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INTRODUCTION 

In recent years~ the use of power density spectra for 

the prediction of aircraft gust loads has been extensively 
' studied and developed into a practical engineering toolo Its 

primary value is in predicting the cyclic loads imposed on 

aircraft structures for use in evaluating their structural 

fatigue lifeo Thus~ in this application power density spec-

tra are important primarily to the structural engineer and 

yet are based on principl es far more familiar to the automa-

tic control system engineer and the dynamics engineero 

If the structural engineer is to derive cyclic l oad data 

or even properly interpret and make use of load data derived 

from power spectral density analyses 9 it is considered essen= 

tial that he have a firm bas ic understanding of the methodo 

This has prompted the author~s interest in the sub jecto 

The basic fundamentals involved in defining the response 

of a linear system to a stochastic input are discussed in 

Chapter Io The published power spec tral density methods for 

the prediction of aircraft gust loads are set forth in Chapter 

IIo The intent of these chapters is to bring together pieces 

from numerous references in such a way that the reader can 

establish the necessary background for application of the 

methodo 

1 



In Chapter III a prediction of cyclic load due to an 

atmospheric turbulence condition is developed for a wing 

mounted pylon carrying dual high mass storeso The purpose 

2 

of this analysis is to investigage the structural signifi­

cance of considering the transfer functions of the pylon 

structure itself in developing these cyclic loads from a 

known power density spectrum of acceleration input at the 

pylon to wing attachment pointo The usual engineering prac= 

time in fatigue load studies has been to - consider this effect 

of pylon flexibility as secondary and 9 thereforep assume that 

the accelerations felt by the supported store are the same as 

the input to the pylono ., 

A procedure is developed for calculating the pylon trans= 

fer functions from stress analysis data which defines the py~ 

lon deflection influence coefficientso These functions are 

then used to obtain the power density spectra of output ac ­

celerations at thecenter of gravity of a supported stereo 

The corresponding prediction of the frequency of occurence of 

these accelerations is obtained by methods discussed in 

Chapter IIo 

This investigation shows that the fatigue loading pre = 

dieted by considering the pylon transfer functions c an be 

considerably more severe than that predicted directly from 

the input spectrumo In the example investigated 9 a vertical 

acceleration input only is consideredp however 9 the power 

spectral density analysis reveals an induced lateral accel~r= 

ation at the center of gravity of the supported storeso This 



occurs a.t a pylon/store system resonant frequency and accounts 

for the major portion of the increased severity of the pre= 

dieted fatigue loadingo 



CHAPTER I 

LINEAR SYSTEM RESPONSE TO A STOCHASTIC INPUT 

lol Discussion 

The output of a linear system subjected to a unique in-

put function may be specifically defined by solving the 

applicable integro-differential equationso Solution of these 

equations may be accomplished in the time1 domainp or in the 

frequency domain by the use of Fourier or Laplace transforms 

where applicableo 

The output of a linear system subjected to a stochastic 

input functionP one which contains a degree of randomness 9 

cannot be solved for in terms of specific and unique values 

as a function of time; however 9 it can be defined in terms 

of probability distributionso The solution may be accom= 

plished in the time domain making use of correlation functions 9 

or in the frequency domain by the use of power density spectra 

which are obtained by Fourier transformation of the corre-

l ation functionso 

It is desirable to discuss first some of the fundamen= 

tals of linear system analysis~ Fourier transforms 9 procedures 

1Time is considered herein as the independent variable; 
however 9 the statements and procedures of this chapter are 
applicable to any independent variableo 

4 
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applicable to the frequency domain, and stochastic processeso 

This will provide background information for then proceeding 

with the discussion of the power spectral density analysis 

of linear systems subjected to a stochastic inputo 

lo2 Weighting Function 

A'1inear system is one for which the principle of super­

position holds trueo That is, if the system is acted upon by 

several inputs simultaneously, its output will equal the sum 

of the outputs from the individual inputs applied independent­

lyo This property is of prime importance in simplifying the 

solution of problems involving linear systekso 

The unit impulse function can be defined as the limit of 

a rectangular pulse whose amplitude approaches infinity as 

its width approaches zero with the area maintained equal to 

one unit of timeo (1) 2 This is indicated in Fig. 1. 

For Unit Impulse: 

A 

T~ 0 

A x T = 1 

0 T Time t 

Figo 1 - Unit Impulse Function 

2 
A parenthesized number within the text, refers to the 

correspondingly numbered reference in the .Bibliography, lf 
not otherwise defined. 



The response of a linear system to a unit impulse 

function is a unique characteristic of that systemo , The 

function which defines this response is known as the system 

weighting functiong w(t)o An example is shown in Fi~o 2o 

0 Time t 

Figo 2 - Example of System Weighting Function 

6 

It should be recognized that for any physically real­

izable system the system weighting function is equal to zero 

for negative time; in other words an effect cannot precede 

its causeo 

If the input impulse strength is greater than unity ~ as 

defined by the area beneath it ~ the linear system output is 

proportionately greater than the unit impulse outputo Thus 

if the curve of Figo 3 were considered the input and the 

curve of Figo 2 the system weighting function g the output at 

time t due to the shaded input impulse of Figo Jg t 1 seconds 

earlier 1 would be 

~q(t) = w(t1 )v(t-t1 )~t1 ~ 

dq(t) = w(t1 )v(t-t1 )dt1 o 

(1) 

(2) 



v(t) 

'l'ime t 

Fig. J - Input Function 

I 
I 
I 

>-I 

t 

By superposition of the output of all the incremental input 

impulses, the total output is given by equation (3). 

(3) 

The right side of equation (3) is known as the convolution 

integral. 

7 

lo3 Fourier Series 2 Fourier Integral, and Fourier Transform 

A periodic function, f(t), may be expanded into a Fourier 

series if it satisfies the Dirichlet conditions 9 which areg · 

lo The function has at most a finite number of diseon-

tinuities in one periodo 

2o The function has at most a finite number of maxima 

and minima in one period. 

3o The integrai_/:~j! f'(~) d~ is f_:tnt~e: (2) 
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By expansion into a Fourier series 9 the function f(t) is de= 

fined in harmonic sinusoidal componentso This permits arbi= 

trary waveforms to be expressed in terms of their amplitude 

speetra 9 or frequency spectra as they are more comm.only termedo 

The response of' a linear system to the input function., f'(t) 9 

may then be determined by superposition of its responses to 

the various frequency components of the input .tunctiono(2) 

The Fourier series expansion of f(t) is 

a ., 
f (t)=_Q_ + L (a. eos nwt + bn sin nwt) 9 · 

2 n=l n 

with 

sin nwt dt 9 

where 

T ~ period of f(t) 9 

ru = 2tt/T 9 angular frequencyo 

Another form of equation (4-) is 

where 

Van2 + bn 
2 

en = !) 

~ tan =l 
(brf an) o = 'n 

(n=l 9 2 11 ) 11 ooo) 

(4-) 

{5) 

(6) 

(7) 

(8) 

(9) 

The value of en represents the amplitude of the alter= 

nating component of f{t) which adds to the constant component 9 

a 0 /2., This amplitude 9 cn 9 takes on a specific value for each 
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s_peeific harmonic frequency muo The angle4' n is the relative -

phase of the harmonic eomponentso It is also a function of nro 

taking on specific values for each integral value of nwo 

A plot of lcnJ versus nw is called the frequency spectrum 

of f ( t)., Actually I en I has values only at integral values of 

nro.9 so the frequency spectrum for a periodic function is really 

a series of :).ine graphs as shown by the example in Figo 4., 

It can be seen 9 however.9 that as the period T increases and w, 

which is 2TT/'.l\, decreases g the lines will be closer together 

and in the limit as T~•, a smooth curve will result; this 

is the ease for a nonperiodic function f(t)., 

a 
_Q 

2 

0 

lc4I 
._f 51 le I 

. -- 6 

3W 700 Bro 

Figo 4 = Frequency Spectrum of f(t) 

-

In order to visualize the basis for the Fourier integral 

which is applicable to nonperiodie functions 9 it is helpful 

to express equation (4) 9 for periodic funetions 9 in exponen-

tial form., Sinee 9 by the familiar Euler's relation 9 
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iwt -ioot 
sin noot = e - e 

2i 

and (10) 
ioot -ioot · 

cos noot = e + e 
2 

equation (4) ean be reduced to 

~ inwt 
f(t) = ..2._ ane , 

n=-• 

where 

l{T/2 -inoot 
an =T -T/2 f(t)e dt 0 

In this ease an is a complex coeffieiento 

that 

(11) 

(12) 

It ean be shown 

(13) 

so a plot of 21anl versus nro would be the frequency spectrum 

of f(t)o 

A nonperiodic function, f{t), may be expressed as a 

Fourier integral which develops directly from equations {11) 

and (12) o For a nonperiodic funotion 9 'I'-+-• and oo (which is 

2ff/T) approaches an infinitesimally small value, doo 9 while 

n becomes meaninglesso Thus 9 the Fourier integral for f(t) 

is given by equation (14)o 

l 1· [J• -iwt ~ ioot f ( t) = -2 . f ( t) e d t e · dw o 
• 11' .... -· 

{14) 

The Fourier integral is made up of what are termed the Fourier 

transform pairs: 

The Fourier transform of f(t) is 

1• -ioot 
F(ioo) = f(t)e dto· -· (15) 
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This transformation produces a function in the frequency 9 

oo, domaino 

The inverse Fourier transform of F(ioo) is 

l J., iwt 
f(t) = 2lT -w F(ioo)e dooo (16) 

This converts the frequency domain equation back to the 

time domaino 

As stated by Cheng (2) 9 .t'(t) may be regarded as being 

analyzed into an infinite number of frequency components 

with infinitesimal amplitude (1/21t) F(ioo) dwo A plot of 

IF(ioo)I versus oo shows the relative frequency distribution 

of f{t)o 

In order for a nonperiodic function.11 f(t) 9 to be ex­

pressible as a Fourier integral or to be Fourier transfor­

mable$ it must meet the Dirichlet conditions and the conver= 

gence condition as follows: 

lo Function f(t) can have only a finite number of 

discontinuities in the finite interval t 1<t<t2 o 

2o Function f(t) can have only a finite number of' 

points at which the function becomes infinite in 

the finite interval t <t<t o 
1 2 

3o Function f(t) can have only a finite number of 

maxima and minima in any finite interval t <t<t o 
1 2 

4o The integral.[,: f(t) dt must be finiteo2 

2This condition is arbitrarily complied with in dealing 
with continuous disturbances by ignoring the true values of 
f(t) outside of the time range of interest and assuming there 
that f(t) = Oo 



12 

lo4 System Transfer Function 

The analysis of a linear system may be accomplished in 

the frequency domaino The frequency domain equation corres­

ponding to equation ( 3) may be obt-ained by_ Fourier trans.for­

mation of both sides of equation (3)o 

By interchanging the order of integration on the right 

side of equation (17), 

(18) 

The variable of integration of the integral on the right is 

changed from t to (t-t1 ), then 

(• -ioot · J• -iw(t-t1 ) 
Q(i(j)) = J_.e lw(t1 )dt1 _.e _ v(t-t1 )d(t-t1 ).(19) 

Now dealing with the right side of equation (19) 9 the 

integral on the right is the Fourier transform of the input 9 

or V(iw); the other integral is the Fourier transform of the 

weighting function9 or W(iw)., Therefore, in the frequency do~ 

main 

Q( ioo) = W ( ioo) V ( iw) " (20) 

Equation (20) is the frequency domain equivalent of the con­

volution integral, equation (3)o 

W(iw) is known as the system transfer functiono 

lo5 Stochastic Processes 

A Stochastic Process is one in which there is an element 

of ehaneeo It is not necessarily purely random but contains 

a degree of randomnesso 
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'Whereas the value of a predictable funetion .can be de­

fined speeifically as a function of timep the value of a 

stoehastie .function at a future time can be defined only in 

terms of the probability of its lying in a specified rangeo(l) 

An ensemble of a stochastic signals is displayed·in 

Figo 5o .Eae·h. record displays the signal from a specific 

:maehineo Identical types of machines have preduced the en .. 

semble of signalso 

N 
Signals 

Figo 5 = Ensemble of Stochastic Signals 
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The first probability density distribution function for 

this ensemble is determined from ~quation (21) 9 

where 

p1 (v1 ,t1 ) = lim 
N·-+• 

6v1 ~o 

[!J,Nl (v1 ,t1 ,6v1 ;N)] 

N 

N = total number of signals in the ensemble 

AN1 (v19 t 19 Av1 ;N) = number of signals lying 

between v1 and v1+Av1 at time t 1 o 

(21) 

The probability of a signal lying between v1 and 

v1+dv1 at t 1 is p1 (v1 ,t1 )dv1 a Thus the probability of' v1 

having a value between a and bat time t 1 is 

{22) 

It follows that 

(23) 

The ensemble average value of v1 at t 1 is 

(24) 

The second probability density distribution function is 

determined from equation (25) 

[6N2 (v1,t1 ,Av1 ;v29 t 2 ,Av2;N)] 

N p 2 (v11 t 1 ;v2 jt2 ) = lim ------.;;;.;..,...-------- 9 (25) 
N~ 4l!O Av1 /J,v2 

/J,vl~o 
/J,v2~o 



where 

AN2 (v1 s;t19 Av1 ;v29 t 29 Av2 ;N) = number of signals 

lying between v1 and v1+Av19 at time t 1 and 

also lying between v2 and v2+Av2 at time t 2o 

15 

The probability of v1 having a value between a and bat 

time t 1 and v2 having a value between c and d at time t 2 is 

P2 (a<v1<b 9 e<vi<d) = J! dv1 J! p 2 (v1 ,t1 ;v29 t 2)dv2 o- (26) 

By procedures similar to equation (21) and (25), the 

3rd, 4th, 00000 nth probability-density distribution may be 

developedo It is by means of the.se probability-density dis­

tribution .functions that the complete statistical charaoter­

:1.stios of a stoohastie process may be def'inedo 

A non=stationary stochastic process is characterized by 

probability-density distributions which vary with timeo If 
' 

the probability-density distributions are independent of time 

the stochastic process is termed stationaryo In this latter 

ease 9 regardless of where t 1 is chosen in Figo 5g the value 

of the first probability-density distribution remains eon= 

stant and the value of the second probability~density distri= 

bution is also a constant for a given t 2-t1 , or 't' 9 etc., The 

definition of the statistical eharaeteristios is thus sim ... 

plifiedo 

It would appear 9 .for a stationary process 9 that it is 

possible to define the-.statistios of the stochastic signal by 

using only one record of infini:te length rather than the en­

semblee This assumption, which is generally accepted and 
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successfully used is termed the ergodic hypothesiso(l) The 

first probability-density distribution is then determined by 

equation (27) o 

wher.e 

[6T1 (v1 , Av1 ,T)] 
T 

p1 (v1 ) = lim 
T---+- • 

tv1~0 

T = total time range thr@ugh which the time t 1 for 

signal value v1 is swept ... 

A'l\ (v19 Av19 T) = .total time during which the signal 

{27) 

at time t 1 lies between v1 and v1+av1 , as t 1 moves 

through To 

Obviously T cannot be infinite. As a. result of the 

Strong law of large numbers, the complete statistical 

characteristics oan be defined by using a record of finite 

time length; however 9 confidence in the validity of the 

statistical description will increase proportionately as T 

inerea.seso (3) 

The second probability-density distribution for a station-

ary stochastic process is determined from a single record or 

yime history by equation (28) o 

[6T2 (v1,6v1,~1.v2,Av2,T)] 

T p2 (v19v 29"t') = lim. -------------, 
T-+-• Av1 Av2 

8V ~0 
6v1 ~o 

2 

(28) 
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where 

.6T2 (v19 llv19"t'1 ,l)v2 l).6v2 ,l)T) = total time during which the 

signal at time t 1 lies between v1 and v1+.6v1 and 

also at time t 2 = t 1+-r lies between v2 and v2+.6v2 

as t 1 moves through To 

106 Correlation Functions 

·correlation functions are used in the analysis of sto­

chastic processes whether the analysis is carried out in the 

time domain or the .fre([uency domaino They are related to tbe 

second probabili ty=densi ty distribution just discussed.~;"' 

The autocorrelation function is 

average of the product of the signal 

nal at time t2 or tl +'t' as indicated 

¢vv(tl,l)'t') ='~-(~tl+tj ,I) 

where 

defined as the ensemble 

at time tl and the sig-

in equation (29) 

(29) 

¢>vv{t19 't) = the autocorrelation function of v(t).0 

The second probability density distribution function may be 

used to determine the autocorrelation function~ 

It characterizes the signal but is not uniquely associated 

with the signal 9 ioeoii a specific signal has a specific auto= 

correlation function.9 but an autooorrelat.ion function cannot 

be analyzed to determine the specific signal from which it 

was derivedo 

In the ease of a stationary stochastic proeess 9 the auto= 

corr~lation function can be defined as the time average of the 



product of the signal at time t 1 and the signal at time 

t 1+'t' in accordance with the ergodic hypothesiso Thus 

18 

¢vv('t') = v(t)v(t+1:) 9 J (31) 

er 

¢_ (<t) = lim 2
1m f TT v{t)v(t+i:)dto 

vv T~• .J. - . 

(.32) 

For the stationary case the value of</> ('t') is unchanged 
vv 

whether 't' is plus or minus, thus 9 

cp ('t') = ¢, (--r); 
vv vv 

(33) 

ioeo 9 the autocorrelation function is an even function of "t.o 

In ad.di tion ¢. ( 0) is equal to the mean-a qua.re value of the 
vv 

signal as can be seen from equation (32) and 

¢_ (0) .?! ¢.. ('t') 0 

vv vv 

As T approaches infin1ty9 the autocorrelation function 

approaches the square of the mean value of the signalo 

(34) 

The cross-correlation fu~ction is analogous to the auto-

correlation funetiono It is applicable to a pair or signals 

rather than a single signal and is defined as the ensemble 

average of' signal vat time t 1 and signal u at time t 2 or 

(tl +1:) O 

4>. (tlg"t') vu . 

~ 

= v{tl)u(tl+'c')o (35) 

For a stationary stochastic process, the cross-correlation 

.function may be defined in terms of time averages per the 

ergodic hypothesis. Thus 

~u('t') = v(t)u(t+-t), 

¢' vu ("t') = lim. 21T f~TT v( t )u( t+"t') dt o 

T~• 

(36) 

(37) 
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The cross-correlation function for stationary signals is 

not an even function o:f 't'o It can be shown, however, that 

lo7 Power Density_ Spectra 

The response of a linear system to a stochastic input 

signal is also stochastic. System analysis may be carried 

out in the time domain using autocorrelation f"u.notions_or in 

the .frequency domain using mean-square amplitude density dis­

tribution or power density spectra as they are oalledo 

The p0wer density speetrwn of a function f'(t) is simply 

1/(211') times the Fourier transform of the autocorrelation 

function of f(t)o 

Analysis using power density speetr.a is of primary oo:n,­

oern in this thesis due to its growing application to struc­

tural load analysis in the field of aircraft and missileso 

Stationary stochastic processes only shall be oonsideredo 

It is advantageous in understanding the frequency domain 

analysis to approach it from the time domaino A linear system9 

as shown in block diagram. form in Figo 69 is subjected to a 

nut v t 
System 
Weighting 
Function 
w(t) 

Figo 6 = Block Diagram of Linear System 



stochastic input signal v(t) 9 it has a weighting function 

w(t), and the stochastic output is q(t)o 

The autocorrelation function of the output is 

20 

,,1,. 1 f T '-f'/.qq ( 't ) = l im 2'1' -T q ( t ) q ( t~} d t ; (39) 
T·~• . 

however, from equation (3) 

q(t) = J_: v(t-t1 )w(t1 )dt1 , (40) 

and 

(41) 

Thus equation (39) can be rewritten in terms of the input 

signal and the system weighting function by substituting 

equations· (40) and (41) in equation: (39,) o 

¢,qq· ('t') = lim 2~ [.,,,! dt J_: v(t-t1 )w(t1 )dt1 
T-+-• 

f; .~v (t+-r""t2:' ).w (t2) d t20 CID. ,, . 
(42) 

By changing the order of integration and rewriting, 

¢. (1;) = J • w(t )dt ("" w(t2 )dt2 qq -· 1 1 J_~ 

i~-· :T .J~; :r{t4tf)v(;ttt~t2)dt~ 
(43) 

It can be seen that the last integral on the right is the 

autocorrelation function of the input signal 9 therefore, 

<p ('t') = f • w(t )dt J_., w(t )dt2 ¢ ('t+t1=t2 )o (44 
qq -· 1 1 -· 2 vv 

Now to switch to the frequency domain9 t_alte the Four.fer 

transform of both sides of equation (44)o 
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As previously stated, l/(2rr) times the Fourier transform of 

the autocorrelation function of a time function is, by defi~ 

nition1 the power density spectrum of that time function; thus 

1 f., -fort 
~ ( ioo) = - e cp ( ,y;) d'T:. 

qq 2rr -"' qq 
(46) 

By multiplying both sides of equation (~5) by l/(2rr) and 

changing the orde! of integration of the right sideg 

(47) 

Recognizing the Fourier transforms on the right, equation 

(48) may be writteni 

~ (ieu) = W(-ioo)W(ioo) ~ (ioo)u 
qq vv 

(48) 

Simplification may be achieved by recalling Euler's relation 

iwt oot + i sin oot jl e = cos 
=iwt 

e = cos wt i sin wt,, 

The equations for W(ioo) and W(-ioo) are then 

and 

I • -ioot 
V(ioo) = -~e w(t)dta 

Wi(ioo) = J_:w(t)cos oot dt-i [_: w(t)sin oot dt 1 

J., ioot · 
W{-ioo) = _.e w{t)dt 9 

W(-ioo) = f_:w(t)cos wt dt+i f_:w(t)sin wt dt, 

(49) 

(.50) 

(.51) 

(52) 

(53) 
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and it is seen that W(-ioo) and W(i~) are eonjugate pairso 

There.fore, 

W{-i~)W{i~) = lw(iw)l 2, {54) 

and 

~ ( iw) = I W ( ioo) 12..:i; ( iCAl} o qq ':l:"vv · (55) 

Equation (55) is the key equation to the analysis o.f linear 

system response to a stoohastie input. 

Frequently9 the para:m.eter sought in the system analysis 

is the mean-square value o.f the responseo This can be ob-

tained. by inverse trans.formation o.f the output power density 

spectrum which yields the auto~orrelation .function; evalu-

ati-on at 't' = 0 gives the mean-square valueo 

¢q. q("t') = r• eiwta:, (ioo)dwo ),,.,. ~q 

ff) (0) = mean-square value o.f .f(t) as indicated by 
qq 

equation (32) o 

(56) 

(57) 

Thus the mean=square value of the stoohastic response is 

equal to the area under the power density spectrum curve for 

the outputo This .faet is particularly use.ful in dealing with 

stationary stochastic signals having a Gaussian distribution. 

In this ease the probability-density distribution o.f the re­

sponse is defined by equation (58)o 

1 
. p( q) ::: e a-4 211 

2 ... ( q-q) 

2a6-
(58) 



where 

0- = root-mean-square value or the response 9 

which is [ ¢ ( OJ ] 1/ 2 and is termed the 
qq 

standard deviation, 

q = system output or responseg-

1 JT q = lim 2T ~Tq(t)dto. 

T--+-• 

; 



CHAPTER II 

METHODS FOR THE EVALUATION OF 

AIRCRAFT GUST LOADS USING 

POWER DENSITY SPECTRA 

2Ql Historical Resume 

The analytical determinat.ion of aircraft structural 

loads produced by wind gusts has been accomplished for years 

assuming discrete gusts of specified magnitudes and a (1 = 

cosine) or other arbitrary shape.,{.4) These procedures have 

been adequate but not wholly satisfactory particularly for 

the definition of fatigue load histories due to gustsQ 

Approximately ten years ago Clementson (5) investigated 

the use of power density spectra for definition of the at­

mospherie·tu+:bulenceQ From this start the application of 

generalized harmonic analysis methods to the determination 

of gust loads on aircraft has been investigated and developed 

extensively by Press (6-8) 9 :Maz.elsky (6), Meadows and 

Hadlock (7) 9 and Steiner (8) with the National Aeronautics 

and Space Administration1 as well as otherso 

During 1960 9 new military specifications for Airplane 

Strength and Rigidity were adoptedo One of these 9 MIL-A=8866 
ID II 

(ASG) Reliability Requirements 9 Repeated Loads 9 and Fatigue 9 

1 Formerly the National Advisory Committee for Aero-
nautieso 



requires the use of power density spectra methods for the de-

termination of aircraft fatigue loads due to atmospheric tur­

bulence. Thus the method has reached a stature of unavoidable 

importance to the aircraft designer. 

2,,2 Power Spectra of Atmospheric Turbulence 

The power density spectra of atmospheric turbulence have 

been measured in airplane flights and also from meteorologi­

cal towers. Measured data from references (6) 9 (7), and (9) 

are presented in Figo 7o The frequency argument of these 

power density spectra plots has been changed from oo to the 

reduced frequency 11, which is ro/V;9 in order to make them inde­

pendent of the aircraft velocity at the time of measuremento 

In addition 9 the magnitude of the power density spectrum 

funetion2 ~ <P (.D..) 9 is two times that which would be expected 

by the definition of equation (46) since the negative fre-

queney and positive frequency components have been added to­

gether and plotted against positive values only of . .0.., 

The power density spectra of Fig., 7 have generally the 

same shape but different areas under the eurves., This indi-

cates that the power density spectra represent different 

mean-square intensities of gust velocity but the same rela= 

tive distribution of amplitude with respect to the reduced 

frequency., 

2 The formally correct nomenclature,4> (i!l) 51 is discarded 
in favor of g;> (12.) since this is more commonly used in aero­
nautical references., 
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A general equation for the power density spectra of 

atmospheric turbulence is stated by Press 9 Meadows, and 

Hadlock (7)o 

2 L <P.u (.11. ) = rr:: u 11' 

where 

qi (fl)= power density spectrum of gust velocity in 
u 

2 (fto/seo.) /(radians/foot) • 

..fl = reduc.ed frequency w/V in radians/.footo 

L = scale of turbulence in feeto 
2 a;-;_ = mean-square gust velocity in 

(feet/second) 2o 

27 

(59) 

L can be considered to be· proportional to the average eddy 

size of the turbulence:o A value of L of 1 9 000 feet has been 

used in reference (7) 9 (8) 9 and (9) 9 to give the best fit to 

. measured datao A plot of equation (59) using u-2 = 49 
u 

2 (ft.,/see<>) is shown in Figl) 7 for comparison with the experi-

mental datao 

2.3 G·aussian Distribution of Atmospheric Turbulence 

In general 9 an airplane may beconsidered a linear system 

in the determination of its response to a gust inputo As 
II 

stated by Truxal(3) 9 page 418, 000000000 a signal which 

possesses a Gaussian distribution function still has this 

type of distribution after passing through any linear net-
II 

work. Thus flight measurements of an airplane response 

parameter such as the normal aceeleration9 an 9 at the center 

of gravity have been investigated to determine their pr·o­

babili ty distribution in order to ~stablish the probability 



distribution of' the input gust velocii:iieso 

Press and Mazelsky (6) theorize that local atmospheric 

turbulence may be considered a stationary stochastic process 

with gust velocities distributed in a normal or Gaussian 

mannero This trend is indicated 9 for example 9 by flight test 

data presented by Press and Mazelsky (6) representing center 

of gravity acceleration peaks measured during a two minute 

interval for eaeh of two similar airplanes in side by side 

f'light at 450 miles per houro 

Overall atmospheric turbulenee 9 as opposed to local at­

mospheric turbulenee 9 is not distributed in a Gaussian manner 

due to variations with weather 9 terrain and altitudeo Press 9 

Meadows 9 and Hadlock (7) have investigated data on peak 

values of airplane center of gravity normal accelerations 

measure\ during approximately 7 9 000 flight hours accrued in 

eight different tr~sport operationso The investigation 

shows that 9 although the data for each operation do not con­

form to a Gaussian distribution9 they could represent the 

summation of several different Gaussian distributionso These 

investigators have concluded that overall atmospheric turbu­

lence is made up of elemental stationary stochastic processes 

having individual Gaussian distributionso 

The majority of airplane gust load data which have been 

aeeumulated for statistioal evaluation are in the form of 

aeeeleration peak counts recorded at very low film speeds 

( 2 to ~l .feet/hour) and are not suited :for determination o:f 

correlation :funetionso Press 9 Meadows 9 and Hadleck (7} have 

developed a method to convert these data to a form applicable 



to power density spectra analysiso The conversion is based 

on equation (60) 9 developed by Rice (10) which applies to a 

Gaussian distribution of a o 
n 

w ¢, ( oo ) doo 

-a 2 
n 

29 

N(a) 
n 

J• 2 _ 1/2 
1 o an = - e 
2'ff J: cp ( u) ) d(J) 

o an 

(60) 

where 

N(a )F= average number of maximum. accelerations per 
l'l . 

second exceeding a P 
. :n 

<P (&>) 
a 

= power density spectrum of an(t), 
n 

o; 
n 

2 := J. ifi ( 00) dooo 
o ~n 

This equation is the exact expression for the number of 

crossings per seoond with positive slope of given values 

of a o 
n 

It is an approximate expression for the number of 

positive acceleration peaks per second above a given value 

of anJ it become,s increasingly exaet as an increases o 

Making ~se, of equation (59) as defining the power den-
I 

sity spectrum. of atmospheric turbulence and recalling equa= 

tion (55) it can be seen that the portion of equation (60) 

within the brackets is a constant for a given airplane under 

given operating conditions of speed 9 weight 9 altitude 9 eteo; 

1/(21'f) times this constant is termed No 
0 

r• ro2<P, ( 00) dro 1/2 
_.l__Jo an . 

N 
0 - 211' J• q, ( oo) dro " 

o an 

(61) 
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N0 is the exact expression for the number of times per second 

that an(t) crosses the value-zero with positive slopeo Re­

writing equation (60} 9 · 

-a 2 
n 

2cr2 
a :n 

9 

1 2 
log N(a) = log N - 2 an o · ... n o 2 a-

an 

(62) 

(63) 

The linear relationship of ~qu.ation (63) 9 which is applicable 

to a Gaussian distribution of an9 has been used in conjunc­

tion with the peak acceleration data from ea.eh of the eight 

different transport operations to reaeh the conclusion that 

although these data for any one operation do not fit the 

linear relationship and 9 therefore, do not oonform to a single 

Gaussian distribution 9 they could represent the sum of 

several Gaussian distributions ea.eh having a different 0-o (7) 

The feasibility of this is shown in Figo 8 which is a plot of 

the peak acceleration data from one of the eight transport 

operationso 

M(a) is the average number of positive acceleration n 

peaks per second exceeding given values of ano The ordinate 

of Figo 8 is 2 M(an) because the transport operation aeeeler~ 

ation peak count data included both positive and negative 

peak countso Linear relationships representing three sepa­

rate Gaussian distributions are also plotted; the sum of 

these is the short dashed curve which closely approximates 

the measured datao In equation rorm9 



31 

Fig. 8 Peak Acceleration Data From A Transport Operation 
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k 
M{,L) = 2. Pi !fi (a )9 

.-zi i=l n · 
( 64-) 

(65) 

where P1 is the proportion of total flight at the 1th con­

dition and N1 (an) is the number of peak accelerations per 

second exceeding given values of acceleration for the 1th 

eonditiono If' we consider average values of airplane weight 9 

speed 9 altitude 9 etch whieh go into the calculation of 

I V(112) I 2 used to calculate !Fa (n) from ~u (.!l) by equation 
n 

(55) and therefore define an average N 9 equation (65) may 
0 

be written as 

=a 2 
n 

k 20-:2 
M ( a } = N 2 Pi e i · " 

n o 1=1 
(66) 

An airplane in long time flight will enoou:nter conditions 

of air turbulence which are continually varying in intensity 

as defined by the root mean-square gust velocity in equation 

(59)., Considering this fact 9 equation (66) is rewritten in 

the following formi 
=a 2 
__n_ 
2u-2. 

M (an) = No J: t ( o;n) e an d o;n 9 (67) 

where f(O-) dO- gives the proportion of flight time spent at 
~ an 

values of U- between o; and o;_ +dq;:'" Thus r(o; ) is the 
8n n n n n 

probability-density distribution of the root mean-square ac-

oelerationo 
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The transport operation data are analyzed in Referen~e (7) 

to determine the appl·ieable probability-density distribution 

of 0a' o Three equations are developed therein as poss.ibili ... 
n 

ties: 

. f 1 (<7-'8.n) 1~· =- -e 
a1 11' 

l = -~ e 
2a2 

3 

-o-2 
a __ n_ 

2a 2 
1 

{68) 

0 

In each equation,a is a scale parameter with high values 

of a associated with more severe turbulenoeo The equation 

for fl (a; ) has been proposed by Pres.s and Steiner in the 
n . 

later work of Reference (6) .for prediction of gust loads o 

From equation (57) 

Substituting the assumed equation for the power density 

spectra of ~tmospherie turbulence, (59) 9 into equation (69) 9 

along with the relation of equation (55) 9 the relation be-

tween a;_ 
n 

and a- is established8 
u 

(70) 



where 

W(iil) = the system transfer function in terms of the 

reduced frequency n which is w/V. 

This may be written as 

34 

(71) 

where 

- tL r• A=-
Tt 0 

(72) 

A is a constant for a specific IW(i.fl)j 2
o 

Making use of equation (71) to change the variable of 

equation (68) for f 1 (~), the following equation develops 

for the probability-density distribution of the root mean­

square gust velocity: 

~(a-;)::: A r(o; ), 
n 

(73) 

I\ 1 ~ f(<r::) =- -:-e u b 1T' 
, 

where b = a/Io 

Appropriate values of the scale parameter, b; have been 

developed by Press and Steiner (8) to define l(o-) for alti­
u 

tudes from sea level to 60,000 feet and for both non-storm 

and storm turbulenceo These are set forth in Section 2o4o 

It is appropri.e.te to replace ~ in equation ( 67) with 
,·n 

~ which is the actual basic input parameter for gust load 

studieso Know~ng that f(o;) = (1/A) ~(a;), then 
n 



2 

f lPO /\ 

M(an) = N f (rr )e 
0 0 U 

(74) 

In this equation both N0 and A are functions of the power 

density spectrum for atmospheric turbulence for a-= loO 
u 

ft/seco and the system transfer funationii As previously 

stated, each are constants for a given airplane under a given 

set of average operating conditions of weight, velocity, al­

titude, etco Equation (74) is then a key equation for evalu­

ating statistically the airplane loads due to gusts~ 

2o4 Gust Encounter Historz to be Considered in Airplane Design 

The anticipated atmospheric turbulence to be encountered 

in operational flight has been investigated by Press and 

Steiner (8). Two types of turbulence have been considered, 

moderately rough clear air turbulence termed nonstorm tur-

bulenoe and severe turbulence encountered in thunderstorms, 

termed storm turbulence. Proportions of the total flight 

distance during which each type of turbulence may be antici­

pated have also been estimatedii The probability-density dis­

tribution for the root mean-square gust velocity, equation (73), 

may be modified as follo~s to account for each of these types 

of turbulence: 

I\ 

f(ot) (75) 



where 

P1 = proportion of total flight distance in nonstorm 

turbuleneeQ 

P 2 = proportion of total flight distance in .storm tur­

bulence .. 

b1 c: nonstorm turbule:rioe scale factor .. 

b 2 • storm. turbulence scale factor .. 

Table I has been taken from· Military Spec:tfication 

MIL..,A ... 8866(ASG)o It defines the parameters of equation (75) 

whioh must be used in gust load evaluations for military 

airplaneso Basically it was developed by Press and Steiner(8) 

but has been modified to require eonsidera.tion of a larger 

proportion of flight distance in storm turbulenceo 

Altitude 

Fto X 10-3 

0 ... 1 

l ... 2 

2 = 10 

10 - 20 

20 .., 30 

30 ... 40 
40 = 50 
50 = 60 

TABLE I 

TURBULENCE PARAMETERS 

loO 

Oo32 

Oo08 

0.045 

Oo06 

00065 

00023 

0.,02 

0 

p 
2 

000004 

0000125 

000015 

000012 

000006 

000002 

000001 

3o9 

406 

308 

3o7 

3.5 

3o4 

3.1 

208 

9o4 

908 

10o4 

llo2 

llol 

llo7 

12o5 

L 

Feet 

500 

19000 

l.i,000 

19000 

l.i,000 

19000 

19000 

19000 
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Press and.Steiner (8) consider a slightly modified ver­

sion ef equation· (74) o 

where 

G(y) 

2 =y 
2-2 

,.. 20--A 
f(°u_)e u 

G(y) ~ ave.rage number of response peaks exceeding 

given values of y (total of both positive 

and negative peaks) per mile of fligh.to 

:c:: any desired response 'parameter .for the air­

plane systemo I-t could be an but could 

just as well be wing bending moment 9 etoo 

G ~ average number of response peaks per mile 
0 

0f flight in rough airo 

In this equation 

G = 
0 

(2} (lo467) (3600} 
V N o 

0 

N is defined by equation (61) for the specific response 
0 

(76) 

(77) 

parameter required and Vis the airplane speed iri ft/seeo 

It is important to note that the factor (2) is necessary 

since G(y) defines the sum of positive and negative response 

peaks whereas M(a) defines the positive response peaks onlyo n 
Substitution of equation (75) into equation (76) and 

integrating yields 

(78) 

whioh is a relatively simple equation9 and can be used directly 

to define the anticipated gust load history for an airplaneo(8) 



Suppese, :for example, a given airplane is to frequently 

fly the mission indicated by Figo 9 and the gust load spec-
0 

tram for this mission is requiredo ,.Q 
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The mission must be broken down into segments for which 

average values of b19 b 29 P19 P2 .9 A, and G0 can be deter­

minedo For9 say the 1th segm.ent 9 these applicable average 

parameters are used to calculate Gi(y). The product of G1 (y) 

and the number of miles flown in the 1th segment, Di, gives 

the number of response peaks exceeding given value of y 

which are encountered in that 1th segment onlyo By repeti­

.tion of this procedure for all segments of the mission and 

summation of the results, the gust load history for the en­

tire mission is determinedo This ean be stated in equation 

form. as 

(79) 



where 

Gt(Y) = expected number of' response peaks exceeding 

given values of y., 

Di = flight distance in 1th :t"light segmento. 

G1(Y) :c response history in the 1th segment from 

equation (78) 0 

The total gust load history for the life of the airplane 

can be estimated by defining the various missions antici­

pated for normal operational use of the airplane 9 the number 

of times each should be flown per year 9 and the desired num­

ber of years the airplane is to remain operationalo Appli­

cation or equation (79) to this total operational plan will 

provide the desired fatigue gust loading information for de­

sign and testingo 

2o5 Current Gust Study E:t"forts 

An extensive flight survey of atmospheric turbulence at 

altitudes below 2 9 000 feet has reeently been completed by the 

Douglas Aircraft Company9 Inco under an Air Force contraeto 

The final report of this study is to be published in the near 

future., Reference (9) is an interim report on subject. 

A similar high altitude study of atmospheric turbulence 

is to be carried out~ on a similar contract arrangement 9 in 

the near futureo 

These efforts and other similar ones of recent origin are 

basically for the purpose of better defining atmospheric tur= 

bulenee in power density spectrum termso The data gathering 

and reduction procedures used are optimized for the purpose 9 

making use of high speed computing machines to reduce vast 

amounts of flight datao 



CHAP!ER III 

INVESTIGATION OF THE EFFEOT OF PYLON STRUCTURAL 

FLEXIBILITY ON GUST INERTIA LOADS EXPERIENCED 

BY THE SUPPORTED STORES 

3ol Objective of Investigation 

Airplanes present many examples of large high density 

items which are mount-ed to the b.asie airframe by flexible 

support ·structureo Among these are jet engines 9 equipment 

pods 9 bombs 9 missiles 9 fuel t.anks 9 and the other stores which 

ar·e pylon or strut mounted to the wing or fuselage., 

In general 9 each pylon structure is designed to assure 

eapabilitY, to carry its supported item or items throughout 

the complete velocity envelope of maneuver and gust load fac­

tors for the associated airplaneo The resulting inertia and 

air loads are trea.ted as steady state loads in the stress 

ana,lysis of the struotureo In addition9 certain basic mini= 

mum stiffness requirements :m.ay be assigned to the pylon 

structure to assure freedom from fluttero 

The fatigue strength of the pylon is investigated ana­

lytically and in the laboratory on the basis of' the cyclic 

load history data developed for the associated a.irplane 9 to 

assure adequate structural lifeo 

In the development of the oyelie fatigue load history 

for the pylon and supported store 9 it has been comm.on engi= 

40 
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nearing praetiee to ignore the effect that pylon structural 

flexibility may have in altering the accelerations felt by· 

the supported store as eompa~ed to those input at the point 

where the pylon at.taehes to the basic airframeo 
! 

The signifieanoe of eonsidering the effect of pylon flex­

ibility is investigated herein for a hypothetical exampleo 

This effort is pursued in the belief' that a supported store 

may feel not only an amplification or attenuation of the 

basic input accelerations but also induced accelerations 

acting in directions which differ from the basic inputo Fur= 

ther it is felt that these induced accelerations may 9 in some 

eases 9 have primary significance in a structural fatigue in­

vest:Lgationo 

An inverted Y shaped pylon is considered as shown in 

Figo lOo This pylon is attached to comparatively rigid basic 

wing structure and supports two high mass stores 9 one from 

each arm of the inverted Yo 

A power density spectrum. of vertical or normal incremen-

tal acceleration input at the pylon to wing attachment pointp 

due to atmospheric gusts 9 is given in Figo lli> This is appli­

cable to high speed low level flight 9 at a specific gross 

weight 9 in homogeneous atmospheric turbulence having a root 

mean-square intensity 9 0- 9 of 20 ft/seco 
u 

The deflection influence coefficients for the pylon 

structure are given in Table IIo These coefficients define 

the deflections of the center of gravity of each store due to 

unit loads ~pplied separately at the center of gravity of 

each storeo In real1ty 9 eaeh store has six degrees of free= 



z 

Forward 

~ >=Inboard 

Down 

Figo 10 - Pylon Line Diagram 

Approximate 
II I Seale: 1 = 2 

zi 

~ 
f\) 
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TAJ3LE II 

l?YLeN DEFLECTION INFLUENCE COEFFICIENTS 

Leea:tiom and Center of Gravity Center of Gravity 
Loca- :Direction of Qf Outb 1d. Store of Inb'd. Store 
tion and Resulting 
Direction of De flee-
Applied Unit tions Vertical Lateral Vertical Lateral· 
L©a.d 

Center of Vertical 29 .15936 -34.75498 -13.19916 -21.70206 
Gravity 

of 
Outboard 
Store Lateral -34.75498 78.56017 24.75696 37.88529 

Center of Vertical -13.19916 24.75696 25.35924 38.09839 
Gravity 

of 
Inboard 
Store Lateral =21.70206 37.88529 38.09839 92.52996 

Notes: 

l. Units are inches x 1.0-6 per pound. 

2, Origin of each coordinate system is at C.G. of that specific store. 

3. Positive vertical deflection or load is down. 

4. Positive lateral deflecrtion or load is outboard. 

5. This array of eoeffieients (times 106 to put in units of inches per 
pound) is used herein as Matrix G where the first row is a11, 012, 
013, 014; the second row 021, G22, 023, 024; etc. 
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domo All could be considered in a complete investigation of 

this type 9 using high speed digital computing machines; how= 

ever 9 simplifying assumptions have been made herein to keep 

the calculations within bounds for a desk calculatoro The 

store itself has been assumed infinitely rigid and the pylon 

has been assumed flexible in the vertical and lateral direc= 

tions only with infinite stiffness for longitudinal loads and 

all moments applied at the store centers of gravityo Although 

these assumptions have been made to simplify the problem 9 they 

are reasonable for the type of structure eonsideredo The in­

fluence coefficients are derived as a normal part of the py= 

lon static stress analysis and the values of Table II are 

entirely reali.stic for such a store supporting pylon designed 

to meet military structural design criteriao An assumed mass 

of thirty five pound seconds squared/inch has been choseno 

A review of the deflection influence coefficients of 

Table II indicates that large lateral deflections result from 

the application of a vertical load at a store center of graY­

ityo The lateral deflection is altered by simultaneous ap= 

plication of an equal vertical load at the center of gravity 

of the opposite store., ln each case 9 however 9 the lateral 

deflection9 due to vertical load application9 is quite signi= 

ficant., This would indicate that the vertical gust load fac= 

tor or acceleration input at the pylon to wing attach point 

may induce significant lateral acceleration at the center of 

gravity of each stereo In order to evaluate the results of 

this investigation9 it will be considered that the basic 

structure is statically designed such that a lateral load 
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factor or acceleration of loO g at the center of gravity 

of the store produces a eritieal stress which is equivalent 

to that produced by a vertieal·load fa.etor at the center of' 
It II 

gravity of the store of 2o75 go Thia relationship will be 

used as a means of conveniently combining the effects of the 

total eyelio load history developed in this investigation. 

3.2 Development of System Transfer Functions 

Referring to 'Fig& 10 9 pylen elastic deflection equations 

(80) are written in matrix formo Matrix G is the matrix of 

pylon deflection influence coefficients from Table IIo The 

subscript i applies to the inboard store and subscript o ap-
' plies to the outboard stereo The input to the system is ver= 

tieal displacement z whioh is input at the pylon to wing 

attachment point as a unit impulse function. Each value of 

Fis the pylon spring force related to the net pylon deflec­

tions in they and z direotionso 

zo .,, Z'. 011 012 Gl3 014 
F 

Zo 

Yo 021 022 G 024 
F 23 Yo 

= (80) 
Z:t - z 031 

G G G F 
32 33 34 z1. 

Yi G41 G G G F 
42 43 44 Y1 ·o 

Then the pylon. spring force equations are 



Fz Kll Ku~ K13 K14 z .., ·Z e 
0 

F ]{21 K22 K23 K24 Yo Yo 
:m: (81) 

F K31 K32 K K34 z - z . zi 33 i 

F K41 \2 K K Y1 • . Yi. 43 44 

where the ·[K] matrix is the inverse of [G] and is shown in 

Table III. 

TABLE III 

MATRIX OF SPRING CONSTANTS 9 [K] 

0.07449201 

0.02990851 

0.00451749 

0.00336569 

0.02990851 0.00451749 

0.03039817 -0.01559786 

.... 0.01559786 0.12014453 

0.000990886 -0.04202255 

NOTEi Units are pounds per inch 

0.00336569 

0.000990886, 6 
. X 10• 

... 0.04202255 

0.02849340 

In a power spectral density analysis we are 9 by defi­

nition9 dealing with a harmonic representation of the dis­

turbing fu.notiono It is therefore appropriate to oonsider 

the structural damping in the system in the manner comm.only 

employed in structural vibration analyses of harmonically 
' 

oscillating system.so This is ad.amping proportional to 

displacement but in phase with the veloeity.(12) The equa­

tion of motion for the system will have the form 

. .. I I X . Mx+eKx-+Kx=O .. Iii · ' (82) 



where 

e = struetural damping eoeffieiento 

.K = spring constant. 
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ioot Since the system response is harmonic, x = x e o .Substi­o 
tuting this in equation (82), 

Mi +(1 + iC) Kx Co. 

In the form of equation (83) then» the di'fferential 

equations for the pylon/store system are 

.. 
(1 ic) Mo Zo + + Fz = 0 

0 

.. 
(1 ie) M Yo + + F = 0 

0 Yo 

Mi 
.. 

(1 ie) F 0 zi + + = z 
0 

M1 
..•. 

(1 Y1 .... + ie) F 
. ~i = 0 

The values of the F terms are defined by equations (8l)o 

(83) 

(84) 

0 

The ioF terni.s represent structural damping which opposes the 

motion; as previously stated 9 the magnitude of the damping 

force is assumed proportional to the elastic restoring force 

but in phase with the veloeityo A value of 003 has been 

chosen fore in this investigation .. For :metal aircraft 

struetures 9 this value is consistent with the typical values 

given by Scanlon and Rosenbaum (12) page 87 and somewhat high 

compared to the measured values quoted by Fung (13) on pa$e 

227 o No other damping· is. eon.sideredo 

These equations may be simplified by dividing each side 

by M or M which are assumed equal and by (1 + ie) to obtain 
0 i 
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equations (85) 

.. 
(1 

l 
ic) 

l 
'o +-F = 0 + M z 0 

.. 
(1 

1 l 
Yo ie) +-F :r:: 0 

+ M · Yo 
{85) .. 

(1 
l 

ie) 
1 

zi +-F = 0 
+ M zi 

•• 
(1 

1 
) 

l 
0 Yi +-F = 

+ ie M Yi 
'/ 

The Fourier transformation of equations (85) 9 considering the 

input z to be a unit impulse 9 yields the following set of simul-

taneous equations in the frequency domain where K11 a IS_29 etc. 

refer to the corresponding elements of the spring constant 

matrix [K] defined in Table III: 

[
.,,,lil2 K J K K K, I, ·. -- Kll+Kl3 z: ( ioo) -. + 1.1 + 12 Y ( iro) + 13 Z ( ioo) +....bt Y ( ioo) 

0 l+ie M M o M ,i M i M 

( 86) 

or in matri~ form 



•.·.50 

t 2 ~ K12 K13 K14 Kll w 
Z (iw) 

"""'i"-1+10 M M M 
0 

M ' 

K2l+K23 K21 t 2~ 
K23 K24. K22 61 

Y ( ioo) - M -1+10 M M M M 
0 

K31+K33 K31 K32 fK;3-::iJ K34 
Zi(iw) 

M M M M 

K41+K4_ K41 K42 K43 t 2 J K44 w 
Yi {ioo) 

M-1+ic M M M M 

The square matrix on the r-ight of' equation (87} is shown in 

Table IV and is termed matri~ [A]., 

[128.343- "'21 
[ l+i~ 

TABLE IV 

MATRIX [A] 

a54 .. 52aff 129.,0711 

854.5288 1868.5191- "'21 -445.6531 L 1+1~ 

~
' &)2~· 
432., 700- -. 

l+ie 

' 129.,0711 -445.,6531 

28.,31102 -1200.644 

-1200.,644 

(87) 

C) 
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then 

K11 + K:3.3 
Z0 ( ioo) 1311 Bl2 Bl3 Bl4 M 

K21 + K23 
Y0 (ioo) B21 B22 B23 B24 

M 
= (88) 

K31 + K33 
Zi(ioo) B31 1332 B33 B34 M 

K41 + K 
Y1 (ioo) B41 B42 B43 B44 43 

M 

where the [B] matrix is the inverse of matrix [A]o 

Equation (88) produces equations (89) through (92) which 

are the Fourier transforms of the z and y displacements at 

the·eenter of gravity of each store due to a vertical dis-, 

placement unit impulse input at the pylon to wing attachmento 

In gene:r?al these would be the system transfer funotionso 

-2257o414l3+10.984l+ 9 478l2-7 9 4849J28 9 850l+l,Ol9.998l.9826.9000 
Z0 (ioo)= · 3 · .9 

ti.4-7243o679A +14,973,06012-8,054 9 095,390l+l 9 0l9 9 983 9 970 9 000 

=2257o414(l-182o916)(l-616o9123)(l-4004~1101) 
Z (ioo)= 0 (89) 

0 (l-18403014) (l-547 .62833) (1=25520501) (A-3959.248)-

Yo(ioo)=l4-7243o679A3+14,973 9 060A2-8 9 054 9 095 9 390A+l 9 0l9 9 983l>970.9000 9 

=408ofJ757l(l-160o0018)(l-5455o8760) 
Y ( ioo) = · . · .. . ·· . o ( 90) 

0 (1-184 .. 3014) (A .... 54 7 .6283) (r..-2552.501) (1=3959 0248) 

-3561.,77113+12,138,52512-7 9 619 9 989 9 7001+1,019 9 983 9 850,ooo z1 (im)= » 
11.4-7243 .,67913+14, 973 9 06012-8 r; 054, 095 9 390A+ls, 019 9 983 9 970 s,000 

-3561.771(1-185 .. 911)(l-5830861o)(l-2638o2305) 
Z.(ioo)= .· . . o (91) 

1 (l-184oJ014)(A-547o6283)(l=2552.,5'0l)(A-3959o248) 



1104.481A3-3,053,58612+585,337,960i 
y (iQ))= . . . p 

i 1!+-1243067913+14,973,06012-8;054,095,390'A+1,019,983,970,ooo 

' 1104.4e1l(l-207.220l)(l-2557o5046) 
Y1 (iw)=. . . . . . . . 0(92) 

(l-184oJ014}(l-547o6283)(A-2552o50l){l-3959o248) 

where 2 
(.0 

l. = --. 
l+ie 

The introduction of the complex structural damping terms of 

ieF in equations (84), however, produces admittances or trans­

fer :functions which are (l+ic) times the steady state trans­

fer functions which are desired. The equations of Table V 

have been developed by multiplying equations {89) through (92) 

by (l+ie)3/(l+ic)4 and represent the steady state transfer 

.functions which are actually sought. These will be desig­

nated as Z~(ioo), Y~(ioo), a1(iM) 9 and Y1(iM)o 

3.3 Power Density Spectra of Response 

The power density ·spectra of the vertioal and lateral 

acceleration at the center of gravity of the outboard store 

are developed by numerically evaluating lz~(ioo)l 2 and 

IY~(ioo)l 2 as functions of oo and using equation (55)i 

4'0 (m) = IY~(ioo)l 2 q,1 (oo), 
Yo 

(93) 

(94) 

where ~i (oo) i~ defined by Figo 11. Table VI shows the e al ... 

eulation of <Po {@} anc; g>0 y
0

(ru) and has been converted to 
Zo . 

frequency in eyeles per second in place of the usual radians 

per second. 



TABLE V 

PILON TRANSFER FUNCTIONS 

=1257 .414 ~~2 .. 181.916)=:tlSi.9161] [{w2 .. 616.9123) .. 16U,.,9-113g] [{w1=4004oll0l)-i-40Q4.1101~ __, . 
Z ~ ( i ) l"i 2 . . . J 1/, 2 . . . . . . · I . . 2 . . 

~cu =l84o3014)=il84.3©l.4gj i.it:v =54T .6283)=i547 o6183aj [~ .. g551.501) .. il2551.501g] CTw ... 3959.148) .. 139J9o248~ 

.. 401.a1,1J [l} .,.1,, •• 11) .. 11~.001-1sJ u""'1 .. ,4,,.a1,Q) .. 1;4,,.11,,,J 
y~ (i )= ft I - ,:1 1/, 12 . . . . - - - I . - Ii 2 :J 

0 t!c.u ... 114.3014) ... 1114.3014'!.J li_Gu ... ;41.,283) ... 1547 .6183~ l_(cJ .. ,,,1 .. 501) ... 11n1.,,1~ ~"-' ... ,,,,.24&)-11,,, .• 141~ 

1 
... 3561.771 [w1 ... 1a;.911).:.u.a;.911if ITw1 .. 583.861) .. 1583.a,1,] ITw2 .. 2638.2305) .. 11thB.130;eil . 

z (i > e , · . . . rz e . . . ; 2 . . 1 · . . . . 1 ~4) .. 114.3114) .. 1104.3014,J ~Cc) .. ,41 .,2a3) ... 151t.1.,2a3~ ~ .. 15;1.,01> .. 11,,1.,,1~ CTw .. ,,,,.141, .. 1,,,,.a4a~ 

Ir; I . I 
1104.481w L(w .. 107 .1111) ... 11117 olltli) [w =11551.5046) .. 11557 .5046~ . 

'I' (i )= . I 2 .. · . 
a ~w "'lS4.Jil4)..,ill4o3©14iJ 1¥ =547 .6133)=1547 .6283~ ~ 2 .. 255a.5ol)=U'ii551o50l~ (1;1 ... J95f.i48)=:lJJ5,.248~ 

\.n. 
vJ 



ops 

0 

OolO 

Oo25 

Oo35 

0 .. 40 

0 .. 45 

Oo48 

0 .. 504 

Oe55 

0 .. 60 

0 .. 65 

0.,70 

Oo75 

Oo90 

Oo95 

1.,007 

lo05 

10424 

10592 

10750 

TABLE VI 

CALCULATION OF OUTPUT POWER DENSITY SPECTRA 

~i(fil) 

g2/ep.s 

0 

12 

50 

100 

lJ.O 

145 .. 5 

148 

145 

123 

99 

74 

61 

50 

40 

29 

22o5 

14 

1.,0 

0991 

1 .. 001 

1 .. 0033 

lo0055 

1 .. 0068 

100082 

1 .. 0094 

1 .. 0104 

100124 

1 .. 0150 

1 .. 0179 

100208 

100240 

100277 

1 .. 0355 

100399 

lo045.3 

1 .. 0497 

lo066o 

100944 

101171 

lol35 

Poz 0 (w) 

g2/ops 

0 

120012 

50ol65 

100 .. 550 

1.30.,884 

146 .. 693 

149.,391 

146 .. 508 

124.,525 

1000485 

750325 

62 .. 269 

51.,200 

4lol08 

30 .. 030 

'230398 

14 .. 634 

70453 

40371 

2 .. 189 

10341 

lol35 

0 

0.000002 

0.000006 

0.,000008 

0 .. 000010 

0 .. 000011 

00000012 

0 .. 000012 

0 .. 000030 

0 .. 000050 

0.,000072 

0 .. 000090 

00000111 

0.,00013; 

0.,000175 

0 .. 000195 

0 .. 000216 

00000189 

0.,000117 

0.,00005 

0.,001355 

000015 

% (w) 
Yo 

g2/cps 

0 

0 

0 .. 0003 

0 .. 0008 

000013 

0 .. 0016 

000018 

0 .. 0017 

0 .. 0037 

Oo0050 

0 .. 005.3 

Oo00,55 

0 .. 0056 

0 .. 0052 

0 .. 0051 

000044 

0 .. 0030 

0 .. 0013 

0 .. 0005 

0.,0001 

0 .. 0016 

0.,0015 

54 
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TABLE VI (Continued) 

w 4>r {w) I Zo (iw) 12 ~o (m) Iyo (iw) 12 ~o 
Zo Yo 

cps: g2/cps g2/ops g2;cps 

20000 ,,,1,,0 lo1)8 10138 0000038 000004 

20014 loO 101378 10138 00000351 000004 

20075 Oo8 100770 Oo862' 000024 000019 

20105 Oo6 100264 00616 000132 000079 

20135 Oo6 100278 Oo617 000768 000461 

20141 Oo65 100661 00693 0 .. 1123 000730 

20147 Oo7 101312 00792 001630 001141 

20154 Oo80 1025691 1 .. 006 002594 002075 

20160 Oo9 1.,3637 1 .. 227 002952 0 .. 2657 

20172 1 .. 0 1 .. 5787 1 .. 579 003201 003201 

20176 lol 106362 10800 003904 Oo4294 

20182 lol5 106772 lo929 003681 Oo4233 

20188 1 .. 2 106935 2 .. 032 0.,3351 Oo4021 

2 .. 194 1.,2.5 1., 7243 20155 0.3046 003808 

20222 lo50 106304 20446 001757 002636 

2.,251 loJ 105741 20046 0.,1229 001598 

20291 Oo8 105329 10226 0 .. 0891 000713 

2o4 0.,1 lo.520 00152 000781 000078 

2o45 Ool 1.,530 00153 000781 Oo007e 

2 .. 516 0.,2 105573 Oo,311 0 .. 0813 0 .. 0163 

2.,6 1 .. 0 1 .. 600 1 .. 600 0 .. 0911 0.,0911 

2o7 1 .. 7 1.,68 2.,856 0.,115 001955 

2.,758 1.,3 1.,7235 2.,241 0 .. 1411 0 .. 1834 



TABLE VI {Continued) 

w P1 (oo) lzo(iw)j 2 ~ (Cil) jYo(i6>)j2 4>o ( oo) 
Zo Yo 

eps g2/cps g2/cps g2jeps 

2.975 Oo7 109905 lo39.3 002829 001980 

3.184 Oo6 204550 lo473 0.6570 Oo.3942 

30376 Oo5 304441 10722 1.9226 009613 

3.664 0 .. 3 17 .. 5080. 50252 4805578 1405673 

30698 Oo3 24. 79.77 7.439 88.8778 26.663 

30716 0.3 26 .. 0195 7 .. 806 10506358 310691 

30722 0.3 2503142 7.594 10800663 32.420 

3.726 0.3 24.6932 7.408· 10800980 32.429 

3.727 0.3 2306623 7.099 10801011 320430 

3.729 0.3 2309123 7.174 -- 107.3784 320214 

3.732 Oo3 22.9585 6.888 105.8416 31.752 

30766 0 • .3 11.2246 3.367 70.1983 21 .. 059 

3.800 Oo2 404197 o.884 40.3848 a.011 

3.8.33 0.2 107496 Oo.350 2408528 40971 

3.848 0.2. 100920 0.218 21.1594 4.232 

30866 0.2 0.7056 Ool41 16.6669 3.333 

3.898 Ool5 002879 00043 11.9858 10798 

3.931 0.15 001286 0.019 900978 i.365 

30955 0.1 0.0920 . 0.009 7.7033 0.7703 

30963 0 0.0796 0 701831 0 

50033 0 lo58J+9 0 0,8110 0 

8.041 0 8500990 0 1980747 0 
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The power density spectra of the responses are plotted 

in Fig. 12 and Figo 130 Similar results could be calculated 

for the inboard store, however, this is not essential for the 

purpose of this investigationo 

It is noted that the spectrum of vertical acceleration. 

response at the center of gravity of the outboard store as 

shown in Fig. 12 is quite similar to the input of Fig. 11, 

except for a small build-up in~0 (oo) above 2o0 cycles per 
. Zo 

second where very little input amplitude existso The mean-

square acceleration for each spectrum has been determined by 

equation (57) and from this 9 the standard deviation, 0-o Each 

of these is noted on the power density spectrum plotso The 

vertical output C- is 206 percent greater than the input 0-o 
·.,, 

The spectrum of induced lateral acceleration response 

at the center of gravity of the outboard store 9 shown in Fig., 

13~ is concentrated primarily at 3.73 cycles per second; a 

natural frequency for the pylon and store eombinationo Al-
,· ' 

though there is very little input amplitude in this frequency 

range 9 ,the resonance produces a comparatively large response 

amplitude. The associated mean-square acceleration for the 

spectrum.» ¢ 0 . ( 0) » and standard deviation, U-9 are noted on 
Yo 

Fig. 13 .. 

3e4 Evaluation of Results 

A display of the signifieanoe of the results is obtained 

by determining the number of times per hour that given ver­

tical and lateral load factors or aeeelerations at the center 

of gravity of the outboard store a.re exceeded, as indicated 

by& 



Fig. 12 Vertical Output Power Density Spectrum \.n, 
(JO 
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ao The input power density spectrum if it were 

assumed applicable to the center of gravity 

of the stereo 

bo The output power density spectra~ 

60 

This is accomplished by the use of equation (62) multi­

plied.by 3600 seconds/hour: 

-!J.n2 
20-

N1 (An)= 3600 N0 e in 9 

H = Iz 00 q>o(ro)dro 
where ~ • 2 1/2 

o Jo <Po (ro)dw 
for ro in terms of cycles 
per second 

An= the load factor or aeeeleration of coneerno 

N1 (An)= average number of maximum load factors or 

accelerations per hour exceeding An 

(9.5) 

The calculated value of N for each power density spee­o 
trum is shown on Figo 11 9 12 9 and 130 

The resulting exeedenee curves for incremental vertical 

load factor only are plotted on Figo 140 This figure shows 

both the load factor exeedenees indicated by the basic inpu"I; 

and the load factor exeedenoes indicated by the vertical out= 

put at the center of gravity of the outboard storeo 

The resulting exeedenee curve for lateral load factor at 

the center of gravity of the outboard store is shown in Figo 150 

The basic vertical input 9 without consideration of the pylon 

flexibility and the resulting transfer functions, would 9 of 

eourse 9 indicate no oeeuranees of lateral load faetoro 

The lateral load factor output may be converted to equi-

valent incremental vertical load factor by recourse to the 
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0 2.0 .o · .o 
(+Anz )2-g2 

0 

Fig o 14 ·= Increment a l Verti~al Ac~eler•a t ion Exci ederif..'l ea 
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0 0.2 · o.4 o.6 o.8 1.0 1.2 
(+nyo)2,..... g2 

Fi go 15 - Lateral Acceleration Excedences 



initial statement that a lateral load factor of loOg pro­

duces a critical stress equivalent to that produced by a 

vertical load factor of 2o75go This conversion results in 

the curve of Figo 160 
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The total equivalent combined output 9 the vertical load 

factor output only~ and the vertical load factor input ex­

cedenees are all shown for swmn.ary purposes on Figo 170 

These observations are made: 

ao The incremental vertical load factor which is input at 

the pylon to wing attachment no more frequently than 

once an hour is 3.,24g whereas the output at the eogo of 

the outboard store oeeuring with the same frequency is 

3o37g 9 an increase of 4 percent which is rather small 

and not of particular structural signifieaneeo 

b., The cyclic loading 9 which is of prime concern from a 

structural fatigue standpoint 9 has been developed from 

Fig .. 17 and is shown in Table VIIo This table shows 

the number of applications per hour of average incre­

mental vertical load factors as developed directly from 

the input to the pylon and also as developed from the 

total equivalent vertical output at the eogo of the out= 

board store .. The total equivalent vertical output indi­

cates approximately an 800 percent increase over the 

input in the number of load cycles predicted at the 

lower load f'aetors 9 diminishing to approximately a 70 

percent increase at the higher load factors .. The large 

iner~ase at the lower load factors is primarily due to 

the induced lateral effeetso 



Figo 16 ~ Equivalent Incremental Vertical Acceleration 
Excedences from Lateral Response 
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Flgo 17 = Tota l Equival ent Incremental Vertical 
Excedences from Vertical and Lateral Re sponse 
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2640 
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TABLE VII 

CYCLIC LOAD PREDICTION 

Vertical 
Output Only 
Excedences/Hro 

3470 

2850 

1690 

680 

197 

3805 

5.,4 

Vertical Ou.tput 
Equ±va.-1-ence .of . 
Lateral Output 
Excedences/Hro 

13j250 

9,600 

3,710 

760 

82 

406 

Total 
Equivalent 
Vertical Output 
Excedence-s/Hr. 

10,720 

12,450 

5,400 

1,440 

279 

43 

5 

Total 
Equivalent 
Vertical Output 
Cycles/Hro 

4270 

7050 

3960 

1161 

236 

38 

0' 
0' 
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Oo This increase in cyolie loading would be re.fleeted in a 
II 11 significantly shorter failure free flight life for the 

pylon structure than would be anticipated from a consider­

ation of' the basic input eyelie loading aloneo 

Although these observations apply to the speed.fie pro-

blem, it would appear that the adm.i:ttanee or trans.fer .functions 

of any pylon or store.sup:porting·structure can significantly 

alter the predicted oyclio inertia loading if natural frequen-

eies for the system exist anywhere within the .frequency range 

covered by the input power density speotrumo In general 9 

this will cover the :frequency range from zero to ten eyeles 

per seeond 9 for an input developed by atmospheric turbulence. 

A complete evaluation of the eyelie stresses induced in 

the pylon due to eombined vertical and induced lateral load­

ing revealed in this investigation should be based on calcu­

lations of the assooi,ated pylon mode shapes at the critical 

natural frequeneyo This would provide a guide tn combining 

the proper simultaneous effects. 

A prediction or the total eyolio fatigue loading history 

for any pylon must consider both vertical and lateral gust 

inputso Further 9 these inputs must obviously eover the ant;tci= 

pated flight enviromn.ent 9 as discussed in Chapter II 9 rather 

than just one rather severe gust·input as used in this investi.., 

gationo 

The demonstrated importance associated with a structural 

resonance point 9 along with the possibility for the inter= 

action of vibration modes of pylon, wing; a.nd other structures, 

would indicate that in all eases 9 final evaluation of the 
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cyclic loading on a pylon and store must come .from flight 

testo Design and devel©pment testing eome long before .flight 9 

however, and must rely on analytics such as applied in this 

investigationo 



<mAP'fER IV 

SUMMARY AND CONCLUSIONS 

The determination of aircraft gust loads by the use of 

power density spectra is diseussedo These methods are applied 

to investigate the structull!al significance of considering the 

transfer funetions of a hypothetical wing mounted pylon and 

supported store combination to obtain the acceleration output 

at the store center of gravity from a known acceleration in­

put at the pylon to wing attachment pointso 

The basic .fundamentals essenti•al f'or the understanding 

and proper application of power-density spectra. are covered 

in deta.ilo The published power speo·tral denisity analysis 

methods for the prediction of aircraft gust loads are set 

forth and discussed with reference to the basic fundamentalso 
. ~.' 

The investigation of the wing mo.unted pylon a.n.4, sup_-
~ . . . 

ported store demonstrates that the'transfer functions of a 
.·· .... 

pylon supporting a high mass item can alter the power density 

spectrum of input aecelel'ation to a degree which is important 

in evaluating the structural fatigue oharaeteristios of the 

pylono This is eonsider~d possible if the pylon and sto:,t'e 

combination have a natu:ral frequency anywhere within the 

frequency range covered by the input power density spectra.., 

In genePal 9 this would be from zero to ten cycles per seoo:nd 

for an input developed by atmospheric turbuleneeo 
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It is observed in the example chosen for investigation!) 

that the higher amplitude portion of the input power density 

spectrum9 Figo llp is confined to the region of 2.,0 cycles 

per second and belowo The example pylon-store system reso­

nant frequencies occur above 2o0 cycles per second where the 

input spectrum. amplitude is quite small., This has minimize<;!. 

the influence that the pylon flexibility has on the cyclic 

loading due to this input; yet this influence has proven sig­

nificanto It is there.fore apparent that where praetical 9 a 

pylon structure should be designed to avoid resonant fre­

qu.encies which coincide with the high amplitude frequency 

ranges of all known input spectrao 

A power spectral density analysis may be used as demon= 

strated herein to predict the frequency of occuranee of 

cyclic fatigue loads from given input spectra., Further!) as 

demonstrated.!) there may be several types of output responses 

resulting from a single input; for exa.mple 9 vertical and 

lateral a.eeele:ration outputs due to a vertical acceleration 

input., 

The proper time coordination of these types of output 

response is important in structural fatigue testing but is 

not defined in the power density analysiso A study of pylon 

mode shapes at the critical natural .frequencies could serve 

as a guide in combining the proper simultaneous effeetso 
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