
OPTIMIZED EFFICIENT SOFT-DECISION VITERBI

ARCHITECTURE FOR APPLICATION-SPECIFIC PROCESSORS

By

JOHN TOBOLA

Bachelor of Science in Electrical Engineering
Oklahoma State University

Stillwater, Oklahoma, United States of America
2017

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215260392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COPYRIGHT c©

By

JOHN TOBOLA

May, 2018

OPTIMIZED EFFICIENT SOFT-DECISION VITERBI

ARCHITECTURE FOR APPLICATION-SPECIFIC PROCESSORS

Thesis Approved:

Dr. James E. Stine, Jr.

Thesis Adviser

Dr. Sabit Ekin

Dr. Keith Teague

iii

ACKNOWLEDGMENTS

I would like to sincerely thank my adviser, Dr. James E. Stine, Jr., for all of the

time and effort he has spent to help guide me through this research.

I would like to thank Dr. Sabit Ekin and Dr. Keith Teague for serving as my

committee members and providing advice throughout this work.

I would like to express my thanks and appreciation to my parents, David and

Gail, for their love and support throughout my entire life.

I would like to express my love and appreciation to my fiancé, Amanda, for her

unending support and encouragement in all aspects of my life.

Acknowledgements reflect the views of the author and are not endorsed by com-

mittee members or Oklahoma State University.

iv

Name: John Tobola

Date of Degree: May, 2018

Title of Study: OPTIMIZED EFFICIENT SOFT-DECISION VITERBI ARCHI-
TECTURE FOR APPLICATION-SPECIFIC PROCESSORS

Major Field: Electrical Engineering

Abstract: This thesis provides an efficient implementation of a soft-decision Viterbi
decoder implemented in Global Foundries cmos32soi 32nm technology. This architec-
ture utilizes an efficient branch metric (BM) and normalization architecture by using
application specific squaring and comparator units. Results indicate a good trade
off between area, delay, and power. Compared to a previous implementation, results
indicate a significant decrease in area and delay while running in excess of 1 GHz. In
addition, when compared with a soft-decision implementation using a traditional mul-
tiplier and comparator, significant reductions in area, delay, and power were observed.
Results are given based on using ARM-based standard-cells, and energy/power re-
sults are based on Hardware-Descriptive Language implementation. Although this
architecture uses more area than hard-decision branch metric implementations, soft-
decision implementations can decrease the bit error rate two orders of magnitude
thus reducing possible retransmit rates, resulting in both increased throughput and
transmission rates.

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

2 VITERBI DECODER 3

3 IMPLEMENTATION AND OPTIMIZATIONS 9

3.1 Soft-Decision Viterbi Decoder Implementation 10

3.2 Optimization using Squaring and Comparison 15

4 RESULTS 20

5 CONCLUSIONS 26

BIBLIOGRAPHY 28

v

LIST OF TABLES

Table Page

4.1 32nm SynopsysR© DC
TM

Synthesized Topographical Results using GF

ARM-based RVT standard-cells (Note: no details other than a 130nm

CMOS implementation in [14] is given, therefore, the comparison is

difficult). 22

4.2 32nm SynopsysR© DC
TM

Synthesized Topographical Results using GF

ARM-based HVT, MVT, RVT standard-cells (Note: no details other

than a 130nm CMOS implementation in [14] is given, therefore, the

comparison is difficult). 22

5.1 32nm SynopsysR© DC
TM

Summary of Synthesized Topographical Re-

sults using GF ARM-based RVT standard-cells. 27

vi

LIST OF FIGURES

Figure Page

2.1 Convolutional Encoder for g = {1112, 1012}. 3

2.2 Trellis for Encoder in Figure 2.1. 5

2.3 Viterbi Decoder Processing (Adapted from [4]). 6

2.4 Butterfly Property of Convolutional Trellis. 7

2.5 Bit Error Rate (BER) for Hard vs. Soft Decision Viterbi Decoders

(Adapted from [5]). 8

3.1 Overall System Architecture. 10

3.2 PE Architecture. 11

3.3 Branch Metric (BM) Architecture. 12

3.4 Add-Compare-Select (ACS) Architecture. 13

3.5 Modified Comparator for Modulo Normalization. 13

3.6 Trace-Back Decode Architecture. 15

3.7 Partial Product Generation Reduction for Squaring Matrices. 16

3.8 Comparator with Logarithmic Depth Architecture. 18

3.9 FF Shift-Register LIFO Architecture. 19

vii

CHAPTER 1

INTRODUCTION

The Viterbi algorithm is an important decoding algorithm used for covolutional

codes [1]. Convolutional codes create a state transition structure called a trellis

as information is encoded. Viterbi decoding works by finding the most-likely (ML)

path of received data through this trellis. Hardware implementations of the Viterbi

algorithm for decoding purposes are referred to as Viterbi decoders. Viterbi decoders

are often used in communications to decrease the bit error rate (BER) of data as

it travels across a noisy channel [2]. It is also used in signal processing and many

wireless applications. In addition, it is particularly important for an ever-increasing

use of Internet-of-Things (IoT) devices which cause a large increase in congestion.

Viterbi decoders are recursive by nature and cycle through the same hardware

many times. Therefore, to implement an effective Viterbi decoder in terms of area,

delay, and power, it is necessary to optimize the computations and flow of the Viterbi

datapath. A Viterbi decoder can calculate the ML path by using either hard-decisions

or soft-decisions, and optimizations are dependent on which of these architectures is

used. Hard-decision decoders use the Hamming distance between received inputs and

possible trellis output values to determine state transitions, and soft-decision decoders

use the squared Euclidean distance between received inputs and possible trellis output

values. Soft-decision decoders have been shown to exhibit a 3-dB coding gain increase

compared to hard-decision decoders in an additive white Gaussian noise (AWGN)

channel [2], making them a desirable design choice due to their increased accuracy

of reception. However, soft-decision decoders can require a large amount of squaring

1

operations that can be costly in digital hardware.

Although the Viterbi algorithm is an efficient implementation in Very Large Scale

Integration (VLSI) architectures, it tends to be shown in block diagrams. This thesis

presents an implementation and optimization targeted at VLSI architectures for use

in sequential soft-decision decoders. The architecture is implemented in Verilog and

synthesized for use with high-performance multiple threshold voltage standard-cells.

The fixed-point soft-decision Viterbi decoder is optimized by using an efficient dedi-

cated squaring datapath and a logarithmic depth two’s-complement comparator used

to select the ML path and carry out modulo normalization. In addition, this the-

sis provides a straight-forward architecture for a shift-register based storage system

that allows a designer to quickly bring up a Viterbi decoder without the need to use

memory and memory-management hardware such as SRAM, address generators, and

pointers.

This thesis is organized as follows. Chapter 2 presents background information.

Chapter 3 presents optimizations and the final datapath design of the optimized soft-

decision Viterbi decoder. Chapter 4 presents area, delay, and power estimates for the

decoder design when implemented using topographical synthesis in a 32nm CMOS

technology. Chapter 5 presents the conclusions.

2

CHAPTER 2

VITERBI DECODER

Viterbi decoders are used to process data that is encoded using convolutional codes.

Convolutional codes are usually generated using a shift-register, such as the one seen

in Figure 2.1.

As k input bits are read into the encoder serially, the input bits are added together

with various bits in the shift-register to produce n output bits. Each of the n output

bits is calculated according to a generator, g, which specifies which bits are added

together. The generators of an encoder are often given as octal or binary values.

When represented in binary form, a 1 in a generator value means that corresponding

bit position is used to calculate the respective output bit. The number of registers

in the shift-register plus the current input value is referred to as K, or the constraint

length. It should be noted that K, the constraint length, is different from k, the

number of input bits. The number of registers in the shift-register is then equal to

X(t−1) X(t−2)X(t)

Out0

Out1

Figure 2.1: Convolutional Encoder for g = {1112, 1012}.

3

K − 1, and the K − 1 bits in the shift register are used as the state of the encoder.

Therefore the encoder has a total of 2K−1 possible states. After the current input

bits are used to calculate the output bits, the current input is then moved into the

shift-register and the next input value is read in. This process is repeated until all

inputs have been read into the encoder. The code rate of the encoder is equal to k/n,

meaning for k input bits, there are n output bits. So for the common case where one

bit is read in at a time to produce two output bits, the code rate is equal to 1/2.

For example, the encoder in Fig 2.1 has K = 3, k = 1, states = 2(3−1) = 4, g =

{1112, 1012} and code rate = 1/2.

As mentioned, the K − 1 length shift-register is referred to as the state of the

encoder, meaning that convolutional encoding can be represented as a state transition

data structure. The most common state transfer representation for communications

applications is called the trellis. In a trellis, the encoder is represented as a vertical

grouping of all possible states at time instant t. This vertical grouping is then followed

by another vertical grouping to the right, representing all possible states at time

instant t + 1. As bits are read into the encoder, they cause the state to change by

appending a zero or one to the left side of the state values. The transitions of the

states are represented on the trellis by drawing lines between states at different time

instants to show the possible state transitions. As this is done, the bit that caused

the transition and its respective encoder output are drawn beside the line.

This method is continued for all input bits. The resulting trellis shows all possible

state transitions that can occur for a given starting state. For convolutional encoders,

it is almost always assumed that the initial starting state is the zero state. In this

case, transitions from other states at time instant t can be ignored. In addition, often

K − 1 zeros are appended to the original data to be sent in order to always bring the

trellis back to its zero state after encoding a packet of data.

When these codes are read in at the receiver, the same trellis can be used to decode

4

the data. The received n encoded bits are compared with the possible n output bits

of each state transition to find the possible output that is closest in value to the

received bits. This difference measurement of each branch is known as the branch

metric (BM). For an encoder that reads in one bit at a time, each state after time

instant t will have two branches leaving from it and two branches coming into it. At

time instant t + 1, each state in the trellis will compare the BMs of the branches

coming into it and find the branch with the smallest BM. It will choose this branch

and set it as its current path metric (PM). At each subsequent time instant, each

state will take as input the two possible BMs as well as the PMs of the previous

states for a given state transition. The state will add each BM and PM pair together

and choose the minimum sum to set as its PM. This process is represented by the

following equation,

PM [i](t+1) = min(PM [k](t) +BM([k], [i])) (2.1)

that represents the transition from state k to state i [3]. This process is repeated for

all encoded inputs. Since this calculation adds the BM and PM together, compares

them, and selects the minimum value, this calculation is known as add-compare-select

00

01

10

11

0/00

1/11

1/00

1/10

0/01

1/01
0/10

0/11

0/00

1/11

0/11
1/00

0/10
1/01

0/01

1/10

0/00

1/11

0/11
1/00

0/10
1/01

0/01

1/10
t t+1 t+2 t+3

Figure 2.2: Trellis for Encoder in Figure 2.1.

5

BM ACS OutputInput Storage

Figure 2.3: Viterbi Decoder Processing (Adapted from [4]).

(ACS). After each ACS operation, the state saves in some form of memory which path

it chose as the minimum path. It will save a zero if the minimum path was at its

zero input, and a one if the minimum path was at its one input. These saved values

are called decision bits. This information is saved in order to trace back through the

trellis and recover the original data later on. The overall function of the trellis is

to keep track of what path was most likely taken to encode the original data, and

a high level data flow can be seen in Figure 2.3 [4]. The final goal of decoding the

received data is to find the path through the trellis with the minimum PM. According

to the algorithm, the path with the minimum PM will be the ML path and therefore

represent what the data is most likely to be according to the possible state transitions

of the trellis.

By rearranging the trellis, it can be seen that it is made up of several butterfly

structures, as shown in Figure 2.4. This regularity in the algorithm can be utilized to

improve the VLSI implementation of the algorithm. This strategy will be discussed

more in the following chapter.

Once the minimum PM and its corresponding state at the last time instant is

found, the decoder uses the decision bits to trace back through the trellis to find the

original data. The original data is equal to the decision bits for the minimum path

through the trellis. Since the output is generated by traversing the trellis backwards

however, the output will be in reverse order from the original data. Therefore the

trace back output has to be reversed before it is finally given as an output.

There are two ways to calculate the BM of a state transition: hard-decisions or

6

00

01 10

00

10

11

01

11

0/00

1/11

0/11

0/00

0/10

1/01

1/10

0/01

Figure 2.4: Butterfly Property of Convolutional Trellis.

soft-decisions. Hard-decisions use the Hamming distance between the coded received

values and the possible trellis outputs to calculate the BM. The Hamming distance

is the number of bits that are different for a given bit position between two binary

values. For example the Hamming distance between 110 and 111 is

d(111, 110) = 1 (2.2)

Soft-decisions use the squared Euclidean distance between the fixed-point received

values and the theoretical fixed-point possible trellis outputs to calculate the BM [2].

The equation for the squared Euclidean distance can be seen below.

d2 =
n∑

i=1

(xi − yi)
2 (2.3)

It is easier to implement hard-decision BM modules in digital hardware, however

the resulting BM is not as accurate as the soft-decision BM. A significant reduction in

BER can occur by using soft-decision versus hard-decision as shown by Figure 2.5 [5].

Soft-decision calculations can be more difficult to implement, and some methods

require multiplier hardware that causes an increase in delay, area, and power. More-

over, the utilization of traditional multipliers for computing Euclidean distances can

7

4 5 6 7 8 9 10

Eb/No [dB]

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

B
it

E
rr

or
 R

at
e

Soft
Hard
Uncoded

Figure 2.5: Bit Error Rate (BER) for Hard vs. Soft Decision Viterbi Decoders

(Adapted from [5]).

be notoriously draining on energy consumption due to the high amounts of power

dissipation consumed for multiplication [6]. However, it has been shown that using

soft-decision BM calculations can cause a 3-dB BER reduction [2]. In addition,

squaring architectures can be an effective method for reducing area, delay, and en-

ergy consumption where application-specific hardware is required. Therefore this

paper works to demonstrate an efficient implementation of a soft-decision Viterbi de-

coder applying application-specific hardware to give an efficient implementation for

soft-decision decoding.

8

CHAPTER 3

IMPLEMENTATION AND OPTIMIZATIONS

Before implementing the design, a communication system for the decoder was spec-

ified. The decoder was designed around the convolutional encoder specified in the

IEEE 802.11 WLAN standard [7]. According to this standard, the system has:

• Constraint Length = K = 7

• States = 2(K−1) = 26 = 64

• Code Rate = 1/2

• Generators = {10110112, 11110012} = {1338, 1718}

In addition, for this decoder it was assumed that the digital data is encoded

using bipolar Non-Return-to-Zero-Level (NRZ-L) digital encoding with 0 = −1 and 1

= 1, and transmitted using binary phase shift keying (BPSK). The analog-to-digital

converter of the receiver has a reference voltage of 1 V and converts the received signal

into two’s-complement (1.7) notation values using mid-tread quantization, where (1.7)

is the notation used for fixed-point systems meaning the values are represented with

one integer bit and seven fractional bits. The fixed-point value 1.000000 is used to

represent -1, and 0.1111111 is used to represent 1. It should be noted 0.1111111

is slightly less than 1, but since it is the largest representable value for the (1.7)

quantization, it is used to represent 1. Prior to being encoded, the original data is

assumed to be in 32-bit packets, with K−1 = 6 zero bits appended to the end of the

data to bring the trellis state back to zero during encoding. Therefore, the encoder

9

takes in 38 bits at a time, and due to the 1/2 code rate, the decoder will therefore

take in 2 × 38 = 76 bits at a time. After processing, the decoder will output the

original 38 bits.

3.1 Soft-Decision Viterbi Decoder Implementation

The decoder implementation discussed in this paper is based on the architecture

described in [3]. However, the proposed implementation utilizes a parallel structure

with only one processing cycle.

The overall decoder architecture can be seen in Figure 3.1. It is made up of three

main sections: the processing section, the memory section, and the decode section.

The processing section is made out of the processing element (PE) array on the left

side of the architecture. The PE array represents the trellis and this area is the main

datapath for calculating all metrics and decisions needed for the Viterbi algorithm.

The memory section is made up of the last-in-first-out (LIFO) modules in the middle

of the architecture. These LIFOs store the decision bits from each PE. Finally, the

decode stage is made up of all modules to the right of the LIFOs in the architecture.

This section is where the decision bits are processed and turned back into the original

data.

Shift

64:1
Mux

Reg

State Reg and

6:6
Decoder

6

6

6

6

38−Bit

38−Bit LIFO

38−Bit

LIFO

LIFO

Out

dec0

dec1

dec63

dec0

dec1

Symbol1

Symbol0

38−Bit LIFO

PE

PE

dec62dec62

dec63

Figure 3.1: Overall System Architecture.

10

Reg

Reg

Reg

ACS

ACS

BM

BM

BM

BM

Reg PM_out_0

PM_out_1

BM00

BM11

BM01

BM10

18

18

18

18

PM_out_0
18

PM_out_1
18

18

18

LIFO
38−Bit

LIFO
38−Bit

18

18

Symbol0

Symbol1

PM_in_0

PM_in_1

8

8
dec0

dec1

Figure 3.2: PE Architecture.

This architecture is implemented by using the fact that the trellis can be rear-

ranged to form butterfly structures, as shown in Figure 2.4, which allow the Viterbi

decoder to be implemented using the parallel array architecture of PEs shown in

Figure 3.1. Each PE represents a butterfly from the trellis, and therefore each PE

represents two different states. The PE consists of four BM modules (one for each

branch of the butterfly) and two add-compare-select (ACS) modules (one for each

state of the butterfly at the given time instant) as shown in Figure 3.2. The ACS

modules pass the decision bits to two 38-bit LIFO modules after passing them through

a register. Since there are sixty-four states and each PE handles two states, thirty-two

PE modules need to be instantiated and connected according to the trellis.

In the implemented Viterbi decoder, there were four versions of the PE architec-

ture developed. Each version differed only by what hard coded value the BM modules

used to compare with the input symbols. When looking at the full trellis diagram

for this encoder/decoder, it can be seen for each butterfly the top and bottom out-

puts are equal, and the two middle branch outputs are equal. This characteristic is

demonstrated in Figure 2.4. There are four possible branch output orderings, and

11

Subtractor

Subtractor Squarer

Squarer

Adder

8

8

9

9

18

18

18
BM

Symbol0

Symbol1

Figure 3.3: Branch Metric (BM) Architecture.

each PE version represents one of these orderings.

The BM module is a structural combination of a subtractor, squarer, and adder

in order to implement Equation (2.3). The received Symbol0 is subtracted from

the expected Symbol0 for the given BM module. This value is then squared and

added to the value of the received Symbol1 subtracted from the expected Symbol1,

squared. The BM architecture can be seen in Figure 3.3. Since a fixed-point system

was utilized, great care was used to ensure the accuracy of results. In order to ensure

accuracy in the BM module, an integer bit had to be added in the subtractor. This

addition of a bit can be seen in Figure 3.3, where the subtractor takes in an 8 bit

value but outputs a 9 bit value.

The ACS module is a structural combination of two two’s-complement adders, a

modified signed comparator, and a multiplexer, as described in [8] and [9]. The adders

add the path metric (PM) of the previous state with the BM for both sets of ACS

inputs. The sums are then sent to the signed comparator to find the smaller PM. The

comparator then sends a select signal to the multiplexer to choose the corresponding

PM with the smallest value. The ACS architecture can be seen in Figure 3.4.

The signed comparator is modified to implement a technique known as modulo

12

z

m1
Adder

Adder

1

0

BM0

PM0

BM1

PM1

Comparator
Modified

m2

PM_Out

dec

18

18

18

18

18

18

18

18

18

Figure 3.4: Add-Compare-Select (ACS) Architecture.

normalization, again as described in [8] and [9]. As the decoder is running, it is

inevitable that eventually the PM will exceed its bit limit and overflow. In order to

handle this issue, modulo normalization utilizes the fact that the difference in the

PM values is bounded in order to control overflow in a way that preserves the signed

comparison. To implement modulo normalization, the comparator must be of the

modified form shown in Figure 3.5.

m1

m2

Unsigned
Comparator

2:1
Decoder

Invert
MSB

MSB
Invert

m2_MSB

18

18

18

18
2

m1_MSB

z

Figure 3.5: Modified Comparator for Modulo Normalization.

13

Modulo normalization works by having the modified comparator generate a select

signal, z, that is the result of performing the XOR operation on the MSB of m1,

the MSB of m2, and the result of an unsigned comparison of m1 and m2. For the

unsigned comparison, the output equals zero if m1 is greater than m2 and one if m1

is less than m2. Therefore, z is equal to

z = m1MSB ⊕m2MSB ⊕ y(m1, m2) (3.1)

where y is equal to the unsigned comparison of m1 and m2 [8]. The MSB invert

modules allow two’s-complement values to be compared in an unsigned comparator

by inverting the MSBs before comparison, as described in [10]. By making this

inversion, negative two’s-complement values will always appear smaller than non-

negative two’s-complement values. The 2:1 decoder module takes the two-bit output

of the unsigned comparator and decodes it to a one-bit representation, where one

means m1 is less than m2, and zero means m1 is greater than m2.

If m1 and m2 are equal, the logic in the 2:1 decoder can be designed to choose

either m1 or m2 as the smallest sum. It does not matter which value is chosen since

the PM sums are equal at that time instant and therefore have the same likelihood

of being the ML path.

Since the decision bits are generated while traversing forward through the trellis,

but decoding traces back through the trellis, the decision bits need to be stored in a

LIFO. Since each ACS will generate a decision bit each clock cycle, each ACS needs

its own LIFO. Each LIFO should be able to hold thirty-eight bits: thirty-two for the

original data and six for the appended zeros to return the trellis to its zero state.

After all input bits have been read in and all decision bits have been stored in the

LIFO, the decision bits can be read out of the LIFO into the trace back decode stage.

The architecture for this decode stage is shown in Figure 3.6.

To read the correct decision bit each clock cycle while reading the values from

the LIFO modules, a 6-bit state register must be used to keep track of the ML path

14

Shift

64:1
Mux

Reg

State Reg and

6:6
Decoder

6

6

6

6

38−Bit

38−Bit LIFO

38−Bit

LIFO

LIFO

Out

dec0

dec1

dec63

Figure 3.6: Trace-Back Decode Architecture.

as the trellis is traversed. Since it is known that the trellis was brought back to the

zero state, the state register should be set to start in the zero state. This state value

goes to the 6:6 decoder, where the non-sequential butterfly state mapping is mapped

to sequential values to act as a select signal for the 64:1 multiplexer. At each clock

cycle, the multiplexer will read the decision bit corresponding to the current state.

This decision bit will be sent to the output register, and it will also be appended

to the right-side of the state in the state register to provide the value for the next

state. This process repeats thirty-eight times until the state register is back to the

zero state. The values coming out of the output register are the original data values

before encoding, only in reverse order. The zeros appended to the original data are

also output, but these values can be removed in further processing.

3.2 Optimization using Squaring and Comparison

In order to optimize the Viterbi decoder, changes were made to the squaring module,

the modified comparator used for the ACS modules and modulo normalization, and

the LIFO design.

To make the squaring operation as efficient as possible, a squaring architecture

15

a4a3

a6 a5 a4 a3 a1 a0a7 a2 0

a1a4 a0a4a5a4 a4 4 a3a4 a2a4

a1a5 a0a55a5 a4a5 a3a5 a2a0

a1a7 a0a7a6a7 a5a7 a4a a3a7 a2a7

a

7

a

a1a6 a0a6a6a6 a5a6 a4a6 a3a6 a2a6

a1a1 a0a1

a1a2 a0 22 a

a0a0

a2a

a1a0a7a0 a6a0 a5a0 a4a0 a3a0 a2a0

a5a1 a4a1 a3a1 a2a1

a5a2 a4a2 a3a2

a1a3 a0a3a5a3 a3a3 a2a3

a7a7

a7a6

a7a5

a7a4

a7a3

a7a2

a7a1

a6a5

a6a4

a6a3

a6a2

a6a1

a7a6 a7a5 a7a4 a7a3 a7a2 a7a1

a6a5 a6a4 a6a3 a6a2

a1a0a7a0 a6a0 a5a0 a4a0 a3a0 a2a0

a6a1 a5a1 a4a1 a3a1 a2a1

a5a4 a5a3 a5a2 a4a2 a3a2

a4a3

Figure 3.7: Partial Product Generation Reduction for Squaring Matrices.

described in [11] was used. This architecture is a hierarchical combinatorial method

used to reduce the size of the partial-product-matrix (PPM). Squaring is more optimal

than parallel multiplier architectures in that it has a significant reduction in partial

products due to symmetry of partial products that get generated. This is illustrated

in Figure 3.7 where simplification of the partial product matrix can happen along

the diagonal of the PPM. First, since a value is multiplied with itself when squared,

the multiplication of the same bit position of the multiplicand and multiplier is equal

to the bit value in that bit position. For example, if the value a2a1a0 is multiplied

with itself, when multiplying the bit a0 with a0 the result is a0 · a0 = a0. Also,

squaring has a commutative property which can be used to reduce the PPM. Since

multiplication itself is commutative, a bit multiplication such as a0 · a1 will equal

a1 · a0. Therefore, when adding values such as these in the PPM, the values can

be simplified to a0 · a1 + a1 · a0 = 2 · a1 · a0, which is equivalent to a left shift of

the value a1 · a0. Both of these symmetry reductions can be seen in Figure 3.7. In

addition, further optimization can happen within the PPM by using some Boolean

logic simplifications, where i represents specific weight positions for a given input

16

operand x of size n-bits:

(xi · xi−1 + xi) · 2
2·i−2·n = xi · xi−1 · 2

2·i+1−2·n +

xi · xi−1 · 2
2·i−2·n (3.2)

An additional benefit to using this squaring architecture is that a recursive divide-

and-conquer architecture can be formed to reduce the PPM [11]. Using this method,

the input operand x is divided into two parts a = 0.x2m−1 . . . xm and b = 0.xm−1 . . . x0,

so each part contains m-bits, and the final result p can be represented as

x = a+ b · 2−m

p = x2

= (a+ b · 2−m)2

= a2 + 2 · a · b · 2−m + b2 · 2−2·m (3.3)

The PPM is modified to handle two’s-complement numbers, and a Dadda-reduction

[12] scheme is utilized for the reduction of the PPM. Once the PPM is reduced from

the squaring architecture, a fast carry-propagate adder (CPA) is then utilized to final-

ize the product. Since squaring is one of the most used functions in the soft-decision

Viterbi datapath, the use of an efficient squaring module will improve both delay and

power costs.

To improve the performance of the heavily used ACS modules, an efficient two’s-

complement comparator is used in the modified comparator. The architecture is based

on the design discussed in the paper [10], and can be seen in Figure 3.8. The com-

parator uses a logarithmic depth design to provide an efficient, parallel comparison.

The logarithmic depth design is achieved by breaking up the input words into two-bit

subwords and comparing them. The results are then sent to other two-bit word com-

parators until the final result is obtained. The logarithmic depth architecture reduces

delay compared with a traditional comparator architecture [10]. In addition, the unit

17

CMP CMP CMP CMP

CMP CMP

CMP

10

1000

1101

10 01

11

A

B

10 01 00 01

0110

10

01 = A < B

10 = A > B

11 = Invalid

00 = A = B

Figure 3.8: Comparator with Logarithmic Depth Architecture.

implements a two’s-complement optimization by inverting the MSBs of each input.

This inversion allows two’s-complement values to be compared in the logarithmic

depth unsigned comparator without having to be converted out of two’s-complement

before the comparison, and back into two’s-complement after.

For this implementation, memory hardware was developed using flip-flop (FF)

based shift-registers. This design choice provides an alternative to using SRAM,

addressing modules, and pointers. This design approach is advantageous for those

without access to memory designs or those in need of a quick design time. Figure 3.9

shows a three-bit implementation of the FF shift-register architecture used for the

LIFO storage modules.

To use this LIFO, initially writeClkEn should be set low, Load should be set low,

and readClkEn should be set high. These values should be held until all values are

read in and the bottom read shift-register is full. Next, writeClkEn should be set

high, load should be set high, and readClkEn should be set low. This will bring the

word in the bottom read shift-register to the top write shift-register on the next clock

cycle. After this clock cycle, load should be set low. The clock can then be run

until all bits are out of the write shift-register. This operation will allow the LIFO

to store decision bits as they are produced and then read them out in reverse order,

18

D Q D Q D Q

0

11

00

1

DQDQDQ

clk
writeClkEn

readClkEn
clk

Load Load Load 0

Out

In

Figure 3.9: FF Shift-Register LIFO Architecture.

as desired. In order to improve performance, the LIFO can be pipelined so that it is

both reading and writing values at the same time.

19

CHAPTER 4

RESULTS

Verification of hardware is sometimes difficult for Viterbi decoders as most imple-

mentations only have hard-decision architectures. However, it has been shown good

signal-to-noise ratio (SNR) on a given channel using soft-decision decoding can im-

prove the BER by several orders of magnitude [2]. This can be important for good

transmission rates. For example, assuming a hard-decision mapping has a BER of

10−1 and a soft-decision mapping has a BER of 10−3, this can provide significant

savings in avoiding re-transmission of bits that are lost due to using hard-decision

mapping (i.e., errors of 1 in 1000 instead of 1 in 100). Therefore, soft-decision, al-

though more hardware intensive, has obvious savings if the area, delay, and power

can be reduced significantly.

The proposed decoder was implemented in RTL-compliant Verilog and then syn-

thesized in an ARM 32nm CMOS library in Global Foundries (GF) cmos32soi tech-

nology. The ARM standard-cell library utilizes multiple values of VT to aid in synthe-

sis (i.e., MTCMOS). Synthesis was optimized for delay utilizing SynopsysR© Design

Compiler
TM

(DC) in topographical mode using a PVT process at 25◦ C using TT

corners. The average power estimation was achieved by running the simulation on

1, 000 random test vectors. The synthesis scripts are synthesized for delay using a

1ns clock (1 GHz) and a 5× loading of a nominal flip-flop.

There were five different threshold voltage libraries used during synthesis: HVT,

MVT, RVT, SVT, and UVT. HVT signifies “high” threshold voltage, MVT signifies

“mezzanine” threshold voltage, RVT signifies “regular” threshold voltage, SVT signi-

20

fies “super-high” threshold voltage, and UVT signifies “ultra-high” threshold voltage

[13]. Due to the higher threshold voltage, the HVT, SVT, and UVT libraries have

a lower static power but higher dynamic power. The lower threshold voltage MVT

and RVT libraries have a lower dynamic power but a slightly higher static power. By

synthesizing the designs to different combinations of these libraries, the set of libraries

that optimizes the proposed design in terms of lowering area, delay, and power was

determined experimentally.

In order to evaluate the proposed design, it was compared with the same architec-

ture using a traditional multiplier to carry out squaring and a traditional comparator

to carry out the the ACS function and normalization. Also, a pipelined radix 4 soft-

decision decoder described in [14] was used as a comparison. It should be noted that

the pipelined radix 4 design was implemented using 130nm standard cells. The com-

parison to [14] is difficult however as the results do not include synthesis constraints,

operating conditions, loading, or actual physical numbers (i.e., they are only plotted

on a Figure). Again, comparisons are difficult because of the limited availability of

soft-decision mapping Viterbi decoding architectures. In addition, comparisons are

often not run with energy, and the code utilized is not available. For additional com-

parison, several hard-decision mapping implementations were synthesized using the

same design constraints.

The hard-decision comparisons come from two sources. First, MATLAB
TM

has

a Viterbi decoder generator that utilizes HDL Coder [15]
TM

. It was made to be a

“soft-decision” decoder, but it converts input data into a range of eight categories,

then performs hard-decision decoding. Since MATLAB
TM

left off the logic to con-

vert the input to one of the eight category values, it is only a hard-decision decoder.

Second, an open-source hard-decision Viterbi decoder generator is utilized as a com-

parison [16]. This version also utilizes a module called virtual_mem that is left-off

synthesis, because it is generated for SRAM implementations. Therefore, its area

21

RVT #Cells/Area Power [mW]

Version Type #Comb #Seq #Hier #Total Area [mm
2] Delay [ps] Internal Static Dynamic Total

MATLAB
TM

[15] hard 12,628 4,904 102 17,634 0.0234 721.1 24.41 7.47 5.92 37.79

Open-Source [16] hard 20,948 9,219 87 30,254 0.0376 467.32 39.22 13.36 2.04 54.62

Pipelined Radix 4 [14] soft – – – ≈ 179,000 2.5160 ≈ 1,000.00 – – – –

Proposed - No Opt. soft 133,654 7,112 75,940 216,706 0.1087 1,086.88 96.47 44.87 72.90 214.24

Proposed - Squarer soft 100,073 6,216 37,924 144,213 0.0882 879.47 73.47 35.89 58.72 168.08

Proposed - Opt Comp. soft 136,206 7,112 77,220 220,538 0.1097 1,044.52 97.29 45.38 72.33 215.00

Proposed soft 101,579 6,216 39,204 146,999 0.0891 880.59 74.44 36.16 59.96 170.56

Table 4.1: 32nm SynopsysR© DC
TM

Synthesized Topographical Results using GF

ARM-based RVT standard-cells (Note: no details other than a 130nm CMOS imple-

mentation in [14] is given, therefore, the comparison is difficult).

HVT, MVT, RVT #Cells/Area Power [mW]

Version Type #Comb #Seq #Hier #Total Area [mm
2] Delay [ps] Internal Static Dynamic Total

MATLAB
TM

[15] hard 12,508 4,904 102 17,514 0.0233 901.8 21.38 1.04 5.89 28.32

Open-Source [16] hard 21,055 9,219 87 30,361 0.0377 605.45 36.90 2.05 1.96 40.90

Pipelined Radix 4 [14] soft – – – ≈ 179,000 2.5160 ≈ 1,000.00 – – – –

Proposed - No Opt. soft 135,608 7,112 75,940 218,660 0.1220 1,125.63 102.11 8.25 74.44 184.81

Proposed - Squarer soft 98,151 6,216 37,924 142,291 0.0875 1,017.98 66.42 4.97 57.08 128.48

Proposed - Opt. Comp soft 139,524 7,112 77,220 223,856 0.1265 1,061.81 106.86 9.063 80.64 196.56

Proposed soft 100,818 6,217 39,204 146,239 0.0888 1099.70 67.71 5.06 58.85 131.62

Table 4.2: 32nm SynopsysR© DC
TM

Synthesized Topographical Results using GF

ARM-based HVT, MVT, RVT standard-cells (Note: no details other than a 130nm

CMOS implementation in [14] is given, therefore, the comparison is difficult).

may be substantially increased due to the need for an SRAM instantiation.

Results are shown in Table 4.1 and Table 4.2. As mentioned, the set of libraries

which optimized the proposed design in terms of lowering area, delay, and power was

determined experimentally. It was found that using the RVT library alone and using

the HVT, MVT, and RVT libraries together provided the optimal results. Since the

results from both of these groupings were similar, both results have been presented.

Cell counts are given for combinational and sequential devices.

During synthesis, SynopsysR© DC
TM

looks for logic common to several design

22

paths. When this common logic is found, the synthesis engine will hierarchically

abstract it in a way that allows multiple paths to utilize the same logic. This process

reduces the total number of cells required and thus optimizes the design in terms

of area. SynopsysR© DC
TM

categorizes the cells used in this optimized logic as

hierarchical cells. The number of these hierarchical cells can be found by subtracting

the sum of the combinational and sequential cells from the total number of cells used

in the top level design.

To verify the proposed design, test values were generated in MATLAB
TM

using

convolutional encoder scripts found in [17]. As energy/power is input dependent, ran-

dom vectors were generated through a value change dump (VCD) file and a switching

activity intergchange format (SAIF) file and then used to obtain the power numbers

in Table 4.1 and Table 4.2.

As seen in Table 4.1, the proposed design synthesized using RVT cells has a sig-

nificant reduction in area, power, and delay compared to the implementation with a

traditional multiplier and comparator (no optimizations). The use of the proposed

architecture provides a reduction in the number of total standard cells (−24%), which

contributes to the observed reduction in total power (−20%) and area (−18%). It

also simplifies the squaring calculation and speeds up comparison, providing a shorter

delay (−19%). As expected, the soft-decision architecture has more area than the

hard-decision architectures. However, soft-decision architectures provide the signifi-

cant benefit of a 2-4 order of improvement in BER over hard-decision architectures,

and due to nanometer technologies providing the ability to incorporate more logic into

the design, the proposed design only incurs 3× more area than the optimized hard-

decision version generated from MATLAB
TM

with about the same delay. In addition,

compared to [14] the proposed design has considerable savings in cell count (−18%),

area (−96%), and delay (−12%). It should be noted however, that the drastic differ-

ence in area is largely due to the proposed design’s use of a 32nm technology versus

23

the 130nm technology used in [14]. Moreover, the 130nm implementation in [14] uses

a pipelined array multiplier that would expend more area than the application-specific

squarer in this paper. The proposed implementation is also memory-less and can be

implemented easily with standard-cells or within custom-logic without using SRAM.

Also, the hierarchical cell counts can be reduced with changes in loading.

Table 4.2 shows similar results when the proposed design is synthesized using

HVT, RVT, and MVT cells. When compared to the implementation using a tradi-

tional multiplier and comparator (no optimizations), the squaring architecture pro-

vides a slightly more significant reduction in the number of total standard cells

(−33%) than when the design is synthesized to RVT cells alone, which also leads

to a more significant reduction in total power (−29%) and area (−27%). However,

these more significant reductions come at the cost of only decreasing the delay by

(−2%). When compared with [14], again the proposed design has considerable sav-

ings in cell count (−18%) and area (−96%), however there is a (10%) increase in

delay.

The data with the squarer or optimized comparator individually added to the

proposed architecture is also provided in Table 4.1 and Table 4.2. It can be seen that

using the optimized comparator without the squarer causes a slight increase in area

and power, but decreases the overall delay compared to using no optimizations. In

addition, when the optimized comparator and squarer are used together, the com-

parator causes a slight increase in area, delay, and power compared to the design

when only the squarer is used.

It can be assumed for the case where there are no optimizations the synthesizer

tried to optimize the design in terms of area and power in exchange for a higher delay.

In the case where only the squarer is used, it seems the synthesizer can optimize the

traditional comparator in a way that leads to a decreased area, delay, and power when

compared to the case when both the squarer and optimized comparator were used.

24

The optimized comparator is well defined structurally and does not provide as much

room for the synthesizer to optimize the design.

While it may appear better to not use the optimized comparator, it is an advan-

tageous design to use in two main cases. First, it is advantageous when a traditional

multiplier is being used and delay is the critical metric to be optimized. In addition,

it is advantageous when the architecture of the comparator needs to be known in-

stead of being left up to the synthesizer to decide the best design. Otherwise, the

results show that it could be advantageous to allow the synthesizer to optimize the

traditional comparator.

25

CHAPTER 5

CONCLUSIONS

An efficient soft-decision Viterbi architecture is presented. It demonstates a signifi-

cant reduction in area, delay, and power compared to the soft-decision architecture

using a traditional multiplier and comparator, and a significant reduction in area and

delay compared to a previous soft-decision decoder. Although the proposed imple-

mentation incurs more area, delay, and power than hard-decision architectures, the

savings in transmission rates makes this implementation a good choice for communi-

cation protocols, such as IEEE 802.11. In addition, the implementation can easily be

incorporated on digital signal processing architectures since it is memory-less as well

as self-contained. This paper also provides results for both soft- and hard-decision

architectures for a System on Chip (SoC) implementation.

Synthesis results using RVT standard cells show the proposed design reduces total

standard cell count by 25%, total power by 20%, area by 18%, and delay by 19% com-

pared to the soft-decision architecture using a traditional multiplier and comparator.

In addition, compared to a similar soft-decision decoder implementation, the pro-

posed design demonstrates an 18% reduction in cell count and a 12% reduction in

delay. The proposed design also demonstrates a 96% reduction in area, though a large

portion of that reduction is due to the use of a 32nm technology instead of the 130nm

technology used in [14]. These results are summarized in Table 5.1 for RVT-based

standard-cells using topographical synthesis with SynopsysR© DC
TM

.

Moving forward, this research can be continued by carrying out a full BER analysis

of the proposed design in both an AWGN and Rayleigh fading channel. In addition,

26

RVT #Cells/Area Power [mW]

Version Type #Total Area [mm
2] Delay [ps] Total

MATLAB
TM

[15] hard 17,634 0.0234 721.1 37.79

Open-Source [16] hard 30,254 0.0376 467.32 54.62

Pipelined Radix 4 [14] soft ≈ 179,000 2.5160 ≈ 1,000.00 –

Proposed - With Mult. soft 216,706 0.1087 1,086.88 214.24

Proposed - Optimized soft 146,999 0.0891 880.59 170.56

Table 5.1: 32nm SynopsysR© DC
TM

Summary of Synthesized Topographical Results

using GF ARM-based RVT standard-cells.

truncated squaring units have been shown to significantly reduce power and area

with only a slight reduction in result accuracy when compared to a non-truncated

squaring unit [18]. A truncated squaring unit could be used in the BM module of

the proposed design to see whether it could further reduce area and power without

causing a significant increase in the BER.

27

BIBLIOGRAPHY

[1] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61, pp. 268–

278, March 1973.

[2] S. B. Wicker, Error Control Systems for Digital Communication and Storage.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1995.

[3] M. Boo, F. Arguello, J. D. Bruguera, R. Doallo, and E. L. Zapata, “High-

performance VLSI architecture for the Viterbi algorithm,” IEEE Transactions

on Communications, vol. 45, pp. 168–176, Feb 1997.

[4] M. Kamuf, V. Owall, and J. B. Anderson, “Survivor path processing in viterbi

decoders using register exchange and traceforward,” IEEE Transactions on Cir-

cuits and Systems II: Express Briefs, vol. 54, pp. 537–541, June 2007.

[5] “MATLABTM estimate BER for hard and soft decision

Viterbi decoding.” https://www.mathworks.com/help/comm/ug/

estimate-ber-for-hard-and-soft-decision-viterbi-decoding.html.

[6] M. J. Schulte, J. E. Stine, and J. G. Jansen, “Reduced power dissipation

through truncated multiplication,” in Proceedings IEEE Alessandro Volta Memo-

rial Workshop on Low-Power Design, pp. 61–69, Mar 1999.

[7] “ISO/IEC standard for information technology - telecommunications and infor-

mation exchange between systems - local and metropolitan area networks - spe-

cific requirements part 11: Wireless lan medium access control (MAC) and phys-

ical layer (PHY) specifications (includes ieee std 802.11, 1999 edition; ieee std

28

802.11a.-1999; ieee std 802.11b.-1999; ieee std 802.11b.-1999/cor 1-2001; and ieee

std 802.11d.-2001),” ISO/IEC 8802-11 IEEE Std 802.11 Second edition 2005-08-

01 ISO/IEC 8802 11:2005(E) IEEE Std 802.11i-2003 Edition, pp. 1–721, 2005.

[8] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI architectures

for metric normalization in the viterbi algorithm,” in IEEE International Con-

ference on Communications, Including Supercomm Technical Sessions, pp. 1723–

1728 vol.4, Apr 1990.

[9] C. Studer, S. Fateh, C. Benkeser, and Q. Huang, “Implementation trade-offs of

soft-input soft-output map decoders for convolutional codes,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 59, pp. 2774–2783, Nov 2012.

[10] J. E. Stine and M. J. Schulte, “A combined two’s complement and floating-point

comparator,” in 2005 IEEE International Symposium on Circuits and Systems,

pp. 89–92 Vol. 1, May 2005.

[11] S. Bui, J. E. Stine, and M. Sadeghian, “Experiments with high speed parallel

cubing units,” in 2014 IEEE Computer Society Annual Symposium on VLSI,

pp. 48–53, July 2014.

[12] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34,

pp. 349–356, 1965.

[13] J. M. Johnson, S. K. Springer, R. Thoma, and J. S. Watts, “Method, system and

program storage device for generating accurate performance targets for active

semiconductor devices during new technology node development,” May 28 2013.

US Patent 8,453,101 B1.

[14] W. Yoo, Y. Jung, M. Y. Kim, and S. Lee, “A pipelined 8-bit soft decision Viterbi

decoder for IEEE802.11ac WLAN systems,” IEEE Transactions on Consumer

Electronics, vol. 58, pp. 1162–1168, November 2012.

29

[15] “MATLABTM Viterbi decoder.” https://www.mathworks.com/help/comm/

ref/viterbidecoder.html.

[16] “VHCG Viterbi HDL codes generator.” http://viterbi-gen.sourceforge.

net.

[17] J. Proakis and M. Salehi, Contemporary Communication Systems Using

MATLABTM. BookWare companion series, Brooks/Cole, 2000.

[18] J. E. Stine and O. M. Duverne, “Variations on truncated multiplication,” in

Euromicro Symposium on Digital System Design, 2003. Proceedings., pp. 112–

119, Sept 2003.

30

VITA

John Tobola

Candidate for the Degree of

Master of Science

Thesis: OPTIMIZED EFFICIENT SOFT-DECISION VITERBI ARCHITEC-
TURE FOR APPLICATION-SPECIFIC PROCESSORS

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Bartlesville, Oklahoma, United States of America on
November 28, 1994.

Education:
Received the B.S. degree from Oklahoma State University, Stillwater, Ok-
lahoma, United States of America, 2017, in Electrical Engineering

Completed the requirements for the degree of Master of Science with a
major in Electrical Engineering from Oklahoma State University in May,
2018.

Experience:
FPGA Engineer - Spectranetix, Inc.
May 2018
Accepted position and will start after graduation

Graduate Research Assistant - VLSI Computer Architecture Research Group
OSU
June 2017 - May 2018

Mixed Signal ASIC/SoC Products Intern - Sandia National Laboratories
June 2016 - April 2017

