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PREFACE

The goal of this research was to extend the theoretical
understanding of equilibrium and non-equilib-rium properties of electro-
lyte solutions as an aid to the establishment of correct premises. The
free volume model of pure liquids had been an effective interpretive
tool for that clars of substances. A considerable effort was expended
in this research in an extension of the model to binary non-electrolyte
solutions. The results of the treatiment are interesting and useful, but
they did not suggest profitable extension of the model to electrolytes.
This dissertation appears in two distantly related parts, with the non-
electroiyte contribution as Part II.

For practical rea.a;ms the electrolytes research was shifted
from model interpre-tation of relatively simple systems to phenomeno-
logical description c;f complex systems. This contribution appears as
Part I because it has requir;ed the greater effort and the results are re-
garded as the more significant.

The author v'rishes to express his gratitude to Dr. George
W. Murphy who suggested and directed the present research. He is
also indebted to the Office of Saline Waters, United States Department

of the Interior, whose grant under Contract Number 14-01-001-191
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made the research reported in Part I possible. The gencrosity and
helpfulness of the staff of the University of Oklahoma Computcr
Labo;-afories was also greatly appreciated. Finally the author thanks
the faculty, staff and fellow students of the Chemistry Department for

their friendship and encouragement.

iv



TABLE OF CONTENTS

LIST OF TABLES | . ... . e i
LIST OF ILLUSTRATIONS ... . .. e

PART I: NON-EQUILIBRIUM PROCESS IN ELECTROLYTES
AND MEMBRANE SYSTEMS

Chapter

I. NON-EQUILIBRIUM THERMODYNAMICS .................
II. SYSTEMS CONTAINING ION-PERMEABLE MEMBRANES ..
III. THEORETICAL ... ... .. . e
IV. CALCULATIONS . . ... i it e e s

PART II: FREE VOLUME CONCEPT APPLIED TO BINARY
NON-ELECTROLYTE SOLUTIONS

Chapter

I. HISTORICAL AND THEORETICAL .............c.c0. ...
II. CALCULATIONS AND DISCUSSION OF RESULTS ..........
III. SUMMARY OF RESULTS AAND CONCLUSIONS .............

APPENDIX: A PROGRAM FOR COMPUTER SOLUTION OF
EQUATIONS (39) ..... ...

BIBLIOGRAPHY . . .. .



LIST OF TABLES

Table
1. Summary of Symbols ............ $ %8s sreces e becsn s

2. Rotational Contribution to the Entropy of
Vaporization Based on Pitzer's Rule ......co000eeeeesns

3. Calculated Rotational Contributions to the
Entropy of Alcohols...........cc.iiieevnen

4, Calculated Free Volumes for Pure Compounds....ceecuvese

5. Free Volumes of Binary Mixtures Forming
Azeotropes ..... ® ® 5 5 6 & 0 0 4 0 80 0 0 e s 0 e & 5 8 & e & & 0 6 0 8 0 8 0 8 b

vi



LIST OF ILLUSTRATIONS

Figure
1. Volume Element of Electrolyte Soiution cteesiesanaenesann
2. Diagram of a Simple Membrane System ...c.cc0vveeencnen
3. Osmionic Demineralization......... et eseseseecee senuans
4, Double Effect Cell for Osmionic Demineralization ........
5. Triple Effect Cell for Osmionic Demineralization .........
6. Osmionic Demineralization ......ceveveveccsscceccccens
7. Volume Element in bsmionic Cell...oeveennesoncncnsanes
8. Demineralization of NaCl solution....cceceeeveetnncncees
9. Simultaneous Demineralization of NaCl and MgCl2........
10. aSY versus VG/ VL for Pure Compounds ..........o0enn.
11. Free Volume by Pitzer's Rule: CH3CN-CCly ..........
12, Free Volume by Pitzer's Rule and by
Hildebrand's Rulei CH3CN-CgHg...covverinnoracnennnns
13, Free Volume by Pitze;:'s Rule and by
Hildebrand's Rule: CgHg=Co2HsOH ...vvvveviincnnonennns
14, Free Volume by Pitzer's Rule and by
Hildebrand's Rule: CgHg=CH3NOp . vivrevtsnroncencssns
15, Free Volume by Pitzer's Rule and by

Hﬂdebrand'ﬁ R.ule: C6H6"iC3H7OH R R I R I I I T N N S S S B I B B

vii

16
16
30
31
41
42
56

66

67

68

69

70



18.

19,

20,

21,

22,

23,
24,
25.
26.
217.

28,

Free Volume by Pitzer's Rule:

Free Volume by Pitzer's Rule:

"I\ -
rce Velume by P

CCl;-CH;NO

r 2
2 &

CCl4-C2H50H

CH C13 -CszoH

Free Volume by Pitzer's Rule and Hildebrand's
Rule: CH30H-CgHg at 35°C ...,

Free Volume by Pitzer's Rule and Hildebrand's
Rule: CH3O0H-CgHg at 55°C

Free Volume by Pitzer's
Rule: CH30H-CCl, at

Free Volume by Pitzer's
Rule: CH3OH-CClg at

Composite
Composite
Composite
Composite
Composite

Composite

Free Volume

Free Volume

Free Volume

Free Volume

Free Volume

Free Volume

00 90008 000 000 000

Rule and Hildebrand's

359C

Rule and Hildebrand's

559C
svi.
svi:
svi:
svi:
évi:

svi;

viii

® 860 0600 08 080 000 60

CH3CN-CCl, .....

CH3CN-CgHg .....

C3H,OH-CgHg . .
C2H5OH-C¢Hg .,
CH3NO,-CCl4

CH;NO,-C¢Hg ..

o0 060 0 00

® e 0 00 0

¢ 0 0 o0 o

Pag~

72

73

74

75

76

71
78
79
80

80

81

81



THEORY OF SOLUTIONS AND ION SELECTIVE

MEMBRANE PROCESSES
PART 1

NON-EQUILIBRIUM PROCESSES IN ELECTROLYTES

AND MEMBRANE SYSTEMS
CHAPTER I
NON-EQUILIBRIUM THERMODYNAMIGCS

A serious shortcoming of the method of classical thermody-
namics is that its results are valid only for systems which are at equi -
librium or are subjected to "z;eversible" processes. Unfortunately, no
real system is ever completely at "equilibrium!''nor is any real process
"reversible." Hen;:e, there is an obvious need for an extension of the
theory of thermodynamics thch will include irreversible processes.

During the last twenty years a rather complete system has
been developed for a mé.croscopic theory of irreversible processes.
Excellent reviews of the subject are given by Prigogine (1,2), de Croot
(3), and Denbigh (4); therefore, it is necessary here to present only a

brief outline of the major principles of the discipline.
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Phenomenological Equations

For a long time there have existed many pheromenological
laws dealing with irreversible processes in the form of proportion-
alities. Familiar examples are rick's law of diffusion relating a flux
of a component in a mixture to its concentration gradient; Ohm's law,
which relates the current flow to a potential gradient; and Fourier's
law, relating the flow of heat to a temperature gradient.

The question naturally arises as to what is the effect of two
or more such processes occurring simultaneously. Intuition suggests
and experience proves that they will couple and interfere with one
another. Again a number of examples could be given, such as the two re-
ciprocal phenomena of the thermoelectricity arising from the interfer-
ence of the conduction of heat and electricity,i.e. the Peltier effect and
the éo-called thermoelectric force. The mathematical laws describing
such cross phenomena are trﬁly '‘phenomenological' in the sense that
they are verifiable by experiment and yet not included in the theory of
reversible thermod'yna.mics.

A systematic approach tothe problems presented by irrever -
sible processes is based on a theory published by Onsager (5) and a
later refinement by Casimir (é_). The methods presented by Onsager
were soon used to formulate a systematic phenomenological descrip -
tion of the transport of heat and matter in systems departing from

thermodynamic equilibrium (1,3, 7, 8).
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Irreversible processes can best be described in terms of
generalized "fluxes' J; (the flow of eclectric current, heat, matter,
etc.) and generalized '"forces" Xj (concentration and temperature gra-
dients, etc.). DeDonder's term affinities for the quantities X; is prob-
ably more appropriate than the term forces, but the latter has been
adopted by most authors and will be used in f.he present paper. The
quantities J; and X; are related in a set of phenomenological equations:

Ji=2jL1j Xj

Taking the clue from experience with many irreversible
processes, it seems reasonable to assume that the coefficients Lij
will remain constant as long as the system remains not too far from
equilibrium. This prOpefty of the L; :'s can be demonstrated theore -

J
tically (4,5, 6,) but mathematical complexity has thus far prevented a

good answer to the question as to just how far from equilibrium is too
far (7).

In order to demonstrate a very interesting and useful pro-
perty of the coefﬁcieﬁts Ljij, Onsager made use of the principle of
microscopic reversibility. This principle, which is discussed in detail
by Tolman (9) and Fowler and Guggénheim (10), postulates that, under
equilibrium conditions, any mclecular process and the reverse of that
process will be taking place at the same rate. These authors show the

principle to be on sound quantum theoretical ground. The apparent in-

compatibility of the principle of microscopic reversibility with the fact
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of macroscopic irreversibility is discussed thoroughly by d¢ Groot (3) .
Using the general methods of statistical mechanics and the principle of
microscopic reversibility, Onsager (5) showed that the matrix of coef-
ficients is symmetrical, i.e.
Lij=1Lji (1)
if forces Xj and fluxes J; are chosen so that the rate of entropy produc-
tion is given by
das/dt = (1/T)2;J;X; . (2)
Many choices of the forces and fluxes are usually available
which satisfy (2). However, some choices may be more suitable than
others for bringing the phenomenological equations into terms of vari-
ables that are readily observable. Many problems which have proved
quite difficult or impossible to solve using one set of forces and fluxes
have readily yielded to solution once a suitable set has been found .
The methods of transformation from one set of Jij's and Xj's to another
is discussed.in detail by Prigogine (1), de Groot (3), and Meixner (11).
These authors state that in order to insure the thermodynamic equiva-
lence of two sets of variables, it is necessary to insure that the en-
tropy production rate remains invariant under the transformation, i.e.
T(das/dt) = 30375X;3=357; X; (3)
where Ji' and Xi are the new or transformed set of generalized fluxes _
and forces. The condition given by (3) is als'o sufficient if overall con-

servation of mass and energy are not violated by the transformation (1) .
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Entropy Production

Thus it is seen that the entropy production is of fundamental
importance in the study of a system in which irreversible processcs
are taking place. Hence, it is not sufficient to discuss the entropy
production qualitatively, but it will be necessary to derive quantitative
expressions for dAS/dt in order to produce a mathematical description
of non-equilibrium processes.

The entropy of a system, which is an extensive quantity re-
lating to the system as a whole, can vary for two reasons and two rea -
sons only: either by a transport of heat across the boundary of the
system or by production of entropy by irreversible phenomena taking
place within the system. | If we denote by deS the entropy being trans-
ported into a system during a specific time interval, and by d;S the
entropy produced by irreversible processes within the system, then
the total entropy change for the system is given by

dS=deS+ diS. (4)
The second law of thermodynamics states that
deS = dQ/ T (reversible), d;S20. (5)
This formulation of the second law is valid no matter what the specific
conditions under which the process is carried out.

The flux of ions is the principal topic to be discussed in this

paper. This phenomenon is found in several systems which are physi-

cally similar, namely solutions, cells with and without transference
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and systems of solutions separated by membranes. We will consider
the flux of ions in an electric field in some detail, for it will be seen
that the results of such consideration can be applied with a little gene-

ralization to the remaining systems of interest.

Ion Flux in Solution with Electric Field

Figure 1 represents a differential volume element of a solu-

tion of some electrolyte.

.

Figure 1
Let us c0nc.eive that the imaginary plane A separates the volume
into two elements I and II which possess a difference in elec-
trolyte concentration and a difference in electrical potential

giving rise to an electric field whose component normal to plane A



7

is ¥. Writing a mass balance for the flux of ions across the plane A,

we have
dnj = dnll = dg; (6)
= nl - ni - Elt

where the function ¢; is the so-called ""degree of advancement.'" The

total current I carried by the ions moving across A is given by

—.—Zizird £, /dt :EiziFJi , (7)

if A is of unit area.

The first law of thermodynamics for this system has the

form

dU = dQ-pdV + (¢vI-yd)1dt, (8)

and the differential entropy change is given by the following formula

1 IJ:'[ I PII I
= — 2 - é Zdn; - 2o
dS = T dU + 3 dv . Tdn1 T dn; (9)

I
where Bj and u?

due to Gibbs:

are the chemical potentials of the ith jon in phases

I and II respectively. (This formulation of dS is valid if we assume
that S is a function of ¥,V, and n; alone. This will be true in the
absence of variation of polarization of matter (12). ) Combining, we

obtain

The combination of electric and chemlcal potentials, ziFyl/ + K is re-

ferred to as the electrochemical potential and is symbolized 3. Thus,

= (dQ/T) +(1/T)ZAT;id$i , | (10)



whence,
(d5/dt) i1 peversible =(1/TID AFJ; (11)
Comparving (11) with (5) and (2) it is seen thatAEi and J;
will serve as generalized forces and fluxes for formulation of this

system in irreversible thermodynamics.



CHAPTER 11

SYSTEMS CONTAINING ION-PERMEABLE MEMBRANES

Donnan Equilibrium

If the imaginary plane A in Figure 1 is replaced by a mem-
brane m, one has the situation represented in Figure 2. It occurred
- to Donnan (13) in 1911 that if such a membrane transmits certain kinds
of ions but not others, then an unequal distribution of the ions that can
pass through the membrane must be set up on either side at equilibrium,
as a result of the requirement of electrical neutrality on both sides. If,
for example, phases I and II are solutions of sodium chloride with dif -
ferent concentrations, and if the membrane permits the passage of
sodium ions only, a flux of cations will take place from phase I to phase
II (assurhing the initial concentration of I to be higher than that of II).
Of course, preservation of electrical neutrality of both sides must be
maintained by use of electrodes ideally reversible to the anion which
will furnish chloride ions to phase II and remove them from I.

The theoretical investigation of the Donnan membrane equi-

librium (14, 15, 16, 17) has in the past outrun its experimental study,

9
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which was long confined to systems containing colloidal or semi-colloidal
ions as nondiffusible ions, and to a few systems in which the ferrocyanide

ion acted as the nondiffusible species inconjunction with a copper ferro-
cyanide membrane. Donnan equilibria in which small ions act as nondif-
fusiole species could not be studies since suitable membranes were not
available. Now, however, permsélective membranes lend themselves

admirably to this purpose.

Ion-Selective Membranes

These permselective membranes are composed of solid poly-
electrolytes consisting of a hydrocarbon crosslinked skeleton to which

polar groups are attached (18,19). The polar groups may be chemically



11

combined with the substance of the membrane. An cxample of the first
type is provided by the anion-selective membrancs of Sollner (_2_0_).
These membranes are made by the adsorption of protamine cations on
nitrocellulose membranes. The second type is exemplified by oxidized
nitrocellulose membranes (_Z__l_),where oxidation has produced carboxyl
groups presumably on the sixth carbon atom of the glucose residues.
In nuclear sulfonic cation-exchange resins the bound groups are the
-SO3- anions. The counter ions,cations in these last two cases, may
be considered dissociated from this skeleton. The small cations in
the vicinity of the polyanion can mové into an adjacent solution only to
the extent determined by the relation between their thermal energy
and electrostatic attraction. They can, however, move freely inside

the resin.

The mechanism of ion transport within the membrane has
received a great deal of theoretical attention (22 - 33). Qualitatively
the principal ideas can be simply stated. Ions charged oppositely to
the fixed charges on the membrane (gegenions) are free to move into
and through the pores of the membrane, while ions of the same charge
(nebenions) are restrained from entering the pores by electrostatic
repulsion. If the pore size is small enough, nebenions are virtually
excluded. Any membrane which is available at present must be assumed
to be heteroporous, a mosaic 6f wider and ﬁarrower channels. The

observable membrane effects are the gross result of the processes
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which occur across the different pores and arise because of their
interaction. Certain of the consequences of heteroposity were
stresscd by Sollner (34 - 37). Electrolyte lcakage (simultancous
transport of nebenions and gegecnions) will occur through the large
pores. Multivalent ions are much more restricted in their permea-
tion across the membrane than univalent ions because their high
charge prevents them, by electric repulsion, from entering narrow
pores which are accessible to univalent ions of the same size.

With increasing concentration of the outside electrolyte
solutions, an increasing quantity of electrolyte, equivalent quantities
of anions and cations, enters the pores. The specific influence of
the membrane is thereby decreased. This explains why the ionic
selectivity of a given membrane decreases if the concentration of
the adjacent electrolyte solutions is increased.

At any rate, the virtual transportation of electricity across
a permselective membrane isdivided between anions and cations in a
proportion which is different from the ratio of the transference
number of these ions in free solution. If a membrane is exclusively
permeable to cations, the transference number of the cation in the
membrane is unity. This is ideal ionic selectivity. Furthermore,
if a permselective membrane is interposed between two solutions
of different concentration of the same electrolyte, an electromotive

force arises which is different from that which would arisé between
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the same two solutions in the absence of a membrane, i.c¢. withfree
diffusion. The clectromotive forces arising in such membranc con-
contration chains are referred to as ''concentration potentials."

Membranes of very low porosity or with a high ratio of
bound ions to pore volume will be nearly impermeable to the diffusion
of salts and the concentration potential may reach the magnitude of
the potential difference which would arise between two solutions if
they were connected to each other through a pair of reversible elcc-
trodes specific for either the cations or the anions. This is the max-
imuﬁ possible value for the concentration potential; the lower limit
is the liquid junction potential. Thus, it is seen that concentration
cells with and without transference may be considered as special
cases of membrane systems.

The theory of irreversible thermodynamics as applied to
membrane processes has been studicd by Spiegler (_Zil)‘ To explain
transport processes in membranes, he used a simple frictional
model which affords a relationship bet;veen the coefficients Ljj which
supplements Onsager's reciprocal relations (1). This model and its
theoretical consequences has been studied more extensively by Meéres

and coworkers (38 - 42).

The Osmionic Process

Consider the system of membranes depicted in Figure 3.

It is constructed of four membranes, alternately cation- and anion -
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selective, which enclose three compartments (S), P, 52) each con-

taining an aqueous solution of an electrolyte. The entire cell is im-

mersed in a brine (B) which is more concentrated than the solutions

inside the cell.

<&

Nat

Figure 3

For simplicity of qualitative discussion let us say that
sodium chloride is the only electrolyte present in the brine and in
the solutions S;, P, and S;. Let us also assume perfect membrane
selectivity.

The concentration gradient set up across membranes C;
and A2 will be responsible for a flux of sodium ions from the brine
into solution S} and of chloride ions (in an equivalent amount) into

solution S2. The maintenance of electrical neutrality in the S
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compartments will require a simultaneous flux of cations from P to
S2 and of anions from P to S;. Thus the S compartments will be con-
centrated and the P compartments will be demineralized. This process
will'continue until the Donnan equilibrium concentrations are attained.

Since the driving force for this process is a difference in
concentration across membranes, it can be called osmotic; and since
ionic transport in membranes is an essential feature, the overall pro-
cess has been named osmionic (43, 44).

The use of this process for the demineralization of saline
water was envisioned by Murphy (45). The process is similar to
electrodyalysis, but has the advantage of requiring none of the conven -
tional power sources, such as heat and electricity, except for pumps
to move the fluid streams. The principle of the osmionic cell has been
validated by Murphy and Taber (46) and a considerable amount of ex-
perimental work has been performed by the Southern Research Institute
under contract 14 -01-001 - 88 with the Office of Saline Water, United
States Department of the Interior.

Figure 1 can be considered as a schematic diagram for a
single effect osmionic cell. If an additional pair of membranes 1is
added as in Figure 4, the driving force of the cell and hence the theo-
retical amoﬁnf of demineralization in the P compartment will be in-
creased. Such configuratidn of membranes is termed a double effect

cell. Figure 5 is then schematic for a triple effect cell. This
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multiplication of effects by the use of additional pairs of membrancs
can be continued indefinitely. Diagrams for other plausible membranc
configurations are given by Murphy (47).

Cy Ay C2 A2 C3 A3

Figure 4

Figure 5
Theoretical expressions for the ionic fluxes arising in osm-
ionic demineralization were derived by Murphy (_‘_11, éﬁ) for the special
case of one electrolyte. It is the purpose of the present research to
extend Murphy's treatment to include any number of electrolytes. Also,
membrane leakage, which was ignored in previous treatments, will be

considered here.



CHAPTER 111
THEORETICAL

The nomenclature used in the present treatment is the same
as that used by Murphy and Taber (48) with a few exceptions. A sum-

mary of the symbols used in this paper is given in Table 1.

TABLE 1

SUMMARY OF SYMBOLS

A; symbol denoting anion permeable membrane

[A]aﬂ an element of the transformation matrix defined by
(21)

[A' l]a.ﬁ a'n element of the maxtrix inverse to A

B symbol dénoting brine compartment

[B] matrix defined by equation (43)

(_'Jf concentration of the itP ion in region r
Ci symbol denoting cation permeable membrane
Cirj concentration of the ijth electrolyte in region r

17
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ks,m

ni, nj

n,_J
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gap between membranes, cm

thickness of membrane m, cm

total gap between probe electrodes: D=D®+ D™

potential of electrode reversible to ith ion

Faraday constant: 96, 494 coulomb/g - equivalent

Gibbs free energy

electric current density carried by jth ion,
coulombs/sec-cm?

total current density

Z-SCC

flux of the jtM jon, g-ion/cm
compartment in osmionic cell being demineralized
gas constant

compartment in osmionic cell being enricheci

absolute temperature

indices referring.to ions of opposite polarity

specific ionic conductance of solution s: k; = Ejs)\;
specific ionic conductance of membrane m: kl}'1 = (—:xjp)‘rjn

combined specific conductivity defined by (27)
function defined by (30)

superscript denoting general membrane

g-ion number of ith and jth ion respectively

th

g-mol number of ij*? electrolyte
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number of species of ions of one polarity
number of species of ions of the opposite polarity
total number of ionic species: .n =n'4+n"
an integer used in subscripts

symbol denoting general solution
velocity of the S;j streams, cm/sec
velocity of the P stream

charge of the ith jon

subscripts denoting matrix elements
Kronecker delta: §,, = O(u +* v); 8 uv
equivalent conductivity of ith ion
electrochemiéal potential of the ith jon

chemical potential of the ijth electrolyte

matrices defined by (20) and (21)

number of g-ions of ith ion liberated by complete dis-

sociation of ijth electrolyte
derivative normal to a plane or membrane
difference
summation 1S a <n-1
summation 1< 8<n -1
summation 1< i<n!

summation n'+ 1<j<n

=1(u=v)
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Ion Fluxes in Solutions of Electrolytes

Following Murphy and Taber (48), the basic equation relating
the flux and the electrochemical potential gradient of the ith jonic
species is given by

J; = -Cj\idBy /zylF2 , (12)
In (i@_) the dependence of the flua.c of the ith {on on the gradicnts of the
elcctrochemical potentials of the other ionic species present has been
neglected. Since this effect is small and would result in small correc-
tion terms which could not be applied to any of the practical applications
contemplated here, this lbss of generality seems justified (3.3_8_.3_9_. 50).
Migration of the solvent, which would be an important effect only at
very high concentration gradicnts (51) will also be neglected here.

The density of electric current carried by the ith jon is related
to the flux as

Iizz'iFJi ’ (13)
and the total current density is given by
I= ;Ii ' (14)

The Gibbs free energy of a phase containing electrolytes is

given by

G =;"ini + ;nj'ﬁj. (15)
The electrochemical potentials Tfi and D'j appearing in (15) present
themselves naturally as the ''forces'' to be used in a non-equilibrium

thermodynamic description of ionic transport in solutions and through
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membranes. HowcverA, these potenticls, though they possess definitc
physical significancs:, arc not tiie most convenien: set of forces for the
formulation of design equations. Murphy and Taber (48) met this diffi-
culty by conceptually combining the ions into neutral compounds so that
the chemical potentials of these compounds, which are measurable,
could be substituted for the ionic electroéhemical potentials.

It is a common technique for irreversible thermodynamics to
substitute a thermodynamically equivalent system for the one actually
under consideration (2). Though the concept of ionic association into
neutra:1 molecules is an artificial one, the equations resulting from
this device corre-ctly predict the ioh'ic fluxes. This metho'd has been
used in the present formulation.

In the general case there will be a total of n' ionic species of
one polarity and n' species of the opposite polarity. (It will be stipu-~

lated that n'<n'.) These n ions can be combined into n' x n'" neutral

compounds, of which the ijth compound is an association of v;‘] ions
of charge z; and v;-'j ions of charge z j- The condition
z: v L zoiiz=0 ‘ (16)

171
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is an obvious consequence. Electroneutrality of the system requires

that

(17)



Substitution of (17) in (15) gives

G 2“13( ;‘D‘l 31:‘]) (18)

The chemical potentials of the neutral electrolytes can be de-

fined as follows:

ool o+ iy, 19
Hysm v B pj (19)

whence Zn ijHij - | (20)

As an example let us consider a system containing magnesium,
sodium, and chloride ions (indicated by the subscripts 1,2 and 3 respec-
tively. In this case equations {19) become

K3 =RH+2¥,,
a3 = Fp + Ty
In the gradient form, (5) may be written

.= viiom ijom. - |
L ViJVf‘l + yj V“j (19)

VK ;

Equation (19) can be viewed as a rule for the transformation
of the set of basis vectors Vﬁi and VFj into the new basis vectors v“ij .
The vectors Vu; and vTij define an n-dimensional vector space; hence,
of the n'xn" vectoz;s v“ij' only n of them can be linearly independent.
The electrical potential gré.dient with respect to the nth jonic species,
which can be measured by means of probe electrodes reversible to the
nth jon, is to be used as one of the basis vectors in the new system .

Hence, only n -1 of the #4;:'s may be taken for the set. The following is
y ij g

a convenient choice:



v“mn"+ r,n'+r ;

23

. 1"
v“n'«i-r,r+l’ 0<r<n

l¢r<n'; l<mn"+r<n'

These two ""subsets' will give a total of n -1 linearly independent vec-

tors, which, along with VE,, completely define the vector space in the

new system. From (19) it will be seen that VH; 3= V“ji‘ i.e. the order

in which the double subscript of V# is written is immaterial. The trans-

formation law (19) can quite naturally be expressed in matrix notation:

- - - -
v“l,n' + 1 r I' vpl
= Aaﬁ
VBn _1, nv .
L Fz,VE, - - 7.5
where

mn'' +r, n'+r

Amn"+r, mn"+r= Ymn"+r
" 1
Amn'"+r,n'+ r= ,,;lr}r_x*_‘;r,n-f-r
f
An'-f-r,n'-+-r = VE.I;’I"*'I
s +
Antyr,r+1 = N T 1
An, n = 1

and all other Aj; =0.

The relationship

(20)

l1<r<n®
l<mn"+rgn'
(21)

O<r<n"

(22)

has been used in the formulation of (20), which can now be written simply

[r4l=(a] [v7]

(20a)

where [V#] and [VA] are the nxl -dimensional matrices of the chemical
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and electrochemical potential gradients respectively, and [A] is the
transformation matrix. Now let us define V4, to be the element of the
[v4) matrix whose first subscript is =, and Vig to be the Bth element

of the [VF] matrix; thus

n-1
Vig =Y [a-Ug,vh + [a-0,  Fz,VE,. (21)

arc]

The coefficients Lj j in the phenomenological equations can
now be determined by considering two special cases:
Case I: VHqa =0 for all a

Vpﬁ = [A-].]B’ annVEn

Jg = kg [A-?B:HZHVEH/IZ,@I F (22)
I= -znVEnZ z gkg [A'l]ﬁ’n/,zﬁl (23)
B=1

Case II: VE,= 0,VHg = Ofor all a # a'
VEg = [A'I-lﬁ o VA
Jg = kg [a-U g 2vuy!/|zg| F2 (24)
1= - (vhar /) ) kg ATy ag7] 2l (25)
We are now in a position to set up the equations desired:
I= ZjLnjv#j-i-LnnViTn .

for the coefficients L; : can be obtained from (22) to (25) as follows:

ij

1,::>=

Y [an /awj] (withVEp=ps; = 0 for i # j)

Ljj= O fori # j
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Lin = [6Ji/5v;7n] (with YZ, =gs; = 0 for all i)

Lnj = [61/6v;1j] (with Wa; = O for i # j)

Lon = [&I/6VFn] (with wu; = 0 for all i)
From the above it will be seen that the phenomenological equations will
have the form: i

I ='znVEn§:szB [AJ]B,n/Izﬁl (26)

-(1/F) ;};lzakﬁ [a-1y jou /l7g

Jg=-kg A-ll . nzZnVEn/|zg| F
[ ]ﬁ -(kB/ lzﬁl FZ) § [A"l]ﬁ,av"a (27)

where 1<fi<n -1 and all summations are from 1 ton-1. It can be seen
that Onsager's reciprocal relations (1) are satisfied by equations (26)
and (27). Let us take as an example a system containing two cations of
valency +1 and +2 and one anion of valency -1. Equations (26) and (27)
then become

Jy=-(ki /F)(VE3 -Vu;3/F),

J2=-(k2/F)(VE3 -Vup3/F),

I1=- VE3 (ky + 2k2 -k3)

- -:?— (k‘1""13 + k2Vuz3).
It may be seen that the equation for J; is the same equation

as would obtain if only ions 1 and 3 were present. The current, how -

ever, is seen to be an explicit function of all three ionic concentrations.
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Ion Permeable Membrane Processes

Muréhy and Taber's treatment (ﬁ) assumed that membrane
rcsistance was negligible in comparison with solution resistance. A
modification by Lacey (51) has shown how this assumption may be
eliminated. He gives an equation of the form

D/k{'™ = (D/k)® + (D/k;)™, (27)
where the value of k 82 ™ obtained from (29) is to be used in all the fol-
lowing equations to make them valid for membranes of non-zero re sist—
ance. Hence, in this respect, this treatment is more general than that
in (48).

Single membrane cells. Consider a system in which an ion -

selective membrane is placed between two solutions enclosed by a setof
working electrodes reversible to the nth jonic species. Probe electrodes,
also reversible to the nth species, are placed adjacent to the membrane
for convenience in mathematical description. They are to be regarded as
sufficiently porous to allow free passage of the solution. Equations anal-
ogous to (26) and (27) may be derived for the membrane, m:

IR = -k [a-Ug 2z, aED/ | 2g] x FD™ (28)

-(k™/ | zg] FZDm)%-l]B)ﬂ
I = (zAnAE’I?/Dm)%:szBn [A-llﬁ,n/ | zg]

(29)
- (1/D™F)gxz Kk m [A-l]ﬁa“fgl/ |z )

ap

For convenience let us define

km %:zﬁkﬁm [A"IJB.n/ |zﬁ|. | (30)
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Then (29) can be rewritten as follows:

m m - m
ﬁ_z L Zz:ﬁk [A Jgalrg (31)
pm . xm pmpkm | _

¢ B
Combination of (31) with (28) gives

PO [ oy T e

a.ﬁ IZB'

2 F2kMDM
- __l‘in_.Z[A_lj m
= PO PEE

In the situation treated here we need only consider the compon-
ents of Au™ and AED® normal to the membrane which is considered to
be planar. In (28) through {32) it is assumed that these components are
linear across the membrane. Such is never actually the case when more
than one salt is diffusing (52), but the assumption of linearity gives re -
sults surprisingly close to experiment (53).

This treatment also assumes that the distribution of ions at the
membrane-solution interfaces during electromigration corresponds to
the equilibrium distribution of ione which would exist without the flow of
current, in the absence of any spontaneous net exchange across the mem-
branes.

The question may arise as to whether or not the assumed ion
exchange equilibrium is always maintained between the surfaces of the
membrane and the layers of solution adjacent.to it when two competing

species of ions of the same charge are forced by the electric field into

the pores of the membrane. It is conceivable that certain processes,
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such as dehydration, associated with the transfer of the ions from solu-
tion to membrane might take place at different rates for different ions
(54).

Ordinarily one distinguishes between two types of polarization.
At the phase boundaries between two electrolytic conductors, such as a
solution of electrolytes and an ionic membfane, chemical polarization
which involves the discharge of ions obviously does not occur except
under the most extreme conditons (_5_5_). However, as Nernst and
Riesenfeld (_5__6_)_) have shown for the simple case of a univalent electro -
lyte distributed between two liquid phases, concentration polarization
does take place if a current passes across the phase boundary unless
the ratios of the transference numbers of cations and ions im the two
phases are not the same. Now the ratios tf/tjB and trin/tx:]p will not
be equal in general (57), therefore,on one side of the membrane, the
diffusion layer will possess a concentration higher than the equilibriura
value and there will be a corresponding lowering of the concentration
on the other side of the membrane.

No fully satisfactdry method seems to have been obtained for
dealing mathematically with membrane polarization, but it can be
safely assumed that at low current densities the effect. will not be
great. Lacey (58) has determined that polarization accounts for no

more than a two per cent reduction in driving force per osmionic cell.
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Polarization, however, is the main factor coniributing to the
formation of insoluble precipitates that ruin membranes in the osmionic
and electrodialysis processes. In connection with their dialysis work
Cowan and Brown (2_9_) developed expressions that showed the lowest
velocity that can be used without encountering difficulty from polariza-
tion. This velocity will usually--though not aiways--be exceeded in the
practical cases considered here, hence the equations derived in this
paper will make no account of concentration gradients in the liquid
streams perpendicular to the direction of flow.

Osmionic demineralization. Figure 6 represents a schematic

diagram for osmionic demineralization. Each of the internal compart-
ments S}, S2, and P contains feed saline water initially. The solution P
is demineralized during the process, while the S solutions are enriched.
Compartment B contains a brine of constant composition. As before,
probe electrodes reversible to the nth ionic species will be imagined
adjacent to each of fhe membranes so that, in principle, n could be
evaluated.

An expression for the current density in membrane C; can be
deduced from the arguments which led to equation 32 in Murphy and

Taber (48):

(33)

DCZ pC2 g Izﬁ{

a, B
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Figure 6

Three more similar equations can be written for the other mem-
branes. This set of four equations can be used to eliminateAE_, for by

Kirchhof's second rule:



3

Eliminating the Af,,'s gives:
. DCZ + DAZ + DCl + DAI - 1 Zzﬁ [A-I]g,a
K P, C2 52, A2 B, C1 kS1, Al F 1%
G)B
] (34)
P, , C C .
(k CZMEZ . kB blA#\al . ksz,AzA“a\z kS1, A*lm,-‘:l )
kP, C2 kB, C1 %52, A2 S1, Al .

k

A 1 1
Algax s 3$ twax

Figure 7
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Figure 7 represents a segment of compartment S) of differen-
tial length ax. DS1 js the effective width of the compartment and w its
height. The number of gram ions of the ith species flowing into the dif-
ferential volume per unit time is given by vstlwcsi1 (x), where vg 1is
the linear velocity of the S streams in cm/sec. A flux of electrolyte
will also occur at the membranes as indicated in Figure 7. An electro-
lyte balance for the difierential volume gives:

vstle‘?‘l (x) = vstleSil (x+Aax) + J?lw X - J‘?‘lwa ,

1

whence
[C§1(x) - C§1 (x+ax)]/ax = (3C1 - JA1) /veD®1,  (35)
1 1

oras x—0

dcPl/dx = I51/vgDS1 , (36a)
i
where
751 = 7C1 - 5A1
i i i
Similarly,
dCisz/dx = JsiZ/VSDSZ , (36b)
dci/dx = J?/vap , (36¢)
. 1
Where

JS2 = JC2 . A2 and JP - JA1 - JC2
i i 1 i i i

The values of I obtained from (34) may be used in (32) for the determina-
tion of the individual fluxes, which in turn may be used for the solution of

equations (36).
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The 3n -3 simultaneous differential equations (30) give the
variation with x of the ionic concentrations of the S and P streams.
Since the fluxes Ji are complicated functions of all the C% 's, the equ-
ations must be solved by numerical methods. Thus even for simple
cases it is a practical necessity to solve the equations by means of a
high speed computer.

Evaluation of specific ionic conductivity in solution. The

dependence of the right hand sides of equation (36) on the ionic con-
centrations in the various streams must be made explicit if the equa-
tions are to be solved. This requirement necessitates a method for
relating specific ionic conductivities to concentration.

An hypothesis advanced by Van Rysselberghe (Ei)) states that
the mobilities of the various ions in a solution of mixed electrolytes
are proportional to their values in a solution of the same salts alone

having the same concentration as the total concentration of the mixture,

Qi <80’ (37)
where Q3 is the mobility of tl‘1e ith jonic species in a solution of mixed
electrolytes, and Qio is the mobility of the ith jon in a solution of some
single electrolyte (yieldiAng the ith jon on dissociation) at a concentra-
tion equal to the total concentration (C = EjCj) of the solution of mixed

electrolytes, and gj is a constant of proportionality.
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The formula established by MacInnes (61) for the cvaluation of
transference numbers in mixed clectrolytes can be shown to follow from
this hypothesis and has been found to agree with experimental results up
to a total concentration of 5N for mixtures of alkali halides (_6£ to _(_)_7_).
The hypothesis does not give such good agreement with experiment
for mixtures of electrolytes containing polyvalent forms because of the
incomplete dissociation of such salts.

The use of this hypothesis leads to an approximate method for
relating specific conductivities in a solution of mixed electrolytes to
the concentrations. It is customary to express mobility as

5 =@/ F°, | (38)
This formula coupled with (37) gives
A (C;) = giai(C) (39)

or

ki (Ci) = giki(C)Ci/C. (40)

Thus we see that .
gi = [zil

will fulfill the condifions that k; = 0 when Cj = 0 and kj (Cj) = when Izil Ci
= C. This method for findiné the specific ionic conductivity of ions in solu-
tion is, of course, exact if only two ions are present. It is admittedly ap-
proximate for more gene-ra.l systems but gives results good at least to two
significant figures. Since the data presently available for conductivity of
membranes are no better, (40) with gi = |z i| may be used in a computer

solution of equations (36).



35
The formula to be used for finding )\Si as a function of C? 18
0 s _ s
log (Xj -Aj) = Aj+ Bj log C3 ((11)
which fits experimental data very well in the concentration range of
practical interest.

Evaluation of membrane conductivity. Data taken by Lacey

(.(ﬁ) for the transference numbers of ions in permselective membranes
and for the resistance of these membranes when equilibrated in electro-
lyte solutions can be used to obtain the dependence of kr;n on CI;n

If data concerning transference numbers and resistance are
available for the membranes in the system under consideration, the
specific ionic conductivities of the membrane can be calculated, since

t1 /RY = cTAT/D™ = KT/D™ .
The data taken by Lacey give the following results for AMF

membranes by the ''solution method':

CRaci (kpnat/D)C (kna +/D)2 (ke -/D)C  (kgp-/D)*
0.01 0.256 0.0 0.0053 0.127
0.4 0.241 0.0013 0.0153 0.130
2.0 0.202 0.0172 0. 0404 0.138

A plot of (kNéf/D)m versus éoncentration is linear for the four cases
above so that the following equation can be written in general:
(ki/D)™ = FP+ cPc™ . (42)
The constants Frln and Grln are to be determined from the best trans -
ference number and resistance data available for the membranes under

consideration.
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Evaluation of A;Llj. The function A“ij is customarily understood

to be given by RT In Ci(g)/ci(zj), where the superscriptsindicate the regions

in which the concentrations are measured,but in the general case, the quan-

tities Cij are not uniquely defined. A set of n-1 ion balances can be

written as follows:

n' » e

(2) o :2 ";JCij n'+1<i>n-1
J=1

(b) Cj = 2 ;vi.jcij I<jzn' .
1= 1']

The index i is not allowed to take the value n in (a) because C, is function-

ally dependent on the other Cj's, i.e.

Ch -(ziéi+2jaj)/zn

Equations (a) and (b) can be solved for n-1 of the Cij's in terms of the

Ci's, Cj's and the remainder of the n'x n'" Cij's. The latter can take
on any arbitrary values and equations (a) and (b) will define unique values
of the Cjj's chosen to be non-érbitrary. It is convenient to take the n-1
non-arbitrary Cjj's to have the same subscripts as the set Bi; which
is chosen for the basis vectors in the transformed system. The remaining
Cij's can all be set equal to zero. A convenient matrix formulation of
equations (a) and (b) is theﬁ

[c] - [B) []] (43)

where [C] is the matrix of ionic concentrations:
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and [(,] is the matrix of non-arbitrary clectrolyte concentrations:
Ci,n'
Ca

Cn-l, n'

and [B] is the (n--l)2 transformation matrix. Thus
] - [3-1[C]
and
BBg = RT (1n§:[13-1]u6 (él) - 1n§[13—1]aﬁc(§)) (44)

A special case. The special case n'" =1 (corresponding to a

system with n' cations and one anion or vice versa) is of interest be-
cause of the simplification which can be effected. Let us assume that

there is only one anion which will be indicated by the subscript a.

- i — ia_ _ t
VB QT "iav“i vy VB, (194
rVeia A rv%ao Oe o y;a'ﬁ -v'ﬁl-
. L4 ° e 0o o . Y
V“n'a = 0 0 O yn'a pn'a VE
n! a “n' (201)
~Fzgy Ea. . 0 0O Oe O 1 L.Vﬁa..

Since n'" =1, r in (21) may have only the value 1 and m may take all values
from O to n'-1. Since there are no integers such that 0<r<1, the second

set in (21) makes no contribution to the A matrix. Hence (21) becomes

_ m+l,a
Am+l, m+l ° Ym+l

Am-i-l,n'-*-l VI;H-l’a O0<mgn'-1

An'ta,na = 1
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It can be shown that the ¢lements of [A B 1] are
[A‘l]a :5a /y‘;a: I<g<n'; 1<a<n'
[A'l]a = za/za ! Bu n'+l ; l1<a<n'+l.

The current density and the ionic fluxes can be had from (28) and (29):
Jm - . (kg‘/ FD™ (AE';’.,.AJEa/ Izﬁl Fugo) (28")
- m, nm m m m, m a (29!
I = -(AER/D )ngkB (1/DF) Zikg’ any al vg (29)
The case of a system containing two cations of valency 1 and

2 and one anion of valency -1 would then be given by

JT = - (KT/FD™) (AETY +ad[3/F)
J’; = - (KG/FD™) (AET +Aup3/2F),
I = -(AE%/D™) T + 2k

' m, m
- (1/D™F) (k7 aky3+k3 AnD3) -



CHAPTER IV
CALCULATIONS

The set of simultaneous first order differential equations (36)
cannot be solved analytically and a numerical solution would be too
lengthy to undertake other than by use of a high speed computer. There-
fore, the program for computer solution of equations {36) which appears
in the appendix was written. This program will solve the equations
for any system containing only one anion (or only one cation) with not
more than four ionic species of the opposite polarity and not more than
six membranes.

A total of five such solutions was obtained on the computer in
order to determine the relative effects of the experimentally indepen-
dent variables.

In all cases data used for the resistance and transference num-
bers in membranes were taken from Lacey's findings (ﬁ) for American
Machine and Foundry membranes. Data for specific ionic conductivities
were taken from Robinson and Stokes (H)ﬁ).

Four calculations were made for one double effect cell con-

taining sodium chloride only. The membrane thickness used was 0,015 cm.

39
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A fifth calculation was made for simultancous demineralization of sodiwn
and magnesium chloride. The cal~ulated concentration of the P strcam
(the stream being demineralized) as a function of linear distance in the
cell is presented graphically in Figures 8 and 9.

The calculated results show that an increase in the velocity of
the internal brine has no appreciable effect on the demineralization of the
P compartment, while an increase in the velocity of the S streams to an
essentially infinite value giveé a marked improvement in the rate of de-
mineralization. It can also be seen that a reduction in the distance be-
tween membranes by one-half, while leaving the volumetric flow rates
the same, results in a decreased rate of demineralization. The ultim-
ate percentage of sodium chloride removed, however, is greater since
a reduction in the cell dimensions entails a reduction in the resistance
of the cell; hence an increased driving force results.

Figure 9 shows that the use of a predominately sodium chloride
brine for the simultaneous demineralization of sodium chloride and mag-
nesium chloride results in a good total reduction in the concentration of
both cations in the P stream.

It was desired to perform another sample calculation involving
a three ion system. The removal of the computer from the campus, how-

ever, prevented this.
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Figure 9
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PART 11

FREE VOLUME CONCEPT APPLIED TC BINARY

NON-ELECTROLYTE SOLUTIONS

CHAPTER 1

HISTORICAL AND THEORETICAL

Free Volume

Van der Waal's familiar equation of state is based on the idea
that molecules are incompressible spheres moving in a potential energy
field which is an explicit function of V, the volume of a phase. This
assumption enabled him to deriv-e the concept of an‘'empty' or '"forbidden"
volume (V-b), where b was considered to be the invariant volume of the
molecules. Van der.Waal's formulation has the advantage of conceptual
and mathematical simplicity é.nd, for limited ranges of pressure and tem-
perature, accounts well for properties of most compounds in the gaseous
state. Applied to liquids énd thermodynamic processes such as vaporiza-
tion, however, it is less successful.

The contribution of Jzger (69) in 1896, though frequently un -
acknowledged, forms the basis for nearly all the subsequent elaborations

43
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of the free space concept. It occurred to this author that the volumc
of a phase can be considered as a potential energy field with infinite
discontinuities at the sites of the molecules. Hence the remaining
sites are not all equally available for fluctuations of the molecules.
This line of reasoning leads to a new conception of 'free' volume:
V-B(V,P, T), where B i8 no longer a constant, as in van der Waal's
equation, but an undetermined function of the phase volume, pressurec
and temperature.

Jager also presented a justification for the use of the statis -
tics of Maxwell and Boltzmann for the treatment of the liquid state.
His work therefore made obsolete the erroneous and misleading con-
cept of empty space left over from hard spheres. As stated by Moelwyn-
Hughes (70):

Free volume is the Lebensraum for which the molecules
must struggle against the prevailing forces.

Defined mathematically, the free volume of a single molecule is the
integral of that part of the moiecular potential energy which is due to
thermal displacements of the centers of gravity of the molecules from
their equilibrium positions (_7_1), i.e.

Vg = 41r./(; r2 exp { -y(r) + ¢(0) /kt}dr.

Evaluation of the integral defined above is rather a mathematical
impasse. Hence later authors have assumed that the molecules are con-
strained to move about in épherical "cages" (E, 73, 74). Though this

assumption is open to valid criticism (75), it has led to useful and interesting
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conclusions, some of which will be discussed below. More recently, the
free volume concept has been piaced on sounder {voiing by sialisticai
mechanical formulations involving clearly defined assumptions not in-

cluding theoretical molecular models (76, 77).

Free Volume and the Entropy of Vaporization

If the van der Waal's equation is accepted, it can be shown
(78) that the entropy of vaporization is given by
ASV =R In (VG-b)/(VL-b) , (1)
where VG and VL are the molar volumes of the gas and liquid respec-
tively. If VG is sufficiently larger than b and (VL -b) is taken to be the
free volume of the liquid, the entropy of vaporization becomes
ASV = R In VG/viE' | (2)
vi' in equation (2) is a composite free volume which Bondi (79) calls
the "fluctuation volume."
According to the "cage' model, the change in entropy from any

state 1 to a state 2 may be expressed as ('_ZE_, 3_3_, E).

. '\fzfl vé.'
AS=5,-S; z=RIn _° + RT -2 In . (3)
. V{l 9T Vlfl

Hence, if the second term is ignored, equation (3) is the same as equa-
tion (2). If the vapor is ideal (i.e. vG = RT/p), (3) becomes

, \4
vi' = (RT/p)e-85 /R . (rT/p)e8HV/RT (4)

Equation (4) may also be developed from Jager's treatment and
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that of the liquid and assuming that the rotational and vibrational parti-

tion functions are the same in both the liquid and gas phases (74).

The Entropy of Mixing

If equation (3) is considered as applying to the mixing process,
reasoning by analogy with the behavior of ideal gases, mixing can be
thought of as the sum of two expansions, one for each component. The
first component has, before mixing, only its own free volume available,
but after mixing, the free volume of component two is also available .

Hence,
of! of!
vfl Vfl .
Where xj and .xp are mole fractions of components 1 and 2, chf and
!
ng are the free volume of the pure components from equation (4), and
vi' is the free volume of the resulting mixture (80). This equation may

be solved for Vi’ giving

1 1
v = e-ASM/Re FS ) g (xaVE )xz (6)

Translational and Rotational Contributions to the

Entropy of Vaporization

Both equations (6) and (4) are based onanalogy with the behavior
of ideal gases in which only translational motions of the molecules con-

tribute to the thermodynamic behavior of the system. In the liquid state,
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such a simplification is unsatisfactory because rotation of the molecules
as well as electronic and vibrationél effects may contribute significantly
to the total entropy. Therefore, it is necessary to generalize this ap -
proach by writing the entropy of a state as a sum of terms:
st:ota.l = Stranslational + Srotationa.l +Syibrational + Selectronic. (7)
The difference in the entropy of two states can then be expressed as
S12 = 82 - 51 = (S2-S))translational
(S2 - Sl)rotatiqnal. etc. (8)
For the case of vaporization or mixing of metals, the electropic
contribution in equation (8) will be of sufficient magnitude as to necessi-
tate its inclusion, but for nqnelectrolytes and solutions of nonelectrolytes,
the electronic term may be safely ignored. The difference between excit-
ations of vibrational states in the liquid and the gas is also apparently of
a very small order of magnitude in most cases (81) and may be ignored.
The case for rotation, of course, is quite different. Restriction of rota-
tion in the liquid state due to association of the molecules or to steric
hindrance to free rotation is certain to eause a lowering of the entropy
of the liquid and a corresponding increase in the entropy of vaporization
(82,83,84). The dilution of.a highly hindered compound with one less
highly hindered is also going to give rise to rotational effects which can -
not be disregarded in a theoretical treatment of the thermodynamics of

binary solutions.
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The Free Angle Ratio

Eyring and co-workers (73, 74, _7_5_) found it convenient to define
a new quantity, the free angle, which is the total integral of angular dis-
placement of a molecule about its center of mass from its equilibrium
position. The free angle ratio 6 is given by the ratio of the partition
functions for the restricted rotation of the molecule in the liquid and its
free rotation in the gas phase. Thus § will vary from a lower value
(greater than zero) to unity, depending on the magnitude of the potential
barrier restricting free rotation iﬁ the liquid. In equation (4), the right-
hand side is the product of the free volume and the free angle ratio,
which will always be smaller than the free volume. Thus equation (4)
must be modified to
§VE = (R'I‘/p)e'AHV/ RT | (4a)
Equation (7), as it applies to vaporization can be written
asV =AS\t’rfa.ruslati.orxal +As¥otational
The translational term is given by equation (2), that is
asV = R1In(vG/vi)+as¥ . .00
whence,
6VE exp {-a5Y tational/R} = (RT/p) exp {-aHY/RT}. (9)

‘S¥otationa1/R ,

if 6 is set equal to e equation (9) is seen to be equiva-

lent to equation (4a) .
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Empirical Methods for the Determination of the Rotational

Contribution to the Entropy of Vaporization

Hildebrand's rule (35), which states that liquids vaporizing to
states with equal vapor volumes should have the same entropy of vapgr-
ization, gives one a means of determining the value of § for various
systems, because it implies that the internal degreés of freedom are
the same in the liquid aﬁd vapor phases. 'For this work, in keeping
with precedent (86), mercury was chosen as a compound for which there
is no restriction of rotation in the liquid. The difference in the entropy
of vaporization of a liquid and that of mercury, such that both expandto
equal vapor \}olumes, should give an indication of the amount of entropy
lowering in the liquid due to re striction of rotation, i.e.

Thus one is able to obtain the free angle ratio:

v v . Vv
as ‘ASHg"ASrot'

5= e-aS¥ot. /R (10)
Objections to the use of mercury as a reference liquid will be discussed
later.

All attempts at deriving Hildebrand's rule on theoretical basis

(14,87) resultin Pi‘tzer's rule (88), i.e., liquids vaporizing to the same
ratio of vapor volume to liq\.J.id volume should have the same entropy of
vaporization. This rule can also be used to determine the rotational en-
tropy of a liquid. The in—ert gases are used as a basis for no restriction
of rotation in the liquid. From the data given by Pitzer (88), it can be

seen that for the inert gases, a plot of log (VG/VL) versus SV is linear.
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If values of the translational contribution to the entropy of vaporization
are taken from this plot, equation (10) may be used for the calculation
of & , and equation (4a) for the calculation of VI,

There is some question as to whether Hildebrand's or Pitzer's
rule is superior for the determination of translational contributions to
the entropy of vaporization (%, 89). The critics of Pitzer's rule point
out that it is not obeyed by a large class of compounds. However, the
identification of the discrepancies shown by certain compounds from
Pitzer's rule with the rotational entropy is not new (86, 88). Further-
more, the fact that inert gases, in which it would be difficult to invoke
restricted rotation, obey Pitzer's rule has induced reliance upon it

rather than upon Hildebrand's rule for the present work.



CHAPTER 11

CALCULATIONS AND DISCUSSION OF RESULTS

Entropy of Vaporization and Pitzer's Rule

Since no calculations (using Pitzer's rule) of the rotational and
translational contributions to the entropy of vaporization for many pure
compounds of interest are reported in thev literature, it was desired to
perform such calculations, as the results are needed for the evaluation
of VI for these compoundé.

| The inert gases argon, krypton and xenon were used as reference
substances for no rotational contribution to the entropy of vaporization.
For a compound at a particular temperature the gas-liquid volume ratio
VG/VL was calculated. The value of ASY (from Pitzer's data (88) for
the inert gases) corresponding to the calculated value of VG/VL was
taken to be.the translational contribution to the entropy of va.porizé.tion,
ASYra.ns' This value subtracted from the actual entropy of vaporization
asY gives then the rotational contribution As¥ot . The results of the cal-

culations are given in Table 2.

The negative value for the asV ) of mercury deserves
: rotational

51
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TABLE 2

ROTATIONAL CONTRIBUTION TO THE ENTROPY OF

VAPORIZATION BASED ON PITZER'S RULE

o

Compound T°C vG/vL asv ASY}_a“S A S\;_m
Ethyl 70 327 22.412 18.57 3. 84
Acetate 80 236 21.38 17.55 3,382
100 129 19. 38 15.61 3.77
Ethyl 0 890 25.48 21.77 3.71
Ether 30 262 20.78 17.90 2.88
40 185 19.57 16.75 2.82
100 32.7 13.56 12.19 IS

Ethanol 0 24, 432 38.55
' 40 - 2,451 32.12 25.15 6. 97
60 954 29.4 22.00 7. AR
70 626 28.15 20.63 7.582
80 422 26.87 19.43 7.
100 204 24. 31 17.16 7.1
120 105 21.54 14.96 6. 3
Ethyl 50 362 22.40 18.92 3. 43
Formate 60 258 21.28 17.85 3.45
Ethyl Pro- 90 302 22.65 18. 35 3.3)
pionate 100 222 21.75 17. 35 5.9
Benzene 40 1, 072 25.07 22.35 2.72
100 168 19.11 16. 48 2.0
Chloro- 130 291 20.71 18.11 2.60
benzene 140 225 19.99 17. 38 2.61
Fluoro- 80 329 21.77 18.60 5,17
benzene 90 243 20.79 17.65 3,14
Iodo- 180 333 21.01 18.65 2.36
benzene 190 265 20.55 17.92 2.53
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TABLE 2 -- Continued

b - o —— s e e e

o \" \%
Compound T°C vG/vL asV asy ... oSV,
Diisobutyl 90 283 22.00 _ 18.15 3.85
100 207 20.85 17.16 3.69
Diisopropyl 50 246 20.76 17.65  3.11
60 179 19.69 16.65 3.04
n-Heptane 90 230 21.45 17.46 3.99
100 170 19.86 16.50 3.36
n-Hexane 60 250 20.89 17.72  3.17
70 . 181 19.87 16.60 3.27
Methyl 50 404 22.99 19.25 3.74
60 286 21.91 18.15 3.76
Methanol 60 751 25.90 21.23 4,77
70 509 24.68 19.97 4.71
100 179 21.12 16.67 4.45
Methyl 0 159 18.23 16.19 2.05

Chloride

n-Octane 120 188 20.73 16.85 3.88
130 144 19.82 15.97 3.85
n-Pentane 30 252 20.42 17.77 2.65
40 180 19.41 16.68 2.73
n-Propyl 90 476 27.90 19.78 8.12
Alcohol 100 324 26. 40 18.57 7.83
CCly 70 323 21.02 18.54 2.48
80 241 20.03 17.61 2,42
90 182 - 19.15 16.70 2.45
2.38

‘100 140 18.23 15.86
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TABLE 2 -- Continued

Crmpound T°C  VG/VL asV 8SYians 85V
Mercury 200 111, 591 30. 45P 37.03 -6.58
260 - 22,327 26.85 32.05 -5.20

320 6, 288 23.98 27.93  -3.95

360 3, 109 22.36 25.72  -3.36

Water 0 206, 267 39, 36¢ 38.96 0.40
50 11, 901 31.69 29.94 1.75

100 1,603 26.00 23.66 2,34

150 360 21.47 18.89 2.58

200 110 17. 62 15.11 z.51

250 40.0 14,09 . 12.58 1.51

CClpF2 -40 370 21.17b 18.99 2.18
-23,33 183 19. 06 16.78 2.28

- 1.11° 81.9 16.50 14.15 2.35

10.00 57.2 15.31 13.26 2.05

26.67 40.7 13.56 12.61 0.95

2 pata for VG/VL andASV taken from Landolt-Born-
stein.

b From the Handbook of Chemistry and Physics.

CFrom N. E. Dorsey (96).

some discussion. Pitzer (88) believes that metals cannot be considered
in this treatment except as a separate class. The entropy attributable to
electronic motion will be removed through evaporation and should reduce
the entropy of vaporization. The total magnitude of this effect should be
1 cal/moi-degree (90) or le.ss, and is alone insufficient to explain the ob-

served results. However, there is no reason to believe that a single :
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potential function (from which Pitzer's treatment is derived) will be
satisfactory for metallic bonding. In particular, if the function for
metals were more symmetrical near the minimum, the behavior ex-
hibited here would be explained as well as other anomalous metallic
behavior such as the low coefficients of expansion and liquid heat
capacities observed. In short, metals would seem to have to be
treated as an almost separate problem.

It is seen from Figure 10 in which SV is plotted against
VG/VL for several substances that the sequence water, methanol,
ethanol, n-propanol shows a steady increase of rotational hindrance,
a result not achieved using Hildebrand's rule (83). The compounds,
water, carbon tetrachloride, benzene, and dichlorodifluoromethane
have entropies of vaporization that fall on almost the same curve.
The restriction of rotation in water should be due mostly to associa-
tion in the liquid, while restriction in the other compounds must be
due to steric hindrance. It is interesting that the two effects should
be of almost the same magnitude. The fact that water and the alcohols

have a maximum SV

rotational Which diminishes at sufficiently high or

low temperature, (e.g. 5¥ot practically vanishes for water at 0°C)
must indicate a high degree of association in the vapor at low temper-
atures, and a low degree of association in the liquid at high temper-

ature.
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Restriction of Rotation in Alcohols

For several pure alcohols thc approximate moment of inertia
was calculated for rotation about the O-H bond, which was regarded as
fixed. The formulas derived from statistical mechanics were then used
to calculate the rotational contribution to the entropy of the vapor (due
to rotation about this bond). From these formulas S2,, vapor, thc rota-
tional contribution to the entropy of the vapor (assuming the molecule to
be a rigid rotator) was calculated. ASV, the entropy change on vaporiza-
tion, was determined from literature values for the latent heat of vapor-
ization. The translational contribution to ASV was obtained from corre-
lation of this function with the gas-liquid volume ratio. The rotational
entropy of the liquid was then obtained from the formula.

oliquid

asY = sovapor _ s .

rot
An attempt was made to account for this rotational entropy in
the liquid. From vapor density measurements it has been shown that
methanol vapor consists mostly of hydrogen bonded ring tetramers (91).
Assuming this to be true for ethanol, isopropanol, and propanol as well,
approximate moments of inertia were calculated for the corresponding
tetramers and the rotational entropies of these entities were estimated.
The rotational entropy of the liquid still unaccounted for was assumed
to be due to the nine new vibrational degrees of freedom acquired in
the formation of the tetramer. Approximate wave numbers were de-

termined for these vibrations. A tabular summary of these calculations

is given in Table 3.
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TABLE 3

CALCULATED ROTATIONAL GONTRIBUTIONS TO THE
ENTROPY OF ALCOHOLS

e e — ——— o

. vapor tetramer
Alcohol ASV3P asyap asYaR  aS%.5t 8S5%gt
Pitzer

methanol 27.72 23.25 4.47 19.18 6.398
ethanol 31.49 24.54 6.95 21.04 7.072
isopropanol  32.22 24.18 - 8.04 24.42 7.580
n-propanol 36.27 29.08 7.19 26.68 7.207
Alcohol entropy due entropy con-

to nine new tribution per h» /kT em-1

vibraticns ¥ vibration
methanol 8. 315 0.924 1.950 431
ethanol 7.025 0.781 2,715 480
isopropanol 8.800 0.978 1.905 421
n-propanol 8.283 0.921 1.980 438

*By difference.
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Potential Energy Restricting Rotation of CCl,

Carbon tetrachloride was chosen for an ¢stimation of the po-
tential energy restricting free rotation in the liquid. The partition func-
tion for external rigid rotation of a nonlinear molecule is given by Janz

2)3/2 )1/2(0)_l , where h and k are the

(92) as (8°@kT/h%)" “1/2(1, 1,1
Plank and Boltzmann constants respectively. The value of the partition
function is thus dependent on two parameters: 15 IgI, the product of
the principal moments of inertia, and o, the symmetry number. The
external symmetry number for a molecule is defined as the number of
indistinguishable positions into which the molecule can be turned by
simple rotations. The cube root of this function would give the parti -
tion function for one rotational degree of freedom, since partition func-
tions are multiplicative. The difference in entropy due to restricted
rotation was calculated and the value of the restricting potential was
estimated from Pitzer's tables (93) to be about 2200 cal/mol, as com-

pared with 930 cal/mol for internal rotation of methanol (94) and 3150

cal/mol for internal rotation of ethane (95).

Free Volume and Free Angle Ratio of Pure Compounds
The composite free volume §Vi was calculated for' several com-
pounds from equation (4a) using pressures and heats of vaporization ob-
tained from the literature. The free volume VI from equation (9) was

also obtained for these compounds, using both Pitzer's and Hildebrand's
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rule for the determination of the translational contribution to the ¢n-
tropy of vaporization. The results are present in Table 4.

It is interesting to note first of all that the compounds
which are highly associated, i.e. the alcohols, have s vits that are B
very much smaller than those of less hindered compounds such as
CCl4q. Also it is to be noted that a given compound has a greater svi
at a higher termperature (e.g. for acetonitrile, évf is 3.46 cc/mol
at 45° and 0.0178 at 20°). Both of these results are intuitively ex-
pected. In the first place, it is easy to see physically that associated
compounds would have a great amount of restricted rotation in the
liquid and hence a small free angle ratio. (New vibrational modes
would also be expected to appear upon condensation to liquid. ) In
the second place, as the temperature increases, the interpenetration
of the molecules increases due to the enhanced thermal energy; hence

the 'free volume" increases.

The Use of Hildebrand's Rule for the

Determination of Vf

When ASY for mercury is plotted aga.inst’ log(103p/T), a straight
line with the equation,
asV = 40.2 - 6.066 log (103p/T),
is obtained, where p is given in millimeters of mercury. It was assumed

that all vapors are ideal so that if the pressure of a system is put into this
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TABLE 4

CALCULATED FREE VOLUMES FOR PURE COMPOUNDS

Free Volume V{ (cc/mol)

Compound TOC svi Pitzer Hildebrand
CH40H 35 0.0474 0.394 0.783
45 0.0582 0.587 0.940
55 0.0732 0. 622 1.059
C2Hs0H 35 0.0120 0. 315 0.638
45 0.0142 0.476 0.747
55 0.0176 0.892 0.867
i-C3H70H 45 0. 00229 0. 697 0.682
n -C3H70H 35 0. 350
55 0. 630
CH3CN 45 3.509 0.576 0.794
Acetone 45 0. 321 1.664 0.068
CH3NO, 45 2.967 0.371 0.610
CeHg 35 0.299 1.409 0.718
45 0. 369 1. 665 0.813
55 0. 475 1.758 0.912
CCly 35 0.391 1. 344 0.759
45 0. 4856 1.695 0.853
55 0. 650 2.134 0.958
CHCl; 35 0.244 1.391 0.907
45 0.310 1.739 1.015
55 0

. 389 2.159 1.129
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equation, following Hildebrand's rule, the translational contribution to
the entropy of vaporizaﬁon will be obtained (é_S_). The assumption of
ideal vapors, of course, fails radically for some systems. When the
translational contribution is subtracted from the total entropy of vapor -
ization, the rotational contribution is obtained, from which § may be
calculated. This was done for all of the above compounds and VI was
computed from equation (9). The results are given in Table 4. The
compounds acetone, carbontetrachloride, nitromethane, and acetonit-
rile -ha.ve free volumes that are less than the product of 5Vf, which

would correspond to negative values of ASY This result is

rotational *
expected for compounds which form gas phase dimers. The magnitude
of the free volumes calculated falls within a rather narrow range, viz.

0.35 to 1.08 cc/mol, with most of the calculated values falling the in

the region 0.8 to 1. 08 cc/mol.

Free Volumes of Binary Mixtures

Free volmes for binary mixtures of non-electrolytes have
not previously been calculated except by Frank (97) who limited his con-
sideration to vanishingly small concentrations of gases dissolved in nor-
mal liquiQB. In the present research it was desired to study a broader
class of solutions and to make observations which would be applicable

over the entire mole fraction range.
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Calculation of free volume in binary mixtures is complicated
.by the fact that the liquid and gas phases in equilibrium with onc another
are not in general of the same composition. When such is the case,
equations (4) and (9) are not valid. If, however, a binary mixture forms
an azeotrope, three points on the Vf versus mole fraction curve can be
obtained: one for the azeotrope and one for each of the pure components.

Equation (9) was used for the calculation of VI for several
azeotrope-forming mixtures, using FPitzer's rule for the determination
of the translational contribution to the entropy of vaporization. For pur-
poses of comparison, 5Vf and V{ from Hildebrand's rule were calculated
for some systems. The results are given in Table 5 and are presented
graphically in Figuresl2 to 29. The straight lines connecting end points
in these figures is intended only to show how much the free volume of the
azeotrope deviates from the linear relation VI = xlvfl + xZVfZ .

Consideration of Figures 11 through 22 shows that Pitzer's rule
is consistent with linearity of free volume with respect to mole fraction
in all of the systems studied. The small deviations from linearity in the
calculated results may be attributable to the lack of data for the vapor
and liquid densities of the azeotropes at the temperatures in question.
In all cases it was assumed, for purposes of calculation, that there is
no change in volume on mixing the liquids and vapors; i. e., the molar

volume of the liquid azeotrope was obtained similarly.
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TABLE 5

FREE VOLUMES OF BINARY MIXTURES
FORMING AZEOTROPES

Free Volume (cc/mol)

. Mole
Binary Mixture Reference TOC Fraction v Pitzer Hildebrand

CH3CN-CCly 98 45 0 0.486 1.69
410 0.996 1.29
1  3.509 0.58
CH3CN-CgHg 99 45 0 0.369 1.67 0.718
.457  0.966 1.17 0.763

1 3.509 0.58 0.794

C2H5OH-CgHg 100 45 0 0.369 1.67  0.718
‘ 375 0.0800 1.24  0.833
1 0.0142 0.48  0.747
CH3NO2-CgHpg 101 45 0 0.369 1.67  0.718
.227 0.456 1.37  0.906
1 2.967 0.37  0.610
i-C3H70H-CgHg 99 " 45 0 0.369 1.67  0.718
.290 0.108 1.36  0.864
1 0.0023 0.68  0.682
CH3NO2-CClg 101 45 0 0.486 1.73
227  0.499 1.44
1 2.967 0.37
C2H50H-CCly 102 45 0 1.69  0.853
: . 324 © 1.37  0.936
1 0.48  0.747
C2H5 OH-CHCl 4 103 35 0 . 0.319
- .106 1.25

1 1.39
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TABLE 5-- Continued

Free Volume (cc/mol)

Mole
Binary Mixture Reference TOC Fraction VI Pitzer Hildebrand

103 45 0 0.478
138 1.602
1 1.74
103 55 0 0.896
152 1.90
1 2.16
CH3O0H-C¢Hg 104 35 0 1.409 0.718
.565 0. 846 0.800
1 0. 394 0.783
104 55 0 1.758 0.958
. 392 1.318 1.18
1 0.622 1.059
Cn3zUH-CCl, 104 35 0 1.34 0.759
' 511 0.856 0.931
1 0. 394 0.783
CH30H-CCly 104 55 0 2.13 0.958
: .549 1.26 1.18
1 0.622 1.059

The free volume-free angle ratio product §V{ and the free volumes
calculated using Hildebrand's rule are, on the other hand, seen not to be

linear functions of mole fraction.
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Figure 1l
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Figure 13
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Figure 14
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Figure 16

Free Volume for CCl, - CH3NO, by Pitzer's Rule (45°C)
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Figure 17

Free Volume for CCl, C2H;CH by Pitzer's Rule (45°¢)
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Figure 18
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Figure 20

Free Volume for CH;OH - CeH, (55°C)
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Figure 21

Free Volume for CH30H - CCly (35°C)
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Figure 22
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Figure 24
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Figure 25

Composite Free Volume C3H,0OH - CeHy
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Figure 27
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CHAPTER 111

SUMMARY OF RESULTS AND CONCLUSIONS

The research reported in Part I was prompted by a desire to

extend the applicability of Murphy and Taber's phenomenological treat-
ment of membrane processes. The primary aim was to derive equations
which would describe ion flux in osmionic demineralization cells which
contained more than two ionic species. Further limitations on the
generality of Murphy and Taber's equations were also to be removed

in the present research.

The equations derived in Part I fulfill these aims and have
been programmed for the IBM 650 computer, for the special case in
which only one cation (or anion) is present. The numerical solutions
to the equations which were computed agree well wih experimental
results obtained by the Southern Research Institute.

Since ion selective membrane and ion reversible electrode
processes are cbmpletely analogous, the equations derived in Part I
have great versatility. They may be applied without modification to
systems containing any combination of electrocies and membranes.
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The present computer program will handle only up to five membranes
and / or clectrodes; however, if a larger machine than the 650 is
available, the program could easily be revised to handle any number
of membranes.

Part Il examines the applicability of the free volume thcory
to binary solutions of non-electrolytes. The rotational contributions
to the entropy of vaporization was calculated using Pitzer's rule for a
number of single non-electrolytes. It was shown for four aliphatic
alcohols that the rotational contribution could be accounted for by te-
tramer formation in the vapor phase.

Free volumes were calculated for several azeotropes using
both Hildebrand's and Pitzer's rule for the rotational contribution to
the entropy of vaporization. It was seen that Pitzer's rule is consistent
with linearity of free volume with respect to mole fraction in all of the
systems studied. This result suggests that it would be interesting to
obtain sufficient experimental data to calculate the free volumes over
the entire mole fraction range for a number of binary mixtures. If the
free volume calculated according to Pitzer's rule could be shown in
general to be a linear function of mole fraction, this rule would be
promoted to very great utility in the prediction of the thermodynamic

properties of binary solutions.



APPENDIX
A PROGRAM FOR COMPUTER SOLUTION OF EQUATIONS 39

Function of the Program

Given the data described below, the program will solve equa-
tions (39) at values of x = xg+ n x (where n is an integer) by a fourth
order Runge-Kutta method (105). As written, the program will solve
the différential equations for a double or single effect c;smionic demin-
eralization cell containing one anion (or cation) with not more than four

ionic species of the opposite polarity.

Instructions for Using the Program

Input Data. The user must supply the following data each time
the program is to be used:
12 . The number of membranes in the

system: 4 for a single effect and 6
for a double effect cell.

11 _ The number of cationic species pre-
sent.

IO n: The total number of ion species
present.
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Z1to 25 z;: The charge on the ith jonic
species,

Z6 to Z10 AQ: Z(5+i) = the equivalent ionic
conductivity of the ith jon at infinite
dilution.

211 to Z15 Aj: Z(10+i) = A, in equation (43a).

Z16 to 220 Bi: 2(15+i) = Bj in equation (43a).

Z21 to Z25 Fci:3 Z(20+1i) = Ficin equation
(44).

226 to 230 FA: z(25+i) = F4 in equation (44).

231 to 235 GS: z(30+) = GS in equation (44).

Z36 to Z40 Gfi\; z(354) = G4 in equation (44).

Z241 _ D8: The distance between membranes

in solution.
242 D™. The thickness of the membranes.

243 DB: The average distance traversed
by an ion in the external brine.

DO CAX: The increment in x between suc-
cessive approximations.

CcoO . xq ¢ The initial value of x.

Cl to CIO Ci(s): The concentration of the first
~ ionic species in solution s.

C7 to C(6+10) The concentration of the second species.
Cl3 to C(12.+IO) ' The concentration of the third species.
C19 to C(18H0) The concentration of the fourth species.
C25 to C(24+10) The concentration of the fifth species.
Y12 to Y16 veg: Y(10+s) = vg, the line;r velocity of

solution s.



86

Indexing of the solutions and membranes for a double effect

cell is to be according to the following diagram:

Cy Ay Cz A Cs3 Az

2 3 4 5 6
Thus the external brine is solution 1, S; is solution 2,and so forth.
C) is8 membrane 1, and so forth. For a single effect cell the dia -
gram to be used for indexing of solutions and membranes is as follows:

Cp &4 C, 4,
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The indices for ionic species must be such that the single anionic {ur
cationic) species is listed last.

Data not applicable to the system under consideration necd
not be furnished.

Preparation of Data Cards. The set of data cards which is

intended to be read by the program as input for a single run is called
a "read group."

Values of I variables must be punched as integers at the right
end of the designated ten-column field. Leading zeros mustbe punched.
Values of C, D,Y, and Z variables must be punched in floating point
form. Floating point form for the IBM 650 is described as follows:
Let the number under consideration be .Njn2n3ngngngnongx 10P, with
ny) #0. Then the floating point form of the number, as punched on the
data card, will be njnan3ngngngningyy, where yy = 50+p. If the number
is zero, it is usually punched aé 0000000000. For example, the integer
2 would be punched as 0000000002, while the floating point number 125
would be punched as -1250000053, since 125 .12500000 x 103, Plus
signs may be punched as "12"4 punches or omitted; minus signs must be
punched as "11" punches. In either case, the sign is punched in the same
column as the right-most-digit of the number. Up to five values may be

punched on each data card.

The format of numeric data cards is as follows:



Columns 1 -10
Columns 11-20
Columns 21-30
Columns 31-40
Columns 41-50
Columns 51-55
Columns 56-60
Columns 61-65
Columns 66-70

Columns 71-75
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Valuc of 1st variable
Value of 2nd variable
Value of 3rd variable
Value of 4th variable
Value of 5th variable
Alphanumeric name of 1st variable
Alphanumeric name of 2nd variable
Alphanumeric name of 3rd variable
Aiphanumeric name of 4th variable

Alphanumeric name of 5th variable

The alphanumeric name of a variable must be punched as a

letter (C, D, I, etc.) followed by a numeric subscript. In the last data

card of a read group, punch an "*" in column 75.

Running the program .

Place the GAT control boards in the

533 and 407. Set the 650 console switches as follows:

Storage entry switches
Programmed

Half Cycle

Storage selection
Control

Display

Overflow

Error

70 9000 9999
STOP

RUN

Immaterial

RUN

Program Register
SENSE |

STOP
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Place the program deck in the READ hopper of the 533 followed
by the data cards. On the 407, set all switches to "N}' End of File to"ON,"
and Independent Operation to ""OFF''.

Press "COMPUTER RESET" then "PROGRAM START" on the
650 and the "START!" button on the 533. When the computer stops on 70
9000 xxxx, press "END OF FILE'" on the 533. |

To interrupt or stop the program,press''PROGRAM STOP“'on

the 650.

An example. Suppose it is desired to calculate the theoretical

demineralization to be expected from the experimental conditions given
for “Run number 1" by Lacey.! Using a double effect cell, he gives the

following starting conditions:

Spacing between membranes 0.082 cm
Membrane thickness 0.08 cm
Membrane dimensions 4 in x 30 in
Distance through Siine 50 cm

Salt Used - NacCl
Concentration of P and S feed 0.058 N
Concentration of Brine 4.0 N
Flow Rate of P and S streams 0.46 gph

The input data required for the program is as follows:

IRr.E. Lacey, Office of Saline Water, U.S. Department of Interior,
Contract No. 14-01-001-193, Progress Report 2,4 (1960) [unpublished].



12
I1
10
Z1
z2
Z6
Z1
Z11
zZ12
Z16
Z117
221
222
z26
z217
231
z32
236
237
241
Z42

Z43

50.9
75.5
1.34
1.44
0. 386
0. 407
0. 045

0. 0045

0.0307
0.05
0.0106

0.0085

0.082
0.08

50.0
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The values of the equivalent ionic

-- conductivities of the sodium and

chloride ions are taken from Rob-
inson and Stokes (106).

The values for A, B, F,and G in
equations (43a) and (44) are esti-

- mated from Lacey's data (68).



DO S | This is a convenient increment with
which to start

CO 0

Cl1 4.0

c2 0.058

C3 0.058

Cc4 " Chloride ion concentrations need not
be given, since they will be computed

C5 " by the program.

C6 ]

Y12 0.58

Y13 1000 Any arbitrary large number will do for

‘ the velocity of the internal brine.
Y14 0.58
Y15 0.58

Y16 0.58
The data cards may then be punched as follows:

0000000002000000000100000000061000000051
I0 11 12 DO

1000000051100000005150900000527550000052
YA\ Z2 A z1

1340000051144000005138600000504070000050
Z11 Z12 Z16 Z17

4500000049450000004700000000003700000049
Z21 z22 Z26 Z29

30000000491060000049850000004845000000490000000000
Z31 z32 Z36 2317 Co -
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40000000515800000049400000005158000000495800000049
c2 C3 C4 C5 cé

820000004980000000495000000051
241 242 243

58000000501000000054580000005058000000505800000050
Y12 Y13 Y14 Y15 Y16 =

The printed output on the 570 will be

1000000051400000005165053436493999994515901816149

Cco Cl Cc2 C3 C4
57205019495886885349

C5 Cé6
20000000514000000051721776884939999988516002984549
Cco Cl1 c2 C3 C4
56417911495973145449

C5 Cé6 '

and so forth.
This output data is to be interpreted as follows: atx = CO =1 cm,
the values of the concentrations of sodium ions in the six compart-
ments are:

cB Cl 4.0 gram-ions per liter

cS1 cz. 0. 0650

cBi C3  3.99 |

cS2 C4 C.0590

cP Cs 0..0564

cS3 Cé6 0.0597
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Similarly, the concentrations at x = CO « 2.0 are given in the next
set of output data. The program will continue to compute and print
concentration values at increments of x until "PROGRAM STOP" is
pressed by the operator. The increment in x will be multiplied by
two whenever the previous value of CP differs from the current value
by less than 0.0003. This particular run was continued until succes-
sive values of CP were the same. The "steady state" is reached at
% = 137 cm, where the value of CP is 0.0110 gram-ions per liter .

Lacey's experimental value at 30 cm is 0.013.
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The Compiler Program

The GATE (107) program to be compiled and assembled by

the IBM 650 is as follows:

O 030U W~

14
15
16

17
18
19
20
21

22
23
24
25
26
27
28
29
30

LOAD AND GO
500 USED IN SUBROUTINES

40 IS HIGHEST STATEMENT NUMBER
DIMENSION C(160, 6, 1)Y(20) X (160, 6, 1) N

Z (50) D (10)I(10)K (2)

5,14, 1, 1, I2,

C(10, 14)= 0.

5,13,1, 1,10-1,

20=213%C(I3, 14)/ ZI0

C(10, I4)=C{10, I4) Z0

10,14, 1, 1, I2,

D14:=0,

10,13,1, 1, 11,

Z0 =ZI3*C(I3, I4)

DI4=DI4 Z0

17,13, 1, 1, I0,

17,14, 1, 1, 12,

X (I3, I4) = C(I3, 14)*(AZI3)*(Z5 I3)-10.P(Z(10 i3)) N
*(DI4P(z(15 13)))/1000.

I5 =20 IF (-1)PI4Q0. MI5=5

16=I14 1 IFI4SI2MI6=1

X(5 13,14) = Z(I5,13) 2(10 ISI3)*SQRT. (C(I3,14) N
#C(I3, 16) )

X(I0 13,1I4)= YO*LN. (C(I3, 16)C(I3, 14))

21,13, 1, 1, 10,

21,14, 1, 1, 12,

I7=41 IF 14 S 1 M I7= 43 |

X(13, 14) = (z42 ZI7)*X(13,14) X(5 13,14)/ (ZI7%X(5 N
13, 14 X(13,14)) Z0=0.

Z0=0. '

26,14,1, 1, I2,

Di4 = 0.

25,13, 1, 1, 10,

DI4 = A(ZI3)%X(I3,14) DI4

Z0= 70 1./DI4

Yl=0.

33,14, 1, 1, I2,

30,13, 1, 1, I0,

Y1 = Y1-ZI3%X(I3, I4)*X(10 13, 4)/A(Z13)/DI4/Z0



31
32
33
34
35
36

37

29

U N
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Y(1 14)= 0.
33,13, 1, 1, 10-1,

Y(1 I4)= Y (1 I4) X(I3, 14)%ZI%X(10 I3,14)/AZI3

36,13,1,1,10-1,
36,14, 1, 1, 12,

X(5 13,14) = -X(13, 14)%213 % ((DI4*X(10 13,14)/7ZI3) N
-Y1-Y(1 14))/ 96500. / 96500. / Z4/DI4/ AZI3

LINF.. (1, 3)
SEGMENT 2 END
LOAD AND GO

500 USED IN SUBROUTINES
40 IS HIGHEST STATEMENT NUMBER

DIMENSION C(160, 6,

1) Y (20)

X(160, 6, 1)Z (50)D (10) I (10)

K (2)
READ

K2=2

YO0 = 2479.
LINK. (2, 1)
5,13,1,1,10-1,
5,14, 2, 1,12,

C(5 I3,14)=(X(5 I3,14-1)-X( I3,14))*1000./Z41/Y N

(10 I4)

K2=K2 1
15,13,1,1,10-1,
15,14, 2,1, 12,

C(10 I3,14)= C(I3,14) IF K2 1
C(20 13,14) = C(I3,14)IF K2 1
C(15 I3,I4) = C(5 I3,14)*DO

D10 = 6.
DI0O = 3. IF K2 U 2
D10 =3, IF K2 U 3

C(20 13,14)= C (20 13,

GO TO 22 IF K2 U 4
20,13,1,1,10-1,
20,14,2,1, 12,

I14) C(1 13,14)/ D10

D10=0.5 IFK2S3 M DI10=1,

C(13,14) = C (10 13,14)
LINK. (2,1)
24,13,1,1,10-1,
24,14, 2, 1, I2,

C(I3,14) = C (20 13,14)
CO0= C0 DO

TCO. .. C(I0-1, I2)
K2=0

LINK. (2, 1)

PROGRAM 1 END

C(15 13,14)%D10
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