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Abstract

A set-theoretic structure of Margolus neighborhood cellular automata is
developed to accommodate a group structure in an intuitive way. It is proven
that pairs of reversible Margolus rule-global maps generate a group of bijec-
tions on a finite 2n× 2m grid of binary cells with function composition. This
group can further be understood as a group action on the grid. We focus
on the subgroup that consists of pairs of reversible, conservative rules and, in
particular, the action of this group on the set of all possible “lonely universes”
(grids with one living cell). We examine the permutation representation of
this action and compute the sizes of the subgroups that are the isomorphic
copies of the group under the permutation representation map.

1 Introduction

1.1 Background

A cellular automaton can be thought of simply as a grid of cells that evolves in
discrete time according to locally-defined rules that are applied homogeneously on
the grid. The grid may have a finite number of dimensions and each cell may as-
sume one of a finite number of values. Canonically, the grid extends to infinitely in
every dimension. The spirit of cellular automata (CA) is the relationship between
the behavior of the grid over time and the locally-defined rules that produce this
evolution. These locally defined rules are functions whose domain is some subset of
the grid called a neighborhood.

These neighborhoods can assume many forms. In the case of one-dimensional
cellular automata, the rule is often defined such that the value of a cell in the
subsequent time-step will consider only the current state of the cell and its adjacent
“neighbors.” This rule is a special case of the radial neighborhood which considers
a p-neighborhood about a cell. For example, say we want to compute the value of
the ith cell in the next time step. We must then consider the values of the cells
i− p, i− (p+ 1), ..., i+ p. So the aforementioned rule would be the case of the radial
neighborhood with p = 1.

Example 1.1. Consider the 1-dimensional cellular automaton defined by the 1-
radial rule
where the 3−tuple on the first line maps to the singlet below (also represented by
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Figure 1: [13] 1-dimensional Local Rule

a 0 or 1). Applying this rule to an arrangement, that is, a grid on which each cell
has assumed a value, on a 1-dimensional grid on a torus,

i = 0 1 2 3 4 5 6 7 8

we get

i = 0 1 2 3 4 5 6 7 8 .

Breaking this down further, say we start from the left-hand side and thus take
the 3−tuple

i = 0 1 2 .

Referring to the rule above, we see that this 3−tuple maps to a non-living (0 or
white) cell. Therefore, in the next time-step, the cell of the same index as the
central cell here will be white. That is, for i = 1, the cell will be white, and so forth.

This idea extends to two and three-dimensional CA as well. Along with the
radial neighborhood, well studied neighborhoods include the Moore neighborhood
(from Conway’s Game of Life [1]) and the von-Neumann neighborhood [2] (Figure
1). Note that it is the state of the neighborhood, the gray cells (and sometimes the
central cell), that determines the state of the central cell in the next time-step.

In this paper we analyze the Margolus neighborhood [3, pages 119-138]. These
cellular automata are conducive to reversibility which in turn realizes a group struc-
ture. Said structure occupies a central theme in this paper. With the Margolus
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Figure 2: [10] Common CA Neighborhoods

neighborhood construction, a two-dimensional grid is partitioned into two-by-two
blocks of cells, usually on an infinite grid whose cells can assume a binary value
(0 or 1, black or white, alive or dead). In this paper we specifically discuss finite
grids. We will refer to a two-by-two block of cells as a Margolus neighborhood
(MN). Likewise we will refer to a rule whose domain and codomain are the set of all
possible configurations of the Margolus neighborhood as a Margolus rule. Examples
of Margolus neighborhood configurations include

, , , .

The 2n × 2m grid is partitioned into two-by-two blocks so that this rule in turn
extends to the entire grid by being applied to every MN (Figure 2). Thus Margolus
rules act on Margolus neighborhoods, assigning each possible arrangement of cells
in an MN to a corresponding arrangement MN via a formal mathematical function.
One such interpretation would be a function r : {0, 1}4 → {0, 1}4 where each cell in
a block is designated by a position in the 4−tuple.1 Note the distinction between
Margolus neighborhoods and arrangements of Margolus neighborhoods. An MN is a
two-by-two block of cells whereas an arrangement is a 4−tuple that specifies living

1Representing the examples of Margolus neighborhood configurations just given, we have
(0, 0, 0, 0), (0, 1, 1, 0), (1, 0, 1, 0), and (0, 0, 0, 1), respectively, although we could arbitrarily orient
the neighborhood in an alternative way.
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and dead cells within an MN. We will nonetheless sometimes refer to a 4−tuple
arrangement as an MN, but the context will disambiguate.

Figure 3: [12] A Margolus rule extending to the grid

Once a rule has been applied to each MN (as in Figure 2), the grid is then
re-partitioned into new two-by-two blocks. Figure 2 shows the two partitions: one
outlined in blue, the other in red. After the grid has been re-partitioned, a Margolus
rule has been entirely executed and one time-step is complete. Traditionally, the
same Margolus rule is applied again iteratively. In this paper, we do not stipulate
that it must be the same rule applied at each time-step. We allow different Margolus
rules to be applied in sequence.

1.1.1 Reversible and conservative rules

We see (Figure 2) that each arrangement in an MN is reassigned according to some
Margolus rule. For example, the upper-left most MN of four dead cells maps to the
MN of four living cells, etc. (r : (0, 0, 0, 0) 7→ (1, 1, 1, 1)). This is, in fact, a special
type of Margolus rule that is referred to as “reversible.”[8]

Definition 1. A Margolus rule is reversible [8] if each possible arrangement of the
neighborhood has a unique time-step predecessor.

Example 1.2. Consider an MN cellular automata on a 2× 2 torus with a rule such
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that

and

both map to

.

This rule is not reversible since, given

,

we cannot determine whether or not the inverse map would map to

or

.

Consequently, reversible Margolus rules are bijections on Margolus neighbor-
hoods (that is, r : {0, 1}4 → {0, 1}4 is a bijection). In fact, r−1 is also a (reversible)
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Margolus rule, hence the appellation “reversible.” The proof follows directly from
the bijectivity of r.

Lemma 1. The inverse of a reversible cellular automaton is also a reversible cellular
automaton [4].

Much has been written on the relationships between Margolus rules and the
resulting behavior on the grid.[1][2][3][6][8] For example, we know that a Margolus
CA is reversible on the entire grid if and only if the local rule is reversible.[9] This
will be proven in Section 2 along with further explanation. From this we establish
one more essential result.

Lemma 2. “A cellular automaton is reversible if and only if it is bijective.”[8]

There is one more category of rules that we need to define: conservative rules.

Definition 2. A Margolus rule is said to be conservative [5] if the map preserves
the number of living cells. In the 4−tuple style that we have been using, let x =
(x1, x2, x3, x4) for xi ∈ {0, 1} and r a Margolus rule such that r(x) = (y1, y2, y3, y4),
then r is a conservative rule if and only if

4∑
i=1

xi =
4∑
i=1

yi

for all Margolus neighborhood arrangements x.

1.2 Notation

Throughout this paper we consider a 2n × 2m grid on a torus (n,m ∈ N). With
this construction we face none of the undesirable ramifications of edges or uneven
Margolus neighborhoods, but we do begin to accrue a weighty amount of definitions
and denotations. Let R be the set of reversible Margolus rules and from this point
on, r is an element of R.

1.2.1 The Multiverse

We are interested in the collection of all possible arrangements of this grid. Firstly,
we have reversible Margolus rules, which are bijections r : {0, 1}4 → {0, 1}4. Sec-
ondly, we have bijections on the set of all possible configurations of the grid of a given
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size (ρ : {0, 1}2n×2m → {0, 1}2n×2m). We claim that when r is applied to every 2× 2
block on the grid, the resulting map on the entire grid ρ : {0, 1}2n×2m → {0, 1}2n×2m
is a bijection. We prove this in Section 2. Later we will consider bijections on sub-
sets of the set of all possible configurations. We need more definitions to deal with
this in more depth.

Definition 3. A universe is a 2n × 2m partitioned grid on a torus with some
arrangement of living and dead cells.

Example 1.3. Consider Figure 3 (below) on a torus with either the blue-line par-
tition or the red-line partition. This is an example of a universe.

Figure 4: [11] An 8 × 8 universe (on a torus) partitioned by the blue lines or red
lines

Definition 4. We refer to a universe with only one living cell as a lonely universe.

Definition 5. A multiverse is a collection of universes.

Example 1.4. Often we use qualifiers such as “the multiverse of all 2n×2m grids”
or “the multiverse of 2× 4 universes with two living cells.” The multiverse of 2× 2
lonely universes is the set

, , , .
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Bijections on multiverses form the basis for this paper.

2 A Set-theoretic Margolus Rule Interpretation

Let M(αT2n×2m) be the multiverse of universes of size 2n×2m with an arbitrary 2×2
block partition and let M(βT2n×2m) be the collection of universes with the alternate
partition. Figure 3 is an example of the grid on a torus where αT2n×2m ∈M(αT2n×2m)
is partitioned via the blue lines and βT2n×2m ∈ M(βT2n×2m) is partitioned via the
red lines.

Let us now describe an entire time-step of a reversible Margolus rule-based cel-
lular automaton. We have a multiverse M(αT2n×2m) and a multiverse M(βT2n×2m)
and some process that constitutes a bijection between these sets that somehow re-
sults from a rule r that we described in the introduction. We need mathematical
definitions and notation for this process. There are two essential components: the
map r ∈ R which extends to the bijection ρ : M(αT2n×2m) → M(αT2n×2m) (or
ρ : M(βT2n×2m) → M(βT2n×2m)) and the re-partitioning of the grid which is, as
we will prove, a bijection φ : M(αT2n×2m) → M(βT2n×2m). We have therefore two
bijections that compose the time-step, namely ρ and φ. Thus we have the time step
φ ◦ ρ : M(αT2n×2m) → M(βT2n×2m). A subsequent time-step would be composed
of a map ρ2 : M(βT2n×2m) → M(βT2n×2m) extending from a Margolus rule r2, not
necessarily equal to r, and φ−1 : M(βT2n×2m) → M(αT2n×2m). We therefore write
the second time-step as φ−1 ◦ ρ2 : M(βT2n×2m) → M(αT2n×2m). In this section we
describe φ and prove that is a bijection. Furthermore we show how a Margolus rule
extends to a bijection on a multiverse of 2n× 2m grids.

2.1 Re-partitioning a Universe

Let’s consider what the re-partitioning process looks like mathematically. We have
a collection of universes, M(αT2n×2m) with an arbitrary 2 × 2 block partition. We
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can write T ∈M(αT2n×2m) as a matrix

T :=



[
x0,0 x1,0
x0,1 x1,1

] [
x2,0 x3,0
x2,1 x3,1

]
. . .

[
x2n−2,0 x2n−1,0
x2n−2,1 x2n−1,1

]
[
x0,2 x1,2
x0,3 x1,3

] [
x2,2 x3,2
x2,3 x3,3

]
. . .

[
x2n−2,2 x2n−1,2
x2n−2,3 x2n−1,3

]
...

...
. . .

...[
x0,2m−2 x1,2m−2
x0,2m−1 x1,2m−1

][
x2,2m−2 x3,2m−2
x2,2m−1 x3,2m−1

]
. . .

[
x2n−2,2m−2 x2n−1,2m−2
x2n−2,2m−1 x2n−1,2m−1

]


, xi,j ∈ {0, 1}

where each sub-matrix represents a Margolus neighborhood of the grid. Throughout
this paper, where the partitioning is not relevant, we may exclude the sub-matrix
notation from our calculations. We want to capture the idea of the shift of the
grid mathematically. That is, we want to construct a map that, while holding the
partition sub-matrices in place, shifts the cells on the grid in order to convey an
algebraic description of the visual provided in the introduction (see Figure 2, 3).

Consider

φ :=



0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 0 . . . 1
1 0 0 0 0 . . . 0


such that

φ(x) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
1 0 0 . . . 0




x0,0
x1,0

...
x2n−1,2m−1


We can present this map element-wise as

φ : xi,j 7→ xi+1(mod 2n),j+1(mod 2m).

Note that although φ can be written as a map on the elements of a universe, this
in turn is a map on matrices (universes) which constitutes, as we will prove, a
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bijection φ : M(αT2n×2m)→M(βT2n×2m). What we really want to do with φ is shift
the sub-matrices themselves. That is, to be true to the idea of re-partitioning, we
would want to define φ such that the sub-matrices are shifted without moving the
elements. Instead we shift the elements. As we are working with grids on tori, this
is equivalent.2

We therefore leave M(βT2n×2m) to be defined as the image of M(αT2n×2m) under
φ.

Theorem 2.1. The re-partitioning map φ is a bijection M(αT2n×2m)→M(βT2n×2m).

Proof. Consider αT2n×2m ∈M(αT2n×2m) as a matrix of values,

[
x0,0 x1,0
x0,1 x1,1

] [
x2,0 x3,0
x2,1 x3,1

]
. . .

[
x2n−2,0 x2n−1,0
x2n−2,1 x2n−1,1

]
[
x0,2 x1,2
x0,3 x1,3

] [
x2,2 x3,2
x2,3 x3,3

]
. . .

[
x2n−2,2 x2n−1,2
x2n−2,3 x2n−1,3

]
...

...
. . .

...[
x0,2m−2 x1,2m−2
x0,2m−1 x1,2m−1

][
x2,2m−2 x3,2m−2
x2,2m−1 x3,2m−1

]
. . .

[
x2n−2,2m−2 x2n−1,2m−2
x2n−2,2m−1 x2n−1,2m−1

]


where xi,j, 1 ≤ i < 2n, j < 2m takes a value either 0 or 1.

Note that φ is independent of the partitioning scheme.3 For this reason we are
going to represent universes without the MN partition drawn-in in order to simplify
computation but the reader should note that an arbitrary partition exists.

Take Tj, Tk ∈ M(αT2n×2m). We want to show that φ is well-defined. Since
Tj, Tk ∈M(αT2n×2m), we can write

2For example, we would want to take a grid


[
x0,0 x1,0
x0,1 x1,1

]
. . . . . .

...

[
x2n−2,2m−2 x2n−1,2m−2
x2n−2,2m−1 x2n−1,2m−1

]


and apply a map so that

[
x1,1 x2,1
x1,2 x2,2

]
is a sub-matrix in the new partitioning scheme. Ideally the

brackets themselves would move, but since, again, we are on a torus, shifting the cells is equivalent
to shifting the brackets.

3Indeed φ is independent of the partitioning scheme because φ extends from φo which acts on
cells, not on Margolus neighborhoods. That is, since the values of the cells themselves are not
affected by the partition, φo is independent of the partitioning scheme.
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Tj :=


j0,0 j1,0 j2,0 . . . j2n−1,0
j0,1 j1,1 j2,1 . . . j2n−1,1
j0,2 j1,2 j2,2 . . . j2n−1,2
...

...
...

. . .
...

j0,2m−1 j1,2m−1 j2,2m−1 . . . j2n−1,2m−1

 , jp,q ∈ {0, 1}
and

Tk :=


k0,0 k1,0 k2,0 . . . k2n−1,0
k0,1 k1,1 k2,1 . . . k2n−1,1
k0,2 k1,2 k2,2 . . . k2n−1,2

...
...

...
. . .

...
k0,2m−1 k1,2m−1 k2,2m−1 . . . k2n−1,2m−1

 , kp,q ∈ {0, 1}.
Consider

φ(Tj) = φ


j0,0 j1,0 j2,0 . . . j2n−1,0
j0,1 j1,1 j2,1 . . . j2n−1,1
j0,2 j1,2 j2,2 . . . j2n−1,2
...

...
...

. . .
...

j0,2m−1 j1,2m−1 j2,2m−1 . . . j2n−1,2m−1

 =


j1,1 j2,1 j3,1 . . . j0,1
j1,2 j2,2 j3,2 . . . j0,2
j1,3 j2,3 j3,3 . . . j0,3
...

...
...

. . .
...

j1,0 j2,0 j3,0 . . . j0,0


and

φ(Tk) = φ


k0,0 k1,0 k2,0 . . . k2n−1,0
k0,1 k1,1 k2,1 . . . k2n−1,1
k0,2 k1,2 k2,2 . . . k2n−1,2

...
...

...
. . .

...
k0,2m−1 k1,2m−1 k2,2m−1 . . . k2n−1,2m−1

 =


k1,1 k2,1 k3,1 . . . k0,1
k1,2 k2,2 k3,2 . . . k0,2
k1,3 k2,3 k3,3 . . . k0,3

...
...

...
. . .

...
k1,0 k2,0 k3,0 . . . k0,0

 .

We see that φ(Tk) = φ(Tj) if and only if Tj = Tk. Suppose Tj = Tk, then ka,b =
ja,b for all a ∈ {0, .., 2n}, b ∈ {0, ..., 2m}. It follows that ka+1(mod2n),b+1(mod2m) =
ja+1(mod 2n),b+1(mod 2m) for all a, b and therefore φ(Tj) = φ(Tk). This argument re-
verses to show that if φ(Tj) = φ(Tk), then Tj = Tk. This shows that φ is well-defined
and injective. Now we must only show that φ is surjective. Since φ is an injective
function from one finite set to another and these two sets are of the same size, we
conclude that φ must also be a surjection by the pigeonhole principle[7][14, page 2].
We conclude that φ is a bijection.
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2.2 Extending Reversible Rules to Bijections on a Multi-
verse

We know that if a Margolus rule is reversible, then the rule extends to a reversible
cellular automaton. That is, the behavior of the entire grid, ρ : M(αT2n×2m) →
M(αT2n×2m), is reversible.

Theorem 2.2. A Margolus CA is reversible on the entire grid if and only if the
local rule is reversible [6].

We will nonetheless prove this in order to better exhibit the complete Margolus
time-step. Now we have the necessary structure to prove, in the context of our
set-theoretic interpretation, that r ∈ R extends to a bijection on the multiverse
M(αT2n×2m) and further more we want to show that the entire time-step composes
a bijection M(αT2n×2m)→M(βT2n×2m).

We represent T ∈M(αT2n×2m) by the matrix

[
x0,0 x1,0
x0,1 x1,1

] [
x2,0 x3,0
x2,1 x3,1

]
. . .

[
x2n−2,0 x2n−1,0
x2n−2,1 x2n−1,1

]
[
x0,2 x1,2
x0,3 x1,3

] [
x2,2 x3,2
x2,3 x3,3

]
. . .

[
x2n−2,2 x2n−1,2
x2n−2,3 x2n−1,3

]
...

...
. . .

...[
x0,2m−2 x1,2m−2
x0,2m−1 x1,2m−1

][
x2,2m−2 x3,2m−2
x2,2m−1 x3,2m−1

]
. . .

[
x2n−2,2m−2 x2n−1,2m−2
x2n−2,2m−1 x2n−1,2m−1

]


, xi,j ∈ {0, 1}

where each sub-matrix is a Margolus neighborhood and therefore compute the image
of T under ρ to be

r

[
x0,0 x1,0
x0,1 x1,1

]
r

[
x2,0 x3,0
x2,1 x3,1

]
. . . r

[
x2n−2,0 x2n−1,0
x2n−2,1 x2n−1,1

]
r

[
x0,2 x1,2
x0,3 x1,3

]
r

[
x2,2 x3,2
x2,3 x3,3

]
. . . r

[
x2n−2,2 x2n−1,2
x2n−2,3 x2n−1,3

]
...

...
. . .

...

r

[
x0,2m−2 x1,2m−2
x0,2m−1 x1,2m−1

]
r

[
x2,2m−2 x3,2m−2
x2,2m−1 x3,2m−1

]
. . . r

[
x2n−2,2m−2 x2n−1,2m−2
x2n−2,2m−1 x2n−1,2m−1

]


.

Recall that r : {0, 1}4 → {0, 1}4 and take

r

[
xi,j xi+1,j

xi,j+1 xi+1,j+1

]
=

[
yi,j yi+1,j

yi,j+1 yi+1,j+1

]
14



for i ∈ {0, 2, 4, ..., 2n − 2} and j ∈ {0, 2, 4, ..., 2m − 2}. Therefore r applied to the
neighborhoods of T gives us

ρ(T ) =



[
y0,0 y1,0
y0,1 y1,1

] [
y2,0 y3,0
y2,1 y3,1

]
. . .

[
y2n−2,0 y2n−1,0
y2n−2,1 y2n−1,1

]
[
y0,2 y1,2
y0,3 y1,3

] [
y2,2 y3,2
y2,3 y3,3

]
. . .

[
y2n−2,2 y2n−1,2
y2n−2,3 y2n−1,3

]
...

...
. . .

...[
y0,2m−2 y1,2m−2
y0,2m−1 y1,2m−1

][
y2,2m−2 y3,2m−2
y2,2m−1 y3,2m−1

]
. . .

[
y2n−2,2m−2 y2n−1,2m−2
y2n−2,2m−1 y2n−1,2m−1

]


.

We claim that in this way, r is a bijection ρ : M(αT2n×2m)→M(αT2n×2m).

Theorem 2.3. For all reversible Margolus rules r, the map r, when applied to a
multiverse M(αT2n×2m) of 2n×2m partitioned grids on tori in the manner heretofore
defined, is a bijection ρ : M(αT2n×2m)→M(αT2n×2m).

Proof. Let R 3 r : {0, 1}4 → {0, 1}4 and let M(αT2n×2m) be the collection of all
possible configurations of a 2n × 2m partitioned grid on a torus. Take Ti, Tj ∈
M(αT2n×2m) and take ρ to be the map M(αT2n×2m) → M(αT2n×2m) induced by r.
As Ti, Tj ∈M(αT2n×2m), let

Ti :=



[
i0,0 i1,0
i0,1 i1,1

] [
i2,0 i3,0
i2,1 i3,1

]
. . .

[
i2n−2,0 i2n−1,0
i2n−2,1 i2n−1,1

]
[
i0,2 i1,2
i0,3 i1,3

] [
i2,2 i3,2
i2,3 i3,3

]
. . .

[
i2n−2,2 i2n−1,2
i2n−2,3 i2n−1,3

]
...

...
. . .

...[
i0,2m−2 i1,2m−2
i0,2m−1 i1,2m−1

][
i2,2m−2 i3,2m−2
i2,2m−1 i3,2m−1

]
. . .

[
i2n−2,2m−2 i2n−1,2m−2
i2n−2,2m−1 i2n−1,2m−1

]


, ia,b ∈ {0, 1}

and

Tj :=



[
j0,0 j1,0
j0,1 j1,1

] [
j2,0 j3,0
j2,1 j3,1

]
. . .

[
j2n−2,0 j2n−1,0
j2n−2,1 j2n−1,1

]
[
j0,2 j1,2
j0,3 j1,3

] [
j2,2 j3,2
j2,3 j3,3

]
. . . r

[
j2n−2,2 j2n−1,2
j2n−2,3 j2n−1,3

]
...

...
. . .

...[
j0,2m−2 j1,2m−2
j0,2m−1 j1,2m−1

][
j2,2m−2 j3,2m−2
j2,2m−1 j3,2m−1

]
. . .

[
j2n−2,2m−2 j2n−1,2m−2
j2n−2,2m−1 j2n−1,2m−1

]


, ja,b ∈ {0, 1}.

15



Then we have

ρ(Ti) =



r

[
i0,0 i1,0
i0,1 i1,1

]
r

[
i2,0 i3,0
i2,1 i3,1

]
. . . r

[
i2n−2,0 i2n−1,0
i2n−2,1 i2n−1,1

]
r

[
i0,2 i1,2
i0,3 i1,3

]
r

[
i2,2 i3,2
i2,3 i3,3

]
. . . r

[
i2n−2,2 i2n−1,2
i2n−2,3 i2n−1,3

]
...

...
. . .

...

r

[
i0,2m−2 i1,2m−2
i0,2m−1 i1,2m−1

]
r

[
i2,2m−2 i3,2m−2
i2,2m−1 i3,2m−1

]
. . . r

[
i2n−2,2m−2 i2n−1,2m−2
i2n−2,2m−1 i2n−1,2m−1

]


and

ρ(Tj) =



r

[
j0,0 j1,0
j0,1 j1,1

]
r

[
j2,0 j3,0
j2,1 j3,1

]
. . . r

[
j2n−2,0 j2n−1,0
j2n−2,1 j2n−1,1

]
r

[
j0,2 j1,2
j0,3 j1,3

]
r

[
j2,2 j3,2
j2,3 j3,3

]
. . . r

[
j2n−2,2 j2n−1,2
j2n−2,3 j2n−1,3

]
...

...
. . .

...

r

[
j0,2m−2 j1,2m−2
j0,2m−1 j1,2m−1

]
r

[
j2,2m−2 j3,2m−2
j2,2m−1 j3,2m−1

]
. . . r

[
j2n−2,2m−2 j2n−1,2m−2
j2n−2,2m−1 j2n−1,2m−1

]


.

Recalling that r is a bijection, we see that Ti = Tj if and only if ρ(Ti) = ρ(Tj).
That is, ρ(Ti) = ρ(Tj) if and only if every sub-matrix of ρ(Ti) is equal to that of
ρ(Tj). Since r is a bijection, every sub-matrix of ρ(Tj) and ρ(Ti) will be equal if and
only if the pre-image of each sub-matrix, the sub-matrices of Tj and Ti, are equal.
Finally, Ti = Tj if and only if their sub-matrices are equal, thus Tj = Ti if and only
if ρ(Ti) = ρ(Tj). We must still prove surjectivity of ρ. Let Tk ∈M(αT2n×2m), so

Tk :=



[
k0,0 k1,0
k0,1 k1,1

] [
k2,0 k3,0
k2,1 k3,1

]
. . .

[
k2n−2,0 k2n−1,0
k2n−2,1 k2n−1,1

]
[
k0,2 k1,2
k0,3 k1,3

] [
k2,2 k3,2
k2,3 k3,3

]
. . .

[
k2n−2,2 k2n−1,2
k2n−2,3 k2n−1,3

]
...

...
. . .

...[
k0,2m−2 k1,2m−2
k0,2m−1 k1,2m−1

][
k2,2m−2 k3,2m−2
k2,2m−1 k3,2m−1

]
. . .

[
k2n−2,2m−2 k2n−1,2m−2
k2n−2,2m−1 k2n−1,2m−1

]


, ka,b ∈ {0, 1}.

Let r ∈ R. Since r is a bijection {0, 1}4 → {0, 1}4, we know that r−1 is also a
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bijection {0, 1}4 → {0, 1}4. We claim that

T ′k :=



r−1
[
k0,0 k1,0
k0,1 k1,1

]
r−1
[
k2,0 k3,0
k2,1 k3,1

]
. . . r−1

[
k2n−2,0 k2n−1,0
k2n−2,1 k2n−1,1

]
r−1
[
k0,2 k1,2
k0,3 k1,3

]
r−1
[
k2,2 k3,2
k2,3 k3,3

]
. . . r−1

[
k2n−2,2 k2n−1,2
k2n−2,3 k2n−1,3

]
...

...
. . .

...

r−1
[
k0,2m−2 k1,2m−2
k0,2m−1 k1,2m−1

]
r−1
[
k2,2m−2 k3,2m−2
k2,2m−1 k3,2m−1

]
. . . r−1

[
k2n−2,2m−2 k2n−1,2m−2
k2n−2,2m−1 k2n−1,2m−1

]


is an element of M(αT2n×2m). Well, since r−1 is a bijection, let

r−1
[

ki,j ki+1,j

ki,j+1 ki+1,j+1

]
=

[
yi,j yi+1,j

yi,j+1 yi+1,j+1

]
.

Thus

T ′k =



[
y0,0 y1,0
y0,1 y1,1

] [
y2,0 y3,0
y2,1 y3,1

]
. . .

[
y2n−2,0 y2n−1,0
y2n−2,1 y2n−1,1

]
[
y0,2 y1,2
y0,3 y1,3

] [
y2,2 y3,2
y2,3 y3,3

]
. . .

[
y2n−2,2 y2n−1,2
y2n−2,3 y2n−1,3

]
...

...
. . .

...[
y0,2m−2 y1,2m−2
y0,2m−1 y1,2m−1

][
y2,2m−2 y3,2m−2
y2,2m−1 y3,2m−1

]
. . .

[
y2n−2,2m−2 y2n−1,2m−2
y2n−2,2m−1 y2n−1,2m−1

]


,

which is an element of M(αT2n×2m) since it is a 2n×2m grid with cell values of 0 or
1 and the partition has not been changed. We conclude that ρ(T ′k) = Tk and that ρ
is a surjection thus a bijection.

Now that we have established our preliminary proofs and have established our
notation and syntax for working with Margolus rules, Margolus neighborhoods,
multiverses, our maps, etc., we can begin to uncover the group-theoretic structure
that arises from Margolus rules acting on multiverses.
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3 Group-theoretic Structure of the Pairwise-Iterated

Margolus Rule

Let M(αT2n×2m) be the multiverse of 2n× 2m grids on tori for some fixed n,m ∈ N
with an arbitrary 2× 2 block partitioning and let M(βT2n×2m) be the multiverse of
the same grid but with the alternate partitioning (φ(M(αT2n×2m)). Let r1, r2 ∈ R
with extensions ρ1 : M(αT2n×2m)→M(αT2n×2m) , ρ2 : M(βT2n×2m)→M(βT2n×2m),
respectively, and let f = φ ◦ ρ1 and g = φ−1 ◦ ρ2.

M(αT2n×2m) M(αT2n×2m) M(αT2n×2m)

M(βT2n×2m) M(βT2n×2m)

g◦f

ρ1

f
φ

ρ2

g
φ−1

So we have two bijections f : M(αT2n×2m) → M(βT2n×2m) and g : M(βT2n×2m) →
M(αT2n×2m) that stem from reversible Margolus rules.

Theorem 3.1. The set generated by pairs of bijective functions f : M(αT2n×2m)→
M(βT2n×2m) ,gM(βT2n×2m) → M(αT2n×2m), that extend from reversible Margolus
rules paired with function composition forms a group, G.4

Proof. Take ρ1, ρ2, ρ3 ∈ G. We know that bijective functions are always associative.
Hence we have ρ1(ρ2ρ3) = (ρ1ρ2)ρ3.

Take ρ, ρ′ ∈ G. Then ρ = g0 ◦ f0 ◦ .... ◦ gp ◦ fp and ρ′ = g′0 ◦ f ′0 ◦ ... ◦ g′j ◦ f ′j
for pairs gi ◦ fi, g′i ◦ f ′i of bijections stemming from reversible Margolus rules. Then
ρ◦ρ′ = (g0◦f0◦...◦gp◦fp)◦(g′0◦f ′0◦...◦g′j◦f ′j) = (g0◦f0)◦...◦(gp◦fp)◦(g′0◦f ′0)...◦(g′j)◦f ′j)
is generated by pairs of bijections of the form g◦f with g, f stemming from reversible
Margolus rules and therefore ρ ◦ ρ′ ∈ G.

We must show that G has an identity Id. We know that the identity map IdM
on the Margolus neighborhood is a reversible Margolus rule. Put r1 = r2 = IdM
with extensions r′1 : M(αT2n×2m) → M(βT2n×2m), r′2 : M(βT2n×2m) → M(αT2n×2m).
The extension of the Margolus rule identity is the identity map on the entire grid.

4G = ( 〈g ◦ f〉|g and f extend from reversible Margolus rules with f : M(αT2n×2m) →
M(βT2n×2m) and g : M(βT2n×2m)→M(αT2n×2m), ◦)
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5 Now we can put g = φ ◦ r′2 and f = φ−1 ◦ r′1 and conclude g ◦ f : M(αT2n×2m)→
M(αT2n×2m) is the identity element Id ∈ G.6

Now take ρ ∈ G; we want to show that ρ−1 ∈ G. Since G is generated by pairs
g ◦ f , we need only show that (g ◦ f)−1 ∈ G. That is, if G 3 ρ = g ◦ f , then ρ
is an arbitrary generator ofG, so if ρ−1 ∈ G then it follows that g−1 ∈ G for all g ∈ G.

Say ρ = g ◦ f for some bijections f : M(αT2n×2m) → M(βT2n×2m) and g :
M(βT2n×2m) → M(αT2n×2m) extended from some reversible Margolus rules rf and
rg, respectively such that f = φ ◦ rf and g = φ−1 ◦ rg. Both f−1 : M(βT2n×2m) →
M(αT2n×2m) and g−1 : M(αT2n×2m) → M(βT2n×2m) are also bijections stemming
from reversible rules, namely r−1f and r−1g therefore f−1 ◦ g−1 ∈ G. Take Idα to be
the identity map M(αT2n×2m) → M(αT2n×2m), a reversible conservative Maroglus
rule, and likewise let Idβ be the identity map M(βT2n×2m) → M(βT2n×2m). Then
let g−1 = φ ◦ Idα ◦ φ−1 ◦ r−1g ◦ φ ◦ Idα and f−1 = φ−1 ◦ Idβ ◦ φ ◦ r−1f ◦ φ−1 ◦ Idβ. Say
f−1 ◦ g−1 = b then

b ◦ ρ = (f−1 ◦ g−1) ◦ (g ◦ f)

= f−1 ◦ (g−1 ◦ g) ◦ f
= (φ−1 ◦ Idβ ◦ φ ◦ r−1f ◦ φ

−1 ◦ Idβ) ◦ ((φ ◦ Idα ◦ φ−1 ◦ r−1g ◦ φ ◦ Idα) ◦ (φ−1 ◦ rg)) ◦ (φ ◦ rf )
= Id

= ((φ ◦ rf ) ◦ (φ−1 ◦ rg)) ◦ ((φ ◦ Idα ◦ φ−1 ◦ r−1g ◦ φ ◦ Idα) ◦ (φ−1 ◦ Idβ ◦ φ ◦ r−1f ◦ φ
−1 ◦ Idβ))

= (g ◦ f) ◦ (f−1 ◦ g−1)
= ρ ◦ b.

Therefore ρ ◦ b = Id = b ◦ ρ and thus b = ρ−1 and ρ−1 ∈ G.

Now that we know G to be a group, we can furthermore show that G acts on
the multiverse of partitioned grids for some fixed n,m.

5Let IdM be the identity map on the multiverse of Margolus neighborhoods. Then every 2× 2
block of the grid is mapped to itself. First of all, this map is reversible. Since every MN is mapped
to itself, then so is every cell in the grid. Thus the entire grid is mapped to itself by r′1 and r′2.

6Take g ∈ G, then Id ◦ g = g = g ◦ Id.
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3.1 Group Action

We drop the “α” and denote this set as M(T2n×2m) as the partitioning is arbitrary
and we are now “skipping over” the alternate partitioning. We take G to be the
group defined in Theorem 3.1 and claim that

G×M(T2n×2m)→M(T2n×2m)

g ∗ x 7→ g(x)

g ∈ G, x ∈M(T2n×2m) is a group action.

Proof. For all n,m ∈ N, M(T2n×2m) is nonempty. We must only show associativity
and that the identity in G stabilizes all elements of M(T2n×2m). Let g1, g2 ∈ G and
x ∈ M(T2n×2m). We know that g1 and g2 are bijections on the grid. As x is some
universe, we have

g1 : M(T2n×2m)→M(T2n×2m), x 7→ g1(x)

g2 : M(T2n×2m)→M(T2n×2m), x 7→ g2(x).

In particular, g1 and g2 are both bijections on M(T2n×2m) since they are composed
of reversible rules which extend to bijective maps. Since g1 and g2 are bijections on
M(T2n×2m), they enjoy associativity on the domain M(T2n×2m). Therefore

(g1 ∗ g2) ∗ x ≡ (g1 ◦ g2)(x) = g1(g2(x)) ≡ g1 ∗ (g2 ∗ x)

We conclude that (g1 ∗ g2) ∗ x = g1 ∗ (g2 ∗ x).

Let Id ∈ G be the identity of G. This is the identity map, which as we have
seen is an element of G. For x ∈ M(T2n×2m), consider Id ∗ x. Thus we have
Id ∗ x ≡ Id(x) : x 7→ x. We conclude that Id ∗ x = x and in closing that G ×
M(T2n×2m)→M(T2n×2m) is a group action.

4 Group Action of the Lonely Universes

We have shown that we have a group action

G×M(T2n×2m)→M(T2n×2m)
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where G is the group given by the set of pairs of bijections on the 2n× 2m grid on
a torus that extend from reversible Margolus rules along with function composition
and M(T2n×2m) is the multiverse of 2n × 2m grids on tori (whose cells assume a
value either 0 or 1).

We are interested more specifically in the group action

C ×M(TL2n×2m)→M(TL2n×2m)

where C is the subgroup of G whose elements are bijections that extend from re-
versible, conservative rules and M(TL2n×2m) is the set of lonely universes TL2n×2m
(recall that a lonely universe is a grid with one living cell) for some n,m. Let’s
prove that C is indeed a group and, in particular, a subgroup of G.

Proposition 4.1. The set generated by pairs of bijections g ◦ f : M(αT2n×2m) →
M(αT2n×2m) for g and f extending from reversible, conservative Margolus rules
paired with function composition is a subgroup of G.

Proof. Let C be the group of bijections on TL2n×2m that arise from reversible, con-
servative Margolus rules and let G be the group of bijections on T2n×2m stemming
from reversible Margolus rules. Indeed the elements of C are a subset of those of G
and in particular, C 6= ∅ for all n,m.

Let c1, c2 ∈ C. We want to show that c1 ∗ c2 ∈ C. First of all, note that
c1 ∗ c2 := c1 ◦ c2. We know that the composition of bijections is still a bijection.
Therefore, since a map is a bijection if and only if it is reversible, c1 ◦c2 is reversible.
We claim further that the composition of bijections induced by conservative rules
will also be conservative. If the total number of living cells is preserved block-by-
block, then the total number of living cells across the entire grid will be preserved.
Furthermore, the shift preserves the number of living cells. We conclude that a
time-step extending from a conservative Margolus rule is conservative across the
entire grid. Now that we know the conservative property is extended to the entire
grid, we can conclude that this is preserved by function composition. Finally, since
c1 ◦ c2 is both conservative and reversible, c1 ◦ c2 ∈ C.

Now we show c−11 ∈ C. Given that c1 is an extension of some Margolus rule,
say Mc1, take c−11 to be the extension of Mc−11 . This rule is both conservative and
reversible by definition and thus c−11 will be both conservative and reversible.
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Indeed, C is a subgroup of G.

Now that we know C is a subgroup of G, let’s consider the group action of C
acting on M(TL2n×2m).

Theorem 4.2. Let M(TL2n×2m) be the multiverse of lonely universes TL2n×2m for some
n,m, then for c ∈ C and x ∈M(TL2n×2m),

C ×M(TL2n×2m)→M(TL2n×2m)

c ∗ x 7→ c(x)

is a group action.

Proof. We need to show that Id ∈ C stabilizes all elements of M(TL2n×2m) and that
the action is associative.

We know Id ∈ C to be the identity map on the grid. So for any x ∈M(TL2n×2m),
we know Id(x) 7→ x and thus stabilizes the entire set.

As for associativity, we know that bijections on a set always have associativity.
We follow the logic of the proof that the similar action of G on M(TL2n×2m) is indeed
an action. Take c1, c2 ∈ C. So we write

(c1 ∗ c2) ∗ x ≡ (c1 ◦ c2)(x) = c1(c2(x)) ≡ c1 ∗ (c2 ∗ x).

We conclude that

C ×M(TL2n×2m)→M(TL2n×2m)

c ∗ x 7→ c(x)

for all c ∈ C, x ∈M(TL2n×2m) is indeed a group action.

4.1 Generators and Symmetry

We are interested in the bijections on the multiverse of lonely universes M(TL) for
some fixed n,m ∈ N that arise from reversible, conservative Margolus rules. We
want to know what these bijections and the resulting subgroup and group action
structure look like.

22



Since we are dealing with conservative rules, we know that the empty MN, that
is, the Margolus neighborhood with no living cells, has to map to itself at every
time-step. Thus we can characterize universes uniquely by the position of the living
cell. In a Margolus neighborhood we only have four possibilities to consider:

, , , .

Reversible, conservative Margolus rules behave as permutations on these four ele-
ments. When we construct a map to be applied to every element of the multiverse,
the map can be written as a composition of permutations of these four MN with
intermediary shifts of the grid to represent the re-partitioning process, φ. Recall
that C is the group of pairs of bijections that extend from reversible, conservative
rules and that this process looks like

M(αT2n×2m) M(αT2n×2m) M(αT2n×2m)

M(βT2n×2m) M(βT2n×2m)

g◦f

ρ1

f
φ

ρ2

g
φ−1

In this way, these permutations that arise from reversible, conservative Margolus
rules, along with the shift of the grid (re-partitioning), when taken sequentially are
generators for all of the maps that we can construct from reversible, conservative
Margolus rules. That is, all of the maps in the group C take the form of a Mar-
golus rule extended to the grid, a shift, another Margolus rule extension, and an
inverse shift. In this way we can construct explicit generators for the copy of C
under the permutation representation. We explore this further after we develop the
permutation representation of the action in Section 4.2.

Definition 6. “Let the group G act on the set A. For each fixed g ∈ G we get a
map σg defined by

σ : A→ A

σg(a) = g ∗ a.

... (i) for each fixed g ∈ G, σg is a permutation of A and (ii) the map from G to
SA defined by g 7→ σg is a homomorphism. The homomorphism from G to SA given
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above is called the permutation representation7 associated to the given action.”[14,
pages 42-43]

The permutations of these four elements, however, introduce, by symmetry,
larger generators when we consider larger grids. Keep in mind that the permu-
tations of these four 2 × 2 blocks are representative of the generators, but are not
the generators themselves. In the same way that Margolus rules extend to bijections
on the multiverse, so too the generators of the Margolus neighborhood permutations
extend to permutations on multiverses of lonely universes.

This raises the question “which permutations arise on the multiverse of lonely
universes when we act on the multiverse with maps that extend from reversible,
conservative Margolus rules?” The first attempt to address this question was “does
the group action act on the multiverse of lonely universes by all possible permuta-
tions?” For the 2 × 2 case, this turns out to be true. In the example that follows,
we show that this is not true for the 4 × 4 case. After developing a few more tools,
we, in Section 5, attempt to answer this question with the culmination of the ideas
in this paper.

Example 4.1. Consider the multiverse of lonely universes of size 4× 4. We have

, ,........

where the red lines represent the initial partition of the grid. The symmetry arises

7Note that while permutation representation is defined as a homomorphism, we often refer to
the image of the homomorphism as the permutation representation.

24



when we consider 4−tuples of elements such as

, , , .

These four elements of the multiverse are acted on in the same way. That is, say
a map c ∈ C acts on the multiverse of lonely universes of size 4 × 4, denoted here
M(TL4×4). This map c extends from a Margolus rule. Suppose c maps the MN

to

.

Since the rule c must be reversible, we must also map

to another MN. For simplicity, we can map this MN to
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resulting in a permutation, while mapping the other two MN,

, ,

to themselves. We end up with a permutation that swaps two MN and leaves the
other two constant. As mentioned before, this is not the true generator for the
action on the multiverse for n or m greater than 1, but this permutation tells us
everything we need to know all the same. This one permutation extends to our
“true” generator by the symmetric properties of the partitioned grid. Our 4−tuple
of universes gets mapped to the 4−tuple

, , , .

We see that we are in fact permuting four elements of the multiverse. That is,
we have four transpositions. This is because these universes can be equated by a
translation on the multiverse of some vertical measure by some multiple of 2m or
horizontally by some multiple of 2n. This is the idea of symmetry in the group
action; this is where the symmetric group meets the Margolus rule structure.

4.2 Permutation Representation

To simplify discussion, we will shift from working with this group action directly to
working with its permutation representation. Fortunately, working with the action
on lonely universes is rather intuitive; the same cannot be said of multiverses that
allow universes with more than one living cell.

We know that |M(TL2n×2m)| = 4mn since there is one element in the set for each
cell that can be occupied by the “1” value. The homomorphism associated to the
action is ψ : C → S4nm. Furthermore, we know that C is isomorphic to a subgroup
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of S4nm by Cayley’s Theorem. The rest of this paper is dedicated to examining this
action and subgroup.

As just mentioned, there is an intuitive bijection from a multiverse of lonely
universes to the elements of S4nm. As a matter of notation, we will refer to S4mn as
the group that of permutations of elements {0, 1, 2, 3, ..., 4mn−1}, not the canonical
{1, 2, 3, 4..., 4mn}. This notation is established here to avoid confusion when we
shift our focus from the abstract S4mn group to its representation in the Python
programming language. Now we construct a bijection as follows: let T0,0 be the
lonely universe whose living cell is located at x0,0, and so forth. Then

M(TL)→ {0, 1, 2, 3, ...4mn− 1}
T0,0 7→ 0

T1,0 7→ 1

...

T2n−2,2m−1 7→ 4mn− 2

T2n−2,2m−1 7→ 4mn− 1

is a bijection.

After fixing n and m and orienting and (arbitrarily) partitioning the grid, we
can represent T ∈M(TL2n×2m) with a matrix

T =



[
x0,0 x1,0
x0,1 x1,1

] [
x2,0 x3,0
x2,1 x3,1

]
. . .

[
x2n−2,0 x2n−1,0
x2n−2,1 x2n−1,1

]
[
x0,2 x1,2
x0,3 x1,3

] [
x2,2 x3,2
x2,3 x3,3

]
. . .

[
x2n−2,2 x2n−1,2
x2n−2,3 x2n−1,3

]
...

...
. . .

...[
x0,2m−2 x1,2m−2
x0,2m−1 x1,2m−1

][
x2,2m−2 x3,2m−2
x2,2m−1 x3,2m−1

]
. . .

[
x2n−2,2m−2 x2n−1,2m−2
x2n−2,2m−1 x2n−1,2m−1

]


, xi,j ∈ {0, 1}.
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Example 4.2. Consider M(TL2×4) =

, , , , , , , .

These elements map to 0, 1, 2, 3, 4, 5, 6, 7, respectively.

We have a bijection from a given multiverse into the elements {0, 1, 2, ..., 4mn−1}
and we have introduced this notion of symmetry in the group action that results
from the Margolus rule structure. Let’s take the symmetry phenomenon and mani-
fest it in the permutation representation.

4.3 Generators Revisited

We have touched on the idea of generators of the possible rules that act on a given
multiverse. Now that we have introduced the permutation representation of the ac-
tion, we can express these generators with precision. Recall Example 4.1. Consider
the permutations of the four elements of the multiverse of lonely universes to be the
group S4. In Example 4.1 we considered the effects of the permutation (0, 1). We
saw that on the multiverse M(TL4×4) this permutation extended to the permutation
(0, 1)(2, 3)(8, 9)(10, 11) by symmetry. The latter is what we refer to as one of the
generators of the subgroup of S16. The rows of the grid are entered as elements of
the list.

As a visual aid, consider
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

It is natural to think of 0, 1, 2, ..., 4nm− 1 as cells, but this is not the case. We are
trying to capture permutations of the multiverse M(TL2n×2m). Therefore 0 represents
the lonely universe with the living cell in position 0, and so forth, reading left to
right and top to bottom.8

Let’s take another example.

Example 4.3. Take the multiverse of lonely universes of size 2× 4, M(TL2×4). We
know this set to have 8 elements. Say we want to observe the extension of the (0, 2)
generator. That is, the permutation that swaps

with

.

Then we have a composition of two transpositions that represents the generator of
this action on the multiverse, namely (0, 2)(4, 6). Visually, this action permutes the

8Refer to the bijection described on page 24.
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universes

with

as well as

with .

Now that we have a solid theoretical framework for examining the subgroups of
S4mn, we turn our attention to the action on specific multiverses.

5 Computing the Subgroups

We examine the action on M(TL2n×2m) for particular n,m. For each pair (n,m), we
have a group action. Each group action in turn has a permutation representation
that is a subgroup of S4mn given n,m.

5.1 Subgroup sizes for a given n, m

Perhaps the most basic property of these subgroups that we can compute is their
sizes. Using the Python programming language we are able to compute the sizes of
some of these subgroups for some small n,m. Program 1 will take a 2n × 2m grid
and return the size of the subgroup that is generated by the permutations revealed
in the previous section(the extensions of (0, 1), (0, 2), (0, 3) and the shift of the grid).
The raw code along with a detailed description of the workings of the code can be
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found in the appendix.

Program 1 was designed to be true to the structure that we have described here.
First, four functions are developed: an identity map and three permutations. Then
we define the shift function and its inverse which serve as the partitioning step.
Subsequently we define eight new functions that represent time-steps: four func-
tions being a permutation followed by the shift, four functions being a permutation
followed by the inverse shift. Recall that we have deconstructed the group structure
to the extent that we understand the group action as this four-step process. For this
reason, we can claim that this program finds the entire subgroup. Finally we apply
these permutations to the identity and add unique permutations to a list. The size
of the list gives the size of the subgroup.

This table lists the size grid used as well as, below, the size of the subgroup.

2x2 4x4 6x6 8x8

24 1,536 17,496 98,304

We do face new challenges when we start to consider cases where n is not equal
to m. In particular, we need to address two question:

1. Does changing the orientation of the grid change the size of the subgroup?

For example, is the permutation representation of the group action on the
2 × 4 grid on a torus the same as that of the action on the 4 × 2? Since we
are working on a torus, the intuitive answer is “yes, the sizes of the subgroups
are the same.” We can only deal with their sizes while acknowledging that the
structures may be different. For small n,m, it is supported that the subgroups
have the same sizes.

2x4 4x2 2x6 6x2 2x8 8x2 2x10 10x2 2x12 12x2

192 192 648 648 1,536 1,536 3,000 3,000 5,184 5,184

4x6 6x4 4x8 8x4 4x10 10x4 4x12 12x4

5,184 5,184 12,288 12,288 24,000 24,000 41,472 41,472

This leads us to the second question.
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2. Does the shape of the universe matter?

This question builds on question 1. Supposing the orientation does not matter, what
if we change n and m while keeping the number of MN the same? For example,
how, if at all, does the representation of the action on the 4 × 4 multiverse differ
from that of the action on the 2 × 8? They share the same number of MN, does
that mean that they will yield the same subgroup (up to isomorphism)? We see
that the shape does not appear to be influential. In the following figure, like-colored
cells have the same number of MN (aside from the black cells for which no value was
calculated). The number in each cell is the size of the subgroup of the permutation
representation of the action on the multiverse of lonely universes of size 2n×2m for
2n the index found in the column and 2m the index found in the row.9

x 2

2

4

4

6

8

10

12

6 8 10 12

24 192

192

648

648

5,184

5,184

12,288

12,288

17,496

1,536

1,536

1,536

3,000

3,000 5,184

5,184

41,472

24,000

24,000

41,472

41,472

41,472

81,000

81,000

98,304

139,968

139,968

Note how small these subgroups are relative to S4mn. For example, consider

the size of the subgroup of S36 relative to S36 :
17, 496

36!
=

23 ∗ 37

36!
=

2 ∗ 35

35!
≈

4.07033 ∗ 10−38.

5.2 Subgroup Structure

Now that we have computed some subgroup sizes, we can consider their structures
as well. Due to the large sizes of the subgroups, we are only going to consider the
2 × 2 and 2 × 4 cases explicitly. The methods shown here of deconstructing the

9Although, at least for this data set, n and m can be exchanged arbitrarily.
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structure could be likewise applied to larger n,m. Specifically, we will compute the
generators for each subgroup for specific n,m. For simplicity, when n 6= m, we will
take m > n. We will assume that the two are identical up to isomorphism and
therefore that we have covered both cases.

Recall that we are taking pairs of bijections. So, in each case, we list the per-
mutations that correspond to the three generating permutations on the Margolus
neighborhood, (0,1),(0,2) and (0,3), as well as the permutation that corresponds to
the shift of the grid, and it’s inverse. From these, we can write the generators of
the subgroup as a sequence of compositions: a permutation (possible the identity),
a shift, a permutation, an inverse shift. In this way, the permutations and shifts
are like generators for our generating set, although, not in the strict mathematical
sense.

Lemma 3. Disjoint cycles commute.[14, page 32]

• 2 × 2, subgroup of S4

This case is completely known. We have a subgroup of S4 that is of size 24.
We conclude that this particular subgroup is in fact S4.

– Permutations: (), (0,1), (0,2), (0,3)

– Shift: (0,3)(1,2)

– Shift Inverse: (0,3)(1,2)

From here we take sequences to find our generators and simplify. In this case,
we see that we can use our three permutations as generators.
Generators (2 × 2):

– (0,1)

– (0,2)

– (0,3)

This generates all of S4.
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• 2 × 4, subgroup of S8

From the symmetry we get the permutations (in cycle decomposition form):
(0,1)(4,5), (0,2)(4,6), and (0,3)(4,7). The shift of the grid can be thought of
as a permutation (0,7,4,3)(1,6,5,2). Equivalently, this permutation could be
(0,3,4,7)(1,2,5,6). (Note (0,7,4,3)(1,6,5,2) = ((0,3,4,7)(1,2,5,6))−1). The size of
the subgroup generated by these permutations is given by Program 1 to be 192.

– Permutations: (), (0,1)(4,5), (0,2)(4,6), (0,3)(4,7)

– Shift: (0,7,4,3)(1,6,5,2)

– Shift Inverse: (0,3,4,7)(1,2,5,6)

We have 16 possible combinations of permutations to serve as generators for
this subgroup.

– (0,3,4,7)(1,2,5,6)◦()◦(0,7,4,3)(1,6,5,2)◦() = ()

– (0,3,4,7)(1,2,5,6)◦()◦(0,7,4,3)(1,6,5,2)◦(0,1)(4,5) = (0,1)(4,5)

– (0,3,4,7)(1,2,5,6)◦()◦(0,7,4,3)(1,6,5,2)◦(0,2)(4,6) = (0,2)(4,6)

– (0,3,4,7)(1,2,5,6)◦()◦(0,7,4,3)(1,6,5,2)◦(0,3)(4,7) = (0,3)(4,7)

– (0,3,4,7)(1,2,5,6)◦(0,1)(4,5)◦(0,7,4,3)(1,6,5,2)◦() = (2,3)(6,7)

– (0,3,4,7)(1,2,5,6)◦(0,2)(4,6)◦(0,7,4,3)(1,6,5,2)◦() = (1,7)(3,5)

– (0,3,4,7)(1,2,5,6)◦(0,3)(4,7)◦(0,7,4,3)(1,6,5,2)◦() = (0,7)(3,4)

– (0,3,4,7)(1,2,5,6)◦(0,1)(4,5)◦(0,7,4,3)(1,6,5,2)◦(0,1)(4,5) = (0,1)(2,3)(4,5)(6,7)

– (0,3,4,7)(1,2,5,6)◦(0,2)(4,6)◦(0,7,4,3)(1,6,5,2)◦(0,1)(4,5) = (0,7,1)(3,5,4)

– (0,3,4,7)(1,2,5,6)◦(0,3)(4,7)◦(0,7,4,3)(1,6,5,2)◦(0,1)(4,5) = (0,1,7)(3,4,5)

– (0,3,4,7)(1,2,5,6)◦(0,1)(4,5)◦(0,7,4,3)(1,6,5,2)◦(0,2)(4,6) = (0,3,2)(4,7,6)

– (0,3,4,7)(1,2,5,6)◦(0,2)(4,6)◦(0,7,4,3)(1,6,5,2)◦(0,2)(4,6) = (0,2)(1,7)(3,5)(4,6)

– (0,3,4,7)(1,2,5,6)◦(0,3)(4,7)◦(0,7,4,3)(1,6,5,2)◦(0,2)(4,6) = (0,2,7)(3,4,6)

– (0,3,4,7)(1,2,5,6)◦(0,1)(4,5)◦(0,7,4,3)(1,6,5,2)◦(0,3)(4,7) = (0,2,3)(4,6,7)

– (0,3,4,7)(1,2,5,6)◦(0,2)(4,6)◦(0,7,4,3)(1,6,5,2)◦(0,3)(4,7) = (0,5,3)(1,7,4)
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– (0,3,4,7)(1,2,5,6)◦(0,3)(4,7)◦(0,7,4,3)(1,6,5,2)◦(0,3)(4,7) = (0,4)(3,7)

We conclude that {(0, 1)(4, 5), (0, 2)(4, 6), (0, 3)(4, 7), (2, 3)(6, 7), (1, 7)(3, 5), (0, 7)(3, 4),
(0, 1)(2, 3)(4, 5)(6, 7), (0, 7, 1)(3, 5, 4), (0, 1, 7)(3, 4, 5), (0, 3, 2)(4, 7, 6), (0, 2)(1, 7)(3, 5)(4, 6),
(0, 2, 7)(3, 4, 6), (0, 2, 3)(4, 6, 7), (0, 5, 3)(1, 7, 4), (0, 4)(3, 7)} is a generating set
for the subgroup. This is not, however, a minimal generating set. For exam-
ple, (0, 7, 1)(3, 5, 4) = ((0, 1, 7)(3, 4, 5))−1, therefore this cannot be the minimal
generating set.

Theorem 5.1. The subgroup of S8 that is the permutation representation of
the action on the multiverse of lonely universes of size 2 × 4 has a minimal
generating set {(0, 1)(4, 5), (0, 2)(4, 6), (0, 3)(4, 7), (1, 7)(3, 5)}.

Proof. We have shown that the set {(0, 1)(4, 5), (0, 2)(4, 6), (0, 3)(4, 7), (2, 3)(6, 7), (1, 7)(3, 5),
(0, 7)(3, 4), (0, 1)(2, 3)(4, 5)(6, 7), (0, 7, 1)(3, 5, 4), (0, 1, 7)(3, 4, 5), (0, 3, 2)(4, 7, 6),
(0, 2)(1, 7)(3, 5)(4, 6), (0, 2, 7)(3, 4, 6), (0, 2, 3)(4, 6, 7), (0, 5, 3)(1, 7, 4), (0, 4)(3, 7)}
is a generating set for the subgroup. First we show that all of these elements
can be written as a composition of (0, 1)(4, 5), (0, 2)(4, 6), (0, 3)(4, 7), (2, 3)(6, 7),
and (1, 7)(3, 5):

– (0,7)(3,4) = (1,7)(3,5) ◦ (0,1)(4,5) ◦ (1,7)(3,5)

– (0,1)(2,3)(4,5)(6,7) = (0,1)(4,5) ◦ (2,3)(6,7)

– (0,7,1)(3,5,4) = (1,7)(3,5) ◦ (0,1)(4,5) ◦ (1,7)(3,5) ◦ (0,1)(4,5)

– (0,1,7)(3,4,5) = (0,1)(4,5) ◦ (1,7)(3,5)

– (0,3,2)(4,7,6) = (2,3)(6,7) ◦ (0,2)(4,6)

– (0,2)(1,7)(3,5)(4,6) = (0,2)(4,6) ◦ (1,7)(3,5)

– (0,2,7)(3,4,6) = (1,7)(3,5) ◦ (0,1)(4,5) ◦ (1,7)(3,5) ◦ (0,2)(4,6)

– (0,2,3)(4,6,7) = (0,3)(4,7) ◦ (0,2)(4,6)

– (0,5,3)(1,7,4) = (1,7)(3,5)◦ (0,1)(4,5) ◦ (1,7)(3,5) ◦ (0,3)(4,7)

– (0,4)(3,7) = (1,7)(3,5)◦ (0,1)(4,5) ◦ (1,7)(3,5) ◦ (0,3)(4,7)

So {(0, 1)(4, 5), (0, 2)(4, 6), (0, 3)(4, 7), (2, 3)(6, 7), (1, 7)(3, 5)} is a generating
set for {(0, 1)(4, 5), (0, 2)(4, 6), (0, 3)(4, 7), (2, 3)(6, 7), (1, 7)(3, 5), (0, 7)(3, 4),
(0, 1)(2, 3)(4, 5)(6, 7), (0, 7, 1)(3, 5, 4), (0, 1, 7)(3, 4, 5), (0, 3, 2)(4, 7, 6), (0, 2)(1, 7)(3, 5)(4, 6),
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(0, 2, 7)(3, 4, 6), (0, 2, 3)(4, 6, 7), (0, 5, 3)(1, 7, 4), (0, 4)(3, 7)}. Program 2, avail-
able in the appendix, was used to compute the sizes of subgroups generated
by the remaining five permutations. When we consider only

{(0, 1)(4, 5), (0, 2)(4, 6), (0, 3)(4, 7), (1, 7)(3, 5)},

we still generate a subgroup of 192 elements. It follows that we can write
(2, 3)(6, 7) as a composition of these four elements. Indeed, we find that

(2, 3)(6, 7) = (0, 3)(4, 7) ◦ (0, 2)(4, 6) ◦ (0, 3)(4, 7).

Therefore,
{(0, 1)(4, 5), (0, 2)(4, 6), (0, 3)(4, 7), (1, 7)(3, 5)}

is a generating set for the subgroup. When we attempt to remove any other el-
ement from this set, we only generate a subgroup of 24 elements. We conclude
that this is the minimal generating set for the subgroup.

We will not explicitly write the generating set for larger size universes, but we
will write the permutations from which we create the generating set.

• 4 × 4

– Permutations: (0,1)(2,3)(8,9)(10,11), (0,4)(2,6)(8,12)(10,14), (0,5)(2,7)(8,13)(10,15),
(0,5,10,15)(1,6,11,12)

– Shift:(0,5,10,15)(1,6,11,12)(2,7,8,13)(3,4,9,14)

– Shift Inverse: (0,15,10,5)(1,12,11,6)(2,13,8,7)(3,14,9,4)

• 4 × 6

– Permutations:

– (0,1)(2,3)(8,9)(10,11)(16,17)(18,19),
(0,4)(2,6)(8,12)(10,14)(16,20)(18,22),
(0,5)(2,7)(8,13)(10,15)(16,21)(18,23)

– Shift: (0,5,10,15,16,21,2,7,8,13,18,23)(1,6,11,12,17,22,3,4,9,14,19,20)

– Shift Inverse: (0,23,28,13,8,7,2,21,16,15,10,5)(1,20,19,14,9,4,3,22,17,12,11,6)

• 6 × 6
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– Permutations:

– (0,1)(2,3)(4,5)(12,13)(14,15)(16,17)(24,25)(26,27)(28,29),
(0,6)(2,8)(4,10)(12,18)(14,20)(16,22)(24,30)(26,32)(28,34),
(0,7)(2,9)(4,11)(12,19)(14,21)(16,23)(24,31)(26,33)(28,35)

– Shift: (0,7,14,21,28,35)(1,8,15,22,29,30)(2,9,16,23,24,31)(3,10,17,18,25,32)
(4,11,12,19,26,33)(5,6,13,20,27,34)

– Shift Inverse: (0,35,28,21,14,7)(1,30,29,22,15,8)(2,31,24,23,16,9)(3,32,25,18,17,10)
(4,33,26,19,12,11)(5,34,27,20,13,6)

What are the trends here? First of all, the size of the shift permutation will
always be 4nm (recall that the grids are of size 2n× 2m, n,m ∈ N). The number of
generators will always be 3, not including the shift. The generators are composed
of transpositions. When n = m, the shift permutation is composed of 2n cycles
of length 2n (note also that this is true for the 2 × 2 case although this was not
discussed). The number of cycles in a generator is n ∗m.

6 Future Investigation

• Is symmetry the only restriction on the permutations?

• Why don’t the relative dimensions of the grid impact the size of the subgroup?

• What happens when we move to multiverses of two living cells? Three? ...

A Program 1: Code for Finding Subgroup Size

with Explanation

Program 1

from copy import deepcopy

import itertools

#First we choose "data"; each sub-array represents a row (or column, arbitrarily).

#data = [[0,1,2,3],[4,5,6,7],[8,9,10,11],[12,13,14,15],[16,17,18,19],[20,21,22,23]]

#data = [[0,1],[2,3],[4,5],[6,7]]
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#data = [[0,1,2,3,4,5],[6,7,8,9,10,11],[12,13,14,15,16,17],[18,19,20,21,22,23],

#[24,25,26,27,28,29],[30,31,32,33,34,35]]

data = [[0,1,2,3,4,5,6,7,8,9],[10,11,12,13,14,15,16,17,18,19],

[20,21,22,23,24,25,26,27,28,29],[30,31,32,33,34,35,36,37,38,39],

[40,41,42,43,44,45,46,47,48,49],[50,51,52,53,54,55,56,57,58,59]]

#data = [[0,1],[2,3]]

#data = [[0,1,2,3],[4,5,6,7]]

#"elle" will record all of the elements in the subgroup.

elle = list()

elle.append(data)

# We are going to construct first the three generating permutations. We only need

# these three since we can apply a

# permutation followed by a shift and the inverse shift at which point we can apply

# any of these permutations once

# again. In this way, we can apply any of the three permutations consecutively.

# Since transpositions generate the group

# of all permutations on the set, this is all we need.

def perm01(lst):

#this is the first generator, permuting 0 and 1

out = deepcopy(lst)

x_size = len(lst[0])

y_size = len(lst)

for i in range(x_size/2):

for j in range(y_size/2):

out[(2*j)%y_size][(2*i)%x_size], out[(2*j)%y_size][(2*i + 1)%x_size]

= out[(2*j)%y_size][(2*i + 1)%x_size], out[(2*j)%y_size][(2*i)%x_size]

return out

def perm02(lst):

#second generator permuting 0 and 2
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out = deepcopy(lst)

x_size = len(lst[0])

y_size = len(lst)

for i in range(x_size/2):

for j in range(y_size/2):

out[(2*j)%y_size][(2*i)%x_size], out[(2*j+1)%y_size][(2*i + 1)%x_size]

= out[(2*j+1)%y_size][(2*i + 1)%x_size], out[(2*j)%y_size][(2*i)%x_size]

return out

def perm03(lst):

#third generator, permuting 0 and 3

out = deepcopy(lst)

x_size = len(lst[0])

y_size = len(lst)

for i in range(x_size/2):

for j in range(y_size/2):

out[(2*j)%y_size][(2*i)%x_size], out[(2*j+1)%y_size][(2*i)%x_size]

= out[(2*j+1)%y_size][(2*i)%x_size], out[(2*j)%y_size][(2*i)%x_size]

return out

def ID(lst):

#This is the identity. We include it in order to make the program more true

#to the process described in the paper.

return lst

def shift(lst):

#This is the shift map which captures the initial re-partitioning of the grid.

out = deepcopy(lst)

x_size = len(lst[0])
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y_size = len(lst)

for i in range(y_size):

for j in range(x_size):

out[(i-1)%(y_size)][(j-1)%(x_size)] = deepcopy(lst[i][j])

return out

def shiftINV(lst):

out = deepcopy(lst)

x_size = len(lst[0])

y_size = len(lst)

for i in range(y_size):

for j in range(x_size):

out[(i+1)%(y_size)][(j+1)%(x_size)] = deepcopy(lst[i][j])

return out

def IDshift(lst):

#This is a time-step: Identity map followed by shift

perm = ID(lst)

out = shift(perm)

return out

def perm01shift(lst):

#Time-step: Permutation (0,1) then shift

perm = perm01(lst)

out = shift(perm)

return out

def perm02shift(lst):

#Time-step: Permutation (0,2) then shift
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perm = (perm02(lst))

out = shift(perm)

return out

def perm03shift(lst):

#Time-step: Permutation (0,3) then shift

perm = (perm03(lst))

out = shift(perm)

return out

def IDshiftINV(lst):

#Subsequent time-step: Identity then inverse shift

perm = (ID(lst))

out = shiftINV(perm)

return out

def perm01shiftINV(lst):

#Subsequent time-step: Permutaion (0,1) then inverse shift

perm = (perm01(lst))

out = shiftINV(perm)

return out

def perm02shiftINV(lst):

#Subsequent time-step: Permutation (0,2) then inverse shift

perm = (perm02(lst))

out = shiftINV(perm)

return out

def perm03shiftINV(lst):

#Subsequent time-step: Permutation (0,3) then inverse shift

perm = (perm03(lst))

out = shiftINV(perm)

return out
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#We are going to have a list to store which permutations are "new".

#This way we can act on only "new" permutations using our functions.

IWASSAVINGTHOSE = [data]

#This "while" loop terminates when we get nothing new out of acting

#on permutations with our functions. This means that we have found everything.

while len(IWASSAVINGTHOSE) != 0:

copy = deepcopy(IWASSAVINGTHOSE)

#for k in range(len(IWASSAVINGTHOSE)):

## This step is broken into repetitive steps. We write a first

## time-step, followed by all the possible subsequent

## time-steps.

for k in range(len(copy)):

IDEN = IDshift(copy[k])

#We have the identity map followed by a shift.

IDEN01 = perm01shiftINV(IDEN)

if IDEN01 not in elle:

IWASSAVINGTHOSE.append(IDEN01)

elle.append(IDEN01)

# We take the first time-step from above (IDEN) and we

# follow it with another time-step, and record the

# output if it is not already recorded.

IDEN02 = perm02shiftINV(IDEN)

if IDEN02 not in elle:

IWASSAVINGTHOSE.append(IDEN02)

elle.append(IDEN02)

#Another possible time-step following IDEN

IDEN03 = perm03shiftINV(IDEN)

if IDEN03 not in elle:

IWASSAVINGTHOSE.append(IDEN03)

elle.append(IDEN03)
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#Another possible time-step following IDEN

# We don’t need to consider IDshiftINV since we would return to the identity,

# which is already recorded.

permA = perm01shift(copy[k])

#We move on to the next ‘‘starting" time -step and all

#the possible subsequent time-steps follow.

permB = perm01shiftINV(permA)

if permB not in elle:

IWASSAVINGTHOSE.append(permB)

elle.append(permB)

permC = perm02shiftINV(permA)

if permC not in elle:

IWASSAVINGTHOSE.append(permC)

elle.append(permC)

permD = perm03shiftINV(permA)

if permD not in elle:

IWASSAVINGTHOSE.append(permD)

elle.append(permD)

permE = IDshiftINV(permA)

if permE not in elle:

IWASSAVINGTHOSE.append(permE)

elle.append(permE)

BpermA = perm02shift(copy[k])

BpermB = perm01shiftINV(BpermA)

if BpermB not in elle:

IWASSAVINGTHOSE.append(BpermB)

elle.append(BpermB)

BpermC = perm02shiftINV(BpermA)

if BpermC not in elle:
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IWASSAVINGTHOSE.append(BpermC)

elle.append(BpermC)

BpermD = perm03shiftINV(BpermA)

if BpermD not in elle:

IWASSAVINGTHOSE.append(BpermD)

elle.append(BpermD)

BpermE = IDshiftINV(BpermA)

if BpermE not in elle:

IWASSAVINGTHOSE.append(BpermE)

elle.append(BpermE)

CpermA = perm03shift(copy[k])

CpermB = perm01shiftINV(CpermA)

if CpermB not in elle:

IWASSAVINGTHOSE.append(CpermB)

elle.append(CpermB)

CpermC = perm02shiftINV(CpermA)

if CpermC not in elle:

IWASSAVINGTHOSE.append(CpermC)

elle.append(CpermC)

CpermD = perm03shiftINV(CpermA)

if CpermD not in elle:

IWASSAVINGTHOSE.append(CpermD)

elle.append(CpermD)

CpermE = IDshiftINV(CpermA)

if CpermE not in elle:

IWASSAVINGTHOSE.append(CpermE)

elle.append(CpermE)

#Now that we have applied every function to this permutation,

#we can remove it from the list of "new" elements.
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IWASSAVINGTHOSE.remove(copy[k])

print len(elle)

# As an additional measure we make sure that there aren’t multiple copies

# saved in the list.

k = 0

for i in range(len(elle)):

for j in range(len(elle)):

if elle[i] == elle[j]:

k+=1

print k

#k should be the same as "final".

#IWASAVINGTHOSE should be empty. That is, there should be no

#elements that we didn’t apply all of our functions to.

print IWASSAVINGTHOSE

#Finally we remove any copies in the code.

elle.sort()

final = list(k for k,_ in itertools.groupby(elle))

print len(final)
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B Program 2: Code for Finding Minimal Gener-

ating Set

Program 2

from copy import deepcopy

import itertools

#this represents our identity element of S_8

data = [[0,1,2,3,4,5,6,7]]

#"elle" will record all of the unique permutations that we find.

elle = []

elle.append(data)

#Now we define 5 functions that represent the five elements of the generating set.

#This function is (0,1)(4,5).

def zeroone(lst):

out = deepcopy(lst)

out[0], out[1] = out[1], out[0]

out[4], out[5] = out[5], out[4]

return out

#This function is (0,2)(4,6).

def zerotwo(lst):

out = deepcopy(lst)

out[0], out[2] = out[2], out[0]

out[4], out[6] = out[6], out[4]

return out

#This function is (0,3)(4,7).

def zerothree(lst):

out = deepcopy(lst)

out[0], out[3] = out[3], out[0]

out[4], out[7] = out[7], out[4]

return out
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#This function is (2,3)(6,7).

def twothree(lst):

out = deepcopy(lst)

out[2], out[3] = out[3], out[2]

out[6], out[7] = out[7], out[6]

return out

#This function is (1,7)(3,5).

def oneseven(lst):

out = deepcopy(lst)

out[7], out[1] = out[1], out[7]

out[3], out[5] = out[5], out[3]

return out

#"NEW" will record data that is "new" in the sense that

#it has yet to be run through all of the functions.

NEW = (data)

#We want to stop when we aren’t getting new output.

while len(NEW) != 0:

copy = deepcopy(NEW)

for k in range(len(copy)):

#In each block, we apply a function to something that is "new" and

#then, if we have not already seen the output, we store it both as

#a "new" element and store it in "elle".

perm1 = zeroone(copy[k])

if perm1 not in elle:

elle.append(perm1)

NEW.append(perm1)

perm2 = zerotwo(copy[k])

if perm2 not in elle:

elle.append(perm2)

NEW.append(perm2)

perm3 = zerothree(copy[k])
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if perm3 not in elle:

elle.append(perm3)

NEW.append(perm3)

#This is the function that we remove.

perm4 = twothree(copy[k])

if perm4 not in elle:

elle.append(perm4)

NEW.append(perm4)

perm5 = oneseven(copy[k])

if perm5 not in elle:

elle.append(perm5)

NEW.append(perm5)

NEW.remove(copy[k])

print len(elle)

k = 0

for i in range(len(elle)):

for j in range(len(elle)):

if elle[i] == elle[j]:

k+=1

print k

#We make sure that "NEW" is empty.

print NEW

#Now we check that there are no copies in the set.

elle.sort()

final = list(k for k,_ in itertools.groupby(elle))

print len(final)

for k in range(len(elle)):

print elle[k]
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elle.remove([])

print len(elle)
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