COMPARISON OF PERFECT HASHING METHODS

By
QIZHI TAO
Master of Science

Harbin Institute of Technology
Harbin, P R China

1991

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the degree of
MASTER OF SCIENCE
July, 1999

Oklahoma State Univ. Library

COMPARISON OF PERFECT HASHING METHODS

Thesis Approved:

Q, C‘/{mezv
0 Thesis Adviser

’% Wl

A
Q[(?ma B I tf
ean of the Graduate College

1

PREFACE

This study was conducted to compare two minimal perfect hashing methods,
Chang’s method and Jaeschke’s method. Since hashing is a widely used technique for
store data in symbol table and the data are strings of characters, this study focuses on the
performance of these methods with the letter-oriented set and gives their run time
performance curves. Through the analysis of run time and space complexity, an optimal
method is given to make each algorithm performance well.

I sincerely thank my M. S. Committee—Drs. J. P. Chandler, J. Lafrance, and H.

K. Dai---for guidance and support in the completion of this research.

il

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my advisor, Dr. J. P. Chandler, for
his intelligent supervision, constructive guidance, inspiration and friendship. My sincere
appreciation extends to my other committee members Dr. J. Lafrance and Dr. H. K. Dai,
whose guidance, assistance, encouragement, and friendship are also invaluable.

I also like to give my special appreciation to my parents Prof. Chongde Tao and
Ms. Aihua Zhou for their support of my studies, strong encouragement at times of
difficulty, love and understanding throughout the whole process.

Finally, I would like to thank the Department of Computer Science for support

during these two years of study.

TABLE OF CONTENTS

Chapter Page
[. INTRODUTION ...ttt ettt eie et ettt e et e e et e e eeen e eaaaenens 1
IR PR WEONIEOW, 5. s mcommsommmmenrwmim i s s s s s s s R MMt 2
Hashing and its APPlICAtIONc.oouiiriitie e eae e ans 2
Thé Hashing Table and Hashing FURCHON: ... vovmmmmensvmsmdsmsidnaivsssssis 4
Collision Resolution SrateZIesvveuiiieiiriiiiiiiie i ie e eaiaaeanaes 7
Table OVEITIOW ivisisiiscmiersssm i st n s v e s is e Co s iasas 11
PErTOrt TIBBIINNE . s covs brbivncase o im0 S A G 528 6/ R ARG S R TR 13
Other Hashing Methodsooiuviiniiioiii e 15
III. CHANG’S METHOD: A MINIMAL PERFECT HASHING SCHEME 16
THEOTEME o svai s e S S s T e e s e R e ey R 16
Flowchart for Calenlating € ...ccviciimamusmmns s vmesmiivmaseiammmsssmis 17
Flowchart for Chang’s Method ..o 19
The C Programming Code for This Methodcocciciiiiiiniiiiiiiniiiicinee. 19
The Test Sets and Test Results of Chang’s Method....................ooiiiiiiiininn, 20

IV JAESCHKE’S METHOD: ANOTHER PEFECT HASHING SCHEME26

THEOMBINE oxoiimisiaiosue s snains saavanann nah s sioasdnms vad so AN LR R AT e i 26
The Algorithma for Calculating €cuiviinmainamammisiesais sasmesiwan v vass 26
Flowchart for Calculating C ..o 28
Flowchart for Caledlating D and B ..ovicssnisimnminssssnsinsmesirsiss i 29
The € Programming Code for This: Method. ... comuvioissmmmmmsssmimmsaims v 30
The Test Sets and Test Results of Jaeschke’s Methodoooiiviiiiiinnnn. 30
V..COMPARISON OF THETWO METHODIS . cnesmovmmnesmissssnmumpmenams sy as s s 32
RUN TimMe ANAIYSIS vttt ettt e et eeraieeenenas 32
Space CompleXity ANMBIYSIS . vusuieisdimsiismisvaivi ds i s i et s T s e PR 39
Maching DEPENACHCE ..ooumiswnmssensimsumumonio s smm s shsmswnkassonssmsmsa st s e i 40
Operation Time COMPATISONcuuuuiiiiiiiiie ittt e e e e eaeaes 40
VI CONCLUSIONS AND IMPROVEMENTS... ..o oo senmonwemsmsamsssmmyss 42
Advantages of Chiang’s AlFonthin .. covincmnnmummemsarssmss s s 42

Chapter Page
Limitatons of Chang’s Methodccvvvmnummngmines vissnnes i sossassns o 43
Advantagesof Jacschke's AlGOUthIM. ..o sssvamcrmvmsnsnasssvasmnnesnaes vansmnassmne 44
Disadvantages of Jaeschke’s Algorithm...............c.coocoiiiiiiiiiiiiininieneen. 11
SURHERRNOTE 1055 50w acimiinimm o s armsrs 2 o e 425 5 05 A B N S G 45
IMPrOVEMENTS ...uviuiiitiiiii ittt ee et crr e e e r e ananaaas 45

BIBTICUGREAPEEY. . . o wcossvaiosie i s s s s s 50 68 8 VA0 KB RSB G S SRS 47

APPENDIXTES . iomvssumsnmsimssssmies oo i sis e sisss st 6o 3 ss Soys tisiss s eiviinavess 52

APPENDIX A--C PROGRAMMING CODE FOR CHANG’S
ALGORTITHMcoicommmsusssnssasmiivissauasiss st 52
APPENDIX B--C PROGRAMMING CODE FOR JAESCHE’S
ALGORITHNE upussimaiissssisaissssnssissiims 65

vi

LIST OF TABLES

Table Page
I. The Calculating Values of p(x), d(x), and C(x)
Of the MOntR B .c.cous v smsmonsinuasmann sy 5w v issasoas ssves 20
1L Hashing Resulis on the Month et ..o sisiaismmisssiamon 21
[II. The Calculating Values of p(x), d(x), and C(x) of
the Key Words Set of the C Programming Language...................ccoevvennnn. 21
[V. Hashing Results on the Key Words Set of the
C Programming LanBuape . .. v vuvevisassmumsimsinss s sons s ssaasas s i s 23
V. The Calculating Values of p(x), d(x), and C(x)
forithe Prequently Used Words 86l .. .owrsssessmrnmssmspmmon s srnesensmsanamss s 24
V1. Hashing Results on the Frequently Used Words Setoiiene, 25

vii

LIST OF FIGURES

Figure Page
|. A Hash Table Implement of the DICTIONARY ADTccooiiiiiiiiieiiiiniinennnn 5
2. Collision Resolution by Separate Chainingcccooiiiiiiiiiiiiiiiiniciiinnnee. 8
3. Flowchart for Calcolding C VAN . ovuvivisanausmummms b s i i s ciassiss 18
4. Flowchart for Calculating Hashing Value by Chang’s Method 19
5. Flowchart for Calculating Cooviiiiiiiiiiie et ere e 29
6..Flowehart for Calenlating Iy and B .c.cosmssasuminmmmmsmmnasenmsisiisssasmsuss s 30
it Run Time of Chang's ALEONIN .o samaisisimvamrairimas s e esimouessi 33
3. Run Time of Jacschke's AlgOrithm. .. .5evit o conssstimammstimissaioasiis samir e aags 34
9. Comparison the Run Time between the Two Algorithms.............ovivviininnnnn. a5

10. Impact of the Length of the Words in Set

11

12.

on the Two AIZOMthMSoovveriiiiii e 37

. Impact of the Distribution of the Words in Set

orithe TWOAIZOTINIMS ..o iois onimmnns srsssanmissmssnsnvsims cos T as SR as 39

Operation Time Comparison on the Two Hash Tables
Established by the Two Algorithmsccoviviiiiiiiiiinniiinen. 41

viil

Chapter 1

INTRODUTION

Hashing is a well-known technique for storing data. With this technique, a key is
transformed into a pseudorandom number and this number provides us with a good guess
where the key and its associated information are located. Using hashing as a data
organization and data retrieving method may cause the key-collision problem.

To handle the key-collision problem, there are several perfect hashing methods
proposed by some researchers. Much work has been done to develop perfect hashing
functions.

Among these methods, there are about five classic algorithms: Sprugnoli’s
algorithm, Jaeschke’s algorithm, Chang’s algorithm, Cichelli’s algorithm, and Cook’s
algorithm [11]. Most of their methods have focused on solving perfect hashing problems
on Pascal reserved words and abbreviated symbols for the twelve months.

The goal of this project is to compare some of the methods in details. First I use
the C programming language to implement the algorithm calculation, and then I give the
minimal perfect hashing function for the reserved words of C programming language.
Based on these results, this project will analyze the time and space complexity, discuss
the advantages and disadvantages of each method, and give some advice and suggestions

about improving the efficiency of these perfect hashing methods.

Chapter 2

LITERATURE REVIEW

2.1 Hashing and its Application

Often a computer program needs to accept all or part of its input as a sequence of
character strings and decide, for each string, whether that string is a member of some
finite set of known strings. The set of known strings may be nonempty when the
program starts and may change as the program receives input. The strings, both known
and otherwise, are generally referred to as keys. Testing a key for membership in the set
of known keys is called a search, adding a key to the set of known keys is called an
insertion, and removing a key from the set is a deletion.

Many different schemes have been developed to handle this computational task.
These include linear search of an unordered table, binary search of an ordered table, B-
trees, tries, various forms of string pattern matching, and hashing. By using a binary
search tree, we will have the worst case complexity for these operations of O(n). If we
use some refinements of the binary search tree, that would be O(log n). But can it be
better? Yes, hashing is the solution for this.

Hashing refers to schemes that use some simple arithmetic function of a key as
the location in the table at which the key should be stored. With this technique,
implementing insertion, deletion and finding operations on ADT (abstract data type) can

be accomplished in constant average time. Unlike the search tree method that relies on

identifier comparisons to perform a search, hashing relies on a formula called the hash
Junction. The table in which identifiers are stored is the hash table.

Hashing applications are abundant. Compilers use hash tables to keep track of
declared varniables in source code. Since hashing can be used to implement searching,
inserting and deleting in constant average time, hashing is the ideal application for
implementation of the symbol table. The other reason is the identifiers are typically short,
so the hash function can be computed quickly [43].

Hashing is useful for any graph theory problem where the nodes have real names
instead of numbers. Here, as the input is read, vertices are assigned integers from one
onward by order of appearance. Again, the input is likely to have large groups of
alphabetized entries. If a search tree is used, there could be a dramatic decrease in
efficiency.

A third common use of hashing is in programs that play games. As the program
searches through different lines of play, it keeps track of positions it has seen by
computing a hash function based on the position (and storing its move for that position).
If the same position reoccurs, usually by a simple transposition of moves, the program
can avoid expensive re-computation. This general feature of all game-playing programs
is known as the transposition table.

Another use of hashing is in on-line spelling checkers. If misspelling detection (as
opposed to correction) is important, an entire dictionary can be prehashed and words can

be checked in constant average time [6].

Currently, hashing is widely used in natural language understanding systems,
programming system such as compilers and interpreters and other application systems

where data are stored and retrieved frequently.

2.2 The Hashing Table and Hashing Function

2.2.1 The Hashing Table

The hashing table is a sequentially mapped data structure that makes use of the
random-access capability afforded by sequential mapping. We use an arithmetic function,
£, to determine the address, or location of an identifier in the table. The hash table At is
stored in sequential memory locations that are partitioned into b buckets, h#[0],...... ht [b-
1]. Each bucket has s slots. Usually s =1 which means that each bucket holds exactly one
record. The important part of hashing table is the size of the table that is referred to as
TableSize (denoted as m in Fig. 1) since each key is mapped into some number in the

range 0 to TableSize-1 and placed in an appropriate cell.

2.2.2 The Hashing Function

The hashing function is the function used to transform the identifier into an
address in the hash table. Using hashing function f, we can compute a hashed value for
each identifier A(k;). That is k; hashes to slot 7Th(k;)] in hash table T.

The advantages of this approach are that, if we pick the hash function properly,
TableSize can be chosen so as to be proportional to the number of elements actually

stored in table T [44].

h h(ky) 0
1
k2 P hash .
kl \ !
k4 /] : function
k3 > h(ks)
h(ka)

Figure 1 Hash Table Implement of the DICTIONARY ADT
Criteria for a good hash function:
e The hash address is easily calculated.
e The loading factor (LF) of the hash table is high for a given set of keys. (The LF is the
fraction of used or occupied hash table locations in the total hash table locations).
e The hash addresses of a given set of keys are distributed uniformly in the hash table.
There are a wide variety of hash functions. Here are a number of specific techniques used
to create hash functions [22].
Division Method Hash functions that make use of the division method generate hash
values by computing the remainder of k divided by m:
h(k)=k mod m (1)

With this hash function, k(k) will always compute a value that is an integer in the

The choice of m is critical to the performance of the division method. For instance
choosing m as a power of 2 is usually ill-advised, since i(k) is simply the p least
significant bits of k whenever m=2” . In this case the distribution of keys in the hash table

1s based on only a portion of the information contained in the keys.

5

In general, the best choices for m when using the division method turn out to be
prime numbers that do not divide ¥ + a, where [and a are small natural numbers, and r is
the radix of the character set we are using (typically r =128 or 256)[43].

Multiplication Method Although the division method has the advantages of
being simple and easy to compute, its sensitivity to the choice of m can be overly
restrictive. The principal advantage of the multiplication method is that the choice of m is
not critical----in fact, m is often chosen to be a power of 2 in fixed-point arithmetic
implementations.

Hash functions that make use of the multiplication method generate hash values

in two steps. First the fractional part of the product of k and a real constant A, where 0< A
< 1, is computed. This result is then multiplied by m before applying the floor function to
obtain the hash value:

hk) = Lm(kA mod 1), @)
Note that kA mod | means kA - | kA | yields the fractional part of the real number KA.
Since the fractional part must be greater than or equal to 0, and less than 1, the hash values
must be integers in the rangé 0,1,..., m-1. One choice of A that often does a good job of
distributing keys throughout the hash table is the inverse of the golden ration:

A= @'=0.61803399 (3)

The multiplication method exhibits a number of nice mathematical features.
Because the hash values depend on all bits of the key, permutations of a key are no more
likely to collide than any other pair of keys [43].

Universal Hashing If a malicious adversary chooses the keys to be hashed, then

he can choose n keys that all hash to the same slot, yielding an average retrieval time of

©(n). Any fixed hash function is vulnerable to this sort of worst-case behavior; the only
effective way to improve the situation is to choose the hash function randomly in a way
that is independent of the keys that actually going to be stored. This approach, called
universal hashing, yields good performance on the average [17, 25, 26].

Let H be a finite collection of hash functions that map a given universe U of keys
into the range {0, 1,... ,m-1}. Such a collection is said to be functions & € H for which
h(x) = h(y) is precisely |H| /m. In other words, with a hash function randomly chosen from
H, the chance of a collision between x and y when x # y is exactly 1/m, which is exactly
the chance of a collision if A(x) and h(y) are randomly chosen from the set {0, L,......, m-

1}. Universal hashing has not been used much, if any, in practice.

2.3 Collision Resolution Strategies

A problem we must deal with when we use hashing is deciding what to do
when two keys hash into the same value (this is known as a collision). Although we
should strive to construct hash functions that minimize collisions, in most applications it is
reasonable to assume that collisions will occur. Therefore the manner in which we resolve

collisions will directly affect the efficiency of the operations on the ADT.

2.3.1 Separate Chaining

One of the simplest collision resolution strategies, called separate chaining,
involves placing all elements that hash to the same slot into a linked list. In this case the
slots in the hash table will no longer store data elements, but rather pointers to linked

lists, as shown in Figure 2. This strategy is easily extended to allow for any dynamic data

structure. Note that with separate chaining, the number of items that can be stored is only
limited by the amount of available memory. The disadvantage is that each linked list can
only be searched sequentially, and this is very slow if a list is at all long. Also, the links

occupy valuable space [44].

————i —_1T—»
R SN ——p =
h /
Hash
function P —
—1—P ——>

Figure2 The Collision Resolution by Separate Chaining

2.3.2 Open Addressing

In open addressing all data elements are stored in the hash table itself. In this case,
collisions are resolved by computing a sequence of hash slots. This sequence is
successively examined, or probed, until an empty hash table slot is found in the case of
insertion, or the desired key is found in the case of searching or deletion. The memory
saved by not storing pointers can be used to construct a larger hash table if necessary.
Thus, using the same amount of memory we can construct a larger hash table, which

potentially leads to fewer collisions and therefore faster operation implementations.

In open addressing, the ordinary hash functions which perform a mapping from
the universe of keys U to slots in the hash table 710..m —1] will be modified so that they
use both a key and a probe number when computing a hash value. This additional
information is used to construct the probe sequence. More specifically, in open addressing,
hashing functions perform the mapping:
H: Ux|{0,1,..,%}—{0,1,...,m-1} and produces the probe sequence
< h(k,0), h(k, 1), h(k,2),......>
Because the hash table contains m slots, there can be at most /m unique values in a probe
sequence. Note, however, that for a given probe sequence we are allowing the possibility
of h(k, i) = h(k, j) for i#j. Therefore it is possible for a probe sequence to contain more
than m values.
There are three main probing strategies for open addressing.
L) Linear Probing. This is one of the simplest probing strategies to implement;
however, its performance tends to decrease rapidly with an increasing load factor (LF).
If the first location probed is j, and c) is a positive constant, the probe sequence
generated by linear probing is:
<J, G+ cxl) mod m. (j+ e\ x2) mod m, >.

Given any ordinary hash function h’: U— {0, 1,..., m —1}, a hash function that

uses linear probing is easily constructed using:
h(k, i) =(h’(k) + ¢ii) mod m (4),

where i =0,1,...m-1 is the probe number. Thus the argument supplied to the module

operator is a linear function of the probe number.

The use of linear probing leads to a problem known as clustering----elements tend
to clump (or cluster) together in the hash table in such a way that they can only be
accessed via a long probe sequence.

There are two factors in linear probing that lead to clustering. First, every probe
sequence is related to every other probe sequence by a simple cyclic shift. Specifically, if
we interpret a given probe sequence as a g-permutation (¢<m) of g shift of this
permutation, this leads to a specific form of clustering called primary clustering.

Because any two probe sequences are related by a cyclic shift, they will overlap after a
sufficient number of probes. A less severe form of clustering, called secondary clustering,
results from the fact that if two keys have the same initial hash value h(k;, 0) = h(ks, 0),
then they will generate the same probe sequence---h(ky, i) = h(ka, i), for i= 1,2...... ,
m-1. Primary clustering results if the resolution method follows an established chain of
collisions no matter where it enters the chain; secondary clustering results if an
established chain of collisions is followed only if it is entered at the beginning of the
chain.

2) Quadratic Probing. This is a simple extension of linear probing in which one
of the arguments supplied to the mod operation is a quadratic function of the probe
member. More specifically, given any ordinary hash function A’, a hash function that uses
quadratic probing can be constructed using:

h(k, i) = (h'(k) + cii+ coi* ymod m (5),
where ¢, and c; are positive constants. Once again, the choices for ¢y, ¢;, and m are
critical to the performance for this method. Since the left-hand argument of the mod

operation in equation (5) is a nonlinear function of the probe number, probe sequences

10

cannot be generated from other probe sequences via simple cyclic shifts. This eliminates
the primary clustering problem and tends to make quadratic probing work better than
linear probing. However, as with linear probing, the initial probe k(k, 0) determines the
entire probe sequence, and the number of unique probe sequences is m. Thus, secondary
clustering is still a problem.

3) Double Hashing. Given two ordinary hash functions &’y and h';, double
hashing computes a probe sequence using the hash function

h(k,) = (h"\(k) + i h’2(k)) mod m (6)

Note that the initial probe a(k, 0) = 2| (k) mod m, and that successive probes are
offset from previous probes by the amount 2, (k) mod m. Thus the probe sequence
depends on k through both &’y and h’; This approach avoids both primary and secondary
clustering by making the second and subsequent probes in a sequence independent of the
initial probe. The probe sequences produced by this method have many of the
characteristics associated with randomly chosen sequences, which makes the behavior of

double hashing a good approximation to uniform hashing [45].

2.3 Table Overflow

In practice, if there is an insertion operation on a full table, that will cause table
overflow. If separate chaining is being used, this is typically not a problem since the total
size of the chains is only limited by the amount of available memory in the free store.
Thus the discussion to table overflow in open address hashing is needed.

Two techniques that circumvent the problem of table overflow by allocating

additional memory will be considered. In both cases, it is best not to wait until the table

e i e Je

becomes completely full before allocating more memory; instead, memory will be
allocated whenever the load factor a exceeds a certain threshold which is denoted as a,,.

1) Table Expansion: The simplest approach for hashing table overflow involves
allocating a larger table whenever an insertion causes the load factor to exceed a.,, and
then moving the contents of the old table to the new one. The memory of the old table
can then be reclaimed. Using this technique with hash tables is complicated by the fact
that the output of hash functions is dependent on the table size. This means that after the
table is expanded (or contracted), every data element needs to be “rehashed” into the new
table. The additional overhead due to rehashing tends to make this method too slow.

2) Extendible Hashing: An alternative approach for the problem above is using
extendible hashing. Extendible hashing limits the overhead due to rehashing by splitting
the hashing table into blocks. The hashing proceeds in two steps: The low-order bits of a
key are first checked to determine which block a data element will be stored in, and then
the data element is actually hashed into a particular slot in that block using the methods
discussed previously. The addresses of these blocks are stored in a directory table. In
addition, a value b is stored with the table---this gives the number of low-order bits to use
during the first step of the hashing process [44].

Table overflow can now be handled as follows. Whenever the load factor a,; of
any one block d is exceeded, an additional block d' the same size as d is created, and the
elements originally in d are rehashed into both d and 4’ using b + 1 low-order bits in the
first step of the hashing process. Of course, the size of the directory table must be doubled

at this point, since the value of b is increased by one.

12

If the block sizes are kept relatively small, the extendible hashing approach will
greatly reduce the overhead due to rehashing. Of course, this comes at the expense of the
additional time that is spent on comparing low-order bits in the directory table during the

first step of the hashing process [41,42].

2.4 Perfect Hashing

In order to overcome the collision problem there was developed a kind of hashing

method in the 1970’s, which is called perfect hashing [27].

2.4.1 Notation

Definition 2.1 A refinement of hashing which allows retrieval of an item (=key)
in a static table with a single probe is called perfect hashing.

Definition 2.2 A hashing function is a perfect hashing function for a set of keys if
and only if the function is one-to-one on that set of keys, i.e., this is a collision-free
hashing function.

Definition 2.3 A hashing function is a minimal perfect hashing function for a set
of keys if and only if the function maps the keys one-to-one onto the buckets 0, 1, ..., k-
1,whe & is the number of keys in the set. That is, it is perfect and it completely fills the
table [44].

2.5.2 Development of perfect hashing

Since using hashing as a data organization and data retrieving method may cause

the key-collision problem, some collision resolution strategies must be applied to handle

them. One strategy of solving key-collision problem is to construct a perfect hashing

13

function. With this function, a one-to-one mapping from the key set into the address
space is established. Therefore, a retrieval operation can be executed in a single step.

Theoretically, it is not difficult to construct a perfect hashing function for an

arbitrary given set of keys if the memory space used by the hashing function is not
restricted. For example, assume that the values of the keys are all positive and the
maximum value is L, then A(k)= k is a perfect hashing function. However, it may lead to
a very small loading factor. In order to avoid sparse hash tables, there are several perfect
hashing methods that have been developed:

1) Sprugnoli’s method: Sprugnoli proposed two simple functions (1) A(k)=(k + 5)/
N where s and N are integers, and (2) h(k)=L((d + kq) mod M)/ N, where d, g, M, N are
integers, as the candidates for constructing perfect hashing functions. There are two
algorithms for finding s and N for (1) and d, q, M and N for (2) [8].

2) Jaeschke’s method: Jaeschke proposed a method for establishing minimal
perfect hashing functions. If K={k,, k..., k,} is a set of positive integers, Jaeschke’s
method attempts to find integer constants C, D and E such that for each k; in K,
h(k)= C/(Dk+ E)J mod 7 is a minimal perfect hashing function. He gave two algorithm,
called Algorithm C and Algorithm DE, to find C and D, E respectively [5].

3) Chang’s method: Chang proposed a minimal perfect hashing scheme based on
the Chinese remainder theorem. His hashing function is of the form: A(k)= C mod p(k),
where k belongs to a set K={kj, k,......, k,} of positive integers and p(K) is a prime
number function on K [1,9,13,20, 32].

4) Cichelli’s method: Cichelli proposed a heuristic method to build tables and

associated hashing functions for a number of particular data sets. In his method, each

14

character is assigned a value. The form of hashing function is defined as h(word) =
length (word) + value (first letter) + value (last letter). That is, the table position can be
calculated as the sum of the word length plus the associated values of the first and last
letter of the word [2, 3, 4, 6, 16].

5) Cook’s method: Cook proposed several algorithms to improve Cichelli’s

backtracking algorithm for assigning suitable associated values for characters [10,14,15,
34].

Perfect hashing is frequently used for memory efficient storage and fast retrieval
of items from a static set, such as reserved words in programming languages, command
names in operating system, commonly used words in natural language, etc. Therefore, in
the following chapters, we will choose two methods from these five methods mentioned
above and analyze their performance for the letter-oriented input sets since most of the

input sets are string of characters.

2.5 Other Hashing Methods

There are other hashing methods: non-obvious hashing [30] and spiral hashing
[45]. Since they do not have much relation with perfect hashing, they are not mentioned

here.

15

Chapter 3

CHANG’S METHOD: A MINIMAL PERFECT HASHING SCHEME

3.1 Theorems

The following theorems are quoted from [9].
LEMMA 1. [Chinese Reminder Theorem].

Let ry, ry, ..., rpobe integers. There exists an integer C such that C=r,(mod m,),
C=r; (modm;),...,and C = r,(mod m,) if m; and m; are relatively prime for all i # ;.
Theorem 3.1

Given a finite set K = { k;, k2, ..., k, } of positive integers, there exists an integer
C such that A(k;) = C mod p(k;) is a minimal perfect hashing function if p(x) is a prime
number for every k;in K.
Corollary 1

Given a finite set K ={ ki, k>, ..., k, } of positive integers, there exists a hashing
function (k) = C mod p(k) such that the keys in K can be stored in ascending order by
applying h(x).

LEMMA 2.

16

Let m; and m; be relatively prime wherei#jand 1 <i,j<n. Let mi<my<...<m,.
Y. bMimod m;=jif M; =[] m and biM;= 1 (mod m).
=]

Theorem 3.2

Let m; and m; be relatively prime where i #jand 1 <i,j<n. Letmy<m;<...<m,.

C= Eb.—M.-i mod l_[,:n mi 1s the smallest positive integer such that C =i (mod m,), if M;
i=l

= l—.[;'ajmj and b;M; = 1 (mod m,).
Theorem 3.3
Let C= 37 6] I, Pk, where [, (kb =1 [mod p(k)). The hashing

function A(k) = C mod p(k) is a minimal perfect hashing function if p(k) is a prime
number function for K = { ky, k3, ..., ka}.
Theorem 3.4

LetMb=1 (modm), M',m)=1,and M' <m. Then b= By, with By =1, B) =-0O

and B j;1 =-B;Qy; + B, where M'=M mod m.

3.2 Flowchart for Calculating C

Input: ky, k3,..., k,

Output: C

Input &; ‘s

17

v

Calculate
m; = P(ks)

-

Calculate
M; =[lism,

l

Calculate b;

h 4
DEND= m
DSR= M;
j=1

Jj=Jj+l
| 0y =DEND/DSR
RMD=DEND- Q,
No
RMD = 1?
Yes

Compute & Output C

End

Figure 3 Flowchart for Calculating C value

18

3.3 Flowchart for Chang’s Method

| Begin '

h 4
Input words set

Y

Get the extracted pair (k;, k2) and according to
k; separate words into groups

.

Compute three integer d(x), p(x),C(x)

-

Get hashing values
H(kis, kiz)=d(kir) + (C(ki;) mod p(ki2))

l

Print the hashing results
according to hashing value

:

Print the time used
for this calculation

End

Figure 4 Flowchart for Calculating Hashing Value by Chang’s Method

3.4 The C Programming Code for This Method

19

This is attached in Appendix A.

3.5 Test Sets and Test Results of Chang’s Method

3.5.1 The Month Set

a) The input set is: January, February, March, Apnl. May, June, July, August, September,
October, November, December

b) The calculating values are:

x= P U E R y O c
p(x) = 13 3 2 17 = 11 7

X= A D F J M N o S
d(x) = 0 2 3 4 T 9 10 11
C(x) = 28 1 L 23 36 1 1 1

Table 1 The Calculating Values of p(x), d(x), and C(x) of the Month Set

¢) The test results are:

Group Extracted Pair Original Key Location
! (A,p) April 2
(A,u) August 1
2 (D.e) December 3
3 (F,r) February 4

20

4 J,u) January 6
(Je) June 5
J.y) July 7
5 M,r) March 8
M,y) May 9
6 (N,0) November 10
7 (O,c) October 11
8 (S,e) September 12

Table 2 Hashing Results on the Month Set

3.5.2 The Key Words Set of the C Programming Language

a) The input set is: Auto, Break, Case, Char, Const, Continue, Default, Do, Double, Else,
Enum, Extern, Float, For, Goto, If, Int, Long, Register, Return, Short, Signed, Sizeof,
Static, Struct, Switch, Typedef, Union, Unsigned, Void, Volatile, While

b) The calculating values are:

X | U R |EBE | S|T|f|lO|L|n2|x|G|Z]|a|illy

p(x) 29 7 37 19 | 23 11 2 5 17 | 43 | 13 | 53| 31 | 3 |47

X |A € | D] E | E|G|I|L|R] & |T|U|V

dix) [0]1 2 6) 12 14 15 17 18 20 26 (27] 29

29604 | 409 | 2841 7 1 155] 1 209 | 779159 | 1 |40 | 7

—

Cx) |1

Table 3 The Calculating Values of p(x), d(x), and C(x) on the Key Words Set of the C
Programming Language

21

¢) The test results are:

Group | Extracted Pair Original Key Location
1 (A, u) Auto 1
2 (B,r) Break 2
3 (C, e) Case 6

(C, 1 Char 3
(C,s) Const B
(€0 Continue 5
4 (D, D Default 8
(D, 0) Do 7
(D, v) Double 9
5 (E,) Else 10
(E, n) Enum 11
(E, x) Extern 12
6 (F, Float 14
(F,0) For 13
T (G, 0) Goto 15
8 (9] If 16
(I, n) Int 17
9 (L, 0) Long 18
10 (R, 2) Register 19
(R, 1) Return 20
11 (S, 0) Short 21

22

(S, g) Signed 24
S, 2) Sizeof 26
(S, a) Static 25
(S.n Struct 23
(S, 1) Switch 22
12 (T:¥) Typedef 27
13 (U, 1) Union 28
(U, s) Unsigned 29
14 (V,1) Void 30
(V,D Volatile 31
15 (W, h) While 32

Table 4 Hashing Results on the Key Words Set of the C Programming Language

3.5.3 The Frequently Used Words Set

a) The input set is: And, Are, As, At, Be, But, By, From, For, Had, He, Her, His, Have,
In, Is, It, Not, Of, On. Or, That, The, This, To, Which, Was, With, You

b) The calculating values are:

X | N r S T|E|]u|y|[|O|d|v|F]|h|a i

p(x) | 11 3 5 13| 7 |37)43 2 | 19|41 |23]29 | 17| 3l

23

d(x)

0 4 d

9

14 | 17

18

21

25

C(x)

1642 | 5034 | 5

61792 | 211 | 1

739

17

13023

Table 5 The calculating value of p(x), d(x), and C(x) for the Frequently Used Words Set

a) The

test results are:

Group | Extracted Pair Original Key Location

1 (A, n) And 3
(A, 1) Are l
(A, s) As 2
(A1) At 4

2 (B, e) Be 5
(B, u) But 6
(B, y) By 7

3 (F, 1) From 9
(F, 0) For 8

4 (H,d) Had 13
(H, e) He 12
(H, r) Her 10
(H, s) His L
(H, v) Have 14

5 (I, n) In 16
(1, s) Is 15

24

Ly It 17

6 (N, o) Not 18
7 (O,) Of 21
(O, n) On 20

(O, 1) Or 19

8 (T,v) That 25
(T,e) The 24

(T, s) This 23

(T, 0) To 22

9 (W, h) Which 27
(W, a) Was 26

(W, 1) With 28

10 (Y, 0) You 29

Table 6 Hashing Results on the Frequently Used Words Set

25

Chapter 4
JAESCHKE’S METHOD: ANOTHER PEFECT HASHING SCHEME

4.1 Theorems

The foliowing theorems are quoted from [5].
Theorem 4.1 [Reciprocal Hashing]

Given a finite set W= {w, wy, ..., wy } of positive integers, there exist three
integer constants C, D, E such that h defined by

h(w)=L C/(Dw + E)] mod n
is a minimal perfect hashing fuction.
LMMEA 4.1 For any set W = {w,, wy, ..., w, }of positive integers, there exists two integer
constants D, E such that

Dw,+E Dw>+E, ... Dw, + E

are pairwise relatively prime.
4.2 The Algorithm for Calculating C

Let W= {w), wy, ..., w,} consist of positive integers with w)< w< ...<w,. Then
the algorithm to find an integer C such that the following condition is satisfied

L ¢/ wi J#L ¢/ w;] mod n, foralli, j,with 1< i< j<n (4.3)

The algorithm starts with an arbitrary positive integer C = Co. Then the residues
of L €/ wi Jmod n are calculated. If they are all different from each other the algorithm

terminates successfully. Otherwise the actual C is increased conveniently by a certain

26

amount o(C, W), and the new C is examined in the same way. The algorithm terminates

unsuccessfully if C exceeds a prescribed limit L.
4.2.1 Starting Constant --- Cy

Usually we start from Co = 1. If the identifier sets W with a small difference
wp — wy, in order to avoid the unnecessary calculating, we choose:
Co=[(n-2) wy w, [(wy - wy)] 4.1)

as a reasonable start.
4.2.2 Increment --- o(C, W)

In order to get c (C, W), we examine only such integers C that are multiples of at
least one element w;of W. This is clear because a C value that is not a multiple of any
element of W gives a remainder:

rri=Cmodw, (O<ri<w;)
and by taking the minimum of these r; , referred as ry, the quotients | ¢/ w; lequals the
quoticntsL C'/w; | where C'=C-ry,C'isa multiple of wp. That means o(C, W) should
be one of the numbers:
Wi-F Wa-T2, ..., Wp- Iy,
where r; =C -| €/ w; | w;. We choose

Oy = min { wi- ri, wj- i},

KC,Wy={G|1<i <j<nAl C/w; =l ¢/ wjlmod n} and

a(C, W)= max o

(L JEK(C.W)

then a'(C, W) should be an appropriate increment of C.
217

4.2.3 Limitation of Calculate C ---L

A natural limit for the C value to be inspected is:

L =n-lcm(wy, wa, ..., wp), 4.2)
where scm means “smallest common multiple”. Because if a C > L of the desired kind
exists, the C — L 1s also a C value which satisfies Eq. (4.1). That meansifno C < L
satisfies Eq. (4.2), then no C exists at all such that Eq. (4.2) holds. The number L
determined by Eq. (4.2) is generally very large and therefore not adequate for the
termination of Algorithm C. Therefore we have a upper bound value of L to avoid the C

value to be examined getting too large.

4.3 Flowchart for Calculating C

Input words set

.

Input C =Co

Compute residues
rj=L Cl w,—J mod n

i

28

all 7; are

Yes (successful end)

different?

Yes (unsuccessful end)

jo=max { j |3 i(LC/wil=L Cw;] mod n))
ip = max { i|(LC/wi) =] CAwjo) mod n))

o(C, W) = min {W,'o-c mod wy, w,-g»C mod \4«}0}

C=C+a(C, W)

Figure 5 Flowchart for Calculating C

4.4 Flowchart for Calculating D and £

Input words set

.

Get prime set
L={plpe pap=n/2}

'

Determine the

P,=({p|lpe LaB@) <1}
where B(p) = Orgisn{ilwf = vmod p}|
v<p

29

End

l

PI = In = Pz
D=1ifP,=®; D= H p otherwise
pePl

'

Determine the set
M(p)=(-Dvmod p |0 <v<pal{i|w: =vmod p}|< 1}

l

Examine
(E mod p) € M(p) for pe P,
(£ mod p) # 0 for pe P,

End

Figure 6 Flowchart for Calculating D and E

4.5 The C Programming Code for This Method

This is attached in Appendix A.

4.6 The Test Sets and Test Results of Jaeschke's Method

4.6.1 Twelve Months Set

a) The input set is: January, February, March, April, May, June, July, August,
September, October, November, December

b) The calculating values are: CO= 4039; C=29952

30

4.6.2 The Key Words Set of the C Programming Language

a) The input set is: Auto, Break, Case, Char, Const, Continue, Default, Do,
Double, Else, Enum, Extern, Float, For, Goto, If, Int, Long, Register, Return, Short,
Signed, Sizeof, Static, Struct, Switch, Typedef, Union, Unsigned, Void, Volatile, While

b) The calculating values are: C = 49329781, D =10140585, E = 4137

4.6.3 The Frequently Used Words Set

a) The input set is: And, Are, As, At, Be, But, By, From, For, Had, He, Her, His,
Have, In, Is, It, Not, Of, On, Or, That, The, This, To, Which, Was, With, You

b) The calculating values are: C = 78645213, D = 8541735, E = 5423

31

Chapter 5

COMPARISON OF TWO METHODS

5.1 Run Time Analysis

There are many aspects that affect the run time of the algorithm. Here are three of
them: number of words in the set, length of words in the set, and distribution of words.

All these aspects will be discussed separately.
5.1.1 Number of Words in the Set and Their Impact
1) Run Time for Chang’'s Algorithm

a) Theoretical Analysis. Since the run time for getting the abstracted pair is O(n),
the run time for calculating the p(x), d(x) is O(n). And for C(x), it is O(mn), where m is

the number of iteration for calculating 5. But because m < n, so O(mn) < o).

b) Empirical result. The actual run time of Chang's algorithm is shown in Figure 7.
From the test result we have the fit curve function is y= 12 + 0.37x'®. The actual run time

of this method is O(n"®).
2) Run Time of Jaeschke's Algorithm

a) Theoretical Analysis. Run time for calculating C is O(kn), where k is the upper
bound of the value of the Input set as shown in Figure 8. The run time should add the run

time of calculating D, which is O(n), and run time for calculating E, which is O(c"),

32

where c is the maximum difference w; - w; . Thus the run time of this algorithm is O(a"),

where a is a certain constant.

! Run time of key words set in the C programming
| language
o :
= 100 - fit curve
22 80
o c
- 3 3
E 3 60 T
e =
| 5 RS = e e
o - ¢ N~ O ® © o o W @
o] (8] (2]

No of words In set

Figure 7 Run time of Chang’s Algorithm

b) Empirical Result. Figure 8(a) shows the semi-log plot of a month set for which the C
value is successful calculated. In the curve we get the y= 0.39x-3. Figure 8(b) the semi-
log plot of the key words set of the C programming language for which C, D and E are
calculated. We have y = 0.34x-0.5. Thus these prove the run time of this algorithm is

O(a"), where in the month set, a is ¢”*° and in the key words set of the C programming

. 3
language, a is e,

3) Comparison between the Two Algorithms

33

Since Chang’s algorithm always costs O(n°) < O(n?), where ¢ is constant and less than 2,
theoretically, it is better than Jaeschke’s algorithm. But in the actual calculation this is
not always the case. As shown in Figurel0, we can see that for the small set (n< 15),
Jaeschke’s algorithm is always faster than Chang’s algorithm. For a large set (n>15),

Chang’s algorithm is a better choice.

Run time of the months set

4
3 [
2

¢ Series1
—Linear (Series1) |

3 4 5 6 7 8 9 1011 12

by 500) in seconds)

Log (Run time (multiplied

No. of words in set

Run time of key words set In the C programming
language I

]
" ¢ Series1 ' |
i = Linear (Series1) |

-
[\+]
]

—
o

SN &~ O @

Log (run time (multiplied
by 500) in seconds)

i
rn
#
L
'

No. of words in set

Figure 8. Run Time of Jaeschke’s Algorithm (a) the Month Set
(b) Key words set of the C programming language

34

' Small set comparison

£ 180

% 160

2 140

Te 120

EE 100

S i 80

E® &0

g 40|

- 20 4

=

@ 0 :

1 23 4 56 7 8 9 1011121314
No. of words in set
Large set comparison }

|

£ 8000
‘ 8 7000} —

['r]

2 6000 ———— |
' E‘; 5000 |- —

(=8

= 4000
‘ S8 Jaeschke's

£ = 3000 -

@

|5 2000

< 1000

© 0

ey =2 - e

No. of words In set

Figure 9. Comparison the Run Time between the Two Algorithms
(a) Small set (b) Large set

5.1.2 The Impact of the Length of Words in the Set on Run Time
1) Chang’s Algorithm

The most important factor that affects Chang’s algorithm’s run time is the time of
getting the abstracted pair. The length of words in the set does not affect the time of

getting the abstracted pair. In order to test this, we choose five sets: 3-character set, 4-

35

character set, 5-character set, 7-character set and greater than 7-character set. Each word
in one of these sets has same length except that in the greater than 7-character set. The
results show the length of words has no effect on run time of this method as we can see in

Figure 10(a).

2) Jaeschke’s Algorithm

The run time of this algorithm depends on the number of iteration for calculating C, D
and E, and the number of iteration is also determined by the value of each word in the set.
Since the value of the word increases as the length of words goes up, the length of the

words does have an effect on the run time of this algorithm as we can see in Figure 10(b).

3) Test Sets for the Run Time of Each Algorithm

Here is the test sets of these algorithms. Their run time performance will be

discussed later on.

a) 3-character Set. And, bee, car, cob, cog, dip, din, dad, eat, foe

b) 4-character Set. Auto, beat, case, char, cone, deep, dome, dose, ¢lse, flag

c) 5-character Set. Among, break, crank, crazy, creep, dense, decoy, deceit, elect,

false.

d) 7-character Set. Alumnus, bracket, creator, crazily, creeper, dancing, density,

deduce, elastic, forgive.

36

e) Greater Than 7-character Set. Ambiguous, breakfast, creativity, craziness,

cremation, deductive, departure, decorative, elasticity, fragment.

5.12

Impact of the maximum length of words in set on

run time
% 25
a
B 820 —&— Series1
= g —— Series2 |
= 015
:Es § Series3
< £10 - Chang's algorithm —— Seriesd
.;_E. § —%— Series5
e © 5 -
=3
[

Q+———7— T —y— T T T T 1

1 2 3 4 5 6 7 8 9 10
No. of words in set

| Impact of the maximum length of words in set on run
| time
> 50 4 |
K=
8384
a S
% § 30
Ei 20
=)
[0.

i 2 3 4 5 6 7 8 9 10

No. of words In set
Series 1—curve for 3-character set; Series 2—curve for 4-character set;
Series 3 — curve for 5-character set; Series 4 —curve for 7-character set;
Series 5 curve for greater than 7-character set.

Figure 10 Impact of the Length of the Words in Set on the Two Algorithms
(a) Chang’s Algorithm (b) Jaeschke’s algorithm

Impact of the Distribution of Words on Run Time

37

1) Chang’s Method

Since the run time of this algorithm is affected by the time of getting the abstracted
pair, the distribution of words has an effect on its run time. If the words are all
concentrated in one small region of the alphabet, it is difficult to get the abstracted paur,
and this will cause the run time to go up very quickly. This is shown in Figure 11(a). On
the other hand, if the words focus on a small range of characters, we sometimes need to

separate them into groups to get a good performance of this algorithm.

2) Jaeschke's Method

The run time of Jaeschke’s method depends only on the word value. The distribution
does not have any considerable effect on the run time of this method as we can see from

Figure 11(b).

3) Test sets

Here is the test sets of these algorithms. Their run time performance will be

discussed later on.

a) Uniform Set. About, body, come, data, elect, flag, hear, jeans, kind, lady.
b) Concentrated Set. Easy, elect, eager, erect, establish, erupt, equal, engage,
exercise, exit.

Figure 11shows the distribution of the words and their effects.

38

Impact of the distribution of words on run time

(Chang’s algorithm)
& 80 —
o 70
28 5
a E
E o 40
o E_ 30 uniform set |
Eg2
T 0
1 2 3 4 5 6 7 8 9 10
No. of words in set '
Distribution of words impact on run time
> 25
a
342 —
3 c
g 8 15 uniform set _
2 §
1I "‘E' c 10. . p——
N é "ﬁ::;/ concentrate set
.“: D 5 —=— == AR AT
=) /
m 0 —— T o T T
1 2 3 4 5 6 7t 8 9 10
| Set number

Figure 11 Impact of the Distribution of the Words in Set on the Two Algorithms
(a) Chang’s Algorithm (b) Jaeschke’s Algorithm

5.2 Space Complexity Analysis

39

5.2.1 Chang’s Algorithm

Chang’s algorithm uses space to store the input set and the abstracted pair set.
The space used is O(n), and storage used to save C(x), p(x) and d(x) is also O(n). The

storage to save by is less than O(n?). So the space complexity of this algorithm is O(n?).
5.2.2 Jaeschke’s Algorithm

Jaeschke’s algorithm uses O(n) storage to save the input set, [, set, P; set and P,

set which are O(n) for all. Thus the space complexity of this algorithm is O(n).
5.3 Machine Dependence

Both Chang’s aigorithm and Jaeschke’s algorithm are machine-dependent if the
input set is letter-oriented since different kinds of machines have different machine
character code representations which are used to get appropriate values of the hash
functions. Nowadays, most machines use the ASCII code for character that will make
these algorithms depend less on machines.

For the numeric input set, Jaeschke’s algorithm is machine independent, since the
machine code never participate the calculation of the value of hash function. For
Chang’s method, we first should shift the input set into words set which make this
method machine-dependent for the numeric input set. Or we can choose another
approach also developed by Chang which uses a different formula as mentioned in [9],
then the machine character code never be used for calculating the value of hash function,

and this make Chang’s algorithm machine-independent either.

40

5.4 Operation Time Comparison

After getting the perfect hash functions for the input set by using two algorithms,
there comes the problem: Does the operation on the hash table established by those hash
functions, such as searching and finding, consume same a mount of time?

Here is the analysis of this. We choose the hash table of the Month set which
includes twelve slots. The test set is composed of each element of the Month set and
other twelve words. The words are Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday, Day, Date, Year, Month and Week. The run time for finding if the
element of the test set is in the hash table is shown in Figure 12.

From the figure, we can see that operation on the hash table built by Jaeschke’s
hashing is much faster than that of Chang’s because the hashing value is easier to

calculate for a given hash function by Jaeschke’s algorithm than that of Chang’s.

Operation time comparison

400
Z 350
‘ 3 ° 300 -
. 2 g 250 - ¢ Series1
5 & 200 m Series2
éi 150 = Linear (Series1)
£ 8 100 ‘——Linear (Series2)
5 5
l -50

. No of words

Figure 12 Operation Time Comparison on the Two Hash Tables Established by the Two
Algorithms.

41

Chapter 6

CONCLUSIONS AND IMPROVEMENTS

From the last chapter, we can see that these two methods have their own time and
space complexity. Each of them has their own advantages and disadvantages. Here are

some discussions on them.

6.1 Advantages of Chang’s Algorithm

6.1.1 Good Run Time Complexity

As shown in the last chapter this method has the time complexity of O(n). It is
also good for a large input set. For a large set (n>15), Chang’s algorithm is a good choice
since Chang’s algorithm is O(n‘), where c is less than 2, and Jaeschke’s algorithm is

O(a").

6.1.2 Good for the Letter-oriented Input Set

This method uses the abstracted pair that is based on the input set to calculate the

hashing value. It is very powerful for letter-oriented sets.

6.1.3 Easy Coding and High Efficiency

42

This method is based on the Chinese Remainder Theorem. It is easy to code, and the
result is guaranteed to be a minimal perfect hashing function. So it is good to use this

method to perform hashing.
6.2 Limitations of Chang’s Method

Although Chang’s method has good performance in run time for a letter-oriented

input set, it has some disadvantages. Here are some of them.
6.2.1 Space Limitation

This algorithm’s space complexity is O(n?), that means it will use a large space to

hold the calculation values. If the input set is large, there will be a problem.
6.2.2 Distribution of the Input Set

This method uses the grouped abstracted pair (p;, p2). Each pair in the group has
the same py, but different p,. This means the maximum number of the pairs in the group
must be less than 26. So if the input words is concentrated in a small range that will cause
the run time to find the abstracted pair to go up, or even worse there will be no solution

for this kind of set and some additional methods must be used to re-group the set.
6.2.3 Handles Only Letter-oriented Input Set Effectively

This method is powerful and fast only for coping with a letter-oriented set. For
other kinds of sets there must be a different approach of Chang’s method or it will need

more complicated calculation to shift them to word sets.

43

6.3 Advantages of Jaeschke’s Algorithm

6.3.1 Good Space Complexity

This method use only O(n) space for calculating hashing values, which saved

more space than Chang’s method.

6.3.2 No limitation for the input set

This method does not need the input to be words or letters. It can handle both
characters and integers without much difference. Also the distribution of the input words
has no effect on the run time of this method. Therefore, this method has a wide range of

application than Chang’s method.

6.3.3 Good Run Time for the Small Input Set

For a small set (n <15), Jaeschke’s algorithm is better than Chang’s algorithm as
we can see from the last chapter. It uses only as half time as that of Chang’s algorithm on

the average.

6.4 Disadvantages of Jaeschke’s Algorithm

6.4.1 Run Time Complexity

This method is slower than Chang’s method as n becomes large, because its run
time is O(a"). It is sometimes 100 times slower than Chang’s method as number of

elements in the set is greater than 30.

6.4.2 Run time Changes according to the Length of the Input Words or Value of the Input

Data

If the input data are integers, the large input set will cause the run time go up. If
the input set consists of words only, as the length of the input words goes up, it will cause

the run time to increase as shown in the last chapter.

6.5 Suggestions

These two methods have their own advantages and disadvantages. It is better to
use them properly and limit their drawbacks. Here are two suggestions
1) For the small input set use Jaeschke’s algorithm, and for a large set use Chang’s
algorithm.
2) If the input set is concentrated in a small range of characters, first use Jaeschke’s
algorithm. If the length of the words is greater than seven characters, try Chang’s

algorithm first.

6.6 Improvements

There are also some methods to combine them and make them perform well.

L) For the concentrated word set, separate the input set into several groups and make
sure each group has less than 15 words, then use Jaeschke’s algorithm. In this way the
only extra overhead is another storage to save the group table and increased run time
because of calculating values for each group. Since they are all O(#n), it is not a big 1ssue.
So compare with the run time and space complexity of each method, it is still a

45

reasonable approach to separate the input set into subsets and use the Jaeschke's
algorithm to hash each subset separately, then united the results together to get the
hashing values.
2) For longer length word set or large integer set

First use Chang’s method to get the abstracted pair set and then use Jaeschke’s
algorithm for longer length input words or just use some bits of input integers to build a
new input set. In this way the calculation will be easy and simple and the extra time and

space cost is only O(n).

46

BIBLIOGRAPHY

[1] C. C. Chang, A letter-oriented minimal perfect hashing scheme. The Computer J.,
29(3), 277-281 (1986).

[2] R. J. Cichelli, Minimal perfect hash function made simple. Commun. ACM, 23(1), 17-
19 (1980).

[3] V. G. Winters, Minimal perfect hashing in polynomial time. Bit 30, 235-244(1990).

[4] M. Gori amd G. Soda, An algebraic approach to Cichelli’s perfect hashing. BIT 29, 2-
13 (1989).

[5] G. Jaeschke. Reciprocal hashing: a method for generating minimal perfect hashing
functions. Commun. ACM, 24(12), 829-833 (1981).

[6] N. Cercon, J. Boates and M. Krause, An interactive system for finding perfect hash
functions. I[EEE Software, 2(6), 38-53 (1985).

[7] F. Berman, M. E. Bock, et al. Collections of functions for perfect hashing. SIAM J.
Comput.,15(2), 604-618 (1986).

[8] R. Sprugnoli, Perfect hashing functions: a single probe retrieving method for static
sets. Commun. ACM, 20(11), 841-850 (1977).

[9] C. C. Chang, The study of an ordered minimal perfect hashing scheme. Commun.
ACM, 27(4), 384-387 (1984).

[10] T. J. Sager, A polynomial time generator for minimal perfect hash functions.

Commun. ACM, 28(5), 523-532 (1985).

47

[11] G. V. Cormack, R. N.S. Horspool and M. Kaiserswerth, Practical perfect hashing.
The Computer J., 28(1), 54-58 (1985).

[12] Z. J. Czech and B. S. Majewski, A linear time algorithm for finding minimal perfect
hashing functions. The Computer J., 36(6), 579-587 (1993).

[13] C. C. Chang, An ordered minimal perfect hashing scheme based upon Euler’s
theorem. Information Sciences, 32(3), 165-172 (1984).

[14] C. R. Cook, A letter oriented minimal perfect hashing function. Sigplan Notices,
17(9),18-27 (1982).

[15] M. W. Du, K. F. Jea and D. W. Shieh, The study of a new perfect hash scheme.
Proceedings, the IEEE Computer Societies: International Computer Software &
Application Conference’80, Chicago, 341-347 (1980).

[16] G. Jaesche and G. Osterburg, On Cichelli’s minimal perfect hash functions method.
Communications of the association for computing Machinery, 23(12), 728-729
(1981).

[17] D. E. Knuth, The Art of Computing Programming. Vol. 3: Sorting and Searching,

Addison-Wesley, Reading, Mass., 506-507 (1973).
[18] M. L. Fredman, J. Konlos and E. Szemeredi, Storing a sparse table with O(1) worst
case access time. Joural ACM, 31(3), 538-544(1984).

[19] C. Bell and B. Floyd, A Monte Carlo study of Cichelli of hash-junction solvability.
Commun. ACM, 26(11), 924-925 (1983).

[20] C. C. Chang, The study of an ordered minimal perfect hashing scheme with single

parameter. Information Processing Letters, 27,79-83 (1988).

48

[21] W. P. Yang and M. W. Du, A backtracking method for constructing perfect hash
functions from a set of mapping functions. BIT, 25, 148-164 (1985).

[22] G. D. Knott, Hashing functions. The Computer J., 18, 265-278 (1975).

[23] C. Cook and R. Oldehoeft, More on minimal and almost minimal perfect hash
function search. Computers and Mathematics with Applications. 9(1), 215-232
(1983).

[24] D.E. Knuth, Estimating the efficiency of backtrack programs. Math. Comput.,29(2),
121-136 (1975).

[25] J. L. Carter and M. N. Wegman, Universal classes of hash functions. Proc. Ninth
Annual Symposium on the Theory of Computing, 106-112 (1977).

(26] D. Comer and M. J. O’Donnell, Geometric problems with application to hashing,
The Computer Journal, 11,217-226 (1982).

[27] K. Mehlhorn, On the program size of perfect and universal hash functions. Proc.
23" Annual Symposium on the Foundations of Computer Science. 170-175 (1982).

[28] R. E. Tarjan and A. C. Yao, Storing a sparse table. Commun. ACM, 22, 606-611

(1979).

[29] A. C. Yao, Should tables be sorted? J. Assoc. Comput. Mach., 28, 615-628 (1981).

[30] W. D. Maurer and T. G. Lewis, Hash table methods. Computing Surveys. 7(1), 5-20
(1975).

[31] D. G. Severance, Identifier search mechanisms: A survey and generalized model. .
Computing Surveys, 6(3), 175-194 (1974).

[32] C. C. Chang, The study of an ordered minimal perfect hashing scheme. Commun.

ACM, 27(4), 384-387 (1984).

49

{33] B. Bollobas, Random Graphs. Academic Press, New York (1985).

[34] M. D. Brian and A. L. Tharp, Near-perfect hashing of large word sets. Software—
Practice and Experience, 19, 967-978 (1990).

[35] Z. J. Czech, G. Havas and B. S. Majewski., An optimal alogrithm for generating
minimal perfect hash functions. Information Process. Lett., 43, 257-264 (1992).

[36] J. Ebert, A versatile data sturcture for edge-oriented graph algorithms. Commun.
ACM, 30, 513-519 (1987).

[37] P. Flajolet, D. E. Knuth and B. Pittel, The first cycles in an evolving graph. Discrete
Mathematics, 75, 167-215 (1989).

[38] E. A. Fox, L. S. Heath, et al., Practical minimal perfect has functions for large
datbases. Commun. ACM, 35, 105-121 (1992).

[39] G. Haggard and K. Karplus, Finding minimal perfect hash functions. ACM Special
Interest Group on Individual Computing Environments Bull., 18, 191-193 (1986).

[40] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures.
Addison-Wesley, Reading, MA (1991).

(41] T. G. Lewis and C. R. Cook, Hashing for dynamic and static internal tables. IEEE

Computer, 21, 45-56 (1988).

(42] E. M. Palmer. Graphical Evolution: An Introduction to the Theory of Random
Graphs. New York, John Wiley & Sons (1985).

[43]) M. A. Weiss, Data Structures and Algorithm Analysis in C. Menlo Park, Addison-
Wesley Publishing Company (1997).

[44] B. S. Majewski, N. C. Worwald, etal, A family of perfect hashing methods. The

Computer J., 39(6), 547-554 (1996).

50

[45] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms. McGraw-

HillCompanies (1997).

51

APPENDIX A C PROGRAMMING CODE FOR CHANG’S ALGORITHM

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<time.h>

¥ Group Structure */
typedef struct group
(

char G;
int Pos[2];/* Pos[0] stands for pos, Pos[l] stands for length*/
int size;
int link[30];
struct group *next;
}group;

/* Abstracted Pair */
typedef struct pair
(
char ki1;
char k2;
int hx;
}pair;

/* d{x) and c(x) of input element */
typedef struct d_c

{ char kl1;
int d;
int c;
}d_c;

/* Fregquency of each character */
typedef struct fre(
char k2;
int n;
int p;
tfre;
char tempy([30],input[50][10];/* input should be separated by comma.*/
pair x[32];
d_c dx_cx[26];
fre £[(26)=(('0',0,0}};
int kk[26],size;
/* Functions */
group * sort_group(group *Group);
void get_abstract (group *Group);
int get_ab{group *node,int sign);
int get_group(int groupl(]);
void get_dx(d_c dx_cx[], int group[],int g_Num) ;
int get_fx(fre £[1]);
void get_prime(int £_Num,int Primel[]);

52

void get_px(fre £[],int Prime(],int £_Num);

void print(group *Group,FILE *out);
void print_dx(FILE *out);

void print_px(fre f[],FILE *out);
int get_ff(char c);

int get_c{int kk[],int size);

void get_cx(group *Group);

void print_cx(FILE *out);

int c{char kl);

int d(char kl);

int p{char k2);

void cal_hx(FILE *out,group *Group);

void sort(int size);

void main(void) {
int i,j.k,n,loop;
char temp;
group *Group, *node;
int g_Num,grou[26], f_Num;
int d[26],Prime[26];
FILE *out, *tout;
time_t start,end,usetime;

g1,
j=0
out=fopen("aa","w") ;
tout=fopen("time", *w") ;
start=time (NULL) :

for(n=0;n<500;n++) (
fprintf (out, "***wxkns

n=

%24

t**tt***tit*tt\n\”n ' n} :

Group=(group *)malloc(sizeof (group));
Group->next=(group *)malloc(sizeof (group));

node=CGroup->next;
node->size=0;
node->next=NULL;
for(i1=0;1i<50;i++)(

input[i] [0]="\0";
}

/*get input set and store it in char array temp */

printf ("Please in put the letter set:\n");
printf[ﬂt*r******w***********t**********\nn1 ;

usetime=0;

/* data set are stored in input array */

temp=getchar|() ;

input[i] [j++]=temp;

i=1;
j=0;
while (temp!='\n’'){
if(temp!=',")(
}
else(
input[i] [j]="\0";
3=0;
i++;
}

53

temp=getchar();
}
size=i;
input[i++] [j]1="\0";

input[i++] [0])=0;/* show the input is finished */

/*sort the set and group them */
Group=sort_group (Group) ;

get_abstract (Group) ;

print (Group,out) ;

g_Num=get_group (grou) ;

get_dx(dx_cx,grou,g_Num) ;

print_dx{out);

f_Num=get_ fx(f);

get_prime(f_Num, Prime) ;

get_px!(f,Prime, £_Num) ;

print_px(f,out);

get_cx (Group) ;

print_cx({out);

cal_hx(out,Group) ;

end+=time (NULL) ;

usetime=end-start;

fprintf(tout, M- m e e e
--\n") ;

fprintf (tout, "words number=%10d, time
used=%10d\n",size,usetime) ;

fprintf (out, "memmmm e e e e e

free(Group) ;

fclose(out) ;
fclose(tout) ;

void sort(int size){
int i,j,temp;
for(i=0;i<size-1;i++) (
for(j=size-1;j>1i;--3)({
if(kk[j-1]1>kk([]])(

temp=kk([j-1];
kk[j-1]=kk[j]:
kk[jl=temp;

void cal_hx(FILE *out,group *Group)
group *node;

54

int i.k.3;
i=0;
while(x[i].k1!=0) {
x[1i] .hx=d(x[i] .k1l)+(c(x[i] .k1)%p(x[i].k2));

14+4;

}

fprintf(out," Location Extracted Pair
Original Key nr)

fprintf(out, " - mm e e e
—————————————————————— \n");

1=l ;

j=0;

k=0;

node=Group->next;
while({node!=NULL) {
k=0;
fprintf (out, "%$13d (%1c, %1c)
$20s\n",x[j].hx,x[J].kl,x[j++].k2, input[node->link[k++]]);
while (k<node->size) (
fprintf (out, "$13d ($1lc, $1c)
%$20s\n",x(j] .hx,x[3j].k1l,x[j++] .k2, input [node->1link[k++]]);
}

node=node->next;

}
int d{char k1) ({
int 4=0;
while(dx_cx[1i] .k1!=0) {
if (dx_cx[i]) .kl==kl)
return dx_cx[i] .d;
else
i+4+;
}

return 0;

}
int c(char k1) (
int i=0;
while(dx_cx[i] .k1!=0) {
if(dx_cx([1i] .kl==kl)
return dx_cx[i].c;

else
i++;
}
recurn 0;
}
int p({char k2){

int i=0;
while(£[1i].k2!=0){
if(f(1].k2==k2)
return £[i].p;
else
i++;

55

return 0;

void get_cx(group *Group) {
int i,%k;J.z3

group *node=Group->next;
k=z=0;
while (node!=NULL) {
if (nocde->size!=1) (
i=node->size;
j=0;
while(1>0) {
kk(jl=get_£ff(x[k].k2);
J++:
K++;

kk[3]1=0;
sort (node->size);
dx_cx[z++] .c=get_c(kk,node->size);
}
else(
dx_cx[z++].c=1;
k++;
)
node=node->next;

}

int get_ff(char c){
int i=0;
while(f[i] . k2!='0'&&£f[1].k2!=c)(
i++;
}
return £(1i].p;

}
int get_c{int kk[],int size) {

int i,3.2.Kk;
int *MM, DEND,RMD,DSR, *Q, *B, *b, *C, *M,c,m;
int *y;
M=(int *)malloc(sizeof (int)*size) ;
MM=(int *)malloc(sizeof (int)*size);
Q=(int *)malloc(sizecf(int) *size);
B=(int *)malloc(sizeof(int) *size);
b=(int *)malloc(sizeof(int) *size);
C=(int *)malloc(sizeocf(int) *size);
y=(int *)malloc(sizeof({int)*size);
for(i=1;i<=size;i++){
M[i)=1;
MM[i]=Q[i]=B[i]=b[i]=C[i]=0;

56

for({i=1;i<=size;i++)(
for(j=1;j<=size;j++) {
if(it=79)
M[i] =*=kk[]j-1];
}
}
for (i=1;i<=size;i++){
MM[i]=M[i]%kk[i-1];
// printf ("%d\n" MM[i]);
}
for(z=1;z<=size;z++)(
DEND=kk([z-1];
DSR=MM[z];
j=1;
Q[3j]1=DEND/DSR;
RMD=DEND-Q (7] *DSR;
if (RMD==0) {
blz]=1;
}
else(
while (RMD!=0&&RMD!=1) {
DEND=DSR;
DSR=RMD;
j=3+1;
Q[J]1=DEND/DSR;
RMD=DEND-Q[3j] *DSR;

}
1=];:
B(0]=1;
B(1]=-Q[i];
if(i>2) (
for (j=1;j=i-1;j++){
B(j+1)=-B[j]*Q[i-j]1+B[j-1];
}
}
else |
if (i==2)
B[j]l=-B[j-1]*Q[i-j+1]+B[j-2];
}
b(z]=B[i]:
}
}
e=0:
m=1;

for(i=1l;i<=size;i++){

Cli]l=bf{i]l*M[i]*1i;
c+=C[i];

m*=kk[i-1];

}

if(c<0){
Cc+=m;

}

c=c%m;

free (M) ;

free (MM) ;

57

free(Q);
free(b);
free(B);
free(C);
free(y);

return c;

void print_px(fre £[],FILE *out) {
int 1:
fprintf(out, "—----m e \n") ;
i=0;

while(f[i].k2!=0){
fprintf{out, "p[%c]= %2d\n",£f[i].k2,£[i].p);

14+
}
fprintf (out, "———mmmmm s R s n R s R \n");
}
void print_dx(FILE *out) {
int i,37;
fprintf(out, "—— - oo \n");
fprintf (out, "d([(%c] = %2d\n",x[0].kl,dx_cx[0].d);
i=1;
j=1;
while(x([i].k1!=0) (
if(x[i).kl==x[1i-1].k1)
i+4;
else(
fprintf (out, "d[%c] = %2d4",x[i] - kl,dx_cx[j++].d);
fprintf (out, "\n") ;
1++;
}
}
fprintf(out,"~==-c-ccmem e m e e Nn*y ;
}
void print_cx(FILE *out) {
int i;3;
fprintf{out; " -———r-r—r e e e \n*) ;
fprintf (out, "c[%c] = %$24\n",x[0]).kl,dx_cx[0].c);
i=1;
j=1;

while(x[i].k1!=0){
if(x(i].kl==x[i-1].k1)
14+
else(
58

fprintf (out, "c[%c] = %2d",x[i].kl,dx_cx[]j++].c);
fprintf(out,"\n");
1++;

}

fprintf(out, " ———-—-———mmm e An*);

)

group *sort_group(group *Group) {
int i.k;
group *node, *pnode;
i=1;
k=0;/* for link position */

while(input[i] [0] !=0) {
node=Group->next;
if(i==1) (/*first node*/
node->G=input[i] [0];
node->1ink[0]=1;
node->1ink[1]1='\0";
node->size=1;

else{

if (node->G==input[i][0]){

k=0;

while(node->1link[k]!='\0") {
k++;

}

node->link[k]=1i;
node->link([k+1}="\0";
node->size++;
}
else(

if (node->G>input[i] [0]) (

Group->next=(group
*)malloc({sizeof (group)) ;

Group->next->G=input(i] [0];
Group->next->1link(0]=1i;
Group->next->1ink([1]="\0";
Group->next->size=1;
Group->next->next=node;

else(
pnode=node;
while(node->G<input[i] [0]&&node-
>next ! =NULL) {
pnode=node;
node=node->next ;

}

if (node->G==input[i][0]) {
k=0;
while(node->1ink[k]!="%0"){
k++;

59

}

node->link[k]=1i;
node->link[k+1]="\0";
node->size++;

elsef{

if (node->G>input[i] [0]) {

pnode->next=(group
*)malloc (sizeof (group));

pnode->next->G=input [i] [0];
pnode->next->1ink([0]=1i;
pnode->next->1ink([1]='\0";
pnode->next->size=1;
pnode->next->next=node;

else(

node->next=(group

*Imalloc (sizeof (group)) ;
node->next->G=input (i) [0];
node->next->1ink([0]=1i;
node->next->1link[1)="\0";
node->next->size=1;
node->next->next=NULL;

}
14+
}
return Group;
}
void get_abstract(group *Group) {
group *node=Group->next;
int kK, j;2;1i=0;
§i=03
while(node!=NULL) {
if (node->size==1) (
node->Pos[0]=2;
node->Pos([1l]=-1;
x[i] .kl=node->G;
k=node->1ink[0];
x[i++] .k2=input(k][1];

}
else(
j=get_ab(node, 1) ;
if(jt=-1){
z=0;

while({z<node->size) (
node->Pos[0]=7;
node->Pos[1]=-1;
x[1i] .kl=node->G;
k=node->link([z];
x[i++] .k2=input(k] []];
Z4+;

}
}
node=node->next;
}
x[i]..kl="\0";
x[i].k2="\0";
}
int get_ab(group *node,int sign) {
int i,3j.k.z;
k=0;
if(sign==10)
return -1;/*feilture */
for(i=0;i<30;i++)(
tempy[i]="\0";
}
if(strlen{input[node->1ink[0]])>sign) (
tempy [k++]=input [node->1ink[0]] [sign];
}
else(
z=strlen(input[node->1ink(0]]):
tempy [k++]=input {node->1ink[0]][z];
}
tempy{k]="\0";
j=1;
i=0;
while(j<node->size) (
if (!strchr(tempy.input[node->1link([j]][sign]))(
if (strlen(input[node->1link[j]])>sign) (
tempy [k++] =input [node->1ink[j]] [sign];

}
else{
z=strlen(input[node->1ink(j]]):
tempy[k++]=input [node->1ink[3j]] [z]:
}
}
else(
i=-1;
break;
}
J++;
}
if(it=-1){
return sign;
}
else(
get_ab(node,sign+1) ;
}

void print (group *Group,FILE *out) {
group *node;
int 3.k i=1;
node=Group->next;
j=k=0;

61

fprintf{cut'ﬂ*ttﬂt*ttttﬁttﬂ****i***ttt*******Ittt*tt*ittittitittt

*i******t**t*t**tftw‘*\nu}.
L

fprintf (out, "\n Input set is: \n\n");
while(i<=size) (

fprintf (out, "$20s\n",input[i++]);
}

forintf(OUl, " A xR e r ko kR R AR A AN NIRRT RN NI R R RN TR RN enw ot

t*t*tt*******t*i**tttt\nnJ;

fprintf (out, " Group Extracted Pair
Original Key Nn®y §
fprintf(out, "~ -
—————————————————————— \n*}
i=1;
while(node!=NULL) {
k=0;
fprintf (out, "%13d (%1c,%1lc)

%$20s\n", i++,x[J].kl,x[j++] .k2, input [node->1ink[k++]]);
while(k<node->size)
fprintf(out, "
(%1lc, %1lc) $20s\n",x[(j].kl,x[j++].k2, input[node->link(k++]1]);
}
node=node->next;
}
fprintf(out, " "——-—c—mmmr e e e e

void get_px(fre f[],int Prime[],int f_Num) {
int i,k,z=0;

for(i=0;i<f_Num;i++){

£li] .p=-1;
}
for(i=0;i<f_Num;i++) {
z=0;
while(f[z] .p!=-1){
Z++;
}

for(k=z+1;k<f Num;k++) {
if(f[k]).p==-1
&&((f[k].n>f(z].n) || (£[k].n==£[z) .n&&(£[k].k2<£[z].k2))))
z=ks
}

fl(z].p=Prime(i];
}

void get_prime(int f£_Num, int Prime[]) (
int i,k,z;
Prime[0]=2;
Prime[1l]=3;

Prime[2]=5;

k=3;

for(i=7;k<f_Num;i++){

for(z=sqgrt(i);z>1;z--){

if(i%z==0)

62

z=1;
}
if(z==1){
Prime[k++]=1;

}

int get_fx(fre f[]){
e 1.2,k
£{0).n=1;
£(0]).k2=x[0] .k2;
=1;
a6y 1
while{x[1].k2!=0){
for(z=k-1;z>=0;z--){
if(flz] .k2==x[1].k2){
flz].n++;

z=-1;
}
}
/* if k2 first appearence */
if(z1=-2){
fFlk].n=1;
Elk++] .k2=x[1i] .k2;
}
1++;
}
return k;

void get_dx(d_c dx_cx[], int groul[],int g_Num) {
int i,k.z;
for(i=0;i<26;i++)
dx_cx[i] .d=0;
dx_cx[i] .c=0;

b
n n

1
1;
dx_ex[0] ‘kl=x[0]-kl;
while(x[i).k1!=0)(
1E(x[1] . kl1!'=x[1i-1].k1l)(
dx_cx[k++].kl=x[1i].k1l;
}
i++_:
)
while(x[i] .k1!=0){
for(z=k-1;z>=0;z--){(
1f(dx_ecx([z] .kl==x[1i] . k1) {
flz].n++;
z=-1;
)
1

/* if k2 first appearence */
63

if(z!==2){
flk] .n=1;
fik++].k2=x[1] .k2;
)
1++;
3
for(i=1;i<g_Num;i++) {

dx_cx[i] .d=dx_cx[i-1].d+groufi-1];
}
}
int get_group(int groul]){
int d.,33
for(i=0;1i<26;i++)(
groul[i]l=0;
}
groul[0]=1;
for(i=1,1i=0;3<32;3++){
if(x[j] . kl==x[j-1].k1){
grouli] ++;
)
else(
i++;
groul[i]l=1;

}
return i+1;

APPENDIX B C PROGRAMMING CODE FOR JAESCHKE"'S ALGORITHM

#include<stdio.h>
#include<string.h>
#include<math.h>

char input([50)[10];
int w[50],ww([50],B[50];
long D, E, bound;
int Prime([50],P1[50],P2([50],M[50],P([50]).P_temp[50];
int get_prime(int num) ;
void calcu_D(int num) ;
void calcu_Pl(int num);
void calcu_B(int num, int size);
int Check_Bl(int size);
int multiple(int size);
void sort(int size);
int calcu_C(int size,long C,long L);
int check same(int size, int same[]);
void printout (FILE *out,int size,int C);
void calcu_M(int num) ;
void calcu_bound(int num) ;
void calcu_E(int num) ;
int get_I{int num);
int get_T(wvoid) ;
int i0,a,T[50];
void main(void) {
int i,3j,k,size,num;
long L,C,CO;
char temp;
FILE *out;
time_t start,end,usetime;

out=fopen("bb", "w") ;

for(i=0;i<50;i++){
input[i] [0]='\0";
wli]l=wwii]=0;

)

printf("Please in put the letter set:\n");
printf(lt***i*tt****t*itt*t TR t*twtik\nll } i

/* data set are stored in input array */
i=0;
i=0;
temp=getchar () ;
while (temp!='\n‘){
if(temp!=‘,")(
input[i] [j++]=temp;
wli]+=temp;
wwli]+=temp;
}
else(

65

input[i] [j]="\0";

3=0;
i++;
}
temp=getchar () ;
}
size=i+1;

input [i++] [j]1="\0";

wl[i]=0;

wwli];

input{i] [0]=0;/* show the input is finished */
start=time (NULL) ;

for(i=0;1<500;1i++){
sort(size);
CO0=(size-2)*w[0]*w[size-1]/(w[size-1]-w[0]));
L=multiple(size);
L*=size;
j=calcu_C(size,CO,L);
if(ji=-1)¢(
printout (out,size,j);
}
else(
get_prime(size);
num=get_TI(size/2);
for{i=0;i<num;i++)
P_temp([i]=P[1i];
calcu_B(num,size);
calcu_P1 (num) ;
calcu_D(num) ;
calcu_M(num) ;
calcu_bound (num) ;
i=get_T();
calcu_E(i,num);
)
end+=time (NULL) ;
usetime=end-start;
fprintf(out, " - - —m e
—Xn*)s
fprintf (out, "words number=%10d, time
used=%10d\n",size, usetime) ;

fprintf(out, ' —=--ccmc e e =

}
fclose(out) ;

}

/*get set I of prime <= n/2 */
int get_I(int num) {
int 1i;
for(i=0;Prime[i]<=num;i++)
P[i]=Prime(i];
return i;

66

}
int get_T(void) {
int i,j,temp;
i=sqgrt (bound) ;
temp=bound;
j=get_I(1i);
for(i=0;1i<50;1i++) (
T[1])=0;
}
for(i=0;i<j;i++)(
while(P[i] !=0&&temp%P[i]==0}{
Tlil=p[i);
temp /=P[1i];
}
}
return j;

void calcu_E(int j,int num) {
int i, flag;
long temp=1;
for{(i=0;i<j;i++)(
if (T[i]!=0)
temp *=T[i];
if(P_temp[i] !=0)
temp *= P_temp([i];
}
for (E=P[0] ;E<temp;E+=P[0]) {
flag=0;
for(i=0;i<num&&flag!=1;i++) (
if(P1[1]!=0 &&(E%P1([i])==0)
flag=1;
)
if(flag'=1)
return;
]
}
void calcu_bound(int num) {
int i,3;
long sg d,deta=1;
for(i=0;i<num;i++) (
for(j=i+1;j<num;j++){
deta *=(w[jl-wli]);
}
}
bound=deta;

void calcu_M(int num) {

int i;
for(i=0;i<num;i++) {
M[i]=0;

if(P2[1i]!=0)

67

M[i]=-D*(w[i] %P2 ([i])%P2[1i];

}

}

void calcu_D(int num) {
kot 4
D=1;

for(i=0;i<num;i++) {
if(P1[1i)!=0)
D *=P1[1i];

}
/*get Pl set */
void calcu_Pl(int num) {
it $.95507
for(i=0;i<num;i++)
P1[i1=0;
for (i=1;i<num;i++) (
if (Prime[i]) !=P2[1i])
Pl[j++]=Prime([i];

void calcu_B(int num, int size) {
ine 4.,3.,2;3
for(i=0;1i<50;1i++) {
B(i]=-1;
P2[1]=0;
}
for(j=0;j<num; j++) (
for(i=0;i<size;i++)(
/* get all resides in B*/
Blil=w([i]%Prime(j];
}
z=Check_B(size);
if(z==1) (
P2[jl=Prime[j]:
/*if P2[j]!=0 that is element of P2 set*/

)
}
/*check the times of v happens */
int Check_B(int size) {
int i1;3.%;:
for (i=0;i<size;i++){
f=1-
for(j=i+1;j<size;j++){
if(B[i]==B[3j])
f44;
}
if(f==1}
return 1;
}
return 0;

68

int get_prime(int size)(
ing I, kiz;
Prime[0]=2;
Prime[1]=3;
Prime[2]=5;
Je=3-
for(i=7;i<size;i++) (
for(z=sqrt(i);z>1l;z--}(

if(i%z==0)
z=1;
}
if(z==1)(
Prime[k++]1=1i;
}

}
for(i=k;i<50;i++) {
Prime[i]l=0;

}
return k;

}

void printout (FILE *out,int size,int C){
int i;
fprintf (out, "Input set is:\n");
fprintf(out,"---————-——-—-—-—----— \n"});
fprintf (out," word wlil\n");
fprintf (ot “msrr=re—re e e ae 0 5 L B
for(i=0;i<size;i++){

fprintf (out, "%$10s %10d\n",input(i],w[i]);

}
fprintf (out, "\nC=%6d\n\n",C);
Fprintt foul, Mo e e s e \n");
fprintf (out," Location word\n") ;
fprintf(out, "=-—-mmm e \nity s
for(i=0;i<size;i++)
fprintf (out, "%10d4d %12s\n", (C/w[i])%size, input(1]};
)

}

int calcu_Cl(int size,long C, long L) {
int i,j,same[50];
if(C>L) {
return -1;
}
for(i=0;i<50;i++)(
same[i]=0;
}
for(i=0;i<size;i++){
same[i]=(C/w[1])%size;
}
j=check_same(size, same) ;

69

}

if(j==-1)
return C;
else(
10=0;
for(i=0;i<j;i++) (
if(((C/w[j])%size==(C/w[i])%size)&&il<i)
i0=i;
}
if((w[i0]-CHw[i0])>(w[3]-CHw([j]))
a=w(jl-C%wl[j];
else
a=w([i0] -C%w[i0];
C=calcu_C(size,C+a,L);
return C;

int check_same(int size,int same[]){

int 4,333

ji=-1;

for(i=0;i<size;i++) (
for(j=i+1;j<size;j++){

if((same[i]==same(j])&&ji>3])
ji=3:

)

}

return jj;

int multiple(int size) (

int i,j,flag;
long L, m;

int temp([50];

m=L=1;

for(j=0;j<size;j++) (
temp[jl=w(j]:

}
for(i=2;i<sqgrt(w([size-1]);i++){
flag=0;
for(j=0;j<size;j++){
if((temp(jl-(temp[j]/i)*i)==0)(
temp(jl=temp([j]/i;
if{flag==0){
flag=1;
m*=i;
}
)
}
}
for(i=0;i<size;i++)
L*=temp([i];

return L*m;
70

}

void sort(int

size) (
int i,Jj,temp;
for(i=0;i<size-1;i++){

for{j=size-1;j>i;--73)(
if(wli-1]>w(jl)(
temp=w[j-1];
wli-1]=w(jl:
wijl=temp;
)
}

71

VITA

Qizhi Tao
Candidate for the Degree of
Master of Science
Thesis: COMPARISON OF PERFECT HASHING METHODS
Major Field: Computer Science
Biographical:

Personal Data: Born in Harbin, Heilongjiang Province of P R China, the daughter of
Chongde Tao and Aihua Zhou.

Education: Graduate from the No. 3 middle school of Harbin in July 1984; received
Bachelor of Science degree and Master of Science degree in Mechanical
Engineering from Harbin Institute of Technology in July 1988 and March
1991, respectively. Completed the requirements for the Master of Science
degree with a major in Computer Science at Oklahoma State University in
June, 1999.

Experience: Worked as an engineer and translator in Longda Company of Harbin
from 1991 to 1993;employed as an executive editor of Journal of Harbin
Institute of Technology (English Edition) for 1993 to 1997.

