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          CHAPTER I 

         INTRODUCTION 
 

      1.1 Masquerade Detection 

 

 A computer system masquerader is an intruder who takes over a genuine user 

session and misuses it. Masqueraders occupy a privileged user’s seat and exploit their 

privileges to access secure programs and data. Session take over by a masquerader can be 

due to careless behavior of the legitimate user, who mindlessly skips either to lock the 

system or to logout temporarily before going on a break. Such a careless act by the proper 

user creates an opportunity for hackers to misuse secure computer systems. Masqueraders 

typically look for secure files, software and privileges that they cannot use. A well-

known instance of masquerader activity is the case of Robert. P. Hanssen, the FBI mole 

who allegedly used agency computers to ferret out information later sold to his 

conspirators [11]. Hanssen was an insider who abused his privileges to make money.

 Masquerade detection software is therefore essential for secure systems as in 

defense and banking which contain highly confidential information that must be shielded 

against hackers, especially masqueraders. Masquerade detection is a challenging 

problem, which people have been trying to solve since 1988. Numerous attempts targeted 

at building masquerade detection systems have resulted in failure. User profiles were 

constructed from system-log data, which contained information such as time of login, 

physical location of login, duration of user session, cumulative CPU time, commands 

issued, programs executed, names of files accessed and so forth [9] [3]. This log 

information was used as training data to build user profiles. If a deviation was noted 



 2

while testing new data for a user with his already existing user profile, a masquerade 

attempt was reported. 

 

   1.2 Simulating a Masquerade Detection System  

     

 One of the major challenges facing Masquerade detection systems is real-time 

detection.  A real-time Intrusion Detection System (IDS) to detect masquerades would 

analyze a user’s log file with various fields like commands, time of login, location of 

login, to name a few. Simulating or implementing real-time IDS is a huge task and 

requires a detailed study of many components. Even if such a huge system is simulated or 

implemented, there would still be false alarms if the data were noisy. Hence, researchers 

started focusing on the components of IDS to perform analysis and reduce false alarms as 

much as possible. 

 Schonlau et al. [14] analyzed user log files that contained truncated UNIX 

commands for 70 users. They proposed four statistical and two machine-learning 

techniques to analyze users command log files. The best result they reported had 70% hit 

rate and 6.7% false alarm rate. Maxion and Townsend [12] later proposed a Naïve Bayes 

text classification analysis on Schonlau’s data and recorded a hit rate of 61% for a false 

alarm rate of 1.3%. Finally, Yung [18] proposed a Self-Consistent Naïve Bayes technique 

that lowered the missing alarm rate by 40% for a false alarm rate of 1.3%. Yung’s model 

classified the test sessions offline, in other words, the test sessions were classified only 

after the final test session arrives. He justified that offline classification has very low 

missing alarms, which was the main purpose of Masquerade detection system. It is better 
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to classify a session as masquerade session with a delay rather than classifying it as 

proper session. However, the disadvantage in this scheme is that by the time the 

masquerader is detected it may be too late as the damage may already be inflicted.  For an 

effective detection system, the detection must be achieved as quickly as possible, ideally 

in real time.   

 

 1.2.1 Bayesian Networks and Clustering schemes for masquerade detection 

 

 Though offline evaluation of sessions produces more accurate results, the need for 

online classification cannot be substituted with offline techniques. This thesis first 

presents a Naïve Bayes classifier with deferred or n-test sessions lag classification 

technique. Our deferred Naïve Bayes classifier is also an offline classifier like the one, 

which Yung proposed, but it has a wait on varying number of test sessions before 

classifying them. This technique will be called a Deferred Naïve Bayes Classifier in the 

rest of this thesis.  

Online classification immediately classifies a test session and an offline classifier 

produces a more accurate classification.  To use the advantages of both online and offline 

classification techniques we propose a novel Bayesian networks approach to toggle 

between a Naïve Bayes Classifier and a Deferred Naïve Bayes Classifier. The Bayesian 

networks computes trust values on the simple Naïve Bayes classifier after classifying 

each test session. While the sessions are classified online using Naïve Bayes classifier, 

the Deferred Naïve Bayes classifier also works in parallel for each test sessions. If the 

trust on the Naïve Bayes classifier is less than a threshold value, then the Bayesian 
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networks signals the Deferred Naïve Bayes classifier to classify all the test sessions 

offline after it updates its classifier model with the latest test session. The latest session, 

which was not classified by the Naïve Bayes classifier, will now be classified by the 

Deferred Naïve Bayes classifier. After this classification the current classifier model of 

the Naïve Bayes classifier is replaced by the classifier model of Deferred Naïve Bayes 

classifier. The proposed cross technique update approach has several advantages.  Firstly, 

the classification is online resulting in much faster detection.  Secondly, our approach 

increases the accuracy of Naïve Bayes classifier on the classification of future sessions. 

Furthermore, the trust on this new Naïve Bayes Classifier is reset to the maximum and 

the classification of future test sessions proceeds online. 

  Chapter 4 introduces a clustering approach to train and test commands sessions. 

This approach was initially used in data mining field to cluster real time data and 

compute their likelihood patterns based on the formed clusters [5]. We propose an online 

clustering approach, which is a variant of the data mining approach presented in [5]. As 

far as we are aware, this clustering approach is novel to user command level masquerade 

detection scenario. Clustering introduces several advantages. These include a possible 

data reduction during the testing phase, simplicity of implementation and the ability to 

adapt to noisy data, which is the main reason for its success in data mining and pattern 

matching areas.     

 Our Clustering approach is further classified into three techniques based on the 

sequence rating mechanism in the testing phase. These are called Last n, Weighted 

Means and Decayed Weights Clustering analysis techniques. These three techniques are 

not new to clustering scenario but are indeed novel to masquerade detection. We intend 
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to test the feasibility of our clustering approach in real time to detect user command level 

masquerades and also compare the results of this approach and Bayesian networks 

scheme in this thesis.     

 Schonlau et al’s user command log files [7] were used in all our experiments. The 

main objective of these analyses was to reduce the false and missing alarm rates and try 

to achieve better results than previously proposed techniques. The three clustering 

techniques and the Bayesian networks scheme were compared based on their results. A 

ROC curve for these techniques was drawn and a detailed discussion based on this curve 

is presented in section 5.3 for comparing the two schemes. The rest of the thesis is 

outlined below. 

 In chapter 2 we present a review of previous work in masquerade detection; 

chapter 3 explains both the Deferred Naïve Bayes and Bayesian networks Classifier 

schemes for masquerade detection. In chapter 4 we present our clustering approach to 

masquerade detection. Chapter 5 explains the simulators that we built to detect 

masquerades and compares the results of Bayesian networks and Clustering approach by 

the means of ROC (Relative Operating Characteristic) curve. Chapter 6 concludes our 

research with potential future work.   
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     CHAPTER II 

              LITERATURE REVIEW  

 

          2.1 Early Research 

 

 Several attempts to tackle the problem of masquerade detection have been 

proposed. The first system was IDES (Intrusion detection Expert Systems), which dated 

to the middle of 1990’s. The problems solved by IDES were misuse and anomaly 

detection. To detect misuse an expert system was built to identify a set of vulnerabilities 

that could be taken advantage of by the user. Such a system was very effective and was 

able to alarm lot of misuses, but one major drawback is that it is not sensitive to novel 

attacks. New vulnerabilities would have greater damaging impact and can open up many 

ways of attacking systems. In order to detect such novel attacks another statistical or 

pattern recognition system was built along with the expert system to identify deviant 

behavior from the normal ones [2]. Such statistical classifiers or pattern recognizers 

combined with the expert systems formed a complete IDES. 

 

          2.1.1 Audit Trails for threat identification  

                      

 Auditing is a methodical examination of a subject’s behavior while reviewing 

their current moves with already existing trails or acceptable standards. Anderson was the 

first to study the feasibility of automated audit trail analysis. He categorized the threats 

that could be addressed by audit trail analysis as the following [16] [1]: 

� External penetrators (who are not authorized to use the computer) 
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� Internal penetrators (who are authorized use of the computer but are not 

authorized for data, program or resource accessed), including the following: 

             -Masqueraders (who operate under another user’s id and password). 

                   -Clandestine users (who evade auditing access controls). 

� Misfeasors (authorized users of the computer and resources who misuse their 

privileges). 

Masqueraders can be detected by observing departures from established patterns 

of use for individual users. 

 

         2.1.2 Measures for detecting Intrusions 

 

 There are two types of measures for detecting intrusions in a computer system. 

These are:  a) Continuous measures and b) Discrete measures. Continuous measures take 

into account the CPU Time, amount of memory used, protection violations and I/O Time. 

Discrete measures are concerned with finite set quantities such as time of login and 

location of login. We outline some of these discrete and continuous measures. 

• Continuous Measures: A continuous measure is a function of some aspect of a 

user session. This aspect has its effect on the system’s resource usage. Some of 

the continuous measures are as follows. 

� Connect time – This is the length of the user session on the target system. 

Each session is referred to as the job and has a unique job number. 

� CPU Time – It is the amount of processing time consumed in each of the 

user session on the target system. 
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� IO Activity – This is the amount of I/O activity in a given user session. 

� Protection violations – It is the number of directory and file access 

violations in a user session on the target system. 

 

• Discrete Measures: A discrete measure is a function of user session whose range 

of value is a finite unordered set that is used to characterize some aspect of user 

behavior. Some of the discrete measures are: 

- Time of Login – Time of login is the number of sessions for each user for 

a time period of the day. 

- Location of login – It is the number of sessions for each user initiated from 

a particular physically identifiable location. 

 

    2.2 Hypothesis 

 

An audit record contains information related to an action performed by the user. 

Each measure of the impact of an action on the system is logged as a field of the audit 

record. We view each entry in the audit record as a variable reflecting a part of the user 

behavior. There are several levels of monitoring defined by a number of researchers. One 

of the foremost levels that gained more attention is the command level. 

A command level takes into account the various commands issued by the user 

during a session. We maintain a sequential relationship between the commands issued by 

a specific user in a given session. Command usage depends upon the role of the users. So 

a user with a specific role in an organization has privileges to some commands and 
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restriction to others. The concept here is that after some elapsed period of experience 

every user gets set into a groove of using a set of commands in almost the same order. In 

other words it becomes a habit for the user to use a set of commands every time he logs 

into a system. Such habitual use of commands give us the necessary pattern that we are 

looking for to establish a user’s character.  

For example in a session user “A” opens directory1 only once to check its 

contents. The reason may be that it contains some important files that are required by his 

agency. If a masquerader opens this directory many times and also tries to access the files 

in it, then it can be marked an intrusion. 

Moreover, based on his work style the user may start off with checking his mail 

and reading through some newspapers after logging in; this is a habit for the user and it 

should occur every time when he logs into the system. If an intruder has the system in his 

hands then he overlooks these petty patterns that are learnt by the system and he tries to 

accomplish his task by checking for the file locations. This is an easy case of intruder 

detection scenario. 

Some user command types that will be considered in this thesis are: 

• Multi-Threaded process commands 

• Mailer usage commands 

• File/Directory listing commands 

          2.3 Recent Research 

 

 Schonlau et al. conducted their first experiment [14] based on UNIX commands 

that were keyed in by 70 users. Actually, a log of these commands was taken by using the 
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UNIX acct auditing mechanism. For every user a set of 15000 commands was recorded 

over a maximum period of one month. Out of these 70 users, 50 users were randomly 

selected and considered as legitimate users and the remaining 20 users were used as 

masqueraders. For the legitimate users, the first 5000 commands of each user was used as 

training data for that user and the remaining 10000 commands were used as testing data. 

These 10000 commands were interspersed with a masquerading user’s command 

sessions. A session is actually a set of 100 commands. Hence with 10000 testing 

commands we now have 100 sessions to test. An example to illustrate the crust of 

Scholau technique is given below. 

 User1 has 15000 commands on the whole in his log file. So from a total of 150 

sessions the first 50 sessions are used for training and the remaining 100 sessions are 

interspersed with sessions of say user2, user60 and user21. These sessions are now the 

masquerading sessions. The assumptions here are that, if we have a masquerading session 

then the probability of the next session being followed by the masquerading session from 

the same masquerader is 0.8 and the probability that another masquerader’s session will 

immediately follow one masquerading session is 0.1. This means that if one 

masquerading session is to follow another masquerading session then the probability that 

the session comes from the same masquerader is very high. The chances of one 

masquerader to be followed by another masquerader will be such that there are at least 

two proper sessions in between the sessions of the two different masqueraders. 

 The review paper by Schonlau et al. describes an experiment in which six 

masquerade detection schemes are compared on the same user data spliced with 

masqueraders. The actual target that was achieved was from the range of 39.4% to 69.3% 
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for hit rates and 1.4% to 6.7% for false-alarm rate. The results achieved may seem poor 

but considering the difficulty of the problem the results are good. The problem to be 

addressed here is the false alarm rate. This rate of even 1% in a real world scenario can 

be very costly and might lead to a lot of system resource and time wastage. Figure 1 

shows the results of Schonlau et al. graphically. The six schemes used by them are 

explained elaborately in the following paragraphs. 

 Bayes 1-Step Markov. This detector is based on single-step transitions from one 

command to the next and is due to DuMouchel [14]. The detector actually looks for 

transition of commands and it compares the trained user histories for such transitions. 

The comparison used here is actually a probabilistic comparison. It was a best performer 

for correct detections, but failed to accomplish the desired false alarm rates. 

 Hybrid Multi-Step Markov. This method is based on Markov chains, and is due 

to Ju and Vardi [14] [7]. Based on the proportion of the testing data the model toggles 

itself from a Markov model to a simple independence model, depending on the 

proportion of commands in the test data that were not observed in the training data. It had 

the highest performance rate when compared to other techniques. 

 IPAM.  This detector is based on single-step command transition probabilities, 

estimated from the training data. IPAM stands for Incremental Probabilistic Action 

Modeling and was developed by Davison and Hirsh [14]. They actually developed this 

for predicting sequences of user actions. The results of this method ranks among the 

lowest-performing groups. 

 Uniqueness. This method was due to Schonlau and Theus [14] and used the ideas 

of command frequency detection. If a command frequently occurs for most of the 
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sessions of the user then the next session that has the same frequency of commands will 

be classified as a proper session. If an unusual command is seen in a session then the 

session will be classified as a masquerading session. Uniqueness was a poor performer to 

detect proper session but performed better to reduce false sessions. The false alarm rate 

attained by this scheme was close to 1%. 

 Compression. This method uses the logic that the new data from a given user 

compresses at about the same ratio as the old data from that same user. If this is the case 

then the masquerading user’s data compression ratio should certainly vary significantly. 

Thus one can distinguish between a masquerader and a legitimate user. This idea belongs 

to Karr and Schonlau [15] and the results of this work are shown in Figure 1. 

Compression showed the worst results of all the schemes used for testing. 

 

     
Figure 1: Relative operating characteristic (ROC) curve for the Naïve Bayes  

   Classifier (with updating) on SEA data.  
 
    

  The Schonlau et al technique is called the SEA configuration or the SEA 

technique. The graph in Figure 1 is the ROC curve for the Naïve Bayes Classifer and it 

also includes the best-outcome results achieved by SEA techniques. In other words the 
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graph shows the relative best outcomes of different schemes proposed by Schonlau et al 

with the Naïve Bayes scheme. The Y-axis of the graph measures the % hit rate and the X-

axis measures the % False Alarms. From the graph it is evident that the Bayes-One Step 

Markov had better hit rate to false alarm rate ratio. When one talks about masquerade 

detection the false alarm rates should also be considered. In fact false alarm rates can 

cause 6 times more loss than the hit rate measure. Considering these the Hybrid Multi-

Step Markov scheme is the best performer amongst the Schonlau et al schemes. It has a 

hit rate close to 50% with a false alarm rate of 2%. 

 

  2.4 The Naïve Bayes Approach for Classification 

 

  The naïve Bayes approach for anomaly detection considers the masquerade 

detection problem as a text classification problem. This classification algorithm was 

initially used to classify text documents based on specific word counts as either sports, 

theatrical, health or politics article. It was typically called “bag of words” approach as it 

profiles documents simply based on word frequencies. 

 Maxion and Townsend [12] were the first to formulate the masquerade detection 

problem as a classification problem. The classification paradigm is shown in Figure 2. 
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    Figure 2: Classification Paradigm. 

 
 
 Figure 2 shows that Maxion and Townsend further probed into the data prepared 

by Schonlau et al. to consider the possibility of masquerading effect of the remaining 49 

users to the user whose profile is being monitored. The classification paradigm works 

appropriately for the dataset prepared by Schonlau et al. It is more likely to work now 

since 2450 artificial masquerading sessions are at hand to be studied during the training 

phase itself. These masquerading sessions give a better knowledge of how one user will 

be victimized by the remaining 49 users who are insiders. The classification paradigm 

thus explored more possibilities in the SEA configured data. In a more general setting the 

dataset of a malicious user may not be like the typically well behaved user. Here an 

improvisation of the use of dataset was tried out to achieve better results. Apparently, 

pooling the 49 other users into one single intruder class provided a more stable 

classification problem. 
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          2.4.1 Bag-of-Words Model 

 

 A text document can be easily classified based on the frequency of some words 

used in the document. This simple model was proven to be more successful than 

complicated models in the classification of text. Some complex models involved 

sequence information for text-classification but the bag-of-words model has proven to be 

more efficient and simpler than most of the algorithms. 

 After looking into the success of this model as a text classifier, Maxion and 

Townsend realized that this model could be used to categorize a set of commands as 

being used by a particular user. This classification comes after training the model to first 

identify the probability of use of each command by a user and then using this as 

classifying information to classify the future sessions as either proper or masquerading 

session [12]. A mathematical explanation of this model is given in the following 

paragraphs. 

 The main assumption of this model was that the user generates a sequence of 

commands, one at a time, with a fixed probability that is independent of the commands 

preceding it. The probability for each command c for a given user u is based on the 

frequency with which the command was seen in the training data, and is given by: 

 

                    

 

 Where Training Countc,u is the count of command c from all the sessions in the 

training phase produced by user u, Training Data Length = 5000, which is the count of all 
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the commands seen in the training phase, α is the pseudocount and A is the number of 

distinct commands (i.e. the alphabet) in the data. The pseudocount can be any real 

number, and was set to 0.01 in the study. The pseudocount’s effect is to make sure that 

there aren’t any commands with a zero count. The ‘α’ in the denominator balances the 

effect of α in the numerator. The probability that a test sequence of commands “x x y y x” 

was generated by user1, u1, is: 

   Pu1,x  *  Pu1,x  *  Pu1,y  * Pu1,y * Pu1,x  

Or (Pu1,x)
 3 * (Pu1,y)

 2 where Pu1, x is the probability that user1 typed the command x. 

Probability of the command x being not typed by user1 can also be computed and if the 

ratio of the probability of command being typed by user1 is greater than the probability 

of not being typed by user1, then command x can be associated to be typed by user1. 

 The data used in this work is the same used by Schonlau et al. [13]. As mentioned 

before these commands were captured from UNIX acct auditing mechanism. Here only 

two fields were captured i.e. the command name and the user. This limitation was 

imposed for privacy reasons. Some commands that were captured are: sed, eqn, troff, 

dpost, echo, sh, cat, netstat, tbl, sed, eqn, sh and so on. 

 

    2.4.2 1v49 Experimental setup 

 

 Maxion and Townsend’s experimental setup was called the 1v49 experiment [12]. 

A major drawback of Schonlau et al. experiment was that not all users were tested as 

masqueraders; rather a different set of 20 users were considered as masqueraders. This 

kind of analysis doesn’t use the dataset available to its maximum. When an algorithm 
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fails to identify a masquerader block, when checked for only one masquerader, we cannot 

really make out whether the problem really is with the algorithm or with the inappropriate 

use of the available data set. To address these shortcomings the experiment conducted by 

Maxion and Townsend considered the rest 49 users log files as masquerade data. This 

configuration was consistent in the number and origin of the masquerade events 

encountered by each detector. The result of such use of the dataset considered 2450 

sessions of masquerade attacks for every user rather than 0-24 sessions of attacks 

considered by Schonlau et al. Such effective use of the available dataset brought better 

results than Schonlau’s techniques and this is clearly shown in Figure 1. 

 

   2.4.3  Update problems in naïve Bayes Classification Method 

 

 In naïve Bayes classification with update model as proposed by Maxion and  

Townsend [12] a Single-Step update was made i.e. whenever an update of the user profile 

is made the decision that the session is either a proper session or a masquerading session 

was made in just one step. In other words a binary decision was made at each step and 

this may sometimes cause a complete collapse of the entire classification.  

Two scenarios that might cause this mishap are, firstly when a masquerade 

session is classified as a true session without proper evidence. This might cause the future 

user sessions to be wrongly classified and there are chances for getting a lot of false-

negatives. A false-negative session is one in which a masquerade session is falsely 

classified as a true session. This means that an intruder takes over the system. Secondly, 

an intruder session might look like a true session and it needs further profile updates to 
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classify it. Under these circumstances if the classifier puts this session into a proper 

session and after a few more classifications, if this session is not still seen, then we start 

doubting the correctness of this session classification.  

All these problems can only be solved if the decision taken to classify the sessions 

is made backtrackable. If we had a mechanism that would classify a session later it would 

become easier for us to classify the sessions that we doubted, later, based on the new 

updated profile which now contains more stronger information for classification. This can 

be called a more “Consistent-Update” mechanism. If the algorithm decides when to 

classify these sessions then this mechanism now becomes a more “Self-Consistent 

Update” mechanism. 

 Figure 3 below shows the back tracking problems involved in Maxion and 

Townsend mechanism and also explains a self-consistent update mechanism as a solution 

for backtracking.              

         
                
 Figure 3: Single-step and self-consistent update mechanisms. 
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                       CHAPTER III 
 

               BAYESIAN NETWORKS APPROACH 
 

           3.1 Bayesian Networks 

 

 A Bayesian Network is a “Probabilistic Belief Network” [17] represented in the 

form of a DAG (Direct Acyclic Graph) [6].  The properties of the Bayesian Network are 

summarized below. 

• Each node in the graph represents a variable or propositions.  

• The relationship between the variables is represented by the links between the 

nodes. For Example: If a node “A” is connected to a node “B” with a downward 

arrow, then node “A” is the parent of node “B” and it directly influences the node 

“B”.  

• Every node in the network has a conditional probability table to keep the specific 

influence ratio that all parents pass to this node. 

• There are no cycles in the graph. 

A simple diagram of a Bayesian network is shown in Figure 4. 

          
Figure 4: A Simple Bayesian Network. 
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We can compute the joint probability of all the nodes in the above network as given 

below. 

 

P (N1, N2, N3, N4, N5, N6, N7, N8) = 

 P(N5|N2) * P(N6|N3) * P(N7|N3) * P(N8|N3, N4) * P(N2|N1) * P(N3|N1) * P(N4|N1). 

 

 For each node in the network we can specify a conditional probability using a 

table of its ancestors and its possible value. This is called the Conditional Probability 

Table (CPT). Each row in the CPT represents a possible case for the nodes considered 

and the corresponding value involved. An example of CPT is shown in Table 1. If both 

the parent nodes N3 and N4 are true then the probability of N8 to be true is 0.8. Similarly 

the remaining three conditions of the nodes N3 and N4 result in the probabilities of 0.7, 

0.35 and 0.1 for N8 to be true. 

 

         N3           N4        P(N8=T) 

          T            T          0.90 

          T            F          0.70 

          F            T          0.35 

          F            F          0.1 

 

          Table 1: Conditional Probability for N8 
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     3.2     Classification of the user sessions using trained  

                                         Naïve Bayesian Networks of commands 

 

  We used the user’s truncated UNIX commands log files created by Schonlau et al 

[13] for training and testing. This dataset contains 15000 commands for 50 users. The 

first 5000 commands of each user are true commands, in other words these were 100% 

pure commands that were typed by the genuine user. The remaining 10000 commands 

contain interspersed masquerade sessions in them. A session consists of 100 commands. 

These commands for each user were built over a period of time using the UNIX 

accounting command that takes a log of user typed commands namely “acct”. After 

building 15000 commands for each of the 50 users Schonlau et al. carefully injected 

command sessions of another 20 users after 5000 commands of each user. So, starting 

from command number 5001 we have masquerade commands interspersed with genuine 

user’s commands.  

 Schonlau et al. used the first 5000 commands to train their models and then using 

these trained models the sessions after 5000 commands were tested for masquerade 

sessions without any idea of what a masquerade session would look like. Maxion and 

Townsend [12] went a step forward to create masquerade sessions using the 5000 

commands of the other users during the training session itself. This gave an idea of what 

a masquerade session would look like before the testing phase. Kwong H. Yung [18] then 

changed the method of updating the user sessions by using a self consistent update 

mechanism rather than single-step update mechanism. He also proposed a feedback 

mechanism to update sessions correctly. 
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   3.2.1 Naïve Bayesian Network    

 

 The analysis that we will perform will consists of two phases 

• Training Phase 

• Testing Phase. 

  In the training phase a user log file is chosen. The first 5000 commands of 

this log file will be scanned by our classifier and forms a model for the genuine user. We 

also create an artificial masquerader model for the user under investigation from another 

log file of 5000 commands that was formed by picking up sessions of 100 commands 

from the remaining user log files. This artificial masquerade file makes the remaining 

users masqueraders and tests the sessions of the investigating user with a prior knowledge 

of intrusions based on the formed masquerade model. After the training phase is complete 

we have a two-layered Naïve Bayesian network of commands and models. Such a 

network is shown in Figure 5. 

 

        
Figure 5: A Naïve Bayesian Networks of command proportions and Classes formed after               
     the training phase for a user 
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 In figure 5, U= Proper User Class that consists of probabilities of commands from 

the first 5000 commands in the user log file and M = Masquerader Class that consists of 

probabilities of commands from 5000 commands in the artificially created masquerader 

file. 

   The first layer of Bayesian network consists of probabilities of all possible 

commands seen in training and the second layer represents the class node that is derived 

from the command probability layer. For each user such Bayesian networks of commands 

and classes can be imagined. Since this is a simple classification problem based on the 

command count the above Bayesian networks setup forms our Naïve Bayes classifier. So 

the figure above is actually a naïve Bayesian network of possible commands proportions 

in one layer and the class to which such proportions of commands is assigned in the other 

layer. The command probability layer forms our model parameters and contributes to the 

mixture proportion of the class in the next layer. After the training phase the Bayesian 

network formed represents an initial configuration of user and artificial masquerade 

classes.   

 

        3.2.2 Deferral mode for classifying test sessions 

  

 Basically there are two types of classification in our test sessions. 

• Offline Classification 

• Online Classification 

 In Offline classification all test sessions can be classified with some lag. 

In other words we wait for the arrival of say “t” test sessions and only after the arrival of 
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the tth test session we would classify all 1 to t sessions. Offline classification allows 

backtrack updating of test sessions. This backtracking mechanism allows for a 

probabilistic classification of each test sessions rather than binary 0 or 1 classification 

provided by the Naïve Bayes classifier. Each test session is assigned a probabilistic score 

which is recomputed a number of times as and when new test sessions arrive. Since each 

test session is scored in a sequential manner until t test sessions arrive, offline 

classification produces better results. The fact that the Schonlau data is contaminated 

with successive masquerade sessions in 80% of the cases and that each test session is 

scored in an overlapping manner due to the wait on tth test session, the offline mechanism 

produces lower false and missing alarms. 

 Online classification makes a binary decision on each test session in a 

greedy fashion. In other words each session is classified at once as either proper or 

masquerade sessions. This could be harmful in cases where we have a false alarm and an 

update was not made, as this could cause more false alarms. The test session commands 

are added to the initial command proportions computed during the training phase as 

shown in figure 5. Hence, new probabilities are computed for each command during the 

testing phase. The larger the ratio of the probability of commands of User class to that of 

Masquerader class the greater the evidence of assigning the test sequence to the user. 

 Our Deferred Naïve Bayes Classifier is an Offline classifier. As 

discussed in the previous paragraphs we assign a probabilistic score to each of the test 

sessions and keep computing the multiple scores for each of the previous test sessions 

until some point where we need to classify all our test sessions. This means that we defer 

our decision to classify our test sessions until the arrival of say “t” test sessions. Once “t” 
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sessions arrive we make our classification of the waiting sessions that were “t” sessions 

behind. Such a deferral mode will surely produce optimal results than the simple Naïve 

Bayes classifier of Maxion and Townsend [12], since it also uses the information of “t” 

test sessions that follow to classify the waiting session.  

 

  3.2.3 Bayesian Network Detector for masquerade detection 

 

 In our analysis we propose to test for a wait on “t” sessions to classify test 

sessions. The trust node in our Bayesian Networks decides “t”. The Bayesian Networks 

detector that we propose makes use of the advantages of both online and offline 

techniques. In other words the Bayesian Network toggles between a Naïve Bayes 

Classifier and a Deferred Naïve Bayes Classifier based on a trust criterion. Such a 

Bayesian Network is shown in Figure 6. The figure shows two types of detectors working 

in parallel on the test sessions. Initially a trust level of 1 is set on the Naïve Bayes 

Classifier. As new test sessions arrive the trust level is computed based on the ratio of 

correct and incorrect classifications. An incorrect classification on complete real-time 

IDS would consist of only false alarms. In other words when there is a false alarm the 

genuine user reports it as a bug to a bug database. This information can be used to 

compute the new trust of our trust node. In our analysis we already know the 

classifications of all the test sessions. This is because we interspersed some masquerade 

test sessions into the genuine user sessions. So we computed incorrect sessions based on 

this test session classification table. In other words our incorrect classifications accounted 

for both false and missing alarms. 
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 A threshold of 0.7 was set on the trust node. This threshold limit is adjustable and 

it represents the maximum erroneous classifications that our detector would accept. Once 

the trust on the Naïve Bayes classifier is reduced to 0.7, our Bayesian Networks Detector 

fires the Deferred Naïve Bayes Detector to classify the test sessions it has seen so far. 

This includes the new test session, which was not classified by Naïve Bayes Classifier. 

After this classification the trust node is reset to its initial setting and the Naïve Bayes 

Classifier model is updated with the Deferred Naïve Bayes Model. This tunes the Naïve 

Bayes Classifier and we could expect better results than before since the substituted 

model is from an offline classifier. 

         

 Figure 6: Bayesian Networks Detector with Naïve Bayes and Deferred Naïve  
      Bayes Classifiers.  
 
 
 In Figure 6, NB = Naïve Bayes Classifier and DNB = Deferred Naïve Bayes 

Classifer. The trust node (Trust) toggles between the Naïve Bayes and Deferred Naïve 

Bayes based on the threshold set. When the Deferred Naïve Bayes Classifier announces 

its results, we could even crosscheck if some of our previous sessions were classified 

incorrectly by the Naïve Bayes Classifier. 
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      3.2.4 Offline classification of Deferred Naïve Bayes Classifier  

 

  A Deferred Naïve Bayes Classifier performs an offline classification of a session. 

Whenever a new test session arrives, we compute the model parameters pc and p’c for 

each command by including the test session commands with the already existing model 

parameters. A detailed explanation of these parameters is presented in section 3.2.5. 

When computing the model parameters we use the expectation formula to compute the 

probability that the session is a masquerade or proper session. This is given as a score for 

the current session. In the Naïve Bayes classifier we make an instant binary classification 

decision.  

 Since we provide a probabilistic score we can keep scoring the current test session 

until a point where we could say that the session has a good evidence to be classified as a 

proper or masquerade session. The fact that Schonlau’s data has continuous proper and 

masquerade sessions, help in this offline classification of test sessions. Thus a test 

session’s decision can be deferred until we encounter few more test sessions so that the 

probabilistic score that is assigned to the test sessions becomes more trustable so that we 

could now classify the session without much doubt. A mathematical explanation of this 

discussion is provided in session 3.2.5.  

 

  3.2.5 Explanation of Naive Bayes and Deferred Naïve Bayes 

 Classifiers 

  The Naïve Bayes classifier was explained in section 2.4.1 where we provided a 

brief introduction to the Bag of words model. For each session a certain probability of 
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every command occurs based on its count in that session. This probability of a command 

now becomes our point of focus. To be precise, the probability that a test sequence of 

commands “x x y y x” was generated by user1, u1, is: 

   Pu1,x  *  Pu1,x  *  Pu1,y  * Pu1,y * Pu1,x  

Or (Pu1,x)
 3 * (Pu1,y)

 2, where Pu1, x is the probability that user1 typed the command x. 

Based on the command probabilities we now build a session node that has a conditional 

probability of all commands that form its parent node.  

 Similar probability estimation will be made for session2 also and in this manner 

all the sessions in training will have their respective parent command nodes contributing 

their probability of occurrence for each of the session nodes. This is clear from Figure 7. 

The first layer shown in figure 7 is a layer of command probabilities and the second layer 

has two different nodes. The S node represents the genuine user sessions and the M node 

represents the artificial masquerade user sessions during the training phase. The arrows 

from layer 1 to layer 2 indicate that each session receives some contribution of command 

probability from layer one. 

 One important thing to be noted here is if there is no contribution by a command 

in a session then its probability contribution is assigned a value “α” equal to 0.01 (see 

section 2.4.1). “α”  is called the psuedocount and is added to both the numerator and 

denominator of the Bayes formula shown in section 2.4.1.In this way we form a complete 

set of training session nodes for both the proper sessions and the artificial masquerade 

sessions.  

Figure 7 represents the Bayesian network consisting of 50 genuine sessions of a 

user and 50 artificial masquerade sessions picked from the remaining 49 users. That is if 
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we are monitoring user1’s commands then the remaining 49 user’s (user2 to user50) 

sessions will form artificial masquerade sessions for user1. In this way we can build our 

Bayesian network for each of the users under surveillance. For each of the session nodes 

the respective conditional probability is calculated based on the commands in that 

session. These conditional probabilities can be later used for classifying future test 

sessions and updating them into the network. An example CPT is shown in table 2. 

   
 Figure 7: Bayesian Networks for the set of artificial masquerade and   

      proper sessions after training phase. 
 

 
 
 
               
 
 
 

 
 
 
Table 2: CPT for various sessions based on the command count Probabilities. 
A Similar table can be constructed for masquerade sessions also. Since this is a 

command counting problem considering only session information in the training phase 

to classify sessions will not be of great help. Instead of computing the conditional 

probabilities of each session we could compute the conditional probability of all 

commands in the training phase and form masquerade and proper classes. The stronger 

P(C1)  P(C2)        …  P(Cn)     P(Si)  
0.0002 0.0003        …  0.005  0.000034 
0.009 0.0008        …  0.0007  0.000056 
    . 
    . 
    . 

    . 
    . 
    . 

        . 
        . 
        . 

    . 
    . 
    . 

        . 
        . 
        . 
 

0.0023 0.0000034        …  0.000789  0.0000089 
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the evidence, the chances of a correct classification increase. Moreover, it is very 

difficult in reality to expect accurate classifications using a session’s conditional 

probability.  Thus in practice we don’t compute the conditional probability values as 

explained above in Table 2. Since we know the identity of all the training sessions we 

consider the joint conditional probability of all the training sessions and we compute 

two classes as shown in Figure 5.  

As explained before we classify our new test sessions using a Bayesian trust 

network that toggles between a Naïve Bayes and Deferred Naïve Bayes Classifiers. 

So, before testing begins the classes that were formed in training are used as initial 

classifiers. We update this initial classifier during our testing phase and use this updated 

classifier at each step to classify future sessions. Actually we build two different 

classifiers for our Bayesian Networks approach, one for Naïve Bayes and another for 

Deferred Naïve Bayes. Once the trust node toggles to Deferred Naïve Bayes we first 

classify the new test session with the Deferred Naïve Bayes model, replace our Naïve 

Bayes classifier model with the Deferred Naïve Bayes classifier model and then proceed 

with this model on the Naïve Bayes classifier. Once again our Deferred Naïve Bayes 

model starts its offline classification all over again and waits for its chance to classify the 

test sessions.  

     3.3 A Mathematical analysis of Naïve Bayes and Deferred Naïve Bayes 

     Classifiers 

 

 The following discussion illustrates the mathematical model of the 

classifiers used in the masquerade detection problem. 
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We first explain how we compute the model parameters for naïve Bayes 

classifier and then present how expectation scores were computed for Deferred Naïve 

Bayes classifier. This is followed by a brief explanation of the Bayesian Network 

toggling approach.  

 

1. Conditional Probability of a session of  Uk (User k) based on the probabilities of 

command frequencies is, 

   )()(
1

∏
=

=
n

i

ik CPSP  , Where P (Ci) is the probability of occurrence of command ‘i’ 

in the session k of 100 commands and P (Sk) is the conditional probability of the 

session k based on the command frequencies. 

i.e. P (Sk) = P(C1)
Nuk1P(C2)

 Nuk2…P(Cj)
 Nukj, for all Ci with NUki (Number of times 

user k used command j) > 0 i.e. if there is no contribution of a command in a 

session then that command is assigned probabilities based on our adjusting 

parameter α  as explained in section 2.4.1. 

 

2. Let Cs denote the sequence of commands in session number “s”. By Bayes 

inversion formula the posterior probability P (U|Cs) of user U given the sequence 

s is, 

P (U|Cs) = P (Cs|U) P (U)/P (Cs) i.e.  α  P(Cs|U) P (U). 

Where, P (u) is the prior probability for user u, and P (Cs|U) is the probability that 

the sequence Cs was generated by user u. In practice, Cs is assigned to the user 

 u0 = argmax{P (Cs|u) P (u) |u = 1, 2…, U}, among U different users. In other 

words, the session Cs is assigned to the user u0 who most likely generated that 
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session. This rule is the optimal Bayes rule under the usual uniform loss function 

for misclassification. In the naive-Bayes model, each command is assumed to be 

chosen independently of the other commands. User u has probability PUC of 

choosing command C. Because each command is chosen independently, the 

probability, P (Cs|U), that user u produced the sequence Cs = (cs1, cs2 . . . , csk . . . , 

cszs) of commands in session number s, is simply 

   , Where 

 , is the total count of command c in session “s” [4]. 

 

3. From now on let pc and p’c be the probability of command c in a proper and 

masquerading session respectively. We compute the log likelihood Ls of a test 

session s up to an additive constant as shown in equation 1 

 Ls = (1 - l s) (log (1 - ε  ) +∑
=

C

c

pcnsc
1

log ) + l s (log ε  +∑
=

C

c

cpnsc
1

'log )              (1) 

  ε  and 1-ε  are the prior probabilities that a session is proper and 

 masquerading. In our entire analysis these values where fixed to 0.5.  

  Assuming that all the test sessions are generated independently of each 

 other, the cumulative log-likelihood Lt after t test sessions is up to an additive 

 constant 

 Lt
+ =  ∑

=

t

s
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 = ω t
+ log (1 - ε ) + ∑

=

+
C
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pc log nt  + ω ’ t
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 Here  ω t
+ and ω ’ t

+ are the cumulative numbers of proper and 

masquerading sessions respectively; nt
+c  and n’t+c are the cumulative counts of 

command c amongst proper and masquerading sessions, respectively, in the t total 

observed test sessions.     

 

4. Rare classes and rare commands may not be properly reflected in the training set. 

Therefore to avoid zero estimates, smoothing is applied to the maximum-

likelihood estimators. This smoothing can also be motivated by shrinkage 

estimation under Dirichlet priors on the parameters ε , pc  and p’c 

Here the parameters ε , pc  and p’c are drawn from known prior 

distributions with the fixed parameters, and simple standard Bayesian analysis is 

applied. Based on this discussion we compute the new cumulative posterior 

likelihood L~t as in equation 7. 
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Here, n0+c and n’0+c are the total counts of command c in the proper and 

masquerading sessions of the training sessions. 

 

5. Using equation 7 we compute our model parameters ε , pc  and p’c as shown in the 

equations below, 

                    (8) 

 

                                                (9) 

 

                (10) 

 

After the training phase we compute initial classifier model θ 0 by 

neglecting the test session command counts in the equations 8, 9 and 10. As the 

test sessions arrive we include the test session command counts and compute 

the new model parameters, which reflect the influence of the test sessions. 
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6. If we use Naïve Bayes classifier then we need to immediately classify the newly 

arrived test session. This is done by finding out the ratio of the newly obtained 

model with the initial model. If the ratio of pc  to pc0 is greater than p’c to p’c0 

then we classify the test session as proper session, else as masquerade session. 

 

7. In the case of Deferred Naïve Bayes classifier we use probability values to 

estimate the test sessions proximity of being a masquerade or proper session. 

Equation 11 below shows how a session can be assigned a probability value. Let 

us call this a score. Hence our test sessions are scored as and when they arrive. 

Since we use a backtracking method to score our test sessions we keep updating 

the scores as new test sessions arrive. In other words multiple scores are provided 

for each of our already seen test sessions before we see the last or the tth test 

session. At this stage when the tth test session arrives our Deferred Naïve Bayes 

classifier classifies the test sessions as proper or masquerade if the probability 

scores are below and above 0.5 respectively. 

The equation used to score each of our test session is as below, 

  P(ls=1|Cs;θ t) = (P(ls=1;θ t) P(Cs|ls=1;θ t ))/P(Cs;θ t)        (11) 

 where, 

  P(Cs;θ t) = P(ls=0;θ t) P(Cs|ls=0;θ t )+ P(ls=1;θ t) P(Cs|ls=1;θ t ).  

 

8. Our Bayesian network first places a trust of 100% on the Naïve Bayes Classifier.  
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So we consider the model parameters computed by this classifier initially to 

classify our test sessions online. Each time when we classify a session incorrectly 

the trust value on the node is adjusted based on the ratio of correct to incorrect 

classifications. Once the trust level reaches 70% we toggle to our Deferred Naïve 

Bayes Detector, which was running in parallel, and classify all the sessions it has 

seen at this point. Thus the Deferred Naïve Bayes Classifier also classifies our 

new test session. At this point we update our initial Naïve Bayes model with the 

Deferred Naïve Bayes model and reset our trust node to 100% on the Naïve Bayes 

Classifier. Thus a more reliable model is now used to classify our future sessions 

using Naïve Bayes Classifier.   

 

9. During our classification of test sessions we also build a table of hits, false alarms, 

and missing alarms. This table was used to calculate the trust on the trust node 

and was also helpful to draw ROC curves during our final analysis. 
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CHAPTER IV 

          CLUSTERING OF COMMAND SESSIONS  
 

       4.1 Clustering Technique 

 

 Intrusion detectors that use audit data such as command sequences handle 

voluminous information in order to classify test sessions. More data as backend implies 

more storage area and hence more information to peruse before making a decision. 

Clustering of command sequences also has the same problem of dealing with huge audit 

data during the training phase but once dense clusters are formed the centroids of clusters 

become our point of focus. Thus there is a possible data reduction during the testing 

phase as only cluster centroids can be used while matching a test session.  

   To form clusters of command sequences we first divide a command session into 

a number of overlapping sequences. Once the sequences are formed they are clustered 

based on a sequence match criteria. Finally we have a centriod that represents the cluster 

characteristic. The amount of data to be handled while forming a cluster of similar 

records with a centroid that holds the mean characteristic of the cluster is huge [8]. A 

centroid of a cluster is like a black hole that attracts the members of the cluster toward it. 

Mathematically, a centroid is the mean value of a set of values that are closely related. 

This close relation of the members of the cluster is the most important factor of all 

clustering algorithms. After clustering, the centroids of the clusters become the point of 

interest and thus the rest of the information is deemed outdated. So while testing we can 

compare our test sequences to the cluster centroids. This might be considered as an 
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advantage of clustering technique but this also depends on the density of our clusters. The 

denser clusters will have less number of centroids to compare with our test sessions.   

Clustering approach was initially used in data mining field to cluster real time 

data and compute their likelihood patterns based on the formed clusters [5]. We propose 

an online clustering approach, which is a variant of the data mining approach presented in 

[5]. Our Clustering approach is further classified into three techniques based on the 

sequence rating mechanism in the testing phase. We propose this clustering analysis to 

study its feasibility as an Intrusion Detection System in real time. Also we compare the 

results of clustering and Bayesian Networks analysis by plotting ROC curve in section 

5.3.2.2. 

With this general picture of clustering of command sequences we now explain the 

components of our clustering mechanism and discuss our clustering algorithm in the 

following sections.  

 

       4.2 Clustering scenario of Masquerade detection using command lines.  

 

 Any solution proposed to a problem views the problem in its context. A clustering 

solution to our problem of detecting masquerades can be viewed as consisting of the 

following components. 

1. Audit Data Creator 

2. User Profile Creator 

a. Sequence Grouper 

b. Sequence Analyzer 
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c. Frequency Counter 

d. Cluster Tuner 

3. Validity Checker 

a. Sequence Scorer 

b. Alarm Raiser 

4. User Profile Updater 

          The above blocks work internally communicating with each other for two 

phases namely Training and Testing phase. A block diagram with the 

communications between various components is shown in Figure 8. A complete 

description of the components is also presented after the block diagram. 

   

                             Figure 8: Masquerade Detector based on clustering of user             
             command sequences. 
  
 
Audit Data Creator  – A Log File creator that stores the log of user commands during a 

login logout session to a database called User Log Files (ULF). 
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User Profile Creator – Based on the clustering scenario a user profile creator can be 

defined as user command sequences grouper. If we present sequences of commands to a 

UPC (User Profile Creator), the output will be clusters of command sequences. A profile 

of user “u” is denoted by “Pu” which represents the set of all clusters of user u’s 

command sequences that were formed using the clustering algorithm i.e. 

           Pu = {C1, C2, C3… Cn}, where C1… Cn are clusters of user u’s command 

sequences. 

 

Sequence Grouper – A sequence grouper is a component that clusters the command 

sequences presented to it. Generally it contains the algorithmic implementation of 

clustering. 

 

Sequence Analyzer – This component examines the command sequences and finds the 

similarity between two sequences based on the underlying principle. Generally the LCS 

(Longest Common Subsequence) principle is used to match similarities between two 

sequences. Other techniques used for similarity matching are MCP (Match Count 

Polynomial Bound) that matches each slot of the command sequences considered for 

similarity checking, MCE (Match count Exponential Bound) that has an exponential 

influence for each slot that matched and MCAP (Match Count Adjacency Reward 

Polynomial Bound) that matches adjacent slots of command sequences. 

 

Frequency Counter – This section counts the distinct commands occurring in each 

sequence. It basically finds out the frequency of occurrence of each command in a 



 41

sequence. In order to find the similarity between two command sequences s1 and s2 we 

compute both the LCS and the command counts, we then match the sequences based on 

both LCS and the command counts. 

 

Cluster Tuner – The job of cluster tuner is to either split a cluster or join two clusters. 

This is explained in the algorithms given below. 

 

Validity Checker – During the testing phase this component checks the validity of the 

command sequences that are to be clustered. Validity is computed based on scoring given 

to each new sequence. 

 

Sequence Scorer – Each of the new sequence is scored based on one of the three 

techniques namely, Previous_n, Weighted and Decayed Weight techniques [10]. 

 

Alarm Raiser – This component raises an alarm if an anomalous sequence is found. 

 

Profile Updater – If a normal command sequence is found then this sequence is updated 

to the user profile i.e. it is pushed to a particular cluster. The Profile updater’s job is to 

carry out this updating of normal command sequences. 

 

                        4.3 Clustering of command Sequences – Training phase 

 The job of the sequence grouper is,  

• To cluster the command sequences based on the similarities.  
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• To compute the new centroids of the clusters.  

 

A sequence “i” of length “j” denoted by Sij is a set of j commands as shown in equation 1. 

  

                           Sij = {C1, C2   .  .   .   , Cj}, where j = 10, 11…100       (12) 
 
During the training phase a sequence is selected from the session log file and the value of 

j is set to integral values in the range [10,100]. In the testing phase the sequence grouper 

waits for online j commands and forms a sequence. 

 Two sessions S1 and S2 are considered to be similar if, 

  Match (S1, S2) ≥  Tr, Where Tr is the threshold set for similarity.                  (13) 
 
 
 A Match of two sessions Si and Sk is defined by the following equation, 

  Match (Si, Sk) = LCS (Si, Sk) + MCAP (Si , Sk )         (14) 
 
 
 In equation 14 LCS is the Longest Common Subsequence between the two 

sequences Si, and Sk, and MCAP is the Match Count Adjacency reward Polynomial 

Bound. 

The Sequence Grouper Algorithm for forming clusters is given below. 

 
Sequence Grouper (Tr, Su, pu, Su

c): 
 
 /* Tr is intra-cluster similarity threshold 
     Su is a set of a user u's sequences to be clustered 
     pu is the user u's profile, i.e., set of clusters 
     Su

c is the set of user u's cluster centers 
     Cx is the cluster for center x*/           
 

1. Initialize pu =φ , Su
c =φ , Cx = 0. 

2. Randomly select a cluster center from Su and update both Su and Su
c  

      i.e. Su
c = {Sl} and Su = Su - {Sl}, where Sl = sequence l considered as centroid. 
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3.   Initialize the Cluster set to φ  i.e. Cu =φ . 
4.   Include the center to the Cluster Cx i.e. Cx = {Sl } 
4.   While Su ≠ φ  do 

      5.    For j = 1 to sizeof(Su)     
                       If (Match ((Su

c) x, Suj) ≥  Tr then (Where (Su
c) x the cluster centroid  

       that produces the best match) 
              Cx = Cx  Υ {Suj} 

            Else Su
c =  Su

c Υ  { Suj}
   

6                    Cx = Cx Υ  (Su
c)x 

7.              Su = Su – ((Su Ι  Cx) Υ  (Su
c - (Su

c)x ) ) ) 
8.      Recalculate the cluster centre for the cluster Cx say RCCCx 

9.     (Su
c)x= RCCCx 

10.     Cu = Cu  ΥCx (We assume that this is the latest updated Cx )      

11.      pu = pu Υ  Cu 

12. If a new sequence arrives Su = Su ΥSNew 

 
 
                                        4.3.1 Cluster Tuning 

 

 Another important component of the sequence grouper is the cluster tuner. The 

main job of the tuner is to join two similar clusters or split the discrepancies in cluster 

into two. This actually means that we are now fine-tuning our clusters so as to reduce the 

inherent noise in the cluster. The two algorithms are given below, 

//T’ be the inter cluster similarity threshold 

   Join (T’, pu, Su
c) 

1. For each pair of clusters ci and cj in the profile pu, i ≠ j 
2. If Match(ci , cj ) >= T’ 

                   ci = ci  Υ  cj // We can now unite the two clusters 

3. Recalculate the centroid for ci. 

4. pu  =    pu - cj 
5. Su

c = Su
c - Scj 

 

  
   Split (T, ST’, pu, Su

c) 
 

1. For each Cluster ci in  the profile pu 
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2. If (T >= ST’) SequenceGrouper(Tr+1, ci , pu, Su
c) 

3. pu  =    pu - cj 
4. Su

c = Su
c - Scj 

 
                                   

                              4.3.2 Recalculating Cluster Center 

 
 
 To recalculate cluster centers we use a lazy technique that computes 

cumulative scores considering each sequence in the cluster as the new cluster center. 

Finally the sequence with the maximum cumulative score is elected as the new centroid. 

 To match two sequences we again use the same matching criteria as shown in equation 

14.  

 Thus the new cluster centre is based on the following scoring mechanism, 

New Cluster Center = Max (Cumulative Scores of each sequence “i” in the cluster), 

where, 

 Cumulative Scores of each sequence “i” in the cluster =∑
=

t

i 1
∑

=

t

j

SjSiSim
1

),( , and i<>j. 

 

             4.4 Influence of Threshold value in cluster formation 

 
  
 Threshold values are the percentage of acceptance values that are set based on the 

problem situation and observer’s approximation. Any approximation that has a threshold 

value toward its upper bound will tend to form stringent clusters but most of the 

situations don’t want this rigid cluster formation, as the tendency to strike false alarms is 

higher. In other words strict threshold values reject similar values that were supposed to 

fall into a cluster if the rules weren’t rigid. It is therefore advisable to iterate the 
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algorithm with a loosened threshold value until we get a close match for all the values to 

be clustered. Here again we assume that all the values that were intend to be pushed into 

a cluster are proper values. We now determine a mathematical explanation for threshold 

fixation. 

 Let Tr be the threshold value to be set for clustering our command sequences,  

iω , be the density of the ith cluster that was formed based on Tr. Tr must be chosen such 

that equation 6 is met, 

                                   ∑
=

∞→

n

i

i

1

)( ω                                                                         (15) 

  i.e. our threshold value should be such that we form more dense clusters. To 

achieve such cluster formation is not easy. In most cases we try to approximate the 

threshold values after some iteration.  

 We now discuss the technique of choosing the threshold value for our situation. 

Firstly, a command sequence length “l” is decided. Thus each sequence of commands 

will be of length “l”. This length can be chosen at random, let us say l=10 in our case. 

Now, threshold value is actually an integer value that approximates two sequences based 

on the matching function Match (S1, S2) (For Ex: sequences S1 and S2 are considered). 

If threshold Tr = 10, then we are looking for sequences such that their LCS + MCAP of 

their commands is >= 10, so as to cluster them. If we are not able to cluster some of the 

command sequences then we drop our threshold by a scale of 1. This is done until we 

reach a limit such that Tr is at least 6. That is we have an approximation of about 60%. 

After this approximation if we are still not able to cluster some of the commands we keep 

them as it is. All of the above discussion holds good for training phase. 
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 Generally, setting threshold value to the upper bound has its own cost of raising 

false alarms. If we set the cost function to be as below, 

                                   Cost = misses + false alarms          (16) 

We can actually have a threshold close to the upper bound. The reason is that we give 

same weight for both misses and false alarms. If the cost function was like in equation 8 

then its better to choose a threshold value somewhere close to the lower bound.   

                                  Cost = misses + 6(false alarms)         (17) 

 In equation 17 it is very costly to get a false alarm so we need to balance this out 

with our reduced threshold value. Thus choosing threshold value is critical to clustering 

problem. 

 

                                                4.5 Testing Phase 

 

 The testing phase of the clustering scenario is an online testing scenario. 

Whenever sequences arrive online we rate the sequences based on a Scoring mechanism. 

After scoring a sequence, the score value is checked with an accept threshold value to 

either cluster this sequence or reject it. If the scoring value is significantly below the 

accept threshold then the sequence is considered anomalous and immediately an alarm 

will be triggered. If the scoring value is >= threshold value then we consider this 

sequence to be produced by a normal user and thus we update this sequence to the 

already existing user profile. The accept threshold is an empirical value that is computed 

based on observation of some test sequences.  
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 The scoring mechanisms that will be used in this project are LAST n, 

WEIGHTED and DECAYED WEIGHTS.  These are explained below. 

LAST n – Here first n sequences in the testing phase are rated cumulatively and the later 

sequences are judged based on these n sequences. The rating mechanism can be 

mathematically represented as, 

                                        Rj = 1/ (j+1) )put,s'(
0
∑

=

=

jt

t

Sim  , if j<n   

                                                                 Or 

                                          Rj = 1/n ∑
+−=

j

njt

putsSim
1

),'( , if j>=n                                          (18)                                

WEIGHTED – Here the weighted mean of the last sequence’s rating is incorporated into 

the current sequences Similarity measure. The mathematical representation is given as, 

                                          

                 SCj = α  * Match (sj, pu) + (1- α ) * SCj-1                                                                                  (19) 
 
 
Here we can fix α to be a finite nonzero quantity. Generally it is fixed to 0.33. The match 

function in equation 5 actually computes the match of the new sequence with the cluster 

center for each cluster. In the equation SCj-1 actually refers to the last accepted sequence 

before the sequence j. Thus we also weigh this new sequence j with respect to the last 

accepted sequence j-1. This kind of cumulative scoring helps maintain the characteristic 

of the new sequences with already matched sequences.  

 

DECAYED WEIGHTS – This is a variation of Weighted means mechanism. Here α  is 

varied based on the current sequence. Mathematically it can be represented as, 
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                 SCj = α j * Match (sj, pu) + (1- α j) * SCj-1          (20)                                                                                    

Where α j  = α j-1 /α j-1+1-log(z/(y+j)),  and α 0 =1. Thus α j is a decaying weight as long 

as 1 - log( z/(y+j )) > 0 , also y = 6750 and z = 7500 in our analysis. 

   

               4.5.1 Predicting acceptable and unacceptable Command sequences 

 

 In order to classify the sessions that occur online as either proper or masquerade 

sessions we use the above scoring mechanisms. We empirically choose an accept 

threshold score called Seq_Accept. If the score calculated for a test sequence is >= this 

Seq_Accept value then we consider the new session as a proper session. We now call the 

Sequence Grouper algorithm to cluster this new session with the already existing clusters.  

 Profile updater does this clustering of the test sequences. The profile scorer 

carries out calculating the scores. The alarm raiser’s job is to raise an alarm if an 

anomalous session is found. Once the newly scored sessions are updated to the user 

profiles we now have a more reliable user profile database to refer to in order to classify 

future sessions. 

  4.6 Steps Involved In Training and Testing Phase 

 

The definition of keywords to be used in both the phases is given below. 

� A Command Sequence Si is a finite set of 10 commands and is represented as 

                         Si = {C1, C2, C3, …C10}. 

� A Command Session Sei is a finite set of 10 command sequences i.e., 

                         Sei = {{S 1}, {S 2}, {S 3}, … {S10}}. 
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� A Cluster Ci of command sequences is defined on a Centroid i represented as Sc
i is 

a set of sequences that match closely to the centroid i and is represented as 

                           Ci = {Sj, Sa , Sn…, Sp }. 

� A profile Pu is a set of clusters that are obtained during training session i.e., 

                Pu = {C1, C2, C3… Cn}, where 1, 2...n represent the cluster centers. 

 

                                     4.6.1 Training Phase 

 
 

1. Randomly select a cluster center and try to cluster other sequences in the session 

to this centroid using the match criteria Match (Si, Sj) >= Tr. 

2. All sequences that are not clustered are considered as a set of unclassified 

sequences and a new cluster center is considered randomly for this set. Step 1 is 

then followed for this set also, this will continue until there are no more command 

sequences to cluster. 

3. In Step1 when a cluster is formed the profile of that user for whom training is 

done is updated with the cluster center. Therefore, finally when training is done 

the profile set will consist of all the cluster centroids. 

4. Once we form clusters, our next step is to tune the clusters by either joining or 

splitting them. To join two clusters we match the two centroids of the clusters. If 

we find a match we then merge the two clusters and recalculate their centroids. To 

split a cluster we pick centroids in the profile and calculate the threshold value 

based on the matching function. If this value T is much greater than the assigned 
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sequence threshold value for the centroid, we split the cluster using the Split 

algorithm. 

 

                                            4.6.2 Testing Phase             

 

1. In this phase first online command sequences are formed as the commands arrive. 

2. Each sequence is scored based on the weighted scoring phenomenon. 

a. The first sequence is scored independently  

b. The sequences that follow are scored with some weight given to the 

previous accepted sequence. 

3. After, a sequence is found to be acceptable; it is updated to the user profile by 

using the Sequence Grouper Algorithm.  

4. If a session is found to be anomalous then an alarm is triggered. 
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                                            CHAPTER V  

        BAYESIAN NETWORKS VS CLUSTERING ANALYSIS 

 

                                       5.1 A Comparative Study     

 

 Probabilistic and Clustering analysis simulators were created in C#. The User 

interfaces of these two simulators are shown in Figure 9 and Figure 10. The output 

Bayesian Networks simulator is a text file named UserX_Classifier.txt. This file contains 

the classification of test sessions into Proper and Masquerade sessions based on the 

probabilistic model θ = { cppc ',,0ε } for each command. Clustering analysis on the 

other hand produces five output text files for each analysis; these files are named as 

UserX_Classifier.txt, UserX_Sequences.txt, UserX_TestSequences.txt, 

UserX_ClustersWithScores.txt, and UserX_Testing_ClustersWithScores.txt. The 

Classier.txt file has the classification of each test session as Masquerade and Proper 

session based on the sequence rating mechanism chosen. Each session also has 

sequence’s rating along with its classification information. The Sequences.txt and 

TestSequence.txt files contain the sequences that were formed during training and testing 

phases respectively. Finally, the ClustersWithScores.txt and 

Testing_ClustersWithScores.txt files contain the clusters that were formed during training 

and testing phases. A brief overview of these two detectors is given in the following 

section. 
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 5.2. An Overview of Probabilistic and Clustering Intrusion Detectors 

            5.2.1 Bayesian Networks Intrusion Detector    

 

    

 Figure 9: A snapshot of Bayesian Networks Intrusion Detector after training  
        phase.  
 
 
 In figure 9, the Command Statistics group box shows the histogram of commands 

and the Probabilistic Model for each command is shown in the Results group box. In 

order to compute a proper and masquerade model for each command used by UserX, the 

UserX’s log file and a Maquerade log file should be selected from the UserID List and 

Masq ID List respectively. Clicking on the Train button now would generate the initial 

probabilistic model for each commands based on the first 5000 commands in the chosen 

user’s log file. The Command Statistics group box and the Results group box display the 

initial model parameters θ 0 of each commands used so far by the user. 
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 To test the command sessions simply click on the Test button. A message box 

containing the online classification of the session under investigation is displayed. This 

continues for all the test sessions. Internally two algorithms are executed in parallel. As 

explained in section 3.2.3 the trust node toggles between the Naïve Bayes and Deferred 

Naïve Bayes Algorithms. Finally the results of classification are backed up in 

UserX_Classifie.txt file.                      

                  5.2.2 Clustering based Intrusion Detector 

 

 

     Figure 10: A snapshot of Clustering Analyzer of command sequences when analyzing       
            User18.txt log file. 
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                5.2.2.1 Steps to perform clustering analysis 

 
 

1. Open a User log file for training using the Open button 

2. Select the Sequence Length and the Number of Commands to train from the 

combo boxes in Command Sequences creation group box. 

3. Click on Create Sequences to create command sequences. The output file 

UserX_Sequences.txt will be created at this step. 

4. To view the created sequences click on View Sequences button. This would pop 

up a dialog box showing the command sequences that were created. 

5. Set a threshold value using the slider control and click on the Cluster Sequences 

button. This results in the creation of UserX_ClustersWithScores.txt file that 

contains the clusters with a center sequence and the clustered sequences appended 

with their similarity Score with the center sequence. 

6. We now enter the testing phase. To test the command sessions select the number 

of sessions to test, the sequence rating mechanism and an Accept threshold value; 

click on the Test Sessions button to perform profile based testing.  

7. The result of Testing is three text files namely UserX_TestSequences.txt that 

contains all the sequences that were tested, 

UserX_Testing_ClustersWithScores.txt that contains the updated clusters that 

were formed during the testing phase and UserX_Classifier.txt that contains 

classified test sessions based on the Accept threshold and the Sequence rating 

mechanism used on the test sessions.  

8. Results in UserX_Classifier.txt can be used to plot ROC Curves for clustering 

analysis. 
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    5.3 Results and Discussions 

  5.3.1 Probabilistic analysis of truncated UNIX commands 

    5.3.1.1 A modified data scenario 

 

 Probabilistic analysis can also be carried out on command sessions with modified 

UNIX commands. Truncated UNIX commands from the Schonlau’s Masquerade data 

files can be appended with arguments to enrich the data. A data pre-processing step will 

be used to enrich some of the commands. For example, the truncated command ‘vi’ can 

be appended with the file name of the file that was viewed with the editor i.e. ‘vi’ can be 

enriched to ‘vi <File Name>’. The file name in the angle bracket now distinguishes this 

‘vi’ command from other ‘vi’ commands in the user dataset.  

In the masquerade detection scenario we assume that every user considered has a 

pattern of command usage based on the current project. Moreover, the user profiles are 

revamped based on the active project that he/she works on. The enrichment of some of 

the commands would certainly work in such situations. In case if the intruder targets on 

opening some files that the privileged user cares no more due to project change, this 

could be marked as an intrusion. Such patterns of file accesses can be added into the user 

log file’s test commands region and considered as a masquerading data pattern. To be 

more practical the training data can also added with some enriched commands to account 

for the enrichment in the test data. 

In our probabilistic analysis we only considered truncated UNIX commands from 

the Schonlau’s User log files. We limited our analysis for four users and followed the 

same for the clustering analysis also. It is beyond the scope of this thesis to include 

enriched commands and may be considered as future work.  
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     5.3.1.2 Analysis  

 

 A limited analysis was carried out due to time constraints. The following 

discussion explains how the proper and masquerade data model was built for four users. 

The Schonlau data for 50 users was used as a user data pool and just 4 users were picked 

from it to carry out our analysis. For these four users a proper and masquerade data 

model was built and the sessions were tested based on the built models.  

We Considered analysis of User1, User9, User10 and User18 log files for our 

masquerade detection problem. For detecting masquerading test sessions of User1 the 

probabilistic analysis was carried out as follows: the first 5000 commands from the log 

file of User1 was trained to build a proper user model for User1. To build a masquerade 

model for User1, 5000 commands in sets of 100 commands, making 50 sessions were 

chosen from the rest of the users and trained. The result of training was the model 

parameter θ  (ε 0, pc0, p’c0) for each command, which was computed from log likelihood 

estimation formulas. 

During the testing phase new model parameters were computed using the 

likelihood estimation formulas and finally the difference between these parameters and 

the previous step’s parameters were computed and compared to a threshold. If this 

threshold limit was not crossed then the test session was reported as a masquerade 

session, else the new session was updated by re-calculating the model parameter. The 

Bayesian Networks toggles between a Naïve Bayes and Deferred Naïve Bayes 

Algorithm. Based on the trust mechanism explained in section 3.2.3 the best classifier is 

chosen at proper time and the online classification of test sessions is continued using the 
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Naïve Bayes classifier after the its current model is replaced by the Deferred Naïve Bayes 

classifier’s offline model. 

The results of our above analysis using Bayesian Network method are shown 

below.  In this discussion only the sets of classifier graphs for four users that point out the 

proper and masquerade sessions are attached. After discussing the Clustering analysis the 

hit rate to false alarm rate graphs are discussed as ROC curves. 

 

           

        Figure11.1:  True classification of 100 Test Sessions for User1 
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  Figure 11.2: Bayesian Network Classification of 100 Test Sessions for User1 

 

 

    

 

 

                   

 

 

 

 

 

  Figure 12.1: True classification of 100 Test Sessions for User9 

 

 

 

User9 Probabilistic Analysis

0

1

1 11 21 31 41 51 61 71 81 91

Sequence Number

C
la

ss
 In

d
ex

 (
0 

- 
P

ro
p

er
 ;

 1
 -

 M
as

q
u

er
ad

e)

True Classification



 59

               

 Figure 12.2: Bayesian Network Classification of 100 Test Sessions for User9 
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  Figure 13.1: True classification of 100 Test Sessions for User10 
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Figure 13.2: Bayesian Network Classification of 100 Test Sessions for User10 
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  Figure 14.1: True classification of 100 Test Sessions for User18 
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 Figure 14.2: Bayesian Network Classification of 100 Test Sessions for User18 

 

  5.3.2 Clustering Analysis of Truncated UNIX Command Sequences 

 
 
 Like most of the clustering scenarios, clustering of commands was also carried 

out in two phases. Clustering requires command sequences. We can perform a simple 

analysis by considering a command session as a command sequence. The following 

criteria were considered while forming command sequences in our clustering analysis. 

 

• If sequence length < session length then we formed overlapping sequences in both 

the training and testing phases.  

• If sequence length = session length then we formed overlapping sequences only in 

the training phase. 

• Sequence length >=10 and <=100 
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 For instance, let us consider a command session of length 5 containing five 

commands, {vi, csh, pico, netscape, pine}. An example of sequences of length 4 would 

be {vi , csh, pico, netscape} and  {csh, pico, netscape, pine}. These sequences are our 

overlapped sequences. To explain clustering of command sequences let us divide our 

discussion into two phases namely training and testing. 

 

    5.3.2.1 Training Command Sequences 

 

  The main goal of the training phase is to create user profile that would be used to 

test command sessions during the testing phase. The Sequence Creator first creates 

command sequences and Cluster Creator then clusters these sequences using our 

clustering algorithm in section 4.3. A profile of user is finally constructed with the center 

sequences. 

 In order to cluster a command sequences with center sequences we use a 

“similarity function” that has to satisfy the following criteria i.e. the Sum of Longest 

Common Subsequence (LCS) and Match Count Adjacent Reward Polynomial bound 

(MCAP) between the sequence and it’s center should be greater or equal to a threshold 

value. If this criterion is satisfied then we cluster the sequence with the center sequence 

and then a new cluster center will be recalculated from all the sequences in the cluster. 

This is done to adjust to the change that was caused due to addition of a new sequence to 

the cluster. 

 We performed Clustering analysis on the same 4 users upon whom we performed 

Probabilistic analysis. This time Schonlau’s truncated UNIX command data was used. 
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During the training phase the first 5000 commands in the user log file was used to build a 

profile for that user. The remaining commands in the log file were used to as test 

commands. The testing phase is explained below. 

 

          5.3.2.2 Testing Command Sequences 

 

 The commands after 5000 commands were analyzed in sessions of 100 

commands. The cluster centers in the user profile formed during the training phase were 

used and a match between these centers and the test sequences were established based on 

the same similarity criteria that was used in training. Actually using the same similarity 

criteria doesn’t produce accurate results. So to account for more accuracy each test 

sequence was rated based on the three methods explained in section 4.5. Our clustering 

analysis of test sequences was also based on these methods. We analyzed the test 

sequences of User1, User9, User10 and User18 based on these three rating mechanisms 

for a sequence length of 100. The results of these analyses are shown below. 
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 Figure 15: Classifications of 100 Test Sessions based on Clustering Analysis for User1. 
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 From Figure 15 we find that Last n Sequence rating method produces more false 

alarms than Weighted Means and Decayed Weights methods. Test Sessions 12, 19, 25, 

46, 56,62 and 86 were classified as masquerade sessions by Last n rating method. 

Weighted means and Decayed Weights methods produced sessions 45 and 46 as 

masquerades.       
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 Figure 16: Classifications of 100 Test Sessions based on Clustering Analysis for  
       User9. 
 
 

 Last n Sequence rater produced the worst results for User9; it classified test 

sessions 4, 5, 6, 7, 55, 64, 66, 77, 88, 96 and 99 as Masquerade sessions. So the false 

alarm count is 11. There were also two missing alarms in this classification, i.e. sessions 

44 and 45 were classified as proper sessions. Weighted means had 3 false alarms (Test 

sessions 5, 26 & 27) and no missing alarms. Finally Decayed weights produced a better 

result with just two false alarms (Test sessions 5 and 26). 
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 Figure 17: Classifications of 100 Test Sessions based on Clustering Analysis for User10. 

 
 
 For User10 Last n sequence rater produced 15 false alarms but there were no 

missing alarms. This is better compared to the previous user, as there were two missing 

alarms, which is worse. Weighted means produces 11 false alarms and Decayed weights 

stayed on 9.  
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Figure 18: Classifications of 100 Test Sessions based on Clustering Analysis for User18. 
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 For User18 there were no missing alarms and 9, 4, 5 were the false alarms 

produced by Last n, Weighted and Decayed weights sequence rating techniques 

respectively. Surprisingly here the Decayed weights method produced one extra false 

alarm. This might have been due to the slightly incorrectly tuned accept threshold value. 

 The graphical representation of clustering analysis is not very clear since three 

techniques where displayed on to the same graphs. Table 3 provides the results of 

clustering techniques in a clearer manner. The table is divided into 4 sections, one each 

for User1, User9, User10 and User18 respectively. In User1’s section we provide a 

column for the test session number (SNo.). This can be used as a reference for the other 

sections. Each of the four sections has 4 columns representing the True Classification 

(TC), Last n Classification (LN), Weighted Means Classification (WM) and Decayed 

Weights Classification (DW) of the test sessions. True classification columns have 0’s for 

proper sessions and 1’s for masquerade sessions. The other three columns of each section 

have a “+” to represent correct classifications and a “-” to represent incorrect 

classifications. Correct classifications include true positives and true negatives and 

incorrect classifications include false positives or false alarms and false negatives or 

missing alarms.  

 

          User1           User9            User10            User18 
S 
No. 

T
C 

L
N 

W
M 

D
W 

1 0 + + + 
2 0 + + + 
3 0 + + + 
4 0 + + + 
5 0 + + + 
6 0 + + + 
7 0 + + + 

T
C 

L
N 

W
M 

D
W 

0 + + + 
0 + + + 
0 + + + 
0 - + + 
0 - - - 
0 - + + 
0 - + + 

T
C 

L
N 

W
M 

D
W 

0 + + + 
0 + + - 
0 + + + 
0 + + + 
0 - + + 
0 + + + 
0 + + + 

T
C 

L
N 

W
M 

D
W 

0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
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8 0 + + + 
9 0 + + + 
10 0 + + + 
11 0 + + + 
12 0 - + + 
13 0 + + + 
14 0 + + + 
15 0 + + + 
16 0 + + + 
17 0 + + + 
18 0 + + + 
19 0 - + + 
20 0 + + + 
21 0 + + + 
22 0 + + + 
23 0 + + + 
24 0 + + + 
25 0 - + + 
26 0 + + + 
27 0 + + + 
28 0 + + + 
29 0 + + + 
30 0 + + + 
31 0 + + + 
32 0 + + + 
33 0 + + + 
34 0 + + + 
35 0 + + + 
36 0 + + + 
37 0 + + + 
38 0 + + + 
39 0 + + + 
40 0 + + + 
41 0 + + + 
42 0 + + + 
43 0 + + + 
44 0 + + + 
45 0 + - - 
46 0 - - - 
47 0 + + + 
48 0 + + + 
49 0 + + + 
50 0 + + + 
51 0 + + + 
52 0 + + + 

0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + - + 
0 + - - 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 - + + 
1 - + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 

0 + + + 
0 + - - 
0 - - - 
0 - - - 
0 - - - 
0 - + + 
0 + + + 
0 - - - 
0 - - - 
0 - + + 
0 - + + 
0 + + + 
0 - - - 
0 - - - 
0 + + + 
0 - - + 
0 - - + 
0 + + + 
0 + + + 
0 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 - + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 

0 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
1 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 - - - 
0 - - - 
0 - + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
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53 0 + + + 
54 0 + + + 
55 0 + + + 
56 0 - + + 
57 0 + + + 
58 0 + + + 
59 0 + + + 
60 0 + + + 
61 0 - + + 
62 0 + + + 
63 0 + + + 
64 0 + + + 
65 0 + + + 
66 0 + + + 
67 0 + + + 
68 0 + + + 
69 0 + + + 
70 0 + + + 
71 0 + + + 
72 0 + + + 
73 0 + + + 
74 0 + + + 
75 0 + + + 
76 0 + + + 
77 0 + + + 
78 0 + + + 
79 0 + + + 
80 0 + + + 
81 0 + + + 
82 0 + + + 
83 0 + + + 
84 0 + + + 
85 0 + + + 
86 0 - + + 
87 0 + + + 
88 0 + + + 
89 0 + + + 
90 0 + + + 
91 0 + + + 
92 0 + + + 
93 0 + + + 
94 0 + + + 
95 0 + + + 
96 0 + + + 
97 0 + + + 

1 - + + 
0 + + + 
0 - + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 - + + 
0 + + + 
0 - + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
1 + + + 
1 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 - + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 - + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 - + + 

0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + - + 
0 + + + 

0 - + - 
0 - - - 
0 - - - 
0 + + + 
0 + + + 
0 - + + 
0 + + + 
0 + + + 
0 - + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 - + + 
0 - + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
0 + + + 
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98 0 + + + 
99 0 + + + 
100 0 + + +  

0 + + + 
0 - + + 
0 + + +  

0 + + + 
0 + + + 
0 + + +  

0 - + + 
0 + + + 
0 + + +  

 

 Table 3: Classifications for the 100 test sessions recorded for Clustering Analysis. 

 

 The Relative Operating Characteristic Curve for three clustering techniques and 

the Self-Consistent naïve Bayes technique is given below. The three clustering techniques 

and the Bayesian Network techniques are analyzed on their hit rate and false alarm rates 

produced while detecting masquerades on the 4 user log files. 
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  Figure 19: ROC Curve for the three Clustering, Bayesian Network and  
                   Naïve Bayes Classification techniques. 
 

 Table 4 below is the tabular representation of the Hit Rate and False Alarm Rate 

for the five classification techniques shown in Figure 19. 
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FAR 

                         

                         HR 

 
 

0.25 

0.5 

1 

1.25 

1.75 

3.25 

3.75 

4 

4.5 

5 

8.25 

10.5  

LN WM DW BN NB 

24.75 24.75 24.75 24.75 24.75 

24.5 24.5 24.5 49.5 49.5 

24 49 49 49 49 

23.75 48.75 73.75 73.75 73.75 

23.25 73.25 73.25 73.25 73.25 

46.75 71.75 71.75 71.75 71.75 

46.25 71.25 96.25 96.25 71.25 

46.5 71 96 NA 96 

45 95.5 95.5     NA 95.5 

70 95     NA     NA     NA 

66.25      NA     NA     NA     NA 

88.5      NA     NA    NA    NA  
  

Table 4: Hit Rates for the five classification techniques and their respective false  
  alarm rates. 
 
  

      In table 4 FAR = False Alarm Rate; HR = Hit Rate; LN = Last n; WM = 

Weighted Means; DW = Decayed Weights; BN = Bayesian Networks; NB = Naïve 

Bayes; NA = Not Applicable. From the above table it is evident that probabilistic analysis 

produced a better result for masquerade detection than clustering analysis on truncated 

commands. Bayesian Networks classifier produced a false alarm rate of 3.75% for a hit 
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rate of 96.25%. This is comparatively better compared to previous techniques in the 

literature but again our analyses were limited to just 4 users and hence our results were 

better. Also the Decayed weight analysis produced a better result than the other two 

sequence rating methods. The false alarm rates produced by decayed weights technique 

for a hit rate of 95.5% was 4.5%. Weighted means produced a false alarm rate of 5% for 

a hit rate of 95%. Last n method had a hit rate of 88.5% for a missing alarm rate of 

10.5%. The remaining 1% in Last n technique was missing alarm.  

 Moreover, our Bayesian networks classifier produced better results than the Naïve 

Bayes classifier. We obtained a hit rate of 95.5% for a false alarm rate of 4.5% for the 

Naïve Bayes classifier for the same analysis for which our Bayesian Networks classifier 

produced a hit rate of 96.25% with a false alarm rate of 3.75%. The Decayed Weight 

clustering analysis on truncated data produced almost identical results as Naïve Bayes 

classifier. Last n sequence rating analysis being very simple produced poor results.   

 We chose an accept threshold value for our clustering technique after a few 

empirical analysis and hence were able to produce slightly poor results for the Decayed 

weight clustering mechanism as compared to the probabilistic analysis. A well chosen 

accept threshold limit may possibly surpass the results of probabilistic analysis. 

   5.3.3 Feasibility of Clustering Analysis. 

 
 
 Training phase of clustering analysis was slow for the training set of 5000 

commands and a sequence length of 10. This was because we had to analyze too many 

overlapped sequences and cluster them. It would be an overwhelming task on real-time if 

we need to cluster huge volume of command line data with a smaller sequence length. 
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One way to speedup clustering analysis is to increase sequence length to a limit that 

would produce better result in less time. We carried out our clustering analysis on a 

sequence length of 10 and the results produced were comparable to probabilistic analysis.  

  In real time one would expect an optimal sequence length Clustering 

algorithm to be implemented based on the volume of data. We can imagine an automated 

algorithm that adjusts its sequence length based on the volume of data to be tested. This 

could cause more work to form new clusters of different length. However this thesis 

considered a user log file of 15000 commands and there weren’t much problems for the 

algorithm running to completion for a sequence length of 10. In reality building small 

command sequences to cluster would cost more time. 
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                                           CHAPTER VI   

                                                           CONCLUSION 
 

 Detecting masquerade using profile creation is just one component of a security 

system that also has other mechanisms to monitor and detect intrusions. These may 

include cameras, keystroke monitors and well-equipped systems for surveillance. The 

proposed command history analysis mechanisms, namely, Bayesian Networks and 

clustering methods further enhance the systems that already exist. Our proposed system 

further improves the security of systems since it is an automated approach. 

 Although over the years different mechanisms have been tried out to train user 

profiles and detect intruders, clustering techniques are still in their infancy. We proposed 

a novel Hybrid Bayesian network for masquerade detection as well as novel clustering 

algorithm for masquerade detection. 

  Results show that the hybrid Bayesian network produces the best results.  

However this was for a limited dataset and with a larger number of dataset or users, the 

clustering approach may produce better results. The simulation work for clustering 

mechanism and Bayesian mechanism was illuminating, especially as an elaborate study 

of three rating mechanisms showed that Decayed weights was better than the other two 

methods since it used the varying alpha parameter. 

  The ROC curve in figure18 shows that probabilistic analysis produced better 

results than clustering analysis. The probabilistic method was simple and produced 

slightly better results than clustering on Schonlau data. The false alarm rate and hit rate 

recorded by these techniques are explained in section 5.3.2.2. As explained before, we 
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analyzed only four users log files and recorded these results. Surprisingly the 

probabilistic analysis that didn’t consider sequence information of sessions produced a 

better result than clustering analysis that considered sequence information in the form of 

LCS. A session can thus be considered as a bag of words in this case and still produces 

better results since we are mainly focusing on the frequency of commands seen in proper 

and masquerade sessions. This clearly explains the success of the Naïve Bayes classifier 

for session classification. Moreover our Bayesian networks classifier being a hybrid 

online-offline technique produced better results than Naïve Bayes classifier. 

   Developing a real-time Intrusion Detection System based on the clustering 

algorithm would require analyzing the data files from the disk rather than trying to 

analyze the data using RAM. This is because the log files are huge and it would take a lot 

of time to form and cluster sequences. A real time online detection with a user keying in 

the data on a system would be challenging and interesting. Only such an analysis would 

fully reveal the comparative accuracy of the clustering and probabilistic analysis for 

detecting masquerades. 

              6.1 Future Work 

 
 

             As we discussed in section 5.3.1.1 probabilistic and clustering analysis on 

enriched data could be promising. Furthermore, tuning the accept threshold value for 

optimal results could also be a promising analysis. This could be separately worked out 

for both the truncated and enriched data. Our limited analysis can be further extended for 

50 users on the Bayesian Networks approach. Since Clustering approach was slow for a 

sequence length of 10 we had to limit our analysis to 4 users. A real time clustering 
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detector would require a better algorithm and sophisticated systems with huge RAM. 

Since we tested our algorithm with a sequence length of 10 we were not able to perform a 

comparative analysis of both the schemes on all 50 users.  

 All the proposed techniques in the literature and in this thesis produce false 

alarms to some extent. The false alarm rate has to be kept low. We can only achieve a 

false alarm rate reduction by proposing new methods. Since Concept drift cannot be 

avoided in real time false alarms will exist. Hence designing a 100% accurate real-time 

Intrusion detection system is impossible. 
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