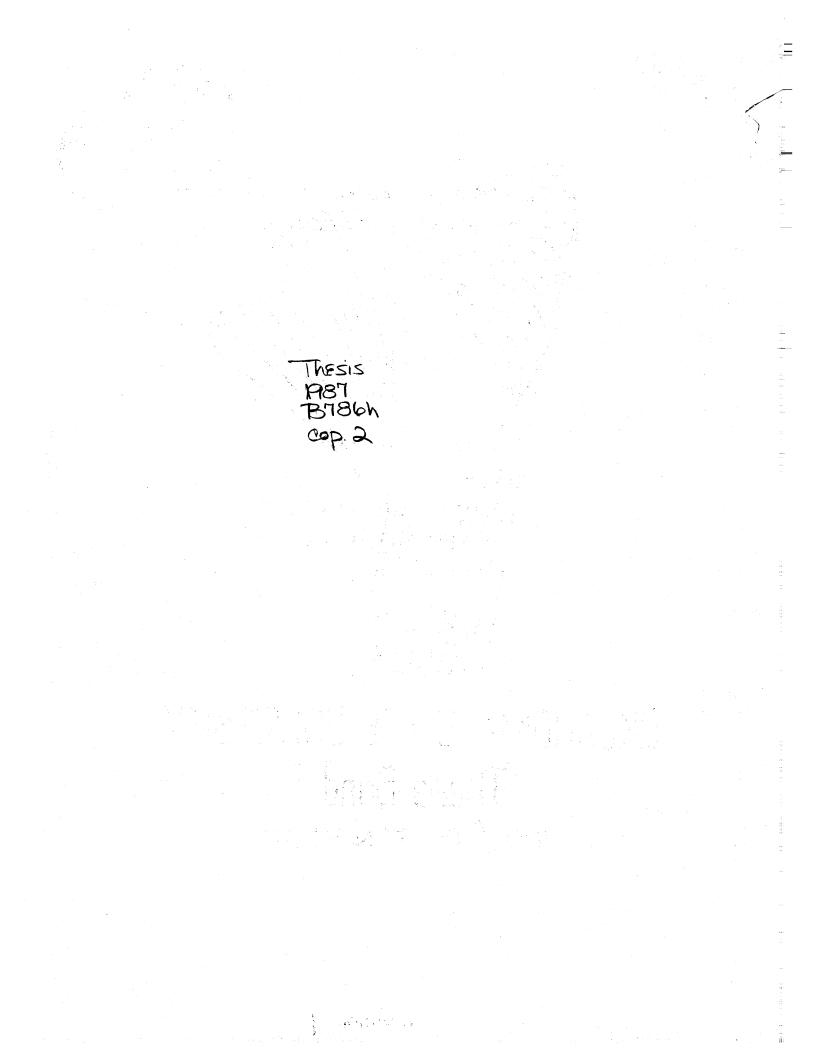
HEXSIM: A PRELIMINARY SHELL AND TUBE AND AIR-COOLED HEAT EXCHANGER DESIGN/RATING PROGRAM

By

BILLIE ANNETTE BOWERSOCK


Bachelor of Science in Chemical Engineering

Oklahoma State University

Stillwater, Oklahoma

1984

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1987

OKLAHOMA STA UNIVERSITY LIBRARY R-COOLED

HEXSIM: A PRELIMINARY SHELL AND TUBE AND AIR-COOLED

HEAT EXCHANGER DESIGN/RATING PROGRAM

Thesis Approved:

Thesis Adviser ner the Graduate Dean of College

PREFACE

The HEXSIM simulator was debugged and modified to increase user friendliness. Then a user's manual and technical documentation were written. HEXSIM is capable of calculating size and configuration for both shell and tube and air-cooled heat exchangers for sensible heat transfer problems. The methods used are given by Bell (4) for shell and tube exchangers and by the GPSA Engineering Data Book (6) for aircoolers.

ACKNOWLEGEMENTS

I wish to express my gratitude to all the people who kindly assisted me during my stay at Oklahoma State University. I am especially indebted to Dr. Ruth Erbar, my major adviser, for her invaluable help, intelligent guidance, and kind concern. I would also like to thank Dr. Kenneth J. Bell for his invaluable technical guidance and helpful suggestions throughout this work. I would like to thank Dr. A. J. Johannes for his support and guidance at the completion of this work.

I am appreciative for the help and friendship of Ali M. Dadgar and Dr. Carlos E. Ruiz.

My parents, Bill and Pat Bowersock deserve my deepest appreciation for their constant support, moral encouragement, and understanding.

TABLE OF CONTENTS

Chapter

.

	A.9.	Estimat A.9.1	cion of Major Exchanger Parameters L Heat Transfer For a Given Shell Diameter	•	25
			and Length	•	25
		A.9.2	and Length	•	27
	A.10.	Estimat	ion of Tube-side Pressure Drop	•	50
B.	Delawa		nod	•	52
	B.1.		fied Mechanisms of Shell-Side Flow	•	52
	B.2.		Structure of the Delaware Method	•	54
	B.3.		cation/Calculation of Shell Side Geometry		
			neters	•	55
		D.J.I	Input Data Requirements for Delaware Method		55
	B.4.	Calcula	ation of Shell-side Geometrical	•	55
					56
			Total number of tubes in the exchanger,	•	
			N ₊	•	56
		B.4.2	lube pitch parallel to flow p _n , and		
			normal to flow p _n	•	56
		B.4.3	Number of tube rows crossed in one		
			crossflow section (area between		~ -
			baffle tips), N _c • • • • • • • • • • • • • • • • • • •	•	57
		B.4.4	Fraction of total tubes in crossflow		57
		B.4.5	F _c • • • • • • • • • • • • • • • • • • •	•	57
		0. 4 .J	rows in each window, N_{CW} · · · · · · · ·	_	57
		B.4.6	Numbers of baffles, N _b	•	59
		B.4.7	Crossflow area at or near centerline	•	0.5
			for one crossflow section, S_m	•	59
		B.4.8	Fraction of crossflow area available		
			for bypass flow, F _{sbp}	•	60
		B.4.9	Tube-to-baffle leakage'area for one		
		D 4 40	baffle, S _{tb}	•	60
			Baffle cut angle, Θ	•	60
		B.4.11	Shell-to-baffle leakage area for one		61
		R 4 12	baffle, $S_{\rm Sb}$	•	61 61
		R 4 13	Equivalent diameter of window, D_{W} .	•	64
	B.5.		ation of Shell-side Heat Transfer	•	U-T
			ficient	•	64
		B.5.1	Calculate shell-side Reynolds number,		
			Re _s	•	64
		B.5.2	Calculate Colburn j-factor for an ideal		
		D F O	tube bank, j _i	•	64
		B.5.3	Calculate the shell-side heat transfer		C 1
		B.5.4	coefficient for an ideal tube bank Find the correction factor for baffle	•	64
		0.0.4	configuration effects, $J_c \cdots \cdots \cdots$		64
				•	04

Chapter

Page

		B.5.5	Find the correction factor for baffle
			leakage effects, J ₁ 66
		B.5.6	Find the correction factor for bundle
			bypass effects, J _b 66
		B.5.7	Find the correction factor for adverse
			temperature gradient buildup at low
			Reynolds numbers, Jr 69
		B.5.8	Find the correction factor for unequal
			baffle spacing at inlet and/or outlet,
			J _s
		B.5.9	
	B.6.	Calcula	coefficient for the exchanger, h _o 72 ation of Shell-side Pressure Drop 72
	D.0.	B.6.1	Find f _i from the ideal tube bank
		0.0.1	friction factor. \ldots \ldots \ldots $.$ 72
		B.6.2	Calculate the pressure drop for an ideal
			cross flow section. ΔP_{b} ;
		B.6.3	cross flow section, $\Delta P_{b,i}$
			window section, $\Delta P_{w,i}$
		B.6.4	
			effect of baffle leakage on pressure
			drop, R ₁
		B.6.5	Find the correction factor for bundle
		рсс	bypass, R _b
		B.6.6	
		B.6.7	baffle spacing, R _s
		0.0.,	shell-side (excluding nozzles), from 78
С.	Air-c	ooled H	eat Exchanger Calculation Method 78
	C.1.	Basic	Information Required for Air-Cooler
			ulations
	C.2.		oled Heat Exchanger Arrangement 79
	C.3.		sic Design Equation
			tion of Heat Load
	C.5.		tion of Mean Temperature Difference 82 ation of Geometrical Parameters 85
	C.6. C.7.		ation of Geometrical Parameters 85 ation of Overall Heat Transfer
	0./.		
	C.8.	Indivi	ficient, U _O
	C.9.	Fin Re	sistance and Tube Area Calculations, R _{fin} ,
	C.10.	Pressu	A _o , and A _m
	C.11.	Calcul	ation of Heat Exchanger Geometry 94
			ation of Fan Power Requirements and
			mation of Number of Fans 95
			ation of Fan Diameter 96
			ation of Air Volume and Velocity 96
	C.15.		ure of Air-cooled Heat Exchanger
		Calc	ulations

Chapter P	age
V. CONCLUSIONS AND RECOMMENDATIONS	98
BIBLIOGRAPHY	99
APPENDIX A	100
APPENDIX B	186

LIST OF TABLES

Table		Pa	age
Ι.	Shell Diameter and Outer Tube Diameter Limits Used in HEXSIM	•	26
II.	Triangle Layouts Tube Count Table	•	30
III.	Square Layouts Tube Count Table	•	38
IV.	TEMA Standards for Shell to Baffle Clearance	•	62
۷.	Typical Overall Design Coefficients for Air-Cooled Exchangers	•	84

LIST OF FIGURES

Figu	re	Pa	age
1.	LMTD Correction Factor For an Even Number of Tube Passes	•	19
2.	Estimation of Required Number of Shells in Series	•	20
3.	Idealized Diagram of Shell-Side Flow	•	53
4.	Tube Pitches Parallel and Normal to Flow	•	58
5.	Window Section in an E-Shell Exchanger	•	63
6.	Correlation of j _i for Ideal Tube Banks	•	65
7.	Correction Factor for Baffle Leakage	•	67
8.	Correction Factor for Bypass Flow	•	68
9.	Correction Factor for Adverse Temperature Gradient at Low Reynolds Number	•	70
10.	Correction Factor for Adverse Temperature Gradient at Intermediate Reynolds Number	•	71
11.	Correction of Friction Factors for Ideal Tube Banks	•	73
12.	Correlation of Friction Factors for Ideal Tube Banks	•	74
13.	Correction Factor for Baffle Leakage Effect on Pressure Drop	•	76
14.	Correction Factor on Pressure Drop for Bypass Flow	•	77
15.	Forced Draft and Induced Draft Arrangements of Air-Coolers	•	80
16.	High Finned Tubes Geometrical Parameters	•	86

. •

NOMENCLATURE

ΑΑ	factor used to calculate CLMTD1
A _{f1} , A _{f2} , A _{f3} , A _{r1}	factors used in calculating APF, APSFPR, AR
Airfar	factor used to calculate air velocity
A _i '	inside area, ft ²
AMTD	arithmetic mean temperature difference
A _m '	mean area for heat transfer, ft ²
A _o '	outside area for heat transfer, ft ²
Ao	total heat transfer area
APF	total external area per foot of fin tube, ft^2/ft
APSFPR	external area in ft^2/ft^2 of bundle face area per
	row
AR	exterior area of bare tube, ft ²
A _{rfal} , A _{rfa2}	factors used in calculating air velocity
A _{root}	bare tube area, in.
AVFF	air velocity at the fan face, ft/sec
AVPF	air volume per fan, ft ³ /min
AVTF	air velocity at tube face, ft/min
В	factor used to calculate CLMTD1
BHP	fan requirement, hp
С	minimum clearance between the outermost tubes
	and the inside of the shell, in. or mm
c ₁	tube count for single-pass exchanger
C ₂	tube count for 2-pass exchanger

۰.

xi

C4	tube	count	for	4-pass	exchanger
~4	LUDE	Count	101	4-pass	exchanger

C₆ tube count for 6-pass exchanger

 C_8 tube count for 8-pass exchanger

CLMTD1, CLMTD correction factor times logarithmic mean temperature difference for air-cooled heat exchangers

> C_p, c_p specific heat of hot fluid and cold fluid, respectively

C_{pshell} specific heat of shell side fluid

C_x number of tubes along horizontal axis

- C_v number of tubes along vertical axis
- C_{pa} ir side specific heat
- D_i shell inside diameter

D₀ diameter over fins, in.

D_{ot1} diameter of the outer tube limit

D_r root diameter, in.

 D_w equivalent diameter of the window

d_i inside tube diameter

d_m mean wall heat transfer diameter

do tube outside diameter

- e dimensionless constant; 0.265 for 6-pass arrangement and 0.404 for 8-pass arrangement
- eff fan efficiency
 - F_a face area
- FAPF face area per fan
 - F_C fraction of the total tubes that are in crossflow

xii

- F_{sbp} fraction of total crossflow area that is available for bypass flow around the tube bundle and through pass partition lanes F_t configuration correction factor on LMTD f_f friction factor for tube side fluid f_i friction factor for flow across an ideal tube
 - bank
 - fr air-side friction factor
 - g_c gravitational constant, 4.17 x 10⁸ lbm-ft/lbfhr²
 - H height of fin
- h_{air} air-side individual heat transfer coefficient, Btu/ft²/ hr°F

h; tube side heat transfer coefficient

- hideal shell side heat transfer coefficient for an ideal tube bank
 - h_o shell side heat transfer coefficient
 - $J_{\rm b}$ correction factor or the shell side heat transfer coefficient for bundle by pass effects
 - J_c correction factor on the shell-side heat transfer coefficient to account for baffle configuration effects
 - J₁ correction factor on the shell-side heat transfer coefficient to account for baffle leakage effects

xiii

- J^{*} base correction factor on the shell-side heat transfer coefficient to account for buildup of adverse temperature gradient
- J_s correction factor on the shell-side heat transfer coefficient to account for unequal baffle spacing
- j_i Colburn factor for an ideal tube bank
- k_a air thermal conductivity, Btu/ft hr°F
- k thermal conductivity of fluid

k_f fin thermal conductivity

k_{shell} shell side thermal conductivity

k_w thermal conductivity of tube wall

- L effective tube length
- LMTD logarithmic mean temperature difference for countercurrent flow
 - lc baffle cut distance from baffle tip to shell
 inside diameter
 - l_s baffle spacing, center-to-center of consecutive baffles

 $l_{s,I} - l_{s,o}$ baffle spacing at inlet and exit of the exchanger, respectively. $l_{s,I}^{*}$ and $l_{s,o}^{*}$ are the corresponding dimensionless values

- MTD mean temperature difference
 - m factor used to calculate R_{fin}
- N_b number of baffles in exchanger
- $\rm N_{C}$ $\,$ number of tube rows crossed during flow through one crossflow section

- N_{CW} number of effective cross flow rows in each window section
- N_f number of fins per inch
- N_p number of pass partition lanes through the tube field parallel to the direction of the crossflow
- N_R number of rows in an air-cooled exchanger
- N_{SS} number of sealing strips or equivalent obstructions to bypass flow encountered by the stream in one crossflow section
 - N_t total number of tubes in the exchanger
- N_{tp} number of tube passes

Nu Nusselt number

n, n' exponents for the relationship between j_i and Re_s and f_i and Re_s, respectively

n_a factor used to calculate R_{fin}

- ΔP_{b,i} pressure drop during flow across one ideal crossflow section
 - ΔPe pressure drop due to entrance effects
 - Pr Prandtl number

 ΔP_t tube side pressure drop

- $\Delta P_{w,i}$ pressure drop through one ideal window section
 - p tube pitch; distance between centers of nearest tubes in tube layout
 - p_n tube pitch normal to flow: distance between centers of adjacent tube rows normal to the flow

X۷

- pp tube pitch parallel to flow: distance between centers of adjacent tube rows in the direction of flow
- Q total heat duty of exchanger
- Q_{t1} intermediate heat transferred in multiple shells in series
 - r dimensionless radial span or the distance at which the center of the farthest tube may be located from the center of the shell, in order to maintain the minimum clearance
 - Rb correction factor for effect of bundle bypass on
 pressure drop
- Re Reynolds number
- Res Reynolds number, shell side of exchanger
- R_{fa} fouling resistance for air
- R_{fi} fouling resistance to heat transfer on tube side
- R_{fin} fin resistance to heat transfer
 - R_{fo} fouling resistance to heat transfer on tube side and shell side, respectively

 - R_s correction factor for effect of unequal baffle spacing
 - S space between fins, in.
 - $\rm S_m$ $$\rm crossflow area at or near centerline for one $$ crossflow section $$ \end{tabular}$

S_{sb} shell-to-baffle leakage area for one baffle

xvi

- S_{tb} tube-to-baffle leakage for one baffle
- S_w area for flow through window

S_{WQ} window gross area

- S_{wt} window area occupied by tubes
- T_1 , T_2 inlet and outlet temperature, hot fluid
- t_1, t_2 inlet and outlet temperature, cold fluid
- t_{c1}, t_{c2} cold fluid intermediate temperatures in multiple shells in series
 - t_{h1} intermediate hot temperature in multiple shells in series
 - U_o overall heat transfer coefficient based on shell-side heat transfer area
- u, u₁, u₂ dimensionless dummy variables
 - V velocity of fluid

V_a air velocity, ft/hr

- v dimensionless dummy variable
- W, w mass flow rate of hot fluid and cold fluid, respectively

W_{shell} mass flow rate of shell side

w₁, w₂ dimensionless dummy variable

- w_D width of pass partition clearance in tube field
- ∆x wall thickness

Y mean fin thickness, in.

z, z^* , Z_1 , Z_2 dimensionless dummy variables

- α 1.7 for air-coolers CLMTD1 calculation
- β 1.7 for air-coolers CLMTD1 calculation
- $\delta_{\mbox{sb}}$ diametral clearance between shell and baffle

xvii

δ_{tb} diametral clearance between tube and baffle

- μ viscosity of fluid
- μ_a viscosity of air, lb/ft hr
- ^µshell viscosity of shell-side fluid at bulk stream temperature
- ^µshell, w viscosity of shell-side fluid at wall temperature
 - ρ **density of fluid**
 - ρ_a air density, lb/ft^3
 - ^Pshell density of shell-side fluid
 - ⊖ baffle cut angle, radians

CHAPTER I

INTRODUCTION

Many times for preliminary design purposes a general idea of the size and configuration of the heat exchanger is all that is required. The HEXSIM simulator is designed to meet this need. HEXSIM was written to fill the gap between hand calculations and the massive detailed heat exchanger design simulators. HEXSIM provides basic information on the size and configuration of shell and tube and air-cooled heat exchangers for sensible heat transfer problems. HEXSIM is implemented in an interactive user-friendly mode to allow any input parameter modifications from the screen.

For shell and tube heat exchangers, HEXSIM has the following capabilities:

- 1. Calculates and checks heat balance
- Calculates log mean temperature difference and correction factor
- 3. Calculates overall area
- 4. Calculates feasible inside shell diameters, outer tube bundle limits, tube lengths, tube counts, and length to diameter ratios for a given area.
- 5. Calculates individual and overall heat transfer coefficients
- Calculates pressure drops on both the shell side and tube side.

For air-cooled heat exchangers, HEXSIM is capable of calculating the following items:

- 1. Heat balance
- 2. Air temperature and pressure at exit
- 3. Pressure drop of both air side and tube side
- 4. Individual and overall heat transfer coefficients
- Log mean temperature difference and configuration correction factor
- 6. Area of the air cooler
- 7. Number of tubes required
- 8. Bay width and length
- 9. Number, diameter, and power requirements of each fan
- 10. Air volume per fan
- 11. Air velocity at fan face and tube face

A. Methods of Calculation

A.1. Shell and Tube Exchangers

Standard heat transfer equations were used to calculate the overall heat transfer coefficient, log mean temperature difference, pressure drop, heat balance, and the overall area. The shell diameter, outer tube limit, and length to diameter ratios were determined using the method described by Bell (1). The Delaware method (2,3,4) is the solution of shell side flow pressure drop and heat transfer coefficient. The tube side heat transfer coefficient is calculated using the Hausen equation for laminar flow (Re<2000) and the Sieder-Tate equation for turbulent flow (Re>10,000). Interpolation is used in the transition region (2000<Re<10,000).

A.2. Air-Cooled Exchangers

The fin dimensions and areas are calculated using methods given in Bell's Process Heat Transfer Notes (4). The heat duty, and pressure drop for the tube side fluid and log mean temperature difference are obtained using standard heat transfer methods. The outlet air temperature, exchanger area, exchanger dimensions, number of tubes, number and power of each fan are calculated using methods given in the GPSA manual (6). The tube side heat transfer coefficient was calculated using the Hausen equation for laminar flow, and the Sieder-Tate equation for turbulent flow. Interpolation was used for transition region. The air-side heat transfer coefficient and pressure drop were calculated using the methods given in the GPSA Engineering Data Book (6).

CHAPTER II

PROGRAM HISTORY

The HEXSIM simulator was programemd by Dr. John Erbar between 1981 and 1984 using the methods given by Bell in his Process Heat Transfer notes (4) for shell and tube exchangers and using the GPSA Engineering Data Book for the air-coolers (13). At this time the program was still not operational due to errors in the program. In January of 1986, work was begun to remove all compiler errors. These errors included such things as misspelled variable names, missing statements, data statements with an incorrect number of initializers, and missing equivalence statements, etc. Once this was accomplished comment statements were added for program documentation. The program documentation included adding a short description of the purpose of each subroutine, the equation number for most calculations such as for Delaware method parameters, and in some cases the source used for method of calculation (i.e. Bell, K. J., Process Heat Transfer Notes at the top of the Delaware calculations subroutine).

The next step that was accomplished was to add default values. Default values for the baffle spacing, tube-to-baffle clearance, shellto-baffle clearance, percent baffle cut, and length of baffle cut were added to the program.

Also, warning statements were added for the baffle cut and baffle spacing to follow TEMA class R construction (13). The diagnostic statement for "error in heat balance > 1%" did not originally repeat the

inputs given so diagnosing the cause of the problem was difficult. As part of this work, statements were added so that the inputs were repeated. A warning statement and corrective action for a low configuration correction factor for air-coolers was programmed. Also, a check and warning statement were added for the face velocity of an aircooler.

Several major changes were made to the shell and tube exchanger calculations. As originally programmed, if multiple shells in series were required the output was given in terms of one exchanger for the preliminary calculations. The program was modified so that the output is given in terms of each identical individual shell. The order of subroutine calls in the preliminary calculations program caused the input to be requested when the program was being restarted. This problem was corrected. There was a misspelled variable name in the main Delaware calculation which caused many problems. The subroutine which calculates the shell side heat transfer coefficient had some equations which were incorrect. In the original version the outlet temperatures were always adjusted to meet the length of the exchanger in the Delaware calculations. The program was modified so that the user was given the choice of having the outlet temperature set and the length calculated or the length set and the outlet temperature calculated. This modification was very complicated due to the way in which the program was initially programmed. The curve fit for f_i, the ideal tube bank friction factor was replaced since the original fit was not as close as possible. The curve fit for, j_i the ideal heat transfer coefficient also was replaced since the original fit was not stable. The tube side friction factor function routine was corrected so that a friction factor was calculated

for laminar flow. Shell diameters and outer tube limit diameters were added. Checks were added so that negative logarithmic mean temperature differences are not allowed. The tube count subroutine had to be replaced since the original routine was set up only to calculate tube counts for 3/4 inch tubes and 1 inch tubes with only a few tube pitches. The tube count routine was programmed using the method given by Phadke (10) which allows any tube diameter and pitch. The calculation of the tube side and shell side velocity was added to the program.

Changes were made to the EDIT section in order to increase the ease of usage. A subroutine was completed so that all intermediate Delaware parameters could be printed every time the shell and tube exchangers are run. EDIT commands were added to start a new problem calculation, and so that summary sheets for each calculation could be repeated. Several EDIT commands were missing which were added to the program.

The major addition to the air-cooled heat exchanger calculations was a subroutine to calculate a configuration correction factor. The method was given by Pigorini (11). In the main air cooler program, the pressure drop is calculated twice: the first is an estimate and the second is calculated using all the exchanger geometry. In the original program the first pressure drop calculated was printed out which made the output inconsistent.

The program units routine also required some modifications. The subroutine which checks the units system after a restart was not properly functioning since all the formats and write statements were missing. The viscosity units were originally only lb/ft-hr and

kg/m-hr. This was changed so that the user could use viscosity units of lb/ft-hr, kg/m-hr, and centipoise.

The main program was mofified so that after each calculation the user was prompted to the EDIT mode. The program was also modified so that files could be stored and retrieved on the IBM/TSO system.

The most important step taken in the programing phase of this research was to thoroughly check the equations and logic of HEXSIM. The program was checked by inspection of the source code and by running and checking test problems as well as hand calculations.

CHAPTER III

LITERATURE REVIEW

There are many types of programs written for heat exchanger design at various levels of sophistication. The programs that are relatively simple and those that are the most sophisticated seem to be of general interest. Simple programs such as HEXSIM are typically used for an overall process simulation or an economic study. These types of programs typically run in a fraction of a second on a large-scale computer, therefore, general trends and the results can be used to select the cases to be run on more sophisticated programs.

At the other extreme are highly sophisticated programs that model the actual geometric configuration as precisely as possible. This type of program requires many more inputs and takes much longer to run than a simple program. These programs are able to simulate accurately the influence of independent factors so that parametric investigations can be made.

Heat exchanger design programs whether simple or complex fall into four major categories. These are thermal and hydraulic design programs, thermal and hydraulic rating programs, mechanical design programs, and economic comparison (8).

A. Thermal and Hydraulic Design Programs

These programs are the basic tools of heat exchanger design. They are used to determine geometry and performance for a given process condition. Design programs typically determine the minimum area that will provide the surface required to transfer a given heat duty and satisfy the pressure drop specifications.

B. Thermal and Hydraulic Rating Programs

These programs evaluate the thermal and hydraulic performance of an exchanger of a given geometry, assuming either a known or unknown heat duty. These programs are used to predict the performance of an existing or specified unit and evaluate them at alternative design conditions.

C. Mechanical Design Programs

A separate program usually performs the actual mechanical design on a heat exchanger. The sizing information from the thermal and hydrualic design, as well as material properties, codes and standards specifications form the input to the program. The program then determines the construction details, tube-field layouts, tabulates material take-offs, etc.

D. Cost-Evaluation Programs

These programs evaluate the economic problems associated with the initial cost, operation, and maintenance of shell- and tubeexchangers. These programs typically use some form of optimization technique to seek a lowest cost solution. They usually require the input of many economic factors to reflect the current and future

situation of the use the exchanger. The formulation of the desired optimizing function is usually very complex and specific to each particular problem.

There are many programs written to perform the calculation required for thermal and hydraulic design, and thermal and hydraulic rating for sensible heat transfer. The following paragraphs contain a short description for some of the programs available. A more complete listing is given by Peterson (9) in which all major categories of exchanger design programs are listed, as well as, most other unit operations.

E. ACOL by AERE Harwell

ACOL models the performance of air-cooled heat exchangers (9). The program computes the performance of air-cooled heat exchangers used to: 1) cool single phase liquids, 2) cool single phase gases, 3) condense vapors with or without noncondensables. Subcooling and desuperheating can be handled by the program although the predictions are on the safe side.

> F. Air-Fin (No Phase Change) Program 9286 by Phillips Petroleum Company

Heat exchanger program 9286 will design or rate either induced- or forced-draft air-fin exchangers (9). Program 9286 can be used only with single phase streams. Using the rating option, the program solves for the following (for an otherwise fully-described exchanger):

- Minimum air volume required for a given-sized unit to perform the given heat duty.
- Maximum process flow rate that can be used for each of several ambient air-temperature and air-flow rate combinations.

 Minimum process-outlet temperature and corresponding airoutlet temperature that can be obtained in a given size unit with specified flow rates.

G. HTEX2 by A. M. Kinney Inc.

HTEX2 computes design parameters of heat exchangers for three cases (9): 1) no phase change, 2) condensing a vapor from a noncondensable gas, 3) pure condensation. The program is applicable for both horizontal and vertical condensers. The input required will depend on the type of system specified. The common inputs to the three sytems are ratio of pitch/outside diameter, maximum shell inside diameter, percentage baffle cut, shell side and tube side fouling factors, number of tube passes, outside tube diameter, tube length, tube thickness, and maximum shell side and tube side pressure drops. The output consists of shell surface area, log mean temperature difference, heat transfer coefficients, shell side factors, and shell and tube side characteristics.

H. Shell and Tube Heat Exchange (No Phase Change) Program 9282 by Phillips Petroleum Company

Program 9282 designs or rates a shell and tube exchanger used in heating or cooling services with no phase change (9). Program 9282 accepts plain tubes or finned tubes, and the use of turbulency promoters inside tubes. It also evaluates either conventional-flow or split-flow on the shell-side. Design solves for size, number and arrangement of the shell, and all essential construction details subject to limitations imposed by input data. The criteria used in design are to first minimize the number of shells, then minimize shell diameter, then minimize the length. Rating solves for any one of the following: 1) both flow rates, 2) both outlet temperatures, 3) certain combinations of flow rates and outlet temperatures, 4) total area required for a given duty, and 5) maximum allowable fouling for a given duty.

I. SHELLI by PFR Engineering, Inc.

SHELLI evaluates shell and tube heat exchangers (9). SHELLI includes accurate methods for shell and tube side calculations for sensible heaters or coolers, condensers, or reboilers. It may be used for the design of exchangers or for the evauluation of performance of existing or proposed exchangers. A heat release or enthalpy profile can be input to describe either or both hot and cold fluids.

> J. STEP: Performance and Design of Shell and Tube Heat Exchangers with Single Phase Flow by AERE Harwell

The objective of STEP is to provide an inexpensive, though comprehensive, design tool for optimized exchangers with known geometry (9). The program's STEP3 and STEP4 carry out a systematic investigation of solutions to the specified heat transfer performance, within the limits of specified tube side and shell side pressure drop, by examining cases in which the following variables are treated sequentially:

1. tube length

2. numbers of shell in series and/or parallel

number of tube side passes

For design, the following types of input information are required:

- 1. physical property data
- 2. costing data
- 3. dimensional data
- thermal data
 - K. HEXNET: Heat Exchanger Network by Profimatics, Inc.

HEXNET is used for the solution of heat-transfer problems that involve a complex arrangement of heat exchangers (9). Four exchanger services (liquid-liquid, boiler, condensers, and reboilers) are provided. The exchanger pass configuration is specified as 1-1,1-2, or 1-4. Changes in heat-transfer coefficients resulting from flow changes are accounted for. Input data includes inlet flows and properties, exchanger parameters, and equipment configuration.

L. ST-4 by HTRI

ST-4 program primarily handles no phase change fluids on both the tube side and shell side flowing in laminar, transitional, and turbulent regimes on both shell side and tube side (9). In the design mode, ST-4 program designs the minimum number of shells in series and/or parallel of the smallest diameter that will satisfy the process conditions while respecting an optional set of constraints given by the user.

ST-4 also handles known heat duty rating cases. The inputs required are shell diameter, central baffle spacing, and number of tube passes. All other geometry is calculated or set according to TEMA (13) standards. The final result is the percent over design and the differential resistance based on the difference between the actual heat duty and the required heat duty satisfying the given process conditions.

For unknown heat duty rating cases, the program calculates the two missing process conditions so that the expected performance of the exchanger will match exactly the required heat duty.

CHAPTER IV

DISCUSSION

In this chapter, the design methods for a process heat exchanger are described. The HEXSIM simulator uses the methods described in this chapter to make an estimate of the size and configuration of an exchanger quickly with a limited amount of information. The purpose of this chapter is to document the methods used in the simulation. The first half of the discussion section deals with shell and tube exchangers while the last half discusses air-cooled exchangers.

A. Shell and Tube Preliminary Calculation Methods

A.1. Basic Structure of Preliminary Calculations

The need for a preliminary estimate of the heat exchanger size is often a very useful first step in obtaining an exact design. The information required to make a preliminary estimate of the size of the exchanger is:

- 1. Flow rates of shell side and tube side fluids
- Inlet and outlet temperatures for shell side and tube side fluids
- 3. Specific heat of each fluid
- 4. Number of tube and shell passes
- 5. Tube outside diameter, inside diameter, and pitch
- 6. Thermal conductivity of tube metal

- 7. Tube arrangement and type of bundle construction
- Estimated individual heat transfer coefficients and fouling factors

Using the above information the area, length, shell diameter, and tube count can be calculated.

A.2. The Basic Design Equation

The basic design equation to be used in this section is

$$A_{o} = \frac{Q}{U_{o} (MTD)} = \frac{Q}{U_{o} F_{t} LMTD}$$
(1)

where

 A_0 = is the total heat transfer area required in the exchanger

Q = is the total amount of heat transferred by the exchanger

 U_0 = is the overall heat transfer coefficient

LMTD = is the logarithmic mean temperature difference calculated for countercurrent flow

 F_t = is the configuration correction factor

It should be noted that the validity of equation 1 is dependent upon a number of assumptions. The assumptions are as follows:

- 1. All elements of a given stream have the same thermal history.
- 2. The heat exchanger is at steady state.
- 3. Each stream has a constant specific heat.
- 4. The overall heat transfer coefficient is constant.
- The flow is either entirely cocurrent or entirely countercurrent.

 The heat exchanger does not exchange heat with the surroundings.

These conditions are often not completely met but most of the departures from the above assumptions introduce smaller errors than the probable error in the other approximations inherent in the method.

A.3. Estimation of Heat Load

The heat load can be quickly calculated for the sensible heat transfer case from:

$$Q = W * C_{p} * (T_{1} - T_{2}) = w * c_{p} * (t_{2} - t_{1})$$
(2)

where W and w are the mass flow rates of hot and cold fluids, respectively, C_p and c_p the specific heats hot and cold fluid, T_1 and T_2 the inlet and outlet temperatures of the hot stream, and t_1 and t_2 the inlet and outlet temperatures of the cold stream.

A.4. Estimation of the Mean Temperature Difference

The first step in calculating the mean temperature difference (MTD) is to find the logarithmic mean temperature difference (LMTD) for counter-current flow. The LMTD is calculated from the following equation.

$$LMTD = \frac{(T_1 - t_2) - (T_2 - t_1)}{\frac{T_1 - t_2}{T_2 - t_1}}$$
(3)

where

- T_1 = inlet temperature of the hot stream
- T_2 = outlet temperature of the hot stream
- t_1 = inlet temperature of the cold stream
- t_2 = outlet temperature of the cold stream

If the term $|T_1-t_2|/|T_2-t_1|$ is equal to or less than 0.2, the arithmetic mean temperature difference (AMTD) is used. The arithmetic mean temperature difference is

$$AMTD = 1/2 [(T_1 - t_2) + (T_2 - t_1)]$$
(4)

The LMTD is always equal to or less than the AMTD. The difference between the LMTD and AMTD increases with an increasing ratio of $|T_1-t_2|$ and $|T_2-t_1|$.

The calculation of F_t ,the configuration correction factor, is more complicated, since it requires the use of charts or curve fits. To find F_t use Figure 1 or see Appendix B for the curve fit. The method used for calculating F_t is that given by Bowman (5). F_t should be lower than 0.8. If the value of F_t is lower than 0.8, this is an indication that the thermodynamic feasibility of the design should be checked before proceeding further. One way to increase F_t is to use multiple shells in series.

A.5. Estimation of Number of Shells in Series

There is a rapid graphical technique for estimating a sufficient number of shells in series. This method can be easily programmed. The procedure is shown in Figure 2. The method goes as follows (1).

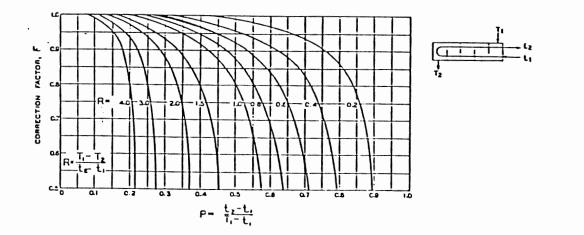


Figure 1. LMTD Correction Factor For an Even Number of Tube Passes (5)

`

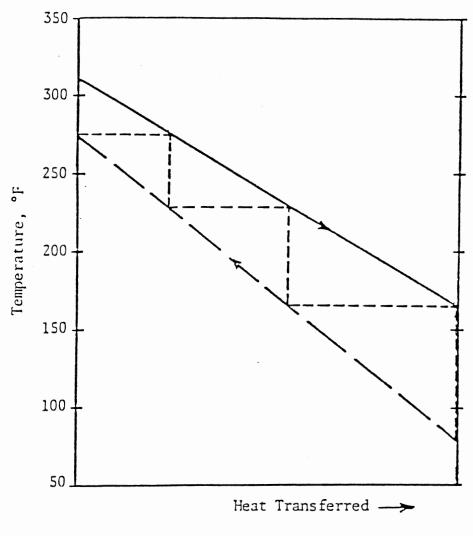


Figure 2. Estimation of Required Number of Shells in Series (4)

- a. The terminal temperatures of the two streams are plotted on the ordinates of ordinary arithmetic graph paper, the hot fluid inlet temperature and the cold fluid outlet temperature on the left-hand ordinate and the hot fluid outlet and cold fluid inlet on the right-hand ordinate. The distance between them is arbitrary, but should correspond to the total amount of heat transferred.
- b. For a constant specific heat, straight lines are drawn from the inlet to the outlet temperature for each stream.
- c. Starting with the cold fluid outlet temperature, a horizontal line is laid off until it intersects the hot fluid line. From that point a vertical line is dropped to the cold fluid line. This operation defines a heat exchanger in which the hot fluid temperature is never less than any temperature reached by the cold fluid; therefore, there can be no temperature cross.
- d. The process is repeated until a vertical line intercepts the cold fluid operating line at or below the cold fluid inlet temperature.
- e. The number of horizontal lines is equal to the number of shells in series that is clearly sufficient to perform the duty. In the example shown the number is 3.

To program the graphical method shown in Figure 2 the following steps are taken. First the horizontal line is found by the following equation.

$$Q_{t_1} = W * C_p * (T_{h_1} - t_{c_2})$$
 (5)

21

and cold fluid temperature (or vertical line down) is found from the equation (6).

$$t_{c_1} = t_{c_2} - Q_{t_1} / (c_p * w)$$
 (6)

Then the number of shells in series is increased by one. This process is continued until t_{c_1} is less than or equal to the cold fluid inlet temperature. If t_{c_1} is greater than the cold fluid inlet temperature t_{h_1} is set equal to t_{c_2} , t_{c_2} is set equal to t_{c_1} and the whole process is repeated.

A.6. Calculation of the Overall Heat Transfer Coefficient

The overall heat transfer coefficient, U_0 , is built up from the individual resistances to heat transfer. U_0 is calculated from the following equation. For the preliminary design calculations estimated heat transfer coefficients are used.

$$\frac{1}{U_{o}} = \frac{1}{h_{o}} + R_{fo} + \frac{\Delta x}{k_{w}} \left(\frac{d_{o}}{d_{m}}\right) + \left(R_{fi} + \frac{1}{h_{i}}\right) \frac{d_{o}}{d_{i}}$$
(7)

where

 h_0 = the outside (shell side) heat transfer coefficient R_{fo} = the shell side fouling resistance Δx = the tube wall thickness k_w = the tube metal thermal conductivity d_0 = the outside tube diameter d_i = the inside tube diameter d_m = the mean wall heat transfer area, usually taken to be the arithmetic mean, $1/2 (d_0 + d_i)$

 R_{fi} = the tube side fouling resistance

 h_i = the tube side heat transfer coefficient

A.7. Calculation of Individual Heat

Transfer Coefficients

The outside (shell side) heat transfer coefficient is calculated using methods given in section B.5.1. It is calculated using the Delaware method for calculating heat transfer coefficient based on stream analysis (2,3,4).

The prediction of an inside (tube side) heat transfer coefficient is strongly dependent upon the flow regime. The flow regime that exists in a given flow situation is ordinarily characterized by the Reynolds number. The Reynolds number is generally defined as in the following equation.

$$Re = \frac{d_i \rho V}{\mu}$$
(8)

where

d_i = the inside tube diameter

 ρ = the density of the fluid

 μ = the viscosity of the fluid

V = the tube side fluid velocity

Reynolds numbers below 2,100 results in stable laminar flow. Reynolds numbers above 10,000 give turbulent flow for heat transfer. The range between 2,100 and 10,000 is generally referred to as transition flow. In laminar flow, the heat transfer coefficient is calculated from the Hausen equation (4). The Hausen equation is:

$$\frac{h_i d_i}{k} = [3.65 + \frac{0.0668 \text{ Re Pr } (d_i/L)}{1 + 0.04 [\text{Re Pr } (d_i/L)]^{2/3}}] \left(\frac{\mu}{\mu_W}\right)^{0.14}$$
(9)

where

- h_i = inside (tube side) heat transfer coefficient
- d_i = inside tube diameter
- k = thermal conductivity of tube side fluid
- Re = Reynolds number
- Pr = Prandtl number = $\frac{c_p \mu}{k}$ c_p = is specific heat
 - μ = viscosity
 - k = thermal conductivity of the fluid
- L = tube length

The Sieder-Tate equation is used to calculate the heat transfer coefficient in turbulent flow. The Seider-Tate equation has the form

$$\frac{h_i d_i}{k} = 0.023 \text{ Re}^{0.8} \text{ Pr}^{1/3} \left(\frac{\mu}{\mu_W}\right)^{0.14}$$
(10)

where

- h_i = inside heat transfer coefficient
- d_i = inside tube diameter
- k = thermal conductivity
- Re = Reynolds number
- Pr = Prandtl number
 - μ = bulk viscosity

 μ_W = viscosity at the tube wall

Interpolation is used in the transition region (2100 <Re<10,000). The interpolation is carried out as follows.

$$\overline{N}u_{1\,\text{aminar}} = \frac{h_i d_i}{k} = [3.65 + \frac{0.0668 (2100) \text{ Pr } (d_i/L)}{1 + 0.04 [(2100) \text{ Pr } (d_i/L)]^{2/3}}]$$
(11)

$$\overline{N}u_{turb} = \frac{h_i d_i}{k} = 0.023 (10,000)^{0.8} Pr^{1/3} (\frac{\mu}{\mu_W})^{0.14}$$
(12)

A.8. Calculation of Heat Transfer Area, Ao

Once Q, MTD, and U_0 are known the total outside area can be calculated from equation (1).

A.9. Estimation of Major Exchanger Parameters

<u>A.9.1 Heat Transfer Area for a Given Shell Diameter and Length.</u> Once the area required is known then combinations of tube length and shell diameter can be calculated. First the shell diameters and diameter of the outer tube limit are given in a data statement. The inside shell diameters range from 8 to 120 inches. The shell diameter and outer tube limit are those for a conventional split ring floating head design fully tubed out. Shell ouside diameters and outer tube limits are given in Table I. Next the tube count possible for a given

TA	B	_E	Ι

Nominal Shell Inside Diameter, D _i , in	Outer Tube Diameter Limit, D _{otl} , in.		
8.071	6.821		
10.020	8.770		
12.000	10.750		
13.250	12.000		
15.250	14.000		
17.250	16.000		
19,250	18.000		
21.000	19.250		
23.250	21.500		
25.000	23.375		
27.000	25.375		
29.000	27.375		
31.000	29.375		
33.000	31.375		
35.000	33.375		
37.000	35.250		
39.000	37.250		
42.000	40.250		
44.000	42.250		
48.000	46.000		
52.000	50.000		
56.000	54.000		
60.000	58.000		
66.000	64.000		
72.000	70.000		
78.000	76.000 82.000		
84.000 90.000	82.000		
96.000	94.000		
108.000	106.000		
120.000	118.000		

SHELL DIAMETER AND OUTER TUBE DIAMETER LIMITS USED IN HEXSIM (4)

inside shell diameter, outer tube limit, tube arrangement, tube outside diameter, tube pitch, and number of tube passes is calculated. The method used to calculate the number of tubes is given in the next section. With the number of tubes known the length of the exchanger can be calculated from the following equation.

$$L = \frac{A_o}{\pi d_o N_t}$$
(14)

where

L = tube length

 A_0 = the total heat transfer area required in the exchanger

 d_0 = the tube outside diameter

 N_{t} = the total number of tubes

Next the length to diameter ratio is calculated. The length to diameter ratio is the ratio of the length of the exchanger to the inside shell diameter. Shells shorter than three times the shell diameter may suffer from poor fluid distribution and excessive entry and exit losses, and are to be more likely expensive than a longer, smaller diameter unit. Shells longer than 15 times the shell diameter are likely to be difficult to handle mechanically, require a large clearway for bundle removal and are not as cost effective as shorter exchangers. For this reason only shell diameters which fall between 3:1 and 15:1 are ordinarily considered.

<u>A.9.2</u> Estimation of Tube Count. The number of tubes that can be accommodated in a shell of a given inside diameter is known as the tube count. The tube count depends on the inside shell diameter, outer tube

diameter limit, tube outside diameter, tube pitch, tube arrangement, and the number of exchanger passes.

The technique used to calculate the tube count is given by Phadke (10). The technique is based on number theory. The tube counts obtained for single-pass exchangers are exactly as calculated by the theory. However for 2, 4, 6, and 8 pass arrangements, a certain number of tubes will have to be removed to accommodate the pass partition plates. For these cases, the following assumptions have been made:

- The pass partition plate is located where a row of tubes would have been, and only one row, or at the most two, will be affected.
- The thickness of the partition plate is less than 70% of the tube outside diameter.
- 3. The distance between the centerline of the partition plate and the center line of the nearest row of tubes is equal to the pitch.

For a single pass exchanger, first calculate the two basic dimensionless quantities:

$$r = \frac{0.5 \ (D_i - d_o) - c}{p} \tag{15}$$

where

 D_i = shell inside diameter, in or mm

 d_0 = tube diameter, in or mm

- c = minimum clearance between the outermost tubes and the inside of the shell, in or mm
- p = tube pitch, in or mm

28

$$s = r^2$$

Then determine N_r and N_s , the largest integers equal to or less than r and s, respectively. Locate in the N_s column of the appropriate table (Table II or III) the corresponding C_1 value which is the tube count for a single tube pass.

Triangular layouts: 2- or 4-pass

First calculate the following

$$w = \frac{2r}{\sqrt{3}}$$
(17)

Then calculate the corresponding integer $N_{\rm W}$ as well as $C_{\rm X}$ and $C_{\rm y}$ by the following equations:

$$C_{x} = 2 N_{r} + 1$$
 (18)

$$C_y = 2 N_w$$
 if N_w is even (19a)

 $C_y = 2 N_w + 1$ if N_w is odd (19b)

For triangular 2-pass layouts:

$$C_2 = C_1 - C_x \tag{20}$$

For triangular 4-pass layouts:

T	ABL	E	II
• •			

TRIANGULAR LAYOUTS TUBE COUNT TABLE (10)

Ns	c ₁	Ns	c ₁	Ns	c_1
••••••••••••••••••••••••••••••••••••••					
1 2 3 4 5 6 7 8 9	7	45	165	89	328
2	10	46	166	90	331
3	13 19	47 48	167	91	337
4 ·	23	48	169 187	92 93	343 349
6	27	50	191	94	349
7	31	51	195	95	355
8	34	52	199	96	358
9	37	53	201	97	361
10	39	54	204	98	363
11	41	55	206	99	365
12	43	56	208	100	367
13	55	57	211	101	371
14	57	58	214	102	375
15	59	59	217	103	379
16 17	61 65	60 61	220 223	104	380
18	69	62	223	105 106	381 382
19	73	63	235	107	382 384
20	79	64	241	108	385
21	85	65	245	109	397
22	87	66	249	110	403
23	88	67	253	111	409
24	90	68	255	112	421
25	91	69	257	113	423
26	94	70	259	114	426
27	97	71	261	115	428
28	109	72	263	116	431
29 30	113 117	73 74	265 268	117 118	433
31	121	74 75	271	119	435 436
32	122	76	283	120	430
33	123	77	287	121	439
34	124	78	291	122	443
35	125	79	295	123	447
36	127	80	298	124	451
37	139	81	301	125	455
38	145	82	305	126	459
39	151	83	309	127	463
40	154	84	313	128	469
41 42	157 160	85 86	316 319	129	475
42	163	87	319	130 131	481 487
43	164	88	325	131	407
			0		155

N _S	C ₁	N _s	c ₁	N _S	c ₁
133	499	177	653	221	811
134 135	501 503	178	655	222 223	814
135	505	179 180	657 659	223	817 820
130	505	181	661	225	823
138	• 509	182	667	226	827
139	511	183	673	227	831
140	512	184	675	228	835
141	513	185	677	229	847
142	515	186	679	230	849
143	516	187	681	231	850
144	517	188	683	232	851
145	523	189	685	233	853
146 147	529	190	687	234	854
147	535 547	191 192	689 691	235 236	856 858
149	551	192	703	237	859
150	555	193	709	238	862
151	559	195	715	239	865
152	561	196	721	240	868
153	564	197	725	241	871
154	566	198	729	242	874
155	569	199	733	_ 243	877
156	571	200	739	244	889
157 158	583 585	201 202	745	245	897
158	587	202	747 748	246 247	905 913
160	589	203	750	248	913 915
161	591	205	752	249	918
162	593	206	754	250	920
163	595	207	755	251	923
164	598	208	757	252	925
165	601	209	761	253	927
166	604	210	765	254	928
167	607	211	769	255	930
168 169	610 613	212 213	773 777	256	931
170	619	213	781	257 258	939 947
171	625	215	785	259	947
172	637	216	789	260	9 5 6
173	641	217	793	261	958
174	645	218	799	262	959
175	649	219	805	263	960
176	651	220	808	264	961

TABLE II (CONTINUED)

TABLE II (CONTINUED)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
274100831811603621306275101031911613631309276101332011623641333277101532111623651337278102132211633661341279102732311643671345280103032411653681347281103332511773691350282103632611833701352283103932711893711354284104032811923721357285104132911953731369286104233011983741371287104333112013751373288104433212073761375290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
276101332011623641333277101532111623651337278102132211633661341279102732311643671345280103032411653681347281103332511773691350282103632611833701352283103932711893711354284104032811923721357285104132911953731369286104233011983741371287104333112013751373288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
277101532111623651337278102132211633661341279102732311643671345280103032411653681347281103332511773691350282103632611833701352283103932711893711354284104032811923721357285104132911953731369286104233011983741371287104333112013751373288104433212073761375290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
280103032411653681347281103332511773691350282103632611833701352283103932711893711354284104032811923721357285104132911953731369286104233011983741371287104333112013751373288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
281103332511773691350282103632611833701352283103932711893711354284104032811923721357285104132911953731369286104233011983741371287104333112013751373288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
282103632611833701352283103932711893711354284104032811923721357285104132911953731369286104233011983741371287104333112013751373288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
283103932711893711354284104032811923721357285104132911953731369286104233011983741371287104333112013751373288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
284104032811923721357285104132911953731369286104233011983741371287104333112013751373288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
285104132911953731369286104233011983741371287104333112013751373288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
286104233011983741371287104333112013751373288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
287104333112013751373288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
288104433212073761375289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
289104533312133771377290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
290105133412173781379291105733512213791381292106933612253801387293107033712373811393294107133812413821395
291105733512213791381292106933612253801387293107033712373811393294107133812413821395
292106933612253801387293107033712373811393294107133812413821395
293107033712373811393294107133812413821395
294 1071 338 1241 382 1395
296 1073 340 1249 384 1399 207 1073 341 1253 385 1401
297 1073 341 1253 385 1401 202 1074 242 1257 286 1402
298 1074 342 1257 386 1403 299 1074 343 1261 387 1405
299 1074 343 1261 387 1405 300 1075 344 1263 388 1417
301 1099 345 1265 389 1417
301 1033 343 1203 309 1410 302 1103 346 1267 390 1420
303 1107 347 1269 391 1421
303 1107 347 1203 351 1421 304 1111 348 1271 392 1422
304 1111 340 1271 352 1422 305 1115 349 1273 393 1424
306 1119 350 1279 394 1425
307 1123 351 1285 395 1426
308 1129 352 1286 396 1428

TABLE II (CONTINUED)

N _s	C ₁	Ns	с ₁	N _s	с ₁
	1	J			±
397	1429	441	1615	485	1769
398	1441	442	1619	486	1773
399	1453	443	1623	487	1777
400	1459	444	1627	488	1783
401	1467	445	1630	489	1789
402	1475	446	1633	490	1791
403	1483	447	1636	491	1792
404	1485	448	1639	492	1794
405	1487	449	1641	493	1796
406	1489	450	1644	494	1798
407	1491	451	1646	495	1799
408	1493	452	1649	496	1801
409	1495	453	1651	497	1805
410	1499	454	1654	498	1809
411	1503	455	1657	499	1813
412	1507	456	1660	500	1815
413 414	1509	457 458	1663	501	1818
414	1512 1514	458 459	1665 1667	502 503	1820 1822
415	1514	460	1669	503	1825
415	1517	461	1671	504	1825
418	1522	462	1673	505	1827
419	1525	463	1675	507	1829
420	1529	464	1675	508	1843
421	1531	465	1680	509	1851
422	1535	466	1682	510	1859
423	1539	467	1685	511	1867
424	1543	468	1687	512	1873
425	1547	469	1711	513	1879
426	1551	470	1717	514	1883
427	1555	471	1723	515	1889
428	1556	472	1726	516	1891
429	1557	473	1729	517	1893
430	1558	474	1732	518	1894
431	1559	475	1735	519	1896
432	1561	476	1739	520	1898
433	1567	477	1743	521	1900
434	1573	478	1747	522	1901
435	1579	479	1751	523	1903
436	1585	480	1755	524	1909
437	1589	481	1759	525	1915
438 439	1593	482	1761	526	1917
439 440	1597	483 484	1763	527	1918
440	1606	484	1765	528	1920

N _s	c ₁	N _S	c ₁	· N _S	c ₁
529	1921	573	2079	617	2241
530	1929	574	2080	618	2243
531	1925	575	2082	619	2245
532	1945	576	2083	620	2247
533	1946	577	2005	621	2250
534	1948	578	2101	622	2252
535	1948	579	2101	623	2256
536	1949	580	2109	624	2250
537	1950	581	2111	625	2263
538	1952	582	2113	626	2267
539	1952	583	2115	627	2271
540	1954	584	2115	628	2275
540	1955	585	2117	629	2275
542	1963	586	2121	630	2279
542	1969	587	2123	631	2283
543	1972	588	2125	632	2207
545	1975	589	2125	633	2293
545	1978	590	2149	634	2299
548	1978	590	2155	635	
547	1981	592	2161		2317
548	1993	592	2161	636	2326
549	1995	593 594	2165	637 638	2335 2337
550	2005	595	2168	639	2337
552	2005	596	2171	640	2339
553	2017	597	2173	641	2341
554	2021	598	2175	642	2345
555	2025	599	2179	643	2345
556	2029	600	2182	644	2350
557	2025	601	2185	645	2353
558	2045	602	2191	646	2355
559	2053	603	2197	647	2359
560	2054	604	2209	648	2362
561	2056	605	2213	649	2365
562	2057	606	2213	650	2368
563	2059	607	2221	651	2371
564	2060	608	2223	652	2383
565	2062	609	2225	653	2385
566	2063	610	2227	654	2388
567	2065	611	2229	655	2390
568	2068	612	2231	656	2393
569	2071	613	2233	657	2395
570	2074	614	2235	658	2398
571	2077	615	2233	659	2401
572	2078	616	2239	660	2401
572	2070	010	LLJJ	000	2404

TABLE II (CONTINUED)

•

N _S	C_1	N _s	c_1	N _s	C_1
661	2407	705	2567	749	2723
662	2408	706	2569	750	2724
663	2410	707	2571	751	2725
664	2411	708	2573	752	2727
665	2413	709	2575	753	2730
666	2414	710	2581	754	2732
667	2416	711	2587	755	2735
668	2418	712	2589	756	2737
669	2419	713	2592	757	2749
670	2422	714	2594	758	2753
671	2425	715	2597	759	2757
672	2428	716	2599	760	2761
673	2431	717	2601	761	2765
674	2434	718	2604	762	2769
675	2437	719	2606	763	2773
676	2455	720	2609	764	2774
677	2463	721	2611	765	2775
678	2471	722	2617	766	2777
679	2479	723	2623	767	2778
680	2481	724	2635	768	2779
681	2484	725	2639	769	2791
682	2486	726	2643	770	2795
683	2489	727	2647	771	2799
684	2491	728	2650	772	2803
685	2495	729	2653	773	2807
686	2499	730	2657	774	2811
687	2503	731	2661	775	2814
688	2515	732	2665	776	2827
689	2519	733	2677	777	2839
690	2523	734	2679	778	2841
691	2527	735	2681	779	2844
692	2528	736	2682	780	2846
693	2530	737	2684	781	2848
694	2531	738	2686	782	2850
695	2533	739	2689	783	2852
696	2534	740	2701	784	2857
697	2535	741	2713	785	2861
698	2537	742	2714	786	2865
699	2538	743	2715	787	2869
700	2539	744	2717	788	2873
701	2547	745	2718	789	2877
702	2555	746	2719	790	2881
703	2563	747	2720	791	2885
704	2565	748	2721	792	2889

TABLE II (CONTINUED)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
794 2897 838 3050 882 3215 795 2901 839 3052 883 3217 796 2905 840 3053 884 3221 797 2906 841 3055 885 3225 798 2908 842 3059 886 3229 799 2909 843 3063 887 3233 800 2911 844 3067 888 3237 801 2912 845 3071 889 3241 802 2914 846 3075 890 3249 804 2917 848 3085 892 3253 805 2918 849 3091 893 3253 806 2920 850 3094 894 3254 807 2922 851 3007 895 3255 808 2923 852 3100 896	Ns	C_1	N _s	c ₁	N _s	c ₁
795 2901 839 3052 883 3217 796 2905 840 3053 884 3221 797 2906 841 3055 885 3225 798 2908 842 3059 886 3229 799 2909 843 3063 887 3233 800 2911 844 3067 888 3237 801 2912 845 3071 889 3241 802 2914 846 3075 890 3245 803 2915 847 3079 891 3249 804 2917 848 3085 892 3253 805 2913 849 3091 893 3253 806 2922 851 3077 895 3255 808 2923 852 3103 897 3256 810 2927 854 3105 898	793	2893	837	3049	881	3213
796 2905 840 3053 884 3221 797 2906 841 3055 885 3225 798 2908 842 3059 886 3229 799 2909 843 3063 887 3233 800 2911 844 3067 888 3237 801 2912 845 3071 889 3241 802 2914 846 3075 890 3245 803 2915 847 3079 891 3249 804 2917 848 3085 892 3253 805 2918 849 3091 893 3254 807 2922 851 3097 895 3255 808 2923 852 3100 896 3256 810 2927 854 3105 898 3257 811 2928 856 3109 900	794	2897	838	3050	882	3215
79729068413055885322579829088423059886323979929098433063887323380029118443067888323780129128453071889324180229148463075890324580329158473079891324980429178483085892325380529188493091893325380629208503094894325480729228513007895325680829238523100896325680929268533103897325681029278543105898325781129298553107899325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116907329282029928643119909329982129958653119909329782129958653119910330282630	795	2901	839	3052	883	
79829088423059886322979929098433063887323380029118443067888323780129128453071889324180229148463075890324580329158473079891324980429178483085892325380529188493091893325380629208503094894325480729228513007895325580829238523103897325680929268533103897325681029278543105898325781129298553109900325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116905328981829718623117906329282129958653119909329982229988663120910330282430038683145912330782530						
79929098433063887323380029118443067888323780129128453071889324180229148463075890324580329158473079891324980429178483085892325380529188493091893325380629208503094894325480729228513097895325580829238523100896326680929268533103897325681029278543105898325781129298553107899325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116905329982029928643119908329782129958653119909329982229988663120910330282430038683145912330782530058693153913331082630						
800 2911 844 3067 888 3237 801 2912 845 3071 889 3241 802 2914 846 3075 890 3245 803 2915 847 3079 891 3249 804 2917 848 3085 892 3253 805 2918 849 3091 893 3253 806 2920 850 3094 894 3254 807 2922 851 3097 895 3255 808 2923 852 3100 896 3256 809 2926 853 3103 897 3258 810 2927 854 3105 898 3257 811 2929 855 3107 899 3258 812 2935 856 3109 900 3259 813 2941 857 3111 901						
801 2912 845 3071 889 3241 802 2914 846 3075 890 3245 803 2915 847 3079 891 3249 804 2917 848 3085 892 3253 805 2918 849 3091 893 3253 806 2920 850 3094 894 3254 807 2922 851 3097 895 3255 808 2923 852 3100 896 3256 809 2926 853 3103 897 3256 810 2927 854 3105 898 3257 811 2929 855 3107 899 3258 812 2935 856 3109 900 3259 813 2941 857 3111 901 3267 814 2947 858 3113 902						
80229148463075890324580329158473079891324980429178483085892325380529188493091893325380629208503094894325480729228513097895325580829238523100896325680929268533103897325681029278543105898325781129298553107899325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116905328981829718623117906329282029928643119909329782129958653119909329782229988663120910330282430038683145912330782530018673121911331682630078703161914331382630078703161914331382630						
80329158473079891324980429178483085892325380529138493091893325480629208503094894325480729228513097895325580829238523100896325680929268533103897325681029278543105898325781129298553107899325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116905328981829718623117906329281929898633118907329582029928643119908329782129958653119909329982229988663120910330282330018673121911330582430038683145912330782530058693153913331082630078703161914331382730						
80429178483085892325380529188493091893325380629208503094894325480729228513097895325580829238523100896322680929268533103897325681029278543105898325781129298553107899325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116905328981829718623117906329282029928643119909329782129958653119909329782129958653119909329782430038683145912330782530058693153913331082630078703161914331382730098713169915331682830118723175916331982930138733181917332383030						
80529188493091893325380629208503094894325480729228513097895325580829238523100896325680929268533103897325681029278543105898325781129298553107899325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116905328981829718623117906329281929898633118907329582029928643119908329782129958653119909329982229988663120910330282430038683145912330782530058693153913331682430038683145912330782530058693153913331682830118733181917332383030198743185918332783130						
80629208503094894325480729228513097895325580829238523100896325680929268533103897325681029278543105898325781129298553107899325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116905328981829718623117906329281929898633118907329582029928643119908329782129958653119909329982229988663120910330282430038683145912330782530058693153913331082630078703161914313382630018733181917322383030198743185918332783130258753189919333183230378763193920333783330						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
80829238523100896325680929268533103897325681029278543105898325781129298553107899325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116905328981829718623117906329281929898633118907329582029928643119908329782129958653119909329982229988663120910330282330018673121911330582430038683145912330782530058693153913331082630078703161914331382730098713169915331682830118723175916331982930138733181917332383030198743185918322783130258753189919331834304						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
81029278543105898325781129298553107899325881229358563109900325981329418573111901326781429478583113902327581529538593115903328381629598603115904328681729658613116905328981829718623117906329281929898633118907329582029928643119908329782129958653119909329982229988663120910330282330018673121911330582430038683145912330782530058693153913331082630078703161914331382730098713169915331682830118723175916331982930138733181917322383030198743185918332783130258753189919333183230378763193920337833303987732059213343834304						
811 2929 855 3107 899 3258 812 2935 856 3109 900 3259 813 2941 857 3111 901 3267 814 2947 858 3113 902 3275 815 2953 859 3115 903 3283 816 2959 860 3115 904 3286 817 2965 861 3116 905 3289 818 2971 862 3117 906 3292 819 2989 863 3118 907 3295 820 2992 864 3119 908 3297 821 2995 865 3119 909 3299 822 2998 866 3120 910 3302 823 3001 867 3121 911 3305 824 3003 868 3145 912 307 825 3005 869 3153 913 3310 826 3007 870 3161 914 3313 827 3009 871 3169 915 3316 828 3011 872 3175 916 3319 829 3013 873 3181 917 3223 830 3019 874 3185 918 3227 831 3025 875 3189 919 3331 832						
812 2935 856 3109 900 3259 813 2941 857 3111 901 3267 814 2947 858 3113 902 3275 815 2953 859 3115 903 3283 816 2959 860 3115 904 3286 817 2965 861 3116 905 3289 818 2971 862 3117 906 3292 819 2989 863 3118 907 3295 820 2992 864 3119 908 3297 821 2995 865 3119 909 3299 822 2998 866 3120 910 3302 823 3001 867 3121 911 3305 824 3003 868 3145 912 3307 825 3005 869 3153 913 3110 826 3007 870 3161 914 3313 827 3009 871 3169 915 3316 828 3011 872 3175 916 3319 829 3013 873 3181 917 3323 830 3019 877 3205 921 3343 834 3041 878 3207 922 3446 835 3044 879 3209 923 3449						
813 2941 857 3111 901 3267 814 2947 858 3113 902 3275 815 2953 859 3115 903 3283 816 2959 860 3115 904 3286 817 2965 861 3116 905 3289 818 2971 862 3117 906 3292 819 2989 863 3118 907 3295 820 2992 864 3119 908 3297 821 2995 865 3119 909 3299 822 2998 866 3120 910 3302 823 3001 867 3121 911 3305 824 3003 868 3145 912 3307 825 3005 869 3153 913 3310 826 3007 870 3161 914 3313 827 3009 871 3169 915 3316 828 3011 872 3175 916 3319 829 3013 873 3181 917 3323 830 3019 874 3185 918 3327 831 3025 875 3189 919 3331 832 3037 876 3193 920 3337 833 3039 877 3205 921 3343 834 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
81429478583113902327581529538593115903328381629598603115904328681729658613116905328981829718623117906329281929898633118907329582029928643119908329782129958653119909329982229988663120910330282330018673121911330582430038683145912330782530058693153913331082630078703161914331382730098713169915331682830118723175916331982930138733181917322383030198743185918322783130258753189919333183230378763193920333783330398773205921334383430418783207922346835304487932099233349						
8152953859311590332838162959860311590432868172965861311690532898182971862311790632928192989863311890732958202992864311990832978212995865311990932998222998866312091033028233001867312191133058243003868314591233078253005869315391333108263007870316191433138273009871316991533168283011872317591633198293013873318191732238303019874318591833278313025875318991933118323037876319392033378333039877320592133438343041878320792234683530448793209923349						
8162959860311590432868172965861311690532898182971862311790632928192989863311890732958202992864311990832978212995865311990932998222998866312091033028233001867312191133058243003868314591233078253005869315391333108263007870316191431338273009871316991533168283011872317591633198293013873318191732383030198743185918332783130258753189919333183230378763193920333783330398773205921334383430418783207922346835304487932099233349						
8172965861311690532898182971862311790632928192989863311890732958202992864311990832978212995865311990932998222998866312091033028233001867312191133058243003868314591233078253005869315391333108263007870316191431338273009871316991533168283011872317591633198293013873318191732383030198743185918332783130258753189919333183230378763193920333783330398773205921334383430418783207922346835304487932099233349						
8182971862311790632928192989863311890732958202992864311990832978212995865311990932998222998866312091033028233001867312191133058243003868314591233078253005869315391333108263007870316191433138273009871316991533168283011872317591633198293013873318191733238303019874318591833278313025875318991933118323037876319392033378333039877320592134383430418783207922346835304487932099233349						
81929898633118907329582029928643119908329782129958653119909329982229988663120910330282330018673121911330582430038683145912330782530058693153913331082630078703161914331382730098713169915331682830118723175916331982930138733181917332383030198743185918332783130258753189919333183230378763193920333783330398773205921334383430418783207922346835304487932099233349						
820299286431199083297821299586531199093299822299886631209103302823300186731219113305824300386831459123307825300586931539133310826300787031619143313827300987131699153316828301187231759163319829301387331819173323830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
821299586531199093299822299886631209103302823300186731219113305824300386831459123307825300586931539133310826300787031619143313827300987131699153316828301187231759163319829301387331819173323830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
822299886631209103302823300186731219113305824300386831459123307825300586931539133310826300787031619143313827300987131699153316828301187231759163319829301387331819173323830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
823300186731219113305824300386831459123307825300586931539133310826300787031619143313827300987131699153316828301187231759163319829301387331819173323830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
824300386831459123307825300586931539133310826300787031619143313827300987131699153316828301187231759163319829301387331819173323830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
825300586931539133310826300787031619143313827300987131699153316828301187231759163319829301387331819173323830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
826300787031619143313827300987131699153316828301187231759163319829301387331819173323830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
827300987131699153316828301187231759163319829301387331819173323830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
828301187231759163319829301387331819173323830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
830301987431859183327831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349		3011		3175	916	3319
831302587531899193331832303787631939203337833303987732059213343834304187832079223346835304487932099233349	829		873			
832303787631939203337833303987732059213343834304187832079223346835304487932099233349						
833303987732059213343834304187832079223346835304487932099233349						
834304187832079223346835304487932099233349						
835 3044 879 3209 923 3349						
836 3047 880 3211 924 3352						
	836	3047	880	3211	924	3352

TABLE II (CONTINUED)

TABLE II (CONTINUED)

T	AB	LI	Ξ	I	I	Ι

N _s	C1	N _S	c ₁	N _s	c ₁
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\end{array}$	$\begin{array}{c} 5\\ 9\\ 11\\ 13\\ 21\\ 22\\ 24\\ 25\\ 29\\ 37\\ 40\\ 43\\ 45\\ 46\\ 48\\ 49\\ 57\\ 61\\ 65\\ 69\\ 71\\ 74\\ 76\\ 79\\ 81\\ 89\\ 92\\ 94\\ 97\\ 98\\ 100\\ 101\\ 105\\ 109\\ 111\\ 113\\ 121\\ 124\\ \end{array}$	45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 80 81 82	$\begin{array}{c} 1 \\ 145 \\ 146 \\ 147 \\ 148 \\ 149 \\ 161 \\ 165 \\ 169 \\ 177 \\ 179 \\ 180 \\ 182 \\ 183 \\ 185 \\ 188 \\ 190 \\ 193 \\ 194 \\ 196 \\ 197 \\ 213 \\ 216 \\ 218 \\ 221 \\ 222 \\ 223 \\ 224 \\ 225 \\ 233 \\ 241 \\ 242 \\ 244 \\ 245 \\ 246 \\ 248 \\ 249 \\ 253 \\ 261 \end{array}$	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126	285 293 294 295 296 298 299 300 301 305 311 317 325 328 330 333 337 341 344 347 349 351 353 355 357 359 362 365 373 374 375 376 377 385 390 396 401 402
39 40 41 42 43 44	127 129 137 139 141 143	83 84 85 86 87 88	266 272 277 279 281 283	127 128 129 130 131 132	404 405 413 421 422 424

SQUARE LAYOUTS TUBE COUNT TABLE (10)

N_s C_1 N_s C_1 N_s	с ₁
	1
133 425 177 559 221	697
134 426 178 561 222	700
135 428 179 565 223	703
136 429 180 569 224	706
137 437 181 577 225	709
138 437 182 581 226	717
139 438 183 585 227	719
140 439 184 589 228	722
141 439 185 593 229	725
142 440 186 594 230	727
143 440 187 595 231	730
144 441 188 596 232	733
145 457 189 597 233	741
146 465 190 598 234	749
147 469 191 599 235	750
148 473 192 600 236	751
149 481 193 601 237	752
150 483 194 609 238	754
151 485 195 611 239	755
152 487 196 613 240	756
153 489 197 621 241	757
154 491 198 625 242	761
155 493 199 629 243	765
156 495 200 633 244	769
157 497 201 637 245	777
158 500 202 641 246	780
159 502 203 646 247	783
160 505 204 652 248	786
161 507 205 657 249	788
162 509 206 659 250	793
163 513 207 662 251	794
164 517 208 665 252	794
165 519 209 667 253	795
166 522 210 669 254	796
167 524 211 671 255	796
168 527 212 673 256	797
169 529 213 674 257	805
170 545 214 676 258	810
171 548 215 677 259	816
172 550 216 678 260	821
173 553 217 680 261	829
174 555 218 681 262	833
175 556 219 686 263	837
176 558 220 692 264	841

TABLE III (CONTINUED)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N _s	C1	N _S	C ₁	N _S	C ₁
29894934210883861299951343108938713009533441090388130195634510923891302957346109339013039603471096391130496234810983921	265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304	845 847 849 851 853 856 858 861 865 869 872 874 877 879 881 883 885 885 885 886 887 887 888 887 887 888 889 901 917 921 925 933 936 938 941 945 949 951 953 956 957 960 962	$\begin{array}{c} 309\\ 310\\ 311\\ 312\\ 313\\ 314\\ 315\\ 316\\ 317\\ 318\\ 319\\ 320\\ 321\\ 322\\ 323\\ 324\\ 325\\ 326\\ 327\\ 328\\ 329\\ 330\\ 331\\ 332\\ 333\\ 334\\ 335\\ 336\\ 337\\ 338\\ 339\\ 340\\ 341\\ 342\\ 343\\ 344\\ 345\\ 344\\ 345\\ 346\\ 347\\ 348\\ \end{array}$	976 978 979 980 981 989 992 994 997 1000 1002 1005 1006 1007 1008 1009 1030 1036 1039 1041 1043 1044 1046 1047 1049 1051 1053 1055 1057 1069 1077 1085 1057 1069 1077 1085 1086 1088 1089 1090 1092 1093 1096 1098	353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392	$\begin{array}{c} 1 \\ 1109 \\ 1112 \\ 1114 \\ 1117 \\ 1119 \\ 1121 \\ 1123 \\ 1125 \\ 1129 \\ 1137 \\ 1142 \\ 1148 \\ 1153 \\ 1155 \\ 1157 \\ 1159 \\ 1161 \\ 1157 \\ 1159 \\ 1161 \\ 1177 \\ 1159 \\ 1161 \\ 1177 \\ 1179 \\ 1182 \\ 1185 \\ 1189 \\ 1193 \\ 1197 \\ 1201 \\ 1202 \\ 1203 \\ 1204 \\ 1204 \\ 1205 \\ 1206 \\ 1207 \\ 1208 \\ 1209 \\ 1213 \\ 1217 \\ 1225 \\ 1226 \\ 1228 \\ 1229 \\ 1233 \\ \end{array}$

TABLE III (CONTINUED)-

TABLE III (CONTINUED)

N _s	C_1	Ns	c_1	Ns	C_1
397	1245	441	1373	485	1533
398	1249	442	1389	486	. 1535
399	1253	443	1397	487	1538
400	1257	444	1399	488	1541
401	1265	445	1405	489	1545
402	1268	446	1407	490	1549
403	1270	447	1409	491	1554
404	1273	448	1411	492	1559
405	1281	449	1413	493	1565
406	1283	450	1425	494	1567
407	1285	451	1427	495	1569
408	1287	452	1430	496	1571
409	1289	453	1433	497	1574
410	1305	454	1435	49 8	1576
411	1306	455	1437	499	1578
412	1308	456	1439	500	1581
413	1309	457	1441	501	1584
414	1310	458	1449	502	1587
415	1312	459	1451	503	1591
416	1313	460	1454	504	1594
417	1315	461	1457	505	1597
418	1316	462	1460	506	1599
419	1318	463	1462	507	1601
420	1317	464	1465	508	1603
421	1321	465	1469	509	1605
422	1324	466	1473	510	1606
423	1326	467	1477	511	1608
424	1329	468	1480	512	1609
425	1353	469	1481	513	1613
426	1354	470	1483	514	1617
427	1355	471	1484	515	1620
428	1356	472	1484	516	1622
429	1357	473	1485	517	1625
430	1358	474	1486	518	1628
431	1359	475	1487	519	1630
432	1360	476	1488	520	1633
433	1361	477	1489	521	1641
434 435	1363 1366	478 479	1493	522	1649
435 436	1366	479 480	1497 1501	523	1649
430	1370	480 481	1501	524 525	1650
437 438	1370	481 482	1505	525 526	1651 1651
438 439	1370	482 483	1515	526 527	1651
439	1371	483	1515	527 528	
440	13/2	404	101/	528	1652

TABLE III (CONTINUED)

N _S	c ₁	N _S	c_1	Ns	C_1
529	1653	573	1791	617	1941
530	1669	574	1792	618	1943
531	1674	575	1792	619	1945
532	1680	576			
532			1793	620	1948
	1685	577	1801	621	1951
534	1687	578	1813	622	1953
535	1688	579	1821	623	1956
536	1690	580	1829	624	1958
537	1691	581	1831	625	1961
538	1693	582	1833	626	1969
539	1696	583	1835	627	1973
540	1698	584	1837	628	1977
541	1701	585	1853	629	1993
542	1704	586	1861	630	1995
543	1706	587	1862	631	1996
544	1709	588	1864	632	1997
545	1725	589	1865	633	1999
546	1728	590	1866	634	2001
547	1730	591	1868	635	2004
548	1733	592	1869	636	2006
549	1741	593	1877	637	2009
550	1743	594	1880	638	2012
551	1744	595	1882	639	2014
552	1746	596	1885	640	2017
553	1747	597	1887	641	2025
554	1749	598	1888	642	2025
555	1752	599	1890	643	2026
556	1754	600	1891	644	2027
557	1757	601	1893	645	2027
558	1759	602	1895	646	2028
559	1760	603	1897	647	2028
560	1762	604	1899	648	2029
561	1764	605	1901	649	2041
562	1765	606	1904	650	2053
563	1770	607	1907	651	2057
564	1776	608	1910	652	2058
565	1781	609	1914	653	2061
566	1783	610	1917	654	2064
567	1785	611	1921	655	2066
568	1787	612	1925	656	2069
569	1789	613	1933	657	2003
570	1789	614	1935	658	2079
571	1790	615	1933	659	2079
572	1791	616	1939	660	2081
572	1/71	010	1939	000	2003

TABLE III (CONTINUED)

N _S	C ₁	N _S	c ₁	N _S	c_1
661 662	2085 2087	705 706	2223 2225	749 75 <u>0</u>	2367 2369
663	2087	707	2228	751	2309
664	2088	707	2230	752	2371
665	2009	708	2230	753	2375
666	2091	709	2235	754	2375
667	2093	711	2235	755	2380
668	2094	712	2241	756	2382
669	2095	713	2242	757	2385
670	2098	714	2243	758	2387
671	2099	715	2244	759	2389
672	2100	716	2245	760	2391
673	2100	717	2246	761	2393
674	2109	718	2247	762	2397
675	2115	719	2248	763	2401
676	2121	720	2249	764	2405
677	2129	721	2251	765	2409
678	2134	722	2253	766	2411
679	2140	723	2257	767	2413
680	2145	724	2261	768	2415
681	2148	725	2285	769	2417
682	2151	726	2286	770	2420
683	2155	727	2287	771	2422
684	2158	728	2288	772	2425
685	2161	729	2289	773	2433
686	2165	730	2305	774	2436
687	2169	731	2308	775	2438
688	2173	732	2310	776	2441
689	2177	733	2313	777	2445
690	2180	734	2315	778	2449
691	2182	735	2331	779	2450
692	2185	736	2332	780	2450
693	2188	737	2333	781	2451
694	2191	738	2334	782	2452
695	2195	739	2335	783	2453
696	2198	740	2337	784	2453
697 609	2201	741	2340	785	2459
698	2209	742 743	2343 2346	786 787	2460
699 700	2212 2214	743 744	2346	787	2471 2477
700	2214 2217	744 745	2349	788	2477 2480
701	2217	745	2353	789	2480
702	2219	746 747	2361	790 791	2483 2487
703	2222	747	2365	791	2487
704	<i>LLLL</i>	/ 4 0	2000 .	192	2490

,

TABLE III (CONTINUED)

N _s	c_1	N _s	c ₁	N _S	c ₁
793	2493	837	2623	881	2765
794	2501	838	2624	882	2769
795	2504	839	2626	883	2770
796	2506	840	2627	884	2785
797	2509	841	2629	885	2788
798	2513	· 842	2637	886	2790
799	2517	843	2645	887	2793
800	2521	844	2653	888	2796
801	2529	845	2661	889	2798
802	2537	846	2664	890	2801
803	2538	847	2666	891	2802
804	2540	848	2669	892	2803
805	2541	849	2681	893	2804
806	2542	850	2693	894	2805
807	2544	851	2696	895	2806
808	2545	852	2698	896	2807
809	2553	853	2701	897	2808
810	2561	854	2703	898	2809
811	2562	855	2705	899	2811
812	2563	856	2707	900	2812
813	2564	857	2709	901	2837
814	2565	858	2711	902	2840
815	2566	859	2713	903	2842
816	2567	860	2715	904	2845
817	2568	861	2717	905	2861
818	2569	862	2719	906	2863
819	2577	863	2721	907	2865
820	2585	864	2723	908	2867
821	2593	865	2725	909	2869
822	2594	866	2733	910	2871
823	2595	867	2734	911	2872
824	2596	868	2735 2736	912	2874
825	2597	869		913	2875
826	2598	870	2737	914	2877
827 828	2599 2600	871 872	2738 2741	915 916	2881
828	2600	872	2741 2749	918 917	2885 2886
830	2604	874	2751	918	2888
831	2606	875	2751	919	2889
832	2609	876	2755	920	2890
833	2617	877	2755	921	2890
834	2618	878	2759	922	2892
835	2620	879	2761	923	2901
836	2621	880	2763	924	2909
		000	2.00		

TABLE III (CONTINUED)

Ns	c ₁	N _s	c ₁	N _s	c ₁
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 945 946 947 948 949 950 951 952 955 955 955 955 955 955 955 955 955	2917 2920 2922 2925 2933 2936 2938 2941 2943 2945 2947 2949 2957 2959 2961 2963 2965 2967 2969 2971 2973 2975 2977 2979 2981 2983 2975 2977 2979 2981 2983 2985 2987 2987 2987 2987 2987 2987 2987 2987	969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 991 992 993 994 995 996 997 998 999 1000	3053 3061 3062 3064 3065 3067 3068 3069 3077 3080 3082 3085 3093 3097 3101 3105 3109 3125 3126 3126 3126 3126 3127 3128 3128 3128 3128 3129 3130 3131 3132 3133 3131 3132 3133 3134 3144 314		

$$C_4 = C_1 - C_x - C_y$$
 (21)

Triangular layouts: 6- or 8-pass

For triangular configurations, calculate:

$$V = \frac{2 e^{+}r}{\sqrt{3}} + 0.5$$
(22)

where

Then calculate:

$$u = \frac{\sqrt{3} N_v}{2}$$
(23)

$$Z = \sqrt{s - u^2}$$
 if N_v is even (24a)

$$Z = \sqrt{s - u^2} - 0.5 \qquad \text{if } N_v \text{ is odd} \qquad (24b)$$

For a 6-pass layout:

$$C_6 = C_1 - C_y - 4 * N_z - 1$$
 (25)

For an 8-pass layout:

$$C_8 = C_1 - C_x - C_y - 4 * N_z$$
 (26)

Inline Square layouts: 2- or 4-pass

For inline square layouts, first calculate

$$w = \frac{2r}{\sqrt{3}}$$
(27)

· · · ·

Then calculate the corresponding interger, $N_{\rm W};$ calculate $C_{\rm X}$ and $C_{\rm y}$ by the following equations.

$$C_{X} = 2 N_{r} + 1$$
 (28)

$$C_y = C_x - 1 \tag{29}$$

For inline square 2-pass layouts:

$$C_2 = C_1 - C_x$$
 (30)

For inline square 4-pass layouts:

$$C_4 = C_1 - C_x - C_y$$
 (31)

Inline Square Layouts: 6- or 8- Pass

For inline square layouts, calculate:

$$V = e * r + 0.05$$
 (32)

where

e = dimensionless constant: 0.265 for 6 pass

arrangements and 0.404 for 8-pass arrangements

$$Z = \sqrt{s - N_v^2}$$
(33)

For 6-pass layouts:

$$C_6 = C_1 - C_y - 4 * N_z - 1$$
 (34)

For an 8-pass layout:

$$C_8 = C_1 - C_x - C_y - 4 * N_z$$
 (35)

Rotated Square Layouts: 2-or 4-pass

For rotated square or diamond layouts, let:

$$w = \frac{r}{\sqrt{2}}$$
(36)

Then calculate:

$$C_{x} = 2 N_{w} + 1$$
 (37)

$$C_y = C_x - 1 \tag{38}$$

For rotated square 2-pass layouts:

$$C_2 = C_1 - C_x \tag{39}$$

For rotated square 4-pass layouts:

$$C_4 = C_1 - C_x - C_y$$
 (40)

Rotated Square: 6- or 8-pass

For rotated square configurations, calculate:

$$V = \sqrt{2} e * r \tag{41}$$

where

Then find:

 $u_1 = \frac{N_v}{\sqrt{2}}$ (42)

 $Z = \sqrt{\frac{1}{s - u_1^2}}$ (43)

$$w_1 = \sqrt{2} z \tag{44}$$

$$u_2 = \frac{N_v + 1}{\sqrt{2}}$$
 (45)

$$Z^* = \sqrt{s - u_2^2}$$
 (46)

$$w_2 = \sqrt{2} z^* \tag{47}$$

$$Z_1 = 0.5 (w_1 + 1)$$
 if N_v is odd (48a)

$$Z_1 = 0.5 w_1$$
 if N_v is even (48b)

$$Z_2 = 0.5 w_2 \qquad \text{if } N_v \text{ is odd} \qquad (49a)$$

$$Z_2 = 0.5 (w_2 + 1)$$
 if N_v is even (49b)

For a 6-pass rotated square layout:

$$C_6 = C_1 - C_x - 4 (N_{z_1} + N_{z_2})$$
 (50)

For an 8-pass rotated square layout:

۰.

$$C_8 = C_1 - C_x - C_y - 4 (N_{z_1} + N_{z_2})$$
 (51)

A.10. Estimation of Tube-Side Pressure Drop

Pressure drop during fully developed flow in a cylindrical conduit is best characterized using a friction factor. The friction factor is dependent on the flow regime as was the heat transfer coefficient. When the flow is laminar (Re<1000), the friction factor is approximated by the following equation:

$$f_f = 16/Re$$

When the flow is turbulent (Re>4000), the friction factor is approximated by the following:

$$f_{f} = 0.04/\text{Re}^{0.194}$$
(53)

Equation (53) is for flow inside smooth tubing. When in the transition region (1000<Re<4000) the friction factor is obtained from the following equation.

$$f_f = \ln (4000/\text{Re})/1.38629$$
 (54)

Once the friction factor is obtained, the pressure drop in the tubes is calculated by the following equation.

$$\Delta P_{t} = \frac{2 \rho V^{2} L f_{f}}{di gc}$$
(55)

The entrance and exit losses are calculated from the following equation.

$$\Delta P_{e} = 2 \left(N_{tp} \right) \left(\frac{\rho V^{2}}{2gc} \right)$$
(56)

where

 N_{tp} = number of tube passes ρ = density of tube side fluid (52)

V = velocity of the tube side fluid

g_c = gravitational conversion constant

The total pressure drop for the tube side is

$$\Delta P = \Delta P_{t} + \Delta P_{e}$$
(57)

B. Delaware Method

B.1. Simplified Mechanisms of Shell-Side Flow

Shown in Figure 3 is a diagram of the shell-side flow mechanism in a highly idealized form. In this figure, basically five different streams can be identified on the shell-side. Stream B is the desired flow path for fluid on the shell-side of the exchanger. Stream B is the main crossflow stream traveling through one window across the tubes and out through the opposite window (4).

However, due to the mechanical clearances required in a shell and tube exchanger, not all of the fluid in the shell follows the path of stream B. There is the A stream which leaks through the tube to baffle clearance from one baffle compartment to the next. The C stream, the bundle bypass stream, flows around the tube bundle between the outermost tubes and the shell. The E stream is the shell to baffle leakage stream flowing through the clearance between the baffles and inside shell diameter. The last of the major streams identified is the F stream, which flows through any channel within the tube bundle caused by the provision of pass dividers in the exchanger header (i.e. only in multiple tube pass configurations). These streams do not exist as neatly and precisely defined as the streams shown in Figure 3. Figure 3

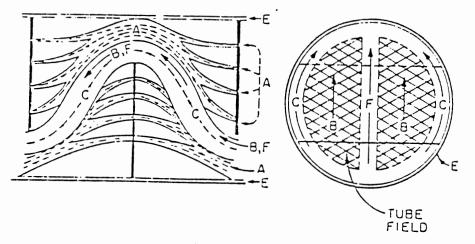


Figure 3. Idealized Diagram of Shell-Side Flow (4)

is an idealized representation but does allow a discussion of major modifying effects on the desired flow stream.

In the Delaware method (2,3,4), the B stream is the main flow stream with the other flow streams exerting various modifying effects upon the performance of the exchanger assuming the B stream alone exists. The leakage and bypass streams have basically two effects on the exchanger performance. The first is to reduce the local heat transfer coefficient because stream B is reduced. The second is the shell-side temperature profile is altered.

The various leakage and bypass streams have different degrees of effect on the shell-side performance. For example, stream A (tube-tobaffle leakage) has only a relatively small effect upon both the heat transfer coefficient and pressure drop. Stream C has a large effect but can be partially blocked. Stream E (shell-to baffle leakage) has extremely serious effect but little can be done to improve this problem. Stream F (the pass divider leakage) has a moderate effect and can sometimes be improved using mechanical means (4).

B.2. Basic Structure of the Delaware Method

The Delaware method is a rating method as are most "design" methods. A rating method is one in which the heat exchanger under consideration is fairly completely described geometrically and the process specifications for the streams are given. The information required to use this method is:

- Both tube side and shell side flow rates, inlet and outlet temperatures, physical properties, and fouling characteristics
- 2. Shell inside diameter

3. Outer tube limit

4. Tube diameter and layout

5. Baffle spacing and cut

6. Length or Duty

Using the above information either the length of the exchanger or the duty of the exchanger is calculated. Also, the pressure drop for both the tube side and shell side can be calculated.

B.3. Specification/Calculation of Shell

Side Geometry Parameters

<u>B.3.1 Input Data Requirements for Delaware Method</u>. The Delaware method assumes that the shell-side properties, flow rates, and temperatures are known or can be reasonably estimated. The method also assumes that the following minimum set of shell-side geometry data are known or specified:

- 1. Tube outside diameter, do
- 2. Tube pitch, p
- 3. Tube geometrical arrangement
- 4. Shell inside diameter, D_i
- 5. Shell outer tube limit, D_{otl}
- 6. Effective tube length, L
- 7. Baffle cut, 1_c
- 8. Baffle spacing, l_s (also the inlet and outlet baffle spacing, $l_{s,I}$, and $l_{s,o}$, respectively)
- 9. Number of sealing strips/side, N_{SS}

From this basic geometrical information all remaining parameters needed in the shell-side calculations can be calculated or estimated by methods given in this chapter.

B.4. Calculation of Shell-Side Geometrical

Parameters

<u>B.4.1 Total number of tubes in the exchanger, N_t .</u> N_t can be found by a direct tube count, tube count table, or by the method given by Phadke (10) discussed earlier in this chapter.

<u>B.4.2 Tube pitch parallel to flow p_p , and normal to flow p_n .</u> These quantities are needed only for the purpose of estimating other parameters. The quantities are dependent on both the layout and the tube pitch. The following equations were used to calculate p_p and p_n for a triangular layout.

$$p_{p} = \frac{\frac{1}{2}}{\tan(30^{0})} * p$$
 (58)

$$p_n = 1/2 * p$$
 (59)

where

p = tube pitch

The equations used for an inline-square layout are the following;

 $p_{p} = p \tag{60}$

 $\mathbf{p}_{\mathbf{n}} = \mathbf{p} \tag{61}$

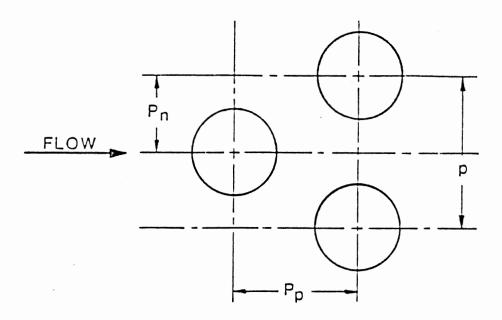
The equations used to calculate these parameters for a rotated square layout are;

$$p_{p} = \cos (45^{0}) * p$$
 (62)

$$p_n = \sin (45^0) * p$$
 (63)

Figure 4 shows the tube pitches parallel and normal to flow for a triangular layout.

<u>B.4.3 Number of tube rows crossed in one crossflow section area</u> between baffle tips), N_c . N_c can be estimated from the following equation.


$$N_{c} = \frac{D_{i} [1 - 2 (1_{c}/D_{i})]}{p_{p}}$$
(64)

B.4.4 Fraction of total tubes in crossflow, F_c . F_c can be calculated from the following equation.

$$F_{c} = \frac{1}{\pi} \left\{ \pi + 2 \left(\frac{D_{i} - 2 l_{c}}{D_{otl}} \right) \sin \left[\cos^{-1} \left(\frac{D_{i} - 2 l_{c}}{D_{otl}} \right) \right] - 2 \cos^{-1} \left(\frac{D_{i} - 2 l_{c}}{D_{otl}} \right) \right\}$$
(65)

where all the angles are read in radians.

B.4.5 Number of effective crossflow rows in each window, N_{cw} . N_{cw} can be calculated using the following equation.

,

Figure 4. Tube Pitches Parallel and Normal to Flow (4)

. .

$$N_{cw} = \frac{0.8 \ l_c}{p_p} \tag{66}$$

This equation assumes that the shell-side fluid on the average crosses about one half of the tube rows in the window and the tubes extend about 80 % of the distance from the baffle tip to the shell inside diameter.

B.4.6 Number of baffles, $N_{\rm b}$. Calculate $N_{\rm b}$ from:

$$N_{b} = \frac{L - 1_{s,1} - 1_{s,0}}{1_{s}} + 1$$
(67)

This equation takes into account that the entrance and/or exit baffle spacing may be different from the central baffle spacing. If the length of the exchanger is being calculated N_b is calculated after the shell-side heat transfer coefficient is calculated.

<u>B.4.7</u> Crossflow area at or near centerline for one crossflow section S_m . S_m is calculated from the following equation.

$$S_{m} = 1_{s} [D_{i} - D_{ot1} + (\frac{D_{ot1} - d_{o}}{p_{n}}) (p - d_{o})]$$
 (68a)

for square layouts, both inline and rotated, and

$$S_{m} = 1_{s} [D_{i} - D_{ot]} + (\frac{D_{ot1} - d_{o}}{p}) (p - d_{o})]$$
 (68b)

for triangular layouts.

These equations assume a nearly uniform tube field. The clearances for the tube pass partition lanes, the difference between the shell inside diameter and outer tube limit, are corrected for separately.

- B.4.8 Fraction of crossflow area available for bypass flow,

 F_{sbn} . This parameter can be calculated by the following equation.

$$F_{sbp} = \frac{\begin{bmatrix} D_{i} - D_{ot} \end{bmatrix} + \frac{1}{2} (N_{p} W_{p}) \end{bmatrix} I_{s}}{S_{m}}$$
(69)

where,

 N_p = the number of pass partition lanes through the tube field parallel to the direction of the crossflow stream W_p = the width of the pass partition lanes

<u>B.4.9 Tube-to-baffle leakage area for one baffle, S_{tb} .</u> S_{tb} can be estimated from equation (70).

$$S_{tb} = \pi d_0 \delta_{tb} (1/2) (1 + F_c) N_t$$
 (70)

where,

 δ_{tb} = the diameteral clearance between the tube and the baffle. Values for δ_{tb} can be found in Appendix A on page 125.

<u>B.4.10 Baffle Cut Angle, Θ .</u> The baffle cut angle, Θ , is the angle opposite of the intersection of the cut edge of the baffle with the inside surface of the shell. The baffle cut angle in radians can be calculated by:

$$\Theta = 2 \cos^{-1} \left(1 - \frac{2 l_c}{D_i}\right)$$
(71)

B.4.11 Shell-to-baffle leakage area for one baffle, S_{sb} . S_{sb} can be calculated from;

$$S_{sb} = \frac{\pi D_i \delta_{sb}}{2} \left[1 - \frac{\Theta}{2\pi}\right]$$
(72)

where

 δ_{sb} = shell-to-baffle clearance

 Θ = in radians and is between 0 and π

TEMA Standards for class R construction for the shell-to-baffle clearance are shown in Table IV.

<u>B.4.12 Area for flow through the window, S_w </u>. This area is obtained as the difference between the gross window area, S_{wg} and the window area occupied by the tubes, S_{wt} . The window area is indicated by the cross hatched regions in Figure 5.

$$S_{w} = S_{wg} - S_{wt}$$
(73)

The value of S_{wq} can be calculated from:

$$S_{wg} = \frac{D_i^2}{4} \{ \frac{\Theta}{2} - [1 - 2 (\frac{1_c}{D_i})] \text{ sin } (\frac{\Theta}{2}) \}$$
(74)

The window area occupied by the tubes, S_{wt} , can be calculated from:

$$S_{wt} = \frac{N_t}{8} (1 - F_c) \pi d_o^2$$
(75)

Nominal Shell Inside Diameter, D _i , in	Diameteral Shell-to-Baffle Clearance, δ _{Sb} , in.
8-13	0.100
14-17	0.125
18-23	0.150
24-39	0.175
40-54	0.225
55-60	0.300

TABLE	IV	

TEMA STANDARDS FOR SHELL TO BAFFLE CLEARANCE (12)

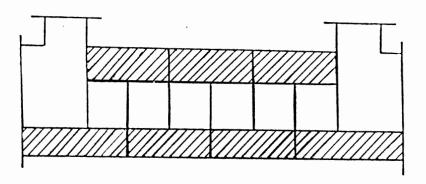


Figure 5. Window Sections in an E-Shell Exchanger (4)

.

<u>B.4.13 Equivalent diameter of window, D_w </u>. This parameter is required only if the shell-side Reynolds number is less than or equal to 100. D_w can be calculated from:

$$D_{w} = \frac{4 S_{w}}{\frac{\pi}{2} N_{t} (1 - F_{c}) d_{o} + D_{i} \Theta}$$
(76)

B.5. Calculation of Shell-Side Heat Transfer Coefficient

<u>B.5.1.</u> Calculate shell-side Reynolds number, Re_s . The shell-side Reynolds number can be calculated from the following equation.

$$\operatorname{Re}_{s} = \frac{\operatorname{d}_{o} \operatorname{W}_{s}}{\operatorname{\mu}_{s} \operatorname{S}_{m}}$$
(77)

For most cases it is adequate to use the arithmetic mean bulk shell-side fluid temperature to evaluate all bulk properties of the shell-side fluid.

<u>B.5.2.</u> Calculate Colburn j-factor for an ideal tube bank, j_i . j_i can be found for a given tube layout at the calculated value of Re_s using Figure 6. A curve fit for Figure 6 is given in Appendix B.

B.5.3. Calculate the shell-side heat transfer coefficient for an ideal tube bank.

$$h_{ideal} = j_{i} C_{pshell} \left(\frac{W_{shell}}{S_{m}}\right) \left(\frac{K_{shell}}{C_{pshell}}\right) \left(\frac{\mu_{shell}}{\mu_{shell}}\right)^{0.14}$$
(78)

<u>B.5.4.</u> Find the correction factor for baffle configuration effects, J_c . J_c can be calculated from the following equation.

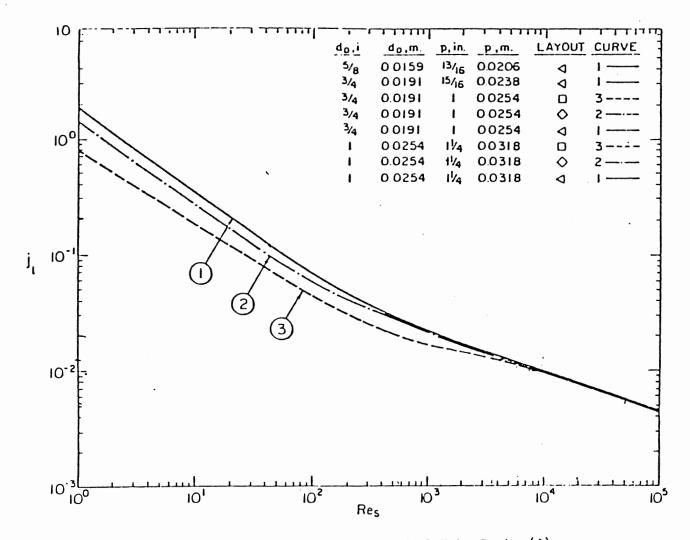
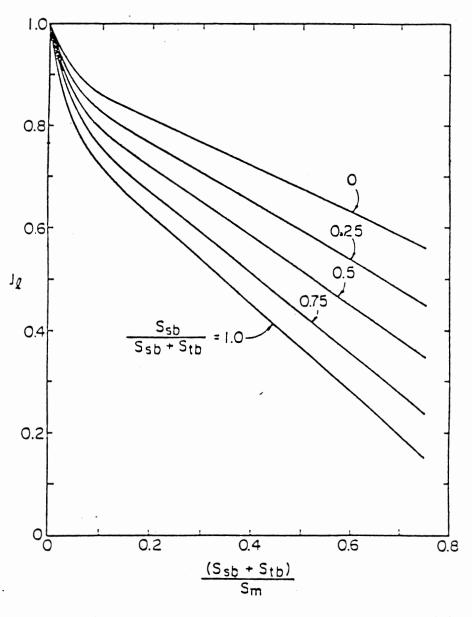
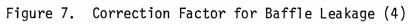
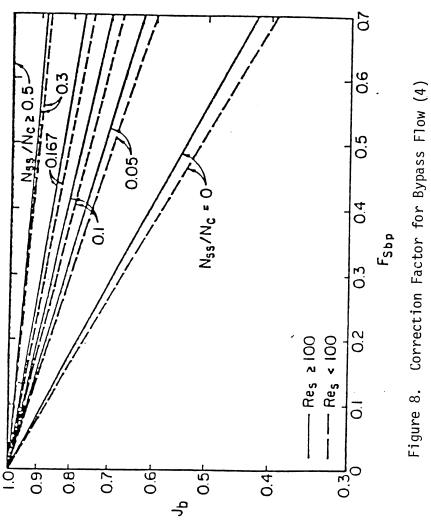
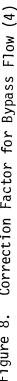


Figure 6. Correlation of j_i for Ideal Tube Banks (4)


$$J_{c} = F_{c} + 0.524 (1.0 - F_{c})^{0.32}$$
(79)


 J_c is the correction factor for baffle cut and spacing. This factor takes into account the heat transfer in the window and calculates the overall average for the entire heat exchanger. This correction factor is essentially a function of the fraction of the total tubes in the heat exchanger that are in crossflow. A typical value for a welldesigned heat exchanger with liquid on the shell-side is near 1.0.


<u>B.5.5.</u> Find the correction factor for baffle leakage effects, J_1 . J_1 is a function of the ratio of the total baffle leakage area, $(S_{tb}+S_{sb})$, to the cross flow area, S_m , and of the ratio of the shell-to baffle leakage area S_{sb} to the total baffle leakage area S_{tb} . J_1 can be read from Figure 7. A curve fit for Figure 7 is given in Appendix B.


 J_1 is the correction factor for baffle leakage effects, including both shell-to-baffle and tube-to-baffle leakage. This correction factor is a function of the ratio of total leakage area per baffle and also the ratio of the shell-to-baffle leakage area. J_1 weights the shell-to baffle leakage more heavily than the tube-to-baffle leakage. J_1 is a function of the clearance between tube to baffle and shell to baffle so that credit is given for tighter construction practices. Also, if the baffles are too close together, J_1 penalizes the heat transfer coefficient.

<u>B.5.6.</u> Find the correction factor for bundle bypass effects, J_b . J_b is a function of F_{sbp} and N_{ss}/N_c (the ratio of the number is sealing strips per side to the number of rows crossed in one baffle crossflow section). J_b can be found by using Figure 8 or the curve fit given in Appendix B.

 J_b is the correction factor for the bundle bypass flow (C and F streams). J_b accounts for differences in construction. For example in fixed tube sheets and pull-through floating head construction the clearances between the tubes and the inside shell diameter are quite different. J_b also considers the improvement made by sealing strips. Sealing strips are typically longitudinal strips of metal between the outside of the bundle and the shell and fastened at the baffle. These strips force the bypass flow periodically back into the tube field.

<u>B.5.7.</u> Find the correction factor for adverse temperature gradient <u>buildup at low Reynolds numbers</u>, J_r . This factor is equal to 1.00 if the shell side Reynolds number is greater than 100. For Re_s less than 20, the factor is only a function of the total number of tube rows crossed. For Re_s between 20 to 100, a linear proportion rule is used. Therefore:

A. If Re_{s} < 100 find J_r* from Figure 9 knowing N_b and (N_c+N_{cw})

B. If $\operatorname{Re}_{s} \leq 20$, $J_{r} = J_{r}^{*}$

C. If 20<Re_s<100 find J_r from Figure 10.

The curve fits for Figures 9 and 10 are given in Appendix B.

 J_r is the correction factor for adverse temperature gradient buildup. In laminar flow, the heat transfer coefficient decreases with increasing distance from the start of heating due to the development of an adverse temperature gradient. This gradient resists further heat transfer which therefore lowers the local and average heat transfer coefficients.

B.5.8. Find the correction factor for unequal baffle spacing at inlet and/or outlet, J_s . The equation for J_s is:

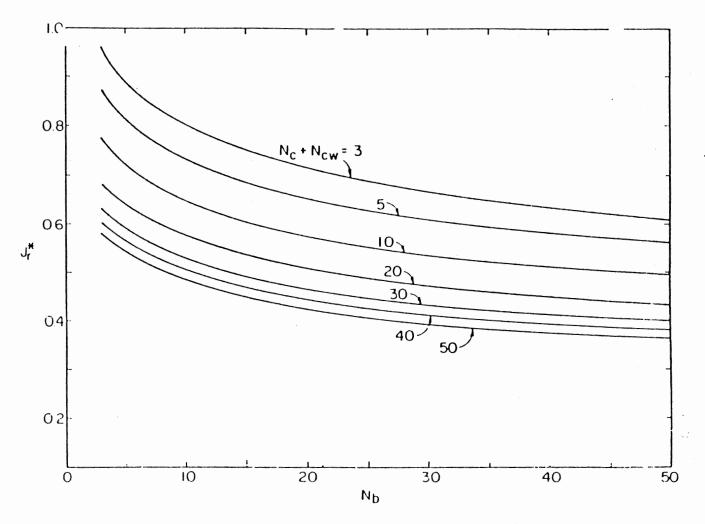


Figure 9. Correction Factor For Adverse Temperature Gradient at Low Reynolds Number (4)

`

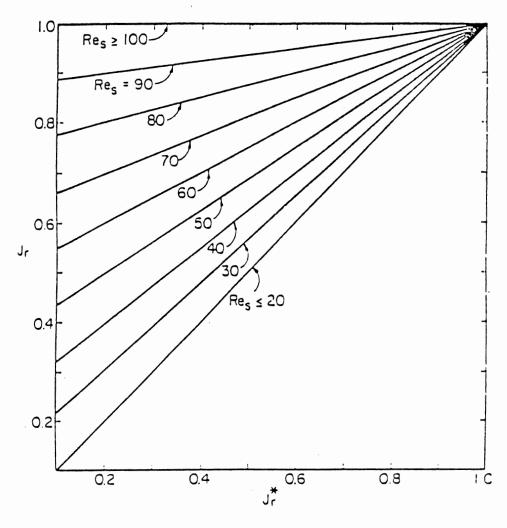


Figure 10. Correction Factor For Adverse Temperature Gradient at Intermediate Reynolds Number (4)

$$J_{s} = \frac{(N_{b} - 1) + (1_{s,I}^{*})^{1-n} + (1_{s,o}^{*})^{1-n}}{(N_{b} - 1) + 1_{s,I}^{*} + 1_{s,o}^{*}}$$
(80)

where,

$$N_{b} = number of baffles$$

$$l_{s,I}^{*} = l_{s,I}/l_{s}$$

$$l_{s,0}^{*} = l_{s,0}/l_{s}$$

$$l_{s} = internal baffle spacing$$

$$l_{s,I} = entrance baffle spacing$$

$$l_{s,0} = exit baffle spacing$$

$$n = \frac{0.6 \text{ for turbulent flow } (Re_{s} >= 100)}{1/3 \text{ for laminar flow } (Re_{s} < 100)}$$

 J_s is the correction factor for variable baffle spacing in the inlet and outlet sections. The correction factor allows for the change in the average shell-side coefficient caused by these locally lower velocities.

B.5.9. Calculate the shell-side heat transfer coefficient for the exchanger, h_0 , from the equation:

 $h_{o} = h_{ideal} J_{c} J_{1} J_{b} J_{r} J_{s}$ (81)

The combined effect of J_c , J_1 , J_b , J_r , and J_s for a well designed heat exchanger is typically about 0.6.

B.6 Calculation of Shell-Side Pressure Drop

B.6.1. Find f_i from the ideal tube bank friction factor curve for the given tube layout at the calculated value of Re_s using Figures 11 and 12. Curve fits for these curves are given in Appendix B.

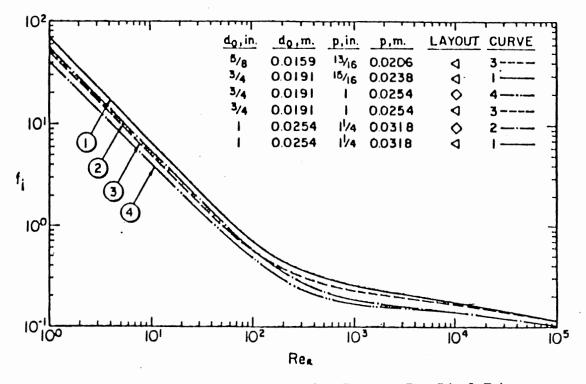
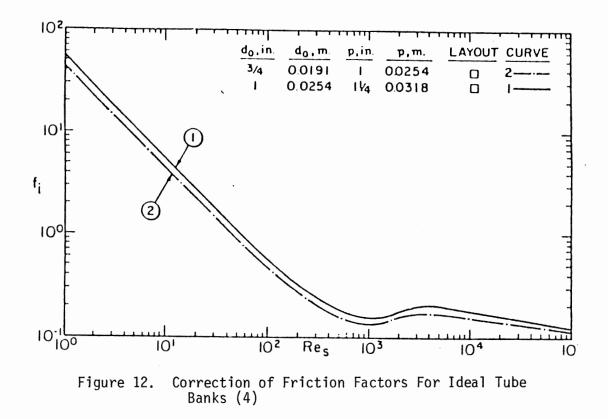



Figure 11. Correction of Friction Factors For Ideal Tube Banks (4)

`

B.6.2. Calculate the pressure drop for an ideal crossflow section, $\Delta P_{b,i}$:

$$\Delta P_{b,i} = \frac{4 f_i W_{shell}^2 N_c}{2 \rho_{shell} g_c S_m^2} \left(\frac{\mu_{shell, W}}{\mu_{shell}}\right)^{0.14}$$
(82)

B.6.3. Calculate the pressure drop for an ideal window section $\Delta P_{w,i}$:

$$\Delta P_{w,i} = \frac{(W_{shell})^2 (2 + 0.6 N_{cw})}{2 g_c S_m S_w \rho_{shell}}$$
(83a)

$$\Delta P_{wi} = 26 \frac{\mu_{shell} W_{shell}}{\sqrt{S_m S_w} \rho_{shell}} \left[\frac{N_{cw}}{p - d_0} + \frac{1_s}{D_w^2} \right] + \frac{(W_{shell})^2}{g_c S_m S_w \rho_{shell}}$$
(83b)

<u>B.6.4.</u> Calculate the correction factor for effect of baffle <u>leakage on pressure drop, R1</u>. R1 can be read from Figure 13. Curves shown are not to be extrapolated beyond the points shown. Curve fits for R1 vs $(S_{sb}+S_{tb})/S_m$ are shown in Appendix B.

<u>B.6.5.</u> Find the correction factor for bundle bypass, Rb. Rb can be read from Figure 14 as a function of F_{sbp} and N_{ss}/N_c . The solid lines are for $Re_s >= 100$; the dashed lines are for $Re_s < 100$.

<u>B.6.6.</u> Find the correction factor for unequal baffle spacing, R_s . R_s can be calculated from:

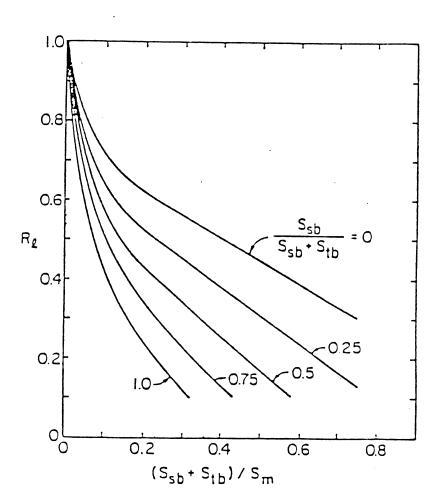


Figure 13. Correction Factor For Baffle Leakage Effect on Pressure Drop (4)

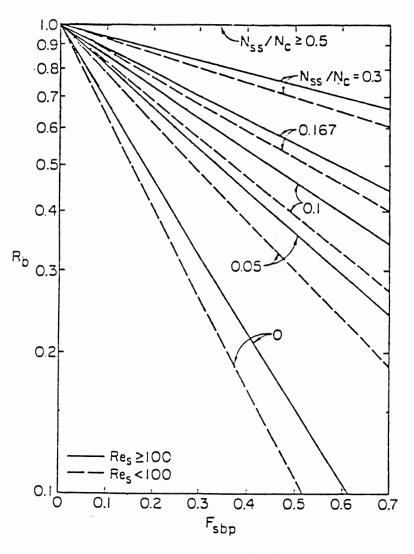


Figure 14. Correction Factor on Pressure Drop for Bypass Flow (4)

$$R_{s} = 1/2 \left[(1_{s,I}^{*})^{-n'} + (1_{s,0}^{*})^{-n'} \right]$$
(84)

where

1

1

* =
$$l_{s,I}/l_s$$

* = $l_{s,o}/l_s$
* 1.6 for turbulent flow (Re_s>100)
n' = 1 for laminar flow (Re_s<100)

B.6.7. Calculate the pressure drop across the shell-side (excluding nozzles), from:

$$\Delta P_{s} = [(N_{b} - 1) (\Delta P_{b,i}) R_{b} + N_{b} \Delta P_{w,i}] R_{1}$$
$$+ 2 \Delta P_{b,i} R_{b} (1 + \frac{N_{cw}}{N_{c}}) R_{s}$$
(85)

C. Air-Cooled Heat Exchanger Calculation Method

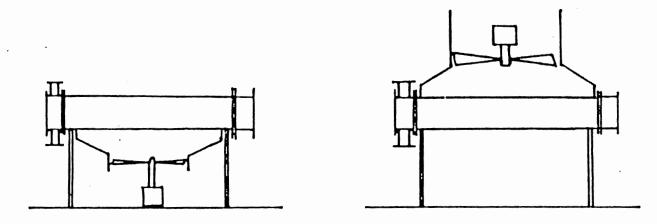
C.1. Basic Information Required for Air-Cooler Calculations

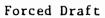
The information required to make a preliminary estimate of the size of the exchanger and fan requirements is:

- Tube mass flow rate, inlet and outlet temperatures, and physical properties
- 2. The number of tube passes
- 3. Tube outside diameter, inside diameter, and pitch
- 4. Thermal conductivity of tube metal

5. Tube arrangement

6. Fouling resistances for air side and tube side


- 7. Fin height
- 8. Fin thickness
- 9. Number of fins per inch
- 10. Fin thermal conductivity
- 11. Altitude
- 12. Number of tube rows
- 13. Inlet air temperature
- 14. Type of draft


C.2. Air-Cooled Heat Exchanger Arrangement

There are two basic air-cooled heat exchanger arrangements. One is forced draft and induced draft. This is shown in Figure 15. The forced draft arrangement has the fan underneath the tube bank pushing air across the bank of finned tubes and discharging into the atmosphere above. Induced-draft has the fan located above the bank of tubes, drawing air across the tube bank and then discharging it through an upper plenum back into the atmosphere.

The forced-draft arrangement has the advantage of putting the fan and driver underneath the tube bank where it is more accessible. Also, the driver and fan are operated at atmospheric temperatures which reduces maintenance problems, and allows for a wider choice of materials of construction. The disadvantages of forced draft construction are:

- a) The fan is exposed to places where operating personnel may walk.
- b) The fan is more likely to ingest trash or debris.

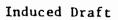


Figure 15. Forced Draft and Induced Draft Arrangements of Air-Coolers (4)

- c) The discharge velocity from the fan is not very uniform which leads to a wide range of local air flow velocities across the tube bank, which reduces thermal efficiency.
- d) The air is discharged from the top of the exchanger at fairly low velocities, therefore, it can mix with incoming air giving rise to partial recirculation
- e) The top of the exchanger is exposed which means it could be easily damaged by hail and may suffer more degradation and corrosion.
- f) A sudden rain shower can lower the air temperature and increasing cooling rapidly which causes control problems.

The induced draft design has the disadvantage of putting the fan and driver overhead where it is hard to service and exposed to the hot air coming off of the heat exchanger, requiring selection of special materials of construction to satisfy the operating temperature limits. The advantages of induced draft construction are;

- a) The fan is not located near personnel work areas.
- b) Uniform air flow across the tube bank.
- c) The discharge plenum can produce a reasonably high velocity, therefore, recirculation is not often a problem.

C.3. The Basic Design Equation

The basic design equation to be used for air-cooled heat exchanger is,

$$A = \frac{Q}{U_{o} (MTD)} = \frac{Q}{U_{o} F_{t} LMTD}$$
(86)

where

 A_0 = the total heat transfer area required

Q = the total heat transferred

 U_0 = the overall heat transfer coefficient

LMTD = the configuration correction factor

 F_{t} = the logarithmic mean temperature difference

C.4. Estimation of Heat Load

The heat load for the sensible heat transfer case can be calculated from the following:

$$Q = W C_{n} (T_{2} - T_{1})$$
(87)

where

Q = amount of heat transferred W = mass flow rate of tube side fluid C_p = specific heat of tube side fluid T_2 = tube side fluid inlet temperature T_1 = tube side fluid outlet temperature

C.5. Estimation of Mean Temperature Difference

The first step in calculating the mean temperature difference is to find the logarithmic mean temperature difference (LMTD) for countercurrent flow. The LMTD is calculated from the following equation

LMTD =
$$\frac{(T_1 - t_2) - (T_2 - t_1)}{T_1 - t_2}$$
(88)

where

 T_1 = the tube side inlet temperature T_2 = the tube side outlet temperature t_1 = the air inlet temperature

 t_2 = the air outlet temperature

One difficulty which arises is that the outlet air temperature is not known at this point but may be estimated form the following equation.

$$t_{2} = t_{1} + \left[\frac{(U_{0} + 1)}{10.0} * \left(\frac{(T_{1} + T_{2})}{2} - t_{1}\right)\right]$$
(89)

where the overall heat transfer coefficient, U_0 , is estimated from Table V. Then the calculations proceed until U_0 that is guessed is equal to U_0 calculated.

Next the configuration correction factor is calculated. To find F_t , the correction factor for the logarithmic mean temperature difference, the following equations are used as given by Pigorini (11).

$$A = [(T_1 - T_2)^2 + (t_1 - t_2)^2]^{0.5}$$
(90)

$$B = [(T_1 - t_2)^{1/2} + (T_2 - t_1)^{1/\alpha}]^{\alpha}$$
(91)

$$CLMTD1 = \frac{A}{\beta (\ln(\frac{B+A}{B-A}))}$$
(92)

where

$$\alpha = \beta = 1.7$$

For a single pass exchanger

$$F_{t} = \frac{CLMTD1}{LMTD}$$
(93)

TABL	.E V
------	------

TYPICAL	OVERALL I	DESIGN	COEFFI	CIENTS	FOR	
	AIR-COOLE	D EXCHA	ANGERS	(6)		

FLUID 1	FLUID 2	TOTAL FOULING RESISTANCE (1) HR FT2 F/BTU	Uo,(1) BTU/HR FT2 F
AIR	WATER	0.001	7.5 - 4.4
AIR	LIQUID (2) HYDROCARBONS	0.0005	5.9 - 0.6
AIR	GAS, 10 PSIG	0	2.1 - 0.6
AIR	GAS, 100 PSIG	0	2.4 - 1.9
AIR	GAS, 1000 PSIG	0	5.2 - 4.2

1. The total fouling resistance and the overall heat transfer coefficient are based on the total outside tube area.

2. Viscosity is 0.2 to 10.0 cP.

For a two pass exchanger

$$CLMTD = 0.6 (CLMTD1) + 0.4 (LMTD)$$
 (94)

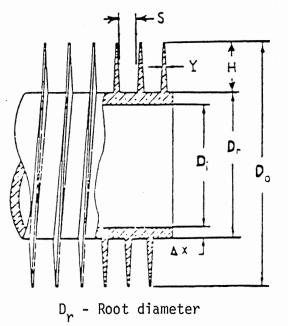
$$F_{t} = \frac{CLMTD}{LMTD}$$
(95)

When the number of tube passes is greater than or equal to three, the configuration correction factor is equal to 1.0.

C.6. Calculation of Geometrical Parameters

The basic geometrical parameters for high finned tubes are shown in Figure 16. The root diameter is equal to the bare tube outside diameter. The total external area/ft of fintube in sq. ft/ft (APF) is found from the following equations

$$A_{\text{root}} = \pi D_{r}$$
(96)


 $D_0 = D_r + 2 * H$ (97)

 $A_{f1} = \pi (D_0^2 - D_r^2)/2.0$ (98)

$$A_{f2} = N_f * A_{f1} \tag{99}$$

 $A_{r1} = (1 - N_f * Y) * A_{root}$ (100)

 $A_{f3} = (\pi N_f Y D_0)/2$ (101)

 D_0 - Diameter over fins

 $\tilde{D_i}$ - Inside diameter at finned section

 ${\boldsymbol \bigtriangleup} x$ - Wall thickness of finned section

Y - Mean fin thickness

- H Height of fin
- S Space between fins

$$APF = (A_{f2} + A_{r1} + A_{f3})/12.0$$
(102)

where

 D_0 = diameter over fins, in. D_r = root diameter of finned section, in. H = height of fins, in. Y = mean fin thickness, in. N_f = number of fins per inch

Next, the area per sq. ft of bundle face area per row is calculated in sq. ft/sq. ft (APSFPR).

$$APSFPR = APF * (12.0/p)$$
 (103)

where

P = tube pitch, in.

The last geometrical quantity required is the area ratio of fin tube compared to the exterior area of a bare tube (AR).

$$AR = (A_{f2} + A_{r1} + A_{f3}/12.0) / (A_{root}/12.0)$$
(104)

C.7. Calculation of Overall Heat Transfer

Coefficient, Un

The overall heat transfer coefficient is calculated from the following equation.

$$\frac{1}{U_{o}} = \frac{1}{h_{air}} + R_{fa} + R_{fin} + \frac{\Delta x}{k_{w}} \frac{A_{o}}{A_{m}} + (R_{fi} + \frac{1}{h_{i}}) \frac{A_{o}}{A_{i}}$$
(105)

 h_{air} = air-side individual heat transfer coefficient

 R_{fo} = the air-side fouling resistance

 R_{fin} = the fin resistance

 Δx = the wall thickness

 k_w = the bare tube metal thermal conductivity

 A_0' = the outside tube area

 A_m ' = the mean outside tube area

 R_{fi} = the tube side fouling factor

 R_i = the tube side heat transfer coefficient

 A_i' = the inside tube area

C.8. Individual Heat Transfer Coefficents

The tube side heat transfer coefficient is calculated according to the method given in Section A.7.

The air-side heat transfer is based on methods given by Bell (4) and modified by Gianolo and Cuti (7). The equation used to calculate the airside coefficient depends on the type of draft (forced or induced).

$$Re = \frac{(D_{r}/12.0) \rho_{a} V_{a}}{\mu_{a} (3600)}$$
(106)

where

Re = Reynolds number D_r = root diameter, in. ρ_a = density of air, lb/ft³ V_a = air velocity, ft/sec μ_a = viscosity of air, lb/ft hr

The air velocity is calculated by the following equations.

The air velocity is calculated by the following equations.

$$A_{rfa1} = \{(p - D_0)/12.0\} * L * (\frac{N_t}{N_R} - 1.0)$$
(107)

$$A_{rfa2} = 2 * ((H * S * N_f)/12.0 * L * (N_t/N_R)$$
(108)

$$Air_{far} = A_{rfa1} + A_{rfa2}$$
(109)

$$V_{a} = (w/\rho_{a})/Air_{far}$$
(110)

where

p = tube pitch, in. D_0 = diameter over fins, in. L = length of the exchanger, ft. N_t = total number of tubes N_R = total number of rows H = height of fin, in. S = space between fins, in. N_f = number of fins per inch ρ_a = density of air, lb/ft³ w = air mass flow rate, lb/fr

The Prandtl number is then calculated.

.

$$\Pr = \frac{c_{pa}^{\mu}}{k_{a}}$$
(111)

Finally the air-side heat transfer coefficient for forced draft is

$$\frac{h_{air} k_a}{(D_r/12.0)} = 0.134 \text{ Re}^{0.681} \text{ Pr}^{1/3} (H/S)^{-0.2}$$

$$(1 + V/11811.02 * N_R^2)^{-0.14} (Y/S)^{-0.1143} (112)$$

$$k_a$$
 = air-side thermal conductivity, Btu/ft hr°F

 D_r = root diameter, in.

Re = Reynolds number

Pr = Prandt1 number

S = space between fins, in.

V = velocity of the fluid, ft/hr

 N_R = number of tube rows

Y = mean fin thickness, in.

The equation used for induced draft is calculated from the following equation.

$$\frac{h_{air} k_a}{D_r} = 0.287 \text{ Re}^{0.685} \text{ Pr}^{1/3} \text{ AR}^{-0.311} (N_R/6)^{-0.138}$$
(113)

where

AR = is the area ratio of fin tube compared to the exterior

area of bare tube, ft^2/ft

 N_R = number of tube rows

C.9. Fin Resistance and Tube Area
Calculations,
$$R_{fin}$$
, A_i , A_o , and A_m

The fin resistance, R_{fin} , is calculated by the following method. The fin resistance is a function of the outside heat transfer coefficient and the fouling resistance.

$$m = \left(\frac{H}{12.0}\right) \frac{\sqrt{2}}{\left(\frac{1}{h_{air}} + R_{fa}\right) k_{f}\left(\frac{Y}{12.0}\right)}$$
(114)

$$n_{a} = \frac{1}{1 + \frac{m^{2}}{3} \sqrt{D_{o}}}$$
(115)

$$R_{fin} = \begin{bmatrix} \frac{1 - n_a}{A_{root}} \end{bmatrix} \left(\frac{1}{h_{air}} + R_{fa} \right)$$
(116)
$$\frac{1}{APF} + n_a$$

where

H = fin height, in. D₀ = diameter over fins, in. D_r = root diameter of finned section, in. h_{air} = air-side heat transfer coefficient, Btu/ft² hr°R R_{fa} = air-side fouling factor, ft² hr°R/Btu k_f = fin metal thermal conductivity, Btu/ft hr°R Y = mean fin thickness, in. APF = quantities defined in Section C.6, ft²/ft The outside tube area, A_0 ', is calculated from the following equation.

$$A_{o}' = APF + \left(\frac{A_{root}}{12.0}\right) * (1 - Y * N_{f})$$
(117)

where

Y = mean fin thickness, in.

 N_f = number of fins per inch.

The total external area per foot of fin tube is calculated in section C.6. The mean outside tube area is calculated from the following equation.

$$A_{\rm m}' = (\pi D_{\rm r}/12.0 + \pi di/12.0)/2.0$$
(118)

where

 D_r = root diameter, inches d_i = inside diameter, inches

The inside tube area is calculated by;

$$A_{i}' = \pi (d_{i}/12.0)$$
(119)

C.10. Pressure Drop Calculations

The tube side pressure drop is calculated according to the method given in section A.10.

The airside pressure drop is calculated using the following equations.

$$\Delta P = \frac{f_r N_R \rho_a V_a^2}{[g_c * 144]}$$
(120)

 f_r = is the air-side friction factor N_R = is the number of tube rows ρ_a = is the air density, lb/ft^3 V_a = is the velocity, ft/sec g_c = 32.174 lb-ft/s²-lbf Δp = pressure drop, psi

The air-side friction factor is calculated by the methods given by Robinson and Briggs (12). The friction factor for a triangular layout is:

$$f_{r} = 18.93 \left(\frac{\frac{D_{r}}{12.0} \rho_{a} V_{a}}{\mu_{a}}\right)^{-0.316} * \left(\frac{p}{D_{r}}\right)^{-0.927}$$
(121)

where

$$\begin{split} D_r &= \text{root diameter, in.} \\ \rho_a &= \text{density of air, lb/ft}^3 \\ \mu_a &= \text{viscosity of air, lb/ft hr} \\ V_a &= \text{velocity as defined in equation (110), ft/hr} \\ p &= \text{tube pitch , in.} \end{split}$$

For tubes laid out in rotated square arrangements, the friction factor is

$$f_{r} = 18.93 \left(\frac{\left(\frac{D_{r}}{12.0}\right)^{\rho_{a}} V_{a}}{\mu_{a}}\right)^{-0.316} \left(\frac{p}{D_{r}}\right)^{-0.927} \left(\frac{p}{p_{1}}\right)^{0.52}$$
(122)

 p_1 = is the longitudinal pitch between centers of adjacent tubes in different rows measured along the diagonal, p_1 = p/0.7071

The pressure drop due to entrance effects is given by the following equation.

$$\Delta P_{e} = \frac{(AVFF)^{2} \rho_{a}}{2 g_{c} (144)}$$
(123)

where

AVFF = air velocity at fan face, ft/sec ρ_a = density, lb/ft³ g_c = 32.174 lb-ft/lbf-sec²

This quantity is calculated after the horse power, number of fans, and fan diameters. Then to get the total pressure drop the pressure drop due to entrance effects is added to the pressure drop found in equation (120) and the horsepower is recalculated.

C.11. Calculation of Heat Exchanger Geometry

First the face area, F_a , of the exchanger is calculated using APSFPR factor calculated in the section C.6. The face area is found from the following equation.

$$F_{a} = \frac{A_{o}}{N_{R} \text{ APSFPR}}$$
(124)

 N_R = the number of tube rows

The bay width is calculated using the following equation.

Width =
$$F_a/L$$
 (125)

where

L = length of the exchanger, ft

The tube count for an air-cooled exchanger is calculated from the following.

$$N_{t} = \frac{A_{o}}{(APF) L}$$
(126)

C.12. Calculation of Fan Power Requirements And Estimation of Number of Fans

The fan power requirements are calculated using the following equations.

$$BHP = \frac{\Delta P * w}{(eff) \rho_{a} (13750.0)}$$
(127)

where

BHP = the fan power requirements, hp ΔP = the total fan pressure drop, psi ρ_a = the air density, lb/ft³ w = the air mass flow rate, lb/hr

eff = the fractional fan efficiency

The number of fans required can be estimated by dividing the horse power requirements by 25.

C.13. Calculation of Fan Diameter

The fan diameter was determined by the method given in the GPSA Engineering Data Book. To calculate the fan diameter first the fan area/fan (FAPF) must be calculated.

$$FAPF = \frac{0.4 F_a}{(number of fans)}$$
(128)

Then the fan diameter is calculated.

Fan Diameter =
$$\sqrt{FAPF/(\frac{\pi}{4})}$$
 (129)

C.14. Calculation of Air Volume and Velocity

The air volume per fan (AVPF) is calculated from the following equation.

$$AVPF = \frac{W}{(number of fans) \rho_a}$$
(130)

The air velocity at the fan face (AVFF) is

$$AVFF = \frac{w}{(number of fans) (\rho_a) (\frac{\pi}{4}) (fan diameter)^2}$$
(131)

The air velocity at the tube face (AVTF) is

$$AVTF = w/\rho_a F_a \tag{132}$$

C.15. Procedure for Air-Cooled Heat

Exchanger Calculations

The procedure given starts with a step for approximating airtemperature rise. After the air outlet temperature has been determined, the corrected log mean temperature difference is calculated. A typical overall heat transfer coefficient is used to approximate the heat transfer area required. Then an overall heat transfer coefficient is calculated. If the heat transfer coefficient is not the same as guessed, then the procedure is repeated.

CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

The purpose of this study was to modify and document a preliminary heat exchanger design simulator and to write a user's manual for this simulator. HEXSIM is designed to give a preliminary estimate of the size and configuration of a shell and tube and air-cooled heat exchanger for sensible heat transfer. HEXSIM can be used as a useful teaching tool for senior level design students and returning graduate students in order to give them a feel for the size and geometry of a heat exchanger.

From the work on HEXSIM, the following recommendations are made as guidelines for future work:

- The simulator should be expanded to handle cases where there is a phase change, i.e. condensers and boilers.
- 2. The accuracy of the air-cooled heat exchanger method should be checked by testing the results obtained using HEXSIM against that actually built. If the current method is unsatisfactory, it should be changed to another method available in the open literature.

98

BIBLIOGRAPHY

- Bell, K. J., in Schlunder, E. U., ed., <u>Heat Exchanger Design</u> <u>Handbook</u>, Vol. 3, Sec. 3.1.4, <u>Hemisphere Publ. Corp.</u>, <u>Washington</u>, 1983.
- Bell, K. J., "Exchanger Design Based on the Delaware Research Program", <u>Petro/Chem Engineer</u>, 32, Oct. 1969, pp. c-26 - c-40c.
- Bell, K. J., "Final Report of the Cooperative Research Program on Shell and Tube Exchangers", Bulletin No. 5, University of Delaware Experiment Station, Newark, Delaware, 1963.
- 4. Bell, K. J., Process Heat Transfer, class notes at Oklahoma State University, Unpublished, 1984.
- 5. Bowman, R. A., Mueller, A. C., and Nagle, W. M., "Mean Temperature Difference in Design", Journal of Heat Transfer, 1940, p. 283.
- Engineering Data Book, Gas Processors Suppliers Association, Tulsa, 1972.
- 7. Gianolio, E., and Cuti, F., "Heat Transfer Coefficients and Pressure Drop for Air Coolers with Different Number of Rows Under Forced Draft and Induced Draft", <u>Heat Transfer</u> Engineering, Vol. 3, No. 1, July - September 1981, p. 38.
- Leesley, M. E., ed., <u>Computer-Aided Process Plant Design</u>, Gulf Publishing Company, Houston, 1982.
- Peterson, J. N., Chen, C. C., and Evans, L. B., "Computer Programs for Chemical Engineers: 1978", <u>Chemical Engineering</u>, June-August, 1978.
- Phadke, P. S., "Determining Tube Counts for Shell and Tube Exchangers", Chemical Engineering, p. 65, September 3, 1984.
- Pigorini, A., De Pascale, T., and Milanesi, F., "Program Simplifies CLMTD Calculations", <u>Hydrocarbon Processing</u>, November 1982, p. 205.
- 12. Robinson, K. K., and Briggs, D. E., <u>Chemical Engineering Symposium</u> Series, No. 64, "Heat Transfer - Los Angeles", <u>62</u>, 177 (1967).
- <u>Tubular Exchanger Manufacturers Association</u>, Standard, 6th Ed., New York, 1978.

APPENDIX A

HEXSIM: A PRELIMINARY SHELL AND TUBE AND AIR-COOLED HEAT EXCHANGER DESIGN/RATING SIMULATOR

USER'S MANUAL

.

100

.

TABLE OF CONTENTS

•

•

.

Chapter	Page
Ι.	INTRODUCTION
	 A. Overview
II.	HEXSIM Program Input
	 A. Overview
III.	Using HEXSIM
	 A. Overview
τv	Comments
IV.	Program Limitations and Accuracy182A. Overview.182B. LMTD,FT Method.182C. Tube Side Method.183D. Delaware Method.183E. Air-Cooler Methods.183

LIST OF TABLES

-

Table	Page
I.	File Allocation Dialogue
II.	Units Input Dialogue
III.	Sample Input For Preliminary Calculations
IV.	TEMA Standards for Shell to Baffle Clearances
۷.	Sample Input Session for Delaware Calculations
VI.	Sample Input Session for Air-Cooled Exchangers 136
VII.	Preliminary Calculation Entry/Revision Commands 139
VIII.	Delaware Calculation Entry/Revision Commands
IX.	Air-Cooled Heat Exchanger Entry/Revision Commands 142
Χ.	Miscellanous Entry/Revision Commands
XI.	Alphabetical Listing of Entry/Revision Commands 145
XII.	Preliminary Calculation Output
XIII.	Delaware Calculation Output Including Delaware Parameter Output
XIV.	Delaware Calculation Output Without Detailed Delaware Parameter Output
XV.	Typical Film Heat Transfer Coefficients For Shell and Tube Exchangers
XVI.	Air-Cooled Heat Exchanger Output
XVII.	Air-Cooled Heat Exchanger Tube Length Calculation Output 168
XVIII.	A Comparison of Air-Cooled and Shell and Tube Exchangers 172
XIX.	Dialogue For Correction of Low Log Mean Temperature Difference Correction Factor
XX.	Typical Combinations of Number of Tube Rows and Design Face Velocities in Air-Cooled Heat Exchangers

LIST OF FIGURES

Figure Page		
1.	Logic Diagram For HEXSIM	
2.	Tube Arrangement	
3.	Tube Bundle Construction	
4.	Geometrical Parameters for High Finned Tubes	
5.	Type of Draft for Air-Cooler	
6.	Estimation of Required Number of Shells in Series	

CHAPTER I

INTRODUCTION

A. Overview

The HEXSIM program is designed to fill the gap between hand calculations and the massive detailed heat exchanger design simulators. Many times for preliminary design purposes a general idea of the size and configuration of the heat exchanger is all that is required. This would take several hours by hand, but is accomplished very quickly by computer. The HEXSIM program was designed to provide basic information on the size and configuration of shell and tube and air-cooled heat exchangers for sensible heat transfer. HEXSIM is only for Newtonian fluids. HEXSIM is interactive to allow the user to easily change the input parameters from the screen. HEXSIM has the following capabilities:

- 1. Calculates and checks heat balance
- Calculates log mean temperature difference and correction factor
- 3. Calculates overall area
- 4. For a given area feasible inside shell diameters, outer tube bundle limits, tube lengths, tube counts, and length to diameter ratios are calculated

Calculates individual and overall heat transfer coefficients
 Calculates pressure drop on both the tube side and shell side

104

- 7. Calculates bay width and length for air-coolers
- Calculates number, diameter, and power requirements of each fan
- 9. Calculates air volume per fan
- Calculates average air temperature and pressure at exit of each exchanger
- 11. Calculates air velocity at fan face and tube face

12. Allows modification of the problem or calculational conditions Most of the operations can be accomplished using one or two simple mnemonic commands available in the EDIT section.

B. Program Data Requirements

There are two options available in the shell and tube exchanger calculations. The first is a preliminary calculation, and the second is the more detailed Delaware method (2,3,5) of calculation for shell side analysis. The data required for the preliminary calculations are the following.

1. Tube side and shell side mass flow rates

2. All inlet and outlet temperatures

- 3. The specific heat of the tube side and shell side fluids
- 4. Number of tube and shell passes
- 5. Tube outside diameter, inside diameter, and pitch
- 6. Thermal conductivity of tube metal

7. Tube arrangement

8. Type of tube bundle construction

9. Estimated individual heat transfer coefficients

10. Estimated fouling factor for both tube and shell side

The additional data required for the Delaware calculations are as follows.

1. The fluid density and phase of both shell and tube side fluids

- 2. Viscosity at the wall of the tube side and shell side fluids
- 3. Bulk viscosity of the tube side and shell side fluids
- 4. Thermal conductivity of each fluid
- 5. Baffle spacing
- 6. Percent baffle cut

7. Length of baffle cut

8. Tube to baffle clearance

9. Shell to baffle clearance

10. Number of sealing strips

11. Number of pass partition lanes

12. Width of pass partition lanes

- 13. Number of tubes
- 14. Shell diameter
- 15. Outer tube limit
- 16. Tube length

Mnemonic commands can then be used to adjust the problem parameters to any desired configuration.

The data required for air-cooled heat exchangers are the following.

1. Tube side mass flow rates

- 2. Inlet and outlet temperatures for the tube side
- 3. The specific heat, density, viscosity, and thermal

conductivity of the tube side fluid

4. Number of tube passes

5. Tube outside diameter, inside diameter, and pitch

6. Thermal conductivity of tube metal

7. Tube arrangement

8. Tube side and air side fouling factor

9. Fin height and thickness

10. Mean fin thickness

11. Number of fins per inch

12. Fin thermal conductivity

13. Altitude of the exchanger location

14. Number of tube rows

15. Inlet air temperature

16. Type of draft

17. Tube length

18. Number, diameter, and driver efficiency per fan

19. Type of fan draft

Mnemonic commands can then be used to adjust the parameters of the problem.

C. Methods of Calculation

C.1. Shell and Tube Exchangers

. .

Standard heat transfer equations were used to calculate the overall heat transfer coefficient, log mean temperature difference, heat balance, and the overall area. The shell diameter, outer tube limit, and length to diameter ratio's were determined using the method outlined by Bell (1,4). The shell side heat transfer coefficient was obtained using the Delaware method. The Delaware method is the solution of shell side flow pressure drop and heat transfer coefficient by stream analysis method (2,3,5). The tube side heat transfer coefficient is calculated using the Hausen equation for laminar flow (Re<2000) and the Sieder-Tate equation for turbulent flow (Re>10,000). Interpolation is used in the transition region (2000<Re<10,000).

C.2. Air-Cooled Exchangers

The fin dimensions and areas are calculated using methods given in Bell's notes (5). The heat duty and log mean temperature difference are calculated using standard methods. The outlet air temperature, exchanger area, dimensions, number of tubes, number and power of each fan are calculated using methods given in the GPSA manual (7). The tube side heat transfer coefficient and pressure drop were calculated using the same methods as for the shell and tube exchangers. The air side heat transfer coefficient and the pressure drop were calculated using the methods given in the GPSA manual (7).

D. Overall Program Flow

The input/calculational procedure followed by the program is shown in Figure 1. The first step is to design the problem to be solved. The inputs for the designated type of problem (i.e. air-cooled or shell and tube exchangers) are then requested. The designated heat exchanger design calculation is performed. Stream temperatures, properties, etc. can be changed in the EDIT sections. The program is equipped to store and retrieve information from previous runs.

E. Summary

A brief discription of the capabilities of HEXSIM has been given. The details of using the program-data input, use of EDIT commands,

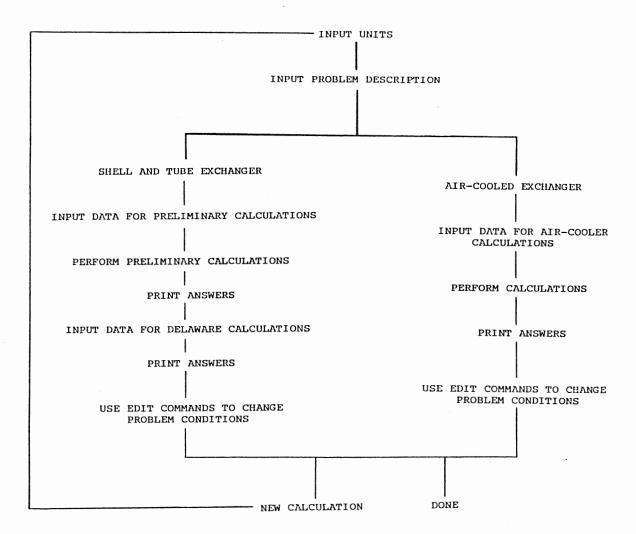


Figure 1. Logic Diagram for HEXSIM

• .

109

.

CHAPTER II

HEXSIM PROGRAM INPUT

A. Overview

There are basically two different modes which can be used to input data in HEXSIM. These are the basic problem input data and the EDIT section. This chapter reviews both forms of data input. If fractional inputs are required, they must have a decimal point. If an input must be an interger, this will be indicated.

Samples for each input are provided for your guidance. All entries are terminated by a carriage return.

B. Basic Problem Input

The basic problem input data are required to initiate HEXSIM calculations or to change from the current system to a completely different system. The basic input data requirements depend to a certain extent on the type of calculation to be performed. Only the inputs required for a given calculation type are requested; therefore there is no set input for all problems. The following sections give the inputs required for each general type of problem.

C. Inputs

HEXSIM first requests information about the nature of the problem by printing:

111

HEXSIM CLIST

TO RUN HEXSIM ON IBM/TSO SYSTEMS INPUT/OUTPUT FILES NEED TO BE ALLOCATED WITH THEIR DD STATEMENTS, THIS CLIST (COMMAND LIST) ALLOCATES THOSE FILES INTERACTIVELY.

RUNNING HEXSIM VERSION 1.0 INTERACTIVELY

DO YOU NEED TO ALLOCATE I/O FILES FOR THIS RUN (Y OR N):

Respond with either a Y for yes or an N for no. If you do not plan to save the input data (file) from this run answer N for no. If you think you would like to save data or create a file answer Y for yes.

If you answer yes the CLIST execution will continue by printing the following statement.

ALLOCATING DATAFILES

WAS THE I/O FILE PREVIOUSLY ALLOCATED (OLD FILE) ? (Y OR N):

Respond with a Y or N. If you have previously allocated a file then answer Y for yes if you have not allocated a file answer N for no. If you answered yes the following will be printed.

ALLOCATING FILE AND FILE UNIT NUMBER

ENTER FILE NUMBER (NO EXTENSION):

Respond with the file name.

ENTER FILE UNIT NUMBER (TWO DIGITS 08-99):

Respond with a two digit number between 08 and 99. This is the file unit number for this problem. When the file has been created the following message will be printed.

ALLOCATING DATAFILE * U11111A.FILENAME * AS DD FILE * FT08F001 * (SHR)

CALLING THE PROGRAM HEXSIM

If you answered no to the question "WAS THE I/O FILE PREVIOUSLY ALLOCATED (OLD FILE)?", it will be assumed that the file to be allocated

is new. Thus a request for the file name and unit number will be made. The following will then be printed.

ALLOCATING DATAFILE * U11111A.FILENAME* AS DD FILE* (NEW) CALLING THE PROGRAM HEXSIM

A sample input session is shown in Table I. Next the program HEXSIM is entered. HEXSIM then prints the following.

IS THIS A RESTART: YES OR NO?

Respond with either a Y or N. If you have saved a file using the FL feature in the EDIT command system, you can restart the calculations from that file without going through the normal input dialogue by answering Y. If you respond with a Y, HEXSIM will ask for a logical unit number by printing:

ENTER LOGIC UNIT #?

Respond with the value that was entered for the FL command which was used to create the file. This number must also agree with file number allocated. HEXSIM will then go directly to the EDIT command system. Note: Use of this command and the exact inputs will be installation dependent.

DO YOU WANT TO CHANGE THE UNIT BASIS: YES OR NO?

Respond with a Y or N. If you enter a Y, HEXSIM will request the new unit basis according to the standard units dialogue. If you respond with an N, HEXSIM will proceed directly to the EDIT segment of the program.

If you responded to the RESTART question with an N, you will enter the normal problem input system and HEXSIM will request the problem units system by printing:

ENTER TEMPERATURE UNITS: 0-F,1-R,2-C,3-K?

113

TABLE I

FILE ALLOCATION DIALOGUE

HEXSIM CLIST

TO RUN HEXSIM ON THE IBM/TSO SYSTEMS INPUT/OUTPUT FILES NEED TO BE ALLOCATED WITH THEIR DD STATEMENTS, THIS CLIST (COMMAND LIST) ALLOCATES THOSE FILES INTERACTIVELY.

RUNNING HEXSIM VERSION 1.0 INTERACTIVELY

DO YOU NEED TO ALLOCATE I/O FILES FOR THIS RUN ? (Y OR N): Y

ALLOCATING DATAFILES

WAS THE I/O FILE PREVIOUSLY ALLOCATED (OLD FILE)? (Y OR N): N

ALLOCATING FILE AND FILE UNIT NUMBER

ENTER FILE NAME (NO EXTENSION): TEST

.

ENTER FILE UNIT NUMBER (TWO DIGITS 08-99): 08

ALLOCATING DATAFILE * U11111A.TEST * AS DD FILE * FT08F001 * (NEW)

CALLING THE PROGRAM HEXSIM

Respond with 0, 1, 2, or 3 to indicate your desired input/output units for temperature. Enter an integer only for all units input. ENTER PRESSURE UNITS: 0-PSIA,1-ATM-2-KPA,3-BAR,4-MPA,5-ATA?

Respond with an integer (0, 1, 2, 3, 4, or 5) to define your pressure units. Note: ATA means absolute technical atmosphere, kg/cm2. ENTER VISCOSITY UNITS: O-LB/FT-HR,1-CP,2-KG/M-HR?

Respond with 0, 1, or 2 to indicate viscosity units in which to work.

ENTER UNITS FOR CP, TC, ECT: 0-US, 1-METRIC, 2-SI?

Respond with 0, 1, or 2 to indicate which system of units in which you would like to work.

IS THIS AN AIR-COOLED OR SHELL & TUBE EXCHANGER; AC OR ST?

If design of an air-cooled heat exchanger is to be performed enter AC or if a shell and tube exchanger design is desired enter a ST.

Sample input dialogue is given in Table II.

D. Shell and Tube Exchanger Input

GO THRU PRELIMINARY DESIGN CALC: YES OR NO?

Respond with either Y for yes or N for no. A yes response will start the requests for the data required for preliminary calculations. The preliminary calculations result in a heat balance within 1%, overall heat transfer coefficient from estimated individual coefficients, log mean temperature difference, area per shell, and a list of acceptable inside shell diameters, outer tube limits, number of tubes, length of shell, length of tubes, and length to diameter ratios. A no response will take you directly to the Delaware calculations. Note: It is preferable to first run a preliminary calculation before proceeding to

TABLE II

UNITS INPUT DIALOGUE

IS THIS A RESTART: YES OR NO? O

ENTER TEMPERATURE UNITS:0-F,1-R,2-C,3-K? 0

ENTER PRESSURE UNITS: 0-PSIA, 1-ATM, 2-KPA, 3-BAR, 4-MPA, 5-ATA? 0

ENTER VISCOSITY UNITS:0-LB/FT-HR,1-CP,2-KG/M-HR? 0

ENTER UNITS FOR CP,TC,ECT:0-US,1-METRIC,2-SI? 0

IS THIS AN AIR-COOLED OR SHELL & TUBE EXCHANGER; AC OR ST? ST

the Delaware calculations in order to get an estimate of shell diameter, tube length, etc.

D.1. Preliminary Shell and Tube

Calculation Input

ENTER PROBLEM DESCRIPTION?

Any valid keyboard character can be used. Up to 60 characters will be retained for subsequent problem identification. The summary sheets will print the title in 3 lines with 24 characters on each of the first two lines and 12 characters on the third line.

ENTER TUBE MASS FLOW RATE, LB/HR?

Respond with the mass flow rate of the fluid in the tube side of the exchanger. Note: For the purpose of explanantion U.S. units are used in this section.

ENTER TUBE INLET TEMPERATURE, DEG F?

Respond with the inlet temperature to the tube side in degrees Fahrenheit.

ENTER TUBE OUTLET TEMPERATURE, DEG F?

Respond with the outlet temperature from the tube side.

ENTER TUBE SPECIFIC HEAT, BTU/LB-R?

Respond with the specific heat of the fluid on the tube side.

ENTER SHLL MASS FLOW RATE, LB/HR?

Respond with the mass flow rate of the fluid in the shell side of the exchanger.

ENTER SHLL INLET TEMP, DEG F?

Respond with the inlet temperature to the shell side.

ENTER SHLL OUTLET TEMP, DEG F?

Respond with the outlet temperature from the shell side.

ENTER SHLL SPECIFIC HEAT, BTU/LB-R?

Respond with the specific heat of the shell side fluid.

ENTER NUMBER OF SHLL PASSES?

Respond with the number of shells in series. This number must be an integer.

ENTER NUMBER OF TUBE PASSES?

Respond with the total number of tube passes. This number must be an integer. HEXSIM accepts only 1, 2, 4, 6, or 8 tube passes per shell. The number entered us number of tube passes per shell multiplied by the number of shells.

ENTER TUBE OD, IN?

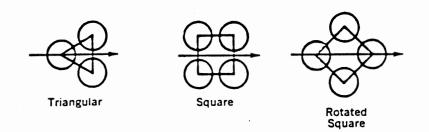
Respond with the tube outside diameter in inches.

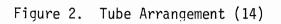
ENTER TUBE ID, IN?

Respond with the tube inside diameter.

ENTER TUBE PITCH, IN?

Respond with the tube pitch. HEXSIM only accepts a pitch to diameter ratio of 1.25 or 1.3.


ENTER THERM COND OF TUBE METAL, BTU/HR-FT-R?


Respond with the thermal conductivity of the tube metal.

ENTER TUBE ARRANGEMENT: T-TRIANGULAR, S-INLINE SQUARE, R-ROTATED SQUARE?

Respond with T, S, or R for the tube arrangement. Figure 2 shows a drawing of these tube arrangements.

ENTER TYPE OF TUBE BUNDLE CONSTRUCTION: S-SPLIT BACKING RING,P-OUTSIDE PACKED FLOATING HEAD, U-U TUBE,T-PULL THRU FLOAT HEAD,F-FIXED TUBE SHEET?

.

Respond with S, P, U, T, or F for the type of exchanger construction type desired. Figure 3 shows these exchanger configurations.

ENTER ESTIMATED TUBE SIDE H, BTU/FT2-HR-R?

Respond with an estimated value for the tube side individual heat transfer coefficient. Guidelines for estimating individual heat transfer coefficients and fouling factors are given in Chapter III.

ENTER ESTIMATED SHLL SIDE H, BTU/FT2-HR-R?

Respond with an estimated value for the shell side individual heat transfer coefficient.

ENTER ESTIMATED TUBE SIDE FOULING FACTOR, (BTU/FT2-HR-R)**-1?

Respond with an estimated fouling factor for the tube side fluid. ENTER ESTIMATED SHLL SIDE FOULING FACTOR, (BTU/FT2-HR-R)**-1?

Respond with an estimated value for the shell side fouling factor.

ARE YOUR INPUT DATA ALL OK; YES OR NO?

If you respond with a Y for yes, the calculation will be performed and the summary sheet printed for the preliminary calculations. If you respond with N for no, HEXSIM will proceed to the EDIT mode. The EDIT session is started by asking the following.

ENTER NEXT COMMAND?

One of the responses from the EDIT section should be given.

A sample input session for the preliminary calculations is shown in Table III.

D.2. Delaware Calculation Inputs

GO THRU DELAWARE CALCS; YES OR NO?

120

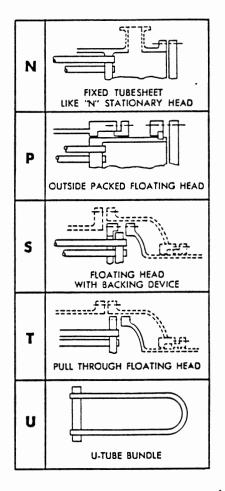


Figure 3. Tube Bundle Construction (5,14)

,

.

.

TABLE III

SAMPLE INPUT FOR PRELIMINARY CALCULATIONS

ENTER PROBLEM DESCRIPTION ? EXAMPLE ENTER TUBE MASS FLOW RATE, LB/HR? 465000. ENTER TUBE INLET TEMP, DEG F? 80. ENTER TUBE OUTLET TEMP, DEG F? 115. ENTER TUBE SPECIFIC HEAT, BTU/LB-R? 1.0 ENTER SHLL MASS FLOW RATE, LB/HR? 180000. ENTER SHLL INLET TEMP, DEG F? 235. ENTER SHLL OUTLET TEMP, DEG F? 100. ENTER SHLL SPECIFIC HEAT, BTU/LB-R? 0.667 ENTER NUMBER OF SHLL PASSES? 2 ENTER NUMBER OF TUBE PASSES? 4 ENTER TUBE OD, IN? 0.75 ENTER TUBE ID, IN? 0.68 ENTER TUBE PITCH, IN? 0.9375 ENTER THERM COND OF TUBE METAL, BTU/HR-FT-R? 26. ENTER TUBE ARRANGEMENT: T-TRIANGULAR, S-INLINE SQUARE, R-ROTATED SQUARE? T ENTER TYPE OF BUNDLE CONSTRUCTION: S-SPLIT BACKING RING, P-OUTSIDE PACKED FLOATING HEAD, U-U TUBE, T-PULL THRU FLOAT HEAD, F-FIXED TUBE SHEET? S ENTER ESTIMATED TUBE SIDE H, BTU/FT2-HR-R? 1000. ENTER ESTIMATED SHLL SIDE H, BTU/FT2-HR-R? 350. ENTER ESTIMATED TUBE SIDE FOULING FACTOR, (BTU/FT2-HR-R)**-1? .001 ENTER ESTIMATED SHLL SIDE FOULING FACTOR, (BTU/FT2-HR-R)**-1? .005 ARE YOUR DATA ALL OK; YES OR NO? Y

If you respond with N for no the program will ask "ENTER NEXT COMMAND?". If you respond with Y for yes HEXSIM will proceed with the Delaware calculations. The Delaware calculations checks the heat balance, calculates individual and overall heat transfer coefficients, pressure drop on both shell and tube side, and total area. The default values used in this section are for class R construction. Class R is for petroleum refinery use as given in TEMA standards (14).

DO YOU WANT TO ENTER MASS FLOWS, TEMPS, ETC; YES OR NO?

If you went through the preliminary calculations, it is not necessary to re-enter mass flow rates, temperatures, ect., but if you wish to make changes they can be modified at this point. If you respond with Y for yes, HEXSIM will repeat the input questions for preliminary calculations shown in Table III. The preliminary calculations will not be repeated. If you respond with N, HEXSIM will proceed to ask for the data necessary for the Delaware calculations.

DO YOU WANT THE OUTLET TEMPERATURES THE SAME; YES OR NO?

If you want to keep the outlet temperatures the same as what you entered then respond with Y for yes. If you want the outlet temperatures adjusted to correspond to the length specified respond with N for no.

ENTER PHASE OF SHLL SIDE FLUID; 1-LIQ OR 2-GAS?

Respond with a 1 or 2 for the phase of the shell side fluid; where a 1 is for a liquid and 2 is for a gas.

ENTER PHASE OF TUBE SIDE FLUID; 1-LIQ OR 2-GAS?

Respond with a 1 or 2 for the phase of the tube side fluid; where 1 is for a liquid and 2 is for a gas.

ENTER MAX TUBE SIDE PRESSURE DROP, PSI?

Respond with the maximum tube side pressure drop. The default value for the maximum tube side pressure drop is 10 psi.

ENTER MAX SHLL SIDE PRESSURE DROP, PSI?

Respond with the maximum shell side pressure drop. The default value for the maximum shell side pressure drop is 10 psi.

ENTER TUBE SIDE FLUID DENSITY, LB/FT3?

Respond with the density of the tube side fluid.

ENTER SHLL SIDE FLUID DENSITY, LB/FT3?

Respond with the density of the shell side fluid.

ENTER TUBE SIDE FLUID VISCOSITY AT WALL, LB/FT-HR?

Respond with the tube side fluid viscosity at the tube wall.

ENTER SHLL SIDE FLUID VISCOSITY AT WALL, LB/FT-HR?

Respond with the shell side fluid viscosity at the wall.

ENTER TUBE SIDE FLUID BULK VISCOSITY, LB/FT-HR?

Respond with the bulk viscosity of the tube side fluid.

ENTER SHLL SIDE FLUID BULK VISCOSITY, LB/FT-HR?

Respond with the bulk viscosity of the shell side fluid.

ENTER TUBE SIDE FLUID THERMAL CONDUCTIVITY, BTU/HR-FT-R?

Respond with the thermal conductivity of the tube side fluid.

ENTER SHLL SIDE FLUID THERMAL CONDUCTIVITY, BTU/HR-FT-R?

Respond with the thermal conductivity of the shell fluid.

ENTER BAFFLE SPACING, IN?

Respond with the baffle spacing in the interior of the exchanger. The default value for the baffle spacing is one half the inside shell diameter for a liquid and equal to the shell diameter for a gas. ENTER INLET BAFFLE SPACING, IN? Respond with the baffle spacing at the inlet of the exchanger. The default value for the inlet baffle spacing is one half the inside shell diameter for a liquid and equal to the shell diameter for a gas.

ENTER OUTLET BAFFLE SPACING, IN?

Respond with the baffle spacing at the outlet of the exchanger. The default value for the outlet baffle spacing is one half the inside shell diameter for a liquid and equal to the shell diameter for a gas.

ENTER % BAFFLE CUT?

Respond with the baffle cut expressed in percent. The percent baffle cut is equal to the baffle cut distance from baffle tip to shell inside diameter per shell inside diameter times one hundred. The percent baffle cut should range from 9-49 %. If the length baffle cut is entered this value is calculated. The default value for the baffle cut is 25% for a liquid and 45% for a gas.

ENTER LENGTH BAFFLE CUT, IN?

Respond with the baffle cut distance from tip to shell inside diameter. This number is best estimated by deciding on a baffle cut (percent baffle cut/100) and multiplying this number by the shell inside diameter. If the percent baffle cut is specified then the length is calculated.

ENTER TUBE TO BAFFLE CLEARANCE, IN?

Respond with clearance between the tube and the baffle holes, where the clearance is the difference between the tube outside diameter and the tube holes cut in the baffle. TEMA class R (14) construction specifies a tube to baffle clearance of 1/32 inches where the maximum unsupported tube length does not exceed 36 inches and specifies a tube to baffle clearance of 1/64 inches otherwise. These values are default values but if extra tight construction is desired other values can be used.

ENTER SHLL TO BAFFLE CLEARANCE, IN?

Respond with the clearance between the baffle and the inside shell diameter where the clearance is the difference between the shell inside diameter and the outside diameter of the baffle. TEMA standards (14) for shell to baffle clearances given in Table IV. The values given in Table IV are default values.

ENTER NUMBER OF SEALING STRIPS/SIDE?

Respond with the number of sealing strips per side.

ENTER NUMBER OF PASS PARTITION LANES?

Respond with the number of pass partition lanes. A pass partition lane is a divider through the tube field parallel to the direction of the crossflow.

ENTER WIDTH OF PASS PARTITION LANES, IN?

Respond with the width of the pass partition lane.

ENTER NUMBER OF TUBES?

Respond with the total number of tubes in the exchanger.

ENTER SHLL DIAMETER, IN?

Respond with the inside shell diameter.

ENTER DIAMETER OF OUTER TUBE LIMIT, IN?

Respond with the diameter of outer tube limit.

ENTER TUBE LENGTH, FT?

Respond with the tube length.

DO YOU WANT INTERMEDIATE OUTPUT; YES OR NO?

	TAB	LE	I۷
--	-----	----	----

.

TEMA STANDARDS FOR SHELL TO BAFFLE CLEARANCES (5,14)

Di, in	Diametral shell-to-baffle clearance, in.
8-13	0.100*
14-17	0.125
18-23	0.150
24-39	0.175
40-54	0.225
55-60	0.300

*These values are for pipe shells; if rolled shells are used, add 0.125. Default values are for pipe shells.

.

.

If you respond with Y for yes, HEXSIM will print values for the Delaware parameters. If you respond with N, HEXSIM will not print the Delaware parameters.

A sample input session for the Delaware calculation is shown in Table V.

E. Air-Cooled Exchanger Input

ENTER PROBLEM DESCRIPTION?

Any valid keyboard character can be used. Up to 60 characters will be retained for subsequent problem identification. The summary sheets will print the title in three lines with 24 characters on each of the first two lines and 12 characters on the third.

ENTER TUBE MASS FLOW RATE, LB/HR?

Respond with the mass flow rate of the fluid in the tube side of the exchanger.

ENTER TUBE INLET TEMP, DEG F?

Respond with the inlet temperature to the tube side in degrees fahrenheit.

ENTER TUBE OUTLET TEMP, DEG F?

Respond with the outlet temperature from the tube side.

ENTER TUBE SPECIFIC HEAT, BTU/LB-R?

Respond with the specific heat of the tube side fluid.

ENTER TUBE SIDE FLUID DENSITY, LB/FT3?

Respond with the density of the tube side fluid.

ENTER TUBE SIDE FLUID VISCOSITY AT THE WALL, LB/FT-HR?

Respond with the tube side fluid viscosity at the tube wall. ENTER TUBE SIDE BULK VISCOSITY,LB/FT-HR?

TABLE V

SAMPLE INPUT SESSION FOR DELAWARE CALCULATIONS

DO YOU WANT ENTER MASS FLOW, TEMPS, ETC; YES OR NO? N DO YOU WANT THE OUTLET TEMPERATURES THE SAME; YES OR NO? N ENTER PHASE OF SHLL SIDE FLUID; 1-LIQ OR 2-GAS? 1 ENTER PHASE OF TUBE SIDE FLUID; 1-LIQ OR 2-GAS? 1 ENTER MAX TUBE SIDE PRESSURE DROP, PSI? 10.0 ENTER MAX SHLL SIDE PRESSURE DROP, PSI? 10.0 ENTER TUBE SIDE FLUID DENSITY, LB/FT3? 62. ENTER SHLL SIDE FLUID DENSITY, LB/FT3? 31.8 ENTER TUBE SIDE FLUID VISCOSITY AT WALL.LB/FT-HR? 1.6498 ENTER SHLL SIDE FLUID VISCOSITY AT WALL, LB/FT-HR? .344 ENTER TUBE SIDE BULK VISCOSITY, LB/FT-HR? 1.6828 ENTER SHLL SIDE BULK VISCOSITY, LB/FT-HR? 0.342 ENTER TUBE SIDE THERMAL CONDUCTIVITY, BTU/HR-FT-R? 0.364 ENTER SHLL SIDE THERMAL CONDUCTIVITY, BTU/HR-FT-R? 0.0685 ENTER BAFFLE SPACING, IN? 12. ENTER INLET BAFFLE SPACING, IN? 12. ENTER OUTLET BAFFLE SPACING, IN? 12. ENTER % BAFFLE CUT? 25. ENTER LENGTH TO BAFFLE CUT, IN? 5.25 ENTER TUBE TO BAFFLE CLEARANCE, IN? 0.03215 ENTER SHLL TO BAFFLE CLEARANCE, IN? 0.15 ENTER NUMBER OF SEALING STRIPS/SIDE? 2. ENTER NUMBER OF PASS PARTITION LANES? O ENTER WIDTH OF PASS PARTITION LANES? O

TABLE V (CONTINUED)

ENTER NUMBER OF TUBES? 342. ENTER SHLL DIAMETER, IN? 21. ENTER DIAMETER OF OUTER TUBE LIMIT, IN? 19.5 ENTER TUBE LENGTH, FT? 14.74 ARE YOUR INPUT ALL OK; YES OR NO? Y DO YOU WANT INTERMEDIATE OUTPUT; YES OR NO? Y Respond with the tube side fluid average viscosity.

ENTER TUBE SIDE FLUID THERMAL CONDUCTIVITY, BTU/HT-FT-R?

Respond with the thermal conductivity of the fluid in the tubes. ENTER NUMBER OF TUBE PASSES?

Respond with the number of tube passes. This number must be an integer.

ENTER TUBE OD, IN?

Respond with the tube outside diameter. Base tube diameters are usually 5/8 to 1 1/2 inches (7).

ENTER TUBE ID, IN?

Respond with the tube inside diameter.

ENTER TUBE PITCH, IN?

Respond with the tube pitch in inches. The tube pitch should be arranged such that the fin tips of adjacent tubes are touching or separated by 1/16 to 1/4 of an inch (7).

ENTER THERMAL CONDUCTIVITY OF TUBE METAL, BTU/HR-FT-R?

Respond with the thermal conductivity of the base tube metal. ENTER TUBE ARRANGEMENT; T-TRIANGULAR,S-INLINE SQUARE,R-ROTATED SQUARE?

Respond with T, S, or R for the tube arrangement. For air-cooled heat exchangers triangular layout is the most common arrangement (7). Inline-square arrangements are never used with high-finned tubes. It has been demonstrated that the air will tend to flow in the channels between the fin tips from the inlet to the tube bank exit. The net result is a very severe deterioration in the apparent heat transfer coefficient (5).

ENTER ESTIMATED TUBE SIDE FOULING FACTOR, (BTU/FT2-HR-R)**-1?

Respond with the tube side fouling factor. See Chapter III for guidelines.

ENTER AIR SIDE FOULING FACTOR (BTU/HR-FT2-R)**-1?

Respond with the air side fouling factor. The default value for the air-side fouling factor is 1×10^{-15} ((hr-ft²-R)/Btu).

ENTER FIN HEIGHT, IN?

Respond with the fin height in inches. Fin heights range from 1/2 to 1 inch. See Figure 4 for definition of geometerical parameters for high-finned tubes (5). The default value for the fin height is 0.625 inches.

ENTER MEAN FIN THICKNESS, IN?

Respond with the mean fin thickness. Fins are usually aluminum, with an average thickness of 0.012 to 0.02 inches. The default value for the fin thickness is 0.015 inches.

ENTER NUMBER OF FINS/IN?


Respond with the number of fins per inch. Fins are usually spaced from 7 to 11 per inch (7). The default value for the number of fins per inch is 10.0.

ENTER FIN THERMAL CONDUCTIVITY, BTU/HR-FT-R?

Respond with the fin thermal conductivity. The fins are typically made of aluminum, while the base tube is low carbon steel (5). The default value for the fin thermal conductivity is 119 Btu/hr ft°R for aluminum fins.

ENTER ALTITUDE, FT?

Respond with the altitude of the exchanger location. ENTER NUMBER OF TUBE ROWS?

 ${\rm D}_{\rm i}$ - Inside diameter of finned section

 ${\boldsymbol \bigtriangleup} x$ - Wall thickness of finned section

Y - Mean fin thickness

H - Height of fin

. -

S - Space between fins

Figure 4. Geometrical Parameters For High Finned Tubes (5)

Respond with the number of tube rows. The number of tube rows or bundle depth usually ranges from 3 to 8 rows with 4 rows being the most common (7). Bundles may be stacked, resulting in a total depth of up to 30 rows of tubes.

ENTER TUBE LENGTH, FT?

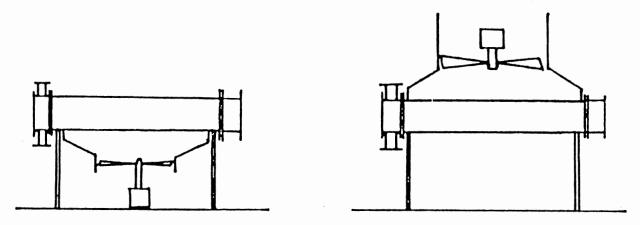
Respond with the desired tube length if known. If the tube length is not known press the carriage return, HEXSIM will then calculate the unit width for several standard tube lengths. The standard tube lengths are 8, 10, 12, 20, 24, and 30 feet.

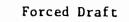
ENTER INLET AIR TEMPERATURE, DEG F?

Respond with the inlet air temperature. This air temperature is typically a temperature not exceeded more than 5% of the time during the hottest months of the year or the average daily maximum temperature for the hottest month of the year (12).

ENTER NUMBER OF FANS?

Respond with the number of fans desired. If the number of fans needed is not known HEXSIM will calculate the number of fans required.


ENTER FAN DRIVER EFFICIENCY, %?


Respond with the percent fan driver efficiency. The default value is 70%.

ENTER TYPE OF DRAFT; FORCED=F, INDUCED=I?

Respond with the type of fan draft desired. Both types are illustrated in Figure 5.

A sample input session for air-cooled heat exchangers is shown in Table VI.

Induced Draft

TABLE VI

.

SAMPLE INPUT SESSION FOR AIR-COOLED EXCHANGERS

ENTER PROBLEM DESCRIPTION ? EXAMPLE ENTER TUBE MASS FLOW RATE, LB/HR? 38000. ENTER TUBE INLET TEMP, DEG F? 170. ENTER TUBE OUTLET TEMP, DEG F? 124. ENTER TUBE SPECIFIC HEAT, BTU/LB-R? .609 ENTER TUBE SIDE FLUID DENSITY, LB/FT3? 2.5 ENTER TUBE SIDE VISCOSITY AT WALL, LB/FT-HR? .02 ENTER TUBE SIDE FLUID BULK VISCOSITY, LB/FT-HR? 0.021 ENTER TUBE SIDE FLUID THERMAL CONDUCTIVITY, BTU/HR-FT-R? 0.013 ENTER NUMBER OF TUBE PASSES? 2 ENTER TUBE OD, IN? 1. ENTER TUBE ID, IN? 0.93 ENTER TUBE PITCH, IN? 2.25 ENTER THERMAL CONDUCTIVITY OF TUBE METAL, BTU/HR-FT-R? 26. ENTER TUBE ARRANGEMENT; T-TRIANGULAR, S-INLINE SQUARE, R-ROTATED SQUARE? T ENTER ESTIMATED TUBE SIDE FOULING FACTOR, (BTU/FT2-HR-R)**-1? .005 ENTER ESTIMATED AIR SIDE FOULING FACTOR, (BTU/FT2-HR-R)**-1? .001 ENTER FIN HEIGHT, IN? .625 ENTER MEAN FIN THICKNESS, IN? 0.015 ENTER NUMBER OF FINS/IN? 11. ENTER FIN THERMAL CONDUCTIVITY, BTU/HR-FT-R? 119. ENTER ALTITUDE, FT? 0 ENTER NUMBER OF TUBE ROWS? 4.

TABLE VI (CONTINUED)

ENTER TUBE LENGTH,FT? ENTER INLET AIR TEMPERATURE, DEG F? 92. ENTER NUMBER OF FANS? ENTER FAN DIAMETER, FT? ENTER FAN DRIVER EFFICIENCY, %? ENTER TYPE OF DRAFT; FORCED=F, INDUCED=I? F ARE YOUR INPUT DATA ALL OK; YES OR NO? Y

F. Exchanger Program Data Input/Transfer

This section of the input data system allows the user to manipulate the mass flow rate, temperature, physical properties, etc. The basic guidelines for using the EDIT feature are discussed in this section. From a program use standpoint, the EDIT commands can be issued in any order.

G. Effective Use Of Edit/Hexsim

Experience with HEXSIM has allowed us to evolve a strategy for using EDIT/HEXSIM to minimize problems with the EDIT commands and data input. These guidelines are:

- For the first problem, select a simple calculation such as a single shell exchanger. Carefully check input data, i.e. the temperature, mass flow rates, specific heats, etc. If any errors are found, correct them using the appropriate EDIT commands and run the preliminary design to verify that the problem is now correctly formulated.
- After the problem is correctly formulated, run the problem as specified.

TABLE VII

PRELIMINARY CALCULATION ENTRY/REVISION COMMANDS

MNEMONIC	FUNCTION
MT	ENTER TUBE MASS FLOW RATE
IT	ENTER TUBE INLET TEMPERATURE
от	ENTER TUBE OUTLET TEMPERATURE
ТР	ENTER TUBE SPECIFIC HEAT
MS	ENTER SHELL MASS FLOW RATE
IS	ENTER SHELL INLET TEMPERATURE
0S	ENTER SHELL OUTLET TEMPERATURE
SP	ENTER SHELL SPECIFIC HEAT
PS	ENTER NUMBER OF SHELL PASSES
РТ	ENTER NUMBER OF TUBE PASSES
OD	ENTER TUBE OUTSIDE DIAMETER
ID	ENTER TUBE INSIDE DIAMETER
PI	ENTER TUBE PITCH
кт	ENTER THERMAL CONDUCTIVITY OF TUBE METAL
ТА	ENTER TUBE ARRANGEMENT:T-TRIANGULAR, S-INLINE SQUARE,R-ROTATED SQUARE
ST	ENTER TYPE OF BUNDLE CONSTRUCTION: S-SPLIT BACKING RING,P-OUTSIDE PACKED FLOATING HEAD,U-U TUBE,T-PULL THRU FLOAT HEAD,F-FIXED TUBE SHEET
НТ	ENTER ESTIMATED TUBE SIDE HEAT TRANSFER COEFFICIENT
HS	ENTER ESTIMATED SHELL SIDE HEAT TRANSFER COEFFICIENT
TF	ENTER ESTIMATED TUBE SIDE FOULING FACTOR
SF	ENTER ESTIMATED SHELL SIDE FOULING FACTOR

TABLE VIII

.

DELAWARE CALCULATION ENTRY/REVISION COMMANDS

MNEMONIC	FUNCTION
TD	ENTER MAX TUBE SIDE PRESSURE DROP
SE	ENTER MAX SHLL SIDE PRESSURE DROP
RT	ENTER TUBE SIDE DENSITY
RS	ENTER SHELL SIDE DENSITY
WT	ENTER TUBE SIDE VISCOSITY AT THE WALL
WS	ENTER SHELL SIDE VISCOSITY AT THE WALL
VT	ENTER BULK VISCOSITY OF TUBE SIDE FLUID
VS	ENTER BULK VISCOSITY OF SHELL SIDE FLUID
ТК	ENTER TUBE SIDE FLUID THERMAL CONDUCTIVITY
SK	ENTER SHELL SIDE FLUID THERMAL CONDUCTIVITY
BS	ENTER BAFFLE SPACING
BI	ENTER INLET BAFFLE SPACING
во	ENTER OUTLET BAFFLE SPACING
BC	ENTER % BAFFLE CUT
BL	ENTER LENGTH TO BAFFLE CUT
СТ	ENTER TUBE TO BAFFLE CLEARANCE
CS	ENTER SHELL TO BAFFLE CLEARANCE
NS	ENTER NUMBER OF SEALING STRIPS/SIDE
NP	ENTER NUMBER OF PASS PARTITION LANES
WP	ENTER WIDTH OF PASS PARTITION LANES
NT	ENTER NUMBER OF TUBES
SD	ENTER INSIDE DIAMETER

TABLE VIII (CONTINUED)

MNEMONIC	FUNCTION
DO .	ENTER DIAMETER OF OUTER TUBE LIMIT
LT	ENTER TUBE LENGTH

AIR-COOLED HEAT EXCHANGER ENTRY/REVISION COMMANDS

MNEMONIC	FUNCTION
MT	ENTER TUBE MASS FLOW RATE
IT .	ENTER TUBE INLET TEMPERATURE
0T	ENTER TUBE OUTLET TEMPERATURE
ТР	ENTER TUBE SIDE FLUID SPECIFIC HEAT
RT	ENTER TUBE SIDE DENSITY
WT	ENTER TUBE SIDE VISCOSITY AT THE WALL
VT	ENTER BULK VISCOSITY OF THE TUBE SIDE FLUID
ТК	ENTER THERMAL CONDUCTIVITY OF THE TUBE SIDE FLUID
PT	ENTER NUMBER OF TUBE PASSES
OD	ENTER TUBE OUTSIDE DIAMETER
ID	ENTER TUBE INSIDE DIAMETER
PI	ENTER TUBE PITCH
κT	ENTER THERMAL CONDUCTIVITY OF TUBE METAL
TA	ENTER TUBE ARRANGEMENT;T-TRIANGULAR,S-INLINE SQUARE, R-ROTATED SQUARE
TF	ENTER ESTIMATED TUBE SIDE FOULING FACTOR
AF	ENTER ESTIMATED AIR SIDE FOULING FACTOR
FH	ENTER FIN HEIGHT
FT	ENTER MEAN FIN THICKNESS
NF	ENTER NUMBER OF FINS/UNIT LENGTH
FK	ENTER FIN THERMAL CONDUCTIVITY

TABLE IX (CONTINUED)

AT	ENTER ALTITUDE
AR	ENTER NUMBER OF TUBE ROWS
AI	ENTER INLET AIR TEMPERATURE
FN	ENTER NUMBER OF FANS
FD	ENTER FAN DIAMETER
FE	ENTER FAN DRIVER EFFICIENCY
DF	ENTER TYPE OF DRAFT; FORCED=F, INDUCED=I?

. .

.

.

• •

TABLE X

.

MISCELLANOUS ENTRY REVISION COMMANDS

MNEMONI	C I	FUNCTION
DL	-	PROCEED TO DELAWARE CALCULATIONS
DN	-	ALL CALCULATIONS ARE COMPLETE; STOP THE PROGRAM. ALL CALCULATIONS WILL BE LOST UNLESS THE FL OPTION IS EXERCISED.
FL	8-99	SAVE THE NECESSARY PROBLEM DATA IN A FILE SO THAT THE PROBLEM CAN BE RESTARTED AT SOME FUTURE TIME. I IS THE LOGICAL UNIT NUMBER.
NW	- ·	A NEW PROBLEM WILL BE STARTED. ALL PREVIOUS CALCULATIONS WILL BE LOST UNLESS THE FL OPTION IS EXERCISED.
PA	-	PRINTS AIR-COOLER SUMMARY OUTPUT
PD	-	PRINTS DELAWARE SUMMARY OUTPUT
PL	-	PRINTS SUMMARY OF PRELIMINARY CALCULATIONS
РР	-	PRINTS SPECIFIED FLUID PROPERTIES
RN	-	THE PROBLEM AS NOW DEFINED WILL BE RUN WITHOUT GOING THROUGH THE PREVIOUS DATA INPUT.
ΤI	-	ENTER A NEW PROBLEM TITLE

TABLE XI	
----------	--

ALPHABETICAL LISTING OF ENTRY/REVISION COMMANDS

MNEMONIC	I	FUNCTION
AF	-	ENTER AIR SIDE FOULING FACTOR
AI	-	ENTER INLET AIR TEMPERATURE
AL	-	ENTER TUBE LENGTH FOR AIR COOLERS
AR	-	ENTER NUMBER OF TUBE ROWS IN AIR COOLERS
AT	-	ENTER ALTITUDE
BC	-	ENTER % BAFFLE CUT
BI	-	ENTER INLET BAFFLE SPACING
BL	-	ENTER LENGTH OF BAFFLE CUT
BO	-	ENTER OUTLET BAFFLE SPACING
BS	-	ENTER BAFFLE SPACING
CS	-	ENTER SHELL TO BAFFLE CLEARANCE
СТ	-	ENTER TUBE TO BAFFLE CLEARANCE
DF	-	ENTER TYPE OF DRAFT;FORCED=F,INDUCED=I
DL	-	PROCEED TO DELAWARE CALCULATIONS
DN	-	ALL CALCULATIONS ARE COMPLETE; STOP THE PROGRAM. ALL CALCULATIONS WILL BE LOST UNLESS THE FL OPTION WAS EXECUTED
DO	-	ENTER OUTER TUBE LIMIT DIAMETER
FD	-	ENTER FAN DIAMETER FOR AIR COOLER
FE	- -	ENTER FAN DRIVER EFFICIENCY
FH	-	ENTER FIN HEIGHT
FK	-	ENTER FIN THERMAL CONDUCTIVITY
FL	8-99	SAVE THE NECESSARY PROBLEM DATA IN A FILE SO THAT THE PROBLEM CAN BE RESTARTED AT SOME FUTURE TIME. I IS THE LOGICAL UNIT NUMBER.

TABLE XI (CONTINUED)

•

.

MNEMONIC	Ι	FUNCTION
FN	-	ENTER NUMBER OF FANS ON AIR COOLER
FT	_ `	ENTER FIN THICKNESS FOR AIR COOLER
HS	-	ENTER ESTIMATED SHELL SIDE HEAT TRANSFER COEFFICIENT
нт	-	ENTER TUBE SIDE HEAT TRANSFER COEFFICIENT
ID	-	ENTER TUBE INSIDE DIAMETER
IS	-	ENTER SHELL SIDE INLET TEMPERATURE
IT	-	ENTER TUBE SIDE INLET TEMPERATURE
КT	· -	ENTER THERMAL CONDUCTIVITY OF TUBE METAL
LT	-	ENTER TUBE LENGTH
MS	-	ENTER SHELL MASS FLOW RATE
MT	-	ENTER TUBE MASS FLOW RATE
NF	-	ENTER NUMBER OF FINS PER UNIT LENGTH
NP	-	ENTER NUMBER OF PASS PARTITION LANES
NS	-	ENTER NUMBER OF SEALING STRIPS PER SIDE
NT	-	ENTER NUMBER OF TUBES
NW	- -	A NEW PROBLEM WILL BE STARTED. ALL PREVIOUS CALCULATIONS WILL BE LOST UNLESS THE FL OPTION IS EXERCISED.
OD	-	ENTER TUBE OUTSIDE DIAMETER
0S	-	ENTER SHELL OUTLET TEMPERATURE
ОТ	-	ENTER TUBE OUTLET TEMPERATURE
PA	-	PRINTS AIR COOLER SUMMARY OUTPUT
PD	-	PRINTS DELAWARE SUMMARY OUTPUT
PI	-	ENTER TUBE PITCH

TABLE XI (CONTINUED)

.

•

MNEMONIC	I	FUNCTION
PL	-	PRINTS SUMMARY OF PRELIMINARY CALCULATIONS
PP	-	PRINTS SPECIFIED FLUID PROPERTIES FOR DELAWARE METHOD
PS	-	ENTER NUMBER OF PASSES ON SHELL SIDE
РТ	-	ENTER NUMBER OF PASSES ON TUBE SIDE
RN	-	THE PROBLEM AS NOW DEFINED WILL BE RUN WITHOUT GOING THROUGH THE PREVIOUS DATA INPUT.
RS	-	ENTER SHELL SIDE DENSITY
RT	-	ENTER TUBE SIDE DENSITY
SD	-	ENTER SHELL DIAMETER
SE	-	ENTER MAX SHELL SIDE PRESSURE DROP
SF	-	ENTER SHELL SIDE FOULING FACTOR
SK	-	ENTER SHELL SIDE THERMAL CONDUCTIVITY
SP	-	ENTER SHELL SIDE SPECIFIC HEAT
ST	-	ENTER TYPE OF BUNDLE CONSTRUCTION
ТА	-	ENTER TUBE ARRANGEMENT
TD	-	ENTER MAX TUBE SIDE PRESSURE DROP
TF	-	ENTER TUBE SIDE FOULING FACTOR
TI	-	ENTER PROBLEM TITLE
тк	-	ENTER TUBE SIDE THERMAL CONDUCTIVITY
TP	-	ENTER TUBE SIDE SPECIFIC HEAT
٧S	-	ENTER SHELL SIDE BULK VISCOSITY
VT	-	ENTER TUBE SIDE BULK VISCOSITY
WP	-	ENTER WIDTH OF PASS PARTITION LANE

TABLE XI (CONTINUED)

MNEMONIC	I	FUNCTION
WS	-	ENTER SHELL SIDE VISCOSITY AT THE WALL
WT	-	ENTER TUBE SIDE VISCOSITY AT THE WALL

CHAPTER III

USING HEXSIM

A. Overview

Effective use of any program, HEXSIM included, requires that the user be able to interpret the results, decide if the results are faulty and if so take corrective action. In this section you are given: (1) a brief discussion of the output format and its interpretation, (2) some check points which can be used to assess the validity of the results, (3) some suggestions about how you can improve the quality of your results, and (4) HEXSIM diagnostic comments their interpretation and possible corrective action.

B. Output Interpretation

B.1. Shell and Tube Exchangers

For each calculation performed a summary output is printed. An example of the preliminary shell and tube design output is shown in Table XII. The output consists of

- 1. Inlet and outlet temperatures
- 2. Mass flow rate of both shell and tube passes
- 3. Heat transferred
- 4. Specific heat of each fluid
- 5. Number of shell and tube passes

TABLE XII

PRELIMINARY CALCULATION OUTPUT

MAXISIM-HEXSIM PAGE 4 EXAMPLE

SHELL & TUBE INLET AND OUTLET TEMPERATURES . DUTIES & RATES IN OUT Q RATE DEG E PTUKUP LB(UP)

	020	r	BIU/HR	LB/HR
TUBE	80.00	115.00	1.6275E+07	465000.0
SHELL	235.00	100.00	-1.6208E+07	180000.0

C SUB P TUBE SIDE FLUID 1.000 BTU/LB-R C SUB P SHELL SIDE FLUID 0.667 BTU/LB-R

NUMBER OF TUBE PASSES 4 NUMBER OF SHELL PASSES 2 TUBE OD 0.7500 IN TUBE ID 0.6800 IN TUBE PITCH 0.9375 IN TUBE METAL THERM COND 25.00000 BTU/HR-FT-R TUBE ARRANGEMENT T BUNDLE CONSTRUCTION, TEMA CLASS=S

SHELL SIDE H 350.00 BTU/FT2-HR-R TUBE SIDE H 1000.00 BTU/FT2-HR-R

SHELL SIDE FOULING FACTOR 0.00500 (BTU/FT2-HR-R)++-1 TUBE SIDE FOULING FACTOR 0.00100 (BTU/FT2-HR-R)++-1

OVERALL U 97.10 BTU/FT2-HR-R F SUB T 0.93019 LOG MEAN TEMP DIFFERENCE 55.81 DEG F

AREA PER SHELL PASS 1610.92 SQFT

EXCHANGER CONFIG. FOR 2 SHELLS WHICH ARE IDENTICAL

SHELL DIA IN	BUNDLE DOTL IN	SHELL LENGTH FT	TUBE LENGTH FT	TUBE COUNT	BUNDLE L/D	
21.00	19.25	25.62	23,99	342.	13.71	
23.25	21.50	21.32	19.53	420.	10.08	
25.00	23.38	18.38	16.47	498.	7.91	
27.00	25.38	15.48	13.45	610.	5.98	
29.00	27.38	13.62	11.46	716.	4.74	
31.00	29.38	12.28	9.98	822.	3.86	
33.00	31.38	11.24	8.81	931.	3.20	

- 6. Tube outside and inside diameter
- 7. Tube pitch
- 8. Thermal conductivity of tube metal
- 9. Tube arrangement
- 10. Tube bundle construction
- 11. Estimated individual heat transfer coefficients for both shell and tube side
- 12. Estimated fouling factors for shell and tube side
- 13. Overall heat transfer coefficients based on estimated individual coefficients and fouling factors
- 14. Log mean temperature difference and correction factor
- 15. Area per shell pass
- 16. Feasible inside shell diameters, diameter of the outer tube limit, shell length, tube length, tube count, and bundle length to diameter ratio

There are two forms for the Delaware calculation output. The difference between the two is that one includes detailed Delaware parameter output and the other does not. An example of output for each type is shown in Table XIII-XIV. The output without the detailed Delaware parameter output consists of:

- 1. Inlet and outlet temperatures
- 2. Mass flow rates for shell and tube fluids
- 3. Heat transferred
- Fluid properties such as specific heat, density, bulk viscosity, viscosity at walls, thermal conductivity
- 5. Tube metal thermal conductivity

TABLE XIII

DELAWARE CALCULATION OUTPUT INCLUDING

DELAWARE PARAMETER OUTPUT

MAXISIM-HEXSIM PAGE 1

EXAMPLE

DETAILED DELAWARE PARAMETER OUTPUT

NC	12.00	FC	0.65085
NCW	5.00	NB	13.00
SM	63.00	FSBP	0.28571
STB	21.38	THETA	2.09
SSB	3.30	SWG	67.71
SWT	26.38	SW	41.34
RESHL	75187.94	JSUBI	0.0049
HIDEAL	596.63	JSUBC	1.0250
JSUBL	0.6882	JSUBB	0.8972
JSUBR*	1.0000	JSUBR	1.0000
JSUBS	1.0000	HOSHL	377.62
FSUBI RSUBB DPBI DPS	0.1149 0.7311 35.23 6.8155	RŠUBL RSUBS DPWI	0.4437 1.0000 48.64
RETUB HITUB VELTUB	36308.29 1097.37 4.83	FSUBIT DPT	0.0052 4.7815

TABLE XIII (CONTINUED)

MAXISIM-HEXSIM PAGE 2

EXAMPLE

SHELL & TUBE INLET AND OUTLET TEMPERATURES, DUTIES AND RATES PATE

	1N	001	ų	RAIE
	DEG	F	BTU/HR	LB/HR
TUBE	80.00	109.84	1.3875E+07	465000.0
SHELL	235.00	119.43	-1.3875E+07	180000.0

SPECIFIED FLUID PROPERTIES

PROPERTY	UNITS	SHELL SIDE	TUBE SIDE
SPECIFIC HEAT	, BTU/LB-R	0.6670	1.0000
DENSITY	LB/FT3	31.8000	62.0000
BULK VISCOSITY	LB/FT-HR	0.3420	1.6828
VISCOS AT WALL	, LB/FT-HR	0.3440	1.6498
THERMAL CONDUCT	,BTU/HR-FT-R	0.0685	0.3640

TUBE METAL THERMAL CONDUCT 26.0000 BTU/HR-FT-R

HEAT EXCHANGER GEOMETRY

TUBE ARRANGEMENT	т			CONSTRUCTION			
NUMBER OF TUBES	342		NUMBER	OF BAFFLES		13	
TUBE LENGTH	14.00	FT	BAFFLE	CUT		25.00	%
TUBE OD	0.7500	IN	BAFFLE	TIP TO SHELL		5.25	IN
TUBE ID	0.6800	IN					
TUBE PITCH	0.9375	IN	BAFFLE	SPACING(CENTE	ER)	12.00	IN
NUMBER OF TUBE PASSES	54			(INLE	г)	12.00	IN
NUMBER OF SHELL PASSE	ES 2			(OUTLE	ET)	12.00	IN
NUMBER OF OPEN PASS			BAFFLE	TO TUBE CLEAR	RANCE	0.03215	IN
PARTITION LANES	Ø		BAFFLE	TO SHELL CLE	ARANCE	0.15000	IN
WIDTH PASS PART LANE	5 0.00	IN	NUMBER	OF SEALING ST	TRIPS	2	
DIA. OUTER TUBE LIMI	T 19.50	IN	SHELL C	IAMETER		21.00	IN

HEAT TRANSFER/PRESSURE DROP CALCULATION RESULTS

ITEM U FILM COEFFICIENT, BTU/ FOULING FACTOR,1/(BTU/ VELOCITY, FT/SEC	FT2-HR-R	HELL SIDE 377.62 0.0050 3.5939	TUBE SIDE 1097.37 0.0010 4.8308
PRESSURE DROP(TOTAL),	PSI	6.816	4.782
OVERALL HEAT TRANSFER COEF F SUB T LOG MEAN TEMPERATURE DIFFE	0.9	0.09 BTU/F1 9934 4.22 DEG F	12-HR-R

AREA/SHELL PASS

940.10 SQFT

TABLE XIV

DELAWARE CALCULATION OUTPUT WITHOUT

DETAILED DELAWARE PARAMETER OUTPUT

MAXISIM-HEXSIM PAGE 2

EXAMPLE

SHELL & TUBE INLET AND OUTLET TEMPERATURES, DUTIES AND RATES

	IN	OUT	Q	RATE
	DEG	F	BTU/HR	LB/HR
TUBE	80.00	109.84	1.3875E+07	465000.0
SHELL	235.00	119.43	-1.3875E+07	180000.0

SPECIFIED FLUID PROPERTIES

PROPERTY	UNITS	SHELL SIDE	TUBE SIDE
SPECIFIC HEAT ,	BTU/LB-R	0.6670	1.0000
DENSITY ,	LB/FT3	31.8000	62.0000
BULK VISCOSITY .	LB/FT-HR	0.3420	1.6828
VISCOS AT WALL ,	L8/FT-HR	0.3440	1.6498
THERMAL CONDUCT,E	TU/HR-FT-R	0.0685	0.3640

TUBE METAL THERMAL CONDUCT 26.0000 BTU/HR-FT-R

HEAT EXCHANGER GEOMETRY

TUBE ARRANGEMENT NUMBER OF TUBES	T		
TUBE LENGTH		BAFFLE CUT	25.00 %
TUBE OD 0		BAFFLE TIP TO SHELL	
TUBE ID	0.6800 IN		
TUBE PITCH @	0.9375 IN	BAFFLE SPACING(CENTER)	12.00 IN
NUMBER OF TUBE PASSES	4	(INLET)	12.00 IN
NUMBER OF SHELL PASSES	52	(OUTLET)	12.00 IN
NUMBER OF OPEN PASS		BAFFLE TO TUBE CLEARANCE	0.03215 IN
PARTITION LANES	0	BAFFLE TO SHELL CLEARANCE	0.15000 IN
WIDTH PASS PART LANES	0.00 IN	NUMBER OF SEALING STRIPS	2
DIA. OUTER TUBE LIMIT	19.50 IN	SHELL DIAMETER	21.00 IN

HEAT TRANSFER/PRESSURE DROP CALCULATION RESULTS

ITEM FILM COEFFICIENT FOULING FACTOR,1 VELOCITY, FT/SEC	(BTU/FT2-HR-R)	Ø	SIDE 77.62 .0050 .5939	10 0	SIDE 97.37 .0010 .8308
PRESSURE DROP(TO	ſAL), PSI		6.816		4.782
			00.09 BTU/FT2-HR-R 0.9934 74.22 DEG F		

AREA/SHELL PASS

940.10 SQFT

6. Heat exchanger geometery which includes tube arrangement, tube bundle construction, number of tubes, tube length, tube OD, tube ID, tube pitch, number of baffles, baffle cut, baffle spacing, baffle to tube clearance, baffle to shell clearance, number of sealing strips, number of tube passes, number of open pass partition lanes, diameter outer tube limit, shell diameter

7. Calculated individual heat transfer coefficients

8. Estimated fouling factors

9. Calculated velocity for both shell side and tube side

10. Calculated pressure drop for shell side and tube side

11. Overall heat transfer coefficient

12. Log mean temperature difference and correction factor

13. Area/shell pass

The key output results to check are

1. Heat balance and inputs

2. Exchanger configuration

3. The velocity

4. The pressure drop

5. Intermediate Delaware parameters

The rate of heat transfer from the cold to the hot fluid for all problems should agree to within one percent. If for some reason, the heat rates do not agree within one percent a warning comment is printed. The correction factor for the log mean temperature difference should be greater than 0.8. The reason is that below this value even a small failure in the basic assumption of this method can easily render the exchanger thermodynamically incapable of meeting the specified performance.* If the LMTD correction factor is below 0.8 a warning will be printed. Also, a temperature cross should be avoided since it is indicative of a relatively small temperature potential between the fluids. This requires a large area for heat exchange. For a counterflow heat exchanger a temperature cross occurs when the exit temperature of the cold fluid is higher than the exit temperature of the hot fluid. Oftentimes the cause of these problems is incorrectly specified inputs. The exchanger configuration should be checked to ensure that it meets design requirements (15). The following paragraphs give guidelines which should be followed when designing shell and tube exchangers.

The fluid velocity is set by the fluid flow rates and cross sectional area for flow. Liquid velocities are ordinarly kept between 2 and 15 ft/sec and gas velocities between 10 to 100 ft/sec (with each usually near the middle of the range given.) It is sometimes necessary to restrict the fluid velocity to avoid difficulties with such problems as erosion, tube vibration or noise (9).

The pressure drop through the exchanger should also be checked. For most heat exchanger applications, the pressure drop in each of the two fluid streams is limited to between 5 to 50 psi to avoid both excessive pumping power losses and excessive pressures in the shells and piping systems (9).

^{*}Four of the primary assumptions for validity of the F-correction factor method are constant overall heat transfer coefficients, constant flow rate, constant specific heat of the two streams, and no bypass (13).

The detailed Delaware parameter output can also be used to check the validity of the exchanger design. The Delaware ideal tube bank data were obtained for a variety of geometries of industrial interest (3).

 J_c is the correction factor for baffle cut and spacing. This factor is equal to 1.0 for an exchanger in which there are no tubes in the windows, increases to a value as high as 1.15 for a design value in which the windows are relatively small and the window velocity is very high, and decreases to a value of 0.52 for very large baffle cuts (5).

 J_1 is the correction factor for baffle leakage effects, including both shell-to-baffle and tube-to-baffle leakage. A typical value is in the range of 0.7 to 0.8 (5).

 J_b is the correction factor for the bundle bypss flow. For the relatively small clearance between the outermost tubes and the shell for a fixed tube sheet construction J_b is approximately 0.9; whereas for the larger clearances required for the pull-through floating head construction J_b is approximately 0.7, but the value of J_b can be increased to 0.9 or better by the use of sealing strips (5).

 J_{S} is the correction factor for variable baffle spacing in the inlet and outlet sections. J_{S} is usually between 0.85 and 1.0 (5).

If all checks for answer quality are satisfactory, you probably have a good solution. We strongly suggest you develop the habit of checking your results carefully.

<u>B.1.1.</u> Improving Your Results. The key to getting good results from any heat exchanger design routine is to supply it with good information about the system being considered. In this section guidelines or "rules of thumb" will be given for good exchanger design. The choice of which fluid to pass on the shell side and which

on the tube side involves a number of factors and is generally a compromise amoung these requirements. According to Walker (15) the main considerations are:

 Pressure. The wall thickness required (and hence the weight and cost of the material) to contain a given pressure increases directly with the diameter. Therefore high-pressure fluids should be contained in the tubes.

2. Temperature. High temperatures reduce the permissible stress levels of materials so that a greater wall thickness is required. Therefore high temperature fluid should be on the tube side. Also, if a high-temperature fluid is on the shell side additional insulation may be required to conserve energy or for safety.

3. Corrosiveness of the Fluid. Corrosive fluids require the use of special (and usually expensive) alloys or other materials. If only one fluid is corrosive passing it in the tubes will avoid the need for an expensive alloy shell.

4. Cleanliness of the Fluid. Processes with above-average requirements for cleanliness may require the use of special materials.

5. Hazardous or Expensive Fluids. Leakage of fluid is less likely from the tube side than from the shell side in most types of exchangers.

6. Pressure Drop. The pressure drop inside the tubes can be more accurately predicted than that in the shell. Where the fluid pressure drop is critical and must be accurately predicted, fluids should pass through the tubes.

7. Fluid Viscosity. To maximize heat transfer, both fluids should be in turbulent flow. Fluids of high viscosity may be laminar in

the tubes but turbulent in the shell depending on the tube side clearance. If the flow is laminar in both the shell and the tubes, the viscous fluid should in the tubes because more reliable heat-transfer and flow distribution predicitions can be made.

8. Mass Flow. In general it is better to put the fluid having the lower mass flow rate on shell side. Turbulent flow is obtained at lower Reynolds numbers on the shell side.

9. Cleaning. The tube outer surfaces are more difficult to clean than the tube internal surface. Therefore, the cleaner fluid should pass through the shell.

Frank (8) has given some useful "rules of thumb" about temperature differences and temperature approaches (where a temperature approach is the minimum temperature difference between fluids).

 The temperature approach should normally be at least 41°F to 45°F for a refrigeration systems.

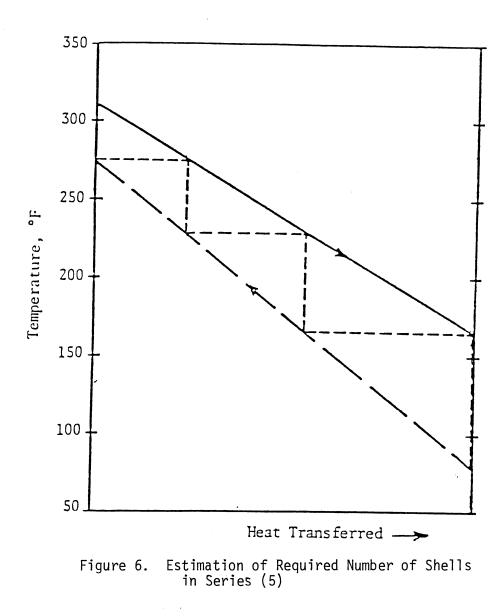
 In recuperative heat exchangers*, a temperature approach of at least 68°F should be maintained.

3. Cooling water rise may be 50 to 68°F at high mean temperature differences and less for low mean temperature differences.

Cooling water outlet temperatures should be below 130°F.

Oftentimes more than one shell is needed in order to perform the required service. There is a rapid graphical technique for estimation of the the number of shells in series for a given heat duty (1,5). The procedure is as follows:

*Assumed to be exhaust gas/air preheater.


1. The terminal temperatures of the two streams are plotted on the ordinates of ordinary arithmetic graph paper with the hot fluid inlet temperature and the cold fluid outlet temperature on the left hand side and the hot fluid outlet and the cold fluid inlet on the right hand ordinate. The distance between the two is arbitary.

 If the specific heat of each stream is constant, straight lines are drawn from the inlet to the outlet temperature point for each stream.

3. Starting with the cold fluid outlet temperature a horizontal line is laid off until it reaches the hot fluid line. From that point a vertical line is dropped to the cold fluid line. This operation is continued until a vertical line intercepts the cold fluid operating line at or below the cold fluid inlet temperature.

4. The number of horizontal lines is equal to the number of shells in series that is required to perform the duty. This technique is shown in Figure 6.

Another consideration is tube diameter, tube length, layout pattern, and pitch. Thermohydraulic considerations favor small tube diameter. Also, greater surface density within a given shell is possible with small diameter tubes. In general, the longer the tube the lower the cost of the resulting smaller shell diameter, thinner tubesheets and flanges, fewer pieces to handle, and fewer holes to drill. The limiting factors are accomodating shell-side flow area with reasonable baffle spacing and practical design considerations. Usual length-to-shell diameter ratios range from 5 to 10 for best performance. A good practice for tube layout calls for a minimum pitch of 1.25 times the tube diameter. Generally the smallest pitch in a

triangular layout is preferred for flow in clean service and square layout for cases where mechanical cleaning is required (13).

Tube bundle configuration is usually determined by thermal expansion considerations and cleaning considerations. Each tube bundle configuration has advantages and disadvantages. The following paragraphs give a short summary of the exchanger advantages and disadvantages.

The fixed tube sheet exchanger has no provision for accommodating differential expansion, and therefore is very vulnerable to thermal stress damage. Its advantages are that individual tubes are easily replaced and it can be mechanically cleaned (5). It is also cheaper to build in a given shell diameter, and the chances for bypass are minimized.

The U-tube configuration allows independent expansion of tubes and shell. The major disadvantages are that individual tubes cannot be replaced (except in the outer tube row), the tube side cannot be mechanically cleaned, and erosion can occur inside the tubes U-bend (5).

The simplest floating head design is the "pull-through bundle" type. It does allow for thermal stress but many tubes must be omitted from the edge of the full bundle to allow for the bonnet flange and bolt circle. Another floating head design that partially offsets the above disadvantage is the "split-backing ring" floating head type. In this type of exchanger the floating head bonnet is bolted to a split backing ring rather than the tube sheet. Therefore, no bolt circle has to be provided on the tube sheet. However, this makes the exchanger more complicated mechanically. The "outside packed floating head" is less postively sealed against leakage to the atmosphere than the previous

types but have the advantage of allowing single tube pass construction (5).

For preliminary design purposes, there is a need for experience based fouling factors and individual heat transfer coefficients. An extensive listing is contained in the Heat Exchanger Design Handbook (4). This listing is shown in Table XV. There is a large uncertainity in these values but they are sufficient in most cases for estimation purposes.

In this section a discussion of modifications which might be necessary to improve exchanger performance are discussed. The suggestions contained in the following paragraphs are intended to be a guideline to help the inexperienced designer to correct some common problems encountered in shell and tube exchanger design.

If the heat exchanger is limited by the amount of heat that it can transfer, you should either increase the area of the exchanger or increase the heat transfer coefficient. To increase the tube side heat transfer coefficient the number of tube passes can be increased therefore increasing the log mean temperature difference or you can add multiple shells in series (5).

If the exchanger is limited by pressure drop, you can decrease the number of tube passes or increase the tube diameter. Also, you can decrease the tube length and increase the shell diameter and number of tubes. If the exchanger is limited by shell side pressure drop. You can increase the baffle cut, increase the baffle spacing, or increase the tube pitch (5).

TABLE XV

FLUID CONDITIONS	Η,	(BTU/H-FT2) ^a ,b	FOULING FACTOR (HR-FT2-F/BTU) ^a
SENSIBLE HEAT TRA	NSFER		(
WATER ^C	LIQUID	880-1320	0.00056-0.0014
AMMONIA	LIQUID	1056-1408	0.0 - 0.00056
LIGHT ORGANICS ^d	LIQUID	264-352	0.00056-0.0011
MEDIUM ORGANICS ^e	LIQUID	132-264	0.00085-0.00227
HEAVY ORGANICS ^f	LIQUID		
	HEATING,	44-132	0.0011-0.0056
	COOLING,	26-70	0.0011-0.0056
VERY HEAVY ORGANICS ⁹	LIQUID,		
	HEATING,	18-53	0.0023-0.017
	COOLING,	11-26	0.0023-0.017
GAS ^h 14.	.5-29 PSIA	14-22	0.0-0.00056
GAS ^h	145 PSIA	44-70	0.0-0.00056
GAS ^h 1	.450 PSIA	88-141	0.0-0.00056

TYPICAL FILM HEAT TRANSFER COEFFICIENTS FOR SHELL AND TUBE EXCHANGERS (4)

- a. Heat transfer coefficients and fouling resistances are based on area in contact with fluid. Ranges shown are typical, not all encompassing. Temperatures are assumed to be in normal processing range; allowances should be made for very high or low temperatures.
- b. Allowable pressure drops on each side are assumed to be about 7- 20 psia except for (1) low-pressure gas where the pressure drop is assumed to be about 5% of the absolute pressure; and (2) very viscous organics, where the allowable pressure drop is assumed to be about 21 to 45 psia.

TABLE XV (FOOTNOTES CONTINUED)

c. Aqueous solutions give appoximately the same coefficients as water.

- d. "Light organics" include fluids with liquid viscosities less than about .5 cP, such as hydrocarbons through C8, gasoline, light alcohols and ketones, etc.
- e. "Medium organics" include fluids with liquid viscosities between about .5 cP and 2.5 cP, such as kerosene, straw oil, hot gas oil, absorber oil, and light crudes.
- f. "Heavy organics" include fluids with liquid viscosities greater than 2.5 cP, but not more than 50 cP, such as cold gas oil, lube oils, and heavy and reduced crudes.
- g. "Very heavy organics" include tars, asphalts, polymer melts, greases, etc., having liquid viscosities greater than about 50 cP. Estimation of coefficients for these materials is very uncertain and depends strongly on the temperature difference, because natural convection is often a significant contribution to heat transfer in heating, whereas congelation on the surface and particularly between fins can occur in cooling. Since many of these materials are thermally unstable, high surface temperatures can lead to extremely severe fouling.
- h. Values given for gases apply to such substances as air, nitrogen, carbon dioxide, light hydrocarbon mixtures (no condensates), etc. Because of the very high thermal conductivities and specific heats of hydrogen and helium, gas mixtures containing appreciable fractions of these components will generally have substantially higher heat transfer coefficients.

B.2. Air-Cooled Heat Exchangers

For each calculation performed a summary output is printed. An example of the output for an air-cooled heat exchanger is shown in Table XVI. If the tube length is not specified widths are calculated for standard tube lengths. Then a request for the desired tube length is issued. This is shown in Table XVII. The air-cooled heat exchanger output consists of the following.

- 1. Inlet and outlet temperatures
- 2. Mass flow rate of air and tube side fluids
- 3. Heat transferred
- Air and tube side specific heat, density, bulk viscosity, viscosity at the wall, thermal conductivity
- Tube metal thermal conductivity and fin metal thermal conductivity
- 6. Heat exchanger and fan geometery which includes tube arrangement, number of tubes, tube length, tube OD, tube ID, tube pitch, number of tube rows, number of tube passes, number of fins per unit length, fin thickness, fin spacing, bay width, type of draft, number of fans, fan efficiency, fan diameter, power per fan, air volume per fan, outlet air temperature, outlet air pressure, air velocity at fan face, air velocity at tube face
- Calculated individual heat transfer coefficients for air side and tube side
- 8. Estimated fouling factors for air side and tube side
- 9. Calculated fin resistance
- 10. Pressure drop both air side and tube side

TABLE XVI

AIR-COOLED HEAT EXCHANGER OUTPUT

MAXISIM-HEXSIM PAGE 3

EXAMPLE

AIR

AERIAL COOLER INLET AND OUTLET TEMPERATURES AND DUTIES & RATES IN OUT Q DEG F BTU/HR RATE LB/HR 170.00 124.00 -1.0645E+06 38000.0 92.00 107.42 1.0645E+06 285772.6 TUBE 170.00 124.00

CALCULATED & SPECIFIED FLUID PROPERTIES

PROPERTY	UNITS	AIR	TUBE SIDE
SPECIFIC HEAT	, BTU/LB-R	0.2415	0.6090
DENSITY	LB/FT3	0.0719	2.5000
BULK VISCOSITY	LB/FT-HR	0.0458	0.0210
VISCOS AT WALL	LB/FT-HR	0.0000	0.0200
THERMAL CONDUCT	.BTU/HR-FT-R	0.0156	0.0130

TUBE METAL THERMAL CONDUCT 26.0000 BTU/HR-FT-R FIN METAL THERMAL CONDUCT 119.0000 BTU/HR-FT-R

HEAT EXCHANGER & FAN GEOMETRY

TUBE ARRANGEMENT	т	TYPE OF DRAFT	F
NUMBER OF TUBES	220	NUMBER OF FANS	T
TUBE LENGTH	10.00 FT	FAN EFFIC	70.00 %
TUBE OD	1.0000 IN	FAN DIAMETER	7.50 FT
TUBE ID	0.9300 IN	POWER/FAN	7.57 HP
TUBE PITCH	2.2500 IN		
NUMBER OF TUBE ROWS	4		
NUMBER OF TUBE PASS	ES 2	AIR VOLUME/FAN	66234.37 CUFT/MIN
FINS/IN	11.00	(TEMP)	92.00 DEG F
FIN THICKNESS	0.0150 IN	(PRESS)	14.69 PSI
FIN SPACING	2.2500 IN	AIR VELOCITY AT FAN FACE	24.99 FT/SEC
BAY WIDTH	10.33 FT	AIR VELOCITY AT TUBE FACE	641.21 FT/MIN

HEAT TRANSFER/PRESSURE DROP CALCULATION RESULTS

ITEM FILM COEFFICIENT, B		10.36	BE SIDE 85.47
FOULING FACTOR,1/(B FIN RESISTANCE,1/(B		0.0010 0.0174	0.0050
PRESSURE DROP(TOTAL), PSI IN H2O	0.018 0.507	0.172
OVERALL HEAT TRANSFER		1.80 BTU/FT 0.9607	2-HR-R
LOG MEAN TEMPERATURE	DIFFERENCE	45.60 DEG F	

EXTENDED AREA OF COOLER

13479.28 SQFT

TABLE XVII

AIR-COOLED HEAT EXCHANGER TUBE LENGTH

CALCULATION OUTPUT

STANDARD TUBE	UNIT
LENGTH	WIDTH
FT	FT
8.00	5,73
10.00	4.58
12.00	3.82
20.00	2.29
24.00	1.91
30.00	1.53

ENTER DESIRED TUBE LENGTH, FT? 10.

- 11. Calculated overall heat transfer coefficient
- 12. Calculated log mean temperature difference and correction factor

Overall area of air-cooled heat exchanger
 The key output results to check are

- 1. Heat balance and inputs
- 2. Velocities
- 3. Pressure drop

The rate of heat transfer from the tube side fluid to the air for all problems should agree to within one percent. The heat must be transferred from the tube side fluid to the air otherwise a warning comment will be printed. The correction factor for the log mean temperature difference should be greater than 0.8. Below this value the exchanger may be thermodynamically incapable of meeting the performance. If the LMTD correction factor is below 0.8 a warning will be printed. Oftentimes the cause of these problems is incorrectly specified inputs. The exchanger configuration should be checked to ensure that it meets design requirements.

The fluid velocity is set by the fluid flow rate and cross sectional area for flow. Tube side velocities are ordinarily kept between 2 and 15 ft/sec for liquids and gas velocities between 10 to 100 ft/sec (with each usually near the middle of the range given). It is sometimes necessary to restrict the fluid velocity to avoid difficulties with such problems as erosion (9). Air side face velocities (that is the approach velocity of the air to the face of the heat exchanger, assuming uniform velocity) is about 300 to 900 ft/min. These air velocities are limited by the frictional pressure drop across the tube bank (5).

The pressure drop both on the air side and the tube side is another point which should be checked. The pressure drop in the tubes is limited to between 5 to 50 psi to avoid both excessive pumping power losses and excessive pressure loss (9). Most air cooled heat exchangers now in service are designed for fan static pressure of 0.45 to 0.75 in H20 (0.01 to 0.04 psi) (6). A typical design value is on the order of 1/2 in H20 frictional pressure drop across the tube bank (5).

<u>B.2.1.</u> Improving Your Results. Another important choice in the design of air-coolers is the selection of the type of draft used forced or induced. Each design has relative good and bad points, but often cost is the largest influencing factor.

Forced draft usually has a power advantage, especially if the temperature rise of the air is comparatively high. Forced-draft design permits a more covenient and economical mounting arrangement where a number of bundles and services are to be combined in a single unit.

Induced-draft design provides a more even distribution of air across the bundles, and for a given bundle elevation, affords more space for location of additional plant equipment beneath the unit. This design is more adaptable to suspension of the mechanical equipment from the unit itself, therefore, making more suitable mounting the unit above a pipe rack or above shell and tube exchangers.

Induced-draft units are much less likely to recirculate hot exhaust air, since the exit air velocity is from two to three times that of a forced-draft unit. This fact becomes increasingly important in the case of a large heat exchanger installation. In most cases the advantages of

.the induced-draft design outweigh disadvantages, but the problem should be studied for each case (12).

The air side fouling factor usually is negligible depending on the cleanliness of the atmosphere. In most cases the fouling factor is approximately 0.00045 (6).

C. A Comparison Of Air-Cooled And

Shell And Tube Exchangers

Chemical process plants as well as steam power plants require the rejection of large quantities of heat. Water-cooled exchangers are often used but air-cooled units can also be used in this service. Air-cooled exchangers often compare favorably with water-cooling for many services in heat rejection service. Table XVIII contains a list of air-cooler advantages and disadvantages as compared to a water-cooled exchanger. Table XVIII is provided as a guide to help the user select the type of exchanger for the problem at hand. Depending upon the service, not all of the points will apply, while others may be of minor importance (6).

D. Diagonostic Comments

HEXSIM contains only a few diagnostic comments which pertain to the feasibility of the heat exchanger design. This section gives the diagnostic comments in HEXSIM, the possible conditions causing the comment, and some guidelines for eliminating the problem.

The presence or absence of a diagnostic comment is not always a postive indication of the quality of the results. Careful checking of

TABLE XVIII

A COMPARISON OF AIR-COOLED AND SHELL AND TUBE EXCHANGERS (6)

	ADVANTAGES
1.	Air is always available. Its use saves water for more critical service. Even with cooling tower recycle systems, up to 3% or more of the total recycle stream is required for makeup.
2.	Heating of surface water is eliminated when it would be the coolant source for a once-through system.
3.	Air eliminates the cost and space required for water facilities, pumps, treating equipment, cooling towers or filters, blowdown disposal area, and distribution and disposal lines.
4.	Plant-site location is not as restricted as with water cooling.
5.	Choice of exchanger materials is simpler and cheaper because, unlike water, air is seldom corrosive.
6.	Tube-wall temperature is limited only by materials of construction, although special fin-to-tube joining is required for high process and air temperatures. Water outlet temperatures usually have to be held to 120 to 130°F maximum to prevent excessive scale formation.
7.	Air side fouling is negligible. This is in contrast to water side formation of hard, scaly corrosion and depostion of dirt.
8.	Less shutdown is required because fin-side fouling is negligible.
9.	Operating costs are lower and can be further reduced with designs that use lower fan horsepower (at higher initial cost) and controlled fan operation to take advantage of the fact that air is predominately well below its design temperature.
10.	Capacity can usually be easily changed by changing a motor horsepower or fan, or both.
11.	Operating and maintenance labor requirements are on average about one-quarter of the costs for water coolers. The maintenance requirements consist mainly of periodic, routine checking and lubricating; regular checking of fan blade pitch; and cleaning of fins once a year.

TABLE XVIII (CONTINUED)

ADVANTAGES

- 12. Cleaning is simpler and cheaper and can be done with inexpensive equipment because the process fluid is inside the tubes.
- 13. Bundle pulling is not required. Therefore longer tube lengths are practical.
- 14. Possible contamination of process streams by water is eliminated.
- Leaks from an air cooler will not remain undetected for long.
- 16. Capacity can be increased to a much greater extent than is possible with other exchangers by increasing air flow. Normally this will require minor equipment cost. However operating cost would be higher.

DISADVANTAGES

- Air-cooled heat exchangers generally have a much higher initial cost - two to four times is common - when comparing only the exchangers themselves. Even though substantial initial savings have been made on some projects by using aircoolers, it is necessary to include operating costs and a reasonable payout period to justify air cooling.
- Air-coolers require more space when comparing just the exchangers. However, when tower space requirements are considered, the area requirements are equal. Also, air coolers are often placed in unused spaces such as over pipe racks.
- 3. Location of air coolers is more of a problem because size. This also sometimes increases the process piping. Air coolers should not be located near large obstructions, especially not down wind of prevailing breezes. This is because down drafts can cause the warm air to recirculate.
- 4. Design inlet temperatures are typically up to 20° Fahrenheit higher for air than water.
- 5. Water temperatures from towers or rivers, etc., are relatively slow to change. Air fluctuates widely and more rapidly. This helps the power consumption but complicates control. Rain showers can rapidly drop process temperatures while radiant heat from the sun must also be considered.

TABLE XVIII (CONTINUED)

DISADVANTAGES

- 6. Hail screens are recommended in areas where hail occurs frequently because unprotected fins can be bent down in hail storms.
- 7. Atmospheric corrosion is a problem at some plants, and fins cannot be easily protected from this kind of damage.
- 8. Winter air temperatures in most of the U.S. are low enough to present a potential danger of freezing some process fluids unless the control system is able to prevent it.
- 9. Performance tests are difficult to make at times because of the changes in the weather.
- 10. Large numbers of air-cooled exchangers in a single plant may cause local increases in plant air temperatures.
- 11. The air-cooler industry uses 1-inch OD tubes as the standard. Other sizes are not common with all manufacturers because of the engineering and tooling expense involved.
- 12. The fans of air coolers are quite noisy.
- 13. Fire or other hazards are sometimes considered to be more serious with air coolers because of possible leaks and the fanning of fires that might result.
- 14. Tube storage and stocking are more complicated with finned tubes.

the results is always in order; results with diagnostic comments may be in some cases adequate.

The following diagnostic comments may be printed by HEXSIM.

D.1. Shell and Tube Diagnostic Comments

INCORRECT TUBE ARRANGEMENT

This comment will appear only if you specified something other than triangular, inline square, or rotated square. The following question will be repeated.

"ENTER TUBE ARRANGEMENT; T-TRIANGULAR, S-INLINE SQUARE, R-ROTATED SQUARE ?" INCORRECT BUNDLE CONSTRUCTION SPECIFIED

This comment will appear only if you specified a tube bundle construction other than split backing ring, outside packed floating head, U-tube, pull thru floating head, or fixed tube sheet. The following question will be repeated.

"ENTER TYPE OF TUBE BUNDLE CONSTRUCTION: S-SPLIT BACKING RING,P-OUTSIDE PACKED FLOAT HEAD, U-U TUBE,T-PULL THRU FLOAT HEAD,F-FIXED TUBE SHEET?"

U TUBE BUNDLES REQUIRE AN EVEN NUMBER OF TUBE PASSES.

For a U tube bundle only an even number of tube passes may be specified. If an odd number is specified this warning statement is printed. The simulator will then request for a bundle specification. THE MAX (TUBE OR SHELL) SIDE PRESSURE DROP HAS BEEN EXCEEDED THE MAX PRESSURE DROP IS --- PSI THE CALC PRESSURE DROP IS --- PSI ENTER NEXT COMMAND?

This statement is printed when either the shell side or tube side pressure drop is exceeded. HEXSIM then returns the user to the EDIT mode. For possible solutions to this problem see page 163. THE TUBE SIDE VELOCITY IS LOW, V = --FT/SEC This comment is printed when the tube side velocity is below 5 ft/sec for a liquid and 10 ft/sec for a gas. HEXSIM then returns the user to the EDIT mode.

THE TUBE SIDE VELOCITY IS HIGH, V = --FT/SEC

This comment is printed when the tube side velocity is above 15 ft/sec for a liquid and 100 ft/sec for a gas. HEXSIM then returns to the EDIT mode.

FT = WHICH IS LESS THAN RECOMMENED MINIMUM VALUE DO YOU WANT TO CONSIDER MULTIPLE SHELLS IN SERIES; YES OR NO?

This means that the value of the correction factor for the log mean temperature difference is below 0.8 for the problem being calculated. When the value for the correction factor is below 0.8, it means that even a small failure in the assumptions of this method render the exchanger thermodynamically incapable of meeting the specified performance. The simplist way to correct this problem is to use multiple shells in series in order to raise the correction factor to 0.8 or greater.

HEXSIM will automatically calculate the number of shells in series in order to raise the correction factor to above 0.8. HEXSIM will print the dialogue shown in Table XIX.

BOTH OUTLET TEMPS ARE ZERO, CAN'T SOLVE FOR Q REENTER DATA; YES OR NO?

This means both the shell side and tube side outlet temperatures are zero.

ERROR IN HEAT BALANCE > 1%

This comment is printed when the heat balance does not agree to within 1% or less. After this comment the following information is

TABLE XIX

DIALOGUE FOR CORRECTION OF LOW LOG MEAN TEMPERATURE DIFFERENCE CORRECTION FACTOR

----SHELLS IN SERIES WILL GIVE A PROCESS WITH NO TEMPERATURE CROSSES DO YOU WANT TO USE THIS NUMBER OF SHELLS; YES OR NO? ENTER NUMBER OF SHELLS YOU WANT TO USE?

.

. .

.

printed; the inlet and outlet temperatures, mass flow rates for each stream, and the heat transfered by each stream. HEXSIM will then ask "DO YOU WANT TO CHANGE ANYTHING;YES OR NO?"

% BAFFLE CUT TOO SMALL

This comment is printed when the percent baffle cut is less than nine percent. This is a limit imposed due to mechanical constraints. It is recommended that you enter a larger value.

% BAFFLE CUT TOO LARGE

This comment is printed when the percent baffle cut is larger than forty-nine percent. The baffle cut cannot be any larger due to physical constraints.

BAFFLE SPACING TOO CLOSE

This means that the baffle spacing is smaller than TEMA class R specifications allow. The minimum baffle spacing allowed is one fifth of the shell diameter (14).

BAFFLE SPACING TOO LARGE

This comment indicates that the baffle spacing is further apart than is allowed by TEMA class R specifications. The maximum allowable baffle spacing is 52 inches. This value is the most limiting case (14). SHELL AND TUBE INPUTS ARE NOT CONSISTENT

This comment is printed when the shell inlet temperature is equal to the tube outlet temperature and/or when the shell outlet temperature is greater than or equal to the tube inlet temperature. This is indicative of a temperature cross. The outlet temperatures need to be adjusted.

CANNOT GET SOLUTION FOR YOUR SPECIFIC FLOWS & TEMPS CHECK OUTPUT & RERUN WITH NEW PARAMETERS This is printed when no acceptable length for the problem was found as orginally specified. You should review your problem specifications. CANNOT FIND SHELL DIAMETER TO MEET SPECIFIED VALUE

This message is printed when the diameter calculated for the specified inputs is not in the range of 8 to 120 inches. One way to solve this problem is to go to multiple shells in series. HEXSIM will then enter the EDIT mode.

NUMBER OF TUBE PASSES OTHER THAN 1, 2, 4, 6, OR 8 PER SHELL

This message is printed when the number of tube passes entered is other than 1, 2, 4, 6, or 8. HEXSIM will proceed to the EDIT mode. PITCH TO DIAMETER RATIO OTHER THAN 1.25 OR 1.333

This message is printed when the pitch to diameter ratio is other than 1.25 or 1.333. This is usually the best range for good design.

D.2. Air-Cooled Heat Exchanger

Diagnostic Comments

FT= ----WHICH IS LESS THAN THE RECOMMENDED MINIMUM VALUE

This statement means that the value of the correction factor for the log mean temperature difference is below 0.8 for the problem being calculated. When the value for the correction factor is below 0.8 the exchanger design may be thermodynamically incapable of meeting the specified performance. The simplest way to correct this problem is the use multiple tube passes in order to raise the correction factor to 0.8 or greater. HEXSIM will ask the following question.

DO YOU WANT THE NUMBER OF TUBE PASSES INCREASED; YES OR NO?

Respond with a Y or N. If you respond with a Y the number of tube passes will be increased to 4 and the calculations will continue.

CHECK YOUR INPUT DATA; DUTY HAS WRONG SIGN CHANGE SOMETHING AND RERUN

This comment is printed when the air is being cooled in other words it is being used to heat the process stream not cool it. The most probable cause of this comment is an error in the inlet and/or outlet tube temperatures.

CANNOT FIND ACCEPTABLE FACE VELOCITY/HEAT TRANSFER FACE AREA COMBINATION ****WILL USE 8 TUBE ROWS AND CONTINUE

This comment is printed when the air face velocity is less than 500 ft/min or greater than 900 ft/min. The maximum design pressure drop obtainable from a typical fan used for air-cooled heat exchangers is on the order of 1 in H20 or 0.04 psi. A commonly used design value is on the order of 1/2 in H20 or 0.02 psi. This pressure drop corresponds to a set of values of design face velocities and number of rows of tubes as given in Table XX. This comment will only be printed if the face area was not specified (5).

The values in this table are only approximate but if the face velocity is significantly above the values shown the result will be that the allowable pressure drop developed by the fan will be exceeded. While a lower velocity will result in an excessively large heat exchanger face area.

TAI	BL	E	ХΧ

TYPICAL COMBINATIONS OF NUMBER OF TUBE ROWS AND DESIGN FACE VELOCITIES IN AIR-COOLED HEAT EXCHANGERS (5)

NUMBER OF TUBE ROWS	FACE VELOCITY, FT/MIN
3	900
4	800
5	700
6	600
8	500
10	400
12	300

•

,

CHAPTER IV

PROGRAM LIMITATIONS AND ACCURACY

A. Overview

In this chapter, the known program limitations and some estimates of the accuracy of the methods used are given. Recognize that is completely impossible to state definitive program limitations or accuracies; these are too dependent on how you, the user, characterize the system, i.e. the accuracy of the information you give the program. Thus, the comments that follow should be regarded as guidelines.

B. LMTD, Ft Method

The logarithmic mean temperature difference method of heat exchanger design is very precise when the assumptions are completely valid. The set of assumptions for this method are (5);

- 1. All elements of a given stream have the same thermal history.
- 2. The heat exchanger is at steady state.
- 3. Each stream has a constant specific heat.
- 4. The overall heat transfer coefficient is constant.
- 5. The flow is either entirely cocurrent or entirely countercurrent.

6. No bypass flow

 The heat exchanger does not exchange heat with the surroundings.

C. Tube Side Methods

For turbulent flow the individual heat transfer equation used is the Seider-Tate equation. This equation gave a maximum mean deviation of approximately +15 to -10 percent for Reynolds numbers above 10,000. The Hausen equation for laminar flow is very accurate as long as the Reynolds number is below 2,100.

D. Delaware Method

The Delaware method, though probably the best in the open literature is not extremely accurate. An exhaustive study by Palen and Taborek (11) tested various literature methods against 972 heat transfer data points and 1332 pressure drop points covering a wide range of fluids and geometrical parameters. This study showed that the shellside heat transfer coefficients ranged from about 50% low to 100% high, while the pressure drop range was from 50% low to 200% high. The mean error for heat transfer was about 15% low for all Reynolds numbers, while the mean error for pressure drop was from about 5% low (unsafe) at Reynolds numbers above 1000 to about 100% high at Reynolds number, below 10.

E. Air-Cooler Methods

The methods used to calculate the exchanger width, number of tubes, number and power requirements of the fans is only an approximate method and is based on the LMTD, FT method of design. The average accuracy of the methods given in the GPSA Data Book is for most problems 10 to 15 percent when compared with the best design procedures as suggested by engineers at the Gas Processors Suppliers Assocation.

BIBLIOGRAPHY

- 1. Bell, K. J., "Estimate S & T Exchanger Design Fast", <u>Oil and Gas</u> Journal, Dec. 4, 1978, pp. 59-68.
- Bell, K. J., "Exchanger Design Based on The Delaware Research Program", Petro/Chem Engineer, 32, Oct. 1969, pp.C-26-C-40c.
- Bell, K. J., "Final Report of the Cooperative Research Program on Shell and Tube Heat Exchangers", Bullentin No. 5, University of Delaware Engineering Experiment Station, Newark, Delaware, 1963.
- Bell, K. J., in Schlunder, E. U., ed., <u>Heat Exchanger Design</u> <u>Handbook</u>, Vol. 3, Sec. 3.1.4, <u>Hemisphere Publ. Corp.</u>, <u>Washington</u>, 1983.
- 5. Bell, K. J., <u>Process Heat Transfer</u>, class notes at Oklahoma State University, Unpublished, 1984.
- 6. Cook, E. M., "Air-Cooled Heat Exchangers", <u>Chemical Engineering</u>, May 25, 1964, p.137; July 6, 1964, p. 131; August 3, 1964, p 97.
- 7. Engineering Data Book, Gas Processors Suppliers Association, Tulsa, 1972.
- Frank, O., "Simplified Design Procedures for Tubular Heat Exchangers", <u>Practical Aspects of Heat Transfer</u>, American Institute of Chemical Engineers, New York, 1978, pp. 1-25.
- 9. Fraas, A. P., and Ozisik, M. N., <u>Heat Exchanger Design</u>, John Wiley and Sons Inc., New York, 1965.
- 10. Kern, D. Q., <u>Process Heat Transfer</u>, McGraw-Hill Book Co., New York, 1948.
- 11. Palen, J. W., and Taborek, J., "Solution of Shell-Side Flow Pressure Drop and Heat Transfer by Stream Analysis Method", <u>CEP Symp. Ser</u>. No. 92, 65, "Heat Transfer-Philadelphia", 1969, <u>pp. 53-63.</u>
- 12. Smith, E. C., "Air-Cooled Heat Exchangers", Chemical Engineering, November 17, 1958.
- Taborek, J., in Schlunder, E. U., ed., <u>Heat Exchanger Design</u> <u>Handbook</u>, Vol. 3, Sec. 3.3.4, <u>Hemisphere Publ. Corp.</u>, <u>Washington</u>, 1983.

- 14. <u>Tubular Exchanger Manufacturers Association</u>, Standard, 6th Ed., New York, 1978.
- 15. Walker, G., <u>Industrial Heat Exchangers</u>, McGraw-Hill International Book Co., New York, 1982.

.

APPENDIX B CURVE FITS

APPENDIX B

CURVE FITS

Fit for Figure 1: F_t vs. P for an exchanger having one pass shell side, two passes tube side:

$$P = (t_2 - t_1)/(T_1 - t_1)$$

 $R = (T_1 - T_2)/(t_2 - t_1)$

$$F_{t} = \frac{\frac{\sqrt{R^{2} + 1}}{R - 1} \log_{10} \frac{1 - P}{1 - PR}}{\log_{10} \frac{(2/P) - 1 - R + \sqrt{R^{2} + 1}}{(2/P) - 1 - R - \sqrt{R^{2} + 1}}}$$

If R = 1, then $1/(R - 1) \log_{10} (1 - P)/(1 - PR)$ becomes indeterminate, the expression is then replaced with

<u>One Pass Shell Side; Infinite Passes Tube Side</u>. It has been pointed out by Bowman (5) that the correction factor F for a multipass heat exchanger, having one shell-side pass and a large number of tube side passes approaches ideal crossflow. Even at this limit the value for $F_{\mbox{t}}$ is generally only 1 to 2 percent less than that of the one-two exchangers.

For multiple shell side passes the following equations are used:

$$P_{1,2} = (t_2 - t_1)/(T_1 - t_1)$$

R = (T_1 - T_2)/(t_2 - t_1)

Then P is recalculated

$$P_{N,2N} = \begin{pmatrix} 1 & -P_{1,2} & R \\ \hline 1 & -(\frac{1 & -P_{1,2}}{1 & -P_{1,2}}) \\ \hline R & -(\frac{1 & -P_{1,2}}{1 & -P_{1,2}}) \end{pmatrix}$$

when R = 1

$$P_{N,N2} = \frac{P_{1,2} * N}{P_{1,2N} - P_{1,2} + 1}$$

and the term $1/R - 1 \log_{10} 1 - P/1 + PR$ is set as (1.0 - P)/P

where

N = number of shell side passes

$$F = \frac{\frac{\sqrt{R^2 + 1}}{R - 1} \log_{10} \frac{1 - P}{1 - P}}{\log_{10} \frac{(2/P) - 1 - R + \sqrt{R^2 + 1}}{(2/P) - 1 - R + \sqrt{R^2 + 1}}}$$

Fit for Figure 6: j_i vs. Re_s

Curve 1: for triangular layouts

$$j_i = 1.73 \text{ Re}_s^{-0.694}$$
 $1.0 < \text{Re}_s < 100$
 $j_i = 0.717 \text{ Re}_s^{-0.507}$ $100 < \text{Re}_s < 1000$
 $j_i = 0.236 \text{ Re}_s^{-0.346}$ $1000 < \text{Re}_s$

Curve 2: for rotated square layouts

 $j_i = 1.39 \text{ Re}_s^{-0.691}$ $1.0 \le \text{Re}_s \le 100$

$$j_i = 0.414 \text{ Re}_s^{-0.425}$$
 100 < Re_s < 1000

$$j_i = 0.257 \text{ Re}_s^{-0.357}$$
 1000 < Re_s

Curve 3: inline square layouts

$$j_{i} = 0.817 \text{ Re}_{s}^{0.632} \qquad 1.0 < \text{Re}_{s} < 100$$

$$j_{i} = 0.290 \text{ Re}_{s}^{-0.418} \qquad 100 < \text{Re}_{s} < 700$$

$$j_{i} = 0.059 \text{ Re}_{s}^{-0.181} \qquad 700 < \text{Re}_{s} < 4000$$

$$j_{i} = 0.185 \text{ Re}_{s}^{-0.324} \qquad 4000 < \text{Re}_{s}$$

Curve fit for Figure 7:
$$J_1 vs \left(\frac{S_{sb} + S + b}{S_m}\right)$$

For $\left(\frac{S_{tb} + S_{sb}}{S_m}\right) < 0.15$
Slope = -0.46617 - -0.40601 $\left(\frac{S_{sb}}{(S_{sb} + S_{tb})}\right)$
 $Y_1 = 1.03 + Slope * 0.415$
 $A_1 = (Y_1 - 1.0 - 0.075 * Slope)/0.075$
 $A_2 = (Slope - A_1)/0.3$
 $J_1 = 1.0 + (A_1 + A_2 * (\frac{S_{sb} + S_{tb}}{S_m})) * (\frac{S_{sb} + \frac{S}{tb}}{S_m})$
For $\left(\frac{S_{tb} + S_{sb}}{S_m}\right) > 0.15$
Slope = 0.46617 - 0.40601 * $\left(\frac{S_{sb} + S_{tb}}{S_{sb} + S_{tb}}\right)$
 $J_1 = 1.03 + Slope * \left(\left(\frac{S_{sb} + S_{tb}}{S_m}\right) + 0.265\right)$

Curve fit for Figure 8: Jb vs Fsbp

For 10 \leqslant Re $_{\rm S}$ \leqslant 100

Factor =
$$((0.5 - \frac{N_{ss}}{N_c})/0.5)^4$$

For $N_{ss}/N_c < 0.05$ Slope = -1.2654 + 0.81068 * (ln(1 + 20 * $\frac{N_{ss}}{N_c}$))

For
$$N_{ss}/N_c \ge 0.05$$
 Slope = -0.97686 + 0.40738 (ln(1 + 20 * $\frac{N_{ss}}{N_c}$))

$$J_b = \exp(\text{Slope } * F_{sbp} * Factor)$$

For Re_{S} > 100

For
$$N_{ss}/N_c < 0.05$$
 Slope = -1.26540 + 0.81068 * $ln(1 + 20 * \frac{N_{ss}}{N_c}))$
For $N_{ss}/N_c \ge 0.05$ Slope = -0.97686 + 0.40738 $ln(1 + 20 * \frac{N_{ss}}{N_c})$

 $J_b = exp(Slope * F_{sbp})$

Curve fit for Figure 9: J_r^* vs N_b

$$J_{r}^{*} = ((N_{b} + 1.0) * (N_{c} + N_{cw})/10.0)^{-0.18}$$

Curve fit for Figure 10: $J_r vs J_r^*$

For 20 \leq Re_s < 100

$$J_r = (J_r^* - 0.2) * (1.25 - Re_s/80.0) + Re_s/100.0$$

For Re_{s} < 20

$$J_r = J_r^*$$

Curve fit for Figure 11: f_i vs Re_{s}

Curve 1: triangular pitch p/do = pitch to diameter ratio = 1.25

$$f_i = 68 \text{ Re}_s^{-1.0} + 1.6$$
 $1 \le \text{Re}_s \le 500$

$$f_i = 0.97 \text{ Re}_s^{-0.19}$$
 500 < Re_s

Curve 2: rotated square p/do = 1.25

$$f_i = 56 \text{ Re}_s^{-1.0} + 0.13 \qquad 1 < \text{Re}_s < 600$$

$$f_i = 0.64 \text{ Re}_s^{-0.17}$$
 600 < Re_s

Curve 3: triangular pitch p/do = 1.3

$$f_i = 52 \text{ Re}_s^{-1.0} + 0.17$$
 $1 \le \text{Re}_s \le 500$
 $f_i = 0.56 \text{ Re}_s^{-0.14}$ $500 \le \text{Re}_s$

Curve 4: rotated square pitch p/d = 1.3

 $f_i = 42 \text{ Re}_s^{-1.0} + 0.11$ $1 \le \text{Re}_s \le 600$ $f_i = 0.37 \text{ Re}_s^{-0.11}$ $600 \le \text{Re}_s$

•

Curve Fit for Figure 12: $f_i \ vs \ Re_s$

.

Curve 1: inline square pitch p/do = 1.3

$$f_{i} = 56 \text{ Re}_{s}^{-1.0} + 0.09 \qquad 1 < \text{Re}_{s} < 1000$$

$$f_{i} = 0.65 \text{ Re}_{s}^{-0.14} \qquad 4000 < \text{Re}_{s}$$

$$f_{i} = f_{i,1000} + (f_{i,4000} - f_{i,1000}) (\frac{\text{Re}_{s} - 1000}{3000})$$
Curve 2: square pitch p/do = 1.25
$$f_{i} = 45 \text{ Re}_{s}^{-1.0} + 0.09 \qquad 1 < \text{Re}_{s} < 1000$$

$$f_{i} = 0.53 \text{ Re}_{s}^{-0.14} \qquad 4000 < \text{Re}_{s}$$

$$f_{i} = f_{i,1000} + (f_{i,4000} - f_{i,1000}) (\frac{\text{Re}_{s} - 1000}{3000})$$
Curve fit for Figure 13: Re vs $\frac{\text{S}_{sb} + \text{S}_{tb}}{\text{S}_{m}}$
For $\frac{\text{S}_{sb} + \text{S}_{tb}}{\text{S}_{m}} < 0.2$

$$\text{Re} = 1.03 + (-0.5833 - 0.55417 * (\frac{\text{S}_{sb}}{\text{S}_{b} + \text{S}_{tb}}))$$

$$* ((\text{S}_{sb} + \text{S} + b/\text{S}_{m}) + 0.500)$$

For $\frac{S_{sb} + S + b}{S_m} < 0.2$

Slope = -0.58333 - 0.55417 *
$$\frac{S_{sb}}{S_{sb} + S + b}$$

 $Y_2 = 1.03 + Slope 0.7$
 $A_1 = (Y_2 - 1.0 - 0.1 * Slope)/0.1$
 $A_2 = (Slope - A_1)/0.4$
 $R_1 = 1.0 + (A_1 + A_2 * (\frac{S_{sb} + S_{tb}}{S_m})) * (\frac{S_{sb} + S_{tb}}{S_m})$

Curve fit for Figure 14: $R_b vs F_{sbp}$

For $N_{ss}/N_c < 0.05$

•

 $Re_{s} < 100 \text{ Factor=} ((0.05 - N_{ss}/N_{c})/0.05)^{4}$

 Re_{s} > 100 Factor = 1.0

Slope = -3.67879 + 2.41243 * (ln(1.0 + 20.0
$$\frac{N_{ss}}{N_c}$$
))

 $R_b = exp(Slope * Factor * F_{sbp})$

For $N_{ss}/N_c \leq 0.05$

•

· .

if Re_s > 100 Factor = 1.0

Slope = $-2.82192 + 1.17683 * (ln(1.0 + 20 * N_{ss}/N_c))$

 $R_{b} = \exp(slope * factor * F_{sbp})$

್ರ

VITA

Billie Annette Bowersock

Candidate for the Degree of

Master of Science

Thesis: HEXSIM: A PRELIMINARY SHELL AND TUBE AND AIR-COOLED HEAT EXCHANGER DESIGN/RATING PROGRAM

Biographical:

Personal Data: Born in Bartlesville, Oklahoma, April 10, 1962, the daughter of Bill Bowersock and Patricia Bowersock.

- Education: Graduated from College High School, Bartlesville, Oklahoma, May, 1980; received a Bachelor of Science in Chemical Engineering degree from Oklahoma State University, May, 1984; completed requirements for the Master of Science degree at Oklahoma State University in May, 1987.
- Professional Experience: Research Assistant, Oklahoma State University, 1986; Teaching Assistant, Oklahoma State University, Fall, 1985; Associate Engineer, Conoco Inc., 7/84 to 6/85. Currently employed by Ethyl Corporation, Baton Rouge, Louisiana.