

tual platform the model platform’s newly idle machine will lead the scheduling

algorithm to decide to begin execution of the second task. This further exacer-

47

0

100

t1 begins t1 ends, t2 begins t2 ends

M
a
ch

in
e
 E
ffi

ci
e
n
cy

Efficiency of Model Platform Machine

0

 C

t1 begins t1 ends, t2 begins t2 ends

W
o
rk

 R
e
m

a
in

in
g

Model Tasks' Remaining Work Left

t1
t2

0

100

t1 begins t1 ends t2 begins t2 ends

M
a
ch

in
e
 E
ffi

ci
e
n
cy

Efficiency of Actual Platform Machine

 C

t1 begins t1 ends t2 begins t2 ends

W
o
rk

 R
e
m

a
in

in
g

Actual Tasks' Remaining Work Left

t1
t2

Figure 5.1: Effect on “actual” machine efficiency and remaining task work when
“model” error over-estimates task requirements and thus models the task as com-
pleting later than it does in the “actual” platform.

48

bates the problem by deviating the modeled completion time and actual comple-

tion time of the first task because the concurrent execution of both tasks (for any

amount of time) leads to lower efficiency of the machine and the actual first task

requiring longer to complete execution. The same lower efficiency causes the same

exaggerated difference between the second task’s modeled and actual completion

time. An example of this scenario is illustrated in Figure 5.2. Furthermore, in

more elaborate scenarios with more tasks this second kind of problem becomes

a sort of negative feedback loop creating more and more deviation between the

model and actual platforms in terms of which tasks are executing vs. completed

and the tasks’ completion times.

The primary solution to this problem is to create a system whereby the com-

pletion of tasks on actual machines can be fed back to inform the model platform

of tasks’ (actual) completion. If this feedback is guaranteed for all tasks, the

notion of tasks completing in the model platform can be removed or ignored.

However, if anything less than complete feedback occurs, even though it may be

99+% of tasks’ completions from the actual platform, then the model platform’s

completion of tasks must be used to approximate the actual task completing.

Otherwise, a model platform task be modeled as executing indefinitely in the

case that the completion time of the corresponding actual task is not fed back to

the model.

This distinction between a model and actual platform, where decisions made

by a scheduling algorithm are manifested (by a component known as a Task

Assigner), is illustrated in Figure 5.3. The potential presence of feedback from

the actual platform to the model platform is represented by a dashed line.

A secondary approach to dealing with the effects of error would be to avoid

or decrease the likelihood of the scenario in which the model platform models

49

0

100

t1 begins t1 ends, t2 begins t2 ends

M
a
ch

in
e
 E
ffi

ci
e
n
cy

Efficiency of Model Platform Machine

0

 C

t1 begins t1 ends, t2 begins t2 ends

W
o
rk

 R
e
m

a
in

in
g

Model Tasks' Remaining Work Left

t1
t2

0

100

t1 begins t2 begins t1 ends t2 ends

M
a
ch

in
e
 E
ffi

ci
e
n
cy

Efficiency of Actual Platform Machine

 C

t1 begins t2 begins t1 ends t2 ends

W
o
rk

 R
e
m

a
in

in
g

Actual Tasks' Remaining Work Left

t1
t2

Figure 5.2: Effect on “actual” machine efficiency and remaining task work when
“model” error under-estimates task requirements and thus models the task as
completing earlier than it does in the “actual” platform.

50

Scheduler

Model Platform

Actual PlatformActual
Workflows

Model Workflow
[Requirements]

Actual Task
Assigner

Model Task
Assigner

Feedback

Resource Availability

Workflow
Modeling

Figure 5.3: Block diagram from [10] illustrating components of proposed frame-
work for evaluating effect of model error and scheduling algorithms robustness.

51

the task completion as being earlier than the corresponding task in the actual

platform. In effect, this means that the error in the model would favor overes-

timating task resource utilization, for example, the amount of work required to

complete execution of each task. The following section outlines the approach in

this research for dealing with error that may underestimated task requirements.

5.3 Applying Error Bias

It is unrealistic to know the magnitude of error inherant in the “model” plat-

form because such knowledge would imply the error could simply be negated to

achieve a perfectly accurate model. In this research little is assumed about the

nature (overestimate or underestimate) or magnitude of the model error and a

generic approach is applied in order to bias the model’s error such that it is less

likely or even guaranteed not to underestimate tasks’ resource utilization or work

requirement.

Let X̂ denote a modeled or estimated value of an actual value, X, but with

some “error” making it generally inaccurate. There are several biasing approaches

in which an alternative estimate of X can be computed from X̂ such that this

alternative estimate, X̂b, is less likely than X̂ to underestimate X. The simplest

such approach would be to add a constant value, C, to X̂, as in Equation 5.1.

In order to choose an effective value for C, however, information about the mag-

nitude of X itself as well as the maximum amount of error in X̂ is needed. In

Figure 5.4 the effect of various C values is demonstrated where X is a term hav-

ing error, bound parameter e, applied to it from a triangle-shaped distribution

between [−e, e]. To eliminate the potential of underestimating the true value

while minimizing the amount of overestimation the value C1 = e is illustrated

52

X-eX
X-0.8eX

X X+eX
X+1.2eX

X+2eX
X+3.2eX

P
ro

b
a
b

ili
ty

Effect of Constant Bias Strategy (X+C)
X from triangle distribution [X-eX,X+eX], e=0.5, C1=e, C2=0.2e, C3=2.2e

X
X+C1
X+C2
X+C3

Figure 5.4: Illustration of probabilities for value X with error bound term, e, from
triangle distribution applied, along with several C constant bias terms applied.

as the green line. A value of C too small such as the case of C2 = 0.2e results

in probability that the biased term still underestimates the true value, X (refer

to the blue line). A value of C too large such as the case of C3 = 2.2e (refer

to the orange line) may overestimate more than necessary and even result in the

biased term having bounds that don’t intersect with the original value, X. Thus,

using a constant value for biasing the model value is generally only effective if

the magnitude of the error is known or estimated with near accuracy.

X̂b 1←− X̂ + C (5.1)

If the bounds of the value of the error are not known but the bounds of the

proportion (or percentage) of error is known or reasonably estimatable as ê, then

53

X̂ can be normalized as in Equation 5.2. This bias strategy will in the rest of

this research be referred to as the proportionate bias strategy.

X̂b 2←− X̂/(1− ê) (5.2)

For example, if X̂ is known or assumed to be within 10% (i.e., e = ê = 10%) of

the true value, X, then X̂ ∈ [0.9X, 1.1X]. By dividing X̂ by 1− ê as in Equation

5.2 the normalized value X̂b ∈ [X, 1.222X]. Given an accurate estimate of the

error’s bounds as a percentage of X, the distribution of X̂b can be shifted to never

underestimate X. Unlike the constant bias strategy, however, the distribution

bounds of X̂b are also “stretched” in addition to being shifted (i.e. why the X̂b

distribution above may overestimate X by not just e as X̂ did, but by 1+e
1−ê).

In other words, while the width of the distribution of X̂ is 2e, the effect of the

proportionate bias strategy produces a value, X̂b, whose distribution width is

1−e
1−ê + 1+e

1−ê . This effect is illustrated in Figure 5.5 where estimates (d) for the error

term, e, as a percentage of X are shown. Again a triangle distribution is used for

the probability distribution of values X̂ ∈ [X(1− e), X(1 + e)] as an example.

The main benefit of the second bias strategy over the first is that the error esti-

mate may be given as a percentage of the true value, X, as opposed to a constant

value. Additionally, an accurate estimate perfectly eliminates the propability of

having an underestimated value X̂. The disadvantage of the second bias strat-

egy is the stretching effect on the distribution bounds, which worsens with larger

error terms. As a compromise, another bias strategy is to use an estimate, ê, of

the error term e again expressed as a percentage of X as in Equation 5.3:

X̂b 3←− X̂(1 + ê) (5.3)

54

X-eX
X X+eX

(X-eX)/(1-1.5e)

(X+eX)/(1-e)

(X+eX)/(1-1.5e)

P
ro

b
a
b

ili
ty

Effect of Proportionate Bias Strategy (X/(1-e))
X from triangle distribution [X-eX,X+eX], e=0.5, e1=e, e2=e/5, e3=1.5e

X
X/(1-e1)
X/(1-e2)
X/(1-e3)

Figure 5.5: Illustration of probabilities for value x with error term, e = 0.5X, from
triangle distribution applied, along with several estimates of e as a percentage of
X applied using Eq. 5.2: e1 = e = 0.5, e2 = 0.1, e3 = 0.75.

55

X-eX
(X-eX)(1+e)

X X+eX
(X+eX)(1+e/5)

(X+eX)(1+e)

(X+eX)(1+1.5e)

P
ro

b
a
b

ili
ty

Effect of Simple Bias Strategy (X*(1+e))
X from triangle distribution [X-eX,X+eX], e=0.5, e1=e, e2=e/5, e3=1.5e

X
X(1+e1)
X(1+e2)
X(1+e3)

Figure 5.6: Illustration of probabilities for value X with error term, e = 0.5, from
triangle distribution applied, along with several estimates for e as a percentage
of X applied using Eq. 5.3: e1 = 0.5, e2 = 0.1, e3 = 0.75.

This simpler bias strategy also works reasonably well for smaller (0-10%) error

terms with less stretching than the second bias strategy. It does still underesti-

mate the true value X even with a perfect estimate, ê, of e, but by a relatively

small amount. In fact, for the simple bias strategy to produce an X̂b which does

not underestimate X requires an ê = e
X−e , which is impractical to know since it

requires knowledge of X. The expanded distribution of X̂ with the simple bias

strategy is (1− e)(1 + ê) + (1 + e)(1 + ê). Figure 5.6 demonstrates the effect of

using this third bias strategy under the same conditions of a triangle distribution

where e = 0.5 and the three error estimates, ê are 0.5, 0.1, and 0.75 as in Figure

5.5.

In Chapter 6 the presence of feedback (none, full, and various levels of partial)

56

and each of these three bias strategies (as well as no bias) are simulated and their

effects on each scheduling strategy from Section 3.6 in the presence of various

levels of model error bound values are presented.

57

Chapter 6

Numerical Studies

6.1 Overview

All results that follow are based on a software simulator developed for this and

related research. This simulator represents a distributed system and the arrival of

various types of workflows as modeled and described in Chapter 3. The quantities

and associated parameterization of the resources and machines are configurable,

as are the size and “shape” of workflows, their tasks’ resource requirements, and

arrival rates. This simulation of a distributed system is modeled after a real world

system developed and in use at the author’s place of full-time employment as a

distributed system framework architect and software engineer. The parameter-

ized workflows, arrival rates, etc. are modeled after a typical 24-hour period of

processing for this real world system.

The machines simulated were a reasonably small distributed system topology

of sixteen machines each with identical resource capacities. The workflows were

modeled as three “classes” of workflow representing essentially small, medium,

and large jobs. These sizing designations apply to both the overall size of the

58

workflow instances in terms of number of tasks, as well as the resource utilizations

of the tasks. Additionally, the arrival rates were distinct among each of the three

workflow types and these rates themselves for each workflow type varied over

a simulated 24-hour period to mimic typical loadings of the real system. The

small-sized workflow are representative of jobs from an interactive application in

which job size and requirements are constrained to be small by design in order

to provide a responsive experience to users. These workflows arrive according to

the overlap of three Poisson distributions representative of the working hours of

users in three different geographic regions of the world.

The medium-sized workflows were roughly a factor of three to five times

larger than the small-sized workflows. Additionally, the tasks’ resource (CPU

and Memory) utilizations were similar to other workflow types but the amount

of work/time required to complete the tasks were an order of magnitude larger

than the small-sized workflows’ tasks. The arrival rate of these workflows was a

simple Poisson distribution over the entire 24-hour simulation period. The large-

sized workflows were again another order of magnitude larger in terms of task

work/time required to complete, but similar in terms of the resource utilizations.

The size of large-sized workflows were a factor of four to ten times larger than

the medium-sized workflows. Their arrival rate was based on a exponential decay

rate representative of large jobs that generally begin arriving shortly after avail-

ability of new daily data or functionality (which in this simulated scenario occurs

at time 25, 200, roughly 30% into the simulation’s 24-hour, or 86, 400 time units,

period) with some jobs sporadically arriving later throughout the simulation.

The simulated deadlines for workflows was computed using a random factor

of 10-30% beyond a computed expected runtime of the workflow based on a

reasonable assumption of concurrent execution of tasks (2-5 for workflows sized

59

large enough to have concurrency which could be exploited) and on a lightly

loaded collection of machines.

For all simulations, the same set of workflows generated according to the

descriptions above were used, comprised of 4,354 workflows: 2,280 small-sized,

1,958 medium-sized, and 116 large-sized workflows. The effect of the arrival rates

and summary of the arrivals of each of the 4,354 workflows is depicted in Figure

6.1. As evidenced by the graph this simulated scenario provides multiple time

periods of varying load demands on the distributed system including times near

the beginning and end when only medium-sized workflows are arriving in the

system (though near the end there is likely still some previously-arrived large

workflows still being processed), a time period when both medium- and small-

sized workflows are arriving, and a time period when all three sizes of workflows

are arriving including times when small-sized workflows are arriving at double

their normal rate (times when normal business hours of two geographic world

regions overlap).

To study the effect of “error” in the model of workflows and tasks used by

the scheduling algorithms relative to the actual values simulated, different levels

of error were applied to some of the resource requirements for all tasks. For one

set of simulations only the resource requirement of the amount of CPU cycles

the task must complete executing has an “error” term applied. This resource

requirement represents the amount of work each task has to execute, which for

many applications is based on the inputs inherent in the task for the various

algorithms and computations it will perform. Such data dependence can be

difficult to either measure or predict. In a second set of simulations all the

resource requirements of all tasks had “error” terms applied to them: the CPU

cycles, the CPU load factor, and memory footprint of the task. Where results are

60

 0

 5

 10

 15

 20

 25

 30

 35

0 25,000 86,400

C
o
u
n
t

o
f

W
o
rk
fl
o
w

 A
rr

iv
a
ls

Time (10 minute increments)

Workflow Arrival Count by Workflow Type

Small
Medium

Large

Figure 6.1: Histogram of workflow arrivals by “class.”

presented, the types of resource requirements with error applied and the nature

of that error’s stochastic distribution are stated.

The application of error was to apply a value taken from a random distribution

to each task’s resource requirement(s) as a percentage of the original value. For

example, to simulate a small amount of error in each tasks’ modeled CPU work

cycle requirement the modeled requirement value would be equal to the actual

requirement value plus or minus a percent taken from a random distribution

between -1% and +1% (simulations were conducted for a uniform distribution).

Numeric studies performed varied this error bound from 0.1% up to 50%. In this

research all errors terms were centered on 0.0, meaning that the error models used

are unbiased. Because the source and cause of error may generally be unknown,

there is no reason to assume it either underestimates or overestimates the true

value more often than the other.

61

Error Bound % Feedback Bias Type
0.1% 100% None
0.5% 99.9% Constant Bias
1% 99.5% Simple Bias
5% 99% Proportionate Bias
10% 95%
50% 90%

50%
0%

Table 6.1: Table of simulation characteristics evaluated. For each cross-product
of values ten simulations with different seeded error terms was executed.

6.2 Dimensions of Perturbation

In order to simulate and study the effect of multiple aspects or characteristics

of the model subsystem, a cross-product of simulations are executed. For each

intersection of values for all aspects ten separate simulations are executed each

with a different seed value to affect the random number distribution used as the

error terms applied to each tasks’ resource requirements. Results presented then

are an average across these ten simulations, in order to reduce the likelihood that

any single set of random values skewed simulation outcomes in a way that may

effectively skew the conclusions drawn.

As discussed earlier in this chapter one of dimensions of study is that of the

potential magnitude of the amount of error. Another aspect varied was that

of the type of random distribution from which error terms were drawn. The

concept of feedback from “actual” to “model” platform discussed in Section 5.2

was another aspect varied amount different percentages of actual task completion

events which were used to correct the model. A summary of these dimensions

and values for each one for which simulations were executed is summarized in

Table 6.2.

62

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
No Feedback, 0% Error as Bars, 0.1% Error as Lines

CMSA Sig
CMSA Quad

PLLF
FCFS

CMSA Sig
CMSA Quad

PLLF
FCFS

Figure 6.2: Effect on the histogram of workflows completed by normalized tar-
diness without “actual” system feedback of task completions in the presence of
small error (taken from a uniform distribution and applied only to the CPU work
requirement of tasks) for all scheduling algorithms.

6.3 Results Concerning the Impact of Feedback

As first presented in [10] and discussed in detail in Section 5.2, the most nega-

tively impactful aspect of model error for all scheduling algorithms is a lack of

feedback from the “actual” system about the completion of tasks. As depicted

in Figure 6.2, even the presence of a small amount of error (0.1%) in only the

CPU work requirement of tasks causes all four scheduling algorithms to finish

significantly fewer workflows on time. Specifically, the lack of feedback results

in a significant number of workflows completing 10-100 times later than their

deadline (comparing the line graph to the bar graph of the same color).

As discussed in Section 5.2 this effect of the lack of feedback, because some

63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 25,000 100,000
200,000

300,000
400,000

500,000

M
in

im
u
m

 A
v
e
ra

g
e
 E
ffi

ci
e
n
cy

 o
v
e
r

1
0

0
 T

im
e
 U

n
it

s

Time

Machine Efficiency over Time
No Feedback, 0.1% Error

FCFS
PLLF

CMSA Sig
CMSA Quad

Figure 6.3: Minimum machine efficiency over time for all scheduling algorithms
in the presence of small (0.1%) error in the CPU work requirement of tasks and
no feedback.

tasks are modeled as completing before they truly have, causes all algorithms to

overload machines because they are modeled as having fewer executing tasks, but

by beginning execution of more tasks, loading machines heavier, and decreasing

their efficiency, the model deviates even further from the “actual” system. This is

illustrated in Figure 6.3 where the minimum machine efficiency once the system

begins being loaded (once large workflows begin arriving around time 25,000)

drops to nearly 0% until long after workflows have stopped arriving in the system.

Contrast this with Figure 6.4 that graphs minimum machine efficiency with no

modeling error present (in which case feedback is irrelevant).

From Figure 6.4 notice how both FCFS and PLLF scheduling algorithms have

a limit of minimum machine efficiency at 70%. This is because both algorithms

64

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

M
in

im
u
m

 A
v
e
ra

g
e
 E
ffi

e
n
cy

 o
v
e
r

1
0

0
 T

im
e
 U

n
it

s

Time

Machine Efficiency over Time
No Error

FCFS
PLLF

CMSA Sig
CMSA Quad

Figure 6.4: Minimum machine efficiency over time for all scheduling algorithms
when no modeling error is present.

65

only prioritize which ready task to begin executing next, and must be paired

with a policy of when to stop scheduling tasks to begin executing based on a

pre-defined machine efficiency threshold. Thus an arbitrary limit to how low

machine efficiency can become before no more ready tasks will be assigned to

that machine is chosen, which from [24] was determined to be optimal at around

70%. CMSA, in part, achieves better performance (with respect to percent of

workflows completed late and maximum normalized tardiness, as well as other

measures) by pushing machine load higher (and resource efficiency lower) for at

least some periods of time.

In addition because the errors in model task CPU work requirements cause

all four scheduling algorithms to overload machine resources when feedback from

the “actual” system isn’t present to correct the model with respect to what tasks

are still executing vs. completed, the time at which each scheduling algorithm

finally complete execution of all tasks and workflows is often many times later

than otherwise.

When complete feedback of all task completion times is utilized (i.e., the mod-

eling of a task completion is ignored and tasks are only declared completed when

feedback from the “actual” system indicates they are completed), performance

of all four scheduling algorithms returns to roughtly the same level as in the case

of no modeling error, as shown in Figure 6.5. Although some algorithms fail to

achieve the same performance as in the presence of no (0%) error, most of the

discrepancy occurs between normalized tardinesses of −0.25 up to 1.0 and is far

less drastic than in the case when no feedback is employed.

This relative robustness of all scheduling algorithm to high error given feed-

back from the “actual” system of task completions is critical because it prevents

the model from erroneously modeling tasks as complete earlier than the “actual”

66

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
Complete Feedback but not Incorporating Model Task Completions, 0% Error as Bars, 50% Error as Lines

CMSA Sig
CMSA Quad

PLLF
FCFS

CMSA Sig
CMSA Quad

PLLF
FCFS

Figure 6.5: Effect on the histogram of workflows completed by normalized tar-
diness of the presence of “actual” system feedback of task completions in the
presence of high error (taken from a uniform distribution and applied only to the
CPU work requirement of tasks) for all scheduling algorithms.

67

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
Complete Feedback, 0% Error as Bars, 0.1% Error as Lines

CMSA Sig
CMSA Quad

PLLF
FCFS

CMSA Sig
CMSA Quad

PLLF
FCFS

Figure 6.6: Effect on the histogram of workflows completed by normalized tar-
diness of the presence of “actual” system feedback of task completions, though
model task completions are also acted on for scheduling purposes, in the presence
of low error (taken from a uniform distribution and applied only to the CPU work
requirement of tasks) for all scheduling algorithms.

system. When this happens all scheduling algorithms naturally choose to sched-

ule additional tasks to execute on the machine(s) which the model represents as

being less loaded, which leads to the poor performance of the algorithms. To

illustate this Figure 6.6 depicts the same histogram result in the presence of

feedback and low (up to 0.1% error) but where the model is allowed to model

tasks as completed (before the actual task completes, due to the model error).

It shows that each scheduling algorithm again has drastically worse performance

as in Figure 6.2 despite feedback being completely available because of modeling

tasks as completed earlier than the “actual” task completes.

Thus feedback of task completions and not incorporating task completions

68

of the model are influential aspects on the outcome performance of the four

scheduling algorithms under study. The next logical question is whether full

feedback of task completion times is necessary or whether partial feedback may

be sufficient for achieving similar performance as with full feedback. Figure 6.6

suggests that since even full feedback is not enough to counter the ill effect of

incorporating model task completions that partial feedback will be of no values

(since with partial feedback the model’s completion of tasks must be incorporated

because feedback of that task’s completion on the “actual” system may not be

available). Figures 6.7, 6.8, 6.9, and 6.10 show that for FCFS, PLLF, CMSA with

a sigmoid cost function, and CMSA with a quadratic cost function, repectively,

the introduction of model task completions drastically affects performance and

that the level of feedback or loss thereof is of little consequence thereafter.

To a very small degree for PLLF, the higher the level of feedback loss the fewer

workflows are completed on time, with more workflows completing 10 times,

or more, later than their deadline. For CMSA with either cost function that

trend is perhaps (again to a very small degree) opposite with more feedbck loss

resulting in fewer workflows completed very late and more completed on time.

Nonetheless, when results of any level of feedback loss are compared with results

having complete feedback it is clear that all scheduling algorithms are not robust

(unable to achieve similar tardiness outcomes) to even small model error. Because

any amount of feedback less than 100% requires accepting that tasks are complete

when modeled as such in the model system, the same problem of scheduling

additional tasks to a machine which has fewer executing tasks in the model than

in the “actual” system leading to much lower machine efficiency reoccurs. With

the presence of complete feedback, all four scheduling algorithms are robust with

respect to model error in the CPU work requirement of tasks up to a high, 50%,

69

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
FCFS, 0.1% Error, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.7: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of “actual” system feedback of task completions in the presence
of low error (taken from a uniform distribution and applied only to the CPU work
requirement of tasks) for the FCFS scheduling algorithm.

70

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
PLLF, 0.1% Error, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.8: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of “actual” system feedback of task completions in the presence
of low error (taken from a uniform distribution and applied only to the CPU work
requirement of tasks) for the PLLF scheduling algorithm.

71

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Sig), 0.1% Error, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.9: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of “actual” system feedback of task completions in the presence
of low error (taken from a uniform distribution and applied only to the CPU
work requirement of tasks) for the CMSA scheduling algorithm with sigmoid
cost function.

72

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Quad), 0.1% Error, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.10: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of “actual” system feedback of task completions in the presence
of low error (taken from a uniform distribution and applied only to the CPU
work requirement of tasks) for the CMSA scheduling algorithm with quadratic
cost function.

73

degree of error.

When error is applied to all model task requirements (CPU work, CPU uti-

lization, and memory utilization) scheduling algorithms become less robust to

such error even with the use of complete feedback. Figures 6.11, 6.12, 6.13, and

6.14 depict for FCFS, PLLF, CMSA with sigmoid cost function, and CMSA with

quadratic cost function, respectively, the effects of various levels of error applied

to all task requirements in the presence of complete feedback (and not incor-

porating model task completions). All four algorithms are relatively robust to

error levels as high as 10% but generally perform noticeably worse with 50% error

(though not nearly as poor as having incorporated model task completions even

with small error in the model, as depicted in Figure 6.6). FCFS, as an algorithm

that relies on no aspect of the workflow/task model for which error is present,

is the most robust. However, even FCFS suffers performance loss with high

enough error because although the error doesn’t affect the order of FCFS prefers

to schedule tasks for execution, error does result in model machines appearing to

be over or under loaded compared to the “actual” system’s machine and lead to

scheduling more or fewer tasks for execution concurrently than would be sched-

uled without the error present. This is why for small enough error bounds (1%

or less) the results in Figure 6.11 show FCFS is robust: achieves an equivalent

outcome as with an error-free model.

6.4 Effect of Error Biasing

As illustrated previously although feedback from the “actual” system is the pri-

mary method by which scheduling algorithms can be made robust to model error

(by keeping the model system from erroneously modeling tasks as completed

74

 0

 500

 1000

 1500

 2000

 2500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
Complete Feedback but not Incorporating Model Task Completions, FCFS,

Error applied to all Requirements

No Error
0.1% Error
0.5% Error

1% Error
5% Error

10% Error
50% Error

Figure 6.11: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of error with complete “actual” system feedback of task comple-
tions and not incorporating model task completions (error taken from a uniform
distribution and applied all task requirements) for the FCFS scheduling algo-
rithm.

75

 0

 500

 1000

 1500

 2000

 2500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
Complete Feedback but not Incorporating Model Task Completions, PLLF,

Error applied to all Requirements

No Error
0.1% Error
0.5% Error

1% Error
5% Error

10% Error
50% Error

Figure 6.12: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of error with complete “actual” system feedback of task comple-
tions and not incorporating model task completions (error taken from a uniform
distribution and applied all task requirements) for the PLLF scheduling algo-
rithm.

76

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
Complete Feedback but not Incorporating Model Task Completions, CMSA(Sig),

Error applied to all Requirements

No Error
0.1% Error
0.5% Error

1% Error
5% Error

10% Error
50% Error

Figure 6.13: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of error with complete “actual” system feedback of task comple-
tions and not incorporating model task completions (error taken from a uniform
distribution and applied all task requirements) for the CMSA scheduling algo-
rithm with a sigmoid cost function.

77

 0

 500

 1000

 1500

 2000

 2500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
Complete Feedback but not Incorporating Model Task Completions, CMSA(Quad),

Error applied to all Requirements

No Error
0.1% Error
0.5% Error

1% Error
5% Error

10% Error
50% Error

Figure 6.14: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of error with complete “actual” system feedback of task comple-
tions and not incorporating model task completions (error taken from a uniform
distribution and applied all task requirements) for the CMSA scheduling algo-
rithm with a quadratic cost function.

78

early) biasing the error inherent in the model may also achieve a similar effect.

As discussed in Section 5.3 because the exact nature and magnitude of the error

is likely unknown, model task requirements must be biased using, ideally, some

notion of what the maximum expected error value or percentage is which may

underestimate the true value of the requirement. Also discussed were three sep-

arate biasing strategies: first, the constant bias, second, the proportionate bias

(see Eq. 5.2), and finally the simple bias (see Eq. 5.3).

Figures 6.15, 6.16, 6.17, and 6.18 depict the FCFS, PLLF, CMSA with sigmoid

cost function, and CMSA with quadratic cost function algorithms, respectively,

with the highest simulated amount of error (up to 50%, taken from a uniform

number distribution) for various levels of “actual” system feedback (or loss of such

feedback) with a constant bias applied to the “model” system task requirements.

Generally, for all four algorithms the impact of incomplete feedback as low as

99% is relatively very small compared with having full feedback.

In Figures 6.15 and 6.16 the FCFS and PLLF algorithms actually appears

to perform better (more workflows completed much earlier than their deadline)

with a model having error but biased vs. the performance of a model with no

error given 90% or more feedback. This is demonstrated by the first, purple

bar in the histogram having a lower value for negative normalized tardinesses

and a higher value for positive normalized tardinesses. At feedback levels lower

than 90% (i.e., 50% and 0%, being the only two feedback levels simulated which

were less than 90%) even the biased model error performs very poorly, with far

fewer workflows completed on time and many more completed many times later

than their deadline. For FCFS this comes in the form of workflows complete ten

or more times later than their deadline. For PLLF this comes in the form of

workflows completed between one and four times later than their deadline.

79

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
FCFS, Constant Bias, 50% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.15: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of “actual” system feedback in the presence of high (50%) error
(taken from uniform distribution) on all task requirements using the constant
bias strategy (constant value, C, perfectly matches e which is 50%) for the FCFS
scheduling algorithm.

80

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
PLLF, Constant Bias, 50% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.16: Effect on the histogram of workflows completed by normalized tardi-
ness of the level of “actual” system feedback in the presence of high (50%) error
(taken from uniform distribution) on all task requirements using the constant
bias strategy (constant value, C, perfectly matches e which is 50%) for the PLLF
scheduling algorithm.

81

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Sig), Constant Bias, 50% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.17: Effect on the histogram of workflows completed by normalized tar-
diness of the level of “actual” system feedback in the presence of high (50%)
error (taken from uniform distribution) on all task requirements using the con-
stant bias strategy (constant value, C, perfectly matches e which is 50%) for the
CMSA scheduling algorithm with sigmoid cost function.

In Figure 6.17 the CMSA algorithm with a sigmoid cost function demonstrates

a very different outcome. Although performance with high levels of feedback (99%

and above) appear to be roughly equal and do complete far more workflows ahead

of their deadline than the baseline case with a error-free model, that performance

comes at the cost of having a non-trivial amount (about 100 of the 4,354 work-

flows) completing 10 times or more later than their deadline. However, unlike

PLLF, though the lowest levels of feedback don’t appear to complete workflows

nearly as much ahead of their deadline as with cases of higher feedback levels, they

still complete mostly by the time of the deadline (normalized tardiness between

-0.25 and 0).

82

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Quad), Constant Bias, 50% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.18: Effect on the histogram of workflows completed by normalized tar-
diness of the level of “actual” system feedback in the presence of high (50%)
error (taken from uniform distribution) on all task requirements using the con-
stant bias strategy (constant value, C, perfectly matches e which is 50%) for the
CMSA scheduling algorithm with quadratic cost function.

In Figure 6.18 the CMSA algorithm with a quadratic cost function demon-

strates, as with PLLF and CMSA with sigmoid, that far more workflows are

completed much earlier than their deadline than with an error-free model when

using a constant bias. Unlike CMSA with the sigmoid cost function, however,

there are no workflows completed 10 or more times later than their deadline, and

only a few workflows completed 1 to 10 times later than their deadline and only

for the lowest two levels of feedback. Thus the CMSA algorithm when using a

quadratic cost function appears to be robust to model error as high as 50% with

feedback levels as low as 50% with the use of a constant bias strategy.

Unfortunately, the simple bias strategy performs very poorly for all algorithms

83

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
All Policies, Simple Bias, 50% Error on All Requirements (Baseline is 0% Error)

Complete Feedback (w/ Model Completions)

CMSA(Sig) (baseline)
CMSA(Sig)

CMSA(Quad) (baseline)
CMSA(Quad)

PLLF (baseline)
PLLF

FCFS (baseline)
FCFS

Figure 6.19: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the simple bias strategy (ê perfectly matches e which is 50%)
in the presence of high (50%) error (taken from uniform distribution) on all task
requirements for the FCFS, PLLF, and CMSA scheduling algorithms.

in the presence of high (50%) error in task requirements regardless of how much

feedback from the “actual” system is present. Figure 6.19 shows that for FCFS,

PLLF, and CMSA (both with sigmoid and quadratic cost functions) comparing

to a baseline of no error, the high (50%) error with simple biasing performs far

worse, completes many fewer workflows early and many more workflows 10 or

more times later than their deadline. Because the simple bias strategy does not

completely overcome the possibility that error in the model can result in modeling

tasks as complete before they are in the “actual” system the problem of scheduling

too many tasks on a machine resulting in poor efficiency (and further deviation

between the modeled and actual finish time of future tasks) is still present.

84

Figure 6.20 demonstrates a similar, though less dramatic, result for the pro-

portionate bias strategy. In it the number of workflows completed early or on

time in the presence of high error with a proportionate bias is substantially less

than with an error-free model. However, unlike the simple bias strategy only the

FCFS and CMSA algorithm using a sigmoid cost function complete workflows 10

or more times later than their deadline. For PLLF and CMSA with a quadratic

cost function the worst-case completion is kept under 10 times later than the

deadline, with most workflows completing only 4 or less times later than the

deadline. Although the proportionate bias strategy with a suitably large enough

ê (as was the case in Figure 6.20) prevents underestimating the completion time

of tasks in the model, that guarantee comes at the cost of “stretching” the dis-

tribution of the biased task requirement in the model, resulting in overestimates

that can be wildly inaccurate when compensating for high error (see results in

Figure 5.5 from Section 5.3 and its explanation).

Where the simple and proportionate bias strategies yield better results (closer

to that of an error-free model) is in the presense of smaller error. If the error

present in the model is bounded by 5% as opposed to 50% as in prior results,

the performance of FCFS using a model biased with the simple bias strategy (see

Figure 6.22) is nearly as good as using the constant bias strategy (see Figure

6.21).

In both the use of the constant bias strategy (Figure 6.24) and simple bias

strategy (Figure 6.25) the FCFS algorithm for feedback levels of at least 50% is

able to complete more workflows much earlier than their deadline, and generally

fewer workflows later than their deadline than in the case of an error-free model.

In the test scenarios presented in the figures only for 0% feedback does FCFS

complete fewer workflows early and more workflow late than the error-free model.

85

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
All Policies, Proportionate Bias, 50% Error on All Requirements (Baseline is 0% Error)

Complete Feedback (w/ Model Completions)

CMSA(Sig) (baseline)
CMSA(Sig)

CMSA(Quad) (baseline)
CMSA(Quad)

PLLF (baseline)
PLLF

FCFS (baseline)
FCFS

Figure 6.20: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the proportionate bias strategy (ê perfectly matches e which
is 50%) in the presence of high (50%) error (taken from uniform distribution) on
all task requirements for the FCFS, PLLF, and CMSA scheduling algorithms.

86

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
FCFS, Constant Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.21: Effect on the histogram of workflows completed by normalized tardi-
ness of the use of the constant bias strategy (with ideal C = e = 50%) for FCFS
in the presence of medium (5%) error (taken from uniform distribution) on all
task requirements.

87

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
FCFS, Simple Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.22: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the simple bias strategy (with ideal ê = e = 50%) for FCFS
in the presence of medium (5%) error (taken from uniform distribution) on all
task requirements.

88

Figure 6.23 shows the performance of FCFS in the same 5% bounded-error

scenario but for the proportionate bias strategy. In it the performance at most

feedback levels up to 50% is nearly the same as the error-free model, but generally

any loss of feedback results in some reduction in the number of workflows com-

pleted early and increase in workflows completed late. Thus, though the simple

bias strategy may not (with ê = e) prevent underestimating task requirements in

all circumstances, with a smaller bounded error, the probability that a few under-

estimates (vs. the more numerous overestimates) results in the over-allocation of

tasks to a machine to the extent of causing severe deviation between the model

machine at the “actual” machine (see Figure 6.3) appears to be negligible, and

the simple bias strategy is able to achieve the same level of performance (closely

match the outcome of an error-free model) as the constant bias strategy. Whereas

the “stretching” effect of the proportionate bias strategy (as the trade-off to never

underestimating task requirements for ê = e) appears to have a more impactful

negative effect on performance.

The results for the PLLF and CMSA algorithm (for both sigmoid and quadratic

cost functions) in the presence of 5% bounded error in the model for the three

bias strategies mimics the results of FCFS: simple bias strategy achieves nearly

identical results as the constant bias strategy, with the proportionate bias strat-

egy performing somewhat worse for feedback levels as low as about 50%. Figures

6.24 - 6.32 depict all these results. The one difference is that the CMSA algo-

rithm with a sigmoid cost function and the simple bias strategy seems to maintain

performance equal to the baseline of an error-free model even with no feedback

from the “actual” system except for a very few workflows (18 vs. 7) completed

between one and two times later than their deadline, and even 2 and 1 workflows

completed between four and ten times later than their deadline, and more than

89

 0

 500

 1000

 1500

 2000

 2500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
FCFS, Proportionate Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.23: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the proportionate bias strategy (with ideal C = e = 50%) for
FCFS in the presence of medium (5%) error (taken from uniform distribution)
on all task requirements.

90

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
PLLF, Constant Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.24: Effect on the histogram of workflows completed by normalized tardi-
ness of the use of the constant bias strategy (with ideal C = e = 50%) for PLLF
in the presence of medium (5%) error (taken from uniform distribution) on all
task requirements.

ten times later than its deadline, respectively.

91

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
PLLF, Simple Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.25: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the simple bias strategy (with ideal ê = e = 50%) for PLLF
in the presence of medium (5%) error (taken from uniform distribution) on all
task requirements.

92

 0

 500

 1000

 1500

 2000

 2500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
PLLF, Proportionate Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.26: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the proportionate bias strategy (with ideal C = e = 50%) for
PLLF in the presence of medium (5%) error (taken from uniform distribution)
on all task requirements.

93

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Sig), Constant Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.27: Effect on the histogram of workflows completed by normalized tardi-
ness of the use of the constant bias strategy (with ideal C = e = 50%) for CMSA
(with sigmoid cost function) in the presence of medium (5%) error (taken from
uniform distribution) on all task requirements.

94

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Sig), Simple Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.28: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the simple bias strategy (with ideal ê = e = 50%) for CMSA
(with sigmoid cost function) in the presence of medium (5%) error (taken from
uniform distribution) on all task requirements.

95

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Sig), Proportionate Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.29: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the proportionate bias strategy (with ideal ê = e = 50%) for
CMSA (with sigmoid cost function) in the presence of medium (5%) error (taken
from uniform distribution) on all task requirements.

96

 0

 500

 1000

 1500

 2000

 2500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Quad), Constant Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.30: Effect on the histogram of workflows completed by normalized tardi-
ness of the use of the constant bias strategy (with ideal C = e = 50%) for CMSA
(with quadratic cost function) in the presence of medium (5%) error (taken from
uniform distribution) on all task requirements.

97

 0

 500

 1000

 1500

 2000

 2500

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Quad), Simple Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.31: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the simple bias strategy (with ideal ê = e = 50%) for CMSA
(with quadratic cost function) in the presence of medium (5%) error (taken from
uniform distribution) on all task requirements.

98

 0

 500

 1000

 1500

 2000

 2500

 3000

-0.5 -0.25 0 0.25 0.5 1 2 4 10 10+

H
is

to
g

ra
m

 C
o
u
n
t

Normalized Tardiness Bins

Histogram of Workflow Count by Normalized Tardiness
CMSA(Quad), Proportionate Bias, 5% Error on All Requirements, Various Levels of Feedback

100%, No Error (baseline)
100%

100% (w/ Model Completions)
99.9%
99.5%

99%
95%
90%
50%

0%

Figure 6.32: Effect on the histogram of workflows completed by normalized tar-
diness of the use of the proportionate bias strategy (with ideal ê = e = 50%)
for CMSA (with quadratic cost function) in the presence of medium (5%) error
(taken from uniform distribution) on all task requirements.

99

Chapter 7

Conclusions

In this research the impact of model error is considered for scheduling of complex

work loads of tasks on resources of machines in a distributed system. Robustness,

defined as the degree to which similar performance can be achieved despite the

presence of error in the model, is measured as the amount of workflows completed

at various proportions relative to their deadline (both earlier than the deadline

and later) and is presented visually in histograms.

Through simulated studies of a modeled 24-hour period of system processing

the extensive numerical studies reveal the primary factor for achieving robustness

lies in the use of feedback from the “actual” system to correct the model. Thus,

when tasks are completed, feedback prevents the model, because of error, from

declaring tasks as completed early and thus preventing algorithms from schedul-

ing additional work to begin execution. Without such feedback completely avail-

able in simulations even the smallest amount of error which could underestimate

task requirements resulted in very poor outcomes (drastically fewer workflows

completed before or by their deadline and more workflows completed many times

later than their deadline). For all four scheduling algorithms studied they exhib-

100

ited poor robustness to any amount of model error which could underestimate

task requirements where “actual” system feedback regarding task completions

was not completely available.

In order to increase robustness of scheduling algorithms to model error when

“actual” system feedback was not fully available, biasing strategies were em-

ployed to prevent or significantly reduce the probability that model error would

underestimate task requirements. Three such bias strategies were simulated and

demonstrated that robustness to error could be mostly restored despite task com-

pletion feedback not being completely available. The first bias strategy, requiring

the most a priori knowledge of the nature of task requirements and the bounds

of the error present in the model, called the constant bias strategy achieved the

best results demonstrating robustness to even the highest simulated amounts of

error achievable for all scheduling algorithms. The other bias strategies required

less knowledge about the bounds of the error but also were unable to achieve as

good of robustness, but were still suitable for lower levels of error in the model.

In all cases, the presence of at least some feedback of task completions from the

“actual” system was shown to be a critical component of achieving robustness to

model error regardless of any of the bias strategies.

7.1 Future Research Ideas

Given the importance of feedback in order to correct the model platform it would

be beneficial in future research to consider various types of feedback. In this

research only feedback of task completion events, whether all such events or only

a random sampling, was considered. Other possible types of feedback include

periodic polling or sampling of the actual platform rather than task-based event-

101

driven feedback. This periodic sampling feedback could consider whether to

measure which tasks are currently executing which would function similarly to the

task completion feedback in this research allowing corrections to the model when

it models tasks as completing earlier than on the actual platform. Alternatively,

periodic sampling could measure (or estimate) machine efficiency which would

function to prevent the model from over-estimating machine efficiency while the

actual machines’ efficiency is very poor.

Separate from the type and use of feedback another interesting possibility for

future research is the inclusion of preemptive scheduling. Preemption in schedul-

ing is often used in Operating System-level scheduling of processes but could be

equally useful in distributed system scheduling when a higher priority task arrives

in the scheduling queue than some currently running task. Typically in Oper-

ating System-level scheduling of processes preemption generally freezes whatever

process was executing in the state it is in at the time preemption discontinues its

execution. This results in that process resuming where it left off when, at a future

time, it is scheduled to execute once again. In distributed system processing a

task may be unable to save and resume its state, especially given that the machine

it may be executed on in the future could be different than the machine where it

previously executed. This would mean that the scheduling decision to preempt

one task must take into account the cost of losing work. If the distributed system

does support saving task state and resuming it at a later time (or the same or

any machine) then the scheduling decision to preempt would still have to take

into account the cost (in time or resource usage) for saving a preempted task’s

state.

102

Bibliography

[1] Ehab Nabiel Alkhanak, Sai Peck Lee, and Saif Ur Rehman Khan. Cost-
aware challenges for workflow scheduling approaches in cloud computing
environments: Taxonomy and opportunities. Future Generation Computer
Systems, 50:3–21, 2015.

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion
Stoica, et al. A view of cloud computing. Communications of the ACM,
53(4):50–58, 2010.

[3] Felice Balarin, Luciano Lavagno, Praveen Murthy, Alberto Sangiovanni-
Vincentelli, CD Systems, et al. Scheduling for embedded real-time systems.
IEEE Design & Test of Computers, 15(1):71–82, 1998.

[4] Marta Beltrán, Antonio Guzmán, and Jose L Bosque. A new cpu availability
prediction model for time-shared systems. IEEE Transactions on Computers,
57(7):865–875, 2008.

[5] Louis-Claude Canon and Emmanuel Jeannot. Evaluation and optimization
of the robustness of dag schedules in heterogeneous environments. IEEE
Transactions on Parallel and Distributed Systems, 21(4):532–546, 2010.

[6] Michael L. Dertouzos and Aloysius K. Mok. Multiprocessor online schedul-
ing of hard-real-time tasks. IEEE Transactions on software engineering,
15(12):1497–1506, 1989.

[7] Dmytro Dyachuk and Ralph Deters. Using sla context to ensure quality of
service for composite services. In Pervasive Services, IEEE International
Conference on, pages 64–67. IEEE, 2007.

[8] Yihong Gao, Huadong Ma, Haitao Zhang, Xiangqi Kong, and Wangyang
Wei. Concurrency optimized task scheduling for workflows in cloud. In
Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on,
pages 709–716. IEEE, 2013.

103

[9] Nicolas G. Grounds. SOASim: Simulator for distributed system scheduling.
http://soasim.sourceforge.net/, 2010–2018.

[10] Nicolas G. Grounds and John K. Antonio. A model-based scheduling frame-
work for enhancing robustness. In PDPTA, 2018.

[11] Nicolas G. Grounds, John K. Antonio, and Jeffrey T. Muehring. Cost-
minimizing scheduling of workflows on a cloud of memory managed multicore
machines. In CloudCom, 2009.

[12] Khondker Shajadul Hasan, Nicolas G Grounds, and John K Antonio. Pre-
dicting cpu availability of a multi-core processor executing concurrent java
threads. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), page 1. The
Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2011.

[13] Matthew Hertz. Quantifying and improving the performance of garbage col-
lection, volume 67. Citeseer, 2006.

[14] Matthew Hertz and Emery D Berger. Quantifying the performance of
garbage collection vs. explicit memory management. In ACM SIGPLAN
Notices, volume 40, pages 313–326. ACM, 2005.

[15] Jong-Kook Kim, Sameer Shivle, Howard Jay Siegel, Anthony A Maciejew-
ski, Tracy D Braun, Myron Schneider, Sonja Tideman, Ramakrishna Chitta,
Raheleh B Dilmaghani, Rohit Joshi, et al. Dynamic mapping in a hetero-
geneous environment with tasks having priorities and multiple deadlines. In
Parallel and Distributed Processing Symposium, 2003. Proceedings. Interna-
tional, pages 15–pp. IEEE, 2003.

[16] Kun Li, Gaochao Xu, Guangyu Zhao, Yushuang Dong, and Dan Wang.
Cloud task scheduling based on load balancing ant colony optimization. In
2011 Sixth Annual ChinaGrid Conference, pages 3–9. IEEE, 2011.

[17] Sorin Manolache, Petru Eles, and Zebo Peng. Task mapping and priority as-
signment for soft real-time applications under deadline miss ratio constraints.
ACM Trans. Embed. Comput. Syst., 7(2):19:1–19:35, January 2008.

[18] Matthew Martin. Deadlock avoidance in distributed service oriented archi-
tectures. Master’s thesis, University of Oklahoma, 2011.

[19] Matthew Martin, Nicolas G. Grounds, John K. Antonio, Kelly Crawford,
and Jason Madden. Banker’s deadlock avoidance algorithm for distributed
service-oriented architectures. In PDPTA, 2010.

104

[20] Sung-Heun Oh and Seung-Min Yang. A modified least-laxity-first scheduling
algorithm for real-time tasks. In Real-Time Computing Systems and Appli-
cations, 1998. Proceedings. Fifth International Conference on, pages 31–36.
IEEE, 1998.

[21] Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, and Rajkumar Buyya.
A particle swarm optimization-based heuristic for scheduling workflow ap-
plications in cloud computing environments. In Advanced information net-
working and applications (AINA), 2010 24th IEEE international conference
on, pages 400–407. IEEE, 2010.

[22] Mohsen Amini Salehi, Jay Smith, Anthony A Maciejewski, Howard Jay
Siegel, Edwin KP Chong, Jonathan Apodaca, Luis D Briceño, Timothy Ren-
ner, Vladimir Shestak, Joshua Ladd, et al. Stochastic-based robust dynamic
resource allocation for independent tasks in a heterogeneous computing sys-
tem. Journal of Parallel and Distributed Computing, 97:96–111, 2016.

[23] Vahid Salmani, Mahmoud Naghibzadeh, Amirali Habibi, and Hossein Del-
dari. Quantitative comparison of job-level dynamic scheduling policies in
parallel real-time systems. In TENCON 2006. 2006 IEEE Region 10 Con-
ference, pages 1–4. IEEE, 2006.

[24] Hira Shrestha, Nicolas G. Grounds, Jason Madden, Matthew Martin,
John K. Antonio, Jay Sachs, Josh Zuech, and Carlos Sanchez. Scheduling
workflows on a cluster of memory managed multicore machines. In PDPTA,
2009.

[25] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for
hard-real-time systems. Real-Time Systems, 1(1):27–60, 1989.

[26] Amandeep Verma and Sakshi Kaushal. Deadline and budget distribution
based cost-time optimization workflow scheduling algorithm for cloud. In
IJCA Proceedings on international conference on recent advances and fu-
ture trends in information technology (iRAFIT 2012), volume 4, pages 1–4.
iRAFIT (7), 2012.

[27] Qishi Wu, Daqing Yun, Xiangyu Lin, Yi Gu, Wuyin Lin, and Yangang
Liu. On workflow scheduling for end-to-end performance optimization in
distributed network environments. In Walfredo Cirne, Narayan Desai, Ei-
tan Frachtenberg, and Uwe Schwiegelshohn, editors, Job Scheduling Strate-
gies for Parallel Processing, pages 76–95, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[28] Lingfang Zeng, Bharadwaj Veeravalli, and Xiaorong Li. Scalestar: Bud-
get conscious scheduling precedence-constrained many-task workflow appli-
cations in cloud. In Advanced Information Networking and Applications

105

(AINA), 2012 IEEE 26th International Conference on, pages 534–541. IEEE,
2012.

[29] Yuanyuan Zhang, Wei Sun, and Yasushi Inoguchi. Predicting running time
of grid tasks based on cpu load predictions. In Proceedings of the 7th
IEEE/ACM International Conference on Grid Computing, pages 286–292.
IEEE Computer Society, 2006.

[30] Chenhong Zhao, Shanshan Zhang, Qingfeng Liu, Jian Xie, and Jicheng Hu.
Independent tasks scheduling based on genetic algorithm in cloud comput-
ing. In Wireless Communications, Networking and Mobile Computing, 2009.
WiCom’09. 5th International Conference on, pages 1–4. IEEE, 2009.

106

DEDICATION

to

My wife

Natalie Grounds

For

Sticking with me through these nine years of post-graduate studies

and
My God and His son, Jesus

For

Granting me the capability and opportunities necessary to achieve this and all
other things

107

