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CHAPTER I 

INTRODUCTION 

Increasing areas of soil in arid and semi-arid regions are being 

irrigated. To prevent soil salinity and alkalinity problems some water 

applied to the surface must move through the soil and carry the excess 

salts out of the root zone. Also high water tables must be prevented. 

Near Altus, Oklahoma, large areas of Tillman-Hollister clay loam soils 

have been put under irrigation. Irrigation water of rather low quality 

is provided by the Lugert Lake. Portions of this irrigated land have 

gone out of production due to high salt concentrations. Studies are 

being conducted to determine the origin and magnitude of the salt 

problem. Ground-water movement is being studied as a first step in 

developing methods to prevent the development of salinity problems and 

to reclaim unproductive areas. 

The hydraulic properties of the soil and the nature and existence 

of stratification within the soil are very important in understanding 

the movement of water in the soil. Ground water under artesian 

pressure implies soil stratification exists. This study was an attempt 

to investigate this stratification. The specific objectives of this 

study were: 

1. to assess the validity of Darcy's equation for describing 

water movement in this clay loam soil. 
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2. to determine the saturated hydraulic conductivity of this soil 

at different depths in the soil profile so as to ascertain the 

existence and location of any stratification. 

This information may provide insight into the processes of formation 

of saline areas in the region and will help in the design of irrigation 

and drainage systems. 



CHAPTER II 

LITERATURE REVIEW 

Darcy's Law 

Water movement in soil takes place under the influences of diverse 

forces caused by differences in pressure, osmotic, gravitational, 

thermal, and electrical potentials within the soil. In most soil-water 

systems, differences in pressure and gravitational potentials are much 

greater than differences in osmotic, thermal and electrical potentials. 

Therefore, the influence of osmotic, thermal, and electrical potentials 

on water flow is commonly assumed to be negligible. The gravitational 

and pressure potentials frequently are combined and called the hydraulic 

head. 

An early study by Darcy published in 1856 constitutes the basis 

for most mathematical models of water flow in soil. Darcy studied sand 

columns in which water was flowing downward at different rates (Hubert, 

1956). For each rate the difference in hydraulic head between the 

inlet and outlet boundaries was measured. Darcy found the volume flow 

of water per unit time was proportional to the cross-sectional area of 

the sand column and to the difference in hydraulic head. He also found 

the flow rate was inversely proportional to the length of the column. 

Mathematically the findings can be expressed as: 

Q KAh2-h1 
- t 

3 

(1) 
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where Q is the flux of water or the volume of water flowing through the 

column per unit time, 

K is a constant of proportionality and is called the saturated 

hydraulic conductivity, 

A is the cross~sectional area of the column, 

h1 is the hydraulic head at the inlet boundary, 

h2 is the hydraulic head at the outlet boundary, and 

L is the length of the sand column. 

Equation (1) is frequently written in the form: 

v Ki (2) 

where v Q/A is the flux density or the volume of water flowing through 

the column per unit time per unit area, and 

i -(h2-h1)/L is the gradient in hydraulic head. 

The hydraulic conductivity K in Darcy's equation received much 

attention because of its importance for characterizing the behavior of 

water moving into a saturated porous medium. The saturated hydraulic 

conductivity has been described by the International Society of Soil 

Science (1976) as "the constant of proportionality between the flux 

density and the total driving force in Darcy's law". It may also be 

defined as the flux density caused by a unit driving force. For a 

given porous medium, the hydraulic conductivity will depend on texture, 

structure, and porosity of the porous medium. Cracks, worm holes, and 

decayed root channels will also affect the saturated hydraulic conduc­

tivity of a soil. The hydraulic conductivity was found to be 

proportional to the density of the fluid flowing through the porous 

medium and inversely proportional to the viscosity of the fluid. If 
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one assumes that there is no interaction between the fluid and the 

porous medium the saturated hydraulic conductivity can be expressed as: 

where g is the 

p is the 

µ is the 

k is the 

The intrinsic 

acceleration of 

K pg k 
µ 

gravity, 

density of the fluid, 

viscosity of the fluid, and 

intrinsic permeability of the porous medium. 

permeability reflects the contribution of the 

medium to the saturated hydraulic conductivity. 

(3) 

porous 

Darcy's equation has been supported by a large body of experiments. 

The law has been extended and made applicable to more complex problems. 

Expressed in a differential form for flow in one direction, Darcy's 

equation can be written as: 

where v is the flux density, 

v = -Kdh 
ds 

K is the saturated hydraulic conductivity, 

h is the hydraulic head, and 

s is the position coordinate in the direction of flow. 

(4) 

Slichter in 1899 (Hillel, 1971) proposed an extension of equation (4) 

for three dimensional flow. In this case the equation becomes: 

v = -K'ilh (5) 

where 'i7 is the del operator of vector notation and 

v, K and h have been defined above. 



According to Hubert (1956) equation (5) means that 

at each point into a space where flow is taking place 
there must be a particular value of a scalar quantity h 
defined as hydraulic head. The ensemble of such values 
give rise to a scalar field in the quantity h. In such 
a field water will flow in direction perpendicular to the 
surface of equal potential h. 

Although it is not of primary interest for this study, Darcy's 

equation was extended to describe water movement in unsaturated soils 

6 

at the beginning of this century by Buckingham followed by Gardner and 

Widtsoe in 1921 and Richards in 1931 (Gardner, 1972; Hillel, 1971). 

There are some limitations to the application of Darcy's equation. 

Inertial forces must be negligible compared to viscous forces before 

Darcy's equation is valid (Hubert, 1956). At high flow velocities 

inertial forces become predominant. This causes turbulence and distor-

tion in the flow lines and the flux increases less than proportionally 

to the gradient in hydraulic head. Klute (19(,5) reported that most of 

the gradients generally encountered in nature fall in the range where 

Darcy's equation is valid for silts and finer textured soils. However, 

in sands and gravels it may be· necessary to restrict hydraulic gradients 

to values equal to or less than one for Darcy's equation to apply. 

Deviations from Darcy's equation at low gradients for some porous media 

have been reported (Swartzendruber, 1962). The causes of such devia-

tions are not yet understood. 

Methods of Measuring the 

Hydraulic Conductivity 

Several methods have been used for measuring the hydraulic conduc-

tivity of a soil. These methods can be classified as laboratory methods 
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or field (in situ) methods. 

Laboratory methods. Laboratory methods involve collecting soil 

samples, taking them to the laboratory and measuring their hydraulic 

conductivity. Samples used may be disturbed or undisturbed. However, 

because disturbance may change the hydraulic characteristics of a soil, 

undisturbed samples are usually preferred. Constant-head and falling­

head methods have been used for measuring the hydraulic conductivity 

of samples brought to the laboratory. In the constant-head method, 

hydraulic heads of water are maintained at the inlet and at the outlet 

boundaries. The volume of water flowing through the soil per unit time 

is determined either by measuring the inflow at the inlet or the outflow 

at the outlet as a function of time. In the falling-head method the 

difference in head between the inlet and outlet is allowed to change 

with time. Laboratory methods are well suited for detecting stratifica­

tions in soil and for measuring the hydraulic conductivity for truly 

one-dimensional flow. 

Different types of apparatus may be used for measuring the 

hydraulic conductivity of undisturbed soils in the laboratory. Wit 

(1967) proposed a permeameter complying with both constant- and falling­

head method·s and which can be used to measure either vertical or 

horizontal hydraulic conductivity for a great number of samples at one 

time. Childs and Poulovassilis (1960) developed a method based on the 

principle of oscillating hydraulic head which causes a limited volume 

of flow to oscillate to and fro through the soil. The advantage of 

their method is that the same quantity of water is flowing all the time 

through the soil. McNeal and Reeve (1964) proposed an apparatus for 

reducing the effect of boundary flow between the permeameter wall and 
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the soil core. Strain gages and other pressure transducers have been 

used for measuring very small hydraulic conductivities (Overman, et al., 

1968; Nightingale and Bianchi, 1970). 

Field methods. Field methods are in situ methods which use the 

rate of flow of water in some special conditions to estimate the 

hydraulic conductivity of the soil. Field methods for measuring 

hydraulic conductivity may be divided into methods requiring a water 

table and methods applicable in abscence of a water table. 

For measuring hydraulic conductivity below a water table, the auger 

method and piezometer method are often used. The auger method involves 

drilling a hole below the water table with the minimum of disturbance. 

The rate of rise of water level in the cylindrical hole is measured. 

Several equations, empirical and theorotical, have been suggested for 

calculating the saturated hydraulic conductivity from the basic measure­

ments (Luthin, 1957; Boersma, 1965a). The piezometer method proposed 

by Kirkham in 1946 (Luthin, 1957) has been designed for stratified 

soils. It consists of a metal pipe or tube installed vertically into 

the soil. The rate of flow of water into the lower end of the tube is 

measured. A formula taking into account the radius of the tube, the 

level of water in the tube at two different times, and a parameter for 

the shape of the cavity is used for calculating the hydraulic conductiv­

ity. Because it is difficult to determine the area and geometric shape 

of flow into the auger or piezometer hole, the accuracy of these methods 

is limited. 

Where a water table is permanently or temporarily absent, other 

in situ methods have been proposed for measuring hydraulic conductivity. 

The double-tube method proposed by Bouwer (1961) consists of saturating 
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a limited soil region below an auger hole in which two concentric tubes 

are placed. Hydraulic conductivity is calculated from measurements of 

the rate of change of the water level in the inner tube. Dimensionless 

parameters that occur in the equations are determined from a resistance 

network analog. Other methods used for measuring hydraulic conductivity 

above a water table include the shallow-well pump-in method and the 

permeameter method. The shallow-well method consists of measuring the 

rate of water intake from a lined or unlined auger hole while a constant 

head of water is maintained in the hole (Boersma, 1965b). The permea-

meter method is based on the rate of outflow of water from a cylinder 

placed into a hole. It measures vertical hydraulic conductivity 

(Boersma, 1965b). An air entry permeameter has also been developed by 

Bouwer (1966). It enables relatively rapid field measurements of 

saturated hydraulic conductivity in initially saturated soils. 

Factors Influencing the Laboratory 

Measured Hydraulic Conductivity 

Numerous authors have reported that the saturated hydraulic 

conductivity of an active soil as measured in the laboratory may change 

continuously with time and nature of the solution used in the percolat-

ing process. Christiansen (1947), for example, describes the general 

characteristics of laboratory determined hydraulic conductivity as 

follows: 

when long time permeability tests are made on agricultural 
soils, characteristic permeability curves are obtained. 
During the first phase of the test, there is usually a decrease 
in permeability to a minimum somewhat below the initial rate ... 
During the second phase permeability increases ... During 
the third phase, the permeability again decreases, somewhat 
to very low rate ••• 
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The mechanisms causing this variation in hydraulic conductivity 

are not completely understood. Three mechanisms which have been 

suggested are the progressive deterioration of soil aggregation due to 

interaction between the soil and the flowing solution, the action of 

soil microorganisms, and the effect of entrapped air. 

Deterioration of soil aggregation. Although some points still 

need clarification, this aspect of the problem has been studied in 

greatest detail. The problem of soil aggregate deterioration due to 

cations present in flowing solution is often associated with saline 

and alkali soils. Christiansen (1947) defined saline soils as soils 

containing soluble salts in concentrations as to affect plant growth 

(more than 0.2% approximately) and he defined alkali soils as sodic 

soils having a pH in excess of 8.5 and generally dispersed with very 

low permeabilities. Numerous studies on hydraulic conductivity of 

saline and alkali soils showed that the conductivity cannot be dissoci­

ated from the salt content and the cation exchange complex of the soil 

and the electrolyte content of the percolating water. Some saline soils 

tend to swell and disperse to some extent as salts are removed and 

this results in a reduction in the effective size of the pores. Reeve 

and Tamaddoni (1965) stated, for example, that "where low-salt content 

waters are used for ·reclaiming sodic soils, even with the application 

of ample calcium amendments, reclamation often proceeds so slowly as 

to be impractical, once the soil has developed low permeability as a 

result of the dispersion effect of low electrolyte water". However, 

even at low salt concentrations, it is generally accepted that the 

presence of divalent ions such as Ca and Mg on the ion-complex of the 

soil frequently stabilizes or increases soil hydraulic conductivity. 
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There is some controversy on the limit above which the adverse effects 

of sodium become evident. McNeal, et al. (1966), reported that for most 

agricultural soils, exchangeable sodium percentage (ESP) values of 15 

or greater can generally be tolerated without serious reductions in 

hydraulic conductivity, provided the percolating solution concentration 

exceeds 3 mg/liter. The nature of the soil, however, has an important 

effect on the interaction between exchangeable sodium, electrolyte, and 

hydraulic conductivity. 

Usually high interaction is reported with clays. Rhoades and 

Ingvalson (1969) stated that vermiculites appear to be capable of with­

standing higher ESP values and lower electrolyte concentrations before 

their hydraulic conductivity becomes appreciably reduced than montmoril­

lonitic soils. The interaction between electrolyte concentrations, 

exchangeable sodium content, and hydraulic conductivity is also 

considerably dependent on the structural condition of the soil and the 

organic matter content. 

In order to minimize the decrease in hydraulic conductivity due to 

the interaction between the percolating water and exchangeable sodium 

content of the soil, several authors have proposed the use of a solution 

with a high salt concentration. This suggestion is based on a large 

body of experimental results. Fireman (1944) reported that a high and 

constant hydraulic conductivity was obtained when using a 800 ppm CaCl2 

solution while the hydraulic conductivity decreased sharply when 

distilled water was used. Mojallali and Dregne (1968) found that a 

calcareous Bruno sandy loam subsoil saturated with exchangeable sodium, 

potassium or ammonium became completely impermeable when leached with 

distilled water. Zawadzki and Olszta (1971) reported differences in 



saturated hydraulic conductivity when using ground water, tap water, 

and distilled water. 

The use of too high a concentration of electrolyte generally 

creates problems in the measurement of hydraulic conductivity. In 

presence of electrolyte solutions, the soil mass sometimes contracts 

and gives way to leakage between the permeameter wall and the soil. 

This problem has been emphasized by Reeve and Tamaddoni (1965) and 

McNeal and Reeve (1964). 

12 

Effect of soil microorganisms. The development of microorganisms 

in soils has been suggested as one reason for the variation of hydraulic 

conductivity with time. Allison (1947) reported that hydraulic 

conductivity changes may be due to biological clogging of soil pores 

with microbial cells and their synthetized products, slimes or poly­

saccharides. The more recent work of Gupta and Swartzendruber (1962) 

also strongly suggested the development of soil microorganisms may be 

an important factor in hydraulic conductivity changes with time, 

particularly in sandy soils where electrolyte leaching of soil cations 

does not have a great importance. Gupta and Swartzendruber (1962) 

found that the microbial effect on hydraulic conductivity seemed to be 

correlated to the bacteria number in the soil. However, the manner in 

which microorganisms may decrease hydraulic conductivity is not under­

stood. The small volume they occupy (even when they are in great 

numbers) is extremely small compared to the volume of soil pores. 

Effect of entrapped air. Van Schaik and Laliberte (1969) compared 

different techniques of saturating soils and found the saturated 

hydraulic conductivity was notably less for samples saturated at atmos­

pheric pressure than for samples saturated in a vacuum. They attributed 
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this effect to entrapped air in the soil and explained that "when a 

porous medium imbibes a wetting fluid, air bubbles become entrapped in 

isolated regions within the pore spaces of the sample, so that part of 

the pore volume is unattainable by the wetting fluid". Gupta and 

Swartzendruber (1964) reported that Wyckoff and Botset suggested that 

flowing water containing dissolved gas can release some gas which 

accumulates in the porous medium and reduces hydraulic conductivity. 

However, Gupta and Swartzendruber (1964) did not find any effect due 

to air entrapment in their study on sand. Peck (1969) explained the 

entrapped air can produce significant changes in hydraulic conductivity 

by its change in volume. The change in volume of the entrapped air can 

be produced by fluctuating temperatures, external atmospheric pressure 

changes,_ liquid pressure variations and diffusion of gas through the 

liquid. The effect of entrapped air on laboratory determined hydraulic 

conductivities may be of little practical importance if Van Schaik and 

Laliberte (1969) are correct in suggesting that field drainage problems 

often involve partially saturated soils with hydraulic conductivities 

close to that of undisturbed soils saturated at atmospheric pressure 

rather than soils saturated under vacuum. 



CHAPTER III 

METHODS AND MATERIALS 

Samples for this study were taken at the Oklahoma Agricultural 

Experiment Station Irrigation Research Station at Altus on one field 

west of the highway. The field was about 500 meters long and 180 meters 

wide. The soil was the Tillman-Hollister clay loam (fine, mixed, thermic­

pachic Paleustoll). The profile description is given in the Appendix. 

The field was plowed to approximately 20 cm after the samples on Site I 

were taken. Therefore, samples on Site II and Site III were taken on 

a plowed field. 

Sampling 

The field was divided in three parts, an area or site was chosen 

from each part. The sites were about 180 meters apart. Two samples at 

each depth were taken at each site. The following depths were sampled: 

20 cm to 30 cm, 40 cm to 50 cm, 60 cm to 70 cm, 80 cm to 90 cm, 100 cm 

to 110 cm, and 120 cm to 130 cm. 

Undisturbed soil samples were taken using a Gidding company soil 

sampling machine mounted on a truck. The same stainless steel soil tube 

(7.62 cm x 121.92 cm) was used during the whole sampling process. 

Therefore, all the samples were considered to have the same diameter of 

7.6 cm; the vertical length of the samples varied from 8 cm to 11.5 cm. 

14 



15 

Handling and Casing of Samples 

At the time of sampling, all the samples at one site were trimmed 

and immediately encased in polyolefin heat-shrinkable insulation tubing 

as described by Bondurant, et al. (1969). Plexiglas end-caps coated 

with silicone rubber seal were used to prevent breakage of the core end 

and also to provide connection for the water inlet and outlet tubes. 

After encasing the samples, ring clamps were firmly tied around the 

Plexiglas end-caps to prevent leakage. The samples were taken to the 

laboratory and the wetting process was started immediately. 

Handling of undisturbed soil samples after they had been collected 

was very important because samples had to be brought to the laboratory 

without breaking and without disturbance of soil aggregation. Good 

encasing of samples was crucial because improper encasing permitted 

water to flow between the soil and the permeameter wall. 

Wetting Process 

A 1500 ppm calcium chloride (CaCl2) solution was prepared for 

percolating the samples. Samples were wetted from the bottom, at atmos­

pheric pressure and room temperature. Increasing heads of water were 

applied to the samples. Heads of 2 cm, 6 cm, and 10 cm of water were 

each applied for about 12 hours. Finally a 14 cm head was applied until 

water covered the top of the sample. All heads were measured from the 

bottom of the soil samples. 
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Measurement and Calculation of 

Hydraulic Conductivity 

After the wetting period, samples were installed on a permeameter 

as shown in Figure 1. The inlet of the permeameter was connected to a 

constant head of water maintained by the use of a Mariotte bottle and 

the outlet was connected to an horizontal calibrated capillary tube. 

The position of the meniscus was recorded at different times. In this 

way the volume of water flowing out of the soil was precisely measured. 

The hydraulic conductivity value was calculated from equation (1) 

rewritten as: 

K 
1 QL 
A hrh1 

where K is the saturated hydraulic conductivity (cm/min), 

(6) 

Q is the volume of water flowing through the sample per unit time 

(cm3 /min), 

Lis the length of the soil column (cm), 

A is the cross sectional area of the sample (cm3), 

h2 is the hydraulic head at the outlet boundary (cm), and 

hi is the hydraulic head at the inlet boundary (cm). 

The magnitude of h2-h1is represented by ~h on Figure 1. 

Six permeameters were used for measuring hydraulic conductivities of 

samples from the six wells. Therefore, a 6 x 6 Latin square design was 

used. Rows represented the permeameters, columns represented the 

sampling wells, the depths of sampling were considered as treatments. 

A special study was made to assess the validity of Darcy's equation 

for this soil. One soil sample was subjected to different gradients. 
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The differences ~h between outlet and inlet hydraulic heads were 

successively given values of 8 cm, 24 cm, 40 cm, and 58~5 cm. For the 

sample used, these values of ~h corresponded, respectively, to gradients 

of 1, 3, 5, and 7.3 centimeters of water per centimeter. At each 

gradient the flow was measured. The validity of Darcy's equation was 

then determined. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Darcy's Equation Test 

The validity of Darcy's equation was investigated using one soil 

sample from a depth of 20 cm to 30 cm. Water flux was measured and 

flux density was calculated for different hydraulic gradients. 

Gradients of 1, 3, 5, 7.3, 5, 3, 1, 3, 5, and 7.3 cm of water/cm were 

successively applied to the soil sample. The results shown in Figure 2 

indicate the data points corresponding to a particular gradient fall 

very close together, except for one point corresponding to a decreasing 

gradient of 3. The close agreement of data for both increasing and 

decreasing gradients implies that time and volume of flow had little, 

if any, effect on the hydraulic properties of the soil during the time 

of measurement. The measurements were made over a period of four hours 

which correspond to a 1 volume flow of 5.25 cm 3 • Water had been flowing 

through the sample for 12 days before these measurements were begun. 

Results shown in Figure 2 indicate the flux density increased more 

than proportionally with the gradients. This implies that Darcy's 

equation is not strictly valid for the soil studied. No attempt was 

made in this study to determine the cause of these deviations from 

proportionality. Similar deviations have been reported in the liter­

ature. Russel and Swartzendruber (1971) reported non-proportional 

19 
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flux-gradient curves of a general sigmoidal shape when using a porous 

medium containing swelling clay. Miller and Low (1963) observed 

greater than proportional flow with a lithium-clay. Von Engelhardt and 

Tunn, Lutz and Kemper, Kutilek, and Paez, have all been credited with 

reporting greater than proportional flows by Russel and Swartzendruber 

(1971). Reversible reorientation of particles along the stream lines 

and existence of a .range of pore sizes in which some threshold gradients 

are reached as gradients are increased have been proposed as two 

possible explanations of this behavior. 

The slope of a curve through the data points in Figure 2 is equal 

to the hydraulic conductivity of the soil. If the deviations from pro­

portional flow are neglected and hydraulic conductivity K of this soil 

is evaluated from the slope of the straight line shown in Figure 2, one 

finds that K = 0.126 cm/day. Using a curve drawn through actual data 

points yields hydraulic conductivity values of .119 and .132 cm/day at 

gradients of 1 and 7.3, respectively. This difference in hydraulic 

conductivity of approximately 10% is relatively small as will be seen 

from additional results presented in this study. From this one can 

conclude that Darcy's equation is a good first approximation for water 

movement in this soil. 

Variation of Hydraulic Conductivity 

With Time 

Variation of hydraulic conductivity with time was observed for 

almost all the samples studied. Table I shows some hydraulic conductiv­

ity values calculated after different periods of flow. The variation 

is also indicated by the change in the slope of the curve obtained when 



Depth 
(cm) 

20-30 

60-70 

80-90 

TABLE I 

SATURATED HYDRAULIC CONDUCTIVITY VALUES 
(CM/DAY) AFTER DIFFERENT DURATIONS 

OF FLOW (SITE III, SET 1) 

Cumulative Time of Flow (Min) 
24 512 1625 

.16 . 15 .09 

.11 .04 .02 

.20 .09 .07 

22 
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the position of the meniscus in the capillary tube is plotted as 

function of time. Typical curves for the study are shown in Figures 3 

and 4. The change in slope is directly proportional to the change in 

hydraulic conductivity. The curves indicate that the most rapid change 

in hydraulic conductivity occurs at the beginning of the measurements. 

This can also be observed on Figure 5 which shows the calculated 

hydraulic conductivity versus time. Although the decrease in hydraulic 

conductivity was continuous with time, no evidence of complete sealing 

of the sample was found for periods of flow as long as 12 days. Some 

samples reached a relatively constant hydraulic conductivity value after 

long periods of time. 

The change of hydraulic conductivity with time has been reported 

by several authors (Christiansen, 1947; Poulovassilis, 1972; Gupta and 

Swartzendruber, 1962). The change has been attributed to swelling or 

dispersion of soil due to the leaching of cations during the flow, to 

microbial development in the soil, or to air entrapment. If leaching 

of cations is the predominant mechanism of hydraulic conductivity 

decrease, the volume of water flowing through the soil should be more 

important than the duration of the flow. Figure 6 shows the hydraulic 

conductivity plotted versus volume outflow (represented by the position 

of the meniscus in the capillary tube) for some samples of Site III. 

The curves in Figure 5 and 6 are very similar. One can not determine 

from this information whether the change in hydraulic conductivity was 

primarily due to time or due to volume of flow. 

Hydraulic Conductivity Values 

Gradients from 2.7 to 3.7 cm of water/cm were used for measuring 
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all the hydraulic conductivities reported below. Tah]e ll shows 

hydraulic conductivity values for each site, set and depth sampled. 

These hydraulic conductivity values were calculated for the first sixty 

minutes of flow. This arbitrary period of time was chosen to obtain 

hydraulic conductivity values representative of the field, while recog­

nizing the dependence of the conductivity upon time. Figure 7 shows 

hydraulic conductivity values averaged over the sets for each site and 

each depth. 

Analysis of variance of the values did not show any significant 

difference among sites or among depths. Therefore, no statistically 

important stratification was found for the profiles investigated in 

this study. However the depth of profile investigated was relatively 

shallow because of difficulties encountered in sampling undisturbed 

samples below 130 cm with the sampling machine available. Therefore, 

stratification may still exist in the profile. Statistical regression 

analysis showed a cubic function variation of hydraulic conductivity 

with depth, with a peak at depth 40-50 cm. Table II shows a relatively 

high hydraulic conductivity for depth 40-50 cm on Site I , Set 1. 

This value is suspected to be apparent. It is believed that in some 

cases the soil sample shrank, creating a flow path between the soil and 

the tubing used for encasing the sample. Such shrinkage may be due to 

a possible decrease in water content of the sample before the saturation 

process or to the effect of the solution flowing through the sample. 

Reeve and Tamaddoni (1965) and McNeal and Reeve (1964) discussed such 

shrinkage and attributed it to contraction of soil clay packets in 

presence of high salt waters. 



Depth 
(cm) 

20-30 

40-50 

60-70 

80-90 

100-110 

120-130 

TABLE II 

SATURATED HYDRAULIC CONDUCTIVITY 
VALUES (CM/DAY) 

Site I Site II 
Set 1 Set 2 Set 1 Set 2 

.20(6)* . 25 (1) 0 (2) 0 (3) 

1.14(4) --(2) .22(6) .37(1) 

• 11 (1) • 04 (5) . 35 (3) .94(4) 

.11(5) --(6) .11 (1) .29(2) 

.13(2) --(3) .09(4) .01(5) 

.10(3) --(5) . 04 ( 5) .09(6) 

Site III 
Set 1 Set 2 

.15(4) .13(5) 

--(5) .84 (3) 

.08(2) .11(6) 

. 23(3) .05(4) 

.01(6) .01(1) 

.02(1) .01(2) 

*Numbers in parenthesis indicate the apparatus used for measuring the hydraulic conductivity. 
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Table III shows the hydraulic conductivity values for each depth 

averaged over the three sites and adjusted for variations from set to 

set and from apparatus to apparatus. 

The hydraulic conductivity mean was 0.17 cm/day and the standard 

deviation was 0.211 cm/day. The hydraulic conductivity of the soil is 

therefore very small and may be classified as very low in the permeabil­

ity classes of O'Neal (Klute, 1965). This may imply problems for 

irrigation and drainage of the Tillman-Hollister soil. The saturated 

hydraulic conductivity measured corresponds to the vertical hydraulic 

conductivity of the soil because one dimensional flow was studied in 

the laboratory. The soil may have a greater horizontal hydraulic 

conductivity 



Depth 
(cm) 

20-30 

40-50 

60-70 

80-90 

100-110 

120-130 

TABLE III 

MEAN SATURATED HYDRAULIC 
CONDUCTIVITY VALUES* 

Hydraulic Conductivity 
(cm/ day) 

.12 

.48 

.27 

. 14 

.07 

.08 

*Averaged over sites. Means were adjusted for 
apparatus and sets. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The hydraulic conductivity of a field on the Oklahoma Agricultural 

Experiment Station Irrigation Research Station at Altus was studied. 

Depths of 20 to 30 cm, 40 to 50 cm, 60 to 70 cm, 80 to 90 cm, 100 to 110 cm, 

and 120 to 130 cm were sampled from three sites. A constant-head method 

was used for measuring hydraulic conductivity in the laboratory. 

Samples were encased in heat-shrrnkable tubing and a 1500 ppm calcium 

chloride solution was used for flow measurements. 

To test the applicability of Darcy's equation to the swelling clay 

loam soil studied, the flux density was determined for gradients ranging 

from 1 to 7.3 centimeters of water per centimeter. The flux density 

was found to increase more than proportionally with the gradient. The 

deviations from proportionality were small. Darcy's equation was 

considered to be a good approximation for the range of gradients used 

in the study. 

The saturated hydraulic conductivity was found to decrease with 

time during the measurement process. The decrease was found to be 

maximum during the first hours of flow. 

Very low saturated hydraulic conductivity values were found for 

all samples. The hydraulic conductivity mean was .17 cm/day. Statis­

tical analysis of the data did not show any significant difference in 

hydraulic conductivity values between the sites studied or between the 

33 



depths. It was therefore concluded that no evident stratification 

exists for the 130 cm profile studied. 
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Horizon 

c ca 

c 

Depth 

0 to 10 inches 

10 to 28 inches 

28 to 50 inches 

50 to 60 inches 

PROFILE DESCRIPTION 1 

TILLMAN CLAY LOAM 
(TYPICAL PROFILE) 

Description 
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reddish-brown (5YR 4/3, dry; 3/3.5, moist) 
clay loam becoming slightly darker in 
color below plow depth; slightly crusted 
surface; weak granular structure; hard 
when dry, firm when moist; noncalcareous 
(pH 7.5); clear boundary. 

reddish-brown (5YR 4/3, dry; 3/2,moist) 
light clay that is slightly lighter in 
color when crushed; moderate, very fine, 
blocky structure; very hard when dry, 
very firm when moist; clay skins appar­
ent, but not pronounced; few small, 
black concretions; noncalcareous 
(pH 8.0); gradual boundary. 

reddish-brown (5YR 3/4, dry; 3/6, moist) 
clay; massive (structureless); very 
hard when dry, very firm when moist, 
many soft concretions of calcium carbo­
nate; soil mass calcareous; gradual 
boundary. 

yellowish-red (5YR 4/6c dry; 3/6, moist) 
clay containing less calcium carbonate 
concretions than above. 

1Bailey, 0. F. and R. D. Graft. 1961. Soil Survey of Jackson County, 
No. 4. Oklahoma. SCS-USDA. Series 1958. 



Horizon 

A 
p 

A 

B 

B 

c 
ca 

c 

Depth 

0 to 5 inches 

5 to 9 inches 

9 to 28 inches 

28 to 36 inches 

36 to 44 inches 

PROFILE DESCRIPTION1 

HOLLISTER CLAY LOAM 
(TYPICAL PROFILE) 

Description 

40 

grayish-brown (lOYR 5/2, dry; 3/2, moist) 
clay loam; weak, granular structure; 
hard when dry, firm when moist; noncal­
careous (pH 7.5); abrupt boundary. 

very dark gray (lOYR 3/2, dry; 2/2,rnoist) 
clay loam; weak, granular structure; 
hard when dry, firm when moist; many 
fine pores; peds have a weak shine; non­
calcareous (pH 7.5); gradual boundary. 

very dark gray (lOYR 3/1, dry; 2/2, moist) 
clay; moderate, medium, subangular 
blocky structure becoming blocky at 16 
inches; very hard when dry, firm to very 
firm when moist; clay skins apparent; 
noncalcareous to 20 inches (pH 7.5); 
gradual boundary. 

gray (lOYR 5/1, dry; 4/1, moist) clay; 
weak, blocky structure; very hard when 
dry, very firm when moist; few whitish 
spots of soft calcium carbonate; calcar­
eous; gradual boundary. 

gray (lOYR 5/1, dry; 4/1, moist) clay; 
weak, blocky structure; very hard when 
dry, very firm when moist; more compact 
than layer above; mixture of soft and 
hard concretions of calcium carbonate 
strongly calcareous; gradual boundary. 

44 to 60 inches + gray (lOYR 5/1, dry; 5/2, moist) clay; 
garding to reddish-brown clay. This 
is apparently red-bed residuum. 
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