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Abstract

We observed in a previous study (PLoS ONE 6:e24522) that the self-regulation of amygdala activity via real-time fMRI
neurofeedback (rtfMRI-nf) with positive emotion induction was associated, in healthy participants, with an enhancement in
the functional connectivity between the left amygdala (LA) and six regions of the prefrontal cortex. These regions included
the left rostral anterior cingulate cortex (rACC), bilateral dorsomedial prefrontal cortex (DMPFC), bilateral superior frontal
gyrus (SFG), and right medial frontopolar cortex (MFPC). Together with the LA, these six prefrontal regions thus formed the
functional neuroanatomical network engaged during the rtfMRI-nf procedure. Here we perform a structural vector
autoregression (SVAR) analysis of the effective connectivity for this network. The SVAR analysis demonstrates that the left
rACC plays an important role during the rtfMRI-nf training, modulating the LA and the other network regions. According to
the analysis, the rtfMRI-nf training leads to a significant enhancement in the time-lagged effect of the left rACC on the LA,
potentially consistent with the ipsilateral distribution of the monosynaptic projections between these regions. The training
is also accompanied by significant increases in the instantaneous (contemporaneous) effects of the left rACC on four other
regions – the bilateral DMPFC, the right MFPC, and the left SFG. The instantaneous effects of the LA on the bilateral DMPFC
are also significantly enhanced. Our results are consistent with a broad literature supporting the role of the rACC in emotion
processing and regulation. Our exploratory analysis provides, for the first time, insights into the causal relationships within
the network of regions engaged during the rtfMRI-nf procedure targeting the amygdala. It suggests that the rACC may
constitute a promising target for rtfMRI-nf training along with the amygdala in patients with affective disorders, particularly
posttraumatic stress disorder (PTSD).
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Introduction

Interactions between various regions of the prefrontal cortex

(PFC) and the amygdala play a fundamental role in processing and

regulation of human emotions. One widely accepted neural model

of emotion regulation [1] draws a distinction between voluntary

and automatic regulation processes and delineates neural systems

involved in each type of emotion regulation. The model posits that

dorsal prefrontal cortical regions, including bilateral dorsolateral

prefrontal cortex (DLPFC), bilateral dorsomedial prefrontal cortex

(DMPFC), and bilateral dorsal anterior cingulate cortex (ACC),

are involved in different subprocesses associated with voluntary

emotion regulation [1]. Neural processing within these regions

may be modulated by the ventromedial prefrontal cortex and the

orbitofrontal cortex (OFC) regions, both having direct and

extensive connections to the amygdala [1]. The model further

suggests that left rostral (pregenual) ACC (rACC), bilateral

subgenual ACC, bilateral OFC, bilateral DMPFC, and midline

dorsal ACC are implicated (with contributions from the hippo-

campus and parahippocampus) in various subprocesses associated

with automatic emotion regulation [1].

Functional neuroimaging studies of voluntary emotion regula-

tion generally provide an explicit instruction to regulate emotion

and a cognitive strategy to achieve such regulation. Typical

regulation methods include reappraisal [2–8], i.e. a cognitive re-

interpretation of emotionally evocative stimuli, and suppression [9-

11], i.e. a voluntary inhibition of reaction to emotional stimuli.

Blood-oxygenation-level-dependent (BOLD) fMRI studies involv-

ing reappraisal of negative emotional experiences have demon-

strated negative (inverse) functional coupling between the PFC and

the amygdala, such that increased activity of PFC regions during

reappraisal is associated with a reduction in the amygdala BOLD

response to disturbing or aversive stimuli, and also with a

reduction in the intensity of the negative affect [2,5,7]. This

functional interaction putatively represents the top-down inhibi-

tory control of the amygdala by the PFC. Negative functional

coupling also was observed in a psychophysiological interaction

(PPI) [12] analysis, exploring functional connectivity between the

amygdala and the PFC specific to the reappraisal task [8]. (An

earlier work, however, suggested that the coupling was positive [6],

potentially due to the methodological differences with [8]).
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Consistent with the model [1], most studies of voluntary emotion

regulation have shown activity of the dorsal ACC, though

involvement of the rACC also has been reported [8,9].

In contrast, neuroimaging studies of automatic emotion

regulation commonly present emotionally evocative stimuli as

task-irrelevant emotional distracters during an ongoing main task,

as exemplified by the emotional Stroop task and its modifications

[13–19]. fMRI studies utilizing such tasks have consistently shown

greater BOLD activity in the left rACC for emotional than for

neutral stimuli [13–16]. Recent studies of emotional conflict [17–

19] demonstrated that, while emotional conflict monitoring was

associated wth activity of the DMPFC and DLPFC, emotional

conflict resolution more specifically was related to activity of the

left rACC. PPI analysis revealed negative functional coupling

between the left rACC and the amygdala for the emotional

conflict resolution, such that increases in BOLD activity of the left

rACC were accompanied by reductions in amygdala activity

induced by the emotional conflict. The apparent top-down

inhibitory effect of the left rACC on the amygdala suggested by

these associations was supported using dynamic causal modeling

(DCM) [20] of the interactions between the two regions [17].

These results are consistent with the model [1], pointing to the

important role of the left rACC in automatic emotion regulation.

It has been suggested that rACC may contribute to both

appraisal/expression and regulation of emotion (Fig. 3 in [21]).

Recently, we demonstrated that healthy volunteers could learn

to self-regulate BOLD activity in their left amygdala (LA) using

real-time fMRI neurofeedback (rtfMRI-nf) [22]. During the

rtfMRI-nf procedure, the participants were asked to induce

positive emotions by evoking happy autobiographical memories,

while simultaneously trying to control and raise the neurofeedback

bar on the screen. The height of the bar represented BOLD

activity in the LA region of interest (ROI). Importantly, the target

level for the neurofeedback bar was raised from run to run in a

linear fashion. In the group analysis, the LA BOLD activity

exhibited a significant increase (positive linear trend) across the

neurofeedback training runs [22]. Moreover, six other brain

regions showed a significant enhancement (positive linear trend) in

their functional connectivity with the LA as the rtfMRI-nf training

progressed. These regions were located near the medial wall of the

PFC, and included the left rACC, bilateral DMPFC, bilateral

superior frontal gyrus (SFG) and right medial frontopolar cortex

(MFPC) [22]. Functional neuroimaging studies have consistently

shown involvement of medial PFC regions in internally focused

emotion processing [3].

Despite successful proof-of-concept applications of rtfMRI-nf

[23] for self-regulation of various brain regions and networks

relevant to emotion processing, (e.g. [22,24–31]), however, the

neural mechanisms underlying the neurofeedback training effect,

and the specific nature of the interactions among the engaged

brain regions remain unclear. Functional connectivity analyses

provide information about temporal correlations of BOLD fMRI

activities in various brain areas, but do not yield insights into

causal relationships among them. Thus, studies of effective

connectivity of brain regions engaged during rtfMRI-nf training

are needed, including the experimental paradigm described above

[22]. Real-time measures of effective connectivity can also be used

to provide connectivity-based rtfMRI-nf [32]. Furthermore,

involvement of different subprocesses of voluntary and automatic

emotion regulation [1] during rtfMRI-nf training requires careful

evaluation. On the one hand, the emotion self-induction with

rtfMRI-nf, employed in [22], constitutes voluntary emotion

regulation. On the other hand, the two experimental tasks –

inducing positive emotion and controlling the neurofeedback bar

on the screen – provide mutual interference, and success of the

rtfMRI-nf training depends on a participant’s ability to achieve

proper balance between the two tasks while performing them

simultaneously in real time. In this respect, the rtfMRI-nf training

of emotional self-regulation exhibits some parallels with experi-

mental paradigms used to study automatic emotion regulation.

In this work, we report an analysis of effective connectivity for

the system of regions showing enhanced functional connectivity

with the left amygdala during the rtfMRI-nf training [22]. The

analysis is based on structural vector autoregression (SVAR), a

promising method for effective connectivity modeling [33]. The

purpose of this analysis is to elucidate interactions between the

amygdala and the PFC, which are specific to the rtfMRI-nf

procedure [22]. Understanding these interactions may conceivably

lead to the development of novel rtfMRI-nf paradigms for training

of emotional self-regulation, including paradigms that provide new

therapeutic approaches for individuals suffering from mood and

anxiety disorders.

Methods

Subjects and Procedure
The study was conducted at the Laureate Institute for Brain

Research. The research protocol was approved by the University

of Oklahoma Institutional Review Board. Human research in this

study was conducted according to the principles expressed in the

Declaration of Helsinki. Twenty eight healthy male volunteers (age

2869 years) participated in the rtfMRI-nf study described in detail

in [22]. All the subjects gave written informed consent to

participate in the study and received financial compensation.

The participants were randomly assigned to either the experi-

mental group (EG, 14 subjects) or the control (sham) group (CG,

14 subjects). During the experiment, each participant was asked to

perform a positive emotion induction task based on retrieval of

happy autobiographical memories, while simultaneously trying to

raise the rtfMRI-nf bar on the screen [22]. The subjects in EG

were provided with rtfMRI-nf based on BOLD activity in the LA

ROI. The center of this 14 mm diameter ROI was selected at the

locus: x = 221, y = 25, z = 216, in the stereotaxic array of

Talairach and Tournoux [34] based on a meta-analysis of

functional neuroimaging studies investigating the role of the

amygdala in emotion processing [35]. The subjects in CG received

sham rtfMRI-nf based on BOLD activity in the left horizontal

segment of the intraparietal sulcus (HIPS) ROI. This ROI was

centered at the locus: x = 242, y = 248, z = 48, taken from a

review of fMRI studies investigating the role of HIPS in number

processing [36]. Thus, the sham neurofeedback was based on

BOLD activity within a region presumably not involved in emotion

regulation.

The rtfMRI-nf experiment included six fMRI runs each lasting

8 min 40 s: Rest, Practice, Run 1, Run 2, Run 3, and Transfer

[22] (abbreviated as RE, PR, R1, R2, R3, and TR, respectively).

Each run (except Rest) consisted of alternating blocks of Rest,

Happy Memories, and Count conditions [22]. The condition

blocks were 40 s long for Run 1, Run 2, Run 3, and the Transfer

run. Each Happy Memories condition block was preceded by a

Rest block and followed by a Count block. Instructions for each

condition were provided to a subject inside an MRI scanner as

visual cues via the neurofeedback GUI screen [22]. For the Rest

conditions, the participants were instructed to rest while viewing

the screen. For the Count conditions, the subjects were asked to

count backwards from 100 by subtracting a given integer. For the

Happy Memories conditions during the neurofeedback runs

(Practice, Run 1, Run 2, and Run 3), the participants were

Analysis of fMRI Neurofeedback Effects on Amygdala
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instructed to feel happy by evoking and contemplating happy

autobiographical memories, while also trying to control and raise

the neurofeedback bar on the screen. The bar height was updated

every 2 s. The target level for the neurofeedback bar was raised in

equal increments from run to run. For the Happy Memories

conditions during the Transfer run, no neurofeedback was

provided, but the subjects were asked to feel happy using the

same strategies as during the rtfMRI-nf training. Details of the

experimental protocol and instructions given to the participants

can be found in our previous work [22].

All functional and structural MR images were acquired using a

General Electric Discovery MR750 3T MRI scanner with a

standard 8-channel receive head coil array as described in [22]. A

gradient-recalled echo-planar imaging (EPI) sequence with sensi-

tivity encoding (SENSE) [37] and two-fold acceleration (R = 2) was

employed for fMRI. The sequence provided the whole-brain

coverage with 1.87561.87562.9 mm3 spatial resolution and

temporal resolution equal to the fMRI repetition time

TR = 2000 ms. A T1-weighted magnetization-prepared rapid

gradient-echo (MPRAGE) sequence with SENSE R = 2 was used

to acquire anatomical brain images with 0.937560.937561.2 mm3

spatial resolution.

Regions of Interest
The seven ROIs for the network analysis were selected based on

the functional connectivity results reported in our previous study

[22]. The ROIs are shown in Figure 1. Each ROI was defined as a

sphere 10 mm in diameter and positioned as follows. The ROI in

the LA region was centered at the locus (217, 27, 216) that

exhibited the largest difference in mean BOLD activity levels

(within the LA region) between the EG and CG groups for the

Happy Memories conditions during both Run 3 and the Transfer

run. The other six ROIs showed a significant enhancement in

functional connectivity strength with this LA seed ROI for EG.

This connectivity enhancement (positive linear trend) was statis-

tically significant both across the neurofeedback training runs (RE,

PR, R1, R2, R3) and across the entire experiment including the

Transfer run (RE, PR, R1, R2, R3, TR), as described in detail in

[22]. The six ROIs were located in the following brain areas and

centered at the following points based upon our previously

reported results ([22]): the left rACC (BA 24) at (23, 34, 5); the left

DMPFC (BA 9) at (26, 45, 34); the right DMPFC (BA 9) at (3, 47,

38); the right MFPC (BA 10) at (5, 56, 21); the left SFG (BA 6) at

(29, 17, 62); and the right SFG (BA 8) at (9, 31, 54). While many

brain regions exhibited functional connectivity with the LA during

the experiment [22], the significant enhancement in the connec-

tivity strength for these six regions indicated their special role

during the rtfMRI-nf training. For convenience, we refer to the

seven regions in Fig. 1 as a ‘‘network’’, with understanding that

these regions may potentially form a network or belong to a broader

emotion regulation network.

Network Modeling
We performed analyses of effective connectivity for the network

in Fig. 1 using the structural vector autoregression (SVAR) method

described in [33]. SVAR combines the capabilities of the

structural equation modeling (SEM), which is a hypothesis-driven

approach, and the vector autoregression (VAR, Granger causality

[38]), which is a data-driven approach. SVAR can model both

instantaneous (contemporaneous) and lagged effects among

network regions using a unified analytical framework. While no

interactions within the brain are truly instantaneous, the inclusion

of the instantaneous effect terms makes it possible to model

interactions with delay times much shorter than the lag time set by

the temporal resolution of fMRI.

A multivariate SVAR model of the first order (number of lags

p = 1) for a network of n ROIs is defined as follows [33]:

SVAR(1) :X (t)~A0X (t)zA1X (t{1)zb1z1(t)z:::zbmzm(t)ze(t)

X (t)~

x1(t)

..

.

xn(t)

2
6664

3
7775,A~

a11 � � � a1n

..

.
P

..

.

an1 � � � ann

2
6664

3
7775,b~

b1

..

.

bn

2
6664

3
7775,e(t)~

e1(t)

..

.

en(t)

2
6664

3
7775(1)

Here, X(t) is a vector consisting of fMRI signal values xi(t) for n

ROIs at time point t, and X(t21) is a vector of fMRI signals for the

same ROIs at the preceding time point t21. The time points

correspond to consecutive fMRI volumes, and the minimum

nonzero lag time is equal to the fMRI repetition time TR. The n6n

matrices A0 and A1 contain path coefficients {aij} for different pairs

of ROIs. A path coefficient aij specifies a directional effect of the j-

th ROI on the i-th ROI. The matrix A0 describes instantaneous

effects within the network. The diagonal elements of A0 are zeros,

and the maximum number of free parameters is n(n21)/2

according to [33]. The remaining path coefficients have to be

fixed to predefined nonzero values or set to zero. Thus, the general

structure of A0 must be defined prior to the SVAR analysis based

on some hypothesis about the instantaneous effects among the

network regions. The matrix A1 describes lagged effects with lag 1

(i.e. TR) within the network. No a priori assumptions about

properties of A1 are needed, so determination of path coefficients

for the lagged effects is data-driven. The functions z1(t)…zm(t) in Eq

(1) are exogenous variables, such as physiological confounds or

experimental design parameters, which are independent of the

interactions within the network. Their effects are described in the

model by vectors bk, k = 1…m. The e(t) is a vector of residuals

{ei(t)}, assumed to be serially and mutually independent with

Gaussian distributions [33].

A first-order multivariate VAR model (p = 1) for the same

network is defined as follows:

VAR(1) :X (t)~A1X (t{1)zb1z1(t)z:::zbmzm(t)ze(t) ð2Þ

It can be considered a particular case of the first-order SVAR

model described by Eq (1). In VAR, the lagged effects are modeled

explicitly by elements of the n6n matrix A1, and require no prior

assumptions. The instantaneous effects are accounted for by the

residuals in the vector e(t). However, the residuals in this case can

no longer be assumed to be serially and mutually independent

[33].

Data Analysis
The fMRI data processing and analysis were performed using

Analysis of Functional NeuroImages (AFNI) software [39,40]. The

AFNI program 1dSVAR.R was used for multivariate SVAR

analysis, Eq (1), and the program 1dGC.R was employed for

multivariate VAR, Eq (2). The programs are distributed with

AFNI and described in [33,41]. They were customized for the

analyses in the present study. Analysis of percent BOLD signal

changes for the seven ROIs in Fig. 1 also was performed in AFNI

using the general linear model (GLM) framework, as described in

[22]. Statistical data analyses were conducted using Statistical

Package for Social Sciences (IBM SPSS Statistics 20).

Analysis of fMRI Neurofeedback Effects on Amygdala

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e79184



Pre-processing of single-subject fMRI data for the subsequent

network analysis included correction of cardiorespiratory artifacts

using RETROICOR [42], slice timing correction, and volume

registration. The seven ROIs, defined in the Talairach space (Fig.

1), were transformed to an individual subject’s EPI image space

using a high-resolution structural brain image for that subject,

acquired prior to the fMRI experiment. Four additional ROIs

were defined bilaterally (on the left and on the right, to avoid

asymmetry) within white matter and ventricle CSF, and were

similarly transformed. Each ROI in the EPI space contained

approximately 50 voxels. The EPI images were spatially smoothed

using a Gaussian kernel with full-width at half-maximum (FWHM)

of 5 mm. No temporal filtering or baseline correction was applied

to the data prior to the network analyses. Time courses of the

mean fMRI signals for the selected ROIs were exported and used

as input time series for the network modeling.

The multivariate SVAR and VAR analyses were performed

according to Eqs (1) and (2) for the network of seven ROIs (n = 7)

in Fig. 1 for each of the six experimental runs. Following [41], we

selected the first-order model for the lagged effects. The exogenous

variables {zk(t)} included six fMRI motion parameters, time

courses of the four ROIs within white matter and ventricle CSF,

and six Legendre polynomials for modeling the baseline. Thus, the

total number of covariates in Eqs (1) and (2) for n = 7 was m = 16.

The SVAR modeling, Eq (1), is more challenging than the VAR

modeling, Eq (2), because it requires a priori assumptions about

the structure of the matrix A0 describing instantaneous effects. For

n = 7, there are 42 possible directional effects among different

regions, but no more than 21 elements in the matrix A0 can be

optimized simultaneously (see Network Modeling). This makes the

number of possible structural models, that should be optimized

and compared, prohibitively large. In the present work, however,

we were primarily interested in those interactions that exhibited

significant progressive changes with the rtfMRI-nf training. This

consideration provided an additional criterion, which we used to

simplify the SVAR model. This criterion was applied as follows. A

‘‘star’’ model for instantaneous effects was defined and optimized

for each of the seven ROIs. Each star model only described

directional effects of a selected region onto the other six regions, so

the matrix A0 had only six free parameters in each case (see SVAR

Analysis). Upon examination of the SVAR results for the seven star

models, we selected three ROIs that showed the most significant

linear trends in their instantaneous interactions across the rtfMRI-

nf training runs (see SVAR Analysis and Discussion for details).

For the chosen system of three ROIs (n = 3), we defined and

optimized a total of 24 SVAR models. These models included four

additional censor covariates (yielding m = 20), each equal to 1 for

one of the 40-s long Count condition blocks (as defined for Runs 1-

3 and the Transfer run in [22]), and 0 for all other points. Such

censoring effectively excluded the Count condition blocks from the

analysis. A SVAR model for three ROIs allows simultaneous

optimization of as many as three path coefficients for instanta-

neous effects (see Network Modeling). However, comparison of

different structural models using the x2 criterion is only possible if

less than three (for n = 3) model parameters are optimized at the

same time (df.0). Therefore, the SVAR modeling of the system

with three ROIs was performed in two steps. First, all possible

models with two instantaneous effects were optimized. The matrix

A0 in each case had two free parameters (df = 1), and all the other

matrix elements were set to zero. Twelve structural models were

optimized in this way. While there are 15 pairs of directional

effects for a system of three ROIs, structural models with non-

recursive paths (i.e. A = .B & B = .A, three in this case) are

numerically unstable in SEM analysis. Second, for each of the 12

models with optimized parameters, two nested structural models

were defined by inclusion of a third instantaneous interaction with

one of two possible directions. For example, if the instantaneous

effects A = .B and A = .C (with A,B, and C denoting the three

regions) were optimized at the first step, one nested model was

defined with B = .C interaction, and the other – with C = .B

interaction. The matrix A0 in each case had one free parameter

(df = 2) and two constant elements from the previous step, with the

remaining elements set to zero. Thus, 24 models for instantaneous

effects were defined, optimized, and compared using the x2

measure of fit quality.

Each single-subject analysis by means of 1dGC.R or

1dSVAR.R programs yielded values of path coefficients {aij}

together with corresponding t-statistics. Group analyses of the

results were performed using the same programs. Each group

analysis was a meta-analysis utilizing both path coefficients {aij}

and their respective t-values for each subject in a group. The

analysis provided estimates of a group path coefficient and its

statistical significance (P-value, two-tailed, uncorrected) for each

interaction within the network. Correction for multiple compar-

isons was performed using the false discovery rate (FDR)

procedure [43], implemented in 3dFDR AFNI program. This

program was applied to a column of uncorrected P-values. Trends

in group effects across experimental runs were evaluated using the

GLM for Repeated Measures analysis in SPSS, applied to path

coefficient values {aij} (without t-statistics) for multiple runs for all

subjects in a given group. Similar trend analyses were conducted

for percent BOLD signal change results for each of the seven

ROIs.

Figure 1. Regions of interest for the effective connectivity analysis. Six brain regions exhibited a significant enhancement in functional
connectivity with the left amygdala during the rtfMRI neurofeedback training with positive emotion induction [22]. They included: the left rostral
anterior cingulate cortex (rACC, BA 24), bilateral dorsomedial prefrontal cortex (DMPFC, BA 9), bilateral superior frontal gyrus (SFG, BA 6,8), and right
medial frontopolar cortex (MFPC, BA 10). The 10 mm diameter regions of interest (ROIs) in those areas are projected onto the standard anatomical
template (TT_N27) in the stereotaxic array of Talairach and Tournoux [34].
doi:10.1371/journal.pone.0079184.g001
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Results

ROI Analysis
Figure 2 illustrates BOLD activity properties for three

representative ROIs in the network (Fig. 1) – the LA, the left

rACC, and the right DMPFC – for the six experimental runs. The

results in Fig. 2A correspond to EG, and the results in Fig. 2B – to

CG. Each bar in the figures represents a mean percent BOLD

signal change for a given ROI, averaged for Happy Memories

conditions during a given run and across all subjects in a given

group. The mean ROI results for each participant were obtained

from the GLM analysis described in [22]. The error bars are

standard errors of the means (sem) across the subjects. The results

for the LA ROI in Fig. 2 differ slightly from those reported in our

previous study [22], because they correspond to the LA seed ROI

defined based on the functional contrast between EG and CG (see

Regions of Interest) rather than the LA target ROI based on the

published meta-analysis (see Subjects and Procedure). The abbrevia-

tion ‘‘LT’’ in the text below refers to a linear trend, and t(13) is the

linear trend t-statistics (for 14 subjects), corresponding to F(1,13)

trend statistics in the GLM for Repeated Measures analysis in

SPSS (see Data Analysis).

The LA BOLD activity for EG (Fig. 2A) exhibited a significant

positive linear trend across the neurofeedback training runs with

the Rest run as the starting point (LT(RE…R3): t(13) = 2.467,

P,0.028) and across the entire experiment including the Transfer

run (LT(RE…TR): t(13) = 3.170, P,0.007). The mean BOLD

activity levels during the Transfer run and Run 3 did not differ

significantly from each other (TR vs R3: t(13) = 20.195, P,0.849).

For the CG results in Fig. 2B, there was no significant linear trend

for the LA BOLD activity across the experiment (LT(RE…TR):

t(13) = 0.691, P,0.502). Comparison of the mean BOLD activity

levels between the EG and CG groups showed significant

differences for Run 2 (t(26) = 2.360, P,0.026), Run 3

(t(26) = 2.887, P,0.008), and the Transfer run (t(26) = 2.556,

P,0.017).

The left rACC results for EG (Fig. 2A) showed a linear trend

across the experiment that was nonsignificant but trended toward

significance (LT(RE…TR): t(13) = 2.013, P,0.065). The mean

activity levels for the Transfer run and Run 3 did not exhibit a

significant difference (TR vs R3: t(13) = 1.063, P,0.307). For the

CG results in Fig. 2B, there was no significant linear trend for the

rACC BOLD activity levels across the experiment (LT(RE…TR):

t(13) = 0.505, P,0.622). Comparison of the mean activity levels

between EG and CG showed trends toward differences for Run 2

Figure 2. Learned enhancement of control over BOLD activity and emotion induction. (A) Mean BOLD signal activity of the left amygdala
during the rtfMRI neurofeedback (rtfMRI-nf) training for the experimental group (EG). The EG subjects received rtfMRI-nf based on the BOLD activity
in the left amygdala ROI. Each bar represents a group average (mean6sem) of percent BOLD signal changes for the Happy Memories condition vs
Rest condition for each of the six experimental runs: Rest (RE), Practice (PR), Run 1 (R1), Run 2 (R2), Run 3 (R3), and Transfer (TR). The enhancement in
the left amygdala activity (red) was accompanied by increased activities of the left rACC (magenta), the right DMPFC (orange), as well as the other
ROIs depicted in Fig. 1. (B) Lack of learned control over BOLD activity of the left amygdala and other regions for the control (sham) group (CG). The CG
subjects received sham rtfMRI-nf based on BOLD activity in the left horizontal segment of the intraparietal sulcus (HIPS), presumably not involved in
emotion regulation.
doi:10.1371/journal.pone.0079184.g002
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(t(26) = 1.735, P,0.095) and for the Transfer run (t(26) = 1.875,

P,0.072).

The right DMPFC BOLD activity for EG (Fig. 2A) exhibited a

linear trend across the experiment that was nonsignificant with a

trend toward significance (LT(RE…TR): t(13) = 2.085, P,0.057).

There was no significant difference between the mean activity

levels for the Transfer run and Run 3 (TR vs R3: t(13) = 0.598,

P,0.560). For the CG results in Fig. 2B, there was no significant

linear trend for the right DMPFC BOLD activity levels across the

experiment (LT(RE…TR): t(13) = 1.033, P,0.320). Comparison

of the mean BOLD activity levels between EG and CG showed a

trend toward a difference for the Transfer run (t(26) = 1.839,

P,0.077).

Correlation analysis for EG revealed positive across-subjects

correlations between the mean BOLD activity levels for the left

rACC on the one hand, and the mean BOLD activity levels for the

LA and the right DMPFC, on the other hand. For example, for

the Transfer run: LA vs left rACC: r = 0.544, P,0.040; right

DMPFC vs left rACC: r = 0.483, P,0.080.

Results of the VAR and SVAR analyses reported below were

similarly tested for linear trends across experimental runs and

group differences as signatures of the rtfMRI-nf training effects.

VAR Analysis
Results of the multivariate VAR analysis, Eq (2), appear in

Figure 3 and Table 1. The figure schematically depicts directional

lagged effects (with the lag time of 2 s equal to the repetition time

TR in the rtfMRI-nf experiment) suggested by the group-level

analyses. Table 1 includes group path coefficients for the effects of

the left rACC on the other six regions. The results in Fig. 3 and

Table 1 were obtained from the group meta-analysis procedure

described above (see Data Analysis). The one-group results in Fig.

3A and Fig. 3B were corrected for multiple comparisons using the

FDR procedure (see Data Analysis) and thresholded using FDR q-

values. The group differences in Fig. 3C and Fig. 3D did not

survive the FDR correction, and were thresholded using uncor-

rected P-values. The notation ‘‘ = .’’ in the text, figures, and

tables below denotes a directional effect of one region onto the

other.

Figure 3A shows VAR results for the last neurofeedback

training run (Run 3) for EG. The results suggest that the left rACC

exerted significant effects on the LA (rACC = .LA: a = 0.0857,

q,0.024) and the right MFPC (Table 1, column A). VAR results

corresponding to Run 3 for CG appear in Fig. 3B. The results

revealed no significant effects involving either the LA or the left

Figure 3. Interactions within the network suggested by the multivariate VAR analysis. Results of the multivariate first-order vector
autoregression (VAR) analysis for the network of seven ROIs depicted in Fig. 1. The four subplots show meta-analytic group statistics for path
coefficients for the following groups and contrasts. (A) Experimental group (EG), neurofeedback Run 3. (B) Control group (CG), Run 3. (C) Difference
between Run 3 and Rest for EG. (D) Difference between Run 3 for EG and Run 3 for CG. Red arrows denote augmentation effects (path coefficient
a.0), and blue arrows – inhibition effects (path coefficient a,0). In (A) and (B), solid arrows correspond to effects with FDR q,0.05, and dotted
arrows – to effects with 0.05#q,0.1. In (C) and (D), solid arrows correspond to results with uncorrected P,0.05, and dotted arrows – to results with
0.05#P,0.1.
doi:10.1371/journal.pone.0079184.g003
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rACC (Table 1, column B). Figure 3C shows group differences

between the VAR results for Run 3 and the Rest run for EG. The

results demonstrate that the effects of the left rACC were

enhanced during the rtfMRI-nf training for EG. The enhance-

ment was significant for the LA (rACC = .LA: na = 0.1099,

P,0.010) and the right SFG (Table 1, column C). Group

differences in the VAR results for Run 3 between EG and CG are

exhibited in Fig. 3D. The results indicate that the effects of the left

rACC on the other six network regions were stronger for EG than

for CG. The group differences for the left DMPFC, the right

MFPC, the left SFG, and the right SFG were significant, while the

group differences for the LA (rACC = .LA: na = 0.1102,

P,0.077) and the right DMPFC trended toward significance

(Table 1, column D). The left rACC effects for the Transfer run

(not shown) for EG exhibited nonsignificant reductions compared

to Run 3.

The average VAR path coefficients (mean6sem) describing the

lagged effects of the left rACC on the other six network regions

appear in Figure 4, and the corresponding linear trend statistics

are included in Table 2. Group-level trends across multiple

experimental runs were evaluated using the GLM for Repeated

Measures analysis as described above (see Data Analysis). Table 2

shows linear trend t-statistics with the corresponding group P-

values for the six rACC effects for both EG and CG.

The left rACC effects for EG exhibited significant positive linear

trends across the neurofeedback runs (RE, PR, R1, R2, R3) for

four regions. These regions included the LA (rACC = .LA:

LT(RE…R3), t(13) = 2.348, P,0.035), the right MFPC, the left

SFG and the right SFG (Table 2, column EG). The results for the

left and right DMPFC showed more significant linear trends across

the entire experiment (rACC = .left DMPFC: LT(RE…TR),

t(13) = 2.215, P,0.045; rACC = .right DMPFC: LT(RE…TR),

t(13) = 2.088, P,0.057). The left rACC effects for CG exhibited

Table 1. Effects of the rACC on the other six network regions according to the multivariate VAR analysis.

A B C D

Effect a [q] a [q] na [P] na [P]

L rACC = . L Amy 0.0857 [0.024]* 20.0271 [0.767] 0.1099 [0.010]* 0.1102 [0.077]

L rACC = . L DMPFC 0.0888 [0.061] 20.0004 [0.986] 0.0588 [0.266] 0.0833 [0.030]*

L rACC = . R DMPFC 0.0899 [0.141] 20.0138 [0.776] 0.0591 [0.361] 0.0984 [0.090]

L rACC = . R MFPC 0.1298 [0.026]* 20.0355 [0.681] 0.0725 [0.279] 0.1651 [0.006]*

L rACC = . L SFG 0.0798 [0.289] 20.0191 [0.718] 0.1374 [0.057] 0.1080 [0.027]*

L rACC = . R SFG 0.0695 [0.178] 20.0207 [0.700] 0.1119 [0.039]* 0.0908 [0.015]*

The table contains meta-analytic group values of the VAR path coefficients (a) with the corresponding FDR q-values (in square brackets), as well as group differences in
the path coefficients (na) with the corresponding uncorrected P-values. The four data columns (A,B,C,D) correspond to the four subplots (A,B,C,D) in Fig. 3.
*indicate significant effect.
doi:10.1371/journal.pone.0079184.t001

Figure 4. Effects of the rACC on the other six network regions suggested by the multivariate VAR analysis. Average path coefficient
values (mean6sem) describing the effects of the left rACC on the other six network regions based on the analysis illustrated in Fig. 3. The results for
each of the six experimental runs are shown in red for the experimental group (EG) and in blue for the control group (CG).
doi:10.1371/journal.pone.0079184.g004
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negative trends across the neurofeedback runs (Table 2, column

CG). The negative trends were more significant across the entire

experiment (for example, rACC = .right DMPFC: LT(RE…TR),

t(13) = 22.852, P,0.014; rACC = .right MFPC: LT(RE…TR),

t(13) = 23.546, P,0.004).

Beyond the left rACC effects specified in Fig. 4 and Table 2,

only four other VAR interactions (out of total 49) exhibited linear

trends that were either significant or approaching significance for

EG: rACC = .self (LT(RE…R3), t(13) = 2.789, P,0.015); left

DMPFC = .right DMPFC (LT(RE…R3), t(13) = 21.837, P,0.089);

left DMPFC = .left SFG (LT(RE…R3), t(13) = 22.346, P,0.036);

and right MFPC = .left SFG (LT(RE…R3), t(13) = 2.083, P,0.058).

Therefore, the left rACC had more VAR effects that showed

significant trends across the neurofeedback runs than the other six

regions combined. This result is consistent with the group difference

statistics in Fig. 3C and Fig. 3D. Because such linear trends were

associated mainly with the left rACC, the trend statistics in Table 2 did

not survive FDR correction for multiple comparisons over the 49

VAR interactions. However, when the FDR correction was applied to

the linear trend statistics for the six rACC effects only (Fig. 4, Table 2),

as the most relevant ones, the corrected results approached

significance, with FDR q,0.055 for the four most significant trends

in Table 2.

SVAR Analysis
Figure 5A exhibits a schematic of a star model for instantaneous

effects of the left rACC on the other six regions. The matrix A0 in

Eq (1) had six free parameters in this case, and all the other matrix

elements were set to zero. Average values of the path coefficients

(mean6sem) for both instantaneous and lagged effects of the left

rACC are shown in Fig. 6A. The corresponding linear trend

statistics across the six experimental runs are included in Table 3.

According to these data, the effects of the left rACC appeared very

similar for four regions within the network: the left DMPFC, the

right DMPFC, the right MFPC, and the left SFG. For these

regions, the instantaneous effects for EG (denoted as EG0,

magenta) showed significant linear trends across the neurofeed-

back runs and across the entire experiment (Table 3, column EG0).

The lagged effects for EG (denoted as EG1, red) exhibited no

significant linear trends (Table 3, column EG1), and the

corresponding path coefficients were close to zero (Fig. 6A). The

instantaneous effects for CG (denoted as CG0, cyan) showed no

significant linear trends (Table 3, column CG0). However, the

lagged effects for CG (denoted as CG1, blue) exhibited negative

trends, which were significant for the left DMPFC, the right

DMPFC, the right MFPC, and the right SFG (Table 3, column

CG1).

The SVAR results describing the effects of the left rACC on the LA

in Fig. 6A and Table 3 are inconclusive, however. The instantaneous

effects for EG exhibited no significant trend (rACC = .LA:

LT(RE…R3), t(13) = 0.327, P,0.748; LT(RE…TR), t(13) = 0.455,

P,0.657). The lagged effects for EG showed a positive trend, which,

however, was not significant (rACC = .LA: LT(RE…R3),

t(13) = 1.554, P,0.144; LT(RE…TR), t(13) = 1.350, P,0.200).

Results of the multivariate SVAR analysis with a star model for

instantaneous effects of the LA on the other six regions are shown

in Fig. 6B, and the corresponding linear trend statistics are

reported in Table 3. Only effects of the LA on three other regions

are included. According to these data, the instantaneous effects of

the LA on the left DMPFC and the right DMPFC for EG

exhibited significant positive linear trends across the experimental

runs (Table 3, column EG0), while all the other LA effects did not

show any significant trends.

The significant linear trends for the instantaneous effects in Fig.

6A and Fig. 6B (Table 3, column EG0) generally survived FDR

correction for multiple comparisons within the corresponding star

models with six instantaneous interactions (rACC = .left

DMPFC: P,0.011, q,0.022; rACC = .right DMPFC:

P,0.007, q,0.021; rACC = .right MFPC: P,0.003, q,0.018;

rACC = .left SFG: P,0.034, q,0.051; LA = .left DMPFC:

P,0.018, q,0.054; LA = .right DMPFC: P,0.010, q,0.054).

Similar multivariate SVAR analyses were performed using star

models for instantaneous effects of the other network regions. No

significant linear trends emerged for the effects of the right MFPC,

the left SFG, and the right SFG for EG. The instantaneous effects

of the left DMPFC on the left rACC and the LA for EG showed

positive linear trends that were either significant or trended toward

significance (left DMPFC = .rACC: LT(RE…TR), t(13) = 1.956,

P,0.072; left DMPFC = .LA: LT(RE…TR), t(13) = 2.380,

P,0.033). Similarly, the instantaneous effects of the right DMPFC

on the same two regions exhibited positive linear trends that

trended toward significance (right DMPFC = .rACC:

Figure 5. Schematics of structural models used in the
multivariate SVAR analyses. (A) An example of a star model for
instantaneous effects. A model of this kind was defined for each of the
seven ROIs and examined in the multivariate structural vector
autoregression (SVAR) analysis. (B,C) Two models for instantaneous
effects, Model I and Model II, that provided the best x2 fits to the
experimental group data in the SVAR analyses for the system of three
ROIs. A total of 24 structural models were optimized and compared for
the system consisting of the left amygdala, the left rACC, and the right
DMPFC (see text for details).
doi:10.1371/journal.pone.0079184.g005

Table 2. Trends in the rACC effects on the other six network
regions according to the multivariate VAR analysis.

EG CG

Effect t(13) [P] t(13) [P]

L rACC = . L Amy 2.348 [0.035]* 20.912 [0.379]

L rACC = . L DMPFC 1.961 [0.072] 21.692 [0.115]

L rACC = . R DMPFC 1.437 [0.174] 20.619 [0.547]

L rACC = . R MFPC 2.513 [0.026]* 21.645 [0.124]

L rACC = . L SFG 2.921 [0.012]* 21.136 [0.276]

L rACC = . R SFG 2.330 [0.037]* 21.552 [0.145]

The table contains linear trend t-statistics for the VAR path coefficients across
the neurofeedback runs (RE…R3) with the corresponding group P-values. Each
data row corresponds to a subplot in Fig. 4. Notations are the same as in Fig. 4.
*indicate significant effect.
doi:10.1371/journal.pone.0079184.t002
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LT(RE…TR), t(13) = 2.126, P,0.053; right DMPFC = .LA:

LT(RE…TR), t(13) = 2.008, P,0.066). Notably, these linear

trends were less significant than those in the effects of the left

rACC and the LA on the left DMPFC and the right DMPFC

(Table 3, column EG0).

Based on the results of the seven SVAR analyses with star

models, we selected three regions that showed the most significant

progressive changes in their instantaneous interactions across the

experimental runs: the left rACC, the LA, and the right DMPFC

(see Discussion for a detailed justification of this region selection).

Further SVAR analyses were applied to this system of three ROIs.

Overall, 24 SVAR models with n = 3 were defined and optimized

as described above (see Data Analysis). Among the 24 examined

structural models, two models provided the most accurate

descriptions of the instantaneous effects for EG. They are denoted

as Model I and Model II, and depicted schematically in Fig. 5B

and Fig. 5C, respectively. For Model I, the average x2 value

(mean6std) over three neurofeedback runs (Run 1, Run 2, Run 3)

for 14 subjects in EG was x2 = 0.00560.016. For Model II, this

average value was x2 = 0.00660.020. These values with df = 2

correspond to P = 0.9975 and P = 0.9970, respectively, indicating

that both models provided excellent fits to the instantaneous effects

in the experimental time series data for the three ROIs.

Figure 7 exhibits average values of the path coefficients

(mean6sem) in Model I and Model II. The instantaneous effects

common to both Model I and Model II are shown in Fig. 7A,

while the effects specific to each of the two models are shown in

Fig. 7B and Fig. 7C, respectively. The corresponding linear trend

statistics across the neurofeedback runs (RE…R3) are included in

Table 4. According to these data, the instantaneous effects of the

left rACC and the LA on the right DMPFC for EG exhibited

significant positive linear trends (rACC = .R DMPFC:

Figure 6. Interactions suggested by the multivariate SVAR analyses for seven ROIs. (A) Results of the multivariate first-order structural
vector autoregression (SVAR) analysis for the network of seven ROIs using a star model for instantaneous effects of the left rACC (Fig. 5A). (B) Results
of a similar SVAR analysis using a star model for instantaneous effects of the left amygdala. For the experimental group (EG), average path coefficients
(mean6sem) for the instantaneous effects are depicted in magenta and denoted EG0, and those for the lagged effects are depicted in red and
denoted EG1. For the control group (CG), average path coefficients for the instantaneous effects are shown in cyan and denoted CG0, and those for
the lagged effects are shown in blue and denoted CG1.
doi:10.1371/journal.pone.0079184.g006
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LT(RE…R3), t(13) = 3.053, P,0.009; LA = .R DMPFC:

LT(RE…R3), t(13) = 3.618, P,0.003) (Table 4, column EG0).

The instantaneous interactions between the left rACC and the LA

in both Model I and Model II did not show significant trends

(Table 4, column EG0). Importantly, the positive linear trend in

the lagged effect of the left rACC on the LA in Model I for EG was

significant (rACC = .LA: LT(RE…R3), t(13) = 2.422, P,0.031)

(Table 4, column EG1). The same lagged effect in Model II

showed a positive linear trend that was marginally significant

(rACC = .LA: LT(RE…R3), t(13) = 1.776, P,0.099). However,

Model II also demonstrated a competition between the instanta-

neous and lagged effects of the left rACC on the LA for EG:

increases in the instantaneous effect were accompanied by

decreases in the lagged effect, and vice versa (R2, R3, TR in

Fig. 7C, top). When the path coefficients for the instantaneous and

lagged effects in Model II were summed for each subject and each

run, the group results showed significant positive linear trends both

across the neurofeedback runs and across the entire experiment

(rACC = .LA: LT(RE…R3), t(13) = 2.615, P,0.021; LT(RE…TR),

t(13) = 2.823, P,0.014). This means that the cumulative effect (i.e.

EG0+EG1) of the left rACC on the LA in Model II showed a

significant positive linear trend across the rtfMRI-nf training runs.

Discussion

In this study, we applied structural vector autoregression

(SVAR) modeling [33] to explore effective connectivity specific

to the rtfMRI-nf training of emotional self-regulation [22]. This is

the first application of SVAR analysis to rtfMRI-nf data to our

knowledge.

The analysis of percent changes in BOLD signal activity,

illustrated in Fig. 2 for three representative ROIs, shows similar

activity patterns across the experimental runs for all seven ROIs in

Fig. 1. The group BOLD activity results for the LA in Fig. 2

exhibit three distinct properties (see ROI Analysis above). First, a

significant positive linear trend is observed for EG across the

neurofeedback training runs (with the Rest run as the starting

point) and across the entire experiment. This indicates that the

mean LA BOLD activity increased progressively during the

rtfMRI-nf training. Second, no significant difference between the

mean BOLD activity levels for the last neurofeedback training run

(Run 3) and the Transfer run is observed for EG. This

demonstrates that the participants’ learned ability to activate the

LA during the rtfMRI-nf training generalized to the situation

when the neurofeedback was no longer provided. Third, a

significant difference in the mean BOLD activity levels is observed

between EG and CG groups for Run 3 and for the Transfer run.

This indicates that the ability to increase the LA activity was

specific to EG. The left rACC and the right DMPFC ROIs

exhibited BOLD activity properties that appear similar to those for

the LA ROI (Fig. 2) on the basis of group results showing trends

toward statistical significance (see ROI Analysis). These three

properties reflect the important features of the experimental

design, as discussed in [22]. In particular, the positive linear trend

in the LA BOLD activity across the rtfMRI-nf training runs for

EG arose due to the fact that the target level for the rtfMRI-nf bar

was raised in a linear fashion from run to run (see Subjects and

Procedure). The mean BOLD activity levels for the left rACC and

the right DMPFC also showed linear trends for EG, but not for

CG (Fig. 2). In general, persistence of a linear trend through the

Transfer run depends on the extent to which a certain training

effect generalizes beyond the actual training. The results of the

VAR and SVAR network analyses were tested for such linear

trends and group differences as signatures of rtfMRI-nf training

effects.

The multivariate VAR analysis (Figs. 3 and 4, Tables 1 and 2)

suggests that the left rACC plays a prominent role during the

rtfMRI-nf training of the amygdala. According to the analysis, the

left rACC exerted significant directional effects on the LA and the

right MFPC during the last neurofeedback run (Run 3) for EG

(Fig. 3A), but not for CG (Fig. 3B). Moreover, the effect of the left

rACC on the LA was significantly enhanced during Run 3

compared to the Rest run for EG (Fig. 3C). Similarly, the effects of

the left rACC on the other six regions during Run 3 either were

significantly stronger or trended toward being stronger for EG

than for CG (Fig. 3D). No significant differences were observed for

the left rACC effects between the VAR results for Run 3 and for

the Transfer run, suggesting that these effects persisted beyond the

actual neurofeedback training. Furthermore, the left rACC effects

on the other regions exhibited positive linear trends for EG (Fig. 4,

Table 2), that were either significant or trended toward

significance across experimental runs (see VAR Analysis). Taken

Table 3. Trends in the rACC and amygdala effects on the other network regions according to the multivariate SVAR analyses for
seven ROIs.

EG0 EG1 CG0 CG1

Effect t(13) [P] t(13) [P] t(13) [P] t(13) [P]

L rACC = . L Amy 0.455 [0.657] 1.350 [0.200] 1.501 [0.157] 21.581 [0.138]

L rACC = . L DMPFC 2.967 [0.011]* 0.742 [0.471] 1.807 [0.094] 22.280 [0.040]*

L rACC = . R DMPFC 3.188 [0.007]* 0.357 [0.727] 0.051 [0.960] 22.646 [0.020]*

L rACC = . R MFPC 3.697 [0.003]* 20.077 [0.940] 1.475 [0.164] 23.628 [0.003]*

L rACC = . L SFG 2.364 [0.034]* 0.410 [0.688] 0.548 [0.593] 21.826 [0.091]

L rACC = . R SFG 1.156 [0.269] 0.614 [0.550] 0.760 [0.461] 22.398 [0.032]*

L Amy = . L rACC 0.016 [0.988] 1.230 [0.241] 0.763 [0.459] 20.085 [0.934]

L Amy = . L DMPFC 2.720 [0.018]* 20.162 [0.874] 20.458 [0.654] 0.492 [0.631]

L Amy = . R DMPFC 3.034 [0.010]* 20.160 [0.876] 21.082 [0.299] 0.559 [0.586]

The table contains linear trend t-statistics for the SVAR path coefficients across the six experimental runs (RE…TR) with the corresponding group P-values. Each data row
corresponds to a subplot in Fig. 6. Notations are the same as in Fig. 6.
*indicate significant effect.
doi:10.1371/journal.pone.0079184.t003
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together, the VAR results indicate that a positive dynamic

functional coupling (and directional influence) exists between the

left rACC and the LA during the rtfMRI-nf training with positive

emotion induction, and this coupling is enhanced as the training

progresses.

The VAR analysis also suggests that the right MFPC is actively

engaged during the rtfMRI-nf procedure with real neurofeedback

(EG, Fig. 3A), while the left SFG plays an active role during the

procedure with sham neurofeedback (CG, Fig. 3B). These regions

perform higher cognitive functions. The medial frontopolar cortex

(BA 10) shows increased BOLD activity during mentalizing, i.e.

attending to one’s own emotions and mental states, as well as

during multi-task coordination [44]. Both functions are recruited

during the rtfMRI-nf training, particularly for EG. The medial

superior frontal gyrus (BA 6) is involved in selection of action and

task switching [45]. While both the ACC and the SFG are

generally involved in decision-making, the ACC (unlike the SFG)

has a fundamental role in relating actions to their consequences

[45]. The active engagement of the left SFG instead of the left

rACC during the rtfMRI-nf procedure for CG is likely a reflection

of the fact that the sham neurofeedback provides information

inconsistent with performance of the emotion induction task.

The series of the multivariate SVAR analyses, in which

instantaneous effects of each network region on the other six

regions were modeled independently, as illustrated in Fig. 5A,

generally confirmed the important role of the left rACC. However,

these analyses also demonstrated that the effects of the left rACC

on the prefrontal regions are more accurately described by the

Figure 7. Interactions suggested by the multivariate SVAR analyses for three ROIs. Results of the multivariate SVAR analyses for the system
of three ROIs – the left rACC, the left amygdala, and the right DMPFC – with the models for instantaneous effects depicted in Fig. 5 B,C. (A) Effects that
are common to both Model I (Fig. 5B) and Model II (Fig. 5C). (B) Interactions between the left rACC and the left amygdala in the SVAR analysis with
Model I (Fig. 5B). (C) Interactions between the left rACC and the left amygdala in the SVAR analysis with Model II (Fig. 5C). Notations are the same as in
Fig. 6.
doi:10.1371/journal.pone.0079184.g007

Table 4. Trends in the rACC and amygdala effects according to the multivariate SVAR analyses for three ROIs.

EG0 EG1 CG0 CG1

Effect (Model) t(13) [P] t(13) [P] t(13) [P] t(13) [P]

L rACC = . R DMPFC (I,II) 3.053 [0.009]* 0.286 [0.780] 20.674 [0.512] 21.151 [0.270]

L Amy = . R DMPFC (I,II) 3.618 [0.003]* 20.508 [0.620] 21.004 [0.334] 21.126 [0.281]

L rACC = . L Amy (I) 2.422 [0.031]* 21.147 [0.272]

L Amy = . L rACC (I) 20.407 [0.690] 0.172 [0.866] 0.313 [0.759] 0.303 [0.767]

L rACC = . L Amy (II) 0.636 [0.536] 1.776 [0.099] 0.919 [0.375] 21.044 [0.316]

L Amy = . L rACC (II) 0.282 [0.783] 0.279 [0.785]

The table contains linear trend t-statistics for the SVAR path coefficients across the neurofeedback runs (RE…R3) with the corresponding group P-values. Each data row
corresponds to a subplot in Fig. 7. An empty cell means an absence of the corresponding interaction from a model. Notations are the same as in Fig. 7.
*indicate significant effect.
doi:10.1371/journal.pone.0079184.t004
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instantaneous, than by the lagged effect terms (Fig. 6A, Table 3).

The instantaneous effects of the left rACC on four prefrontal

regions – the left DMPFC, the right DMPFC, the right MFPC,

and the left SFG – exhibited significant positive linear trends

across the experimental runs for EG, but not for CG (Fig. 6A,

Table 3). The lagged effects corresponding to the same interac-

tions were negligible in comparison, and did not exhibit positive

trends (Fig. 6A, Table 3). Interestingly, the lagged effects of the left

rACC for CG showed negative linear trends, that were significant

for several regions (Fig. 6A, Table 3). The instantaneous effects of

the LA on the left and right DMPFC exhibited significant positive

linear trends for EG, while the corresponding lagged effects were

negligible, and did not show significant trends for either EG or CG

(Fig. 6B, Table 3). Notably, effects of the LA on the DMPFC

regions did not emerge in the VAR analysis at all (Fig. 3),

suggesting that such effects were much closer to instantaneous

than to lagged ones (for TR = 2 s). It should be noted that the

SVAR analyses for the seven ROIs were completely independent

of the VAR analysis, and were not informed by it in any way.

To enable a more accurate modeling of instantaneous effects

and examine interactions between the left rACC and the LA with

improved statistical power, we selected the system of three ROIs

for further analyses: the left rACC, the LA, and the right DMPFC.

This region selection was based on the following considerations.

First, the instantaneous effects of both the left rACC and the LA on

the bilateral DMPFC showed significant enhancements during the

rtfMRI-nf training for EG in the SVAR analyses with the seven

ROIs (Fig. 6, Table 3). In contrast, the instantaneous effects of the

right MFPC and the bilateral SFG on the other regions did not

exhibit any significant trends. Second, the rACC (BA 24) and the

DMPFC (BA 9) have extensive direct anatomical connections with

the amygdala, while connections of the MFPC (BA 10) and SFG

(BA 6) with the amygdala are very scarce [46,47]. Third, the rACC

and the DMPFC consistently show functional co-activation with

the amygdala in various emotional tasks [48]. Fourth, the effects of

the left rACC and the LA were similar for both the left and right

DMPFC (Fig. 6, Table 3). The two DMPFC ROIs belong to the

same functional area, and their centers are only 10 mm apart.

Thus, it is sufficient to consider only one of the two regions. We

chose the right DMPFC, because it experienced stronger

instantaneous effects from both the left rACC and the LA (Fig.

6). Selection of the left DMPFC instead of the right DMPFC

produced similar statistical results.

The SVAR analyses for the three selected ROIs indicated that

the instantaneous effects within the system could be quite

accurately described by two structural models (see SVAR Analysis).

Model I (Fig. 5B, Fig. 7B) included the instantaneous effect

LA = .rACC, while Model II (Fig. 5C, Fig. 7C) included the

instantaneous effect rACC = .LA instead. The two interactions

cannot be modeled simultaneously in SEM, because the two paths

are non-recursive. The instantaneous effects of the left rACC and

the LA on the right DMPFC were the same in both models, and

showed significant positive linear trends across the neurofeedback

runs (Fig. 7A, Table 4). The fact that both models provided

similar-quality fits to the experimental data, as demonstrated by

their x2 values (see SVAR Analysis) suggests that the instantaneous

interaction between the left rACC and the LA is bidirectional:

rACC, = .LA. However, neither of the two instantaneous effects

exhibited a significant linear trend across the neurofeedback runs

(Fig. 7B,C, Table 4). In contrast, the lagged effect rACC = .LA

exhibited a positive linear trend that was significant in Model I

(P,0.031) and marginally significant in Model II (P,0.099). The

latter result reflects the competition between the instantaneous and

lagged rACC = .LA effects in Model II (Fig. 7C); their cumulative

effect, nevertheless, showed a significant positive linear trend

(P,0.021). We conclude that the rtfMRI-nf training targeting the

LA [22] leads to a significant enhancement in the lagged effect of

the left rACC on the LA. The instantaneous effects of both the left

rACC and the LA on the bilateral DMPFC are also significantly

enhanced.

It should be noted that all the described effective connectivity

analyses are exploratory. They were conducted not to validate a

specific model, but rather to identify those directional effects that

showed significant enhancement during the rtfMRI-nf training.

Also, the main findings of this study concern the effective

connectivity of the left rACC, while the ROI selection in [22]

was based on the functional connectivity of the LA. This means

that the results reported in this work are essentially independent of

the ROI selection procedure.

SVAR network modeling [33] and a similar method called

unified SEM [49] have been used for analysis of effective

connectivity in neuroimaging data before (e.g. [50,51]). However,

only VAR (Granger causality) [38] modeling has been previously

applied to rtfMRI-nf data [30,52]. In particular, the authors of

[30] demonstrated that patients with schizophrenia could learn to

self-regulate their anterior insula BOLD activity using recall of

emotionally relevant past experiences and rtfMRI-nf. A Granger

causality analysis of the rtfMRI data suggested that effective

connections among insula cortex, amygdala, and MPFC were

enhanced at the end of the training [30]. While this conclusion is

generally consistent with the results of the VAR analysis in the

present work (Figs. 3,4), the analysis procedure of [30] differed

from ours in several respects: i) selection of ROIs in [30] was based

on fMRI activation data (taken partly from literature, partly from

the actual GLM activation analysis), rather than on fMRI

functional connectivity data; ii) a dorsal ACC ROI was included

in the network in [30] rather than a rostral ACC ROI; iii) group

causality maps were presented in [30] for two sessions with the

strongest and the weakest insula regulation, but no statistical

difference map was shown, and no statistical tests comparing

results for the two sessions were reported. These methodological

differences preclude a detailed comparison of the VAR results

between the two studies.

Comparison of the SVAR and VAR results in the present work

demonstrates that SVAR network modeling is clearly preferable to

VAR if the fMRI repetition time is relatively long (TR = 2 s in this

study). In the described VAR analysis, the interactions with

relatively short delay times (as suggested by the SVAR analyses)

either appeared as lagged effects, or did not appear at all (Figs. 3,4

vs Fig. 6). At the same time, the SVAR analyses for three ROIs

(Fig. 7, Table 4) confirmed the VAR result indicating that the

lagged effect of the left rACC on the LA increased progressively

during the rtfMRI-nf training (Fig. 4, Table 2). This effect could,

in principle, be interpreted as a Granger causality between the

activities of neuronal populations. However, possible group-level

differences in the hemodynamic response functions for the left

rACC and the LA in the present study are unknown. It should be

noted that Granger causal inferences are quite robust with respect

to inter-regional hemodynamic response differences, provided that

the temporal resolution is sufficiently high and fMRI noise is

sufficiently low [53,54]. Unlike both VAR and SVAR, the DCM

method [20] can explicitly account for hemodynamic response

variability, but this would require measurements of the hemody-

namic response functions for each ROI in every subject. It has

been suggested that the two approaches – Granger causality

(VAR) and DCM – may be converging, and that Granger

causality may potentially provide candidate models for DCM [55].

Irrespective of a modeling method, an effective connectivity
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analysis of rtfMRI-nf data would benefit from a higher temporal

resolution, which can be achieved, for example, by using SENSE

[37] with higher acceleration factors (R = 2 in this work). Because

rtfMRI-nf training is usually accompanied by increased head

motion, a more efficient correction of motion artifacts in fMRI

time series (e.g. [56]) would also improve reliability and accuracy

of modeling results.

The effective connectivity analysis, reported in this work,

suggests that the left rACC plays an important role during the

rtfMRI-nf training [22], modulating the left amygdala and other

regions of the examined network. This conclusion is consistent

with the results of multiple neuroimaging studies that have

highlighted the role of the left rACC in emotion regulation [8,13–

19,21]. A recent study of self-regulation of emotion networks using

rtfMRI-nf with positive mood induction also showed an increase in

the left rACC activity as a result of the rtfMRI-nf training [27].

The SVAR analyses for three ROIs (Fig. 7, Table 4) demonstrate

top-down modulation of the amygdala by the left rACC, similar to

the one revealed by the bivariate DCM analysis in [17]. However,

the dynamic functional coupling between the two regions is

positive in our study, i.e. activity of the left rACC leads to an

increased activity of the left amygdala. While many previous

studies examining emotion control/regulation focused on the

PFC-amygdala coupling when participants engaged in down-

regulation of negative emotions, the current study focused on up-

regulation of positive emotions. This procedural difference explains the

positive rACC-amygdala coupling found here. The prominent role

of the left rACC suggests that the rtfMRI-nf procedure [22] may

engage subprocesses of automatic (‘‘implicit’’) emotion regulation

in addition to voluntary (‘‘explicit’’) emotion regulation.

In contrast to the active role of the left rACC, the bilateral

DMPFC experienced the directional effects of both the left rACC

and the LA, according to the SVAR analyses (Figs. 6, 7). The

DMPFC has consistently shown co-activation with the amygdala

in a variety of emotional tasks [48]. Furthermore, the DMPFC is

the only frontal region that exhibits co-activation with brainstem

limbic structures, such as the hypothalamus and the periaqueduc-

tal gray matter, thought to be critical for physiological effects of

emotion [48]. The enhancement in the instantaneous

LA = .DMPFC effect during the rtfMRI-nf procedure may be

important for practical applications of neuromodulation, because

electrophysiological activity of the DMPFC can be measured by

scalp EEG and used to provide EEG neurofeedback [31].

Our results are consistent with animal studies that have directly

explored anatomical connections and neuronal interactions

between the PFC and the amygdala. For example, an electrical

microstimulation study in cats [57] demonstrated that stimulated

neuronal firing in the mPFC was associated with an increased

firing probability for neurons in the basolateral amygdala with

typical time lags of 20–40 ms. This result suggested the existence of

excitatory projections of the mPFC to the basolateral amygdala

[57]. Similarly, a microstimulation study in rats [58] showed that

the prelimbic subregion of the mPFC, involved in control over

emotional-cognitive aspects of behavior, had excitatory projections

to the basolateral amygdala. A study of the laminar distribution of

connections between the PFC and the amygdala using injections of

neural tracers in rhesus monkeys [46] showed that the ACC areas

BA 24 and 25 (along with the posterior OFC) had the densest

connections with the amygdala. Moreover, these ACC areas issued

more projections to the amygdala than they received, suggesting a

similar pattern for the flow of information [46]. In contrast, the

DMPFC (BA 9) had more input connections from the amygdala

than output connections to the amygdala [46]. Our SVAR

modeling results, showing the enhancements in the rACC = .LA

and LA = .DMPFC effects associated with rtfMRI-nf, are

consistent with these neuroanatomical properties.

Our results suggest that the rtfMRI-nf approach affords a

powerful non-invasive tool for i) targeting selected brain regions

and modulating their BOLD activity, ii) identifying and modulat-

ing activity of other brain regions engaged due to the rtfMRI-nf

procedure, and iii) exploring the resulting network interactions. In

particular, our results point to the rACC as a promising target for

rtfMRI-nf training of emotion regulation along with the amygdala.

Self-regulation of the rACC using rtfMRI-nf may be relevant for

investigation and treatment of mood and anxiety disorders,

particularly posttraumatic stress disorder (PTSD). Patients with

PTSD show hypoactivation of the rACC (together with the dorsal

ACC, the ventromedial PFC, and the thalamus), when responding

to negative emotional stimuli (versus neutral or positive stimuli),

compared to healthy participants [59,60]. This abnormal

hypoactivation is associated with hyperactivation of the amygdala,

and correlates with PTSD symptom severity [60]. Thus, an

abnormally attenuated functional coupling is observed between

the rACC and the amygdala in patients with PTSD compared to

healthy subjects [59]. The effective connectivity analysis, reported

in this work, indicates that the rtfMRI-nf training targeting the left

amygdala [22] leads to a progressive enhancement in positive

functional coupling and directional influence of the left rACC on

the amygdala for positive emotion induction. This result suggests a

novel therapeutic approach for reducing severity of PTSD

symptoms, in which both the rACC and the amygdala are

simultaneously used as target regions for rtfMRI-nf training.
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