
A FAULT-TOLERANT COHERENCE PROTOCOL FOR

DISTRIBUTED SHARED MEMORY SYSTEMS

By

PALLAVI K. RAMAM

Bachelor of Science
St Francis College for Women

Hyderabad, India
1991

Master of Science
Indian Institute of Technology

Bombay, India
1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May 1998

A FAULT-TOLERANT COHERENCE PROTOCOL FOR

DISTRIBUTED SHARED MEMORY SYSTEMS

Thesis Approved:

Thesis Advi~or f

ii

PREFACE

Distributed Shared Memory (DSM) systems are becoming increasingly more

significant as a result of being used more extensively in modem computing environments.

DSM gives the illusion of shared memory on a loosely coupled system. In a scenario

where systems are connected across a network, DSM coherence protocols should be able

to scale well to larger networks. When real-time applications run on distributed systems,

providing a high degree of reliability is an inherently error-prone environment is a

formidable task. Regardless, fault tolerance, in terms of highly available data-access and

uninterrupted service, should be provided. Recovery is the process of restoring a system

to its nonnal operational state in the event of a failure. Reliability ensures the consistency

of the data after recovery.

Existing DSM systems provide reliability by replicating data, either in stable

storage or in the main memories of different processors. But these systems suspend the

DSM service during recovery. In time-critical applications, providing uninterrupted

DSM service to the greatest possible extent is a necessity and a challenge. Research has

been reported in the literature on architectures with a single server and multiple clients.

This thesis reports on investigations on finding a solution where the server is not a single

point of failure, faster recovery is possible in the event of a failure, and increased

throughput can be obtained during normal operation of the system.

iii

It was found that better perronnance can be obtained by using the multi-server

protocol when the user application exhibits locality of reference. The server was not a

single point of failure and recovery from a single site failure was approximately 50%

faster when 2 servers, instead of l, were used.

IV

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my graduate advisor, Dr. Mansur H.

Samadzadeh for his supervision, advise, and constructive guidance. I would especially

like to thank him for motivating me and for giving me a sense of direction and focus

when I most needed it. His insight and perspective on this research have given it its

current shape. His exacting standards have improved the quality of this work. The

sometimes torturous, yet satisfying process of this research has made me a better critic

and researcher. I thank Dr. Samadzadeh for giving me this opportunity.

I would also like to thank Drs. Blayne E. Mayfield and G. E. Hedrick for serving

on my committee. Working as a teaching assistant for them has increased my knowledge

and given me a better perspective on the subject. I am also grateful to the Department for

its generous financial support.

I thank Dr. David Koppelman, of the Department of Computer and Electrical

Englneering at Louisiana State University, for making the Proteus simulator available for

this research. His prompt and detailed replies to all my queries contributed greatly to my

understanding of Proteus. His help expedited a laborious implementation process. I am

amazed at, yet grateful for, his unparallekd generosity in his numerous offers to debug

selected segments of my code, whenever I got myself into nasty trouble. I am especially

grateful for his patience with m~ whenever problems arose.

v

I would like to take this opportunity to acknowledge the difference Venkat has

made to my career. His insistence in not allowing me to start implementation until I

understood all the issues paid off. The sound programming habits and the importance of

design that he instilled in me have made me a better professional. I thank Shishir, Ram,

Amith, Lee, Satish, and Kamalakar for hearing me out whenever I bounced ideas off of

them. Crucial ideas and parts of this thesis gained shape after such sessions. I would like

to remember my father, who would have loved to see me take the right direction. Finally,

I thank my mother, who has been a constant source of encouragement and inspiration.

VI

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION .

II. LITERATURE REVIEW 4

2.1 Fault Tolerance and Recovery 4
2.2 Memory Coherence.................... 6
2.3 ·Basic ModeL......... 8

2.3.1 Failure Model and Definitions. 8
2.3.2 Func~ional Model of a DSM System :............... 9

2.4 Related Work '" 11
2,4.1 Boundary-Restricted Coherence ProtocoL.. 11
2,4.2 Dynamic Boundary-Restricted Coherence Protocol.... 13
2,4.3 Reliable Mirage+ 14

III. RESEARCH GOALS AND SCOPE.. 17

3.1 Problem Formulation...... 17
3.2 A Possible Solution " "...... 19
3.3 Preliminary Idea 20
3,4 Research Scope and Limitations 22

IV. FAULT-TOLERANT PROTOCOL MODEL 24

4.1 System Architecture 24
4.2 Server Functionality......... 27
4.3 Client Functionality........ 28
4,4 Read and Write Operations 28

4.4.1 Read Operation 29
4.4.2 Write Operation 32

4.5 Migration.. 36
4.5.1 Migration Algorithm 36
4.5.2 Migration Process 37
4.5.3 Consensus Problem 41
4.5,4 Solution to the Consensus Problem 44

4.6 Recovery 46

Vll

Chapter Page

V. SIl\1ULATION ENVIRON1vlENT . 50

5.1 Why Simulate? 50
5.2 Simulation Environment 51
5.3 Configuration of the System in the Thesis 53

VI. IMPLEMENTATION ISSUES 55

6.1 Threads 55
6.2 Server, Client, and User States... 58

6.2.1 Server States ".. 58
6.2.2 Client States 61
6.2.3 User States........ 65

6.3 Syncbronization.. 68
6.4 Signal Handling..... 69

VIT. ASSUMPTIONS, INTERPRETATION AND OPTIMIZATIONS 74

7.1 Assumptions About the Simulated Environment.. 74
7.2 Differences in Interpretation... 78
7.3 Optimizations 82

VID. RESULTS .".. 87

8.1 Basic Configuration.... 87
8.2 Experiments...... 91

8.2.1 Performance Analysis of Single Server Architecture versus 2 Server
Architecture 91

8.2.2 Locality of Reference...... 96
8.2.3 Multiple Servers......... 98
8.2.4 Recovery 101

8.3 Limitations 105

IX. CONCLUSION AND FUTURE WORK 106

9.1 Conclusion. 106
9.2 Advantages and Disadvantages of the Multi-Server ProtocoL 108

9.2.1 Advantages of the Multi-Server Protocol 108
9.2.2 Disadvantages of the Multi-Server ProtocoL....................................... 110

9.3 Future Work 111

REFERENCES I 114
APPENDICES 119

viii

Chapter Page

APp:ENDIX A - GLOSSARY 120

APPENDIX B - TRADEMARK INFORMATION 124

APPENDIX C - PROGRAM LISTING 125

ix

Figure

LIST OF FIGURES

Page

1. Out-of-Cluster Read Request... 29

2. Out-of-Cluster Read Request, Reader in Cluster......................... 31

3. Clock Site Invalidates In and Out Cluster Readers............ 32

4. Out-of-Cluster Write Request... 34

5. Migration Process: Client Handing Over Clock Page...... 38

6. Server Hands Over Client to Another Server (Solution 1).............. 41

7. Server Hands Over Client to Another Server (Solution 2)....................... 43

8. Server Hands Over Client to Another Server (Solution 3)....... 46

9. Client and Server Threads... 56

10. Server State Diagram.................... 59

11. Client State Diagram.. 62

12. User State Diagram... 66

13. Change of Clock Site During Write Request............................ 81

14. Out-Cluster-Reader Server Requests Write Page..... 84

15. Effect of 2 Servers on Average Request Latency. 92

16. Effect of 2 Servers on Total Number of Requests.... 93

x

17. Effect of 2 Servers on Hit Percentage " . . 94

18. Total Traffic Generated, Nonnalized to Single Server....... 95

19. Classification of Total Traffic Generated, as In-Cluster, Out-Cluster, and
Migration Traffic........ 95

20. Effect of Locality of Reference on Total Number of Requests, Normalized
to Single Server "... 97

21. Effect of Locality of Reference on Total Number of Migrations................ 97

22. Effect of Multiple Servers on Request Latency, Nonnalized to Single Server 99

23. Effect of Multiple Servers on Total Traffic Generated, Normalized to Single
Server.. 100

24. Effect of Recovery Latency on Single Cluster of Different Configurations. . .. 104

XI

Table

LIST OF TABLES

Page

1. Basic System Configuration Parameters.. 92

n. Different System Configurations.................. 96

Xli

CHAPTER I

INTRODUCTION

Multiple processor systems are being used more extensively nowadays and for

quite some time studies have concentrated on increasing the perfonnance and improving

the reliability of such systems [Patterson and Hennessy 96]. A shared memory system on

tightly coupled processors makes global physical memory equally accessible to all

processors. Although shared memory provides ease of programming, it typically suffers

from increased contention for a single bus, longer latencies in accessing the shared

memory, and limited scalability [Protic et al. 96] [Kermarrec et al. 95] [Tanenbaum 95J

[Mullender 93]. In the infancy of distributed computing, programs on machines that did

not physically share memory ran in different address spaces, which led to the message

passing model [Tanenbaum 95] [Singhal and Shivaratri 94].

A Distributed Shared Memory (DSM) system implements the shared memory

model on a loosely coupled system. The words "shared memory" refer to the fact that the

address space on different processors is shared. In a scenario where systems are

increasingly connected across a network, DSM is a more attractive option than shared

memory.

DSM provides a virtual address space shared among processors on loosely

2

coupled multi-processor systems. It gives the illusion of at shared memory system without

the hardware bottlenecks and limited scalability. It hides the remote communication

mechanism and the explicit data movement that must exist when processors connected

across a network work together.

DSM coherence protocols should be able to scale well to larger networks [Theel

and Reisch 96a]. Although attractive, developing a DSM coherence protocol is not a

trivial task and much research has focused on it [Nitzberg and Lo 91] [Lo 94] [Mohindra

and Ramachandran 91] [Protic et al. 96]. Moreover, when critical or real-time

applications run on distributed systems, a high degree of reliability is essential. Fault

tolerance in tenns of highly available data-access and uninterrupted DSM service is

desirable. Addressing the issue of scalability, efforts to build large scale shared memory

machines using small-scale to medium scale shared memory machines have been made

[Erlichson et al. 96]. However, this work concluded that low latency networks may be

required io achfeve this goal.

DSM systems that address recoverability and consistency to provide reliable

service have been developed. These systems provide reliable DSM by replicating data,

either in stable storage [Koo and Toueg 87] [Wu and Fuchs 90] [Satyanarayanan et al. 94]

[Feeley et al. 94] or in the main memories of different processors [Kermarrec et al. 95]

[DeMatte~s 96]. These mechanisms, to at large extent, guarantee that data can be

recovered and is consistent before the system restarts. But they necessitate an

interruption to the DSM service for recovery to take place. Systems which have tried to

use a primary-backup approach to provide uninterrupted service, have had to dismiss the

approach because of unacceptable overheads [DeMatteis 96].

3

Continuing in a different vein, most programs exhibit locality of reference. Even

m a parallel programming model, the perfonnance of a coherence protocol greatly

depends on the data access patterns of the application running on the system [Eggers and

Katz 88]. The pattern of data sharing is inherent in the application programs, and not

caused by the underlying system architecture or the coherence protocol. The pattern of

data access of applications was used as a motivation in this thesis work to design a DSM

coberence protocol that can potentially increase throughput and, more importantly, reduce

the recovery time in the event of a failure. This fault-tolerant protocol was simulated and

its performance was compared with a simulation of an existing protocol.

The rest of this thesis is organized as follows. In Chapter II, a review of the

literature is presented. Chapter ill outlines the research goals and the scope of this

research. Chapter IV describes the proposed fault-tolerant protocol model. An

introduction to the simulation environment used for this thesis is given in Chapter V.

Chapter VI describes a few key implementation issues. The underlying assumptions

made during the implementation are outlined in Chapter VII. Chapter VIII describes the

results and Chapter IX is the conclusion of this thesis.

CHAPTER II

LITERATURE REVIEW

2.1 Fault Tolerance and Recovery

A computing system consists of a number of hardware and software components

that may potentially fail. Building a system with mechanisms that can avoid or tolerate

failures is complicated. To make matters worse, a system usually does not always fail in

the same way. This section introduces a few concepts about failure, fault tolerance,

recovery, and reliability.

When the delivered service deviates from the specified service, a system failure

occurs. The service delivered by a system is its behavior as perceived by its user(s); a

"user" is another system that interacts with the former. An error is that part of the 'system

which may lead to a failure. An error is caused by a fault. Therefore, an error is a

manifestation ofa fault in the system and a failure is the effect of an error on the service

[Singhal and Shivaratri 94] [Avizienis and Laprie 86]. The time from the occurrence of

an error to the resulting failure is called error latency. When an error causes a failure, it

becomes effective. For example, a programming mistake is a fault that creates a latent

error in the software. When the system executes the erroneous instructions with certain

inputs, it causes a failure and the error becomes effective [Gray and Siewiorek 91].

4

5

Faulty behavior can be class.ified as at byzantine or a failstop failure [Schneider

90]. A byzantine failure is one where the faulty component can exhibit arbitrary and

malicious behavior, with or without collusion with other faulty components. Afailstop

failure is one where the faulty component changes to a state that permits other

components to detect the failure, and then stops.

Fault avoidance deals with prevention of fault-occurrence. Fault tolerance deals

with how to provide service complying with the specification in spite of faults having

occurred or occurring [Avizienis and Laprie 86]. In a fault-tolerant system, the standard

specifications of a server should not only specify its failure-free semantics, but also its

likely failure behavior (or failure semantics). As an example, error-correcting codes are

used to provide fault tolerance.

A system is designed to be fault-tolerant in two ways [Cristian 91] [Singhal and

Shivaratri 94]. A system may mask failures or it may present a well-defined failure

behavior (or failure semantics) in the event of a failure. Adding redundancy, at both

hardware and software levels, is a key approach to tolerate failures. This, however, is

bound to increase the time and/or space overhead on the system during normal operation.

The challenge lies in providing fault tolerance with minimal overhead during nonnal

operation of a system.

The life of a system alternates between providing proper service and improper

service. Proper service refers to delivering the specified service. Improper service is

when the delivered service deviates from the specified service. According to Avizienis

and Laprie [Avizienis and Laprie 86], reliability is "a measure of the continuous delivery

of proper service (or equivalently, of the time to failure) from a reference initial instant".

6

In a DSM system, fault tolerance is provided by ensuring recoverability of data. Recovery

refers to restoring a system to its nonnal operational state and is a complicated process.

In other words, ensuring recovery of a system improves it reliability. A recoverable

system must be able to survmve any single-site failure. A reliable system also ensures the

consistency of data after recovery.

2.2 Memory Coherence

A memory consistency model indicates how a programmer views the memory.

The basic operations allowed on data are read and write. A memory consistency model

restricts the values a read can return. A process running at a node or a site will expect a

read to return the last value written. But in a DSM environment, a node may be reading

stale data if the last write at another node has not yet propagated to this node due to

communication latency. In a DSM system, there is no global notion of time that can

provide a deterministic total ordering for aU reads and writes [La 94]. To ensure that data

at all nodes is coherent, a synchronization or control mechanism must be used. It is best

elucidated in the words of Singhal, "a memory consistency model is a set of allowable

memory access orderings and is enforced by the DSM system" [Singhal and Shivaratri

94]. "Coherence" is used as a general term for the semantics of memory operations and

the word "consistency" refers to a specific kind of coherence.

Coherence semantics are guaranteed by a DSM server. They define the notion of

correctness and what is guaranteed by a DSM system. Strict consistency, sequential

consistency, processor consistency, weak. consistency, and release consistency are a few

7

of the coherence semantics used in various DSM systems [Nitzberg and Lo 91]. The

coherence semantics provided in the work in this thesis is sequential consistency. As

defined by Lamport, a system is sequentially consistent if "the result of any execution is

the same as if the operations of aU the processors were executed in some sequential order,

and the operations of each individual processor appear in this sequence in the order

specified by its program" [Lamport 79].

A coherence protocol implements the coherence semantics; it defines how mis

notion of correctness is achieved. DSM systems allow concurrent access via data

replication. Nodes or sites which access shared data have loca! copies of it. A coherence

protocol keeps the replicas consistent. It ensures that all copies of the data have the same

infonnation and that nodes do not access stale data. A coherence unit is an abstract

memory object that is guaranteed to be consistent.

Write Broadcast (WE) and Write Invalidate (WI) are two popular coherence

protocols. A detailed comparison of WE and WI can be found in [Eggers and Katz 88].

• Write Broadcast or Write Update: A write to a shared data object causes all copies to

be updated. Once a site has cached a copy of a shared object, that copy is never

deleted.· Thus, an arbitrary copy can be used for reading, but all copies must be

modified as a part of a write operation.

• Write Invalidate: A write to a shared data object causes the invalidation of all copies

except one before the write can proceed. Once invalidated, copies are no longer

accessible.

8

2.3 Basic Model

This section introduces the basic model of Mirage+, a DSM system [Fleisch and

Popek 89] [Theel and Fleisch 95] [Theel and Fleisch 96a] [Theel and Fleisch 96b]. In the

following discussion it is assumed that sequential consistency is guaranteed for individual

pages of a segment. Pages are chosen as coherence units because of their identical nature,

small size, and the correspondence to the memory system supported by the processor's

memory management unit. Providing robustness and consistency in a D5M system can

be tackled using two approaches: a memory-oriented or an application-oriented approach

[Juul and Fleisch 95]. In Mirage+, reliability is primarily examined from a memory-

oriented perspective.

2.3.1 Failure Model and Definitions

A network environment has m sites, R}, R2 , ... , Rm, where m is less than or equal

to the total number of sites, all with independent failure rates, in the network. The sites

are connected by communication links that may fail independently of each other. Each

site may also fail independently of other sites. This can lead to the network being

partitioned into subnets. A DSM service is made available to the sites in the model. The

DSM system supports a paged segmentation scheme. It maintains one or more segments

SJ, 52, ... , S5' A segment Sj, I :5: i ~ s, consists of one or more pages Ph Pz, ... , Pn.•
I

A segment stores shared memory data. C is the set of all client sites and is a

subset of the set of all sites {R i , Rz, ... , Rrn }. The number of client sites is n, where n ~

9

m. S, a single site, is the server and belongs to the set {Rr, R2, ... , Rm}· Only sites in C,

the set of client sites, can send requests to the server S. The pIotocol specified {Theel and

Fleisch 95] [Theel and Fleisch 96b] is to be used within a segment and the architecture is

assumed to have a single non-replicated DSM server. Also, in the case of a server failure,

a new server is selected [Theel and Fleisch 96b] using the standard election algorithms

for distributed systems [Tanenbaum 95]. In the specified protocol [Theel and Fleisch

96b], no correlation between segments and sites is specified.

2.3.2 Functional Model of a DSM System

The main operations a DSM system must perfonn are the creation and destruction

of segments, and read and write operations. Processes create shared memory segments by

specifying the size of the segment, name, and access protection (read-only or read-write).

Processes locate and map segments into their virtual memory address space. Once a

segment is mapped, the shared memory behaves like conventional memory, the only

difference being that changes to the underlying memory are visible to other local or

remote processes sharing the segment [Fleisch et al. 94]. Processes can also share

segments, that is, a process may have pages from more than one shared segment mapped

into its memory.

A client reads (writes) a page if it is in local memory. If not, it submits a request

to the server and blocks until it gets a result. The server services the requests sequentially

by maintaining a request queue and directory information for pages in the network. The

result sent back to the client contains the request data and a mode (explained below). If

10

the client gets the requested results, the operation is deemed successfuL When the server

cannot satisfy a request, it sends an error message to the client. Thus the client will not

stay blocked forever if a request cannot be met. The primary aim is to provide high

availability by servicing a majority of the requests successfully. The page received by the

client is cached in the client's local memory.

The client uses the page according to the granted mode. The mode consists of a

tuple: (read attribute, write attribute). If the client reads (writes) the data of a page cached

with a mode having the local read (local write) attribute, then it is a local read operation

(local write operation) carried out locally at the client site. If the page is nol cached at all

or cached with the global mode, the corresponding request has to be sent to the server,

which, in tum, wiU perform a global read operation (global write operation).

It should be mentioned that the term 'library site' is used interchangeably with the

term 'server' in the literature [Fleisch and Popek 89] {Theel and Reisch 96a]. There is

one library site per segment, and it is typically the site which creates the segment. The

protocols specified are to be used within a segment and do not specify any kind of

communication across segments, or between library sites of different segments.

Moreover, no correlation between sites and segments is specified in the open literature.

The 'clock site' for a page is another distinguished site in the model. The clock

site for a page has the most recent copy of a page. When a server gets a request for a

page, it forwards the request to the corresponding clock site. The clock site, in tum,

sends a reply to the requesting site. This decentralizes control, to some extent, from the

server site to the clock site. However, it is possible that a clock and server are at the same

site. Mirage+ [Fleisch and Popek 89] is implemented in the kernel of an existing

11

operating system. The memory coherence protocol used is Write invalidate [Fleisch and

Popek 89]. There may be multiple read copies of a page in the network simultaneously,

but there may be only one write copy at anyone time (single writer, multiple readers).

So, if there are multiple readers of a page, one of the readers is a clock for that page. In

the case of a writer of a page, the writer site is the clock site.

Mirage [Fleisch and Popek 89] attempts to control thrashing by using a clock

mechanism. Readers or the current writer are given a time window (~) in which they are

guaranteed to possess the page unintenuptedly. This time window provides some degree

of control over processor locality. The clock site keeps track of this time window, which

explains its name. When a clock site gets an invalidation message from the server, it

checks to see if the time window for that page has expired. If not, it replies to the server

with the amount of time the server must wait before resending the message. The clock

handles a read/write request in different ways depending on whether it is a read clock or a

write clock (refer to Reliable Mirage+ [DeMatteis96] for details).

2.4 Related Work

2.4.1 Boundary-Restricted Coherence Protocol

Theel and Fleisch [Theel and Fleisch 95] [Theel and Fleisch 96b] proposed a class

of protocols called Boundary-Restricted (BR) coherence protocols which provide high

data availability at low operation costs. These protocols also scale well. The motivation

12

for this class of protocols arises from the fonowing goals for a protocol for a large, error

prone distributed environment.

1. Limited Workload Dependability: The number of copies of a page must, only to a

certain degree, depend on the workload. This. is to ensure that data availability and

cost he within specific boundaries. This is a limitation of both WB and WI coherence

protocols.

2. Lower Bound on the Number of Cached Copies: Having only one copy of a page in

the network should be avoided. A failure at that single site will lead to the

unavailability of that page. This is a drawback of WI when there is only one write

copy of a page in the system, where a write copy is a page in the write mode.

3. Upper Bound on the Number of Cached Copies: If all clients have a copy of a page, a

global write operation will have to update all the copies. Since there are more error

prone components, the write operation may not be successful. This is a liability of the

WB protocol when at] the clients are readers.

The BR coherence protocol is defined by two parameters, BR(w, n): w the

minimum number of copies of a page cached at cliem sites, and n the maximum number

of client sites in the network. When a site writes to a page, there are w write copies of the

page in the network. When a site reads from a page, the number of read copies varies

from w+1 to n. Therefore, throughout the lifetime of a DSM page, the minimum number

of copies available is wand the maximum is D.

Fault tolerance in terms of high availability of data is achieved by adding

redundancy to the system. The higher the degree of redundancy, the more tolerant the

system will be of malfunctioning components. Redundancy is introduced by increasing

13

the number of page copies or replicas cached at sites in the network. This adds a

management overhead - multiple copies of a page must be kept up-to-date and clients

must be prevented from reading outdated copies. This will increase costs.

The number of sites contacted by the DSM server during a read (write) operation

is called a read (write) operation cost. Data availability is the probability that at any

arbitrary point in time, data from a page is accessible. When updating all existing

replicas, the number of up-to-date copies is constant and the availability stays the same.

A write operation alters the number of copies, which will have a strong impact on the

availability and costs of subsequent operations. There is a strong correlation between

operation cost and data availability [Theel and Fleisch 96a] [Theel and Fleisch 96b] ..

Increasing data availability increases costs, while lowering the cost, in tum, will lower

data availability.

2.4.2 Dynamic Boundary-Restricted Coherence Protocol

Theel and Fleisch [Theel and Fleisch 96a] also proposed a Dynamic Boundary

Restricted (DBR) coherence protocol class which was an extension to the 'static' BR

coherence protocol class [Theel and Fleisch 95] [Theel and Fleisch 96b]. Its motivation

was based on the facts that the workload of a DSM server (long-term workload) varies

tremendously from application to application, and the workload submitted from a

currently running application to the DSM server (short-term workload) is highly varied

throughout the lifetime of the application. A DSM server using this protocol dynamically

monitors the current workload and adjusts parameters to provide high data availability at

14

low costs. It does this by switching between instances of the Boundary-Restricted

coherence protocol class described earlier in Section 2.4.1. These instances are ones

where W, the number of write copies, is modified depending on the current workload.

According to the authors, the ORR coherence protocol class outperforms the

corresponding BR coherence protocol in terms of mean operations cost. However, the

data availability provided by the two protocols is almost the same.

2.4.3 Reliable Mirage+

The stated goal of the BR and DBR protocols was to provide high data availability

at low costs [Theel and Fleisch 9681]. There was one important issue that was not

addressed by the authors. Though fault tolerance was one of the motivating factors for

that research, the server was a single point offailure. The server was the only site that

maintained a request queue and directory information for pages in the network.

Moreover, when a client sent a request, it would block waiting for a reply. If a server

could not service a request, it would send an error message to the client. But this would

happen only when the server was functioning. If it was not, the client would obviously

not be informed and would stay blocked forever. Also, if the only copy of a page was at a

dock site and that site crashed, that page would be irrecoverable. Reliable Mirage+

[DeMatteis 96] ensures recovery from a single-site failstop failure.

DeMatteis [DeMatteis 96] proposed a way to recover from a server crash.

Initially, having a 'shadow' se~er or a backup server was considered. All operations

performed by the server had to be duplicated at the 'shadow' server site. This generated

15

too many additional messages and, according to DeMatteis [DeMatteis 96]. caused a 30%

overhead to the "nonnal operation of the preliminary system", which was dismissed as

being too high.

DeMatteis then proposed an implementation of a reliable service called Reliable

Mirage+ using the following key concepts (quoted from [DeMatteis 96]):

1. Processes retry when requesting shared pages after a designated amount of time.

2. Sequence numbers are used to eliminate duplicate requests.

3. Site failures are detected using existing AlXfTCF functionality.

4. State infonnation is maintained throughout the sites that are accessing shared pages.

5. Recovery is possible by polling remaining sites to reconstruct the global state of the

system.

Data availability was guaranteed by maintaining replicated copies of pages. The

trailer site is the site that has the most recent invalid copy of the page. When a clock site

invalidates its copy, it does not remove the page from memory. The read or write page is

made a trailer page, an invalid copy which can be used during recovery. The trailer pages

are given version numbers. During recovery, in case the clock site for a page fails, the

site with the trailer page having the latest version number becomes the new clock site.

Reliable Mirage+ recovers all lost data and makes sure that it is consistent (i.e., all pages

have been recovered and all internal DSM system state infonnation is accurate) before

restarting the system.

Reliable Mirage+ is similar to recoverable DSM [Kennarrec et a1. 95], which

extends its coherence protocol to use replicated data as recovery data. Reliable Mirage+

gives details about how trailer infonnation is used to recover the data. When a library site

16

fails, all sites must send infonnation about pages in their local memories. The data is

packed into bitmaps to reduce the number of messages that need to be sent [DeMatteis

96].

According to DeMatteis [DeMatteis 96], there are two methods of providing

recoverable shared memory: eager recovery and lazy recovery (explained below). Once

recovery starts, it is important that a backup for each page exists (or is created). The

reason being that if a site which has the only copy of a page crashes or fails, then that

page is irrevocably lost. A 'window of vulnerability' is from the time a failure occurs

until every page has a backup copy at an alternate site. If a failure occurs during this

time, the only copy of a page might be lost.

Eager recovery ensures that every page has a backup before the server resumes

functioning. The system is brought to an entirely stable (i.e., the system can recover from

another failure) and consistent state (i.e., all internal DSM state information is accurate)

before start-up. In this situation, the processes waiting for pages have a higher latency,

but the window of vulnerability is smaller.

In lazy recovery, the server begins satisfying requests as soon as one copy of every

page is retrieved from all sites. A user-level process is run in the background which is

responsible for installing backups of every page. Meanwhile, the server starts

functioning. This results in a lower latency for processes, but leads to a larger window of

vulnerability.

CHAPTERIIT

RESEARCH GOALS AND SCOPE

3.1 Problem Fonnulation

As mentioned earlier, in Section 2.4.1 in Chapter II, the Boundary-Restricted

coherence protocol attempts to overcome the limitations of Write Broadcast and Write

Invalidate coherence protocols in the context of providing reliability. The Dynamic

Boundary-Restricted protocol (Section 2.4.2) takes advantage of the dynamic changes in

the workload during the lifetime of an application.

WE and WI use replication to allow more than one process to share the same data.

Replication reduces read latency, but it increases write latency due to the added expense

of invalidating or updating all remote copies of the data. The problem becomes more

complicated when a coherenoe protocol must not only perfonn well in tenns of latency,

but is also used to provide recoverability. Ironically, the goal of the BR and DBR

protocols (see Sections 2.4.1 and 2.4.2 for a brief description) is to provide higher data

availability, but they do not equip a system to handle a server failure. ReHable Mirage+

(see Section 2.4.3) [DeMatteis 96J ensured that the system could recover from a single

site, failstop failure, be the site a server or a client.

17

18

The BR and DBR protocols and Reliable Mirage+ dea' with a single server,

multiple dients architecture. The problem of a client sleeping forever (in the event of the

server going down) in the BR protocol class [Theel and Fleisch 96b] was resolved in

Reliable Mirage+ [DeMatteis 96]. The client sets a time out after sending every request.

But a malfunctioning server will eventually lead to almost zero data availability. The

only data available to the client will be the pages cached locally at the client site.

Fault tolerance was added to the Reliable Mirage+ system by adding redundancy

to the system at client sites. In an environment with a single server, fault tolerance is

added by having more than one copy of every page in the system. The number of copies

of a page is optimized to minimize cost. Since the server is the focal point and all clients

send requests to the server, a single server is still a bottleneck if the number of clients

and/or requests is large. Even though recovery from a server crash was possible in

Reliable Mirage+, the server was still a single point offailure. The fact that a system

could recover was good enough, but the whole system would still be down for a while

until the system recovered. In other existing systems that provide reliable DSM, recovery

entails either reading from stable storage or suspending the system until recovery is

complete. At the risk of belaboring a point, it must be reiterated that in time-critical

applications, providing uninterrupted DSM service, to the greatest possible extent, is a

necessity and a challenge.

The research goals of this thesis work were to investigate the feasibility, design,

develop a prototype and evaluate the perfonnance of a DSM coherence protocol

exhibiting the following behavior.

19

• The server is not a single point of failure.

• Recovery faster than that in Reliable Mirage+ is possible in the event of a failure.

• Increased throughput over Reliable Mirage+ is possible during nonnal operation of

the system.

3.2 A Possible Solution

The goal of the prototype system, where the server is not a single point of failure,

with faster recovery and higher throughput than Reliable Mirage+, may be achieved by

adding redundancy to the system (probably by adding more servers) without considerably

increasing the overhead. A possible solution could be the following. The servers could

be made to service requests concurrently, each keeping track of what the rest of the

servers are doing. This would reduce the bottleneck caused by a single server. Moreover.

if one server goes down, another can take its place almost immediately ('almost' because

it would take some time to detect a failure at a site).

This solution may have its disadvantages. If the servers must operate concurrently

and serve as backups for each other, every operation performed by one server must either

be multicast to all other servers or be duplicated at least at one other server. And,

presuming that more than one server is capable of doing the same operation on the same

object, a suitable synchronization mechanism is required. Also, if a server goes down, a

client must keep track of which server(s) to contact. The location of the servers would

not be transparent to the clients, thus increasing the burden on the client sites. Location

transparency can probably be provided by partitioning the data by address, using a

20

mapping function to determine which server(s) to contact based on the address being

referenced.

The feasibility of lhis solution has not been examined. Even if this solution were

feasible, it would not reduce the recovery time. The whole system would have to be

suspended during recovery. Maintaining location infonnation about multiple servers and

synchronization between the servers during normal operation would probably ,cause a

substantial overhead to the system and the trade-off obtained might not be worthwhile. '

3.3 Preliminary Idea

Most sequential programs exhibit a high degree of locality of reference [Denning

72]. The performance of parallel programs in a DSM system depends on the number of

parallel processes and the frequency of updating shared data. Specifically, it depends on

the amount of contention for modifiable data. If the shared data is read-only, the simple

solution of allowing multiple readers will suffice. When the shared data is read-write or

write, the coherence protocol used (say WB or WI) and the data access pattern of the

application become significant. The data sharing pattern can affect the number of

invalidation messages or update messages for WI or WE, respectively.

The size of a page, the unit of sharing, can have far reaching implications on

performance. The argument is outlined in the following three cases.

1. Consider a small page size, say the smallest theoretically possible, of one word:

Access to every new word (one that has not been referenced earlier) can potentially

21

canse a p'age fault. This page size does not exploit locality. However, the system may

perfonn well when data sharing is minimal.

2. Consider a large page size: The system performance will improve when locality is

high. The page may have been brought in because of a reference to a word in it. The

chance that the referenced words, or words on the same page, are referenced again is

high. Such references will not generally cause additional page faults (that would in

turn generate network traffic) since the page in question is already in the memory.

3. There is a counter-argument to Case 2. A larger page size can result in false sharing.

False sharing occurs when different processes request ~e same page, but need to

access exclusive sections of the shared page [Hyde and Fleisch 96]. This can result in

thrashing, greater network traffic, and degraded perfonnance.

The concept of segmentation is based upon a logical view of memory, rather than

a physical view of memory (as in paging). In the traditional sense, memory is logically

split up into segments based on functionality. Data segment, stack segment, the address

space of each processor, and instruction segment are examples of segments [Silberschatz

and Galvin 94]. Now consider the following scenario. The total set of shared pages is

partitioned into segments, each being a mutually exclusive subset of the total pages (this

is in keeping with the assumption in Mirage [Fleisch and Popek 89}). Assume that the

segments are created such that the paranel processes that are running on the system

exhibit locality of reference towards the pages in a single segment for a specific time

period. Here, segmentation is done depending on locality and not functionality. This is

called temporal locality, whi~h states that recently accessed words are likely to be

accessed in the near future [Patterson and Hennessy 96].

22

Returning to the previous train of thought, assume that each segment is kept

consistent by a specific server. fu the time period when processes exhibit greater

temporal locality towards accessing a specific segment, these processes send requests to

the server maintaining this particular segment. This would provide autonomy to the

servers, not only in terms of servicing any requests for pages in their respective segments,

but also in terms of recovery. The bottleneck caused by a single server would also be

removed.

3.4 Research Scope and Limitations

The solution to the problem is based on Reliable Mirage+. It is designed as an

extension to Reliable Mirage+. One limitation of the solution is an assumption about the

locality of reference of applications as explained in Section 3.3. The analysis of data

sharing patterns of specific parallel applications is beyond the scope of this research. The

degree or effect of false sharing (see Section 3.3 or refer to [Hyde and Fleisch 96]) is not

explored. The results are purely based on a synthetic application.

Reliable Mirage+ is implemented in the kernel of an operating system [DeMatteis

96]. It examines reliability from a memory-oriented perspective. In this work, a multi

server system was simulated and compared with a single-server simulation of Reliable

Mirage+. It is impossible to simulate a real system with 100% accuracy. Differences in

assumptions and interpretations are bound to occur, especially when the only information

about Reliable Mirage+ that is available is through articles in the open literature.

23

However, a simulation is a reasonable representation of a system, and allows one to

evaluate its feasibility and perfonnance.

.,,

..

CHAPTER IV

FAULT-TOLERANT PROTOCOL MODEL

The preliminary approach to solving the problem was introduced in Section 3.3.

This chapter delves into the details of the system. Throughout this chapter, it must be

kept in mind that this system is built on top of Reliable Mirage+ [DeMatteis 96]. The

potential deviations and the underlying assumptions are discussed in Chapter VII.

4.1 System Architecture

The following items describe the architecture of the new system.

1. The network environment has m sites with independent failure rates. The sites are

connected by communication links that may fail independently of each other and of

the other sites. Sites are designated to be server sites and/or client sites. Since a

server site may also act as a client site, the set of servers may be a subset of the set of

all clients.

2. A database is distributed among the m sites and is accessible by the clients.

3. The network is partitioned into n clusters, where n ~ ffi. Each cluster consists of one

or more sites.

4. Each cluster is monitored by an exclusive server.

24

25

5. Clients are assigned to specific clusters.

6. Eacb cluster would have approximately Lm/nJ clients or lin of tbe total number of

clients.

7. A server will service requests sent by the clients in its own cluster as well as by

clients in other clusters.

8. A page is chosen to be the coherence unit. The set of all pages is partitioned into n

disjoint subsets, where n is the total number of servers which is the same as the total

number of partitions.

9. A subset of the pages may not necessarily comprise of consecutive pages. The

method used to partition the pages will depend on the application and will affect the

contents of each subset of the pages. Subsets capture a logical view of data, where

client processes exhibit locality of reference with respect to the subsets. Such subsets

are called segments. A page cannot belong to more than one segment.

10. Each server is responsible for the consistency and maintenance of the current and

backup copies of a segment. A server is said to 'own' these pages. Every server may

not necessarily be responsible for the same number of pages. The load on a server

depends on the size of the segment it maintains and the number of clients it monitors.

Hence, every server may not necessarily have the same load.

11. The network is partitioned into clusters on the assumption that the needs of the clients

in a cluster lean towards the segment owned by that duster's server for a certain

period of time. This is analogous to the concept of 'locality of reference' [Patterson

and Hennessy 96]. In particular, it is 'temporallocahty'. This would imply that a

client would belong to a certain cluster and would send all requests to the server in

..

26

that cluster for a period of time. This does not necessarily mean that a client cannot

have acoess to data in a different segment durin'g this time period. A request for data

in a different segment is handled by its server, which contacts the relevant server to

get the data.

12. A client cannot directly contact a server other than its own. When a client needs data

from a different segment, it sends a request to its own server. Its server contacts the

segment's server, gets the requested page, and forwards it to the requesting client.

Hence, it is possible to access data from a different cluster, but it involves the

overhead of a longer route and extra messages.

13. If a client repeatedly accesses pages in a segment different from that owned by its

server, it 'migrates' to that cluster. This migration is initiated by its server, in

cooperation with other servers. The term 'migration', as used in this thesis, does not

allude to the conventional concept of a process being moved from one processor to

another [Mullender 93] [Tanenbaum 95]. It only means that a client is sending its

requests to a different server, i.e., it is a part of a new cluster. A cluster, it must be

emphasized, is only a logical abstraction and not a physical category.

14. A server is responsible for maintaining backups of the pages it 'owns'. These

backups are maintained at other sites in its cluster. If a server goes down, it is

responsible for recovering the pages it owns. Each server is autonomous with respect

to servicing requests for pages in its segment, servicing the needs of the clients in its

cluster, and for being responsible for the recovery of its segment and clients.

15. A server maintains information about other server site locations and the set of pages

owned by every other server. This information is minimal, that is, it wiB require very

27

little memory. This information and the information about the set of clients and pages

in its segment are maintained in nonvolatile storage.

The terms page, server, client, cluster, segment, ownership of pages, and migration,

whenever used in the rest of this thesis, refer to their definitions in this section.

4.2 Server Functionality

A server maintains a list of pages in its segment. The pages in its segment are

allocated statically, once in the beginning, for each run of an application. The segment

configuration does not change during the lifetime of the application. The clients in a

server's cluster, however, are not statically allocated. Clients move dynamically from one

cluster to another depending on their da.ta access patterns. A server maintains a dynamic

list of the clients in its cluster. A server has a page table with the following information

about each page: the current clock ·site for the page, the mode (read/write) of the clock,

the trailer site, and the latest trailer version.

If the page does not belong to its segment, the server's page table will reflect the

existence or nonexistence of the page in its cluster. However, a server must have

information about aU pages belonging to its segment. A server has a request queue

containing messages sent by its clients and by other servers. A server also maintains

information about other servers. It stores the location and state of every other server

along with the set of pages in its segment. A server also maintains migration data. Say a

client of server Sx made a request for a page in segment Sy, belonging to server Syo Upon

getting a reply from server Sy, server Sx increments the number of requests made by this

28

particular cHent to server Sy. A server also maintains a list of read and write pages that is

has 'loaned' to other clusters. The infonnation about pages loaned to other clusters is

needed when sending invalidation messages for these pages. The concept of 'loaning a

page' is explained in Section 4.4.

4.3 Client Functionality

The clients' functionality is the same as in Reliable Mirage+. A client maintains a

page table with infonnation about whether a page is in memory, and if so, the page mode

(read/write). The page table also has a flag set if the client is a clock site for a page. A

clock site has the latest trailer version number and the list of readers of that page, if the

clock is a read clock. A cHent also maintains a request queue, which is a queue of

messages sent to this client.

4.4 Read and Write Operations

The.mode of operations within a cluster are the same as in Reliable Mirage+. The

coherence protocol used is WI. However, the coherence protocol for a request that has to

go out of the cluster to be serviced depends on whether it is a read or a write request. For

an out-of-cluster read operation, WI is the protocol. For an out-of-cluster write operation,

a modified version of WE is used.

29

4.4.1 Read Operation

A read request by a client for a page belonging to its server is the same as in

Reliable Mirage+. The client, on a read page fault, sends a request to its server. The

server forwards it to the clock site. If the clock is a reader, it forwards the page to the

requesting client. If the clock is a writer, it downgrades to a reader and forwards the page

to the requesting client.

--------- ---------
CLUSTER I

.,,···,,,
·,,···,,

Legend:

o Site

CIUSler

Page

o EveDt

.,,,,

CLUSTER 2
,

,,,
,,···,,,···,,·,

Re~der
Site ,", ,, ,- ,'-"-, U------------0
..

8
Figure 1. Out-of-Cluster Read Request

Figure 1 illustrates an out-of-cluster read request when the clock is a reader. The

requesting client C1 sends a read request to its server Sj. Sj forwards the request to server

S2, the server which owns the page. S2 forwards the request to the clock site. The dock

30

site, which is a read clock, adds Sl as a reader and sends the reply to its server S2. The

clock site only needs to know the cluster to which it is giving the page. It does not need

to know the specific dient(s), C1 in this case, in the cluster which will read from this

page. 52 adds the page number to the list of read pages given to 5 I. 52 forwards the reply

to 51' 5 I modifies its page table to indicate that the requesting client C1 is a reader of this

page. SI forwards the reply to the requesting client. The client C l can now read from its

local copy of the page. For the case of an out-of-cluster read request when the clock is a

writer, the clock downgrades to a reader before sending a reply to 52. The clock site is

said to have 'loaned' a read copy of the page to cluster 1 because, eventually, cluster 1

will have to invalidate the page. The page will never be converted to a trailer page at any

site not in cluster 2.

Figure 2 shows an out-of-cluster read request when another client in the same

cluster is already a reader of that page. The requesting client Cil sends the request to its

server 51' Even though the server knows it is a request for an out-of-cluster page, its page

table indicates that one of its clients, e l2, is a reader of that page. It does not forward the

request to the server owning the page, 52. Instead, it sends a message to C l2 telling it to

become a 'pseudo read clock' for that page and to send a reply to CIl' CI2 adds Cll as a

reader of that page and forwards the page to Cli' The overhead of going across clusters is

reduced by allowing read clocks in other clusters. C l2 is a pseudo read clock because it

does not have to do everything a clock site does. It only maintains a list of readers. It

does not keep track of trailer versions. Even though e l2 is a pseudo read clock, the clock

site in cluster 2, C2, is still the read clock for this page.

31

,
,

,,,,,.,,·,,,,,···\,,.,
"

Legend:

o Sile

,..0,.', Cluster.......

'.

------- ...

CLUSTER I

- ... _----_ -

I Page

8 Event

,,,,,····Become dpck,
Add Reader,

I,
I,,,,

,,,
,

"

CLUSTER 2
,//8 \,\

, '
• I, '· '
• II I

I '
I •

\ '
\ ', '

, I

\ R!ader, ,
, '

, '""" d"'··_------v..
8

Figure 2. Out-of-Cluster Read Request, Reader in Cluster

Figure 3 shows how a dock site invalidates readers of a page, both within and

outside its cluster. A clock site would typically invalidate its readers when servicing a

write request. C2 is a clock site for a page in cluster 2. C2 has server Sl as a reader and it

also has clients in its cluster as readers of this page. S, has client C ll listed as a pseudo

read clock for that page. Cll , in tum, has clients C12 and Cu as readers of this page.

When the clock site C2 wants to invalidate all readers of this page, it sends invalidation

messages to all clients in its cluster. C2 cannot directly send an invalidation message to

server S(. It sends an invalidation message to its server S2. S2 forwards the invalidation

message to S, (S2 kept track of the fact that S) was a reader of this page). 51 removes C ll

as a reader from its page table and forwards the invalidation message to C ll . C ll

32

invalidates itself and sends invalidation messages to Cl2 and Cl3. No acknowledgments

are sent once the page is invalidated at various sites.

,
,

,,,,,,··I,.
I
I.
J

I.·,,
R~ader
,,

,,

-_ ... ----- ..

,,,,,,,.
I·J•·,·,.,,.,,,,,

,
",)nvaJidate

Read!,~~e

f3\lllvalidate All ",.,
V Readers,' CLUSTER 2

'~_.:::.--=::.:..::.=-,,
,,,.,,,,.,

Invalidate All
Readers ~,.

I,.,,,,,,,
" Invalidate

, "ORead Page
.-.... 5

------- --.
CLUSTER I

- ... _-------

G) Evelll

,,,
,,,,,,.,

I

r

····I·,,,,,.,,,,
,,

Legend:o Sire

Figure 3. Clock Site Invalidates In and Out Cluster Readers

4.4.2 Write Operation

A write request by a client for a page belonging to its server is the same as in

Reliable Mirage+. A WI protocol is used. The client, on a write page fault, sends a

request to its server. The server forwards it to the clock site: If the clock is a reader, it

invalidates all readers including itself. If the clock site is a writer, it invalidates itself. It

becomes a trailer for that page because the page was presumably just written to. It

33

increments the trailer version, and sends the page along with the dock pennission to the

requesting client. The requesting client becomes the new clock. The new clock sends an

acknowledgment to the server so that the server can send subsequent requests for this

page to the correct clock site.

Write pennission for a page carries the additional responsibility of a clock. The

clock site keeps track of the latest trailer version and becomes a trailer page when it hands

over the clock to another site. Therefore, in the case of an out-of-cluster write request, if

the same WI protocol is followed, it would mean that a backup for a page in segment Sx

may exist in cluster y if a client in cluster y was a writer of that page. This would defeat

the purpose of giving autonomy to a server. A server may have to go to other clusters to

recover data in its segment in case of a failure in its cluster.

Write Broadcast is an alternative option. But it comes with its disadvantages. A

write to an out-of-cluster page would mean sending updates to all readers of the page,

within and outside the cluster owning that page. This would be expensive if the number

of readers or writers of that page was large. If instead there is only a single remote copy

of a page, it is relatively inexpensive to perform updates by a remote store to the single

copy.

The approach used depends on the pattern of data access. Replication is useful for

data that is read more often than it is written to. Munin is a DSM system which uses

type-specific coherence [Bennett et al. 90]. Instead of a single memory coherence

mechanism for all shared data objects, it uses different mechanisms, each appropriate for

a different class of shared objects. For instance, some of the shared data object types used

in Munin are write-once, private, write-many, synchronization, migratory, and read-write.

34

This idea of providing different kinds of memory coherence, depending on the

type of shared data, is used for out-of-cluster write requests. Again, it is not the

functionality of data, but the locality of data that is used to define its 'type' in this

context. An out-of-cluster read request uses WI as explained in Section 4.4.1. However,

an out-of-cluster write request uses a combination of WI and WB.

Figure 4. Out-of-Cluster Write Request

,,,,,,···,

-,
, CLUSTER 2

-------- ..

turn Updated
10 Page'",,,

"'" @
Retlltn Updated

Pag~ ----

·····I..
Return Upd;tted

~,:_a,ge'

------- --.

I Page

8 Event

CLUSTER 1

Cluster

,
I,.,·,·,,,,,,··,,,,

Legend:

o Sile

Figure 4 illustrates an out-of-duster write request. The requesting client C j sends

a write request to its server SI. 51 forwards the request to server S2, the server which

owns the page. S1 forwards this request to S2 even if clients in its cluster 1 are readers of

this page. S2 forwards the request to the clock site. If the clock site is a reader, it

invalidates all existing readers. It invalidates itself 'temporarily' ensuring that a process

-

35

at its site cannot access the page. It does not remove the page from memory and is still a

clock for this page. But it cannot read or write to this page temporarily. It sends a reply

to it server 52 'loaning' a write copy of this page to server 51 for a specific period of time,

say 1. The clock site will not service further requests for this page until this time period

expires. 52 adds the page number to the list of write pages given to 51. S2 forwards the

reply to 51. 51 modifies its page table to indicate that the requesting client ClI is a writer

of this page. SI forwards the reply to C j . C 1 writes to its local copy of the page and has

to return the page once the time period t expires. Once this time period expires, C l

invalidates the page and sends the updated page copy to 51. ~l forwards the page to S2.

S2 forwards the page to the clock site e2, which loads the page into its memory. Now C2

can service further requests for this page.

It should be noted that by loaning an 'update copy' to a different cluster, S2 does

not lose control of the page. When C2 sends the reply, it starts a timer. If it does not get

the updated page within this time period, it regains control and sends an invalidation

message to 52, which gets forwarded to C[via S). Once C2 has sent this invalidation

message, it will not accept any subsequent message from S I returning the updated page.

As is obvious, a write to an out-of-cluster page carries a very high overhead. Updating

only the clock site and not multiple readers reduces the overhead, but it is still expected to

be significant. To reduce this overhead, the concept of 'migration' is introduced into the

protocol. Further details about migration are given in Section 4.5.

36

4.5 Migration

4.5.1 Migration Algorithm

In a multi-server environment, a chent can request pages within and outside its

cluster. If a client repeatedly accesses pages belonging to another duster, it 'migrates' to

that cluster. 'Migration' here means that the client will join the new cluster. It will then

contact only the server in the new cluster for all its requests. Migration is done by its

current server in cooperation with its 'to be' server.

Every server S maintains a two dimensional migration table of dimensions x (the

number of clients in S's cluster) by y (the number of servers other than S). An entry in

this table (client Cx., server Sy) is the number of requests client ex has made for pages in

server Sy's segment. Say a client C1 made an out-of-cluster read or write request for a

page belonging to server S2- When SI gets the corresponding reply from S2, it has to

forward the reply to CI . SI also increments the value for the entry (client e l , server S2) in

its two dimensional migration table. At regular time periods, a server scans its migration

table. If a client has made more than a fixed minimum number of requests, N, to anyone

other cluster, this client should migrate to that cluster. Basically, this client has made

more than a specified threshold of requests to that cluster. It is possible that this client

made more than this minimum threshold to more than one cluster. The cluster to which

this client migrates is the cluster to which it made the maximum number of requests. If

no maximum exists, a random cluster is chosen. No history of out-of-cluster requests is

maintained to detennine the client's temporal locality at this point. In case a client has

37

made less than the threshold number of requests to another cluster, that value in the

migration table is reset to 0 and the count of requests begins again in the next cycle.

4.5.2 Migration Process

Once a server S, determines that a client C1 has to migrate to cluster 2, Sl has to

make sure that C1 does not have any current or backup copies of pages in SI'S segment.

Sl sends a message ffi\ to C] asking it to start the migration process (Figure 5). On

receiving m], C I suspends its application process until the migration is complete. The

application process should be suspended at a point when it is not waiting for a reply to

arrive. This is because if the reply arrives after this client migrates, then this client might

have a page, belonging to its old cluster, in a clock or trailer mode.

C] has to give up clock privileges for all pages for which it is a clock site. For

every clock page in its memory, C, sends a message, m2, to S\. The message m2 has the

page, the latest trailer version number, and a read/write attribute. If C] is a read clock, it

invalidates all readers as shown in Figure 3 (page 32, not shown in Figure 5). This is

done to avoid inconsistencies in case one of the reader sites is also migrating. C\

invalidates the page and becomes a trailer. This is done to deal with a situation where a

site in cluster 1 goes down before client C I finishes migrating. In that event, the

migration process is aborted and C] stays in cluster I. C l' S trailer pages can then be used

to recover any lost pages. Clock pages might have been in transit and it is important that

these pages can be recovered if and when recovery begins.

38

When SI gets the 'hand over clock' message, ffi2, it has to select a new clock. SI

randomly selects a new clock site from its list of clients. A new clock site is selected for

every page that is handed over. Say C2 is to be the new clock site. S) sends a message m3

to client C2 telling it to become the new clock. Once C2 installs the clock page, it sends

an acknowledgment message 114 to the server 51_

Figure 5. Migration Process: Client Handing Over Clock Page

Legend:

,
j.

.
,

,,,,,,,,
,,··,·,··:,,···,,,,,,

,,,

("'~ Cluster.....

Page

o Site

,
,,,

o Event

CLUSTER I

---- --~

,,,.,,,
",··,,·,·,,,,,

,..-------, '.,
,,,

", lnvalidale Clock,
"-,.Become Trailer

When the clock is moving from one site to another, the server SI will not service

any requests for that page. S I sets a flag in its page table, using which it ignores any

subsequent requests for that page. So, from the time 51 sends ml to the time it receives

II14, 51 will not service any requests for that page. A client that sends a request for this

page in this time period will eventually time out and resend the message.

39

The migrating client C\ also invalidates all read pages (which are not clock sites)

from its memory. It sends a list of these read pages to its server. Its server sends

messages to all the corresponding read clocks telling them to remove the client C\ from

their list of readers. The server does not necessarily send one message for every page. It

sends one message to each site that is a clock site for one or more of the pages for which

C j is a reader. That site scans its read clocks and removes C\ as a reader, if it is one.

H the migrating client C\ has loaned any write-update pages to another cluster, it

either waits until that page is returned, or it sends an invalidation message to that cluster

when the time it was loaned for is over. It then has to hand-over this write clock to its

server before it can migrate.

The migrating client C\ also invalidates any out-of-cluster read pages that it may

have in its memory. H it is a pseudo read clock for a page, it invalidates all the readers. It

does not send a corresponding message to its server. C\ also returns any out-of-cluster

write-update pages h may have. Its server invalidates all out-of-cluster read pages, which

reside at C\, from its page table.

SI keeps a count of the number of pages for which C j is a clock site. Once 5\

receives an acknowledgment JI14 for every page for which C\ was a clock, C1 is ready to

be 'handed over' to its new server S2. Now, Sl has to tell C1 that 52 is its new server. 51

also has to tell S2 to accept C\ as a new client. The details of this hand-over process are

given in Sections 4.5.3 and 4.5.4. Once this hand-over is completed, C\ erases all trailer

pages from its memory. These are pages belonging to cluster 1. C1 should not have any

pages in its memory and should not have any requests related to cluster 1 in its request

queue when it migrates. C1 then awakens its application process which had been

•

40

suspended during migration. Now C1 has successfully migrated to cluster 2 and will send

all is requests to server S2.

It should be mentioned that when a client goes out of a cluster, it deletes all its

trailer pages for that cluster. So, trailer pages that could be potential backups (if they

have the latest trailer version) are lost. The system makes no attempt to ensure that new

trailer pages are installed at various sites. This will require the overhead of re-installing

trailer pages even if they are not the latest version. This is because only the clock site

keeps track of the latest trailer version number and the server will have to coordinate with

the clock site to re-install a trailer page at another site in its cluster.

If a trailer page is erased, the system will have to rely on the previous version

during recovery. But, whenever a clock gives up clock privileges, it invalidates its copy

and becomes a trailer page. Therefore, a subsequent write request for this page will cause

the creation of a new trailer page. And, if that page is in a read mode in the system, there

could be multiple readers, one of which will be used during recovery. Therefore, it is

expected that the system can recover, and no pages will be irrevocably lost due to a client

deleting its trailer pages.

From the above discussion, it can be seen that migration takes a heavy toll on the

system. Migration itself was done to increase the throughput as a client was making

expensive out-of-cluster requests. Intuitively, this protocol will perform well if the

clients exhibit locality of reference towards pages in their respective segments.

-
41

... ------

,,,,,
,,,,,

I
I··I
I·,··I,.,,,,

,,
,

-----_ ..
"

.,,,
,,,

"-------

Migrale [0

S2 (m l)

--..... ,~

,,'CURRENTCLUSlER i"", ,/ NEWCLUSTER2

\,Add New Clielll C, (m1//

, (9' [Server S2
.. 2,

I

\ ·····0-:--·····
........~.. \.J ~

....... ·New R~uests to S2 \
after,Migration ~,,,,,

, , ,

,
,,,,.·····,,,

··,.,,,,,,,,,

4.5.3 Consensus Problem

Figure 6. Server Hands Over Client to Another Server (Solution 1)

Once a client has handed over its clock pages to the server and the server has

8 Event

Legend:

- Messages Dlrricg Hand-Over 0 Sile

......~ Messa.ges A.fterHand-Over <:) Cluster

received acknowledgments from the new clocks for each of these pages, the client has to

migrate from one cluster to another. In a failure-free environment, the solution is simple.

Consider the protocol in Figure 6. Client C l needs to be 'handed over' to server S2. It is

server Sl' s responsibility to ensure that the system is consistent after this hand-over is

completed. Sj sends a message to C1 telling it to migrate to 52 (ml)' SI also sends a

message to 52 telling it to add a new client to its cluster (m2). Sl now removes C j from

its list of clients. On receiving mj, C1 will change the location of its server from SI to S2.

42

On receiving m2, S2 will add C1 to its list of clients and from then on will service requests

from CI_ If mz is processed after m], CI might send a request to 82 before S2 gets m2.

This will not create a problem because S2 can simply ignore the request until it gets ffi2.

C1 will time out and resend the message until S2 processes m2. Once C1 receives ml and

S2 receives m2, the migration is completed. The client CI will send subsequent requests

to server S2 instead of server SI.

The solution, unfortunately, is not so straightforward. This is because the system

is prone to failure. Say SI sends ml and ffi2. If S2 fails before getting m2 but C1 gets ml,

C1 will send its subsequent requests to S2. But S2 will never ho~or these requests because

it never received m2. Alternatively, say C 1 fails before getting rnl but S2 gets m2. Once

SI sends ml and m2, it removes CI from its list of clients and its responsibility for the

hand-over is over. Once C1 recovers from its transient failure, it will try to send messages

to its (what it thinks is current) server SI' SI of course will ignore all such messages

because CI, according to SI, is not in its cluster. C1 cannot send messages to S2 because it

never got mi. So now CI is a 'lost client'. No server in the system will accept messages

from C1• Cases where SI fails after sending fil but before sending ml, or vice versa, will

also lead to an inconsistent system.

Now, the solution that looked easy is far from easy. Let us consider another

approach which uses acknowledgments. Consider Figure 7. Server SI sends m1 and m2

to client Cl and server S2, respectively. It waits for an acknowledgment to ml and m2

from Cl and S2, respectively. Let us call these acknowledgments m3 and JI14. Once SI

gets these acknowledgments, it ~emoves CI from its list of clients. But say SI sent illl and

m2. SI gets II4 but fails before it gets ill3. Now, S2 has CI in its list of clients. But when

.~
~

i'. ,,

-
43

SI recovers, it will still have C, in its list of clients, as it did not complete the hand-over.

So now the system is inconsistent because both SI and! S2 have C1 listed as their client.

Let us modify the protocol slightly so that S2 does not add C1 to its cluster until it is sure

SI has received 1l'4. That will require SI to send an acknowledgment for II4, let us call it

ms· But, again, SI cannot be sure S2 received ms as S2 could have failed in the interim.

This leads to an infinite loop of acknowledgments without a consensus between the sites.

-' .

o Everlil

...... _-------
Legend:

-,

/C(;;~ENTCLUST~~'l-" Add New Client C, (mh"'/~~~-~:~:~~~-;----"
,,' ~ 0

,, ,, ,, ., .. .
:' ~Acknowledgm~~1 \,
: : to m 2 (m4) : :
I j r I

~ Ack wJedgmenl:i.·G)··. :
~ 0 m I (m)) : " '5 :
, /.............. " ,-
• . ;- New Requests la,5 2

... .., " a.fter Mi,gratio.n"
, ",

~ Messages Durjng Hand-Ovc:r 0 Site

.,.... ,. Messages Aflcr Hand-Over Cluslcr

Figure 7. Server Hands Over Client to Another Server (Solution 2)

In the area of fault-tolerant computing, "the consensus problem is to form an

agreement among the fault-free members of the resource population on a quantum of

information in order to maintain the performance and integrity of the system" [Barborak

et aL 93]. Such an agreement may be made regarding the configuration of the system, the

44

synchronization of its clocks, the contents of its communications, or any other value

requiring global consistency.

4.5.4 Solution to the Consensus Problem

The consensus problem is not a recent problem. Distributed transactions, those

that involve more than one server, face the consensus problem in a failure prone

environment. The two-phase commit protocol is a solution [Coulouris et al. 94]. But this

solution uses stable storage at every stage so that the system can recover from a failure at

any stage of the consensus.

Fischer, Lynch, and Paterson proved that in a distributed system with an

unbounded but finite message latency, there is no protocol that can guarantee consensus

within a finite amount of time, even if a single process fails by stopping [Fischer et 311.

85]. Turek and Shasha summarized the cases when it is possible to reach a consensus

even in the pr:esence of multiple failmes [Turek and Shasha 92]. More optimistic

assumptions on timing constraints within the network and among processors yield this

solution.

A set of system parameters are identified, they are [Turek and Shasha 92] as

follows.

1. Processors can be either synchronous or asynchronous: Processors are synchronous

if and only if there exits a constant s ~ 1 such that for every s+ I steps taken by any

processor, every other processor will have taken at least one step.

I·

"
I

.' II

-
45

2. Communication delay can be either bounded or unbounded: Delay is bounded if and

only if every message sent by a processor arrives at its destination within t real-time

steps for some predetermined t.

3. Messages can be either ordered or unordered: Messages are ordered if and only if

processor Pr receives message ml before message m2 when P j sends ml to Pr at real

time tl> P2sends m2 to Pr at real time t2, and tl < h.

4. Transmission mechanism can be either point-to-point or broadcast: The transmission

mechanism is point-to-point if a processor can send a message in an atomic step to at

most one other processor. It is broadcast if a processor can send a message to all

processors in an atomic step.

According to Turek and Shasha [Turek and Shasha 92], one of the cases where

consensus is possible is when messages are ordered and the transmission medium is

broadcast. This is a situation when processors are asynchronous and some of them may

fail by stopping. However an atomic broadcast is possible. Applying this to the

consensus problem for handing over of a client to another cluster gives a solution.

Consider Figure 8. It is assumed that S] can multicast ill] and m2 to C j and S2,

respectively, and removes client C1 from its list of clients (both IDI and ml are labeled 1).

So, SI can fail before or after sending m] and ro2, but not in between. It is assumed that

C1 cannot fail from the time Sl removes C] from its client list and the time S2 adds C1 to

its client list. If S2 fails before receiving rol, SI no longer has C1 as a client, C1 has S2 as

its server but S2 does not have C j as a client. The 'lost client' problem is solved by

making C1 intelligent. Once C1 receives mt, it keeps polling S2 until it gets an

acknowledgment. Even if S2 went down before receiving m2, it gets the polling message

46

once it comes back up. When S2 gets the polling message m3 from C\, it adds C t to its

list of clients and replies with message IJ14. Now the migration of dient C1 from duster 1

to cluster 2 is completed. The system is in a consistent state. Once Ct gets 1114, it goes

back to its nonnal state and can start sending its requests to S2, its new server.

Figure 8. Server Hands Over Client to Another Server (Solution 3)

.,.,,,,,·,,.,,,.,····,,.,
,,,

.. ----- .. -

-- .. _----

NEW CLUSlER 2

G Even!

..
.f:\......... 0;

.' ...New Requests to'S2
after Migration ",

o Sit,e
....

::.,) Clusrer

,'-C~~RENT cUJs~~-J--_
, -, -, f:',-

:' ~ Add Nt:w Cliellt c. (mz)
: t------;.'------;,~, ,,,·I..

I
I

I
I,
··,

\,,
,

,,,

... _-----
Legend:

_ Messages Owing Hand-Ololer

.......~ Messages Afler Hand·Over

4.6 Recovery

Recovery is the process of restoring the system to its nonnal operational state in

the event of a failure. When a site in the system goes down, the system must either wait

for the site to come back up, in the case of a transient failure, or must continue without

47

t.hat site, in the case of a permanent failure. In either case, the failed site may have pages

in its memory that are now lost. The server has to recover these pages. The server must

either try to obtain another copy of the page that might exist at another site, or it must

'rollback' to the latest available copy. Just recovering lost pages is not enough. The data

in the system must also be in a consistent state. For example, if the server has a certain

site listed as a clock site for a page, that site must be the clock site for the page. Or, if a

clock has a site listed as a reader of the page, then that site must be a reader of that page.

Inconsistencies may also arise if a message was lost when a site went down. Also,

all copies of a page must have the same information. If a client in a cluster has a

permanent failure, then its server must no longer have that client listed as its client. If the

server site had a permanent failure, a new server has to be elected. Coordination between

all the sites is required to elect a new server, to recover lost pages, and to ensure

consistency. Recovery deals with making sure that there is at least one copy of every

page. Making sure that the system is consistent after recovery is an important part of

bringing the system back to normalcy. This is called reliability.

Reliable Mirage+ [DeMatteis 96] made sure that there was at least one backup for

every page. These backups are not stored at a single site. If that is done, then the failure

of that one backup site would mean that all the backups are lost. Rather, Reliable

Mirage+ decentralizes the backup storage. Backups are stored in the main memories of

various sites in the system. The trailer pages created whenever a clock gives up clock

privileges, serve as backup copies in the system. Reliable Mirage+ assumes that failures

are permanent. If the server fails, standard election algorithms are used to elect a

'coordinator', which also becomes the new server. The system gets into a recovery mode

48

and stops servicing requests until recovery is completed. The throughput of the system

during recovery is zero. In Reliable Mirage+, it is assumed that a site can detect the

failure of another site in the cluster (refer to [DeMatteis 96] for details).

In a multi-server environment, autonomy is given to servers during recovery. If a

site goes down, only that single cluster goes into recovery mode. The rest of the system

functions normally. Note that it is possible for two clusters to go into recovery mode in a

single-site failure. This happens when the server at a failed site is in one cluster and t}:le

client at that failed site is in another cluster. Since every server stores its backup copies

only at sites in its cluster (if one of its clients migrates, it erases its backup copies for this

cluster), no communication outside the cluster is needed for recovery.

The recovery process within a cluster is the same as in Reliable Mirage+. All

sites in the cluster send information about pages in their memory to their server. The

server analyzes this information and sends messages to clients to become new clocks or

to install more backup pages. The rest of the clusters continue functioning, though not at

100'% efficiency. Any client in another cluster that requires a page from this cluster win

have to wait until this cluster recovers. Since it will set a time out anyway and resend its

request until it gets a reply, no new adaptation or regulation is required.

In a mult.i-server environment, reliability takes on a new dimension.

Inconsistencies can occur across clusters. When a cluster goes into recovery mode, it may

have loaned its pages to other clusters. Those clusters may continue to read from or write

to these pages assuming they are the current pages. Those clusters may expect that they

are reading current data or that a write to one of these pages will be reflected in the global

database.

....

49

To ensure consistency across clusters, it is assumed that a site can detect a failure

of another site in the system, both within and outside its cluster. ·In other words, it is

assumed that a server can detect the failure of every other server. And, when a server

starts the recovery process (it may not be the failed site), it informs all other servers about

its status. When a server knows that another server is recovering or has failed, it

invalidates all pages from that segment in its cluster. So, any client that had a page from

that cluster can no longer access the page. The client will have to resend the request,

which, of course, will not be serviced until that cluster recovers.

The crucial aspect of this multi-server architecture is th!it the whole system is not

suspended during recovery. Clients in other clusters will stilJ be able to function, as long

as they do not need data from the recovering cluster. Intuitively, throughput should

increase because of multiple servers. But the trade-off may be nullified if the overhead of

migration or requests out of clusters is too high. The potential benefits of this

architecture rely on the data access patterns of the clients and on the autonomy given to

the servers.

"

CHAPTER V

SIMULATION ENVIRONMENT

In this thesis, Reliable Mirage+ [DeMatteis 96] was simulated and compared with

a simulation of the multi-server fault-tolerant protocol. Reliable Mirage+ was originally

developed in an environment having twelve IBM PS/2s connected by a 10Mbps Ethernet

[DeMatteis 96]. A program-driven DSM simulator has also been developed [Shah 97].

It did a comparative study of WI, WE, and BR coherence protocols using simulation.

5.1 Why Simulate?

Two alternative approaches, other than simulation, can be used to evaluate a

protocol. They are analytical modeling and building a real system. Analytical modeling

of multiprocessor systems is difficult because of their complexity. Theoretical models for

the verification of cache coherence protocols exist [Pong and Dubois 95]. Pong and

Dubois' model uses a state machine approach and can be used to verify cache coherence

protocol correctness and data consistency at an early design stage. But it does not

facilitate the evaluation of protocol perfonnance.

Building a real system, on the other hand, is problematic and is limited by

hardware constraints. Simulation frees the evaluation of a protocol from hardware

50

51

constraints, it gives insight into the scalability of a protocol beyond the limits imposed by

a real machine.

5.2 Simulation Environment

Proteus is a simulator for MTh1D multiprocessors [Brewer et al. 91] [Brewer and

DeUarocas 92]. It is an execution driven simulator which multiplexes multiple threads on

a single host processor. The simulation consists of a simulator engine and user

applications. The architecture of the simulation engine is flexible and can be configured

to represent a target architecture. The user app]ication code is directly executed on the

host processor.

Proteus simulates the events that take place in a parallel machine at the level of

individual machine instructions, bus or network accesses, interrupt requests, etc. The

parallel application must be written in a simple superset of the C programming language

and a set of supported simulator calls. Proteus provides libraries and constructs for

message passing, thread management, memory management, data collection, etc. [Brewer

and Dellarocas 92].

Proteus is accurate and fast because it uses 'augmentation' to measure the

execution time of user applications [Brewer 92]. Traditional multiprocessor simulators

simulate the machine cycle by cycle, interpreting each instruction. This generally results

in high overhead. Proteus, on the other hand, augments the user code with additional

instructions that track the cycles used by the code. The augmented code calculates the

number of cycles required to execute the original unaugmented user code. The

52

augmenting is done in units of basic blocks, where a basic block is a group of instructions

that must be executed as an atomic unit. The simulator clock is incremented once per

block instead of once per instruction. Cycle counting or augmentation allows the

execution time of the simulation engine (which simulates the underlying architecture) to

be independent of the execution time of the user application. Augmentation allows the

execution of the application to be interleaved with the simulation of the architecture

without compromising on accuracy or speed (for details about verification of cycle

counting and validation of the simulator refer to [Brewer 92] [Brewer et al. 91 D.

The independent processor nodes in the simulated MIMD multiprocessor are

connected by an interconnection medium. The interconnection network can be a bus, a

direct network, or an indirect network. A direct network directly connects two processing

nodes by point-to-point links. The 'distance' between two processing nodes is variable

and is equal to the number of individual point-la-point links that must be traversed for

data to travel from one node to the other. Communication locality can be exploited when

direct networks are used. Indirect networks do not connect any two processor nodes

directly. Instead, they use a number of internal switching stages that automatically route a

packet to its destination. Here, the 'distance' between any pair of nodes is the same and

is equal to the number of internal stages plus one. As is obvious, indirect networks do not

exploit communication locality.

Proteus uses analytical formulas to calculate the expected latency of a packet

traveling through the network [Brewer and Dellarocas 92] [Agarwal 91]. This calculation

also takes the network congestion into consideration. Therefore, Proteus mimics a real

network closely by taking the dynamic load on the network into account.

53

Shared memory as well as message passing architectures can be simulated using

Proteus. Caches mayor may not be used. The target architecture can be specified using

an easy to use interface. The type of the interconnection network, the number of

processors, existence of caches, etc. can be specified. The user program can use thread

management routines, message passing routines, and intenupt handlers which are a part

of the libraries provided by Proteus to simulate a complete parallel application.

The version of Proteus that was initially used for this research was Proteus version

L3.10, which runs on a SUD SPARC system runmng SunGS 4.1.3 or Solaris 2.5.

Subsequently, Proteus was upgraded to version L3.12, and then to version L3.13, as the

upgrades had vital bug fixes. Proteus was originally developed primarily by Brewer and

Dellarocas at Massachusetts Institute of Technology [Brewer et 31. 91]. The Sun version

used for this thesis has been developed at Louisiana State University by Koppelman

[Koppelman 97a].

5.3 Configuration of the System in the Thesis

The base architecture of the environment in which Reliable Mirage+ [DeMatteis

96] and the multi-server protocol were simulated was the same. The only difference was

in the memory coherence protocol implemented. The memory coherence protocol lies at

a level in between the architecture and the user application. It may be considered to be at

the operating system or kerneJ level. The WI protocol in Reliable Mirage+ and the hybrid

multi-server protocol do not exploit communication locality between processors. In other

words, the distance between any pair of processors is the same. The locality of reference,

54

which is exploited in the multi-server protocol, is exhibited in a cluster. A cluster, in this

context, is only a logical abstraction and not a physical one. Designing the underlying

network so that every cluster exhibits communication locality within the nodes in the

cluster will, intuitively, not be able to reap the potential benefits of a client migrating

from one cluster to another. The multi-server protocol exploits the locality of reference at

the software level and not the communication locality at the hardware level. Therefore,

the interconnection network in the simulation was an indirect network, where the

communication latency between any pair of processors will be the same when the

network load is the same.

The simulated system was a system of loosely coupled processors connected via

an indirect network. Therefore, there was no shared memory. A message passing

architecture was simulated. A message was sent using a 'send inter-processor interrupt'

primitive that is provided by the Proteus library. No caches were used in the simulation.

The overhead of cache block replacement strategies, or the cache hit or miss rates might

cloud the performance of the single and multi-server protocols. Every processor is

assumed to have enough local main memory to accommodate all the pages in the

distributed database. This is assumed so that page replacement algorithms need not be

simulated, which may affect the performance of the coherence protocol used. Threads are

created on various processors whenever necessary. Details about the actual

implementation of a client and a server, the signal handling mechanism, synchronization,

etc., are given in Chapter VI.

CHAPTER VI

IMPLEMENTATION ISSUES

This chapter gives details about a few key implementation issues that arise when

using Proteus [Koppelman 97a). This chapter does not give details about the specific

data structures used in the simulation. It highHghts how constructs provided by the

Proteus library can be used to design the simulated system. It also gives an overall

conceptual view of the synchronization, signal handling, and client-server interaction in

the simulated system.

6.1 Threads

The programming model provided by Proteus is a simple thread-based run-time

system that uses a library of thread and memory management procedures. A user

apphcation is simulated as a parallel application by executing it as threads on various

processor nodes. A client site will have a user 'process' and a client 'process' at that site.

One thread is created for a client and one for a user. A server site will have a single

thread for a server. When both a server and a client site are at the same processor, there

will be three threads at that site as shown in Figure 9. Conceptually, the user threads are

55

,.'

56

partially at the user level and partially at the kernel level. The client and server threads

are at the kernel level.

PROCESSOR I PROCESSOR 2

Client Server
---------._----------------,

~.,
r-

1 .. ------------
I,
I

USER

: Client

i~ser j. :,..
OS KERNEL

- 1 1

Figure 9. Client and Server Threads

The user thread represents the application process running at that processor. It

reads from and writes to the pages in the distributed database. When a page is not in the

I'
Il
~:

_ OS Kcrncl

Legend:

c=:=J Thread

1-------
: : Processor

OPERATING
SYSTEM

local memory of a processor, a page fault occurs. When a page fault occurs, the page

fault handler kicks in at the kernel level. It sends a request to the server in that cluster

and puts the user thread to sleep. The request sent is a message that causes an inter-

processor interrupt at the destination processor.. Different types of interrupts can be

defined using Proteus library routines. What happens to the message at the destination

.....

57

site depends on the interrupt that occurs. When a message is sent to a server, the interrupt

at the server site inserts the message in the server's request queue at that site. Similarly,

when a message is sent to a client, the interrupt at the client site inserts the message in the

client's request queue at that site.

The server and client threads are essentially infinite loops. When the site at which

they are running goes down, these threads exit. The server and client threads implement

the coherence protocol (see Chapter N, page 24). The server's thread pulls out a request

from the server's request queue, services that request, pulls out the next request, and so

on. If the request queue is empty, the server thread waits for the next message to arrive.

Since busy waiting generally wastes time without accomplishing anything, the server

thread is put to sleep for a short while. When it wakes up, it re:-checks the server queue

for any incoming messages. The server may forward a request to a client, say a clock site.

This causes an inter-processor interrupt at the clock site's processor. The message is put

into the client's request queue at that site. The client thread, like the server thread, pulls

out a request from the client's request queue, services it, pulls out the next request, and so

on. The client thread sleeps for a short period of time if the request queue is empty. A

reply sent to the requesting site is inserted into the request queue of the client at that site.

When that client services the reply, it 'signals' to the user that a reply has arrived. The

user wakes up and can proceed by reading from or writing to the local copy of the page.

The signal handling mechanism requires careful synchronization and is explained in

Section 6.4.

.......

58

6.2 Server, Client, and User States

The distributed environment that is simulated is complex because of the various

events that may be happening at a client, a user, or a server site. For example, a user

might be running or suspended waiting for a reply. A client might be servicing a request,

asleep waiting for a message to arrive, migrating to a different cluster, etc. When a client

site is migrating, the user thread at that site is suspended until the migration is completed.

A 'migration thread' is created at the migrating client which hands over all the clock

privileges to its server as illustrated in Figure 5 (page 38). Therefore, the migration

thread will be sending information to its server and parallely the client thread at that site

will be servicing any messages that may arrive. The server site has another thread

running during normal operation that periodically checks if any of its clients should

migrate to other clusters. Parallely, the server thread would be servicing any requests that

arrive. The glue that holds this complex system together is a state variable defined for

every user, client, and server.

It must be mentioned that messages are serviced atomically. This means that a

server thread or a client thread cannot exit or abort servicing a request midway in the

simulation.

6.2.1 Server States

Figure 10 is a state diagram of all the possible states and the transitions a server

thread can have. When a server thread is first created, it has the state 'Server OK'. This

-

59

is when the server is servicing requests normally. In this state, it pulls out requests from

the request queue, services them, and goes to sleep for a short period of time if the request

queue is empty. Even though the server thread goes to sleep, that state is not added to the

state diagram because it is local only to the server thread's infinite loop and is not used

anywhere else. At the end of the simulation, the server thread moves from the 'Server

OK' state to the 'Server Never Started' state and exits.

Server Thread
Created

Legend:
_ Transition

,

'0 SUlle

Exit

Server Goes into
Recovery Mode

Figure 10. Server State Diagram

Messages are serviced atomically. This means that the server thread has to finish

servicing a message once it starts servicing it. It cannot change to a state where the

system is doing something else in the middle of a message. For example, it cannot go

down or start the recovery process while servicing a message. When a server site is to go

-

60

down, the server thread must exit and all memory at that site win be erased. In the

simulation of a failure, the server state is first changed to 'Server Down' when it is

known that the server site must go down. The server thread migbt have been servicing a

request at this point. Before the server thread pulls out the next request from the request

queue, it sees that the server state is 'Server Down', and moves to the 'Server Never

Started' state. The server thread ·exits since that site is down. This state implies that there

is no active server thread at that site.

All failures in the simulation are transient failures. When a site goes down, it

stays down for some 'down time' and then comes back up. It is not removed from the

cluster, as in Reliable Mirage+ [DeMatteis 96). Once a server thread is in the 'Server

Down' state, it stays down for the down time. At the end of the down time, the server

thread is Ie-created (it exited in the 'Server Never Started' state) and then moves to the

'Server to Recover' state. This is the state when the server thread must stop servicing

requests and the system must get into recovery mode. 'System' here refers to that

particular cluster. Another case when the server state changes to the 'Server to Recover'

state, from the 'Server OK' state, is when a client at another site in the cluster goes down.

While the client is down, the server will keep servicing requests normally.

Once the down time for the client is over, the server moves to the 'Server to

Recover' state. This is a cue for the server thread to stop processing requests. When the

server thread sees this state before processing the next request, it moves to the 'Server

Recovering' state. At this point a recovery thread is created that handles the recovery

process. The server thread sleeps until recovery is completed. This ensures that no

normal requests are serviced during recovery. Once the recovery process is completed

-

61

and all data consistency checks have been made, the system can go back to normalcy.

The server then moves to the 'Server OK' state after which the server thread starts

servicing requests again.

6.2.2 Client States

Figure 11 is a state diagram of all the possible states and transitions a client thread

can have. When a client thread is fust created, it has the state 'Client OK'. This is when

the client is servicing requests normally. fu this state, it pulls out requests from the

request queue, services them, and goes to sIeep for a short period of time if the request

queue is empty. Even though the client threadl goes to sleep, that state is not added to the

state diagram because it is local only to the client thread's infinite loop and is not used

anywhere else. At the end of the simulation, the client thread moves from the 'Client

OK' state to the "Client Never Started' state and exits.

Messages are serviced atomically. This means that the client thread has to

complete servicing a message successfully. It cannot change to a state where the system

is doing something else in the middle of a message. For example, it cannot go down or

participate in the recovery process while servicing a message. When a client site is to go

down, the client thread must exit and an memory at that site should be erased. In the

simulation of a failure, the client state is first changed to 'Client Down' when it is known

that the client site must go down. The client thread might have been servicing a request

at this point. Before the client thread pulls out the next request from the request queue, it

sees that the client state is 'Client Down', and moves to the 'Client Never Started' state.

--.
o

Transition

State
o

Exit

Transition
Label

Server Thread Goes
into Recovery Mode

Migration of
Client to Begin

Client Accepted
by New Server

Figure 11. Client State Diagram

cJK,AHOMA STATE UN'!V~p.t:;rf"'f

62

63

The client thread exits since that site is down. This state implies that there is no active

client thread at that site.

Client failures are also transient failures. When a site goes down, it stays down

for some 'down time' and then comes back up. It is not removed from the cluster, as in

Reliable Mirage+ [DeMatteis 96]. Once a client thread is in the 'Client Down' state, it

stays down for the down time. At the end of the down time, the client thread is re-created

(it exited in the 'Client Never Started' state) and then moves to the 'Client to Recover'

state. This is the state when the client thread must stop servicing requests and the client

must get into recovery mode. Here, an assumption is made f!1at the server detects that

this failed client is up again, and then starts the recovery process.

Another case, when the client state changes to the 'Client to Recover' state from

the 'Client OK' state, is when another site in the cluster goes down and the server notifies

all clients to start the recovery process. The 'Client to Recover' state is an indication for

the client thread to stop processing requests. When the client thread sees this state before

processing the next request, it moves to the 'Client Recovering' state. At this point a

recovery thread is created that handles the client's recovery process. The client thread

sleeps until· recovery is completed. This ensures that no normal requests are serviced

during recovery. Once the recovery process is completed and all data consistency checks

have been made, the server sends a message to all its clients telling them to function

normally. This changes the client state to 'Client OK' and the client thread starts

servicing requests again.

When a server detennin~s that a client should migrate out of its cluster, it informs

the client to start the migration process. This changes the state of the client from 'Client

64

OK' to 'Client to Migrate'. When the user thread sees this chent state, it stops sending

further requests until migration is completed. Once the user thread stops sending further

requests, t:he client state changes to 'Client Migrating'. A migrating thread is created at

the client site which hands over all clocks residing at this client site and invalidates all

read pages as explained in Section 4.5.2 (p,age 37). Once the server knows that the client

is ready to migrate, it broadcasts a message to the client telling it to migrate to the new

cluster, and to the new server teHing it to accept this client (Figure 8, page 46). The client

changes the location of its server to its new server and moves to the 'C1~ent Migrated

Polling' state. At this point a 'polling thread' is created that keeps polling the new server

for acceptance. A reply from the new server changes the client state back to the 'Client

OK' state. At this point the client thr:ead resumes servicing requests and the user thread

resumes execution of the application.

A client site may go down while migrating. In such an event, the client state

changes to 'Client Down' from the 'Client to Migrate' or the 'Client Migrating' states

(marked as state 'X' in Figure 11). An assumption was made that the client cannot go

down once it is polling the new server for acceptance, until it is accepted (Section 4.5.4,

page 45). The migrating client does not belong to any cluster at this point. Therefore the

client state cannot change from the 'Client Migrated Polling' state to the 'Client Down'

state.

However, the server can start the recovery process, due to the failure of another

site in its cluster, while a client is migrating. In such an event, the migration is aborted.

This is reflected in the state diagram in the transitions of the 'Client to Migrate' or the

'Client Migrating' states to one of 'Client to Recover' or 'Client Recovering' states.

--
65

When the client is in the 'Client Migrated Polling' state, it has not yet been accepted by

its new server. It does not belong to any cluster at this point. Therefore, it cannot move

to any of the recovery states from that state.

6.2.3 User States

Figure 12 is a state diagram of all possible states and transitions of user threads.

A user thread changes its state depending on the state of its client. The client state is

visible to the user since the client state variable is located at the same processor as the

user and represents the same processing node. When a user tbread is first created at a

client site, it has the state 'User Running'. This is when the client site is functioning

normally. The client thread is in the state 'Client OK'. The user thread is executing the

application and reading from and writing to pages. When a page fault occurs, the page

fault handler (which is executed by the user thread) sends a request to the server. The

user thread goes to sleep for a certain period of time. It moves to the 'User Suspended'

state and waits for a reply. The arrival of a reply is signaled to the user, which then

moves from the 'User Suspended' state back to the 'User Running' state and accesses the

page which just arrived. However, if a reply does not arrive within a certain time period,

the user thread wakes up (without an external signal like an inter-processor interrupt or

message) and moves to the 'User Running' state from the 'User Suspended' state. The

user thread will then have to resend the earlier request.

,

Client Finishes Migrating,
Client State is 'Client OK'; User
Continues Execution OR Cluster

Recovering Because Another
Site Crashed; Abort Migration,

User Executes Normally

Client Has to Migrate,
Client State is 'Client

to Migrate'; User Stops
Sending Requests

User Makes a Request;
User Suspends Waiti

for a Repl

Dow n Time of Client is over,
Client State Changes to 'Client
to Recover'; User Thread Re

Created, User Executes
Normally

~nt Has Crashed; CI~lS
'Client Down j / 'Client Never Started';

Abort Migration. User Thread Exits

User Time outs and Has to
Resend Request, OR Reply
Arrives and Wakes up User

Client State is 'Client Down'
or 'Client Never Started';

---User Thread E

Legend:

---. Transition

o State

Exit

Figure 12. User State Diagram

66

ORLAH""u:a~ fa QIT'A. rpt;! rr~.tlVR1?q7R'?..f'~.JL ~Ars..l.A.J ""' --_!-!-! J

--
67

When a site crashes, all threads on that processor must exit and the memory

should be erased. When a client site crashes, the client state may be in the 'Client Down'

state or the 'Client Never Started' state depending on what the client thread is doing at

that point. When a user thread sees these client states, it moves from the 'User Running'

state to the 'User Never Started' state. The user thread exits since this site is down. This

state implies that there is no active user thread at this site. Once the down time of the

client is over, the client moves to the 'Client to Recover' state. At this point, the user

thread is re-created and the user moves to the 'User Running' state. The user thread

continues normal execution and sends requests to its server. If the server is recovering, it

will simply ignore all requests from users until recovery is completed.

When a client is to migrate to another cluster, its server tells it to migrate. The

client moves to the 'Client to Migrate' state. When the user sees the 'Client to Migrate'

state, it moves to the 'User Migrating' state. The user stops sending requests to its

current server until migration is completed. Once the client hands over all its pages and

the migration process is completed, the client changes its server and moves to the 'Client

OK' state. When the user thread is in the 'User Migrating' state, and the client state

changes to the 'Client OK' state, the user thread moves to the 'User Running' state, and

continues execution in its new cluster.

When a client is migrating to another cluster, that particular client site can go

down or another site in that cluster may go down. When the migrating client crashes,

migration is aborted and the client site stays in the same cluster. Therefore, when a user

is in the 'User Migrating' state and the client state changes to either 'Client Down' or

'Client Never Started', the user thread exits and moves to the 'User Never Started' state.

--
68

When a client site is migrating and another site in the cluster goes down, the migration

process is aborted and the recovery process begins. When a user is in the 'User

Migrating' state and the client state changes to either 'Client to Recover' or 'Client

Recovering' states, the user changes to the 'User Running' state. The user thread

continues nonnal execution. The server will ignore all requests from users until recovery

is completed.

6.3 Synchronization

When multiple threads run on a single simulated processor node, some fonn of

synchronization is essential. Multiple threads on the same node should not be allowed to

enter critical sections of code (for instance, to modify a page table, data structures, or any

other memory on the same processor) simultaneously. Proteus provides semaphore

constructs that support spin locks [Brewer and Dellarocas 92]. Proteus also has the

atomic region construct. An atomic region is where a thread cannot be preempted by

another thread on the same processor. Instead of busy waiting on semaphores, atomic

regions are used in the implementation to provide synchronization with passive waiting.

Critical section code must be executed in an atomic region. This achieves the same

objective as using semaphores and simplifies the programming. Of course, this means

that a client thread in an atomic region will prevent a server thread on the same processor

from accessing its data structures, even though the data structures are distinct. This is the

price that is paid instead of just waiting on a spin lock. To offset this brute force hold on

69

the processor, every thread executes its critical sections in 'blocks', whenever possible,

giving a chance to other threads on that processor to execute.

Caution must be exercised when using both semaphores and atomic regions to

achieve synchronization. Deadlocks can occur. For example, say a thread A on a

processor is holding a semaphore and another thread B on the same processor tries to

access the semaphore in an atomic region. Thread B will be spinning on the semaphore

wait call in an atomic region. Thread A will not be able to release the semaphore as -it

will not get scheduled when thread B is executing in an atomic region. This results in a

circular wait that leads to deadlock.

6.4 Signal Handling

The Proteus library [Koppelman 97a] does not provide any constructs for

implementing signal handling. Signal handling is required when a user thread sends a

request and goes to sleep waiting for a reply. Two issues need to be considered when

sending a request to a site. One of two 'signals' should wake up the user thread: the

expiration of the time out period or a reply to the request. If a reply does not arrive in a

certain time period, the user thread must wake up and resend the request. If a reply does

arrive, the steeping user thread should be 'signaled' to wake up. To complicate matters,

the user thread might be awake and resending the request when the reply arrives. A

synchronization mechanism is needed to make sure that the user thread is woken up only

if it is asleep. This is where the user state variable can be used effectively to simulate

signal handling.

70

A user thread keeps a count of the number of unique requests it has sent so far in

the variable 'UniqueRequestNumber' . .If a page that the user thread wants to access is not

in memory, it calls the page fault handler (which conceptually executes at the kernel

level). The page fault handler sends a request to the server. If a reply does not arrive in

the time out period T, the user application must resend the request. Instead of putting the

user thread to sleep, another thread cal.led the 'watchdog thread' is created [Koppelman

97b]. This watchdog thread is put to sleep for time T. The user thread is suspended. The

unique request number is sent as a part of the request to the server, and also passed to the

watchdog thread.

Below is pseudo code for a user thread which executes the procedures UserThread

and FaultHandler, which is the page fault handler:

Global Variables, visible to all threads on this processor:
PageMode: Page in Memory or Page Not in Memory
UniqueRequestNumber: The number of unique (not

duplicate 'resent') requests sent by
this user.

UserState: The state of the user thread.
Accesses to these global variables, and accesses to any page
are to be made in atomic regions. This is not shown in this
code segment.

procedure UserThread(
{

begin execution
{

While(1)
{

If(Page in Memory)
Access the Page;

Else
FaultHandler(};
/* Page should be In memory. */
Access the page.

} /* End of while. */
}

end execution

procedure FaultHandler()
{

/* Increment global variable, Unique Request Number,
* since this is a new request being sent. */

--
71

UniqueRequestNumber = UniqueRequestNurnber + 1;

While (1
(

/* Indicate that the page needed is not in
* memory. */

PageMode = PageNotInMemory;

/* Send a Request with the following
* information:
* Page Number,
* Access Mode: Read/Write,
* Unique Request Number. */

SendRequestToServer(PageNumber, AccessMode,
UniqueRequestNumber)i

/* Change user state to Suspended. */
UserState = UserSuspended ;

/* Start a Watchdog Thread and put it to sleep
* for time period, T. */

CreateThread(WatchdogThread,
UniqueRequestNumber) ;

Sleep (WatchdogThreadID, T) i

/* Suspend the user thread. */
Suspend (UserThreadID) ;

/* User thread wakes up here. It is woken up by
* the watchdog thread or by a reply. */

If(PageMode == PagelnMemory)/* Reply arrived. */
return;

Else /* Watchdog woke up user. */
/* Go back to beginning of loop and
* resend request. */

} /*end of while */

When a reply arrives, it is put in the client's request queue. The client thread

takes the reply out of the request queue and calls procedure 'ReplyFromServer' which

puts the page in memory and indicates that the page is in memory. The reply has the

unique request number of this request as it was sent when the request was made. The

user state variable is used to check if the user is still suspended. If it is, and if it is

suspended on the same request number as that of this reply, then the user thread is woken

72

up (if the user stal:e is 'User Running', then the watchdog wakes up the user first). The

user state is changed to 'User Running' .

When the watchdog wakes at the end of time period T, it checks to see if the user

IS still suspended on the same request (the watchdog thread was given the request

number). If the user is suspended on the same request, the watchdog thread wakes up the

user (if the user state is 'User Running', then a reply already woke up the user). The user

state is changed to 'User Running'. This mechanism ensures that even if a request is re-

sent multiple number of times, and even if multiple replies arrive, and invalidation

messages for each reply arrive, the system is in a consistent state.

Below is sample code for the watchdog thread, which executes procedure

'WatchdogThread'. The client thread executes procedure 'ReplyFromServer' on getting a

reply for a request it's application process (user thread) made.

procedure ReplyFromServer(integer page, integer
access_mode, integer unique_request-number)
{

/* A reply will ALWAYS put a page in memory. Even if
* this reply does not wake up the user thread, the
* user thread will find the page in memory before it
* re-sends the request. */

Put Page in Memory and Indicate Access Mode;
PageMode = PageInMemorYi

/* If the user is still suspended and waiting on the
* same request number, change the state of the user
* to RUNNING, and wake up the user.
*/

If (UserState == UserSuspended
And

UniqueRequestNumber == unique_request_number)
{

/* Change state of user to running and
* wake up the user thread. */

UserS tate = UserRunning
Wakeup (UserThreadID) i

procedure WatchdogThread(integer unique_request_number)

-

/* WatchdogThread wakes up when the time out period
* expires. If the user is suspended on the request
* number for which this watchdog was created, wake
* up the user. The user thread will resend the
* request.*/

If UserState == UserSuspended
And

UniqueReques tNurnber == unique_request_number)

/* Change state of user to user running and
* wake up the user thread. */

UserState = UserRunning
Wakeup (UserThreadID)

73

CHAPTER vn

ASSUMPTIONS, INTERPRETATION AND OPTIMIZATIONS

It is impossible to simulate a real system with 100% accuracy. Some assumptions

have to be made along the way. This chapter describes the assumptions made about the

environment and how some events are simulated. The only infonnation available about

7.1 Assumptions About the Simulated Environment

Mirage+ have been modified slightly in the simulation, either to reduce the

Reliable Mirage+ [DeMatteis 96] is that in the open literature. Some parts of Reliable

Justifications for the

modifications are provided, whenever possible.

implementation complexity or to optimize the system.

This section lists assumptions made about the simulation environment for the

single and multi-server cases. These are assumptions about the network, the type and

number of failures allowed, the failure mechanism, and the memory.

1. The sites in the network have independent failure rates. The communication links

may also fail independently of each other. The system is equipped to recover from a

failstop, single-site failure. It is not equipped to recover from a communication link

74

75

failure, which may partition the network into subnets [Theel and Fleisch 96a]

[DeMatteis 96].

2. There is enough main memory at every site to accommodate all the pages in the

database. Page swapping algorithms are not implemented as adding page swapping

may add extra time overhead (assuming there is enough secondary memory) and delay

in the processing of requests, which may potentially shadow the true performance of

the multi-server coherence protocol under investigation.

3. In Reliable Mirage+ [DeMatteis 96], once a site fails it goes out of the cluster. The

system does not wait for that site to come back up after some down time. Failures are

permanent failures. In case of a server failure, a new server is elected using standard

election algorithms [DeMatteis 96]. In the simulated system, both single and multi-

server, all failures are transient. A transient faBure is one where a failed site comes

back up after a randomly generated down time. Recovery of the system starts at the

end of this down time. This simplifying assumption was made because of the

implementation complexity of election algorithms, where the consensus problem

might occur in the case of multiple cascading failures. Moreover, none of the

literature on Mirage+ addresses the specific election algorithms used. If a specific

election algorithm were chosen for this simulation, the overhead or the impact. of the

algorithm would have been difficult to examine.

4. All failures In the simulation and in Reliable Mirage+ are failstop failures. The

simulated system is equipped to recover from a single site failure. The effect of

cascading failures is not examined.

'.'"'.~
I
I

76

5. The original Reliable Mirage+ system runs on twelve IBM Ps/2s connected by a

lOMbps Ethernet. A failure is detected in a cluster using IBM's AlXITCF, the

Transparent Computing Facility, which allows a network of personal workstations to

act as a transparent cluster of machines. Continuous topology monitoring is used to

detect any changes to the cluster. Probe messages are multicast periodically to check

if a site is running. If a site does not respond, a failure is assumed and the recovery

process begun [DeMatteis 96].

In the simulated system, continuous polling is not done to detect a failure in the

cluster. A single 'failure thread' is created for the complete distributed system. The

failure thread uses randomly generated data to detennine when and for how long a

specific site must go down. This failure thread broadcasts the failure of this site to all

servers or to the single server when there is only one. When a server gets this

message, it looks at its cluster to determine if the failed site belongs to its cluster. If

so, it sends a message to the failed chent site to go down for the specified down time.

Once the down time is over, the server broadcasts recovery messages to all its clients

to start the recovery process. Inter-processor interrupts are used by the failure thread

to send messages to all servers, and by the servers to send messages to their clients.

This processing overhead and message overhead is cycle counted. This will add to

the execution time of the system, as it is included in the 'user code'. It is not

straightforward to implement 'continuous topology monitoring' without sending

messages across the network. All messages sent across the network are cycle

counted, since it is under the control of the simulation engine. This extra overhead is

-

77

assumed to be minimal. However, no measurements are made to analyze this

overhead accurately.

6. Every client site has only one user thread in the implementation.

7. Migration does not guarantee that the load on the servers is distributed equally. It is

done to increase throughput by reducing the number of messages required to service a

request. For instance, a request that goes out of the cluster to be serviced, will require

more messages to be sent across the network than a request that is serviced within a

cluster.

8. Even if a client and a server reside on the same node, they ~o not share memory or the

page table for the pages they have access to. They have 'exclusive' memories. This

is because the client at this site may migrate to a different cluster, and send its

requests to a server which is not at this node.

9. In the simulated environment, it is assumed that messages are ordered and atomic

broadcasts are possible. These assumptions are necessary to solve the consensus

problem which occurs when a server has to hand-over a client to another server in an

error-prone environment (refer to Section 4.5.4, page 44 for details).

10. Say a client C j is migrating from cluster 1 to cluster 2, which have servers S\ and S2,

respectively. When Sl hands over C j to S2 (Figure 8, page 46), it broadcasts a

message to C\ telling it to join S2, and to S2 telling it to accept C j • An assumption

that client C j will not go down from the time that Sj sent its broadcast message until

S2 accepts C j is made. This is because in the simulation, the event of a client going

down is initiated by its server (see Item 5 above). During the time period when it is

assumed that C j will not go down, C\ does not belong to any server.

~:~1, ..
:: 4;

:'''''.'1.,<I,,,,r.
", Ji,
.:~l. _
::~I' H
:";:' '"
~1

~l;:~':;
,~:: ;~

t,..
t :~

('"
"

78

11. Say a client C1 is in the 'process' of migrating from cluster 1 to cluster 2 (it might be

handing over dock privileges) and recovery begins in cluster 1 before its server SI

'hands over' client C~ to server S2. In this situation, migration of client C\ is aborted.

However, once Sl hands over C t to cluster 2 (see Item 9 above), the migration is

considered completed from Sl'S point of view. After this hand-over, C\ cannot

participate in the recovery of cluster l.

7.2 Differences in Interpretation

This section gives details about modifications made to the protocol design in

Reliable Mirage+ [DeMatteis 96] and its simulation as reported in this thesis. These

differences usually arise either because of lack of more specific information or because of

implementation complexity. The effects of modifications made are not examined or

analyzed. In one case (see Item 5 below),. the simulated system is modified slightly to

improve the availability of data.

1. Only eager recovery [DeMatteis 96] is implemented in the simulation of both the

single and multi-server environments. Eager recovery is when the server ensures that

every page has a backup before restarting the system. The system is stable and can

survive another single site failure since a backup for every page exists.

2. In the scenario where a dient blocks itself after sending a request, if the server goes

down, the client would stay down forever because the server's request queue would be

lost [Theel and Fleisch 96a]. Reliable Mirage+ solved this problem by making the

clients time out and resend the request if a reply does not arrive within a certain time-

--
79

period. This solves the problem, but it could result in the server being flooded with

duplicate requests. In Reliable Mirage+, the server uses sequence numbers to

eliminate duplicate requests, if it has already serviced the request [DeMatteis 96]. In

the simulation, sequence numbers are not used to eliminate duplicate requests. When

a server gets a duphcate request, if its data structures indicate that the requesting site

already has the requested page, it ignores the request. Otherwise, it forwards the

request to the relevant clock site. The clock site ignores the request if its data

structures indicate that the requesting dient already has the page. Otherwise, it sends

the page to the client. A slight overhead could be caused when the clock site has

already serviced the request, invalidated that page later, and then gets the duplicate

request. [n such a case, the page would be sent twice to the requesting dient.

3. Reliable Mirage+ has a time window mechanism at every clock site. This means that

a clock site has a hold over a page during this time window. Even if a clock site gets

a message from the server to invalidate a page, it does not invalidate the page {Fleisch

and Popek 89]. This was done to reduce thrashing. This has not been implemented in

either the single or the multi-server simulations because of implementation

complexity.

4. In Reliable Mirage+, read requests for the same page are put in a batch and are

serviced simultaneously by the server. Write requests are processed sequentially

[Fleisch and Popek 89]. In the simulation, both read and write requests are processed

sequentially. The impact of this modification on request latency is not examined.

5. In Reliable Mirage+, trailer pages are created when a clock gives up its dock

privileges at the arrival of a write request. The clock site becomes a trailer

~~II"" .,

~~',... ojl

"·" .. JI

;:~II"jll
~~:l::t~
::'1£:.11
.':)11"-

'.~'.""'"
~;;:P'··

:::::)
,::t: ,~
~~;1fDI tcj

:;:l~~
Ll:~,·,fI(

1:~'I'j
".l'~(

I;:::i!
r.:,:
:~~[:.. ~

80

[DeMatteis 96]. In the simulation, trailer pages are creat.ed in two situations. As in

Reliable Mirage+, they are created when at clock services a write request. They are

also created when a clock downgrades from a writer to a reader because of a read

request. Since the clock most probably just wrote to that page, it downgrades to a

reader and sends a read page to the requesting client, say Cr. It also asks the client Cr

to become the latest. trailer page. Therefore, in this case, the trailer page is not the

'latest invalid page' but it is the last modified version. It is a valid page, which

implies that Cr can access this page in the granted read mode. The changes made in

the last write operation now have a backup at the new reader site. Data availability is

increased in the sense that the latest version of this page will still be available even if

the read page at Cr is invalidated and the clock site goes down. The latest available

version will be the trailer page at Cr'

6. In the simulation, messages are ordered and requests are serviced atomically. This

means that a client or a server cannot crash while servicing a request. They can crash

either before or after a request is serviced. Every client and server maintains a count

of the running threads related to its functions that can potentially change any data

structures at that site. When a failure occurs at that site, such threads have to exit

before the failure is deemed to have occurred. Also, a client or server cannot start

recovery until such threads exit. This ensures that the data is in a consistent state and

not partially updated, before recovery starts.

7. In Reliable Mirage+, it is not clear when a server changes a clock site for a page

[DeMatteis 96]. Typically, the clock site for a page changes when a write request is

serviced. The clock site may be changed to the requesting client when a write request

81

arrives. Or, the clock site may be changed to the requesting client after the page is

installed at the requesting client. The latter is implemented in the simulation.

::.... ,1

.'~ ..
:.~:;...... ,

Remove 'Service
• Ignore' Rag;
\, Clock is C;,,

\,,.
\,..
I
I,
I,,,,,,,,,,,.,

,,

- - - - - - - - - - __ Set 'Service
CLUSTER ------__ 0IgnOre' Rag;

--____ Clockls C.

,.- ... _-----------

Become
Write Clock

Event

Page

Cluster '

I
0, Site

Legend:

"

,,
,.

,,

,,,,,,,,,
I,,
I
I,
1.,

.-----..........,,,,,,,
- -_ Invalidate Clock,

---_ Become Trailer

------- 0

Figure 13, Change of Clock Site During Write Request

Let us consider a situation as depicted in Figure 13. Client Cz makes a write request

to its server SI. When the write request arrives, the server forwards the request to the

clock site C] and sets a 'service ignore' flag for that page. It does not change the

dock site to the requesting client, Cz, at this point. The clock site becomes a trailer

page and gives up clock privileges to the requesting client. When Cz gets the

message, it becomes the clock site and sends an acknowledgment to the server. On

getting this acknowledgment, the server changes the clock site to the new clock site

Cz, and removes the 'service ignore' flag. If any request(s) for this page arrived at the

82

server site when the service ignore flag was set (between events 2 and 7 in the figure),

the server would ignore the request(s) because the clock was 'in transit'. Ignored

requests will eventually time out and be resent to the server.

If the 'service ignore' method is not used, two race conditions can occur. AU

numbers in this and the following paragraph refer to the events in Figure n. The

clock site is changing from site Ct to site C2• The server still has site C t listed as the

clock site for the page under consideration. Assume another request for this page

arrives between events 2 and 7. If the server forwards this request to Ch Ct may have

already sent event 5 by the time it got this request. The site Ch which is now a trailer,

can either ignore the request or forward it to the new clock site C2 (it would then have

to keep track of the new clock site). Or, alternatively, assume that the server changed

the clock site to site C2 at event 2 when it forwarded the write request to the current

clock Ct. In this case, events 6 and 7 in the figure would not occur. Now, assume St

gets a request for this page after event 2 and before event 5 reaches C2, and forwards

the request to C2. And, further assume that C2 gets this request before it gets event 5.

Such conditions make the system more complex. Therefore, the 'service ignore'

method was implemented in the simulation.

7.3 Optimizations

A few optimizations were made in the simulation of the single and multi-server

systems. The system was optimized to reduce the traffic on the network. This section

describes the optimizations and gives some details about a few race conditions that can

-
83

occur. For example, an invalidation message for a write-update page can arrive at a client

site even before the page itself arrives. If the invalidation message is ignored and the

page arrives later, an inconsistent system will result.

1. In Figure 14, client ClI is a pseudo read clock for a page belonging to cluster 2.

Client Cll can service any read requests, from its own cluster, for this page. CII is

called a pseudo read clock because it only maintains a list of readers and does not

keep track of the latest trailer version for this page. Ct I stays a clock for this page

until a write request for this page is made. Client C l2, in cluster 2, is the read clock of

this page. Client Cn in cluster I, makes a write request for this page. When the

request arrives at clock site Cz, it checks to see if the requesting server Sl is already a

reader. If it is, the page is not sent to that server. fustead, a message is sent telling S,

to invalidate 3111 its readers and give a write copy to the requesting client (231 in the

figure). Message 231 is sent by Cz to Sz (not shown in the figure) and forwarded by Sz

to St. Upon getting message 231, server Sl sends a message to its pseudo read clock

(which may have been the only reader in the absence of C\2 being a reader). Site CI ,

invalidates all readers (4 in the figure) and sends a write-update copy to the requesting

client C13 (5 in the figure). This reduces the size of the messages sent across the

network because the page itself was not sent in messages 231 and 3.

2. In Item I above, a reply to a write-update request may be routed through a pseudo

read clock. A race condition may occur if an invalidation message arrives for the

write-update page, before the page itself reaches the site. In Figure 14, assume the

clock site Cz sends message 231, giving write-update pennission, and then sends

message 2b, invalidating the write-update page. The reply to the write request made

--
84

by C13 is routed via Sl -? ClI -? C13, but the corresponding invalidation message is

routed via Sl -? C l3. If ell has a heavy load!, it is possible that the invalidation

message (event 2b) reaches Cn before the write-update page itself reaches C13

(message 5).

Figure 14. Out-Cluster-Reader Server Requests Write Page

• Page

o Even!

..-----

CLUSTERZ .,,,,,,,,,,
I.
I,,,,,,,

I,
I,

I
I

I,,

Legend:

o Site

() Cluster

... _------

_ Invalidate All Reader;; ~

-' __ .,InSlanWriteUpdate (~r'

,,,,,
,, .

" Invalidate
, "~ead Page

,,I' ~
"

--,

'" --------

Cn cannot just hold onto the invalidation message waiting for the page to arrive.

There are two ways a write-update page can be invalidated. The first is when the time

for which the page was loaned is over and the clock site Cz sends an invalidation

message. The second is when the user application at Cn finishes writing to the write-

update page, invalidates th~ page from its memory, and returns the page to cluster 2.

For instance, if C13 held .on to the invalidation message 2b, since it did not have the

85

page in memory, Cn cannot be sure that the page has not arrived if it is not in

memory. If the page did not arrive, 2b could be held at C1 until 5 arrives.

Alternatively, the page may have arrived, and the user at Cn may have returned it.

This would mean that the invalidation message 2b would be held in C13's request

queue indefinitely (this would cause an infinite loop if the client at C 13 kept trying to

service the message).

Since the invalidation message cannot be held in C13's request queue, it is held in SI'S

request queue. When SI forwards message 3 to client Cll telling it to forward the

write-update page to Cn, SI changes its page table to indicate that a write-update page

is supposed to have been at C13 , but it has not reached the client site Cn as yet. When

C I3 gets the write-update page, it sends an acknowledgment to its server SI, at which

point S1 sets a flag to indicate that the write-update page has reached Cn . Now, if the

invalidation message arrives at 51 and the page has not reached Cn , the invalidation

message is modified to indicate that it is waiting for the write-update page to arrive at

Cn . This invalidation message is then held in S1'S request queue. Once the

acknowledgment arrives from Cn , this invalidation message can be forwarded to

client Cl3. In case Cn itself invalidates the page and returns it, Sl' S page table will

indicate that this write-update page does not exist in its cluster. Now, if the

invalidation message (which is waiting on Cn) gets scheduled at SJ, it finds that the

page is not in this duster and it is ignored.

3. When a clock page was in transit during a write request, the server marked the page

with the flag 'service ignore' (Figure 13, page 81). Here the time period for which the

ignore flag is set is relatively small, so any client that makes a request for this page

,,~ "

t .'.'
~ .:1:,I.·
{

--
86

during this time period will resend the request. Moreover, when a clock site has

loaned a write-update page to another server or when a clock page is in transit

because its clock site is migrating to another cluster, the server of the page does not

service any requests for the page. However, the wait for the service to be turned back

on can be very long. Instead of having the requesting client send many duplicate

requests, which the server might anyway ignore, the server sets a 'service later reply'

flag. That is, when a clock site is in transit because of its client migrating, or when a

write-update page is loaned to another cluster, the server which owns this page marks

the page with a 'service later' flag. Now if any request for a page arrives when this

flag is set, the server sends a reply telling the requesting client to wait and resend the

request later. This is similar to adding flow control to the system [Patterson and

Hennessy 96]. Traditionally, flow control ensures that the sender does not overwhelm

the receiver by sending data at a rate faster than the receiver can process the data. The

idea is to use feedback to tell the sender when it is allowed to send the next packet.

When a server tells a client to resend a request later, network congestion is reduced.

The server will be able to do useful work instead of pulling out requests that it will

have to ignore.

4. During migration, when a migrating cIock is handing over its clock privileges, it must

hand-over every clock in a single atomic region. This is done to ensure that another

thread on the same processor does not attempt to make any changes to that page or to

the data structures related to the page.

--

CHAPTERVm

RESULTS

8.1 Basic Configuration

This thesis work simulated Reliable Mirage+ [DeMatteis 96] and the new muHi-

server pmtocot The multi-server system is a dynamic system, where one or more

clusters might be in the recovery phase, and one or more clients might be in the process of

migrating. If the throughput of the 'complete' system is measured, it would be difficult to

pin point the exact part of the protocol that might cause a change in throughput.

Experiments are run with specific configurations, say without any failures, to measure the

performance of the multi-server protocol.

A program driven simulator was developed which carried out a comparative study

of WI, WB, and BR coherence protocols using simulation [Shah 97]. The simulation

runs in this work used some standard applications and measured the number of messages

that were sent across the network for each application, using variations of each coherence

protocol.

In this thesis work, a synthetic application was used to evaluate the perfonnance

of the multi-server protocol versus the single server protocol in Reliable Mirage+

87

"""

88

[DeMatteis 96]. Standard applications for parallel processors were not used, since the

multi-server protocol assumes that the applications running on the system exhibit locality

of reference towards a particular segment for a specific time period (see Sections 3.3 and

4.1). If a standard application were used, the resuhs would be subject to the discrepancies

caused by the method used to partition pages into segments and the creation of clusters.

To avoid such discrepancies, a synthetic application was used. The input used was

generated using a random number generator with specific distributions.

The perfonnance of a multi-server architecture versus a single server architecture

was measured. A user application, that runs on this system, accesses data from pages in

the database, probably does some computation until it needs to access some more data,

and so on. When a user application needs to access a page, it can directly read or write to

the page if the page is in its local memory and it has the required permissions to access

the page. If the page is not in its local memory, the underlying DSM system, at the kernel

level, kicks in. The page fault handler at the kemellevel will get the page from a remote

site. The process of how a page is obtained from a remote site depends on the DSM

coherence protocol used. The underlying DSM protocol is transparent to the user

application running at a client site.

Request latency is the time when a client makes a request for a page to the time it

gets the page in its local memory. Of course, if the page is already in its local memory,

the request will be satisfied almost immediately. The request latency of a request for a

page that is not in the local memory of the requesting client depends on the message

latencies of all the messages that need to be sent to obtain the page, and the execution

time of the augmented code of the coherence protocol. Message latency depends on the

....".

-
89

network congestion of the system at that point, and is calculated by the underlying

simulation engine of Proteus. The communication costs are analyzed by measuring the

number of messages generated by the DSM protocol being simulated and the amount of

traffic generated by it.

A synthetic application is used to run experiments on the single server and multi-

server protocols. The inputs to this synthetic application consist of the following: the

time when an application needs to access a page, which page from the database it needs to

access, and whether it should read from or write to the page. All these values are

randomly generated using specific distributions. For the single server case, measuring the

average request latency at the end of a simulation run, when compared with the average

request latency of another configuration, can give some indication about the performance

of the system.

To be able to compare the performance of the single server protocol versus the

multi-server protocol, the input to the multi-server protocol is further divided into

categories. In the multi-server case, each user application is assumed to make some

percentage of its total requests for pages belonging to its cluster, and the rest of its

requests for pages belonging to all the other clusters. Each run of a multi-server system is

configured so that all the clients make X% of requests for pages from their respective

clusters, and (100- X)% of requests for pages not in their own clusters. If a client makes

more than say N number of requests in time M (the migration interval) to a specific

cluster which is not its own, it migrates to that cluster. The system is set up so that a

client makes X% of requests to its own cluster, say cluster 1. That is, XO/O of all pages

accessed belong to cluster 1. When this client migrates, say to duster 2, it will then make

.., .,

'-.,.1
Ihl'
... ·~tl

~. :t

90

X% of requests for pages in its new cluster, cluster 2. This percentage of requests

belonging to its cluster represents its locality of reference. In effect, it is assumed that its

locality of reference for data within a cluster stays constant. That is, if it makes X% of its

requests for pages in cluster 1 when in cluster 1, it does not make Y% (Y <> X) of its

requests for pages in duster 2 when it migrates to cluster 2.

The input is classified according to the percentage of its in-duster requests, oniy

in a multi-server case. As is intuitive, a client in a single server architecture will make

100% of all its requests from its own cluster, the single cluster, all the time. There are no

migrations in a single server case. The performance of a single server protocol 1S

compared with varying percentages of in-cluster requests in a multi-server protocol.

The different kinds of messages are divided into classes: normal messages,

migration messages, and recovery messages. Normal messages are request messages,

reply messages, and messages sent by the clients and the server(s) to ensure sequential

consistency and to adhere to the particular coherence protocol. Migration messages are

messages sent by the clients and the server(s) when a client migrates from one cluster to

another. These messages are sent only in a multi-server environment. Recovery

messages are messages sent when a cluster is recovering. These messages are sent in

both single and multi-server environments. In a multi-server environment, nonnal

messages are further divided into in-duster and out-cluster messages. ill-cluster

messages are messages sent to various sites within a cluster when a client makes a request

for a page belonging to its cluster. However, when a client makes a request for a page not

belonging to its cluster, its server sends messages to the relevant server to obtain the page.

The cluster which owns the page might have to send messages to various sites to satisfy

" ,

--
91

this request from a different cluster. Such messages are classified as out-cluster

messages.

Each message class contains data messages and control messages. A data

message is a message in which at page is actuaUy sent across the network. A control

message is a message in which a page is not sent across the network. The data coUected

for each kind of message (data or control) consists of the number of messages and the

total bytes sent across the network.

8.2 Experiments

8.2.1 Performance Analysis of Single Server Architecture versus 2 Server Architecture

Experiments were run to compare the performance of a single server system

versus a double server system, during normal operation. In the double server case,

migrations of a client from one cluster to another were allowed. However, since the

effect of failures was not being analyzed in this experiment, no failures were simulated.

The- basic system configuration is given in Table 1. There were no migrations in

the single server case. In the 2 server case, the migration algorithm given in Table I was

simulated. In the single server case, each client accessed 100% of the database. The 2

server system had 2 clusters, with each cluster owning 200 pages. Initially, each cluster

had 16 clients. Depending on the migration of clients from one cluster to the other, the

total number of clients in eac~ cluster was dynamic throughout a run. In the 2 cluster

system, various runs were executed varying the percentage of in-cluster requests made by

", '

~ll I'

.. ,,,.
~ll' ••

' •• 11

,:" ;,
:;,.,

92

Simulation Parameter Value
Number of Processors I 32
Number of Clients 132
Mean Inter Request time 500 simulation cycles
Percent of Read Requests 80
Percent of Write Requests 20
Number of Pages 400

. Page Size 1000 bytes
Total Simulation Time 1,073,741,824 simulation cycles
Migration Algorithm Migrate if > to requests In

700,000 simulation cycles.

Table L Basic System Configuration Parameters

Average Request Latency: 2 Servers vs. 1 Server, 32 Clients

4,000

3,500

»lii"
3,.000o.!!!

c u
CI> :0-m u 2,500... .:.:_ u
til 0

2,000Gl -:l U
erl:
r!~ 1,500

• .!!!
C1:l

1,000> E<-
.!!!.

500

a

-r-------------------r 700

600 v,
e

500 g
III...
en

400 :E-300 0o
s::

200 m
(5

tOO ...

- 0
45 50 55 60 65 70 75 80 85 90 95 100

2 Servers iii
() ~

III
C/)

Percentage of In-Cluster Requests

E1Avg. Request Latency

• Total no. of Migrations

Figure 15. Effect of 2 Servers on Average Request Latency: As the locality of reference
(percent of in-cluster requests) increases in a 2 server system, lesser
migrations occur and lesser out-eluster requests are made. This reduces the
average request latency. Single server latency falls between 85%-90% of in
cluster requests in a 2 server system.

93

clients. The percentage of in-duster requests was varied from 45% to 95%, in increments

of 5. Clients in the single server system made 100% of in-cluster requests (there being no

other cluster).

Total No. of Requests: 2 Serversvs. 1 Server, 32 Clients

1,400,000 -,-----------------,- 700

Figure 16. Effect of 2 Servers on Tota. Number of Requests: As the locality of reference
(percent of in-cluster requests) increases in a 2 server system, lesser
migrations occur and lesser out-cluster requests are made. This increases the
total number of requests made. Single server performance falls between 85%
90% of in-cluster requests in a 2 server system.

II''''

•. ,,!t
I·""
• '·'1,

:.' :.
: ..1
, .,
:1 t:.:~
° ··~i

III' :)1

0' "'.IC'
. """I
:: :11~!4

:' ::::::)
,: f'l~r~

'. ';'11;~

:: ,,:,:.~
':."4
; III::::J

Il!]Total no. of Requests

• Total no. of Mgrations

600

500 ~o
;:;
l'll

400 .~
::

300 ~o
c:

200]i
r=.

100

'.

•

Percentage ,of In-Cluster Requests

•
•

45 50 55 60 65 70 75 BO 85 90 95 100
2 Servers Q5

~(--------------:1) ~
ellen

1,200,000

200,000

~ 1,000,000
Ql
:::l

g 800,000
a;-oo 600,000
c:
"iiio 400,000
I-

Figures 15 and 16 illustrate the effect of varying the percentage of in-cluster

requests, in the 2 server case, versus the single server case. When the percentage of in-

duster requests is at the lower end (45%), a client makes more out-cluster than in-cluster

requests. This leads to the clients migrating more often, as is indicated in the total

number of migrations in the 2 server case with 45% of in-cluster requests. The average

--
94

request latency is high in this case for two reasons: a majority of the requests are out-

cluster requests, that have extra message and time overhead, and the larger number of

migrations implies that the sites, both server and client, are spending more time migrating

than servicing requests. The performance of the single server protocol falls between

about 85% to 90% of in-cluster requests in the 2 server protocol.

Hit Percentage: 1 Server vs. 2 Servers, 32 Clients

Percenta,ge of In-Cluster Requests

45 50 55 60 65 70 75 80 85 90 95 100

2 Servers C>
(~ c

Q)
CJ)

Figure 17. Effect of 2 Servers on Hit Percentage: Hit percent is the percentage of hits
when a page is accessed. Though the hit percent of the single server falls
between hit percent of 55%-60% of in-cluster requests in a 2 server system,
the total number of requests made in a single server system is between 85%
90% in a 2 server system. This can be attributed to the overhead of a 2 server
system.

DTotal no. of Misses

sTotal no. of Hits

• Hit Percentage

20

18

16

14
CP
Ol

12 co-c
10 CP

(,)...
CP

8 0.--
6 i:

4

2

0

,.-
••... - ~

••• r- I- - '--I.• • ,

... • 1

I I-- - I-- I-- - '--

- I-- f-- f-- - f-- f-- - f--

U--
,

:ll;- - 1,--, f-- f-- f-- f--

If--I I~ I::: ~ ~ Ii! i ii I

1,400,000

1,200,000

II)

Ui 1,000,000
III
:l
0"

800,000CIla:
'0
ci 600,000
c
(ij

400,000-0l-
200,000

0

The hit percent, which indicates if a page is in the local memory of a client when

it needs to access the page, is shown in Figure 17. Comparing the total number of

requests and the hit percent of the single server versus that of the 2 server system, even

95

Normalized Traffic Generalted: 2 Servers vs. 1 Server, 32
Clients

1.4

'S 1.2
IP
.~

1.0"iii
E..

0.80.s
u 0.,6:E
(II..

0.4I-
"iii
0 0.2
I-

0.0
45 50 55 60 65 70 75 80 65 90 95 100

2 Servers Q;
() ~

Q)
(J)

P,ercentage of In-Cluster Reque.sls

'I!I Migration Bytes

DOut-Cluster Bytes

• In-Cluster Bytes

Figure 18. Total Traffic Generated, NOImalized to Single Server: As the percentage of
in-cluster requests increases, the out-cluster traffic and the migration traffic
decreases. The higher the locality of reference (percent of in-cluster requests),
the greater will be the number of requests serviced within a cluster.

II;

, 'l
• ! ..•.

Classification of Total Traff,ie Generated: 2 Servers V5. 1
Server, 32 Clients

100%

()

:E 80%
f
I-
"iii

60%-0
I--0
IP 40%
C)
III-c::
ell
u 20%..
ell
Q.

0%

1II ,. ~

I

I-- --- - - I-- I-- I-- - I-- I-- I--

,
I-- --- r- - I-- I-- - - I-- I-- I--

I-- I-- -- - I-- f- - r- I-- I-- -

I-- I-- - >-- ...- - - - f- - -

'-- - -! >-- '-- - - - '-- - -
45 50 55 60 65 70 75 80 85 90 95 100

2 Servers Q;
() ~

m
U)

Percentage of In-Cluster Requests

.Migration Traffic

o Out-Cluster Traffic

• In-Cluster Traffic

Figure 19. Classification of Total Traffic Generated as In-Cluster, Out-Cluster and
Migration Traffic: A single server will have only in-cluster traffic. As the
percent of in-cluster requests increases, the out-eluster percentage decreases.
After 65% in 2 cluster system, the migration traffic is O.

96

though the hit-percent of the single server is approximately equal to the hit-percent of the

60% in-cluster case, the total number of requests made in the single server run is more

than double that of the 60% case. This is because the out-cluster traffic generated from

45% in-cluster to about 75% in-cluster is more than 50% of the total traffic generated, as

shown in Figures 18 and 19. Therefore, it can be concluded that in the 2 server case, the

overhead of servicing out of cluster requests nullifies the effect of parallel processing

until the locality of reference is about 85% in-cluster.

8.2.2 Locality of Referenoe

Experiments were run to measure the effect of locality of reference on protocol

performance. The basic system as configured in Table I, was with varying the number of

servers. The migration algorithm for each multi-server case was the same. The initial

cluster configuration for each configuration is shown in Table II.

Number of servers 1 2 3 4
Number of clients per cluster 32 16 11 8
Number of pages per cluster 400 200 133 100

Table II. Different System Configurations

Figure 20 illustrates the effect of the size of a cluster on the total number of

requests, normalized to the single server case. The smaller the cluster the greater will be

the total number of servers, the request latency for an in-cluster request will be lower,

thus increasing the overall number of requests serviced in a run. Moreover, the effect of

"'"1.,.

97

Normalized Total No. of Requests: Varying No. of Servers, 32
Cl'ients

1.4
,;-

G;l 1.2.!::!
iii
E 1.0..
0
.E-
li) 0.8;;
G;l'
::l

0.60-
G;l
a::- 0.40

ci
c

~
0.2

0
~

0.0

I--:
;

I
f-- - - ~ I--

,

~.~
I!-- - I-- - I-- I--

I

- f-- f-- I-- - I-- - I-- '--

- f-- I-- I-- - '-- - . I-- I--

j I-- I-- ltJ - I-- - - i--

[I:
'-- '-- - '-- '-- - "--

.1 Server.2 Servers.3 Servers

(]4 Servers

45 50 55 60 65 70 75 80 85 90 95 100

Multi-Servers

(

Percentage of Ill-Cluster Requests

)

Figure 20. Effect of Locality of Reference on Total Number of Requests. Normalized to
Single Server: As the size of a cluster decreases when the number of servers
increases. The smaller a cluster. the better will be the overall performance of
the system. Single server falls between: 85%-90% of 2 server, 70%-75% of 3
server, and 60%-65% of 4 server system.

Total No. of Migrations: Varying No. of Servers, 32 Clients

700

'" 600 (
c:
.2 500

0
iii
Co

400 •
[J 1 Server

:E 0 02 Servers
'0 300
0 0 <> 3 Servers
c 200
iii <> <> 0 t::. 4 Servers
'0 100
~ t::.

~ ~0 t::. <> 0

45 50 55 60 65 70 75 80 85 90 95 100

Multi-Servers :Ii
() ~

Percentage of In·Cluster Requests '"(J)

Figure 2]. Effect of Locality of Reference on Total Number of Migrations: As the size
of a cluster decreases, the total number of migrations decrease from 45%-75%
of in-cluster requests. The number of migrations after about 75%, irrespective
of the number of servers, is close to O.

',II

::,·1
'I

I~' ~i'. "..~,
, ~,

98

parallel perfonnance by multiple servers is visible in this figure. Single server

performance falls between: 85%-90% of2 server, 70%-75% of 3 server, and 60%-65% of

4 server system. It should be noted that in each of these configurations, the locality of

reference will depend on the number of pages owned by a client's server. Therefore, this

figure does not reflect the performance of the same user app]ication (having the same data

access pattern) on systems with varying number of servers. As the size of a cluster differs

across configurations, the data access pattern of a user application, which depends on its

locality of reference within its own cluster, will differ. An applications locality of

reference, which is a measure of the data it accesses freque!ltly, is restricted to lesser

pages as the size of the cluster reduces.

improves.

Therefore the performance of the system

,
I..'
~ ,

Figure 21 shows the total number of migrations with varying configurations. The

maximum migrations occur in a 2 server system. As the number of servers increases

beyond 2, out duster requests can be made to more than one server, thus reducing the

maximum number of requests a user makes to one single outside cluster. This reduces

the total number of migrations. Beyond 75% of in-cluster requests, irrespective of the

cluster configuration, the number of migrations is O. This is because a client will always

request the maximum number of pages from its own cluster during the migration interval.

8.2.3 Multiple Servers

Section 8.2.2 analyzed t~e difference in performance as the locality of reference of

an application changes. It was seen that as the number of servers is increased, the

99

performance of the system improves. The next instinctive question that arises is the

perfonnance of the same user application, with the same locality of reference, on systems

with different number of servers.

Experiments were run with configurations shown in Table n. However,

irrespective of the configuration, a user application on this system accessed the complete

database, the pages belonging to all the servers, with equal probability. That is the data

access pattern was the same as that in a single server system, where a user application

Normalized Request Latency: Varying No. of Servers, 32 Clients,
Without Mi,grations, Access Complete Database

II

II

'.

I

I'

Il3 Avg. Request Latency

• Total no. of Requests

43

No. ot Servers

2

0.0

a:
o III>- _ 2.0 +-------
g :l.
$ ~
m Gl'

:: ~ 1.5 4------....,
fIJ 0

~ ci
CTc
~ -g 1.0
"0 N
Gl=
N m

=iij EE 0 0.5
oZ
Z

2.5 -r---------------------.

Figure 22. Effect of Multiple Servers on Request Latency, Nonnalized to Single Server:
A user application running on each configuration has the same locality of
reference. A user application accesses the complete database, and no
migrations are allowed. Even if the number of servers is increased, no
significant performance benefits are realized by parallel proc.essing by
multiple servers. The single server system outperfonns the multi-server
systems.

100

would make 100% in-cluster requests for the pages in the complete database, i.e., 400

pages. In the multi-server systems, no migrations were allowed.

Normalized Total Traffic Generated: Varying No. of Server~ 32
Clien~ Without Migration~Access Complete Database

1.8

1.6

:c 1.4
CI)

.~
iii 1.2
E

1.00
oS
0 0.8

==ell... 0.6t-
iii 0.4
~

0.2

0.0

• Out-Ouster Bytes

[J In-Ouster Bytes

2 3 4

No. of servers

Figure 23. Effect of Multiple Servers on Total Traffic Generated, Normalized to Single
Server: A user application running on each configuration has the same
locality of reference. A user application accesses the complete database, and
no migrations are allowed. When the number of servers is increased, the out
cluster traffic increases, causing a high overhead because of cluster-to-cluster
communication. The total percentage of out-cluster traffic is as follows: 72%
for 2 server, 85% for 3 server, 90% for 4 server.

The variation in the request latency when the same user application is run on

different configurations can be seen in Figure 22. A single server system outperforms all

the multi-server systems, in terms of the average request latency, which effects the total

number of requests that can be serviced in a run. Figure 23 gives insight into this

performance analysis. Figure 23 shows the in-cluster traffic and the out-cluster traffic

generated in each system. In a 2 server system about 72% of the total traffic is out cluster

'.
;,

101

traffic, in a 3 server system this percentage is about 85%, and it is 90% in a 4 server

system.

An out-cluster will generate considerably more messages than an in-cluster

request, adding to the overhead. Because of the high overhead caused by out-duster

traffic, it can be concluded that a single server system performs better when the complete

database needs to be accessed equally. In other words, when a user appllcation has no

specific locality of reference, it is better to use a single server configuration.

8.2.4 Recovery

This section analyzes the recovery latency of systems having different

configurations. A multi-server architecture reduces the size of the clusters. Autonomy is

given to servers during recovery. A server can proceed with the recovery of its cl\lster

while the other clusters function normally. A server has to recover all pages it owns by

contacting all the clients in its cluster. The more the number of clusters in a system, the

lesser are the number of pages owned by every server and the number of clients in every

cluster. Therefore, the time a cluster takes to recover should be lesser for a smaller sized

cluster.

If a recovery is simulated for one cluster in a multi-cluster system, the number of

clients down and the number of pages lost will affect the recovery latency. A few specific

scenarios are simulated. Instead of simulating these scenarios for configurations with

varymg number of servers, the simulations are run with varying number of clients,

varyrng number of pages, but with only a single server. These single cluster

-
102

configurations are the same as the cluster configurations with 400 pages, 32 clients and

varying number of servers. The multi-server configurations are shown in Table n.

In the following scenarios that were simulated, assume that client Co is at the

server site. Clients C, and C2 are two other clients in the single server system. The

various scenarios when a site goes down are as follows:

• Server Clock Failure: Cr writes to every page in the system. Then Cz writes to every

page in the system. This is followed by Co writing to every page in the system. When

a client writes to a page, it becomes the new clock and the old clock becomes the

trailer site. At this point, Co is a clock site for every page and C2 is a trailer site for

every page. Now, site 0 fails. That is, the server and client Co go down. The server

would have lost its page table. It will have to recover all the directory information.

Since the clock site Co for all the pages went down, the trailer site C2 will be made the

new clock site for all of the pages. Once this is done, backups for every page (since

the trailer site became the clock site) will have to be installed.

• Clock Failure: Co writes to every page in the system. Then C1 writes to every page in

tbe system. This is followed by C2 writing to every page in the system. When a client

writes to a page, it becomes the new clock and the old clock becomes the trailer site.

At this point, C2 is a clock site for all the pages and C1 is a trailer site for all the

pages. Now, site 2 fails. That is the clock site for all the pages Cz goes down. The

server site does not go down. Since the clock site for all the pages went down, the

server site will make the trailer site Cr the new clock site for all of the pages. Once

this is done, backups for every page (since the trailer site became the clock site) will

have to be installed.

103

• Server Failure: Co writes to every page in the system. Then, C1 writes to every page

in the system. This is fanowed by Cz writing' to every page in the system. When a

client writes to a page, it becomes the new dock and the old clock becomes the trailer

site. At this point, C2 is a clock site for all the pages and C1 is a trailer site for all the

pages. Now, site 0 fails. That is the clock site and the trailer site for all the pages do

not fail. Only the server site faik The server site, site 0, will have to recover all the

directory information.

Figure 24 shows the recovery latency of a single site failure with the various

failure scenarios for the different configurations. For a server clock failure, the recovery

latency for a system having 200 pages and 16 clients is approximately 47% of the that of

a system with 400 pages and 32 clients. The recovery latency of the 11 clients, 133 pages

is about 27% that of the 400 pages, 32 clients system. The recovery latency of the 8

clients, 100 pages is about 20% that of the 400 pages, 32 clients system.

Recovery of one cluster in a multi-cluster system with the various scenarios was

not simulated because of implementation complexity. The recovery time of a cluster in a

multi-server system may be compared to the recovery time of a single server system with

the same cluster size. The advantages of a multi-server system in terms of recovery

latency are significant. Especially when time critical applications are run on a DSM

system, the recovery latency will be a decisive factor in the underlying DSM coherence

protocol used.

Normalized Recovery Latency: VaryIng No. of Clients, Varying No. of Pages, 1 Server

1.0

0.9·

0.8

~ 0.7-

; 0.6 o Server Clock Failure
1;;

CJ Oock Failure....I
~ 0.5

~
-

Gl tJ. Server Failure
~ 0.4
t.l

~ 0.3
ft

0.2

0.1

0.0
0 8 ~ 0
0 0-v C\l ~
ti ~

• Ul • Ul • Ul
$ (\) ~ Q) '" Q)

- Olc Cl c:: Cl c: Cl c: III
l1) III Ql III Ql III ~ll.uo. uo. uQ. U

C\l <0 ~ co
<') ~ ...

System Configuration

Figure 24. Effect of Recovery Latency on Single Cluster of Different Configurations: Server Clock Failure is when a server site,
which is also a clock site goes down. Clock failure is when a client site, which is not a server site, goes down. Server
failure is when a server site, which is neither a clock site or a trailer site, goes down. As the size of the cluster reduces
from 400 pages to 200 pages, the recovery latency is approximately halved.

104

"I'.'U6..I~~"""" -........~----- -

,

--
105

8.3 Limitations

As can be expected in any ongoing work of this sizable nature, during the

development of this thesis work, a few problems were encountered. fuitially Proteus

version L3.1O was used for this research. A lot of the bugs that were encountered were

fixed [Koppelman 97b]. The upgraded version of Proteus, version L3.12, was then

installed as it had new features and was more robust. One vital bug was encountered

when threads on some processors were not being scheduled, stalling the simulation by

creating a bottleneck at say a server site. Eventually this bug was identified and fixed

when it was found that timer interrupts would only occur on idle processors. This could

severely distort the timing of any program which used timer interrupts while a thread was

active or which has more than one ready thread per processor. This fix and other minor

bug fixes were released in Proteus version L3.13. The experiments on which the results

are based were run on Proteus version L3.13. As larger systems are simulated using

Proteus, the heap space required during run-time and the secondary memory required to

store the large data files generated are practical drawbacks.

The. multi-server protocol is extremely complex. Because of the dynamism

inherent to the protocol (out-of cluster requests and migrating clients) various race

conditions occurred. These bugs occurred when a specific sequence of messages arrived

at a client site causing an invalid system state. Eventually, memory consistency checks at

every stage were incorporated to track such bugs. At the end of this research work, there

are no known bugs in the syste~.

CHAPTER IX

CONCLUSION AND FUTURE WORK

9.1 Conclusion

Extending a single server system to a multi-server system is promising depending

on the data access patterns of the application running on it. Previous attempts at multi-

server systems took the primary-backup approach and found it to be unfeasible

[DeMatteis 96]. The multi-server protocol that was investigated in this research exploited

the inherent locality of reference exhibited by programs.

To investigate the feasibility, design, and to evaluate the performance of the

multi-server protocol, a prototype was built. This prototype was a simulation of this

protocol using randomly generated input data. The Proteus simulator for MIMD

multiprocessors was used for building this prototype [Koppelman 97a]. All the multi-

server results mentioned in this section used the migration algorithm shown in Table I

(page 92). It may be possible that different results would have been obtained if a different

migration algorithm were used.

The single server protocol in Reliable Mirage+ [DeMatteis 96], and the muIti-

server protocol under investigation (refer to Chapter IV for details) were simulated and

compared. It was found that the performance of a single server system falls between

106

107

85%-90% of in-cluster requests in a 2 server protocol, where the percentage of in-cluster

request~ represents an applications locality of reference within its cluster. When the in-

cluster percentage in a 2 server system is below 70%, the out-of-c1uster overhead is more

than 50% of the total traffic generated.

The out-cluster overhead is generally much greater than the migration overhead in

multi-server systems. Tuning the migration algorithms to allow more migrations may

reduce the out-cluster overhead. The percentage of in-cluster requests made by

applications will play an important role in the amount of perfonnance improvement over

a single server system.

Experiments were conducted to observe the effect of locality of reference on

protocol performance. Locality of reference is measured in terms of the total set of pages

that are reused. A cluster having lesser pages will imply that the locality of reference of a

user application in that cluster is restricted to this set of pages. It was found that as the

locality of reference reduces, implying that the set of reused data reduces, the

performance of the system improves. Reducing the locality of reference amounts to

increasing the number of clusters, thus reducing the size of each cluster. It was found that

the single server falls between 85%-90% of in-cluster requests in the 2 server case, 70%-

75% of in-cluster requests in the 3 server case, and between 60%-65% of in-duster

requests in the 4 server case. From this it can be inferred that reduced locality of

reference coupled with parallel processing by multiple servers gives better performance.

It was also concluded that a single server outperfonns multi-server configurations

when user applications exhibit no specific locality of reference. All the above

experiments were conducted on dynamic systems with randomly generated input.

108

It was inferred that the benefits of faster recovery in multi-server systems are

significant. For instance, the recovery latency for a system having 200 pages and 16

clients is approximately 47% of the that of a system with 400 pages and 32 clients. The

recovery latency of the 11 clients, 133 pages is about 27% that of the 400 pages, 32

clients system. The recovery latency of the 8 clients, 100 pages is about 20% that of the

400 pages, 32 clients system. These results wiH hold special significance especially when

time-critical applications run on a DSM system and minimal down time is a necessity.

Finally, it can be concluded that the multi-server protocol proposed in this

research will have its benefits depending on the data access pattern of the user application

running on the system. The migration algorithm may be changed depending on the user

application to give better performance. The server was not a single point of failure and

recovery was significantly faster in multi-server systems. Substantial gains in throughput

over a single server system were obtained when the number of servers was increased,

reducing the size of each cluster.

9.2 Advantages and Disadvantages of the Multi-Server Protocol

9.2.1 Advantages of the Multi-Server Protocol

The perceivable advantages of the multi-server system include the following

items:

if,
J,
'~
:~
''''II'"

:~
:~...

109

1. A multi-server system win generally out perform a single server system. However,

the smaller the locality of reference of user applications, the greater will be the

perfonnance improvement.

2. Parallel processing by multiple servers increases the throughput of the system if the

number of clusters is larger and the size of each cluster is smaller.

3. Even though there are multiple servers, location transparency is pmvided to the

clients. A client need not be aware of the location of every page and/or server. Its

server ensures that a client gets the requested page.

4. The server is no longer a single point of failure; If a server goes down in a multi-

server system, only its cluster will participate in the recovery process. The rest of the

system can still function, though not at full potential.

5. The benefits of faster recovery are significant. Recovery from a single site (and by

extens.ion a single duster) failure in 2 server system may be generally approximately

40%-47% faster than recovery from a single site failure in a single server system

having the same number of clients and pages as the 2 server system.

6. A 'window of vulnerability' is from the time a failure occurs until every page has a

backup installed at an alternate site. The greater the number of servers, the lesser will

be the number of pages per cluster. Subsequently, the window of vulnerability of a

multi-server system will be smaller.

7. It is anticipated that even if all clusters in a multi-server system fail, the whole multi-

server system will recover faster than the corresponding single server system. This is

because recovery is limited to a cluster. Therefore in a multi-server system, each

cluster (assuming the cluster configurations are the same) will take the same amount

110

of time to recover. But since the size of each cluster is smaller that the single cluster

in a single server system, total system recovery in a multi-server environment is

expected to be faster.

8. For applications that do not exhibit locality of reference, a single server environment

is better than a multi-server environment. However, if the tradeoff is worthwhile, the

benefits of faster recovery may offset the high out-cluster ov~rhead if a multi-server

protocol was used for such applications.

9.2.2 Disadvantages of the Multi-Server Protocol

The perceivable disadvantages of the multi-server system include the following

items:

1. AU the experiments conducted in this thesis partitioned the set of pages and clients

equally to create clusters. The set of pages in each cluster represented the data that

was reusable. In other words, it was a measure of the locality of reference of an

application running in that cluster.

ill reality, this task of partitioning the network initially, based on client requirements,

is not straightforward. Prior infonnation about client requirements is difficult to

obtain. The way a distributed database is partitioned into segments and the behavior

of clients would depend on the particular application being run.

2. Irrespective of the way the database is divided into segments, it may turn out that all

Ithe clients in the system exhibit locality of reference for the same set of pages - all

migrating to the same cluster at the same time. In such a situation, one server will be

III

overloaded, while the others are idle. If this happens often, the purpose of adding

parallelism to the system by increasing the number of servers might be defeated.

9.3 Futme Work

A few ideas about further analysis and possible enhancements to the multi-server

protocol are listed below:

1. Scalability of the multi-server protocol has not been examined in this thesis. This was

because as the number of processors is increased in the simulated system, heap space

requirements during run-time and the secondary memory storage required for the

considerably large data files generated by Proteus were potentially serious limitations.

Investigating the scalability of the multi-server protocol, without changing the locality

of reference of an application, may give more infonnation about the potential of the

DSM coherence protocol.

2. The input used for all the experiments In this thesis was randomly generated.

Running standard applications on the multi-server system will give crucial insight

into how the multi-server system may be used.

3. The locality of reference of a user application was constant in all the experiments that

were conducted. That is, if a client made X% of in-cluster requests when in one

cluster, it made the same percentage of in-cluster requests even after it migrated to

another cluster. Perhaps a real application would have a more dynamic locality of

reference and investigating it would provide valuable insight into the kind of

applications that might benefit from this system.

112

4. Some of the parameters set in the test runs stayed constant throughout a run. Every

segment was assumed to be of the same size (all clusters owned the same number of

pages). The migration algorithm for all clients in all the clusters was the same for

each run. The locality of reference of all clients, within a single cluster, and across

clusters was the same. All of the above parameters are tunable. By allowing dynamic

changes in one or more of them might give better performance.

5. Measuring the effect on throughput when one or more clusters go down would give

valuable input on how a real-time system might get effected if a failure should occur.

6. The system architecture in this thesis assumed an indire~t network. The distance

between any pair of processors was constant. This was assumed so that the

communication overhead between any client-server pair would be the same if the

network load were the same. In such a system, a client would not add to the

communication overhead if it migrated and had to contact its new server.

Another alternative would be the following: a direct network may be used where the

distance between each pair of processors is not the same. The processors that form a

cluster would be closer to each other than to processors in other clusters. That is, at a

hardwar.e level, communication overhead within a cluster would be lesser than the

communication overhead across clusters. Migration on such a system would not

imply that a client contacted a new server. Instead, when a client migrated to a new

cluster, the corresponding process would be executed on one of the processors in the

new cluster. This is similar to the traditional concept of migration where a process

moves from one processor to another. Such a system might work if the

,'I

113

communication locality within a cluster was minimal, say if a cluster was a small

scale multiprocessor.

Finally, from this research it can be concluded that depending on the behavi.or of

an application and its locality of reference, a specific multi-server configuration can be

chosen. The migration algorithm can also be modified to give superior performance.

Depending on the necessity for providing uninterrupted service, and weighing the tradeoff

between the overhead of a multi-server system and the accelerated recovery, an

appropriate architecture coupled with the multi-server protocol can be used effectively.

REFERENCES

[Agarwal 91] A. Agarwal, "Limits on Interconnection Network Performance", IEEE
Transactions on Parallel and Distributed Systems, Vol. 2, No.4, pp. 398-412,
October 1991.

[Avizienis and Laprie 86] A. Avizienis and J. -CO Laprie, "Dependable Computing: From
Concepts to Design Diversity", Proceedings of IEEE, Vol. 74, No.5, pp. 629-638,
May 1986.

[Barborak et al. 93] M. Barborak, M. Malek, and A. Dahbura, "The Consensus Problem
in Fault-Tolerant Computing", ACM Computing Surveys, Vol. 25, No.2, pp. 171
220, June 1993.

[Bennett et al. 90] J. K. Bennett, J. B. Carter, and W. Zwaenepoel, "Munin: Distributed
Shared Memory Based on Type-Specific Memory Coherence", Proceedings of the
Second ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPPJ, Seattle, WA, pp. 168-176, March 1990.

[Brewer 92] E. A. Brewer, "Aspects of a Parallel-Architecture Simulator", Technical
Report MITfLCSffR-527, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, January 1992.

[Brewer and Dellarocas 92] E. A. Brewer and C. N. Dellarocas, "Proteus User
Documentation Version OS', available in the distribution of Proteus at the URL
'http://www.ee.lsu.edu/koppel/proteus.html' , December 1992.

[Brewer et al. 91] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl,
"Proteus: A High-Performance Parallel-Architecture Simulator", Technical Report
MITILCSrrR-516, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, September 1991.

[Coulouris et al. 94] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:
Concepts and Design, Second Edition, Addison-Wesley Publishing Company, Inc.,
1994.

[Cristian 91] F. Cristian, "Understanding Fault-Tolerant Distributed Systems",
Communications of the ACM, Vol. 34, No.2, pp. 56-78, February 1991.

114

.....

115

[Denning 72] P. J. Denning, "On Modeling Program Behavior", Proceedings of the
Spring Joint Computer Conference, Atlantic City, N.J., pp. 937-944, May 1972.

[DeMatteis 96] C. K. DeMatteis,. "A Fault Tolerant Distributed Shared Memory System:
Reliable Mirage+", Masters Thesis, Computer Science Department, University of
California, Riverside, CA, March 1996.

[Eggers and Katz 88] S. J. Eggers and R. H. Katz, "A Characterization of Sharing in
Parallel Programs and its Application to Coherency Protocol Evaluation",
Proceedings of the Fifteenth Annual International Symposium on Computer
Architecture, Honolulu, Hawaii, also published in the ACM Computer Architecture
News, Vol. 16, No.2, pp. 373-382, May 1988.

[Erlichson et at 96] A. Erlichson, N. NuckoHs, G. Chesson, and J. Hennessy,
"SoftFLASH: Analyzing the Performance of Clustered Distributed Virtual Shared
Memory", Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Cambridge, MA, also published in Computer Architecture News, Special Issue. Vol.
24, pp. 210-220, October 1996.

[Feeley et al. 94] M. J. Feeley, J. S. Chase, V. R. Narasayya, and H. M. Levy, "Integrating
Coherency and Recoverability in Distributed Systems", Proceedings of the First
USENIX Symposium on Operating Systems Design and Implementation (OSDl) ,
Monterey, CA, pp. 215-227, November 1994.

[Fischer et aL 85] M. J. Fischer, N. A. Lynch, and M. S. Paterson, "Impossibility of
Distributed Consensus with One Faulty Process", Journal of the ACM, Vol. 32, No.
2, pp. 374-382, April 1985.

(Fleisch et al. 94] B. D. Fleisch, R. L. Hyde, and N. C. Juul, "Mirage+: A Kernel
bnplementation of Distributed Shared Memory on a Network of Personal
Computers", Software - Practice and Experience, Vol. 24, No. 10, pp. 887-909,
October 1994.

[Fleisch and Popek 89] B. D. Fleisch and G. J, Popek, "Mirage: A Coherent Distributed
Shared Memory Design", Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles, Litchfield Park, AZ, also published in Operating Systems
Review, Special Issue, Vol. 23, No.5, pp. 211-223, December 1989.

[Gray and Siewiorek 91] J. Gray and D. P. Siewiorek, "High-Availability Computer
Systems", IEEE Computer, Vol. 24, No.9, pp. 39-48, September 1991.

[Hyde and Fleisch 96] R. L. Hyde and B. D. Fleisch, "An Analysis of Degenerate Sharing
and False Coherence", Journal of Parallel and Distributed Systems, Vol. 34, No.2,
pp. 183-195, June 1996.

'\

-

116

[Juul and Fleisch 95] N. C. Juul and B. D. Fleisch, "A Memory Approach to Consistent,
Reliable Distributed Shared Memory", Proceedings of the Fifth Workshop on Hot
Topics in Operating Systems (HotOS- V), Orcas Island, WA, IEEE Computer Society
Press, pp. !08-Il2, May 1995.

[Kermarrec et al. 95] A-M. Kermarrec, G. Cabillic, A Gefflaut, C. Morin, and I. Puaut,
"A Recoverable Distributed Shared Memory Integrating Coherence and
Recoverability", Proceedings of the Twenty-Fifth International Symposium on Fault
Tolerant Computing, Digest ofPapers, Pasadena, CA, pp. 289-298, June 1995.

[Koo and Toueg 87] R. Koo and S. Toueg, "Checkpointing and Rollback-Recovery for
Distributed Systems", IEEE Transactions on Software Engineering, Vol. SE-13, No.
1, pp. 23-31, January 1987.

[Koppelman 97a] D. M. Koppelman, "Proteus Version L3.13", available at
'http://www.ee.lsu.edu/koppellprote:Is.html', Louisiana State University, Baton
Rouge, LA, 1997.

[Koppelman 97b] D. M. Koppelman, private communication, Department of Electrical &
Computer Engineering, Louisiana State University, Baton Rouge, LA, 1997.

[Lamport 79] L. Lamport, "How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs", IEEE Transactions on Computers, Vol. C-28, No.
9, pp. 690-691, September 1979.

[Lo 94] V. La, "Operating Systems Enhancements for Distributed Shared Memory",
Advances in Computers, Vol. 39, pp. 191-237, 1994.

[Mohindra and Ramachandran 91] A Mohindra and U. Ramachandran, "A Survey of
Distributed Shared Memory in Loosely-Coupled Systems", Technical Report GIT
CC-91/01, Georgia Institute of Technology, Atlanta, GA, January 1991.

[Mullender 93] S. J. Mullender, "Kernel Support for Distributed Systems", Distributed
Systems, Second Edition, ACM Press, New York, NY, pp. 385-409, 1993.

[Nitzberg and La 91] B. Nitzberg and V. La, "Distributed Shared Memory: A Survey of
Issues and Algorithms", IEEE Computer, Vol. 24, No.8, pp. 52-60, August 1991.

[Patterson and Hennessy 96] D. A. Patterson and J. L. Hennessy, Computer Architecture:
A Quantitative Approach, Second Edition, Morgan Kaufmann Publishers, Inc., San
Francisco, CA, 1996.

-
117

[Pong and Dubois 95] F. Pong and M. Dubois, "A New Approach for the Verification of
Cache Coherence Protocols", IEEE Transactions on Parallel and Distributed
Systems, Vol. 6, No.8, pp. 773 -787, August 1995.

[Protic et al. 96] J. Protic, M. Tomasevic, and V. Milutinovic, "Distributed Shared
Memory: Concepts and Systems", IEEE Parallel and Distributed Technology, Vol.
4, No.2, pp. 63-79, Summer 1996.

[Satyanarayanan et al. 94] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere,
and J. J. Kistler, "Lightweight Recoverable Virtual Memory", ACM Transactions on
Computer Systems, Vol. 12, No 1, pp. 33-57, February 1994.

[Schneider 90] F. B. Schneider, "Implementing Fau1t-Tolerant Services Using the State
Machine Approach: A Tutorial", ACM Computing Surveys, Vol. 22, No 4, pp. 299
319, December 1990.

[Shah 97] S. K. Shah, "Fault Tolerance and Scalability in DSM Coherence Protocols - A
Simulation Approach", Masters Thesis, Computer Science Department, University of
California, Riverside, CA, June 1997.

[Silberschatz and Galvin 94] A. Silberschatz and P. B. Galvin, Operating System
Concepts, Fourth Edition, Addison-Wesley Publishing Company, Inc., 1994.

[Singhal and Shivaratri 94] M. Singhal and N. G. Shivaratri, Advanced Concepts in
Operating Systems: Distributed, Database and Multiprocessor Operating Systems,
McGraw-Hili, Inc., New York, NY, 1994.

[Tanenbaum 95] A. S. Tanenbaum, Distributed Operating Systems, Prentice Hall,
Englewood Cliffs, NJ, 1995.

[Theel and Fleisch 95] O. E. Theel and B. D. Fleisch, "Design and Analysis of Highly
Available and Scalable Coherence Protocols for Distributed Shared Memory
Systems", Technical Report UCR-CS-95-1, Department of Computer Science,
University of California, Riverside, CA, April 1995.

[Theel and Fleisch 96a] O. E. Theel and B. D. Fleisch, "A Dynamic Coherence Protocol
for Distributed Shared Memory Enforcing High Data Availability at Low Costs",
IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No.9, pp. 915-930,
September 1996.

[Theel and Fleisch 96b] O. E. Theel and B. D. Fleisch, "The Boundary-Restricted
Coherence Protocol for Scalable and Highly Available Distributed Shared Memory
Systems", The Computer Journal, Vol. 39, No.6, pp. 496-510, Oxford Press,
London, U. K., 1996.

118

[Turek and Shasha 92] J. Turek and D. Shasha, "The Many Faces of Consensus in
Distributed Systems", IEEE Computer, Vol. 25, No.6, pp. 8-17, June 1992.

[Wu and Fuchs 90] K.-L. Wu and W. K. Fuchs, "Recoverable Distributed Shared Virtual
Memory", IEEE Transactions on Computers, Vol. 39, No.4, pp. 460-469, April
1990.

APPENDICES

119

...

Availability

AIXffCF

BR Coherence Protocol

Byzantine Failure

Clock Site

Coherence Semantics

Coherence Unit

DBR Coherence Protocol

APPENDIX A

GLOSSARY

A measure of delivery of proper service with respect to the
alternation of delivery of proper and improper service.

AIX is IBM's UNIX product consisting of a monolithic
kernel, based on UNIX System V. The Transparent
Computing Facility CTCF) allows a network of personal
workstations to act as a transparent cluster of machines.
Through the use of TCF, AIX becomes a transparent
distributed operating system, a collection of computers are
treated as a single resource.

Boundary-Restricted Coherence Protocol; a write invalidate
protocol defined by two parameters: w the minimum
number of copies of a page cached at client sites, and n the
maximum number of client sites in the network. It provides
data availability at low costs.

A failure where the faulty component can exhibit arbitrary
and malicious behavior, with or without collusion with
other faulty components.

The site which has the most recent copy of a page.

The definition of the notion of correctness and what is
guaranteed by a DSM system.

An abstract memory object that IS guaranteed to be
consistent.

Dynamic Boundary-Restricted Coherence Protocol; an
extension to the BR coherence protocol class. The value of
the parameter w, the minimum number of copies of a page

120

--
121

cached at client sites, is monitored and modified
dynamically depending on the workload of the application.
It provides higher data availability at lower costs than BR
coherence protocoL

Distributed Shared Memory An abstraction used for sharing data among computers that
do not share physical memory.

DSM

Error

Failstop Failure

Failure

Fault

Fault Avoidance

Fault Tolerance

Locality of Reference

Loosely Coupled System

Memory Coherence

Distributed Shared Memory.

That which may lead to a failure; it is the manifestation of a
fault in a system.

One where the faulty component changes to a state that
permits other components to detect the failure, and then
stops.

Effect of an error on service; it happens when the delivered
service deviates from the specified service.

That which causes an error.

A method used to prevent the occurrence of a fault.

A method of providing services complying with the
specification in spite of faults.

A program property where programs tend to reuse data and
instructions that have been used recently. An implication
of locality of reference is that one can predict with
reasonable accuracy what instructions and data a program
will use in the near future based on its accesses in the recent
past.

A distributed system where the processors do not share
memory or a clock. Each processor has its own local
memory. The processors communicate with one another
via an interconnection network that connects all the
processors.

A memory is coherent if the value returned by a read
operation is always the same as the value written by the
most recent write operation to the same address.

MIMD

Recovery

Reliability

Sequential Consistency

Service

System

Temporal Locality

Thrashing

Throughput

Tightly Coupled System

Trailer Site

WB Coherence Protocol

WI Coherence Protocol

122

Multiple instruction streams, multipk data streams; A
multiprocessor system where each processor fetches its own
instructions and operates on its own data.

Restoring a system to its normal operational state.

A measure of the continuous delivery of proper servIce
from a reference initial instant.

A system is sequentially consistent if the result of any
execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appear in this
sequence in the order specified by its program.

That which is delivered by a system; it is a system's
behavior as perceived by its user(s).

A set of hardware and software components designed to
provide a specified service.

When recently accessed words are likely to be accessed in
the near future.

A process is said to be thrashing if it spends more time
paging than executing.

Amount of work done by a system in unit time.

A multiprocessor system where the processors share
memory, a bus, and a clock. Processors exchange data and
synchronize through a global address space that is
accessible by all processors.

The site that has the most recent invalid copy of a page.

Write Broadcast Coherence Protocol; a write to a shared
data object causes all copies to be updated. Once a site has
cached a copy of a shared object, that copy is never deleted.
Thus, an arbitrary copy can be used for reading but all
copies must be modified as a part of a write operation.

Write Invalidate Coherence Protocol; a write to a shared
data object causes the invalidation of all copies except one

123

before the write can proceed. Once invalidated, copies are
no longer accessible.

--

AIX

IBM

PS/2

Solaris

SPARe

SunOS

UNIX

APPENDIXB

TRADEMARK INFORMATION

Trademark of International Business Machines.

Registered trademark of International Business Machines.

Registered trademark of International Business Machines.

Trademark of Sun Microsystems, Inc.

Trademark of SPARC International, Inc. SPARCstation®

is licensed exclusively to Sun Microsystems, Inc. Products

bearing SPARC trademarks are based upon an architecture

developed by Sun Microsystems, Inc.

Trademark of Sun Microsystems, Inc.

Registered trademark of The Open Group.

124

--

....

APPENDIXC

PROGRAM LISTING

The program files are presented in this appendix. The following files contain

code written in a simple superset of the C programming language and a set of supported

simulator calls (see Section 5.2) [Brewer and Dellarocas 92]. These files simulate the

single-server protocol of Reliable Mirage+ [DeMatteis 96] and the multi-server protocol

which has been presented in this thesis.

The files with extension .h are the header files. The files with extension .ca are the

augmented C files, that is C code that is cycle counted. The order of the files in the

following pages is given below:

ft.h

requestQ.h

requestQ.ca

linked.h

linked.ca

linkedmulti.h

linkedmulti.ca

multiserver.h

ft random.h

125

126

ftmain.ca

failure.ca

initSC.ca

messages.ca

serverfn.ca

clientfn.ca

requests.ca

servermulti.ca

clientmulti.ca

requestsmulti.ca

servermig.ca

clientmig.ca

serverrec.ca

clientrec.ca

The following sample code includes the following files:

ft.h

serverfn.ca

clientfn.ca

127

I**************~*****·*********~*·********·****~**·*** *******.********

* FILE ft.h *
* CONTENTS: This file contains all the declarations and *

data structures used by the single server and
* multi server system. *
******.*****.******************~.********~************ ****************/

4ifndef FAULT_TOL_H
4define FAULT_TOL_H
4include <string.h>
lIinclude <malloc.h>
4include <stdlib.h>
#include <assert.h>
lIinclude 'misc.h"
#include ·user.h"
#include ·paramUser.h"
4include ·event.h"
lIinclude "linked.h"
lIinclude "requestQ.h'

#include 'multiserver.h"
#include 'linkedmulti.h'

IIdefine ARCHITECTURE
/* 32 bit architecture. This is used
* into bitmaps during recovery.
*/

32
to pack page information

/* MAX SIZE_ARRAY defined in paramUser.h, and can be modified in
.• prot. parol

/* NAX_SIZE_ARRAY should be at least
* (NO_OF_PROCESSORS *2) + 8 : clientMigrateSendAllInClusterReadClocks
* : migrateHandoverReadClockAtServer
* (NO_OF_PAGES *2) + 5: clientMigrateSendAllInAndOutClusterReadPages
* 5 + ARCHITECTURE - 1: sendAllInClusterRecoverylnfo
* 6 + NO OF PROCESSORS: checkF~dInstallClocks

* (NO_OF_PAGES + 101 :serverInvalidatingReadPagesForWhichMigClient
IsReader

*/

/* SEND_ARRAY is the name of an array in every function which
• sends a message across the network. All values in SEND_ARRAY
* are initialized to this value. Makes it easy to recognize the
• value. This value is probably not a valid value which will
• be sent. However, the value should not exceed the max value
• of 'Word'
*/

#define INIT_SEND_ARRAY 7777777

/. State of user threads:
* USER_SUSPENDED and USER_RUNNING are used by the watchdog and the
* reply thread to check the state of the user, and to see who woke up
* the user.
* wilen memory is allocated for perclientDS, user_state is initialized
* to USER_NEVER_STARTED, so that once the server begins accepting
* requests, the user is started for the first time (after checking the
* value for USER_NKvER_STARTED) .
• This value is never needed again (unless the user crashed)
* The following values are in octal.
* These values are directly assigned, not bitwise or'd.
* A check is done by bitwise and'ing.
* Only one of the following values is possible at a time.
*/

#define USER_SUSPENDED 01
IIdefine USER_RUNNING 02
I!define USER_NE\lER_STARTED 04
itdefine USER_MIGRATING 010 /*octal la, decimal 8'/

/* If the client is recovering, the user thread must be killed. So, the
• user thread checks the variable client_state before making a request.
• If it is CLIENT_RECOVERING, the user exits out of the infinite loop
* and ends.
* If the client is CLIENT_NEVER_STARTED, after installation a client
• thread is started (to handle requests coming to clock sites, or
* invalidations coming to client) .
• A check is done by bitwise and'ing.

-

* Assignment is done by bitwise or'ing. Do not directly assign
* The following values of client states are in octal.
*/

/* A client can only be in one of the following states.
* A combination is not possible.
*/

#define CLIENT_OK 01 1* octal 1, decimal 1*1
1* The client thread is running, and processing requests.

*1

#defineCLIENT_NEVER_STARTED 02 I' octal 2, decimal 2*1
/* The client thread is not running, it must be created.
*/

#define CLIENT_DOWN 04 1* octal 4, decimal 4 * /
/* The client site crashed, so the client thread must exit.

* The client thread exits when it sees this state and goes
* to CLIENT_NEVER_STARTED state.
* The client moves to this state from either one of:
* CLIENT_OK, CLIENT_TO_MIGRATE,CLIENT_MIGRATING.
*1

#define CLIENT_TO RECOVER 010 1* octal 10, decimal 8 * /
1* When the server tells the client to start the recovery process,

* the client goes into this state.The client could be in any of
* the following states when it is told to recove.r:
* CLIENT_OK, CLI ENT_TO_MI GRATE , cr~IENT_MIGRATING.
* It has not yet started the recovery process in this state.
* It moves to CLIENT_RECOVERING state from here.
* Since only one site can go down at a time, it cannot
* move to CLIENT_DOWN from this state.
*1

#define CLIENT_RECOVERING 020 1* octal 20, decimal 16 */
/* The client moves from CLIENT_TO_RECOVER to CLIENT_RECOVERING

* state. In this state, the client thread has stopped processing
* requests. From this state, it moves to CLIENT_OK.
*/

#define CLIENT_TO MIGRATE 040 /*octal 40, decimal 32* /
/* When the client is in state CLIENT_OK, it changes to

* CLIENT_TO_MIGRATE. The clientMigrationThread is started by
* this time, but the client is waiting for the user state
* to go to USER_MIGRATING, and the request queue to be
* empty before the client thread goes into the
* CLIENT_MIGRATING state.
* Since it is still in sl's cluster, it can move to
* CLIENT_TO_RECOVER or CLIENT_DOWN from this state.
*1

#define CLIENT_MIGRATING 0100 1 *octal 100, decimal 64' /
1* When the client is CLIENT_TO_MI GRATE , the user thread

* is USER_MIGRATING and the request queue is empty, the
* client moves to CLIENT_llIGRATING. It is still in the
* old cluster. At this point, the clientMigrationThread
* will signal a client ready to migrate to sl.
*. Since it is still in sl's cluster, it can move to
* CLIENT_TO_RECOVER or CLIENT_DOWN from this state.
*/

#defineCLIENT_MIGRATED_POLLING 0200 /'octal 200, decimal 128·/
/* The client moves to this state from the CLIENT_MIGRATING
* state. It is waiting to be accepted by its new server
* s2. It cannot start recovery or go down at this point.
* It first has to move to CLIENT_OK when s2 ack's the
* polling messages.
+./

/* state of server (and its cluster)
* After installation is done at the server, if the value
* is SERVER_NEVER_STARTED, a server thread is started to handle
* incoming requests.
, A check is done by bitwise and'ing.
* p.ssignment is done by bitwise or'ing, Do not directly assign

128

129

1*1
is running, and processing

1* octal 1, decimal
I' The serverThread

• requests.
*1

01

* Assigned only when a value is sent .by a server to a client.
*1

!ldefine SERVER_OK

02 1* octal 2, decimal 2*1
I' From SERVER_DOWN, it moves to this state.

• The serverThread exits and sets the server state
* to SERVER_NEVER_STARTED.
'1

#define SERVER_DOWN 04 1* octal 4, decimal 4*1
I' The server site crashed, so the serverThread

* must exit. It exits and moves to
• SERVER_NEVEF,_STJ>..RTED.
• Moves to this state only from SERVER_OK.
*1

010 1* octal 10, decimal 8*1
1* The server site has to start recovery.

* The server starts recovery either when
* it comes from from failure, or if a down
• client sends it a message saying its come
* up from failure. When this state is set.
• the serverThread sees this and moves to
* SERVER_RECOVERING.
• If the server was down, it moves to this
* state from SERVER_NEVER_STARTED. ,Vhen the
* transition to this state is made, the
* serverThread is re-started and the server
• state changed.
• If only a client crashed, and not the server,
• it moves to this state from SERVER_OK.
'1

#define SERVER_RECOVERING 020 I' octal 20, decimal 16*1
I' The server moves from SERVER_TO RECOVER to

* SERVER_RECOVERING. This state change is made
• by serverThread. It means that the server
* thread is no longer processing requests.
* In this state the serverRecoveringThread is
* running. It moves to SERVER_OK from here
• and the serverRecoveringThread exits.
*1

I' State of failure thread. This is used to destroy the failure
* thread at the end of the simulation.
• Valid states are FAILURE_NEVER_STARTED, FAILURE_SUSPENDED,
* FAILURE_RUNNING. This state is changed in the files
,. ftmain.ca and failure.ca
*/

#define FAILURE_SUSPENDED
#define FAILURE_RUNNING
#define FAILURE_NEVER_STARTED

01
02
04

400
401

1* Used to wakeup the failureThread after installation is
* complete ../

#define INSTALLATION_NOT COMPLETE
#define INSTALLATION_COMPLETE

/* octal 1 = binary 01
I' octal 0 */

01
00

/* should the server reply to duplicate requests or
* DO NOT swap these values. The way the values are
, tested depends on the following values.
* Exclusive -or is used to test the value.
'I

#define SERVE_DUPLICATE
#define NOT_SERVE_DUPLICATE

not

decimal 1*/

1* Should a request for that page be serviced now or later.
* SERVICE_NOW and SERVICE_LATER are used by the client aux pte. On a
* SERVICE_NOW, the client replies to any fwded requests.

*
*

--

* On a SERVICE_LATER, the client ignores any fwded requests.
* The server aux pte has values SERVICE_NOW, SERVICE_LATER_IGNORE,
* SERVICE_LATER_REPLY. The server does the foIl:
* SERVICE_NOW: Forward the msg to the clock site
* SERVICE_LATER_IGNORE: Do not forward the msg to clock. Ignore the

request and the client will re-send.
D not fwd msg to clock. Reply to the client to

resend (the code for the reply thread will be LATER) .
The client will not resend immediately but will wait
for some time before resending.
The server may have a SERVICE_LATER_REPLY flag if:
The clock site is migrating:
That page is in write mode in a different cluster;
In cases where some major updates are going on in
the clock site (which may require more than 1 msg) ,
and hence the requestor having a normal timeout
period before resending will not ensure that it
gets a reply.

* SERVICE_OUT_OF_CLUSTER, a page which does not belong to this cluster and
* is not in the memory of any site in this cluster.
*1

1* At client, SERVICE_NOW, SERVICE_LATER are the valid values.
* At server, SERVICE_NOW,SERVICE_LATER_IGNORE,SERVICE_LATER_REPLY are

valid values.
* Always assign instead of bitwise or'ing.
*1

130

#define SERVICE_NOW
#define SERVICE_LATER
#define SERVICE_IGNORE
#define SERVICE_REPLY
#define SERVICE_LATER_IGNORE
#define SERVICE_LATER_REPLY
#define SERVICE_OUT_OF_CLUSTER

01
02
04
010
06
012
020

I" octal 10, decimal 8*1

I*octal 20, decimal 16*1

...

1* The modes a page can be in (page_status in auxClient). All valid values
* are listed here. Others are invalid.
* These values are used in auxClient.page_status, auxServer.clock_Inode
* READ means page is in memory in READ mode.
* WRITE_CLOCK means page is in memory in WRITE mode {therefore is also CLOCK) .
* READ_TRAILER means page is valid and in memory.
* WRITE_TRAILER is an invalid option .
.. TRAILER means page is invalid, only a TRAILER copy .
.. PAGE_NOT_IN_MEMORY means page is not in memory .
.. Turning the R~~, WRITE,CLOCK and TRAILER bits off will give
* PAGE_NOT_IN_MEMORY .
.. To turn bit X (X defined in octal) off in integer n, do
* n = n & -(Xl; This will turn bit X off in n .
.. A check is done by bitwise and'ing.
* Assignment is done by bicwise or'ing. Do not directly assign.
"I

I" A zero preceding a nwru)er implies it is in octal format.*1

#de fine PAGE_NOT_IN_MEMORY 0100 1* octal 100, decimal 64*1
#define READ 01 1* octal 1, decimal 1*1
#define WRITE 02 1* octal 2, decimal 2*1
#define CLOCK 04 1* octal 4, decimal 4*1
#define TRAILER 010 1* octal 10, decimal 8*/
#define EXTRA 020 1* octal 20, decimal 16* I
#define READ_CLOCK OS 1* octa.l 5, decimal 5*1
#define WRITE_CLOCK 06 1* octal 6, decimal 6*1
#define READ_TRAILER 011 1* octal 11, decimal 9 *1
#define WRITE_TRAILEH. 012 1* octal 12, decimal 10 *1
#define UPDATE 040 1* octal 40 decimal 32*/
#define WRITE_UPDATE 042 1* octal 42, decimal 34*1
#define WRITE_CLOCK_UPDATE 046 I"octal 46, decimal 38*1

1* These are codes used by a reply thread and a watchdog to update
" the state of the page in the auxpte at the client site
... (request_mode) in ClientDS.
o All valid values are listed here. Rest are invalid.
* Do not assign unless u want to overwrite previous value. Use bitwise
o or'ing.
OJ

#define NOT_IN_MEM
1* Page

#define IN_MEM

*

00
mode is PAGE_NOT_IN MEMORY. *1

01
1* Page mode has READ or WRI~E in it.*1

#define UPDATE_PAGE 02
#define LATER 04
#define WATCHDOG 010 1* octal IO,decimal 8*1
#define IN_MEM_UPDATE_PAGE 03

1* Check if this does not get overwritten. by
* watchdog, esp update flag.·1

#define IN_MEM_LATER 05
#define IN_MEM_UPDATE_PAGE_LATER 07

1* Reply to write update woke up user. Consequently a
o LATER message for this page also arrived. This later
o message was sent in response to a duplicate request.
*1

1* Kind of page access. LOCAL_ACCESS means the private memory of a client.
* SHARED_ACCESS means memory that is shared with other clients in the
* system. A SHARED_ACCESS page which is in the local memory of the client
* is considered a shared operation.
*1

#define LOCAL_ACCESS 1
#define SHARED_ACCESS 2

1* The value returned by a memory operation to a user thread.
* Also the value returned by sendRequest to memory operation.
* MEM_OK The memory operation was successful. Send next request.
• QUIT Irrespective of success/failure of mem operation, user

thread qui.ts (Recovery in progress) .
.. MEM_RESEND: When a user tries to read a page in memory, and the user

site is a clock site, and the clock has SERVICE_LATER,
the clock could be transfering clock site. Then
userThread retries the same operation again without
calling the random no. generator.

*1
#define MEM_OK 1
#define MEM_RESEND 3
#define QUIT 2

1* These values are used while invalidatin.g readers. If an existing
* reader wants write access, it's read copy is not invalidated.
* These values are used by invalidateAllReaders in clientfn.ca.
*1

IIdefine ALREADY_A_READER 1
#define NOT_A_READER 2

131

#define NOT_REACHED -1 1* The value of extra when a server
.. is indirectly forwarding a
.. WRITE_UPDATE out of cluster page.
*1

...

I' Message codes, used for the same ipi. will give details about the
* exact type of message.
• The ,._"_MSG are codes for MSG_FROM_SERVER_IPI.
* ACK's are acknowledgement types. Put together, the ACK and MSG values

are unique to simplify debugging.
* The '_*_ACK are codes for ACK_FROM_CLIENT_IPI.
*1

1* IMPORTh~: If any new messages are added, any REPLY or
* invalidate messages (which come at a client site) should be added to
• the switch statement in clientThread (inside the CLIENT_MIGRATING
* while loop) .
OJ

ndefine INSTALL_CLOCK MSG
1* Install the page*1

#define INSTALL_READER_TRAILER_MSG
1* List of readers for a page are being sent.

* A part of the readers for that page could
• have been sent earlier. This is NOT to be
• used to send only a set of readers without
• prior communicacion(in a previous msg
• (INSTALL_MSG) about. the total number of
• readers.
*1

1

2

#define INSTJI.LL_DONE_AT_CLIENT_ACK 3
#define SET_SERVER_STATE_MSG 4

1* Uses MSG_FROM_SERVER_IPI*I
#define SET_CLIENT_STATE_MSG 5

1* Uses MSG_FROM_SERVER_IPI*I

/* Used when the server is forwarding a request to a clock, and
* when a clock is sending a reply to a user.
*1

#define SEND_ACK_CLOCK_CHANGE_MSG 6
#define DO_NOT_SEND_ACK_MSG 7
#defineSEND_ACK_WRITE_UPDATE_REACHED_MSG 8
#defineSEND_ACK_MIG_~~_CLOCK_INSTALLED 9
#define SEND_ACK_MIG_WRITE_CLOCK_INSTALLED 10
#de fine SEND_ACK_MIG_TEMP_READ_CLOCK_INSTA,LLED 11
#define SEND_ACK_REC_READ_CLOCK_INSTALLED 12
#define SEND_ACK_REC_TRAILEP._INSTALLED 13

/* ~llien a clock is sending a reply to a user. */
#define REPLY_MAKE_URSLF_READER_MSG 20
#define REPLY_MAKE_URSLF_READER_TRAILER_MSG 21
#define REPLY_MP.KE_URSLF_WRITER_CLOCK_MSG 22
#defineREPLY_MAKE_URSLF_READER_OUT_CLUSTER-PAGE_MSG 23

1* Sent by its server, by a temp read clock*1
#define REPLY_MAKE_URSLF_UPDATE_",lJUTER_OUT_CLUSTER_PAGE_MSG 24

1* Sent by its server, by a reader in the cluster*1
#define REPLY_RESEND_REQUEST_FOR_PAGE_L..';TER_MSG 25

1* sl sends this to c1 when sl either has a service
* later reply or sl gets a SS_REQUEST_FOR_PAGE_LATER
* from s2.
*/

#define REPLY_UPGRADE_URSLF_FROM_REJl~ER_TO_UPDATE_WRITER_OUT_CLUSTER_PAGE_MSG 26
1* Sent by its server, by a temp read clock*1
1* When a server is directly sending a reply to a user without

* forwarding to a, clock.
*/

#define REPLY_WJI.KE_UP_USER_MSG 27
1* A write clock gets a read request from the user at its

* own site. It downgrades to a reader, adds itself as a
* reader in the list of readers and send this message to
* itself to wake up its user. It does not send the page
* with this message as the page is already in its memory
* in the required mode.
-. /

#define S_FROM_USER_REQUEST 100
1* If this value is changed, change the corresponding value
* in requestQ.h

132

..

1* S: To server. Request from user.*1
#def ine C_FWD_REQUEST

1* C: To client. Server fwding request. -'1
#define C_INVALIDATE_READER

1* C: To client. Telling it to invalidate
* a read page.
* Sent by a client to a client.
+./

#define S_ACK_CLOCK_CHANGE
/* S: User makes its-elf clock and sends

* ack to server. *1

#define S_INFORM_CLOCK_MODE_CHANGE
1* S: The user at a site changed the clock mode at

* that site for a page. It informs the server
of this change */

#define S MSG NOT_DELIVERED
/* S: The clock site could not deliver a message

to the requestor. The server has changed
the service to service_later_ignore and is
waiting for an ack. This msg will tell the
server to change it back to service_ok.

*1

101

102

103

104

105

..

#define S_INFORM_PAGE_ACCESS 106
/* When a client accesses a shared page locally,
* it informs the server. The server updates the
* migration data. This information is needed to
* keep track of the history of requests made by
* a client. Used for migration. Uses REQUEST_FOR_SERVER_

IP!.
* This message is sent ONLY in the multi server case.
*/

/* SS prefix : message from server to server, is request
* related if sent via REQUEST_FOR_SERVER_IPI, not request
* related if sent via SERVER_TO_SERVER_IPI
*/

#define SS_INFORM_SERVER_INFO 107
/ * SERVER_TO_SERVER_IPI * /
/* SS : A server sends its state and other

info to another server
- after initialization.

*/

133

#define SS_OUT_CLUSTER_REQUEST
/* REQUEST_FOR_SERVER_IPI, request related.

* server 1 is sending a request for a page belonging
* to server 2 to server 2.
*/

108

--

#define C_FWLl_OUT_OF_CLUSTER_REQUEST 109
/* REQUEST_FOR_CLI~~_IPI, A server forwards a

* out of cluster request to the clock o~ that
* page (server 2 fwd'ing to c2).
*/

#define S_READ_REPLY OUT_CLUSTER_FROM_MY_CLIENT 110
/* C2 sends a reply to S2; REQUEST_FOR_SERVER_IPI.*/

#define SS_READ_REPLY_OUT_CLUSTER_REQUEST 111
/* S2 sends a reply to s1 to a read request made by sl.

* uses REQUEST_FOR_SERVER_IPI.*/

#defineC_FWD_MAKE_URSLF_TEMP_CLOCK_HANDLE_READ_REQUEST 112
/* c1 in sl has a read copy of page p which belongs

* to s2. Now, cl-2 in sl requests a read copy of page
p. s1 does not fwd request to s2. sl sends a msg

* to c1 telling it to become a temp read clock for p.
* uses REQUEST_FOR_CLIENT_IPI.
*/

#defineS_INVALIDATE_ALL READERS_AT_OTHER_SERVERS 113
/* c2 in s2 has sl as a reader. c2 is a read clock.

* When it gets a write request, it invalidates
* all readers. If a server is a reader (a read
* page is given to any other server), c2 sends
* a this ms.g code to s2 using REQUEST_FOR_SERVER_IPI.
* s2 will check for that read page with all servers
* and send a invalidation msg to every server(say sl)
* that has this read page. s1, in turn, will tell
* its temp clock to invalidate all its readers.
*/

#defineS_INVALIDATE_ALL BUT_ONE_READERS_AT_OTHER_SERVERS 114
/* c2 in s2 has sl as a reader. c2 is a read clock.

* When it gets a write request, it invalidates
* all readers. If the write request was made by
* the server which is a reader, this message is
* sent to s2 using REQUEST_FOR_SERVEP._IPI.
* s2 will check for that. read page with all servers
* and send a invalidation msg to every server(say s1)
* that has this read page except the server that
* requested the write. s1, in turn, will tell
* its temp read clock to invalidate all its
* readers.
*/

#defineSS_INVALIDATE_ALL_OUT_CLUSTER_READERS_OF_PAGE 115
/* s1 has a read copy of page belonging to s2.

+ s2 sends sl this message telling it to

134

* invalidate all its readers of specified
* page. Uses REQUEST_FOR_SERVER_IPI.
*/

#defineC_INVALIDATE_ALL OUT_CLUSTER_READERS_OF_PAGE 116
/* c1 in s1 is a temp read clock of page p belonging

* to 52. sl sends a message to cl telling to it
* invalidate all its readers. cl does not have to send
* an ack back to 51 and sl does not have to send an
* ack back to s2(the owner of the page).
* Uses REQUE5T_FOR_CLIENT_IPI.
* Sent by a server to a client.
*/

#definec INVALIDATE_OUT_CLUSTER_READER 117
/* A temporary read clock telling a reader to invalidate

* its read page. Sligtly differnt from
* c_INVALIDATE_READER.
* Send by a client to another client.
*/

#define 5 WRITE REPLY_OUT_CLUSTER_FROM_MY_CLIENT 118
/" When a write request is made by a server 51 to server 52,

* 52 fwd's to client c2. c2 uses this message code to give
" the reply to this write request to its server
* Uses REQUEST_FOR_SERVER_IPI.
*/

4defineS_WRITE_UPGRADE_REPLY_OUT_CLUSTER_FROM_MY_CLIENT 119
/* When a write request is made by a server 51 to server s2,

* 52 fwd's to client c2. c2 uses this message code to give
* the reply to this write request to its server. This
* message code is used when the requesting server 51, is
• already a reader of this page.
* Uses REQUEST_FOR_SERVER_IPI.
*/

#defineSS_WRITE_REPLY_OUT_CLUSTER_REQUEST 120
/* S2 sends a reply to sl to a write request made by sl.

* uses REQUEST_FOR_SERVER_IPI.*/

#defineSS_WRITE_UPGRADE_REPLY_OUT_CLUSTER_REQUEST 121
/* sl is a reader for an out of cluster page. It made

* a write request for that page. It gets this reply
* from s2.
*/

~defineS_RETURNING_OUT_CLU5TER_UPDATE_PAGE 122
1* c1 returns an update write (out of cluster) page to 51 after

* writing to it. Uses REQUEST_FOR_SERVER_IPI*/

#defineSS_RETURNING_OUT CLUSTER UPDATE PAGE
/" 51 returns an update write page to s2 (the o~mer) after.

* writing to it. *1

#define C_RETURNING_UPDATE PAGE
l*s2 sends the updated write page to c2. Uses

*REQUEST_FOR_CLIENT_IPI.
*/

123

124

126
page. This message is sent by s2
that write update page.

#defineS_INVALIDATE_WRITE_UPDATE_PAGE 125
/* c2 has given a write update page to s2 to be given to another

* server. c2's watchdog wakes up and it finds that it hasnt
• yet got the update page. c2 sends this msg to s2 telling it
• to invalidate the write update page.*/

#defineSS_INvALIDATE_WRITE_UPDATE_PAGE
/* 52 has given sl a write update

* to sl telling it to invalidate
*1

#define S5 INVALIDATE_WRITE_UPDATE PAGE WAITING
1* 52 has given a write update page to sl. It sends

* an invalidation message to 51. If 51 sees that
" the initial write update page has not yet
* reached the client, it re-inserts the invalidation
• message as this message.
*/

127

129
for a page from 51. 52 has service later reply
sends a message back to 51.

-
135

#define C_INVALIDATE_'t-'R.ITE_UPDATE_OUT_CLUSTER_PAGE 128
/* c1 has a write update copy of page. s1 sends it ~~ invalidate

* message since c1 has kept it for more than update time.
* Sent by a server to a client.
*/

#definesS_RESEND_REQUEST_FOR_PAGE_LATER
/* 52 gets a request

* for this page. It
*/

#Ide fine C_INVALIDATE_ALL_OUT_CLUSTER_READERS_FWD_WRITE_UPDATE 130
/* cl in 51 is a temp read clock of page p belonging to s2.

* A site in sl,c1-1, asks for write permission for page p.
* On getting a reply from s2, sl sends a message to c1
* telling it to invalidace all the readers and forward
* the reply to cl-l.
* Sent by a server to a client.
*/

#define SACK RECEIVED_WRITE_UPDATE PAGE 131
/* A client c1 is a reader of an out cluster page.
* It made a write request. When forwarding the reply,
* the server set extra to NOT_REACHED. On, recv'ing
- the reply REPLY_UPGRADE_URSLF_FROM_READER_TO_UPDATE
- V.>RITER_OUT_CLUSTER_PAGE_MSG, it acks the msg.
*/

#define S_ACK_NOT_SENDING_WRITE_UPDATE_PAGE 132
/* s1 is a reader of page belonging to s2. A client in
* s1, c1-1, requested a write. s2 sent a reply .. s1
* changed extra to NOT_REACHED, and forwarded the message
* 'C_INVALIDATE_ALL_OUT_CLUSTER_READERS_FWD_~-'RITE_UPDATE'

+. with ack code 'SEND_ACK_WRITE_UPDATE_REACHED_MSG' to
+. the temp read clock, c1. But cl was migrating. And
* since the clientThread and clientMigratingThread at cl
* are runrling in parallel. c1 is no longer the reader
+. when it gets C_INVALIDATE_ALL ... So c1 sends this
* message back to s1. (B8-2)
+. s1 will remove c1-1 from memory when it gets this.
-/

/.**-*-* MESSAGES CONNECTED TO MIGRATION *_.**-/

#define SS_CLIENT_TO_MIGRATE_IN
/* A client from cl is to migrate to s2 from

- s1. s1 informs s2 that c1 will be migrating
* in. Uses SERVER_TO_SERVER_IPI.
*/

IIde fine S_MIG_HANDOVER_READ_CLOCK
/- A client c1 is migrating. It sends this message

* for every in-cluster page for which it is a
- a read clock. This message is sent to its server
* using REQUEST_FOR_SERVER_IPI ../

#defineC_MIG_HANDOVER_INSTALL_READ_CLOCK
/* c1 is a read clock that is migrating. It hands

- over the read clock to server s1, which then
* sends this message to the new clock c2.
* Uses REQUEST_FOR_CLIENT_IPI.
*/

140

141

142

ff-def ine S_ACK_MIG_READ_CLOCK_INSTALLED 143
/* cl was a read clock. It is migrating to s2. A new

* read clock is installed at c2. This message sends
* an ack to s1 telling it that the new read clock is
* installed successfully. Uses REQUEST_POR_SERVER_IPI.
*/

IIdefine S_MIG_HANDOVER_WRITE_CLOCK 144
/* A client c1 is migrating. It sends this message
* for every in-cluster page for which it is a
* a write clock. This message is sent to its server
• using REQUEST_FOR_SERVER_IPI.

~f

Itdefine C_MIG_HANDOVER_INST1"-LL_WRITE CLOCK
/* c1 is a write clock that is migrating. It hands

* over the write clock to server sl, which then
* sends this message to the new clock c2.
* Uses REQUEST_FOR_CLIENT_IPI.
*/

145

136

Itdef ine S_ACK_MIG_WRITE_CLOCICINSTALLED 146
f* cl was a write clock. It is migrating to s2. A new

, write clock is installed at c2. This message sends
* an ack to sl telling it that the new write clock is
* installed successfully. Uses REQUEST_FOR_SERVER_IPI.
*/

lIdefine S MIG HANDOVER_INVALIDATE_RE.Iill_PAGES 147
f* c1 is a client that is migrating. It sends this
* message to sl giving it the list of pages for
* which it is a reader. Uses REQUEST_FOR_SERVER_IPI.
*f

11 define C_MIG_REMOVE_CLIENT_AS_READER_FOR_PAGES 148
f* cl is a client that is migrating. sl sends the following
* message to a client which is a read clock for a page
* for which cl is a reader. sl does not send the pages for
* which c1 was a reader. This client scans its read clocks.
* and removes cl as a reader. REQUEST_FOR_CLIENT_IPI.
*f

ltdefine S_CLIENT_READY_TO MIGRATE 149
/' A client c1 has sent all its handover messages to

* sl during migration. It's user and client are
* waiting to migrate. It sends this message to sl
* so 51 can check if all the handover's have been
* ack'd, and allow c1 to migrate.
*f

#defineSS_H&~ING_OVER_NEW_CLIENT

f* A client from cl is to migrate to 52 from
* sl. sl is handing over cl to s2.
* Uses SERVER_TO_SERVER_IPI.
*/

#aefineC_SERVER_GIVING_PERMISSION_TO_MIGRATE
f* A client cl is to migrate from sl to s2.
* c1 has handed over its pages and is waiting
• for permission from sl to migrate. This
* is sl giving permission to cl.
, Uses MSG_FROM_SERVER_IPI.
*f

Ifdef ine S_NEW_CLIENT_ASKING FOR_.".CCEPTANCE
f* A client cl has migrated from sl to s2 (It
* got permission from sl). s2 could have
* crashed without getting the handover message
* from sl. So, this client acts intelligently
* and keeps polling s2 asking for an ack.
* REQUEST_FOR_SERVER_IPI.
*f

#defineC_SERVER_ACCEPTING_NEW_CLIENT
/* A client cl has migrated from sl to 52.
* cl polls s2. and this is the reply from
* 52 to cl. Uses MSG_FROM_SERVER_IPI.
*/

#defineS_MIG_NOT_INSTALLING_OLD_CLUSTER_vffiITE_CLOCK 155
#defineSS_MIG_NOT_INSTALLING_OLD_CLUSTER_w~ITE_CLOCK

/*********** MESSAGES CONNECTED TO RECOVERY **~**'********f

#defineS_REC_DO~~_Tlt1E_FOR_CLIENT_OVER

f* Uses ACK_FROM_CLIENT_IPI.
, A client cl that went down, informs its
* server when it comes back up.

150

151

152

153

154

156

160

*f

#defineS_REC_SENDING_CLOCK_READER_BITMAPS
f* Uses RECOVERY_TO_SERvtffi IPI. A client sends this
* message to the server when told to recover.
* It sends information its clock and reader pages.
*/

#def ine S_REC_SENDING_TRAILER_BITMAP
f* Uses RECOVERY_TO_SERvtffi_IPI. A client sends this
* message to the server when told to recover.
* It sends information about its trailer pages and
* their trailer version.
*/

#defineS_REC_CLIENT_RECOVERED
f* Uses RECOVERY_TO_SERVER_IPI. A client tells its

* server that it has finished sending all its
* clock/reader/trailer page information.
*/

#define C_REC INSTALL_READ_CLOCK
f* Uses RECOVERY_TO CLIENT IPI. A server sends this
* message to a client during recovery. Tells it
* to install a read clock (for a page whose clock

is lost).
*f

#deiineS_REC_ACK_READ_CLOCK_INSTALLED
/* A client sends this msg acknowledging installation

• of a read clock. This is in reply to C_REC_INSTALL
_READ_CLOCK.

* Uses RECOVERY_TO_SERVER_IPI.
*f

#defineC_REC_INSTALL_TRAILER_TO_CLOCK
/* A clock is told to install another trailer.

* The designated trailer site is sent to the
* clock. If the clock has mUltiple readers,
* it makes one of the readers a trailer site.
* The new trailer is also a reader.
* Uses RECOVERY_TO_CLIENT_IPI
*/

!ldef ine C_REC INSTJl.LL_TRAILER
/* A clock tells a site to become a reader trailer

* of a page. This site has to send an ack
* to the server.
* Uses RECOVERY_TO_CLIENT_IPI.
*/

161

162

163

164

165

166

167

137

#defineS_REC_ACK_TRAILER_INSTALLED 168
/* A client sends this msg acknowledging installation

* of a trailer. This is in reply to C_REC INSTALL
_TRAILER.

* Uses RECOVERY_TO_SERv<ffi_IPI.
*f

ltdefine S_REC_RECOVERY_COMPLETE_SET_SERVER_OK 169
/* The serverSendingRecoveryMessagesThread sends this

* message when it knows that recovery is complete.
* It sends this message to its own server. The
* serverRecoveringThread makes some changes and then
* exits. This message is sent as an IPI so that the
• serverRecoveringThread can exit.
*f

IIdefine C_REC_RECOVERY_COMPLETE_SET_CLIENT_SERVER_OK 170
/* The serverRecoveringThread sends t::his message to

* all its clients when it gets the S_REC_RECOVERY
* _COMPLETE_SET_SERVER_OK message.
* Uses RECOVERY_TO_CLIENT. The clientRecoveringThread
* changes server/client:: state and exits.
'f

...

/. Uses REQUEST_FOR_SERVER_IPI.
• When a server goes down or starts recovery (without
• having gone down), it informs all other servers
• a.bout its status.
• A server which gets this message, changes it
• page table to indicate that none of its pages
* are in the down/recovering cluster .
.. Also, it reclaims any write update pages it
* loaned to that cluster.
• Read pages are removed from read pages loaned to
* that server, messages are not sent to the clock
• sites. When a read invalidation message arrives
• later, it is ignored ../

iidefine C_REC_REMOVE_SERVER_AS READER FOR P. PAGE
/* Used in migration and recovery.'/

iidefine BUSY_WAIT (delay) \
(if(delay < TIMER_PERIOD *3) \

(\
AddTime(delay) ;\
thread-yield_to_scheduler() ;\

} \
else\

thread_sleep (MY_TIn, delay/TIMER_PERIOD) ; \

int STATE;
int REQUEST;
inc CHECK;
inc TEMP_RANDOM_GLOBAL;

int PRIORITY;
int LJl.RGE_STACKSIZE;
int SMALL STACKSIZE;
int INIT_SERVER_IPI:

/. To initialize data structures in each
* server.
*/

/. To initialize data structures in each
* client.
*/

172

l38

/. Sent by the client when all pages
.. have been installed.
*/

int
int

in!:

MSG_FROM_SERVER_IPI;
REQUEST_FOR_SERVER_IPI; /. Used by client to send a request

• to a server. */
/* A request sent to a client by

... a s-erver */

iiifdef 11ULTI_SERv~R

int SERVER_TO_SERVER_IPI;
#endif

int
inc
int

in!:
in!:

SERVER_DETECT_FAILURE_IPI;
"JJo.KEUP_FAILURE_THREAD_IPI ;
DESTROY_FAILUFE_THP~_IPI;

RECOVERY_TO_SERVER_IPI;
RECOVERY_TO_CLIENT_IPI;

/* Used to destroy the failure thread
• at the end of the simulation.
"/

Sem

Sem
FILE

mutex; / •. Output semaphore; used for printf. */

file_mutex; / .• semaphore used to ~Jrite to file.*l
*opFilePtr;/*Pointer to output file.'/

/* One auxpte for a page. An array of auxpte constitute the state of
• memory. One array per client and one per server needs to be
* allocated.·/

/*Aux at client site per page.·/
struct auxC
{

139

intList

unsigned

int

int

int

unsigned

int

int

'list_of_readers;
/* call initIntList when

* memo.ry is allocated for auxC.
• no readers is here ../

/* If the mode is ~TE_CLOCK, then
* the list of readers is NULL. The
• clock site is the writer.
*/

page_status;
/* READ,WRITE,CLOCK,TRAILER,

* EXTRA,PAGE~OT_IN_MEMORY

* (w~ITE is an invalid
* mode, a WRITE site must have
* the mode WRITE_CLOCK)
• READ_TR.l\ILER, WRITE_TRAILER.
* READ_CLOCK, WRITE_CLOCK are the
* only valid combinations.
* WRITE_CLOCK_UPDATE is a valid value when
* the page is loaned to another server for
* a write.
*/

page_value;
/* Good tohave this; easier to

* debug.
* During initialization, all
* page values are -1.
* When a server installs a page
• at a client site, it sends
* a value of 1.
* so, a value <= 0 is not possible (presuming
* a write is always positive) .
*/

clock_site;
/* Though the page_status tells if

* the current site is a clock or
• not, this maintains the processor
• number of the clock site. This may
• be required if a clock site hands
* over clock data to another site. but
• may still need to fwd requests for
* clock of that page, until the server
• is notified of the clock site
* change. This value is incorporated
* so the design change is possible.
* But if the clock_site value
* is the present client, page_status
• MUST be CLOCK (READ or WRITE) .
* Initial value is -1.
*;

trailer_version; /* Initialized to 0.*/
/* This is the latest trailer value
* for that page in the cluster.
*/

service ;
/* SERVICE_NOW, SERVICE_LATER

* used by the clock site If the clock site
* has a SERVICE~OW, it will take care of
* any fwd'd requests from the server.
• If it gets a fwd'd request while it is
* SERVICE_LATER, it simply ignores it
* init to SERVICE_LATER.
* The SERVICE_LATER value is set when

the clock is making some changes
- adding a reader
- invalidating readers
- changing mode

...

int

} ;

typedef struct auxC
typedef struct auxC

clock transfering to another site
- site is migrating
- site is recovering.

* wben the above operation is complete,
* the service is changed to SERVICE_NOW
* It is used only by a clock site. So, a
* READ or TRAILER page will have a
* SERVICE_LATER value.
*1

extra;
1* Used for number of readers to

* be installed for that page.
* Will be compared to list_of_readers->
* no_elements to know if the required
* no of readers have been installeq.
* This is because the number of readers
* may be sent in more than I message.
*1

*perSitePageTable, **aIIPageTables;
auxClient;

140

1* AuxilIary page table maintained at each server site. *1
struct auxS

int
unsigned

int
int

unsigned

int

) ;

int

int

clock; I*Site of clock, initialized to -1.*1
clock_mode;
1* READ,~~ITE, READ_CLOCK,

* WRITE_CLOCK,PAGE_NOT_IN_MEMORY
* are valid values.
* The page_mode of the clock.
* It is needed to know if a clock site will
* be changed while fwding a request to
* the clock. If so, either a SERVICE_LATER
* is sent as a reply to another request
* that comes in, or the request is ignored;
* and will be resent by that client when
* it times out.
*1

trailer; 1* Site of trailer, initialized to -1.*1
t_version; 1* Version number of trailer;

* might not be uptodate if SERVER_OK,
* init to -1
*1

service ;
1* SERVICE_NOW,SERVICE_LATER_IGNORE,SERVICE_LATER_REPLY

* The server will see this before forwarding a request
* to a clock; will ignore the request if it is
* SERVICE_LATER_IGNORE. will send a 'send request
* later' msg back to the requester(client) if it is
* SERVICE_LATER_REPLY.
* On receiving the SERVICE_LATER_REPLY, the client will
* will not resend immediately after being woken up
* It will wait a little longer.
* If the client does not receive a reply, it will
* time out and resend.
* init to SERVICE_LATER_IGNORE in single server case
* In multi server case, pages within cluster are
* intialized to SERVICE_NOW once installed at clients.
* pages out of cluster are initialized to
* SERVICE_OUT_OF_CLUSTER.
*1

extra; 1* Used by the server when sending installation
* messages. If 2 pages have to be installed,
* (clock and trailer), extra is set to 2;
* Upon reeving ack from the 2 clients (clock
* and trailer, this extra is decremented.
* When extra reaches 0, service is changed
* to SERVICE_NOW.
*/

typedef struct auxS auxServer;

141

1* PerClientDS
* To be maintained by each client.
* IMP: Any changes to this structure should be taken care of in

initClientDSHandler and in the corresponding print functions.*1
struct ClientDS
(

*

unsigned int

int
int
int
unsigned int
unsigned int
unsigned int

int

int

int
unsigned int

unsigned int

int

int

auxClient

int

requ.est_mode;
1 * NOT_IN_MEM, IN_MEM, UPDATE, LATER, WATCHDOG,

+. IN_MEM_UPDATE are valid values. Rest are invalid.
* This field must only be used by :
* the user thread

the watchdog
the reply thread

*/

client-proc;
current-page_requested:
current-page_mode_requested;
time-page_requested;
time_Iast_migration;
time_start_migration;

cluster_index;

user_state ;
1 * USER_SUSPENDED, USER_RUNNING, USER_NEVER_STARTED* 1
server_site;
server_state ;
/* SERVER_OK, server thread is running.

* SERVER_DOWN, server thread is down, SERVER_RECOVERING
* bi t should also be set..
* SERVER_NEVER_STARTED/SERVER_TO_RECOVER are not told
* to the client..
* SERVER_RECOVERING, 1 or more sites are down (if

server is down, SERVER_DO~~ is
also set) .

*1
client_state;
1* CLIENT_OK, CLIENT_RECOVERING, CLIENT_NEVER_STARTED

* If the client is recovering, the user thread must
* be killed. So, the user thread checks t.he field
* client_state before making a request. If it is
* CLIENT_RECOVERING. the user exits out of the
+. infinite loop and ends.
* If the value is CLIENT_NEVER_STARTED, a client
* to handle incoming requests is started after
+. installation of all pages is complete.

*1
lowest-page,highest-page;
1* Needed here to map a random request X% within cluster*1
no-pending_client_threads;
1* This should be 0 before a client can migrate.

* Not all threads created depend on the client
* functioning. Before a thread is created, the
• state of the client and the state of the server
* are checked. no-pending_client_threads is
* incremented. Before that thread ends, this
* field is decremented.
• no-pending_threads should be 0 before a
* client can start recovery or be migrated to
* another cluster.
* If a client thread is killed arbitrarily,
* sequential consistency is not guaranteed.
*/

*client-Ptable:
1* Each client has to maintain

* a page table; each pte
* is of the type auxClient */

extra;
1* extra field added. might be needed for
* something. May be used for different
* purposes.
• Eg:
* 1. Count of number of page_nos which

* which have install.ed sucessfully.

142

int

reqQueue

reqQueue

) :

typedef struct ClientDS

*/
uni~requests_sent;

/ *unique requ.ests sent so far; not
* duplicates of requests.
*/

*client_request_queue;
/* This is the list of incoming requests to

* a client which is a clock site for a page, or
* any invalidation messages.
* This queue is not used for sending replies to
* a user. A reply to a user is sent as a direct ipi
* to the user site, which starts a reply thread
* without putting the information into the request
* queue of the client at that site.
* It is not for recovery messages. (This is
* because if the client is down, and recovery is
* going on, the client thread might not be running).
* Also, since this request queue is deleted if the
* client site crashes, any possible recovery messages
* might be lost.
* It is initialized by calling initRequestQ while
* allocating memory for perClientDS.
* JJ

*client_recovery_queue;
/* This is a queue of incoming messages sent to a client

* during recovery. An IPI to RECOv~RY_TO_CLIENT_IPIputs
* the recovery message in this queue.
*/

perClientDS;

perClientDS
perClientDS

**globalClientDS:
**ptrToGlobaIClientDS;

/* To be maintained by each ser~er.

* IMP: Any changes to this structure should be taken care of in
initServerDSHandler and in the corresponding print functions.'/

/* If MULTI_SERVER is defined (as a compile flag), some more data
structures related to multi-server environment will be included
in perServerDS.*/

struct ServerDS
(

intList

inc
int
int

int

'l..l11signed

unsigned

auxServer

int

int

int

'list_of_clients;
/~ Number of clients is nere

• call initIntList when memory is
* allocated for ServerDS,
*/

lowest-page;
highestJ)age;
proc_no; /. The processor number of this server.
* listOfServers[s_index) is the proc number
*/
s_index;
/* listOfServers[s_index] will be this

• server's processor number. This field
* is convenient to have instead of iterating
* through listOfServers. Used for statistics
* collection.
*/

server_state ;
/* State of the server's cluster valid values are

* SERVER_OK, SERVER_RECOVERING, SERVER_DOWN,
• SERVER_NEVER_STARTED, valid combinations are
, defined in the beginning of this file.
*/

dupReq : 1;
/* Should duplicate requests be serviced.

* Values are SERVE_DUPLICATE, NOT_SERVE_DUPLICATE. */
*serverJ)table;
/* Each server has to maintain

• a page table; each pte
, is of the type auxServer. */

no-pending_server_threads;

int

reqQueue

Multi4List

reqQueue

intList

int

dataPerServer

143

/* This should be 0 before a server can start
* the recovery process. Not all threads
• created depend on the server's functioning.
• Before a thread is created, the state of
• the server is checked.
• no-pending_client_threads is
• incremented. Before that thread ends, this
• field is decremented.
*/

extra;
/* extra field added. might be needed for
* something. May be used for different

purposes.
* Examples:
* 1. Count of number of clients

which have installed pages sucessfully.
* 2. Count of number of clients which have

sent in all their reader/trailer/clock page
information during recovery.

*/
·server_request_queue;
/* This is the list of incoming requests to

* a server. This queue is only for read/write
* requests or related messages. It is not for
• recovery messages. (This is because if the
* server is down, and recovery is going on, the
• server thread might not be running). Also, since
* this request queue is deleted if the server site
• crashes, any possible recovery messages might
* be lost.
• It is initialized by calling initRequestQ while
* allocating memory for perServerDs.
*/

*list_of_doWTI_clients;
/* Multi4Node has:
* vall client site which is down
* va12 : the state of that client site:
* takes values , CLIENT_DOWN,

CLIENT_RECOVERING (set when
client sends a message saying its
up from recovery

*/
/* This is the list of clients that are down. Only
* one site can be down at a time. So, this should
* actually be single value. But is a list here, in
* case multiple failures are allowed.
* Used in both single/multi server environments.
*/

'server_recovery_queue;
/. This is a queue of incoming messages sent to a server
* during recovery. An IPI to RECOVERY_TO_SERVER_IPI puts
• the recovery message in this queue.
*/

'*ReadersForPages;
/* This is an array of intLists, of size NO_OF_PAGES.
* It is used ONLY DURING RECOVERY.
* The readers for each page are added to chis array
* as and when the recovery messages corne in. Since
.. the server normally does not mainta.in list of readers
* for each page, this is added here and not in
* the page table itself ../

total_clients_in_cluster:
/* Total number of clients in cluster. A server knows chis

* value while waiting for recovered messages from its
* clients. so, it is needed even in a single server

case.
• This value is updated during installation, when a
* client migrates (is finally handed over to new server) ... /

"other_servers_info;
/* This is an array of dataPerServer

* of size NO_OF_SERVERS. other_servers_info[i] is info

} ;

int

Multi4List

int

144

* this server maintains about the server located
* at processor number listOfServers[ij.
* other_servers_info[i] is not used when
* listOfServers[ij is CURR_PROCESSOR
* i is the index for the server whose info
* is in other_servers_info[ij .
*/

**migData;
/* A 2D array of integers is created of size,

(Total no. clients in whole system) X (total no.
* servers).
* #rows= total no. clients in the whole system
* #columns= total no. of servers
* migData[i) is a pointer. Memory of size no. servers
* is allocated for each i. migData[j), where j is
• a client in this server's cluster is used.
• migData[k], where k is not a client in this servers
* cluster is not used.
* When client j makes an out of clust.er request for
* a page owned by server s1, then migData[j] (s1]
* is incremented.
* So, migData(cjj [sr) is the number of requests
* client j made for a page owned by server r.
* If this server is s-me, then migData{cp} [s-me) is
* incremented when a client makes an in-cluster request.
*/

*migratingInClients, *migratingoutClients;
/* migratingInClients is the list of client coming into

* this server's cluster.
* migratingoutClients is the list of clients going out

of this server's cluster.
*/

*lastRequestByClient;
/* This is used to eliminate duplicate request numbers.

* This is an array of size 'number of clients'. ~fuen a
• server gets a request from its client, it updates
* the last unique request made by that client. If a
* duplicate request arrives from this client with an
* earlier unique request number, it is ignored. This is
• used only in the message S_FROM_USER_REQUEST. Therefore,
* a server only eliminates duplicate requests made by its
* own clients, and not duplicate requests made by other
* servers.
*/

typedef struct ServerDS perServerDS /* per server data structure. */

perServerDS
perServerDS

·*globalserverDS;
**ptrToGlohalServerDS;

/* This is a an integer array of size TOTAL_NO_SER\~RS.

* listOfServers[i) is the processor number of the i th server.
* This is because the servers may not be located at consecutive
* processors.
* This array is written into only in usermain. After that it is
* used as a read-only array. Even in case of any site crashing,
* this array is not effected. It does not belong to any site or
* any cluster.
*/

int *listOfServers;

/* When a server finds that chere is a failure in its
* cluster (a client/the server/or both), it adds the
* down site to teh globalListOfDownSites.
* Two clusters may go down when a single site fails (the
* client is in one cluster, the server in another.
* In such a case, both clusters add the down site to
* this global list.
* When a server recovers, it removes the down site from
• the global list .. If the global list if empty when the
* server removes the down sit'2, the server has to ...,ake
* up the failure thread.
*/

intList *globalListOfDownSites;

145

/* Tid of failure thread; this value
* is updated only once when the
* failure thread is first created.
*/

/* The processor on which the failure
* thread runs. An IPI will have to
* be sent to that processor to
* wake up the failure thread.
*/

adds its server index
installation will

is used ~o access

*globalListOfInitServers;
globalStateInstall;
tid_failure_thread:

int

/* When a server finishes installation, it
* to this list. The last server to finish
* wake up the failure thread.
* The semaphore access_failure_data_IDutex
* globalListOfInitservers.
*/

intList
int
int

int state_failure_thread; /* Needed to destroy the thread at
* the end of the simulation.
* Valid values are
* FAILURE_RUNNING,
* FAILURE_SUSPENDED,
, FAILURE_NEVER_STARTED.
'/

Sem access_failure_data_mutex:
/* semaphore used to wakeup the failure thread;

* and to add/delete from the globalListOfDo"mSites
* DO NOT ACCESS THIS SEMAPHORE IN ATOMIC REGION.
*/

/* Data structures used for data collection. Memory is not
• allocated using memory routines in Proteus. Arrays of size
* NO_OF_CLIENTS, and NO_OF_SERVERS are dynamically created
* in usermain.
*/

st.ruct message_level
{

unsigned

unsigned

unsigned

unsigned

long

long

long

long

data_msg_count;
/* Number of data messages (messages where

* t.he page itself is sent).
*/

data_msg_bytes;
/* Number of bytes sent in data messages.
*/

control_msg_count;
/* Number of control messages (messages

* sent Where a page is not sent). Such
* messages are sent as replies, requests,
* to ensure consistency, for recovery and
* for migration.
*/

control_rnsg_bytes;
/* Number of bytes sent in control

* messages.
*/

} ;

typedef struct message_level MsgLevel;

struct ClientStatsDS
(

int
int
MsgLevel

MsgLevel

MsgLevel

read_requests; /* Total number of read requests made.'/
write_requests;!' Total number of write requests made.·/
normal; /* Data collected during normal operation

* of the client.*/
migration: !* Data collected when this client is

* migrating. '/
recovery; /* Data collected when this client is

* recovering, */

) ;

struct ClientStatsDS *globalClientStats;

/* Array of size NO_OF_CLIENTS. Memory allocated in userrnain.
*/

146

struct ServerStatsDS
{

MsgLevel

MsgLevel

MsgLevel

} ;

normal;

migration;

recovery;

/* Data collected during normal operation
* of the server. */

/* Data collected for this server's
* migrating clients. */

/* Data collected when this server is
* recovering.
* The data_msg of chis is not used.
* Only control messages are sent to
* the server during recovery.
*/

struct ServerStaesDS *globalserverStats;
/* Array of size NO_OF_SERVERS. Memory allocated in usermain.

* NO_OF_SERVERS is defined in paramUser.h.
*j

/* The total simulation run time is divided into eime periods .
• The information below is maintained on a 'per cluster' basis.
* for each time period. This information is used to evaluate
* the load on a cluster before, during and after a migraeion.
'"/

struct clusterlneervalData

/* Control messages received by a client or a server in
.. a particular cluster. These are normal messages received
* related to any requests from wi chin the cluster (not a request
.. from another cluster) .
*/

unsigned long *in_cluster_control_byte;
unsigned long *in_cluster_control_msg;

/* Data messages received by a client or a server in
• a particular cluster. These are normal messages received
* related to any requests from within the cluster (not a request
* from another cluster) .
*/

unsigned long ·in_cluster_data_byte;
unsigned long *in_cluster_data_msg;

/'" Control messages received by a client or a server in
* a particular cluster. These are normal messages received
• related to any requests from outside the cluster (not a request
* from the same cluster) ,
*/

unsigned long *out_cluster_control_byte;
unsigned long *out_cluster_control_msg;

unsigned long ·out_cluster_datd_byte;
unsigned long ·out_cluster_data_msg;

/* Control messages received by a client or a server in
a particular cluster when a client is migrating. This is whether

* a client is migrating in or migrating out of this cluster.
*/

unsigned long ·cluster_mig_control_byte;
unsigned long *cluster_mig_control_msg;

unsigned long "cluster_mig_data_byte;
unsigned long *cluster_mig_data_msg;

} ;

struct ClusterlntervalData ·globallntervaIData;
/. Array at size NO_OF_SERVERS (which is number of clusters)

" Relevant messages received by a client or a server are
• added to the relevant metric for that time interval.
* Memory allocated in usermain.
" NO_OF_SERv~RS is defined in paramUser.h.
*/

FILE *migFilePtr;I*Pointer to migration interval output. file.*/

147

global_request._Iatency_avg_metric;
global_request._Iatency_stddev_metric;

int global_total_hi t_metric ;
int global_total_miss_metric;

1* Average and standard deviat.ion of the time taken
* for a request for a page not. in the local memory of
* a client.. Measured in sendRequest by userThread.
*1

int
int.

/* Average and standard deviation of the total number of requests
* (local/non-local, in/out cluster) made by a client in the
* CHECK_FOR_MIGRATION_INTERVAL. This is used to tweak interval
* if necessary.
* The system should be set up so that every client makes about
.. 100 (?) requests on the average in this interval. Based on
.. these 100 requests, a decision is made as to when a client
* should migrate to another cluster.
* Measured by checlcMigrationThread in findNelolServer.
*/

int global_tot_requests_mig_interval_by_client_avg_metric;
int global_tot_requests_mig_interval_by_client._stddev_metric;

global_max_incluster_requests_by_client_avg_metric;
global_max_incluster_requests_by_client_st.ddev_metric;

global_max_outcluster_requests_by_client_avg_metric;
global_max_outcluster_request.s_by_client_stddev_metric;

/* This max
* requests
*/

int
int

/* This max
.. requests
*/

int
int

is greater than the stipulated minimum number of
a client must make to migrate.

is great.er than the stipulated minimum number of
a client must make to migrate.

global_max_not_enough_requests_by_client_avg_metric;
global_max_not_enough_requests_by_client_stddev_metric;

/* This max is the maximum number of requests made by a client
* the CHECK_FOR_MIGRATION_INTERVAL. However, t.his max is less
* stipulated minimum number of requests a client. must make to
*/

int
int

in
than the
migrate.

global_mig_interval-positive_requests;
global_mig_interval_zero_requests;

global_client._mig_duration_avg_metric;
global_client_mig_duration_stddev_metric;

/* The percent.age of in cluster request.s (out of total requests
* made in interval) made by a client in the migration interval .
.. Will give indication of how realistic the CHECK_FOR_MIGRATION_INTERVAL
.. is. This interval should record sufficient number of
* requests to make a decision based on the 'cluster' data access
* pattern of a client.
*/

int global-percent_incluster_r-equests_by_client_avg_metric;
int global-percent_incluster_requests_by_client_stddev_metric;

/* When the total number of requests is O. how do you calculate
* the percent of in cluster requests? [Not counted in the percent)
* For now, keep a count of the total number of readings for
* the global-percent .. metrics. And calculate what percentage
* of the requests had a as the total
*/

int
int

/* Average and standard deviation of the total time taken
* by a client to migrate. Migration involves the old server,
.. the client and the new server. This metric measures
• the time between the instant a client is told to migrate
* until it. is accepted by its new server.
*/

int
int

FILE *migFilePtr;/*Pointer to migration interval output file.*/

147

global_request_latency_avg_metric;
global_request_latency_stddev_metric;

int global_total_hit_metric;
int global_total_miss_metric;

/* .I:\verage and standard deviation of the time taken
* for a request for a page not in the local memory of
* a client. Measured in sendRequest by userThread.
*/

int
int

/* Average and standard deviation of the total number of requests
• (local/non-local, in/out cluster) made by a client in the
* CHECK_FOR_MIGRATION_INTERVAL. This is used to tweak interval
* if necessary.
* The system should be set up so that every client makes about
* 100 (?) requests on the average in this interval. Based on
* these 100 requests, a decision is made as to when a client
* should migrate to another cluster.
* Measured by checkMigrationThread in findNewServer.
*/

int global_tot_requests_mig_interval_by_client_avg_metric;
int global_tot_requests_rnig_interval_by_client_stddev_metric;

global_max_incluster_requests_by_client_avg_metric;
global_max_incluster_requests_by_client_stddev_metric;

global_max_outcluster_requests_by_client_avg_metric;
global_max_outcluster_requests_by_client_stddev_metric;

/ * This max
* requests
*/

int
int

/* This max
• requests
*/

int
int

is greater than the stipulated minimum number of
a client must make to migrate.

is greater than the stipulated minimum number of
a client must make to migrate.

global_max_not_enough_requests_by_client_avg_metric;
global_max_not_enough_requests_by_client_stddev_metric;

/* This max is the maximum number of requests made by a client
* the CHECK_FOR_MIGRATION_INTERVAL. However, this max is less
* stipulated minimum number of requests a client must make to
*/

inc
inc

in
than the
migrate.

global_rnig_interval""positive_requests;
global_mig_interval_zero_requests;

global_client_mig_duration_avg_metric;
global_client_mig_duration_stddev_metric;

/* The percentage of in cluster requests (out of total requests
• made in interval) made by a client in the migration interval.
• Will give indication of how realistic the CHECK FOR MIGRATION INTERVAL
* is. This interval should record sufficient number of
* requests to make a decision based on the 'cluster' data access
* pattern of a client.
*/

int global""percent_incluster_requests_by_client_avg_rnetric;
int global""percent_incluster_requests_by_client_stddev_metric;

/* When the total number of requests is 0, how do you calculate
* the percent of in cluster requests? [Not counted in the percent]
* For now, keep a count of the total number of readings for
* the global....Percent .. metrics. ~~d calculate what percentage
• of the requests had ° as the total
*/

int
int

/* Average and standard deviation of the total time taken
* by a client to migrate. Migration involves the old server,
* the client and the new server. This metric measures
• the time between the instant a client is told to migrate
* until it is accepted by its new server.
*/

int
inc

struct BottleneckServerMetric
(

int avg_metric;
int s tddev_metric;

) ;

struct Bottl~neckServerMetric*globalBottleneckMetric ;

/* No of intervals, or the size of the array, for globallntervalMetrics
*/

int MAX_MIG_INTERVALS;

int TOTAL_NO_MIGRATIONS;
/* The total number of successful migrations,

* When a server accepts a new client it increments
* this value. Does not use semaphore.
*/

int UPDATE_TIME; 1* Time for which a client can keep an out of cluster page.
* A client can keep an out of cluster page for
* UPDATE_TIME * TIMER_PEROID cycles.
*1

int TIME_TO_REACH_OUT_CLUSTER_SERVER;
/* Time taken for CL~ update page to reach another server.

* This time is TIME_TO REACH OUT CLUSTER SERVER * TIMER PERIOD
* cycles.*1

int TIME_LATER: /* Extra time for which a user must wait if it gets a RESEND
* REQUEST LATER for a request it sent.
* This time is TIME_LATER * TIMER_PERIOD cycles.
*/

int WATCHDOG_SLEEP_TIME;
int RECOVERY_SLEEP_TIME;

1* The duration of the server/client sleep
* time when the system is recovering.
* The server/client thread sleeps for
* RECOVERY_SLEEP_TIME * TIMER_PERIOD cycl<2s
*/

int WAIT_RECOVERY_CONDITION_SLEEP_TIME;
1* Used by:

* serverCheckIfFailureInClusterThread,
* serverSendingRecoveryMessagesThread
* clientDownThread, clientUpFromFailureThread,
* clientSendingRecoveryMessagesThread.
*/

int MIGRATING_SLEEP_TIME;
/* This is the duration for which threads which

• are waiting for a migration to complete sleep .
• Used by clientThread,clientMigratingThread,
* clientPollingNewServerThread,userThread
* serverGivingPermissionToMigrateThread
* The thread sleeps for
* MIGRATING_SLEEP_TIME * TIMER_PERIOD cycles.
*/

int CHECK_FOR_MIGRATION_INTERVAL;
1* Interval at which the check to see if any

* clients should migrate is made. Used by
* checkNigrationThread. The thread sleeps for
* CHECK_FOR_MIGPATION_INTERVAL * TIMER_PERIOD cycles.
*/

int MIGRATED_WAITING_FOR_ACCEPTANCE_INTERVAL;
!* Interval for which a client (that has been given

* permission to migrate) waits when polling its
* new server asking for acceptance.
*/

int CHECK SERVER_BOTTLENECK_INTERVAL;
/* The bottleneck of the server when system is
* scaled up will give an idea about whether
* adding more servers is increasing throughput
* by parallel processing.

148

* A thread is created at every server. At fixed
* intervals of time, it checks the number of requests

in the servers request queue. This bottleneck
* is measured ONLY when no failures are allowed
* in the system.
*1

int EMPTY_QUEUE_WAIT_TIME; 1* When threads pullout requests from
* a request queue, and find the queue
• empty, they wait for EMPTY_QUEUE_WAIT_TIME
* * TIMER_PERIOD cycles.
* Used by:
* clientThread, s erverThread ,
* serverRecoveringThread,
* clientRecoveringThread.
*1

int SYSTEM_INIT_TIME; 1* When the userThread is first created
* (in messages.ca), it is put to sleep for
* SYSTEM_INIT_TIME * TIMER_PERIOD cycles,
* so that other servers and the rest of
* the system is initialised before the
* user starts sending requests.
*1

Sem request_mutex;
I· Semaphore used to increment TOTAL_NO_REQUESTS.

• A semaphore is required, as user threads on
• various processors will increment this value.
·1

#ifdef RECOVERY_HARD_CODE

Sem recovery_userl, recovery_user2;
Sem recovery_mutex[NO_OF_PROCESSORS]; I· Output semaphore; used for printf. *1

int RECOVERY_HARD_CODE_TIME;
int RECOVERY_STARTED;

#endif

I' Functions in initSC.ca. *1
void ini tServerDSHandler (int argc, Word 'argv):
void ini tClientDSHandler (int argc, Word 'argv);
void installPagesAtClientsThread () ;
void distributePagesAmongclients(int ***cList, int '**tList);
int getSecondlndex(int no_clients) ;
int getSecondFromFirst(int first, int diff, int no_clients);
void checkForInstallationEndThread(};

I' Functions in messages.ca *1

149

void
void

void

void
void
void

void

msgFrornServerHandler(int argc, Word *argv);
installClockMsgFromServerThread(int no_args,int msg_code,

int page_no, int page_mode, int trailer_version,
int page_service, int page_value, int no_readers,
int readerl, int reader2) ;

installReaderTrailerMsgFrornServerThread(int no_args,int msg_code,
int page_no ,int page_mode, int trailer_version,
int page_service,int page_value, int a, int b, int c);

ackFromClientHandler(int argc, Word *argv};
broadcastServerStateThread() ;
setServerStateThread(int no_args, int mS9_code,int server_state,

int a,int b, int c, int d, int e, int f, int g};
setClientStateThread(int msg_code, int client_state, int dummy);

I' Functions in requests.ca; related to sending requests, client site. 'I
void
void

int
int
void

userThread(void);
getRequestFromRandom(int request_no,int 'page_no,

int *access_mode , int 'where, int 'when):
memoryOperation(int page_no, int access_mode, int kind_of_access);
sendRequestlint page_no, int access_mode);
watchdogThread(int tid_of user,lnt uni~req);

void
void
void
void
void

replyMakeReader(reqNode ·request);
replyMakeReaderTrailer(reqNode ·request);
replyMakeWriterClock(reqNode *request);
replyResendRequestLater(reqNode *request);
replyWakeUpUser(reqNode ·request);

150

/* Functions in serverfn.ca ; server sending replies, server side.*/
void requestForServerHandler(int argc, Word ·argv);
void serverThread () ;
void measureserverBottleneckThread() ;
void processRequestAtServer(reqNode ·request);

void
void

void

void
void

void
void
void
int

readRequestClockWriterServer(reqNode ·request);
writeRequestClockReaderOrWriterServer(reqNode 'request);

ackOtClockChangeServer(reqNode 'request);

informClockModeChangeserver(reqNode ·request);
informMsgNotDeliveredServer(reqNode ·request);

getServerCodeFromServerProc(int server-proc,int *server_code);
getServerIndexFromServerCode(int server_code,int ·server_index);
getServerIndexFrornServerProc(int server..-proc,int ·server_index);
isItServerCode(int server_code);

/' Functions in clientfn.ca; client handling clock operations,
• service requests, send msgs, invalidate, etc.*/

void
void
void

void
void
void
void
int
void

request.ForClientHandler(int argc, Word ·argv);
clientThreadl) ;
processRequestAtClient(reqNode *request);

readerclockHandlingReadRequest(reqNode ·request);
writerClockHandlingReadRequest{reqNode ·request);
readerClockHandlingWriteRequest(reqNode *request);
writerClockHandlingWriteRequest{reqNode *request);
invalidateAllReaders{int page_no, int check_reader};
invalidateReaderOfPage(reqNode ·request);

/* functions in servermulti.ca; server functions related to
• multiserver case.·/

void serverToServerHandler (int argc, Word *argv);
void ssInformServerThread(int server-proc, int server_index,

int lowest..-page, int highest-page,int server_state);

void
void
void
void
void

void
void
void

void
void

void
void

void
void
\Toid
void
void

void
void
void

serverUpdatingClientDataAccessPattern(reqNode 'request);
requestForOutClusterPageAtServer(reqNode *request):
requestFromOutOfClusterPageAtServer(reqNode *request);
serverHandlingReadReplyOutClusterFromItsClient(reqNode "reply);
serverHandlingReadReplyTOOutClusterRequest(reqNode *reply};

serverInvalidatingOtherServerReaders(reqNode "request);
serverInvalidatingAllButOneOtherServerReaders(reqNode *request);
serverInvalidatingItsOutClusterReadPage(reqNode "request);

serverHandlingWriteReplyOutClusterFromltsClient(reqNode *reply);
serverHandlingWriteUpgradeReplyOutClusterFromItsClient:(reqNode "reply);

serverHandlingWriteReplyToOutClusterRequest{reqNode *reply);
serverHandlingWriteUpgradeReplyTOOutClusterRequest(reqNode *reply};

serverReturningWriteUpdatePageToOwrlerServer(reqNode *request);
serverGettingItsWriteUpdatedPage(reqNode "request);
serverlnvalidatingwriteUpdatePageItGaveToServer(reqNode wrequest);
serverInvalidatingWriteUpdateOutClusterPageTimeout(reqNode wrequest);
serverInvalidatingWriteUpdateOutClusterPageTimeoutWaiting(reqNode *request);

serverAskedToResendRequestOutClusterPageLater(reqNode *request);
ackWriteUpdateReachedServer(reqNode 'request);
ackWriteUpdateNotSentServer{reqNode *request);

/* functions in clientmulti.ca; client functions related to multiserver
* case' /

void clockHandlingOutOfClusterRequest(reqNode *request);
void readerClockHandlingOutOfClusterReadRequest(reqNode 'request);

void
void

void
void
void
void
void
void
void

writ.erclockHandlingOUt.OfClust.erReadRequest(reqNode *request.);
readerorWriterclockHandlingOUt.ofClusterWrit.eRequest.(reqNode *request.);

makeUrslfTempClockHandleOUt.Clust.erReadRequest(reqNode "request.);
invalidateAllOutClusterReadersOfPage(reqNode ·request);
invalidateOutClusterReaderOfPage(reqNode ·request);
watchdogUpdateThread(int page_no, int update_coordinatio~code);
clockGettingltsWrit.eUpdatePage(reqNode ·request);
invalidateOutClusterUpdateWriterPage(reqNode *request);
invalidateAllOutClusterReadersFwdWriteUpdate(reqNode 'request);

151

;" functions in requestsmulti.ca; request functions related to multiserver
• case, replies to out of cluster requests.·/

void replyMakeReaderOutClusterPage(reqNode *request);
void replyMaK.eUpdateWri terOUtClusterPage (reqNode "request);
void replyUpgradeFromReaderToUpdateWriterOutClusterPage(reqNode "request);

/* Functions in servermig.ca. */
void checkMigrationThread() ;
void iterateMigData();
int findNewServer(int client-proc};

void
void

void

void
void

void
void

void

void
void
void
void

ssClientToMigrateln(reqNode *request);
serverlnvalidatingoutClusterReadPagesForWhichMigClientIsReader

(int mig_client) ;
ssRemoveServerAsReaderForPages(reqNode *request);

migrateHandoverReadClockAtServer(reqNode *request);
ackofMigrat.eReadClocklnstalled (reqNode *request);

rnigrateHandoverWriteClockAtServer(reqNode *request);
ackOfMigrateWriteClocklnstalled(reqNode *request);

migrateHandoverAlllnvalidateReadPagesAtServer(reqNode *request);

clientReadyToMigrate(reqNode ·request);
serverGivingPermissionToMigrateThread(int client_mig);
ssHandingOverNewClient(reqNode *request);
newClientAskingForAcceptance(reqNode "request);

void serverHandlingMigNotlnstallingOldClusterWriteClockFromItsClient
(reqNode *request);

void serverHandlingMigNotlnstallingOldClusterWriteClockFro~~otherServer(reqNode

*request} ;

/" Functions in clientmig.ca. */
void clientMigratingThread();
void clientMigrateSendAlllnClusterReadClocks(int page_no);
void clientMigrateHandoverlnstallNewReadClock(reqNode "request);

void
void

void
void

void
void

void
void

clientMigrateSendAlllnClusterWriteClocks(int page_no);
clientMigrateHandoverlnstallNewWriteClock(reqNode *request);

clientlnvalidateAllOutClusterReadClocksBeforeMigrating(int page_no) ;
clientMigratelnvalidateOneOutClusterReadClock(int. page_no) ;

clientMigrateSendAlllnAndOutClusterReadPages() ;
clientMigrateHandoverRemoveClientAsReader(reqNode *request);

clientMigrateRechecklfAllPagesSent() ;
clientPollingNewServerThread(int code, int new_server);

/* Functions in failure.ca.*/
void failureThread() ;
void wakeupFailureThreadHandler lint argc, Word *argv);
void destroyFailureThreadHandler(int argc. Word *argv);

/* Functions in serverrec.ca. */
void serverDetectFailureHandler(int argc, Word *argv);
void serverChecklfFailurelnClusterThread(int site, int down_time);
void serverSendingRecoveryMessagesThread(int down_site) ;
void checkAndlnstallClocks();
void checkAndlnstallTrailers();
void changelnAnotherCluster(reqNode *request};

void
void
int
void
void
void
void
void
void

recoveryToServerHandler(int argc, Word *argv);
serverRecoveringThread() ;
processRecoveryMessageAtServer(reqNode *request);
serverRecoveryUnpackingClockReaderBitmaps(r~qNode*request);
serverRecoveryUnpackingTrailerBitmap(reqNode 'request);
serverRecoveryClientRecovered(reqNode *request);
serverRecoveryAckReadClocklnstalled(reqNode *request);
serverRecoveryAckTrailerlnstalled(reqNode *request);
serverRecoveryCompleteSetServerOK();

152

1* Functions in clientrec.ca.*1
void
void
void
void
void
int
inc
void
void
int
void
void
void
void
void

clientDownThread(int down_time);
clientUpFrornFailureThread() ;
clientSendingRecoveryMessagesThread(int down_site);
sendAIIlnClusterRecoverylnfo();
setBitlnBitmap(Word *bitmap, int arch_size, int pos) ;
isBitset{int bitmap, int size, int pos);
getNextPage(int bitmap, int size, int pos);
recoveryToClientHandler(int argc, Word *argv);
clientRecoveringThread() ;
processRecoveryMessageAtClient(reqNode 'request);
clientRecoverylnstallReadClock(reqNode *request);
clientRecoverylnstallTrailerToClock(reqNode 'request);
clientRecoverylnstallReaderTrailer(reqNode *request);
clientRecoveryComplete() ;
clientRecRemoveServerAsReaderForAPage(reqNode *request);

void usermain(int argc, char ·*argv);

#endif FAULT_TOL_H
I*ifndef FAULT_TOL_H *1

-
153

/*****.**.**************************~***~***********.* *********.******

* FILE serverfn.ca *
* CONTENTS: This file contains all the functions which deal

with an in-cluster message at a server site (in both *
single and mul ti-server systems) .

***********.****~***.*****************~*************** ***************/

#include "ft.h'

j**.** ****************

FUNCTION: requestForServerHandler
PURPOSE: This handler is called when a request is sent to it.

This handler puts the request into the server requests
queue. The server thread pulls out requests in a FIFO
manner.
Uses REQUEST_FOR_SERVER_IPI, runs at server

INPUTS

GENERAL MESSAGE FORMAT

argv[OJ
argvl1]
argv[2]-argv[no of args -2]

REQUEST CODES USED

request_code
no of args (from argv[2J)
the arguments to be put
into the array in a request.

*- O. request code

1. no args
2. page_no
3. access_mode
4. duplicate reque.st number
5. tid of user
6. processor of user
7. unique requests sent so far

S_FROM_USER_REQUEST,request
sent by a user in this
cluster.
6
the page required
READ/WRITE

O. request_code

1. no args
2. page_no
3. clock_site

1. no args
2. page_no
3. clock_mode

O. request_code

1. no_args
2. page_no

S_ACK_CLOCK_CHANGE, ack of
clock change from user.
4

the processor of the site
sending this ack. This is the new clock site.

READ, WRITE,

READ_CLOCK,WRITE_CLOCK
Since the clock has changed,it

will have a new trailer version number. This need not
be sent to the clock (is needed only during recovery),
but no harm updating the server now in the same msg.
(The site of the trailer is old)

S_INFORM_CLOCK_MODE_CHANGE, if
user at clock site changes the mode of the
clock, it informs the server

3

REJl.D, WRITE,
REJl.D_CLOCK,WRITE_CLOCK
the processor of the site

sending this msg. This is needed to check if the clock
site is still the same.

S_MSG_NOT_DELIVERED,
t,he server has set service_later_ignore or
service_lacer_reply for this page. since the clock site
has not been a.ble to deliver this msg, it is informing
the server to change the service back to service_now
for this page.

1

154

1. no args
2. client-proc
3. page no

When a client access a shared page locally. it
sends this message to it server. The server can
maintain the history of accesses of every client
to determine when a client should migrate. and to
what cluster. This message is sent only in a
multi-server environment.

2

the page that was accessed.

O. request_code

READ. Iv"RITE

SS_OUT_CLUSTER_REQUEST.
another server is sending this server a request for
a page belonging to this server.

5

O. request_code

1. no args
2. from_server
3. key_at_from_server
4. page_no
5. reqd_access
6. dup_re<L.no

*.

..
S_READ_REPLY_OUT_CLUSTER_FROM_MY_CLIENT.
C2 sends a reply to out of cluster read request to s2.

1. no args 5
2. this_server_key key 2 at s2.
3. requesting_server_code used by s2 to locate

incoming_request node for sl.
4. page no
5. page_mode
6. page_value

READ

READ

keyl at sl
index]

SS_READ_REPLY_OUT_CLUSTER_REQUEST
s2 sends a reply to a read request made by sl.

5
s2 (sl looks up other_servers

O. request_code

1. no args
2. server_replying

info[s2's
3. your_server_key
4. page no
5. page_mode
6. page_value

** O. request_code

1. no args
2. page_no

S_INVALIDATE_ALL_READERS_AT_OTHER_SERVERS
This server gets a message from its clock of
page_no to invalidate all readers outside this
cluster. (This clock sends this msg when it is
invalidating its readers and sees that a server
is a reader) .

1

*.

..

O. request_code

1. no args
2. page_no
3. server_code

S_INVALIDATE_ALL_BUT_ONE_READERS_AT_OTHER_SERVERS
This server gets a message from its clock of
page_no to invalidate all readers outside this
cluster. (This clock sends this msg when it is
invalidating its readers and sees that a server
is a reader). This message is sent when a server
that is already a reader. requests a write. The
server sends invalidation messages to all servers
that are readers. except the server that made the
write request.

2

the code of the server reader
which should not be invalidated .

SS_INVALI DATE_ALL_OUT_C LUSTER_READERS_OF_PAGE
sl has a read copy of page belonging to s2.
s2 sends sl chis message ceIling ic to invalidate

155

1. no_args
2. page_no

all its readers of specified page.
1

node for 51.

S_WRITE_REPLY_OUT_CLOSTER_FROM_MY_CLIENT,
c2 sends a reply to out of cluster write request to
52, when the requesting server is not already a reader.

7 (excluding msg code)
key2 at s2
used to locate incoming

O. request code

1. no_args
2. this_server_key
3. requesting_server_code

request

**

4. page_no
5. page_mode
6. page value
7. update time the time for which sl can keep

the write update page
8. update coordination code (stored in auxClient [page_no] .

extra at c2l This is used for coordination between the
updated page returned by sl and c2.

** O. request code
S_WRITE_UPGRJl.DE_REPLY_OUT_CLUSTER_FROM_MY_CLIENT,
(B4-1)

c2 sends a reply to out of cluster write request to
52, when the requesting server is already a reader.
(does not send the page value)

1. no_args
2. this_server_key
3. requesting_server_code

request node for 51.

7 (excluding msg code)
key2 at 52
used to locate incoming

4. page_no
5. page_mode
6. page value

7. update time

WRITE_UPDATE
This value is sent as the

requesting server might have invalidated the page if
its reader client was migrating.

the time for which sl can keep
the write update page

8. update coordination code This is used for coordination
between the updated page returned by 51 and c2.
(Stored in auxClient[page_no] .extra at c2.)

** O. request_code

key1 at sl

SS_WRITE_REPLY_OUT_CLUSTER_REQUEST
52 sends a reply to a write request made by sl.

6
s2 (s1 looks up other_servers

1. no args
2. server_replying

info[s2's index]
3. your_server_key
4. page no
5. page_mode w"RITE_UPDATE
6. page_value

7. update time

**
5S_WRITE_UPGRADE_REPLY_OUT_CLUSTER_REQUE5T
s1 is a reader for an out of cluster page. It made a
write request for that page. It gets this reply from
s2 (B5-1}

1. no args
2. server_replying

info[s2' s index]
3. my_server_key
4. page no
5. page_mode
6. page value

7. update time

6
s2 (51 looks up other_servers_

key1 at sl

O. request code

1. no args
2. page_no
3. page value
4. client site

S_RETURNING_OUT_CLU5TER_UPDATE_PAGE
c1 returns an update write (out of cluster) page to sl
after writing to it, sl will return it to s2.

3

(new updated value)
the site returning the page.

156

O. request code
SS_RETURNING_OUT_CLUSTER_UPDATE_PAGE
51 returns an update write page to 52 (the owner) after
writing to it

1. no args
2. page no
3. page value
4. server_returning-page, 51's processor

3

O. request code

1. no args
2. page no
3. updace code

** O. request code

1. no args
2. page no

O. request code

1. no args
2. page no
3. client site

O. request code

S_INVALIDATE_WRITE_UPDATE_PAGE
c2 has given a write update page to 52 to be given to
another server. c2's watchdog wakes up and it finds
that it hasnt yet got the update page. c2 sends this
msg to 52 telling it to invalidate the write update page

2

SS_INVALIDATE_WRITE_UPDATE_PAGE (B11)
52 has given 51 a write update page. This message is
sent by 52 to s1 telling it to invalidate that write
update page.

1

SS_INVALIDATE_WRITE_UPDATE_PAGE_WAITING(B13)
52 gave a write update page to 51. 52 sends
SS_INVALIDATE_WRITE_UPDATE_PAGE to sl. Before
the write update page reaches the client(cl) in s1
which requests it, s1 got the invalidation message.
Instead of sending it to cl, sl re-inserted it
as this message.

2

cl's processor number.

SS_RESEND_REQUEST_FOR_PAGE_LATER (Dl)
52 gets a request for a page from s1. 52 has service
later reply for this page. sends this message back to
51.

1. no args, 2
2. page no
3. key a.t from server. key1

O. request code
S_ACK_RECEIVED_WRITE_UPDATE_PAGE (B8-1)
51 is a reader of page belonging to s2. A client in
sl.cl-l. requested a write. 52 sent a reply .. 51
changed extra to NOT_R&~CHED. and forvlarded the message
to the temp read clock. The temp read clock forwarded
the reply to c1-1 .. on getting the reply c1-1 sends
this message to 51.

1. no args
2. page no
3. c1-1's processor number

O. request code

2

1. no args
2. page no

S_ACK_NOT_SENDING_WRITE_UPDATE_PAGE (B8-2)
51 is a reader of page belonging to 52. A client in
51, cl-l. requested a write. s2 sent a reply .. sl
changed extra to NOT_REACHED. and forwarded the message
'C_INVALIDATE_ALL_OUT_CLUSTER_READERS_FWD_WRITE_UPDATE'
with ack code 'SEND_ACK_WRITE_UPDATE_REACHED_MSG' to
the temp read clock, cl. But cl was migrating. And
since the clientThread and clientMigratingThread at cl
are running in parallel. c1 is no longer the reader
when it gets C_INVALIDATE_ALL ... So c1 sends this
message back to sl.
51 will remove cl-1 from memory when it gets this.

1

157

REQUESTS RELATED TO MIGRATION

** O. request code
SS_CLIENT_TO_MIGRATE_IN (G2)
cl from sl will be migrating to 52. 51 informs s2 about
this. This msg is reed by 52.

**

1. no args
2. cl's processor number
3. sl's processor number

O. request code

2

**

**

SS_REMOVE_MY_SERVER_AS_READER_FOR_PAGES
The server which sends this message is invalidating
some read pages it borrowed (because its temp read
clock was migrating). This server removes those read
pages from list of read pages given to that server.

1. no args 2 + no-pages
2. sending server index
3. no pages

(CHECKED CORRECT PAGE RETRI~vAL)

4. pagel
5. page2
6. page3 .. and so on

O. requ.es t code
S_MIG_HANDOVER_READ_CLOCK (HI)
A client cl is migrating. It sends this
message for every in-cluster page for which it is
a read clock.

1. no args 6 + no of readers
2. page number
3. page status READ_CLOCK
4. page value
5. client processor client which is handing over

the clock. cl, which is migrating
6. trailer version
7. number of readers

{CHECKED CORRECT READER RETRIEVAL)
8. reader 1
9. reader 2 .. and so on

O. request code
S_ACK_MIG_READ_CLOCK_INSTALLED
cl was a read clock. It is migrating to s2. A new
read clock is installed at c2. This message sends
an ack to sl telling it that the new read clock is
installed successfully. (H3)

**

1. no args
2. page no
3. new clock's processor

O. request code

2

S_MIG_HANDOVER_h~ITE_CLOCK (Kl)
Client cl is migr~ting. It sends this
message for every in-cluster page for which it is
a write clock.

**

1. no args
2. page number
3. page status
4. page value
5. client processor

the
6. trailer version

O. request code

5

client which is handing over
clock. c1, which is migrating

S_ACK_MIG_WRITE_CLOCK_INST~LLED(K3)

cl was a write clock. It is migrating to s2. A new
write clock is installed at c2. This message sends
an ack to s1 telling it that the new write clock is
installed successfully.

1. no args
2. page no
3. new clock's processor

2

IS8

** 0. request. code

CORRECT PAGE RETRIEVAL)

S_MIG_HANDOVER_INVALIDATE_READ_PAGES (J1)
c1 is a client which is migrating to a different
cluster. It sends this message to sl giving it
a list of pages for which it is a reader (not read
clock) . This list includes both in and out cluster
pages.It sends this message to sl even if it
doesnt have any 'just read' pages.

2 + no....pages

processor

S_ACK_MIG_READ_CLOCK_INSTALLED (13)
c1 was a temp read clock for an out. cluster page.
It is migrating to 52. A new read clock is installed at
c2. This message sends an ack to sl t.elling it that the
new temp read clock is installed successfully.

2

1. no args
2. c1's processor number
3. no....pages being sent

(CHECKED
4. page 1
5. page 2 .. and so on

l. no args
2. page no
3. new clock's

** 0. request code

** D. request code
S_CLIENT_READY_TO_MIGRATE(L1)
1'. client cl has sent all its handover messages to
sl during migration. It's user and client are
waiting to migrate. It sends this message to sl
so sl can check if all t.he handover's have been
ack'd, and allow c1 t.o migrate

1. no args 1
2. c1's processor number

** 0. request code
SS_HANDING_O\r.ER~EW_CLIENT(L3)

Client c1 is migrating to s2 from sl. This is the final
message sl sends to s2 telling it that c1 will migrate
to s2.

1. no args
2. c1, client migrating in
3. from_server....proc

2

0. request code

1. no args
2. new_client""proc

S_NEW_CLIENT_ASKING_FOR-ACCEPTANCE (N1)
A client c1 has migrated from sl to s2 (It
got permission from sl). s2 could have
crashed without getting the handover message
from sl. So, this client acts intelligently
and keeps polling 52 asking for an ack.
REQUEST_FOR_SERVER_IPI

1

** 0. request_code
S_MIG_NOT_INSTALLING_OLD_CLUSTER_WRITE_CLOCK
A client c1 was migrating from cluster 1 to cluster 2.
When in cluster 1 it requested a write page in cluster 1.
It got. a reply 'after' it. migrated to clust.er 2. Now
that page is an out of clust.er page. So, c1 cannot install
t.he page as a write clock in replyMakeWrit.eClock. It. sends
t.he page back t.o it.s new server, t.he server in clust.er 2.
s2 will have t.o forward the page to sl. sl will have t.o
inst.all a new write clock. sl was wait.ing for an
acknowledgment. from cl if cl was in cluster 1, and hence
it. has to be t.old t.hat this write clock has not. been
inst.alled.
This server is in cluster 2.

message

1. no args
2. client proc

3. page no
4. access_mode

5
t.he client. sending this

5. page_value
6. trailer_version

** O. request_code

1. no args
2. page no
3. access_mode
4. page_value
5. trailer_version

159

the latest t version in
cluster 1

SS_MIG_NOT_INSTALLING_OLD_CLUSTER_WRITE_CLOCK
A client cl was migrating from cluster 1 to cluster 2.
vilien in cluster 1 it requested a write page in cluster 1.
It got a reply 'after' it migrated to cluster 2. Now
that page is an out of cluster page. So, c1 cannot install
the page as a write clock in replyMakeWriteClock. It sends
the page back to its new server, the server in cluster 2.
s2 will have to forward the page to sl. sl will have to
install a new write clock. sl was waiting for an
acknowledgment from c1 if c1 was in cluster I, and hence
it has to be told that this write clock has not been
installed.
This server is in cluster 1 which got the message from
server 2.

4

the latest t version in
cluster 1

REQUEST RELATED TO OTHER SERVER(S) STATE (RECOVERY)

** O. request code SS_SET_SERVER_STATE
When a server goes down or starts the recovery process,
it informs all other servers about its state.
A server that gets this message has to make sure
its cluster is consistent.
This message does not use the SERVER_TO_SERVER_IPI, as
a lot of processing to make data consistent has to be
done. It was considered more reasonalbe to do this
via the request queue, than give it a special priority
via the SERVER_TO_SERVER_IPI (which does not go
through queue)

1. no args
2. server-processor
3. server_index
4. server_state

3

SERVER_DOWN/SERVER_RECOVERINGI
SERVER_OK

OUTPUTS : none
.**.************~~**********.******.**~****************+~··****i

void requestForServerHandler(int argc, Word *argvl

perServerDS
int

"thisServer;
ret;

thisServer (perServerDs *) (*(ptrToGlobalServerDS»;
1* argv[l] is number of values in the request. It should not

* be the value to which SEND_~~Y is initialized.
*1

assert(argv[l] := INIT_SEND_ARRAY);

if(globalStateInstall != INSTALLATION_COMPLETE)
return;

1* If SERVER_OK, put the request in the request queue. *1
1* If the server is SERVER_NEVER_STARTED,SERVER_DOWN,

* SERVER_TO_RECOVER, SERVER_RECOVERING, do not put in request q.~!

if ((thisServer->server_state & SERVER_OK) == SERVER_OK)
(

ret = insertIntoRequestQ(thisserver
>server_request_queue,argv[l) ,argv(Oj ,&argv[2]) ;

if (ret == ERROR_Q)
(

fatal(' ERROR: Server failed to insert request into server request
queue\n")

FUNCTION:
PURPOSE :

INPUTS
OUTPUTS

serverThread
This thread runs in an infinite while loop. It pulls out
requests from the server request queue. If the queue is
empty it sits in an idle loop and checks again. It checks
for the server and system state. If the server has gone
down, it exits. Otherwise, it checks for some conditions
and calls appropriate functions to handle requests.
This thread is not counted in the no pending server threads.
none
none.

160

*******.*************~******************************** ·***·**·**~***·I

void serverThread()
{

perServerDS
reqNode
int

long
int
int

thisServer

*thisServer;
*next_request;
ret_code; 1* return value of getting a request

* from request queue
*1

initsleep,endsleep;
cycles_slepe;
len,new_tid;

(perServerDS*) (*(ptrToGlobalServerDS))

1* BOTTLENECK is defined in pararnUser.h and can be
* modified in the corresponding prot.par file.
* A thread is created which checks the number of requests
* in a server's queue periodically. For now, this is done
* only when there are no failures in the system. (The coding
* doesnt take ca,re of this). When no failures are simulated,
* (specified in prot.par), only then shd BOTTLENECK be true.
*1

if (BOTTLENECK)
(

new_tid =
thread_create«FuncPtr)measureServerBottleneckThread,SMALL_STACKSIZE,PRIORITY,O);

thread_wakeup(new_tid};

while (CURR_TIME < TOTAL_SIM_RUN_TlME_CYCLES)
{

1* If the SERVER_DOWN bit is set, the server thread
* must exit.
* set the SERVER_NEVER_STARTED bit and exit from the server
* thread. This thread will be re-started when
* the system recovers.
* The SERVER_TO_RECOVER bit is set by serverSendingRecovery
* MessagesThread.
* If the server is recovering, the server thread does not have
* to exit. It can just sit in a loop.
* The server_never_started and server_ok cannot both
* be set at the same time.
* The server_down and server_ok should not be set at
.. the same time.
*1

begin_atomic() ;
if ((thisServer->server_state & SERVER_DOWN) == SERVER_Dmm)
(

1* Since the server Thread is exieing, set the
* SERVER_NEVER_STARTED bit on .
• This is used to restart the server thread after
* recovery is complete.
*/

emptyRequeseQ(thisServer->server_request_queue);
thisServer->server_state &= 0;
thisServer->server_state 1= SERVER_NEVER_STARTED;
end_atomic() ;
reeurn;

}
end_atomic() ;

/* If the server is recovering, no requests should be
* serviced. The request queue is only to manage
* read Iwrite requests or related messages. It is
* noe for recovery messages.
* But if ehe system is recovering, the server thread

161

* will sleep in a loop waiting for it to recover. before
* it can start servicing requests.
*/

begin_atomic() ;
if((thisServer->server_state & SERVER_TO_RECOVER)

SERVER_TO_RECOVER)

/" Empty request queue"/
emptyRequestQ(thisServer->server_request_queue) ;
thisServer->server_state &= 0;
thisServer->server_state 1= SERVER_RECOVERING:

while (
SERVER_P£COVERING)

I

(thisServer->server_state & SERvLR_RECOVERING)

if(CURB_TIME > TOTAL_SI~RUN_TIME_CYCLES)

(

thisServer->server_state &= 0;
thisServer->server_state 1= SERVER_NEVER_STARTED;
end_atomic();
return;

}
end_atomic () ;
BUSY_WAIT(RECOVERY_SLEEP_TIME_CYCLES) ;

begin_atomic() ;
/* Do not need a thread_sleep_end_atomic for

* this.*/
/* SINCE ONLY ONE SITE CAN GO DOWN AT A TIME, DO NOT

* NEED TO CHECK FOR SERVER_DOWN HERE. */
)
end_atomic() ;

/* Pullout a request from the request ~Jeue.*/

begin_at:omic() ;
next_request = getNextRequest(thisServer->server_request_queue, &ret_.code};
end_atomic () ;

if [ret_code == EMPTY_Q}
(/" Wait in a loop for sometime, or put the server

* thread to sleep.
*/

/" Add 50 cycles to server thread*/
initsleep = CURR_TlME;
ASSERT_NOT-ATOMIC() ;
BUSY_WAIT(EMPTY_QUEUE_WAIT_TIME_CYCLES):

endsleep = CURR_TIME;
cycles_slept = (endsleep - initsleep)/TIMER_PERIOD;

j
else
{

/* Process t:he request."/
/* Must be in non atomic region here.*/
processRequestAtServer(next:_request) ;
/* Will return here. Free the memory for

* the request here instead of doing it in
* the function where the request has been
* handled.
*/

freeRequesCNode[&next_request) ;
ASSERT_NOT_ATOMIC[) :

} /* end of while */
/* End of simulation. Destroy the failure thread if it is

* suspended/running. All s~rvers will execute this code
* at the end of the simulation, but only one call will
* destroy the failure thread. This is done by using the
+ state of the failure thread. If this server is down
+ at the end of the simulation, alternate ways to destroy

* the failure thread are needed.
*/

begin_atomic() ;
thisserver->server_state &= O·
thisServer->server_state 1= SERVER_NEVER_STARTED;
end_atomic() ;

len =1;
send_ipi(proc_failure_thread, PRIORITY, DESTROY_FAILURE_THREAD_IPI,len,O);

162

measureServerBottleneckThread()void
(

perServerDS
int

*thisServer;
index, no_requests;

begin_atomic() ;
thisServer = (pe.rServerDS*) (.. (ptrToGlobalServerDS)) ;
index = thisServer->s_index;
end_atomic{} ;

while(CURR_TIME < TOTAL_SIM_RUN_TIME_CYCLES)
(

begin_atomic();
no_requests = thisServer->server_request_queue->no_of_requests;
end_atomic() ;

CYCLE_COUNTING_OFF;
AVG_METRIC (globalBottleneckMetric [index] .avg_metric, no_requests);
STDDEV_METRIC(globalBottleneckMetric[index] .stddev_metric,

globalBottleneckMetric[index] .avg_rnetric,no_requests)
CYCLE_COUNTING_ON;

/******************************~****.*****************~***+***********

FUNCTION: processRequestAtServer
PURPOSE : This function processes a request sent to the server

with the REQUEST_FOR_SERVER_IPI. These are requests
sent during the normal operation of the system (and
not during recovery). It handles requests from its
clients and from other servers.

This function takes care of its atomic regions, so the
calling function should be in a non atomic region when
this function is called.

INPUTS reqNode *request: the request pulled out of the
server_request_queueu. It is deleted
by the calling function.

OUTPUTS ; none
.***~**********.***/

processRequestAtServer(reqNode "request)void
(

int
int
int
perServerDS
auxServer
Word
int
unsigned int
int
int

#ifdef MULTI SERVER
int
int
!lendif

page_no,access_mode,dup_re~no;

tid_of_origin, proc_origin;
uni~request_no;

*thisServer;
"serverAuxTable;
SEND_ARRAY [20] ;
clock_site;
clock_mode;
len, i, size_msg;
array_index;

key_at_from_server, from_server;
this_server_index;

begin_atomic() ;
thisserver = (perServerDS*) (*(ptrToGlobalServerDS»;

serverAuxTa.ble
end_atomic() ;

thisServer->server-ptable;

163

for(i=O; i< 20; i++l
SEND_ARRAY[iJ = INIT_SEND_ARRAY;

/* Not in atomic region here.*/
switch (request->msg_code)
(

case S_FROM_USER_REQUEST
/* request->array:
* O. page_no the page required
* 1. access_mode R~~/WRITE

* 2. duplicate request number
* 3. tid of user
* 4. processor of user
* 5. unique requests sent so far
*/

page_no = request->array[O];
access_mode = request->array[l];
dup_re~no = request->array[2j;
tid_of_origin = request->array[3j;
proc_origin = request->array[4];
uni~request_no = request->array[S] ;

/* Update statistics at this server site.
* This is a control message during normal operation.
*/

CYCLE_COUNTING_OFF;
begin_atomic() ;

globalServerStats (thisServer
>s_index] .normal.control_msg_count++;

size_msg = 8 * sizeof(Word);
globalServerStats[thisServer

>s_index] .normal.control_msg_bytes += size_msg;
end_atomic() ;

/* Update statistics for the time interval into which
* this message falls.
*/

array_index = CURR_TIME/METRIC_INTERVAL_CYCLES;

if (MIG_INTERVAL)
(
assert{thisServer->s_index >=0 &&

thisServer->s_index < NO_OF_SERVERS);
assert(array_index >=0 && array_index < MAX_MIG_INTERVALS);

globalIntervalData[thisServer
>s_index] .in_cluster_control_byte[array_index] += size_msg;

globalIntervalData[thisServer
>s_index] .in_cluster_control_msg[array_indexl += 1;

}

begin_atomic() ;
/* First check if this is a duplicate request

* that can be ignored.
*/

if (ELIMINATE_DUPLICATE_REQUESTS == 1)
(

if(thisServer->lastRequestByClient[proc_origin]
> uni~request_no)

if (dup_re~no > 1)
return;

}

if (thisServer->lastRequestByClient[proc_origin]
< (uni~request_no -1))

/* Don't know if this current request
* will be serviced successfully. So,
* set the latest request serviced to
* 1 less than the current request no.
*/

164

thisserver->lastRequestByClient[proc_origin]

/* If the page has SERVICE_LATER_IGNORE,
* ignore the request
* Can check with == directly instead of & as
* not all values are possible.
*/

if (serverAuxTable[page_no] .service SERVICE_LATER_IGNORE)
{

/* Ignore the request.*/
end_atomic() ;
return;

}

if
(

serverAuxTable[page_no] . service

end_atomic() ;
1* 51 has loaned this page to another server or the clock
* site of this page is migrating. It tells its
* client to resend this request
* s1 sends a REQUEST_FOR_CLIENT_IPI to c1 (D2)
* O. REPLY_RESEND_REQUEST_FOR_PAGE_LATER_MSG
* 1. no args, 3
* 2. page no
* 3. tid of user
* 4. unique request number
*/

SEND_ARRP.Y[O] REPLY_RESEND_REQUEST_FOR_PAGE_LATER_MSG;
SEND_ARRAY [1] 3;
SEND_ARRAY [2] page_no;
SEND_ARRAY [3] tid_of_origin;
SEND_APRAY[4] uni~request_no;

/* MESSAGE_LENGTH*/
len = 5 * sizeof(Word);

send_ipiV (proc_origin, PRIORITY, REQUEST_FOR_CLIENT_IPI, len,S, SEND_ARRJl.Y) ;
assert {SEND_ARRAY[ll ,- INIT_SEND_ARRAY);
return;

)
/* If the request is for a page which is out.

* of the server's clust.er, call a met.hod for
• it..
*/

if((page_no < chisServer->lowest-page) I I
page_no> thisServer->highest.-page)

/* Make sure it is a valid page no.*1
end_atomic() ;

#ifndef MULTI SERVER
fatal(' ERROR: request for out of cluster request in

single server environment\n');
return;

lIelse
requestForOutClusterPageAtServer(request);
ASSERT_NOT_ATOMIC() ;
return;

!lendif
)
/* If t.he server is not servicing duplicate

* request.s, do not service any request with
* duplicate request value> 1.
*/

ift thisServer->dupReq ~ SERVE_DUPLICATE)
(
/* Do not service duplicate requests. Do not

* even fwd them to the clock site ../
if(dup_re~no > 1)
(

end_atomic() ;
return;

)
end_atomic() :

/* The request cannot be ignored now! */
begin_atomic();
clock_site = serverAuxTable[page_no) .clock:
clock_mode = serverAuxTable[page_no).clock_mode:
end_atomic() ;

/* Not in atomic region here. */
switch (access_mode)
(

165

*

case READ: /* Read request.*/
/ •. There are 2 cases:

* 1. Clock is reader, read request;
- forward the request to the

clock site, no changes
are made to the server's data
structures.

* 2. clock is writer, read request;
- changes are made to che

server's data structures.
*/

switch (clock_mode)
(
case READ: / * Clock is reader.' /
case READ_CLOCK;
/* Clock is reader, read request. */
/* Forward the request to the clock site.

* Indicat.e that the user does not need
* to send an ack to the server
* Arguments:
• O. request_code:

C_FWD_REQUEST
* 1. no_args
• 2. ack_code : DO_NOT_SEND_ACK MSG
* 3. page_no
* 4. access_mode
* 5. tid_of_origin
* 6. processor of origin
* 7. uni~request_no

* The clock will know its a reader and
* will do the processing
* The server makes no changes to its
* data structures, and is not waiting
* for any acknOWledgement.
*/

SEND_ARRAY [OJ
SEND_ARRAY [1]
SEND_ARRJl.Y [2]
SEND_AP.RAY [3]
SEND_ARRAY [4]
SEND_ARRJl.Y [5]
SEND_ARRAY [6]
SEND_ARRAY [7]

C_FWD_REQUEST;
6:
DO_NOT_SEND_ACK_MSG:
page_no;
access_mode:
tid_of_origin;
proc_origin;
uni~request_no;

/* MESSAGE_LENGTH*/
len = 8 • sizeof(Wordl;

send_ipiV(clock_site,PRIORITY,REQUEST_FOR_CLIENT_IPI,len,8, SEND_ARRAY);
assert(SEND_P~Y[lJ != INIT_SEND_P~Y);

/* The request is no longer
* needed. Memory for it will
* be freed in serverThread
* on return.
*/

break: /* Clock as reader.*/
case WRITE: /* Clock is writer.*/
case WRITE_CLOCK:
/* Clock is writer, read request. */
/* Server's data structures need to be

* changed. Call a function that
* will do the processing.
*/

166

readRequestClockWriterServer(request);
ASSERT_NOT_ATOMIC();
break;/* clock as writer.*/

default:
fatal (·ERROR: Invalid clock_mode %d for page %d at

server P%d\n',clock_mode,page_no,cURR_PROCESSOR);
break;

) /* End of switch, clock_mode.*/
break; /* End of read request.*/

case WRITE: / * Wri te reques t. * /
/* Not in atomic region here.*/
/* There are 2 cases:
* 1. Clock is reader, write request;

- fonvard the request to the
clock site, no changes
are made to the server's data
structures.

* 2. Clock is writer, write request;
- changes are made to the

server's data structures.
Create a thread.

*/
swi tch (clock_model
(
case READ: /* Clock is reader. */
case READ_CLOCK:
/* Clock is reader, write request. */
/* Server's data structures need to be
* changed. Call a function.
*/

/* Not in atomic region here.'/
writeRequestClockReaderOrWriterServer(request) ;
ASSERT_NOT_ATOMIC();

break; /* Clock as reader.*/

case WRITE: /. Clock is vlriter. * /
case WRITE_CLOCK:
/* Clock is writer, write request. */
/* Server's data structures need to be

* changed. Call a function.
*/

writeRequestclockReaderorWriterServer(request);
ASSERT_NOT_ATOMIC() ;
break;/* Clock as writer.*/
default:
fatal(· Invalid clock_mode %d for page %d at server

P%d\n".clock_mode,page_no,CURR_PROCESSOR) :
break;
)/* End of switch clock_mode.*/
break; /* End of write request.*/

default:
fatale' Invalid access mode %d sent in

REQUEST_FROM_CLIENT_IPI\n·, access_mode};
break;

)/' Switch access_mode.*/

#ifdef MULTI_SERVER
/* If a multi-server environment, the in cluster requests

* made by a client are also considered to decide if it
* should migrate to another cluster .
.. Since a client can send multiple duplicate requests,
* increment migData only for the first request.
*/

begin_atomic() :
thls server index = -1;
for (i=O; i -< NO_OF_SERVERS; i++)
(

if(listOfServers[iJ == CURR_PROCESSOR)
{

this_server_index = i;
break;

}

if 1)

(thisServer->migData) [proc_origin] [this_server_index]
(thisServer->migDataJ [proc_originl (this_server_index] + 1;

)
end_atomic() ;
#endif /* MULTI_SERVER*/

ackOfClockChangeServer(request);
ASSERT_NOT_ATOMIC();
break; f* End of case S_ACK_CLOCK_CHANGE*/

informClockModeChangeServer{request) ;
ASSERT_NOT_ATOMIC() ;
break;

} /* End of case S_INFORM_CLOCK_MODE_CHANGE*/
case S_MSG_NOT_DELIVERED:

informMsgNotDeliveredServer{request) ;
ASSERT_NOT-ATOMIC() ;
break;

) /* End of case S_MSG_NOT_DELIVERED*/

! * ! ! ~ ! ! ! ! t ! ~ ! ! ! ! ~ ! ! ~ ! ~ ! !! BEGIN MULTI SERVER! I ! ! ~ ~ ! ! ! ~ ! ! ! ! I ! ! ! ' ! ! ! ! ! I ! ! * /
#ifdef MULTI SERVER

/* When a client access a shared page locally, it
• sends this message to its server. The server can
• maintain the history of accesses of every client
* to determine when a client should migrate, and to
* what cluster. This message is sent only in a
* multi-server environment.
'j

serverUpdatingClientDataAccessPattern(request);
ASSERT_NOT_ATOMIC() ;
break;

} /' End of case S_INFORM~PAGE_ACCESS*j
case SS_OUT_CLUSTER_REQUEST:

/* Another server is sending this server a request
• for a page belonging to this server.
* sl sends s2 (this server) a request.
* request->request_code = SS_OUT_CLUSTER_REQUEST
* request->no_values = 5
• request->array:
• O. from_server
• 1. key_at_from_server
* 2. page_no
* 3. reqd_access .. R/W
* 4. dup_re<L-no
*f

from_ser,er = request->array[O]; f* sl's processor'/
key_at_from_server= request->array[l];
page_no = request->array[2];
access_mode = request->array[3] ;
dup_re<L-no = request->array[4];

/. Update statistics at this server site.
* This is a control message during normal operat.ion.
*/

CYCLE_COUNTING_OFF;
begin_atomic();

globalServerStats[thisServer-
>s_index] .normal.control_msg_count.++;

size_msg = 7 • sizeof(Word);
globalserverStat.s[thisServer

>s_index] .normal.control_ffis9_bytes += size_msg;
end_atomic() ;

]67

168

/* Update statistics for the time incerval inco t-lhich
* this message falls.
*/

array_index = CURR_TIME/METRIC_INTERVAL_CYCLES:

if (MIG_INTERVAL)
(
assert(thisServer->s_index >=0 &&

thisServer->s_index < NO_OF_SERVERS) ;
assert(array_index >=0 && array_index < MNC!"lIG_INTERVALS);

globallntervalData[thisServer
>s_index] .out_cluster_control_byte[array_index] += size_msg;

globalIntervalData[chisServer
>s_indexl.out_cluster_control_msg[array_index] += 1;

}

begin_atomic();
if((page_no < thisServer->lowest-page) I I

(page_no> thisServer->highest-page})

fatal(" SS_OUT_CLUSTER_REQUEST carne to server P~d for page
%d, this page does not belong to this server\n",CURR_PROCESSOR,page_no):

end_atomic() ;
return;

)
/* If the page has SERVICE_LATER_IGNORE,

* ignore the request.
* Can check with == directly instead of & as
* not all values are possible.
*/

if (serverAuxTable(page_noj .service SERVICE_LATER_IGNOREI
(

/* Ignore the request.*/
end_atomic () ;
return;

}

if
(

serverAuxTable[page_no) . service

end_atomic() ;
/* Send a later reply to the server sl,

* and return.
*/

/* s2 sends a REQUEST_FOR_SERVER_IPI to s1 (01)
* O. request_code: SS_RESEND_REQUEST_FOR_PAGE_LATER
* 1. no args =2
• 2. page no
* 3. key at from server, key1
*/

SEND_ARRAY (0] SS_RESEND_REQUEST_FOR_PAGE_LATER;
SEND_ARRAY [1) 2;
SEND_~~Y[2) page_no;
SEND_ARRAY [3] key_at_from_server:
/* MESSAGE_LENGTH*/
len = 4 * sizeof(Word};

send_ipiV(frorn_server,PRIORITY,REQUEST_FOR_SERVER_IPI,len,4,SEND_ARRAY);
assert (SEND_ARRAY [1) != INIT_sEND_ARRAY);

return;

}
/* If the server is not ser,icing duplicate

* requests, do not service any request with
* duplicate request value> 1.
*/

if(thisServer->dupReq ~ SERVE_DUPLICATE)
{
/* Do not service duplicate requests. Do not
* even fwd them to the clock site.
*/

end_atomicl) ;
return;

)
end_atomic() ;

1* The request cannot be ignored now! *1
requestFromOUtOfClusterPageAtServer(request);
ASSERT_NOT_ATOMIC();
break;

I*end of case SS_OUT_CLUSTER_REQUEST*I
case S_READ_REPLY_OUT_CLUSTER_FROM_MY_CLIENT:

1* An out of cluster read request from 51 was
* fwd'd by s2 to its clock c2. c2 is sending
* a reply to this read request. *1

serverHandlingReadReplyOutClusterFromItsClient(request);
ASSERT_NOT_ATOMIC();
break;

l/* End of case S_READ_REPLY_OUT_CLUSTER_FROM_MY_CLIENT*I
case SS_READ_REPLY_OUT_CLUSTER_REQUEST:
(

1* s1 gets a reply from s2 to a read request it made
* earlier.
*1

serverHandlingReadReplyToOUtClusterRequest(request);
ASSERT_NOT_ATOMIC() ;
break;

) 1* End of case SS_READ_REPLY_OUT_CLUSTER_REQUEST*I
case S_INVALIDATE_ALL_READERS_AT_OTHER_SERVERS:

1* This server gets a message from its clock of
• page_no to invalidate all readers outside
• this cluster. (This clock sends this msg when
* it is invalidating its readers and sees that
* a server is a reader) .
*1

serverInvalidatingOtherServerReaders(request) ;
ASSERT_NOT_ATOMIC() ;
break;

)
case S_INVALIDATE_ALL_BUT_ONE_READERS_AT_OTHER_SERVERS:

1* This server gets a message from its clock of
• page_no to invalidate all readers outside this
* cluster. (This clock sends this msg when it is
* invalidating its readers and sees that a server
* is a reader). This message is sent when a server
* that is already a reader, requests a write. The
* server sends invalidation messages to all servers
• that are readers, except the server that made the
* write request.
*1

serverInvalidatingAllButOneOtherServerReaders(request) ;
ASSERT_NOT_ATOMIC();
break;

l*s1 has a read copy of page belonging to s2.
*s2 sends sl this message telling it to invalidate
*all its readers of specified page.
*1

serverInvalidatingItsOutClusterReadPage(requestl;
ASSERT_NOT_ATOMIC() ;
break;

case S_WRITE REPLY_OUT_CLUSTER_FROM_MY_CLIENT:
{

1* An out of cluster vrrite request from sl was
* fwd'd by s2 to its clock c2. c2 is sending
* a reply to this write request*1

serverHandlingWriteRep1yOutClusterFromItsClient(request) ;
ASSERT_NOT_ATOMIC() ;
break;

169

f* An out of cluster write request from sl was
* fwd'd by s2 to its clock c2. c2 sees that sl
* is already a reader of this page is sending
* a reply to this write request B4-l.
*f

serverHandlingwriteUpgradeReplyOutCluscerFromItsClient(request);
ASSERT_NOT_ATOMIC() ;
break;

f* sl gets a reply from s2 to a write request it made
* earlier.
*f

serverHandlingWriteReply'I'oOutClusterRequest(request) ;
ASSERT_NOT_ATOMIC() ;
break;

l f* End of case SS_WRITE_REPLY_OUT_CLUSTER_REQUEST*f
case SS_WRITE_UPGRADE_REPLY_OUT_CLUSTER_REQUEST:

f* sl is a reader for an out of cluster page. It made a
* write request for that page. It gets this reply from
* s2.
*f
serverHandlingWriteUpgradeReplyToOutClusterRequest(request) ;
ASSERT_NOT_ATOMIC() ;
break;

case S_RETURNING_OUT_CLUSTER_UPDATE_PAGE:
{

f* c1 returns an update write (out of cluster) page to sl after
* writing to it. sl will return it to s2.
*f

serverReturningWriteUpdatePageToOwnerServer(request);
ASSERT_NOT_ATOMIC() ;
break;

l /* End of case S_RETURNING_OUT_CLUSTER_PAGE *f
case SS_RETURNING_OUT_CLUSTER_UPDATE_PAGE:

/* sl returns an update write page to s2 (the owner) after
• writing to it. *f

serverGettingItsWriteUpdatedPage{request);
ASSERT_NOT_ATOMIC() ;
break;

l/* Eend of case SS_RETURNING_OUT_CLUSTER_PAGE*/
case S_INVALIDATE_WRITE_UPDATE_PAGE:

/* c2 has given a write update page to s2 to be given to another
, server. c2's watchdog wakes up and it finds that it hasnt
* yet got the update page. c2 sends this msg to s2 telling it
* to invalidate the write update page.
*f

serverInvalidatingWriceUpdatePageItGaveToServer(request) ;
ASSERT_NOT_ATOMIC() ;
break;

case SS_INVALIDATE_WRITE UPDATE PAGE:

/' s2 has given sl a write update page. This message is
* sent by s2 to sl telling it to invalidate that write
* update page.
*/

serverInvalidatingWriteUpdateoutClusterPageTirneout{request);
ASSERT_NOT_ATOMIC() ;
break;

f* s2 gave a write update page to sl. s2 sends
, SS_INVALIDATE_WRITE_UPDATE_PAGE to sl. Before
, the write update page reaches the client(c1) in sl
* which requests it, sl got the invalidation message.
, Instead of sending it to c1, sl re-inserted it

170

* as this message. B13
*/

serverlnvalidatingWriteUpdaceOUtClusterPageTimeoucWaiting(request) ;
ASSERT_NOT_ATOMIC() ;
break;

/* s1 requested a page from s2. s2 sends a reply asking
* s1 to resend the request later. (s2 has loaned thac
* page to anocher server) .
*/

serverAskedToResendRequestOutCluscerPageLater(request);
ASSERT_NOT_ATOMIC() ;
break;

/* s1 is a reader of page belonging to s2. A client in
* s1,cl-1, requested a write. s2 sent a reply .. sl changed
* extra to NOT_REACHED, and forwarded the message to
* the temp read clock. The temp read clock forwarded the
* reply to c1-1 .. on getting the reply cl-1 sends this
* message to 51. B8-l
*/
ackWriteUpdateReachedServer(request);
ASSERT_NOT_ATOMIC() ;
break;

/* 51 is a reader of page belonging to 52. A client in
* s2, cl-l, requested a write. s2 sent a reply .. sl
* changed extra to NOT_REACHED, and forwarded the message
* 'C_INVALIDATE_ALL_OUT_CLUSTER_READERS_FWD_WRITE_UPDATE'
* "lith ack code 'SEND_ACK_,'iRITE_UPDATE_REACHED_MSG' to
* the temp read clock, c1. But cl was migrating. And
• since the clientThread and clientMigratingThread ac cl
* are running in parallel, c1 is no longer the reader
* when it gets C_INVALIDATE_ALL ... So c1 sends this
* message back to 51. (68-2)
* sl will remove c1-1 from memory when it gets this.
*/
ackWriteUpdateNotSentServer(request) ;
ASSERT_NOT_ATOMIC();
break;

/* c1 from s1 will be migrating to 52. s1 informs s2 about
* this. This msg is reed by s2. (G2)
*/

ssClientToMigrateIn(request) ;
ASSERT_NOT_ATOMIC() ;
break;

/* The server which sends this message is invalidating some
• read pages it borrowed (because its temp read clock was
• migrating). This server removes those read pages from
* list of read pages given to that server.
*/

ssRemoveServerAsReaderForPages(request) ;
ASSERT_NOT_ATOMIC();
break;

/* C1 is a client that is migrating. It sends this
* message for every in-cluster page for which it is
* a read clock. Hl
*/
migrateHandoverReadClockAtServer(request) ;
ASSERT_NOT_ATOMIC() ;

171

is migrating to s2. A new
at c2. This message sends
that the new read clock is
(H3)

break;

;* c1 was a read clock. It
* read clock is installed
* an ack to sl telling it
* installed successfully.
*/

ackofMigrateReadClockInstalled(request) ;
ASSERT_NOT_ATOMIC();
break;

case S_MIG_HANDOVER_WRITE_CLOCK:
(

i* Client c1 is migrating. It sends this
* message for every in-cluster page for which it is
* a write clock. (K1)
*i
migrateHandoverWriteClockAtServer(request);
ASSERT_NOT_ATOMIC() ;
break;

/* c1 was a write clock. It is migrating to 52. A new
* write clock is installed at c2. This message sends
* an ack to sl telling it that the new write clock is
* installed successfully. K3
*/

ackafMigrateWriteClockInsta11ed(request) ;
ASSERT_NOT_ATOMIC() ;
break;

/* c1 is a client which is migrating to a different
* cluster. It sends this message to 51 giving it
* a list of pages for which it is a reader (not read
* clock). This list includes both in ~~d out cluster
* pages.It sends this message to sl even if it
* doesnt have any 'just read' pages. (Jl)
*/

migrateHandoverAllInvalidateReadPagesAtServer(request);
ASSERT_NOT_ATOMIC();
break;

/* A client cl has sent all its handover messages to
* 51 during migration. It' 5 ·user and client a.re
* waiting to migrate. It sends this message to sl
* so 51 can check if all the handover's have been
* ack'd, ~~d allow c1 to migrate. (Ll)
*/

clientReadyToMigrate(request) ;
ASSERT_NOT_A.TOMIC() ;
break;

/* Client cl is migrating to s2 from sl. This is the final
message sl sends to s2 telling it that c1 will migrate

* to 52. (L3)
*/
ssHandingoverNewClient(request) ;
ASSERT_NOT_ATOMIC() ;
break;

case S_NEW_CLIENT_ASKING FOR ACCEPTANCE:

/* A client c1 has migrated from sl to s2 (It
* got permission from sl). s2 could have
* crashed without getting the handover message
* from sl. So. this client acts intelligently
* ~~d keeps polling s2 asking for an ack. (Nl)

172

-

*/
newClientAskingForAcceptance(request) ;
ASSERT_NOT_ATOMIC();
break;

/* A client cl was migrating from cluster 1 to cluster 2.
* When in cluster 1 it requested a write page in cluster 1.
* It got a reply 'after' it migrated to cluster 2. Now
* that page is an out of cluster page. So, cl cannot
* install the page as a write clock in replyMakeWriteClock.
* It sends the page back to its new server, the server in
* cluster 2. This is the server in cluster 2.
*/

serverHandlingMigNotInstallingOldClusterWriteClockFromItsClient(request};
ASSERT_NOT_ATOMIC(};
break;

/* See comment for S_MIG_NOT_INSTALLING_OLD_CLUSTER_WRITE_CLOCK.
* This is server 1 getting back its \VTite clock from server 2.
*/

serverHandlingMigNotInstallingOldClusterWriteClockFromAnotherServer(request);
ASSERT_NOT_ATOMIC();
break;

/* When a server goes down or starts the recovery process,
* it informs all other servers about its state.
* A server that gets this message has to make sure
* its cluster is consistent.
* This message does not use the SERVER_TO_SERVER_IPI, as
* a lot of processing to make data consistent has to be
* done. It was considered more reasonalbe to do this
* via the request queue, than give it a special priority
* via the SERVER_TO_SERVER_IPI (which does not go
* through queue)
* This function is in serverrec.ca
*/

changelnAnotherCluster(request};
ASSERT_NOT~TOMIC();
break;

#endif /*of MULTI_SERVER*/
/.* ! ! ! ! ! !! !!!!!!!! END 0 f MULTI_SERVER !!!!! ~ ! ! ~ ! ! !! !!!!!! !! !!!!!!! ~ * I

default:
{

173

fatal(• ERROR: Invalid msg code td in processRequestAtServer\n",
request->msg_code) ;

break;

/**.*~*~*********~******************~*****~*********~********.**~*r*~*

FUNCTION: readRequestClockWriterServer
PURPOSE : This function is called by processRequestAtServer when

the clock is a writer and there is a read request.
h~en the clock is a writer, it has the latest copy.
It downgrades itself to a reader, and gives a copy
to the user requesting a read. Now, since a writer
clock has presumably just written to that: page, the
latest trailer of this page in the system does not
have this change. $0, this clock, when it becomes
a reader, will give the user a read copy and also
make it: a trailer. The clock will inform the server

of a clock mode change. The server makes no change
to this page's DS now.

The server sends a DO_NOT_ACK CLOCK CHANGE MSG
to the clock which will be forwarded to the user.

174

number

INPUTS

OUTPUTS :

This function manages
in non atomic region,
reqNode *request
request codes used:
request->msg_code

request->no_values
request->array:
O. page_no
1. access_mode
2. duplicate request
3. tid of user
4. processor of user
5. unique request no
none

its atomic regions. Should be called
Should return in non atomic region.

S_FROM_USER_REQOEST.
request sent by a user.
6

the page required
READ /l.'11RITE

*~**.***********w**********~********************~+.~*******~~***.*****/

void readRequestClockWriterServer(reqNode *request)

perSe.rverDS
auxSer..rer
int
int
int
Word
int

*thisServer;
"serverAuxTable;
page_no, access_mode,tid_of_origin;
proc_origin, uni~request_no;

len,i;
SEND_AP.RAY(8] ;
clock~site;

for{i=O; i< B; i++}
SEND_AP.RAY [i 1 = INIT_SEND_ARRAY ;

page_DO = request->array[Oj;
/* The access_mode is the access reqd by the user. It

* is read, since this is a readRequest function.
*!

access~ode request->array[l];

1* dup_re~no is not needed here: Was needed only by the
* serverThread when it checked if it was to service
• duplicate requests.
* dup_re~no request->array[2];
*!

tid_of_orig'in reqll.es t->array [3] ;
proc_origin = request->array(4);
uni~request_no = request->array[5];

begin_atomic(};
thisServer =0 (perServerDS*) (*(ptrToGlobalserverDS));
serverAuxTable = thisserver->server-ptable;

clock_site = serverAuxTable[page_no) .clock;
1* The server knows the clock will downgrade

* from writer to reader, but it will not change
" the clock mode now. This is because by the time
• this request reaches the clock, the clock could
* have changed (unlikely cos a clock change is
* first kno~JIl by the server before the clock knows it),
* or the clock state could have been changed by
• a user at that site, If a user changes the clock mode,
" it will inform the server. By the time this request
* reaches the clock, the clock mode could have changed
• from what the server thinks it is a.t this point..
* It is better for the clock to inform the server
* of a clock mode change when it makes the change, rather
* than the server assuming it will change and make
• that change now,
* Therefore, the server does not change the mode of the
* clock. The clock will inform the server when it changes
* from a READ clock to a WRITE clock.
"I

175

end_atomic();

/* Forward the request to the clock site.
* REQUEST_FOR_CLIENT_IPI
* Indicate that the user does not need
• to send an ack to the server
• Arguments:
* O. request_code:

C_FWD_REQUEST
* 1. no_args
* 2. ack_code : DO_NOT_SEND_ACK_MSG
* 3. page_no
* 4. access_mode
* 5. tid_of_origin
* 6. processor of origin
* 7. uni~request_no

* The clock will make itself a reader and
* will do the processing
* The server is not waiting for an acknowledgement from
* the user
*1

SEND_ARRAY [0] C_FWD_REQUEST:
SEND_ARRAY!l] 6·
SEND_ARRAY-[2] DO_NOT_SEND_ACK_MSG;
SEND_ARRAY[3) page_no:
SEND_~~Y[4] access_mode:
SEND_ARRAY [5] tid_of_origin;
SEND-ARRAY[6j proc_origin;
SEND_ARRAY [7] uni~request_no;

1* MESSAGE_LENGTH* 1
len = 8 * sizeof(Word);
send_ipiV(clock_site,PRIORITY,REQUEST_FOR_CLIENT_IPI,len,8, SEND_ARRAY);
assert (SEND_ARRAY [l] != INIT_SEND_ARRAY):

1* The request is no longer needed. Memory for it will
* be freed in serverThread on return.
*/

I*·**~·********·**************·******~*****~*~***·**************•• *****
FUNCTION:
PURPOSE :

writeRequestClockReaderorWriterServer
This function is called by processRequestAtServer when
the clock is a reader and there is a write request.
Since a write request has to be sent to the user, and
this is a write invalidate protocol, the reader clock
will invalidate itself, and give a write page to the
user. The user becomes the new clock.

the page required
READ1\'iRITE

S_FROM_USER_REQUEST,
request se~t by a user.
6

number

request->no_values
request->array:
O. page_no
1. access_mode
2. duplicate request
3. tid of user
4. processor of user
5. unique request no
none

since there is going to be a change in clock site, the
server will send a SEND_ACK_CLOCK_CHANGE_MSG to the
clock. Meanwhile, the server marks this page as
SERVICE_~.TER_IGNORE.Though the server, at this point,
knows what the new clock site will be (the user site making
the write request), it will not forward subsequent requests
for this page to the new clock site until the new clock site
actually becomes a clock site for this page,
Any requests that arrive at the server when the SERVICE_
LATER_IGNORE flag is set will timeout and resend.

This function manages its atomic regions. Should be called
in non atomic region. Should return in non atomic region.
reqNode *request
request codes used
request->msg_code

OUTPUTS :

INPUTS

*****.***********.****************~******.********.************.*****/

void writeRequestClockReaderOrWriterServer(reqNode *request)

perServerDS
auxServer
int
int
Word
int
int

*thisServer;
*serverAuxTable;
page_no,tid_of_origin,proc_origin;
access_mode,uni~request_no;

SEND_ARRAY[B] ;
len,i;
clocK-site;

176

C_FWD_REQUEST;
6;
SEND_ACK_CLOCK_C~RGE_MSG;

page_no;
access_mode;
tid_of_origin;

ASSERT_NOT_ATOMIC() ;
thisServer = (perServerDS *) (*(ptrToGlobalServerDS);
server1>.uxTable = thisServer->server-Ptable;

for(i=O ; i<B; i++)
SEND_ARRAY[i] = INIT_SEND_ARRAY;

page_no = request->array[Oj;
/. The access_mode is the access reqd by the user. It

* is write, since this is a writeRequest function.
* (whether the clock is a reader or writer) ../

access_mode request->array[l};

/* dup_re~no is not needed here. Was needed only by the
* serverThread when it checked if it was to service
* duplicate requests.

* dup_re~no request->array[2] ;
*/

tid_of_origin request->array[3] ;
proc_origin = request->array[4];
uni~request_no = request->array[5];

/* The server knows the clock will change. It sets
* the page service to SERVICE_LATER_IGNORE.
*/

begin_at.omic () ;

/* Assign new service, do not bitwise or it. */
serverAuxTable[page_no) . service = SERVICE_LATER_IGNORE;

/* The mode of the new clock will be sent with the ack. But do
* not invalidate the clock site or the mode now. This is
.. because, before the server gets an ack for this msg,
* it can get a clock mode change. The new clock will be sent
* in the message S_ACK_CLOCK_CHANGE ... /

/* Get the clock site to fwd the request to, before
• invalidating itl'/

clock_site = serverAuxTable[page_no] .clock;
end_atomic() ;

/* Forward the request to the clock site.
* REQUEST_FOR_CLIENT_IPI
* Indicate that the user does need
* to send an ack to the server.
* Arguments:
* O. request_code : C_FWD_REQUEST
* 1. no_args
• 2. ack_code : SEND_ACK_CLOCK_CHANGE_MSG
• 3. page_no
* 4. access_mode
.. 5. tid_of_origin
* 6. processor of origin
.. 7. uni~request_no

.. The clock will know its a reader and

.. will do the processing
• The server makes the SERVICE_LATER_IGNORE change to
.. that page, and is waiting for an acY~owledgement.

*/
SEND_ARRJ>..Y [0]
SEND_ARRAY [1]
SEND_ARRAY [2]
SEND_ARRAY [3]
SEND_ARRAY [4)
SEND_ARRAY [5]

177

SEND_ARRAY [6) ::
SEND_ARRAY [7)

proc_origin;
uni~request_no;

/* MESSAGE_LENGTH*/
len:: 8 * sizeof(Word);
send_ipiV(clock_site,PRIORITY,REQUEST_FOR_CLIENT_IPI,len,8, SEND_ARRAY);
assert (SEND_ARRAY [1) l:: INIT_SEND_ARRAY);

/* The request is no longer needed. Memory tor it will
* be freed in serverThread on return.
*/

/*****~***~***************+.********************~****~*.*~*.********~**

FUNCTION: ackOtClockChangeServer
PURPOSE : This function is called by processRequestAtServer when

the clock has changed and the server has marked that
page SERVICE_LATER_IGNORE until it gets confirmation
of the clock change.
The clock changes in case of :

a write request (clock could have been R or W)
This is the response the server gets for its
SEND_ACK_CLOCK_CHANGE_MSG it sent in a reply to a
write request.
This message tells the server the new clock site, trailer
version for that page. The server makes these changes and
then changes the service of this page to SERVICE_NOW.

INPUTS

This function manages its atomic regions. Should be called
in non atomic region. Should return in non atomic region.
reqNode *request

request codes used:
request->ms9_code S_ACK_CLOCK_CHANGE, ack of clock

change from user
request->no_values 4
request->array:
O. page_no

1. clock_site the new clock site
2. clock_mode READ/WRITE/READ_CLOCK/WRITE_CLOCK
3. t_version the latest trailer version

since the clock has changed, it will have a new
trailer version number. This need not be sent
to the clock (is needed only during recovery),
but no harm updating the server now in the same msg.
(The site of the trailer is old)

OUTPUTS : none

ackOfClockChangeserver(reqNode *request)void
(

perServerDS
auxServer
int
int

*thisServer;
*serverAuxTable;
page_no,clock_site,clocK_mode,t_version;
size_msg,array_index;

MULTI SERVER
ret;
ret_out_mig_node;

#ifdef
int
Multi4Node
#endif

ASSERT_NOT_ATOMIC();
thisServer:: (perServerDS*) (*{ptrToGlobalServerDS»)
serverAuxTable :: thisServer->server....ptable;

page_no:: request->array[O);
clock_site:: request->array[lj
clock_mode:: request->array[2]
t_version :: request->array(3);

/* Update statistics at this server site.
* This is a control message during normal operation.
*/

CYCLE_COUNTING_OFF;
begin_atomic() ;

globaIServerStats[thisServer->s_index] .normal.control_msg_count++;

*

178

size_ms.g = 6 .. sizeof (Word).:
globaIServerstats[thisServer->s_index] .normal.control_msg_bytes +=

size_msg;
end_atomic() ;

/'O Update statistics for the time interval into which
* this message falls.
*/

array_index = CURR_TIME/METRIC_INTERVAL_CYCLES;

if (MIG_INTERVAL)
(
assert(thisserver->s_index >=0 &&

thisServer->s_index < NO_OF_SERVERS);
assert (array_index >=0 && array_index < MAX_MIG_INTERVALS);
globaIIntervaIData[thisServer->s_index] .in_cluster_control_byte[array_index] +=

size_msg;
globaIIntervaIData[thisServer->s_index] .in_cluster_control_IDsg[array_index] += 1;

begin_atomic() ;

/* The server changed the service of the page to SERVICE_LATER_IGNORE
* on a write request in writeRequestClockReaderOrWriterServer .
.. This is the ack of the clock change on a write.
*
* All the following are done irrespective of
* whether the user at the clock site changed the
* clock mode or not. */

serverAuxTable[page_no] .clock = clock_site;
/* Assign the new clock mode. do not bitwise or it.*/
serverAuxTable[page_no) . clock_mode = clock_mode;
serverAuxTable[page_no) .t_version = t_version;

/* See migration notes and the comments below:
* *6 c1 made a write request to in cluster page. say c2 was

the clock. When 51 forwarded c1's request to c2, it
asked c1 to SEND_ACK_CLOCK_CHANGE_MSG. c1 replies with
a S_ACK_CLOCK_CHANGE and 51 changes the clock to cl.
Suppose c1's user is waiting for that write reply and c1
is to migrate. sl should not forward any subsequent requests
to c1 (once it becomes the write clock), as cl is migrating.
So, in S_ACL_CLOCK_CHANGE, if c1 is migrating, sl changes
the service from SERVICE_LATER_IGNORE to SERVICE_LATER_REPLY
·instead of SERVICE_NOW. This change should be made only
for the multi-server case.

*/
#ifdef MULTI SERVER

/* Check if clock site is migrating. If it is, change the
* service to SERVICE_LATER_P£PLY
*/

ret = findInMulti4List(thisServer
>migratingoutClients,clock_site,&ret_out_mig_node) ;

if (ret == FOUND)
serverAuxTable[page_no] . service SERVICE_LATER_REPLY;

else
serverAuxTable[page_no] .service

#else
serverAuxTable[page_no).service = SERVICE_NOW;

#endif

end_atomic() ;

/'O The request i.s no longer needed. Memory for it will
* be freed in serverThread on return.
*/

/* The request is no longer needed. Memory for it will
* be freed in serverThread on return.
'O/

•

179

FUNCTION, informClockModeChangeServer
PURPOSE : This function is called by processRequestAtServer when

the clock at a client site has changed its clock
mode (chang'eMyClockMode) and is informing the server
of this change.
The clock mode changes in case of

a user at a clock site, wants to read when the
clock mode is write.

a user at a clock site, wants to vrrite when the
clock mode is read.

The server changes only the clock mode. Nothing else.

This function manages its atomic regions. Should be called
in non atomic region. Should return in non atomic region.

INPUTS reqNode *request

request codes used
request->msg_code
request->no_values
r,equest->array:
O. page_no

1. new_clock_mode
2. clock_site

OUTPUTS , none

S INFORM_CLOCK_MODE_CHANGE
3

READ,WRITE,READ_CLOCK,WRITE_CLOCK
the ocessor of the site sending

this msg. This is needed to check if the clock site
is still the same.

~*****************.*******.*******************************+**•• ~*.~*!
informClockModeChangeServer(reqNode *request)void

(
perserverDS
auxServer
int
int

*thisServer;
*serverAuxTable;
page_no, new_clock_mode,clock_site;
size_msg, array_index;

ASSERT_NOT_ATOMIC();
thisserver = (perServerDS*) (*(ptrToGlobalServerDS);
serverAuxTable = thisserver->server-ptable;

page_no = request->array[O);
new_clock_mode = request->array{l);
clock_site = request->array[2];

/* Update statistics at this server site.
* This is a control message during normal operation.
*/

CYCLE_COUNTING_OFF;
begin_atomic();

globalServerStats[thisServer->s_index) .normal.control_msg_count++;
size_msg = 5 * sizeof(Word);
globalServerStats[thisServer->s_index) .normal.control_msg_bytes +=

size_msg;
end_atomic() ;

/* Update statistics for the time interval into which
* this message falls.
*/

array_index = CURR_TIME/METRIC_INTERVAL_CYCLES;

if (MIG_INTERVAL)
{
assert(thisServer->s_index >=0 &&

thisServer->s_index < NO_OF_SERv~RS) ;
assert(array_index >=0 && array_index < MAX_MIG_INTERVALS);

globalIntervaIData[thisServer->s_index) .in_cluster_control_byte[array_index)
size_msg;

globalIntervalData[thisserver->s_index] .in_cluster_control_msg[array_index] += 1;
)

begin_atomic{} ;

1* Assign the new clock mode. Do not bitwise or it
* with the previous value.
*1

180

/* Check that there is a clock site. Even if it has
* a SERVICE_LATER_IGNORE due to a write request
* forwarded to the clock site, the clock mode can
* be safely changed. The SERVICE_LATER-IGNORE flag
* is set for all write requests and does not depend
* on the clock mode.
* Make sure there is a clock site.
*/

if(serverAuxTable[page_no] .clock ~= clock_site)
{

fatal(' Invalid clock site in informClockModeChangeServer client clock ~d,

servers clock ~d .. for page %d\n',clock_site, serverAuxTable[page_no] .clock, page_no);
end_atomic ()
return;

)
else /* correct clock site, change the mode*/
(/1' This is done even if this page has service_later_ignore

* or service_Iater_replY set.
1'/

serverAuxTable[page_no] . clock_mode &= o·
serverAuxTable[page_no) . clock_mode 1= new_clock_mode;

}

end_atomic() ;

/1' The request is no longer needed. Memory for it will
* be freed in serverThread on return.
*/

I*****·*********·***********~*******~***********·**·~********~****~**~

FUNCTION: informMsgNotDeliveredServer
PURPOSE : This function is called by processRequestAtServer when the

server forwarded a request to the clock site and set the
SERVICE_LATER_IGNORE bit. The server is now waiting for
an acknowledgement. But the clock could not service the
request. So the clock sends this msg to the server telling it
to change its service back to SERVICE_NOW for this page.

INPUTS

This function manages its atomic regions. should be called
in non atomic region. Should return in non atomic region.
reqNode 1'request

request codes used:
request->msg_code
request->no_values
request->array:
O. page_no

OUTPUTS : none

S_MSG_NOT_DELIVERED
1

~************************.*******************~** **~·*************I

informMsgNotDeliveredServer(reqNode *request)void
(

perServerDS
auxServer
int
int

"thisServer;
"serverAuxTable;
page_no;
size_msg, array_index;

iii fdef MULTI_SERVER
Multi4Node ret_node;
int ret;
#endif

ASSERT_NOT_ATOMIC() ;
thisServer = (perServerDS*) {*(ptrToGlobaIServerDS))
serverAuxTable = thisServer->server-ptable;

page_no = reque.s t - >array [0 J ;

/. Update statistics at this server site.
• This is a control message during normal operation.
*/

CYCLE_CO~ITING_OFF;

begin_atomic () ;
globalServerStats[thisServer->s_indexJ.normal.control_msg_count·+;
size_msg = 3 • sizeof (Word) ;

*

181

globalServerStats[thisServer->s_index) .normal.control_msg_bytes ~=

size_msg;
end_atomic();

/* Update statistics for the time interval into which
* this message falls.
*/

array_index = CURR_TIME/METRIC_INTERVAL_CYCLES;

if (MIG_INTERVAL)
(
assert(thisServer->s_index >=0 &&

thisServer->s_index < NO_OF_SERVERS) ;
assert(array_index >=0 && array_index < MAX_MIG_INTERVALS);

globalIntervalData[thisServer->s_index] .in_cluster_control_byte[array_index] ~=

size_msg;
globalIntervalData[thisServer->s_index] .in_cluster_control~msg[array_index]~= 1;
]

begin_atomic() ;

/* This message has been sent when:
- the clock site loaned a write update page to another

cluster. By then a write request from a client in
its cluster was forwarded to the clock.

* - ~~ out of cluster write request arrives.
Server forwards to clock. does not change service.

- An in cluster write request arrives.
Server forwards to clock, changes service to
SERVICE_LATER_IGNORE.

- Clock services out of cluster write request. Becomes
write update, changes service to SERVICE_LATER.

- The write update page is forwarded to another server by
this cluster's server. Server changes service from
SERVICE_LATER_IGNORE to SERVICE_LATER_REPLY.

- Clock gets the in-cluster write request. CaP~ot service
request because it has WRITE_UPDATE,SERVICE_LATER.

- Clock sends a S_MSG_NOT_DELIVERED to server.
- Server sees the service is SERVICE_LATER_REPLY. Makes

no changes and quits from this function.
*/

/* It is possible that the clock ignored the request because
* it was migrating. So, do not change the service back
* to SERVICE_NOW, if the clock is migrating. currently
* it is SERVICE_LATER_IGNORE. Change it to SERVICE_LATER_REPLY.
*/

if (serverAuxTable[page_no) .service SERVICE_LATER_IGNORE)
(
#ifndef MULTI_SERVER

/* Change the service back to SERVICE-NOW.do not bitwise or it */
serverAuxTable[page_no] .service SERVICE_NOW;

#else
ret = findInMulti4List(thisServer

>migratingOUtClients,serverAuxTable[page_no] .clock, &ret_node);
if(ret == FOUND)

/* Change from SERVICE_LATER_IGNORE to SERVICE_LATER_REPLY'/
serverAuxTable[page_no] .service SERVICE_LATER_REPLY;

else
serverAuxTable[page_no) .service

#endif
)

end_atomic();

/. Do not change clock site, clock mode or anything else
* Now the server will service further requests for this
* page.
*/

/* The request is no longer needed. Memory for it will
* be freed in serverThread on return ../

server processor number
return value of che server code

/****************~**********************************+****.************

FUNCTION: gecServerCodeFromServerProc
PURPOSE : This funccion recurns an inceger which is a code

for a server making a requesc. Ic is not the
processor number of the server, but a number which
is different from all the processor numbers in the
syscem
IMP: this function should be coded considering che
code in getServerIndexFrornServerCode

INPUTS
inc server-proc
inc 'server_code

OUTPUTS : none
*.*****.~**********.************~*****.***************************.**;

182

getServerCodeFromServerProc(int server-proc, inc *server_code)

int i;

void
(

int server_index; ;* The index of this server used in
* liscOfServers.*;

for(i=O; i< NO_OF_SERVERS; i++)
{

if(liscOfServers[i]
{

server-proc)

server_index i;
break; ;, From for loop.*;

}
/* Server index will vary from 0 to NO_OF_SERVERS-1

* All the processors in the system vary from 0 to
* NO_OF_CLIENTS.
* so, server code for:
* server_index 0 can be NO_OF_CLIENTS
* server index 1 can be NO_OF_CLIENTS+1
• server index (NO_OF_SERVERS-l) can be NO_OF_CLINETS +

NO_Of_SERVERS -1
*;

/***************.* •• **.*****.*

FUNCTION, getServerIndexFromServerCode
PURPOSE : This function returns the server index given the

server code. listOfServers[server index] will be
che processor number of this server. The server code
is used by a client which has a server as a reader.

IMP: this function should be coded considering the
code in getServerCodeFromServerProc,

INPUTS
inc server_code
inc "server_index

server code
the index used in listOfServer
which will give chat server's processor

OUTPUTS : none
*************************ft***********************.****.***~********~*/

void
(

gecServerIndexFromServerCode(inc server_code, inc • server_index)

;* The processor number will be liscOfServers[server_index] ,*;

inc server-proc
int *server_index

OUTPUTS : none

server processor number
recurn value of the server index

FUNCTION:
PURPOSE

INPUTS

getServerIndexFrornServerProc
This function returns i where ~istOfServers[i]

the input server-proc.
is

********~**~******.************/

void
(

getServerIndexFromServerProc(int server-proc, int *server_index)

int i;

183

for(i=O; i< NO_OF_SERVERS; i++)
(

if(listOfServers[ij
{

server-proc)

*server_index = i;
return;

/***************.***************************~******************~******

FUNCTION:
PURPOSE :

INPUTS
OUTPUTS

isItServerCode
This function returns TRUE if the input value is

a server code. Server codes range from NO_OF_CLIENTS
to NO_OF_CLIENTS + NO_OF_SERVERS-l
IMP: this function should be coded considering the
code in getServerCodeFromServerProc
int server_code
TRUE/FALSE

*************************~****~***************.********** ••• ***"*** •• j

inc isItServerCode(int server_code)
{

if (server_code >= NO_OF_CLIENTS)
return TRUE;

else
return FALSE;

I******************~*************************~*****·** ****************

* FILE clientfn.ca *
* CONTENTS: This file contains all the functions which deal *

with an in-cluster message at a client site (in both *
single and mul ti-serv'er systems).

***************************.***;

#include 'ft.h'
#include 'consistent.h"

/**************~****.******.************************************~***~.

FUNCTION: requestForClientHandler
PURPOSE : This handler is called when a request is sent to it from

a server. This handler puts the request into the client
requests queue. The client thread pulls out requests in a
FIFO manner.

REQUEST_FOR_CLIENT_IPI, runs at client.
INPUTS

GENERAL MESSAGE FORMAT

184

argv[O]
argv[l]
argv[2]-argv[no of args - 2J

REQUEST CODES USED

To forward a request to a
**0. request_code

1. no args
2. ack_code

3. page_no
4. access_mode
5. tid of origin
6. processor of origin
7. unique request no

request_code
no of args (from argv[2J)
the arguments to be put into
the array in a request.

client.
C_FWD_REQUEST.
6.
DO_NOT_SEND_ACK_MSG,
SEND_ACK_CLOCK_CHANGE_MSG.

READ/WRITE.

To tell a client
'*0. request_code

1. no_args
2. page_no

to invalidate a read page.
C_INVALIDATE_READER.
1

This clients server is
of this cluster.

'*0. request_code
1. no args
2. from_server_code

4. page_no
5. reqd_access

fOPHarding a request from out

C_FWD_OUT_OF_CLUSTER_REQUEST.
4.
The server which sent the request.
The servers are given a different code
to identify them. It is not the processor
number of the server, because this client
cannot directly send a message to another
server.
The key which this cluster's server
uses (incoming requests) to identify the
details of the server which sent the request
(key2) .

This client has a read copy of out of cluster page. Another
read request for the same page is made by another client in
this cluster. The server sl does not f~ld the request to the
server owning the page. Instead, it sends the request to
this client having a read copy, making it a temporary clock
of an out of cluster page.
*' o. request_code:

C_FWD_MAKE_URSLF_TEMP_CLOCK_HANDLE_READ_REQUEST
c1 in sl has a read copy of page p which belongs
to 52. now, cl-2 in 51 requests a read copy of page
p. sl does not fwd request to 52. sl sends a msg

-
185

READ.

telling it to become a temp read clock for p.
6.
DO_NOT_SEND_ACK_MSG.

to c1
1. no args

2. ack_code
3. page_no
4. access_mode
5. tid of origin
6. processor of origin
7. unique request no

cl in sl is a temp clock of page p belonging to s2.
sl sends a message to cl telling it to invalidate all
the readers. c1 does not have to send an ack back to
sl and s1 does not have to send an ack back to s2.
** O. request_code C_INVALIDATE_ALL_OUT_CLUSTER_READERS OF PAGE

1. no args 1
2. page_no

C Il:\1VALIDATE_OUT_CLUSTER_READER
1

A temporary read clock (for out of cluster page) tells its
reader to invalidate its read page. It is different from
C_INVALIDATE_READER. In C_INVALIDATE_READER, the page mode
is changed, but the page stays in memory(it could be a trailer)
since this is a multi server case, the page is removed from
memory.
**0. request_code

1. no_args
2. page_no

updated page value

C_RETURNING_UPDATE_PAGE.
3

s2 is returning a vrrite update page to c2. c2 uses
update code to coordinate the update with the watchdog
update thread.
*. O. request code

1. no args
2. page no
3. page value
4. update code

C INVALIDATE_WRITE_UPDATE_OUT CLUSTER PAGE
1

ci has a write update copy of page. s1 sends it an
invalidate message since ci has kept it for more than
update time.
** O. request code

1. no args
2. page no

client requesing write
WRITE_UPDATE

ci in s1 is a temp read clock of page p belonging to s2.
A site in s1,c1-1, asks for write permission for page p. On
getting a reply from s2, s1 sends a message to c1 telling it to
invalidate all the readers and forward the reply to cI-1. While
forwarding the message to c1, sl set extra to NOT_REACHED. So,
sl is waiting for an ack from c1-1 (that it received the page)
(B6-1) .
** O. request_code
C_INVALIDATE_ALL_OUT_CLUSTER READERS FWD WRITE UPDATE

1. no args 7
2. ack_code SEND_ACK_WRITE_UPDATE_REACHED_MSG
3. page no
4. requesting client
5. access mode
6. tid of origin
7. unique request no
8. update time

REPLIES TO REQUESTS:

1. no args
2. ack_code

3. page_no
4. access_mode
5. page_value

REPLY_MAKE_URSLF_READER_MSG , telling the
user to make itself a reader of
this page.

6
DO_NOT SEND ACK MSG. ThlS is the code the

server sent the clock, since the
server is not waiting for an ack
since the clock is not changing.

the page no of the requested page
READ
the value at the clock site

186

6. tid_of_origin

7. uniqu.e request no

** O. msg_code

1. no args
2. ack_code

3. page_no
4. access-mode
5. page_value
6. tid- of_origin

needed by user to synchronize the
user/reply/watchdog

REPLY_MAKE_URSLF_READER_TRAILER_MSG ,
telling the user to make itself a
reader and trailer of this page.

7
DO_NOT SEND ACK MSG Th~s is the code the

server sent the clock, since the
server is not waiting for an
acknowledgment.

the page no of the requested page
READ_TRAILER
the value at the clock site
needed by user to synchronize the

user/reply/watchdog
7. unique request no
8. trailer_version the latest t ve.rsion in the system

1. no args,7
2. ack_code

3. page_no
4. access_mode
5. page_value
6. tid_of_origin

REPLY_MAKE_URSLF_WRITER_CLOCK_MSG,
telling the user to make itself a
clock and a writer of this page.

SEND ACK CLOCK_CHANGE_MSG
This is the code the server sent the
clock, since the server is waiting
for an ack for completion of clock
change.

the page no of the requested page.
WRITE_CLOCK.
the value at the clock site.
needed by user to synchronize the

user/reply/watchdog.
7. unique request no
8. trailer_version the latest t version in the system.

O. msg_code

1. no args
2. ack_code

3. page_no
4. access- mode
5. page_value
6. tid_of_origin

7. unique request no

REPLY_~RE_URSLF_READER_OUT_CLUSTER_PAGE_MSG,
telling the user to make itself a
reader of this page.

6
DO_NOT SEND_ACK_MSG
server is not waiting for an ack.
the page no of the requested page.
this should be READ.

needed by user to synchronize the
user/reply/watchdog.

REPLY_WAKE_UP_USER_MSG
3
DO~OT_SEND_ACK_MSG

sl has loaned this page to another server or
the clock site of this page is migrating. It tells its
client to resend this request.
sl sends a P~QUEST_FOR_CLIENT_IPI to c1 (D2l.

o. msg_code REPLY_RESEND_REQUEST_FOR_PAGE_LATER_MSG
1. no args 3
2. page no
3. tid of user
4. unique request number

A write clock gets a read request from the user at its own
site. It downgrades to a reader, adds itself as a reader in
the list of readers and send this message to itself to
wake up its user. It does not send the page with this
message as the page is already in its memory in the
required mode.
** O. msg_code

1. no args
2. ack_code
3. tid of user
4. unique request number

sl sends a reply to the user which made the request for out of
cluster write page.*. O. msg_code REPLY_MAKE_URSLF_UPDATE_WRITER_OUT_CLUSTER_PAGE_MSG

187

1. no args
2. ack_code

3. page_no
4. access_mode
5. page_value
6. tid_of_origin

7. unique request no
B. update time

telling the user to make itself a
update wri ter of this page.

7.
DO_NOT_SEND_.l\.CK_MSS;

Server is not waiting for an ack
or SEND_ACK_~~ITE_UPDATE_REACHED_MSG

IMP: If ack code is
SEND_ACK_WRITE_UPDATE_RRl\.CHED_MSG, it
means that this write update was
forwarded to a reader which
forwarded the reply to this site. The
server set the value of extra to
NOT_REACHED. So this client will have
to send it an ack message
S_ACK_RECEIVED_WRITE_UPDATE_PAGE
(B8-1)

the page no of the requested page
this should be WRITE_UPDATE

needed by user to synchronize the
user/reply/watchdog

cl is a reader of a page belonging to s2. cl-1 requested write
permission to this page. cl, cl-l are in sl. sl got a 'upgrade
yourslf from reader to write update' reply from s2.
sl forwards the reply to cl, which in turn will forward the
reply to cl-l. This reply if forwarded from cl to cl-1 when c1
was already a reader and it requested a write. (B7-1)
* * O. msg_code REPLY_UPGRADE_URSLF_FROM_READER TO UPDATE

WRITER_OUT_CLUSTER_PAGE_MSG,
telling the user to make itself a
update writer of this page.

1. no args
2. ack_code

3. page_no
4. access_mode
5. tid_of_origin

6. unique request no
7. update time

6
SEND_ACK_WRITE_UPDATE_REACHED_M5G

The server has set the value of extra
to NOT_REACHED. So, it is waiting for
the ack msg

SACK RECEIVED_WRITE_UPDATE_PAGE
(B8-1)

the page no of the requested page
this should be WRITE_UPDATE
needed by user to synchronize the
user/reply/watchdog

REQUESTS RELATED TO MIGRATION:

c1 is a read clock that is migrating. It hands over
the read clock to the server s1, which then sends
this message to this client c2, telling it to become
the new read clock. c2 could already be a reader.
** O. msg_code C_MIG_HANDOVER_INSTALL_READ CLOCK (H2)

1. no args 6 + no readers
2. aCK_code SEND_ACK_MIG_READ_CLOCK_INSTALLED
3. page number
4. page_status READ_CLOCK
5. page value
6. trailer version
7. no of readers (excluding this site) CHECKED CORRECT PAGE RETRIEVAL
8. reader 1
9. reader 2, etc

cl is a write clock that is migrating. It hands over
the write clock to the server sl, which then sends
this message to this client c2, telling it to become
the new write clock. c2 could already be a writer.
** O. msg_code C_MIG_HANDOVER_INSTALL_WRITE CLOCK (K2)

1. no args 5

188

2. ack_code
3. page number
4. page_status
5. page value
6. traile,r version

C_MIG_REMOVE_CLIENT_AS_READER_FOR_PAGES (J2)
1

c1 is a client that is migrating. sl sends the following
message to a client which is a read clock for a page
for which cl is a reader. s1 does not send the pages for
which c1 was a reader. This client scans its read clocks,
and removes c1 as a reader.*. O. msg_code

1. no args
2. client_to_remove

This message is used for both migration and
recovery. Hence it is put in file, cliencrec.ca so
it can be used for recovery in single server case.
*"" O. msg_code C_REC_REMOVE_SERVER_AS_READER_FOR_A_PAGE

A clock site is told to remove a
server as a reader for a specific
page.

1. no args
2. server code,

3. page no

2
of the server to be removed. This is

NOT the server index. It is the read
site number that the client will have
in its list of readers.

the page number to check.

OUTPUTS : none
~.*******•• ***~*.***********~*~********~*****************************/

void requestForClientHandler(int argc, Word 'argvl

perClientDS
int

*thisClient;
ret;

thisClient (perClientDS*) (·ptrToGlobaICliencDS);

I*If the server is ok bit is set" the server thread could
*be running, but t,he server could be recovering. So check
·for the down or recovering before before putting a request
·into the request q.
" I

& SERVER_RECOVERING) ==
((thisClient->server_state

&&
((thisClient->server_state

SERVER_RECOVERING)

1* If the client or server are down or recovering, the
* server waiting for an ack. to a request will not make
* any difference. The server's data structures will be
• validated during recovery.
*1

if (

1* If the client is not down and not recovering , put
• the request in the request queue.
* Even if the client is migrating, the request will be
* put in the request queue. It may be a reply for which
• the user thread is waiting, or it may be an invalidate
• message.
* If the client is not CLIENT_DOWN and not CLIENT_RECOVERING,
• put the request in the request queue.
• If the client is : CLIENT_NEVER_STARTED, it should
• not be able to accept requests.
* If CLIENT_TO_RECOVER,CLIENT_TO_MIGRP3E, CLIENT_MIGRATING
, it can still accept requests.
* If CLIENT_MIGRATED_POLLING, its not in either cluster,
* so it cant accept requests, The only requests it
* could get at this point are invalidation messages
• from its old cluster (directly from clients in the old

* cluster). But since its already erased
* everything in its page table while migrating,
* these messages can be ignored.

189

*

*

*

*/

PARTICULAR TIMING UNUSUAL CASE:
- Client cl is migrating from cluster 1 to cluster 2
- Server s1 hands over cl to s2
- Server s2 accepts cl and adds it to its list of of

clients
- Another client c2 in cluster 2 is migrating out, so

52 is handing over c2's pages to other clients in
cluster 2.

- Client Cl has sent a message S_N~N_CLIENT_ASKING_FOR

ACCEPTANCE and is waiting for a reply. So, cl has
state CLIENT_MIGRATED_POLLING.

- But since s2 has cl in its client list, it ·hands over"
a clock which was at c2 to cl (and not another client
in its cluster). Cl's S_NEW_CLIENT_ASKING_FOR_ACCEPTANCE
is in s2's queue, but it is at the end of the queue
with a lot of handover clock messages before it.

- S2 sends a ·clock handover" (C_MIG_HANDOVER_INSTALL
READ_CLOCK/ C_MIG_HANDOVER_INSTALL_WRITE_CLOCK) to
cl.

- Cl's REQUEST_FOR_CLIENT_IPI doesn't put that handover
message in the queue because cl is in state
CLIENT_MIGRATED_POLLING, so this handover message is
lost forever.

- c2 will never migrate because sl keeps checking to
see if all clock pages at c2 have been installe~

elsewhere. Lead to an infinite loop and effects
throughput.

SOLUTION:
A client in CLIENT_MIGRATED._POLLING state must put

messages into its message queue, eV'en though clientThread
will not service them until client state changes to
CLIENT_OK.
possible messages that can arrive in CLIENT_MIGRATED_
POLLING, via REQUEST_FOR_CLIENT_IPI:
C_MIG_HANDOVER_INSTALL_READ_CLOCK
C_MIG_HANDOVER_INSTALL_WRITE_CLOCK

via MSG_FROM_SERVER_IPI:
SET_CLIENT_STATE_MSG : CLIENT_DOvmicLIENT_TO_RECOVER
C_SERVER_ACCEPTING_NCw_CLIENT

Replies for earlier duplicate requests it made can also
arrive at this point. These could be replies to requests
it made in its old cluster. If an in-cluster page is
sent and this client sees the page is out-cluster or
vice versa, it will have to return the page if
necessary.

ANOTHER TIMING UNUSUAL CASE:
This client cl has CLIENT_MIGRATED_POLLING. s2 has
cl in its list of clients. s2 goes dovffi. 52 tells
cl to either set CLIENT_DOom or CLIENT_TO_RECOVER
(via MSG_FROM_SERVER_IPI).
This should break the clientThread out of the
loop of CLIENT_MIGRATED_POLLING. This will also
break the clientPollingNewServerThread out of
its while loop. No bugs foreseen in this case.
The recovery code will empty the client request queue.

if (((thisClient->client_state & CLIENT_DOom)
CLIENT_DOvm)
&&

! ((thisClient->client_state & CLIENT_RECOVERING) -
CLIENT_RECOVERING)
/*'Ic,******

&&
((thisClient->client_state & CLIENT_MIGRATED_POLLING)

CLIENT_MIGRATED_POLLING)******/
&&

«thisClient->client_state & CLIENT_~STARTED)

CLIENT_NEVER_STARTED)

ret = insertIntoRequestQ(thisClient
>client_request_queue,argv[l] ,argv[OJ,&argv[2);

if ret == ERROR_Ql
(

fatal(' ERROR: client failed to insert request into
queue\n') ;

/*~*~**~**********~*********************************** ****************

FUNCTION: clientThread
PURPOSE : This thread runs in an infinite while loop. It pulls out

requests from the client request queue. If the queue is
empty it sits in an idle loop and checks again. It checks
for the server,system and client state. If the client is
down it exits. Otherwise, it checks for some conditions
and calls appropriate functions to handle requests.
This thread is not counted in the no pending client threads.

INPUTS none
OUTPUTS none

~********.***************/

190

void clientThread ()

perClientDS
auxClient
int
reqNode
long

*thisClient;
"clientAuxTable;
ret_code;
"next_request;
initsleep;

thisClient (perClientDS 0) (O(ptrToGlobaIClientDS});
clientAuxTable = thisClient->client-ptable;

while (CURR_TIME < TOTAL_SIM_RUN_TIME_CYCLES)
{

f* If the CLIENT_DOWN bit is set, the client thread must
* exit .
.. Set the CLIENT_NEVER_STARTED bit and exit from client
• thread. This thread will be restarced when the system
.. recovers.
• The CLIENT_TO_RECOVER bit is set by the recovering
.. thread. If the client is recovering, the
• client thread do,es not have to exit. It can just sit
.. in a loop.
o The client_never_started and client_ok cannot both
.. be set at the same time.
o The client_down and client_ok should not be set at
.. the same time.
Of

f* If the client or server are down or recovering, the
* server waicing for an ack. to a request will not make
o any difference. The server's data structures will be
.. validated during recovery.
*f

f* If the server of chis cluster is in the recovery
* process, or if the server is down, or if the
.. client is in the recovery process, ignore the request
* and go to sleep in a loop until the system recovers.
*/

begin_atomic() ;
if«thisClient->client_state & CLIENT_DOWN) == CLIENT_DOw~)

(
emptyRequestQ(thisClient->client_request_queue) ;
thisClient->client_state &= 0;
thisClient->client_state 1= CLIENT_NEVER_STARTED;
end_a,tomic () ;
return;

--

)
end_atomic() ;

begin_atomic();
if ((thisClient->client_state I< CLIENT_TO_RECOVER)

CLIENT_TO_RECOVER)

1* Empty request queue*1
emptyRequestQ(thisClient->client_request_queue} ;
thisClient->client state &= 0;
thisClient->client:=state 1= CLIENT_RECOVERING;

while
{(thisClient->server_state & SERVER_DOv<N)

SERVER_DOVl'N)
II

((thisClient->server_state & SERVER_RECOVERING)
SE~VER-RECOVERING}

II
((thisClient->client_state & CLID~_RECOVERING)

CLIENT_RECOVERING)

if(CURR-TIME > TOTAL_SIM_RUN_Tlt1E_CYCLES)
(

thisClient->client_state &= 0;
thisClient->client_~tate 1= CLIENT_NEVER_STARTED;
end_atomic() ;
return;

}
end_atomic();
BUSY_WAIT(RECOVERY_SLEEP_TIME_CYCLES);
begin_atornic();
1* Do not need a thread_sleep_end_atomic

* for this. */
1 * SINCE ONLY ONE SITE CAN GO DOWN AT A Tum, DO NOT

* NEED TO CHECK FOR CLI~~_DOw~ HEP~.

*/
)
end_atomic() ;

begin_atomic() ;
if(

((thisClient->client_state & CLIENT_TO_MIGRATE)
CLIENT_TO_MIGRATE)

&&
((thisClient->user_state & USER_MIGRATING)

USER_MIGRATING)

191

if
(

0)

thisClient->client_state &= 0;
thisClient->client_state 1= CLIENT_MIGRATING;

}
end_atomic() ;

begin_atomic(};
while ((thisClient->client_state & CLID~_MIGRATING)

CLIENT_MIGRATING)

if(CURR_TIt1E > TOTAL_SIM_RUN_TIME_CYCLES)
(

thisClient->client_state &= 0;
thisClient->client_state 1= CLIENT_NEVER STARTED;
end_atomic() ;
return;

)
end_atornic() ;

if«(thisClient->client_state & CLIENT_MIGRATING)!=

192

CLIENT_MIGRATING)

begin_atomic();
break;

;* Make sure the request queue is empty. Once the client
* reaches this state, it will not get out of this
* while loop until an external eve.nt changes the state
* of this client to CLIENT_MIGRATED_POLLING, CLI~~_DOWN,

* or CLIENT_TO_RECOVER.
* So, in this loop the client will not service requests.
* But replies to duplicate requests that were sent
* earlier may still arrive, and the server may never
* migrate this client. See comment in
* REPLY_MAKE_READER function at client side when
* clientMigrateRechecklfAllPagesSent is called.
* This applies to all REPLY .. messages at a client
* site.
*;

;* pullout a request from the request queue*;
;* Service all requests that are in the request queUE.

* This is done so that these messages will not have to
* be processed after this client migrates, creating
* bugs.
*;

while (1)
{
begin_atomic();
next_request = getNextRequest(thisClient

>client_request_queue,&ret_code);
end_atomic();

if ret_code!= EMPTY_Q)
{

/* Process the request.
* Must be in non atomic region here.
* This should only be a REPLY .. request or an
* invalidate message from any client or its
* server.
* The messages allowed to be processed here are those
* that may be sent to this client site even if it is
* migrating. Typically, a new request for a page, or
* a handover of a clock site should not be sent to a
* client that is migrating.
* No other requests should be processed here.
* All the invalidate messages might get processed
.. after this client is in its new cluster.
*/

switch (next_request->msg_code)
(
case REPLY_MAKE_URSLF_READER_MSG:
case REPLY_MAKE_URSLF_READER_TRAILER_MSG:
case REPLY_MAKE_URSLF_WRITER_CLOCK_MSG:
case REPLY_MAKE_URSLF_READER_OUT_CLUSTER_PAGE_MSG:
case REPLY_MAKE_URSLF_UPDATE_WRITER_OUT_CLUSTER_PAGE_MSG:
case

REPLY_UPGRADE_URSLF_FROM_READER_TO_UPDATE_WRITER_OUT_CLUSTER_PAGE_MSG:
case REPLY_RESEND_REQUEST_FOR_PAGE_LATER_MSG:
case REPLY_W~~E_UP_USER_MSG:

case C_INVALIDATE_READER:
case C_INVALIDATE_ALL_OUT_CLUSTER_READERS OF PAGE:
case C_INVALIDATE_OUT_CLUSTER_READER:
case C_INVALIDATE_WRITE_UPDATE_OUT_CLUSTER_PAGE:
case C I~vALIDATE_ALL_OUT_CLUSTER_READERS FWD_WRITE_UPDATE:
case C_RETURNING_UPDATE_PAGE:
case C_MIG_REMOVE_CLIENT_AS_READER_FOR_PAGES:
case C_REC_REMOVE_SERVER_AS_READER_FOR_A_PAGE:

(
/* OK to process this request. */
break;

)

default:
{

-
193

printf{' \n\n ClientP%d request:

printRequestNode(next_request) ;
fatal('\n\n client P%d state is %d, processing a

request, request code is !Sd .. INVALID REQUEST\n', CURR_PROCESSOR,thisClient
>client_state, next_request->msg_code);

}

)/* End of switch statement.*/

processRequestAtClient(next_request) ;
/* will return here. Free the memory for

* the request here instead of doing it in
• the function where the request has been
• handled.
*/

freeRequestNode(&next_request);
1* Must be in non atomic region here.*!
ASSERT_NOT_ATOMIC() ;

)/* end of non empty queue*1
else

break;
)
begin_atomic() ;

)
end_atomic() ;
begin_atomic() ;
while ((thisClient->client_state & CLIENT_MIGRATED_POLLING)

CLIENT_MIG~~TED_POLLING)

if(CURR_TlME > TOTAL_SIM_RUN_TIME_CYCLES)
(

thisClient->client_state &= 0;
thisClient->client_state 1= CLIENT_NEVER_STARTED;
end_atomic{) ;
return;

}
end_atomic() ;
BUSY_WAIT (MIGRATING_SLEEP_TIME_CYCLES);
begin_atomic();

)
end_atomic() ;
j* pul1 out a request from the request queue*1
begin_atomic() ;
next_request = getNextRequest (thisClient->·client_request_queue, &ret_code) ;
end_atomic() ;

if (ret_code == EMPTY_Q)
{ !* wait in a loop for sometime, or put the client

* thread to sleep
*1

initsleep = CURR_TIME;
ASSERT_NOT_ATOMIC() ;
BUSY_WAIT(EMPTY_QUEUE_WAIT_TIME_CYCLES);

)
else
{

/. process the request*/
/* must be in non atomic region here'/
processRequestAtClient(next_request);
/* will return here. Free the memory for

* the request here instead of doing it in
* the function where the request has been
* handled
*!

freeRequestNode(&next_request);
!*must be in non atomic region here*!
ASSERT_NOT_ATOMIC() ;

}
/. end of while (1) */

begin_atomic() ;
thisClient->client_state &= 0;
thisClient->client_state 1= CLIENT_!I.'EVER_STARTED;
end_atomic();

-
194

the request pulled out of the request QINPUTS
OUTPUTS

/~********~.***~**~******~.*******************~******* ****************

FUNCTION: processRequestP.tClient
PURPOSE : This function checks for some conditions li)l:e if this

processor is the correct clock site, and if that page
should be serviced now by this clock site.

For each message, it calls a function. The definitions of
these functions are distributed in various client*.ca
files.

reqNode 'request
none

***********************************~***********.*********************/

void processRequestAtClient{reqNode 'request}
(

perClientDS
auxClient
unsigned int
int
int
int
Word
int

*thisClient;
*clientAuxTable;
this_clock-page_status;
page_no,access_mode;
server_site;
len,i, ack_code, size_msg;
SEND_ARRAY [3] ;
array_index;

for{i=O: i< 3; i++)
SEND_ARRAY[i]

begin_atomic{) ;
thisClient = (perClientDS .) ('(ptrToGlobaIClientDS)};
clientAuxTable = thisClient->client-ptable;
end_atomic() ;

I'not in atomic region here*/
switch (request->msg_code)
{

case C_FWD_REQUEST:
{

page_no = request->array[l);
access~ode = request->array(2];

/' Update statistics at this client site.
• This is a control message during normal operation.
*/

CYCLE_COUNTING_OFF;
begin_atomic() ;
globaIClientStats[CURR_PROCESSOR] .normal.control_msg_count++;
size_msg = 8 * sizeof{Word);
glohaIClientStats(CURR_PROCESSOR] .normal.control_msg_bytes +=

1* Update statistics for the time interval into which
• this message falls.
*/

array_index = CURR_TIME/METRIC_INTERVAL_CYCLES;

if UlIG_INTERVAL}
(

assert(thisClient->cluster_index >=0 &&
thisClient->cluster_index < NO_OF_SERVERS) ;

assert(array_index >=0 && array_index < MAX_MIG_INTERVALSI;

globalIntervalData(thisClient
>cluster_index) .in_cluster_control_byte[array_index] += size_msg;

globaIIntervaIData[thisClient
>cluster_index] . in_cluster_control_msg (array_index] += 1;

)

/* If the client or server are down or
* recovering, the server waiting for an ack.
• to a request will not make any difference.

*

195

• The server's data structures will be
* validated during recovery.
Of

fO Check if this client is the correct clock
* site or if the clock page has a service
* later.'f

f* If the page has SERVICE_LATER, ignore the
* request. Do not test for just the LATER
° bi t. Only valid valu.es for auxClient. service
° are SERVICE_LATER and SERVICE_NOW.
* If this client is migrating, in a multi-server
* environment, it doesnt service the request.
*f

begin_atomic();
if «clientAuxTable[page_no] . clock_site !=

CURlCPROCESSOR) II
« clientAuxTable [page_no] .page_status &

CLOCK) ! = CLOCK)
II

clientAuxTable[page_no] . service -
SERVICE_LATER))

fO The clock could have changed by now.
* This has happened when:

- The service is SERVICE_LATER because the write
clock has loaned the page to another cluster.

- The clock is WRITE_CLOCK and the service is
SERVICE_LATER ~ecause this client is migrating.

*f
if(clientAuxTable[page_no] .page_status &

(
#ifdef PRINT DEBUG
CYCLE_COUNTING_OFF;
sem_P (mutex) ;
printPerClientDS(thisClient);
sem_V (mutex) ;
CYCLE_COUNTING_ON;
printf('\n\n ERROR: MESSAGE SENT TO WRONG CLOCK SITE, client

P%d is not clock for page %d, reqd access = %d \n',cURR-PROCESsoR.page_no,access_mode);
snapshot() ;
#endif

}
/. Before ignoring the request:

* if the server is waiting for an
• ack and has set a service later
* ignore bit, it will never be
• changed to service_now because this
* request has died here. Any
* duplicate requests will not be
* serviced since the server has
* set the service later ignore!!
• I.nform the server to undo the
* service later ignore. The clock site
* at the server will not change unless
* it gets a ack Change of clock msg.
• The clock site is the same.
'f

ack_code = request->array[O],
if (ack_code == SEND_ACK_CLOCK_CHANGE_MSG)
(
f* Send a msg not delivered, undo

• service later ignore, message to
* the server. This is a request
* related message, it is sent as a
* normal request to the server
* (REQUEST_FOR_SERVER_IPI)

• O. S_MSG_NOT_DELIVERED
• 1. no_args .. 1
• 2. page_no

is clock site needed?

196

*/
/* Make sure this page is an in cluster page.
*/

if ((page_no < thisClient->lowest-page) II
(page_no > thisClient->highest-page)
)

CYCLE_COUNTING_OFF;
sem_P (mutex) ;
printf("\n\n in C_r~n_REQUEST, Client P%d not a

clock for page %d, this should be an in cluster page, but is an out cluster page. FATAL
ERROR\n',CURR_PROCESSOR,page_no);

printPerClientDS(thisClient) ;
fat·al (' in C_FWD_REQUEST, Client P%d not a clock for

page %d, this should be an in cluster page, but is an out cluster page. FATAL
ERROR \n' , CURR_PROCESSOR, page_no) ;

sem_V(mutex) ;
CYCLE_COUNTING_ON;
end_atomic() ;
return;

thisClient->server_site;

SEND_ARRAY [0] S_MSG_NOT_DELIVERED;
SEND_ARRAY [1] 1;
SEND_ARRAY [2] page._no;
/* MESSAGE_LENGTH*/
len = 3 * sizeof(Word);

send_ipiV(server_site,PRIORITY,REQUEST_FOR_SERVER_IPI,len,3,SEND_ARRAY);
assert (SEND_ARRAY [1] ! = INIT_SEND_ARRAY);
}

end_atomic() ;
return;

/~ The request cannot be ignored now.*/
/* The service of this clock is changed to

* SERVICE_LATER first, so the user at the
* clock site cannot make changes to the
* clock until this request is serviced
* This setting to SERVICE_~~TER should be done
* in the same atomic region as the testing of its
* value.
*/

clientAuXTable[page_no}.service &= 0;
clientAuxTable[page_no} . service 1= SERVICE_LATER;
/* Only if the site remains a clock site
~ will its service be changed to SERVICE_NOW.*/

end_atomic () ;
/* switch not in atomic region.*/
switch (access_mode)
(

case RE.l>J): /* read request*/
(
/* There are 2 cases:

* 1. Clock is reader, read request;
* 2. Clock is writer, read request;
* In both cases, the clock makes some
* changes and sends a reply to the
* origin of the request.
*/

switch(this_clock-page_status)
{
case
case

~~:/* clock is reader'/
READ_CLOCK;
{

/* Clock is reader, read request. */
/* Call a function which will do

* the processing.
*/

readerClockH~~dlingReadRequest(request) ;
ASSERT_NOT_ATOMIC{) ;
I· Change the service back to
* SERVICE_NOW, since this is still
* the clock site.*1

begin_atomic() ;
clientAuxTable[page_no] . service &= 0;
clientAuxTable[page_no] .service

1= SERVICE_NOW;
end_atomic() ;
break; I*End of read clock.·1
}

case WRITE: J·Clock is writer.*1
case WRITE_CLOCK:

{

1* clock is writer, read request. *1
1* Call a function which will do
* the processing.
*1

writerClockHandlingReadRequest(requestj;
ASSERT_NOT~TOMIC(};

J* Change the service back to
* SERVICE_NOW, since this is still
* the clock site.·1

begin_atomic() ;
clientAuxTable[page_no] . service &= 0;
clientAuxTable[page_no) . service

1= SERVICEJ'OW;
end_atomic() ;
break; 1* End of write clock.*1
)

default:
(
fatal(' Invalid page mode %d for clock; at client

P%d for page %d\n', this_clock-page_status, page_no, CURR_PROCESSOR) ;
break;
)

) 1* End of switch, this_clock-page_status.*1
break; /* End of read request.*1
)

case WRITE: I ·Wri te reques t . 0 I
(
switch (this_clock-page_status)
(

197

case
case

case
case

READ: 1* Clock is reader. * /
READ_CLOCK:

1* Clock is reader,write request. 01
1* Call a function which will do

* the processing. *1
readerClockHandlingWriteRequest{request);
ASSERT_NOT_ATOMIC{} ;
1* DO NOT change the service back to

o SERVICE_NOW, since this was a
* write request and the clock has
* changed. Server is waiting for ack
* S_ACK_CLOCK_CHANGE message from the new
* clock.*1

break; 1* End of read clock. * I

~ffiITE: 1* Clock is writer.*/
"TRITE_CLOCK:

1* Clock is writer,write request. */
1* Call a function which will do

* the processing. *1
writerClockHandlingWriteRequest(request)
ASSERT_NOT_ATOMIC() ;
1* DO NOT change the service back to

* SERVICE_NOW, since this was a
* wTite request and the clock has
* changed. Server is waiting for ack
* S_ACK_CLOCK_CHANGE message from the new
* clock. * I

break; I*End of write clock.*1

default:
(

fatal(' Invalid page mode %d for clock; at client
P%d for page %d\n", thi s_clock-page_st.atus, page_no, CURR_PROCESSOR) ;

break;
}
} /~ End of switch, this_clock-page_status.*/
break; /* End of write request.*!
}

default:
fatal(' Invalid access mode %d sent in

C_FWD_REQUEST\n",access_mode);
break;

) 1* switch access_mode*/
1* Not in atomic region here.*1

break; /* End of case C_FWD_REQUEST. *1
}

case C_INVALIDATE_READER:
(
1* Call a function to invalidate the

* reader.'!
invalidateReaderOfPage(request) ;
ASSERT_NOT_ATOMIC();
break: l'End of case C_INVALIDATE_READER.*I
)

/ * ! ! ~ !! BEGIN MULTI SERVER! ! ! ! ! ! ! ~ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 111" /

#ifdef MULTI_SERVER

1* This clients server is forwarding a request
• from a different server.
* There are 4 cases here:
* Clock R!W, and R/W request.
* Cant use the same functions as the
* C_FWD_REQUEST as those functions directly
* send a message to the user.
* Here. a reply has to be sent to the server.
*1

clockHandlingOutOfClusterRequest(request) ;
ASSERT_NOT_ATOMIC();
break:

)/'End of case C_fWD_OUT_OF_CLUSTER_REQUEST.*/
case C_FWD_MAKE_URSLF_TEMP_CLOCK_HANDLE_READ_REQUEST:

1* This client(cl) is a reader for an out of cluster
* page. Another client cll in the same cluster
• cluster makes a read request for the same page.
• cl becomes a temporary clock and gives a read
* copy to ell. In case of a invalidate all readers
• msg to this server, a msg is sent to c1, which
• in turn will invalidate cll.
*!

I' The following function takes care of the service
* of this page.*1

makeUrslfTempClockHandleOUtClusterReadRequest(request) ;
ASSERT_NOT_ATOMIC() ;
break;

1* This client c1 is a reader (and maybe temp clock)
* for an out of cluster page. sl tells cl to invalidate
• all its readers. sl has already invalidated the
* clock site for this page. cl invalidates all its
* readers. cl does not have to send an ack back to
* sl. The owner of this page is s2. s1 does not
• have to send an ack back to s2.
*1

invalidateAllOUtClusterReadersOfPage(request) :
ASSERT_NOT_ATOMIC() ;
break;

198

199

/* A temporary read clock (for out of cluster page)
* tells its reader to invalidate its read page. It is
* different from C_INVALIDATE_READER. In
* C_INVALIDATE_READER, the page mode is changed,
* but the page stays in memory(it could be a trailer)
* Since this is a multi server case, the page is
* removed from memory.
*/

invalidateOutClusterReaderofPage(request};
ASSERT_NOT_ATOMIC() ;
break;

/* 52 is returning a write update page to c2. c2 uses update code
* to coordinate the update with the watchdog update thread.
*/

clockGettingltsWriteUpdatePage(request)
ASSERT_NOT_ATOMIC(};
break;

/* c1 has a write update copy of page. 51 sends it an
* invalidate message since c1 has kept it for more than
* update time.
*/

invalidateOutClusterUpdateWriterPage{request) ;
ASSERT_NOT_ATOMIC(};
break;

/* cl in sl is a temp read clock of page p belonging to 52.
* A site in sl,c1-1, asks for write permission for page p.
* On getting a reply from s2, s1 sends a message to c1
* telling it to invalidate all the readers and forward the
* reply to c1-1. While forwarding the message to cl, 51
* set extra to NOT_REACHED. So, sl is waiting for an ack
* from cl-l (that it reed the pagel.
*/

invalidateAIIOutClusterReadersFwdWriteUpdate(requestJ;
ASSERT_NOT_ATOMIC();
break;

)
#endif /* of MULTI_SERVER*/

I * ~ ! ~ ~ ! ! !! END MULTI_SERVER! p /

/* REPLIES TO REQUESTS*/
case REPLY_MAKE_URSLF_READER_MSG:

/* A user is asked to become a reader
* of this page; it made a read request
* for a page in its cluster.
*/

replyMakeReader(request) ;
ASSERT_NOT_ATOMIC() ;
break;

/* A user is asked to become a reader and
* trailer of this page; it made a read
* request for a page in its cluster.
* The clock was in write mode, so is
* making this site a trailer with the
* latest write.
*/

replyMakeReaderTrailer(request);
ASSERT_NOT_ATOMIC();
break;

/* A user is asked to become a writer clock
* of this page; it made a write request
* for a page in its cluster. It mayor may not
* already be a reader of this page.
*/

replyMakeWriterClock(request);
ASSERT_NOT_ATOMIC();
break;

/* A user has made a request for a page
* Its server tells it to resend this
* request. The server of this page has
* marked it SERVICE_LATER_REPLY.
*/

replyResendRequestLater(request);
ASSERT_NOT_ATOMIC() :
break;

case REPLY WAKE_UP_USER_MSG,
(

/* A write clock gets a read request from the user at its
* own site. It downgrades to a reader, adds itself as a
* reader in the list of readers and send this message to
* itself to wake up its user. It does not send the page
* with this message as th~ page is already in its memory
* in the required mode.
*/
replyWakeUpUser(request);
ASSERT_NOT_ATOMIC();
break;

/ * !! BEGIN MULTI SERVER!! ! ! ! ! ! ! ~ ! ! ! ! ! ! ! ! t ! ! ! ! '* /
#ifdef MULTI_SERVER

/* A use.r is asked to become a reader
* for an out of cluster page. It made
* a read request for this page.
*/

replyMakeReaderOutClusterPage(request) :
ASSERT_NOT_ATOMIC() ;
break;

case REPLY MAKE_URSLF_UPDATE_WRITER_OUT_CLUSTER_PAGE_MSG:
{

/* A user is asked to become an update writer
* for an out of cluster page. It made
* a write request for this page.
*/

replyMakeUpdateWriterOUtClusterPage(request);
ASSERT_NOT_ATOMIC() ;
break;

200

/* c1 is a reader of a page. c1-1 requested write permission
• to this page. c1, cl-1 are in s1. s1 got a 'upgrade
* yourslf from reader to write update' reply from s2.
* s1 forwards the reply to c1. which in turn will forward
* the reply to c1-1. This reply is forwarded from c1 to
* c1-1 when c1 was already a reader and it requested a
* write (B7-1).
*/
replyUpgradeFrOmReaderToUpdateWriterOUtClusterPage(request);
ASSERT_NOT_ATOMIC() ;
break:

/* cl is a read clock that is migrating. It hands over

* the read clock to the server s1, which then sends
* this message to this client c2, telling it to become
* the new read clock. c2 could a.lready be a reader. (H2)
*1
clientMigrateHandoverInstallNewReadClock(request};
ASSERT_NOT_ATOMIC() ;
break;

1* c1 is a write clock that is migrating. It hands over
* the write clock to the server s1, which then sends
* this message to this client c2, telling it to become
* the new write c·lock. c2 could already be a writer. (K2)
*1
clientMigrateHandoverInstallNewWriteClock(request) ;
ASSERT_NOT_ATOMIC() ;
break;

case C_MIG REMOVE_CLIENT_AS_READER_FOR_PAGES:
{

1* c1 is a client that is migrating. s1 sends the following
* message to a client which is a read clock for a page/pages
* for which cl is a reader. s1 does not send the pages for
* which c1 was a reader. This client scans its read clocks,
, and removes c1 as a reader. (J2)
'I

clientMigrateHandoverRemoveClientAsReader(request);
ASSERT_NOT_ATOMIC(};
break;

1* This message is used for both migration and
* recovery. Hence it is put in file, clientrec.ca so
* it can be used for recovery in single server case.
, A clock site is told to remove a server as a reader
, for a specific page.
'I
clientRecRemoveServerAsReaderForAPage(request) ;
ASSERT_NOT_ATOMIC() ;
break;

)
#endif I'of MULTI_SERVER' I

/11: ! ! ! ! ~ ! ~ ! l ! ! ! ! ! ~ ! ! ! ~ : ! !! END MULTI SERVER!! ~ ~ ! ! ! ! ~ ! ! ! ! ! t ! ! ! ~ ! ! ! ! ! ! ! ! ! ! 11 !

default:
{

fatal (. ERROR: Invalid msg code %d in
processRequestAtClient\n',request->msg_code)

break;
}

I*End of switch request->msg_code.*1

I*********~*****~'***********************~********************~ww******

FUNCTION: readerClockHandlingReadRequest
PURPOSE: This function is called at the clock sice ",hen the

clock is a reader for a page, and there is a read request
for that page. Here the request is made by a client in the
clock's cluster.
In this case, no changes were made to the server and the
acknowledgement code sent by the server is DO_NOT_SEND_ACK
_MSG which is passed to the user which will not ack the
receipt of the reply co the server.
Since the clock is a reader, it checks to see if the
requesting processor is already a reader for that page.
If it is, it ignores the request.
If not, it adds that processor as a reader, and sends
a read copy of the page to the user at that processor.

The service of this page is changed to SERVICE LATER
before this function call and is changed back to
SERVICE_NOW on return from this function call.
The reply sends a REQUEST_FOR_CLIENT_IPI to the site

201

INPUTS

making the request.
Not to be used in the recovery process.
reqNode 'request
request->msg_code C_FWD_REQIJEST
request->no_values 6
request->array:
O. dck_code DO_NOT_SEND_ACK_MSG

This ack code is sent by the server.The
clock passes it on to the user, which
sends an ack to the server, if reqd.

202

1. page_no
2. access_mode
3. tid of origin
4. processor of origin
5. unique request no

OUTPUTS : none

READ (reqd of page requested)

********************************.************~********•• ******** •• ***/
void readerClockHandlingReadRequest(reqNode *request)
(

perClientDS
auxClient
intNode
int
int
int
int
Word

*thisClient;
*clientAuxTable:
ret_node, *node;
ret,len, i;
page_value_dt_clock;
ack_code, page_no, access_mode:
t.id_of_origin, proc_origin, uni~request_no;
SEND_ARRAY [8] ;

ASSERT~OT_ATOMIC() :
thisClient = (perClientDS*) (*(ptrToGlobaIClientDS));
clientAuxTable = thisClient->client-ptable;

for(i=O; i< 8; i++)
SEND_ARP~Y[i] = INIT_SEND_ARRAY;

f* The state of the server, client and system have already
* been checked when this request was removed from
* the request queue.
*f

f* The clock has to add proc_of_origin as a new reader of
* page_no.
* The clock remains a clock. No changes have to be sent back to
* the server.
*f

f* This could be a duplicate request, so the user site may
* already be a reader.*f
ack_code = request->array[O];
page_no = request->array[1];
access_mode = request->array[2];
tid_of_origin = request->array[3];
proc_origin = request->array[4];
uni~request_no = request->array[5j;

f* check for the ack code*f
if (ack_code != DO_NOT_SEND_ACK_MSG)
(

fatale "ERROR: In readerClockHandlingReadRequest P%d, ack code is not
DO_NOT_SEND-fiCK_MSG but %d\n',CURR_PROCESSOR,ack_code);

return;

begin_atomic ()
ret =

findlnIntList(clientAuxTable[page_no] .list_of_readers,proc_origin,&ret_node):
if(ret == FOUND)
(

f* Do not process the request.*f
f* The request is no longer needed. Memory for it will
* be freed in clientThread on return.
*f

checkSinglePage (clientAuxTable (page_no) , page_no, CURR_PROCESSOR,
CHECK_TRAILER_VER,' 1 readerClockHandlingReadRequest");

203

return;

/* The requestor is not a reader. Add it to the list ot
* readers. Send an ipi to that processor.
*/

node = createlntNode(proc_originl;
if (node == NULL)
{

fatal(" ERROR: could not create int node to add reader to readers list\n");
/* Not in atomic region.*/
/* The request is no longer needed. Memory for it will

* be freed in clientThread on return.
*/

return ;

ret = insertlntoIntList(clientAuxTable(page_no] . list_of_readers, node) ;
if (ret == ERROR_LIST)
(

fatal (. ERROR: could not insert node into readers list\n");
end_atomic() ;
/* The request is no longer needed. Memory for it will

* be freed in clientThread on return.
*/

return ;

page_value_at_clock = clientAuxTable(page_no] .page_value;
checkSinglepage(clientAuxTable~page_nol,page_no,

CURR_PROCESSOR,CHECK_TRAILER_VER," 2 readerClockHandlingReadRequest");
end_atomic() ;

waiting

page_no
access_mode
page_value
tid_of_origin

* 1. no args
* 2. ack_code

* 4.
* 5.
* 6.

/* The clock sends a REQUEST_FOR_CLIENT_IPI to the user
* who made the re,quest. The args sent are:
* O. msg_code REPLY_MAKE_URSLF_READER_MSG , telling the

user to make itself a reader of
this page.
6
DO_NOT_SEND~ACK_MSG. This is the code the
server sent the clock. since the serv'er is not
for an ack since the clock is not changing.
the page no of the requested page
this should be READ
the value at the clock site
needed by user to synchronize the
user/reply/watchdog

unique request no* 7.
*/

SEND_ARRAY [D) REPLY_MAKE_URSLF_P~~ER_MSG;

SEND-ARRAY[l] 6·
SEND_ARRAY [2] ack_code;
SEND_ARRAY[3j page_no;
SEND-ARRAY[4j READ;
SEND_ARRAY [5] page_value_at_clock;
SEND_ARRAY [6] tid_of_origin;
SEND_AP~Y[7] uni~request_no;

/* MESSAGE_LENGTH*/
len =(7 + PAGE_SIZE) * sizeof(Word);
send_ipiV(proc_origin,PRIORITY,REQUEST_FOR_CLIENT_IPI,len,8,SEND_AP-RAY);
assert (SEND_ARRAY[1j != INIT_SEND_ARRAYI;

/* The request is no longer needed. Memory for it will
* be freed in clientThread on return.
*/

/***~**********~**************~*+**~**************.**********~***+***.

FUNCTION, writerClockHandlingReadRequest
PURPOSE: Case 1:

This function is called at the clock site when the
clock is a writer tor a page, and there is a read request

204

for that page.

In this case, the server made no changes though it
knows that the clock will downgrade from a writer to
a reader. The server is not waiting for an acknowledgement
from the user as it knows the clock site will not
change since this is a read request. It sends a
DO_NOT_SEND_ACK_MSG.
Once this clock changes its mode, it informs the
server abou't this mode c,hange by s,ending a
S_INFORM_CLOCK_MODE_CHANGE msg to the server.

since the clock is a writer, it has the latest copy of
the page. It downgrades itself to a reader, and gives
a copy to the user. Now, since a writer clock has
presumably just written to this page, the latest
trailer of this page in the system does not have this
change. So, this clock, when it downgrades to a reader,
will give the user a read copy and also make it a trailer.

Case 2:
The user thread at the clock site itself could have
requested a read when the clock is in write mode.
In this case, the server made no changes though it
knows that the clock will downgrade from a writer to
a reade.r. The server is not waiting for an acknowledgement
from the user as it knows the clock site will not
change since this is a read request. It sends a
DO_NOT_SEND_ACK_MSG.
Once this clock changes its mode, it informs the
server about this mode change by sending a
S_INFORM_CLOCK_MODE_CHANGE msg to the server.

Since the clock is a writer, it has the latest copy of
the page. It downgrades itself to a reader, and actually
does not need to give a copy to the user since the user
is the same site. since its the same site, there
is no new trailer. So it just sends an IPI to its
own processor, which telling the user to wake up. Since this

site is already a reader now, the read page is NOT sent.

That request is sent to the server. The server does
not make any changes since it knows the clock will stay
the same.

The service of this page is changed to SERVICE_LATER
before this function call and is changed back to
SERVICE_NOW on return from this function call.

In both cases, this request is made by a client in the
clock's cluster.

the recovery process.

DO_NOT SEND ACK MSG
This ack_code is sent by the server.The
clock passes it on to the user, which
does not send an ack to the server

Not to be used in
reqNode *request

request->msg_code
request->no_values
request->array:
O. ack_code

INPUTS

1. page_no
2. access_mode
3. tid of origin
4. processor of origin
5. unique request no

OUTPUTS : none

READ (reqd of page requested)

*********.***~****~*****************.*********************r.**********/

void writerClockHandlingReadRequest(reqNode *requestl
{

perclientDS
auxClient
int
int.
int
int

*thisClient;
*clientAuxTable:
ack_code, page_no, access_mode;
tid_of_origin,proc_origin,uni~request_no;

new_trailer_version;
page_value_at_clock;

int
Word
intNode
int

i,len;
SEND_ARRAY[9);
*node;
ret,server_site;

205

ASSERT_NOT-ATOMIC();
thisClient = (perClientDS*) (* (ptrToGlobaIClientDS») ;
clientAuxTable = thisClient->client-ptable;

for(i=O; i< 9; i++)
SEND_ARRAY [i) = INIT_SEND_ARRAY;

ack_code = request->array[Oj;
page_no = request->array[lj;
access_mode = request->array(2);
tid_of_origin = request->array[3);
proc_origin = request->array[4);
uni~reequest_no = request->array[Sj;

/* Check for the ack code.*/
if (ack_code != DO_NOT_SEND_ACK_MSG)
(

fatal ('ERROR: In writerClockHandlingReadRequest P%d, ack code is not
DO_NOT_SEND_ACK_MSG but %d\n',CURR_PROCESSOR,ack_code);

return;

/* The clock has to invalidate its write mode
* Do not do that here because this function
* may return with an error. Do it only after no
* further errors are possible.
*/

/* When a clock is a reader, the clock site is added to
* the list of readers.
*/

node = createIntNode(CURR_PROCESSORj
if (node == NULL)
(

fatal(' ERROR: could not create int node to add reader to readers list\n");
/* Not in atomic region.*/
/* the request is no longer needed. Memory for it will
* be freed in clientThread on return.
*/

return;

begin_atomic();
ret = insertlntolntList(clientAuxTable[page_no] .list_of_readers,node);
if (ret == ERROR_LIST)
(

fatal(" ERROR: could not insert node into readers list\n');
end_atomic() ;
/* The request is no longer needed. Memory for it ...Iill

* be freed in clientThread on return.
*/

return;

/* Add the user as a reader,only if it is not this site
* itself. If the write clock itself requested a read,
* only its mode needs to be changed.
*/

if(proc_origin != CURR_PROCESSOR)
(

node = createlntNode(proc_originl;
if (node == NULL)
(

fatal(' ERROR: could not create int node to add reader to readers
list\n")

/* Not in atomic region.·/
/* The request is no longer needed. Memory for it will

* be freed in clientThread on return.
*/

206

end_atomic() ;
return ;

ret = insertIntoIntList(clientAuxTable[page_no] .list_of_readers,node);
if (ret == ERROR_LIST)
(

fatal(" ERROR: could not insert node into readers list\n");
end_atomic();
/~ The request is no longer needed. Memory for it will
~ be freed in clientThread on return.
*/

return;

}
} /* End of if proc_origin != CURR_PROCESSOR.*/

/* The clock has to first invalidate its write mode.
*/

clientAuxTable[page_no] .page_status &= -(WRITE);

/. The clock makes itself a reader.*/
clientAuxTable[page_no].page_status 1= READ;

/* The current trailer version is the latest t version
* in the cluster. A read copy of this page is sent to
* the user. This user becomes the next trailer site.
* Increment trailer_version.
*/

if (proc_origin != CURR_PROCESSOR)
(

(clientAuxTable[page_no] .trailer_version)++;
)
new_trailer_version = clientAuxTable[page_no] . trailer_version;
page_value_at_clock = clientAuxTable[page_no} .page_value;
server_site = thisClient->server_site;

checkSinglePage (clientAuxTable [page_no] , page_no,
CURR_PROCESSOR,CHECK_TRAILER_VER,' 1 writerClockHandlingReadRequest");

* 1. no args
* 2. ack code

page_no
access_mode
page_value
tid_of_origin

*

* 3.
* 4.
~ 5.
~ 6.

/* The clock sends a REQUEST_FOR_CLIENT_IPI to the user
• who made the request. The args sent are:
.' O.msg_code REPLY_MAKE_URSLF_READER_TRAILER_MSG,

telling the user to make itself a reader and
trailer of this page.
7
DO_NOT_SEND_ACK_MSG. This is the code the
server sent the clock, since the server is not waiting
for an ack.
the page no of the requested page
this should be READ_TRAILER
the value at the clock site
needed by user to synchronize the
user/reply/watchdog

unique request no
trailer_version the latest t version in the system

~ 7.

* 8.
*/

if (proc_origin ! = CURR_PROCESSOR)
(

SEND_ARRAY [0] REPLY_MAKE_URSLF~R~~ER_TRAILER_MSG;

SEND_ARRAY!l] 7;
SEND_ARRAY [2] ack_code;
SEND_ARP~Y[3] page_no;
SEND_ARRAY [4] READ_TRAILER;
SEND_ARRAY [5] page_value_at_clock;
SEND_ARRAY [6] tid_of_origin;
SEND_ARRAY[?] uni~request_no;

SEND_ARRAY [8] new_trailer_version;
/ * MESSAGE_LENGTH * /
len = (8 + PAGE_SIZE) * sizeot{Word);
send_ipiV(proc_origin,PRIORITY,REQUEST_FOR_CLIENT_IPI,len,9,SEND_ARRP.Y);
assert(SEND_AFL~Y[l) != INIT_SEND_ARRAY);

207

}
else
(

/* If the user at this write clock itself made the
* read request, this write clock downgrades to a
• reader, adding itself as a reader. Now this page is
* already in a read mode at this site.
*

*

*

*
*

*

* PARTICULAR TIMING UNUSUAL CASE:
* Do not send a REPLY_MAKE_URSLF_READER_MSG to itself.
* Send a REPLY_WAKE_UP_USER which will not install the
* page in memory, but will only wake up the user indicating
* that the page is already in memory.
* Consider the following:
* 1. This client is cl. It is a write clock.
* 2. cl makes a read request for this page.
* 3. Simulataneously with (2), c2(another client in this
* cluster) makes a write request.
* 4. cl gets the read request from itself. It do~mgrades

* to a read clock and sends a REPLY_MAKE_URSLF_READER_MSG
to itself 'with the read page'. Already this clock
has downgraded to a read clock with itself as a
reader.

* 5. Immediately after 4, it gees 3. It has to handover
clock privileges to c2. It invalidates its read
mode in invalidateAIlReaders. This invalidation is
done locally, without sending an invalidate message
to itself. So it becomes a TRAILER page and hands
over write clock to c2.

* 6. The REPLY_MAKE_URSLF_READER_MSG that cl sent to
itself in 4 arrives. By this time this client has
already become a trailer. That reply installs a
read page, and this client becomes a READ_TRAILER.

* 7. Parallel to 6, c2 gets 5 and becomes a WRITE_CLOCK.
THE SYSTEM IS IN AN INCONSISTENT STATE because:
- one client in the cluster is a write clock.

* - another client in the cluster is a read trailer (it
* should have been just a trailer) .
* SOLUTION,
* Instead of sending a REPLY_MAKE_URSLF_READER_MSG in 4,
• send a REPLY_WAKE_UP_USER. This message will not
* re-install a read page. It just wakes up the user telling
* it that the page is in memory. By the time the user
* tries to read from this page, if the read clock has
* already handed over to c2, the user will find that the
* read page is not in memory and will have to re-send the
* request to its server.
* Note: Instead of a REPLY_WAKE_UP_USER this clock can
* wake up the user right here since the user is on the
* same processor. But for elegance and to conform to
~ a reply arriving via REPLY_ .. messages, this REPLY_WAKE_
* UP_USER is sent anyway.

~ This bug does not occur in readerClockHandlingWriteReguest
* from itself, because the reader clock totally invalidates
*. i tsel f and hands over write clock privileges to itself.
*/

REPLY_WAKE_UP_USER_MSG;
3 ;
DO_NOT_SEND_ACK_MSG;
tid_of_origin:
uni~request_no;

* 1 .. no args
* 2. ack_code

* 4.
*/
SEND_ARP..AY [0]
SEND_ARRAY [I)
SEND_ARRAY (2)
SEND_ARRAY [3)
SEND_ARP..AY [4)

/* The clock sends a REQUEST_FOR_CLIENT_IPI to the user
* at its own site. The args sent are:
* O. msg_code REPLY_WAKE_UP_USER_MSG,
* telling the user to wake up since the page is

already in memory.
3
DO_NOT_SEND_ACK_MSG. The user at this
site does not need to send any ack to the server.
needed by user to synchronize the
user/reply/watchdog

unique request no

208

/*MESSAGE_LENGTH*/
len = 5 • sizeofIWord);
send_ipiV(proc_origin,PRIORITY,REQUEST_FQR_CLIENT_IPI,len,8,SEND_ARRAYl:
assert (SEND-ARRAY [1] != INIT_SEND_ARRAY);

)
/* Now the write clock has become a read clock.

* Inform the server of this change.
*/

/* Inform the server of change in clock mode. This
* is a request related message, it is sent as a
* normal request to the server (REQUEST_FOR_SERVER_IPIl.

S_INFORM_CLOCK MODE CHANGE
3 (excluding msg code)

READ

* Send the request ipi to the server.
* 4 arguments:
* O. request code
* 1. no_args
* 2. page_no
* 3. new_clock_mode
* 4. this site
*1

SEND_ARRAY (0) S_INFORM_CLOCK_MoDE_Ca~GE;

SEND_~~Y[l} 3;
SEND_~~Y[2} page_no;
SEND_ARRAY [3 } READ;
SEND_ARRAY [4] CURR_PROCESSOR;
/* MESSAGE_LENGTH*/
len = 5 * sizeof(Wordl;
send_ipiV(server_site, PRIORITY,REQUEST_FOR_SERVER_IPI,len,5,SEND_ARRAY);
assert (SEND_ARRAY (1] != INIT_SEND_ARRAY);
1* 5 args sent in SEND_ARRAY*I

/*****T***~*******.*****~W~********~****************************~~****

FUNCTION: readerClockHandlingWriteRequest
PURPOSE : This function is called at the clock site when the

clock is a reader for a page, and there is a write request
for that page. Here, this request is made by a client in
the clock's cluster.
In this case, the server changed the service of that
page to SERVICE_LATER_IGNORE. The server will wait
for an acknowledgment from the user before servicing any
further requests for that page.
The server passes a SEND_ACK_CLOCK_C~~GE_MSG in the
request fwd'd to the clock. The clock forwards this
to the user.
Since the clock is a reader, it has to invalidate itself
and its other readers. It becomes a trailer and the user
becomes the new clock.
Even if the user that is requesting a write is already a
reader, the read clock is completely invalidated and the
reader is told to become a write clock. Therefore, the
reply write clock message should not find the page in
read mode.
This clock fordards the reply to the user using a REQUEST_
FOR_CLIENT_IPI.

INPUTS

The service of this page is changed to SERVICE_LATER
before this function call and is changed back to
SERVICE NOW on return from this function call.
Not to be used in the recovery process.
reqNode *request

request->msg_code C_FWD_REQUEST
request->no_values 6
request->array:
O. ack_code SEND_ACK_CLOCK_CHANGE_MSG

This ack_code is sent by the server.The
clock passes it on to the user, which
sends an ack to the server. The ack sent to
the server is S_ACK_CLOCK_CHANGE rnsg.

1 .. page_no
2. access_mode
3. tid of origin
4. processor of origin

WRITE (reqd of page requested)

5. unique reques t no
OUTPUTS , none

*****.**************************~**************•• ***** ***************/

void readerClockHandlingWriteRequest(reqNode *request)
(

209

perClientDS
auxClient
int
int
int
int
int
Word

*thisClient;
*clientAuxTable;
ack_code, page_no, access_mode;
tid_of_origin,proc_origin,uni<L.request_TIo;
new_trailer_version;
page_value_at_clock;
len,i;
SEND_ARRAY[9j;

ASSERT_NOT_ATOMIC();
thisClient = (perClientDS*) (*(ptrToGlobalClientDS));
clientAuxTable = thisClient->client.J>table;

for{i=O; i< 9; i++)
SEND_ARRAY[ij = INIT_SEND_ARRAY;

ack_code = request->array[Oj;
page_no = request->array[l);
access_mode = request->array[2j;
tid_of_origin = request->array[3j;
proc_origin = request->array[4];
uni<L.request_no = request->array[5);

/* Check for the ack code.*/
if (ack_code != SEND_ACK_CLOCK_CHANGE_MSG)
(

fatal ('ERROR, In readerClockHandlingWriteRequest P%d, ack code is not
SEND_ACK CLOCK_CHANGE_MSG but %d\n',CURR_PROCESSOR,ack_code);

return;

/* Invalidate all readers. Messages are sent to all the
* readers. The clock does not wait for an acknowledgement
* for the invalidation. It just sends t.he messages and
* assumes they will reach the destination.
*/

/* Not in atomic region here.*/
1* If the request was from the clock itself, the clock's

* read page is also invalidated. There pass -1 as
* the second argument.
*/

begin_atomic() ;

invalidateAIlReaders{page_no, -1);
ASSERT_ATOMIC() ;

1* Now the read mode for the clock has been turned off, whether
* or not the clock site itself made this write request.
* Turn the clock mode off.
* Increment the trailer version. if the request was not
* from the clock itself.

* Give this clock a trailer mode if the request was not
* from the clock.
*1

clientAuxTable [page_no] .page_status &= - (CLOCK) ;
1* The clock_site of this page was CURR_PROCESSOR.

* Invalidate it by making it -1
*/

clientAuxTable[page_noj . clock_site = -1;
/* Assign the page value before it is invalidat.ed. *1
page_value_at_clock = clientAuxTable[page_no] .page_value;

if proc_origin! = CURP,_PROCESSOR)
(

/* Make it a trailer.·/

clientAuxTable[page_no) .page_status 1= TRAILER;
1* The current trailer version is the latest t_version

• in the cluster. This clock will be the next t_version.

210

* Increment trailer_version.
*/

(clientAuxTable[page_no) .trailer_versionl++;
new_trailer_version = clientAuXTable [pag,e_no) . trailer_version;
/* Do not invalidate the page value*/

}
else
(

clientAuxTable[page_no) _page_status 1= PAGE_NOT_IN_MEMORY;
/* Even if the same site requested the write, invalidate

* the trailer version so that a page consistency check
* can be made here. All the values for a write clock
* at the same site are sent in the reply message and
* can be used to restore clock status ../

new_trailer_version = clientAuxTable[page_noj .trailer_version;
clientAuxTable[page_no) . trailer_version = 0;
/* since the clock is handed over, invalidate the page
* value
*/

clientAuxTable[page_no] .page_value = -1;
)
/* The list of readers should be empty, done in

* invalidateAIIReaders.
*/

/* Now, the reader clock has invalidated itself. and made
* itself a trailer, if the write request was not from itself.
* If the write request was from itself, the page has been
* compeletely invalidated, and write clock privileges are
* handed over to itself in a new message.
* Send clock information to the origin of request. Give
* it a WRITE_CLOCK mode.
*/

checkSinglePage(clientAuxTable[page_no] , page_no,
CURR_PROCESSOR, CHECK_TRJI.ILER_VER," 1 readerclockHandlingWri t.eReques t") ;

* 3. page_no
* 4. access_mode
* 5. page_value

REPLY_MAKE_URSLF_WRITER_CLOCK_MSG;
7·
ack_code;
page_no;
WRITE_CLOCK;
page_value_at_clock;
t.id_of_origin;
uni~request_no;

*

* 1. no args
* 2. ack_code

/* The clock sends a REQUEST_FOR_CLIENT_IPI to the user
* who made the request. The args sent are:
* O. msg_code REPLY_MAKE_URSLF_WRITER_CLOCK_MSG,

telling the user to make it.self a clock and a
writer of this page.
Even if the user is alreay a reader, t.he page value
is sent.
7
SEND_ACK_CLOCK CHANGE MSG This lS t.he code
the server sent the clock, since the
server is wait.ing for an ack
for completion of clock change.
the page no of the requested page
t.his should be WRITE_CLOCK
the value at the clock site
Even if the requesting user is already a user.
the page value is sent. This is because even if the
requesting client is already a reader, it may invalidate
the read page if its migrating, yet be waiting for the
same write page to change to a migrating state. So, if
the requesting client does noc have the read page in
memory when it gets the message. it uses t.he page value
sent in this message.
needed by user to synchronize che
user/reply/watchdog

unique request. no
trailer_version t.he latest t version in the system

* 7.
* 8.
*/

SEND_ARRAY [0)
SEND_ARRAY [1)
SEND_ARRAY [2]
SEND_ARAAY[3]
SEND_APJ<AY [4)
SEND_ARRAY (5)
SEND_ARRAY[6}
SEND_ARRAY [7]

211

SEND_ARRAY [81 = new_trailer_version;
/* MESSAGE_LENGTH*/
len =(8 + PAGE_SIZE) * sizeof(Word);
send_ipiV (proc_origin, PRIORITY, REQUEST_FOR_CLIENT_IPI, le.n, 9, SEND_ARRAY) ;
assert (SEND_ARRAY [1) != INIT_SEND_ARRAY);

/* This function has been tested for the following cases:
* readerClockHandlingWriteRequest:

- request from itself, totally invalidated page, sent a message
to itself to install write clock.

* - request from client that is not a reader
this site became trailer, handed over write clock.

- request from another client (not itself) that is a reader,
sent an invalidate message to itself
(in invalidateAIIReaders), handed over write clock.

*/

/********************.***********.***~*******k******~·***********•• ****
FUNCTION:
PURPOSE

writerClockHandlingWriteRequest
This function is called at the clock site when the
clock is a writer for a page, and there is a write request
for that page. This request is made by a client in the clock's
cluster.
In 'this case, the server changed the service of that
page to SERVICE_LATER_IGNORE. The server will wait
for an acknowledgment from the user before servicing any
further requests for that page.
The server passes a SEND_ACK_CLOCK_CHANGE_MSG in the
request fwd'd to the clock. The clock forwards this
to the user.
Since the clock is a writer, it invalidates itself.
It becomes a trailer and the user becomes the new clock.
This clock forwards the reply to the user. The reply sends
a CLIENT_FOR_SERVER_IPI to the user

C_FWD_REQUEST
6

SEND_ACK_CLOCK_CHANGE_MSG
This ack_code is sent by the server.The
clock passes it on to the user, which
sends an acl<: to the server (S_ACK_CLOCK_CHANGE)

The service of this page is changed to SERVICE LATER
before this function call and is changed back to
SERVICE NOW on return from this function call.
Not to be used in the recovery process.
reqNode *request

request->msg_code
request->no_values
requ.es t ->array:
O. ack_code

INPUTS

1. page_no
2. access_mode
3. tid of origin
4. processor of origin
5. unique request no

OUTPUTS : none

WRITE (reqd of page requested)

~***********************~****~***************************************/

void writerClockHandlingWriteRequest(reqNode *request)
(

perClientDS
auxClient
int
int
int
int
int
Word

"thisClient;
*clientAuxTable;
ack_code, page_no, access_mode;
tid_of_origin,proc_origin,uni~request_no;

new_trailer_version;
page_value_at_clock;
len,i;
SEND_ARRAY [9] ;

ASSERT_NOT_ATOMIC() ;
thisClient = (perClientDS"j (*(ptrToGlobalClientDS));
clientAuxTable = thisClient->client.J)table;

for(i=O; i< 9; i++)
SEND_ARRAY[i] = INIT_SEND_ARRAY;

ack_code = request->array[O];
page_no = request->array[l];
access_mode = request->array[2);

212

cid_of_origin = request->array[3];
proc_origin = request->array[4j;
uni~request_no = requesc->array(5);

j* check for the ack code*/
if (ack_code ! = SEND_ACK_CLOCK_CHANGE_MSG)
(

fatal ("ERROR: In writerClockHandlingWriteRequest P%d, ack code is not
SEND_ACK CLOCK_CHANGE_MSG but %d\n*,CURR_PROCESSOR,ack_code);

return;

/* Turn the write mode off.
* Turn the clock mode off. Increment the trailer version,
* and give this clock a trailer mode.
*/

begin_atomic() ;
clientAuxTable[page_no) .page_status &= -(WRITE);
clientAuxTable[page_no] .page_status &= -(CLOCK);

/* make it a trailer*/

clientAuxTable[page_no] .page_status 1= TRAILER;
/* The curre,nt trailer version is the latest t_version
* in the cluster. This clock will be the next t_version.
* Increment trailer_v,ersion.
*/

(clientAuxTable[page_no] .trailer_version)++;
new~trailer_version= clientAuxTable[page_no] . trailer_version;

/* The clock_site of this page was CURR_PROCESSOR.
* Invalidate it by making it -1.
*/

clientAuxTable[page_no] .clock_site = -1;
/* The list of readers should be empty, vIas empty since
* this was a write clock.
*/

/* Send clock information to the origin of request. Give
* it a WRITE_CLOCK mode
*/

page_value_at_clock = clientAuxTable[page_no] .page_value;
checkSinglePage (clientAuxTable [page_no] , page_no,

CURR_PROCESSOR.CHECK_TRAILER_VER," 1 VJriterClockHandlingWriteRequest");
end_atomic I) ;

/* The clock sends a REQUEST_FOR_CLIENT_IPI to the user
* who made the request. The args sent are:
* O. msg_code REPLY_MAKE_URSLF_1'l1RITER_CLOCK_MSG. telling

the user to make itself a clock and a
writer of this page.

* 1. no args. 7
* 2. ack_code SE{D ACK CLOCK_CHANGE_MSG. This is the code

the server sent the clock, since the server is waiting
for an ack for completion of clock change.

the page no of the requested page
this should be WRITE_CLOCK
the value at the clock site
needed by user to synchronize the

user/reply/watchdog
unique request no
trailer_version the latest t version in the system

page_no
access_mode
page_value
tid_of_origin

* 3.
* 4.
* 5.
* 6.

* 7.
* 8.
*/

SEND_ARRAY [OJ REPLY_MAKE_URSLF_WRITER_CLOCK_MSG;
SEND_ARRAY [1] 7;
SEND_ARRAY [2] ack_code;
SEND_~~Y[3] page_no;
SEND_ARRAY[4] WRITE_CLOCK;
SEND_ARRAY (5) page_value_at_clock;
SEND_~~Y[6) tid_of_origin;
SEND_ARRAY [7] uni~request_no ;
SEND_ARRAY [8] new_trailer_version;
/* MESSAGE LENGTH*/
len = (8 + PAGE_SIZE) * sizeof(Word);

send_ipiV(proc_origin,PRIORITY,REQUEST_FO~CLIENT_IPI,len,9 ,SEND_ARRAY) ;
assert (SEND_ARRAY [1] != INIT_SEND_ARRAY);

/***.****~**.*********~****************.**************~*~*************

FUNCTION: invalidateAllReaders
PURPOSE : It sends a REQUEST_FOR_CLIENT_IPI to each reader of

the page, tel.ling it to invalidate its reader.

This function is called by a clock sice invalidating
ics readers. The reader list is deleted in this function.
The clock site does not invalidate itself here but sends a
read invalidation message to itself. The clock mode is not
touched in this function and should be changed by the calling
function, if necessary.

If check_reader is a reader, it is not sent an invalidation
message. A value ALREADY_A_READER is returned. But that node
is still removed from the list of readers.
If it is a multi server environment, and if even a single
server is a reader, it sends an invalidation message to its
server telling it to invalidate all server readers of this page.
If a server is a reader, and that is specified as the
check_reader, a message is sent to its server to invalidate all
readers except the check reader. If check_reader is not a reader,
a,nd there are server readers, it sends a message to its ser'v-er
telling it to invalidate ALL the server readers.

This function manages its atomic regions. Should be
called in non atomic mode. Returns in non atomic mode.

INPUTS
the page who's readers are to be

invalidated
if check_reader is a reader, do not invalidate

it, return ALRK~Y_A_READER

if check_reader is not a reader, return
NOT_A_READER

OUTPUTS : ALREADY_A_READER/NOT_A_READER
***/

int invalidateAllReaders {int page_no, int check_reader)
(

213

perClientDS
auxClient
intNode
int
Word
Word
inc
im:

·thisClient;
"clientAuxTable;
·next_reader;
ret_val;
SEND_ARRAY[3];/· used to send to clients·;
SEND_ARRAY_SERVER[4] ;;·used to send to server*;
next_reader_site;
len,i,ret_value,server_reader;

#ifdef MULTI_SERVER
int server_site;
#endif

ASSERT_ATOMIC();
thisClient = (perClientDS*) (• (ptrToGlobaIClientDS)) ;
clientAuxTable = thisClient->client-ptahle;

for(i=O; i< 3; i++)
SEND_ARRAY [i]

for(i=O; i< 4; i++)
SEND_ARRP.Y_SERVER[i]

;' See migration notes and the comments below:
* *9 cl is a reader for an in cluster page. cl is migrating so

it invalidates the read page. s1 is supposed to inform the
clock to remove cl as a reader, but suppose, parallely, the
clock sends a C_INVALIDATE_READER to cl. cl should invalidate
the reader only if it is still a reader.
Though this check should be made only in multi-server cas~,

it is safe to do it always.
Though this function is called after checking if the
clock is a reader, still make this check. It is possible
that parallel to this client thread, a clientMigrationThread

invalidated this clock and sent it to the server.
*/

if «clientAuxTable[page_no] .page_status & READ) '= READ)
(

ASSERT_ATOMIC{) ;
return NOT_A_READER;

/* Pullout each reader from the list of readers, and
* send an invalidation message to it .
.. This clock site will be one of the readers. There is
* no need to send an IPI to itself.
*/

ret_value = NOT_A_READER;
server_reader = F~LSE;

next_reader =
getNextNodeFromIntList(clientAuxTable[page_no] .list_of_readers,&ret_val);

SEND_ARRAY [OJ C_INVALIDATE_READER;
SEND_ARRP.Y[l] 1;
SEND_ARRAY!2j page_no;
/* MESSAGE_LENGTH*/
len = 3 * sizeof(Word);

214

while
(

next_reader != NULL)

/* Not in atomic region.*/
/* Send the request to the

* REQUEST_FOR_CLIENT_IPI .
• Arguments:
* O. request_code
* 1. no args
* 2. page_no

reader of the page

C_INVALIDATE_READER
1
the read page that has to

be invalidated
*/

next_reader_site = next_reader->val;

if(next_reader_site == check_reader)
(

ret_value = ALREADY_A_READER;

/* If check reader is a server, server state is not set
* to true. So if check_reader is the only server reader,

an 'invalidate server readers' message will not be
• sent to the server.
*/

)

else

if next_reader_site == CURR_PROCESSOR)
(

/* The clock mode also has to be turned off by
* the calling function.
• If it was an earlier trailer version for
* that same page, do not remove it ... /

clientAuxTable[page_no] . page_status &= -(READ);

/ .. Even though the clock can invalidate
* itself right here, it sends an invalidation
* message to itself. This is because, in
• case a reply to a request made by the user
* at this site is still pending, this
* invalidation would have been done without
• the reply having used the page
• Example:
• single server, cl,c2 in sl.
• Cl is a write clock.
• Ml: cl wants to read.
* M2: c2 wants to read

* Say, Ml reaches 51 before M2.
* M3: 51 gets Ml, makes no changes to ds

* since read reques t, fOr'o'lards to cl.
* M4: cl becomes reader clock.
* M5: cl gets M2 from s1.
* M6: cl inserts a reply to Ml into its
* request queue. M6 must be after M4.
" M7: c1 wants to invalidate itself because
* of the write request M2.
* Now, if M7 is done directly here, that is
* this site directly invalidates the read mode.

*1

}
else
{

1* If mUlti-server, the reader site
* might be a server. In that case
* send a message to the server.
* If single-server, it is safe
* to send a msg directly to the
* next reader.
*1

#ifndef MULTI_SERVER

send_ipiV(next_reader_site,PRIORITY,REQUEST_FOR_CLIENT_IPI,len,3,SEND_ARRAY}:
assert (SEND_ARRAY[lJ != INIT_SEND_ARRAY);

#else 1* If multi server case*1
1* If the next_reader_site is a server,

" send an ipi to this cluster's server.
* Else, send an ipi directly to the
* reader (which shd be a client in this
* cluster).
*1

if(isItServerCode(next_reader_site) TRUE)
{

server_reader = TRUE;
l
else
(

send_ipiV(next_reader_site,PRIORITY,REQUEST_FOR_CLIENT_IPI,len,3,SEND_ARRAY);
assert (SEND_ARRAY [1] != INIT_SEND_ARRAY);

#endif 1* MULTI_SERVER*I

free (next_reader) ;
next_reader =

getNextNodeFromIntList(clientAuxTable[page_no).list_of_readers,&ret_val};

l/*end of while*1

1* If at least another server is a reader, send a message
* to this clusters server telling it to invalidate
* all server readers.
*1

#ifdef MULTI_SERVER
if (server_reader == TRUE)
(

server_site = thisClient->server_site;

if(isItServerCode(check_reader) == TRUE) &&
(ret_value == ALREADY_A_~~ERl)

1* If the check_reader is a server site,
* the server is sent a message to invalidate all
* server readers except this check_reader_server.
* So, this message only has to be sent if
* there are other server readers apart from the
* check reader.
*/

SEND_ARRAY_SERVER[O]
S_I~vALIDATE_ALL_BUT_ONE_READERS_AT_OTHER_SERVERS;

215

216

SENDj,.RRAY_SERVER[l]
SEND_ARRAY_SERVER{2]
SEND_ARRF.Y_SERVER[3]
1* MESSAGE_LENGTH* I
len = 4 * sizeof(Word);

2;
page_no;
check_reader;l*server code of that server*!

the read page to be invalidated.

C_INVALIDATE_READER
1

send_ipiV(server_site,PRIORITY,REQUEST_FOR_SERVER_IPI,len,4,SEND_ARRAY_SERVER);
assert (SEND_ARRAY_SERVER{1 J ! = INIT_SEND_ARRAY);

)
else
(I*If check reader is not a server or ret_value is NOT_A_READER.*I

SEND_ARMY_SERVER [0] S_INVALIDATE_ALL_READERS_AT_OTHER_SERVERS;
SEND_ARRAY_SERVER[I] 1;
SEND_ARRAY_SERVER [2] page_no;
1* MESSAGE_LENGTH* I
len = 3 * sizeof(Word);

send_ipiV(server_site,PRIORITY,REQUEST_FOR_SERVER_IPI,len,3,SEND_ARRAY_SERv~R);

assert (SEND_ARRAY_SERVER[l] != INIT_SENO_ARRAY);

}
#endif 1* MULTI_SERVER*I

ASSERT_ATOMIC () ;
return ret_value;

/*********************~******************************•• ~****~*********
FUNCTION: invalidateReaderOfPage
PURPOSE : This function is called to invalidate a read page at

a site. This page could have been a trailer before.
That remains unchanged.
This function manages its atomic regions. Should be
called in non at,omic mode. Returns in non atomic
mode.

INPUTS : reqNode *request
request->msg_code
request->no_values
request->array:
O. page_no

OUTPUTS ; none
******.**********~****.**~*************~********.*******************./

void invalidateReaderOfPage(reqNode *request)
(

perClientDS
auxClient
int

*thisClient;
*clientP.uxTable;
page_no, size_msg, array_index;

ASSERT_NOT_ATOMIC() ;
thisClient = (perClientDS*) (* (ptrToGlobaIClient.DS)) ;
clientAuxTable = thisClient->client-ptable;

page_no = request->array[O] ;

1* Update statist.ics at this client site.
* This is a control message during normal operat.ion.
*1

CYCLE_COUNTING_OFF;
begin_atomic() ;

globalClientSt.at.s[CURR_PROCESSORJ .norrnal.control_msg_count.++;
size_msg = 3 + sizeof(Word};
globaIClientStats[CURR_PROCESSOR] .norrnal.control_msg_bytes += size_msg;

end_atomic() ;

/* update st.atist.ics for the t.ime interval into which
* this message falls.
*/

array_index = CURR_TlME/METRIC_INTERVAL_CYCLES;

if (MIG_INTERVAL)
(
assert(thisClient->cluster_index >=0 &&

thisClient->cluster_index < NO_OF_SERVERS);
assert.(array_index >=0 && array_index < MAX_MIG_INTERVALS);

217

globaIIntervaIData(thisClient->cluster_index] .in_cluster_control_byte(array_index)
+= size_msg;

globalIntervalData(thisClient.->cluster_index] .in_cluster_control_msg[arraY_index]
+= 1;

1* COMMENT 1 :
* This message is sent by a client to another client.
*
* This message can arrive for a client that has just migrated.
* 1. c1 is a client in cluster 1, to migrate to cluster 2.
* cl is a reader of this page.
* 2. cl tells s1 to invalidate c1 as a reader for this page.

cl migrated to s2.
* 3. The clock in cluster 1 has still not removed c1 as

a reader for this page, but sends an invalidateReaderOf
Page message to cl. By the time c1 gets this message,
it is in its new cluster. If cl has already become a
reader(or temp read clock) in its new cluster, the page
consistency check will fail.

* Therefore proceed only if this page is an in-cluster page.
* But this C_INVALIDATE_READER message is sent directly by
* a client, so its possible that it is sent by a clock
* in the old cluster after this client has migrated to its
* new cluster!
*1

begin_atomic(} ;
if((page_no < thisClient->lowest-page) I I

(page_no> thisClient->highest-page)

end_atomic() ;
return;

)
end_atomic() ;

1* See migration notes and the comments below:
* *9 cl is a reader for an in cluster page. cl is migrating so

it invalidates the read page. sl is supposed to inform the
clock to remove c1 as a reader, but suppose, parallely, the
clock sends a C_INVALIDATE_READER to c1. cl should invalidate
the reader only if it is still a reader.
Though this check should be made only in multi-server case,
it is safe to do it always.

*/
begin_atomic() ;
if ((clientAuxTable[page_no] .page_status & READ) != READ)
(

checkSinglePage(clientAuxTable[page_no) , page_no,
CURR_PROCESSOR,CHECK_TRAILER_VER," 1 invalidateReaderOfPage');

end_atomic() ;
return;

)
1* set READ mode off.

*1

clientAuxTable[page_no] .page_status &= - (READ);
1* If the page was a trailer before, it stays a trailer.

* But if it was not a trailer before, make it PAGE_NOT_IN_MEMORY.
*/

if((clientAuxTable[page_no] .page_status & TRAILER) != TRAILER)
(

clientAuxTable[page_no].page_status &= 0;
clientAuxTable[page_no] .page_status 1= PAGE_NOT_IN_MEMORY;
1* Since this site is not a trailer site for this page,

* invalidate the page value to keep the page consistent.
°1

clientAuxTable[page_oo] . page_value = -1;

checkSinglePage(clientAuxTable[page_no] , page_no,
CURR._PROCESSOR, CHECK_TRAILER_VER,' 2 invalidateReaderOfPage'};

/* The request is no longer needed. Memory for it will
* be freed in clientThread on return.
*/

218

VITA

PaUavi K. Ramam

Candidate for the Degree of

Master of Science

Thesis: A FAULT-TOLERANT COHERENCE PROTOCOL FOR DISTRIBUTED
SHARED MEMORY SYSTEMS

Major Field: Computer Science

Biographical:
Personal Data: Born in Hyderabad, Andhra Pradesh, India on September 13, 1970,

daughter of K. Vijai Ramam and Vijaya L. Ramam.

Education: Graduated from Nasr School, Hyderabad, India in April 1986; received
Bachelor of Scie~ce degree in Mathematics, Physics, and Computer
Science from St. Francis College for Women, Hyderabad, India in April
1991; received Master of Science degree in Mathematics with a
specialization in Computer Science from the Indian Institute of
Technology, Bombay, India in July 1993; completed the requirements for
the Master of Science degree in Computer Science at Oklahoma State
University in May 1998.

Experience: Employed by OMC Computers Ltd., Hyderabad, India as a Graduate
Engineer Trainee from September 1993 to August 1994; employed by
Siemens Communication Software Ltd., Bangalore, India as a Software
Engineer from November 1994 to July 1995; employed by Teubner and
Associates, Inc., Stillwater, OK as a Software Developer from May 1996
to July 1996; employed by Oklahoma State University, Computer Science
Department as a Graduate Teaching Assistant from August 1995 to May
1997.

