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Abstract: For the last two decades, unmanned aircraft systems (UAS) has seen much
interest from both the civilian and military sector. As civilian applications expand,
the issue of safety becomes more apparent. One major technical challenge currently
facing UAS operations is properly sharing the national airspace with conventional
aircraft. For safety purposes, it is necessary that UAS be able to properly detect
intruding aircraft, including manned and unmanned aircraft, and avoid them. This
requirement has been termed Detect-and-Avoid (DAA). We investigate the orbiting
intruder passive ranging problem, where an ownship aircraft is moving with a constant
velocity and the intruding aircraft is conducting an orbiting maneuver. We assume
that the ownship measures the bearing angles to the intruder aircraft. We approach
the problem utilizing a filter bank algorithm parameterized with respect to the range,
the heading of the intruder, and the angular velocity. We test the performance of
the filter bank algorithm using two different system models. The first system model
comprises of the relative position in Cartesian coordinates and velocities in polar co-
ordinates. The second system model is the modified polar coordinates. We conduct
Monte Carlo simulations and utilize the root mean square error over time to deter-
mine the best parameterization of the filter algorithm for both system models. The
results show that the system model in Cartesian coordinates performs better when
estimating the range while the modified polar coordinates achieves better estimates
for the heading of the intruder. We find that the filter in the modified polar coor-
dinates exhibits more divergent behavior than the system in Cartesian coordinates.
After an investigation of the orbiting intruder problem, we investigate the maneuver-
ing intruder problem. Often the intruders trajectory will follow segments of straight
legs and orbits legs. We introduce a way to integrate our filter bank algorithm onto
a Interacting multiple models framework. We utilize a constant velocity model on a
single EKF. We implement a mixing strategy, where the IMM mixing stage will mix
at a certain rate. We conduct a simulation study to identify the effects of varying
mixing rate and the values of the model transition probability. We find that the
model transition probability has the largest effect on performance. Finally, we show
preliminary results of our algorithms performance on flight test data.
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CHAPTER 1

Introduction

1.1 Unmanned Aerial Systems (UAS)

Unmanned Aerial Systems (UAS) are defined as a system, whose components include

the air vehicles and associated equipment that do not carry a human operator, but

instead fly autonomously or are remotely piloted. UAS must be considered in a sys-

tems context which includes the command, control and communications (C3) system,

and personnel necessary to control the unmanned aircraft [5]. The components of a

UAS can include the unmanned aircraft, the ground control system, and the com-

mand and control link. The unmanned aircraft’s flight can be controlled remotely by

a pilot on the ground via a ground control station or autonomously controlled using

a pre-planned flight plan and autopilot system. Unmanned aircraft platforms are

equipped with a flight computer, sensors, and actuators for navigation and control

purposes, and a payload that is mission dependent.

Classification of Unmanned Aircraft

Since the inception of UAS, many different types of platforms have been designed.

These different designs are mission dependent, such as for surveillance and reconnais-

sance, or the delivery of a payload. Based on platform characteristics, unmanned air-

craft can be categorized as either fixed-wing, rotary-wing, blimps, or flapping wings.

UAS can be further classified by their weight or flight endurance, range or altitude

according to Tables 1.1 and 1.2.
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Table 1.1: Classification by Weight [1]

Category Gross Weight (kg)

Super heavy ≥ 2000

Heavy 200-2000

Medium 50-200

Light 5-50

Micro ≤ 5

Table 1.2: Classification of UASs according to endurance, range, and altitude [1]

Category Endurance (h) Flying range (km) Altitude(km)

Long/High ≥24 ≥400 ≥10

Medium 5-24 100-400 1-10

Low ≤5 ≤100 ≤1

1.2 Integration into the National Airspace (NAS)

For the last two decades, unmanned aircraft systems (UAS) has seen much interest

from both the civilian and military sector. This can be attributed to the utility

that UAS have over conventional aircraft due to platform size and operating cost.

Furthermore, UAS provides a solution to tasks coined by a term called the three

D’s: dirty, dangerous, and dull. Tasks that may cause inherent risks to a pilot

operating a conventional aircraft can be avoided by a pilot remotely operating a UAS.

Additionally, missions with long operation requirements can be conducted by multiple

pilots from ground control stations. Some examples of how UAS have opened up

opportunities in the civilian sector include surveying farmland, precision agriculture,
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monitoring natural disasters, and transporting goods[5].

As civilian applications expand, the issue of safety becomes more apparent. One

major technical challenge currently facing UAS operations is properly sharing the

national airspace with conventional aircraft [6]. Due to the varying sizes of UAS plat-

forms, pilots in conventional aircraft can have issues identifying small UAS (sUAS).

For safety purposes, it is necessary that UAS be able to properly detect intruding air-

craft, including manned and unmanned aircraft, and avoid them. This requirement

has been termed Detect-and-Avoid (DAA).

Figure 1.1: An illustration describing integration of UAS into the national airspace

from [2]

1.3 Detect-and-Avoid (DAA)

The detect and avoid model can be described as a continuous feedback loop composed

of the following four processes: sensing hardware, decision mechanism, path planner,

and flight controller. The sensing hardware gathers information on the ownship and

intruder vehicles throughout the flight. A decision mechanism determines whether

the current flight path is still satisfactory or needs to be adjusted. In the case the

path must be adjusted, the path planner will determine a trajectory that the ownship
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vehicle can follow to avoid collision with the intruder vehicle. The flight controller

recieves the path planner’s adjustments and actuates the platform to the desired

trajectory. Figure 1.2 illustrates this continuous feedback loop process.

Figure 1.2: An illustration of the DAA model from [1]

Detect and avoid can be broadly categorized into two different approaches: Coop-

erative and Non-Cooperative. Cooperative approaches utilizes two-way communica-

tion between aircraft and ground control stations(GCS). Non cooperative approaches

assume no communication between aircraft or GCS.

Two examples of cooperative approaches include the Automatic Dependent Surveillance-

Broadcast (ADS-B) and the Traffic Collision Avoidance System (TCAS)[7, 8, 9].

ADS-B are used by an aircraft to broadcast its position and velocity information

determined by onboard instruments to other aircraft, while also receiving other air-

crafts position and velocity information. Potential hazards for the ADS-B can include

GPS receiver or signal transmission malfunctions [10]. TCAS monitor the airspace

around the ownship aircraft utilizing an active transponder to warn of potential col-

lisions with other aircraft equipped with TCAS. Currently issues regarding the usage

of TCAS on UAS are primarly due to the cost and payload size [9]. Figure 1.3

provides illustrations of the two cooperative approaches, ADS-B and TCAS. One of

the primary weaknesses of cooperative approaches is that they are ineffective in the

tracking ground-based obstacles in an urban environment. It is also expected that

some manned aircraft may not be equipped with ADS-B or TCAS transponders.
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(a) (b)

Figure 1.3: An illustration of two prominent Cooperative Approaches being used, (a)

the Automatic Dependent Surveillance-Broadcast (ADS-B) from [2] and (b) the Traffic

Collision Avoidance System (TCAS) from [7]

Noncooperative approaches cover this weakness.

Noncooperative approaches currently under wide consideration are systems that

utilize a combination of passive and active Forward Looking Sensors (FLS) [11]. Ac-

tive sensors can include Synthetic Aperture Radar (SAR) and Laser/Light Detection

and Ranging (LIDAR). Passive sensors include electro-optical (EO), infrared(IR), and

acoustic systems. Active sensors such as SAR and LIDAR are able to obtain range in-

formation on objects, however, they are typically expensive and the requirements may

be costly in terms of size, weight, and power (SWAP). Passive sensors, such as EO

and IR systems, provide an alternative to active sensors. Passive sensors lack direct

range measurements, but are able to obtain azimuth and elevation angles of objects.

Figure 1.4 provides images of various sensors used for noncooperative approaches.

1.4 Summary of Paper

In this paper, we address range estimation using passive sensors, which is typically

called ’Passive Ranging.’ Transponders from cooperative approaches, such as TCAS

and ADS-B, provide excellent results, however can be expensive in terms of SWAP.
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(a) (b) (c)

Figure 1.4: An illustration of sensors used in Noncooperative approaches: (a) the Synthetic

Aperture Radar (SAR) from [12],(b) the Laser/light Detection and Ranging (LIDAR)

from [13], and (c) the Electro-Optical (EO) sensor from [14]

Additionally, the transponders provide no purpose if the intruding aircraft is not

equipped with a transponder as well. Active sensors from noncooperative approaches,

such as SAR and LIDAR provide range information of targets, but are also expensive

in terms of SWAP. Depending on the UAS platform, the power requirements for

implementation of active sensors may be high. Passive sensors, such as EO and IR

sensors, are cheap in terms of SWAP.

Most of the passive ranging references that we have found address the scenario

where the intruder aircraft moves with a constant velocity. In this paper, we focus on

the orbiting intruder passive ranging problem, where an ownship UAS is moving with

a constant velocity and the intruder aircraft is orbiting with a constant angular veloc-

ity and speed. The orbiting intruder problem is of interest when a UAS encounters a

fixed-wing aircraft (manned or unmanned) conducts a mission in a bounded region,

such as tracking a ground target and monitoring a field. In this case, the fixed-wing

aircraft exhibits an orbiting pattern.

We approach the orbiting intruder ranging problem using a filter bank algorithm

motivated by the RPEKF [15]. Our filter bank algorithm differs from the RPEKF
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because in addition to the range, we also parameterize the heading and angular ve-

locity states. We utilize the filter bank algorithm for two different system models,

the Cartesian Position, Polar Velocity (CPPV) and the Modified Polar Coordinates

(MPC) [16, 17]. In the CPPV model, we represent the relative position between the

two aircraft and the velocity of the intruder aircraft in Cartesian and polar coordi-

nates, respectively.

To examine the performance of the filter bank algorithm, we conduct Monte-Carlo

simulations to determine the best parameterization of the filter in the CPPV model.

The simulation results show that for the CPPV model, the most important state to

parameterize is the range, followed by the heading, and then the angular velocity of

the intruder. For the filter in the MPC model, we determine that the most important

state to parameterize is the range, followed by the angular velocity, and then heading.

We also report a comparison of the performance of the filters in the CPPV and MPC

models, which to our knowledge is missing in the literature for the orbiting intruder

passive ranging problem. Our results show that the CPPV model achieves better

estimates for the range while the MPC achieves better estimates for the heading

of the intruder. The filter in the MPC results in more divergence cases than in

the CPPV model. In addition, we test the robustness of the filter with respect to

ownship velocity noise (due to GPS/inertial measurement unit (IMU) fusion errors)

and bearing angle biases (due to inaccuracies in the sensor calibration).

After examining the filter bank algorithm’s performance for the orbiting intruder

problem, we then turn to look at the Interacting Multiple Models (IMM) algorithm

to address the maneuvering intruder ranging problem. For the IMM we utilize two

different models to track the maneuvering intruder: a constant velocity (CV) model,

and a coordinated turn (CT) model. We utilize our filter bank algorithm for the CT

model and a single EKF for the CV model, both in CPPV coordinates. We conduct

Monte-Carlo simulations to identify the importance and the effects of the frequency
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of the IMM mixing stage and the values for the model transition probability matrix.

We find that lowering δ, the off-diagonal values of the model transition probability

matrix, has more of an effect on performance than the lowering the frequency of the

IMM mixing stage.

1.5 Organization

This paper is organized as follows. In Chapter 2, we conduct a literature review over

relevent knowledge to ensure the reader has a common ground to understand the con-

tent. We cover the the Bearing Only tracking problem, the extended Kalman filter,

the Range-Parameterized extended Kalman filter, and the Interacting Multiple Mod-

els. In Chapter 3 we formulate the orbiting intruder problem, propose our filter bank

algorithm, show how we implement the algorithm in CPPV and MPC coordinates,

and provide an Interacting Multiple Models framework for the filter bank algorithm.

Chapter 4, the simulation studies, can be largely split into two parts. First, we in-

vestigate the orbiting intruder problem, where we utilize the filter bank algorithm.

We go into different studies on the filter’s performance, such as investigating how to

parameterize the filter bank, what are the effects of the coordinate system, and their

robustness with respect to velocity noise and measurement bias. The latter half of

Chapter 4 covers the maneuvering intruder problem. Utilizing the IMM algorithm,

we go on to investigate the effects of varying the mixing rate of the different model’s

filters and the values of the model transition probability matrix. After this we look at

the IMM’s performance on different maneuvering intruder encounters. In Chapter 5,

we describe our collaboration with UtopiaCompression, and the results of our filter on

the real flight test data we were given for a better understanding of performance on

real data sets. Conclusions and future work are discussed in Chapter 6. An appendix

section is included at the end of this thesis for additional calculations.
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CHAPTER 2

Literature Review

2.1 Bearing Only Tracking

The Bearings-Only Tracking (BOT) problem is the estimation of a target’s position of

unknown kinematic parameters, such as position, speed, and heading, of a target by

utilizing noise corrupted bearing angle measurements collected by a moving ownship

over time [18]. The BOT problem has been of interest to areas such as sonar in

marine applications, or radar in aerial applications.

The difficulty of this problem can be attributed to the nonlinearity of the system

and/or the measurement equation. In addition, the lack of range information in the

measurement equation leads to a partially observable system. It is well known that

if an ownship aircraft and an intruder aircraft both move with a constant velocity,

the ownship platform must maneuver and generate higher-order motion to yield state

observability of the intruding platform [19, 18].

Typical estimators for solving passive ranging include the extended Kalman Fil-

ter (EKF) [20]. When implementing an EKF, it can easily diverge without a good

initialization [21]. One classic approach for mitigating the issue of divergence is the

utilization of a bank of EKFs, where each filter is initialized with a different initial

estimate for the range [22]. It is commonly referred to as the range-parameterized

EKF (RPEKF) in passive ranging. Another estimator for the passive ranging prob-

lem is particle filter [23]. In recent years, the particle flow filter has been proposed

for passive ranging applications, which utilizes the homotopy function to propagate

the particles [24, 25].
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Other than changing the filter algorithm, research has also been conducted by

utilzing different coordinate systems. Two popular system models that are used for

passive ranging include Cartesian coordinates and polar coordinates. Studies have

been conducted to test for the best model [17, 16]. In [16], the author introduced

the Modified Polar Coordinates (MPC). It was claimed that the MPC exhibit good

performance because it decouples the observable and nonobservable components of

the state vector, and reduces covariance matrix ill-conditioning. In [17], two mod-

els to estimate the motion for an orbiting intruder are described, one in Cartesian

coordinates for both position and velocity, and the other in Cartesian coordinates

for position and polar coordinates for the velocity. The latter model was proved to

exhibit better performance.

Often times, during passive ranging, the intruder aircraft will not follow just a

single mode of maneuver. With this in mind, research has been conducted to ensure

adequate performance for estimation of an intruding aircraft in different modes of

maneuvering. One method that has seen use is the Interacting Multiple Models

(IMM) algorithm. The standard IMM algorithm is composed of a filter for each

model, a model probability evaluator, a state estimate mixer at the input of the

filters, and a state estimate combiner at the output of the filters [3].

2.2 Range-Parameterized Extended Kalman Filter

The Range-Parameterized Extended Kalman Filter (RPEKF) is a bank of Extended

Kalman Filters (EKF) that are parametrized geometrically with respect to user-

defined range assumptions [22, 15]. Suppose that we are given an upper bound and

lower bound of the initial range of the intruder [rmin, rmax]. We can divide this in-

terval into Nr subintervals. The subintervals are distributed geometrically according

10



to:

r(i) =
rmin

2

(
ρi + ρi−1

)
, ρ =

(
rmax
rmin

) 1
Nr

(2.1)

σ(i)
r = Crr

(i), CR =
2(ρ− 1)√
12(ρ+ 1)

, (2.2)

where i = 1, · · · , Nr represents the index of a specific subinterval, r(i) is the ith

range estimate in the interval, σ
(i)
r is the ith standard deviation for range, and CR

is the coefficient of variation. For each EKF, all states other than the range within

the estimates and covariances are constant for every filter in the filter bank when

initialized.

Each filter is associated with a weight, W
(i)
k , at time step k. The weights are

initialized uniformly and summed to one. The weight of each EKF in the bank is

updated using Bayes rule:

W
(i)
k = cW

(i)
k−1p(zk|i) (2.3)∑Nr

i=1
W

(i)
k = 1, (2.4)

where c is a normalizing constant, and p(zk|i), the likelihood for the ith EKF, is given

by:

p(zk|i) ∝
1√

det(S
(i)
k )

exp

(
−1

2
(zk − h(x̂

(i)
k|k−1))

TS
(i)
k

−1
(zk − h(x̂

(i)
k|k−1))

)
. (2.5)

The combined estimate and covariance are calculated as:

x̂k|k =
∑Nt

i=1
W

(i)
k x̂

(i)
k|k (2.6)

Pk|k =
∑Nt

i=1
W

(i)
k (P

(i)
k|k + (x̂

(i)
k|k − x̂k|k)(x̂

(i)
k|k − x̂k|k)

T ). (2.7)

2.2.1 The Extended Kalman Filter

The Kalman filter is a recursive estimation algorithm that utilizes a series of measure-

ments and inputs, each containing their own respective statistical noises, to produce
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an estimate of unknown state variables. The Kalman filter assumes that the dynamic

and measurement equations, fk−1 and hk are linear, perturbed by white zero-mean

gaussian noises, vk, and wk, with known covariance matrices Qk−1 and Rk[26, 27].

This assumption, however, becomes an issue when either model is not represented by

a linear function. The extended Kalman filter(EKF) was the solution to this problem,

linearizing both the system and observation models about an operating point.

Let us suppose that the true state at time step k − 1, xk−1, can be mapped

to the state at time step k, xk given the input uk, and process noise vk given the

dynamic function fk−1, and that the current sensor measurement, zk, is observed by

the measurement function hk:

xk =f(xk−1, uk) + vk

zk =h(xk) + wk .

The extended Kalman filter can be broken into two stages of calculations, the

prediction stage and the update stage. The equations for each stage are as follows

Prediction Stage

x̂k|k−1 =f(x̂k−1|k−1, uk) (2.8)

Pk|k−1 =FkPk−1|k−1F
T
k +Qk (2.9)

Update Stage

ỹk =zk − h(x̂k|k−1) (2.10)

Sk =HkPk|k−1H
T
k +Rk (2.11)

Kk =Pk|k−1H
T
k S
−1
k (2.12)

x̂k|k =x̂k|k−1 +Kkỹk (2.13)

Pk|k =(I −KkHk)Pk|k−1 (2.14)
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Where the dynamic and observation matrices, Fk and Hk, are the Jacobians:

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

(2.15)

Hk =
∂h

∂x

∣∣∣∣
x̂k−1|k−1

, (2.16)

which are linearized about the prior estimate at time step k − 1, x̂k−1|k−1.

Let us suppose that the filter is given a well-conditioned state estimate. Over time,

the measured values from the sensor will act as a feedback that modify the prediction

of the filter’s dynamics model. This modification is conducted by the Kalman Gain,

Kk and the innovation, ỹk. If the filter’s dynamics model are accurate, then the

innovation, which is the residual of the observation of the filter and the measurement

of the sensor, will be low and the the Kalman gain will play little effect on the filter’s

estimate. However, when the innovation becomes large, this can mean two things:

either the dynamics model is inaccurate, or the measurement is too noisy.

2.3 Interacting Multiple Models

Often times, the use of one dynamics model may not be adequate enough to describe

the motion of a maneuvering intruder. For this reason, the Interacting Multiple

models algorithm has become one of the de facto solutions for tracking applications [3].

Figure 2.1 depicts the four steps of the Interacting Multiple Model (IMM) algorithm:

Mixing state estimates, model updates, model probabilities update, and combining

state estimates.
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Figure 2.1: A Diagram that describes how the IMM algorithm works from [3]

Suppose a linear system can be represented with Markovian switching coefficients

as

Xk+1 = Fk(θk)Xk +Gk(θk)wk (2.17)

Yk = Hk(θk)Xk + vk (2.18)

where Xk is the system state, θk is a finite state Markov chain with values in 1, . . . , N

according to the probability transition pij, that transitions model i to model j.

At time step k, during the mixing stage, model i mixes its prior state estimate

with the prior state estimate at time step k− 1 of model j according their respective

model probabilities to produce a mixed state estimate X0j
k−1|k−1. After this mixing

stage, each model’s respective filter conducts a filtering cycle of prediction and update

14



stage. The model likelihood for each model is then calculated and used to update

the model probabilities. The mixed state estimate output can from the weighted

summation of each model’s filter estimates.

Mixing of State Estimates

Relevant terms:

• Xj
k−1|k−1 a priori state estimate

• P j
k−1|k−1 a priori error covariance

• µk−1(j) associated model probability

• Mk(j) model j at time k

• pij model transition probability for switching from model i to model j

• c̄j normalization constant

The mixed state estimate for Mk(j) is computed as

X0j
k−1|k−1 =

∑
X i
k−1|k−1µk−1|k−1(i|j), (2.19)

and

µk−1|k−1(i|j) =
1

c̄j
pijµk−1(i) c̄j =

N∑
i=1

pijµk−1(i). (2.20)

The mixed state covariance for Mk(j) is computed as

P 0j
k−1|k−1 =

N∑
i=1

[
P i
k−1|k−1 +

(
X i
k−1|k−1 −X

0j
k−1|k−1

)(
X i
k−1|k−1 −X

0j
k−1|k−1

)T ]
µk−1|k−1(i|j)

(2.21)

Update Models

Each model’s filter is updated using the standard Kalman Filter update equations

2.10-2.14.
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Model Likelihood

Likelihood of Mk(j) is computed with filter residuals Z̃j
k, the filter residuals Sjk, and

gaussian assumptions. The likelihood of Mk(j) given by

Λj
k =

1√
|2πSjk|

exp
[
− 0.5(Z̃j

k)
T (Sjk)Z̃

j
k

]
(2.22)

Model Probability Update

The model probabilities are updated as

µk(j) =
1

c
Λk(j)c̄j where c =

N∑
i=1

Λk(i)c̄i (2.23)

State Estimate Combination

The state estimate and error covariances are found as

Xk|k =
N∑
i=1

X i
k|kµk(i) Pk|k =

N∑
i=1

µk(i)
[
P i
k|k + (X i

k|k −Xk|k)(X
i
k|k −Xk|k)

T
]

(2.24)
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CHAPTER 3

Proposed Algorithms

3.1 Problem Formulation

For the orbiting intruder ranging problem, an ownship vehicle moves with a constant

velocity and tracks an intruder vehicle that orbits with a constant angular velocity and

a constant linear speed. We let (xo, yo) be the position of the ownship in the Cartesian

coordinates. Similarly, let (vox, voy) be its velocity in the Cartesian coordinates. The

ownship’s motion model is given by the constant velocity model:

ẋo

˙vox

ẏo

˙voy


=



vox

0

voy

0


. (3.1)

For the intruder, we let (xi, yi) be its position in the x, y directions, v its linear speed,

θ its heading, and ω its angular velocity. The intruder’s motion model is given by:

ẋi

ẏi

v̇

θ̇

ω̇


=



vcos(θ)

vsin(θ)

0

ω

0


. (3.2)

We assume that ω 6= 0, which means that the intruder is orbiting. We further assume

that the ownship measures the bearing (azimuth) angles of the intruder, β, defined
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as:

β = arctan

(
yi − yo
xi − xo

)
· (3.3)

Our objective is to employ the bearing measurements and the ownship informa-

tion, such as vox, voy, to estimate the intruder’s states. Towards this end, we define

rx = xi − xo and ry = yi − yo, and write the relative motion between the vehicles as:

ṙx

ṙy

v̇

θ̇

ω̇


=



vcos(θ)− vox

vsin(θ)− voy

0

ω

0


. (3.4)

The states in (3.4) include the relative positions in Cartesian coordinates, polar ve-

locity, and angular velocity. Therefore we call it a Cartesian Position Polar Velocity

(CPPV) model. An illustration of the orbiting intruder problem is shown in Figure

3.1.

Figure 3.1: An illustration of the orbiting intruder problem, where the ownship (xo, yo)

moves on a straight path while taking bearing angle measurements, β, of the intruding

vehicle (xi, yi) over time.
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We define the state vector X as:

X =



x1

x2

x3

x4

x5


=



rx

ry

v

θ

ω


. (3.5)

Because the measurements are taken at discrete time steps, we discretize (3.4) using

the linearized discretization approach [17] and obtain the dynamics as:

xk = Φk|k−1(xk−1)− Uk (3.6)

where Φk|k−1 is the state transition matrix given by

Φk|k−1(xk−1) =



rx + 2v
ω
sin(ωT

2
)cos(θ + ωT

2
)

ry − 2v
ω
sin(ωT

2
)sin(θ + ωT

2
)

v

θ + ωT

ω


, (3.7)

Uk is the input vector given by

Uk =



voxT

voyT

0

0

0


, (3.8)

and T is the sampling time. Note that the input vector contains the ownship infor-

mation. The measurement equation becomes:

z = h1(X) + εβ = arctan

(
x2
x1

)
+ εβ, (3.9)

where h1(X) is the measurement function and εβ is zero mean Gaussian noise with a

standard deviation of σβ.
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Model in the Modified Polar Coordinates

We can also write (3.4) in the Modified Polar Coordinates (MPC). The state variables

in the MPC are the bearing rate, the range rate over range, the bearing, the inverse

range, and the angular velocity. Let r =
√
r2x + r2y and define the state variables Y

as

Y =



y1

y2

y3

y4

y5


=



β̇

ṙ/r

β

1/r

ω


. (3.10)

The dynamic model of Y is:

Ẏ =



−2y1y2 + voxy4y5cos(y3) + voyy4y5sin(y3) + y2y5

y21 − y22 + voxy4y5sin(y3)− voyy4y5cos(y3)− y1y5

y1

−y2y4

0


(3.11)

= f(Y, vox, voy), (3.12)

and the measurement model for MPC is:

z = h2(Y ) + εβ = y3 + εβ. (3.13)

Note that for the MPC model, the dynamics (3.12) is highly nonlinear while the

measurement model (3.13) is linear. A derivation of the MPC coordinates can be

found in A.

3.2 Filter Bank Algorithm

To estimate the states in (3.7) and (3.9), or (3.12) and (3.13), we now design an EKF

bank algorithm. Suppose that there are Nt filters in the EKF bank. Each EKF in
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the bank is initialized with a different initial state estimate, propagated through the

prediction stage, and updated in the update stage using the measurement at time

step k.

In particular, for filter i = 1, · · · , Nt, the update stage is defined as:

S
(i)
k = H

(i)
k P

(i)
k|k−1(H

(i)
k )

T
+R (3.14)

K
(i)
k = P

(i)
k|k−1(H

(i)
k )

T
(S

(i)
k )−1 (3.15)

x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k (zk − h(x̂

(i)
k|k−1) (3.16)

P
(i)
k|k = (I −K(i)

k H
(i)
k )P

(i)
k|k−1, (3.17)

where R is the measurement noise, H
(i)
k is the Jacobian of the measurement function

h(·) (for either (3.9) or (3.13) depending on the system model), P
(i)
k|k−1 is the predicted

covariance estimate, P
(i)
k|k is the updated covariance estimate, x̂

(i)
k|k−1 is the predicted

state estimate, and x̂
(i)
k|k is the updated state estimate.

Each filter is associated with a weight, W
(i)
k , at time step k. The weights are

initialized uniformly and summed to one. The weight of each EKF in the bank is

updated using Bayes rule:

W
(i)
k = cW

(i)
k−1p(zk|i) (3.18)∑Nt

i=1
W

(i)
k = 1, (3.19)

where c is a normalizing constant, and p(zk|i), the likelihood for the ith EKF, is given

by:

p(zk|i) ∝
1√

det(S
(i)
k )

exp

(
−1

2
(zk − h(x̂

(i)
k|k−1))

TS
(i)
k

−1
(zk − h(x̂

(i)
k|k−1))

)
. (3.20)

The combined estimate and covariance are calculated as:

x̂k|k =
∑Nt

i=1
W

(i)
k x̂

(i)
k|k (3.21)

Pk|k =
∑Nt

i=1
W

(i)
k (P

(i)
k|k + (x̂

(i)
k|k − x̂k|k)(x̂

(i)
k|k − x̂k|k)

T ). (3.22)

21



Initialization of Filter Bank Algorithm - CPPV model

For the CPPV implementation, we parameterize the EKFs by their initial range,

angular velocity, and heading estimates. Suppose that we are given an upper bound

and lower bound of the initial range of the intruder [rmin, rmax]. We divide this interval

into Nr subintervals. The subintervals are distributed geometrically according to [22]:

r(j) =
rmin

2

(
ρj + ρj−1

)
, ρ =

(
rmax
rmin

) 1
Nr

(3.23)

σ(j)
r = Crr

(j), CR =
2(ρ− 1)√
12(ρ+ 1)

, (3.24)

where j = 1, · · · , Nr represents the index of a specific subinterval, r(j) is the jth range

estimate in the interval, σ
(j)
r is the jth standard deviation for range, and CR is the

coefficient of variation.

Similarly, for the angular velocity and the heading, we divide their initial state and

variances into uniform intervals. We divide the angular velocity into Nω subintervals

and the heading into Nθ subintervals according to predefined limits [ωmin, ωmax] and

[θmin, θmax], respectively, as:

ω(k) = ωmin + (k − 1)
ωmax − ωmin
Nω − 1

(3.25)

σω =
Nω

2

ωmax − ωmin
Nω − 1

(3.26)

θ(`) = θmin + (`− 1)
θmax + θmin

Nθ

(3.27)

σθ =
1

2

θmax + θmin
Nθ

, (3.28)

where k = 1, · · · , Nω and ` = 1, · · · , Nθ represent the index of a specific subinterval

for the angular velocity and heading parameterization respectively. The kth initial

estimate for the angular velocity is ω(k), and the `th initial estimate for the heading

is θ(`). The standard deviation for the angular velocity and heading, σω and σθ, are

constant for each of their respective subintervals. In the special case where Nθ = 1
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and Nω = 1, we set:

ω(1) =
ωmax + ωmin

2
(3.29)

σω =
ωmax + ωmin

2
(3.30)

θ(1) = 0 (3.31)

σθ =

√
π2

3
. (3.32)

To initialize filter i, where i = 1 · · ·Nt, we make use of r(j), ω(k), and θ(`) defined

in (3.23), (3.25), and (3.27), respectively. Suppose

i = NrNω(`− 1) +Nr(k − 1) + j, (3.33)

for some j ∈ {1, · · · , Nr}, k ∈ {1, · · · , Nθ}, and ` ∈ {1, · · · , Nω}. Then the initial

value of the state vector for the ith EKF is:

x
(i)
0 =



r(j)cos(β0)

r(j)sin(β0)

v0

θ(k)

ω(`)


, (3.34)

where β0 is the first measured bearing angle, and v0 is the ownship velocity, where

no prior knowledge of the intruder’s velocity is available.

Figure 3.2 visualizes how we parameterize with respect to the range, heading, and

angular velocity states.
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(a) (b)

(c)

Figure 3.2: An illustration that represents the parameterization for the range(a), head-

ing(b), and angular velocity(c) states of the Filter bank algorithm. Illustration (a) is

from [22]

The initial error covariance is given by,

P
(i)
0,LOS =


(
σ
(i)
r

)2
0

0
(
r(i)σ

(i)
β0

)2
 , Rrot =

 cosβ0 sinβ0

−sinβ0 cosβ0

 ,
P

(i)
0,Local = RrotP

(i)
0,LOSRrot

P
(i)
0 = diag

(
P

(i)
0,Local, (σv)

2, (σω)2, (σθ)
2
)
, (3.35)

where the position variance P
(i)
0,LOS is aligned to the local coordinate system from the

line of sight (LOS), and σω and σθ are defined in (3.26) and (3.28), respectively. We

approximate σ2
v , the variance of the intruder velocity as:

σ2
v =

1

12
(vmax − vmin)2, (3.36)

where vmax and vmin are limits that we predefine based on airspeeds of typical aircraft.

Initialization of Filter Bank Algorithm - MPC model

For the implementation in the MPC, we parameterize the EKFs in the same fashion

as the CPPV implementation. We do this to ensure that the filter bank algorithm
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for both models are initialized with the same initial conditions. We map the initial

state for each EKF from the CPPV model to the MPC model using a transformation

G(·) given by

G(X, vox, voy) =



y1

y2

y3

y4

y5


=



x1(x3sin(x4)−voy)−x2(x3cos(x4)−vox)
x21+x

2
2

x1(x3cos(x4)−vox)+x2(x3sin(x4)−voy)
x21+x

2
2

tan−1
(
x2
x1

)
1√
x21+x

2
2

x5


. (3.37)

For each filter, the initial value of the state vector is:

y
(i)
0 = G(x

(i)
0 , vox, voy). (3.38)

The initial state covariance matrix is defined as:

P
(i)
0 = diag[σ2

β̇
, σ2

ṙ
r
, σ2

β, σ
2
1
r
, σ2

ω]. (3.39)

Because the standard deviations are different for the CPPV and MPC models, we

ensure that they are made as equivalent as possible [15]. We achieve this by:

σβ̇ =
σv
r(j)

, σ ṙ
r

=
σv
r(j)

, σ 1
r

=
σr

r(j)
2 . (3.40)

We numerically integrate (3.12) to predict the estimate of the system’s state and

covariance matrix at the next time step. We make use of the Euler method for the

integration over time [28]. We use a time step of 0.001 sec for this integration. The

update step is kept the same as the discrete-time EKF. A derivation of the mapping

function G(·) and a derivation of the relationship of the variance between the range

and inverse range covariance can be found in Appendix B and E respectively.

3.3 IMM Algorithm

The algorithms in Section 3.2 are designed to estimate an orbiting trajectory of an

intruder. However, the intruder’s trajectory could consist of straight legs and orbiting
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legs. Therefore, it is important to integrate the algorithm in Section 3.2 with an esti-

mator that tracks the intruder during the straight leg and examine the overall tracking

performance. Such an integration is typically performed using IMM algorithms.

For our IMM, we utilize two different models to describe the intruder’s motion: a

constant velocity (CV) model and coordinated turn (CT) model. We utilize the filter

bank algorithm for the CT model as described in Section 3.2, and a single EKF for

the CV model. Note that designing an estimator for the CV model is not the focus

of the thesis because extensive research has been conducted for passive ranging with

the CV model [15, 22, 29]. Therefore, we use a single EKF as an example to illustrate

how the filter bank algorithm is integrated in the IMM framework. More specifically,

we utilize the CPPV coordinates in our studies. To simplify notations, we denote the

index for CV and CT as 1 and 2, respectively. The standard IMM mixing stage is

modified for the filter bank algorithm.

In addition to this modification, we implement a mixing strategy to this as well.

The IMM mixing rate, Td(hz), is used to mix the CT and CV model estimate. At

every Td, the IMM mixing stage is used. When the filter is not at Td, the CT and

CV models do not mix their estimates and their filters are updated separately.

Mixing of State Estimates

Relevant terms

• Wi associated weight for filter i in filter bank

• X̄2 weighted mean state estimate for CT model

• P̄ 2 weighted error covariance for CT model

• X2,n
k−1|k−1 state estimate of filter n for CT model

• P 2,n
k−1|k−1 error covariance of filter n for CT model
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We modify equations 2.19 and 2.21 as follows, where for filter n of Nt filters in the

filter bank algorithm,

X01
k−1|k−1 =X1

k−1|k−1µk−1|k−1(1|1) + X̄2
k−1|k−1µk−1|k−1(2|1) (3.41)

X02,n
k−1|k−1 =X1

k−1|k−1µk−1|k−1(1|2) +X2,n
k−1|k−1µk−1|k−1(2|2), (3.42)

and

P 01
k−1|k−1 = µk−1|k−1(1|1)

[
P 1
k−1|k−1 +

(
X1
k−1|k−1 −X01

k−1|k−1
) (
X1
k−1|k−1 −X01

k−1|k−1
)T ]

+µk−1|k−1(2|1)
[
P 1
k−1|k−1 +

(
X̄2
k−1|k−1 −X01

k−1|k−1
) (
X̄2
k−1|k−1 −X01

k−1|k−1
)T ]

(3.43)

P 02,n
k−1|k−1 = µk−1|k−1(1|2)

[
P 2,n
k−1|k−1 +

(
X1
k−1|k−1 −X

02,n
k−1|k−1

)(
X1
k−1|k−1 −X

02,n
k−1|k−1

)T ]
+µk−1|k−1(2|2)

[
P 2,n
k−1|k−1 +

(
X̄2,n
k−1|k−1 −X

02,n
k−1|k−1

)(
X̄2,n
k−1|k−1 −X

02,n
k−1|k−1

)T ]
(3.44)

The model transition probability matrix pij for two models is

pij =

1− δ δ

δ 1− δ

 , (3.45)

where δ is a small off-diagonal user-defined value.

CV model in CPPV Coordinates

The CV model utilizes a single EKF. The state vector in the CV model is X01 = [rx

ry v θ]. The state transition matrix, ΦCV
k|k−1 is given by

ΦCV
k|k−1 =



rx + vTcos(θ)

ry + vTsin(θ)

v

θ


, (3.46)
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and the Jacobian for this dynamics model is

Fk =



1 0 Tcos(θ) −vTsin(θ)

0 1 Tsin(θ) vTcos(θ)

0 0 1 0

0 0 0 1


. (3.47)

Equations 3.46 - 3.47 are used in the standard EKF equations 2.8 - 2.14 to estimate

the state vector.
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CHAPTER 4

Simulation Studies

4.1 Orbiting Intruder Studies

In this section, we present Monte-Carlo simulation results of the orbiting intruder

ranging problem in Section 3.1 using the filter bank algorithm described in Section

3.2. In particular, we conduct two studies. In the first one, we investigate the

important states to parameterize for the CPPV and MPC models. In the second

study, we examine the robustness of the filters with respect to noise in the ownship

velocity.

For each study, we conduct 500 simulations to evaluate the performance of the

filter in the CPPV and MPC models. Our metric of performance is the root mean

square error (RMSE). To illustrate how the RMSE is calculated, we define the relative

percentage error at time k for the ith simulation as:

ei(k) =
|r̄i(k)− r(k)|

r(k)
, (4.1)

where r̄ represents the estimates of a particular state, e.g., the range, and r represents

the truth corresponding to that state. The average error of N simulations at each

time step is given by:

RMSE =

(∑N
i=1 e

i(1)

N
, . . . ,

∑N
i=1 e

i(k)

N

)
. (4.2)

We calculate the RMSE for the range (r), linear intruder velocity (v), and the an-

gular velocity (ω). For the heading variable (θ), we calculate the absolute difference

between the estimate and the true value. The absolute difference at time k for the
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ith simulation can be defined as:

di(k) = |c
(
θ̄i(k)− θ(k)

)
|, (4.3)

where c(·) is a function that maps its argument to the [-π, π) region.

For each simulation, the intruder/ownship geometry is different. The intruder

conducts a coordinated turn motion at a constant angular velocity and a constant

linear velocity. In each simulation, values for the angular velocity and linear velocity

are constant and sampled randomly between 3 and 8 deg/s and between 60 and 80

m/s, respectively. The intruder orbit direction is random, and can be clockwise or

counter-clockwise. The initial heading of the intruder orbit is randomly sampled

between 0 and 360 deg. The ownship travels at a constant linear velocity of 40 m/s.

The initial range between the intruder and ownship is randomly sampled between 1.8

and 6.5 km. The angle between the ownship and the center of the intruder’s orbit

is allowed to vary from 0 and 180 deg. For an encounter, the ownship vehicle takes

bearing measurements of the intruder vehicle at a sampling rate of T = 0.05 sec

for a total encounter period of 120 sec. Figure 4.1 shows a few possible trajectories

for intruder encounters. There is no field of view constraint for the scenarios. The

process noise for the CPPV model is set as:

QCPPV = Cov(wk) = diag


0 0

0 0

 , T 2σ2
v̇ ,

T 3σ2
ω̇/3 T 3σ2

ω̇/2

T 2σ2
ω̇/2 T 2σ2

ω̇


 ,

and the process noise for the MPC model is set as:

QMPC = Cov(wk) = q · I5.

We set the algorithm parameters as in Table 4.1.
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Figure 4.1: Four sample scenarios of the orbiting intruder encounter that can be generated

during Monte Carlo Simulations. The ownship moves on the same linear trajectory for each

generated scenario.

Table 4.1: Algorithm Parameters

rmax = 10km rmin = 1km ωmax = 8deg/s ωmin = −8deg/s

θmax = 2π θmin = 0 vinitial = 40m/s σ2
v = 402/12

σ2
v̇ = 1e− 3 σ2

ω̇ = 5e− 6 q = 1e− 12 R = 0.2deg

4.1.1 Study 1: Effects of Parameterization

For this study we parameterize the filter in CPPV under different combinations listed

in Table 4.2. For each combination, we limit the total number of filters Nt to be less

than 150.
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Table 4.2: Study 1 Cases

Study Model
Parameterization

Figure
Nr Nω Nθ

Case 1 CPPV

10 1 1

Fig 4.225 1 1

150 1 1

Case 2 CPPV

25 1 1

Fig 4.325 3 1

25 6 1

Case 3 CPPV

25 1 1

Fig 4.425 1 3

25 1 6

Case 4
CPPV

25 1 6

Fig 4.525 2 3

15 2 5

16 3 3

Case 5
CPPV 25 1 6

Fig 4.6
MPC 15 5 2

Case 1: Varying Range Intervals

For the first case, we test the effects of increasing the number of intervals for the

range, Nr. The heading and angular velocity intervals are kept as 1, Nθ = 1, Nω =1 for

each variation. We test three range intervals, Nr = 10, 25, and 150. The estimation

performance corresponding to these three variations are shown in Figure 4.2. For

the three variations, we observe that the second case, where Nr = 25, performs best
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for all state estimates. Our explanation of this behavior is that when the number

of range subintervals is too large, the resulting range variance for each EKF in turn

decreases. When the filter has too much belief in an erroneous range estimate, the

filter update stages will then take a longer amount of time to converge.
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Figure 4.2: The RMSE over time for the range (a) and the absolute difference over time for

the heading (b) state estimates using 500 Monte Carlo simulations for the CPPV system

model. We plot three parameter variations with a focus on different range interval sizes.
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Case 2: Varying Angular Velocity Intervals

For the second case, we compare the effects of parameterizing the angular velocity

together with the range. We maintain the number of intervals for the range and

the heading as Nr = 25 and Nθ = 1, respectively. The initial angular velocity is

parameterized for three variations: Nω = 1, 3, and 6, respectively. The simulation

results are shown in Figure 4.3. The cases where Nω = 3 and Nω = 6 perform better

than Nω = 1. The performance of Nω = 3 and Nω = 6 is similar except that there is

a slight increase in percentage error for the range estimates when Nω = 6.
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Figure 4.3: The RMSE over time for the range (a) and the absolute difference over time for

the heading (b) state estimates using 500 Monte Carlo simulations for the CPPV system

model. We plot three variations with a focus on different angular velocity interval sizes.

Case 3: Varying Heading Intervals

Similarly, for the third case, we compare the effects of parameterizing the heading

with the range. We maintain the number of intervals for the range and the angular

velocity as Nr = 25 and Nω = 1, respectively. The heading states are tested for three

interval variations, Nθ = 1, 3, and 6, respectively, in Figure 4.4. The second and third

variation, Nθ = 3 and Nθ = 6 both perform similarly for the range estimates. The

third variation, however, performs best for the heading estimate. It reaches a steady

error of 10 percent at t = 60s while the second variation reaches a 10-percent error

at t = 70s.
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Figure 4.4: The RMSE over time for the range (a) and the absolute difference over time for

the heading (b) state estimates using 500 Monte Carlo simulations for the CPPV system

model. We plot three parameter variations with a focus on different heading interval sizes.

Case 4: Varying All Intervals

For the fourth case, we examine parametrizing the range, heading, and angular
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velocity. The parameterization combinations can be seen in Figure 4.5. The fourth

variation, where Nr = 16, Nω = 3, and Nθ = 3 performs the best when estimating the

range. This is not the case for the heading estimates, where the best parametrization

is the first variation, Nr = 25, Nω = 1, and Nθ = 6. This performance appears to be

due to the number of heading intervals being highest. Overall, we consider that the

parameterization Nr = 25, Nω = 1, and Nθ = 6 yields the best performance.
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Figure 4.5: The RMSE over time for the range (a) and the absolute difference over time for

the heading (b) state estimates using 500 Monte Carlo simulations for the CPPV system

model. We plot parameter variations that vary for all three states.

Case 5: Comparison of CPPV and MPC

Lastly, we compare the performance of the CPPV model to the MPC model in

Figure 4.6. It should be noted that we perform the same type of parameterization

study for the MPC model. In favor of space, we do not include the results of the

study. From that study, we conclude that the parameterization priority should be

given to the range and angular velocity. The parameterization chosen for the CPPV

model was Nr = 25, Nω = 1, and Nθ = 6, whereas the parameterization for the MPC

model was Nr = 15, Nω = 5, and Nθ = 2.
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Figure 4.6: The RMSE over time for the range (a) and the absolute difference over time for

the heading (b) state estimates using 500 Monte Carlo simulations are plotted for the filter

algorithm in CPPV and MPC system models. The best parameterization combination for

each respective model are used.

From the simulations, we observe that there are more divergent scenarios for the

MPC model. Those divergent scenarios are removed from the data. To ensure a fair
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comparison, for the CPPV model we remove the same number of scenarios, which

have worse range estimation performance than others. For this reason, the same

data set used in Figure 4.5 does not appear the same as in Figure 4.6. Figure 4.6

shows that the CPPV model is outperformed by the MPC model when estimating

the heading state. The MPC model achieves a faster convergence for the heading

estimate at t = 30 sec, however, the range estimates it produces do not reach the

accuracy of the CPPV model estimates.

Figure 4.7 shows a single run from the simulations where the range estimate for

the filter in CPPV is converging while the range estimate for the MPC model appears

to drift from the truth. However, the heading estimate from the MPC converges faster

than the CPPV model.
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Figure 4.7: A comparison of the filter in CPPV and MPC models for one simulation chosen

from the 500 Monte Carlo Simulations of Fig 4.6 . The range (a) and heading (b) state

estimates are compared against the truth.

4.1.2 Study 2: Robustness to Velocity Noise

For this study, we examine the robustness of the filter algorithm for both the CPPV

and MPC models. We test this by adding gaussian noise to the ownship velocity.

For each model, we use the same parameterization used in Figure 4.6. We make a

comparison for three variations for the ownship velocity’s noise standard deviation

(STD): a noiseless case, 1 m/s, and 3 m/s in Figure 4.8. We conclude that a small

amount of ownship velocity noise has little effect on the estimation performance. We

have also performed a test by adding a measurement bias of 0.2 deg and found that

there are negligible effects for either system model.
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Figure 4.8: The RMSE over time for the range (a) and the absolute difference over time

for the heading (b) state estimates using 500 Monte Carlo simulations are plotted for the

filter algorithm in the CPPV system model. Three variations of ownship velocity noise are

shown.

42



4.1.3 Study 3: Effects of Ownship Velocity

In this study, we conduct an investigation on the effects of the ownship speed on

the filter bank algorithm’s performance. It is well known topic that to obtain range

information of an intruder system, the ownship must conduct a higher-motion ma-

neuver to yield observability [19, 18]. We utilize 3 variations of ownship speed,vo, 40,

50, and 60 m/s in Figure 4.9 for 500 simulation runs. The filter parameterization

utilized here is Nr = 25, Nω = 1, and Nθ = 6. The results of this study shows that a

higher ownship velocity yields better performance in range estimation. The heading

estimates for all three cases exhibit similar performance.
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Figure 4.9: The RMSE over time for the range (a) and the absolute difference over time

for the heading (b) state estimates using 500 Monte Carlo simulations are plotted for the

filter algorithm in the CPPV system model. Three variations of ownship speed are shown.

4.1.4 Study 4: Cramer-Rao Lower Bound Analysis

To determine the most optimal performance of the filter, we pursue utlizing a different

performance metric, the Cramer-Rao Lower Bound (CRLB). We describe our imple-

mentation of the CRLB in Appendix D. 500 Monte Carlo Simulations are randomly

generated utilizing the algorithm parameters cited previously in Table 4.1. However,

each simulations shares the same initial bearing angle. The results of the CPPV

model for the range, velocity, heading, and angular velocity are shown in figure 4.10.

From inspection, it appears that the range, velocity, and angular velocity standard

deviations correlate closely to that of the CRLB. This appears to be less of the case

for the heading.
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Figure 4.10: The Cramer Rao Lower Bound is compared to 500 randomly generated runs

for the range (a), velocity (b), heading (c), and angular velocity (d).
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4.2 Maneuvering Intruder Studies

In this section, we present our simulation results for the maneuvering intruder ranging

problem. We utilize an implementation of the IMM algorithm as described in Section

3.3. We focus on investigating how to improve the performance of this algorithm by

varying two parameters, the IMM mixing stage rate, Td, and the model transition

probability value, δ. For the CT mode, our filter bank algorithm is parameterized

according to the best parameterization found in our previous study, Nr = 25,Nω =

1,and Nθ = 6. The CV mode’s single EKF is initialized using the weighted average

state estimate and covariance of the filter bank. The IMM algorithm utilized the

CPPV coordinates for this study. For each study, we conduct 500 simulations. Our

metric of performance here is the RMSE, eq. 4.1-4.3.

Scenarios are generated similarly to the orbiting intruder studies in Section 4.1.

For each simulation, the intruder/ownship geometry is different. The difference is that

the intruder vehicle is in a coordinated turn for 120 sec, then transitions to travel at

a constant linear velocity for 70 sec. Figure 4.11 shows a few possible trajectories for

intruder encounters. The parameters utilized in this study follow Table 4.1.
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Figure 4.11: Four sample scenarios of the maneuvering intruder encounter that can be gen-

erated during Monte Carlo Simulations. The ownship moves on the same linear trajectory

for each generated scenario. The maneuvering intruder orbits for 120 sec, then transitions

to a constant linear velocity for 70 sec.

4.2.1 Study 1: Varying the IMM Mixing rate, Td

In this study, we examine how varying the IMM mixing rate, Td, effects performance.

Four different IMM mixing rates are investigated, 20, 10, 5, and 1 hz. Figures 4.12 -

4.14 show this comparison for three different values for δ, the off diagonal value for

the model transition probability matrix. In Figure 4.12, where δ=1e-2, it can be seen

that 1 hz has the best range performance until t=120 sec, where an increase in error

can be found. The IMM mix rate 20 hz performed worst for the entire simulation

time. In Figures 4.13 and 4.14, where δ=1e-3 and δ=1e-4 respectively, all variations

performed better than those with δ=1e-2. For these figures, an IMM mix rate of 20

hz had the best performance. For the time period until t = 120 sec, it can be seen

that IMM mix rates greater than 1 hz had very similar performance. Increasing the

IMM mix rate proved to have better results for when the intruder vehicle’s motion

transitions from the CT mode to the CV mode.
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Figure 4.12: The RMSE over time for the range (a) and the absolute difference over time for

the heading (b) state estimates using 500 Monte Carlo simulations for the IMM algorithm,

where δ = 1e-2
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δ = 1e-3
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Figure 4.13: The RMSE over time for the range (a) and the absolute difference over time for

the heading (b) state estimates using 500 Monte Carlo simulations for the IMM algorithm,

where δ = 1e-3
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δ = 1e-4
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Figure 4.14: The RMSE over time for the range (a) and the absolute difference over time

for the heading (b) state estimates using 500 Monte Carlo simulations for the CPPV system

model, where δ = 1e-4.
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4.2.2 Study 2: Varying the off-diagonal value of the model transition

matrix pij, δ

In this study, we keep the IMM mix rate, Td, constant, and look at varying the

off-diagonal value of model probability transition matrix pij, δ. Figures 4.15 and

4.16 shows similar results to the previous study, in that a δ value of 1e-2 gave poor

performance. In Figure 4.15, a δ value of 1e-4 had similar a faster convergence for the

heading state than a δ value of 1e-3. In Figure 4.16, δ = 1e-3 had better range results

from t=0sec to t=150sec than δ = 1e-4. The heading error for δ = 1e-4 converged

faster at t=25sec.
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Figure 4.15: The RMSE over time for the range (a) and the absolute difference over

time for the heading (b) state estimates using 500 Monte Carlo simulations for the CPPV

system model, where the mixing rate is held at a constant 5hz and three variations of δ are

compared.
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Figure 4.16: The RMSE over time for the range (a) and the absolute difference over

time for the heading (b) state estimates using 500 Monte Carlo simulations for the CPPV

system model, where the mixing rate is held at a constant 20hz and three variations of δ

are compared
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4.2.3 Study 3: Performance on Different Encounters

In this section, we show how the IMM filter performs for maneuvering intruder sce-

narios other than the one we utilized for the Monte Carlo simulations, CT-CV. We

look at the following scenarios, CT-CV-CT, CV-CT, and CV-CT-CV. The purpose of

this study is to determine the IMM’s ability to adapt when the intruder transitions to

a different maneuver. For all of the following scenarios, the filter bank parametriza-

tion is Nr = 25,Nω = 1,and Nθ = 6, the IMM mix rate is 20 hz, and δ= 1e-4. For

the CV-CT and CV-CT-CV scenarios, the CV filter was state estimates were set as

the truth, with the covariance set given low values to ensure the IMM placed more

probability for the CV mode initially. The estimates plotted are the maximum likeli-

hood results. All noise assumptions are the same as found in Table 4.1, except for the

angular velocity noise in the CV-CT and CV-CT-CV scenarios, which had a value of

σ2
ω̇=1e-4.

Figure 4.17 shows the plots for the CT-CV-CT scenario, where the intruder starts

in an orbit, maneuvers to a constant velocity, then returns to an orbit. The estimates

are fairly accurate for all states. In Figure 4.17g there is a spike in the mode proba-

bility at t=75sec. This spike represents the IMM placing higher likelihood for both

model’s estimates.

Figure 4.18 shows the plots for another CT-CV-CT scenario, but where the angular

velocity is different for the two orbits. In Figure 4.18f, The angular velocity estimate

that converged from the first orbit takes a long time to converge, coming closer to the

true state at t=260sec. This slow convergence causes error in the mode probability

until the angular velocity estimate gets closer to the true value.

Figure 4.19 covers the results for a CV-CT scenario. Here the EKF has been

initialized near the true state and given fairly small covariance values to ensure the

IMM has more belief in the CV model’s filter than the CT model’s filter. The angular

velocity estimate is fairly noisy after convergence at t=90sec, which is due to the
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higher angular velocity noise we introduce for this scenario. Given the angular velocity

noise of σ2
ω̇=5e-6, the filter was unable to converge at t=90sec, only getting close to

the true angular velocity near the end of the simulation.

Figure 4.20 shows our results for a CV-CT-CV scenario. In this scenario, the

intruder is following a straight trajectory, follows an orbit for half of a circle, then

returns to a straight trajectory. Here the more interesting plot is of the angular

velocity estimate. The CV model’s filter is able to converge at t=80sec fairly quickly.

This plot shows that the IMM algorithm could have problems tracking maneuvers

that end too quickly.
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Figure 4.17: The performance of the IMM algorithm is shown for the range(c), velocity(d),

heading(e), and angular velocity (f) states for an encounter where the intruder conducts an

orbit, followed by a constant velocity, and then returning to an orbit. The mode probability

over time (g) is shown as well.
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CT-CV-CT Encounter 2
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Figure 4.18: The performance of the IMM algorithm is shown for the range(c), velocity(d),

heading(e), and angular velocity (f) states for an encounter where the intruder conducts an

orbit, followed by a constant velocity, and then returning to an orbit. The mode probability

over time (g) is shown as well.
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CV-CT Encounter
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Figure 4.19: The performance of the IMM algorithm is shown for the range(c), velocity(d),

heading(e), and angular velocity (f) states for an encounter where the intruder moves at a

constant velocity, and then transitions to an orbit. The mode probability over time (g) is

shown as well.
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CV-CT-CV Encounter
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Figure 4.20: The performance of the IMM algorithm is shown for the range(c), velocity(d),

heading(e), and angular velocity (f) states for an encounter where the intruder moves at a

constant velocity, transitions to an orbit, then returns to move at a constant velocity. The

mode probability over time (g) is shown as well.
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CHAPTER 5

Flight Test Data Results

We utilized some of the flight test data that they collected to test our algorithm’s

performance on real data sets. One of UtopiaCompression’s research goals is the

maturation of a robust vision-based tracker. They conducted flight tests where a

maneuvering GA aircraft Cessna 172G, as shown in Figure (5.1), would be tracked by

a Group 3 FoxCar UAS as shown in Figure (5.2-5.3). More details on their flight test

details can be found in [4]. In the following section, results of the filter’s performance

are shown.

Figure 5.1: A GA aircraft Cessna 172G was utilized for the collection of flight test

data for algorithm by UtopiaCompression from [4]

5.1 Results

The Filter bank algorithm tested using real flight test data for multiple data sets. For

all flight test (FT) scenarios, the ownship velocity is at a near constant velocity of
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Figure 5.2: A Group 3 FoxCar UAS was utilized for collecting flight test data for

algorithm by UtopiaCompression from [4]

Figure 5.3: Overview of sensor payload mounted to UAS for collecting flight test data

for algorithm by UtopiaCompression from [4]

25m/s, with the intruder velocity at around 45m/s. For these plots, the vertical lines

on the estimates represents a 1σ standard deviation. For FT 20 and 29, we conducted

testing using the bearing angle data obtained from UtopiaCompression’s computer

vision-based algorithm. For FT 20 and 29, we found a bias of roughly 0.4◦ in the

sensor data, which led to the underestimation of some measurements. Additionally,

there are noisy measurements found in the sinusoidal peaks of the data. An outlier

rejection was implemented to avoid noisy measurements. A standard filter parameter

could not be made that maximizes performance for both scenarios. The primary

parameter that was difficult to tune was the velocity variance. In order to reduce

the range error, for FT20, a lower variance was required, whereas for FT29, a higher

variance was required. To account for the non-constant angular velocity, the process

noise was increased. The criteria for convergence was based on when the standard
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deviation of the heading reached a value lower than 30◦. Using this, the convergence

time for FT20 and FT29 were respectively 58s and 112s.

For FT 10 and 50, we had to simulate the bearing measurements due to errors

during the online capture of data during these flight tests. We added a gaussian noise

of 0.2◦ to the bearing measurements. For optimal performance, we used different

parameterizations for each of these flight tests.

Table 5.1: FT 20 and 29 Parameters

Nr = 10 Nω = 4 Nh = 3

rmax = 10km rmin = 1km ωmax = 8deg/s ωmin = −8deg/s

θmax = 2π θmin = 0 vinitial = 50m/s σ2
v = 502/12

σ2
v̇ = 0.5 σ2

ω̇ = 2.5e− 2 R = 0.1581deg
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Flight Test 20

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: The performance of the filter bank algorithm is shown for the range(c), ve-

locity(d), heading(e), and angular velocity (f) states for flight test 20 using the parameters

from table 5.1.
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Flight Test 29

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: The performance of the filter bank algorithm is shown for the range(c), ve-

locity(d), heading(e), and angular velocity (f) states for flight test 29 using the parameters

from table 5.1.
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Table 5.2: FT 10 Parameters

Nr = 15 Nω = 4 Nh = 1

rmax = 8km rmin = 1km ωmax = −10deg/s ωmin = −1deg/s

θmax = 2π θmin = 0 vinitial = 35m/s σ2
v = 452/12

σ2
v̇ = 5 σ2

ω̇ = 5e− 2 R = 0.2deg

Table 5.3: FT 50 Parameters

Nr = 15 Nω = 4 Nh = 3

rmax = 12km rmin = 1km ωmax = 10deg/s ωmin = 1deg/s

θmax = 2π θmin = 0 vinitial = 35m/s σ2
v = 452/12

σ2
v̇ = 1 σ2

ω̇ = 5e− 2 R = 0.2deg
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Flight Test 10
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Figure 5.6: The performance of the filter bank algorithm is shown for the range(c), ve-

locity(d), heading(e), and angular velocity (f) states for flight test 10 using the parameters

from table 5.2.
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Flight Test 50
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Figure 5.7: The performance of the filter bank algorithm is shown for the range(c), ve-

locity(d), heading(e), and angular velocity (f) states for flight test 50 using the parameters

from table 5.3.
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CHAPTER 6

Conclusions

We conducted studies on the passive ranging problem of an orbiting intruder aircraft

by an ownship aircraft moving on a straightline trajectory at a constant speed. We

developed a filter bank algorithm, which was parameterized with respect to the range,

heading, and angular velocity states. We conducted simulation studies on how to find

the best way to optimize the filter bank algorithm. The results of this study were

that the best performance was by increasing the number of intervals for the range and

heading states. Increasing the number of intervals for the heading and angular velocity

gave better results overall. Increasing the number of range intervals had a limit. With

too many range intervals, the filter bank would believe the estimates more than the

measurements, and lose accuracy when compared to lower range interval filter banks.

We also conducted a study comparing the filter bank algorithm’s performance for

the CPPV model and the MPC model. We found that the CPPV had less divergent

scenarios, and had better estimates for the range states. The MPC model had better

heading estimates than the CPPV model, and did converge faster. Both models

exhibited robustness to ownship velocity noise.

We worked on developing the IMM algorithm for this problem as well. We utilized

two modes, a constant velocity (CV) mode, and a coordinated turn (CT) mode. We

adapted the filter bank aglorithm for the CT mode, and utilized a single EKF for

the CV mode. We conducted a study on two parameters: the IMM mixing stage

rate, and the model transition probability matrix. We find that the model transition

probability plays a large effect on performance, and the off diagonal values must be
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set to fairly small values (δ <1e-2) to obtain good results.

Tests were conducted on real flight test data as well. We developed an outlier

rejection to avoid measurements that were too noisy from the data. For each flight

test, we focused on how to obtain the best estimates. To this effect, we used different

filter bank parameterizations. We found promising results for some of the scenarios

where the intruder did not maneuver too quickly.

6.1 Future Work

Given more time to work on this research, initial effort would be put into testing

the IMM algorithm on the flight test data. Next would be the testing of different

filters, such as the particle flow filter and the Unscented Kalman filter to compare

the difference in their performance to what has been presented.
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APPENDIX A

Derivation of the Modified Polar Coordinates

For the derivation of the system dynamics in modified polar coordinates, It is neces-

sary to derive functions from their cartesian equivalents. The following variables will

be utilized for the state space variables:

Y =



y1

y2

y3

y4

y5


=



β̇

ṙ/r

β

1/r

ω


(A.1)

The variables are the bearing rate, range rate divided by range, bearing, reciprocal of

range, and angular velocity respectively. Remember that for the range, r =
√
x2 + y2

. Utilizing β with respect to the range yields its components the x = rcos(β) , and

x = rsin(β). When you take the dot derivative, you obtain: ṙ = (xẋ + yẏ)/r. The

following derivatives can be found as:

d

dt

[
1

r

]
= − ṙ

r2
= −1

r

ṙ

r
= −y2y4 (A.2a)

d

dt
[w] = 0 (A.2b)

d

dt
[β] = β̇ = y1 (A.2c)

d

dt

[
ṙ

r

]
=
r̈

r
− ṙ2

r2
(A.2d)

d

dt

[
β̇
]

= β̈ (A.2e)
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To solve for A.2d and A.2e, it is necessary to find the relative velocities between the

intruder and ownship in terms of cartesian coordinates. They are found as follows:

x = rcos(β) −→ ẋ = ṙcos(β)− rsin(β)β̇

y = rsin(β) −→ ẏ = ṙsin(β) + rcos(β)β̇

(A.3)

Then r̈ is found as:

r̈ =
ẋ2 + ẏ2 + xẍ+ yÿ

r
− ṙ2

r

=
ẋ2 + ẏ2

r
+
xẍ+ yÿ

r
− ṙ2

r
ẋ2 + ẏ2

r
= rβ̇2 +

ṙ2

r

r̈ = rβ̇2 + ẍcos(β) + ÿsin(β)

=
y21
y4

+ ẍcos(y3) + ÿsin(y3) (A.4)

From this, the equation A.2d is found to be:

d

dt

[
ṙ

r

]
= y21 − y22 + y24 [ẍcos(y3) + ÿsin(y3)] (A.5)

To find β̈, it is necessary to derive the relative acceleration in cartesian as follows:

ẍ = r̈cos(β)− 2ṙsin(β)β̇ − rcos(β)β̇2 − rsin(β)β̈

After a substitution of r̈ and ṙ, this can be rewritten as:

β̈ =
1

r

[
ÿ − ẍsin(β)− 2ṙβ̇

]
= y4 [ÿ − ẍsin(y3)]− 2y1y2 (A.6)

Now the only unknowns left to be solved in the derived functions are the relative

accelerations. For this particular bearings-only tracking scenario, ownship maintains

a constant velocity with no maneuver, whereas the target is conducting a maneuver.

This leads to the relation: ẍ
ÿ

 =

ẍt −��̈xo

ÿt −��̈yo

 (A.7)
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The target’s acceleration can also be written as:

d

dt

ẋt
ẏt

 =
d

dt

vcos(θ)
vsin(θ)


=

−vsin(θ)ω +����v̇cos(θ)

vcos(θ)ω −����v̇sin(θ)

 =

−ẏtω
ẋtω

 (A.8)

Where θ is the target’s heading. The target’s velocity can be determined through the

relative velocity:

x = xt − xo = rcos(β)

xt = xo + rcos(β)

ẋt = ẋo + ṙcos(β)− rsin(β)β̇

= ẋo +
y2
y4
cos(y3)−

y1
y4
sin(y3) (A.9)

y = yt − yo = rsin(β)

yt = yo + rsin(β)

ẏt = ẏo + ṙsin(β) + rcos(β)β̇

= ẏo +
y2
y4
sin(y3) +

y1
y4
cos(y3) (A.10)

Plugging in equations A.9 and A.10 into A.8 yields:

ẍ = −
[
ẏoy5 +

y2y5
y4

sin(y3) +
y1y5
y4

cos(y3)

]
ÿ = ẋoy5 +

y2y5
y4

cos(y3)−
y1y5
y4

sin(y3)

(A.11)

With this relationship solved, the system model is thus:

FY =



−2y1y2 + ẋoy4y5cos(y3) + ẏoy4y5sin(y3) + y2y5

y21 − y22 + ẋoy4y5sin(y3)− ẏoy4y5cos(y3)− y1y5

y1

−y2y4

0


(A.12)
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The Jacobian for the system model can then be found as:
∂f1
∂y1

· · · ∂f1
∂y5

...
. . .

...

∂f5
∂y1

· · · ∂f5
∂y5

 = JY

∂f1
∂y1

= −2y2,
∂f1
∂y2

= −2y1 + y5

∂f1
∂y3

= ẋoy4y5sin(y3) + ẏoy4y5cos(y3)

∂f1
∂y4

= ẋoy5cos(y3) + ẏoy5sin(y3)

∂f1
∂y5

= ẋoy4cos(y3) + ẏoy4sin(y3) + y2

∂f2
∂y1

= 2y1 − y5,
∂f2
∂y2

= −2y2

∂f2
∂y3

= ẋoy4y5cos(y3) + ẏoy4y5sin(y3)

∂f2
∂y4

= ẋoy5sin(y3)− ẏoy5cos(y3)

∂f2
∂y5

= ẋoy4sin(y3)− ẏoy4cos(y3)− y1

∂f3
∂y1

= 1,
∂f3
∂y2

=
∂f3
∂y3

=
∂f3
∂y4

=
∂f3
∂y5

= 0

∂f4
∂y2

= −y4,
∂f4
∂y1

=
∂f4
∂y3

=
∂f4
∂y4

=
∂f4
∂y5

= 0

∂f5
∂y1

=
∂f5
∂y2

=
∂f5
∂y3

=
∂f5
∂y4

=
∂f5
∂y5

= 0

The measurement equation in MSC is :

zk =

[
0 0 1 0 0

]
(A.13)
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APPENDIX B

Relation Between Modified Polar Coordinates and Cartesian Coordinates

The conversion between the two coordinate systems is defined here. It is useful for

the purpose of comparing their performance. The modified polar coordinates (MPC)

system model is defined as previously from eq.A.1:

Y =



y1

y2

y3

y4

y5


=



β̇

ṙ/r

β

1/r

ω


(B.1)

Whereas for the Cartesian Position, Polar Velocity (CPPV) system is defined as:

X =



x1

x2

x3

x4

x5


=



rx

ry

v

h

ω


(B.2)
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The conversion function gMPC→CPPV maps the state from MPC to CPPV coordinates

is as follows:

x1 = rx = rcos(β) =
1

y4
cos(y3)

x2 = ry = rsin(β) =
1

y4
sin(y3)

x3 = v = ṙ =

√√√√√√√
(
y2
y4

)2

+

(
y1
y4

)2

+ ẋo
2 + ẏo

2

+ 2
y1
y4

(cos(y3)ẏo − sin(y3)ẋo) + 2
y2
y4

(cos(y3)ẋo + sin(y3)ẏo)

x4 = h = tan−1

(
y2
y4
sin(y3) + y1

y4
cos(y3) + ẏo

y2
y4
cos(y3)− y1

y4
sin(y3) + ẋo

)

x5 = ω = y5 (B.3)

Whereas the conversion function gCPPV→MPC from CPPV to MPC systems is as

follows:

y1 = β̇ =
x1(x3sin(x4)− ẏo)− x2(x3cos(x4)− ẋo)

x21 + x22

y2 =
ṙ

r
=
x1(x3cos(x4)− ẋo) + x2(x3sin(x4)− ẏo)

x21 + x22

y3 = β = tan−1
(
x2
x1

)
y4 =

1

r
=

1√
x21 + x22

y5 = ω = x5 (B.4)
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APPENDIX C

Jacobian of CPPV System Model

The Jacobians for the prediction and measurement models for the prediction step are

as follows:

Fk =



1 0 2
w
sin(ωT

2
)cos(h+ ωT

2
−2v

ω
sin(ωT

2
sin(h+ ωT

2
) c1

0 1 2
ω
sin(h+ ωT

2
) 2v

ω
sin(ωT

2
cos(h+ ωT

2
) c2

0 0 1 0 0

0 0 0 1 T

0 0 0 0 1


(C.1)

c1 = −2v

ω2
sin(

ωT

2
)cos(h+

ωT

2
) +

vT

ω
cos(h+ ωT )

c2 = −2v

ω2
sin(

ωT

2
)sin(h+

ωT

2
) +

vT

ω
sin(h+ ωT )

Hk =

[
− ry
r2x+r

2
y

rx
r2x+r

2
y

0 0 0

]
(C.2)
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APPENDIX D

Cramer-Rao Lower Bound

We approach solving the Cramer-Rao Lower bound as found in [30]. The Fisher

information matrix can be initialized as:

J0 = [P0]
−1. (D.1)

The information matrix can be recursively calculated (assuming an absence of process

noise) using the following:

Jk+1 = [FkJ
−1
k F T

k ]
−1

+ [HT
k+1Rk+1Hk+1]

−1
. (D.2)

A comparison is made utilizing the error covariance matrix Ck, which should be

bounded by Jk as:

Ck = E{(x̂k − xk)(x̂k − xk)T} ≥ J−1k (D.3)
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APPENDIX E

Derivation for Converting the Variance of Range to Inverse Range

The variance for the inverse range can be related to the variance of range in a prob-

abilistic sense. For an arbitrary random variable X, the variance can be found from

the following relation:

σ2
x = V ar(X) = E

[
(X − µ)2

]
(E.1)

In terms of the inverse range, this is:

σ2
1
r

= V ar

(
1

r

)
= E

[(
1

r
− 1

r̄

)2
]

This can be formed into:

V ar

(
1

r

)
= E

[(
(r̄ − r)
rr̄

)2
]

=
1

r̄2
E

[(
r̄ − r
r

)2
]

=
1

r̄2
E
( r̄
r
− 1
)2

=
1

r̄2

(
E

(
r̄2

r2

)
+ E

(
−2

r̄

r

)
+ 1

)
(E.2)

The variance can be approximated based on a Taylor series expansion, where δ = r−r̄

and E(δ)2 is to be found. The mean of delta is expected to be zero, E(δ) = 0. This is

for the case where there is little difference between the estimated range and the true

range. The first term is found as:

E
( r̄
r

)2
= E

(
r̄

r̄ + r − r̄

)2

= E

(
r̄

r̄ + δ

)2

= E

(
r̄

r
− r̄

(r̄ + δ)2

∣∣∣
δ=0

δ + . . .

)2

= E

(
1− 1

r̄
δ + . . .

)2

= E(1)−
��

����
2E

(
1

r̄
δ

)
+ E

(
1

r̄2
δ2
)

+ h.o.t.

= 1 +
1

r̄2
E(δ2) (E.3)
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The second term is derived in the same way, yielding a value of -2. Combining the

terms into (E.2) yields:

V ar

(
1

r

)
=

1

r̄2

(
1 +

1

r̄2
E(δ2)− 2 + 1

)
=

1

r̄4
E(δ2) =

1

r̄4
E(r − r̄)2

1

r̄2
σr = σ 1

r
(E.4)

Then, σβ is the measurement noise standard deviation. The standard deviation for

the other elements can be found similarly as [15]:

σβ̇ =
σv
r̄
, σ ṙ

r
=
σv
r̄
, σ 1

r
=
σv
r̄2
,
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APPENDIX F

Matlab Code

A copy of the code can be provided upon request by contacting the author at his

e-mail:jordan.daugherty@okstate.edu
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