
UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE

LOW-DENSITY PARITY-CHECK CODING FOR HIGH-DENSITY 

MAGNETIC RECORDING SYSTEMS

A Dissertation 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

degree of 

Doctor of Philosophy

By

WEIJUN TAN 
Norman, Oklahoma 

2004



UMI Number: 3135698

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3135698 

Copyright 2004 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



© Copyright by WEIJUN TAN 2004 

All Rights Reserved



LOW-DENSITY PARITY-CHECK CODING FOR HIGH-DENSITY 

MAGNETIC RECORDING SYSTEMS

A Dissertation APPROVED FOR THE 

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

John Y

. hiavlicekrosei

Kevin A. Grasse

Tian-You Yu ^ T



Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. J. R. Cruz, for his 

insightful guidance and encouragement throughout my Ph.D. studies. It is his expertise 

and wisdom that led me into the area of magnetic recording, helped make this work 

possible and will benefit me forever.

I would also like to thank Dr. John Y. Cheung, Dr. Joseph P. Havlicek, Dr. Xian- You 

Yu, and Dr. Kevin A. Grasse for their support and time serving my Ph.D. program 

committee.

I am thankful to all the fellow students in the Communication Signal Processing 

Laboratory (CSPLab) for the helpful discussions and the friendship. Particularly, I am 

appreciative of Dr. Richard M. Todd, a former student of Dr. Cruz, who helped me with 

the C++ program for density evolution.

Finally, I would like to thank Hitachi, Ltd. for providing a graduate fellowship, which 

made this work possible.



To my parents and my wonderful wife Qiong



Table of Contents

Abstract ....................................................................................................................... xv

1 Introduction to Magnetic Recording S ystem s.................................................... 1

1.1 Magnetic Recording...................................................................................................... 2

1.1.1 Magnetic recording basics....................................................................................2

1.1.2 Modes of recording............................................................................................... 2

1.2 Continuous-Time Channel M odel................................................................................ 4

1.2.1 Pulse response .......................................................................................................4

1.2.2 Physical disturbances.............................................................................................7

1.3 Discrete-Time Channel M odel......................................................................................9

1.3.1 Optimum channel detection.................................................................................10

1.3.2 Suboptimum channel detection........................................................................... 11

1.3.3 Partial response equalization................................................................................12

1.3.4 Partial response target.......................................................................................... 13

1.4 Magnetic Recording Systems.....................................................................................18

1.4.1 Error correcting co d e .........................................................................................  19

1.4.2 Modulation code...................................................................................................20

1.4.3 Precoder ............................................................................................................... 20

1.5 Outline of the Dissertation.........................................................................................21

2 Partial Response Channel D etection ..................................................................23

2.1 Trellis Description of PR Channel............................................................................. 24

2.2 PRM L........................................................................................................................... 25

2.3 SOVA.............................................................................................................................27

2.4 B C JR .............................................................................................................................28

2.5 Forward-MAP..............................................................................................................30

2.6 Algorithm Comparison............................................................................................... 32

2.6.1 Performance Comparison.................................................................................. 32

VI



2.6.2 Complexity Comparison....................................................................................33

2.7 Comparison of Longitudinal Recording Targets..................................................... 34

2.8 Comparison of Perpendicular Recording Targets.................................................... 36

3 Low-Density Parity-Check Codes..................................................................... 39

3.1 Introduction to LDPC C odes......................................................................................39

3.2 Message-Passing Algorithm........................................................................................43

3.2.1 Basic MP Algorithm..........................................................................................43

3.2.2 Log-MP Algorithm............................................................................................45

3.2.2 Iterating with Channel Detection: Turbo Equalization...................................46

3.3 Design of LDPC Codes...............................................................................................48

3.3.1 Random Codes.................................................................................................... 48

3.3.2 Finite-Geometry Codes.......................................................................................50

3.3.3 Array C odes........................................................................................................52

3.3.4 Performance Comparison.................................................................................. 56

4 Density E volution ....................................................................................................58

4.1 Information Rate of PR channels............................................................................... 59

4.1.1 Systematic Information R a te ............................................................................ 59

4.1.2 BCJR-Once Bound.............................................................................................60

4.2 LDPC Decoding Revisited..........................................................................................61

4.3 Density Evolution.........................................................................................................63

4.4 Properties of Density Evolution.................................................................................. 65

4.4.1 Concentration Theorems.....................................................................................65

4.4.2 Decoding Error Estimation............................................................................... 67

4.4.3 Noise Threshold.................................................................................................. 68

4.5 Performance of LDPC Coded PR Channels...............................................................69

4.5.1 Noise Threshold................................................................................................. 69

4.5.2 Decoding E rro r.................................................................................................. 71

4.6 Analyzing Precoding Effects......................................................................................74

4.7 Designing Good LDPC C odes...................................................................................75



5 Erasures..................................................................................................................... 80

5.1 Erasure Model............................................................................................................... 80

5.2 BCJR-Once Information Rate Bound......................................................................... 82

5.3 Density Evolution for Erasures....................................................................................83

5.3.1 Modified Density Evolution...............................................................................83

5.3.2 Characterizing Erasures......................................................................................84

5.3.3 Numerical Results............................................................................................... 86

5.3.4 Validation of BER Estimation........................................................................... 91

5.4 Erasure Detection Algorithms.....................................................................................94

5.4.1 BCJR Analysis for Full Erasures.......................................................................95

5.4.2 BCJR Analysis for Partial Erasures...................................................................99

5.4.3 Erasure Detection Algorithms.......................................................................... 101

5.5 LDPC Erasure Correction Performance................................................................... 104

5.5.1 Longitudinal Recording.................................................................................  104

5.5.2 Perpendicular Recording................................................................................  107

6 SNR M ism atch....................................................................................................  108

6.1 SNR Mismatch for Channel Detection.................................................................... 110

6.1.1 Theory............................................................................................................... 110

6.1.2 Simulation of Uncoded M RCs......................................................................  I l l

6.2 SNR Mismatch for LDPC Decoding........................................................................113

6.2.1 Gaussian Channels.........................................................................................  113

6.2.2 Ideal EPR4 Channel.......................................................................................  116

6.2.3 Ideal EPR4 Channel with Erasures...............................................................  117

6.3 Finding Optimum Values for SNR Mismatch.........................................................120

6.3.1 MRCs without Erasures...................................................................................121

6.3.2 MRCs with Erasures........................................................................................ 124

6.4 Application to Practical Systems............................................................................ 127

7 Channel Detection for Perpendicular Recording Channels
with Intertrack Interference................................................................................. 129

7.1 ITI M odel................................................................................................................. 130



7.2 Information Rate of PMRCs with IT I .......................................................................132

7.2.1 Single-Track M odel......................................................................................... 133

7.2.2 Joint-Track M odel........................................................................................... 133

7.2.3 Numerical Results........................................................................................... 134

7.3 Single Track Detection............................................................................................. 136

7.4 Joint Track Detection................................................................................................ 138

7.4.1 Joint-MLSD....................................................................................................... 138

7.4.2 Joint-BCJR........................................................................................................141

7.4.3 Joint-Forward-MAP........................................................................................ 142

7.4.4 Numerical Results............................................................................................ 142

7.5 Single-Track Equalization.........................................................................................144

7.5.1 AWGN Channels..............................................................................................145

7.5.2 Media Noise Channels.....................................................................................148

7.6 Joint-Track Equalization............................................................................................ 150

7.6.1 AWGN Channels..............................................................................................151

7.6.2 Media Noise Channels.....................................................................................153

8 Conclusions and Future W ork ........................................................................... 155

8.1 Conclusions................................................................................................................ 155

8.2 Future W ork............................................................................................................... 157

Bibliography ..............................................................................................................159



List of Tables

Table 1.1. PR targets for LM RCs......................................................................................... 14

Table 1.2. GPR targets for PMRCs with =1.4 .............................................................17

Table 2.1. Complexity comparison of channel detection algorithms................................34

Table 3.1. FG-LDPC C odes.................................................................................................. 51

Table 3.2. High-rate array-based LDPC codes ...................................................................55

Table 4.1. SNR thresholds and simulation results for LDPC (3,30) coded EPR4
channel. In simulation a particular code of length 4374 is used ..................... 74

Table 4.2. Degree functions for the code5 and code7........................................................ 78

Table 6.1. VMRs of channel LLR pdf densities for ideal EPR4 with
AWGN and correlated no ise ..............................................................................116

Table 6.2. VMRs of channel LLR pdf densities for ideal EPR4 with
AWGN and undetected erasures..................................................................... 119

Table 7.1. Coefficients {gn/%}  for PMRCs with =1.0 and 1 .4 .................................... 132

Table 7.2. Single-track targets for PMRCs with = 1.5, ITI and AW GN...............  146

Table 7.2. Single-track targets for PMRCs with = 1.5, ITI and 10%
AWGN plus 90% media noise......................................................................  148

Table 7.4. Joint-track targets for PMRCs with =1.5, À = 0.2 and AWGN .... 151

Table 7.5. Joint-track targets for PMRCs with = 1.5, À = 0.2 and 10%
AWGN plus 90% media noise..................................................................... 153



List of Figures

Fig. 1.1. Illustration of the write and read processes for magnetic recording................. 3

Fig. 1.2. Lorentzian function for LMRC and hyperbolic-tangent
functions for PMRC .............................................................................................. 6

Fig. 1.3. Amplitude response | \ for LMRC and PM R C........................................ 6

Fig. 1.4. PR channel models, (a) PR equalized MRC model, (b) all
discrete-time model ...............................................................................................11

Fig. 1.5. Amplitude response of PR targets for LM RC...................................................... 14

Fig. 1.6. Amplitude response of GPR targets for PM RC..................................................  17

Fig. 1.7. Magnetic recoding system m odel......................................................................... 18

Fig. 2.1. Trellises for the (a) non-precoded and
(b) 1 /1 @ D ̂  -precoded EPR4 channel .............................................................. 25

Fig. 2.2. Comparison of channel detection on the ideal EPR4 channel.............................33

Fig. 2.3. Performance comparison of LDPC coded LMRC with
(a) AWGN, (b) 10% AWGN plus 90% media noise ......................................... 35

Fig. 2.4. Performance comparison of LDPC coded PMRC with
(a) AWGN, (b) 10% AWGN plus 90% media noise ............................................37

Fig. 3.1. An example of factor graph................................................................................... 41

Fig. 3.2. Message passing processes in the MP algorithm..................................................44

Fig. 3.3. Turbo equalization for an LDPC coded PR channel........................................... 46

Fig. 3.4. Performance of turbo equalization........................................................................47

Fig 3.5. Random codes (4374,3888, ,10w  ̂), = 3,4,5,6 .............................................49

Fig. 3.6. PG-I(2,6), PG-II (3,3), and EG-II(4,2) codes....................................................... 52

Fig. 3.7. Array-based codes (63,6,54), (101,5,45), (127,4,36) and (167,3,27)................ 56



Fig. 3.8. Comparison of random code (4745,4338,3,35), FG code
FG-II(3,3) and array code (101,4,47)..................................................................... 57

Fig. 4.1. Thresholds for the codes (3,&) on the dicode channel......................................... 70

Fig. 4.2. Thresholds for the codes (3,t) on the ME^PR4 channel...................................... 70

Fig. 4.3. Decoding error estimation using density evolution vs.
simulation for the codes (3,30) on the dicode channel....................................... 73

Fig. 4.4. Decoding error estimation using density evolution vs.
simulation for the codes (3,30) on the ME^PR4 channel..................................... 73

Fig. 4.5. LDPC (4374,3933,3,30) code on EPR4 with several precoders........................ 75

Fig. 4.6. Searching for good LDPC codes using density evolution................................... 76

Fig. 4.7. The code5 and code7 on ideal EPR4 and ME2PR4 channels ......................... 79

Eig. 5.1. Rectangular erasure model characterized by depth rj and length Le ................... 81

Fig. 5.2. BCJR-once bounds for the ideal EPR4 channel with AWGN
and erasures oi £ = 0,5% and 10% ...................................................................  82

Fig. 5.3. BER estimates for LDPC code (3,30) on the precoded EPR4
channel with (a) e = 3% , (b) £ -  6% and as a parameter..............................87

Fig. 5.4. SNR thresholds as a function of r] for LDPC code (3,30) on the
EPR4 channel with partial erasure of probability e (unknown C S I)................. 88

Fig. 5.5. BER estimate for LDPC code (3,30) on the precoded EPR4
channel with full erasures with CSI, with f  as a parameter...............................89

Fig. 5.6. SNR thresholds for LDPC codes (3,30) and (4,40) on the precoded
EPR4 channel with known full erasures ...........................................................  91

Fig. 5.7. Comparison of BER estimates using density evolution and simulation
for LDPC (3,30) coded EPR4 channel with partial erasures...............................92

Fig. 5.8. Comparison of BER estimates using density evolution and simulation
for LDPC (3,30) coded EPR4 channel with full erasures and C S I..................... 93

Fig. 5.9. LLRs for the EPR4 channel at SNR=7 dB. (a) non-precoded, ?; = 1.0, (b) 
non-precoded, = 0.5, (c) 1/1 © -precoded, ?; = L0, (d )l/l© D ^ - 
precoded, = 0.5 . The erasures are indicated by a dashed-line b o x .............. 100

Xll



Fig. 5.10. Diagram of MRC with erasure detection. A DC-thresholding
-based TA detector is also show n...................................................................  102

Fig. 5.11. LDPC (4608,4096,4,36) coded LMRCs with = 128 -bit erasures
and (a) AWGN and (b) 40% AWGN and 60% media no ise ...........................105

Fig. 5.12. LDPC (4608,4096,4,36) coded PMRCs with = 128 -bit erasures
and (a) AWGN and (b) 10% AWGN and 90% media no ise ...........................106

Fig. 6.1. Simulations of uncoded MRC with Ŝ . = 2.995 equalized to EPR4
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Abstract

Magnetic recording channels (MRCs), including both longitudinal and perpendicular 

ones, are subject to a number of physical impairments, such as electronic/media noise, 

intersymbol interference (ISI), erasure, and intertrack interference (ITI). These 

impairments, if not appropriately handled, are barriers to achieving ultra-high densities. 

The goal of this dissertation is to study the impact of these multiple impairments on 

system performance, and to develop techniques to mitigate this impact such that the 

performance is as close to the theoretical limit of the channel as can be achieved by 

practical and implementable means.

Our strategy is to combine advanced signal processing techniques, the core of which 

is soft-decision iterative channel detection, with powerful low-density parity-check 

(LDPC) coding techniques.

Specifically, the performance of regular LDPC codes on MRCs is first evaluated. 

Both randomly and structurally constructed codes are considered. Secondly, density 

evolution is used to analyze and design LDPC codes for MRCs. Results show that better 

irregular codes can be obtained. Afterwards, this algorithm is modified to include 

erasures, and erasure detection algorithms are studied. Fourthly, an improved algorithm 

for LDPC decoding, called signal-to-noise ratio (SNR) mismatch is unveiled. This 

algorithm may be useful for future practical applications. Finally, a channel detection 

algorithm for handling ITI in perpendicular recording is optimized, the eventual goal of 

which is to maximize the attainable track density.

XV



Chapter 1 

Introduction to Magnetic Recording Systems

Magnetic recording data storage has been a key component of the information 

technology revolution that has swept the globe in the last decade of the 20* century. The 

internet and the world-wide-web would not be of any relevance today if it were not for 

the availability of massive amounts of storage capacity at incredibly low prices. These 

storage systems are built around hard disk drive units whose average size in the 1990’s 

increased 100 times while the prices decreased dramatically.

This was made possible by technological advances in magnetic recording materials 

and devices used in longitudinal recording, These include the development of high- 

performance gigantic magneto-resistive (GMR) read heads, narrow pole-tip write heads, 

improved preamplifiers, low-noise thin film media, low flying height designs, and 

advances in the preparation of head and disk surfaces. Simultaneously, to maintain the 

system performance at increasingly higher areal densities it became also necessary to 

introduce advanced signal processing and coding techniques, such as more sophisticated 

equalization techniques using partial response (PR) targets and maximum likelihood 

(ML) detection with noise prediction, single parity-check codes, as well as more powerful 

error-correcting codes (ECCs).



1.1 Magnetic Recording

1.1.1 Digital Magnetic Recording Basics

The basic mechanism of magnetic recording is the interaction between a magnetic 

medium and a magnetic head in relative motion with respect to one another. The data is 

recorded on the medium in the form of a remnant magnetic field, from which the 

information is retrieved. In a digital magnetic recording systems, the information is 

discrete, i.e., either a -1 or a 1, representing the two patterns of the magnetization in 

saturation recording.

The two most important processes in magnetic recording are the write process and the 

read (or replay) process. During the write process, a signal current “modulated” by the 

recording data is applied to the write head. This current causes a flux pattern that follows 

the head path and magnetizes the medium. During the read process, the inductive or 

magneto-resistive read head senses the flux change from the magnetized medium. These 

two basic processes, more details of which can be found in [1], are illustrated in Fig. 1.1 

for the two modes of magnetic recording, namely, the longitudinal recording and the 

perpendicular recoding.

1.1.2 Modes of Recording

Three modes of recording are defined based on the direction of the surface 

magnetization relative to the direction of the medium motion. These modes are 

longitudinal recording, perpendicular recording and transverse recording, the first 

two of which are considered in this dissertation and are shown in Fig. 1.1.



data +  1 - 1  + 1  + 1  - 1  - 1

write current t

longitudinal ^  
magnetization L

mag„“ f e a ta  i î î 4 - i î T T T i i ' l - l -  \

Fig 1.1. Illustration of the write and read processes for magnetic recording [2].

Longitudinal recording has been the standard mode of recording for the past fifty 

years due to its inherent advantages to achieve higher resolution offered by the 

architeeture of a ring head with a narrow gap. However, the continuing demand for more 

storage eapacity in recent years leads to areal densities approaching the 

superparamagnetic limit. This motivates more and more attention being paid to 

perpendicular recording [3].

Perpendicular recording has long been advoeated as a means of achieving the highest 

areal densities. In partieular, in the context of the ‘superparamagnetic limit’, 

perpendicular recording with a soft underlayer promises several key advantages [4]. 

These advantages include a higher coercivity, thicker media that should permit smaller 

diameter grains and higher signal-to-noise ratio (SNR). Also the sharper edge-writing 

will facilitate recording at very high track densities and a lower bit aspect ratio (BAR). It 

has been shown that perpendicular recording will deliver an increase in areal density 

between two to eight times higher than that achievable with longitudinal recording [4].



1.2 Continuous-Time Channel Model

The continuous-time magnetic recording channel (MRC) model, including channel 

response and physical impairments, is given in this section. Both longitudinal MRC 

(LMRC) and perpendicular MRC (PMRC) are considered. In many cases, LMRC is 

simply referred to as MRC if no ambiguity arises.

1.2.1 Channel Response

The read process can be characterized by the transition response (step response) s(t) , 

which is the response of the read head to an isolated positive transition. The width of half 

amplitude of s{t) defines the resolution of the recording process, usually denoted by

PVP50 when measured spatially.

For a given mode of recording, s(t) can be derived from electromagnetic theories; 

however, it can be more conveniently estimated from the read signal of a known pattern 

and modeled as a simple function.

For longitudinal recording, s(t) is usually assumed to be a Lorentzian function.

s(t) = -------- ^ -------  (1.1)
l  +  (2 f / P I f 5 0 ) 2

or a Lorentzian-Gaussian function.

 ^  -  + y o e x p ( - ^ ^ r 2 )
l  + (2f/PW5o)2 ^

(1.2)

where Vq is the amplitude of the channel response. However, the Lorentzian function is 

more frequently used. The normalized channel density (or simply channel density) is



defined as S,. = PW^o / T .

For perpendicular recording, the read back signal is dramatically different from that 

of longitudinal recording. Commonly used models for the transition response are the 

hyperbolic-tangent function [5],

5(0 = F o ta n h (-1 ^ ^ 0  (1.3)

and the arctangnent function [6],

s(t) = Fq arctanf ^  ). ( 1.4)
rvv 5U

In this dissertation the hyperbolic-tangent function (1.3) is used. Similarly the 

normalized channel density is defined as Ŝ . = / T .

Shown in Fig. 1.2 are the transition functions, namely, the Lorentzian function for an 

LMRC with = 2.5 and 3.0, and the hyperbolic-tangent function for a PMRC with 

Ŝ . =1.5 and 2.0. From Fig. 1.2 we see that these two transition functions are remarkably

different. The one for PMRC is more like the integral of the one for LMRC.

Another frequently used channel response is the dibit response, also known as the

pulse response,

h(t) = s ( t ) - s ( t - T ) ,  (1.5)

which is the response of a positive transition followed by an immediate negative 

transition.

Shown in Fig. 1.3 are the amplitude response | \ = [Fourier Transform of h(t)\

for LMRC with = 2.5 and 3.0, and for PMRC with =1.5 and 2.0. From Fig. 1.3
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Fig. 1.2 Lorentzian function for LMRC and hyperbolic-tangent function for PMRC.
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Fig. 1.3. Amplitude response | | for LMRC and PMRC.

it can be seen that these two channels have quite different frequency responses, 

particularly in the low-frequency range. Specifically, the LMRC has a null at DC while



the PMRC has a peak at DC.

Let the recorded data sequence be G {+1,-1} , the read back signal can be 

expressed as,

r{t)= ^ (x ^ -x ^ _ ,)• 5(r - Â:T) + r (0 (1.6)
lc=~oo

or in terms of h(t) ,

r ( 0  = X  -h i t -kT )  + n(t) . (1.7)
k=—°°

where n(t) is the noise. If this noise is additive white Gaussian noise (AWGN), its 

power spectral density is = N q 12.

1,2.2 Physical Disturbances

There are many sources of physical disturbances in the write and read processes. 

Those in the read proeess are the main foeus of this dissertation.

1. Noise

Noise originates in the medium, the head and the head preamplifier. The main two 

forms of noise are electronic noise and media noise.

Electronic noise is the thermal noise present in any communication system. It is 

usually assumed data independent and AWGN with normal distribution

Media noise is eaused by the granularity of the magnetic material in the medium, and 

can be divided into transition noise and partieulate noise. The transition noise includes 

both the position jitter noise, and pulse-width variation noise. Media noise is generally 

neither additive nor stationary. In this dissertation, media noise is simplified as a first-



order transition jitter noise At • , where At is a random variable, which is usually
dt

assumed to have a normal distribution Â (0, a] ).

For an MRC with both AWGN (t) and position jitter noise rij ( t ) , the noise in

(1.7) is n(t) = Ha (t) + n,  ( t) . The SNR is defined as

SNR = V i

dt
dt

( 1.8)

and the percentage of AWGN is cr̂ +
dt

s{t)
2  ̂
dt

2. Erasure

Erasures are caused by a disturbance of the magnetization due to a variety of 

mechanisms. Two common causes are thermal asperities (TAs) and media defects 

(MDs), where the signals are subject to a DC-value saturation and an AC-value fading 

(called dropout), respectively. An additional mechanism in perpendicular recording is the 

strongly concentrated stray ambient fields in the gap between the soft underlayer and the 

read/write head. This field can possibly erase the signals on the adjacent tracks, which 

becomes more severe as the track pitch gets smaller. This erasure process is referred to 

as adjacent track erasure (ATE) and is one of the most challenging problems to overcome 

in high-density perpendicular recording systems. In all cases, no useful information is 

available at the channel output, and this is why these impairments are referred to as

erasures.



3. Adjacent Track Interference (ATI)

Usually there is a guard band between two adjacent tracks. The reason for this is to 

avoid the read head from picking up some flux outside its nominal track width. 

However, some other sources may also result in ATI. For example, misregistration of the 

head, i.e., the deviation of the head from its perfect position due to servo error, produces 

some offtrack interference (OTI). In addition, in high-density magnetic recording, even 

when the head is perfectly positioned, intertrack interference (ITI) can occur. The ITI is 

due to the narrower track width and pitch, featured in perpendicular recording. The ITI 

can be caused by both side-writing and side-reading. The side-writing ITI arises when 

stray fields from the sides of the write head create interference on an adjacent track (it 

can also cause erasures, as discussed above). This stray field is asymmetric, much 

stronger on one side than on the other, due to the radially oriented magnetization of the 

soft-underlayer [7]. The side-reading ITI arises when the head reads not only the signal 

on the desired track, but also signals from adjacent tracks. The handling of ITI is a 

critical issue in this dissertation.

4. Nonlinear Distortions

Many other nonlinear distortions may be present in magnetic recording channels. 

However, they are not considered in this dissertation. For details please refer to [I].

1.3 Discrete-Time Channel Model

The discrete-time channel model is given in this section. First, an optimum channel 

detection model is discussed. Then a suboptimum channel detection based on PR 

equalization is presented. Finally, the selection of PR targets is addressed.



1.3.1 Optimum Channel Detection

The MRC can be viewed as a noisy communication channel with binary inputs. This 

channel is completely characterized by the channel pulse response h{t). It can be easily 

seen from this h(t) that the MRC is an intersymbol interference (ISI) channel. Therefore, 

when the noise n{t) in (1.7) is AWGN, the optimal detector for this channel is a matched 

filter followed by a symbol rate sampler, a noise whitening filter, and a maximum 

likelihood sequence detector (MLSD). Let = [h(t) * /z(-0 ],=yt7- and

Vk -  [^(0 * h{-t)\t=kT ’ then the signal at the output of the sampler is

(19)

The noise whitening filter has transfer function 1/F(z'*) (in the z domain), where 

R,, (z) = z{  ̂} = F(z)F(z~^ ). And the all-discrete channel model reads,

(110)

where is rjĵ  filtered by 1/F(z'*), which is AWGN . The memory length L in (1.10) is 

usually large.

The basic implementation of the MLSD is the Viterbi Algorithm (VA) or its soft 

version, the soft VA (SOVA) [8]. Another symbol-based channel detector is the Bahl- 

Cocke-Jelinek-Raviv (BCJR) algorithm [9]. This algorithm aims at minimizing the 

symbol error rate, but bas much higher complexity. For this reason it has been 

overlooked for several decades, until the emergence of turbo codes [10] has brought it 

back to people’s attention. Both the VA and the BCJR algorithm need 2^ states, where L 

is the length of the 1ST Since the ISl is usually long at high density, the complexity is
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very high. Therefore, this ISI needs to be equalized to a shorter PR target.

1.3.2 Suboptimum Channel Detection

In practice, suboptimal detection is often used to trade-off complexity for 

performance. Firstly, the matched filter h{-t) is replaced by a realizable low-pass 

filter p{t) . Then the sampled output of the filtered pulse response is equalized to some 

predetermined short-length PR target with a finite-impulse-response filter {w,}, and

finally a VA or BCJR detector is used for detection. The combination of PR equalization 

and MLSD is called PRML detection [1]. The PR equalized MRC model and the 

equivalent all discrete-time models are shown in Fig. 1.4, where {/,} is the PR target of a

predetermined shorter length, and the equalizer {w, } is determined by the PR

equalization. Then the all discrete-time channel model is expressed as in (1.10), except

t = kT

MLSD
/BCJR

MLSD
/BCJR

Fig. 1.4. PR channel models, (a) PR equalized MRC model, (b) all discrete-time model.
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that the memory length L is a predetermined small value, and that the noise v„ is no 

longer AWGN. This model is used throughout this dissertation, unless specified 

otherwise.

If the equalization can be perfectly achieved and the noise is AWGN, we obtain 

another model -  the ideal PR model. This model is also used occasionally in this 

dissertation. For clarity, the channel using an ideal PR model is called an ideal PR 

channel, and an MRC using an equalized PR model is called an MRC or simply a PR 

channel. For an ideal PR channel, the definition of SNR is,

SNR = i ^ ^ ,  (1.11)
2(7^

where is the variance of .

1.3.3 Partial Response Equalization

The equalizer {w^} can be derived from the PR equalization. Let

f h p , k - W ) *  P(0]t=kT ^nd Ck P(0]t=kT ’ the signal 5̂  at the output of the

sampler is

The equalization error between the actual path and the targeted PR path, shown in the 

upper half and lower half in Fig. 1.4(a), is

e ; ^ = ( f * w ) t - ( x * / ) t .  (1.13)

Different equalization criteria can be used upon which results in a different equalizer
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{wi^}. A  sim ple exam ple is the zero-force equalization; how ever, it is rarely used

because of noise enhancement. The one widely used is the minimum mean square error 

(MMSE) equalization, which minimizes the expectation of the equalization error, i.e,

. .  After some manipulation, we have

R, w = f , (1.14)

where is the auto-correlation matrix of is the cross-correlation matrix of

k }  and

1.3.4 Partial Response Targets

The issue of how to select good PR targets is addressed in this section. Both LMRC 

and PMRC are considered.

1. Longitudinal Recording

The popular PR targets for LMRCs are class-IV (PR4), extended PR4 (EPR4), 

extended EPR4(E^PR4), and modified E^PR4 (ME^PR4), as listed in Table 1.1. Let us 

look at the amplitude responses of these targets, shown in Fig. 1.5, as well as the pulse 

responses for = 2.5 and 3.0 for comparison. For LMRC at high densities, it is

obvious that longer PR targets, e.g., E^PR4 and ME^PR4, are better than shorter ones, 

e.g., PR4, from the perspective of spectral match. However, as the target gets longer, the 

complexity of channel detector increases as well. Therefore, a good tradeoff must be 

made. Throughout this dissertation, two targets, namely, EPR4 and ME^PR4, are used 

widely.
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Table 1.1. PR targets for LMRCs.

Name Target

PR4 [1 0 -1]

EPR4 [1 1 -1 -1]

e ¥ r 4 [12 0 -2 -1]

M e ¥ r 4 [2 2-1 -2-1], [5 4 -3 -4 -2 ]

PR4
EPR4
E2PR4
ME2PR4-1
ME2PR4-2

< 0.6

0.1 0.2 0.3 0.4
Normalized Frequency 2wT/n

Fig. 1.5. Amplitude response of PR targets for LMRCs.

At high recording densities, generalized PR (GPR) targets with non-integer 

coefficients match the longitudinal recording channel more accurately than the 

conventional PR targets, leading to less noise enhancement at the equalizer output [11].

In particular, F{D) = { l -D )p{D)  or F { D ) - ( X - D Ÿ p { D ) where
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p(D) = 1 + P]D + p^D'^ + ... + Pi^D^ is a noise whitening filter, render the total noise at 

the input of the detector approximately white, provided the equalizer and the noise 

whitening filter are sufficiently long. This class of polynomials is significant in practice, 

and when combined with sequence detection, gives rise to noise-predictive maximum 

likelihood (NPML) systems [12].

2. Perpendicular Recording

The frequency response of the PMRC is quite different from that of the LMRC. 

Explicitly, the LMRC has a null at DC; however, the PMRC has a lot of DC content. It is 

this feature that results in different PR targets for PMRC.

PR targets for PMRCs are usually GPR ones with non-integer coefficients. Generally 

speaking, two criteria need to be considered in selecting a GPR target, namely, the 

spectral match of the target and the channel, and the handling of low-frequency 

disturbances including media noise and TAs. For spectral match, DC-full targets seem 

good choices. However, these targets allow low frequency disturbances to enter the read 

head, which can cause base-line wander and waveform distortion. On the other hand, if 

DC-free targets are selected, then low-frequency disturbances can be stopped, however, 

some performance penalty will occur due to spectral mismatch. Therefore, a tradeoff 

between DC-full and DC-free targets, referred to as DC-mix targets, is desirable.

There has been a great deal of attention paid to optimizing the selection of the PR 

target for perpendicular recording (e.g., [5], [6]). Let us follow the method in [5] and 

examine the PR target selection by analyzing the noise spectrum in the channel model of

Fig. 1.2. First consider only white noise with variance . Then the power spectrum of
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the equalized noise is

The coefficients { /^} are obtained from

.̂5 F{D)F{D~^)_d_ = 0. (1.16)

The GPR targets obtained with this method have a lot of low-frequency content and are 

DC-full.

For media noise, the PR target is selected in the same way as for AWGN, while 

satisfying the DC-null constraint. The obtained targets are DC-free.

Furthermore, it has been further suggested in [5] to use a set of GPR3 targets,

F(D) = ( l -o D )p (D ) ,  (1.17)

where p(D) is the noise whitening filter and a  is to be optimized depending on media 

noise. This type of targets are DC-mix targets for a  ^ 0 ,1 .

Using these techniques, a number of GPR targets have been computed in [5]. As an 

example, targets for PMRC with Ŝ . =1.4 are listed in Table 1.2. The lengths of these 

targets are 1  = 4 . Note that these three targets are DC-full, DC-free, and DC-mix, 

respectively.

The amplitude responses of the targets in Table 1.2, as well as those of the PMRCs 

with Ŝ . =1.5 and 2.0, are shown in Fig. 1.6. Strictly from a spectral match viewpoint,

we see that the DC-full target is the best choice, and the DC-free one is the worst. 

However, when the media noise is accounted for, the DC-mix target may be better. More
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Table 1.2. GPR targets for PMRC of S, = 1.4.

DC Content

DC-full

DC-free

DC-mix

GPR Targets

[1.0 1.72 1.14 0.33] 

[1.0 0.63 -0.87 -0.76] 

[1.0 1.11 -0.07 -0.37]

|H| for S^=1.5 
|H|forS^=2.0

DC-Full
DC-Free
DC-mix

1

-- §  0.8

Q.
<  0.6 
■o

4

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency 2wT&  

Fig. 1.6. Amplitude response of GPR targets for PMRCs.

investigation on GPR target selection will be discussed in later chapters.

Another way to optimize the PR target is by using MMSE coupled with the 

Langrange method, as in [13]. Specifically, the PR target is computed as.

( 1. 18)
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where I = [1,0, - 0]^, R% is the autocorrelation of x, and

1 (1.19)

The equalizer w follows (1.14) with f  determined by (1.18). This method has been shown 

effective for perpendicular recording with media noise [6].

1.4 Magnetic Recording Systems

A simple magnetic recording system model from the perspective of channel detection 

and coding is shown in Fig. 1.7. In addition to the components shown, a timing recovery 

and a gain control systems are necessary. However, perfect timing and gain control is 

assumed unless specified explicitly.

In this model, the MRC and the channel detector have already been explained. Let us 

explain briefly the functions of other components.

1 ^ + 1

User
Data

Recovered 
Data-4̂ Modulation

Decoder
Equalizer & 

Detector
ECC

Decoder

Modulation
Encoder

ECC
Encoder

Recording
Channel

Pre-filter

Pre
amplifier

A/D

Fig. 1.7. Magnetic recording system model.
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1.4.1 Error Correcting Code

ECC is one of the most effective approaches to combat physical impairments in a 

communication channel. We only consider linear codes in this dissertation. A binary 

code is usually denoted by (N, K)  where N  and K  are the lengths in bit of the overall and 

user information. This code has N -  K  redundant bits and the rate is R -  K I N  . 

Another important parameter of a linear code is the minimum distance , which is the 

minimum weight of the non-zero codewords.

Using an ECC of rate/?, the normalized user density of a magnetic recording channel 

can be defined as = /? • 5^, and therefore the introduction of coding reduces the 

density that can be used by user information. This is one reason why magnetic recording 

systems require a high-rate ECC. The second reason is, unlike transmission channels 

where the coding loss is linear with R, for a MRC it is proportional toR^ . The quadratic 

code rate loss implies that at code rate lower than some threshold the gain from lowering 

the code rate will not compensate for the code rate loss.

While Reed-Solomon (RS) codes are the de facto standard for current magnetic 

recording system, we are primarily interested in an alternative solution using low-density 

parity-check (LDPC) codes, which allow more advanced channel detection and decoding 

techniques such as turbo equalization and soft-decision iterative decoding.

1.4.2 Modulation Code

A modulation code is necessary in a magnetic recording system to facilitate gain 

control and timing recovery, although it may also improve the free Euclidean distance of
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the channel. As the read head only responds to the transition, the modulation code must 

have a constraint on the maximum run of transitions and/or non-transitions.

Two classes of modulation codes often used are run-length-limited (RLL) codes and 

maximum-transition-run (MTR) codes [1], An RLL code generally has two constraints, d 

and k, where d is the minimum run length of non-transitions between two transitions and 

k is the maximal run length of non-transitions. These two parameters restrict the high and 

low frequency component of the channel signal, respectively. Another enhanced RLL 

code has one more parameter, G, which is the interleaved constraint to restrict the two- 

way interleaved maximum run length of non-transitions. This RLL code is denoted as a 

{d, G|/) RLL code. For MTR codes, in addition to the minimum run length of non

transitions, the maximum run length of transitions is also constrained.

1.4.3 Precoder

The precoder is not shown in Fig. 1.7. But it is sometime a very important component 

in a magnetic recording system.

The basic function of a precoder is to convert the non-retum-to-zero (NRZI) input 

data into retum-to-zero (NRZ) format. Unless the code design is done in NRZ space, the 

precoder is necessary in the system.

However, the precoder may have great impact on the system performance. For 

example, in a serial concatenation of a convolutional code and a PR channel, the precoder 

can make the inner code recursive, thus providing possible interleaving gain. Another 

example is that the precoder affects the convergence of turbo equalization of a turbo 

coded PR channel [14]. However, we are mainly concerned with its impact on an LDPC 

coded magnetic recording system.
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1.5 Outline of the Dissertation

This dissertation focuses on channel detection, which is the key signal processing 

issue, and LDPC coding for magnetic recording systems. Both longitudinal and 

perpendicular recording systems are considered. While Chapters 2 to 6 are primarily 

concerned with longitudinal recording. Chapter 7 is completely devoted to perpendicular 

recording. Other than generic techniques in Chapters 2 to 6, new techniques for handling 

ITI are stressed in Chapter 7.

Chapter 2 describes generic channel detection algorithms for PR channels. These 

include PRML, SOVA, BCJR, and forward-MAP -  a continuously decodable variation of 

BCJR. The complexity and performance of these algorithms are evaluated and eompared 

for LDPC coded PR channels.

LDPC codes and the application to PR channels are discussed in Chapter 3. First, the 

factor graph representation of an LDPC code is described. Then the message-passing 

(MP) algorithm for decoding LDPC code is presented. Finally, several types of LDPC 

codes, namely, random codes, finite geometry (FG) codes and array codes, are discussed.

Chapter 4 uses the density evolution algorithm to evaluate and design LDPC codes 

for PR channels. First a technique to compute the symmetric information rate of PR 

channels is reviewed. Then the framework for density evolution is established. This 

framework consists of the algorithm, its properties, and the estimation of the noise 

threshold and the bit error rate (BER).

Chapter 5 deals with erasures, one important and critical type of impairment in MRC s. 

After a model for erasure is developed and the BCJR-once information rate is computed, 

the density evolution algorithm in Chapter 4 is extended to PR channels with erasures.
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This algorithm is used to evaluate the asymptotic performance of LDPC coded systems. 

However, asymptotic analysis is not sufficient. Erasure detection algorithms for practical 

systems are also considered. These algorithms explore amplitude in addition to sign of 

the BCJR log-likelihood ratios (LLRs), thus improving the erasure detection performance. 

LDPC coded systems with this erasure detector are evaluated.

Chapter 6 discusses the SNR mismatch for LDPC coded MRCs. This technique is 

expected to have potential practical applications because it can improve the system 

performance substantially. Simply speaking, the system performance can be enhanced by 

adjusting the SNR. This phenomenon is related to the spectrum of the noise, and can be 

analyzed by the density evolution algorithm. For a given practical system, the optimum 

value of SNR mismatch can be found by density evolution as well as by simulation.

Chapter 7 focuses on channel detection algorithms for PMRC with ITI. First of all, 

an ITI model is established, and two interpretations of it, namely, the single-track model 

and the joint-track model are described. Based on these two models, both single-track 

and joint-track channel detection algorithms are investigated, using information rate 

analysis as well as simulations.

Chapter 8 concludes the dissertation and lists the work for future study.

22



Chapter 2 

Partial Response Channel Detection

In Chapter 1, we introduced a discrete-time PR model for an MRC, which is rewritten 

here for convenience,

fk = 'L f i ^ k - i+ ’̂ k- (2-1)
1=0

Generally speaking, the noise riĵ  is not AWGN; however, it is treated as AWGN for 

channel detection, or can be whitened somehow before channel detection.

The goal of channel detection is to detect the transmitted data sequence x given the 

received channel sequence r. Basically, the MLSD finds a sequence x

X = arg max Pr(x | r) = arg max Pr(r | x) • Pr(x) / Pr(r) = arg max Pr(r | x) (2.2)
X X  X

since Pr(x) is equal for arbitrary x. Symbol-based maximum a posteriori (MAP) 

detection finds x̂ . according to the LLR of the a posteriori probability (APP) 

Pr(%̂  = 11 r) and Pr(x^ = 0 1 r ) ,

Both decisions in (2.2) and (2.3) can be hard, i.e., x̂ . e {0,1}, or soft, i.e., the reliability of
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the decision. Channel detection is the key issue in channel signal processing, and is a 

central issue in this dissertation. Since the MRC is equalized to a PR target, the channel 

detection for MRC is called PR channel detection.

In this chapter, PR channel detection algorithms are presented. These include PRML, 

SOVA, BCJR, and forward-MAP. The first two are MLSD algorithms, while the other 

two are symbol-based algorithms.

2.1 Trellis Description of PR Channels

A PR channel can be viewed as a stationary finite-state machine, which can be 

described using a trellis.

Let the content in the memory of a PR channel be ,- • -, ). This

defines the state of the channel at time k-\. At time k with input , the channel 

noiseless output is determined by (2.1) and the new state is

5'̂  = ) • This transition from state ŝ _̂  at time k-\ to state at time

k can be denoted by . Plotting all such transitions together constitutes

one section of the trellis for this particular k. Note that since the PR channel considered 

for the MRC is stationary, every section of the trellis is exactly the same. If a precoder is 

used before the PR channel, a combined trellis for the precoded PR channel can also be 

derived. As an example, the trellises for the EPR4 channel are shown in Fig. 2.1, where 

solid and dashed lines denote branches with = 0 and 1, respectively. The eight states

of these trellises are • -, Sy , corresponding to the content of the memory

(0,0,0), (0,0,1),- - -, (1,1,1), respectively.
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Fig. 2.1. Trellises for the (a) non-precoded and (b) 1/1© D -preceded EPR4 channel.

2.2 PRML

PRML detection [1] is the state-of-the-art detection algorithm for current magnetic 

recording systems. PRML gained its popularity due to its good performance as well as 

low complexity and easy hardware implementation.

PRML detection is essentially a VA on a PR channel. The VA was first introduced 

for decoding convolutional codes and is one of the most successful algorithms in both 

theory and practice. Since then this algorithm has been a standard tool in communication 

receivers, fulfilling functions such as decoding, demodulation and equalization.

The VA selects the ML path through the trellis of a code or a channel. For this reason
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it IS usually used intercliangéàblÿ with M LSD. The detected data séqliéiicê ï  o f thê ML

path has the minimum distance from the actual transmitted data sequence x. This 

distance can be a Hamming distance, or a Euclidean distance. For a PR channel, it is the 

Euclidean distance, and the VA finds

N

X = min ^
L

i=i
(2.4)

The task in (2.4) can be implemented as follows. Define the metric for the branch

^k-\--------------- as

Yk (^ k -l ~

L

i=i
/AT». (2.5)

Note that (2.5) is essentially the same as (2.4) except for a different sign and a 

normalization factor Vq , which can be omitted in practical implementation. For each

state at time k, consider all possible (typically two) states at time k-\ entering 

state at time k. A path up to time k with the maximum path metric is selected, and all 

others are discarded. This selected path is called the survivor path. The metric for this 

path with state ŝ . at time k is

(^i ) = max{M^_i (^*-i (2-6)
4-1

where M q{S) is initialized as = 5'g) = 1, M q(sq ^  Sq) = -°° .

This process can keep going until the final state at time N  is reached. Since a 

convolutional code or a PR channel is usually terminated to state Sq at time N, the VA 

can simply select the ML path and make a decision on x by tracing back from state Sq at
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time N. However, since all the 2^ survivor paths at time k + D have merged at time k 

with high probability, decision can be made with delay D, an empirical value for

which is D > 5 L .

2.3 SOVA

It can be easily seen that the factor N q is irrelevant and can be dropped in (2.4) if

hard decisions are made. This is one advantage of PRML. However, if soft decisions are 

used, this factor must be known and kept in (2.4). Furthermore, the a priori information 

about is not considered in PRML. We now modify PRML to a soft-decision version.

This algorithm is called SOVA [8]. It is not called soft PRML, because a maximum APP 

(MAP) criterion is used. The SOVA was used for PR channel detection in [15].

The branch metric in SOVA is defined as.

L

i=\
/V o + lo g P r(x J , (2.7)

where log Pr(x^ ) is the a priori information, and can be computed as

logPr(x^) _ JA ^(% J-ln (I + ),if  q(xi^=\\ ( ^ ^ - i =  1
-  ln(l + if  q(x^ = 0 | (5^_,, 5^_,)) = 1

(2 .8)

where A^(x^) is the a priori LLR, provided by the extrinsic LLR in the previous 

iteration, and ^(x^ | (5^_|, )) is the conditional probability of the instant transmitted bit.

The path metric Mi^{s^) and the ML path selection is exactly the same as in PRML,
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except that the soft reliability for every is estimated. Again, decisions can be made 

with delay D.

Define the difference metric for state ŝ . at time k as

[M._, (j®, ) + r ,  ( 4 ' - i [ w , _ , ( s g  ) + r ,  (4 5 .% )] . (2.9)

where are the two states at time k-l, with branches entering at time k. It was 

shown in [15] that represents the reliability that the path ending at at time k is

correct. Let us now track back from time k + D . First a hard decision x̂ . is made. 

Along the ML path, there are D +1 non-survivor paths that have been discarded, and 

each non-survivor path has a certain difference metric Ay for ^ < j  <k + D . Finally, the

LLR A(x^) is computed as [15],

= min{At,At+i, - ,At+o}. (2.10)

2.4 BCJR

The BCJR algorithm [9] is an optimum symbol-by-symbol channel detection 

algorithm. It was first investigated for finite-state machines, but can be easily used for 

convolutional and turbo decoding and PR channel detection. The BCJR algorithm is an 

MAP algorithm. However, in this section it is described in the log domain, and is called 

a log-MAP algorithm.

Let us look back at (2.3) and rewrite it as
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X P r(5^-i,^ i,r)/P r(r)

h-i^h-Xt=̂

and note hat Pr(5^_,,5^,r) can be decomposed as follows,

P r ( 5 ^ _ i , 5 ^ , r )  =  P r ( s ^ _ i , r i ^ - i ) - P r ( ^ t . ' i  I I ■ ( 2 . 1 2 )

Define

(Si ) = log{Pr(s^ .n*)/Pr(ri* )} (2.13)

A (^ t)  = log{Pr(r^i k J / P r ( r ^ i  I r* )} (2.14)

(^t-i, 4  ) = l o g , rt k t - i ) , (2.15)

and use the approximation

log(g4 +g'^2) = max* (<̂1 , Sj )  = max((Jj,<?2) + log(l + ) ,  (2.16)

then (sĵ  ) and ) can be computed by the forward and the backward recursions,

(Zt (% ) = max*{tZt_, (^t ) + ( 4 -1 ,4  ) ) (217)

t̂-i (4-1 ) = max*{̂ t (4 ) + Xt (4-i, 4 ) ), (218)■h

where r t ( 4 - i ’4 )  is already defined in (2.7). The initializations for oci îsj,) and

are a^isQ = 5q) = 0,6%(.ÿg # Sq) = -°o and /3q(sq ^ S q) = 0 , ^  5q) = . Finally

the LLR A(x^) is computed as
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A(;rJ= max* + +
^2.19)

-  max* {or̂ _; (̂ _̂i ) + (^t-i, ) + A  ( t̂ )}

This LLR consists of two parts, the a priori LLR, ) ,  and the extrinsic LLR, 

A ,(x t),

~ ~  ̂ (2.20)

which is used as the a priori LLR, A^(x^), in next iteration of channel detection.

Note that the above BCJR algorithm using the approximation (2.16) is called a log- 

MAP algorithm. The second term of (2.16), namely, log(l-t-e“l‘̂ '“‘̂2l) , can be 

implemented by a look-up table. Another version, using the simplified approximation

logfg'^ -t- ) = max(($ ,̂ ($2 ), (2.21)

is called a max-log-MAP algorithm [16]. The performance of the max-log-MAP is 

slightly worse than the log-MAP algorithm; however, its complexity is much lower.

2.5 Forward-MAP

Note that in the BCJR algorithm, all signals r  are used to make decisions on , and 

implemented as both the forward and backward recursions. However, it is apparent from 

(2.1) that Xî  only affects channel output signals, denoted by , from

which Xĵ  should be able to be decided with delay L. The MAP algorithm that uses 

to detect with a delay D> L implemented using only the forward iteration is called a 

forward-MAP algorithm [17]. If the computation is carried out in the log-domain, the
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algorithm is called a log-forward-MAP algorithm. The complexity of this algorithm is 

the same as the sliding-window BCJR algorithm, and it can be decoded continuously.

The branch metric and the forward recursion of this algorithm are exactly the same as 

for the BCJR algorithm in the previous section. However, we do not need the backward 

recursion. Instead, another term

^ i ^ k - D  ~  I ^ k  ’ **1̂  )  ( 2 . 2 2 )

is defined, and a new recursion on is needed,

with initialization

^(^k-D^^k-D+t) ~ *̂ k-D+L-\(^k-D+L-\) Vk-D+L̂ k̂-D+L-\  ̂̂ k-D- k̂) ~ ^k-D+li^k-D+0 ’ (2.24)

where is uniquely determined by and .9̂ -0+z. • Finally the LLR is

computed as

Mx^-d  ) = max* (^(%t_o =hsi^)~ max* (6>(x̂ _d = 0 , ) .  (2.25)

The delay D must be at least L. However, it has been shown in [17] that the longer D, 

the better the performance. From this perspective, the BCJR algorithm is just a special 

case of the forward MAP algorithm, where D = max(A -  k, L) for the ^-th symbol, 

k = 1,2,- • A . Since the log-forward-MAP algorithm uses the MAP criterion, we can 

state that the BCJR algorithm is the best possible MAP algorithm.
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2.6 Algorithm Comparison

The complexity as well as performance of the above described channel detection 

algorithms are compared in this section. In the sequel of this dissertation, the log-MAP 

BCJR algorithm is primarily used. However, other algorithms are also considered as 

specified.

2.6.1 Performance Comparison

Intuitively, the performance ranking, from the best to the worst, is as follows: log- 

MAP BCJR, log-forward-MAP, SOVA and PRML. More quantitative results can be 

obtained using simulations. Examples of such simulations are conducted for LDPC 

coded ideal EPR4 channels with AWGN. The reason for using an LDPC code is to 

demonstrate the superiority of soft-decision detection algorithms over hard-decision ones. 

The LDPC code used is a regular code of length N  = 4374, rate R = 8/9 , column weight 

ŵ . -  4 and row weight = 36. The maximum number of LDPC decoding iterations is

set at fifty. More details about LDPC codes can be found in Chapter 3.

Shown in Fig. 2.2 are the BER simulation results for the non-precoded ideal EPR4 

channel with the channel detection algorithms running only once. Note that the rate of 

the LDPC code is included in the definition of SNR. The performance ranking of the 

four channel detection algorithms used is in agreement with expectations. More 

specifically, at BER=10"^, the performance gains in terms of SNR, from right to left, are 

1.2, 0.9, and 0.05 dB, respectively.

It is well known that channel detection with a priori information, in which the MAP 

criterion is used, can improve performance. This is why the SOVA and the BCJR
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algorithms are popular. However, to enhance this improvement, a soft ECC decoder is 

needed to iterate with them, in the turbo equalization mode. Although the LDPC decoder 

used in Fig 2.2 is such a decoder, more details must be presented to elaborate on the 

mechanism and effect of turbo equalization. For this reason, we leave this issue to 

Chapter 3.

10
- e -  PRML 
- e -  SOVA 
- B -  Log-MAP

Forward-log-MAP
-210

-310

■4
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■510
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8 8.55 5.5 6 6.5 7 7.5

SNR (dB)

Fig. 2.2. Comparison of channel detection on ideal EPR4 channels.

2.6.2 Complexity Comparison

A complexity comparison between PRML, SOVA, log-MAP max-log-MAP and log- 

forward-MAP, per bit is illustrated in Table 2.1. Note that the complexities of SOVA and 

log-forward-MAP are for those with delay D.
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It can been easily seen from Table 2.1 that the complexity ranking of these algorithms 

is just the opposite of their performance ranking, except for the log-forward-MAP 

algorithm. The log-forward-MAP algorithm is a log-MAP algorithm, but its complexity 

is even higher than that of the standard log-MAP algorithm. Its advantage is the 

capability of continuous decoding, which is not an issue for PRML and SOVA, but is a 

problem for MAP-type algorithms.

Table 2.1. Complexity comparison of PR channel detection algorithms.

PRML SOVA Log-MAP Max-log-
MAP

Log-forward-
MAP

Addition 4-2^ 4 2 ^ +3D 12 2^ 8 2^ (4 + 6 D ) 2 ^

Multiply 2 2 ^ 2 2^ 2 2^ 4-2^ 2 2^

Max/Min 2 2^ 2-2^ + D - I 4 2^ 4 2^ (3 +2D)-2^

Look-ups 4 2^ (3 +2D)-2^

2.7 Comparison of Longitudinal Recording Targets

In the rest of this chapter, we only consider the log-MAP BCJR algorithm for channel 

detection. Both LMRC and PMRC are studied, in this and the next section, respectively. 

The purpose is to compare different PR targets, as outlined in Section 1.3, where we 

discussed the two factors in target selection, spectral match and the handling of low- 

frequency disturbances. This discussion is checked using computer simulations.
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Fig. 2.3. Performance comparison of LDPC coded LMRC with (a) AWGN, (b) 10% 

AWGN plus 90% media noise.
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The fo llow ing  targets, for LM RC with Ŝ . =  2 .995 and A W G N  or 10% A W G N  plus

90% media noise, are considered: PR4, EPR4, and ME^PR4. A random LDPC code 

(4608, 4096, 4, 36) is used as the ECC. The BCJR channel detector runs only once; and 

the MP LDPC decoder runs a maximum of fifty iterations. Shown in Fig. 2.3 are the 

simulation results in terms of BER as well as frame error rate (PER).

It is seen from Fig. 2.3 (a) that the ranking of these three targets, from the best to the 

worst, is ME^PR4, EPR4, and PR4. This is not unexpected, agrees with Section 1.3 and 

[18], and can be explained by the extent of spectral match. However, the lengths of these 

three targets areL = 5, 4 and 3, respectively, and the complexity of the channel detection 

decreases exponentially.

The results in Fig. 2.3 (b) agree with Fig. 2.3 (a). This indicates that the low- 

frequency disturbance is not as critical as the spectrum match. Unlike for PMRC, all the 

targets for LMRC have a null at DC. So the impact of low-frequency disturbance is 

about the same on all targets considered.

2.8 Comparison of Perpendicular Recording Targets

The three GPR targets in Table 1.2 are used in this section for a PMRC with Ŝ . = 1.4, 

and either AWGN, or 10% AWGN plus 90% media noise.

First let us consider a PMRC with AWGN. In this case, since low-frequency 

disturbance is not a severe problem, it seems that DC-full targets are good choices, 

because their spectra match well with that of the channel response. On the other hand, 

both the DC-free and DC-mix targets suffer some SNR penalty.

These intuitive statements can be checked using simulations. The system model is
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the same as for longitudinal recording, except that the PMRC channel is equalized to the 

targets listed in Table 1.2.

Plotted in Fig. 2.4 (a) are the simulation results. Apparently, the DC-full target is 

superior to the other two targets by 6.0 and 3.4 dB, respectively, at BER=10'^. This 

observation is consistent with those of the PRML detection for uncoded PMRCs in [5] 

and indicates adequately that in the AWGN-dominant channel the spectral match is the 

key issue.

Next we consider PMRC with 10% AWGN plus 90% media noise. In contrast to the 

previous case, low-frequency disturbance is a major concern. So neither the DC-full 

target nor the DC-free target is a good choice. Instead, the DC-mix target may be a good 

tradeoff. It has been shown in [5] that the DC-mix target in Table 1.2 is the best choice. 

We redo this work for an LDPC coded PMRC with the same simulation settings as above 

and show the results in Fig. 2.4 (b).

From Fig. 2.4 (b), we see that this DC-mix target is better than the DC-full and DC- 

free targets by 1.35 and 1.40 dB, respectively, at BER=10"^. Again these results are 

consistent with those of [5], and support the statement that both spectral match and low- 

frequency disturbance handling must be considered in GPR target selection.
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Chapter 3 

Low-Density Parity-Check Codes

LDPC codes [19], [20] and turbo codes [10] are two type of ECCs that can be 

decoded with iterative AFP decoding algorithms. Both codes have excellent performance 

approaching the Shannon limit, thus attracting tremendous attention in recent years. 

However, LDPC codes have been shown to have close to or better performance than 

turbo codes on AWGN channels. For example, it was shown in [21] that a LDPC code 

can be 0.0045 dB away from the Shannon limit, although the convergence of this LDPC 

code is generally slower than turbo codes Furthermore, convolutional turbo codes 

usually have an error floor at about BFR=10‘®; however, this error floor is rarely 

observed for LDPC codes. The decoding complexity of LDPC codes is much lower than 

turbo codes, and can be implemented using parallel architectures. Therefore, we are 

mainly investigating LDPC codes in this dissertation.

LDPC codes were initially introduced by Gallager in the 1960s [19]. However, due 

to limited computing capability, these codes had been forgotten for thirty years until 

turbo codes were invented in the early 1990s [10], which motivated Mac Kay et al. [22] to 

rediscover them. Since then, LDPC codes have been widely studied for many different 

communication channels. Typical examples include [20], [21] for AWGN channels and 

[23], [24] for MRCs.
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This chapter investigates the application of LDPC codes to ideal EPR4 channels. 

Several types of LDPC codes, namely, non-structured (random) codes, and structured 

codes such as FG codes [25] and array codes [26], [27] are considered.

3.1 Introduction to LDPC Codes

A binary LDPC code is a linear ECC defined by a sparse parity-check matrix 

H = \h: , [ , where N  and M are the number of columns and rows, and k  , E  {0,l}.'V JnxM cy <■ j

Each column of this matrix corresponds to a bit, and each row to a check. From this 

point of view, codewords are sequences of length N  that satisfy a set of M  binary parity 

checks. In other words,

h, x = 0 for i = 1,2, (3.1)

where h; = ,̂ h- 2 ,• • -, A, ^ ) is the i-th row of H and x = (vj, r • -, J  is a codeword.

More concisely,

H -x  = 0 . (3.2)

The number of user information bits is K = N - M  , and the code rate is R = K / N  

assuming that the matrix H is of full rank. A generator matrix G corresponding to H can 

be easily obtained by Gaussian elimination.

Other than the parity-check matrix, another way to represent an LDPC code is using 

an undirected bipartite graph. This graph is called a factor graph or a Tanner graph

following its inventor’s name [28]. The factor graph is more meaningful than the parity-

40



check matrix itself because it shows the essence of the message-passing decoding 

algorithm for LDPC codes.

A factor graph of a parity-check matrix H consists of N  variable (or bit) nodes and M 

check nodes, corresponding to the columns and rows of H one-to-one, and indicated by 

circles and squares, respectively. There is an edge between the j-th variable node and the

i-th check node if and only if ĥ  j  = 1. For example, the factor graph for the parity-check

matrix

H

1 1 1 1 0 0 0 0 0 
1 0 0 0 1 1 1 0 0 
0 1 0 0 1 0 0 1 1 
0 0 1 0 0 1 0 1 0 
0 0 0 1 0 0 1 0 1

is shown in Fig. 3.1, where , and hy,y -l,2 ,"-,5  denote variable nodes

and check nodes, respectively.

Variable nodes

o Check nodes

Fig. 3.1. An example of factor graph.
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The degree of a node is defined as the number of edges incident on this node. LDPC 

codes with one single variable degree and one single check degree are called regular 

codes; otherwise, they are called irregular codes.

For regular LDPC codes, the variable degree is just the number of ones in each 

column of the parity-check matrix H, therefore, it is also called column weight; 

similarly, the check degree is also called row weight. These two weights are denoted by 

and , respectively, in this dissertation, and codes with these weights are denoted

by (N,K, Wg, ). If the corresponding parity-check matrix is full-rank, the code rate

R — l — = \ — M I N  .

For irregular LDPC codes, the distribution of the variable degrees can be specified by 

the variable degree distribution function

=  (3.3)

where /I. is the fraction of edges with variable degree i. Similarly, the check degree

distribution function is

p{x) = Y,PiX'~^ (3.4)
i

where p. is the fraction of edges with check degree i . The rate of this code is

R - l  -  ^p {x )d x j^A {x )d x . Note that A. and p. are defined with respect to edge. They

can be converted to /I, and p^ with respect to node as follows.

42



Pi =  ' (3 6)

It will be seen in Chapter 4 that the degree distribution pair {À,p) is very important in

the context of optimizing LDPC codes.

3.2 Message-Passing Algorithm

LDPC codes are basically decoded using the MP algorithm (also called belief 

propagation algorithm or sum-product algorithm), which was first introduced in [19] and 

then elaborated in [20]. While there are some variations, the algorithm in [20] is used in 

this dissertation.

3.2.1 Basic MP Algorithm

Assume a codeword x being transmitted and the receiver computes the channel 

information,

==I)r(x, =6) .  (3/7)

for Z? = 0,1. Let the set of bits participating in check i be 0 (/) = [j : j = l |  and the

set of checks that bit j  participates be 'P(y) = {i : j  = l). In each decoding iteration, the

following two messages j and r̂  j , called variable message and check message,

rP = Pr(check i is met | Xj -  b, Pr(%y ) = q- j. for j'G 0 (0  \ [/}) (3.8)

9,̂ .̂ =Pr(x .̂ = 6 | Y ( ; ) \ [ 0 )  (3.9)
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are iteratively updated with m essages passed from the fiêiglibôrs o f thê üfldëFlyifl^

variable or check node through the horizontal step,

2 (3.10)

where j. = q]j, -  qf j . , and the vertical step,

9ij = (^ijPj H i t (3.11)

respectively, where or, is a normalization factor such that q f j + q j j = l .  Note that

(3.11) is derived from (3.9) by assuming that the information from different checks is 

independent. Based on the updates in (3.10) and (3.11), the APPs Pr{xj =è |p*) ,  b = 0,1, 

are estimated as

where Uj is chosen such that q̂ j + q^ = \.

The message passing processes of (3.10) and (3.11) can be illustrated in a more visual 

way, such as the one in Fig. 3.2, where Fig. 3.2 (a) corresponds to (3.11) and Fig. 3.2 (b)

Variable 
node j

Check 
node i

(a)

Variable 
node j  O '

Check 
node i

(b)
Fig. 3.2. Message passing processes in the MP algorithm.
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corresponds to (3.10), respectively. For they-th variable node in Fig 3.2 (a), the degree of 

this node is v = |0(y) \ {/}|, while for the i-th check node in Fig 3.2 (b), the degree of this

node is M = |'F(/) The visual presentation of (3.12) can be similarly obtained.

A hard decision is made based on , namely Xj = 1 if > 0.5 , otherwise

Xj = 0. The syndrome H x is checked and used as the criterion to determine if a valid

codeword can be found. If H • x = 0 then the codeword x is found valid, the decoding 

algorithm stops and output the codeword x ; otherwise the algorithm keeps going until 

the maximum number of iterations is reached, in which a detected error is declared. No 

matter if a valid codeword can be found or not, the final APPs q*, 6=0,1, are available 

for output and may be used for iterating with the channel detection.

3.2.2 Log-MP Algorithm

By representing the quantities j  and r̂  j in the form of LLR, the MP algorithm can

be expressed in the log-domain, and is referred to as the Log-MP algorithm [20].

Let us first define the LLRs, A(p ) = l o g - ^ , A(r ) = l o g - ^ , A(^ ■) = log%T and
J M l)  ’J y U  ’ J /TfO

Q
A(ç ) = log—̂ . Then the updates in (3.10)-(3.12) are modified to

^ k j ) = “ 2tan 1 n ( - l )  tanh(A(g,y , ) /2)

i'e'Vijm

i ' e V ( J )

(113)

(3.14)

(115)
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Other elements, including the stopping criterion and hard decision, are the same as in the 

basic MP algorithm.

Since almost all arithmetic operations in the MP algorithm, either the basic one or the 

one using LLRs, are addition and multiplication, the MP algorithm is also referred to as 

sum-product algorithm.

Some simplified versions of the MP algorithm are available. One example is the 

max-product algorithm. More considerations from the perspective of reduced-complexity 

and reduced-storage implementation can be found, e.g., in [16] and [29].

3.2.3 Iterating with Channel Detection; Turbo Equalization

One advantage of the MP algorithm is that it outputs soft reliability information in the 

form of APPs or LLRs, which allows iterative channel detection and LDPC decoding, 

referred to as turbo equalization [30]. This is a unique property that soft-decision 

decoding algorithms have but hard-decision ones do not.

A diagram of this turbo equalization is shown in Fig. 3.3. The blocks with a dashed 

border are an interleaver (11) and a deinterleaver (II'^), and the dashed border means that 

these blocks may or may not be present. The messages passed between the channel 

detector and the LDPC decoder are LLRs, where “ch/code” denotes the channel

C hannel
D etector

A,ch,e
I I Aj;ode,a

> : n

A,ch,a

LD PC
D ecoder

code.e

Fig. 3.3. Turbo equalization for an LDPC coded PR channel.
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detector/LDPC decoder, and "o/g" denotes the a priorUcxtvinsic LLRs. Note that the 

channel detector extrinsic LLR, Ach,e, can be obtained using the channel detection 

algorithms in Chapter 2 with the a priori LLR, Ach,a, and the LDPC decoder extrinsic 

LLR, Acode.e (={A(gj)}), can be obtained using the MP algorithm with the a priori LLR,

A code.a ( —{ A ( p j  )}  )•

Numerical examples of turbo equalization using the log-MAP BCJR algorithm for 

channel detection are shown in Fig. 3.4 for the non-precoded EPR4 channel. The same 

LDPC code as in Fig. 2.2 is used with the same decoding settings. The simulation results 

for one to five iterations are shown. The performance improvement by turbo equalization 

is clearly observed. Three iterations of the turbo equalization are enough to obtain most 

of the improvement.

SNR (dB)

Fig. 3.4. Performance of turbo equalization.
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3.3 Design of Regular LDPC Codes

One of the merits of LDPC codes is that high-rate codes are very easy to design. 

With the PR channel detection algorithms and the LDPC decoding algorithms explained, 

we are now ready to use LDPC codes for magnetic recording. First we consider regular 

codes. Irregular codes will be treated in Chapter 4.

All codes designed in this section are applied to the non-precoded EPR4 channel. 

The log-MAP BCJR algorithm and the MP algorithm are used for channel detection and 

LDPC decoding, respectively. The BCJR algorithm runs only once and the maximum 

number of iterations of the MP algorithm is set to fifty. In other words, no turbo 

equalization is used.

3.3.1 Random Codes

LDPC codes were rediscovered by first noting the excellent performance of random 

codes [20]. These codes were constructed using a random search, which has since been a 

very popular and successful approach.

A typical example of such a random search algorithm is the one in [20]. In this 

algorithm, a new column of the parity-check matrix is randomly created one by one until 

a matrix fulfilling all requirements is obtained. The restriction on this new column is that 

it has ones and does not have cycles of length four with previous columns. The

matrix obtained may not have a regular row weight ŵ . ; however, the distribution can be 

made as uniform as possible. A collection of codes of a wide range of rates designed 

using this method can be found in [31].

Another algorithm creates a random mapping between codeword bits and parity-
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checks corresponding to a parity-check matrix and checks the mapping for cycles of 

length four [23]. If any such cycle is found, the elements of the mapping are randomly 

permuted until one without such cycle is obtained. This method can be used for 

designing irregular codes as well. Simulations show that random codes constructed using 

these two algorithms have similar performance.

One set of codes with different specifications is designed for demonstration. These 

codes have weights (w^,10w^),w^. =3,4,5,6 and rate/? = 0.9. Shown in Fig. 3.5 are the

simulation results for these codes. It is observed that for this set of codes, the smaller the 

eolumn weight, the better the performance. On the other hand, the larger the column 

weight, the more complex the LDPC decoder. So we can state that regular codes with 

column weight = 3 are good choices in terms both performance and complexity.

03 10

w =3c
w =4 c
w =5c
w =6 c

SNR (dB)

Fig 3.5. Random LDPC codes (4374,3888, ,10w  ̂), = 3,4,5 and 6.
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3.3.2 Finite-Geometry Codes

The encoder of a random code presents a challenge due to the large memory required 

to store the matrix and the often prohibitive complexity of the matrix multiplication. 

Although an efficient encoding method was introduced in [32] reducing the complexity 

by up to two orders of magnitude, the complexity is still very high when the code length 

is large. This motivated the search for cyclic or quasi-cyclic algebraic LDPC codes, 

which can be encoded using shift-register circuitry. One issue, however, is whether 

algebraic codes have as good performance as random codes. In this section we first 

consider one important type of structured LDPC codes based on finite geometry (FG). 

Another type of codes based on array codes will be considered next.

FG-LDPC codes were introduced by Kou et al. [25], using a code construction 

closely associated with FG. The basic idea is that the rows and columns of the parity- 

check matrix correspond to the points and lines of a FG. The geometries we are currently 

using are projective geometry (PG) and Euclidean geometry (EG), in which it is 

guaranteed that there are no cycles of length four.

Two type of FG codes are defined in [25], namely, the type-I and type-II codes. 

While the type-I codes use the incident matrix of the points on the lines in the FG as the 

parity-check matrix, the type-II codes use its transpose. We consider some type-I PG 

(PG-I) codes, type-II PG (PG-II) codes, type-I EG (EG-I) codes and type-II EG (EG-II) 

codes as listed in Table 3.1. Note that PG/EG(m,s) denotes the code based on geometry

PG/EG(m,2' ) in Table 3.1, where Jmin, Wg, Wr and i? denote the minimum distances of 

the code, the column and row weight of the parity-check matrix and the code rate 

respectively.
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Table 3.1. FG-LDPC Codes.

Code m s N K R dmin Wc Wr

PG-I 2 5 1057 813 0.7692 34 33 33

PG-I 2 6 4161 3431 0.8246 66 65 65

PG-II 3 3 4745 4344 0.9155 10 9 73

PG-II 4 2 5797 5499 0.9486 6 5 85

PG-II 5 I 651 594 0.9124 4 3 31

PG-II 6 1 2667 2547 0.9550 4 3 63

EG-I 2 5 1023 781 0.7634 33 32 32

EG-I 2 6 4095 3367 0.8222 65 64 64

EG-II 3 3 4599 4227 0.9191 9 8 72

EG-II 4 2 5355 5121 0.9563 5 4 84

e

The FG codes have the following properties [33]:

They are regular LDPC codes, with column weight Wc and row weight Wr. For PG-I 

code, = m' +1, and for EG-I codes, +1.

Type-I FG codes are cyclic and Type-II codes are quasi-cyclic. This is a very useful 

property that makes linear-time encoding with shift-register circuit hardware 

implementation possible.

• The lengths and rates of FG codes are not very flexible; however, they can be made 

more flexible by puncturing or splitting the parity-check matrix [25].

Several examples of FG codes, namely, PG-I(2,6), PG-II (3,3), and EG-II(4,2) in 

Table 3.1 are selected for simulations on the non-precoded EPR4 channel. Plotted in Fig.
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Fig. 3.6. PG-I(2,6), PG-II (3,3), and EG-II(4,2) codes.

3.6 are the simulation results. Since a PG-I/II (w, .y) code has a structure very similar 

to an EG-I/II {m, s) code, it is not a surprise that they have similar performance, as shown 

in [25]. This is the reason why we do not include EG-I(2,6), EG-II(3,3) and PG-II(4,2) in 

Fig. 3.6. It can be seen that while the first code is just fair, its performance is worse than 

the higher-rate code PG-II(3,3), code PG-II(3,3) is a very good code, and its performance 

will be compared to other random and array codes in Section 3.3.4.

3.3.3 Array Codes

We review briefly array codes introduced in [26] in this section. Array codes refer to 

a class of codes defined on two-dimensional arrays. They have structure similar to RS 

codes except that they are defined over Galois rings instead of Galois fields. Since array 

codes are MDS codes in the ring, they have good error and erasure correction capability.
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Algebraic decoding of array codes is similar to that for RS codes. Recently, array codes 

were found to have sparse binary parity-check matrices, and therefore are LDPC codes 

[26].

Let p  be an odd prime, and y an arbitrary integer such that r < p .  The codewords of 

an array code can be defined as a square matrix such that for all I = 0,1,..., r - l  and 

i = 0,1,..

(3.16)

where (g) is the modulo-p residue. In other words, the code consists of all arrays

whose entries along thep  lines of slope i = 0,1, . . . ,  p - l sum to zero.

It was reported in [26] that multiple algebraic decoders are available and an array 

code with r check symbols is able to correct one symbol error and r-2 symbol erasures, or 

r symbol erasures (one symbol has p  bits).

Let Vpxp =[Vo,Vj,V2,...,v^_|], where each v,, i = 0,1,...,p - l ,  is a column vector and

also a symbol in the array code. Arrange the columns of the array into a single vector v , 

then we can rewrite the constraints in (3.16) in matrix form [26],

H -v  = 0 (3.17)

where

I I I I ’ Vo
I a oP-’ Vl

H = I o2(p-l) , v = V2

I o'--!
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and o is the pxp  single-cyclic-shifting matrix. It is observed that H -v = 0 is exactly 

the parity check equation of an LDPC code if both the matrix H and the vector v are 

represented in GF(2), i.e., the array code is an LDPC code over GF(2).

Note that H is determined by two parameters: p  and r. The (;, j )  -th p x p  submatrix

of H is H J  for i = 0,1,. . . r - l ,  j  = 0 ,l,...,/7 -l. That is, the exponents of H,  ̂ are 

or, = /, /3j = j . More generally, the matrix H can be defined by three parameters: p, r and 

k< p (and the corresponding code is denoted by (p,r,k) ,  and two exponent sequences 

and for i -  0,1,...r - l , j  = 0,1,...,k - l ,  where the 's as well as the 's are not all 

equal [27]. Specifically,

H = (ITS)

This matrix has column weight ŵ  = r , row weight = k and is free of cycles of 

length four. The code defined by this matrix has length N  = p - k  , dimension

K = p k - r { p - \ ) - \  and code rate /? = 1 - .  The parity-check matrix H in
p- k

(3.17) is just a special case of (3.18) with k - p .  Note that (3.18) is a generalization of 

the results in [26], [34]. Further considerations were suggested in [26] concerning the 

removal of short cycles and improving the minimum distance by additional coding of the 

column symbols.
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The easiest way to construct an array-based LDPC code specified by (p,r,k)  

according to (3.18) is to set <2, = / and = j  for i = OX- r - I ,  j  = OX - , k -  I .

However, if cycles of length six are deemed detrimental to the performance of the MP 

algorithm, then short-cycle-removing techniques outlined in [26] can be used. By 

choosing appropriate values of (p, k, r ) , we can design regular LDPC codes for different 

applications. For example, the LPDC code (23,6,12) is a short code (276,133,6,12) of rate 

R- 0A8- ,  the (127,4,40) code is a medium length code (5080, 4575, 4, 40) of rate

Table 3.2. High-rate array-based LDPC codes.

N K Wc Wr R

(63,6,54) 4482 3989 6 54 0.8900

(101,4,47) 4747 4346 4 47 0.9155

(101:\45) 4545 4044 5 45 (18898

(113,4,40) 5240 4071 4 40 0.9007

(127/F36) 4572 4067 4 36 (18895

(131/L36) 4716 4195 4 36 0.8895

(131,4,40) 5240 4719 4 40 0.9006

(149J,30) 4470 4025 3 30 0.9004

(167,3,27) 4509 4010 3 27 0.8893

R = 0 .9 . More high-rate codes appropriate for MRCs are listed in Table 3.2, some of 

which are used for demonstration using simulations, as shown in Fig. 3.7. The codes 

used in Fig 3.7 are of almost the same rate R = 0.889 but different column and row 

weights. Typically, we choose codes of column weight ŵ . =3,4,5 and 6, respectively, 

similar to those in Fig. 3.5.
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Fig. 3.7 Array-based codes (63,6,54), (101,5,45), (127,4,36) and (167,3,27).

3.3.4 Performance Comparison

As stated above, random codes usually have good performance, but the encoding 

complexity and storage is a challenge. On the other hand, structured LDPC codes usually 

have easy encoding implementation because they are either cyclic or quasi-cyclic. The 

question is whether structured codes are as good as random codes. As far the FG and 

array codes are concerned, it has been shown in [25] and [26] that these two types of 

structured codes are very good codes, at least for AWGN channels.

Now we compare these three types of codes on the non-precoded EPR4 channel using 

simulations. First, we must note that for comparison fairness, we must enforce the codes 

to have specifications, namely, code rate, length, column and row weights, as similar as 

possible. However, since some codes, e.g., FG codes, are not flexible, we have to be 

careful in selecting codes. The three codes we selected are:
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• Random code; (4745,4338,3,35), R -  0.9143.

• FG code: PG-II(3,3) -  (4745,4344,9,73), R = 0.9155..

• Array code: (101,4,47) -  (4747,4346,4,47), R = 0.9155.

10

10

LU 10
-  T  -  -  =  =  C

10" - e -  Random Code
: = - B -  PG-I1(3,3)

Array (101,4,47) 
-----  BER

: : r  1 1

10"
r  1 \  '

----- FER

6.2 6.4 6.6 6.8
S N R ( d B )

7.2

Fig. 3.8 Comparison of random code (4745, 4338, 3, 35), FG code FG-1I(3, 3) and array 

code (101, 4, 47).

Plotted in Fig. 3.8 are the simulation results. It is observed that while the FG code is 

just fair, the array code is as good as the random code. This shows that this particular 

array code, in terms of both performance and encoding complexity, is possibly a good 

choice for practical magnetic recording application. Simulation results for more array 

codes, not shown here, indicate a similar trend.
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Chapter 4 

Density Evolution

Density evolution [38] is a newly introduced and powerful technique to model the 

behavior of iterative decoding for LDPC and turbo-like codes. This idea was first 

suggested by Gallager [19], and implemented by Luby et al. [39] for binary symmetric 

channels. Richardson and Urbanke [38] extended it to arbitrary binary-input 

symmetrical-output channels. Specifically, for a given class of LDPC codes, it provides a 

way to compute the probability density function (pdf) of the messages in the iterative 

decoding. One interesting aspect of this technique is the noise threshold phenomenon: if 

the channel noise is less than a certain threshold, the probability of error will go to zero 

asymptotically; otherwise, the probability is always bounded away from zero.

This technique was applied to PR channels in [40] with some modifications. Since 

the concatenation of a linear code and the PR channel is not a linear code any longer, we 

cannot use the all-zero codeword as reference. Another important point is that the 

consistency symmetry [38] does not hold for PR channels. So the Gaussian 

approximation simplification [41], in which only the mean of the messages is tracked, 

cannot be used, although the message densities are still very likely Gaussian. Instead, the 

discretized pdf of the messages is tracked in the density evolution [21].

Using this technique, Kavcic et al. [40] derived bounds for ensembles of LDPC codes
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on ISI channels given a particular codeword or assuming that an identical and uniformly 

distributed (i.u.d.) codeword is transmitted. However, these bounds are for message 

errors, i.e., the probability of erroneous variable messages in the MP decoding.

In this chapter, we extend it to the probability of symbol errors (bits in binary 

alphabets) [42] and modified the theories in [40] accordingly. We must note that although 

the system performances in terms of the probability of message errors have already 

reflected the essence of iterative decoding, system performance in terms of probability of 

symbol errors is a more commonly used better understood metric. More importantly, we 

can estimate the average BER of a given ensemble of LDPC codes on a PR channel using 

this probability of symbol errors, which can be justified by simulations.

4.1 Information Rate of PR Channels

Before proceeding to density evolution, we first discuss techniques to compute the 

symmetric information rate and the BCJR-once bound for a PR channel with AWGN, 

i.e., -  +M&. These two theoretical limits will be used as criteria to justify

optimization of irregular LDPC codes.

4.1.1 Symmetric Information Rate

Capacity is the best theoretical limit for any channel. However, the computation of 

the capacity of a PR channel

C = m ax/(X ;R) = max{fK(R)- fK(R | X}), (4.1)
P X ( X )  P X ( X )

where i^( ) is an entropy function, and /(X ;R ) is the mutual information between X and
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R, is a classical problem that has not been solved yet, although a number of (tight)

bounds are available. Instead, we use the technique in [43] to estimate the symmetric

information rate, i.e., the information rate of a PR channel with an i.u.d input sequence,

i.e., Px (x) = 2“^ for any x. Let this information rate be denoted by

C ,„  = [« '< R )-« '(R |X )],_ ,.,.,-.. (4.2)

Simply speaking, this information rate for the PR channel is computed in the 

following way. First, the differential entropies of R and R | X are defined as,

i^(R)= lim — 5f(r) (4.3)

i^(R  I X) = lim — (r I x) = lim — i^ (n ) . (4.4)
^  N—̂°° _/V

The differential entropy of the A WON sequence n can be easily computed, actually, 

lim i^ (n )/A  = 0.51og2(2:7re(T^). So the problem reduces to the computation of ^ ( R ) ,

which can be expressed as,

5/-(R) = -  lim £[log(p(r))], (4.5)

where p{r) is the probability of the channel output sequence r. Fortunately, p(r) can be 

computed by the forward recursion of the Baum-Welch/BCJR algorithm. For more 

details please refer to [43].

4.1.2 BCJR-Once Bound

Another theoretical limit for a PR channel is the BCJR-once bound, which is very 

useful to characterize losses in terms of achievable information rate if the BCJR-once
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channel detection is employed [40]. This is important because BCJR-once is usually 

used in practical systems for the sake of low complexity.

Assuming a transmitted i.u.d. sequence, the BCJR-once bound is defined as,

CBCJR4»ce -  ^  , (4.6)

where A is the BCJR output LLR sequence. It can be easily proven that Cĝ jR.once

^ Q u .d .^ c .

The BCJR-once bound can be computed by simulation in a way similar to that for 

symmetrical information rate [40]. Namely, generate a very long sequence x, transmit it 

through the PR channel, and obtain the channel output sequence r. Then,

(4.7)

4.2 LDPC Decoding Revisited

We consider an ensemble of LDPC codes specified by a pair of degree distribution 

functions (Â,p) , as described in Section 4.1.

The decoder for this system consists of an MAP channel detector, which is the log- 

MAP BCJR algorithm in this chapter, and the MP LDPC decoder. Turbo equalization 

may or may not be used. The iterative decoding behavior of both decoders will be 

analyzed in terms of message passing and their density evolutions. A system without the 

turbo equalizer is straightforward.

There are several message-passing processes in the decoding system. In addition to
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the ones in the MP decoding, others are the messages from the channel to the variable 

nodes and from the variable nodes back to the channel. These message-passing processes 

can be represented clearly with a joint code/channel graph [40].

Given a transmitted eodeword, we first compute the channel output extrinsic

messages in the /-th iteration by running the BCJR algorithm with the a priori

message = A'code.e > whieh is available in the previous round, passed from the

variable nodes. The message passing in the MP algorithm is exactly the same as that on 

the AWGN channel [21]. Two types of messages eoming forward and baekward between 

variable nodes and eheek nodes are updated iteratively. Let q be the message from a 

variable node of degree dg to a eheek node in the /-th round, then is equal to the sum 

of the ehannel message and the ineoming messages from all its neighbors except the one 

that will get the message

9'^' -  A ch. g + S ' ' /  • (4.8)
i=\

The message update rule for eheek nodes is in the form of “tanh rule” [38]:

r/ + l flt+l
tanh = TT tanh -2—, (4.9)

2 2

where the q/s  are the incoming messages from all neighbors of this eheek node exeept 

the one that will receive the message The last message is the extrinsic message 

A^code e P^sscd from the variable node to the channel,

, (4 10)
;=1

i.e., the sum of messages from all the neighbors of this variable node. This iteration
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process will continue unless a stopping criterion is met. If all checks are satisfied, all bits 

will be decided to either a digit one or minus one based on the sign of the message, 

i.e., X -  sign ) , where

j “ = A V , + A « e . , .  (4.11)

otherwise, a decoding failure will be declared when the maximum iteration number is 

reached.

4.3 Density Evolution

After I such iterations, the algorithm would produce the exact LLR of all the bits 

if the bipartite graph contains no loops of length up to 21 [38]. If we assume that the 

graph is loop-free, we can analyze the decoding algorithm directly by tracking the 

evolution of the message densities in the iterations because the incoming messages to 

every node are independent. This algorithm is called density evolution in [38]. Also, by 

the general concentration theorem of [38], for almost all the graphs in a code ensemble 

(À,p)  and almost all inputs, the decoder performance on a binary-input symmetrical- 

output channel will converge to that of a corresponding loop-free graph as the codeword 

length approaches infinity. This theorem was extended to PR channels in [40]. It states 

that given a particular (or i.u.d.) transmitted codeword from a uniformly chosen ensemble 

code, the probability of erroneous m essages can be approximated arbitrarily closely by 

the error concentration probability if the code length is larger than a certain value. This 

error concentration probability can be easily estimated from the density evolution. In this 

work, we extend this concept to erroneous symbols.
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The density evolution for an LDPC code with distribution (À, p)  on a PR channel is 

exactly the same as in the decoding process. Let the probability density function of a 

random variable A b e D e f i n e  similarly as in [21], [40],

i ( / )  = £ i , ® H /  (4.12)

/) ( / )  = Z f t S t T  (4.13)
i

where ® denotes convolution of pdf, and is symbolic notation for the average 

message pdf by evolving the pdf /through a check node of degree i,

W ( / :  !&(/:... ^  m  . . . m  (4.14)

where !^a,è)= 2tanh“*(tanh(a/2) ■ tanh(6/2)) [21]. Note that all these computations are

in the discretized pdf domain. With these definitions, the density evolution

corresponding to (4.8)-(4.11) can be written as

(4.15)

/ ,“ = / !  » / ( ( / / )  (4.16)

(4.17)

(4T8)

= jFt+i a  , (4.19)

where À{f )  -  ^   ®' /  [40], /„ is the pdf of the channel noise, ri.ud. is the
i ij^À(x)dx

received channel signal corresponding to the transmitted i.u.d. sequence, and H  denotes 

histogram of the BCJR channel detector output LLRs obtained by simulation, because
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there is no close-form expression. Note that the convolution of pdfs can be efficiently 

calculated in the Fourier domain. From / /  we can estimate the average decoding error.

In the case where turbo equalization is not used, the density evolution can be 

simplified straightforwardly where the channel detection is only processed once and the 

extrinsic message from the LDPC code is not fed back to the channel.

The use of an i.u.d. sequence in (4.15) is because the concatenation of a code and a 

PR channel is a nonlinear code and the all-zero codeword cannot be used for reference. 

This can be justified for high-rate linear codes. The length of the sequence must be long 

enough for us to be able to ignore the channel detection boundary effects. Since we do 

not know the codeword length in the concentration theorem, we will determine it 

experimentally.

4.4 Properties of Density Evolution

4.4.1 Concentration Theorems

Kavcic et al  [40] derived the concentration theorems for LDPC codes over IS I 

channels by analyzing the neighbors and trees in the joint channel-code graph. In their 

theory, for a given transmitted codeword, the probability of a variable-to-check message 

being erroneous after I iterations of the MP decoding algorithm is highly concentrated 

around the error concentration probability. Similar results apply to an i.u.d. codeword.

Instead of message error, we modify their theory to symbol error, which is more 

direct and meaningful. Note that with this modification, all related parameters are 

changed accordingly. But the computed value difference is small, because when the 

message error goes to zero, the symbol error will go to zero as well, and vice versa.
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Using similar notation and derivation as in [40], we define the probability that 

the tree of type 0 and depth I delivers an incorrect symbol, i.e.,

= Ÿr{s^ • Xg < 0 I tree type 0). (4.20)

Then the symbol error concentration probability given a transmitted x is

2̂(1)
f " ( x ) =  P r# ), | x ) .  04.21)

i=l

For an i.u.d. codeword, all possible 2^(0 neighborhood types 0, are equally probable,

2̂ '(0
PLa. = -Z '"'"' (4.22)

1=1

With these modifications, we can state the concentration theorems in terms of the 

symbol error probability in almost the same form as those in [40].

Theorem 1: For randomly chosen ensemble LDPC codes, let Z '(x) be the number of 

erroneous symbols after I iterations of the MP decoding when codeword x is transmitted, 

for arbitrarily small constant £ > 0 , there exists a positive number , such that if 

N >2y I £, then

Pr
V

Z ‘(x) p,
N

\

> £
J

< . (4.23)

Theorem 2: For randomly chosen ensemble LDPC codes, let x be a random i.u.d. 

sequence and Z '(x) be the number of erroneous symbols after I iterations of the MP 

decoding when this i.u.d. sequence being transmitted, for arbitrarily small constant £ >0 ,  

there exists a positive number , such that if N >2y I £,  then
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Pr ^ - p \TV
> e < . (4.24)

The proofs in [7] also apply to these two theorems. So they are not repeated here.

4.4.2 Decoding Error Estimation

Using density evolution, we can compute the pdf of all the types of messages in the 

iterative decoding. Suppose an i.u.d. sequence is transmitted, the symbol concentration 

error probability is just the integral of the symbol message in error [42],

= (4.25)

Note that in the computation of the average message densities for an ensemble of LDPC 

codes, the negative message (which corresponds to a modulated -1 signal) is flipped to 

be positive. From the concentration theorem, the probability of message error can be 

well approximated by this concentration error probability given the block length is 

greater than a certain number. Although we do not know what this number is for a 

specific ensemble of codes, we can evaluate it experimentally.

In fact, this approach was proposed in [41] to estimate the probability of symbol error 

on AWGN channels. In that case, the all-zero codeword is transmitted, and the pdf of the 

symbol message is approximated to be Gaussian and the probability of error is estimated 

from it. Because the coding system is linear, this approach works very well. However, 

since a linear code concatenated with a PR channel is not linear, we alternatively use an 

i.u.d. sequence as the reference in this system.

Here we simply use as an approximation to the average decoding error for a
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high-rate ensemble of LDPC codes on PR channels, i.e., BER=/;'„ j . This approximation

can be evaluated by simulation. The results given below will show that this estimate of 

the decoding error is very good when the block length is long enough.

4.4.3 Noise Threshold

The threshold phenomenon is observed in LDPC and turbo-like codes. When the 

channel parameter is above a certain value, the decoding error will go to zero if the 

iteration number goes to infinity. For channels with white Gaussian noise, this parameter 

is the variance of the noise. That is,

(7jî  = sup a  : lim lim BER 0 . (4.26)
/ —>co

For linear codes on AWGN channels, we can assume the all-zero codeword is 

transmitted without loss of generality. However, for linear codes on PR channels, we 

take an i.u.d. sequence as the input to the system, i.e..

= sup a  : lim lim FJ „ d ^  ^ . (4.27)

From the previous discussion,  ̂ can be computed as the integral of / / ,  so

(Jî  = supf a  : lim lim f  f ‘ (^, cr)d^ o l . (4.28)
V  n — /

The threshold phenomenon ensures that there exists a code for which the decoding 

error can be arbitrarily small if the noise variance is below the threshold. Thresholds can 

be used to compare codes as well. Codes with higher thresholds or lower SNR thresholds

(lOlogin  -----) are better in general.
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4.5 Performance of LDPC Coded PR Channels

Numerical results for both noise threshold and decoding error estimation are shown in 

this section. From the noise threshold, we can declare how close an LDPC code is to the 

theoretical limit.

4.5.1 Noise Threshold

With the assumption of an i.u.d. input sequence, we can compute the threshold of any 

LDPC code with a specified degree distribution, whether regular or irregular. Kavcic et 

al. [40] computed the thresholds for regular codes with variable degree ŵ . = 3 on the

dicode channel and showed that the thresholds of high-rate regular codes are very close to 

their i.u.d. capacity. We recomputed the thresholds of these codes with the modifications 

in this chapter. Furthermore, we also computed them on other high-order PR channels. 

Because the memory in the dicode channel is only one, which will make the channel very 

likely to be memoryless with a random interleaver within it, we use an ME^PR4 channel 

as an example of high-order channels.

Consider first regular codes (w^,w^).  The computed thresholds for the codes

(3,Wr) where is varying are shown in Figs. 4.1 and 4.2. Fig. 4.1 is the comparison of 

the thresholds of these codes with and without a turbo equalizer (“turbo” and “non-turbo”

in the figures) on the normalized dicode channel with /(D )  = (1 -  D )/V 2 to the i.u.d. 

capacities. It can be seen that when the code rate is increasing from 0 to 1.0, the 

threshold is approaching the capacity curve whether a turbo equalizer is present or not. 

The difference is that there is about 1.0 dB performance loss for the system without a 

turbo equalizer when the code rate is greater than 0.25. This is also observed in [40],
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Fig. 4.1. Thresholds for the codes (3,k) on the dicode channel.
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Fig. 4.2. Thresholds for the codes (3,^) on the ME PR4 channel.

70



where the definition of SNR is 3 dB offset from ours. Fig. 4.2 is the same comparison, 

but on a normalized ME^PR4 channel with /(D )  = (2 +2D  -  -  2D^ -  D‘̂ )/V l4 .

We can draw similar conclusions from these figures that the technique proposed above 

works well for arbitrary PR channels.

However, the performance loss between the system with and without a turbo 

equalizer is larger than that on the dicode channel. But the codes that we are interested in 

are those of high-rate, where the code loss is approximately equal for these two channels. 

Note that the i.u.d. turbo and non-turbo capacities are computed using the method 

introduced in [43] and [40], where the former is called i.u.d. capacity while the latter is 

called the BCJR-once bound.

We also computed the thresholds for the codes (4, Wr) which are not shown. 

Furthermore, we computed the thresholds of the codes on a precoded PR channel. We

chose 1/1© D^ as the precoder for the ME^PR4 channel. The SNR threshold on this 

combined channel is larger than on the channel without the precoder, which means that 

the precoder in an LDPC coded system causes some performance loss.

One implication of these results is that the codes (3, Wr) of high rate are very good 

codes and may be optimal for PR channels. However, this is only an asymptotic result, in 

the sense that the code length and number of iterations go to infinity or are large enough. 

In practical applications, this needs to be evaluated and verified by simulations and/or 

experiments.

4.5.2 Decoding Error

Using the density evolution, we can estimate the average decoding BER as discussed 

above. Here we use the code (3,30) as an example. The PR targets considered are the
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dicode channel and the ME^PR4 channel. In order for the density evolution to work 

properly, the code length is chosen to be large enough, we use N - 10  ̂. From [40] we 

know that density evolution does not depend on the code length. However, in the case of 

PR channels, we must use the BCJR simulation or density evolution to compute the 

channel-to-variable message, therefore a large number must be used to avoid the channel 

detection boundary effect [42]. The computed results are shown in Figs. 4.3 and 4.4. 

Since the coding gain from 50 to 500 iterations is very small, we use 50 as the maximum 

iteration number. We compare the codes (4,40) and (3,30), and code (3,30) with and 

without a precoder. All results are consistent with the information rate analysis.

In order to check the validity of the estimation of symbol error, we performed 

simulations. Since we do not know what the code length should be for density evolution 

to work properly, we use N=10'*,10^and 10 .̂ It can be seen from Figs. 4.3 and 4.4 that 

the decoding error estimation using density evolution works very well when the code 

length is larger than 10 .̂ The gap between the estimation and the simulation results for 

the code of length 10*̂  is very small, less than 0.1 dB, and that for 10  ̂is only 0.2 dB. As 

far as length 10"* is concerned, the bit error estimation for the system with turbo equalizer 

works better than without it. At BER=10'^, the gaps are about 0.5 dB. But the simulation 

curve for the system with a turbo equalizer is sharper. So for codes of length larger than 

10 ,̂ we can use the BER estimation by density evolution as the probability of decoding 

error down to a low BER, confidently.

Note that the codes of finite-length used in this chapter are randomly constructed. No 

attempt is made to remove short cycles. However, no cycle is assumed in the density 

evolution, so if short cycles, particularly cycles of length four are thoroughly removed
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Fig. 4.3. Decoding error estimation using density evolution vs. simulation for the codes 

(3,30) on the dicode channel.
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Fig. 4.4. Decoding error estimation using density evolution vs. simulation for the codes 

(3,30) on the ME^PR4 channel.
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from the codes, their performance will be even closer to the density evolution estimates. 

Some further results on this discussion will be given in Chapter 5, where density 

evolution is used for analyzing LDPC codes on PR channels with erasures.

4.6 Analyzing Precoding Effect

As indicated in Chapter 1, the precoder is a very important component in a magnetic 

recording system. In addition to converting NRZI data into NRZ data, it also affects 

system performance.

The precoding effect on system performance can be evaluated using density evolution 

asymptotically. As a follow up, simulation is used for finite-length codes. A number of 

precoders, listed in Table 4.1, are considered for the EPR4 channel. Also listed in Table

4.1 are the SNR thresholds for the LDPC (3,30) coded EPR4 channel. It is seen that no

precoder is optimal, and the performance losses due to precoding are from 0.2 to 0.7 dB. 

If a precoder has to be used, l/l  © is the best choice, with only 0.22 dB loss.

Table 4.1. SNR thresholds and simulation results for LDPC (3,30) coded EPR4 

channel. The simulations used a particular code of length 4374.

Precoder SNRth (dB)
SNRth loss over 
no precoder (dB)

Simulated SNR loss 
over no precoder at 
BER=10  ̂(dB)

No 5.71 0 0

1/1 © D 6.29 0.48 0.65

l/l© D ^ 5.93 0.22 0.06

l / l @ D © D ^ 6.34 0.63 0.59

l / l © D © D ^  ©D^ 6.37 0.66 0.68
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Fig. 4.5. LDPC (4374,3933,3,30) code on EPR4 with several precoders.

Shown in Fig 4.5 are the simulation results for a particular regular LDPC code

(4370,3933,3,30) on the EPR4 channel. The performance losses caused by precoding, 

listed in the fourth column of Table 4.1, are about the same level as in density evolution 

for asymptotic and ensemble codes.

4.7 Designing Good LDPC Codes

Density evolution can be used to design good LDPC codes by optimizing the degree 

distribution functions (Â,p)  . The general idea is to search for (Â,p)  that has the 

maximum noise threshold (or minimum SNR threshold).

The searching process is typically a nonlinear programming problem. Good 

examples of such process can be found in [21], [41], [44]-[48]. For completeness, the
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Initlization. Start with a certain noise level a. For the 
first generation G=0 select randomly a number of code 
degree vectors meeting code constraints. For each vector, 
run the density evolution to compute the noise threshold. 
Select the best vector Vbest,G-

YesNo
B E R  of V b e s t,G + l= 0 ?

Yes

Stop. Output the degree 
functions and Gth= o.

B E R  —> 0 after long 
-time r u n ? ^

Increase o slightly.

Selection. Compare noise thresholds of and Vbestg • If the vector
V , is better, update v ,   ̂ by y. . Otherwise keep y. ̂ . Select the best 
vector from y.^^/s and denote it by Vbest,G +i-

Mutation. G = G +1. For the new generation G, new vectors are 
generated according to the following mutation scheme. For each 
i=l,2..., randomly choose distinct integers r\, rz, and r ,̂ each different 
from and define y .^  _y  ̂j ,  where F is a
real constant which controls the amplification of the differential.

Fig. 4.6. Searching for good LDPC codes using density evolution.
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process in [4§] is sum m anzed in îlié diagram ifi Fig. 4.6. TMS prOC6§S Câll bS USCÜ Oii 

any channel, including AWGN, fading, and PR channels.

However, many variations can be implemented in the mutation step. The one in Fig. 

4.6 is just an example, where the variable and check degree functions are adjusted 

simultaneously. Other implementations are also possible. For example, the check 

degrees can be restricted to just a few values, or even fixed, in [21] and [46], thus do not 

need to be updated. Another example is [47], in which the variable and check degree 

functions are updated in a serial manner, i.e., the variable and check degree functions are 

updated alternately. Such algorithms have been shown very effective to design good 

LDPC codes for a number of channels. These include [21], [44] for AWGN and other 

binary-input symmetric-output memoryless channels, [45] for fading channels, [47] and 

[48] for PR channels.

Using these techniques, a number of irregular codes for PR channels have been 

designed in [47] and [48]. Since coset codes are considered in [47], i.e., H • x = c , where 

c can any binary vector of length K, codes of any rate can be designed. As an example, 

two codes of rate 0.7 are given in [47] for the dicode and the EPR4 channels respectively, 

and their noise thresholds computed. In [48], only high-rate codes are considered, i.e.,

H -x  = 0 ,  and the rate close to 1.0. Several finite-length codes for the 1/1© 

precoded EPR4 channel and the 1 /1 © D-precoded ME^PR4 channel are designed and 

simulated.

One issue hidden behind these two references is how to design finite-length practical 

codes using density evolution. As we know, density evolution can only search for good 

degree functions for asymptotic and ensemble of codes. It is still an open problem how
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to construct a particular code. Another issue is how to choose the parameters for the 

density evolution, namely, the minimum and maximum degrees of the variable and check 

nodes. This can substantially affect the searching results, and the possibility to construct 

finite-length codes without short cycles.

Two codes designed in [48] are used here to show the effectiveness of density 

evolution. These two codes are both (4835, 483), of rate R ~ 0.9. The first one is named 

code5 in [48] for,the 1/1© -precoded EPR4 channel. The other one is named code? 

in [48] for the 1/1© D -precoded ME^PR4 channel. Degree functions of these two codes 

are listed in Table 4.2.

Table 4.2. Degree functions of the code5 and code?.

Code5 Code?

i Pi Pi

3 0.1651 0.6980

5 0.2343 0.3020

33 0.9?49

34 0.0003

3? 0.0005 0.9991

39 0.0225

46 0.0008

51 0.0008

59 0.0002

?8 0.0009
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These codes are simulated on the turbo-equalized EPR4 and ME PR4 channels in 

[48]. Simulation results show that they are 0.5 and 0.3 dB, respectively, better than a 

random regular code of column weight = 3 at BER=10 "̂. These codes are simulated

here, as shown in Fig. 4.7, but on the non-turbo-equalized ideal EPR4 and ME^PR4 

channels with AWGN.

The superiority of these two irregular codes is clearly observed in Fig. 4.7. Explicitly, 

code5 and code7 are both 0.12 dB better than the regular code of column weight w,. = 3

at BER=10'®. Note that, the coding gains in Fig. 4.7 are a little bit smaller than those in 

[48]. This is because the regular codes used here and in [48] are different, and turbo 

equalization is used in [48].

in io "

Regular code on EPR4 
Codes on EPR4 
Regular cod^on ME PR4 
Code7 on MF PR4

7,55,5 6.5

SNR (dB)

Fig. 4.7. Performance of codeS and code7 on ideal FPR4 and MF2PR4 channels.
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Chapter 5 

Erasures

Erasure is a common physical impairment in magnetic recording systems and must be 

handled appropriately. Otherwise, the system performance degrades dramatically. To 

address this issue we need to characterize the effects of these impairments on system 

performance and develop new signal processing and coding techniques to mitigate them.

One issue is that the erasure, whether caused by TA or MD, needs to be detected first. 

The need for erasure detection will be justified using noise threshold analysis. Only if 

erasure detection can be accomplished successfully, will channel detection and ECC 

techniques be effective in recovering the user information.

5.1 Erasure Model

Erasures in this paper refer to the sudden loss (including TA) or fading of the signal 

during read back, which we call full and partial erasures, respectively. Due to the nature 

of the erasure sources in magnetic recording, the bits in erasure are assumed contiguous. 

We further assume a rectangular window for the erasures, and use two parameters to 

model them: r] is used to represent the fading depth, ranging from zero (no erasure) to 

one (full erasure), and the erasure length is the number of bits in erasure out of all N  

bits in the codeword. Shown in Fig. 5.1 is the erasure model used in this work. We
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Fig. 5.1 Rectangular erasure model characterized by depth 7 and length

further assume that erasures have random starting locations and are present in every 

sector. Note that this erasure model has been also used in [27], [49], [50].

The basic way of handling detected erasures is erasure insertion, i.e., to clear their 

reliability information in the first iteration of the channel detection,

A ,.= 0 , F + L , - l , (5T)

where and are the starting location and length of the erasures. If two or more

iterations of channel detection are used, e.g., iterative channel detection and ECC 

decoding, this clearing operation is only used in the first iteration, while in the other 

iterations, the extrinsic information of bits in erasure is not fed back for use in the next 

iteration. This erasure insertion has been shown very effective in [49]-[51] because it 

prevents the unreliability information of erasures from propagating to other bits and thus 

improves the system performance. In other words, an erasure detection algorithm is 

highly desirable in a practical system

Our goal in this chapter is to find out what erasures in terms of rj and Le should be 

detected, how to detect them, and furthermore, how to correct them.
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5.2 BCJR-Once Information Rate Bound

The techniques in Section 4.1 for computing the information rate of PR channels can 

be easily modified for PR channels with erasures. However, we choose to use the BCJR- 

once bound because the erasure insertion is carried out only in the first iteration of the 

channel detection. Another reason for doing this is that we are more interested in a non

turbo-equalized channel.

From Section 4.4.2, the BCJR-once bound can be computed as

CB C J R - o n c e (5.2)

by simulation in a way similar to that for symmetrical information rate. When a section 

of erasures is inserted, the bits in erasure have Aj  =0  according to (5.1), i.e..

«  -
0.95

0.9

ro 0.85|
c  
o 0.8

0.75

Ç 0.7 

0.65

0.6

0.55

0.5

SNR (dB)

Fig. 5.2. BCJR-once bounds for the ideal EPR4 channel with AWGN and erasures.
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Pr(Xy = 11 r) = Pr(Xj = 0 1 r) = 0.5 , < j  < jg+ L ^ - l  . Substituting into (5.2), the

BCJR-once bound for erasure insertion can be easily computed as,

^ e r a s u r e  _  i  
' - 'B C J R - o n c e  “  ^ ^ J (5 3)

Define g = / # ,  the probability of erasure if the erasures are scattered uniformly in

the sector. Shown in Fig. 5.2 are the BCJR-once bounds for the ideal EPR4 channel with 

AWGN and erasures with e ~0,  5%, 10% and 15%.

5.3 Density Evolution for Erasures

Density evolution, a useful tool to analyze the performance of LDPC codes on PR 

channels, has been discussed in Chapter 4. However, the algorithm therein is valid only 

for standard PR channels with AWGN. In order to include erasures, some modifications 

must be made. In this chapter we first modify the algorithm, and then use it to analyze 

numerically LDPC codes on PR channels with erasures [51]. Turbo equalization is not 

considered. An ideal erasure detector is assumed if needed, i.e., the channel state 

information (CSI) about the erasures is known.

5.3.1 Modified Density Evolution

When erasures are present, the only change requested in the density evolution 

algorithm is the charmel LLR, A j ,

P(xj =+\\r, t],£)
L , — ------------

P { X j  = 0 \ r , r ] , E )
A / = l o g ' /  _  \  , (5.4)
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where the tw o parameters r] and e must be taken into consideration. Correspondingly, 

the pdf of the channel LLR, /k.ch ’ is modified to

/ k . c h  ~  ’ ( 5 - 5 )

where e is a binary erasure flag. If e=\,  which means that the signal fading depth is 

large and an erasure has been inserted, then = £■ N  bits of r, are forced to zero, i.e., 

rj= Hj if 6j=l, and so are the LLRs, Aj-0 if ej=l, and their pdfs become

A^=(y(A^.), i fg ;= l  (5.6)

for j  = +1,..., j^+ L ^ - l ,  and S() is the delta function. The overall average

is either (5.5) for a unflagged partial erasure or

A,ch = (5-7)

for erasures with ej = 1 for j  -  +1,..., - 1 .

The /kgh in either (5.5) or (5.7) allows us to perform density evolution on PR

channels with erasures, which can be straight-forwardly implemented as in Chapter 4. In

other words, both the BER estimation and SNR threshold analysis can be carried out.

5.3.2 Characterizing Erasures

Two parameters to characterize erasure are the partial erasure fading depth r] and the 

probability of erasure £.  Two values of these parameters, namely, the fading depth 

threshold and the erasure correction capability £^^^ can be determined using the 

density evolution.
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For a partial erasure with probability f i s  defined as,

/7th = irif{î],P^{e,SNR)<P^{£,ri,SNR)], (5.8)

where P^(s,SNR) and denote the BERs for full and partial erasures at a

given SNR. Note that r]̂  ̂ is a function of e and the underlying code as well as the

parameters of the MP decoder. From (5.8), all received signals with r] > are

determined unreliable and an erasure is flagged. This threshold can also be defined in 

terms of the S N R th ,

77th = inf {77, SN R therasure) < SNR^^{e,77)}, (5.9)

where SNRth(^,erasure) and SNR^^{e,r]) are the SNRth’s for the full and partial erasures, 

respectively.

As far as the parameter e is concerned, , is defined as the erasure correction 

capability of the LDPC code,

ftttttx =sup(f,.(^(g,SNR)</^(SNR)), (5.10)

where P̂  ( S N R )  is the required B E R  at a given S N R .  Similarly to 77,̂  , can be 

defined in terms of S N R th  as well, equivalently in two forms,

fttiax = supjf, SNRth {£,erasure) exists}, (5.11)

£ ^ ^ ^ s u p \ £ ,  lim P^i£,SNR)-^0],  (5.12)
SNR̂ °°

due to the fact that P^-^0 for SNR > SNRt  ̂.

Note that the values of 77th ^nd defined in terms of the S N R th ,  and computed by
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density evolution are always over-estimated with respect to a finite-length code. Hence 

for a given practical system, a thorough investigation needs to be done to determine them 

reliably.

5.3.3 Numerical Results

In this chapter we only consider regular codes (Wc, Wr) on the 1/1© -precoded 

EPR4 channel as an example. The extension to irregular codes and other PR channels is 

straightforward. The maximum number of iterations for the MP decoding of LDPC 

codes for the BER and SNR threshold evaluations is ten and fifty, respectively, if not 

specified otherwise.

Partial erasures without CSl are first considered. Intuitively, the fading depth should 

substantially affect the performance; the lower the fading depth, the better the system 

performance. For partial erasures with a large fading depth, the availability of CSl 

should be helpful.

First we estimate the BER using density evolution. The estimated BERs for an LDPC

(3,30) coded system with £ = 3% and 6% (corresponding to 123 and 246 out of 4096) 

bits in partial erasure with different fading depths are shown in Fig. 5.3. In Fig. 5.3(a), 

the curves from left to right correspond to fading depths rj= 0 (no fading), 0.25, 0.40,

0.50, and 0.75, except that the third curve from the left corresponds to a full erasure with 

CSl. The coding losses of the five curves, from left to tight, compared to no fading, at 

BER=10^, are 0.25, 0.6, 0.7, 1.2 and larger than 4 dB. Similarly, the same curve 

sequence is observed in Fig. 5.3(b) for ?]= 0, 0.25, 0.40, 0.50, and 0.60, except that the 

third curve from the left corresponds to a full erasure with CSl but the coding losses are 

much larger. This shows that the system is quite sensitive to £ even at low fading depths.
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Fig. 5.3. BER estimates for LDPC code (3,30) on the precoded EPR4 channel with (a) 

g = 3% , (b) £ = 6% and as a parameter.
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From Fig. 5.3, we see that partial erasures with fading depth rj>0.15 and 0.5 for £ - 3 %  

and 6% are quite detrimental to performance.

From both Fig. 5.3 (a) and (b), the BER for partial erasures with =0.40 is slightly

worse than that for a full erasure with CSL This shows that if the erasure detector can 

detect partial erasures with rj >0.40, the system performance will be improved. In other

words, we have ~ 0.40 by the definition in (5.9) for SNR in the range of 6-7 dB. We 

also observe that (g = 3%)is slightly smaller than;;^^ {£ = 6%).

Note that the number of iterations in these evaluations is equal to ten. If this number 

is increased, say to fifty, the performance will be improved, espeeially for large fading

N  e = 3 %  

— I—  e = 6 %  

— e = 7 %

9 . 5

0
1  8

^  7 . 5  
z

6 . 5

□ : Known CSl
5 . 5

0.2 0 . 3 0 . 4

V
0 . 5 0.6 0 . 7 0.8

(b)

Fig. 5.4. SNR thresholds as a function of r] for LDPC code (3,30) on the EPR4 channel 

with partial erasure of probability £ (unknown CSl).



depths. For example, the BER for £ = 6% and r] = 0.5 drops from 10'  ̂ to 10'  ̂ when the 

number of iterations increases from ten to twelve. This indicates that depends on the

number of iterations of the MP decoding.

Next we use S N R  threshold as the criterion. We compute S N R th  as a function of the 

fading depth r] for partial erasures with £ = 3%, 6% and 7%, as plotted in Fig. 5.4 with 

e = 0.  Also plotted are the SNRth’s for full erasures with CSl, denoted by in Fig. 5.4. 

From this figure, we can observe a similar tendency of the coding loss as in the B E R  

curves, but the absolute values are smaller. Using the definition of t̂h (17), we have 

77th ~ 0.385, 0.390 and 0.410 for£ = 3% , 6% and 7%.

Next we consider full erasures with CSL As discussed in [49], the recoverable 

erasure length of a random regular LDPC code with check node degree Wr is about

7%

0.0
5%

6%

1 0 '

8 9 105 6 7
S N R (d B )

Fig. 5.5. BER estimate for LDPC code (3,30) on the precoded EPR4 channel with full 

erasures with CSl, with f  as a parameter.
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2Nlw^ . Equivalently, the erasure recovery capability is = { 2 / d^.xiOO)% .

However, this is only a rough estimate, probably valid for regular codes with ŵ. > 3.

For the code (3,30), this number is = 6.67%. So if it is a valid estimate, all erasures

with £•<6.67% should be recoverable.

Let us first estimate the BERs, shown in Fig. 5.5 for the code (3,30) with £•=3% 

through 7%. The curve for no erasure is also plotted as a reference. The coding losses 

for £ = 3%, 5% and 6% at BER=10'^ are 0.6, 1.3, and 2.0 dB. More importantly, the 

coding loss for e - 1 %  is quite large, showing that erasures with e = l % >  are not

recoverable. Note again that the maximum number of iterations for this analysis is ten. 

If it is increased to fifty, a larger£ , perhaps up to 7%, may be recoverable, i.e.,

may be slightly larger than 7%.

The erasure recovery capability can also be evaluated in terms of the SNR threshold. 

The SNRth as a function of the fading depth T] and erasure fraction e  is shown in Fig. 5.6. 

Using a step of 1% for e  in the numerical computation, SNRth's for e  = 8% and 7% are 

computable while for E -  9% and 8% they are not, respectively, for the codes (3,30) and 

(4,40). This shows that = 8% and 7% for these two codes, respectively, which are

larger than those obtained using the BER criterion. This can be explained by the different 

maximum number of iterations used by the MP decoder, ten and fifty for BER and SNR 

threshold analysis, respectively. If we increase this number for the BER estimate to fifty, 

we should get similar values as for the SNRth’s. However, we do not use such large 

number of iterations, because ten iterations is a more meaningful value for evaluating the 

BER of practical systems.
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Fig. 5.6. SNR thresholds for LDPC codes (3,30) and (4,40) on the precoded EPR4 

channel with known full erasures.

Since SNRth’s for the code (4,40) are always larger than for code (3,30), we conclude that 

the code (3,30) is asymptotically better than the code (4,40).

Also shown in Fig. 5.6 are the SNRs corresponding to the BCJR-once bound at rate

R = 0.9, i.e., SNR= CecjR-once(^’^) • Apparently, this SNR curve is quite close to the

SNRth curve for the code (3,30). This fact shows that the code (3,30) is very good for 

erasure correction. Although we have tried to use density evolution to search for better 

codes, we did not yet succeed.

5.3.4 Validation of BER Estimation

As we stated in Chapter 4, if the code length is large enough, the actual BER 

approaches the density evolution BER estimate. This has been validated in [42] and in
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Chapter 4 for the case of no erasures. We repeat this work here for the case of erasures 

and compare the simulation results with the estimated ones.

First we do simulations using similar configurations of Fig. 5.3(a), i.e., e=3% in view 

of the signal fading threshold. However, only BER curves for 77 = 0 (no fading), 

T] = 0.4 without CSl, 77 = 1.0 with CSX are plotted in Fig. 5.7. Two finite-length codes

are used, one of length = 10^, the other of N = 5x10^. Both codes are constructed 

randomly and are free of short cycles (of length two and four).

+  t)=0.4, w /o  CSl 
#  T|=1.0, w/CSI

oc
LU
CO

DE Estimate 
N=10® Simulation 
N=5x10 ,̂ Simulation

86.5 7 8.55.5 6 7.5
SNR(dB)

Fig. 5.7. Comparison of BER estimates using density evolution and simulation for LDPC 

(3,30) coded EPR4 channel with partial erasures.

It is not surprising that the simulated BERs for the code with /V=10  ̂ agree very well 

with the density evolution ones. This is consistent with [42] where density evolution was 

shown to provide good BER estimates for codes with N=10^ and /V=10 .̂ On the other
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hand, the simulated BERs for the code with N=5xlO^ deviate from the density evolution 

estimates, because the length is too small, and the estimate of the tails of the channel LLR 

pdfs are not accurate.

However, these observations do not affect the conclusion in Section 5.3.3, namely, 

that t/jjj is a little bit less than 0.4. This illustrates that density evolution results can be

used as a good reference to estimate the signal fading threshold.

Next we do simulations as in Fig. 5.5 using the same two codes. The BERs for £=5%, 

6% and 7% are shown in Fig. 5.8. Again, the simulated BERs for the code with N=10^ 

agree well with the density evolution estimates for e=5% and 6%, but not 7%. In fact, the 

simulated BERs for 7% are one order better than the density evolution estimates at SNR 

of 10-11 dB. This implies that this particular code is better than the ensemble for

DE E stim ate 

N=10® Simulation 

N=5x10^ Simulation

X 6=5%
+  e = 6 %
♦  e=7%

SNR (dB)
11

Fig. 5.8. Comparison of BER estimates using density evolution and simulation for LDPC 

(3,30) coded EPR4 channel with full erasures and CSl.
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large e . On the other hand, the simulated BERs for the code with A^=5xI0^ deviate from 

the density evolution estimates, as expected.

The most important thing is that all the BER curves for e=7% show up error floors, 

which means that their BER performances cannot meet the requirement Po(SNR) by the 

definition of £max in (5.10). However, the BER curves for e=6% do not exhibit such 

error floors, at least at the simulated BER levels. This validates the statement that 

£max<7%. This illustrates that the density evolution results can be used to estimate the 

erasure correction capability.

One byproduct of Figs. 5.7 and 5.8 is the validation of BER estimates using density 

evolution for no erasure. This has been done in Chapter 4 and is redone here, but with a 

code free of cycles of length four. It is observed that when cycles of length four are 

removed, the simulation results are almost identical to the density evolution estimates, 

which confirms the discussion in Section 4.5.2.

5.4 Erasure Detection Algorithms

Until now we assumed an ideal erasure detector. However, this assumption is not 

realizable. In this section we present practical erasure detectors for magnetic recording 

systems.

The erasure detection algorithm in [52] uses the RLE /c-eonstraint violation to flag 

erasures for a (3, 16) MTR-coded MRC equalized to an ME^PR4 target. Specifically, in 

the first decoding iteration, the max-log-MAP implementation of the BCJR channel 

detector makes tentative decisions from the sign of the BCJR LLRs, finds violations of 

the ^constraint, and generates an erasure flag. This algorithm was shown to be effective
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for the given system by simulations for deep erasures, whose flagging as full erasures 

improves performance. However, this algorithm is not general, e.g., it does not work for 

the ME^PR4 channel without a precoder, where neither the d- nor the ^-constraint may be 

violated when erasures occur. Further details on this example are given in the next 

section.

Another problem with the algorithm in [52] is that it cannot detect partial erasures 

effectively. For example, assuming probability of erasure e=3%, partial erasures of 

fading depth rj>QA should be detected and flagged as erasures [51], however, the 

algorithm in [52] fails to do so.

The new algorithm in [53] overcomes this difficulty. Observing that the BCJR LLRs 

are attenuated due to partial erasures, [53] suggests to use the amplitude in addition to the 

sign of the LLRs to make the tentative decisions. By thresholding the amplitude of the 

LLRs, partial erasures can be detected effectively. Comparison shows the superiority of 

the algorithm in [53] to the one in [52]. However, the algorithm in [53] requires the use 

of a particular precoder for a given PR channel, which makes it unusable in practical 

systems without precoders. This is an issue to be addressed in this chapter.

5.4.1 BCJR Analysis for Full Erasures

In this chapter we analyze the BCJR algorithm for detection of full erasures on PR 

channels with RLL (0, k) or (0, G\f) code. The PR targets considered are the EPR4 and 

ME^PR4 for longitudinal recording.

For erasures of depth rj=\.0 and length Le, the read back signal is rj = n , and the 

BCJR branch metric becomes
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y.(Sj_i,Sj) = -(nj  ~ Z j Ÿ  12(J^ + logPrU ^), (5.13)

X ■ 1 f 1 2^for j  -  jg -1 .  For every pair of branches Sj_̂  — — --- > Sj , the one

with smaller distance | Zj \ usually has larger Yj(sj_i,Sj). Of particular interest are the 

branches with Zj -  0 because signals in erasure are equivalent to them. The probability 

of Yj(Sj_■^,SJ,zf =0\rj)  being less than * 0 \ r j )  for the given PR

channel is

Pr(n^ > Pr(n .̂ > | | /2) = (5.14)

where SNR = / 2<t  ̂ is defined in Chapter 1. For example, in the normalized EPR4

channel, \ z f \ > l ,  assuming SNR = 15 dB, Q { ^ { z f f  SNR/2) < 3.5x10 ^ This fact 

makes the braches with Zj = 0 play a major role in the detection of full erasures.

Let us first consider the non-precoded EPR4 channel, whose trellis is shown in Fig.

2.1 (a). Denote ={5'o,5j, --,57} . Consider the four branches with = 0  :

5q — S2 — , 5j —^ ^ ^ ^ 2  and Sj —^ ^ ^ ^ 7. It is easy to see that if a 

state _i £ {50,52,55,57} has the largest , then from (2.17) a state

£ {50,52,55,57} continues to have the largest aj  for j  = ;,,, 7  ̂+ 1, - • ;  ̂+ L ^ -l 

along the above four braches. For example, assume (52)> _i (5a\52), then Y j ’s 

along the four branches are equal, while greater than all other y ’s with probability 

Q(-\JSNRI2) «  1 by (5.14) given high enough SNR. We call such states {Sq,S2 ,S^,S-j}
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stable states because they have the largest a^ ’s for most of the < j <  +

Consider the case when a state Sj has the largest . Let us

look at the a  recursion. At each step of this iteration, a negative value - ( r i j -  ZjŸ / 2<t^

for some is added to a . For the paths Sq —> —>----- > Sq,S-j Sj —>----- > S j , and

(52 —>)5g —> 5; ----- > 5; beginning at the -1 -th  bit, this value is - n j / 2 a ^ , and

its accumulation is

r o = - Z » ' / 2 < r \  (5.15)
i

However, for other paths with most of Zj ^ 0 ,  the aceumulation is

r , = E ( » , - z , ) " / 2 ( T \  (5.16)
i

Since it is very likely that nj < (rij - Z j Ÿ , for Zj ^ 0  at high SNR, especially for those 

Zj ’s with large absolute values, it is highly probable that Fg < F ,, i.e.,

Pr(Fo < F ,) -1 .0 . (5.17)

Moreover, the longer the reeursion goes, the larger will be the difference between Fq and 

F, . This difference will finally cancel the difference between aj  _^(sJ _̂ ) and 

aj  ^i({5o,52,55,5y}), and one of the states in {5g,52,55,52} begins to have the largest 

aj  for some j  = , where is the number of steps of a  recursions needed for this

to occur. From here on, (Sg,52,55, 52} are stable states for j <  -f-L^-1.

Although we cannot provide a rigorous proof for the above argument, it is supported

97



adequately by simulation results.

Similar arguments apply to the P  recursions, leading to the same stable states

{Sq , ̂ 2, Sj , ^7} for jg + > j >  j g ,  where / /  is a small positive integer.

Consider the portion of erasure where {Sq,S2 , S^,Sj}  are stable states for both a  and

P  recursions, i.e., for j  = + /̂  + 1, • -, +L^- l ^ ' .  Then,

• If Sq ^  Sq ----- > So is the selected path with respect to both a and J3 recursions,

then Aj < 0 continuously.

• If Sy ^  S7 - > ----- > Sy is the selected path with respect to both a  and P  recursions,

then A > 0 continuously.

• If (S2 -^)Sj —> S2 —> > S5 is the selected path with respect to both a  and P

recursions, then Aj < 0 and Aj > 0 alternately

These three cases are exactly the same as normal signals with zero-output sequence. If 

hard decisions are made tentatively at the BCJR output as,

<5.18)

then the decided sequences in the first two cases are 00 - - 00 and II - II , respectively, 

both of which can be detected by monitoring the RLL A:-constraint, if the length of runs of 

O’s or I ’s is larger than RLL(â:). However, the detected sequence in the third case is 

0101 - - - 01, which does not violate either the c? = 0 and the k- constraint, and cannot be 

detected by the RLL(d=0, k) code.

Now consider the I / 1 © -precoded EPR4 channel. Doing the same a  and P



recursions focusing on erasures, we can obtain the following cases of selected path,

• If Sq —> Sq —> • • • —> Sq , S-j —> S-j —> • • • —> S-j, or (^2 — —> S2 —̂ ■ ■ ■ —̂ is the 

selected path with respect to both a  and /? recursions, then < 0 continuously.

In all these three cases, the tentative deeided sequences are 00 - 00, whieh can be 

detected by the RLL ^[-constraint, if the length of runs of O’s is larger than RLL(/c).

Other than above three combinations of paths with respect to a  and P  recursions, 

there are also other possibilities. Here we give only one example for the non-precoded 

EPR4 channel, others can be analyzed similarly. Let 5o —> —>------> Sq and

Sj ^  S-J ^ ----- > Sj be the selected paths with respect to a  and P  iterations,

respectively. In this case, since

>3, (S, ) -  (S, (S„ ), (5.19)

~  ( ^ j - \ { S j )  ~  ( S q )  —  0 ^ 2  + / ,  ( * ^ 7 )  ’ (5.20)

it is very likely (with probability close to one) that

=A /,^2„S2)-A /,So„9o) = (,g/,$2)-/g/,^o))-((T^_,(^o)-ar^_,(,52)). (5.21)

Therefore, the signs of A^ ’s are preserved and determined by the relativity of 

Pj^L-r(Sj)~Pj^i_i ' (SQ)  and +, (^o)-(Zj+; (5'^) , and the tentative decided 

sequence is 00 - 00 or 1 1 - 1 1 ,  which can be detected by the RLL ^-constraint.

5.4.2 BCJR Analysis for Partial Erasures

The BCJR algorithm analysis for detection of partial erasures is not easy, because we 

do not have a particular received signal sequence, like the zero-output sequence for full
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erasures. Therefore we only give some intuitive explanations and use a numerical 

method. The EPR4 channel is used as an example. Partial erasures of typical depth 

77 = 0.5 are discussed particularly, because 77 = 1.0 (>0.7) and 77 = 0.0 (< 0.3) can be 

viewed as full erasures and no erasures, approximately.

The first fact we note is that unlike for full erasures, there are no stable states for 

partial erasures. This can be analyzed similarly as for full erasures and is frequently 

observed in simulations. As a result, the amplitudes of the LLRs, i.e., ( | ,

j  -  +1,- • - 1, are small in contrast to those subject to no erasures.

Another reason why | A^ | ’s are small is that it is almost impossible to select a path

throughout these partial erasures. Although the BCJR algorithm is not a sequence-based 

channel detection algorithm, usually a sequence can still be selected given high enough
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Fig, 5.9 LLRs for the EPR4 channel at SNR=7 dB. (a) non-precoded, T] = 1.0, (b) non-

precoded, = 0.5 (c) 1 /1 @ -precoded, rj = 1.0, (d) 1/1© -precoded, 77 = 0.5. The 

erasures are indicated by a dashed-line box.
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SNR. However, in the case of partial erasure, the (1 -  rj) scaling factor due to erasure 

disturbs the path of the original transmitted sequence, and makes it possible for many 

paths to have comparable likelihoods.

Let us consider both the non-precoded and the 1 /1 © /)^ -precoded EPR4 channels 

with AWGN and SNR = 7 dB. A set of simulations are conducted for // = 1.0 (full 

erasure) and T] = 0.5 (partial erasure). Shown in Fig. 5.10 are the LLRs, from which the 

following facts are observed:

• The amplitudes of LLRs for partial erasures of -  0.5 are smaller relative to those

for non-erasure, whether the precoder 1/1© is used or not. This fact can be used 

for detection of partial erasures.

• For full erasures on the 1 /1 © -precoded EPR4 channel, A^ <0 continuously for 

erasures, which agrees with the discussion in Section 5.5.1. The amplitudes of A y  s

are smaller than those for non-erasure.

• For full erasures on the non-precoded EPR4 channel, A^ < 0 and A  ̂ > 0

alternatively for erasures, which also agrees with the discussion in Section 5.5.1. 

The amplitudes of A y  s are very small, h j  ~ 0.

These facts indicate that in addition to the sign of the LLR, its amplitude can be 

further used to detect erasures. This is particularly useful for detection of partial erasures 

because no other effective way is available to accomplish this task.

5.4.3 Erasure Detection Algorithms

Based on the previous BCJR algorithm analysis for both full and partial erasures.
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Fig. 5.10. Diagram of MRC with erasure detection. A DC-thresholding-based TA 

detector is also shown.

several erasure detection algorithms are suggested. An MRC channel model using 

erasure detection is shown in Fig. 5.10. Since the detection of TA is trivial, the erasure 

detection algorithms presented below are mainly for MD.

Algorithm A is an extended version of the one in [52]. In Section 5.5.1, we have 

shown that in the non-precoded EPR4 channel one case of tentative decided sequences at 

the BCJR output is 1010 -1 0  and cannot be detected by the RLL Ar-constraint. To

overcome this difficulty, the precoder 1/1© can be used. Another way is to use an 

RLL with one enhanced interleaved constraint, i.e., to use an RLL(d,G[/) code. 

Specifically, the tentative decision is made according to (5.9), and then both the G- and I- 

constraints are checked. If any violation is found, a section of erasures is declared. In 

other words.

c  . , , ._ , runs of X: =4-I(orO)>G'
Erasures are declared if <

I runs of interleaved Xj = +1 (or 0) > / '

where G'>G and / ' > /  are two constants.

(5.22)

Algorithm B use amplitude in addition to sign of the LLR to make tentative decisions,

i.e., in addition to (5.18), the following decision is made.

x' : ^ u  if I A |< A,/,, (5.23)
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where A,;, is an experimentally determined threshold, and u represents an unreliable 

decision. An empirical value for Ajh is A^=  mean (A) -  -^var(A)/3 where A is the 

LLR value in the absence of erasure. Any violation of the RLL constraints triggers a 

declaration of a section of erasures. In other words:

Erasures are declared if
runs of Xj = +1 (or 0) > G'
runs of interleaved Xj = +1 (or 0) > / ' . (5.24)
runs of x'j = u> G'

Note that both G- and /-constraints are used in (5.24). If the /-constraint is not used, i.e., 

an RLL(d,k) code is used, then the second condition in (5.24) disappears.

Algorithm C is a reduced version of Algorithm B. In this algorithm only the 

amplitude of LLR is used to make the tentative decision, as in (5.23), and erasures are 

declared if runs of x'j = u>G'  , i.e., the third condition in (5.24).

This algorithm is particularly useful for PMRC targets, e.g., the ones in Table 1.2. 

The first two conditions in (5.24) can be dropped for two reasons. First, the tentative 

sequence patterns 00• • • 00, II - II  or lOIO -10 very rarely occur in the DC-full or the 

DC-mix channels. Although they can happen in the DC-free channel, it has been shown 

in Chapter 2 that DC-free targets will not be used in practice. Secondly, closer 

observation reveals that the amplitude of the LLR for these sequences, if they can happen, 

is very small. This fact makes Algorithm C possible.

These three algorithms are checked in uncoded LMRC or PMRC systems by 

observing the statistics of detected erasures. First, Algorithms A and B are used on the 

EPR4 channel. Simulation results show that Algorithm A can detect effectively full 

erasures, while missing most of the partial erasures of r j -  0.5 . This is consistent with
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the previous BCJR algorithm analysis. However, Algorithm B can detect effectively both 

full erasures and partial erasures of depth ;/ = 0.5 . The improvement is due to the

additional use of the amplitude thresholding of the BCJR algorithm LLRs. Secondly, 

Algorithm C is used on DC-full and DC-mix PMRCs. Its effectiveness is not unexpected.

5.5 LDPC Erasure Correction Performance

LDPC codes are used for erasure correction in LMRC and PMRC. The Algorithms B 

and C described above are used for erasure detection. The LDPC code used is a regular 

code (4608, 4096, 4,36). Other settings are the same as in Fig. 5.9. An RLL code 

(0,28|18) is used and G’= 50, / '=  18.

5.5.1 Longitudinal Recording

Since Algorithm A does not work well, we do not use this algorithm in the 

simulations. Instead, Algorithm B is used for an equalized EPR4 channel.

Shown in Fig. 5.11 are the FER simulation results for the LMRC with S,, = 2.995 and

with Lg =128-bit erasures of depth 77 = 1.0 or 0.5 and different compositions of noise,

namely, AWGN, and 40% AWGN plus 60% media noise. In both cases. Algorithm B is 

working effectively, for detection of both full and partial erasures. This is supported by 

the fact that the system performance with Algorithm B is very close to that with ideal 

detection. It is also observed that erasures need to be detected, because the system  

performance using erasure detection is much better than that using no erasure detection. 

However, even if ideal erasure detection is available, the performance loss due to erasure 

is still about 0.8 dB at FER = 10' .̂ Therefore, if erasures have to be corrected, a certain
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Fig. 5.11. LDPC (4608,4096,4,36) coded LMRCs with = 1 2 8 -bit erasures and (a) 

AWGN and (b) 40% AWGN and 60% media noise.
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margin of SNR must be maintained to ensure the required system performance.

5.5.2 Perpendicular Recording

Algorithm C is used for PMRC in this section. Since the DC-free target has poor 

performance, only the DC-full and DC-mix targets in Table 1.2 are used. Shown in Fig. 

5.12 are the FER simulation results for a PMRC with =1.4 and either AWGN, or 

10% AWGN plus 90% media noise. All results show that erasures of depth rj > 0.5 need 

to be detected and the detection algorithms are working effectively for both full erasures 

and partial erasures oi rj = 0.5 .

Fig. 5.12 (b) needs additional explanation. In this case, the ideal detector and 

Algorithm C for full and half erasures all have nearly identical performance. This shows 

that half erasures do not need to be detected. This is surprising but helpful, and can be 

explained by the channel trellis. In terms of LLRs, the amplitude for bits in erasure is 

very small, nearly zero. This is why clearing the LLRs does not help the performance, as 

much as in Fig. 5.11 (a). This property is advantageous and can be used for future work 

to combat erasures.
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Chapter 6 

SNR Mismatch

The decoding system for an LDPC coded MRC consists of a channel detector using 

the log-MAP BCJR algorithm and an LDPC decoder using the MP algorithm. One 

requirement for using these algorithms is the knowledge of the variance of the noise. 

However, this variance is not always known, although there are means to estimate it. The 

problem is further compounded by the fact that even if the variance of the noise were 

perfectly known, the system performance may not be optimum. More specifically, if tbe 

variance of the noise used by the APP decoders is changed by some amount, either up or 

down, the system performance may improve. This phenomenon is referred to as the SNR 

mismatch in the literature [54], [55] and has been observed in our simulations for LDPC 

coded MRCs [56].

The SNR mismatch effect for turbo codes on AWGN channels was discussed in [54]. 

It was observed that an SNR mismatch of -2~6 dB does not have much impact on system 

performance; however, a large negative SNR mismatch, beyond -2 dB, almost disables 

the system. It was further reported in [55] that an SNR mismatch has different effects 

when different implementations of the BCJR algorithm are used. They studied the SNR 

mismatch effects for both the basic BCJR algorithm, the log-MAP algorithm, and the 

simplified max-log-MAP algorithm. Very interestingly, they proved that the max-log-
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MAP algorithm is not affected by the SNR mismatch by showing that the variance of the 

noise can be factored out from the APPs, thus making the hard decoding BER unchanged. 

Although this is not true for the log-MAP algorithm, the SNR mismatch does not change 

the BER much, if it is kept within the range of -2~6 dB.

The SNR mismatch issue for LDPC codes was first raised in [2] on MRCs with 

erasures. It was observed that when a certain number of bits are erased, the codeword 

cannot be corrected unless the SNR is mismatched, and furthermore, with an appropriate 

mismatch the performance can be dramatically improved. This observation motivated us 

to look into the underlying mechanism and how to address this problem in a practical 

system.

Let the noise variance used by the decoder be Kcr^ , where K is the SNR mismatch 

factor, and the corresponding SNR mismatch is defined as

AS'AR = - lO lo g jo  A”. (6.1)

If A5A7? > 0 , the SNR has been over estimated, otherwise we refer to it as being under 

estimated.

The issues with SNR mismatch are two-fold: what causes the SNR mismatch effect, 

and how can we make use of it to improve system performance. We will use two 

approaches to tackle these issues. First we will use density evolution to illustrate the 

asymptotic SNR mismatch effect, and then use simulations to verify our results. The 

density evolution has already been discussed in Chapter 4. The only modification is that

in (4.15) is replaced by Kcr^.
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6.1 SNR Mismatch for Channel Detection

Before we consider the density evolution analysis of the SNR mismatch effect on 

LDPC codes, we first consider its influence on channel detection using the BCJR 

algorithm.

6.1.1 Theory

It was proved in [55] that when the max* operation, typically used in a log-MAP 

algorithm, is replaced by the max operation, used in a max-log-MAP algorithm, the 

variance of the noise can be factored out from all three components of the APPs, 

namely, the forward and backward accumulated path metrics and the instant path

metric . So if hard-decision decoding is used, the BER performance of the channel

detection is independent of .

Next, we will prove that the max-log-MAP or non-turbo-equalized (running only 

once) log-MAP algorithm is also independent of the SNR mismatch following a similar 

derivation as in [55].

I
For a PR channel with /(D )  = l + , the BCJR algorithm is described in

i=i

Section 2.4 with defined in Section 2.3. From (2.5), we see clearly that the

computation of the APPs depends on the variance of the noise. However, if we use the 

max to replace the max* and use

legfl-t-g"^"^ '̂^) = max(0,Ag(%^)) (6.2)

in (2.8), logPr(%^) becomes either 0, -  A^(x^) or A^(x^). Thus, if it is assumed that
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l/cr^ , then l/cr^ , so do or^(5^) and P],{.s^) . Eventually,

A(x^) oc l/o"^ and can be factored out from A(x^) . In other words, the SNR

mismatch IS.SNR is simply scaling the LLR. However, this does not imply that the 

performance of a system employing the BCJR algorithm for channel detection is 

independent of the SNR mismatch because differently scaled LLR may result in quite 

different performance downstream.

Since A^ ) is the extrinsic information of the previous iteration in the context of 

BCJR decoding, it can be easily seen that A^(x^) o= l/cr^ by initializing A^ ) =0 in 

the first iteration. This finishes the proof that the max-log-MAP algorithm is independent 

of the SNR mismatch.

If the log-MAP algorithm is used, the above derivation of A(x^)o= I/cr^ does not

hold in general due to (2.8). This shows that a log-MAP algorithm depends on the SNR 

mismatch. However, for a PR channel with the log-MAP algorithm running only once, 

which is called a non-turbo-equalized log-MAP algorithm, A^(jr^)=0, hence cr  ̂ can be

factored out from and y p., and finally from A(x^ ). This proves that the non-turbo-

equalized log-MAP algorithm is still independent of the SNR mismatch.

6.1.2 Simulations of Uncoded MRCs

The proof given assures us that the hard decision max-log-MAP implementation of 

the BCJR algorithm is independent of the SNR mismatch, regardless of the number of 

iterations. For the log-MAP implementation, since we only run it once in our application, 

it is also independent of the SNR mismatch.
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AWGN (b) 10% AWGN and 90% media noise.
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Tw o sets o f  sim ulations are carried out on an M RC with S .̂ = 2 .995 equalized to an

EPR4 target, in which the log-MAP algorithm is used and either AWGN or media noise 

are dominant. In both cases, several SNRs are used. The simulation results are shown in 

Fig. 6.1, from which it is found that the BER is independent of the SNR mismatch over a 

large range. This is in close agreement with the theoretical results.

However, the independence of the BCJR algorithm on the SNR mismatch does not 

imply that a system employing the BCJR channel detection is insensitive to the SNR 

mismatch because differently scaled LLRs may result in quite different performance of 

the LDPC decoder.

6.2 SNR Mismatch for LDPC Decoding

Given the insensitivity of the BCJR channel detection to SNR mismatch, we can 

conclude that it is the LDPC MP decoding algorithm that is mostly affected by the SNR 

mismatch. However, we must emphasize again that this does not mean that the channel 

detection is irrelevant. Actually the LDPC decoder is sensitive to the input channel 

message produced by the soft channel detector.

6.2.1 Gaussian Channels

First let us look at LDPC coded AWGN channels. For this linear system, we can 

assume that the all-zero codeword is transmitted without loss of generality. It is well 

known that the pdf of the channel message, in terms of the LLR, is a Gaussian function 

with mean 2/cr^ and variance4 / ,  i.e.,

= W /(T ^ 4 /(T 2 ) . (6.3)
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In summary, the channel pdf has two important properties:

• It is Gaussian distributed.

• Its variance is twice the mean. Or, in other words, the variance-to-mean ratio (VMR) 

equals two.

The combination of these two properties is called the consistency condition in [38]. 

Simulations have shown that for this system any SNR mismatch is detrimental. This 

motivated us to investigate whether the violation of either or both of these two properties 

is responsible for the SNR mismatch effect.

Now we consider channels that have a perfect Gaussian pdf. For the baseline AWGN 

channel, we assume the channel pdf to be exactly known with Gaussian density

A , = ^{2 / (7^ ,2m I (7^), (6.4)

where m is the VMR. Note that such channel may not exist in practice, and that this 

assumption is used only for investigation purposes.

For such channels with different VMR, we use a density evolution similar to the one 

described in Section III to compute the SNR threshold. Since this threshold is a typical 

parameter that features the asymptotic behavior of an LDPC coded system, we believe 

that it can highlight some essential properties of this system. For m=I.7~2.3, we 

computed their SNR thresholds, as plotted in Fig. 6.2. The curve for the standard AWGN 

channel with m = 2.0 confirms the observation that LDPC codes on AWGN channels 

should not use any SNR mismatch. For m = 1.9 and 2.1, despite the fact that the SNR 

threshold is minimum when no SNR mismatch is used, the differences between no SNR 

mismatch and a ASNR=I dB for m = 1.9 and a ASNR=-I dB for m = 2.1, compared to 

those for m = 2.0, are small. For m = L7 and 2.3, it is clear that ASNR=I and -I dB
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Fig. 6.2. SNR thresholds for channels with Gaussian density given in (6.3).

improve the SNR threshold slightly.

From the above analysis, we can conclude that the VMR is one of the major 

contributing factors to the SNR mismatch effect. Over-estimation or under-estimation of 

the SNR, respectively, improves the SNR thresholds when the VMR is larger or smaller 

than two. Furthermore, the more the VMR deviates from two, the larger the SNR 

mismatch. We observed numerically that the following value for the SNR mismatch,

/r = VMR/2 (6.5)

is optimum if the channel message is approximately Gaussian distributed. Although we 

cannot prove it rigorously, we can check it using both the density evolution analysis and 

simulations.
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6.2.2 Ideal EPR4 Channel

Next we use the ideal EPR4 channel as our target, which is of more interest to us. 

Instead of using only AWGN noise as in the preceding subsection, both white and 

correlated additive Gaussian noise are considered. For the purpose of investigating the 

influence of correlated noise on the SNR mismatch, we use a very simple third-order low 

pass FIR filter on the white noise to simulate correlated noise. The density evolution 

described in Chapter 4 is used to compute the SNR thresholds for the (4,36) LDPC coded 

FPR4 channel. The results are shown in Fig. 6.3. We observe that, for white noise, no 

SNR mismatch is supposed to be used, while for correlated noise, a -I-dB mismatch is 

helpful. It can also be seen that the coding loss due to the noise correlation is about 0.8 

dB when no SNR mismatch is used. This indicates, as expected, that the BCJR algorithm 

is not optimum for correlated noise, and that some modification might be needed.

Recall that in this SNR threshold analysis of an LDPC coded PR channel, the channel 

pdf is obtained by approximating the histogram of the BCJR APPs. A commonly used 

assumption for this channel pdf is that it is Gaussian distributed. It is sometimes further 

assumed that the VMR equals two [57]. In our simulations, we observed that this 

channel pdf is approximately Gaussian; however, the VMRs are not equal to two, as

Table 6.1. VMRs of channel LLR pdf densities for ideal FPR4 

with AWGN and correlated noise.

SNR

(dB)

White noise Correlated noise

mean variance mean variance I

7 1.905 :L81xlO^ 2.302 3.76x10^

5.2 2TG7 2.82x10" 2.331 3.26x10"
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shown in Table 6.1.

From Table 6.1, we see that for white noise, the VMRs are very close to two, such 

that K~ \ and A SNR ~0, while for correlated noise, the VMRs are slightly larger than 

two, therefore ^  = 1.15 and ASNR=-0.67 dB. Regardless of whether the channel pdf is 

Gaussian or not, the SNR mismatch effects due to the VMRs are consistent with the 

results in the preceding subsection. This means that the VMR produces a similar SNR 

mismatch effect on PR channels as in AWGN channels.

6.6
correlated noise 
white noise6 . 4

6.2
CO■o
g
o

5 . 8

5 . 6
OC

«  5 . 4

5 . 2

4 . 8
0 . 5- 0 . 5

SNR Mismatch (dB)

Fig. 6.3. SNR thresholds for LDPC (4,36) coded ideal EPR4 channel with white and 

correlated noise.

6.2.3 Ideal EPR4 Channel with Erasures

Next we attempt to use a non-Gaussian channel pdf to see how it affects the SNR 

mismatch. Since the channel pdf of PR channels with AWGN is usually approximately

117



Gaussian with VMR>2, we will use the EPR4 channel corrupted by erasures as an 

example of a non-Gaussian channel pdf. In addition, we will consider a channel pdf with 

a VMR<2 to exclude the SNR under-estimation effect observed when VMR>2.

Erasures have been discussed in Chapter 5. It is assumed that a certain percentage of 

the bits in the codeword are erased. First we assume that these erasures are not detected, 

i.e., the location of the erasure is unknown and the noise is still present. From the 

standpoint of the BCJR LLRs, the erased part of the codeword generates a section of 

APPs that carry no useful information, and the average channel pdf is no longer Gaussian, 

instead, it has a small side pedestal on the left tail of the distribution.

In this work, 3% of the bits are assumed erased and only AWGN is present. As

4.5 

4

3.5

3

i= 2.5
■s
I : 0.

1.5 

1

0.5

0

X 10

-20 20 40 60
LLR

80 100

Fig. 6.4. Channel pdf density for the ideal EPR4 channel with undetected erasures at 

SNR=7 dB.
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Table 6.2. VMRs of channel LLR pdf densities for ideal EPR4 

with undetected erasures.

A SNR 
(dB)

SNR=7 dB SNR=5.2 dB

mean variance mean variance I
0 2381 1.70x10'^ 2321 8.00x10^

-1 1.881 2.63x10^ 1.829 2.52x10^

10
No erasure 
Undetected erasure 
Detected erasure9

8
■o

7

6

5

4
2■2 1 0 13■6 ■5 • 4

SNR Mismatch (dB)

Fig. 6.5. SNR thresholds for LDPC (4,36) coded ideal EPR4 channel with 3% of the bits 

in erasure.

described in Chapter 5 we use a Monte Carlo simulation to obtain the average channel 

LLR pdf. Plotted in Fig. 6.4 is an example of such a channel LLR pdf. There is an 

obvious side pedestal due to the erasures. We use such channel pdf as input to the LDPC 

decoder to find out the influence of non-Gaussianity on the SNR mismatch effect.
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Let us first look at the VMRs of the channel pdfs listed in Table 6.2. Two SNRs, 

7 and 5.2 dB are used. When no SNR mismatch is used, i.e., ASNR=0 dB, VMR>2. 

However, when A SNR = -1 dB, VMR<2. So we use this channel pdf as test example to 

exclude the SNR mismatch effect observed for VMR>2. This is equivalent to a 

hypothetical channel that has this pdf. Using these channel pdfs, the SNR thresholds for 

an LDPC (4,36) coded system are shown in Fig. 6.5. Note that since we have the 

hypothetical channel as our target, the SNR mismatch has a 1-dB shift from the original 

channel. Also shown in Fig. 6.5 are the SNR thresholds for ideal EPR4 without erasures 

and with detected erasures.

From Fig. 6.5, we see that for this hypothetical channel, a ASNR=-2 dB improves the 

performance by 0.5 dB. This highlights the fact that the violation of the Gaussian 

property of the channel pdf is one of the causes of the SNR mismatch effect. Also seen is 

that the coding loss due to this 3% erasure is as large as about 3 dB. Even if the optimum 

SNR mismatch can be used, the coding loss is still larger than 2 dB, which might not be 

acceptable. This implies that erasure detection is necessary. The SNR thresholds, 

already shown in Fig. 6.5, for such detected erasures are also computed using the density 

evolution algorithm. As expected, the SNR thresholds are reduce by about 2 dB. Also 

seen is that a ASNR=-1 dB is helpful.

6.3 Finding Optimum Values for SNR Mismatch

From the discussion in Section 6.2, the Gaussianity and the VMR of the channel LLR 

pdf are the causes of the SNR mismatch effect. The combination of these two properties 

makes things even more complex. In fact, for a practical system, e.g., a magnetic
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recording system, we need to carefully analyze these two properties to find an optimum 

configuration.

Instead of using SNR thresholds, we use the BER as the performance criterion in this 

section. The asymptotical BER is estimated using density evolution.

6.3.1 MRCs without Erasures

Before estimating the BERs, we first look at the VMRs and the Gaussianity of the 

channel pdfs. Although not shown in this work, we found that for practical MRCs, 

especially for those with dominant jitter noise, the V M R »2. More specifically, for the 

cases with pure AWGN VMR ~ 3.0; and for those with 10% AWGN and 90% media 

noise VMR = 12.0. As far as the Gaussianity is concerned, there are no side pedestals as 

in the erasure-corrupted PR channels, but the shape of the distribution function is 

asymmetric. In other words, both properties described above are not met, which makes 

the SNR mismatch effect more prominent.

Shown in Fig. 6.6 are the estimated BERs for different configurations in which either 

AWGN or media noise is dominant. For each case, three SNRs are chosen. It is easily 

seen that for AWGN, ASNR = -3 to -2 dB is optimum. Particularly, for MRCs that 

usually work at high SNR, ASNR = -3 dB is the best choice. Similarly, for media noise, 

ASNR = -10 to -8 dB of SNR mismatch improved the system performance the most, and 

ASNR = -10 dB is the best choice for high SNRs. At low SNRs, e.g., for SNR=14.2 and 

12.0 dB the SNR mismatch is not so obvious, but it actually improves the system to some 

extent. From these figures, we can see the importance of SNR mismatch in reducing the 

BERs, especially at high SNRs.
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Fig. 6.6. Estimated BER for LDPC (4,36) coded MRC with (a) AWGN, and (b) 10% 

AWGN and 90% media noise.
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Fig. 6.7. Simulated BER for LDPC (4608, 4096, 4,36) coded MRC with (a) AWGN, and 

(b) 10% AWGN and 90% media noise.
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Next we use simulation to find the SNR mismatch effect for a practical system with 

an LDPC code with appropriate length and rate. Here we still use the (4,36) code, but 

the length is 4608. We denote it as (4608,4,36). We also choose several sample SNRs 

and use different SNR mismatches. The simulated BERs vs. SNR mismatch are depicted 

in Fig. 6.7.

Interestingly, we found almost the same optimum values for SNR mismatch as 

predicted by density evolution, ASNR = -3 to -2 dB and -10 to -8 dB for the two cases. 

This confirms that the value computed using density evolution can be reliably used in a 

practical system. In summary, either of these two approaches is available for finding the 

optimum configuration for a given system.

6.3.2 MRCs with Detected Erasures

We perform similar BER estimation and simulation for MRCs with erasures. From 

the discussion of Chapter 5 and Section 6.2, an erasure insertion algorithm is necessary. 

Here we assume that all erasures are detected.

Similarly, we first look at the channel pdfs. Since the erasures are flagged, the 

corresponding channel LLRs are set to zero. So the channel pdf is a combination of a 

smooth Gaussian-like function and a delta function. As far as the VMRs are concerned, 

VMR ~ 3 and 12, respectively for MRCs with AWGN and with 10% AWGN and 90% 

media noise, which are similar to those for the examples without erasures.

The estimated BERs for MRCs with 3% of the bits in erasure are shown in Fig. 6.8, 

while the simulated BERs for the same (4608,4,36) code are given in Fig. 6.9. Note that 

in both figures, (a) and (b) are AWGN and media noise dominated, respectively. The 

optimum values of SNR mismatch were predicted reliably and agreed with the simulation
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Fig. 6.8. Estimated BER for LDPC (4,36) coded MRC with 3% erased bits and (a) 

AWGN, and (b) 10% AWGN and 90% media noise.
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Fig. 6.9. Simulated BER with ten MP iterations for LDPC (4608,4,36) coded MRC with 

138- bit erasures and (a) AWGN, and (b) 10% AWGN and 90% media noise.
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results; they are ASNR = -3 to -2 dB and -10 to -8 dB for AWGN and media noise 

dominated MRCs. More interestingly, we observe that the shapes of the BER curves are 

very alike and the optimum values of SNR mismatch are quite consistent for MRCs with 

and without erasures, which is very important from the viewpoint of practical 

implementation. The coding losses due to the presence of the 3% erasures are 0.5 to 0.7 dB.

6.4 Application to Practical Systems

In Section 6.3, we found the optimum values of SNR mismateh for the given system. 

However, we must note that these values are only valid for the system specified therein. 

Generally speaking, SNR mismatch is closely dependent on the ehannel model. Model 

parameters, including the PR target, channel density, noise composition, equalization 

technique, and so on, must be specified before we determine the optimum SNR mismatch. 

For instance, if we use a ME^PR4 target, the SNR mismatch value will change, or if a 

post-equalization noise whitening technique is used, the SNR mismatch effect is expected 

to be much smaller.

BCJR
Detector

LDPC
Decoder

SNR Mismatch Look-up Table

Fig. 6.10. A practical scheme employing SNR mismatch.
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These optimum values for SNR mismatch can be employed in a practical system, in 

order to substantially improve its performance. The values can be determined by an 

appropriate calibration test of the given unit and stored for the decoder’s use. Such a 

scheme is shown in Fig. 6.10. Note that the application of SNR mismatch can be 

combined with the erasure detector described in Chapter 5.
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Chapter 7

Channel Detection for Perpendicular Recording 

With Intertrack Interference

The next-generation information storage systems will rely on perpendicular recording 

to deliver areal densities approaching the fundamental limits of magnetic recording. 

However, before this promise can be fulfilled, a number of challenging signal processing 

and coding problems must be solved.

One of the significant problems, perhaps the most critical one, is the presence of large 

amounts of ITI in the read channel, as well as OTI. Although ITI can be alleviated by 

using multi-track multi-head recording, these systems are of limited practical interest, and 

are not considered here. The focus of this work is on a single-head system, the current 

state-of-the-art for hard-disk drives.

Although there are quite a number of references on channel detection with OTI, e.g., 

[58]-[60], the issue of ITI has received much less attention, but may become particularly 

important in the future. This is due to the rapid advances in perpendicular recording 

research in recent years. The issue of ITI in longitudinal recording was considered and 

modeled in [61]. While the OTI can be mitigated to some extent by chaimel equalization 

[58], joint-track detection seems to be a more effective method [59], [60]. The first 

formulation of joint track detection, the joint-PRML detection, was presented in [59].
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However, other algorithms are yet to be studied.

In this chapter, we investigate the channel detection algorithms for PMRC with ITI 

[62], [63]. These algorithms can be straightforwardly extended to OTI. An LDPC code 

is usually used but is not the focus of this chapter. The goal is to optimize the channel 

detection to attain the best possible performance, to find out what levels of ITI are 

acceptable in a practical system, and eventually, to optimize the track density of 

perpendicular recording systems.

7.1 ITI model

In this chapter we only consider an ITI model with one interfering track. Extension to 

multiple interfering tracks is straightforward.

Shown in Fig. 7.1 is a model for PMRC with ITI. Let the pulse response of the 

desired and interfering tracks be h{t) and g{t) = À-h{t -  At ) , where À and At are the 

interfering factor and phase difference between the two adjacent tracks. However, we 

only consider 0<At<0.5T in the sequel, because the results for AKO are similar. Denote 

the recorded data sequences on the main and interfering tracks as and {y*}, then the 

received signal is given by

« ( 0

Detector

Fig. 7.1 Diagram of PMRC with ITI. Only one interfering track is considered.
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r{t) = Z t  \-^kKt -  kT) + y kT)] + n{t) (7.1)

This model is similar to the one used in [60], except that the coefficients for h(t) and h(t- 

At) are different, and the phase difference At is assumed to be zero in [60].

The optimal detector for (7.1) includes a filter matched to the channel response of the 

main track, namely, h{-t). It is well known that the samples of the matched filter output 

provide sufficient statistics for optimal data processing if no ITI is present. Here we 

assume that this still holds in the presence of ITI. This can be justified by the fact that we 

are only interested in detecting the desired track sequence.

Similarly to the simple channel model in Section 1.3, let = [H^) * H~t)]t=kT ^

r̂  k -  [g(0 * h{-t)\=kT Vk = [^(0 * ^(-0](=ytr , then the signal Sĵ  at the output of the 

sampler is

(7.2)

The channel described by (7.2) is simply an ISI channel with ITI and colored noise. Let 

Rhi^) = z { \ k )  and Rg{z) = z{r^j^} . To whiten the noise, a filter 1/F(z ') (in the z

domain) is used, where R^^{z)=F{z)F{z^). At the output of this filter, we still have

sufficient statistics for data detection,

(7 3)

where {/„} are the coefficients of F(z) = /?,,(z)/F(z” )̂ , and {g„} are those of 

G(z) = F  (z )/F (z '^ )  , an FIR approximation, in the least squares error sense, of 

II R (z) -  F(z~' )G(z) II, and Vk is the AWGN.
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Table 7.1: Coefficients {grA} for PMRC of = 1.0 and 1.4.

& M r {g//l},n=0,l,...L'-l

0 [0.74, 0.83,0.33,0.08,0.01]

1.0 0.25 [1.02, 0.61, 0.30, 0.02, 0.03, -0.01, 0.01]

0.5 [1.27, 0.33, 0.32, -0.05, 0.06, -0.03,0.02]

0 [0.40, 0.71, 0.53, 0.24, 0.09, 0.03, 0.01]

1.4 &25 [0.61, 0.61, 0.14, 0.10, -0.00, 0.02, -0.01}

0.5 [0.86, 0.42, 0.56, 0.01, 0.14, -0.05, 0.04, -0.02, 0.01]

The ISl coefficients {/„} and for PMRC s with =1.0 and 1.4 are computed by

first setting the length very large and then truncating the coefficients that are too small. 

Listed in Table 7.1 are the {gn/À} for At > 0 and fn=gni^t =0)/X. It is observed that {/„} 

and {g„} are generally of different length L and L.  This is in good agreement with [60]. 

Since these |g„} and {/„} are too long, they must be equalized to some target of shorter 

length, e.g., length three to six.

7.2 Information Rate of PMRC with ITI

Our objective in this section is not to develop a technique to compute the information 

rate for a PMRC with ITI. Instead, we use it as a tool in determining what channel 

detection is the right approach for handling ITI in perpendicular recording. From a 

practical perspective, it also allows us to quantify how close we can get to the 

fundamental limit of the channel with a practical system.
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Two methods to view the model (7.3) are considered, namely, the single-track model 

and the joint-track model.

7.2.1 Single-Track Model

First we view (7.3) as a single-track channel with ITI treated as additive noise. Define

(7 4)

then (7.3) can be rewritten as

h = Y . j ^ j f k - j ^ w ^ -  (7 5)

The noise in (7.4) is usually treated as AWGN, e.g., in the MLSD or the BCJR channel 

detection. Then the information rate can be computed as

R < lim [H{r) -  5f(w)]/ A . (7.6)
A^—>oo

However, it is very critical to note that in this single-track model, the received data r

is contaminated with the noise w, but has no knowledge of the structure of the interfering

track. Only the structure of the desired track is known. For this reason, we denote the 

information rate for this model as

R<  lim 7 f(r |f ) /A -0 .5 1 o g 2 (2 ;re < ) , (7.7)

where the variance of w, cr^ = cr  ̂ + var(ITI), is assumed known or can be measured 

experimentally.

7.2.2. Joint-Track Model

Another model for (7.3) is the joint-track model. Looking back at (7.6), the
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information rate for this model is still defined as R<  lim [i^(r) -  :Y (w )]/N . However, a
iS f—^oo

unique character of this joint-track model is that the structures of both the desired and the 

interfering tracks are known to the receiver. Therefore the received data r is viewed as 

joint-track data instead of single-track, and w is viewed as the sum of ITI and noise 

instead of only noise. This is the essential difference between the joint-track model and 

the single-track model. For this same reason, the information rate for the joint-track 

model is denoted as

R<  l im{yf(r l f ,g) /7V-yf(w|g)/ iV}.  (7.8)
yV—>00

Both lim 7f(r | f , g ) / N  and lim 7f(w | g ) / N can be estimated using the techniques in
yoo N —>00

Chapter 4, on the joint-track trellis of f and g, and the single-track trellis of g, 

respectively [64].

7.2.3 Numerical Results

First let us define the SNR as follows,

= (7.9)

for both the single-track and joint-track models. Note that another definition of SNR,

particularly meaningful for the single-track model is SNR = / /  / 2cr^ . From a

practical standpoint, our purpose is to retrieve the desired-track data from the channel

output impaired by noise and ITI, no matter how ITI is handled. Therefore, no matter 

what definition of SNR is used, we must use a consistent one for both the single-track 

and joint-track models. Otherwise, the comparison will be unfair.
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Fig. 7.2 Information rate for PMRC with f = [0.40, 0.71, 0.53, 0.24, 0.09, 0.03, 0.01] and 

g=À-f.

Using the technique outlined above, we computed the information rates for PMRCs 

with ITl using both the single-track and the joint-track models as in (7.7) and (7.8). 

Shown in Fig. 7.2 are the results for =1.4 with At/T=0 whose f and g can be found

from Table 7.1. Results for At/T = 0.25 and 0.5 are similar and they are not shown. The 

information rate for 2 = 0, i.e., no ITl, is used as a reference. It can be seen from this 

figure that the SNR losses due to ITl are much smaller using the joint-track model than 

using the single-track model, particularly when ITl is severe, e.g., 2=0.2. This indicates 

that the joint-traek model should be used in this case. On the other hand, the differences 

between the two models for 2=0.1 are small, implying that either the joint-track or the 

single-track model can be used.
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7.3 Single-Track Detection

In this and the following sections, we consider channel detection algorithms for 

handling ITl. Channel detection algorithms corresponding to the single-track and joint- 

track models are called single-track and joint-track detection.

Note that the PR targets listed in Table 7.1 are normally too long for practical channel 

detection. Therefore, we use equalized and shorter targets in this section. Since we are 

mainly concerned about which detection should be used, we use ideal GPR targets with 

AWGN in this and the following sections. Specifically, we use the target f = [1, 1.72, 

1.15, 0.33], the DC-full target listed in Table 1.2, and g=/l- f for PMRC with Sc= 1.4 and 

AtlT=0 in the sequel. The results for other cases are similar. Also note that the definition 

for SNR in (7.9) is still used but the rate of the LDPC code is included.

The simplest detection scheme for the model in (7.3) is single-track detection, in 

which the ITl due to the interfering data is treated as additive noise. For the single-track 

detection, the following algorithms presented in Chapter 2 are employed: SOVA, BCJR 

(log-MAP), forward-MAP. The joint-track detection will be investigated in the following 

section.

The advantage of the single-track detection is its simplicity, and the fact that there is 

no need to modify the algorithms currently used in commercial products. However, the 

disadvantage of this scheme is apparent and probably critical for the future development 

of ultra-high density products. First, the noise power may increase dramatically if  the ITl 

is treated as additive noise. Secondly, since the ITI and the desired-track signals are in 

exactly the same frequency range, no linear filtering techniques can be used effectively to 

prevent the ITl from entering the receiver. Thirdly, conventional detection algorithms are
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optimum for AWGN. Even when a noise whitening technique is used, the total noise 

spectrum (including ITI) is not white due to the ITL Therefore, the detection algorithms 

are not optimum any more.

SNR mismatch can mitigate this effect to some extent. It has been shown in [56] that 

it is a very effective method to improve the performance of a LDPC coded system when 

the noise at the input of the BCJR channel detection is not white. By adjusting the noise 

variance by a certain value, the distribution function of the soft reliability information of 

the BCJR channel detection is optimized for the downstream LDPC code to perform 

adequately.

Shown in Fig. 7.3 are the simulation results for À = 0 (no ITI), O.I and 0.2. For 

À = 0, since no ITI is present, no SNR mismatch is used. For À = 0.1 and 0.2, it is found

BCJR
BCJR with SNR Mismatch 
SOVA
Forward MAP

00 10

/i=0.1
a = 0.2

12
SNR (dB)

Fig. 7.3. BER simulation results for single-track detection of channel with f  = [I, 1.72, 

1.15, 0.33] and g=Xf
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that ^SNR = -0.98 and -2.04 dB, respectively, produces the best results. Especially in the 

latter case, the SNR mismatch can improve the system performance by 0.8 dB at a bit 

error rate (BER) of 10 These results will be compared to those of joint-track detection 

in the next subsection.

7.4 Joint-Track Detection

ITl is essentially a signal rather than noise. Therefore, unlike random noise, there is 

inherent structure in this signal, and this structure can be exploited to improve the 

channel detection performance. Channel detection algorithms using the structure of two 

independent PR channels are referred to as joint-track detection algorithms. Such an 

algorithm for a joint-PRML channel was first presented in [60] for handling OTI.

Based on the assumption that the channel pulse responses of the desired and 

interfering tracks are known, the whole channel is equivalent to a combination of two PR 

channels, a more complex joint-PR channel of length L + L '.

When the interfering track is present, both the input sequences x and y must be taken 

into account in the joint channel trellis. Define the channel state in this case 

as S = (Vt-i » Vt-2» , the state transition becomes

^ _ With this joint channel trellis, the MLSD and BCJR algorithms can

be implemented straightforwardly. The algorithm steps remain essentially the same as 

for a single PR channel, except that the number of states is now 2^^^ .

7.4.1 Joint - MLSD

Both joint-MLSD and joint-MAP symbol-based detection algorithms work on the
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joint-track trellis very much in the sam e fashion as the single-track algorithms on a 

single-track trellis. However, one subtle difference lies in the computation of the LLR in 

the joint-MAP algorithms, which results in the optimality of the joint-MAP algorithms 

over the joint-MLSD ones. For this reason, we choose to repeat the algorithms here. 

Basically speaking, the joint-MLSD finds the following joint sequence,

(x,y) = maxPr(x,y | r) = max Pr(r | x ,y ) , (7.10)
x,y x,y

where we assume x and y are equally probable and independent. Let (.y) be the

metric of a path up to time k at state v, then the metric update is as follows,

M^(v) = max{M^_i(v')-hy;t(5’,5)}, Mo(O) = 0, Mq(5 0) = - ^ , (7.11)
.v'

where the metric for the branch from state s' to state s, with inputs (a^, 6̂  ) and 

output is

Yk{s',s) = -\y^  + Z /< ? iV ') l^ /2 ( rH lo g P r (a J .  (7.12)

In the above equation logPr(a^) is the priori information and log Pr(a^)=0 for the first 

iteration. This joint-MLSD finally selects the sequence x with the maximum path metric 

Myy (sq) , where the final state is forced back to sq by trellis termination.

We must note the difference between the joint-MLSD and the algorithm aimed at 

detecting the desired-track sequence x. The joint-MLSD maximizes Pr(x, y | r) while the 

latter maximizes Pr(x | r) . In other words, the joint-MLSD is detecting both track 

sequences (x,y), while the one we seek should only detect the desired-track sequence x. 

This is essentially the same problem outlined in Section 7.2 but in different form.
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Let us look more c lose ly  at this difference. The m axim um  probability max P (x  | r) 

for the desired track data x can be expanded as,

m a x P r ( x |r )  =  m . Z P r ( x , y | r ) .  (7 .13)

The complexity of (7.13) is proportional to the number of distinct y’s, which is 

prohibitively large. However, if, at high SNRs, the conditional densities involved in the 

summation are dominated by that of one particular y, the following approximation can be 

made,

maxPr(x,y | r) = m ax^Pr(x ,y  | r ) . (7.14)
X,y X y

Note that the term on the left side of (7.14) is exactly the operation of the joint-MLSD 

algorithm, which finds (x,y) simultaneously. Thus, the joint-MLSD can be viewed as a 

possible high-SNR approximation to the sequence detection aiming to select the most 

probable desired-track data x. However, this approximation becomes less and less 

accurate as the length of y increases and no one particular sequence y dominates the 

summation in (7.14). From this standpoint, the joint-MLSD is not optimum for sequence 

detection of the desired-track data.

The above discussion was first put forward in [60], which we found useful not only 

for this purpose, but also for the comparison of the joint-MLSD and joint-BCJR

algorithms. From this discussion, we may have some clues to improve the joint-MLSD,

by selecting several, instead of one, sequences of (x,y), which makes the approximation 

in (7.14) better. This is left for future work.
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7.4.2 Joint-BCJR

The joint-MAP symbol detection algorithms can be implemented in a variety of ways. 

Typical examples are the joint-BCJR algorithm and the joint-forward-MAP algorithm. In 

this section we first present the joint-BCJR algorithm, which is a joint-forward-backward 

MAP algorithm. The continuously decodable joint-forward-MAP algorithm will be 

presented afterwards.

The forward and backward recursions of the joint-BCJR are expressed as

<3r̂ (5) = ln^{a^_j(5')-i-}'^(^',5)}, oro(0) = 0,ao(5 ^ 0 )  = -°o (7.15)
i-'

A - i ) = 1:1 Z (A('!^) + X t }' ?^0) = - oo (7.16)

where the branch metric (s \s )  is defined in (7.12). Then the APP Pr((%^, ) = yO | r ) ,

were p  e {{0,0), (0,1), (1,0), (1,1)} is computed as,

Pr((^yt-yJ = yO|r)= E i^ -t-i(^ ')-A (^ )-r/t(^ '’^)}> (7.17)

and the APP Pr(%  ̂£ {0,1} | r) is

Pr(%y. I r) = Pr((xy., =  0) | r) + Pr((%^,6^ ^ 1) | r ) . (7.18)

Finally, the LLR is computed as,

 ̂ I } P r ( ^ l * ’) ^  % } P r ( x , y | r )

A , = ln  = l n ^  —  = l n - ^7 l^ --------- — . (7.19)
Pr(%̂  = 0 I r) X  P:(^ k )  Z  E  Pi"(x, y I r)

= 0  a : a j = - l  y

Let us take a closer look at (7.10) and (7.19), we can observe a unique property that
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the join-BCJR algorithm has but the joint-MLSD does not. The joint-MLSD provides the 

maxPr(x,y I r ) , but what we are really looking for is the max Y  Pr(x, y | r ) . The
x,y  X y

difference is that the operation finds one particular y versus the summation of all possible 

y’s. However, in (7.19), if we ignore the time index k, it is obvious that all possible y’s 

are considered in the computation. This is exactly what the detection algorithm for x is 

seeking. From this standpoint, the joint-BCJR algorithm is superior to the joint-MLSD, 

not only in minimizing BER, but also in aiming at detecting the desired-track data only. 

This discussion applies to any joint- MAP symbol-based algorithm, including the joint- 

forward-MAP algorithm.

7.4.3 Joint-Forward-MAP

The joint-forward-MAP algorithm is extension of the single-track forward-MAP 

algorithm. The merit of this algorithm is that it is continuously decodable.

The branch metric and the forward recursion of this algorithm are exactly the same as 

for the joint-BCJR algorithm. However, we do not need the backward recursion. Instead 

we perform the following iteration,

’ yk-D ) -P \  ^k-\ '̂ 1 y^k-\ (‘̂ ('̂  ' ‘̂ )
1=>y, i i  )= — —  — - (7.20)

i'

with initialization Pr((x^_g, ) = p  j 5^.^ = being 0 or 1 determined by

and p  . Then the APP Pr((x^_o, ) | ) is computed as,

~ p \^ \ )~'Yu^^^^^k-D^yk-D)~P\^k ~ )• (7.21)
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Pri'v =  1 1 r*  'l
Finally, the APP Pr(%L_g I r,^) and the LLR = In —  can be easily

P r(x ,_ ^ = 0 |r , ')

computed, as in (7.19) and (7.20).

The delay D must be at least L. However, it has been shown in [14] for the single PR 

channel that the longer D is, the better the performance. From this perspective, the joint- 

BCJR algorithm can be viewed as a special case of the joint-forward-MAP algorithm, 

where D = max(A - k ,L )  fox k -  1,2, ■■■N . Since the joint-forward-MAP algorithm uses 

the MAP criterion for the desired-track data sequence, we can state that the joint-BCJR 

algorithm is the best possible algorithm for detection of the desired-track sequence.

7.4.4 Numerical Results

We perform BER simulations for the same channel used previously for À -  0 (no ITI), 

0.1 and 0.2. To illustrate the unique difference between the joint-MLSD and the joint- 

MAP algorithm, as discussed previously, we use the joint-SOVA as an instance of a 

joint-MLSD algorithm and the joint-BCJR and joint-forward-MAP as instances of joint- 

MAP algorithms. For single-track detection, the best attainable performance of the BCJR 

algorithm with SNR mismatch is presented.

The simulation results are shown in Fig. 7.4. From this figure, the superiority of the 

joint-track detection over the single-track detection is evident, particularly when ITI is 

severe, e.g.,y^ = 0.2. This is in good agreement with the information rate analysis. Also 

observed is that the performance of the joint-BCJR detection is much better than that of  

the joint-SOVA detection. This is not unexpected for the reason outlined above. The 

forward-MAP algorithm has similar performance to the BCJR algorithm, in all scenarios.
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Fig. 7.4. BER simulation results for joint-track detection of channel with f = [1, 1.72, 

1.15,0.33] and g=Xf.

7.5 Single-Track Equalization

In the previous two sections we assumed ideal GPR channels with AWGN. 

However, this is only for theoretical analysis and is not practical. Similarly to Section 1.3, 

a realizable low-pass filter p{t) and a FIR equalizer {w^} must be used to equalize the 

channel to a predetermined GPR target. GPR equalization techniques for single-track 

detection and Joint-track detection are studied in this and the next section, respectively. 

Both AWGN and media noise dominant channels are considered.

In the single-track model, the equalization is exactly the same as for a simple PR 

channel, as described in Section 1.3, except that the signal at the output of the sampler ŝ . 

is different. Specifically, (1.14), (1.18) and (1.19) can be used to compute the desired
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track target f  and the FIR equalizer w. For completeness, these three equations are 

repeated here,

^ = ---- v r  (7-21)

f = i ( R „ - R r , , R i R „ ) - ' - I  (7.22)

w = R^ R,,, f  (7.23)

Note that these equations are very general, can be used for any single-track equalization, 

as long as is modified as needed. For the issue of equalization for PMRCs with ITI, 

the interfering signal picked up from an adjacent track must be included in 5^. Another 

example is media noise. When modeled as a first-order transition jitter noise, the media 

noise can be considered into 5̂  straightforwardly.

7.5.1 AWGN Channels

First we consider PMRCs with AWGN. As discussed in Chapter 1, good targets for 

these channels are DC-full ones, whose spectra match those of the channel very well. Let 

us consider PMRCs with channel density Ŝ . =1.5. Listed in Table 7.2 are the computed 

GPR targets f s  of length L=3 and 4 for /I = 0, O.I, 0.15 and 0.2. It can be easily seen 

from (7.21)-(7.23) that the equalization is closely dependent on the SNR. Therefore, the 

working SNR must be specified to optimize the equalization. Another observation is that 

At has almost no impact on the computed targets. This is why it does not show up in 

Table 7.2. However, this is not true for joint-track detection.

Almost all targets in Table 7.2 are DC-full ones, particularly those for small À ’s, e.g..
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Table 7.2. Single-track targets for PMRCs of = 1.5 with ITI and AWGN.

SNR(dB) À f  (^ 3 ) f (Z ^)

39 0 [1.0 1.55 0.67] [1.0 1.85 1.30 0.37]

21 0 [1.0 1.30 0.60] [1.0 1.50 1.04 0.33]

15 0 [1.0 1.07 0.52] [1.0 1.21 0.81 0.28]

21 0.1 [1.0 1.12 0.44] [1.0 1.14 0.50 0.06]

15 0.1 [1.0 01.00 0.45] [1.0 1.07 0.62 0.17]

21 0.15 [1.0 0.96 0.30] [1.0 0.947 0.255 -0.047]

15 0.15 [1.0 0.92 0.385] [1.0 0.955 0.465 0.088]

21 0.2 [1.0 0.82 0.18] [1.0 0.801 0.105 -0.090]

15 0.2 [1.0 0.835 0.31] [1.0 0.842 0.329 0.022]

[1.0 1.85 1.30 0.37] for T = 0. Very interestingly, this target is almost identical to the 

target [1.0 1.85 1.33 0.40] obtained by ideal noise whitening in [5]. However, the target 

[1.0 1.85 1.30 0.37] is optimized for SNR=39 dB. In the simulation SNR range of 12-13 

dB, it has been shown that other two targets [1.0 1.21 0.81 0.28] optimized for SNR=21 

dB and [1.0 1.50 1.04 0.33] optimized for SNR=15 dB perform better. This can be easily 

explained by the deviation of the target SNRs from the simulation ones.

Now we use the target [1.0 1.50 1.04 0.33] as a reference. In other words, we assume 

it is an optimized target, which is true at least for no ITI and actual SN R^15 dB. Then 

the question is whether this target is still good for an ITI-channel. An intuitive answer to 

this question is, probably yes, if there is no knowledge about the presence and level of ITI. 

For this purpose, we use this target in all scenarios, i.e., for À = 0, 0.1, 0.15, and 0.2 in
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Fig. 7.5. BER simulation results for single-track detection of ITI-channels with AWGN 

using different targets.

the simulations. In addition, the computed targets for known ITI, as listed in Table 7.2, 

are also used in simulations.

Shown in Fig. 7.5 are the simulation results, where the BCJR (log-MAP) algorithm 

and the same LDPC code as in Section 7.3 are used. It is apparent that the ITI-oriented 

targets are better than the one for no ITI. Although the improvements for /I =0.1 and

0.15 are negligible, for X =0.2 it is as large as 3.6 dB at BER=IO This supports our 

expectation that good targets for no ITI are no longer good for ITI-channels. Therefore, 

ITI, particularly for severe ITI channels, must be detected and handled appropriately in 

the channel detection. An example for such detection is given in [13], where an adaptive 

technique is employed to track the OTI level and to adapt the PR target.
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7.5.2 Media Noise Channels

In this section we redo the work in the previous section, but for PMRCs with 10% 

AWGN plus 90% media noise.

Table 7.3. Single-track targets for PMRCs with Ŝ . = 1.5 , ITI and 10% AWGN

plus 90% media noise.

SNR(dB) yl f(I^2) f  (Z^3) f (L=4)

21 0 [1.0 0.814] [1.0 0.95 0.16] [1.0 0.93 0.07-0.11]

15 0 [1.0 0.719] [1.0 0.80 0.11] [1.0 0.79 0.04-0.09]

21 0.1 [1.0 0.727] [1.0 0.70 -0.03] [1.0 0.71 -0.09 -0.09]

15 O.I [1.0 0.684] [1.0 0.717 0.048] [1.0 0.713 -0.015 -0.089]

21 0.15 [1.0 0.640] [1.0 0.565 -0.117] [1.0 0.569 -0.140 -0.041]

15 0.15 [1.0 0.644] [1.0 0.642 -0.004] [1.0 0.64 -0.054 -0.079]

21 0.2 [1.0 0.546] [1.0 0.460 -0.157] [1.0 0.460 -0.157 0.001]

15 0.2 [1.0 0.595] [1.0 0.565 -0.050] [1.0 0.569 -0.085 -0.062]

Recalling the discussion in Chapter 1, good targets for these channels are DC-mix 

ones. Both DC-full and DC-free targets are generally considered inferior. However, this 

is not exactly true, as can be seen from the computed targets listed in Table 7.3 for 

PMRCs with Sg =1.5 . For example, the target [1.0 0.93 0.07 -O.II] is almost a DC-full 

one, however, its performance is better than the DC-mix target [I.O 1.07 -0.09 -0.35], 

which can be computed using the technique of [5]. While the targets of length L=3 and 4 

have some negative terms, targets of length L=2 have all positive terms, thus are DC-full 

ones. However, the DC components of these targets are much smaller than those in
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Table 7.2, i.e., / i  < /o  •

Note that unlike in Table 7.2, we consider additionally targets of length L=2. This is 

because for targets of length L=3 and 4, f j  and/or / j  are much smaller than /g and / , ,  

which implies that short targets of length L=2 may work fine as well. This is a great 

advantage, making the complexity of a practical channel detector low. We are 

particularly interested in this fact for joint-track detection and will take advantage of it in 

next section.

Now we use the target [1.0 0.93 0.06 -0.11] as a reference. Again we ask the question: 

how is this target working compared with other computed targets for known ITI, as listed 

in Table 7.3?

[1.0 0.93 0.06 -0.11] 
Optimized target

10

\ :
DC
LU
CO

12.510.5
SNR (dB)

Fig. 7.6. BER simulation results for single-track detection of ITI-channels with 10% 

AWGN plus 90% media noise using different targets.
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Shown in Fig. 7.6 are the simulation results. Similarly as for AWGN channel, the 

ITI-oriented targets are better than the one for no ITI. This highlights again that ITI 

needs to be detected and handled in the channel detection. However, the improvement by 

the ITI-oriented target for ITI with À = 0.2 is only 0.2 dB at BER=IO  ̂in contrast to 3.6 

dB in the AWGN channel. This shows that the target [1.0 0.93 0.06 -O.II] is not too bad 

for ITI with À -0 .2 .

7.6 Joint-Track Equalization

In the joint-track model, the equalizer aims at minimizing the joint mean square error 

of = (s* w)î  -(%* / )^  - ( y  * g)i^. Using similar techniques as in Sections 1.3 and 7.5, 

the desired track target f, the interfering track target g, and the FIR equalizer w can be 

computed as follows,

A:
I

R ,  - R l , R .  R „

f  = À R x  - R s  x ^ s  — s,x
Ry - R j y R , ' R ,  y

g = /l R -  R
g  (r , - r ; , r ;‘r ,,,)(r ^ - r ; , r , ‘r , , ) Y' ^

Rs x

w = R,  (R.X f +  Rs v g)

(7.24)

(7.25)

(7.26)

(7.27)

It is easy to see that this equalization is general regarding the composition of noise,

i.e., whether it is AWGN dominated or media noise dominated. Another fact is that the
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equalization is closely dependent on the SNR. Therefore, the working SNR needs to be 

specified. One characteristic unique to joint-track equalization is that the target is 

affected by the phase difference A t . This is different from single-track equalization, and 

At may need to be detected too.

We consider PMRCs with =1.5 and À -0 .2  ITI. Other values of À can be

evaluated straightforwardly, however, are not implemented here. SNR = 21 and 15 dB 

and At = 0 , 0.257 and 0.57 are used in the equalization. Both À and At are assumed 

known in the channel, and the targets and equalizer are optimized.

7.6.1 AWGN Channels

As for single-track equalization, we first consider PMRCs with AWGN, then 10% 

AWGN plus 90% media noise.

Table 7.4. Joint-track targets for PMRCs with 5̂ . = 1.5 , A = 0.2 and AWGN.

SNR (dB) At f (7 = 4) g ( C = 4 )

21 0 [1.0 1.506 1.041 0.335] [0.191 0.301 0.208 0.067]

21 0.257 [1.0 1.518 1.056 0.341] [0.237 0.296 0.173 0.043]

21 0.57 [1.0 1.529 1.073 0.348] [0.274 0.280 0.137 0.024]

15 0 [1.0 1.216 0.814 0.277] [0.176 0.243 0.163 0.055]

15 0.257 [1.0 1.219 0.820 0.279] [0.207 0.234 0.135 0.037]

15 0.57 [1.0 1.218 0.822 0.281] [0.230 0.217 0.106 0.021]

Listed in Table 7.4 are the joint-tract targets for AWGN channels. It is observed that 

the targets f ’s for At =0 are almost identical to the single-track targets in Table 7.2, and
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are DC-full ones. Although At has some impact on the target f, this impact is just slight. 

On the other hand, the impact on the target g is relatively large.

We use in simulations the targets computed at SNR = 21dB in Table 7.4. However, 

we also consider another case, in which At is fixed but unknown to the equalizer. To 

make things simple, we use At'= 0 in the equalization, and denote it by (At,At'). Note 

that the targets in Table 7.4 correspond to At'= A t.

10" , - B - (0.251,0.251)
- 0 - (0.251,0)

(0.51,0.51)
-4- (0.51,0)
- e - (0,0)

Single-track Detection

UJ 10

17 17.5
SN R  (dB)

18.5

Fig. 7.7. BER simulation results for joint-track detection of ITI-channels with X -  0.2 

and AWGN. A number of (At, At') are considered.

Plotted in Fig. 7.7 are the simulation results. The single-track detection performance 

using f = [1.0 0.801 0.105 -0.090] is also shown. It is observed that At does cause some 

performance loss, and this loss can be as large as 0.25 dB at BER=IO Another loss
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caused by A f t  At is much smaller, implying that the equalizer does not have to know 

the value of A t,  and can simply use A f= 0  in the equalization. Furthermore, the 

performance loss caused by At 0 is negligible compared with that caused by ITI. 

Therefore, we can simply ignore its effect and assume At = 0.

7.6.2 Media Noise Channels

We redo the work in the previous subsection but for media noise dominant channels 

with 10% AWGN plus 90% media noise.

Table 7.5. Joint-track targets for PMRCs with = 1.5 , /i. = 0.2 

and 10% AWGN plus 90% media noise.

SNR (dB) At f  (L = 4or2) g(L = 4or2)

21 0 [1.0 0.930 0.061 -0.106] [0.195 0.186 0.012 -0.021]

21 0.25T [1.0 0.957 0.073 -0.108] [0.227 0.146 -0.010 -0.015]

21 0.5T [1.0 1.005 0.101 -0.111] [0.242 0.106 -0.021 -0.009]

21 0 [1.0 0.814] [0.194 0.163]

21 0.25T [1.0 0.828] [0.222 0.117]

21 0.5T [1.0 0.849] [0.227 0.071]

Listed in Table 7.5 are the joint-tract targets optimized at SNR = 21 dB. Again we see 

that At has a slight impact on the target f, but a relatively larger impact on the target g. 

The reason we also consider targets of length two is because / j , «  /o , / ,  in targets of

length four. This has been observed in the previous section, and is elaborated herein. As 

presented in Section 7.4, the complexity of the joint-track channel detection algorithm is
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0(2^^^ ). Although it is too high for a channel with L = L'= 4, it is low for a channel 

with L = L' = 2, as low as that of a single-track detection for a channel with L = 4.

We first use the targets of length four in simulations. In addition, two other cases 

(At,At') = (0.25r,0) and (0.5T,0) are also considered. Plotted in Fig. 7.8 are the 

simulation results. Performance losses caused by (At,At') are smaller than those for

10' (0.25T,0.25T), L=4
(0.5T,0.5T), L=4
(0.25T,0), L=4
(0.51,0), L=4

- e - (0,0), L=4
(0,0), L=2

-M - Single-track Detection

CC
HI
CO

11.5 12
SN R (dB)

12.5

Fig. 7.8. BER simulation results for joint-track detection of ITI-channels with ?i -  0.2 

and 10% AWGN plus 90% media noise.

AWGN channels, therefore. At' can be ignored and it is assumed zero for equalization. 

For this same reason, we only consider targets of length two with (At, At') = (0,0) in the 

simulations. More interesting, it is seen that targets of length two perform just slightly 

worse, about 0.25 dB, than targets of length four. This is a very important fact, making 

the joint-track detection realizable.
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Chapter 8 

Conclusions and Future Work

Signal processing and LDPC coding techniques aiming at mitigating physical 

impairments, such as electronic/media noise, ISI, erasure and ITI, were investigated in 

this dissertation.

8.1 Conclusions

First, only ISI and electronic noise were considered. The goal is to design good 

LDPC codes for such channels. Two approaches are available -  simulation and density 

evolution. While simulation can be used for any particular finite-length code, density 

evolution is only valid asymptotically for an ensemble of codes.

In this dissertation, we first compared several types of regular codes, namely, random 

codes and structured codes, e.g., FG codes and array codes. Generally speaking, random 

codes have very good performance. However, some structured codes, if selected 

carefully, can also perform well, and furthermore, they have much lower encoding 

complexity.

bensity evolution provides a more systematic way of designing LDPC codes. First a 

good degree function is searched using a nonlinear process; then a particular code with
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this degree function is constructed. Numerical results indicated that irregular codes better 

than regular codes can be obtained.

Next, we considered erasures in magnetic recording, which can be caused by either 

TA or MD. It was shown by several means, including information rate analysis, density 

evolution and simulation, that such erasures must be detected. Therefore, erasure 

detection algorithms were studied and used in LDPC coded channels. Moreover, these 

erasures can be corrected by LDPC codes. The correction capability of LDPC codes was 

analyzed with a modified density evolution algorithm.

Thirdly, a new technique, called SNR mismatch, was introduced. This technique, as 

analyzed by density evolution as well as by simulation, can improve the performance of 

LDPC coded MRCs substantially. For a given practical system, an optimum value for 

SNR mismatch can be determined by simulation and used in practical applications. This 

SNR mismatch was used throughout this dissertation for LDPC coded MRCs but not for 

LDPC coded ideal PR channels.

Finally, special attention was paid to ITI, a very critical issue for high-density 

PMRCs. If this ITI can be mitigated effectively, higher track density can be achieved. 

Two models, the single-track model and the joint-track model, were used. It turned out 

that joint-track detection algorithms, especially the joint-BCJR detection algorithm, can 

improve performance when the ITI is severe.

This dissertation includes the following original contributions.

• Modification of the density evolution algorithm to make it applicable to LDPC coded 

PR channels. SNR threshold can be computed and BER can be estimated.

• Further modification of the density evolution algorithm to include other impairments.
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such as erasures, detected or undetected.

• Improvement and proposal of several erasure detection algorithms, for both LMRCs 

and PMRCs.

• Investigation of the SNR mismatch. This investigation figures out why the SNR 

mismatch is happening and how to use it. The SNR mismatch technique has potential 

for use in practical systems.

• Study of channel detection for ITI in PMRC. This study intends to find out the best 

attainable performance of a practical system and to optimize the track density.

8.2 Future Work

There are still a number of questions to be explored.

• Evaluation of LDPC codes on MRCs at a very small BER. Practical systems require 

BER of 10'^ .̂ But such small BER is beyond the capability of computer simulation. 

Density evolution can estimate such low level BER, however, it is only valid for 

asymptotic and ensemble of codes.

• Design of good finite-length LDPC codes for MRCs. Density evolution only begins 

to address this issue. A possible approach is to combine density evolution and the 

extrinsic information transfer (EXIT) chart [65].

• Design of LDPC codes for long erasures. How to balance the scenarios of no erasure 

and long erasures is an open problem.

• Physical modeling of ITI in PMRCs. This has to be done for connecting the ITI 

model with the physical parameters of practical systems.

• Reduced-complexity implementation of the joint-track detection. The joint-BCJR
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detection algorithm is too com plex. A  tradeoff o f  acceptable performance and 

complexity must be made. Iterative soft MMSE equalization (replacing the BCJR 

channel detection algorithm), e.g., the turbo aided equalization [66], is low in 

complexity; however it cannot he used because of its poor performance. One possible 

scheme is an improved joint-MLSD algorithm, in which multiple most probable paths 

are selected such that the approximation in (7.23) is more accurate.

Design of ECCs, particularly LDPC codes, for PMRC with ITI. The ITI may change 

the channel characteristics of the PMRC. Therefore, new ECCs may need to be 

designed.
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