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NOMENCLATURE (Continued)

Pl proportion of total flight distance in
nonstorm turbulence

P2 3 proportion of total flight distance in

o storm turbulence

Pi proportion of the total flight in the
i condition

a(t) output or response function

Q(iw) Fourier transform of q(t)

& | time v

T arbitrary value of timej period of f(t)

v(t) arbitrary input function

v veloecity in feet/second

V(iew) Fourier transform of w(t)

w(t) | ~ weighting function

W(iw) system transfer function with respect
to the frequehcy argument

W(in) system transfer functlion with respect to
the frequency argument (1 .

‘W(iw)l modulus of complex function W(iw)

b 4 | displacement

y : ‘lateral displacement in inches; any
desired response parameter

¥ = a®y/at?

Y(iw) Fourier transform of y(t)

YYim) pylon transfer function in the lateral
direction for a vertical input

4 vertical displacement in inches

z = dez/dt2

Z(iw) Fourier transform of i(t)

ix



Z(iw)

= tfﬂ 9 i

'q('r)

Py (T)
Py (T)

a‘@.f‘

$yq(10)
vi Li8)

qkn(w)
P, (0)
®o_ (o)

Yo
P, ()
b))

qZHJII)

¢, ()

NOMENCLATURE (Continued)

pylon transfer function in the vertical
direction for a vertical input

complex coefficient of Fourier series

m?/(l + ie)

standard deviation of Gaussian distribution

root mean-squaEe acceleration in
feet/second

root mean-square gust velocity in
feet/second

time displacement
autocorrelation function of q(t)
autocorrelation function of v(t)

cross=correlation function of v (%)
and u(t)

power density spectrum of q(t)
power density spectrum of v(t)

power density_spectrum of noEmal acceler=
ation in g2/(radians/sec.%)

power density spectrum of input function
at pylon to wing attachment in gz/cps

power density spectrum of output function
in the lateral direction at the c.g.
of the outboard store in g2/cps

power density spectrum of output function
in the vertical direction gt the ce.ge
of the outboard store in g</cps

power density spectrum of an arbitrary
function with respect to the fre-
quency argument f1 ,

power density Epectrum of normal acceler-
ation in (g¢)/(radians/foot)

power density speetgum of gust velocity
in (feet/second)</(radians/foot)



NOMENCLATURE (Continued)

q%. relative phase angle of harmonic com=-
: ponent
W angular frequency in'radains/second
unless otherwise noted
Q reduced frequency, ®/V, in radians/foot
Subseripts i = inboard

o = outboard
y = lateral
7z = vertiecal

T a bar over a symbol designates the
time average value of the quantity

A ~ a wiggle bar over a symbol designates

the ensemble average value of the
quantity

b



INTRODUCTION

In recent'years, the use of power density spectra for
the prediction of aircraft gust loads has been extensively
studied and developed into a practical engineering tool. Its
primary value is in predicting the cyclic loads imposed on
aircraft structures for use in evaluating their structural
fatigue 1life, Thus, in this application power density spec-
tra are important primarily to the structural engineer and
yet are based on principles far more familiar to the automa-
tic control system engineer and the dynamics engineer,

If the structural engineer is to derive cyclic load data
or even properly interpret and make use of load data derived
from power spectral density analyses, it is considered essen-
tial that he have a firm basic understanding of the method.
This has prompted the authorss interest in the subject.

The basic fundamentals involved in defining the response
of a linear system to a stochastic input are discussed in
Chapter I. The published power spectral density methods for
the prediction of aircraft gust loads are set forth in Chapter
ITI. The intent of these chapters is to bring together pieces
from numerous references in such a way that the reader can
establish the necessary background for application of the

method.



In Chapter III a prediction of cyclic load due to an
atmospheric turbulence condition is developed for a wing
mounted pylon carrying dual high mass stores., The purpose
of this analysis 1s to investigage the structural signifi-
cance of considering the transfer functions of the pylon
structure itself in developing these cyclic loads from a
known power density spectrum of acceleration input at the
pylon to wing attachment point. The usual engineering prac-
time in fatigue load studies has been to-consider this effect
of pylon flexibility as secondary and, therefore, assume that
the accelerations felt by the supported store are the same as
the input to the pylon..

A procedure is developed for calculating the pylon trans-
fer functions from stress analysis data which defines the py-
lon deflection influence coefficients. These functions are
then used to obtain the power density spectra of output ac-
celerations at thecenter of gravity of a supported store,

The corresponding prediction of the frequency of occurence of
these accelerations is obtained by methods discussed in
Chapter II.

This investigation shows that the fatigue loading pre-
dicted by considering the pylon transfer functions can be
considerably more severe than that predicted directly from
the input spectrum., In the example investigated, a vertical
acceleration input only is consideredj however, the power
spectral density analysis reveals an induced lateral acceler-

ation at thecenter of gravity of the supported stores. This



occurs at a pylon/store system resonant frequency and accounts
for the major portion of the increased severity of the pre-

dicted fatigue loading,



CHAPTER I

LINEAR SYSTEM RESPONSE TO A STOCHASTIC INPUT

1,1 Discussion

The output of a linear system subjected to a unique in-
put function may be specifically defined by solving the
applicable integro-differential equations., Solution of these

. domain, or in the

equations may be accomplished in the time
frequency domain by the use of Fourier or Laplace transforms
where applicable.

The output of a linear system subjected to a stochastic
input function, one which contains a degree of randomness,
cannot be solved for in terms of specific and unique values
as a function of time; however, it can be defined in terms
of probability distributions. The solution may be accom-
plished in the time domain making use of correlation functions,
or in the frequency domain by the use of power density spectra
which are obtained by Fourier transformation of the corre-
lation functions,

It is desirable to discuss first some of the fundamen-

tals of linear system analysis, Fourier transforms, procedures

Irime is considered herein as the independent variable;
however, the statements and procedures of this chapter are
applicable to any independent variable.



applicable to the frequency domain, and stochastic processes.
This will provide background information for then proceeding
with the discussion of the power spectral density analysis
of linear systems subjected to a stochastic input.

l.2 Weighting Function

A linear system is one for which the principle of super-
position holds true. That i1s, if the system is acted upon by
several inputs simultaneously, its output will equal the sum
of the outputs from the individual inputs applied independent-
ly. This property is of prime importance in simplifying the
solution of problems involving linear systems.

The unit impulse function can be defined as the 1limit of
a rectangular pulse whose amplitude approaches infinity as
its width approaches zero with the area maintained equal to
one unit of time, (1)2 This is indicated in Fig. 1l.

For Unit Impulse:

A A — =
© T —= 0
5

) AxT=1
o

~

o)

E

<

QL X Time t

Fig. 1 = Unit Impulse Function

2A parenthesized number within the text, refers to the
correspondingly numbered reference in the Bibliography, if
not otherwise defined.



The response of a linear system to a unit impulse
function is a unique characteristic of that system.. The
function which defines this response is known as the system

weighting function, w(t). An example is shown in Fig. 2.

n
15
r
(=
g w(t)
[ |
M |
0 |
2 1m |
e | t
P18 | R
&
2k

Fig. 2 - Example of System Weighting Function

It should be recognized that for any physically real-
izable system the system weighting function is equal to zero
for negative time; in other words an effect cannot precede
its cause.

If the input impulse strength is greater than unity, as
defined by the area beneath it, the linear system output is
proportionately greater than the unit impulse output., Thus
if the curve of Fig. 3 were considered the input and the
curve of Fig, 2 the system weighting function; the output at
time t due to the shaded input impulse of Fig. 3, tl seconds

earlier, would be

aa(t) = w(t,)v(t-t;)at,, (1)

dq(t) w(tl)v(t—tl)dtl, (2)



V(’ss-tl)-_._.--\.\.X v(t)

) N
19 N

.

5 \ |

Fx) N I
R

& |

i Atl _yi% tl —

|

| |

e t

Time t

Fig, 3 = Input Function

By superposition of the output of all the incremental input

impulses, the total output is given by equation (3),
| «
a(t) =/ Tw(ty)v(t-ty)dty. (3) .

The right side of equation (3) is known as the convolution
integral.

1,3 Fourier Series, Fourier Integral, and Fourier Transform

A periodic function, f(t), may be exbanded into a Pourier
series if 1t satisfles the Dirichlet conditions, which ares
1, The function has at most a finite number of discon-
tinuities in one period.
2. The function has at most a finite number of maxima

and minima in one period.

T/2

o The int 1
3 e in egrar -1/2

£($) dt is finite. (2)



By expansion into a Fourier seriesg the function f(t) is de-
fined in harmonic sinusoidal components. This permits arbi-
trary waveforms to be expressed in terms of their amplitude
spectra, or frequency spectra as they are more cpmmonly termed,
The response of a linear system to the input function, f(t),
may then be determined by superposition of its responses to

the various frequency components of the input function.(2)

The Fourier series expansion of f(t) is

f(t)z—+ E cos nwt + bn‘ sin nwt), ()
n=1 ' |
with
zéj'T/z (t) cos nwt dt, (n=0,1,2,00.) (5)
%n T T j-T/2 e
2(1/2 :
b, =g 1/2 f(t) sin nwt dt, (n=1,2,3;000) (6)
where

T

H

period of f(t),
w = 2m/T, angular frequency.

Another form of equation (L) is

f(t)_— +%c cos (nwt-¥, ), (7)
where

e, = an2 + bnz9 : (8)

¥ o= (b /2 )e | (9)

The value of Ch represents the amplitude of the alter-
nating component of f(t) which adds to the constant component,

ao/2° This amplitude, ¢no takes on a specifie value for each



specific harmonie frequeney nw. The angleqyn is the relative.
phase of the harmonic components., It is also a funetion of nw
taking on specific values for each integral value of nw.

A plot of chl versus nw is ealled theﬁfrequency.speetrum
of £(t), Actually |cn| has values only at integral values of
nw, so the frequency spectrum for a periodic function is really
a series of line graphs as shown by the example in Fig. l.

It can be seen, however, that as the period T increases and w,
which is 2m/T, decreases, the lines will be closer together
and in the 1limit as T—-e, a smooth curve will result; this

is the case for a nonperiodic function f(t).

0 W 20 30 hw Bw 6w 7o B 9w 10w nw

Pig. U4 - Frequency Spectrum of f£(t)

In order to visualize the basis for the Fourier integral
which is applicable to nonperiodic functions, it is helpful
to express equation (L), for periodic functions, in exponen-

tial form. Since, by the familiar Euler’s relation,
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: it =iwt ~N
sin not = g _= ¢ ’
21
and > (10)
it -iwt
cos nwt = e + e s

2 J
equation (li) can be reduced to
inwt
f(t) = SE a.e . (11)

Y= =R -

where

1jfT/2 =1inwt
a,. =" d

n =T)n/s (t)e t. (12)

In this case a. 1s a complex coefficient. It can be shown
that

2lanl = Icnl of equation (8), (13)
8o a plot of 2'an| versus nw would be the frequency spectrum
of £(t).

A nonperiodic function, f(t), may be expressed as a
Fourier integral which deveiops directly from equations (11)
and (12), For a nonperiodic function, T->® and w (which is
2w/T) approaches an infinitesimally small value, dw, while
n becomes meaningless., Thus, the Fourier integral for f(t)

is given by equation (1h).

f’(‘p) :%L: L/;: f(t)e“imtd{l eiwtdwo (1)

- The Fourier integral is made up of what are termed the Fourier
transform pairs:

The Fourier transform of f£(t) is

_ - -1
F(iw) = Jcm f(t)e Ct)cht‘,. ' (15)
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This transformation produces a function in the frequency,
w, domain,

The inverse Fourier transform of F(iw) is

£ (%) =-§%°]C: F(iw)eiwtdwo (16)

This converts the frequency domain equation back to the

time domain,

As stated by Cheng (2), £(t) may be regarded as being
analyzed into an infinite number of frequency components
with infinitesimal amplitude (1/2%) F(iw) dw. A plot of
IF(im)' versus shows the relative frequency distribution
of £(t). |

In order for a nonperiodic function, f(t), to be ex-
pressible as a Fourier integral or to be Fourier transfor-
mable, it must meet the Diriehlet conditions and the conver-
gence condition as follows:

1. PFunction f(t) can have only a finite number of

discontinuities in the finite interval t1<t<t20

2o Funcﬁion f(t) can have only a finite number of

points at which the function becomes infinite in
the finite interval t1<t<t2,

3, Punction f£(t) can have only a finite number of

maxima and minima in any finite interval t1<t<t20

lte The integral JC: £(t) dt must be finite.®

2This condition is arbitrarily complied with in dealing
with continuous disturbances by ignoring the true values of
f(t) outside of the time range of interest and assuming there
that £(t) = 0, '
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1.t System Transfer Punction

The analysis of a linear system may be accomplished in
the frequency domain. The frequency domain equation corres-
ponding to equation (3) may be obtained by Fourier transfor-

mation of both sides of equation (3),
@ =i g v &
JaeT a(e)at = Joet dtvf_”w(tl)v(twtl)dtlo (17)

By interchanging the order of integration on the right

side of equation (17),

Qliw) = f (t )dtl f“ -1 (t= tl)dto (18)

The variable of integration of the integral on the right 1s

changed from t to (t”tl)s then

Qiw) = j;:eniwtlw(tl)dtl [_:e_iw(#-tl)v(t-tl)d(tutl)q(lg)

Now dealing with the right side of equation (19), the
integral on the right is the Fourier transform of the input,
or V(iw); the other integral is the Fourier transform of the
weighting function, or W(iw). Therefore, in the frequency do-
main

Alie) = W(iw)V(iw). (20)

Equation (20) is the frequency domain equivalent of the con-
volution integral, equation (3).

W(iw) is known as the system transfer function.

1.5 Stochastic Processes

A Stochastic Process is one in which there is an element
of chance, It is not necessarily purely random but contains

a degree of randomness.
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Whereas the value‘of a predictable function can be de-
fined specifically as a function of time, the value of a
stoehastic function at a future time can be defined only in
.terms of the probability of its lying in a specified range.(1)
An ensemble of a stochastlc signels is displayed in
Fig. 5. BEach record displays the signal from a specific

machine, Identical types of machines have produced the en~

semble of signals.

[/ .
- AU‘"'"\
,’ﬁéﬁLf"'(n—
yj
[/ \
v
1 Vo
Avl v2

Fig, 5 = Ensemble of Stochastic Signals



1l

The first probability density distribution function for
this ensemble is determined from equation (21)9

[ANl(vl,tl,AvlgN)]

- N 21
Avl -0
where

N = total number of signals in the ensemble
ANl(vlstlsAvlgN) = number of signals lying

between v1 and v1+Av1 at time tlo

The probability of a signal lying between vy and

v1+dv1 at £y is pl(vl,tl)dv1° Thus the probability of vy

having a value between a and b at time tl is

b :
Pl(a<v1<b) “Jra pl(vl,tl)dvlov | (22)
It follows that
-
Py (mw<vy<m) = Lm Py (vysty)dvy = 1, (23)

The ensemble average value of v at tl is

v(tl) = f"’: vl pl(vlstl)dvlo . (2)-’-)

The seecond probability dénsity distribution function is

determined from equation (25)

[ANZ(vlgtlgAvlgvzgtz,szgN)]
. = 74 N ,
pz(vlstlpvzgtz) 113\-]_1'2-_’_09 E AV A'\T 9(25)
1 2
Av, —0

1
Av2—9—0
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where
ANZ(vlgtl,Avlgvgptngvz;N) = number of signals
lying between vy and VAV, at time tl and

also lying between v, and v2+Av2 at time teo

The probability of vq having a value between a and b at

time tl and Vs having a value between ¢ and 4 at time t2 is

b a
P, (a<v, <b,0<v,<d) = [ dv, J o Polvysty3Vssty)dv,e  (26)

By procedures similar to equation (21) and (25), the
3rd, hth, o¢.... nth probability-density distribution may be
developed. It 1s by means of these probability-density dis-
tribution funetions that the complete statlistical character-
isties of a stochastic process may be defined.

A non-gstationary stochastic process 1s characterized by
probability-density distributions whiech vary with time., If
the probability-=density distributioné are independent of time
the stochastlic process is termed stationary., In this latter

case, regardless of where t. 1s chosen in Fig. 5, the value

1
of the first probability-density distribution remains con=
stant and the value of the second probability-density distri-
bution is also a constant for a given to=t,, or T, etc. The
definition of the statistical characteristics is thus sim-
plified,

It would appeérs for a stationary process, that it is
possible to define the. statistics of the stochastic signal by

using only one record of infinite length rather than the en-

sembles This assumption, which is generally accepted and
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successfully used is termed the ergodic hypothesis,(l) The
first probability-density distribution is then determined by

equation (27).

(AT (vy,s 8V, ,T)]

19
T
p,(v,) = 1lim 3 (27)
171 T Av
Av1—>-0 1

where

T = total time range through whiech the time tl for

signal value vy is swept.

AT, (vq,8vy,T) = total time during which the signal

at time tl lies between v and v1+Av1, as tl moves
through T,

Obviously T cannot be infinite. As a result of the
Strong law of large numbers, the complete statistical
characteristies can be defined by using a record of finite
time lengthj however, confidence in the validity of the
statistical description will increase proportionately as T
increases, (3)

The second probability-density distribution for a station-

ary stochastic process i1s determined from a single record or

?ime history by equation (28).

(AT, (v 48V 4TV 558V5,T) ]

p2(v19v29¢) = 1lim T R (28)
T—— Avl Av2
Av, —=0

Av§—>-o




17

where

1 29AV29T) = total time during which the

signal at time tl lies between \£ and v1+Av1 and

= t1+T lies between v2 and v2+Av2

ATe(VlsAvlgT sV

also . at time t2

as tl moves through T.

1,6 Correlation Functions

Correlation functions are used in the analysis of sto-
chastic processes whether the analysis is carried out in the
time domain or the frequency domain. They are related to the
second probabllity-density distribution just discussed.s

The autocorrelation function is defined as the ensemble
average of the product of the signal at time tl anq the sig-

nal at time t2 or t1+T asg indicated in equation (29)

Py (b157) = V(8 V(£ +T) , (29)
where ”

¢§v(t19¢) = the autocorrelation function of v(t).
The second probability density distribution function may be

used to determine the autocorrelation function:
G n -
¢;v(t19T) = j:m vldvl_JC“ v2p2(v19t19v2,'t1+¢)dv2° (30)

It Qharaeterizes the signal but 1s not uniquely associated
with the signaly i.e., a specific signal has a specific auto-
correlation function, but an autocorrelation function cannot
be analyzed to determine the specific signal from which it
was derived.

In the case of a stationary stochastic process, the auto-

correlation function can be defined as the time average of the
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product of the signal at time tl and the signal at time

t1+1 in accordance with the ergodie hypothesis. Thus

Py (T) = v(E)v(t+T), (31)
or
#,, (%) = 1tm = [ 2 v(t)v(seriat, (32)

For the stationary case the value qu%v(T) is unchanged

whether 1 1s plus or minus, thus,

P () = & (=1); (33)
vV vV

i.e., the autocerrelation function is an even function of <,
In addition ¢%V(O) 1s equal to the mean~square value of the

signal as can be seen from equation (32) and

P _(0) 24 (7). . (3L)

vv

As T approaches infinity, the autocorrelation function
approaches the square of the mean value of the signal.

The cross-correlation function is analogous to the auto

B

correlation function. It is applicable to a pair of signals
rather than a single signal and is defined as the ensemble

average of signal v at time t. and signal u at time ta or

1

(t1+T)o

¢%u(tlgw) = v(ty)ult, +v), (35)
For a stationary stochastic process, the cross-correlation
function may be defined in terms of time averages per the

ergodic hypothesis. Thus

¢ () = v(t)ult+), (36)
¢ 1) =1m = [T vit)ulseras. (37)

T —>
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The cross-correlation function for stationary signals is

not an even function of 1. It can be shown, however, that

B(1) =B (), (38)

1.7 Power Densify_Spectra

The response bf a linear system to a stochastic input
signal is also stochastic. System analysis may be carried
out in the tims domain using autocorrelation functions or in
the frequency domain using mean-square amplitude density dis-
tribution or power density spectra as they are called,

The power density spectrum of a function f(t) is simply
1/(2%) times the Fourier transform of the autocorrelation
function of f(t).

Analysis using power density speetra 1s of primarybconw
cern in this thesls due to 1ts growing application to struc-
tural load analysis 1in the field of alreraft and missiles.
Stationary stochastic processes only shall be considered,

It is advantageous in understanding the frequency domain

analysis to approach it from the time domain., A linear systen,

as shown in block diagram form in Fig., 6, is subjected to a

System

__Input v(t) Weighting Output g(t)
' PFunction - -
w(t)

Fig, 6 = Block Diagram of Linear System
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stochastie input signal v(t), it has a welighting function
w(t); and the stochastic output is q(t),
The autocorrelation function of the output is
| 1 (7T -
B = 1n [ awaemar; (39)

however, from equation (3)
[

a(e) = [ 7 (st (s )at,, (0

and

a(t+1) ='j;: v(t+¢=t2)w(t2)dt20 (41)

Thus equation (39) can be rewritten in terms of the input
signal and the system weighting function by substituting
equations (40) and (41) in equation (39).

cum A [ Tas [°
P (1) = lim _p 4t | vt w(ty)aty

qq T >l T
- o (42)
[=.V(t+’r"’t2)w<t2)dt20
By changing the order of integration and rewriting,
¢ Lol o
T) = t_)dt t_)dt
aq'™) Lm wlt,)ae, j , wit;)at,
1T, (43)
lim Sy flp T(E]Iv(Eraty)at,

It ecan be seen that the last integral on the right is the

autocorrelation funection of the input signal, therefore,

¢qq(ﬂf) = L: w(t, )at, [” wit,)dt, ¢, (Tt =), (4ls)

Now to switch to the frequency domain, take the Fourier

transform of both sides of equation (hl),
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w ~ioT
e ¢ (1)dr =
j; Qq

(24

j;me-ledel:w(tl)dtljlmw(t2)¢%V(T+tl~t2)dt2° (45)

A

As previously stated, 1/(2n) times the Fourier transform of
the autocorrelation function of a time function is, by defi=-

nition, the power density spectrum of that time function; thus

1 (= -io-
$ (10) =5 [ e leqﬁqq(T)d’ra (46)

By multiplying both sides of equation (}5) by 1/(2m) and

changing the order of integration of the right side:

e it * =it
(iw) = 1 w(t )at f e 2 w(t )dt
@qq ) f~we 1771 Jew wit))at,
1 e ~lo(t+t ~t,) (L7)
1 1"t - .
or Lme £, (Tt -t )dT

Recognizing the Fourier transforms on the right, equation
(4L8) may be written:
@qq(im) = W(-i0)W(iw) @ (iw). (4,8)

vv

Simplification may be achieved by recalling Euler’s relation

iwt
e

cos wt + 1 sin wt;

-iwt ‘ (49)
cos wt - 1 sin wt-

il

e

The equations for W(iw) and W(-iw) are then

® c—iw K
j’me w(t)dt, (50)
j.:w Jcos wt dt-i f- t)sin wt dt, (51)
and
® i t
W(=-iw) = L,e ? w(t)dt, (52)
W(=-iw) = J::w(t)cos wt dt+i j;:w(t)sin wt dt, (53)
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and it is seen that W(-iw) an& W(iw) are conjugate pairs.

Therefore,

W(-1e)W(iw) = |W(iw)|2,_ (5lh)
and |

& (10) = [W(10) |, (10)¢ (55)

Equation (55) is the key equation to the analysis of linear
system response to a stochastie input,

Frequently, the parameter sought in the system analysis
is the mean-square value of the response. This can be ob-
tained by inverse transformation of the output power density
spectrum which yieldé the autocorrelation funetion; evalu-

ation at t = 0 gives the mean-square value,

® Jor
¢qq(fc) =] _e %q(iw)dwo (56)
qq(O) = mean-square value of f(t) as indicated by
equation (32).
¢%q(0) = letihq(im)dwo \ (57)

Thus the mean-square value of the stochastic response is
equal to the area under the power density spectrum curve for
the output. This fact is partieularly useful in dealing with
stationary stochastic signals having a Gaussian distributilon.
In this case the probability-density distribution of the re-

sponse is defined by equation (58).

“plq) :G“VZ_TTG P (58)



where

2

H

root-mean~-square value of the response,

/2

1

which is [& (0)] and is termed the
Qq

standard deviation,

gystem output or response,

1 T
lim o7 ETQ(t)dt°

T
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CHAPTER II

METHODS FOR THE EVALUATION OF
ATRCRAFT GUST LOADS USING
POWER DENSITY SPECTRA

2,1 Historicecal Resume

The analytical determination of aircraft structural
loads produced by wind gusts has been accomplished for years
assuming discrete gusts of specified magnitudes and a (1 =
cosine) or other arbitrary shape.(ly) These procedures have
been adequate but not wholly satisfactory particularly for
the definition of fatigue load hisfories due to gusts.

Approximately ten years ago Clementson (5) investigated
the use of power density spectra for definition of the at-
mospheriec turbulence. From this start the application of
generalized harmonic analysis methods to the determination
of gust loads on aircraft has been investigated and deveioped
extensively by Press (6=8), Mazelsky (6), Meadows and
Hadlock (7), and Steiner (8) with the National Aeronautics
and Space Administrationl as well as others,

During 19609 new military specifications for Airplane
Strength and Rigidity were adopted. One of these, MIL-A-8866

] . "
(ASG) Reliability Requirements, Repeated Loads, and Fatigue,

lFonmerly the National Advisory Committee for Aero-
nauties, :

2l
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requires the use of power density spectra methods for the de=-
termination of aircraft fatigue locads due to atmospheric tur-
bulence, Thus the method has reached a stature of unavoidable
importance to the aircraft designer.

242 Power Spectra of Atmospheric Turbulence

The power density spectra of atmospheric turbulence have
been measured in airplane flights and also from meteorologi-
cal towers. Measured data from references (6), (7), and (9)
are presented in Fig, 7. The frequency argument of these
power density spectra plots has been changed from @ to the
reduced frequencyllywhich is ®/V,in order to make them inde-
pendent of the aircraft veloéity at the time of measurement.
In addition, the magnitude of the power density spectrum
functionzg j?(fmg is two times that which would be expected
by the definition of equation (Li6) since the negative fre=-
quency and positive frequency components have been added to-
gether and plotted against positive values only of.{l.

The power density spectra of Fig. 7 have generally the
same shape but different areas under the curves., This indi=-
cates that the power density spectra represent different
mean-square intensities of gust velocity but the same rela-
tive distribution of amplitude with respect to the reduced

frequencye.

2The formally correct nomenclature,@ (iﬂ)g is discarded
in favor of  (©2) since this is more commonly used in aero-
nautical references,
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A general equation fof the power density spectra of
atmospheric turbulence is stated by Press, Meadows, and

Hadloek (7).

2 L 1+3.0°1°

$, ) =07 557 (59)
v T (e

where
(@ufjl) = power density spectrum of gust velocity in

(f’to/sec.)z/(radians/foot)o

1L = reduced frequency «/V in radians/foot,
L = gcale of turbulence in feet.

2
JE = mean~square gust velocity in

(feet/seeond)2o
L can be considered to be proportional to the average eddy
size of the turbulence. A value of L of 1,000 feet has been
used in reference (7), (8), and (9), to give the best fit to
" measured data. A plot of equation (59) using 052 = }9 |
(f‘to/seeu)2 is shown in Fig. 7 for comparison with the experi-
mental data.

2.3 Gaussian Distribution of Atmospheric Turbulence

In general, an airplane may be consldered a linear system
in the determination of its response to a gust input. As
stated by Truxal(3), page hlBsuooooooooo a signal which
possesses a Gaussian distribution function still has this
type of distribution after passing through any linear net-
workoll Thus flight measureménts of an airplane response
parameter such as the normal acceleration, a,, at the center
of gravity have been investigated to determine their pro-

bability distribution in order to establish the probability
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distribution of the input gust velocities.

Pregs and Mazelsky (6) theorize that local atmospheric

turbulence may be considered a stationary stochastic process
with gust velocities distributed in a normal or Gaussian
manner. This trend is indicated, for example, by flight test
data presented by Press and Mazelsky (6) representing center
of gravity acceleration peaks measured during a two minute
interval for each of two similar airplanes in side by side
flight at }450 miles per hour,

Overall atmospheriec turbulence, as opposed to local at-

mospheric turbulence, is not distributed in a Gaussian manner
due to variations with weather, terrain and altitude. Press,
Meadows, and Hadleck (7) have investigated data on peak
values of airplane center of gravity normal accelerations
neasurdd during approximately 7,000 flight hours acerued in
eight different transport operations. The investigation
shows that, although the data for each operation do not con-
form to a Gaussian distribution, they could represent the
summation of several different Gaussian distributions. These
investigators have concluded that overall atmospheric turbu-
lence is made up of elemental stationary stochastic processes
having individual Gaussian distributions.

The ma jority of airplane gust load data which have been
accumulated for statistical evaluation are in the form of
acceleration peak counts recorded at very low film speeds
(2 to 8 feet/hour) and are not suited for determination of
correlation functions, Press, Meadows, and Hadlock (7) have

developed a method to convert these data to a form applicable
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to power density spectra analysis. The conversion is based
on equation (60), developed by Rice (10) which applies to a
Gaussian distribution of ano

2
-8
n

de 1/2 20:;;

e R (60)

2

» 2
N(a_) = j;'jo - ign(w)
n’ = 2% _
Jf‘o‘ct;n(m)dm

where

N(a ) =~ average number of maximum accelerations per
n

second exceeding s

il

O ()

n
2 — o»
G;n “.fo @%n(w)dwo

power density speetrum of an(t)g

o

This equation is the exact expression for the number of
erossings per second with positive slope of given values
of & o It 1s an ;pproximate expression for the number of
positive acceleration peaks per second above a given value
of a 5 it becomes increasingly exact as a Increases.

Making use, of equation (59) as defining the power den=-
sity spectrum of atmospheric turbulence and recalling equa-
tion (55) it ecan be seen that the portion of equation (60)
within the brackets is a constant for a given airplane under

given operating conditions of speed, weight, altitude, etc.;

1/(2w) times this constant is termed Noo
[f“ m%@ (w)dw 1/2
1 |io a,
Yo = 2m *d (w)dw
jo a,

o ‘ (61)
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No is the exact expression for the number of times per second
that a,(t) crosses the value-zero with positive slope. Re-

writing equation (60),

N(a ) =Ne O (62)

‘log N(an) = log N_ - 5 8, o (63)
The linear relationship of equation (63)9 which is applicable

to a Gaugsian distribution of a has been used in conjunc-

n?s
tion with the peak acceleration data from each of the eight
different transport operations to reach the econclusion that
although these data for any one operation do not fit the
linear relationship and, therefore, do not conform to a single
Gaussian distribution, they could représent the sum of

several Gaussian distributions each having a different 0. (7)
The feasibility of this is shown in Fig, 8 which is a plot of

the peak acceleration data from one of the eight transport

operations,.

M(an) is the average number of positive acceleration

peaks per second exceeding given values of a The ordinate

ne
of Pig, 8 is 2 ﬁ?ggj because the transport operation acceler-
ation peak count data included both positive and negative
peak counts. Linear relationships representing three sepa-
rate Gaussian distributions are also plotted; the sum of

these is the short dashed curve which c¢losely approximates

the measured data. In equation form;
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Fig. 8 Peak Acceleration Data From A Transport Operation
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M(a,) = % Py N;(a ), (6L)
) == ) @ 20"
M = . |
®n) = o’y 1° (65)

where Pi is the proportion of total flight at the ith con=
dition and Ni(an) is the number of peak»aecelerations per
second exceeding given values of acceleration for the ith
condition, If we consider average values of airplane weight,
speed, altitude, ete, which go into the calculation of

EW(iIl)iz used to calculate @% () fromw@h(il) by equation
(55) and therefore define an agerage NOQ equation (65) may

be written as

. |
Ma ) =N = P, e | : (66)

=

=

An airplane in long time flight will encounter conditions
of air turbulence which are continually varying in intensity
as defined by the root mean-square gust velocity in equation
(59)., Considering this fact, equation (66) is rewritten in

the following form:

2
=8,
n
2@;2 v
- "® n :
M(a_) = Nol[o £loz e as; . (67)
where f(q; )(iq; gives the proportion of flight time spent at
n n
values of ¢~ between 0 and 07 +dd. . Thus (g, ) is the
an an ay an an

probability-density distribution of the root mean-square ac-

celeration,
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The transport operation data are analyzed in Reference (7)
to determine the applicable probability-density distribution

of 75 . Three equations are developed therein as possibili-
n

tles:
o2
an
.. 2
2a
1 [2 1 A
fl(a-;n) e al " e ]
=g
&n
1 a ;
fz(dgn) =ap © 2, > (68)
ZJEEQL
£.(07 ) = °3
= = & 0
37 8n 2a§ : )

In each equation, a is a scale parameter with high values
of a assocliated with more severe turbulence. The equation
for fl(azﬁ) has been propqsed by Press and Steiner in the
later work of Reference (6) for prediction of gust loads,

From equation (57)
2“_@
Uzn a.jo @gn(w)dwo. (69)

Substituting the assumed equation for the power density
spectra of atmospheric turbulence, (59), into equation (69),

along with the relation of equation (55), the relation be-

a

tween 07 and 0; is established:
n

T mle (1+0%12)°

iW(ifl)Ezdlls (70)
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where
W(if)l) = the system transfer function in terms of the

reduced frequency 2 which is w/V.

This may be written as

Ta, = AJg, (71)
where
2.2
_ [T e 1+30°L 5 1/2
A :[— W(iﬂ) d.()} s (72)
T Io (1+£1?L2)2l I

A is a constant for a specific I‘W(iﬂ)|2u

Making use of equation (71) to change the variable of
equation (68) for fl(Ogh), the following equation develops
for the probability~density distribution of the root mean-
square gust velocity:

/\ I
Tloy) = A& £(o7 ),
-0 (73)
A 1 2 2v2
o) =gl ’

where b = a/A,

Appropriate values of the scale parameter; b, have been
developed by Press and Steiner (8) to define ?(O;) for alti=
tudes from sea level to 60,000 feet and for both non=-storm
and storm turbulence. These are set forth in Section 2.l.

It is appropriate tb replace Jén in equation (67) with
Oa which is the actual basic input parameter for gust load

studies. Knowing that (07 ) = (1/A) £(0), then
Tl



2
_an
2Z\20—5
M(an) = N, [ f(o- ao=. (7L)

In this equation both No and A are functions of the power
density spectrum for atmospheric turbulence for 0; = 1.0
ft/sec., and the system transfer function, As previously
stated, each are constants for a given airplane under a given
set of average operating conditions of weight, velocity, al-
titude, ete, Equation (7)) 1is then a key equation for evalu-
ating statlistically the airplane loads due to gusts,

2.4 Gust Encounter History to be Considered in Airplane Design

The anticipated atmospheric turbulence to be encountered

in operational flight has been investigated by Press and

Steiner (8)., Two types of turbulence have been considered,
moderately rough clear air turbulence termed nonstorm tur;
bulence and severe turbulence encountered in thunderstorms,
termed storm turbulence. Proportions of the total flight
distance during which each type of turbulence may be antici-
pated have also been estimated. The probability-density dis-
tribution for the root-meanwsquare gust veloecity, equation (73),
may be modified as follows to account for each of these types

of turbulence:

flog) =By Bl 4;;8 Lo Pg'gz T © 2 s (75)
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where
Pl = proportion of total flight distance in nonstorm
turbulence. _ |
P2 = proportion of total fligﬁf distance in storm tur-

bulence.

b1 = nonstorm turbulence scale factor.

b2 = gtorm turbulence scale factor.

Table I has been taken from Military Specification
MIL-A=8866(ASG), It defines the parameters of equation (75)
which must be used in gust load evaluations for military
airplanes. Basically it was developed by Press and Steiner(8)

but has been modified to require consideration of a larger

proportion of flight distance in storm turbulence.

TABLE I
TURBULENCE PARAMETERS

Altitude P, P, by b, L

Ft, x 1073 | Peet
0 =1 1.0 0 3.9 - 500
1 -2 0,32 0,000} .6 9.k 1,000
2 =10 0,08 0.,00125 3.8 9.8 1,000
10 = 20 0. 0l45 0,0015 3.7 10.U 1,000
20 = 30 0,06 0,0012 3.5 11.2 1,000
30 = ko 0,065 0,0006 3.k 11,1 1,000
4o - 50 0,023 0,0002 3.1 11.7 1,000

50 = 60 0.02 0,0001 2.8 12,5 1,000
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Press and Steiner (8) consider a slightly modified ver-

gion of equation (7).

Gly) = 6,5 flog)e * aog, (76)

where

'E(y)ﬁv averagé number of response peaks exceeding
given values of y (total of both positive
and negative peaks) per mile of flight,

¥y = any desired response parameter for the air-
plane system. It could be 8, but could
just as well be wing bending moment, etc,

Go =7 average number of response peaks per mile

of flight in rough air,

In this equation

o = (2) (1.467) <3600)N o ")

o] \') o]
No is defined by eguation (1) for the specific respohse
parameter required and V is the airplane speed in ft/secs
It is important to note that the factor (2) is neceésary

since E(y) defines the sum of positive and negative response

peaks wheress M(an) defines the positive response peaks only.
Substitution of equation (75) into equation (76) and

integrating yields

=y/(b14) =y/(boh)

16,8 + PG e (78)

which 1Is a relatively simple equation, and can be used direectly

G(y) =P

to define the anticipated gust load history for an airplane,(8)
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Suppose, for example, a given airplane is to frequently

fly the mission indicated by Fig. 9 and the gust load spec-

trum for this mission is redquired. 9 .
4
'l Og
PS! e 8&')
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Fig. 9 = Typical Mission Flight Profile

The mission must be broken down into segments for which

P P,, A, and GO can be deter~

1.9 b29 19 29
mined, For,; say the th segment, these applicable average

average values of b

parameters are used to calculate Ea(y), The product of Ei(y)
and the number of miles flown in the ith segment, ’Di9 gives
the number of response peaks exceeding given value of y
which are encountered in that iR segment only. By repeti-
tion of this procedure for all segments of the mission and
vsummation of the results, the gust load history for the en-
tire mission is determined. This can be stated in equation
form as

— n —_
G (y) = :E% Dy Gy (¥), (79)
l:



where
Ei(y) = expected number of response peaks exceeding
given values of y.
D, = flight distance in 1*® flight segment.

13

‘Ei(y) response history in the 3th segment from
equation (78),

The total gust load history for the life of the airplane
can be estimated by defining the various missions antici-
pated for normal operational use of the airplane, the number
of times each should be flown per year, and the desired num-
ber of years the airplane is fo remain operational, Appli-
cation of equation (79) to this total operational plan will
provide the desired fatigue gust loading information for de-
sign and testing,

2.5 Current Gust Study Efforts

An extensive flight survey of atmospheric fturbulence at
altitudes below 2,000 feet has recently been completed by the
Douglas Aircraft Company, Inc. under an Alr Force contract,
The final report of this study is to be published in the near
future., Reference {(9) is an interim report on subject.

A similar high altitude study of atmospheric turbulence
is to be carried out, on a similar contract arrangement, in
the near future.

These efforts and other similar onés of recent origin are
basically for the purpose of better defining atmospheric tur-
bulence in power density spectrum terms. The data gathering
and reduction procedures used are optimized for the purpose,
making use of high speed computing machines to reduce vast

amounts of flight data,



CHAPTER IIT

INVESTIGATION OF THE EFFECT OF PYLON STRUCTURAL
FLEXIBILITY ON GUST INERTIA LOADS EXPERTENCED
BY THE SUPPORTED STORES

3:.1 Objective of Investigation

Airplanes present many examples of large high density
items which are mounted to the basic airframe by flexible
support structure. Among these are Jjet engines, equipment
pods, bombs, missiles, fuel tanks, and the other stores which
are pylon or strut mounted to the wing or fuselage.

In general, each pylon structure is designed to assure
capability to carry its supported item or items throughout
the complete velocity envelope of maneuver and gust load fac-
tors for the associated airplane, The resulting inertia and
air loads are treated as steady state loads in the stress
analysis of the structure, In addition, certain basic mini-
mum stiffness requirements may be assigned to the pylon
structure to assure freedom from flutter,.

The fatigue strength of the pylon is investigated ana-
lytically and in the iaboratory on the basis of the eyelic
load history data developed for the assocliated airplane, to
assure adequate structural life,

In the development of the c¢yeclic fatigue load history

for the pylon and supported store, it has been common engi-

Lo
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neering practice to ignore the effect that pylon structural
flexibility may have in altering the acecelerations felt by
the supported store as compared to those input at the point
where the pylon attaches to the basic airframe.

The significance of considering the effect of pylon flex-
ipility is investigated herein for a hypothetical example.
This effort is pursued in the belief that a supported store
may feel not only an amplification or attenuation of the
basic input accelerations but also indueced accelerations
acting in directions which differ from the basic input. Fure
ther it is felt that these induced accelerations may, in some
cases, have primary significance in a structural fatigue in-
vestigation,

An inverted Y shaped pylon is considered as shown in
Fig., 10, This pylon is attached to comparatively rigid basie
wing structure and supports two high mass stores, one from
each arm of the inverted Y,

A power density spectrum of vertical or normal incremen-
tal aceeleration input at the pylon to wing attachment point,
due to atmospheric gusts, is given in Fig, 11, This is appli-
cable to high speed low level flight, at a specific gross
weight, in homogeneous atmospheric turbulence having a root
mean=gsquare intensity, 0 of 20 ft/sec.

The deflection influence coefficients for the pylon
structure are given in Table II., These coefficients define
the deflections of the center of gravity of each store due to
unit leoads applied separately at the genter of gravity of

each store., In reality, each store has six degrees of free-
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TABLE II

PYLON DEFLECTION INFLUENCE COEFFICIENTS

Ll

Location and

Center of Gravity

Center of Gravity

Loca- \_DPirection of of Outb'd. Store of Inb'd. Store
tion and Resulting
Direction of Deflec-
Applied Unit: tions Vertical Lateral Vertical Lateral
Load
Center of Vertical 29.15936 | =34.75498 | -13.19916 | -21.70206
Gravity
of
Outboard
Store Lateral =3k4.75498 78 .56017 2k . 75696 37.88529
Center of Vertical «13.19916 24 . 75696 25.35924 38.09839
Gravity
of
Inboard .
Store Lateral =21.70206 37.88529 38.09839 92.52996
Notes:
1. Units are inches x 10’6 per pound.

4 2. Origin of each coordinate system is at €.G. of that specific store.

£ w

5, This array of coefficients (times 10

Positive vertical. deflection or load is down.

6

Pogitive lateral deflection or load is outhoard.

to put in units of inches per

pound) is used herein as Matrix G where the first row is Gll’ G105

Gl3’

Glh5 the seco

nd row G

21’

G
22’

G23’ Gzh

; ete.
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dom, All could be considered in a complete investigation of
this type, using high speed digital computing machines; how-
~ever, simplifying assumptions have been made herein to keep
the caleculations within bounds for a desk calculator., The
store itself has been assumed infiinitely rigid and the pylon
has been assumed flexible 1in the vertical and lateral direc-
tions only with infinite stiffness for longitudinal loads and
all moments applied at the store centers of gravity. Although
these assumptions have been made to simplify the problem, they
are reasonable for the type of structure considered. The in-
fluence coefficients are derived as a normal part of the py-
lon statiec stress analysis and the wvalues of Table II are
entirely realistie for such a store supporting pylon designed
to meet military structural design criteria. An assumed mass
of thirty five pound seconds squared/inch has been chosen.

A review of the deflection influence coefficients of
Table II indicates that large lateral deflections result from
the application of a vertical load at a store center of grav-
ity. The lateral deflection is altered by simultaneous ap-=
plication of an equal vertical load at the center of gravity
of the opposite store. In each case, however, the lateral
deflection, due fo vertical load application, is quite signi-
ficant, This would indicate that the vertical gust load fac-
tor or acceleration input at the pylon to wing attach point
may induce significant lateral acceleration at the center of
vgravity of each store, In order to evaluate the results of
this investigation, it will be considered that the basiec

structure is statically designed such that a lateral load



factor or acceleration of 1.0 “g at the center of gravity
of the store produces a critical stress which is equivalent
to that produced by a vertical load factor at the center of
gravity of the store of 2,75 “go“ This relationship will be
used as a means of conveniently combining the effects of the
total c¢yclic load history developed in thils investigation.

3.2 Development of System Transfer Functions

Referring to Fig. 109 pylon elastic deflection equations
(80) are written in matrix form., Matrix G is the matrix of
pylon deflection influence coefficients from Table II. The
gsubscript i applies to the inboard store and subscript o ap=
plies to the outboard store. The input to the system is ver-
tical displacement z whiech 1s input at the pylon to wing
attachment point as a unit impulse function. Each value of
F 1s the pylon spring force related to the net pylon deflec-

tions in the y and z directions,

C) T a0
Zy, = % Gqq Gy 5 G13 Glh FZO
Yo Gop  Gpp B3 Gy, Ty
< - = < % (80)
zy = z ‘Gﬂ G5 G33 GBH- 7|
y la a G G F
1 71 ) b1 L2 L3 L Ts| .
~ - - L

Then the pylon spring force equations are
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£ _ - s N

o K1n Ko Ky Ky 2y = Z

F K. X K,. K., - N
Yol 21 22 23 2l Yo

< 0= < > (81)

in K31 K32 K33 K3h z1 - g

F K K K K Yo | .
¥il 1 12 . ‘ i

\ E) | h 43 M%J . y,

where the [K] matrix is the inverse of [G] and is shown in

Table III.

TABLE III
MATRIX OF SPRING CONSTANTS, [K]

—5,o7uh9201 0,02990851  0.,00451749 0,00336565—
0,02990851  0.03039817 =-0,01559786 o,oooqgosséix I
0.00451749 =0.,01559786  0,1201hh53 =0,.04202255
_9.00336569 0.000990886 =0,044202255  0,028493L0

NOTE: Units are pounds per inch

In a power spectral density analysis we afeg by defi-
nition, dealing with a harmoniec representation of the dis~
turbing funetion, It is therefore appropriate to consider
the structural damping in the system in the manner commonly
employed in structural vibration analyses of hgrmonieally
oscillating systemss This i1s a damping proportidnal to
displacement but in phase with the velocity.(1l2) The equa-

tion of motion for the system will have the form

Mx + cKIxI—g— + Kx =0, : (82)
X
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where

structural damping coefficient.

It

e

K

H

spring constant.
Since the system response is harmonic, x = xoeimto Substi-

tuting this in equation (82),
MX + (1 + 1¢) Kx = 0. (83)

In the form of equation (83) then,; the differential

equations for the pylon/store system are

. \
My 7z, + (1 + ic) FZO = 0
Mo Vo *+ (1 + ic) Fyo = 0
> (8l
Mi Zg (1 + ic) on = 0
My ¥+ (14 ic)>Fy =0 .

i ‘ J
The values of the P terms are defined by equations (81).
The ieF terms represent structural damping which opposes the
motion; as previously stated, the magnitude of the damping
force is assumed proportional to the elastic restoring force
but in phase with the velocity., A value of ,03 has been
chosen for ¢ in this investigation. For metal aircraft
structures, this value is consistent with the typical values
given by Scanlon and Rosenbaum (12) page 87 and somewhat high
compared to the measured values quoted by Fung (13) on page
227, No other damping is econsidered,

These equations may be simplified by dividing each side

by Mo or Mi which are assumed equal and by (1 + ic) to obtain
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equations (85)

.o 1 1 N

Zo (T3 1) +'ﬁ'on =0
1 1

v ( ) + —PF =

o 1 + ic My,

(85)
. SN N ‘
23 (T4 1e) * W zg
. 1 1
+ —F = 0 °
11(1 v 10 Tu Ty J

The Foufier transformation of equations (85), considering thg
input z to be a unit impulse, yields the following set of sim.ul==
taneous equations in the fregquency domain where Kllg Klgg etce
refer to the corresponding elements of the spring constant

matrix [K] defined in Table III:

2 : . N
-w? K..] K K K K. . +K
Z(10) | — + 2|+ 22 ¥ _(10)+ 23 2, (10)+2L ¥, (10) = 2113
l1+ic M| M © M Mot M
K -2 X,J] K K K__+K
&1 Zo(iw)+Yo(iw)[ + 2%]+ 23 24 (10)+-24 ¥, (10) = 2123
M l+ic M | M M M
' >( 86)
2
K K -0~ K. 7 K K__+K
31z (10)+ 32 Y (10)+24 (10) + 331+ 30 v, (10) = 3133
M M l+ic M | M M
2
K K K -2 K K, . +K
_ﬂg Zo(im)+_§§ Yo(iw)+_£§ Zi(iw)+Yi(iw) +_E§ = _&l__&}
M M M l+ic M M

or in matrix form



:‘50

| - 2 ; 7
C1) Fn 9" | e 13 R (G )
M M 1+ie M M M ©
= 2 |
K21+K23 ! fé?_?___ fgé fgﬁ' Y (iw)
M M M 1+ie M M ° .
>: , < > ( 7)
K31+K33 K31 E{i? I-KBB_“’ KBh Z. (10)
M M M [ M 1+1¢ u 1
’ 2
Khl+Kh3 Khl §&§ E&é fﬁgkfl__ Y. (iw)] .
. M J | M M M M l+iell LY

The square matrix on the right of equation (87) is shown in

Table IV and is termed matrix [A].

TABLE IV
- MATRIX [A] -
— 2
212843l 3= — 85lL.5288 129.0711 96,16257
l+ic
6)2
85,5288 868,5191 = — =l 5.6531 28,31102
l+ic :
. 602
129,0711 =} 1i5,6531 3432,700=——| «1200,64l
1+ie ‘
02

96,16257 28.31102 =1200,6h11 81} ,0971=

1+ic

4
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then
( ) — - rKn ‘ KZL; |
2, (1w) Bll B12 B13 Blu ‘
K K
. 21 23
Y, (10) Boy Bos B,, By,
L I L e
31 * %33
Z; (1w) By Byp  Byy o By M
K _ +K
PPN | W1 L3
\Yi(iml) _?ul By, B) 5 Buu_J S,
\ Y.

where the [B] matrix is the inverse of matrix [A].

Equation (88) produces equations (89) through (92) which
are the Fourier transforms of the z and y displacements at
theicenter of gravity of each store due to é vertical dis-
plaéement unit impulse input at the pylon to wing attachment,

In general these would be the system transfer functions,

22574, 1133+10, 84y, 1780 2~7 , 18l 328, 850A+1, 019, 981 , 826, 000
xum72u3°679x3+1u,973,06012~8905u90959390x+19019,983397090009
_m2257.h1h(1n182°916)(Rn616.9123)(X=h00h¢1101)

© (A-18l4.301L) (A-547.62833) (A-2552.501) (A-3959.248)

Zo(im)=

Z, (iw) - (89)

-1,08,8757A3+2,296,19612=356, 928, 2231

9

AT=T72143,6790°+1,973,0600“=8,05}4,095,390A+1,019,983,970,000

~1408,8757A (A=160.0018) (A=5455,8760)
(A=18l0301l1) (A=547.6283) (A=2552.501) (A~3959.248)

Yo(iw)

(90)

=3561¢77113+12,138,525x2_7,619398997oox+1,019,9839850,ooo

B4

Zi(i&))n LI- 3 >
A*+-7243,6792°+14,973,0601°=8,05],095,390A+1,019,983,970,000

. (1o =3561,771(A=185.911) (A=583.8610) (A-2638.2305) 1)
s (1w)= = ‘ - ° 91
- (A-184301L) (A-547.6283) (A=2552.501) (A=3959.2L8)
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1104.48123-3,053,58622+585,337,9601
lf-72&30679R3+1u9973,06012—8,05h,095,390K+190199983,9709000

1104 . 44.81A(A=-207.2201) (A=2557.5046)
Yi(iw)z ' «(92)
(A=~18l.301l) (A=5L7.6283) (A=2552,501) (A=3959,248)

where
wz

A=

<

1+ie
The introduction of the complex structural damping terms of
icF in equations (8L), however, produces admittances or trans-
fer functions which are (l+ic) times the steady state trans-
fer functions which are desired, The equations of Table V
have been developed by multiplying equations (89) through (92)
by (1+ic)3/(1+ic)u and represent the éteady state transfer
functions which are actually sought. These will be desig-
nated as Zj(iw), Y, (iw), Zj(iw), and Y (iw).

3e3 Power Density Spectra of Response

The power density spectra of the vertical and lateral
acceleration at the center of gravity of the outboard store
are developed by numerically evaluating IZé(iw)iz and

lYé(im)|2 as functions of ® and using equation (55):

= IZé(i&))lzéi(ﬁo)g | (93)

©
N
B
|

Ko
B
!

= |15 (10)| % P, (o), (o)

where4@i(w) is defined by Fig. 11. Table VI shows the cal-
culation of<§bz (@) and'ﬁb (o) and has been converted to

o Jo
frequency in cycles per second in place of the usual radians

per second,



TABLE V

PYLON TRANSFER FUNCTIONS

2257, 41k [:(w2=182.916)=1182°916g] [:(@2.=616,9123)-=1616,9123g] J:(wéah()@hollOl)=ih00h.,1101g] ,
I:(w2=183+.,3012&>=1181¥03©lhgj] Kw2=51&706283)=15h7°6’283g:| [(@gczssa,501)-=i2559.501g:] Bw2=3959.2h8)43959.2&8@

z!(1 )

40887575 [(oR~160.0018) ~1160.,0018¢g | [{e ~5455. 8760)-15455.8760g]
Ew’ =181h3011+)=11815=.3011+g] Eo =5h7.6283)=15h7.6283gj L(w =2552,501)912552.501g] Bw2=3959.2h8)43959'.2&83:]

Y1 )=
2

o 2
) -3561.771 Kw2=185,911>=i185.911g] ng=583,861)=15830861g] [ =2638,2305)=12638°a305é]
Zt{1 )= ‘ ‘ =
i Eweclsh.s@lh)=118h°3@1hg] Kw2=5h7°6283)=15h7.6283g] [(/..,?@552‘501)42559,5@1@ Bw2c3959.2h8)=i3959,2h8g]

: 110k 4810 [(w -207.2201)~1207.2201g) [(oS -2557.5046)-12557 . 5046g]
!i i -' -
© Ew -184,3014)-118k, 3011@ [@ 547 .6283)-1547 . 6283%”}( -2552,501)-12552, 501@ [@2=3959 2h8)-13959. ahsg]

3]



eps

0.10
0,25
0.35
0.40
0.45
0.48
0.50L
0.55
0,60
0,65
0,70
0.75
0,80
0,90
0.95
1,007
1,05
1.2
1.2
1.592
1,750

CALCULATION OF OUTPUT POWER DENSITY SPECTRA

P (o)
‘g%/cps
0

12
50

100
130
145,5
108
145
123
99
Th
61
50
Lo
29
22,5
1y
7.
o1
2,0
1.2
1.0

TABLE VI

|25 (10)

0991
1,001

1.0033

1.0055

- 1.0068

1,0082
1,0094
1,010L
1,012}
1.0150
1,0179
1,0208
1,0240
1.0277
1.0355
1,0399
1,0453
1.0497
1.0660
1.094h
1.1171
1.135

|2

i%z (@)
o
ge/cps
0
12,012
50,165

100.550

130,88k
146,693

149,391 .

146,508
12} .525
100,485
75.325
62,269
51,200
41.108
30,030
"23.398
1h.63L
7.453
h.371
2,189
1.341
1,135

0

|¥ot10)] ° B, (o)
’ g%/cps
0
0.000002 0
0.000006 0,0003
0.000008 0.0008
0.000010  0,0013
0.000011 0,0016
0.,000012 0,0018
0.000012 0.0017
0,000030 0.0037
0.000050 0,0050
0.000072 0.,0053
0,000090 0.0055
0,000111 0,0056
0,00013 0,0052
0,000175  0,0051
00000195 0,00k,
0,000216 0,0030
0,000189 0,0013
0,000117 0.,0005
0.,00005 0,0001
0.001355 0.0016
0.0015 0.0015

Sh



cpa

2,000
2,01k
2,075
2,105
2,135
2,1l1
2,147
2,15l
2,160
2,172
2,176
2,182
2,188
2,19l
2,222
2.251
2,291
2.l
2.45
2,516
2.6
2.7
2,758

b, (0)
g%/cps
1,0
1.0
0,8
0.6
0.6
0,65
0.7
0,80
0.9
1.0
1.1
1,15
1.2
1.25
1,50
1.3
0.8
001
0ol
0,2
1,0
1.7
1.3

TABLE VI (Continued)

‘Zo(im)‘z @ Zo
| g%/cps
1.138 1.138
1.1378 1,138
'100770 0.862
1,026l 0,616
1,0278 0,617
1.0661 0,693
1.1312 0.792
1.25691 1,006
1.3637 1.227
1.5787 1.579
1,6362 11,800
1.6772 1.929
1.6935 2,032
1.72l43 2,155
1,630l 2.4l6
1.5741 2,046
1.5329 1,226
1,520 0.152
1,530 0,153
1.5573 00311
1,600 1,600
1.68 2,856
1,7235 S 20241

o, (@) |t

0,00038
0,000351
0,002l
0,0132
0,0768
0.1123
0.1630
0.259L
0,2952

0,3201

0,390
0.3681
0.3351
0,306

0.1757

0,1229
0,0891
0,0781
0,0781
00,0813
0.0911
0,115

0.1411

@,

70
g/cps
0,000l
0,000k
0,0019
0,0079
0,061
0.0730
0,11h1
0.,2075
0.2657
0,3201
0.1.29)
0.4233
0,4021
0.,3808
0,2636
0,1598
0,0713
0,0078
0,0078
0,0163
0,0911
0,1955
0.,183L
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cps

2.978
3,184
3376
3,664
3.698

3.716

3.722
3.726
3.727
3.729
3+732
3,766
3,800
3,833
3,848
3,866
3,898
3.931

3.955
3,963
5.033
8,041

@Q(w)
g%/cps
0.7
0.6
0,5
0.3
063
0.3
0.3
0.3
0,3
0,3
0.3
0,3
\002
0.2
0.2
0,2
0.15
0,15
0.1

TABLE VI (Continued)

|Zo(iw)l2 a%z ()

&)

g%/cps
1,9905 1.393
2.4550 1,473
3.l 1,722
17,5080 5.252
2l 7977 7.439
26,0195 7.806
25,312 7.594
2l .6932 7,408
23,6623 7.099
23.9123 To17h .
22,9585 6,888
11.22146 3.367
l4.1197 0,88l
1.7496 0,350
1,0920 0,218
0.7056 0,141
0,2879 0.0h3
0,1286 0,019
0,0920 0,009
0,0796 0
1.5849 0
850,990 0

|Yo(iw)’2 D ()

0.,2829
0.6570
1.9226
48,5578
88,8778
105,6358

108.0663

108.0980
108.1011
107,378l
105,8416
70,1983
L0.3848
2l,.8528
21;159&
16,6669
11,9858
9.0978
7.7033
- 7.1831
' 0,8110
198,747

g%/zps
0.1980
0.3942
0,9613

1u°5673_

26,663
31,691
32,420
32,429
32,430
32,214
31.752
21,059
8.077
L.971
L.232
34333
1.798
1.365
0,7703
¢
0

0
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The power density spectra of the respohses are plotted
in Fig. 12 and Fig, 13. Similar results could bg_caléulated
for the inboard store, however, this is not essential for the
purpose of this investigation,

It is noted that the spectrum of vertical acceleration
response at the center of gravity of the outboard store as
shown in Fig, 12 is quite similar toAthe input of Fig, 11,
except for a small build-up ixx@bzo(w) above 2,0 eycles per
second where very little input amplitude exists., The mean-
square acceleration for each spectrum has been determined by
equation (57) and from this, the standard devliation, 0-. Each
of these is noted on the power density spectrum plots. The
vertical output ¢~ is 2.6 percent greater than the input o~

The spectrum of induced lateral acceleration response
at the center of gravity of the outboard store, shown in Fig.
13, is concentrated primarily at 3.73 cycles per second, a
natural frequency for the pylon and store combination. Al-
though there is very little input amplitude‘ih this fregquency
range,. the resonance produces a comparatively large response
amplitude. The associated méannsquare acceleration for the
spectrum, ¢°y (0), and standard deviation, o, are noted on
Fig. 13. °

3. Evaluation of Results

A display of the significance of the results is obtalned
by determining the number of'times'per hour that given ver-
tical and lateral load factors or accelerations at the center
of gravity of the outboard store are exceeded, as indicated

by
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8, The input power density spectrum if it were
assumed applicable to the center of gravity
of the store,
boe .The output power density spectra.
This is accomplished by the use of equation (62) multi-
plied by 3600 seconds/hour:

wAng
| 20~
' (an) = 3600 Ne 27, (95)
where - 1/2
Im w2 @b(w)dé] /
N = 2 for @ in terms of cycles
) 'fo<$b(m)dm J per second

An = the load factor or acceleration of concern,

Nu(An) = agverage number of maximum load factors or

accelerations per hour exceeding An

The calculated value of NO for each power density spec-
trum is shown on Fig. 11, 12, and 13.

The resulting excedence curves for ineremental vertical
load factor only are plotted on Fig., lli. This figure shows
both the load factor excedences indicated by the basic input
and the load factor excedences indicated by the vertical out-
put at the center of gravity of the outboard store.

The resulting excedence curve for lateral load factor at
the center of gravity of the outboard store 1s shown in Fig. 15,
The basic vertical input, without consideration of the pylon
flexibility and the resulting transfer functions, would, of
course indicate no occurances of lateral load factor.

The lateral load factor output may be converted to equi-

valent incremental vertical load factor by recourse to the
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initial statement that a lateral load factor of 1l.0g pro-

duces a critical stress equivalent to fhat produced by a

vertical load factor of 2,75g, This conversion results in

the curve of Fig, 16.

The total equivalent combined output, the vertieal load
factor output only, and the vertical load factor input ex-
cedences are all shown for summary purposes on Fig. 17.

These observations are made:

a. The incremental vertical load factor whieh is input at
the pylon to wing attachment no more frequently than
once an hour is 3.2Lig whereas the output at the c.g. of
the outboard store occuring with the same frequenéy is
3.37g, an increase of li percent which is rather small
and not of particular structural significance,

b. The cyclic loading, which is of prime concern from a
structural fatigue standpoint, has been developed from
Fig, 17 and is shown in Table VII, This table shows
the number of applications per hour of average incre-
mental vertieal load factors as developed directly from
the input to the pylon and also as developed from the
total equivalent vertical output at the c.g. of the out-
board store, The total eduivalent vertical output indi-
cates approximately an 800 perecent inecrease over the
input in the number of,load-eycles predieted at the
lower load factors, diminishing to approximately a 70
percent increase at the higher load factors. The large

~increase at the lower load factors is primarily due to

the induced lateral effects.



6l

||

0 2.0 .0 6.0 .0 10.0 12.0

(+Anz°)2~ g2

Fig. 16 = Equivalent Incremental Vertical Acceleration
Excedences from Lateral Response
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TABLE VII

CYCLIC LOAD PREDICTION

Vertical Outpub

Input to Vertical Bguivalence of"
Pyleon Cutput Only Lateral Output
Cyeles/Hr, Excedences/Br, Excedences/Hr.,
3h70 : 13,250
k70
2850 9,600
920
1690 3,710
770
680 760
350
197 82
106
38.5 4.6
el
5ok

Total
Equivalent
Vertical Output
Excedences/Hr,

16,720
12,450
5;hoo
1,kk0
279

43

Total
Equivalent
Vertical Output
Cycles/Hr,

w20
7050
3960
1161

236

99



67

Co This increase in cyclic loading would be reflected in a
significantly shorter "failure free' flight 1ife for the
pylon structure than would be anticipated from a consider-
ation of the basiec input ec¢yelic loading aleone,

Although these observations apply to the specific pro-
blem, it would appear that the admittance or transfer functions
of any pylon or store supporting structure can significantly
alter the predicted c¢yclic inertia loading if natural frequen-
cies for the system exist anywhere within the frequency range
covered by the Input power density spectrum. In general,
this will cover the frequency range from zero to ten cycles
per second, for an input developed by atmospheric turbulence,

A complete evaluation of the c¢yclic stresses induced in
the pylon due to combined vertical and induced lateral load-
ing revealed in this investigation should be based on calcu-
lations of the associated pylon mode shapes at the critical
natural frequeney. This would provide a guide In combining
the proper simultaneous effectse.

A prediction of the total ecyclic fatigue loading history
for any pylon must consider both vertical and lateral gust
inputs, Further, these inputs must obviously cover the antieci-
pated flight environment, as discussed in Chapter II, rather
than just one rather severe gust input as used in this investil-
gationo

The demonstrated importance associlated with a structural
resonance point, along with the possibility for the inter-
action of vibration modes of pylon, wing, and other structure,

would indicate that in all cases, final evaluation of the
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cyclic loading on a pylon and store must come from flight
test. Design and development testing come long before flight,
however, and must rely on analytics such as applied in this

investigation,



CHAPTER IV
SUMMARY AND CONCLUSIONS

The determination of aircraft gust loads by the use of
power density speétra is discussed, These methods are applied
to investigate the structural significance of consideriﬁg the
transfer functions of a hypothetical wing mounted pylon and
supported store combination to obtain the aeceleration output
at ‘the store center of gravity from a known acceleration in-
put at the pylon to wing attachment points.

The basic fundamentals essential for the understanding
and proper application of poweridensity spectra are covered
in detail. The published power spectral density analysis
methods for the prediction of aireraft gust loads are set
forth and discussed with reference to the basic fundamentals.

- The investigation of the wing maunted pylon and sup-
ported store demonstrates that the“%;;hsfer functions of a
Pylon supporting a high mass item céh alter the power densgity
spéctrum of input acceleration to a degree which is important
in evaluating the structural fatigue characteristics offthe
pylon., This i1s considered possible if the pylon and sfére
combination have a natural frequency anywhere within the
frequency range covered by the input power density spectra.
In general, this would be frpm.zero to ten eycles per second

for an input developed by atmospheric turbulence.
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It is observed in the example chosen for investigation,
that the higher amplitude portion of the input power density
spectrum, Fig, 11, is confined to the region of 2,0 cycles
per second and below, The example pylon-store system reso-
nant fregquencies odcur above 2,0 cycles per second where the
input spectrum amplitude is quite small. This has minimized
the influence that the pylon flexibility has on the cyclie
loading due to this input; yet this influence has proven sig-
nificant., It is therefore apparent that where practical, a
pylon structure should be designed to avoid resonant fre-
quencies which coincide with the high amplitude frequency
ranges of all known input spectra.

A power spectral density analysis may be used as demon=
strated herein to predict the frequency of occurance of
cyeclie fatigue loads from given input spectra. Further, as
demonstrated, there may be several types of output responses
resulting from a single inputj; for example, vertical and
lateral aceeleration outputs due to a vertical acceleration
input,

The proper time coordination of these types of output
response is important in structural fétigue testing but is
not defined in the power density analysis. A study of pylon
mode shapes at the critieal natural frequencies could serve

as a guide in combining the proper simultaneous effects.
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