Metadata, citation and similar papers at core.ac.uk

Provided by SHAREOK repository

PROBABILISTIC Vs CLUSTERING ANALYSIS OF
MODIFIED UNIX COMMAND LINES FOR

MASQUERADE DETECTION

BY
KARTHIC GUNASEKARAN
Bachelor of Engineering
Madras University
Chennai, India

2002

Submitted to the faculty of the
Graduate College of the
Oklahoma State University
in partial fulfilment of
the requirements for
the Degree of
MASTER OF SCIENCE
July 2005

https://core.ac.uk/display/215259308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PROBABILISTIC Vs CLUSTERING ANALYSIS OF
MODIFIED UNIX COMMAND LINES FOR

MASQUERADE DETECTION

Thesis Approved:

Dr. JOHNSON P. THOMAS
Thesis Advisor

Dr. G.E.HEDRICK

Dr. DEBAO CHEN

Dr. GORDON EMSLIE
Dean of the Graduate College

ACKNOWLEDGMENT

Many people have ambitions in life but only feve dortunate to fulfil them. In
this regard | am greatly thankful to the almighty §uiding me in the right direction and
rewarding my efforts. At this moment | must mentgwyme important people who have
always been a cornerstone for the successful coimplef my master’s thesis. Firstly, |
would like to thank my thesis advisor Dr. JohnsanTRomas for his valuable time,
guidance, ideas and comments on my thesis. Hidytiasvice on formatting my draft
was really helpful in making this document comple&@econdly, my heartfelt thanks to
my committee members, Dr. G.E.Hedrick and Dr. Delgdeen, for providing their
comments and suggestions. | also appreciate DH8dfick’s patience and efforts for
correcting my thesis draft and providing more elgered suggestions for building this
document to perfection. Dr. Debao Chen’s timelygasgions on some of my document’s
formats were also immensely helpful. | would al&e ko thank Dr. Istvan Jonyer for his
presence during my final thesis presentation.

| am grateful to all these people for their adsiesd friendly support in all the
stages of my thesis development. | am surely biessin the right people’s support and
friendship at the right time. | also thank OklahoS8tate University for having provided
right technical facilities for presentation of miesis work. | can never forget the

Edmond Low Library that showed the path to my sesfié thesis completion.

| would never miss my parents at any stage of ifey Dad and Mom thanks for
providing your moral and financial support to costplmy Masters degree in Computer
Science, in the USA. Last but not the least; | wdike to thank all of my friends for

having encouraged me during the entire Mastersdaegrogram.

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION ...ttt et e e e e e e e e e e 1
1.1Masquerade DeteCtiON..........coieeiiiiiiii e e e 1.
1.2 Simulating a Masquerade Detection SYStem......ccccccvvvvvieeeeiieeininiiiinns 2
1.2.1 Bayesian Networks and Clustering schemesémguerade
[0 1= (= ox 1 o] o 1 3
Il LITERATURE REVIEW ... ittt vvieeaa e a0, O
2.1 Early RESEAICI ...ttt e 6
2.1.1 Audit Trails for threat identificationccc......ooooveiiiiiiiiiiiiii e, 6
2.1.2 Measures for detecting INtruSIONS..........ccccuvvviiiiiiiiiiiiieieeeeeeee e 7
2.2 HYPOLNESIS. ... e 8
2.3ReCENt RESEAICNvvviiiiii e e e 9
2.4 The Naive Bayes Approach for Classification...............cccccceeeeeeveennnnnn. 13
2.4.1 Bag-of-Words Model.............oooiii e 15
2.4.2 1v49 Experimental SEtUP........oooviviceemmmm e 16
2.4.3 Update problems in naive Bayes
Classification Methodoouuiiiiiiiirr 17
1] BAYESIAN NETWORKS APPROACH ..ot e, 19
3.1 Bayesian NetWOrIKSciiiiiiiiii i 19

3.2 Classification of the user sessions using &in
Naive Bayesian Networks of commands.........eeeveiiieeeieiiiiiinennnnnn 21

3.2.1 Naive Bayesian NetWorkoocmmmmeeeeeeeee e 22
3.2.2 Deferral mode for classifying test session’s.........ccooeeevvvvviiieeennns 23
3.2.3 Bayesian Network Detector for masqueradectlete..................... 25
3.2.4 Offline classification of Deferred Naive Bay@lassifier................. 27
3.2.5 Explanation of Naive Bayes and Deferred N&ages
ClasSIfIerS. ... e 27
3.3 A Mathematical analysis of Naive Bayes and BeteNaive Bayes
ClASSITIBIS. ..ttt e e e e e e e et 30
vV CLUSTERING OF COMMAND SESSIONS.......cciiiiiiiiie e 37
4.1 Clustering TECNNIQUEoeiiiieiiiieeees e e e e e e eaeeees 37

4.2 Clustering scenario of Masquerade detectiomusbmmand lines. 38

4.3 Clustering of command Sequences — Trainingghas.................ccceeeee 41
4.3.1 CIUSEEr TUNING «.oeeeeiiiee et e e e e e eaaaaand 43
4.3.2 Recalculating Cluster CeNterceeeeeeuveiiiiieiee e eeeee e 44
4.4 Influence of Threshold value in cluster formati..............ccccoeeeeiiiiiinninne 44
4.5 TeSHNG PRASE ...coiiiiiiiieei e 46
4.5.1 Predicting acceptable and unacceptable
CoMMANd SEQUENCES......cceeieeeieeeeee e 48
4.6 Steps Involved In Training and Testing Phase.............ccccceeiviviviin. 48
4.6.1 TrainiNg PRASEoooiiiiiiiiiiii e 49
4.6.2 TeStiNg PRaseoooiiiiiii e 50
Vv BAYESIAN NETWORKS VS CLUSTERING ANALYSIS.....................52
5.1 A Comparative STUAY..........oveiiiiiiiiiiiee e 51
5.2. An Overview of Probabilistic and Clusteringrusion Detectors............ 52
5.2.1 Bayesian Networks Intrusion Detector ...cccccooovvviviiieciiiiiiiiee e, 52
5.2.2 Clustering based Intrusion Detector.........cccccevevvieeeeeeeeeeeeeeeiiiinnns 53
5.2.2.1 Steps to perform clustering analysis coeeeeeeeovoevvvvviiiieennnns 54
5.3 ResuUlts and DiSCUSSIONS...............s o e eeeennnnnnnnnnanaseeaeaeeeesseeeemmmmnnes 55
5.3.1 Probabilistic analysis of truncated UNIX coamds........................ 55
5.3.1.1 A modified data SCENAIIOcummmmsrreeeeeeeeeeerreeeeeannnns 55
5.3.1.2 ANAIYSIS....uiiiiiiiiiii e st et 56
5.3.2 Clustering Analysis of Truncated UNIX Commé&ehuences........ 61
5.3.2.1 Training Command SeqUENCEScceeememrerrriieeerrennnnnn. 62
5.3.2.2 Testing Command SEqUENCES.........cooommrniiniinnnnnnne 63
5.3.3 Feasibility of clustering Analysis......cccccciiiiiiiiiiiiiieee e, 71
VI CONCLUSION. .. et et e et e e e e e e eeeeen e UD
6.1 FULUIE WOIK ...ttt st 74
REFERENGCES...... .ottt e e e e e e e e e e e e e e s s s e neeeeeeas 76

Vi

LIST OF FIGURES

Figure Page
1. Relative Operating Characteristic (ROC)Weuor Naive Bayes

Classifier (with updating) on SEA data...... ... e, 12
2. Classification Paradigm... .. .o oo e e e e e 14
3. Single-Step and Self-Consistent update ar@ems................c.ccovviieinnnnn. 18
4. A Simple Bayesian Networks...... ..ot e 19
5. A Naive Bayesian Networks of Command préipos and Classes formed

after the training phase for @ USEr. o eee e e e it 22
6. Bayesian Networks Detector with Naive Baged Deferred Naive Bayes

ClaS SIS . .. ettt e e e e 2
7. Bayesian Networks for the set of Artifidddasquerade and

Proper Sessions after the training phase..............cciiiiiin e 29
8. Masquerade Detector based on Clusteringef Command Sequences............. 39
9. A snapshot of Bayesian Networks Intruddatector after the training phase...... 52
10. A snapshot of Clustering Analyzer of comthaaquences when analyzing

Userl8.txtlog file........cooeuieii e 22, D3
11.1 True Classification of 100 Test SesSioNSJBErL.........cooviiiiiiii i, 57
11.2 Bayesian Network Classification of 100 T&sssions for Userl..................... 58
12.1 True Classification of 100 Test SesSioN$JBEr9..........oevvviiiiiiiii i, 58
12.2 Bayesian Network Classification of 100 T&sssions for User9..................... 59
13.1 True Classification of 100 Test Session$J®er10..........ccovvvviviiiiiiieeinnnn. 59

Vil

13.2 Bayesian Network Classification of 100 T&sssions for User10...................60
14.1 True Classification of 100 Test Session$J®erl8............ccovviieiiiiiiiiinnn, 60

14.2 Bayesian Network Classification of 100 T&sssions for Userl8...................61
15. Classifications of 100 Test Sessions base@lustering Analysis for Userl...... 63
16. Classifications of 100 Test Sessions base@lustering Analysis for User9...... 64
17. Classifications of 100 Test Sessions base@lustering Analysis for User10.....65
18. Classifications of 100 Test Sessions base@lustering Analysis for Userl18.....65

19. ROC Curve for the three Clustering, Bayedlatworks and Naive Bayes
Classification teChNIQUES..........ii e e e e 69

viii

Table

LIST OF TABLES

Page
Conditional probability table for N8...........ccooiiiiiiiiii e 20
CPT for Proper sessions during the training @has.............ccooveivvvinn e 29
Classifications for the 100 test sessions resmbfdr Clustering
AN ALY SIS . . et 69

Hit Rates for the five classification technigaesl their respective false
== 10 = =Y 4 0

CHAPTER |

INTRODUCTION

1.1 Masquerade Detection

A computer system masquerader is an intruder wkestaver a genuine user
session and misuses it. Masqueraders occupy deged user's seat and exploit their
privileges to access secure programs and datao8eake over by a masquerader can be
due to careless behavior of the legitimate useq mindlessly skips either to lock the
system or to logout temporarily before going orreak. Such a careless act by the proper
user creates an opportunity for hackers to misesere computer systems. Masqueraders
typically look for secure files, software and plages that they cannot use. A well-
known instance of masquerader activity is the eddRobert. P. Hanssen, the FBI mole
who allegedly used agency computers to ferret ofdrination later sold to his
conspirators [11]. Hanssen was an insider who abihse privileges to make money.

Masquerade detection software is therefore esdefuti secure systems as in
defense and banking which contain highly confid@ntiformation that must be shielded
against hackers, especially masqueraders. Masauedatection is a challenging
problem, which people have been trying to solveesit988. Numerous attempts targeted
at building masquerade detection systems haveteesul failure. User profiles were
constructed from system-log data, which contaimgdrmation such as time of login,
physical location of login, duration of user seasioumulative CPU time, commands
issued, programs executed, names of files accessddso forth [9] [3]. This log

information was used as training data to build yzefiles. If a deviation was noted

while testing new data for a user with his alreadysting user profile, a masquerade

attempt was reported.

1.2 Simulating a Masquerade Detection System

One of the major challenges facing Masqueradectiete systems is real-time
detection. A real-time Intrusion Detection SystdiDS) to detect masquerades would
analyze a user’s log file with various fields likemmands, time of login, location of
login, to name a few. Simulating or implementin@ltgme IDS is a huge task and
requires a detailed study of many components. arch a huge system is simulated or
implemented, there would still be false alarm$é& tlata were noisy. Hence, researchers
started focusing on the components of IDS to perfanalysis and reduce false alarms as
much as possible.

Schonlau et al. [14] analyzed user log files thanhtained truncated UNIX
commands for 70 users. They proposed four stalstmd two machine-learning
techniques to analyze users command log files.bEs¢ result they reported had 70% hit
rate and 6.7% false alarm rate. Maxion and Towns$g&Rdlater proposed a Naive Bayes
text classification analysis on Schonlau’s data modbrded a hit rate of 61% for a false
alarm rate of 1.3%. Finally, Yung [18] proposeddif-£onsistent Naive Bayes technique
that lowered the missing alarm rate by 40% forlsefalarm rate of 1.3%. Yung’'s model
classified the test sessions offline, in other goitte test sessions were classified only
after the final test session arrives. He justiftedt offline classification has very low

missing alarms, which was the main purpose of Mastyfle detection system. It is better

to classify a session as masquerade session wililay rather than classifying it as
proper session. However, the disadvantage in tbierse is that by the time the
masquerader is detected it may be too late asaimage may already be inflicted. For an
effective detection system, the detection mustdiéesed as quickly as possible, ideally

in real time.

1.2.1 Bayesian Networks and Clustering schemesémguerade detection

Though offline evaluation of sessions producesenaacurate results, the need for
online classification cannot be substituted withlimé techniques. This thesis first
presents a Naive Bayes classifier with deferredh-0est sessions lag classification
technique. Our deferred Naive Bayes classifiedgs an offline classifier like the one,
which Yung proposed, but it has a wait on varyingnber of test sessions before
classifying them. This technique will be called af®red Naive Bayes Classifier in the
rest of this thesis.

Online classification immediately classifies a tes¢sion and an offline classifier
produces a more accurate classification. To usadvantages of both online and offline
classification techniques we propose a novel Bayesietworks approach to toggle
between a Naive Bayes Classifier and a DeferredeNRayes Classifier. The Bayesian
networks computes trust values on the simple N8ages classifier after classifying
each test session. While the sessions are classifitne using Naive Bayes classifier,
the Deferred Naive Bayes classifier also worksaraltel for each test sessions. If the

trust on the Naive Bayes classifier is less thamrashold value, then the Bayesian

networks signals the Deferred Naive Bayes classibeclassify all the test sessions
offline after it updates its classifier model withe latest test session. The latest session,
which was not classified by the Naive Bayes classiivill now be classified by the
Deferred Naive Bayes classifier. After this cldsation the current classifier model of
the Naive Bayes classifier is replaced by the iflassnodel of Deferred Naive Bayes
classifier. The proposed cross technique updateapp has several advantages. Firstly,
the classification is online resulting in much &stletection. Secondly, our approach
increases the accuracy of Naive Bayes classifigherclassification of future sessions.
Furthermore, the trust on this new Naive Bayes 9fflas is reset to the maximum and
the classification of future test sessions procesdise.

Chapter 4 introduces a clustering approach fta ttad test commands sessions.
This approach was initially used in data miningldfi¢o cluster real time data and
compute their likelihood patterns based on the &mrdusters [5]. We propose an online
clustering approach, which is a variant of the dataing approach presented in [5]. As
far as we are aware, this clustering approachvglrto user command level masquerade
detection scenario. Clustering introduces sevedah@tages. These include a possible
data reduction during the testing phase, simplioitymplementation and the ability to
adapt to noisy data, which is the main reasontfosuiccess in data mining and pattern
matching areas.

Our Clustering approach is further classified itiitoee techniques based on the
sequence rating mechanism in the testing phaseseThee called Last n, Weighted
Means and Decayed Weights Clustering analysis tqabs. These three techniques are

not new to clustering scenario but are indeed ntvehasquerade detection. We intend

to test the feasibility of our clustering approacheal time to detect user command level
masquerades and also compare the results of tipioagh and Bayesian networks
scheme in this thesis.

Schonlau et al's user command log files [7] weseduin all our experiments. The
main objective of these analyses was to reducéatke and missing alarm rates and try
to achieve better results than previously propotashniques. The three clustering
techniques and the Bayesian networks scheme wenpased based on their results. A
ROC curve for these techniques was drawn and detktliscussion based on this curve
is presented in section 5.3 for comparing the twelemes. The rest of the thesis is
outlined below.

In chapter 2 we present a review of previous workmasquerade detection;
chapter 3 explains both the Deferred Naive Bayeb Bayesian networks Classifier
schemes for masquerade detection. In chapter 4resemt our clustering approach to
masquerade detection. Chapter 5 explains the dionslahat we built to detect
masquerades and compares the results of Bayediaorke and Clustering approach by
the means of ROC (Relative Operating Characteyisticve. Chapter 6 concludes our

research with potential future work.

CHAPTER I

LITERATURE REVIEW

2.1 Early Research

Several attempts to tackle the problem of masagieerdetection have been
proposed. The first system was IDES (Intrusion c&ie Expert Systems), which dated
to the middle of 1990’s. The problems solved by DBere misuse and anomaly
detection. To detect misuse an expert system widtstoudentify a set of vulnerabilities
that could be taken advantage of by the user. &ugystem was very effective and was
able to alarm lot of misuses, but one major drawbadhat it is not sensitive to novel
attacks. New vulnerabilities would have greater d@gimg impact and can open up many
ways of attacking systems. In order to detect sumvel attacks another statistical or
pattern recognition system was built along with tert system to identify deviant
behavior from the normal ones [2]. Such statistidalssifiers or pattern recognizers

combined with the expert systems formed a complES.

2.1.1 Audit Trails for threat identifioat

Auditing is a methodical examination of a subjedtshavior while reviewing
their current moves with already existing trailsacceptable standards. Anderson was the
first to study the feasibility of automated audadilt analysis. He categorized the threats
that could be addressed by audit trail analysth@$ollowing [16] [1]:

= External penetrators (who are not authorized tathiseomputer)

= |Internal penetrators (who are authorized use of ¢bheputer but are not
authorized for data, program or resource accessail)ding the following:
-Masqueraders (who operate under anatker’'s id and password).
-Clandestine users (who evadhktizug access controls).
= Misfeasors (authorized users of the computer asdurees who misuse their
privileges).
Masqueraders can be detected by observing depaftora established patterns

of use for individual users.

2.1.2 Measures for detecting Intrusions

There are two types of measures for detecting sidns in a computer system.
These are: a) Continuous measures and b) Distredsures. Continuous measures take
into account the CPU Time, amount of memory useateption violations and 1/0 Time.
Discrete measures are concerned with finite senhtgies such as time of login and
location of login. We outline some of these diser@hd continuous measures.

* Continuous Measures: A continuous measure is aitumof some aspect of a
user session. This aspect has its effect on thersis resource usage. Some of
the continuous measures are as follows.

= Connect time — This is the length of the user sasen the target system.
Each session is referred to as the job and hagjaaijob number.
= CPU Time — It is the amount of processing time comsd in each of the

user session on the target system.

= |O Activity — This is the amount of I/O activity ia given user session.
= Protection violations — It is the number of diregtoand file access

violations in a user session on the target system.

» Discrete Measures: A discrete measure is a fundiarser session whose range
of value is a finite unordered set that is usedharacterize some aspect of user
behavior. Some of the discrete measures are:

- Time of Login — Time of login is the number ofss®ns for each user for
a time period of the day.
- Location of login — It is the number of sessifémseach user initiated from

a particular physically identifiable location.

2.2 Hypothesis

An audit record contains information related toaation performed by the user.
Each measure of the impact of an action on theesy$$ logged as a field of the audit
record. We view each entry in the audit record asr&ble reflecting a part of the user
behavior. There are several levels of monitorinignee by a number of researchers. One
of the foremost levels that gained more attentsoinécommand level.

A command leveltakes into account the various commands issuethdyiser
during a session. We maintain a sequential relsiignbetween the commands issued by
a specific user in a given session. Command usagendls upon the role of the users. So

a user with a specific role in an organization pasileges to some commands and

restriction to others. The concept here is thatradbme elapsed period of experience
every user gets set into a groove of using a seviwimands in almost the same order. In
other words it becomes a habit for the user toauset of commands every time he logs
into a system. Such habitual use of commands gvihel necessary pattern that we are
looking for to establish a user’s character.

For example in a session user “A” opens directooyily once to check its
contents. The reason may be that it contains sorpertant files that are required by his
agency. If a masquerader opens this directory niams and also tries to access the files
in it, then it can be marked an intrusion.

Moreover, based on his work style the user may sfawith checking his mail
and reading through some newspapers after logginthis is a habit for the user and it
should occur every time when he logs into the systéan intruder has the system in his
hands then he overlooks these petty patterns tedearnt by the system and he tries to
accomplish his task by checking for the file locas. This is an easy case of intruder
detection scenario.

Some user command types that will be considerdaisrthesis are:

* Multi-Threaded process commands
* Mailer usage commands

» File/Directory listing commands

2.3 Recent Research

Schonlau et al. conducted their first experimedf [dased on UNIX commands

that were keyed in by 70 users. Actually, a loghelse commands was taken by using the

UNIX acct auditing mechanism. For every user acset5000 commands was recorded
over a maximum period of one month. Out of thesau3érs, 50 users were randomly
selected and considered as legitimate users andethaining 20 users were used as
masqueraders. For the legitimate users, the 080 ®ommands of each user was used as
training data for that user and the remaining 10€@@mands were used as testing data.
These 10000 commands were interspersed with a mastjog user's command
sessions. A session is actually a set of 100 cordmaHence with 10000 testing
commands we now have 100 sessions to test. An d&atopillustrate the crust of
Scholau technique is given below.

Userl has 15000 commands on the whole in hisilegSo from a total of 150
sessions the first 50 sessions are used for tgpiand the remaining 100 sessions are
interspersed with sessions of say user2, user6Qus@@1. These sessions are now the
masquerading sessions. The assumptions here §rd W@ have a masquerading session
then the probability of the next session beingofettd by the masquerading session from
the same masquerader is 0.8 and the probabilityath@her masquerader’s session will
immediately follow one masquerading session is Olhis means that if one
masquerading session is to follow another masquegakssion then the probability that
the session comes from the same masquerader is highy The chances of one
masquerader to be followed by another masqueratlebevsuch that there are at least
two proper sessions in between the sessions dhvihdifferent masqueraders.

The review paper by Schonlau et al. describes xperament in which six
masquerade detection schemes are compared on mhe sser data spliced with

masqueraders. The actual target that was achiesedram the range of 39.4% to 69.3%

10

for hit rates and 1.4% to 6.7% for false-alarm .ratiee results achieved may seem poor
but considering the difficulty of the problem thesults are good. The problem to be
addressed here is the false alarm rate. This fatgem 1% in a real world scenario can
be very costly and might lead to a lot of systesouece and time wastage. Figure 1
shows the results of Schonlau et al. graphicallye Bix schemes used by them are
explained elaborately in the following paragraphs.

Bayes 1-Step Markov.This detector is based on single-step transitioos fone
command to the next and is due to DuMouchel [14le Tetector actually looks for
transition of commands and it compares the traimggl histories for such transitions.
The comparison used here is actually a probalsilesimparison. It was a best performer
for correct detections, but failed to accomplish desired false alarm rates.

Hybrid Multi-Step Markov. This method is based on Markov chains, and is due
to Ju and Vardi [14] [7]. Based on the proportidrite testing data the model toggles
itself from a Markov model to a simple independenuedel, depending on the
proportion of commands in the test data that weteohserved in the training data. It had
the highest performance rate when compared to tebbniques.

IPAM. This detector is based on single-step commanditiam probabilities,
estimated from the training data. IPAM stands focrémental Probabilistic Action
Modeling and was developed by Davison and Hirsh.[They actually developed this
for predicting sequences of user actions. The texfl this method ranks among the
lowest-performing groups.

Uniqueness.This method was due to Schonlau and Theus [14laed the ideas

of command frequency detection. If a command frayeoccurs for most of the

11

sessions of the user then the next session thahbasame frequency of commands will

be classified as a proper session. If an unusuahw@nd is seen in a session then the
session will be classified as a masquerading sessisiqueness was a poor performer to
detect proper session but performed better to eefllse sessions. The false alarm rate
attained by this scheme was close to 1%.

Compression.This method uses the logic that the new data frogivan user
compresses at about the same ratio as the oldrdatahat same user. If this is the case
then the masquerading user’s data compressiongiatiold certainly vary significantly.
Thus one can distinguish between a masqueradea gitimate user. This idea belongs
to Karr and Schonlau [15] and the results of thisrkware shown in Figure 1.

Compression showed the worst results of all themas used for testing.

% Hits

- - Bayes One-Step Markov, 6.7% FA
Naive Bayes, no updating, 4 6% FA

-~ - Maive Bayes, updating, 1.3% FA

Hybrid Mulfi-Step Markow
IPAN
-Uniqueness, 1.4% FA
* 7" -- Sequence-Match
~™ - Compressicn

1 1
0 10 20 30 40 50 60 70 &0 90 100
% False Alarms

Figure 1: Relative operating characteristic (RO@)e for the Naive Bayes
Classifier (with updating) on SEA data.

The Schonlau et al technique is called the SEAfigoration or the SEA
technique. The graph in Figure 1 is the ROC cuoretie Naive Bayes Classifer and it

also includes the best-outcome results achieve8H4 techniques. In other words the

12

graph shows the relative best outcomes of diffesehemes proposed by Schonlau et al
with the Naive Bayes scheme. The Y-axis of thelgrapasures the % hit rate and the X-
axis measures the % False Alarms. From the graigheitident that the Bayes-One Step
Markov had better hit rate to false alarm rateoratWhen one talks about masquerade
detection the false alarm rates should also beidersl. In fact false alarm rates can
cause 6 times more loss than the hit rate mea@amsidering these the Hybrid Multi-

Step Markov scheme is the best performer amongsEdhnonlau et al schemes. It has a

hit rate close to 50% with a false alarm rate of 2%

2.4 The Naive Bayes Approach for Classification

The naive Bayes approach for anomaly detection iderss the masquerade
detection problem as a text classification probldrhis classification algorithm was
initially used to classify text documents basedspacific word counts as either sports,
theatrical, health or politics article. It was tgaily called “bag of words” approach as it
profiles documents simply based on word frequencies

Maxion and Townsend [12] were the first to forntelthe masquerade detection

problem as a classification problem. The clasdificaparadigm is shown in Figure 2.

13

User | User 2 User 3 User 50

Training

Sessions propet Remaining 49 users
prafile :

01—s50 form intruder profile.
Test Classifier built to

Testing set|for detect intrusions

Sessions |PTYPET on user 1. Similar

51—150 |usqr 1. analysis for others.

Figure 2: Classification Paradigm.

Figure 2 shows that Maxion and Townsend furthebed into the data prepared
by Schonlau et al. to consider the possibility @souerading effect of the remaining 49
users to the user whose profile is being monitofiéte classification paradigm works
appropriately for the dataset prepared by Schoetaai. It is more likely to work now
since 2450 artificial masquerading sessions ateaatl to be studied during the training
phase itself. These masquerading sessions givéex kaowledge of how one user will
be victimized by the remaining 49 users who areders. The classification paradigm
thus explored more possibilities in the SEA confgglidata. In a more general setting the
dataset of a malicious user may not be like thecaly well behaved user. Here an
improvisation of the use of dataset was tried ouaichieve better results. Apparently,
pooling the 49 other users into one single intrudiEss provided a more stable

classification problem.

14

2.4.1 Bag-of-Words Model

A text document can be easily classified basethenfrequency of some words
used in the document. This simple model was prowerbe more successful than
complicated models in the classification of texbnfe complex models involved
sequence information for text-classification bug thag-of-words model has proven to be
more efficient and simpler than most of the aldons.

After looking into the success of this model asest classifier, Maxion and
Townsend realized that this model could be usedategorize a set of commands as
being used by a particular user. This classificatomes after training the model to first
identify the probability of use of each command dyuser and then using this as
classifying information to classify the future sess as either proper or masquerading
session [12]. A mathematical explanation of thisdelois given in the following
paragraphs.

The main assumption of this model was that the gseerates a sequence of
commands, one at a time, with a fixed probabiltgttis independent of the commands
preceding it. The probability for each commandor a given useu is based on the

frequency with which the command was seen in thieitrg data, and is given by:

Traimng Count,. , + o

R" W " oy P
' Training Data Length + (& x A)

Where Training Couat,is the count of command c from all the sessionthén

training phase produced by user u, Training Datagtte= 5000, which is the count of all

15

the commands seen in the training phases, the pseudocount and A is the number of
distinct commands (i.e. the alphabet) in the datse pseudocount can be any real
number, and was set to 0.01 in the study. The pseuoht’'s effect is to make sure that
there aren’t any commands with a zero count. then‘ the denominator balances the
effect ofa in the numerator. The probability that a test age of commands “Xx X y y X”
was generated by userdl, is:

Pix™® Puix™ Puty * Puty™ Puix
Or (R, 3 * (Pu1,y) 2 where Pul, x is the probability that userl typleel tommand x.
Probability of the command x being not typed byrlisean also be computed and if the
ratio of the probability of command being typeduserl is greater than the probability
of not being typed by userl, then command x camskeciated to be typed by userl.

The data used in this work is the same used bgrgah et al. [13]. As mentioned
before these commands were captured from UNIX agdtting mechanism. Here only
two fields were captured i.e. the command name theduser. This limitation was
imposed for privacy reasons. Some commands that waptured are: sed, eqn, troff,

dpost, echo, sh, cat, netstat, tbl, sed, eqn, dls@on.

2.4.2 1v49 Experimental setup

Maxion and Townsend’s experimental setup was calledlv49 experiment [12].
A major drawback of Schonlau et al. experiment Wed not all users were tested as
masqueraders; rather a different set of 20 usere we@nsidered as masqueraders. This

kind of analysis doesn’t use the dataset availablgs maximum. When an algorithm

16

fails to identify a masquerader block, when chedieeenly one masquerader, we cannot
really make out whether the problem really is wiftd algorithm or with the inappropriate
use of the available data set. To address thesteshongs the experiment conducted by
Maxion and Townsend considered the rest 49 userdiles as masquerade data. This
configuration was consistent in the number and irigf the masquerade events
encountered by each detector. The result of suehofighe dataset considered 2450
sessions of masquerade attacks for every userrréthe 0-24 sessions of attacks
considered by Schonlau et al. Such effective usthefavailable dataset brought better

results than Schonlau’s techniques and this iglgleaown in Figure 1.

2.4.3 Update problems in naive Bayes Classidicdvethod

In naive Bayes classification with update modgdraposed by Maxion and
Townsend [12] a Single-Step update was made i.enexer an update of the user profile
is made the decision that the session is eitheopep session or a masquerading session
was made in just one step. In other words a bidagision was made at each step and
this may sometimes cause a complete collapse @t classification.

Two scenarios that might cause this mishap arsthfiwhen a masquerade
session is classified as a true session withoytgurevidence. This might cause the future
user sessions to be wrongly classified and thezechances for getting a lot of false-
negatives. A false-negative session is one in wlachhasquerade session is falsely
classified as a true session. This means thattarder takes over the system. Secondly,

an intruder session might look like a true sessiod it needs further profile updates to

17

classify it. Under these circumstances if the d@ssputs this session into a proper
session and after a few more classifications,iff session is not still seen, then we start
doubting the correctness of this session classibica

All these problems can only be solved if the decigaken to classify the sessions
is made backtrackable. If we had a mechanism tbatdiclassify a session later it would
become easier for us to classify the sessionswkatioubted, later, based on the new
updated profile which now contains more strongérimation for classification. This can
be called a more “Consistent-Update” mechanismthéf algorithm decides when to
classify these sessions then this mechanism nowniesx a more “Self-Consistent
Update” mechanism.

Figure 3 below shows the back tracking problemslired in Maxion and
Townsend mechanism and also explains a self-censigpdate mechanism as a solution

for backtracking.

TUSER n
0
Firsi 50
Training Backiracking is allowed here
Sessions o Ba’fk with an update of profile and
Tracking session score
S0 T l * 1
Testing l j
Sessions l
150 . F
Single Step Self Consistent
Update update

Figure 3: Single-step and self-consistent updaehanisms.

18

CHAPTER Il

BAYESIAN NETWORKS APPROACH

3.1 Bayesian Networks

A Bayesian Network is a “Probabilistic Belief Nettkd [17] represented in the
form of a DAG (Direct Acyclic Graph) [6]. The pregies of the Bayesian Network are
summarized below.

» Each node in the graph represents a variable @opitions.

* The relationship between the variables is represeby the links between the
nodes. For Example: If a node “A” is connected toode “B” with a downward
arrow, then node “A” is the parent of node “B” aibdirectly influences the node
“B”.

* Every node in the network has a conditional prdiigliable to keep the specific
influence ratio that all parents pass to this node.

* There are no cycles in the graph.

A simple diagram of a Bayesian network is showRigure 4.

Figure 4: A Simple Bayesian Network.

19

We can compute the joint probability of all the medn the above network as given

below.

P (N1, N2, N3, N4, N5, N6, N7, N8) =

P(N5|N2) * P(N6|N3) * P(N7|N3) * P(N8|N3, N4) *R2|N1) * P(N3|N1) * P(N4|N1).

For each node in the network we can specify a ¢omdil probability using a
table of its ancestors and its possible value. Thisalled the Conditional Probability
Table (CPT). Each row in the CPT represents a plessase for the nodes considered
and the corresponding value involved. An exampl€BT is shown in Table 1. If both
the parent nodes N3 and N4 are true then the pilaipab N8 to be true is 0.8. Similarly
the remaining three conditions of the nodes N3 ldadesult in the probabilities of 0.7,

0.35 and 0.1 for N8 to be true.

N3 N4 P(N8=T
T T 0.90

T F 0.70

F T 0.35

F F 0.1

Table 1: Conditional Probability for N8

20

3.2 Classification of the user sessiomsgusained

Naive Bapm Networks of commands

We used the user’s truncated UNIX commands lieg fireated by Schonlau et al
[13] for training and testing. This dataset cordairb000 commands for 50 users. The
first 5000 commands of each user are true commamdgher words these were 100%
pure commands that were typed by the genuine @iber.remaining 10000 commands
contain interspersed masquerade sessions in thesas#on consists of 100 commands.
These commands for each user were built over aoghesi time using the UNIX
accounting command that takes a log of user typmdntands namely “acct”. After
building 15000 commands for each of the 50 usetsoiau et al. carefully injected
command sessions of another 20 users after 500@naads of each user. So, starting
from command number 5001 we have masquerade consniatetspersed with genuine
user’'s commands.

Schonlau et al. used the first 5000 commandsatn their models and then using
these trained models the sessions after 5000 codsnamere tested for masquerade
sessions without any idea of what a masqueradeéosea®uld look like. Maxion and
Townsend [12] went a step forward to create masgigersessions using the 5000
commands of the other users during the trainingisestself. This gave an idea of what
a masquerade session would look like before thisngephase. Kwong H. Yung [18] then
changed the method of updating the user sessiongsimg a self consistent update
mechanism rather than single-step update mechari@malso proposed a feedback

mechanism to update sessions correctly.

21

3.2.1 Naive Bayesian Network

The analysis that we will perform will consiststafo phases
* Training Phase
» Testing Phase.

In the training phase a user log file is choSdre first 5000 commands of
this log file will be scanned by our classifier a@iodms a model for the genuine user. We
also create an artificial masquerader model foruer under investigation from another
log file of 5000 commands that was formed by pigkup sessions of 100 commands
from the remaining user log files. This artificiaasquerade file makes the remaining
users masqueraders and tests the sessions of/éstigating user with a prior knowledge
of intrusions based on the formed masquerade madétel. the training phase is complete
we have a two-layered Naive Bayesian network of mands and models. Such a

network is shown in Figure 5.

Figure 5: A Naive Bayesian Networks of command propns and Classes formed after
the training phase for a user

22

In figure 5, U= Proper User Class that consistgrobabilities of commands from
the first 5000 commands in the user log file ane Masquerader Class that consists of
probabilities of commands from 5000 commands iretttiéicially created masquerader
file.

The first layer of Bayesian network consistspobbabilities of all possible
commands seen in training and the second layeesepts the class node that is derived
from the command probability layer. For each usehsBayesian networks of commands
and classes can be imagined. Since this is a siolgdsification problem based on the
command count the above Bayesian networks setapsfour Naive Bayes classifier. So
the figure above is actually a naive Bayesian ndtwb possible commands proportions
in one layer and the class to which such propostmircommands is assigned in the other
layer. The command probability layer forms our nmqueeameters and contributes to the
mixture proportion of the class in the next laygfter the training phase the Bayesian
network formed represents an initial configuratioh user and artificial masquerade

classes.

3.2.2 Deferral mode for classifying tegtssens

Basically there are two types of classificatiorour test sessions.
» Offline Classification
* Online Classification
In Offline classification all test sessions canclassified with some lag.

In other words we wait for the arrival of say “€st sessions and only after the arrival of

23

the " test session we would classify all 1 to t sessi@ifline classification allows
backtrack updating of test sessions. This backingcknmechanism allows for a
probabilistic classification of each test sessicatber than binary 0 or 1 classification
provided by the Naive Bayes classifier. Each tessien is assigned a probabilistic score
which is recomputed a number of times as and wleentast sessions arrive. Since each
test session is scored in a sequential manner tntdst sessions arrive, offline
classification produces better results. The faet the Schonlau data is contaminated
with successive masquerade sessions in 80% ofabescand that each test session is
scored in an overlapping manner due to the watl'dast session, the offline mechanism
produces lower false and missing alarms.

Online classification makes a binary decision anhetest session in a
greedy fashion. In other words each session issifiled at once as either proper or
masquerade sessions. This could be harmful in valseie we have a false alarm and an
update was not made, as this could cause moredklsas. The test session commands
are added to the initial command proportions comgbuduring the training phase as
shown in figure 5. Hence, new probabilities are patad for each command during the
testing phase. The larger the ratio of the proliglmf commands of User class to that of
Masquerader class the greater the evidence ofrasgithe test sequence to the user.

Our Deferred Naive Bayes Classifier is an Offliokassifier. As
discussed in the previous paragraphs we assigolalpiistic score to each of the test
sessions and keep computing the multiple scoregdoh of the previous test sessions
until some point where we need to classify all @st sessions. This means that we defer

our decision to classify our test sessions unélalrival of say “t” test sessions. Once “t”

24

sessions arrive we make our classification of tla@img sessions that were “t” sessions
behind. Such a deferral mode will surely producenagl results than the simple Naive
Bayes classifier of Maxion and Townsend [12], sificaso uses the information of “t”

test sessions that follow to classify the waitisgsson.

3.2.3 Bayesian Network Detector for masqueradiectien

In our analysis we propose to test for a wait ghséssions to classify test
sessions. The trust node in our Bayesian Netwoekgdds “t”. The Bayesian Networks
detector that we propose makes use of the advantafjydboth online and offline
techniques. In other words the Bayesian Networkglex)y between a Naive Bayes
Classifier and a Deferred Naive Bayes Classifiesedaon a trust criterion. Such a
Bayesian Network is shown in Figure 6. The figurevgs two types of detectors working
in parallel on the test sessions. Initially a triestel of 1 is set on the Naive Bayes
Classifier. As new test sessions arrive the tregéllis computed based on the ratio of
correct and incorrect classifications. An incorreldssification on complete real-time
IDS would consist of only false alarms. In otherrd®when there is a false alarm the
genuine user reports it as a bug to a bug datalidse.information can be used to
compute the new trust of our trust node. In ourlymm we already know the
classifications of all the test sessions. Thisasduse we interspersed some masquerade
test sessions into the genuine user sessions. Sowweuted incorrect sessions based on
this test session classification table. In otherdswur incorrect classifications accounted

for both false and missing alarms.

25

A threshold of 0.7 was set on the trust node. Tmsshold limit is adjustable and
it represents the maximum erroneous classificatibasour detector would accept. Once
the trust on the Naive Bayes classifier is reduod@dl 7, our Bayesian Networks Detector
fires the Deferred Naive Bayes Detector to clasigy test sessions it has seen so far.
This includes the new test session, which was lasisified by Naive Bayes Classifier.
After this classification the trust node is resetts initial setting and the Naive Bayes
Classifier model is updated with the Deferred NaéBages Model. This tunes the Naive
Bayes Classifier and we could expect better reshlim before since the substituted

model is from an offline classifier.

Figure 6: Bayesian Networks Detector with Naivegdsand Deferred Naive
Bayes Classifiers.

In Figure 6, NB = Naive Bayes Classifier and DNBeferred Naive Bayes
Classifer. The trust node (Trust) toggles betwdenNaive Bayes and Deferred Naive
Bayes based on the threshold set. When the Defsiaidéct Bayes Classifier announces
its results, we could even crosscheck if some opoevious sessions were classified

incorrectly by the Naive Bayes Classifier.

26

3.2.4 Offline classification of Deferred NaiBayes Classifier

A Deferred Naive Bayes Classifier performs atirefclassification of a session.
Whenever a new test session arrives, we computentitel parameters pc and p’c for
each command by including the test session commaitdshe already existing model
parameters. A detailed explanation of these paemnes presented in section 3.2.5.
When computing the model parameters we use thectatpan formula to compute the
probability that the session is a masquerade qugorsession. This is given as a score for
the current session. In the Naive Bayes classifeemake an instant binary classification
decision.

Since we provide a probabilistic score we can lssgping the current test session
until a point where we could say that the sessasagood evidence to be classified as a
proper or masquerade session. The fact that Sakisrdata has continuous proper and
masquerade sessions, help in this offline clasdifin of test sessions. Thus a test
session’s decision can be deferred until we enesuUetv more test sessions so that the
probabilistic score that is assigned to the tessieas becomes more trustable so that we
could now classify the session without much dodbmathematical explanation of this

discussion is provided in session 3.2.5.

3.2.5 Explanation of Naive Bayes and Deferredvbl&ayes
Classifiers
The Naive Bayes classifier was explained in eac#.4.1 where we provided a

brief introduction to the Bag of words model. F@iclk session a certain probability of

27

every command occurs based on its count in that@sesThis probability of a command
now becomes our point of focus. To be precise,pttobability that a test sequence of
commands “x X y y X" was generated by usedl,,is:

Piix* Puix™ Puty * Puiy™ Puix
Or (P 3* (Pu1,y) 2 where Pul, x is the probability that user1 tyfielcommand x.
Based on the command probabilities we now buildssisn node that has a conditional
probability of all commands that form its parentao

Similar probability estimation will be made forssen2 also and in this manner
all the sessions in training will have their regpacparent command nodes contributing
their probability of occurrence for each of thesses nodes. This is clear from Figure 7.
The first layer shown in figure 7 is a layer of coand probabilities and the second layer
has two different nodes. The S node representgeheine user sessions and the M node
represents the artificial masquerade user sessarsg the training phase. The arrows
from layer 1 to layer 2 indicate that each sesssmeives some contribution of command
probability from layer one.

One important thing to be noted here is if therao contribution by a command
in a session then its probability contribution ssigned a valued® equal to 0.01 (see
section 2.4.1). &" is called the psuedocount and is added to be¢hriumerator and
denominator of the Bayes formula shown in sectidnl2n this way we form a complete
set of training session nodes for both the propssiens and the artificial masquerade
sessions.

Figure 7 represents the Bayesian network consistirig) genuine sessions of a

user and 50 artificial masquerade sessions piaked the remaining 49 users. That is if

28

we are monitoring userl’s commands then the remg@id© user's (user2 to user50)
sessions will form artificial masquerade sessiamsuserl. In this way we can build our
Bayesian network for each of the users under dllamee. For each of the session nodes
the respective conditional probability is calcuthtbased on the commands in that
session. These conditional probabilities can ber lased for classifying future test

sessions and updating them into the network. Amgka CPT is shown in table 2.

Figure 7: Bayesian Networks for the set of artifiecnasquerade and
proper sessions after training phase.

P(G) | P(G) P(G) P(S

0.0002| 0.0003 0.005 0.000034
0.009 | 0.0008 0.0007 0.000056
0.0023| 0.0000034 0.000789 0.0000089

Table 2: CPT for various sessions based on the @rroount Probabilities.
A Similar table can be constructed for masqueradsisns also. Since this is a

command counting problem considering only sessiformation in the training phase
to classify sessions will not be of great help.tdagd of computing the conditional
probabilities of each session we could compute dbeditional probability of all

commands in the training phase and form masquenadgroper classes. The stronger

29

the evidence, the chances of a correct classibicaiticrease. Moreover, it is very
difficult in reality to expect accurate classificats using a session’s conditional
probability. Thus in practice we don’t compute ttenditional probability values as
explained above in Table 2. Since we know the itdeof all the training sessions we
consider the joint conditional probability of al& training sessions and we compute
two classes as shown in Figure 5.
As explained before we classify our new test sessiosing a Bayesian trust
network that toggles between a Naive Bayes andrizefé®aive Bayes Classifiers.
So, before testing begins the classes that weraefdrin training are used as initial
classifiers. We update this initial classifier aigriour testing phase and use this updated
classifier at each step to classify future sessidkxgtually we build two different
classifiers for our Bayesian Networks approach, fmreNaive Bayes and another for
Deferred Naive Bayes. Once the trust node toggleBdferred Naive Bayes we first
classify the new test session with the Deferredv&l@ayes model, replace our Naive
Bayes classifier model with the Deferred Naive Baglassifier model and then proceed
with this model on the Naive Bayes classifier. Oagain our Deferred Naive Bayes
model starts its offline classification all overaagand waits for its chance to classify the

test sessions.

3.3 A Mathematical analysis of Naive Bayes Beterred Naive Bayes

Classifiers

The following discussion illustrates the matheatmodel of the

classifiers used in the masquerade detection proble

30

We first explain how we compute the model paranseter naive Bayes

classifier and then present how expectation soesrs computed for Deferred Naive

Bayes classifier. This is followed by a brief exmion of the Bayesian Network

toggling approach.

1. Conditional Probability of a session ofx (Wser k) based on the probabilities of

command frequencies is,

n
P(X) = |‘| P(Ci) , Where P (§ is the probability of occurrence of command ‘i’
=1

in the session k of 100 commands and | iSthe conditional probability of the
session k based on the command frequencies.

i.e. P (8) = P(GQ)""P(C) “2...P(G) MY, for all G with Nuki (Number of times
user k used command j) > 0 i.e. if there is no oation of a command in a
session then that command is assigned probabiligessed on our adjusting

parametera as explained in section 2.4.1.

Let Cs denote the sequence of commands in sessimber “s”. By Bayes
inversion formula the posterior probability P (U|©@$ user U given the sequence
S is,
P (U|Cs) = P (Cs|U) P (U)/P (Cs) i.e. P(Cs|U) P (U).
Where, P (u) is the prior probability for user nda (G|U) is the probability that
the sequencesWas generated by user u. In practicas@ssigned to the user
u = argmax{P (Qu) P (u) Ju = 1, 2..., U}, among U different usdrs.other

words, the session s assigned to the uses who most likely generated that

31

session. This rule is the optimal Bayes rule urtderusual uniform loss function
for misclassification. In the naive-Bayes modelleaommand is assumed to be
chosen independently of the other commands. Us&asi probability Bc of
choosing command C. Because each command is chindependently, the
probability, P (Cs|U), that user u produced theusage G= (s, Gs2. .., Gk. . .,

Csz) of commands in session number s, is simply

Zm Zm '
Pleglu) = H Plegp|u) = H Puc, = H phs
k=1 =1

k=1

, Where

Mse = Eis:'l l{C;:;:C}
, Is the total count of command c in session 43" [

From now on let pc and p’c be the probabilitycoimmand c in a proper and
masquerading session respectively. We computeathdikelihood L of a test

session s up to an additive constant as shownuatien 1
C C

Ls=(1-1) (log (1-&) +> nsclogpc) + Is(log £ +) nsclogp'c) (1)
c=1 c=1

& and 1< are the prior probabilities that a session is eropnd
masquerading. In our entire analysis these vallrese fixed to 0.5.

Assuming that all the test sessions are geneiatizpendently of each
other, the cumulative log-likelihood' hfter t test sessions is up to an additive

constant

t C
L= > Ls =a'log(l-€)+ > nt+clogpc + « '+ log & +

s=1 c=1

32

C
Y n't+clogp'c (2)

c=1

where,
a's = Szt:;(l—ls) ,)
e gs | (4)
Nye = Sz;:(l—ls)nsc,)
N = Zt:(ls)(nsq (6)

s=1

Here «'s and «’'. are the cumulative numbers of proper and
masquerading sessions respectively; mnd n',. are the cumulative counts of
command ¢ amongst proper and masquerading sessspsctively, in the t total

observed test sessions.

Rare classes and rare commands may not be |yrogiected in the training set.
Therefore to avoid zero estimates, smoothing isliegpto the maximum-
likelihood estimators. This smoothing can also betivated by shrinkage
estimation under Dirichlet priors on the parameterg. and pe

Here the parameterg, p. and pc are drawn from known prior
distributions with the fixed parameters, and singikndard Bayesian analysis is
applied. Based on this discussion we compute the cemulative posterior

likelihood L™ as in equation 7.

33

['= (B -1+a')log (1 -¢€) + ch(ac-1+ (n0+ ¢)+ (nt+c))log pc

c=1

+(@ 1+a 'y)log £ + Zc:(a'c-1+(n'0+ c)+(n't+c))logp'c (7)

c=1

Here, R.. and .. are the total counts of command c in the proper and

masquerading sessions of the training sessions.

5. Using equation 7 we compute our model parameteps and pcas shown in the

equations below,

t 'J"—].—I—{-:“'I
S D T)

o= a, —1+nT, +nt,
[T\C — il , 1 v
, (w—14nL,+n%,) 9)

£ ap=]

o — 14+ 0.4 nff,

.E:'lt.'l = [.
" (et =1 4nf Lnft)
£ av=]1 +x + (10)

After the training phase we compute initial classifmodel 6° by
neglecting the test session command counts inghatens 8, 9 and 10. As the
test sessions arrive we include the test sessionmamd counts and compute

the new model parameters, which reflect the infbeecof the test sessions.

34

6. If we use Naive Bayes classifier then we neeidhtoediately classify the newly
arrived test session. This is done by finding ¢t tatio of the newly obtained
model with the initial model. If the ratio of pto pcO is greater than p’c to p’cO

then we classify the test session as proper sesdgmas masquerade session.

7. In the case of Deferred Naive Bayes classifier wge probability values to
estimate the test sessions proximity of being aguesde or proper session.
Equation 11 below shows how a session can be a&ss@probability value. Let
us call this a score. Hence our test sessionscared as and when they arrive.
Since we use a backtracking method to score otséssions we keep updating
the scores as new test sessions arrive. In othetswoultiple scores are provided
for each of our already seen test sessions befersag the last or th& test
session. At this stage when tietest session arrives our Deferred Naive Bayes
classifier classifies the test sessions as propenasquerade if the probability
scores are below and above 0.5 respectively.

The equation used to score each of our test seissasbelow,
P(Is=1|Cs8") = (P(Is=18") P(Cs|Is=18"))/P(Cs#") (11)
where,

P(Csp") = P(Is=08") P(Cs|Is=08")+ P(Is=18") P(Cs|ls=18").

8. Our Bayesian network first places a trust of%0th the Naive Bayes Classifier.

35

So we consider the model parameters computed Isydhassifier initially to

classify our test sessions online. Each time wherchassify a session incorrectly
the trust value on the node is adjusted based ematio of correct to incorrect
classifications. Once the trust level reaches 74aggle to our Deferred Naive
Bayes Detector, which was running in parallel, atagsify all the sessions it has
seen at this point. Thus the Deferred Naive Bayass@ier also classifies our
new test session. At this point we update ourahilaive Bayes model with the
Deferred Naive Bayes model and reset our trust md80% on the Naive Bayes
Classifier. Thus a more reliable model is now ugedlassify our future sessions

using Naive Bayes Classifier.

During our classification of test sessions vg® dduild a table of hits, false alarms,

and missing alarms. This table was used to cakeula trust on the trust node

and was also helpful to draw ROC curves duringfimad analysis.

36

CHAPTER IV

CLUSTERING OF COMMAND SESSIONS

4.1 Clustering Technique

Intrusion detectors that use audit data such asmzomd sequences handle
voluminous information in order to classify tesssiens. More data as backend implies
more storage area and hence more information taspebefore making a decision.
Clustering of command sequences also has the sahkem of dealing with huge audit
data during the training phase but once denseethiate formed the centroids of clusters
become our point of focus. Thus there is a posdillala reduction during the testing
phase as only cluster centroids can be used wlatehimg a test session.

To form clusters of command sequences we fixétlel a command session into
a number of overlapping sequences. Once the seemieme formed they are clustered
based on a sequence match criteria. Finally we hasentriod that represents the cluster
characteristic. The amount of data to be handledewlorming a cluster of similar
records with acentroid that holds the mean characteristic of the clustdruge [8]. A
centroid of a cluster is like a black hole thataadts the members of the cluster toward it.
Mathematically, a centroid is the mean value otadd values that are closely related.
This close relation of the members of the clussethie most important factor of all
clustering algorithms. After clustering, the cerdsoof the clusters become the point of
interest and thus the rest of the information iended outdated. So while testing we can

compare our test sequences to the cluster centrolds might be considered as an

37

advantage of clustering technique but this alseddg on the density of our clusters. The
denser clusters will have less number of centrtmdsmpare with our test sessions.

Clustering approach was initially used in data mgnfield to cluster real time
data and compute their likelihood patterns basetherformed clusters [5]. We propose
an online clustering approach, which is a varidnthe data mining approach presented in
[5]. Our Clustering approach is further classifiedio three techniques based on the
sequence rating mechanism in the testing phasepidfse this clustering analysis to
study its feasibility as an Intrusion Detection t&ys in real time. Also we compare the
results of clustering and Bayesian Networks analipgi plotting ROC curve in section
5.3.2.2.

With this general picture of clustering of commasdjuences we now explain the
components of our clustering mechanism and disoussclustering algorithm in the

following sections.

4.2 Clustering scenario of Masquerade dietecising command lines.

Any solution proposed to a problem views the peabin its context. A clustering
solution to our problem of detecting masquerades lma viewed as consisting of the
following components.

1. Audit Data Creator

2. User Profile Creator

a. Sequence Grouper

b. Sequence Analyzer

38

c. Frequency Counter

d. Cluster Tuner
3. Validity Checker

a. Sequence Scorer

b. Alarm Raiser
4. User Profile Updater

The above blocks work internally commauailcg with each other for two
phases namely Training and Testing phase. A blodgram with the
communications between various components is shoviigure 8. A complete

description of the components is also presented tfe block diagram.

1

TRAINING
FHASE

I
USER PROFILE CREATOR | | | VALIDITY CHECEFR | .
|
Sequence Seguence I
o — Sequence Alarm
' Scorer Raiser
Frequency Cluster
Counter Tuner

-—
|

L S—
PROFILE
Audit Data UPDATER
Creator —'_b ¥
| User [
| Profiles
[
Lo l_ _ _ _ _ _ _] TESTING
! PHASE
L _____ il

Figure 8: Masqueradsdator based on clustering of user
command sequences.

Audit Data Creator — A Log File creator that stores the log of usenmands during a

login logout session to a database called UserHieg (ULF).

39

User Profile Creator — Based on the clustering scenario a user profgator can be
defined as user command sequences grouper. If @gemr sequences of commands to a
UPC (User Profile Creator), the output will be ¢&rs of command sequences. A profile

of user “u” is denoted by ‘P which represents the set of all clusters of uge&r
command sequences that were formed using the ghgtdgorithm i.e.
R={Cy C, Cs.. Cy}, where G . C,are clusters of user u’'s command

sequences.

Sequence Grouper -A sequence grouper is a component that clustersdahemand
sequences presented to it. Generally it contaiesallgorithmic implementation of

clustering.

Sequence Analyzer This component examines the command sequencesnaisdlie
similarity between two sequences based on the lymgprinciple. Generally the LCS
(Longest Common Subsequence) principle is usedatzhmsimilarities between two
sequences. Other techniques used for similarityclmag are MCP (Match Count
Polynomial Bound) that matches each slot of themand sequences considered for
similarity checking, MCE (Match count Exponentiabugd) that has an exponential
influence for each slot that matched and MCAP (Matount Adjacency Reward

Polynomial Bound) that matches adjacent slots ofroand sequences.

Frequency Counter —This section counts the distinct commands occurimgach

sequence. It basically finds out the frequency afuorence of each command in a

40

sequence. In order to find the similarity betwe@n tommand sequencesand s we
compute both the LCS and the command counts, wertfatch the sequences based on

both LCS and the command counts.

Cluster Tuner — The job of cluster tuner is to either split a chusbr join two clusters.

This is explained in the algorithms given below.

Validity Checker — During the testing phase this component checks/dhdity of the
command sequences that are to be clustered. Wabkdiomputed based on scoring given

to each new sequence.

Sequence Scorer -Each of the new sequence is scored based on otiee afhree

techniques namely, Previous_n, Weighted and Dec@igdht techniques [10].

Alarm Raiser — This component raises an alarm if an anomalegsesce is found.

Profile Updater — If a normal command sequence is found then thisessze is updated

to the user profile i.e. it is pushed to a paraacudluster. The Profile updater’s job is to

carry out this updating of normal command sequences

4.3 Clustering of commaretj@ences — Training phase

The job of the sequence grouper is,

* To cluster the command sequences based on thasires.

41

* To compute the new centroids of the clusters.

A sequence “i” of length “j” denoted by; & a set of | commands as shown in equation 1.

i${C1,C, .. ,Cj}, wherej=10,11...100 (12)
During the training phase a sequence is selecbed fine session log file and the value of
| is set to integral values in the range [10,100}the testing phase the sequence grouper
waits for online j commands and forms a sequence.
Two sessions;sand $ are considered to be similar if,

Match (S,) = T, Where Tis the threshold set for similarity. (13)

A Match of two sessions &1d & is defined by the following equation,

Match (S S) = LCS (S S + MCAP (S,) (14)

In equation 14 LCS is the Longest Common Subsemudietween the two
sequences jSand { and MCAP is the Match Count Adjacency reward Paohgiad

Bound.

The Sequence Grouper Algorithm for forming clustergiven below.

Sequence Groupe(T;, S, pu, S):

[* T, is intra-cluster similarity threshold
S is a set of a user u's sequences to be clustered
[is the user u's profile, i.e., set of clusters
SCis the set of user u's cluster centers
G is the cluster for center x*/

1. Initialize p=¢,S°=¢, C=0.

2. Randomly select a cluster center frogaBd update both,&nd §°
i.e. = {S} and § =S, - {S}, where $= sequence | considered as centroid.

42

3. Initialize the Cluster set tp i.e. G,=¢.

4. Include the center to the Clustgn.€. G={S}
4. While § # ¢ do

5. For j = 1 to sizeof(H

If (Match ((S x Sy)) = Trthen (Where () xthe clustercentroid
that produces the best match)

G=C Y{Suj}
Else $= S°Y {Su}
=G Y (SO

F=S-(&l CY (& -(&%)))

Recalculate the cluster centre for thetelus, say RCC¢
(§)x=RCCG

10. G=C, Y C, (We assume that this is the latest updatgd C
11. p=pY C
12. If a new sequence arrives=SS, Y Sew

©oxo N o

4.3.1 ClrsTuning

Another important component of the sequence groigéne cluster tuner. The
main job of the tuner is to join two similar clusteor split the discrepancies in cluster
into two. This actually means that we are now timeing our clusters so as to reduce the
inherent noise in the cluster. The two algorithmesgiven below,

/[T’ be the inter cluster similarity threshold

Join (T, pu, S
1. For each pair of clustersamd ¢in the profile p,i #]
2. IfMatch(g,G)>=T

=6 Y ¢/l We can now unite the two clusters

3. Recalculate the centroid for c
4. pJC: puc-cj
5. =8 - §j

Split (T, ST, pi, S°)

1. For each Cluster, a the profile p

43

2. If (T >= ST") SequenceGrouper(Tr+1, @, S
3. = pu-G
4. SP=S°-§

4.3.2 Recalculating Cluster Center

To recalculate cluster centers we use a lazy tqubnthat computes
cumulative scores considering each sequence irclttster as the new cluster center.
Finally the sequence with the maximum cumulativ@eds elected as the new centroid.
To match two sequences we again use the same intataiteria as shown in equation
14.

Thus the new cluster centre is based on the fatigpwcoring mechanism,

New Cluster Center = Max (Cumulative Scores of esefuence “i” in the cluster),

where,

t t
Cumulative Scores of each sequence “i" in thetelusd > Sim(Si, Sj), and i<>].

izl j=1
4.4 Influence of Threshold value inster formation

Threshold values are the percentage of acceptalaesvthat are set based on the
problem situation and observer’s approximation. Approximation that has a threshold
value toward its upper bound will tend to form rsfgent clusters but most of the
situations don’t want this rigid cluster formatias the tendency to strike false alarms is
higher. In other words strict threshold valuescegmilar values that were supposed to

fall into a cluster if the rules weren’t rigid. I8 therefore advisable to iterate the

44

algorithm with a loosened threshold value untilge a close match for all the values to
be clustered. Here again we assume that all theesdahat were intend to be pushed into
a cluster are proper values. We now determine &eanatical explanation for threshold
fixation.

Let T, be the threshold value to be set for clusteringopommmand sequences,
ai , be the density of thd'icluster that was formed based anTF must be chosen such

that equation 6 is met,

(i @) - - (15)

i.e. our threshold value should be such that evenfmore dense clusters. To
achieve such cluster formation is not easy. In noases we try to approximate the
threshold values after some iteration.

We now discuss the technique of choosing the liotdsvalue for our situation.
Firstly, a command sequence length i$ decided. Thus each sequence of commands
will be of length 1. This length can be chosen at random, let usls&§ in our case.
Now, threshold value is actually an integer vahig approximates two sequences based
on the matching function Match (S1, S2) (For Exquences S1 and S2 are considered).
If threshold T = 10, then we are looking for sequences suchthieat LCS + MCAP of
their commands is >= 10, so as to cluster therwelfare not able to cluster some of the
command sequences then we drop our threshold logla ef 1. This is done until we
reach a limit such that,Ts at least 6. That is we have an approximatioabmfut 60%.
After this approximation if we are still not able ¢luster some of the commands we keep

them as it is. All of the above discussion holdedjtor training phase.

45

Generally, setting threshold value to the uppeamigohas its own cost of raising
false alarms. If we set the cost function to bbelew,
Cost = missefalse alarms (16)
We can actually have a threshold close to the uppand. The reason is that we give
same weight for both misses and false alarms.elfcthst function was like in equation 8
then its better to choose a threshold value somendiese to the lower bound.
Cost = misseg(fal&e alarms) a7
In equation 17 it is very costly to get a falsarad so we need to balance this out
with our reduced threshold value. Thus choosingsiwld value is critical to clustering

problem.

4 Bsting Phase

The testing phase of the clustering scenario isoahline testing scenario.
Whenever sequences arrive online we rate the segsidrased on a Scoring mechanism.
After scoring a sequence, the score value is clieekth an accept threshold value to
either cluster this sequence or reject it. If tkersg value is significantly below the
accept threshold then the sequence is conside@mdaous and immediately an alarm
will be triggered. If the scoring value is >= thne&d value then we consider this
sequence to be produced by a normal user and tleuspdate this sequence to the
already existing user profile. The accept thresl®lah empirical value that is computed

based on observation of some test sequences.

46

The scoring mechanisms that will be used in thrsjggt are LAST n,
WEIGHTED and DECAYED WEIGHTS. These are explaitetbw.
LAST n — Here first n sequences in the testing plae rated cumulatively and the later
sequences are judged based on these n sequenaesafify mechanism can be

mathematically represented as,
t=]
jR1/ (j+1)>_ Simst, pu) , if j<n
t=0
Or

j
jR1/n) Sim(s't, pu), if j>=n (18)

t=j-n+l
WEIGHTED - Here the weighted mean of the last segels rating is incorporated into

the current sequences Similarity measure. The mmttieal representation is given as,

SE a *Match (5, p) + (1- @) * SGia (19)

Here we can fixa to be a finite nonzero quantity. Generally it eefil to 0.33. The match
function in equation 5 actually computes the mattthe new sequence with the cluster
center for each cluster. In the equatior.;Sftually refers to the last accepted sequence
before the sequence j. Thus we also weigh this seyuence j with respect to the last
accepted sequence j-1. This kind of cumulativeisgdnelps maintain the characteristic

of the new sequences with already matched sequences

DECAYED WEIGHTS - This is a variation of Weighteceans mechanism. Heee is

varied based on the current sequence. Mathematitalin be represented as,

47

SE @ * Match (3, p) + (1- @) * SGa (20)
Wherea; = a1/ajq1+1-log(z/(y+))), anda o=1. Thusais a decaying weight as long

as 1-log(z/(y+j)) >0, alsoy=6750 and z59@ in our analysis.

4.5.1 Predicting acceptable and cepiable Command sequences

In order to classify the sessions that occur enéis either proper or masquerade
sessions we use the above scoring mechanisms. Weiaally choose an accept
threshold score called Seq_Accept. If the scoreutatied for a test sequence is >= this
Seq_Accept value then we consider the new sessianpaoper session. We now call the
Sequence Grouper algorithm to cluster this newiaesgth the already existing clusters.

Profile updater does this clustering of the tesfjuences. The profile scorer
carries out calculating the scores. The alarm raigeb is to raise an alarm if an
anomalous session is found. Once the newly scaogedians are updated to the user
profiles we now have a more reliable user profé¢éatlase to refer to in order to classify

future sessions.

4.6 Steps Involved In Training and Testing Phase

The definition of keywords to be used in both thages is given below.
» A Command Sequence iS a finite set of 10 commands and is represeased
i$ {C1, G, C3,..Cygy.
» A Command Session Sg a finite set of 10 command sequences i.e.,

Se {{S1}, {S2} {S3} ... {Sudf}

48

» A Cluster Gof command sequences is defined on a Centroidesepted as.Ss
a set of sequences that match closely to the edntamd is represented as
G {5 S..S})
» A profile P,is a set of clusters that are obtained duringitngisession i.e.,

R={Cy, G, Gs... C}, where 1, 2...n represent the cluster centers.

4.6.1 TrainiRbase

1. Randomly select a cluster center and try totefusther sequences in the session
to this centroid using the match criteria Match%$ >= T..

2. All sequences that are not clustered are coresidas a set of unclassified
sequences and a new cluster center is considemedmdy for this set. Step 1 is
then followed for this set also, this will continuetil there are no more command
sequences to cluster.

3. In Stepl when a cluster is formed the profilehat user for whom training is
done is updated with the cluster center. Therefiomally when training is done
the profile set will consist of all the cluster temds.

4. Once we form clusters, our next step is to tilm@eclusters by either joining or
splitting them. To join two clusters we match the tcentroids of the clusters. If
we find a match we then merge the two clustersraaalculate their centroids. To
split a cluster we pick centroids in the profiledatalculate the threshold value

based on the matching function. If this value Tigch greater than the assigned

49

sequence threshold value for the centroid, we $pét cluster using the Split

algorithm.

4.6.8sting Phase

In this phase first online command sequencefoameed as the commands arrive.
Each sequence is scored based on the weighitgdgphenomenon.
a. The first sequence is scored independently
b. The sequences that follow are scored with soreghw given to the
previous accepted sequence.
. After, a sequence is found to be acceptables; itpdated to the user profile by
using the Sequence Grouper Algorithm.

If a session is found to be anomalous thenamais triggered.

50

CHAPTEWR

BAYESIAN NETWORKS VS CLUSTERING ANALYSIS

5.1 A Comaiare Study

Probabilistic and Clustering analysis simulatorsravcreated in C#. The User
interfaces of these two simulators are shown iruféig9 and Figure 10. The output
Bayesian Networks simulator is a text file name@ds Classifier.txt. This file contains
the classification of test sessions into Proper Btasquerade sessions based on the
probabilistic modeld= { €0, pc, p'c} for each command. Clustering analysis on the
other hand produces five output text files for eactalysis; these files are named as
UserX_Classifier.txt, UserX_Sequences.txt, Userét$equences.txt,
UserX ClustersWithScores.txt, and UserX_Testingst@sWithScores.txt. The
Classier.txt file has the classification of eachkt teession as Masquerade and Proper
session based on the sequence rating mechanisnench&sch session also has
sequence’s rating along with its classificationomfation. The Sequences.txt and
TestSequence.txt files contain the sequences thia formed during training and testing
phases respectively. Finally, the ClustersWithSzoxe and
Testing_ClustersWithScores.txt files contain thestdrs that were formed during training
and testing phases. A brief overview of these twtectors is given in the following

section.

51

5.2. An Overview of Probabilistic and Clusterimgrusion Detectors

5.2.1 Bayesian Networks Intrusion D&iec

M Training...
Welcome to the Training Session of Truncated Unix Command Lines. Select the User (D
from the Combo-Box and then click Train to train the uzer's Log File. Training is done on
first 5000 commands caollected over a period of analyzis on each uzer's command Usage.
Training of Uzer's Unix Log Files
Uzer D List: |user1 ﬂ |: | r TEST |
st - Th -
tazq 1D List : ulhazq Flesults
I .maker_w
Command Statistics EL0E
Command Total Count Frobability pcl =
0.000410484719
-maker_w zZ 0. 0004 14d4?019
pdcl =
Jmaker_w . . 2 670476546539
.Wrapper Z 0. 0004 72606
. Wrapper a u} wWIapper
E=05
4D 18 0.0036 pedl =
4Dwm 11 n.o0zz 0.000410484719
144719
aacdec 43 0.0086 pdcl =
ascdec 0 i} 2670476546539
T2E-06
acroread [=3<] O.01z6
acroread u} o A0 v

Figure 9: A snapshot of Bayesian Networks Intrandd@tector after training

phase.

In figure 9, the Command Statistics group box shidve histogram of commands
and the Probabilistic Model for each command ismghim the Results group box. In
order to compute a proper and masquerade modeafilr command used by UserX, the
UserX’s log file and a Maquerade log file shouldse¢éected from the UserID List and
Masq ID List respectively. Clicking on the Trainttmn now would generate the initial
probabilistic model for each commands based offiste5000 commands in the chosen
user’s log file. The Command Statistics group boa the Results group box display the

initial model parameteré,of each commands used so far by the user.

52

To test the command sessions simply click on tbst Button. A message box
containing the online classification of the sessimaler investigation is displayed. This
continues for all the test sessions. Internally adgorithms are executed in parallel. As
explained in section 3.2.3 the trust node toggktsveen the Naive Bayes and Deferred
Naive Bayes Algorithms. Finally the results of eifisation are backed up in

UserX_Classifie.txt file.

5.2.2 Clustering based Intrudbmtector

Command Sequence Creator,

Open Uszer Log File for Training

|C:'\Documents and SettingzhGunalDeszkiop\FinalClusten Open |
|C:'|,Dcu:uments and SettingsGunaliDeskkopiFinalClusteringCommandClusteringlUserLogFiles\User 18, bxt
Cormmand Seguences Creation

Please Select a Sequence Length: 10 Create Sequences
Murnber of Commands to Train 000 Yiew Sequences

Cluzter Command Sequences - Training Phasze

Juzt howver the mouse pointer on the Slider Control to view the Threzhold
“alue set. The range fived iz {»=Half of the Sequence Length and <=

Pleaze Select an Intra-Cluster Threzhold limit fram the Slider Control below.
Sequence Length } selected in the ComboBox above .

Threshald Walue

Cluster Sequences

Fleasze select the number of sessions and the sequence rating method for
testing. Click ot Test Sesszions Button to proceed to the testing pane.

Mumber of Seszsions 00 -
Sequence Rating Scheme Weighted Mea -

Accept Threshald Variation Lirnit |u_|:|5 j

4

Testing Phase

Figure 10: A snapshot of Clustering Analyzer of coamd sequences when analyzing
User18.txt log file.

53

5.2.2.1 Steps to perform clusteanglysis

Open a User log file for training using the Obertton

Select the Sequence Length and the Number ofn@muds to train from the
combo boxes in Command Sequences creation group box

Click on Create Sequences to create commandesegs. The output file
UserX_Sequences.txt will be created at this step.

To view the created sequences click on View 8eges button. This would pop
up a dialog box showing the command sequencesvtitat created.

Set a threshold value using the slider contnal elick on the Cluster Sequences
button. This results in the creation of UserX_ GhustVithScores.txt file that
contains the clusters with a center sequence andlitistered sequences appended
with their similarity Score with the center sequenc

We now enter the testing phase. To test the @mrnsessions select the number
of sessions to test, the sequence rating mechamsnan Accept threshold value;
click on the Test Sessions button to perform pedfihsed testing.

The result of Testing is three text files namelgerX_ TestSequences.txt that
contains all the sequences that were tested,
UserX Testing_ClustersWithScores.txt that contdims updated clusters that
were formed during the testing phase and UserX s@iastxt that contains
classified test sessions based on the Accept tiesind the Sequence rating
mechanism used on the test sessions.

Results in UserX_Classifier.txt can be used It ROC Curves for clustering

analysis.

54

5.3 Results and Discussions
5.3.1 Probabilistic analysis of truncated UNIXrooands

5.3.1.1 A modified data scenario

Probabilistic analysis can also be carried out@mmand sessions with modified
UNIX commands. Truncated UNIX commands from the d&u’'s Masquerade data
files can be appended with arguments to enricld#ta. A data pre-processing step will
be used to enrich some of the commands. For exaitip@druncated command ‘vi’ can
be appended with the file name of the file that wiasved with the editor i.e. ‘vi’ can be
enriched to ‘vi <File Name>'. The file name in thrgle bracket now distinguishes this
‘vi' command from other ‘vi’ commands in the usextdset.

In the masquerade detection scenario we assumewbat user considered has a
pattern of command usage based on the currentcprdjreover, the user profiles are
revamped based on the active project that he/shikswam. The enrichment of some of
the commands would certainly work in such situaidn case if the intruder targets on
opening some files that the privileged user caesnore due to project change, this
could be marked as an intrusion. Such patterndeodécesses can be added into the user
log file’'s test commands region and considered asaaquerading data pattern. To be
more practical the training data can also addeld soime enriched commands to account
for the enrichment in the test data.

In our probabilistic analysis we only considerathttated UNIX commands from
the Schonlau’s User log files. We limited our asayfor four users and followed the
same for the clustering analysis also. It is beytms scope of this thesis to include

enriched commands and may be considered as futaute w

55

5.3.1.2 Analysis

A limited analysis was carried out due to time stomints. The following
discussion explains how the proper and masqueratdendodel was built for four users.
The Schonlau data for 50 users was used as a atsepaol and just 4 users were picked
from it to carry out our analysis. For these fosens a proper and masquerade data
model was built and the sessions were tested lmas#te built models.

We Considered analysis of Userl, User9, UserlOUWswt18 log files for our
masquerade detection problem. For detecting maaduey test sessions of Userl the
probabilistic analysis was carried out as followse first 5000 commands from the log
file of Userl was trained to build a proper usedeidor Userl. To build a masquerade
model for Userl, 5000 commands in sets of 100 camdsyamaking 50 sessions were
chosen from the rest of the users and trained. ré€kalt of training was the model
parameterd (&0, o, P'co) for each command, which was computed from loglilood
estimation formulas.

During the testing phase new model parameters weraputed using the
likelihood estimation formulas and finally the @ifence between these parameters and
the previous step’s parameters were computed antpa@d to a threshold. If this
threshold limit was not crossed then the test saswias reported as a masquerade
session, else the new session was updated byadatalg the model parameter. The
Bayesian Networks toggles between a Naive Bayes Beférred Naive Bayes
Algorithm. Based on the trust mechanism explaimedection 3.2.3 the best classifier is

chosen at proper time and the online classificatibtest sessions is continued using the

56

Naive Bayes classifier after the its current masieéplaced by the Deferred Naive Bayes
classifier’s offline model.

The results of our above analysis using Bayesiatwdl& method are shown
below. In this discussion only the sets of classiraphs for four users that point out the
proper and masquerade sessions are attached.disteissing the Clustering analysis the

hit rate to false alarm rate graphs are discuss&IGC curves.

Userl - Probabilistic Analysis

—e— True Classification

Class Index
(0 - Proper) (1 - Masquerade)

O
1 11 21 31 41 51 61 71 81 91

Sequence Number

Figurell.1: True classification of 100 fT&sssions for Userl

57

User1 - Probabilistic Analysis

1
0
m
a]
w 3 —4— Bayesian
(=g
2 m Metworks
L= Classification
"o
n T
o=
(SN
[
[x]
| =
[
o
R

1 10 19 28 37 46 55 &4 73 82 91 100

Sequence Number

Figure 11.2: Bayesian Network Classification of T@3t Sessions for Userl

User9 Probabilistic Analysis

> 1 —ﬂ W

e]

o

(]

>
S8
2= I
oo ‘—o—True Classification
2 o
O o

o

o

o

© 0

1 11 21 31 41 51 61 71 81 91

Sequence Number

Figure 12.1: True classification of 100 Test 8essfor User9

58

User9 - Probabilistic Analysis

1 ot 4 puonsusnene »
T
37 _
=3 _+— Bayesian
E ' Metworks
T Classification
i |
2
a
= mwmmmmmmm
1]

T 1 21 3 4 5 B 71 81 9

Sequence Number

Figure 12.2: Bayesian Network Classification 00 Itest Sessions for User9

Userl0 - Probabilistic Analysis

~ 1 ﬁ
c
o
®
£ 3
o wm
xgg
83 —
£.8 ‘—Q—True Classification
h oo
s o3
oa =
o4
OMWW

1 12 23 34 45 56 67 78 89 100

Sequence Number

Figure 13.1: True classification of 100 Test S#ssfor Userl0

59

User10 - Probabilistic Analysis

1 +—# N B b + * +
)
= 2 = B ayesian
£ E E Metworks
E P = Classzification
e —]
[

T 11 21 31 41 51 61 71 81

Sequence Number

Figure 13.2: Bayesian Network Classification of T@3t Sessions for User10

Userl8 - Probabilistic Analysis

T

‘ —e— True Classification

Class Index
(0 - Proper;
1 - Masquerade)

OW

1 12 23 34 45 56 67 78 89 100

Sequence Number

Figure 14.1: True classification of 100 Test Sessior Userl8

60

User18 - Probabilistic Analysis

1 T«
g
: 8
5L Baypesian
= E —*+— MNetworks
ﬁ T = Classzification
=58
CLE
s -
] WWW

T 11 21 31 41 51 B1 71 81 W

Sequence Number

Figure 14.2: Bayesian Network Classification 00 Itest Sessions for Userl18

5.3.2 Clustering Analysis of Truncated UNIX Conmmd&Sequences

Like most of the clustering scenarios, clusterdigcommands was also carried
out in two phases. Clustering requires command esezgs. We can perform a simple
analysis by considering a command session as a aathreequence. The following

criteria were considered while forming command seges in our clustering analysis.

* If sequence length < session length then we forovedapping sequences in both
the training and testing phases.

» If sequence length = session length then we forovedapping sequences only in

the training phase.

» Sequence length >=10 and <=100

61

For instance, let us consider a command sessioengfth 5 containing five
commands, {vi, csh, pico, netscape, pine}. An exiengd sequences of length 4 would
be {vi , csh, pico, netscape} and {csh, pico, nefe, pine}. These sequences are our
overlapped sequences. To explain clustering of cangirsequences let us divide our

discussion into two phases namely training andnigst

5.3.2.1 Training Command Sequences

The main goal of the training phase is to crestr profile that would be used to
test command sessions during the testing phase.SHgeience Creator first creates
command sequences and Cluster Creator then clu8tes® sequences using our
clustering algorithm in section 4.3. A profile adar is finally constructed with the center
sequences.

In order to cluster a command sequences with cesgguences we use a
“similarity function” that has to satisfy the folleng criteria i.e. the Sum of Longest
Common Subsequence (LCS) and Match Count AdjacemtaRl Polynomial bound
(MCAP) between the sequence and it's center shealdreater or equal to a threshold
value. If this criterion is satisfied then we ckrsthe sequence with the center sequence
and then a new cluster center will be recalculdtech all the sequences in the cluster.
This is done to adjust to the change that was chdse to addition of a new sequence to
the cluster.

We performed Clustering analysis on the same #Asuggon whom we performed

Probabilistic analysis. This time Schonlau’s truedaUNIX command data was used.

62

During the training phase the first 5000 commamndkeé user log file was used to build a
profile for that user. The remaining commands ie tbg file were used to as test

commands. The testing phase is explained below.

5.3.2.2 Testing Command Sequences

The commands after 5000 commands were analyzedesgsions of 100
commands. The cluster centers in the user prajiieéd during the training phase were
used and a match between these centers and tlsegesnces were established based on
the same similarity criteria that was used in tragn Actually using the same similarity
criteria doesn’'t produce accurate results. So tww@aa for more accuracy each test
sequence was rated based on the three methodsnexbia section 4.5. Our clustering
analysis of test sequences was also based on thed#eds. We analyzed the test
sequences of Userl, User9, Userl0 and Userl8 lbasttese three rating mechanisms

for a sequence length of 100. The results of theséyses are shown below.

Userl Classifier - Clustering Analysis
—o— True
Classification

—&— Last n
Classification

Weighted
Means
Classification
Decayed
01 d Weights

1 11 21 31 41 51 61 71 81 91 Classification

Session Number

Class Index

Figure 15: Classifications of 100 Test Sessiorsetian Clustering Analysis for User1.

63

From Figure 15 we find that Last n Sequence ratmeghod produces more false
alarms than Weighted Means and Decayed WeightsaaetiTest Sessions 12, 19, 25,
46, 56,62 and 86 were classified as masqueradeéosgsBy Last n rating method.
Weighted means and Decayed Weights methods prodsessions 45 and 46 as

masquerades.

User9 Classifier - Clustering Analysis

1 g

—&— True Classification

—ill— Last n Classification

Class Index)
Weighted Mean

Classification

Decayed Weight
Classification

0 S v i
1 13 25 37 49 61 73 85 97

Session Number

Figure 16: Classifications of 100 Test Sessiorsetian Clustering Analysis for
User9.

Last n Sequence rater produced the worst resaoftdJger9; it classified test
sessions 4, 5, 6, 7, 55, 64, 66, 77, 88, 96 ands9®lasquerade sessions. So the false
alarm count is 11. There were also two missingnadain this classification, i.e. sessions
44 and 45 were classified as proper sessions. \Weigheans had 3 false alarms (Test
sessions 5, 26 & 27) and no missing alarms. Fidadgayed weights produced a better

result with just two false alarms (Test sessioasd® 26).

64

User10 Classifier - Clustering Analysis

—&— True Classification

—&— Last n classification

Class Index

Weighted Means
Classification

Decayed Weights
Classification

1 10 19 28 37 46 55 64 73 82 91 100

Session Number

Figure 17: Classifications of 100 Test Sessiorsetan Clustering Analysis for User10.

For UserlO Last n sequence rater produced 15 &ésens but there were no
missing alarms. This is better compared to theipusvuser, as there were two missing

alarms, which is worse. Weighted means producdsl$é alarms and Decayed weights

stayed on 9.

Userl18 Classifier - Clustering Analysis

1+— v—vq—»..—T—l
—e— True Classification

—— Last n Classification

Weighted Means
Classification

Decayed Weight
Classification

Class Index

1 11 21 31 41 51 61 71 81 91

Session Number

Figure 18: Classifications of 100 Test Sessionsthas Clustering Analysis for User18.

65

For Userl8 there were no missing alarms and % #ere the false alarms
produced by Last n, Weighted and Decayed weightpuesee rating techniques
respectively. Surprisingly here the Decayed weightthod produced one extra false
alarm. This might have been due to the slightlprmectly tuned accept threshold value.

The graphical representation of clustering analysinot very clear since three
techniqgues where displayed on to the same graphisle T3 provides the results of
clustering techniques in a clearer manner. Theetabtlivided into 4 sections, one each
for Userl, User9, Userl0 and Userl8 respectivelyUserl’s section we provide a
column for the test session number (SNo.). Thiskmsed as a reference for the other
sections. Each of the four sections has 4 colurepsesenting the True Classification
(TC), Last n Classification (LN), Weighted Meansas3ification (WM) and Decayed
Weights Classification (DW) of the test sessionsielclassification columns have 0’s for
proper sessions and 1's for masquerade sessioastiiér three columns of each section
have a “+” to represent correct classifications amd“-” to represent incorrect
classifications. Correct classifications includeetrpositives and true negatives and
incorrect classifications include false positivesfalse alarms and false negatives or

missing alarms.

Userl User9 Userl0 Userl8
S T|LIW|D T|L|W |D T|L|W |D T|L|W |D
No. C|N M|W C{N|M |W C{N|M |W C{N|M |W
1 O| H+ |+ O+ + + O+ + + O+ + +
2 O| H+ |+ O+ + + O+ + - O+ + +
3 O| H+ |+ O+ + + O+ + + O+ + +
4 O| H+ |+ of-1|+ + O+ + + O+ + +
5 O| H+ |+ of-1|- - of-1|+ + O+ + +
6 O| H+ |+ of-1|+ + O+ + + O+ + +
7 O+ + |+ Of(- 1|+ |+ O+ |+ |+ O+ |+ |+

66

+
+

0
0

1

O H+ |+

O H+ |+

O+ + |+

10
11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27
28
29
30
31

32

33
34
35
36

37

38
39

40
41

42

43

44
45

46

47

48

49

50
51

52

67

O+ + |+

53
54
55
56
57

58
59
60
61

62
63

64
65
66
67
68
69
70
71

72
73

74
75
76
77
78
79

80
81

82
83

84
85
86
87

88
89
90
91

92

93

94
95
96
97

68

+
=+
+

98 0 0 0 0
99 o #+ |+ 0f-1|+ | + O|+|+ |[+[[[O]+|+ |+
100 | O 0 0 0

Table 3: Classifications for the 100 test sessiensrded for Clustering Analysis.

The Relative Operating Characteristic Curve foe¢hclustering techniques and
the Self-Consistent naive Bayes technique is goetow. The three clustering techniques
and the Bayesian Network techniques are analyzeldeanhit rate and false alarm rates

produced while detecting masquerades on the dagdites.

ROC Curve (Probabilistic Vs Clustering Analysis)

100

90 jr—=
0 [/ /

X
70 // ‘/%N—L%QL —e—Lastn
60 —m— Weighted Means

()
T
x 50 ﬁ%/ / Decayed Weight
T 40 / // Bayesian Netw orks
30 Hf —¥— Naive Bayes
n—eo o—4¢
20
10
n Te) - n Lo n Lo < Te) n Lo n
N g NN~ < N o
o — — (42] ™ [ee] —
False Alarm Rate

Figure 19: ROC Curve for the three Clusteringydan Network and
NaiveBayesClassification techniques.

Table 4 below is the tabular representation ofHiiteRate and False Alarm Rate

for the five classification techniques shown inuig19.

69

FAR HR

LN |WM |DW |BN |NB

0.25 2475 | 24.75 | 24.75 | 24.75 | 24.75

0.5 24.5 24.5 245 | 495 | 495

1.25 23.75 | 48.75| 73.75 | 73.75 | 73.75

1.75 23.25 | 73.25| 73.25 | 73.25 | 73.25

3.25 46.75 | 71.75| 7175 | 71.75 | 71.75

3.75 46.25 | 71.25| 96.25 | 96.25 | 71.25

4 46.5 71 96 NA 96
4.5 45 95.5 95.5 NA | 955
5 70 95 NA NA NA

8.25 66.25 NA NA NA NA

10.5 88.5 NA NA NA NA

Table 4: Hit Rates for the five classification tejues and their respective false
alarm rates.

In table 4 FAR = False Alarm Rate; HR = Hat® LN = Last n; WM =
Weighted Means; DW = Decayed Weights; BN = Bayed\miworks; NB = Naive
Bayes; NA = Not Applicable. From the above tablis gvident that probabilistic analysis
produced a better result for masquerade detedtan tlustering analysis on truncated

commands. Bayesian Networks classifier producealse falarm rate of 3.75% for a hit

70

rate of 96.25%. This is comparatively better coradato previous techniques in the
literature but again our analyses were limitedust 4 users and hence our results were
better. Also the Decayed weight analysis producdmktéer result than the other two
sequence rating methods. The false alarm ratesipeddby decayed weights technique
for a hit rate of 95.5% was 4.5%. Weighted meansigeced a false alarm rate of 5% for
a hit rate of 95%. Last n method had a hit rat8&6% for a missing alarm rate of
10.5%. The remaining 1% in Last n technique wasimgsalarm.

Moreover, our Bayesian networks classifier produgetter results than the Naive
Bayes classifier. We obtained a hit rate of 95.%%df false alarm rate of 4.5% for the
Naive Bayes classifier for the same analysis foickwlour Bayesian Networks classifier
produced a hit rate of 96.25% with a false alarte & 3.75%. The Decayed Weight
clustering analysis on truncated data produced stindentical results as Naive Bayes
classifier. Last n sequence rating analysis bearg simple produced poor results.

We chose an accept threshold value for our clungfetechnique after a few
empirical analysis and hence were able to prodligktly poor results for the Decayed
weight clustering mechanism as compared to theghbbtic analysis. A well chosen

accept threshold limit may possibly surpass theltesf probabilistic analysis.

5.3.3 Feasibility of Clustering Analysis.

Training phase of clustering analysis was slow thoe training set of 5000
commands and a sequence length of 10. This wasi$ecee had to analyze too many
overlapped sequences and cluster them. It woulthbmverwhelming task on real-time if

we need to cluster huge volume of command line datfa a smaller sequence length.

71

One way to speedup clustering analysis is to iseresequence length to a limit that
would produce better result in less time. We cdrio@it our clustering analysis on a
sequence length of 10 and the results produced eeenparable to probabilistic analysis.
In real time one would expect an optimal sequeferggth Clustering
algorithm to be implemented based on the volumaatd. We can imagine an automated
algorithm that adjusts its sequence length basetth@wrolume of data to be tested. This
could cause more work to form new clusters of d#ife length. However this thesis
considered a user log file of 15000 commands aaretiveren’t much problems for the
algorithm running to completion for a sequence fengf 10. In reality building small

command sequences to cluster would cost more time.

72

CHAPTER VI

CONCLUSION

Detecting masquerade using profile creation is que component of a security
system that also has other mechanisms to monitdrdatect intrusions. These may
include cameras, keystroke monitors and well-ecedppystems for surveillance. The
proposed command history analysis mechanisms, ganBzlyesian Networks and
clustering methods further enhance the systemsatheddy exist. Our proposed system
further improves the security of systems since @n automated approach.

Although over the years different mechanisms hagen tried out to train user
profiles and detect intruders, clustering technsqaee still in their infancy. We proposed
a novel Hybrid Bayesian network for masqueradedtiete as well as novel clustering
algorithm for masquerade detection.

Results show that the hybrid Bayesian networkdpces the best results.
However this was for a limited dataset and witlargér number of dataset or users, the
clustering approach may produce better results. Jihmulation work for clustering
mechanism and Bayesian mechanism was illuminaésgecially as an elaborate study
of three rating mechanisms showed that Decayedhigeigas better than the other two
methods since it used the varying alpha parameter.

The ROC curve in figurel8 shows that probabdistnalysis produced better
results than clustering analysis. The probabilistiethod was simple and produced
slightly better results than clustering on Schordata. The false alarm rate and hit rate

recorded by these techniques are explained inoseéti3.2.2. As explained before, we

73

analyzed only four users log files and recordedseheesults. Surprisingly the
probabilistic analysis that didn’t consider sequendormation of sessions produced a
better result than clustering analysis that comsdisequence information in the form of
LCS. A session can thus be considered as a bagmfswn this case and still produces
better results since we are mainly focusing onfitbg@uency of commands seen in proper
and masquerade sessions. This clearly explainsutteess of the Naive Bayes classifier
for session classification. Moreover our Bayesiatworks classifier being a hybrid
online-offline technique produced better resulemtNaive Bayes classifier.

Developing a real-time Intrusion Detection Systéased on the clustering
algorithm would require analyzing the data filesnfr the disk rather than trying to
analyze the data using RAM. This is because thdilegare huge and it would take a lot
of time to form and cluster sequences. A real timkne detection with a user keying in
the data on a system would be challenging andestieig. Only such an analysis would
fully reveal the comparative accuracy of the cluste and probabilistic analysis for

detecting masquerades.

6.1 Future Work

As we discussed in section 5.3.1.1babdistic and clustering analysis on
enriched data could be promising. Furthermore,nyirthe accept threshold value for
optimal results could also be a promising analyBiss could be separately worked out
for both the truncated and enriched data. Our dichdnalysis can be further extended for
50 users on the Bayesian Networks approach. Sihegtefing approach was slow for a

sequence length of 10 we had to limit our analysigl users. A real time clustering

74

detector would require a better algorithm and sstptated systems with huge RAM.
Since we tested our algorithm with a sequence lleofyjL0 we were not able to perform a
comparative analysis of both the schemes on aliSeds.

All the proposed techniques in the literature amahis thesis produce false
alarms to some extent. The false alarm rate hde tkept low. We can only achieve a
false alarm rate reduction by proposing new meth&ilsce Concept drift cannot be
avoided in real time false alarms will exist. Herssigning a 100% accurate real-time

Intrusion detection system is impossible.

75

REFERENCES

1. Anderson J.P, “Computer Security Threat NMmmg and SurveillanceTechnical
report, James. P. Anderson Co., Fort Wagtoin, PennsylvaniaApril 1980.

2. Denning D.E., “An Intrusion-Detection ModgProceedings of the 1986 IEEE
Symposium on Security and Privacy (SSR (86)118-133, IEEE Computer
Society Press, April 1990.

3. Denning D.E., Neumann P.G., “RequirementsMndel for IDES — A Real-Time
Intrusion Detection SystenProceedings of the 1986 IEEE Symposium on Security
and Privacy (SSP '8§)p. 118-133, IEEE Computer Society Press, A9

4. DuMouchel W., “Computer Intrusion detectlmased on Bayes factors for
comparing command transition probabiliti@sEchnical report 91, National
Institute of Statistical Sciencégbruary 1999.

5. Guan Y., Ghorbani A., Belacel N., “Y-MeaksClustering Method for Intrusion
Detection”Proceedings Canadian Conference on Electrical anth@uter
EngineeringMay 3-4, 2003.

6. Heckerman. D, “A Tutorial on Learning witlaygesian Networks\Microsoft
Research repgSR-TR-95-06, 1995.

7. JuW.,, Vardi Y., “A hybrid high-order Markahain model for computer
intrusion detectionTechnical report 92, National Institute of Statsli Sciences
February1999.

8. Kanungo Tapas, Mount David M., NetanyahuhidatS., Piatko Christine D.,
Silverman Ruth and Wu Angela Y., “An Efgat K-Means Clustering Algorithm:
Analysis and ImplementatigrProceedings of the Sixteenth Annual Symposium on
Computational Geometrpecember 2000.

9. Lunt Teresa F., Jagannathan R., RosannaAlae Whitehurst, “Knowledge-Based
Intrusion Detection”,Proceedings of the Al Systems in Government Cardere
1989.

10. Marin Jack, Ragsdale Daniel, Surdu Johr$Arid approach to profile
Creation and Intrusion DetectiorProceedings, IEEE DARPA Information
Survivability Conference and Exposition (DISCE)X2001.

11. Maxion R.A., “Masquerade detection usingi&red command lines”,

Proceedings International Conference op&uwlable Systems and NetwoilEEE
Computer Society Press, 2003.

76

12.

13.

14.

15.

16.

17.

18.

Maxion R.A., Townsend T.N., “Masquerade di&ba using truncated command
lines”, Proceedings International Conference on Depend&8yktems and
Networks IEEE Computer Society Press, 2002.

Schonlau M., “Maquerading User Dataitp://schonlau.netlast accessed on
March 2% 2005.

Schonlau M., Theus M., DuMouchel W., Ju W¥arr A.F., and Vardi Y.,

“Computer Intrusion: Detecting Masquerdd&satistical Sciencel6(1): 58-74,
February 2001.

Szymanski Boleslaw K., Yongiang Zhang, “Reme Data Mining for
Masquerade detection and Author Identiibcg Technical Report, iaQ4
Department of Computer Scien&ensselaer Polytechnic Institu003.

Teresa F. Lunt, Jagannathan R., “A ProtoBsal-Time Intrusion-Detection

Expert System”Proceedings of the IEEE Symposium on Security aivddy,
April 1988.

Wang Yao, Vassileva Julita, “Bayesian Netwbrust Model in Peer-to-Peer
Networks”JEEE/WIC/ACM International Conference on Web Ingelhce (WI
2004)September 2004

Yung Kwong H., “Using Self-Consistent NaBayes to Detect Masquerades”,

Stanford Electrical Engineering and Computer SceeResearch Journal4-21,
December 2003.

77

VITA
Karthic Gunasekaran
Candidate for the Degree of
Master of Science

Thesis: PROBABILISTIC Vs CLUSTERING ANALYSIS OF MAOBIED UNIX

COMMAND LINES FOR MASQUERADE DETECTION.
Major Field: Computer Science
Biographical:

Personal Data: Born in Chennai, Tamil Nadu, IndraJanuary 19, 1981, the

son of R.Gunasekaran and Mrs. Dhanalakshmi &kaaan.

Education: Received Bachelor of Engineemrmgomputer Science and
Engineering from Madras Universithebnai, India in May
2002.Completed the requirements for the Madt&cence
Degree with ajar in Computer Science at Oklahoma State
University inly 2005.

Experience: January 2004 — December 2004eiSisor of Pistol Pizza, on-
Campus pizza shop at Kerr Drummondrigidall of Oklahoma
State University, Stillwater. Interisloffer from Statsoft, Tulsa
from January 2005 to May 2005.

