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Abstract 

Geographical data broadcasting is suitable for many large scale dissemination-

based applications due to its independence of number of users, and thus it can serve 

as an important part of intelligent information infrastructures for modern cities. In 

broadcast systems, query response time is greatly affected by the order in which data 

items are being broadcast. However, existing broadcast ordering techniques are not 

suitable for geographical data because of the multi-dimension and rich semantics of 

geographical data. This research develops cost models and methods for placing 

geographical data items in a broadcast channel based on their spatial semantics to 

reduce response time and energy consumption for processing spatial queries on point 

data and graph data.    

Three cost models are derived to measure Data Broadcast Wait (DBW), Data 

Access Time in the multiplexing scheme (ATData
Mul) where both data and indices are 

broadcast in the same channel, and Data Access Time in the separate channel scheme 

(ATData
Sep) where data and indices are broadcast in two separate channels.   Hyper-

graph representations are used to represent the spatial relationships of both point data 

and graph data.  The broadcast data placement problem is then converted to the graph 

layout problem. A framework for classifying ordering heuristics for different types of 

geographical data is presented.   A low-polynomial cost approximation graph layout 

method is used to solve the DBW minimization problem. Based on the proven 

monotonic relationship between ATData
Sep and DBW, the same approximation method 

is also used for ATData
Sep optimization. A novel method is developed to optimize 

xv 



xvi 

ATData
Mul.  Experiments using both synthetic and real data are conducted to evaluate 

the performance of the ordering heuristics and optimization methods.  The results 

show that R-Tree traversal ordering heuristic in conjunction with the optimization 

methods is effective for sequencing point data for spatial range query processing, 

while graph partition tree traversal ordering heuristic in conjunction with the 

optimization methods is suitable for sequencing graph data for network path query 

processing over air. 

 

 



Chapter 1 

Introduction 

Analog radio broadcast has played important roles in modern society during 

the past decades. The last decade saw great expansions and interconnections of digital 

information, the World Wide Web for example. While the client/server architecture 

of the Web and the underlining point-to-point communication infrastructure of the 

Internet work fine for moderate traffic, they do not scale well when millions of people 

request similar information from a website. The problem is even severe as more and 

more information systems are extending to wireless and mobile networks to allow 

information access anytime and anywhere. Due to the limited nature of wireless 

bandwidth, scalability in such large systems is very likely to be a big issue.  

Broadcast is suitable for dissemination-based applications with the following 

characteristics (Aksoy, 1998): large scale, high overlapped demands among users and 

the asymmetric data flow from sources to users. Broadcast is a promising alternative 

to point-to-point access in many cases since resource consumption in a broadcast 

system is independent of the number of users in the system. Geographical information 

has been widely used in our everyday lives. Geographical information broadcasting 

can serve as an important component of intelligent information infrastructures for 

modern cities.  

Due to the sequential nature of a data broadcast system, query processing over 

air medium is significantly different from that in a disk or main memory resident 
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database system.  The ordering of a broadcast sequence plays an important role in the 

query performance. However, existing broadcast ordering techniques are not suitable 

for geographical data because of the multi-dimensional and rich semantics 

characteristics of geographical data. The objectives of this study are to provide cost 

models and techniques for ordering geographical data in broadcast channels that 

improve spatial query processing on air.  

In this chapter, we first introduce some background on data broadcast, 

geographical information and geographical information broadcast. We then discuss 

some application areas and point out the research challenges concerning geographical 

information broadcasting. Finally we state our research objectives and present the 

dissertation outline.  

1.1 Data Broadcast 
Data broadcast can be performed on either wired or wireless network using 

either a single-hop or a multi-hop communication infrastructure. An excellent 

example of single-hop data broadcast is the Datacycle project at Bellcore more than 

15 years ago where a database circulates on a high bandwidth optical network (140 

Mbps) (Herman, 1987). From the application perspective, the current Internet 

multicast can be treated as multi-hop broadcast to a user group on fixed networks. 

Disseminating data from a node to all the other nodes in a wireless sensor network is 

a good example of multi-hop broadcast on wireless network. Multi-hop broadcast is 

more energy-efficient than single-hop broadcast since the received signal power 

decreased much faster than the communication distance (p’=p*r-α, where p is the 
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transmission power, p’ is the received power, r is the distance and α is a parameter 

typically between two and four) (Wieselthier, 2002). However, when there are special 

nodes in wireless networks that are free from energy constraints, it is advantageous to 

use single-hop broadcast as discussed shortly.  

In this study we are interested in geographical data broadcast to support 

location dependent services. We adopt single-hop wireless data broadcast for several 

practical reasons. First, cellular networks, the most popular form of wireless mobile 

communication at present, use wireless broadcast at their last hop where the base 

stations are the special nodes that are generally thought to be free from energy 

constraints.  It is beneficial to utilize cellular networks by setting broadcast servers at 

the base stations. Second, even in wireless ad-hoc networks, it is very likely that there 

are some mobile units have more power supplies and computing powers than others. 

It is beneficial to tradeoff energy consumption with coverage and mobility 

management overheads. For the rest of this dissertation, we refer “single-hop digital 

wireless data broadcast” as “broadcast” or “data broadcast”.  

Data broadcast can be classified into two main categories, pull-based and 

push-based (Aksoy, 1998). In pull-based broadcast, the broadcast server receives 

explicit requests from clients and schedules a broadcast sequence based on the 

requests. In this case there are no unwanted data in the broadcast sequence which can 

improve channel utilization. In push-based broadcast, the data access patterns are 

assumed to be fixed and the broadcast sequence is pre-determined. It is possible that 

there are data items in the broadcast channel that are not needed by any clients at 
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particular time slots. Although the broadcast channel might not be fully utilized in 

push-based broadcast, it has two advantages. The first is that it does not need on-

demand scheduling which could be very expensive. The second is that no up-link 

communication between clients and the broadcast server is needed which makes it 

suitable for light-equipped and inexpensive handsets. 

In addition to the excellent scalability as discussed earlier, there are several 

additional advantages for single-hop wireless and push-based broadcast. First, data 

communication through broadcast consumes less energy since users are in receiving 

mode instead of sending mode. Second, there is no mobility management problem for 

the broadcast server when users are in the receiving range of the server while there 

are significant overheads in mobility management in cellular or ad-hoc mobile 

networks.  Third, since handsets in such broadcasts systems do not need up-link 

communication components to send data, their sizes/weights and manufacturing cost 

can be significantly reduced. The reduction of sizes and/or weights can further reduce 

power consumption.  

Compared with analog radio broadcast, digital broadcast allows automatic 

data filtering and integration of multiple resources to provide targeted and 

personalized data without having to physically tuning to radios. Digital broadcast of 

newspapers to individual subscribers can be traced back as early as 1985 when 

personal computers are still not powerful enough to accommodate several Kbps data 

transfer rate (Gifford, 1985). Several standards have been proposed for digital 

broadcast, such as the ATSC data broadcast in North America (Chernock, 2001), 
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digital audio broadcast (Hoeg, 2001) and digital video broadcast (Reimers, 2001) 

standards in Europe. However, such techniques are mostly designed for streamed 

multimedia broadcast and do not support interactive queries over broadcast data. It is 

worth to mention that these multimedia broadcast standards are not specially designed 

for wireless broadcast. Actually they are currently more suitable to apply to cable 

networks. Although multimedia broadcast and database broadcast can share the same 

broadcast techniques at the physical level for broadcasting data bits, unlike 

audio/video broadcast which has a predefined order based on time sequence, 

orderings of the data items (and their indices as well) in database broadcast will affect 

the performance of query processing significantly.  

The digital audio broadcast standard (Reimers, 2001) has defined data 

services and applications which allow broadcasting data other than audio and video, 

such as “Broadcast Web Site” (TS 101 498). Although the standard suggests 

prioritizing data objects based on their individual access frequencies similar to our 

preliminary work in (Zhang, 2002), it does not take the case in which multiple data 

items are accessed together into consideration. Further discussions on this problem 

will be provided in Section 1.5 and Section 2.1 in Chapter 2.  

1.2 Geographical Information  
Geographical information has been widely used in our everyday lives. It has 

been used in applications such as finding service locations (e.g. restaurants and ATM 

machines) and getting traffic and travel information. The National Academy of 

Sciences estimates that 80 percents of the information on the Internet have a spatial 
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component ([HREF 1]). The importance of geographical information has been 

recognized in mobile computing in the context of location management in cellular 

and ad-hoc networks (Wong 2000), position-based routing protocols (Mauve, 2001) 

and location based services (Virrantaus, 2001), etc. 

Geographical Information Systems (GIS) have been used for geographical 

data management. In the database community, research on geographical data falls 

into the category of spatial databases (Rigaux, 2002; Shekhar, 2003).  Geographical 

data types, such as point, polyline and polygon, are often modeled as objects, thus 

research on geographical data management is also related to object-oriented 

databases. ORACLE versions 8 through 10 define various geographical data types 

and use its object-relational data model to manage geographical data ([HREF 2]).  

Oracle version 9 and higher support spatial window (range), spatial join, nearest 

neighbor and other spatial queries ([HREF 2]). 

Almost all the existing research on geographical data management assumes 

the underlining access medium is disk and much effort has been put on reducing I/Os. 

We envision that non-disk based spatial databases will attract more and more research 

interests in the areas such as main-memory spatial databases and spatial databases 

over air. Broadcasting spatial databases over air allows an unlimited number of users 

to access the spatial databases simultaneously using simple and cheap receiver any 

time and anywhere. 
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1.3 Geographical Information Broadcast 
 

Geographical data are especially suitable for broadcasting. It serves a great 

number of users, such as users in metropolitan areas. It is public and has no or very 

few privacy concerns. It is mostly read-only and changes relatively slowly. Most 

importantly, it is distributed in nature which can eliminate the biggest disadvantage of 

broadcast, i.e., limited broadcast range. This is because most of geographical data 

accesses are local, i.e., people are more likely to access the geographical data that are 

near to them. We can adopt the cellular structure and distribute geographical data to 

the base stations for distributed broadcast. Fig. 1-1 illustrates the idea of geographical 

information broadcast for mobile computing at different levels of wireless networks. 

Geographical data at a global scale can be broadcast over satellite channels, while 

those at the country or state scales can be distributed to local broadcast servers 

through wired or wireless Wide Area Network (WAN) and those at the local scales 

(such as urban areas, communities or buildings) can use base stations in cellular 

networks as broadcast servers. 

 

 

 

 

 

 

Global 

WAN

LAN

Fig. 1-1. Geographical Data Broadcasting for Mobile Computing 
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We are particularly interested in push-based geographical data broadcast since 

the expected number of users in our applications is very big and it is too expensive to 

schedule a broadcast as that done in pull-based broadcast. For example, there could 

be millions of people who request traffic data at the same time in peak traffic time in 

metropolitan areas. The capability of allowing inexpensive mobile handsets to 

perform spatial queries over broadcast geographical data is a plus for push-based 

broadcast.  

1.4 Possible Application Areas 
We envision that geographical data broadcast over air has a broad scope of 

application areas, ranging from location dependent services in metropolitan areas, 

unusual event warnings in remote areas, disaster rescuing and military related 

applications.  

A. Location Dependent Services 
There are several ways for users to be aware of their locations. The Global 

Position System (GPS) provides very accurate position information. An inexpensive 

hand-held GPS receiver can provide an accuracy of 10 meters or better (Leonhardi, 

2002).  The infrastructures of most cellular networks can at least tell which cell a 

mobile user is currently in; this is a part of location/mobility management in the 

networks (Wong 2000). With the help of the neighboring base stations, the networks 

have the capability to tell the users their positions more accurately.  In many cases, 

the position information provided by GPS, network infrastructures or their 

combinations (Konig-Ries, 2002) are accurate enough to perform Location 
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Dependent Queries (LDQ) and request Location Dependent Services (LDS) (Seydim, 

2001). Two examples of such queries are “find all the ATM machines within 2 miles 

of my current location” and “tell me the shortest path from the White House to 

University of Maryland campus”. These services can be very useful for users in 

unfamiliar places. Furthermore, intelligent navigation systems can be built on top of 

LDS over broadcast geographical data, such as shopping guidance in big malls, 

transferring flights in busy airports, finding books in a library and locating rooms in 

skyscrapers. By issuing LDQs continuously over broadcast geographical data, the 

users’ intelligent agents will lead the users to their destinations. Comparing with 

using point-to-point communication for such services, all the advantages of data 

broadcast we discussed before apply.  

B. Unusual Event Monitoring 
Unusual events, such as traffic jams, storms and hurricanes, affect our 

everyday lives greatly. Some of them are matters of life and death. A public warning 

system is extremely useful in these situations. Traffic jams and road accidents have 

been broadcasting in analog form during the past decades and are going to be 

broadcast digitally ([HREF 3]). A new industry called Telemetrics that explore digital 

data broadcast technologies is coming into being (Xu, 2000). Energy consumption in 

those applications is usually not a problem since such events happen infrequently and 

users usually have continuous power supply, such as in cars. The reason of using data 

broadcast technologies from the sender’s perspective is primarily for its scalability 

and wide coverage. From the receiver’s perspective, it is crucial to reduce query 
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response time for queries that inquire whether there are or there are no such unusual 

events within a spatial range of some specific locations. This is especially important 

for the events that are broadcast through satellites to wide regions in remote areas. 

Since the number of such events is large while the available satellite bandwidths are 

limited, the broadcast cycle can be long and it is crucial to reduce response time by 

careful data placement.    

C. Disaster Rescue 
The power supply of a handset is usually very limited when a disaster 

happens. If the disaster happens far away from base stations, in a dessert for example, 

it is quite possible that the handset power might be quickly depleted after several 

unsuccessful connections. An alternative way might be to broadcast the geographical 

information and other related information in the disaster area. By using such 

information, people that are trapped by the disasters might be able to make right 

decisions. Power consumption is the primarily concern in such cases.  

D. Military Operations 
Communications in battlefield are crucial. One of the advantages of data 

broadcast in battlefield is safety. Since a soldier does not interact with the server by 

only listening to broadcast geographical and other types of data, he/she cannot be 

detected based on signal his/her handset emits. Data broadcasting is also 

advantageous when a soldier is isolated and has very limited power left and cannot 

afford active communication.  Geographical data broadcast can also be used for group 

dispatch or guidance. For example, a group of soldiers in a particular region should 
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move to another region or follow a particular route. A broadcast server can also 

broadcast road networks and topography in a particular area, updated information to 

data stored on the CD or other medium that go with soldiers, etc. 

1.5 Research Challenges  
Most existing geographical information systems are disk-resident. Spatial 

indexing and query processing techniques are mostly designed for reducing the 

number of I/Os. However a broadcast channel as an access medium is essentially one-

dimensional and only allows sequential access which is quite different from disk or 

main memory based data access. The difference between disk-resident data access 

and broadcast channel data access is illustrated in Fig. 1-2.  In disk resident data 

access, the read/write arm first moves the read/write head to the desired disk track, 

and the disk then rotates to the desired sector. Although the sequence of data items 

still plays an important role in performance as explained in Chapter 2, disk resident 

data access as well as main-memory data access can be generally treated as random.  

In broadcast data access, although only some data items (including both index and 

data) are needed (those that are shaded in Fig. 1-2), a client will have to wait between 

two needed data items (those that are non-shaded in Fig. 1-2). More detailed 

explanations for broadcast channel based data access are given in Section 3.1.  
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Fig. 1-2. Disk Based (The Left Figure) And Broadcast Channel Based 
(The Right Figure) Data Access 

 
Geographical data is multi-dimensional spatial data that has rich semantics 

which renders existing broadcasting techniques not suitable for its broadcasting. In 

this study we mostly target the first and the second application scenarios discussed 

above, i.e., location dependent query and unusual events monitoring. We are 

interested in two major geographical data types that are widely used in mobile 

computing, i.e., point data and graph data. Point data has explicit geometric 

coordinates and the spatial semantics among them are implicit. For graph data, the 

spatial semantics are explicitly expressed in terms of the weights of edges between 

the nodes of a graph. In this study, we assume graph data are two-dimensional 

geometric network and thus their vertices are also points. A typical application 

scenario of point data broadcast is a spatial range query that retrieves all the gas 

stations within 2 miles of a user’s current location over a broadcast channel. A typical 

graph data broadcast scenario is a network path query that finds the shortest path from 

location A to location B over a broadcast channel. In these queries, there may be 

more than one data items (restaurants or locations) in the query results. We use the 
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term “Complex Query” (Lee, 2002a) to denote the queries whose result sets have 

multiple data items.  

Query response time is greatly affected by the order in which geographical 

data items are being broadcast. Suppose there are six data items {1,2,3,4,5,6} to 

broadcast and there are two data items {2,5} in a spatial query result set. It only takes 

two units of time to retrieve the query result if the data items 2 and 5 are placed next 

to each other. However, it would take four units of time to retrieve them in the natural 

ordering. The placement is complicated when there are many such complex queries 

with different access frequencies over broadcast data.  

1.6 Research Objectives and Dissertation Outline  
Using air as an access medium for geographical data broadcast, or spatial 

databases on air, requires a new scheme for data organization and query processing.  

The objectives of this study are to develop cost models and methods for placing 

geographical data items onto a broadcast channel based on their spatial 

semantics to reduce the response time and energy consumption for processing 

spatial queries over broadcast channels.  In order to achieve the objectives, this 

dissertation performs the following tasks:  

• Derive the cost models of computing the data access time for processing 

spatial queries over broadcast geographical data under different scenarios. 

• Provide hypergraph representations for spatial relationships of both point 

data sets and graph data sets and relate the broadcast data placement problem 

with graph layout problems.  
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• Present a coherent framework for classifying ordering heuristics and 

discuss their applicability for different types of geographical data.  

•  Develop efficient and effective optimization methods to reduce data 

access time under different cost models.  

• Perform experiments on both ordering heuristics and the optimization 

methods using both synthetic and real data sets.  

 

This dissertation is outlined as in Fig. 1-3 where arrows show the 

dependencies between chapters. We first review the related work in Chapter 2. We 

then present our three cost models for spatial range queries and network path queries 

under two different scenarios in Chapter 3. We propose to use a hypergraph to 

represent the spatial semantics of a data set in our applications in Chapter 4. In 

Chapter 5, we discuss several heuristics to generate the orderings of broadcast 

sequences for both point data and graph data. The orderings based on the heuristics 

can be used as initial orderings for optimization. We provide several methods to solve 

the optimization problems efficiently in Chapter 6 under different scenarios.  Chapter 

7 presents experiments on the heuristics and optimization methods based on our cost 

models using real and synthetic data.  
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Fig. 1-3. Dissertation Outline 
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Chapter 2 

Literature Review 

 
In this chapter, we first review the existing work on generic data broadcast 

and we then turn to spatial indexing and spatial query processing in disk-resident 

spatial databases. Although extensive work has been done in both fields, we believe 

we are the first to address the problem of sequencing geographical data items on 

broadcast channels for efficient spatial query processing. As shown in Chapter 3, we 

transform the sequencing problem to a graph layout problem based on spatial 

semantics. Thus our work is also related to the page ordering research in disk-resident 

database systems and graph layout problems from a theoretical perspective. Finally, 

we provide brief reviews of other related work, such as graph partition, spatial 

clustering, location-based services and moving object data management. It is our 

vision that geographical data broadcasting can be used for location-based services as 

explained in the introduction chapter. We also envision that moving object queries 

over air is a very promising alternative to current disk-resident databases on top of 

point-to-point communication infrastructures. Graph partition and spatial clustering 

are used for generating heuristic orderings and optimizations as discussed in Chapter 

5 and Chapter 6.  
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2.1 Data Broadcast 

In a broadcast system, a minimum logical unit in a broadcast sequence is 

called a bucket/frame and a set of continuous buckets (either index or real data) are 

called a segment. The time to broadcast a segment can be calculated as the volume of 

a data segment divided by the bandwidth allocated for broadcasting. For the sake of 

simplicity, it is generally assumed that all the broadcast data items have the same 

volume and it takes a unit time to broadcast a data item. Based on this assumption we 

can measure the broadcast parameters discussed below using the positions of the data 

items in a broadcast sequence and their intervals (lengths or durations) as the 

measurements of access time.  

Different from disk resident data accesses, accesses to broadcast sequence are 

essentially one-dimensional. There are two important parameters in evaluating the 

performance of a broadcast system, namely Tune-in Time (TT) and Access Time 

(AT, or latency). TT is the amount of time spent by a client listening to the channel. 

AT is the average time elapsed from the time a client requests data to the time when 

all the required data are downloaded by the client. AT is the sum of the Probe Wait 

(PW) and the Bcast Wait (BW) where the former is the average duration for getting to 

the nearest index segment and the later is the average duration between the time the 

index segment is reached till all the required data items are downloaded. In Fig. 2-1, 

TT is equal to the summation of the lengths of the required data items (shaded) while 

AT is the duration between the initial access time and the time to access the last 

required data item.  
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 is a well-known tradeoff between AT and TT based on the assumption 

y consumption in TT is far greater than that in AT (250mW versus 

&T Hobbit chip, Imielinski, 1997). Two extreme strategies exist for 

ting (Imielinski, 1997). For the Access Opt strategy, there will be no 

ly data is broadcast to minimize AT. While for the Tune Opt strategy, 

exing is used to minimize unnecessary active channel listening (TT). 

t combine the two are often adopted. Although TT is determined by the 

ta items in a query result and the number of index segments that need to 

T is determined by the length of a broadcast cycle and the ordering of 

a broadcast sequence. The purpose to reduce TT is primarily for energy 

while reducing AT will reduce both energy consumption and query 

.  
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The idea of using air as a data access medium is first proposed in (Imielinski, 

1993). (Imielinski, 1997) and its related work (Imielinski, 1994a; Imielinski, 1994b) 

presented both a framework and several indexing methods for data broadcasting over 

the air. However, their work only takes one-dimensional tree indexing (B-Tree) into 

consideration. For the multiple-attribute case, they proposed to build multiple indices 

for each fragment of the first attribute. This is actually using one-dimensional 

indexing methods consecutively for multidimensional indexing which is inefficient 

(Kriegel, 1984). Using signature techniques for information filtering in wireless and 

mobile environments was presented in (Lee, 1996). A hybrid method by combining 

tree indexing and signature methods was proposed with demonstrated advantages 

(Hu, 2001a). However, signature based index methods only work for categorical data. 

They cannot be used for geographical data that is multidimensional and continuous in 

nature. The issue of multi-attribute data broadcast and query was explicitly addressed 

in (Hu, 2001b). However, it can only handle conjunction/disjunction queries that 

involve fewer than three attributes. Except for (Hu, 2001b), none of them considers 

different access frequencies of data items. Their focus is to trade TT with AT by 

using indices and reduce PW by index replication.  

The Broadcast Disk technique (Achrya, 1995) was proposed to broadcast data 

over multiple channels to reduce total access time by allocating bandwidth to disks 

(channels) based on the access frequencies of the data items placed in the channels. 

(Shivakuma, 1996) proposed an alphabetic Huffman tree based scheme to broadcast 

the index over multiple channels. In this scheme, the number of channels has to be 
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equal to the levels of the constructed alphabetic Huffman tree. In (Peng, 2000), a 

heuristic algorithm VFK was proposed to assign data items to multiple data channels 

based on the constructed imbalanced index tree which was again based on access 

frequencies. In this scheme, the number of channels can be arbitrary. Recently (Hsu, 

2002) extended the distributed indexing technique proposed in (Imielinski, 1997) to 

multiple channels. It first assigned Broadcast Segments (BS) to channels in the 

decreasing order of the summation of access frequencies of data items in the BSs. For 

the BSs in the same channel, it replicated the BSs based again on the summation of 

frequencies and distributed the replicated BSs on the channel as evenly as possible. 

This technique was applied again for the data items within each BS based on their 

access frequencies. Considering data access frequencies will generally improve the 

average access time.  However, all these techniques only consider retrieving a single 

data item from broadcast channels. It is obviously inefficient to retrieve multiple data 

items in a query result set by applying these methods multiple times. 

To the best of our knowledge, none of the above studies addresses the 

ordering problem of data items to be broadcast to reduce access time incurred in 

accessing multiple data items in a query result set. Although (Imielinski, 1997) 

proposed to chain data items that have the same values in different meta-segments in 

its nonclustering index and multi-index methods, it cannot be applied to data items 

that have different values but are often in the same query result (such as spatial range 

queries and network path queries). Furthermore, in the performance analysis, their 

work assumed that it would take a whole broadcast cycle to retrieve non-clustered 
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data items of a particular value which is an overestimation. As we illustrate in 

Chapter 7, we can improve query response time and clients’ energy consumption by 

carefully ordering data items in the broadcast channel before they are broadcast.   

We believe that (Gondhalekar, 1997) was the first to address the problem of 

retrieving multiple data items from wireless broadcast channels. They showed that the 

problem is in general NP-complete for both a non-indexed data layout and indexed 

data layout with unit access frequency. They related the non-indexed data layout to 

the Optimal Linear Arrangement problem in graph theory. They also provided two 

heuristics for optimizing the broadcast sequence for the indexed layout. Their cost 

model for the non-indexed data layout is essentially our DBW and their cost model 

for indexed data layout is essentially our DPW+DBW under the multiplexing scheme 

as presented in Chapter 3. We will further discuss the two heuristics in Chapter 5.  

The recent works on object-oriented database broadcast (Chehadeh, 1999) and 

relational database broadcast (Si, 1999; Lee, 2002; Lee 2003) allow multiple data 

items to be accessed in a query. The works presented in (Chehadeh, 1999; Lee, 2002) 

are only applicable to the cases where initial access must be done at the beginning of 

a broadcast cycle. They assumed the access to data items has a predefined order and 

thus are not suitable for spatial range queries since data items in a query result do not 

necessarily have a predefined order. Furthermore, the ordering heuristics proposed in 

the papers are greedy. The graph representation in (Si, 1999) allows each entity type 

to be accessed as the first one with a certain probability. The optimal ordering is 

obtained through the branch-and-bound technique. However, it might be too 
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expensive when the number of entity types is large since the complexity of the 

branch-and-bound technique is exponential with respect to the number of items to be 

sequenced in the worst case. In (Lee, 2003), a regular graph called data access graph 

is first constructed. The weight of an edge (u,v) is the summation of the frequencies 

of all queries that include both data items u and v. It then extended the iterative node 

combination process for sequencing tree-structured data proposed in (Chehadeh, 

1999) to sequence the data access graph. The ordered binary combination processes 

determine the broadcast sequence. We provide further discussions on the graph 

representation of both (Si, 1999) and (Lee, 2003) in Chapter 4 and the scheduling 

algorithm of (Lee, 2003) in Chapter 5. 

The work presented in  (Chung, 2001) is most similar to our cost model under 

the broadcast scheme that data and index are broadcast in different channels. Its QEM 

scheduling method and its extensions in (Lee, 2003) are essentially greedy, which is 

quite different from the optimization philosophy we adopt in this study. We recently 

found that the proof of the relationship between the average AT presented in (Chung, 

2001) and the concept of Query Distance (QD) on which the methods in (Chung, 

2001; Lee, 2003) are based is incorrect. The first author of (Chung, 2001) has 

recognized our finding (email communication, 2003). We discuss the cost model of 

(Chung, 2001) in Chapter 3 and the QEM-alike scheduling algorithms (Chung, 2001; 

Lee, 2003) in Chapter 5. 

(Tan, 1998) presented an algorithm (NrBP) to generate broadcast sequences 

that facilitate range queries without sacrificing much on the advantages of 
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nonuniform broadcast for single data item retrieval. The basic idea is to range 

partition the data file into disjoint key ranges. Their analytical results showed that the 

uniform broadcast program (UBP) is the best for range access while the classic 

nonuniform broadcast program (NBP) is best for single data item retrieval which is 

based on the broadcast disk technique. They concluded that NrBP was a better choice 

for both single data item access and range access. However, the proposed algorithm is 

only applicable to one-dimensional data. An additional problem with their analytical 

study on the average access time for accessing items in a given range is as follows. 

Suppose there are n data items to broadcast and i is the ith data item, they assumed 

that the range a user can specify varies from 1 to n-i and any range between 1 to n-i 

are equally accessed.  While the assumption might be reasonable if the data items are 

uniformly distributed, usually it does not hold for arbitrarily distributed data such as 

the distribution of service locations.  

To the best of our knowledge, the only previous work on geographical data 

broadcast is (Hambrusch, 2001). It studied the execution of spatial queries on 

broadcast tree-based spatial index structures. It assumed that the client has such a 

limited memory that the whole R-tree cannot fit into the client memory and the client 

has to discard some retrieved R-Tree nodes to hold more useful ones during the query 

process. Their work focused on reducing extra access time incurred by having to 

access multiple broadcast cycles due to the replacement of the R-tree nodes in the 

client’s memory. Our work differs from theirs in that we aim to generate a good 

sequence of geographical data items for spatial queries after we have already had 
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indices, either from a separate index channel or from the same channel that broadcasts 

both data and indices, and a client only needs to access one broadcast cycle at most to 

retrieve desired data items. Since memory is getting cheaper and cheaper, we assume 

that the client memory can hold the entire index segments related to a query and we 

believe this assumption is more practical. 

Using multiple broadcast channels for data (not including indices) that 

supports complex queries was addressed in (Huang, 2003). This work proposed 

genetic algorithms for broadcast sequencing. Initially random sequences are 

generated for each query and their fitness (defined as the average access time) are 

computed. In the selection phase the selection probability of each sequence is set to 

be the weights of their fitness. In the crossover phase, the Partially Mapped Crossover 

(PMX) is performed and new sequences are generated. The best sequence is then 

selected according to the fitness. The process is repeated for a predefined number, 

i.e., the number of generations for genetic evolution. The philosophy of their method 

is quite different from that of graph-theoretic approaches.  

2.2 Spatial Indexing and Query Processing  

Traversal of spatial indexing trees and Space Filling Curves (SFC) generate 

orderings of data items. Structures of spatial indexing trees reflect spatial 

relationships between data items and can be used to produce better orderings.  

A comprehensive overview of multidimensional indexing and access methods 

was presented in (Gaede, 1998). The original R-Tree method was proposed in 
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(Guttman, 1984). Two R-Tree variations, namely R+-Tree (Sellis, 1987) and R*-Tree 

(Beckmann, 1990) were introduced later.  SFC, such as row-wise enumeration of the 

cells (Samet 1990), Peano curve (Morton, 1966) or Z-Ordering (Orenstin, 1984), 

Hilbert-Ordering (Faloutsos, 1989; Jagadish 1990) and Gray-Ordering (Faloustsos 

1988) could be used to transform multi-dimensional data into one-dimensional data, 

and consequently, one-dimensional index techniques such as B-Tree can be used for 

spatial indexing. Several characteristics such as jumps, continuity, reverse order and 

bias towards a particular dimension were studied theoretically and experimentally in 

(Aref, 2000).  The mean-variance analysis of the performance of spatial ordering 

methods was studied in (Kumar, 1998) for disk-resident spatial data.  Since they used 

a block factor of 1 (i.e., there is only one data item in a block) and the measurement is 

the number of clusters (a cluster is a group of consecutive disk blocks according to a 

SFC ordering) of a range query result set in a SFC ordering, their studies can also be 

interpreted as the measurement on the number of mode switches (between active and 

doze/sleep) in a spatial range query over a broadcast sequence.  

Since we assume the geographical data items to be broadcast are known prior 

to broadcast, they can be treated as static data. In disk-resident database systems, 

several methods were proposed for building indices for static spatial data, such as 

NEXT-X (Roussopoulos, 1985), STR (Sort-Tile-Recursive, Leutenegger, 1997), TGS 

(Top-down Greedy Splitting Algorithm, García, 1998), Small-Tree-Large-Tree 

Approach (Chen 1998; Chen 2002) and its generalization (Choubey, 1999). Hilbert 

25 



R-Tree  which is a R-Tree based on Hilbert-Ordering was  proposed in (Kamel, 

1994).  

Several proposed cost models (Kamel, 1993; Pagel, 1993; Theodoridis, 1996; 

Theodoridis, 2000) for R-Trees use the number of disk accesses as the performance 

measurement.  These models are based on the observation that the number of node 

accesses to a R-Tree is proportional to the summation of the extended node sizes of 

all the nodes in the R-Tree, assuming the data sets are uniformly distributed. Suppose 

the MBR (Minimum Bounding Rectangle) of a two-dimensional R-Tree node is (Nx, 

Ny) and the query window size is (Qx, Qy), then the extended node size is defined as 

(Nx+Qx)*(Ny+Qy). The buffer effect was further considered in (Theodoridis, 2000) 

where if an R-Tree node is already in the buffer then no upload from disks is needed. 

More recently, (An, 2003) proposed to use a density file data structure for more 

accurate spatial range query cost estimations. They claimed that their method did not 

make any assumptions about the data set. In our hypergraph representation of spatial 

range queries on point data sets (Chapter 4), we compute the weights of all possible 

spatial range query result sets, thus the applicability of our method is also data set 

independent. Although storing and manipulating hypergraphs have larger overhead 

than the density file structure, the overhead is well justified since the response time 

and energy consumption for air access is much more expensive than disk I/Os 

considering a high number of users.  

The Compact Path Encoding structure was first proposed in (Agrawal, 1989) 

and later extended to a hierarchical scheme for path query in transportation networks 
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by (Jing, 1998). (Shekhar, 1997a) presented a connectivity-clustered access method 

for disk-based networks and network computations. It proposed using edge access 

frequencies to partition a network into smaller ones for efficient data accesses. (Zhao, 

2001) proposed a different method by indexing segmented graph data rather than 

partitioning the graph data for indexing. Materialization tradeoffs (storing pre-

computed paths versus on-demand computation) in hierarchical shortest path 

algorithms using graph partition was addressed in (Shekhar, 1997b). Finding the 

shortest path in large networks based on hierarchical graphs was proposed in (Chan, 

2001). All these works on graph data query processing assume main memory or disk 

as the data access medium while our interest is on graph data access on the air 

medium.  

2.3 Page Ordering and Graph Layout 

The ordering problem of data items has been addressed in disk-resident 

database systems although in a different context than broadcast sequencing. To store 

two or more dimensional spatial data in disk-resident databases and process spatial 

queries efficiently, it is important to take advantage of the characteristics of disk 

management where a disk page is used as a basic unit which might contain multiple 

data items. The basic idea is to store semantically related data items in the same pages 

so that only a minimum number of I/Os is necessary even though multiple data items 

might be requested in a query. The order of data items will determine whether two 

data items can be put into the same page, and thus, it has a great impact on query 
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processing performance. However, the order of data items within a page is 

insignificant in terms of the number of I/Os. This is quite different from broadcast 

channel based data access where the position of each data item matters as formalized 

in Chapter 3.  Almost all tree-based spatial indexing methods exploit spatial 

adjacency in forming node split/merge policies. Traversing a spatial index tree or a 

hierarchical clustering tree gives an order of spatial data items. SFCs generate orders 

of multi-dimensional data items. More details are discussed in Chapter 5.    

(Bachmann, 1994) discussed the problem of assigning spatial data items to 

buckets (pages) to minimize access cost based on their region (range) query cost 

model. By converting the problem to a Minimum Weighted Matching Problem in a 

graph, an O(n3) solution for the case where the bucket capacity equals two (i.e. each 

bucket can have two data items at most) was proposed. However, they showed that 

for arbitrary bucket capacity the problem is NP-complete and proposed using 

Simulate Annealing (SA) for optimization. 

(Cho, 2000) argued that ordering based on SFCs does not take into account 

the uneven distribution of spatial data and the types of spatial queries. They assumed 

spatial data items had been grouped into pages and transformed the page ordering 

problem into a Traveling Salesman Problem (TSP) of a weighted graph, the weight of 

which is defined by the performance measurement of its cost model. They also 

proposed using the SA method to solve this NP-complete problem. However, it is our 

belief that using the SA might be too costly to be practically useful in online 
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applications since SA based approaches are generally very slow to achieve good 

results ([HREF 4]).  

Join query processing involves two or multiple data sets. There are two types 

of problems. The first one is to determine the optimal access sequence that uses the 

minimum buffer without any page being fetched more than once. The second is to 

determine the optimal access sequence that minimizes the number of pages re-

accessed given a fixed buffer size. By forming a join connectivity graph between the 

pages, several heuristics have been proposed (Pramanik 1985; Fotouhi , 1989; Chan 

1997; Lim, 1999).  

Spatial join is usually very expensive, and thus, deserves more computation 

resources for a better join plan.  Spatial join has been extensively studied in different 

scenarios since it is possible that none, only one or both participating data sets have 

spatial index. For static data sets, a page connectivity graph can be pre-computed. 

Given a buffer with size B, (Shekhar, 2002) transferred the problem of reducing 

redundant I/Os to minimizing the interrelations between pages that are B away in the 

ordering sequence. They proposed using graph partition techniques for spatial 

clustering and provided several heuristics for better graph partition. (Xiao 2000) 

proposed an approximation algorithm for solving the Maximum Overlapping problem 

which is essentially the same as the Longest Path problem. Its result is guaranteed to 

be at least half of the value (in terms of size of the total overlapping between pages) 

of the optimal order.  
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Page ordering in disk-resident systems and broadcast systems, although 

strongly related to each other, are also quite different. The purpose of the former is to 

find an ordering that maximizes the overlapping spatial relationships between pages 

(clusters), while the latter is to minimize the total weighted intervals between the 

beginning and ending data items in all possible query result sets. While both problems 

are NP-complete, the latter is practically more complex.  Intuitively, all connected 

edges contribute their costs to the total costs in our problem while only the 

neighboring edges in the optimized ordering contribute costs to the total costs in their 

problem. Furthermore, the purposes of page ordering in a disk-resident system and 

data item ordering in a broadcast system are different. The former aims at making use 

of data items that are already in memory as much as possible to reduce the number of 

I/Os while the latter aims at reducing data access time directly.  

In many of the above studies, spatial relationships are represented as graphs. 

From graph algorithms’ perspective, sequencing graph nodes can be treated as a 

graph layout problem. A survey on graph layout problems was presented in (Daiz, 

2002). A comprehensive analysis of heuristics for both symmetric TSP (Johnson, 

2002a) and asymmetric TSP (Johnson, 2002b) were provided. Spreading metric 

algorithms were proposed to solve a special type of graph layout problems known as 

the Linear Arrangement (Ordering) problem (Kuo, 1997; Rao, 1998; Even, 2000). A 

window-based vertex orderings with applications to circuit clustering was presented 

in (Alpert, 1996) where unordered vertices are iteratively added to the ordering based 

on their attractions to the previously ordered vertices. Various choices of attraction 
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can capture Depth First Search (DFS), Breadth First Search (BFS) and other well-

studied graph traversals. (Bar-Yehuda, 2001) presented a polynomial time algorithm 

for computing an optimal orientation (ordering) of a balanced decomposition tree for 

the graph linear arrangement problem. Although the theoretical approximation ratios 

were not improved, the experiments showed good results. A multi-scale scheme for 

the linear arrangement problem was presented in (Koren, 2002). Different from (Bar-

Yehuda, 2001) which imposes global constraints on the ordering through a Binary 

Decomposition Tree (BDT), it imposes many local constraints restricting small sets of 

vertices throughout the entire multi-scale hierarchy. The optimization methods 

presented in this dissertation (Chapter 6) are closely related to the work of (Bar-

Yehuda, 2001).   

2.4 Other Related Work 

Surveys on graph partition and spatial data clustering were presented in 

(Alpert, 1995; Schloege, 2000)  and (Han, 2001), respectively. Network clustering 

methods have been proposed, such as graph partition based (Shekhar, 1997a), spatial 

proximity based (Huang, 1996) and network traversal based (Woo, 2000).  

(Seydim 2001) presented a preliminary work on location dependent queries 

processing. (Ren 2000) proposed using semantic caching to manage location 

dependent data in mobile computing. Simulation results showed that their Furthest 

Away Replacement (FAR) cache replacement policy has better performance than 

conventional page caching. (Zheng, 2001) specifically addressed location dependent 
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queries in a multi-cell wireless environment. They used Voronoi diagrams to 

construct an index and a semantic cache for improving data reusability. They also 

proposed several scheduling methods for handoff clients. Both (Ren 2000) and 

(Zheng 2001) assumed a point-to-point data communication architecture and the 

client can provide its exact location when it submits location dependent queries. 

Although a client can explicitly and continuously submit its location dependent 

queries and retrieve results, (Lam, 2001) addressed another kind of location 

dependent continuous queries. In this case, once a client has submitted a location 

dependent query, the system will automatically update the client’s location and 

retrieve the updated information. 

In this study we only address the problem of static geographical data 

broadcasting, i.e., geographical data items that do not change over time, such as 

locations of ATM machines and gas stations. It might be interesting to investigate on 

broadcasting moving objects. The possible applications include monitoring natural 

hazard events in remote areas and locating taxi in urban areas. Several data models 

(Guting, 2000; Forlizzi, 2000), storage (Chon, 2001), indexing (Kollios, 1999; 

Agarwal, 2000; Pfoser, 2000; Saltenis, 2000) and query processing methods (Sistla, 

1997; Wolfson, 1999; Vazirgiannis, 2001) have been proposed for moving objects in 

disk-resident databases. However to the best of our knowledge, none of them has 

addressed the problem of broadcast moving data objects over air.  



Chapter 3 

Geographical Data Broadcast Cost Models 

As discussed in Section 2.1, AT is further divided into two components, 

namely Probe Wait and Bcast Wait. We argue that it might be more appropriate to 

divide AT into four components: Index-Probe Wait (IPW), Index-Bcast Wait (IBW), 

Data-Probe Wait (DPW) and Data-Bcast Wait (DBW). IPW is the same as Probe 

Wait defined in (Imielinski, 1997), i.e., the time duration of getting to the nearest 

index segment. IBW is the time duration from the time when the first index segment 

is reached to the time when the last index segment is reached. DPW is defined as the 

duration from the time the last index segment is reached to the time when the first 

data segment is reached. DBW is defined as the duration from the time when the first 

data segment is reached to the time when the last data item is downloaded. The 

summation of IBW, DPW and DBW is equivalent to the Bcast Wait defined in 

(Imielinski, 1997). These four components are illustrated in Fig. 3-1 for two 

scenarios. We assume each index segment contains a certain number of pointers each 

of which points to a data segment, and each data segment contains only one data item. 

We use the intervals between the beginning and ending positions of data items as the 

measurements of the four components of access time as discussed in Chapter 2.  
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(b) Index and Data Use Two Separate Broadcast Channels 

  

 

 T1: Time to begin accessing the broadcast channel 
T2: Time to reach the first requested index segment 
T3: Time when all requested index segments are downloaded
T4: Time to reach the first requested data segment  
T5: Time when all requested data segments are downloaded 
Fig. 3-1. The Four Components of Access Time 
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The definitions allow measuring the performance of index sequencing and 

data sequencing separately. Furthermore, they allow measuring the performance 

when index and data are broadcast using separate channels where the definitions in 

(Imielinski, 1997) only allow measuring the performance when index and data are 

broadcast using a single channel. In this study, we aim at reducing access time by 

providing a smarter arrangement of data items in the broadcast channel. 

We believe reducing DBW is more important due to the following reasons. 

First, a client is able to remain in sleep mode during Probe Waits (IPW or DPW). 

However, it must switch modes during Bcast Waits (IBW or DBW). Generally we 

can assume that the shorter the DBW is, the fewer mode switches occur. The reason 

is that data segments that need to be downloaded are more likely to be in a 

consecutive order for a smaller DBW, and thus, the number of mode switches among 

them can be reduced. Compared with IBW, DBW is much larger since data is usually 

much larger than its index, and thus, it is critical to minimize DBW. Second, only one 

pointer (the position of the nearest index segment) is recorded during IPW and at 

most k pointers are recorded during IBW+DPW where k is the number of data items 

in a query result set. However, there could be up to k data items that are recorded 

during DBW. Since usually the size of a data item is much larger than that of a 

pointer, it is desirable to reduce DBW as much as possible to reduce energy 

consumption for storing data items that have already been downloaded during the 

data access process.  
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We are also interested in the total access time to data, i.e., 

ATData=DBW+DPW. In this dissertation we consider two popular scenarios that 

involve both DBW and DPW. The first is that we assume the data and the index are 

multiplexed into one single broadcast channel. Here both the data and index segments 

are broadcast only once in a cycle and the index segments are placed ahead of the 

data segments. Without loss of generality we assume the index is placed at the 

beginning of a broadcast cycle since the broadcast sequence is cyclic. In this case, a 

client will have to wait for the beginning of a broadcast cycle (Fig. 3-1a) before 

accessing data items. The second scenario is that the data and index segments are 

broadcast in two separate channels and both the data and index segments are 

broadcast only once in their respective cycles. In this case, a client might begin to 

access the data channel at any position after it retrieves the pointers to the data 

segments from the index channel (Fig. 3-1b).  We call the first scenario as 

“Multiplexing Scheme” or MUL, and the second scenario as “Separate Channels 

Scheme” or SEP.  

Throughout this dissertation, we use “access time cost” to refer to the access 

time needed to complete a complex query over a broadcast sequence. For the rest of 

this chapter, we first propose the cost models to compute the DBW and the ATData 

under the two scenarios for a single complex query. We then present the cost models 

to compute the total DBW and the access time to data in the two scenarios for all 

queries over a data set. We handle spatial range queries for point data and network 

path queries for graph data separately although they both follow a similar framework.  
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3.1 Cost Models for Processing a Single Complex Query 
Suppose the length of the broadcast cycle of a data channel is L. Let L2 denote 

the access time of a single complex query result, i.e., DBW. Let L1 and L3 denote the 

time before L2 and after L2 in the broadcast sequence as shown in Fig. 3-2. Note that 

L=L1+L2+L3.   

 

T1: Time to begin a broadcast cycle 
T2: Time to access the first required data item 
T3: Time to access the last required data item 
T4: Time to end a broadcast cycle 

T4 

T3 T2 

T1 
L

L3L2L1

 

 

  

 

 

Fig. 3-2. Illustration of L1, L2 and L3 

We next compute the average cost for a single complex query under the 

Multiplexing scheme and Separate Channels scheme assuming a client begins to 

access the data channel randomly. 

• Multiplexing Scheme: the access time cost to the data channel can be 

calculated as: 
21 LLAT Mul

Data +=
  

• Using Separate Channels:  there are three cases that a client might begin to 

access the data channel. We compute their total access time costs seperately 

and then compute the average access time cost.  
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Case1: a client begins to access the data channel during L1. Suppose its initial 

access poistion is i then it has to wait for an amount of time equivalent to (L1-i) before 

downloading data during L2, thus the total costs over all possible i is: 

  
21

11
1

0
21 *

2
)1()(1

1

LLLLLiLCost
L

i

+
+

=+−= ∑
−

= 

Case 2: a client begins to access the data channel during L2. Regardless of its 

initial access position, it has to wait for the whole broadcast cycle to retrieve all the 

data items. Thus the total cost is: 

2*2 LLCost = 

Note that there is a slight overestimation here as shown in Fig. 3-3 (the shaded 

data items are the ones in the query result set). We need a part of L2 in the current 

broadcast cycle (L2c) and a part of L2 in the next broadcast cycle (L2n). However their 

total might be less than L2 since the rest of L2, i.e., L2m= L2 - L2c - L2n, is not required.  

Suppose there are n data items in the query  result set and they are evenly distributed 

among L2, then the overestimation on average is the half of the interval between two 

required data items among L2, i.e., L2/(2n). We omit this overestimation to make our 

result more concise and easy to use as can be seen in computing the average shortly.  
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T1 T3 T2 

L2mL2n 
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L2c 

L2 

D D DDDDDD 

T0: Time to begin access the broadcast channel 
T1: The end of the current broadcast cycle 
T2: The beginning of the next broadcast cycle (The same as T1) 
T3: Time to access the last required item in the next broadcast cycle 

 

 

Fig. 3-3. Illustration of the Overestimation in Case 2 
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Case 3:  a client begins to access the data channel in L3. It has to wait for the 

rest of the time in L3 in the current broadcast cycle and L1+L2 in the next broadcast 

cycle. Thus the total cost is:  
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−

=

−

=

−
−=−=++−=

1

0

33
3

1

0
213

33

2
)1(

*)()(3
L

i

L

i

LL
LLiLLLiLCost 

 

Since there are totally L intial access positions, the average is : 

 

]
2

)1)((
[1

]
2

)1)((
[1

]
2

)1*2)((
[1

]
2

)1)((
)(*[1

)](**
2

)1)((
[1

)](**
2

)1)((
[1

]
2

)1(
***

2
)1(

[1

)321(1

222

3122

31122

312
21

2

121
312

3221
3131

33
3221

11

−−−
−=

−+−
−=

−+−−
−=

+−−
+−−=

−++
+−−

=

+++
+−+

=

−
−+++

+
=

++=

LLLL
L

L

LLLL
L

L

LLLLL
L

L

LLLL
LLLL

L

LLLLL
LLLL

L

LLLLL
LLLL

L

LL
LLLLLL

LL
L

CostCostCost
L

AT Sep
Data

 

 

 

 

 

 

 

 

From the result we can see that the average access time to the data channel in 

the Separate Channels scheme is determined only by L and L2. Usually the number of 

data items in a query result is far fewer than the total number of data items in a whole 

broadcast cycle, thus it is reasonable to assume L-L2>>1. Under this assumption, the 

formula can be simplified as 
L

LLLAT Sep
Data 22

2
2

2 −+=  
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To further investigate the relationship between the average access time to the 

data channel and L2, we can rewrite the formula as follows: 
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Since L2<L, the average cost decreases monotonically as L2 decreases.  

Let function g(L2) be 
L

LLL
22

 )g(L
2

2
22 −+= . We will use this in the following 

analysis.  

3.2 Spatial Range Query for Point Data 
In this section we first compute all possible query result sets and their weights 

by exploring spatial semantics of a point data set and then we develop the cost models 

for DBW and the two scenarios of ATData by summarizing the weighted access time of 

individual query results we have developed in the last section. 

 Let DS=[x1,x2)× [y1,y2) be the data space that defines all the geographical 

data points. Let the range query window size be (qx,qy).  We define the Extended 

Region Ru of point Pu as the rectangle of size (qx,qy) centered at Pu. As shown in Fig. 

3-4, the distribution of the centers of the query window regions of size (qx,qy) that 

contain the data item Pu is the extended region of Ru. Furthermore, from Fig. 3-5 we 

can see that the distribution of the centers of the query window of size (qx,qy) that 

contain both the data items Pu and Pv is the intersection of their extended regions Ru 
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and Rv. This relationship can be extended to higher orders, up to the intersected region 

among all n extended regions. 

 

 

Pu

qy/2

qx/2

 

 

 

 

 Fig. 3-4. The Possible Distribution of Centers of Query Regions That Contain Pu

 

Pv

Pu

qy/2

qx/2

qy/2
qx/2

 

 

 

 

 

 

 
Fig. 3-5. The Possible Distribution of Centers of Query Regions That Contain 

Both Pu and Pv (Shaded Area) 

 

We assume that all the locations inside the study region are equally likely to 

be the users’ locations at the time they issue a spatial range query, i.e., the centers of 

query windows. The access frequencies of a subset of data points resulted from the 

spatial range location-dependent queries is proportional to the area of the distributions 
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of the centers of the query windows that contain the subset of data points. Thus, the 

access frequency of such data points in the subset is proportional to the intersection 

area of their extended regions (area). Assume the number of spatial range queries 

requested in the studied area is a fixed number (M), let c= 
)(*)( 1212 yyxx

M
−−

, then the 

access frequency of the query result set (freq) is freq=c*area. For the sake of 

simplicity we omit the constant factor c and only use area as the access frequency for 

a query result set. Note that the access frequency of a subset S is no less than the 

access frequency of another subset S’ if S⊆S’ since the intersection area of the 

extended regions of the points in S’ is a subset of the intersected area of the extended 

regions of the points in S.   

Let  be the area of RiA i, be the intersection area of RjiA , i and Rj, …, be 

the intersection area of R

nA ...2,1

1, R2…Rn. Let iA~  be the part of  that solely contains point 

P

iA

i, jiA ,
~ be the part of that solely contains points PjiA , i and Pj, … nA ...2,1

~  be the part of 

the intersection area of R1, R2…Rn that contains all n points. It is easy to see that we 

have the following relations: 

 

nn

n

kjik
kjijiji

n

jij
jiii

AA

AAA

AAA

..2,1,...2,1

,1
,,,,

,1
,

~
...

~

~

=

−=

−=

≠≠=

≠=

U

U
 

 

 

 

42 



Let function π(u) map point u to its position in the broadcast sequence. 

According to our previous definitions and assumptions, the DBW for a single query 

result set that contains k data items n1, n2 … nk, which is the definition of L2 (c.f. Fig. 

3-2), is ))(),...(),(min())(),...(),(max( 2121 kk nnnnnn ππππππ − . Correspondingly, L1 

is min{ )}(),...(),( 21 knnn πππ . 

The total DBW cost for a query window (qx,qy) is the summation of the 

weighted DBW for all possible query result sets. For a query result set that contains 

only two points i and j, the interval between them in the broadcast sequence is |π(i)- 

π(j)|. Its weight is jiA ,
~  and its weighted DBW is |)()(|*~ ),( jiA yx qq

ij ππ −

)))(),(

.  Note that i 

and j can be any two points the extended regions of which intersect with each other. 

Similarly the weighted DBW for a query result set that contain three points, i, j and k, 

is ),(min())(),(),(max(* (~ ),(
,, ikjA yx qq
kji ππππ − kj πiπ  and so on. Thus the total 

DBW cost for all possible query result sets with query window of size (qx,qy) can be 

written as follows: 
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The final total cost of DBW is the summation of DBWCost  over all 

possible query windows Q, i.e.,  

),( yx qq
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Similarly, the costs of access time to data under the Multiplexing scheme, 

, and Separate Channels scheme,                      are as follows:  SepATMul
DataAT Data
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Note that we omit the access times of queries that only have a single data item 

(which is L/2) in the SEP scheme since they are constant and do not contribute to the 

determination of optimal ordering.  
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3.3 Network Path Query for Graph Data 
Let V denote the vertex set of the network. Let Sij denote a path sequence with 

access frequency f(i,j) for source vertex i and destination vertex j. Assume the order 

of the k vertexes in the path are S0
ij, S1

ij, ….Sk
ij. The total DBW cost for the queries of 

all pairs of the shortest paths between any two vertexes over the broadcast sequence 

can be computed as follows:  
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This is essentially the same as the cost for spatial range queries. f(i,j) is 

equivalent to wi,j, wi,j,k,…w1,2…,.n depending on the number of vertexes along the path 

between vertex i and j. If we group f(i,j) by k=|Sij| and denote this as f(i,j)k, then 

f(i,j)2≡ wi,j,  f(i,j)3≡ wi,j,k, … f(i,j)n≡ w1,2,..n. 

Similarly, the costs of access time to the data channel under the Multiplexing 

and Separate Channels schemes for network path query of graph data are as follows 

correspondingly: 
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Now our problem is how to minimize the DBW and the access time to data 

under the Multiplexing and Separate channels schemes. To solve this problem, we 

first present a unified hypergraph representation of the spatial range query for point 

data and network path query for graph data in Chapter 4. Based on this representation 
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we relate the optimization problem with the well-known graph layout problems. We 

then present the optimization methods for the access time under the three cost models 

which are presented in Chapter 6.   

3.4 Discussions on Related Work  
The cost model presented in (Chung, 2001) is the work most related to our 

cost model under the Multiplexing scheme. The cost model is restated as follows 

using our definitions for the purpose of consistency. Let tj=dj+δj where dj is the time 

to access the jth required item and δj is the time between the jth  and (j+1)th required 

data items in a broadcast channel. Let F(y) be the access time of query q begin to 

access the broadcast channel at time (position) y in the broadcast sequence. They 

considered two scenarios when accessing the jth data item in the broadcast sequence. 

When a user begins to access the broadcast channel during 0~|dj|, the user has to wait 

for the whole broadcast cycle to retrieve dj, thus F(y)=L.  During |dj| ~tj, a user begins 

to access the channel at position y during δj and it takes L-y units time at most to 

retrieve the jth data item, thus F(y)=L-y+|dj|. The average cost for processing the query 

can be written as follows as derived in (Chung, 2001):  
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The authors also defined a new measure called Query Distance (QD) to 

approximate the cost for a complex query q under ordering π as follows: QD(q,π)=L-

δk, where δk  is the maximum of all δjs. If δk=L-L2 we can see that QD is L2. Thus 

their proposal using QD to approximate the average access time is similar to ours 

using L2 to approximate g(L2) as explained in details in Section 6.5.   

The authors also claimed that if QD(q, π1)≥ QD(q, π2), then cost(π1) ≥cost(π2) 

as the rationale  for the approximation. Unfortunately their proof on the induction of 

“if δk(π1)≤ δk(π2), then ∑ ” is incorrect. A counter example is as 

follows. Suppose we have only three data items. Their δ

∑
==

≤
n

i
i

n

i
i
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2
2

1

2
1 )()( πδπδ

∑
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n

i
i

1

2
2 )(πδ

js under π1 are 2, 4, 4 and 3, 

3, 4 under π2. Thus δk(π1) and δk(π2) are both 4. Although we have δk(π1)≤δk(π2),   

=2*2+4*4=20≤ =3*3+3*3=18 does not hold in the second 

induction step. 

∑
=

n

i
i

1

2
1 )(πδ

Since they failed to prove the correctness of using QD (L2) to approximate the 

cost (g(L2)), it is natural for readers to question the validity of our cost model and 

approximation proposal (using L2 to approximate g(L2)). We next show that under 

certain circumstances we can reduce their complex cost model to ours and prove the 

validity of our approximation proposal.  

In (Chung, 2001), when δk=L-L2 and δj=0 (for all j=1~n and j≠k), this cost 

model is essentially the same as ours. Although this condition does not hold in most 

48 



cases, when δk is large, δk
2

 dominates the term due to the quadratic 

relationship and we can use δ

∑
=

n

i
j

1

2δ

k
2 to approximate ∑ .  We believe that the condition 

can be satisfied in the orderings based on reasonably good heuristics that utilize 

spatial relationship. For orderings based on these heuristics, data items in the same 

queries are likely to be close to each other in the orderings which makes δ

=

n

i
j

1

2δ

k=L-L2 

much larger than other δi.  

In summary, the work (Chuang 2001) first provided an accurate yet complex 

cost model. They proposed to use a simpler parameter (QD) to approximate the cost 

computed by the model. Unfortunately, their proof of the monotonic relationship 

between QD and the cost model is not correct. On the other hand, we make some 

approximations (by omitting L2m as discussed in Section 3.1) at the beginning of 

deriving our cost model. The derived cost model is simpler and easier to compute. In 

addition, we are able to show the monotonic relationship between L2 and g(L2) which 

provides a theoretical foundation for approximation.  
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Chapter 4 

Hypergraph Representation of Spatial Semantics 

In Section 3.2 and Section 3.3 of Chapter 3 we treat each query result set 

individually without considering the relationships between the elements in multiple 

query result sets. From the graph theory perspective we can represent all the elements 

in the query result sets as nodes and the query result sets as the hyperedges. A 

hyperedge is an extension of a regular edge and consists one or more nodes. This 

representation allows the application of many well-studied hypergraph/graph 

algorithms to our applications directly or after some modifications. In this chapter we 

first introduce the hypergraph representation for both spatial range queries and 

network path queries. We then present an efficient method to compute the weights of 

the hypergraph for spatial range queries in point data sets. We propose an 

approximation method to covert a hypergraph into a regular graph that allows the use 

of regular graph algorithms, such as traversal and partition algorithms, in generating 

heuristic orderings (Chapter 5) and developing optimization methods (Chapter 6).   

4.1 The Hypergraph Representation 

In our hypergraph representation, the node set is all the points in a point data 

set or all vertexes in a graph data set. The points of a spatial range query result set  

{n1,n2..nk} or the vertexes along a path between vertex i and vertex j, i.e., {S0
ij, S1

ij, 

….Sk
ij } form a subset of the node set V. Each of such subsets makes a hyperedge 
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(Fig. 4-1 and Fig. 4-2).  Note that the circled numbers represent the hypergraph nodes 

and the numbers inside rectangles denote the weights of the hyperedges.  

In Fig. 4-1, the query window size is (10,10), thus all the four points have 

extended areas (R1, R2, R3 and R4) of size 100, i.e. A1=A2=A3=A4=100. The 

intersection of R1 and R2 is R12 (shaded) and the area of which is A12=36. Similarly we 

have A13=16, A23=56, A24=7, A34=12, A123=14, A234=4. By using the Inclusion-

Exclusion Theorem in set operations, we can compute 1
~A  as  

1
~A =A1-(A12+A13-A123)=100-36-16+14=62 

Similarly we can have 2
~A =19, 3

~A =34, 4
~A =85, 12

~A =22, 13
~A =2, 23

~A =38, 24
~A =3, 

34
~A =8, 123

~A =14, 234
~A =4.  
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Fig. 4-1. Hypergraph Representation of Spatial Relationships of Point Data 

In Fig. 4-2, the first component of the hypergraph representation is the four 

vertexes. They can be treated as the degenerated cases for path query results where 

the source vertex i is the same as the destination vertex j, i.e., ||Sij||=1.  The second 

component includes paths (1,2), (2,3) and (2,4) where ||Sij||=2, the third component 

includes paths (1,2,3), (2,3,4) and (1,2,4) where ||Sij||=3.  
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For spatial range queries, we use wi, wi,j, wi,j,k…w1,2,..n as the weights for the 

hyperedges that have 1,2,…n nodes. For network path queries, we use f(i,j) as the 

weights for the hyperedges. Although the weights of the hypergraph can be computed 

based on the geometry of the points in a point data set as shown in the next section, 

the weights of the hypergraph of graph data, which are the access frequencies of the 

paths in the graph data, can only be measured or estimated by domain experts. For 

example, the access frequency of a highway between two cities is determined by the 

mutual attraction factors and the transportation cost between them that is decided not 

only by the distance but also by road conditions and other complex interrelated 

factors.   
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Fig. 4-2. Hypergraph Representation of Spatial Relationship of Graph Data 
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4.2 Computing Hypergraph Weights for Point Data 
Although the method based on the Inclusion-Exclusion theorem used in the 

last section to compute the weight of the hypergraph edges is straightforward, the 

implementation based on it is not very efficient. We will refer to this method as the 

Inclusion-Exclusion method. The reasons are as follows. Suppose the number of data 

points in a data set is n. First of all we need to compute , …  for all 

possible 0<i<n, 0<i<j<n, …etc. This can be done by computing the intersections 

among all R

iA jiA , nA ...2,1

iA

is to get Ai,j, computing the intersections among all Ri,j to get Ai,j,k, etc.  

This process might repeat up to n rounds and the number of regions to be intersected 

in each round increases monotonically. For each round, the computation complexity 

can be reduced from O(N2) of an intuitive method, which exhaustively examines the 

intersection between two regions, to O(N*logN) by using the well known Line 

Sweeping algorithm (Cormen, 2001) where N is the number of regions to be 

intersected in each round. Thus the total number of intersections performed is in the 

order of where N∑
=

n

i
ii NN

1
log* i is the number of regions to be intersected in each 

round i. N1 is the number of regions to be intersected in the initial data set, i.e.,  N1=n. 

Since N1<N2…<Nn, this number is at least in the order of (n2log(n)). Second, 

maintaining the relationships among , …   in order to compute iA jiA , nA ...2,1
~ , jiA ,

~ , 

… nA ...2,1
~  is either very time consuming or very space consuming.  Furthermore, the 

implementation of the Line Sweeping algorithm is not trivial.  
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Fig. 4-3. Computing the Smallest Intersection Regions 

We next describe a simple intuitive method with a complexity of O(n3).  The 

idea behind the method is that we first compute all the possible smallest intersection 

regions (e.g., regions 1-6 in Fig. 4-3) and then assemble them in their corresponding 

result set (Cixiang Zhan, Environmental Research Institute - ESRI, 2001, Personal 

Communication).  We call this method Intersect-Assemble method. The process is 

shown in Fig. 4-4. It first sorts the coordinates of all points along the x and y 

directions respectively. For each of the two neighboring coordinates along the x and y 

direction, xi and xi+1 and yi and yi+1, a smallest rectangle can be constructed using 

these coordinates. For each of such rectangles, the algorithm examines which original 

regions contain it and all the labels of these original rectangles form a final result set. 

If multiple smallest rectangles are contained in a result set, their area will be summed 

up and set as the area of the result set.  

Assume there are six regions (R1 through R6) to be intersected as shown in Fig 

4-3. They have 12 distinct coordinates along the x and y directions, thus there are (12-
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1)*(12-1) smallest rectangles.  We focus on the three regions on the top-left since 

they intersect with one another while do not intersect with the other three regions. 

There are six smallest rectangles in region R3 as numbered 1 through 6. Rectangle 1 is 

contained in both region R1 and R3, thus its label is L13, similarly rectangle 4 is 

labeled as L123 and rectangle 5 is labeled as L23. Rectangles 2, 3 and 6 are all labeled 

as L3 and their areas are summed up. Thus we have  

3
~A =area(2)+area(3)+area(6), 23

~A =area(5), 13
~A =area(1), 123

~A =area(4) 

      

     

     

     
     

     

     

     
     
End
 

 

 

 

 

 

 

 

 

 

 

 

 

Input: An array of n regions Rect 
Output: A hash table H, each entry of which stores the label (hash key) and the area value. 
 
Set H to empty 

   Extract x and y coordinates of the points in the n regions into two arrays X and Y with size
of 2*n. 

Sort these two arrays, in ascending order.  
  For each i from 0 to 2*n-1 

      For j  from 0 to 2*n-1 
          Build a rectangle (tempRect) with the following four coordinates (X[i],Y[j], 

X[i+1],y[j+1]) 
        Set the label set (L) of tempRect to empty.  
             For k=0 to n-1 
                    If tempRect is within Rect[k] then 
                           Add k to L 

                      End if 
               End for k 

        If L is not empty 
            If L is already in H 

                   H(L)=H(L)+area(tempRect) 
            Else 

                  H(L)= area(tempRect) 
             End if 
        End if                             

    End For j 
End For i 
 

 
Fig. 4-4. The Intersect-Assemble Method  

for Generating Hyperedge Weights 
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It takes four comparisons to determine whether tempRect is within an original 

rectangle. Assuming it takes Q0 time on average to perform a lookup in a hash table, 

since in the worst case there is always an update for each lookup which is also 

assumed to take Q0 time, the cost of processing a single smallest rectangle is at most 

4*n+ Q0+ Q0=4*n+2*Q0. Since there are (2n-1)*(2n-1) of such smallest rectangles 

(i.e., i and j loops), the complexity of the algorithm is (2n-1)*(2n-1)*(4n+2*Q0). 

Since usually it takes sub-linear complexity to look up a data item in a hash table by 

using a reasonable hash function, i.e., O(Q0)<O(n). Thus the above algorithm has 

approximately O(n*n*n)=O(n3) complexity.  Although the theoretical complexity of 

the Intersect-Assemble method is higher than that of Inclusion-Exclusion method, it is 

still competitive due to the simple implementation when n is small. However, the 

computation cost is prohibitive when n is big and we need a more efficient method. 

We observe that the number of intersection rectangles associated with each 

intersection line, i.e., a unique coordinates along either the x or y direction as shown 

in Fig. 4-3, is very likely to be much smaller than n. A region often only intersects 

with a limited number of other regions since the size of a region is limited. According 

to a hypergraph representation, this also means the number of nodes in a hyperedge is 

bounded by a constant. In fact, this is one of the assumptions in our complexity 

analysis of one of the proposed optimization methods as detailed in Section 6.6 of 

Chapter 6. As an example, in Fig. 4-3, the number of regions to be intersected is six 

while the maximum number of regions that intersect with one another is only 3. 
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Based on this observation, we propose a new method in computing the weights of the 

hypergraph for a point data set. Since the method explores R-Tree spatial index 

(Guttman, 1984), we call it the R-Tree based method.  

For each of the extended regions of the points in a point data set, the method 

first retrieves all the extended regions that intersect with it. It then applies the 

Intersection-Assemble method on these regions. For each of the entries in the 

resultant hash table, the method first checks whether the label of the entry contains 

the label of the extended region under consideration. If true, the method further 

checks whether the entry has already existed in the output hash table. It will add the 

area value of the entry to the output hash table if the entry does exist, otherwise it will 

add the entry to the output hash table. The process is shown in Fig. 4-5.  

 

 

 

 

 

 

 

 

 

 

 

 

Input: An array of n regions Rect 
Output: A hash table H, each entry of which stores the label (hash key) and the area value 
 
1. Construct an R-Tree for Rect 
2. For each leaf node ni in the R-Tree (i.e., an extend region) 

2.1 Retrieve all the extended regions that intersect ni from the R-Tree and store it in array
Rect’  

2.2 Apply the Intersect-Assemble method for Rect’ (c.f. Fig.4-4)  and store the result in a
hash table H’ 

2.3 For entry (L,A) pair in H’ where L is the hash key and A is the value of the entry 
         Test whether the entry can be found in H and set the corresponding flag array 

element F(L) 
      End  for 
 2.4  For entry (L,A) pair in H’ 
         If L contains the label of ni  and F(L) then 
    If  L is already in H then 
         H(L)=H(L)+A 
    Else 
         H(L)=A 
    End if 
            End If 
     End For 

End For 
Fig. 4-5. The R-Tree Based Method for Generating Hyperedge Weights 
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The efficiency of the R-Tree based method is achieved by only performing the 

expensive O(n3) Intersection-Assemble method for a subset of the point data set. 

Although an extended region of a point might be involved multiple times when 

calling the Intersection-Assemble method, the overall computation complexity can be 

reduced as analyzed in the following. Although the strict complexity analysis of R-

Tree and its variant R*-tree (Beckmann, 1990) is not available, they are 

experimentally shown to be low-cost spatial indexing methods which is super linear 

but sub-quadratic. We assume R-Tree construction complexity is O(n*log(n)) and the 

search complexity in an R-Tree is O(log(n)) (which is the lower bounds of sorting and 

searching in tree data structures ), where n is the number of points in a point data set. 

We also assumes the number of extended regions intersecting with the extended 

region of a node is bounded by a constant as discussed above, the cost of the 

Intersection-Assemble method on them is also independent of n. We use CIA to denote 

such a cost. Thus the total cost of the R-Tree based method in the best scenario is in 

the order of n*log(n)+n*(log(n)+CIA), i.e. O(n*log(n)+n*CIA). Theoretically when n 

is big, the n*log(n) term will dominate and reduce the complexity to O(n*log(n)).  

However, for practical n values (e.g., 100-10000), the CIA constant is likely to be 

much larger than log(n). Thus  we are expecting this algorithm to be linear with 

respect to n with a large hidden factor.  
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4.3 Relationship with MinLA 
Using the hypergraph representation, our problem of minimizing the total 

query cost is related to the graph Minimum Linear Arrangement problem (MinLA) as 

explained below. 

The goal in MinLA is to find an ordering that minimizes the weighted sum of 

the edge lengths. The edge length is defined as the difference of the positions of the 

beginning node and the ending node of an edge in an ordering. Let w(u,v) be the 

weight of the edge (u,v) and π(u) be the position mapping function the same as 

defined in Chapter 3. The weighted sum of the edge lengths with respect to an 

ordering is defined as follows (Daíz, 2002). 

 
|)()(|)*,()(
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vuvuwGla
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As we can see that the definition of DBW is the same as that of la(G) except 

that we need to replace a regular graph edge with a hypergraph edge and set u and v 

to be the nodes that have the maximum/minimum positions in the ordering. However, 

ATData
Mul depends only on the maximum position of nodes the in a hyperedge and 

ATData
Sep has a quadratic relation with respect to the difference of the 

maximum/minimum positions of the nodes in a hyperedge. Both of them are non-

linear with respect to the difference (or the “edge length” defined in MinLA) that 

makes the existing MinLA methods (Bar-Yehuda, 2001; Koren, 2002) not suitable to 

solve our problems. Nevertheless they can be the basis for further improvement. 
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Actually we propose to use DBW to approximate ATData
Sep and then use an efficient 

MinLA algorithm to optimize it which is discussed in detail in Chapter 6.   

4.4 Efficient Hypergraph Data Structures 
Since we represent all possible query result sets as a hypergraph, we next 

introduce several efficient hypergraph data structures that are crucial in achieving 

efficiency for our methods. Some of them have also been used in the implementation 

of (Bar-Yehuda, 2001). 

First, the nodes of the hyperedges are stored sequentially in an array (called a 

node array) and the positions that mark the endings of the hyperedges in the array are 

stored in another array (called an edge index array), which serve as indexes to the 

nodes in the hyperedges. The weights of the hyperedges are stored in a third array 

(weight array). An inverse hypergraph is also built for the hypergraph. The inverse 

hypergraph has an array to store the hyperedge IDs that contain the nodes in the 

original graph sequentially (called an edge array). Similar to the index array used in a 

hypergraph, the positions that mark the endings of hyperedges containing the nodes 

are stored in a second array (called a node index array) of the inverse hypergraph. We 

will show how these arrays can be used to efficiently manipulate a hypergraph 

through an example shortly.  

To build the hypergraph data arrays, a hypergraph data file is needed to be 

scanned twice. The hypergraph data file is assumed to be stored in the order of 

hyperedges and the numbers of nodes and hyperedges are given. Each hyperedge is 
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stored as a record in the data file with the following format: its number of nodes in 

the hyperedge, followed by the IDs of the nodes, then its weight. During the first 

scan, the edge index array and the weight array are filled. After the first scan, the total 

number of nodes in all hyperedges is computed and the node array of the hypergraph 

is then allocated. During the second scan, the node array is actually filled while 

scanning.  

Once the hypergraph data arrays are constructed, the inverse hypergraph data 

arrays can be constructed in a more efficient manner since their constructions require 

only memory access to the hypergraph data arrays.  The node array of a hypergraph is 

first scanned to compute the number of hyperedges associated with each node. These 

numbers are accumulated and filled in the node index array of the corresponding 

inverse hypergraph. The node array of the hypergraph is then scanned the second time 

to find the edge number of each node that is contained in the edge and which is then 

put into the proper position of the edge array of the inverse hypergraph.  

From the construction processes, we can see that both the time complexity and 

space complexity of the node array, the edge index array and weight array in a 

hypergraph are linear with respect to the number of total nodes in all hyperedges, the 

number of hyperedges and the number of hyperedges, respectively. Similarly, both 

the time complexity and space complexity of the edge array and the node index array 

are linear with respect to the number of total nodes in all hyperedges and the number 

of nodes in a hypergraph, respectively.  
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By using the arrays of a hypergraph and the corresponding inverse 

hypergraph, we can perform the following operations efficiently. First, we can 

retrieve all the nodes in a hyperedge of ID e by first retrieving the ending position of 

the previous edge (e-1) and the ending position of e from the edge index array and 

then retrieving all the nodes from the node array of the hypergraph. Second, we can 

retrieve all the hyperedges that contain a node v by first retrieving the ending position 

of the previous node (v-1) and the ending position of v from the node index array and 

then retrieving all the IDs of the hyperedges between the two positions from the edge 

array of the corresponding inverse hypergraph. Note that we can retrieve the weight 

of a hyperedge by accessing the weight array of the hypergraph by its ID e directly.  

We next illustrate these hypergraph data structures using the hypergraph 

shown in Fig. 4-1. For the sake of simplicity, we remove the edges that have only one 

node. The node array, edge index array and the weight array of the hypergraph, and 

the edge array and the node index array of the inverse hypergraph are shown in Fig. 

4-6.  From the node index array of the inverse hypergraph, we know that there are 8-

3=5 hyperedges passing through node 2. By seeking the 4th through the 8th elements 

in the edge array of the inverse hypergraph we know that they are hyperedges 2, 3, 5, 

6, and 7. By accessing the weight array of the hypergraph, we know that their weights 

are 38, 22, 3, 14 and 4, respectively. Furthermore, by looking up at the edge index 

array of the hypergraph, we know that there are 13-10 =3 nodes in the hyperedge 6 

and we know that they are the 11th to the 13th elements in the node array of the 

hypergraph, which are nodes 1, 2 and 3 respectively. 
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Hypergraph:  
 
Node Array: 
[1,3,2,3,1,2,3,4,2,4,1,2,3,2,3,4] 
Edge Array: 
[0,2,4,6,8,10,13,16] 
Weight Array: 
[2,38,22,8,3,14,4] 
 
Inverse Hypergraph:  
Edge Array: 
[1,3,6,2,3,5,6,7,1,2,4,6,7,4,5,7] 
Node Array: 
[0,3,8,13,16] 

Hyperedge Node 
List 

Weight

1 1,3 2 
2 2,3 38 
3 1,2 22 
4 3,4 8 
5 2,4 3 
6 1,2,3 14 
7 2,3,4 4 

4

14 

4
3

2 
1 

8

3 

2 

+

38 22 4

3

2

1

The example hypergraph 

Fig. 4-6. Illustration of the Hypergraph Data Structures 

4.5 Converting A Hypergraph to A Regular Graph 

As we have discussed in Section 4.1, the spatial relationships between points 

in a point data set are implicit. The purpose of computing the weights of the 

hyperedges in our hypergraph representation for a point data set is to make such 

spatial relationships explicit. For graph data, the spatial relationships are explicitly 

expressed as the access frequencies of paths and can be observed or estimated by 

domain experts. Many graph algorithms related to ordering or partitioning have been 

well studied, however, unfortunately, there are no corresponding hypergraph 

algorithms. In order to apply these algorithms, one way is to convert a hypergraph to 

a regular graph through approximations.  
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The approximation is simple for point data since we can build a graph by 

adding an edge between two nodes (points) if their extended regions intersect with 

each other and using the intersection area as the weight of the graph. For graph data 

we propose to build a graph by summarizing the access frequencies of the paths that 

pass by an edge in the original graph. The weight of edge (u,v) in the converted graph 

is defined as follows: 

∑ ∈
∀= )),((),(
),(

jifvuw
ijSvu   

where Sij is a path that contains edge (u,v) and f(i,j) is the access frequency of 

path Sij.  

We call the resulting regular graph an Edge Access Frequency Graph (EAFG). 

EAFG has the same topology as the original graph (not the derived hypergraph) since 

neither the node set and the edge set is changed. The only difference is the weights 

associated with them. In the example shown in Fig. 4-7, there are two paths passing 

by edge (3,7), namely path S4,6 of [4,3,7,8,6] and path S1,5 of [1,3,7,5]. The edge 

access frequency of edge (3,7) is computed as w(3,7) =f4,6+f1,5.  
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Fig. 4-7. Illustration of EAFG Derivation 
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Since there are n! orderings for n points (for point data) or vertices (for graph 

data) which are exponential with respect to n, it is impractical to enumerate all of 

them and find a globally optimal ordering. Thus low-cost approximation algorithms 

are desirable. We first present a family of ordering heuristics for both point data and 

graph data in Chapter 5. They can be used either as the low-cost ordering techniques 

when speed is a primary concern, or as the initial orderings for further improvement 

using the optimization methods we are going to present in Chapter 6.  

4.6 Discussions On Related Work 
There are some existing work proposed to represent access patterns as data 

access graphs and then use graph-theoretical approaches to generate broadcast 

sequences.  Compared to representing complex query result sets as hypergraphs 

directly, these representations are essentially approximate in nature, similar to what 

we proposed in Section 4.5 of this chapter for spatial data.   

(Si, 1999) presented a Semantic Ordering Model (SOM) for relational/object-

oriented database broadcast using entity type (field/attribute) as the basic broadcast 

unit (data item) and represented the access patterns of a broadcast database by a 

directed graph as shown in Fig. 4-8. Each node vi is associated with a cost of 

accessing an entity type (si, which reflects the total size of all entities belonging to the 

entity type). Each node vi is further associated with a probability pi denoting the 

probability of being accessed as the first entity in a query. Pi can be estimated as ni/n 

where ni is the number of queries that accesses vi as the first entity type and n=Σni. 
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Each edge eij is associated with a weight αij indicating the likehood that vj will be 

accessed by a query that vi has been accessed by the same query.  
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Fig. 4-8. The SOM Model and its Graph Representation (Si, 1999) 

 

The SOM model and the directed graph representation are suitable for the 

scenario where the precedence relationship between vi and vj can be easily 

determined, such as the referential integrity constraints in relational databases and the 

parent-children relationship in object-oriented databases. They are not applicable for 

the scenario where a set of entity types is involved in a query processing but has no 

precedence order between the entity types in the set. It is also worth to note that the 

SOM model and the graph representation are designed for using an entity type 

(attribute) as the minimum broadcast unit, i.e., vertical partition of database. Due to 

the bandwidth limitation, usually only hot data items and frequent attributes are 

chosen to broadcast. If almost all attributes are required by clients which is very 

likely in practice, it will take almost a whole broadcast cycle to retrieve only a single 
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data item in the vertical partitioning broadcast scheme. Also since location is the most 

selective attributes in spatial queries (where often most attributes are needed) and 

usually only a small portion of all the data items is in a spatial query result set, we 

believe tuple (record) selection rather than entity type selection is more practical in 

geographical data broadcast. Thus the SOM model and its graph representation are 

not suitable for geographical data broadcast.  

The graph representation in (Lee, 2002) was also based on directed graph. For 

each query pattern, they classified the related attributes into three groups, the select 

attribute (SA), the join attributes(JA) and the project attributes (PA). They assumed 

the order of the three groups to be SA JA PA. However, the attributes inside each 

group are unordered. An initial graph can be built as proposed in (Si, 1999). The 

unordered pairs in an attribute group in a query pattern are scanned through the rest 

query patterns to determine their precedence relationship by using the SA JA PA 

orders. For the attributes that still do not have a precedence relationship with any 

other attributes, all the attributes in SA have directed edges with the attributes in JA, 

and similarly, all the attributes in JA have directed edges with all the attributes in PA. 

During the process, if there are two directed edges between node u and node v with 

access frequency fuv and fvu then the two directed edges will be replaced by one 

directed edge with access frequencies fuv-fvu. Although (Lee, 2002) provided several 

additional methods in determining the precedence relationship between two attributes 

according to SQL query patterns, it has the same problems as (Si, 1999). In the 

simplest SQL query patterns where SA and JA are empty and only PA exists, it will 
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be impossible to determine the precedence relationship between the attributes in PA. 

Although it is beneficial to put attributes that are often queried together near each 

other, unfortunately, it is impossible to do so based on the graph representation of 

query patterns proposed in (Lee, 2002a).  

The method presented in (Lee, 2003) also represented query patterns as a 

graph. They assumed a data item (which can be a tuple/record or an object) is the 

basic broadcast unit and the data items in a query result set are unordered. Thus their 

problem is essentially the same as ours. They constructed a graph before sequencing 

as well. For each query and for any two data items in the query, they will put an 

undirected edge between the two data items with the weight being the access 

frequency of the query. The final graph is generated by combining identical edges and 

setting the summation of their weights as the final weights for the combined edges. 

The resulting graph in (Lee, 2003) is a combination of m complete graph where m is 

the number of queries and is very likely to be dense, which makes it hard to handle.  

For spatial range query on point data, we can prove that the graph generated 

by the method of (Lee, 2003) is exactly the same as the approximation graph 

generated by the method proposed for point data in Section 4.5 in this chapter. In 

order to do so, it is sufficient to prove the weight of an edge between two arbitrary 

nodes in the graph is the same in the two methods. The weight of the edge between 

any two nodes (without lose of generality, we assume they are node 1 and node 2) is 

Ai,j in our method. The possible query result set that contains data items 1 and 2 are 

{1,2}, {1,2,3},{1,2,4},…{1,2,n},{1,2,3,4},…{1,2,…n}. Their weights, according to 

68 



the spatial semantics presented in Section 3.2 of Chapter 3 are 2,1
~A , 3,2,1

~A , 4,2,1
~A … nA ,2,1

~  

4,3,2,1
~A  … A n...2,1

~ . The weight of edge (1,2) based on the method proposed in (Lee, 

2003) is the summation of these weights. By using the Inclusion-Exclusion theorem, 

the summarized weight is A1,2, which is the same as our result. The method of (Lee, 

2003), although applicable for handling generic complex queries, suffers from the 

exponential number of possible queries with respect to the number of data items when 

applied to spatial range queries. Furthermore, even if the number of queries is 

bounded by a constant M, their graph construction method has the complexity of 

O( ) where m∑
=

M

i 1

∑
=

M

i 1

im 2

im 2

i is the number of data items in a query. Our method is much 

simpler by exploring spatial semantics. The worst case complexity of our method is 

O(n*log(n)) using the Line Sweeping algorithm, where n is the number of nodes in 

the graph, or the number of points in the data set. Although for all i, mi is less than n, 

O( ) is likely to be much more expensive than O(n*log(n)).  
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Chapter 5 

Ordering Heuristics 

In this chapter, we discuss several heuristics to generate orderings of point 

data. They are based on the state-of-the-art techniques in spatial data handling. 

Although we try our best to cover all known heuristics that are related to our work, 

obviously, they are far from complete. Nevertheless, we manage to classify them into 

a coherent framework in hope that new heuristics can find their places in the 

classification structure and be plugged into the architecture for further optimization 

and evaluation as shown in Chapter 6 and Chapter 7.  

5.1 Overview 
The ordering heuristics can be generally classified into two categories. The 

first category is geometry-based and the second category is graph-based. The first 

category can be further divided into hierarchical and non-hierarchical sub-categories. 

The hierarchical sub-category includes orderings generated by traversal of 

hierarchical spatial clustering trees and traversal of spatial indexing trees, such as 

Quad-Tree and the family of R-Trees (Gaede, 1998). The second sub-category of 

geometry-based heuristics includes all kinds of Space Filling Curves (SFCs), such as 

Z-ordering and Hilbert (Gaede, 1998). The graph-based heuristics can also be 

classified into the hierarchical and non-hierarchical sub-categories. The hierarchical 

graph-based heuristics are based on the traversal of recursive graph partition trees 
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(Schloegel, 2000). The non-hierarchal graph-based heuristics include classical graph-

traversals, such as Breadth-First Search (BFS), Depth-First Search (DFS) and 

ordering by node degree (Gondhalekar, 1997), node weight and edge weight ([HREF 

5]). We discuss heuristics based on node degree, node weight and edge weight and 

their complexities in Section 5.5 since they are less explored. The BFS/DFS heuristics 

are purely based on the graph topology while heuristics based on spanning tree 

(Cormen, 2001) are combinations of graph topology and edge weights. We discuss 

spanning tree based heuristics in Section 5.6 since it is the Maximum Spanning Tree 

rather than the Minimum Spanning Tree that is proposed for broadcast ordering 

(Liberatore, 2002), and there are several interesting points that need further 

discussions. The classification is illustrated in Fig 5-1.   
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Except for constructing graph partition trees, the heuristics we present here 

have very low computation overheads. Constructing SFC codes for a point is 

independent of the number of points in a data set while sorting the codes and 

generating a SFC ordering takes O(n*log(n)) time using the quick sort algorithm 

(Cormen, 2001).   The time complexity for constructing spatial indexing trees varies, 

but popular spatial indexing tree methods are sub-quadratic in order to be practically 

useful. Hierarchical spatial clustering algorithms that have time complexity from O(n) 

to O(n2) have been proposed  (Han, 2001) where n is the number of points in the data 

set. The BFS has O(V+E) complexity and the DFS has Θ(V+E) complexity, the MST 

(or its variants) of Kruskal’s algorithm and Prim’s algorithm has complexities of 

O(E*log(V)) and O(E*log(E)), respectively (Cormen, 2001),  where V is the number 

of nodes and E is the number of edges in a graph. Furthermore, many of the data 

structures that are needed by the heuristics already exist in spatial databases for other 

purposes (e.g. indexing), thus the extra cost, if there is any, to generate an ordering is 

generally only O(n) for traversing different types of trees (Cormen, 2001). The low 

cost of these heuristics make it suitable to use them to generate broadcast sequences if 

speed is the primary concern or use them as the initial orderings for further 

optimization if the query processing cost is the primary concern.   

We explain the following ordering heuristics in detail in the subsequent 

sections due to their popularity in practice, namely R-Tree traversal ordering (Section 

5.2), Hilbert SFC ordering (Section 5.3), graph-partition tree traversal ordering 

(Section 5.4), ordering based on degree/weights (Section 5.5) and spanning tree 

72 



ordering (Section 5.6). In addition, we discuss the more recent ordering methods in 

Section 5.7. These ordering heuristics are used for comparisons in Chapter 7.  

5.2 R-Tree Traversal Ordering 
The R-Trees are extensions of B-Trees to K-dimension (Guttman, 1984) and 

originally designed for disk-resident spatial data indexing. Putting spatially adjacent 

data items into the same node in an index tree, the search space is reduced quickly as 

the level of the R-Tree increases. Since the R-Tree is balanced, the search speed is 

logarithmic with respect to the number of data items it is indexing.  

In this study, we are concerned more on ordering quality rather than search 

speed. In Fig. 5-2, points 1 and 2 have more chances to be queried together, thus 

putting points 1 and 2 close to each other in the broadcast sequence, instead of putting 

them far away from each other, will be very likely to reduce the total access time to 

the data broadcast channel. Similarly we can argue for data points 3 and 4.  An 

ordering can be generated  by the traversal of the branches in their R-Tree index. 
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Fig. 5-2. A Simple Point Data Set, Its R-Tree and Traversal Ordering 
 

However, the order of the sibling branches, which determines the access time 

of a query result set that has points stranding over multiple branches, can not be 

optimally determined by in-order traversal (left-to-right) as shown in Fig. 5-3. 
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Suppose the R-Tree branching factor is 3 and fill factor is 0.5 then there are at least 

two branches within a node. Considering the case where we insert four data items in 

the order of 1, 2, 3 and 4, then we get the R-tree as shown in Fig. 5.3. The R-tree 

traversal ordering will be [1,4,2,3]. If our query region consists of points 1 and 2 then 

the total length of access time will be 3 while it could be as small as 2. If our query 

region consists of point 3 and 4 then we might need the next broadcast cycle to get 

point 3. On the other hand, the order of [1,2,3,4] is optimal for both of the spatial 

range queries. Our optimization methods proposed in Chapter 6 first decompose an 

R-Tree into a binary tree and then switch the left sub-trees and the right sub-trees of 

the binary tree recursively to find the best ordering in 2n-1 possible orderings.  
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Fig. 5-3. Illustration of Non-Optimal R-tree Traversal Ordering 
 

5.3 Hilbert SFC Ordering 
The SFCs first partition the whole space of a data set with a grid. Each of the 

grid cells is labelled with a unique number that defines its position in the total order. 

The points in the given data set are then sorted to generate a sequence. We choose 

Hilbert ordering as one of the ordering heuristics to be evaluated in Chapter 7 

primarily because of its theoretical capability in preserving the proximity of two 
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dimensional points in one dimensional sequence (Jagadish, 1990) and its practical 

popularity as well.  

Although generating Hilbert SFC for arbitrary dimensional data is not trivial, 

it is relatively easy to do so in two-dimensional data. An algorithm to generate a two-

dimensional Hilbert SFC can be found in (Shekhar, 2003). Fig 5-4 shows an example 

of how to construct a Hilbert SFC recursively where grid resolution refers to the 

number of bits used to represent a point coordinates (in both the x and y directions). 

Examples of the Hilbert SFCs of grid resolution 2 and of resolution 4 are shown in 

the top and bottom parts of Fig. 5-4, respectively. We next illustrate how to generate a 

resolution 4 SFC from a resolution 2 SFC.  
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Fig. 5-4. Illustration of Recursively Generating Hilbert  SFC 
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In Fig. 5-4, the grid resolution 2 Hilbert SFC is treated as a unit. A translation 

is performed for a copy of the unit and these two units are put at the top of the grid 

resolution 4 Hilbert SFC under generation. A copy of the two units are then made. A 

90 degree clockwise rotation is performed for the left unit and a 90 degree counter-

clockwise rotation is then performed for the right unit. These two units are put at the 

bottom to complete the resolution 4 Hilbert SFC.  

Unlike generating R-Trees, generating Hilbert code for a point is independent 

of other points in the data set. The finer the resolution, the more number of bits will 

be needed to represent the coordinates and the more time is needed to generate a 

Hilbert code. Since using 20 bits to represent a coordinate has a resolution of about 3 

meters even the range of the data set is the whole global Earth which is sufficient for 

broadcast geographical information in most cases, we can treat the computation cost 

to generate the Hilbert code for a point as a small constant. Thus generating Hilbert 

codes for all the points in a data set is linear with respect to the number of points. The 

complexity in the sorting step is in the order of O(n*log(n)) using the quick sort 

algorithm. Thus the complexity of the complete method is in the order of 

O(n*log(n)). 

One problem we found regarding Hilbert-ordering (and SFC orderings in 

general) is that, although data items adjacent to each other in the generated ordering is 

also adjacent to each other in the original space (to a certain extent), the other way 

around is not true. Two adjacent points might fall far apart in the SFC orderings. In 

Fig.5-5, suppose that our data points have an ordering of [0,1,7,8,9,14] according to 
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the Hilbert SFC ordering. If a query window contains points 1 and 14, then the access 

time will be almost the whole broadcast cycle. On the other hand, if we order the data 

objects by traversing the dynamically generated R-Tree (Fig. 5-6) then the latency 

could be only 2 for the same query window. We will evaluate their performances of 

Hilbert SFC ordering using both real and synthetic data sets in Chapter 7.  
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Fig. 5-6. R-Tree Generated by Inserting Points Dynam
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5.4 Graph Partition Tree Traversal Ordering 
We can make an analogy between using R-Trees for geom
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Traversal of a hierarchical graph partition tree can also generate an ordering as shown 

in Fig. 5-7. In the figure, the graph is partitioned into two sub-graphs divided by thick 

dotted line. In the partition tree, we represent the whole graph with root node T0 and 

the two sub-graphs with its two child nodes, T1 and T2, respectively. We further 

partition the right sub-graph into two sub-graphs divided by a thin dotted line. Since 

the numbers of nodes in these sub-graphs are below a predefined threshold (four in 

the example), they are not further partitioned. We represent these two sub-graphs with 

leaf nodes 1 and 2 respectively and put them as the child nodes of T1.  Similarly the 

left sub-graph is further partitioned into two sub-graphs divided by another thin 

dotted line. We present them with leaf nodes 3 and 4 respectively and put them as the 

child nodes of T2.  

 

 

 

 

 

 

Fig. 5-7. Illustration of Graph Partition Tree 
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In graphs, the relationships between two nodes are explicitly defined by the 

weights of the edges between them. To take such explicit relationships into 

consideration, graph partition is a natural choice to retain the main features of the 
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graph while reducing the complexity of the relationships, which is the basis for many 

graph problems (see the surveys in (Alpert, 1995; Schloege, 2000) for details).    

Although the graph data in this study is assumed to be geometric, nodes in the 

graph data that are spatially closest to each other do not always have the strongest 

relationship. For example, two big cities linked by a highway have a stronger 

geographical relationship in road networks than two small towns even though the 

distance between them is much longer than that between the two small towns.  In 

addition, for some transformed graphs, such as EAFG discussed in Section 4.4 of 

Chapter 4, geometric information is generally irrelevant to their semantics. Generally 

speaking, traversal of a graph partition tree can be a good ordering heuristic since it 

keeps nodes with strong relationships close to each other, provided that efficiency is 

not a problem. In this study we use the recursive graph partition technique 

implemented in METIS and HMETIS ([HREF 6]), which is freely available over the 

Internet.  

5.5 Ordering based on Degree/Weight 
We use the graph shown in Fig. 5-8 to demonstrate the ordering heuristics 

discussed in this section and in the next section. The graph has 12 nodes and 20 

edges.  

(Gondhalekar, 1997) provided two heuristics for optimizing broadcast 

sequence under the scenario where a user begins accessing the broadcast channel 

from the beginning of a broadcast cycle and there are only two data items in a query. 

The MAX heuristic orders of the data items by their descending out degree. For 
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undirected graph, the out degree of a node is defined as the nodes that are directly 

connected with the node. For the graph in Fig. 5-8, the ordering will be: [2, 6, 0,4, 8, 

1,3,7,9, 5, 10, 11].  If there is a tie during the order, the tie will be broken by node ID 

(or node number), i.e., the node with smaller ID value will be placed first.  
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Fig. 5-8. An Illustrative Graph for Degree/Weight Based Orderings and 

Spanning Tree Ordering 
 

The MAX-LD heuristic consists of two steps. The first step is to obtain an 

initial ordering by sorting the vertices by descending degree, i.e., using the MAX 

heuristic. In the second step, the following operation is repeated for i=1,…,n-1: if the 

left degree of vertex i+1 exceeds that of vertex i, the positions of the two vertices are 

interchanged. The left-degree of vertex v is defined as the number of edges that have 

v as the ending node in an ordering sequence, i.e., ld(v)=|{(u,v):(u,v)∈E ∩ (π(u)< 

π(v)}|. This is based on the observation that ∑ ∑
∈ ∈

=
Evu Vv

vldvvu
),(

)(*)())(),(max( πππ : the 

left hand side calculates the cost by considering each edge and finds the larger 

position of its two nodes (or the position of the right endpoint), while the right side 
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hand counts the number of edges which are ended at each vertex and multiplied by 

the position of that vertex. The MAX heuristic takes O(m) to calculate the vertex 

degrees and O(n*log(n)) time to sort, where m is the number of edges and n is the 

number of nodes. Thus the MAX heuristic takes O(m+n*log(n)) time. The MAX-LD 

heuristic takes additional O(m+n) time to perform the left-degree check compared 

with MAX, thus its total complexity is still O(m+n*log(n)) (Gondhalekar, 1997). For 

the graph in Fig. 5-8, the ordering will be (the tie is broken by node ID again): 

[2,0,4,6, 1,3,7,8, 9, 5, 11,10].  Compared with the MAX heuristic result of [2, 6, 0, 4, 

8, 1, 3, 7, 9, 5, 10, 11], node 8 is moved from the 5th to the 8th position. This is 

reasonable since node 8, although has a total larger out-degree, only has the out-

degree of one to the nodes [2, 6, 0, 4] that have already been scheduled for broadcast.   

One of the possible problems with this method is that, for two nodes v1 and v2, 

although when ld(v1)>ld(v2) it is beneficial to exchange v1 and v2 under the sequence 

of …v1v2…, for the exchanged sequence …v2v1…, it is still possible to have 

ld(v2)>ld(v1). It is unclear how to handle this case in the heuristic. In the above 

example, the problem happens when switching the node pairs (6,0), (6,4), (8,7) and 

(10,11). One solution might be to compute )(*)()(*)( 2211 vldvvldv ππ + under both 

the sequences and choose the one that has the smaller value.  

An extension of the MAX heuristic is to use the summation of the weights of 

edges that contain a node instead of the degree of the node (where the weight can be 

treated as a unit), i.e., the order of a node is determined by the summation of the 

weights of edges that contain it. We call this heuristic NODE-WEIGHT. In Fig.5-8, 
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the ordering based on the NODE-WEIGHT is [6,2,0,4,8,3,9,7,1,5,10,11].  Since the 

NODE-WEIGHT heuristic is also per-node based, similar to the MAX-LD heuristic, 

we can also develop the NODE-LEFT-WEIGHT heuristic.  In Fig.5-8, the ordering 

based on the NODE-LEFT-WEIGHT is [6,0,4,2,8,9,3,7,1,5,11,10].  Since adding the 

weights up has the same complexity of counting degrees, NODE-WEIGHT and 

NODE-LEFT-WEIGHT also have the complexity of O(m+n*log(n)) 

Similar to the NODE-WEIGHT heuristic we propose the EDGE-WEIGHT 

heuristic. We first sort the edges according to their deceasing weights. The nodes in 

the edge that has the largest weight are placed at the beginning of the broadcast 

sequence. We then check the edge that has second largest weight and place its nodes 

that haven’t been placed onto the broadcast sequence. This process is repeated until 

all the nodes in the graph are placed. In this heuristic, with m as the number of edges, 

it takes O(m*log(m)) time to sort weights of the edges, O(m) time to place the edges 

onto the broadcast channel, provided that time to check whether a node has already 

been in the placed node list is constant. Thus the total complexity of the heuristic is 

O(m*log(m)). In Fig.5-8, the ordering based on the EDGE-WEIGHT heuristic is [3, 

9, 0, 4, 2, 6, 7, 8, 1, 5, 10, 11].  

Note that all the heuristics in this section are only applicable to the 

multiplexing scheme (MUL). Some of them, such as NODE-WEIGHT and EDGE-

WEIGHT, can be easily extended to hypergraphs too. Conceptually the weight-based 

heuristics are better than the degree-based heuristics since they take the weights into 

consideration.  
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5.6 Spanning Tree Ordering 
(Liberatore, 2002) proposed to use the Maximum Spanning Tree (MST) 

heuristic for broadcast sequencing. The underlining philosophy is similar to the 

construction of index trees: placing nodes that have stronger relationships (larger 

weights) as close to each other as possible. Clearly a Maximum Spanning Tree can be 

generated using the algorithms for the Minimum Spanning Tree problem: we only 

need to replace the weight wi,j between node i and node j with W- wi,j where W is a 

constant that is larger than the maximum of wi,j for all (i,j)∈E. There are two popular 

algorithms to generate a minimum/maximum spanning tree: the Prim’s algorithm and 

the Kruskal’s algorithm (Cormen, 2001).   

(Liberatore, 2002) adopted the Kruskal’s method. Initially each node is treated 

as a singleton. At the beginning the algorithm places the nodes i and j next to each 

other if the edge (i,j) has the maximum weight. As the algorithm processes, if edge 

(i,j) has the largest weight among the remaining edges, it combines the ordering that 

contains node i and the ordering that contains node j.  For the graph in Fig. 5-8, the 

process is as follows. The edge that has the largest weight is (3,9) with a weight of 6, 

the next three largest weight edges are (0,4), (2,6), (8,7) with all weights of 5. These 

four edges are not connected up to now. The largest weight edge among the 

remaining edges is (3,2) with a weight of 4 and thus edges (3,9) and (2,6) are 

combined since they contain the source and the target nodes of edge (3,2), 

respectively. Since edge (3,9) has larger weight than edge (2,6), the combined 

sequence will be (3,9,2,6). Similarly for the next largest weight edge (3,8), the 
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sequence (3,9,2,6) is combined with the edge (8,7) to form a sequence of 

(3,9,2,6,8,7). This process continues until all the nodes are sequenced and the final 

sequence is [3, 9, 2, 6, 8, 7, 0, 4, 5, 1, 11, 10].  

Although the maximum spanning tree does not need to be explicitly generated 

for ordering, the process of combining previous orderings is binary and hierarchical. 

Thus a Binary Decomposition Tree (BDT) can be generated from the process and 

used further for optimization as shown in Chapter 6. In fact, we can see that there are 

two possible ways to combine two existing orderings: one can be put ahead of the 

other and vice versa. However, it is very likely that the generated BDT might be very 

unbalanced since balance is not considered in the MST algorithm, which will 

degenerate the complexity of the algorithm from quadratic to exponential. In the 

above example, the BDT is shown in Fig. 5-9(left). We rotate the tree to generate a 

balanced BDT as shown in Fig. 5-9(right) by first performing four zigs (a zig is a 

right rotation of a binary tree) on the whole tree followed by  performing a zag (a zag 

is a left rotation of a binary tree) on the sub-tree rooted at (3,5).  

The Prim’s Minimum Spanning Tree algorithm is essentially identical to 

Dijkstra’s algorithm for shortest paths (Weiss, 1997). At any point of the algorithm, 

there is a set of vertices that have already been in the tree. For each step, the 

algorithm finds a new vertex to add to the tree by choosing the edge that has the 

smallest (largest for Maximum Spanning Tree) weight among all edges of (u,v) where 

u is in the tree and v is not. The ordering of adding new vertices to the tree will be 

used as the broadcast sequence. Since every node can be the source, there could be as 
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many as n such orderings.  We evaluate the MST orderings using both  the Prim’s 

algorithm and the Kruskal’s algorithm in Chapter 7. 
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Fig. 5-9. The Binary Tree Generated From MST Ordering (Left) and its 

Balanced Tree After Rotations (Right) Using the Graph in Fig. 5-8 
 

5.7 Discussions of Other Related Work 
The QEM algorithm presented in (Chuang 2001) is essentially the extension 

of the hypergraph version of the EDGE-WEIGHT heuristic for the Separate Channel 

scheme. It begins with the hyperedge that has the largest weight and tries to append 

the nodes, which are on the hyperedge that has the next-largest weight but are not in 

previously placed node list yet, to both sides of the list and compare their resulting 

Query Distances (QD, c.f. Section 3.4 in Chapter 3). The one with smaller QD will be 

kept for further expansion and the one with larger QD will be discarded. A left/right 

append is defined as appending new nodes to the left/right of an existing sequence. 
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The left append will be used if there is a tie. The order of the unordered nodes in the 

previous list (nodes under ordering) will be split according to the newly appended 

nodes. An example shown in (Chuang 2001) is as follows. Suppose the first 

hyperedge contains unordered nodes [2,3,4,6] and the second hyperedge contains 

unordered nodes [3,4,5,7], then the left-append will be [5,7][3,4][2,6] and the right-

append will be [2,6][3,4][5,7].  The unordered nodes of [2,3,4,6] are split into the two 

unordered set [3,4] and [2,6] since [2,6] is the intersection of the first node set and the 

second node set. This process continues until all the hyperedges are processed. This 

algorithm is greedy since the order of previously processed nodes cannot be changed.  

This method was further extended in (Lee, 2003) by moving (reordering) 

nodes that have already been ordered to achieve less total QD. However, although the 

moving might benefit current expansion, it might increase the total QD for later 

expansions. Thus they proposed to use a weight threshold and any hyperedge whose 

weight is below this threshold will not be checked for moving. In addition, they 

proposed to check whether the summation of the frequencies of the remaining queries 

(i.e., the weights of the remaining hyperedges) that benefit from the moving is larger 

than the summation of the frequencies of the remaining queries which may be lost by 

applying the moving.  

One problem with the QEM algorithm is its greedy expanding nature. In 

addition, it only considers the largest weight hyperedge for expansion without 

considering the hyperedges, which although have smaller weights individually, might 

have greater influences when combined. The modification in (Lee 2003) imposes 
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significant computation demands. The complexity of the QEM, and its extensions as 

well, is O(m*n) (Chung, 2001) where m is the number of queries (hyperedges) and n 

is the number of data items (nodes). When m is greater than n, which is the case in the 

hypergraphs based on spatial semantics of point data, the complexity is more than 

O(n2).  

(Chehadeh, 1999) proposed two heuristics: Approximate Linear Ordering for 

unit weight directed graph and Partial Linear Ordering for weighted directed graph. 

The Approximate Linear Ordering heuristic proposed to traverse the DAG using the 

principles of smaller out-degree first, DFS traversal and placing nodes immediately 

after their parents are placed.  The first principle is somehow contradictory to the 

MAX heuristic as we discussed in Section 5.5. One explanation might be that the 

Approximate Linear Ordering is designed for directed graph with a special node that 

has in-degree of zero which is often serves as the first data item in a broadcast 

sequence. Using the smaller out-degree first principle will allow the queries that have 

a smaller number of data items to span less, i.e., have less access time. In conjunction 

with the DFS principle, the queries that have a larger number of data items will also 

span less. The reason is that these data items have less possibility to be interleaved by 

data items that have smaller out-degrees since they have already been placed onto the 

broadcast channel. The MAX heuristic, on the other hand, is designed for queries 

involved exactly two data items. Using the MAX heuristic to place node u, since it 

does not need to worry about placing nodes other than the immediate neighbors of u, 
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the heuristic is well justified since the cost of ∑ ))(),(max( iu ππ will be minimized if 

we put node i as close to u as possible where i is the immediate node of u.  

The Partial Linear Ordering heuristic takes a weighted directed graph as its 

input and produces a linear sequence. It iteratively combines nodes until all the nodes 

are combined and the sequence of combinations denotes an ordering. The order of the 

previous ordering and the node that is currently being combined is determined by the 

weighted distance di,j which can be computed as follows:  
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where multi_node is the previously combine sequence (denoted as node i) and 

length(multi_nodei)  is the number of nodes within the multi_node i. The 

order(single_node) is the position of the single_node within the multi_node. If di,j is 

larger than dj,i then the order will be node i followed by j and vice versa.  

(Lee, 2003) extends this heuristic to undirected graph. The formula to 

compute du,v is revised as follows:  
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 where L is the broadcast cycle length, i and j  are regular nodes and u and v 

are multi_nodes. In  (Lee, 2003), the combining process always combines nodes i and 

j where edge (i,j) has the largest weight. However, at the very beginning of the 

algorithm where both node i and node j are single nodes, it is not clear how to 

determine the order of i and j. It is also worth to note that in the formula to calculate 
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du,v, u is always the multi-node while v is always the single node. Thus it always takes 

n-1 steps to finish the algorithm. 

5.8 Further Discussions 
Although it is intuitive to use geometry-based heuristics for point data and use 

graph-based heuristics for graph data, there are some other options. In Chapter 4, we 

proposed a hypergraph representation of spatial semantics for spatial range queries on 

point data. The representation allows us to use graph-based heuristics if they can be 

extended to hypergraphs, such as the NODE-WEIGHT and EDGE-WEIGHT as 

discussed in Section 5.5. Another option is to construct a Delaunay Triangulation 

(Aurenhammer, 1991) network as shown in Fig. 5-10 to convert a point data set into a 

graph data set and then we can use graph-based heuristics. The construction process 

generally has a complexity of O(n*log(n)) (Aurenhammer, 1991). On the other hand, 

since the graph data sets in this study are two-dimensional geometric graphs, we can 

use the geometry of their vertices as points and use geometry-based heuristics.  We 

evaluate these heuristics based on our cost models by experiments using a real data 

set in Section 7.4 of Chapter 7.  

 

 

 

 

 

 

Fig. 5-10. Illustration of Constructing Delaunay Triangulation Network 
From a Point Data Set 
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In summary, among the heuristics we have discussed, we suggest to explore 

geometric-based heuristics, such as Hilbert SFC ordering and R-Tree traversal 

ordering if computation time is the primary concern. On the other hand, if ordering 

quality is the primary concern, ordering based on graph or hypergraph partition tree 

might be a good candidate. We should also take pre-existing spatial data structures, 

such as SFCs, R-Trees and Delaunay Triangulation Networks, into consideration for 

efficiency purposes.  



Chapter 6 

 Optimization Methods 

As discussed in Section 4.3 of Chapter 4, our problem of minimizing the total 

query cost is related to the graph Minimum Linear Arrangement problem (MinLA). 

The graph MinLA problem is a well-studied problem and several efficient 

approximation methods have been proposed (Bar-Yehuda, 2001; Koren, 2002).   

 By extending an edge of (u,v) to a hyperedge {n1,n2..nk} and defining the 

“edge length” of a hyperedge length as 

L2= )}(),...(),(min{)}(),...(),(max{ 2121 kk nnnnnn ππππππ − , the problem of 

minimizing DBW is essentially the same as the hypergraph MinLA problem. We 

want to use the existing efficient MinLA approximation methods to solve our 

geographical data broadcast sequencing problem. In this chapter we propose to use 

the low-polynomial cost approximation method presented in (Bar-Yehuda, 2001) to 

solve the DBW minimization problem. We then propose to use L2 to approximate 

g(L2) ( as defined in Section 3.1 of Chapter 3) to solve the ATData
Sep optimization 

problem. An novel approach is developed to optimize ATData
Mul.   

For the rest of this chapter, we first briefly introduce the algorithm of (Bar-

Yehuda, 2001) and we then prove the correctness of using this algorithm for 

hypergraphs. We show the importance of generating the Binary Decomposition Tree 

(BDT)  (Bar-Yehuda, 2001) and propose to use R-Tree as the basis for generating a 
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BDT. The methods for optimizing DBW, ATData
Sep and ATData

Mul are presented in 

Section 6.4 through Section 6.6. For each of the three methods, DBW optimization, 

ATData
Sep optimization, ATData

Sep optimization, we illustrate its process through a 

simple example using the data set shown in Fig. 4-1 of Chapter 4.   

6.1 The Approximation Algorithm 
(Bar-Yehuda, 2001) proposed a divide and conquer method to approximately 

solve the graph MinLA problem in low-cost polynomial time. The space complexity 

of the proposed implementation is O(2depth(T)) where T is the BDT (Fig. 6-1) of the 

graph. If T is balanced then space complexity is O(n) where n is the number of nodes 

in a graph. For time complexity, if the out-degrees of the nodes in the graph are 

bounded by a constant, it is linear in ∑
∈Tt

tdepth )(2 (Bar-Yehuda, 2001). This is quadratic 

if T is perfectly balanced and O(n2.2) if T is 1/3-balanced (Bar-Yehuda, 2001).  

The approximation algorithm proposed in the paper imposes a global ordering 

constraint on a hypergraph by using a BDT. A BDT T (Fig. 6-1) is a binary tree that 

has all the nodes in a hypergraph as its leaf nodes. For each tree t∈T that has two sub-

trees t1 and t2, there are two options in placing the nodes under it onto a broadcast 

channel, i.e., either the nodes of t1 are placed ahead of the nodes of t2 (called 0-

orientation), or the nodes under t2 are placed ahead of the nodes under t1 (called 1-

orientation).  The orientations at each intermediate node of the BDT form a tree that 

has the same structure as the BDT. The orientation tree determines an ordering 

sequence of all the nodes in a graph.  
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Since t has two orientations and the orientations of its two sub-trees, t1 and t2, 

are independent of each other, it can be proved that there are 2n-1 orderings for a full 

and balanced BDT  as shown in Fig. 6-2. 
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Fig. 6-1. Illustration of a Binary Decomposition Tree 
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Let n be the number of nodes in a graph whose BDT T is full and 
balanced, i.e., n=2k. Let S(n) be the number of possible orderings of T 
We have S(1)=1 
 
S(n)=2*S(n/2)*S(n/2)=2*[S(n/2)]2 
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Fig.  6-2. Proof of the Number of Possible Orderings of a BDT 

e next describe the approximation algorithm briefly. The Cost L,V(t),R,π with 

 a BDT sub-tree under ordering π is defined as   
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where V(t) is the node set of t, L and R are the node sets that are to the left of V(t) and 

to the right of V(t), respectively. When t is the whole BDT, L=R=∅, CostL,V(t),R,π is 

exactly the la(G). The costs under the two orientations can be efficiently computed as 

briefly described in the following.   

Let t be a BDT node corresponding to the ordered partition which consists of 

L, V(t) and R. Let t1 and t2 be the sub-trees of t. The left child of t is called left and the 

right child of t is called right under both orientations of t. Suppose that each child of 

the BDT is assigned a cost for both the 0-orientation (i.e., cost(left(0) and 

cost(right(0)) and 1-orientation (i.e., cost(left(1) and cost(right(1)). The cost of t 

under the two orientations are computed as follows: 

cost0=cost(left(0))+cost(right(0)) +|V(t2)|.cost(V(t1),R) +|V(t1)|.cost(L,V(t2)) 
(1) 

cost1=cost(left(1))+cost(right(1))+|V(t1)|.cost(V(t2),R) +|V(t2)|.cost(L,V(t1)) 

where cost(L,V(t1)) and cost(L,V(t2)) are called left outer cuts (or left_cut for short), 

cost(V(t1),R) and cost(V(t2),R) are called right outer cuts (or right_cut for short) and 

|V(t)| denotes the number of leaf nodes of t. Both the  left outer cuts  and the right 

outer cuts can be computed recursively as follows.  

Let t  denote the orientation of the root node of t, left_cut( ) and right_cut( t ) 

be the left outer cut (i.e., cost(L,V(t1)) or cost(L,V(t2))) and the right outer cut (i.e., 

ˆ t̂ ˆ
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cost(V(t1),R) or cost(V(t2),R)) of t , respectively. Let in_cut be the total cost of edges 

whose beginning node and ending node have t as the Least Common Ancestor (LCA).  

When  is a leaf node, the values of the outer cuts are computed by considering the 

edges incident to t. When t  is an intermediate node the following formulas hold: 

ˆ

t̂

ˆ

cost(left_cut( t ))=cost(left_cut(left( )))+cost(left_cut(right( t )))-cost(in_cut(t)) ˆ t̂ ˆ

cost(right_cut( t ))=cost(right_cut(left( t )))+cost(right_cut(right( t )))-cost(in_cut(t)) ˆ ˆ ˆ

Also formula (1) can be rewritten as:  

cost0=cost(left(0))+cost(right(0)) +|V(t2)|.cost(right_cut( )+|V(t1)|.cost(left_cut( t ))                                                 

cost1=cost(left(1))+cost(right(1))+|V(t1)|.cost(right_cut( t )) +|V(t2)|.cost(left_cut( )) 

1t̂

2ˆ

2ˆ

1t̂

(2) 

As discussed earlier, the cost of t is the lower of the two costs, cost0 and cost1, 

and the orientation that has the lower cost will be set as the winner. The orientation 

that has less cost (access time in our case) will be adopted for t.  

For illustration convenience, we use “+” to denote the 1-orientation and “-“ to 

denote the 0-orientation hereafter. When the orientation of the root of tree T is 

determined, the ordering of all the data items can be determined based on the 

orientations of the nodes on the path from the root to the leaf nodes (data items). For 

example, in Fig. 6-3, the orientations along the path from the root to node 6 are “+ + - 

+” and the position of node 6 in the ordering is 4 (starting at 0).  

Note that in_cut(t) is independent of the orientation of t and can be pre-

computed after the BDT is built.  Both left_cut ( t ) and right_cut ( ) can be computed 

from t’s two children under the same orientation by one addition and one subtraction. 

ˆ t̂
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Thus this algorithm is very efficient. We refer the readers to (Bar-Yehuda, 2001) for a 

detailed complexity proof. 
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Fig. 6-3. An Orientation Tree Corresponding to the BDT in Fig. 6-1 

6.2. Proof of Correctness for Hypergraph Case 
 

The method given in (Bar-Yehuda, 2001) is only applicable to regular graphs. 

We next prove the method is also applicable to hypergraphs. For a hyperedge e of 

{n1,n2..nk}, let u be the first node and v be the last node according to an ordering π.  

To prove the value computed by formula (2) equals the hypergraph version of la(G) 

and, hence, DBW, it is sufficient to prove that for any hyperedge e, the cost computed 

by formula (2) equals |)()(|)*( vuew ππ − . 

Let the least common ancestor of all nodes of e in the decomposition tree be 

t0, then all the nodes involved in computing the costs regarding e are within t0. Thus 

we do not need examining the nodes that are outside of t0 in the proof. In Fig. 6-4., let 

the right-most node in t0’s left child ( ) be x and the left-most node in t0’s right child 

( t ) be y.  Clearly π(y) - π(x)=1. Suppose the nodes on the path from t1 to u are L1, 

1t̂

2̂
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…Lk-2, Lk-1, Lk, and the sizes of the right sub-trees of the trees having  L1, …Lk-2, Lk-1, 

Lk  as the root nodes are p1, …pk-2, pk-1, pk, respectively, we have p1+p2+…+pk= π(x)- 

π(u) since they are the number of the nodes between node u and node x. Note that L1 

is the root node of t1.  
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Fig. 6-4. The BDT Structure in an Ordering Sequence for a Hyperedge 

 
Now let us expand formula (2) completely and examine which terms involve 

w(e). According to the method used for deriving formula (2), w(e) appears in the 

following cases: appear once as the tree cost when the sub-tree is a leaf node and 

labeled as v, appear in the right outer cuts from  (L) to t  (R) and appear as the left 

outer cuts from t  (R) to t  (L). We examine the left outer cuts first.  

1̂t 2̂

2̂ 1̂

Observe that only sub-trees that contain node u can contribute costs in terms 

of w(e) to the left outer cuts of node v. In the generalized form of formula (2) 
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cost( t )=cost( )+cost( t ) +|V(t2)|.cost(right_cut( t )+|V(t1)|.cost(left_cut( )) ˆ
1̂t 2̂ 1ˆ 2t̂

only cost( t ) and cost(left_cut(v)) can contribute to the left outer cuts of node v. 

Cost( t ) can contribute to the left outer cuts of node v because when it is computed 

recursively another level down, the left outer cuts of node v with regard to e will 

appear. Since we are only concerning costs with regard to e, left_cut( ) with regard 

to e is w(e). Since |V(t1)| =L1 at root level of t1,  |V(t1)|.cost(left_cut( t )) = L1 * w(e). 

Continue the recursion process till leaf node u is reached and  the total left outer cuts 

with regard to e is as follows:  

1̂

1̂

2̂t

2ˆ

 

 

 

 

Similarly we

Recall that w(e) will

respect to w(e) is:  

 

          

          

  

 

 

Since for an

|)()(|)*( vuew ππ − ,
| Lk|*w(e) +| Lk-1|* w(e) +…+ | L1|* w(e)

=pk* w(e) + pk-1* w(e) +…+ p1* w(e) 

 =( p1+p2+…+pk)* w(e) 

 = [π(x)- π(u)]* w(e) 
 can prove that the right outer cut of  is [π(v) - π(y)]*w(e). 

 appear once as the tree (leaf node) cost, thus the total cost with 

1̂t

[π(x)- π(u)]* w(e)+ [π(v)- π(y)]* w(e)+w(e) 

=[π(v)- π(u)]* w(e)+[ π(x)+1-π(y)]* w(e) 

=[π(v)- π(u)]* w(e) 

y hyperedge e, the cost computed using formula (2) equals 

 we can claim that the total cost computed by formula (2) for a 
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hypergraph having the set of the hyperedges E is exactly the definition of la(G) for a 

hypergraph, i.e.,  

∑
∈

−=
Ee

kk nnnnnnHGla )}(),...(),(min{)}(),...(),(max{)( 2121 ππππππ   

where e={n1, n2, …nk}, which is the same as our cost model. Thus we can 

apply the algorithm proposed in (Bar-Yehuda, 2001) for optimizing broadcast 

sequencing. 

6.3. Generating BDT 
A BDT can be generated from an arbitrary ordering sequence. However, the 

possible number of orderings using a BDT is reduced from n! to 2n-1 which means that 

some of the orderings are not possible under certain decompositions, thus the global 

optimal ordering might be missed. A good decomposition will lead to good ordering 

which is shown through the following simple example.  

In Fig 6-5, for the example access graph, where the numbers inside rectangles 

are the weights of the corresponding edges, the four possible orderings of 

decomposition #1 is {{0,1,2}, {0,2,1}, {1,2,0}, {2,1,0}} and the corresponding total 

access time costs are {13,11,11,13}. The four possible orderings of decomposition #2 

is {{1,2,0}, {1,0,2}, {2,0,1}, {0,2,1}} and the corresponding costs are {11,12,12,11}. 

The four possible orderings for decomposition #3 is {{2,1,0}, {2,0,1}, 1,0,2}, 

{0,1,2}} and the corresponding costs are {13,12,12,13}. Although it is possible for 

decomposition #1 and decomposition #2 to obtain the globally optimal solution, it is 

simply not possible for decomposition #3 due to its bad binary decomposition. Thus 

generating the initial BDT is very important to obtain good results.  
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Fig. 6-5. (a) The Access Graph (b) Decomposition #1  
(c) Decomposition #2 (d) Decomposition #3 

 
In the example, the minimum cost (one of the orderings in decomposition #1 

and #2) is obtained when node 0 and node 2 are placed next to each other. Thus to 

reduce the total access time, an intuitive idea would be to cluster data items that have 

larger edge weight into the same sub-tree. Actually we can prove the following 

general case.  

For three data items i, j and k, without loss of generality, we assume their edge 

weights wi,j>wj,k >wi,k, L1 is the interval between the first and the second item and L2 

is the interval between the second and the third item, then the order of (i,j,k) or (k,j,i) 

has the smallest cost among all possible six orderings.  

Proof:  

 

 

 

 

 

 
L2L1(k,i,j) jik
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(k,j,i) ijk
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Cost(i,j,k)= wi,j *L1 + wj,k *L2+ wi,k *(L1+L2) 

Cost(i,k,j)= wi,k *L1+wk,,j* L2+ wi,j *(L1+L2) 

Cost(j,i,k)=wj,i* L1+ wi,k * L2+ wj,k *(L1+L2) 

Then 

Cost(i,j,k) - Cost(i,k,j)=- wi,j *L2+wi,k*L2=(wi,k- wi,j)*L2<0 

Cost(i,j,k) - Cost(j,i,k)=- wj,k*L1+wi,k*L1=(wi,k-wj,k)*L1<0 

Thus the order of (i,j,k) has the smallest cost among (i,j,k), (i,k,j) and (j,i,k). 

Similarly,  

Cost(k,j,i)=wk,j*L1 +wj,i*L2+wk,i*(L1+L2) 

Cost(j,k,i)=wj,k*L1+wk,i* L2+wj,i*(L1+L2) 

Cost(k,i,j)=wk,i* L1+wi,j* L2+wk,j*(L1+L2) 

Then 

Cost(k,j,i) - Cost(j,k,i)=- wj,i*L1+wk,i*L1=(wk,i-wj,i)*L1<0 

Cost(k,j,i) - Cost(k,i,j)=- wk,j*L2+wk,i*L2=(wk,i-wk,j)*L1<0 

Thus the order of (k,j,i) has the smallest cost among (k,j,i), (j,k,i) and (k,i,j). 

On the other hand,  

 Cost(i,j,k)- Cost(k,j,i)=wi,j*(L1-L2)-wj,k* (L1-L2)=(wi,j-wj,k)*(L1-L2) 

The relationship between Cost(i,j,k) and Cost(k,j,i) also depends on the 

relationship between L1 and L2. Nevertheless we can draw the conclusion that the 

order of (i,j,k) or (k,j,i) has the smallest cost among all six possible orderings. In 

either case, data items i and j are placed next to each other. 
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Spatial index trees, such as the R-Tree (Guttman, 1984), R+-Tree (Sellis, 

1987) and R*-Tree (Beckmann, 1990), are designed to put data items spatially close 

to each other into the same branch while put data items spatially far away from each 

other into different branches. Based on our hypergraph representation, the extended 

regions of the points represented by the nodes of a hyperedge generally have a larger 

portion of overlap in the case where these nodes are from the same branch than in the 

case where these nodes are from different branches. In other words, the weight of a 

hyperedge whose nodes are from the same branch is generally larger than the weight 

of a hyperedge whose nodes are from different branches in spatial range queries. Thus 

tree-based spatial index methods are good candidates to generate a BDT for point 

data.  We use R-Tree to generate a BDT in this study due to its popularity in spatial 

databases for geographical data. We replace an m-branches R-tree node with a small 

binary tree and connect all such small binary trees to build the BDT. An illustration is 

given in Fig. 6-6.  

 

 

 

 

 

 
Fig. 6-6. Replacing an R-Tree Node by a BDT Sub-Tree 
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Algorithm RTreeToBDT 
Input:  

r_root: the root of an R-Tree 
m: the number of the children of r_root 

Output:  
 b_root: the root of the built BDT 

 
Put the children of r_root in array seq 
b_root=GenBDT(seq,0,m)  

 
Algorithm GenBDT 
Input:    

seq: An array of the children node of an R-Tree  
 first: The beginning position to build a BDT in seq 
 last: The ending position to build a BDT in seq 
Output: 

 root: The pointer to the root of the BDT being built 
 
 Allocate memory for root 
 If first equals last 
  If(seq[first]) is a non-leaf R-Tree node 
   Mark root as the intermediate node 

Let  new_root be the pointer of a BDT node 
Let num be the number of children of seq[first] 

   new_root =RTreeToBDT(seq[first],num) 
Set the first child of root to the first child of new_root 
Set the second child of root to the second child of new_root 

  else 
   Set the ID of root to the ID of seq[first] 

Set the two children of root to NULL 
           Else 
  Mark root as the intermediate node 

middle=(first+last)/2 
Set the first child of root to the result of GenBDT(seq, first, middle) 
Set the second child of root to the result of GenBDT(seq, middle+1,last) 

 Return(root) 

Fig. 6-7. The Process of Generating a BDT From an R-Tree 
 

The process of generating an BDT from an R-Tree is presented in Fig. 6-7.  

We begin with the root of the R-Tree and divide the immediate nodes of the root into 

two groups recursively to build a small binary tree. The root of the small binary tree 

will be the root of the BDT. This process is performed recursively until the leaf nodes 

of the R-Tree are reached. Since the algorithm runs in a divide and conquer manner 
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and each R-Tree node is processed exactly once, we claim that the complexity of the 

algorithm is linear with respect to the number of nodes in the R-Tree. The proof is 

similar to the proof of linearity of the tree traversal problem as shown in (Cormen, 

2001).  

6.4 Optimizing DBW 
Due to the similarity between DBW and la(G) as we discussed in Section 4.3 

of Chapter 4, we can use the MinLA method proposed in (Bar-Yehuda, 2001). 

Although the paper only handles the graph MinLA problem, its implementation can 

handle the hypergraph MinLA problem, however, with two restrictions. The first 

restriction is that it requires that there are at least two nodes in a hyperedge while 

hyperedges (query result sets) in our representation might only include one node 

(either a point in a point data set or a vertex in a graph data set). The second 

restriction is that the implementation assumes that all hyperedges have unit weight.  

Since the DBW for accessing a single data item is always 0, the first restriction is not 

a problem. We also modify the implementation to allow hyperedges to have different 

weights.  

In the implementation, for each of the node in the BDT, there is a pointer to its 

parent and two pointers to its two children. An orientation flag is also associated with 

each of the node in the BDT. The parent pointer of the root of BDT is empty and the 

two children pointers of a leaf node of BDT are also empty. We next briefly introduce 

the Least Common Ancestor Tree (LCA-Tree) data structure used in the 
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implementation to efficiently determine whether a node is the beginning/ending node 

of a hyperedge.  

The LCA-Tree is constructed during preprocessing. An auxiliary array is 

needed in the construction. The pointers in the array map hypergraph nodes to the 

corresponding leaf nodes in the BDT of the hyper graph. For each of the nodes in a 

hyperedge, the corresponding BDT node is first retrieved and the path from the node 

all the way to the root of the BDT is travelled. The ID of the hyperedge is assigned as 

the flag of all the intermediate nodes on the paths. Next, starting from the root of the 

BDT, the implementation first tries to find a node of the BDT whose both children’s 

flags have the value of ID of the hyperedge. In case only one child  whose flag has 

the value of ID of the hyperedge, the implementation follows the child until a node  

whose both children’s flags have the value of ID of the hyperedge is reached.  This 

process is performed recursively until the leaf nodes of the BDT is reached. The 

implementation adds a node in the LCA tree in both cases, i.e., either a BDT node 

whose both children’s flags are the assigned ID or it is a leaf BDT node. Fig. 6-8 

shows the process, where the ID represents the edge number of the hyperedge of 

{1,4,5,6} and the dashed lines shows the correspondences between the nodes in the 

BDT and the LCA tree.  

For a hyperedge with k nodes, it takes at most log(n) for each of them to reach 

the root of the BDT where n is the number of the nodes in the hypergraph and the 

BDT. From the root of the BDT, it takes at most log(n) to reach each of the nodes at 

the leaves of the BDT. Thus the time complexity of constructing a LCA tree is 
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O(k*log(n)). Since we assume k is bounded by a constant, thus the total time 

complexity for constructing LCA trees for the m hyperedges is O(m*log(n)). The 

space complexity of a LCA tree is in the order of O(k) , thus the space complexity for 

constructing the LCA trees is O(m), provided that k is bounded by a constant. 
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Fig. 6-8. Determining the Beginning/Ending Node of a Hyperedge 

By using the LCA tree, whether a leaf node of the BDT is the 

beginning/ending node of a hyperedge can be determined efficiently. First start with 

the root of the LCA tree of the node and then follow the left/right child (depending on 

the orientation of the sub-tree rooted at the node) until we reach a leaf node of the 

LCA tree. Since the nodes of a LCA tree is a subset of the nodes of the BDT tree, the 

ID of the LCA leaf node and the ID of the BDT leaf node can be compared and 

decision can be made. The cost of the traversal from the root to a leaf node of a LCA 

tree is in the order of log(k) where k is the number of nodes in the corresponding 

hyperedge. Since we assume the maximum number of the nodes in a hyperedge of the 
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hypergraph is bounded by a constant, thus the determination can be made in small 

constant time. 

 We use the example data set shown in Fig. 4-1 to illustrate the optimization 

method for broadcast sequencing. The data set has 4 nodes and 11 hyperedges. The 

hyperedges and their weights are listed in Table 6-1. This simple data set will also be 

used to illustrate the other two proposed optimization methods subsequently.  

Table 6-1. The Hyperedges and Their Weights for the Data in Fig. 4-1 

Hyperedge Nodes Weight 
1 62 
2 19 
3 34 
4 85 
1,3 2 
2,3 38 
1,2 22 
3,4 8 
2,4 3 
1,2,3 14 
2,3,4 4 

 

We first remove the 4 hyperedges each of which has only one single node as 

discussed above. We then build an R-Tree with a branch factor of 3. The resulting R-

tree has two leaf nodes in each of its two sub-trees as shown in Fig. 6-9 and we use it 

as the BDT.  Traversal of the R-Tree gives an ordering of [1,2,4,3] and we use it as 

our initial ordering. Among the 7 hyperedges, edge {1,2} rooted at T11 with in_cut of 

22, edge {3,4} rooted at T12 with in_cut of 8 and the rest rooted at T0 with their total 

in_cuts being the summation of the following values: 2 for edge {1,3}, 38 for edge 
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{2,3}, 3 for edge {2,4}, 14 for edge {1,2,3}and  4 for edge {2,3,4}, Thus the total 

inner_cut is 61. 

 

T12T11

3421 

T0 
 

 

 

 
 
 

Fig. 6-9. The BDT of the Example for Illustrating DBW Optimization  
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Fig. 6-10. The Orientation Trees of Two Possible Orientations of T11 
 

For the orientation tree in Fig. 6-10(a), the ordering is [4, 3, 2, 1]. Node 2 is 

the ending node of edges {2,3}, {2,4} and {2,3,4}, thus the left_cut of node 2 is 

38+3+4=45. Node 2 is also the beginning node of edge {1,2} and thus its right_cut is 

22. Similarly, the left_cut of node 1 is 2+14+22=38 and the right_cut of node 1 is 0. 

Since nodes 1 and 2 are leaf nodes, their costs are the same as their left_cuts which 

are 45 and 38, respectively. Thus the left_cut and the right_cut of their parents, T11, 

are 45+38-22=61 and 22+0-22=0, respectively. The total cost of T11 under the current 

1-orientation can be computed as 45+38+(22-22)*1+(38-22)*1=99. If the orientation 

of T11 is switched to 0-orientation, we can get the left_cut of node 1 as 2, the right_cut 
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of node 1 as 22, the left_cut of node 2 as 81 and the right_cut of node 2 as 0, thus the 

left_cut and the right_cut of T11 under the current 0-orientation are 2+81-22=61 and 

22+0-22=0, respectively. The total cost of T11 is 2+81+(22-22)*1+(81-22)*1=142. 

Since the 1-orientation of T11 has the smaller cost (99) than the 0-orientation (142) of 

T11, we set the 0-orientation to T11.  Similarly, we set the 0-orientation to T12 since its 

0-orientation cost (15) is smaller than its 1-orientation cost (66) as shown in Fig. 6-10 

(b). The left_cut and the right_cut under the 0-orientation of T12 are 0 and 61, 

respectively. Thus the total cost of T0 is 99+15+(61-61)*2+(61-61)*2=114. This is 

the global optimal value of all possible 4!=24 orderings. The cost of the optimized 

ordering [1,2,3,4] is 44.1% better than the initial ordering {1,2,4,3} whose cost is 

165.  

To examine how the BDT affects the best optimization we can achieve, we 

put nodes 2 and 4 in a branch and nodes 1 and 3 in another branch of the BDT to use. 

Although the cost of the initial ordering [2,4,1,3] has the worst cost (233) among the 

possible 24 orderings, the cost of the optimized ordering [4,2,3,1], which is 139, is 

67.6% better. However, it is still 21.9% worse than the optimized ordering using R-

tree traversal as the initial ordering. This simple example demonstrates the 

effectiveness of both the proposed optimization method and the proposed heuristics 

of generating BDT from R-Tree and generating initial ordering using R-Tree 

traversal.  
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6.5 Optimizing ATData
Sep 

Recall the cost model of ATData
Sep as we have derived in Section 3.2 in 

Chapter 3.   
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For the function 
L

LLL
22

 )g(L
2

2
22 −+= as defined in Section 3.1 in Chapter 3, 

we observe that the cost model for a single query in terms of ATData
Sep (DPW+DBW), 

i.e., g(L2), increases monotonically as DBW, i.e., L2,  increases and vice versa. Thus 

L2, which is the hypergraph version of  “edge length”, is a good linear approximation 

of g(L2). By doing so we are expecting that the optimized ordering where the 

optimization is based on the definition of la(G), which is linear with respect to L2, is 

also a good ordering according to g(L2). 

To compare the goodness of the approximation, we enumerate all possible 

4!=24 orderings and compute both the linear cost and quadratic cost as shown in Fig. 

6-11. They have the same trends which supports our theoretical result. The access 
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time under the quadratic model is always larger than the linear model as expected 

since the former includes both DPW and DBW while the latter only includes DBW.  

 

 

 

 

 

 

 

Fig. 6-11. Comparison of Access Time of Linear Versus Quadratic Models 

6.6 Optimizing ATData
Mul 

Recall the cost model of ATData
Mul as we have derived in Section 3.2 in 

Chapter3. 
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By relating w(u,v) with wi, wi,j…w1,2...n and relating |π(u)-π(v)| with 

)}(),...(),(max{ 21 knnn πππ we can see that the problem of optimizing the total access 

time is structurally similar to the MinLA problem. Rather than computing |π(u)-π(v)| 

for an edge directly, (Bar-Yehuda, 2001) computes it as a serial summations of the 

sub-tree sizes of the BDT to achieve its efficiency. Unfortunately, this is not possible 

to compute )}(),...2 kn(),(max{ 1 nn πππ  in a similar manor for ATData
Mul optimization 

due to its nonlinearity. In this study, we adopt the divide-and-conquer strategy and 

propose a new method for ATData
Mul optimization. Like (Bar-Yehuda, 2001), the 

method checks all possible 2n-1 orderings that can be derived from a BDT in O(n2) 

time complexity. 

 The process of the proposed method is shown in Fig. 6-12. The hypergraph 

data structures described in Section 4.4 of Chapter 4, the BDT enhancements and the 

LCA tree structure described in Section 6.4 of this chapter are also needed in the 

method. In addition, for each BDT node, we also compute the size of the sub-trees of 

the BDT rooted at the node.  

 

 

 

 

 

 

1 Set the positions of all nodes to the specified initial order, or the natural order of {1,2…n} if
no initial order is available. Set tree t to the root of the BDT. Do the following recursively.  

2 If t is an intermediate node of the BDT: 
a) Test the two orientations of its sub-trees t1 and t2 by adding the access time of t1 and t2 

under the orientations.  
b) Set the orientation of t to the one that has less access time.  

3 If t is a leaf node of the BDT:  
a) Set the access time associated with the node to zero.  
b) Compute the position of the node.  
c) Retrieve all the queries that contain this node and their corresponding weights.  
d) For each query that has the node as the ending node in the broadcast sequence, add 

position*weight to the access time associated with the node. 

Fig. 6-12. The Process of Optimising ATData
Mul 
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Before illustrating the method with a simple example and performing 

complexity analysis, we next show how to compute the position of a node in an 

ordering efficiently which is crucial in the proposed method. As shown in Fig. 6-13, 

start at a leaf node (node 6 in our example), we use the parent pointer associated with 

the BDT node to travel from the leaf node all the way to the root of the BDT. We 

check the orientation of the BDT nodes along the path. If the sub-tree rooted at the 

node is the right sub-tree of its parent then we add the sub-tree size of its sibling to 

the position, otherwise we just skip. In the BDT shown in Fig. 6-13, in the first step, 

since node 6 is the right child of T1 we add 1 to the position. In the second step, since 

T1 is the left child of T2, we just skip. In the third step, since T2 is the right child of T3, 

we add 3, which is the size of the left sub-tree of T3, to the position value. Finally 

since T3 is the left child of T4, which is the root of the BDT, we skip again. Thus we 

get the position of node 6 as 3+1=4.  The cost of computing the position of a leaf 

node is in the order of log(n) if the BDT is balanced where n is the number of nodes 

in the hypergraph and the BDT.  

 

 

 

 

 

 

Fig. 6-13. Illustration of Computing Position of a BDT Node 
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We use the same example in Section 6.4 to illustrate the proposed ATData
Mul 

optimization method. The BDT we use is shown in Fig 6-14.  
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Fig. 6-14. The BDT of the Example for Illustrating ATData
Mul Optimization 
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Fig. 6-15. Computing ATData
Mul  for Nodes 1 and 2 Under 1-Orientation of T11  

 

We use AT(x) to denote ATData
Mul  of x, where x can be either a leaf node or a 

sub-tree of the BDT. If x is a sub-tree, we also denote its orientation by putting 0 or 1 

in its top-right part. For T11 in the 1-orientation, as shown in Fig. 6-15, the position of 

node 2 is 2 and the position of node 1 is 3, thus AT(2)=2*(4+38+19+3)=128, 

AT(1)=3*(2+14+22+62)=300 and AT(T11
1)=128+300=428. Similarly we can also 

compute AT(T11
0)=428. According to our convention, we choose the 0- orientation if 

the two orientations have the same cost. We next compute the cost of T12 under both 

orientations.  
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Fig. 6-16. Computing AT(T12) Under 1- and 0-Orientations 
 

For the T12 in the 1-orientation, as shown in Fig 6-16, the position of node 3 is 

1 and the position of node 4 is 0, thus AT(3)=1*(8+34)=42, AT(4)=0 and 

AT(T12
1)=42+0=42. Similarly for T12 in the 0-orientation, AT(3)=0, AT(4)= 1*(8+85)= 

93, thus AT(T12
0)=0+93=93. Since 42 is less than 93, the 0-orientaiotn of T12 is the 

winner. Thus the total cost of T0 under the 1-orientation is AT(T0
1)= AT(T11

1)+ 

AT(T12
0) = 428+42= 470. Similarly we can compute the AT(T0) under the 0-

orientation as 517. Thus the 1-orientation of T0 is the winner and the final optimized 

ordering is [4,3,1,2] whose access time is 14.9% better than the access time of the 

natural ordering of [1,2,3,4]. 

Let the computation cost of sequencing an n-node hypergraph be S(n). At each 

t∈T having n nodes (i.e. n=|t|) we need to calculate the costs of its two children under 

two orientations which results in 4*S(n/2). We also need one addition for each 

orientation (to add the costs of t1 and t2) and one comparison (to compare the costs of 

the two orientations). Thus the complexity analysis of the total access time, in terms 

of the number of data items n, is shown in Fig. 6-17.  
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g. 6-17. Complexity Analysis of ATData
Mul Optimization Method 

s the following components. It takes O(log(n))  to compute the position 

tep 3.b. It takes constant time to retrieve all the hyperedges that contain 

sing the inverse hypergraph in Step 3.c. We assume the number of 

at contain a node is bounded by a constant, so it takes constant time to 

ether a node is the ending node of a hyperedge, thus the total cost in 

lso bounded by a constant. Furthermore, in real applications, for a 

g number n (e.g., from 100 to 10000), log(n) (7-14) is less than the 

 of the average number of hyperedges that contain a node (e.g. 10-20) 

e depth of the LCA tree (e.g. 3-5) and we can treat log(n) as a bounded 

ractical values of n. Thus the proposed method approximately has a 

 O(n2).  
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Chapter 7 

Experiments and Evaluations 

7.1 Experiment Software Modules 
We use several publicly available packages to make our experiments possible. 

They are the Boost Graph Library (BGL) at the Indiana University ([HREF 5]), the 

binary version H-Metis graph partition package from George Karypis at the 

University of Minnesota([HREF 6]), the Java version R-Tree package from Marios 

Hadjieleftheriou at the University of California, Riverside ([HREF 7]) and the C 

version Hilbert SFC package from Doug Moore at the Rice University ([HREF 8]). 

The software modules we developed are: Java version hypergraph generation package 

for spatial point data, the C version implementation of Floyd-Warshall algorithm for 

generating all pair shortest paths and its corresponding hypergraph, the C version 

EAFG generation module, the C version R-Tree to BDT conversion module and the 

C++ versions of MAX/MAX-LD heuristics for regular graphs, NODE-

WEIGHT/EDGE-WEIGHT heuristics for regular graphs and NODE-

WEIGHT/EDGE-WEIGHT heuristics for hypergraphs. The overall data flow of the 

experiments are shown in Fig. 7-1. The dashed line from “Graph Data Set” to “Point 

Data Set” means we use the geometries of the graph data set and treat them as a point 

data set. The modules are combined differently when applied to different data sets 

which will be described in detail in Section 7.2 and Sections 7.3 through 7.5 when 

experiments are performed on these data sets.  
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Fig. 7-1. Overall Data Flow of the Experiments 
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7.2 Data Sets and Performance Metrics 

The majority of the data sets we use in this study are point data sets due to 

availability reasons. We first generate five random point data sets. The real data sets 

we use are the centers of the zip codes among the 50 states and the District of 

Columbia of the United States. The graph data set we use is the transportation 

network of the State of Texas manually input from an AAA map.   

We start with the synthetic data sets and use a single query window. The small 

volumes of the data sets allow us listing all the experiment results for analysis under 

the three cost models individually.  The 51 real data sets vary from a great scope of 

the covered areas, number of points, densities and distributions. Due to the huge 

volume of the results on the data sets under the five query window sizes and three 

cost models, the analysis is performed based on the average results while the detailed 

results are listed in the appendix. In addition to evaluating the ordering qualities, we 

also evaluate the computation time for running the optimization algorithms on the real 

data sets.  

The experiments on the transportation network are designed to compare the 

geometric-based heuristics and graph-based heuristics for network path queries on 

graph data as discussed in Chapter 5. Besides the graph-based heuristics, the 

geometric-based heuristics are also used for network path queries. All the heuristic 

orderings and their optimized orderings of the graph data set for network path queries 

are also evaluated on the hypergraph representation of spatial range queries for 

comparison purposes.  
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For each of the point data sets, we first generate the hypergraph 

representations for the given query windows. To comply with the assumption in the 

optimization methods presented in Chapter 6 which states that the number of nodes in 

hyperedges is bounded by a constant, we discard the points (nodes) whose extended 

region contains more than a certain number of points. We also remove the points that 

only fall into their own extended regions, i.e., hyperedges that have only one node, 

for optimizations of DBW and ATData
Sep while keeping them as they are for 

optimizations of ATData
Mul.  

For the graph data set, i.e., the transportation network of the State of Texas, 

due to lack of access frequency information, we use all pair shortest paths of the 

network as query sets and they have unit weights. Although we illustrate the 

optimization methods in Chapter 6 using a point data set, they can be applied to the 

optimization of graph data without any modification due to the reasons discussed in 

Section 3.3 of Chapter 3. Because of the monotonic relationship between DBW and 

ATData
Mul for a single complex query, and more importantly, due to the fact that DBW 

is more important than DPW as discussed in Chapter 3, we focus on DBW for the 

experiments on the graph data. We also perform experiments on graph data for the 

heuristics that are applicable to only MUL scheme. The results of these heuristic 

orderings are compared with the results of the optimized orderings under MUL 

scheme.   

120 



Our experiments are all done on a Dell Dimension 4100 personal computer 

with 866 MHZ Intel processor and 512M memory under the Windows 2000 

professional operating system. 

Our cost models presented in Chapter 3 measure the access time in terms of 

weight*time where weight is the access frequency of a query and the time is the data 

access time to broadcast channel to retrieve all the data items in the query result set. 

To make the experiment results more intuitive and comparable to each other, we 

define a new measurement called Normalized Data Access Time (NAT). Let ATData 

(DBW, ATData
Sep or ATData Mul) be the access time to data according to the three cost 

models. Let W be the summation of the weights of the hyperedges of a hypergraph 

and L be the length of a broadcast cycle (i.e., number of data items to broadcast), the 

measurement is defined as 
W

AT
NAT Data=

The NAT value will be greater than 0 and less than L. Generally speaking, the 

larger the average number of nodes in the hyperedges of a hypergraph, the larger 

NAT. This is because a larger access time is needed to access all the data items even 

if they are next to each other in a broadcast sequence. We could have defined another 

measurement NAT/L, which will be between 0 and 1. However,  it will be very small 

for hypergraphs that have a large number of nodes, i.e., larger broadcast cycle length. 

This is because we assume the average number of  nodes per hyperedge is bounded 

by a constant. The definition of  NAT is more suitable than NAT/L since it eliminates 

weighting factor while still having the capability to tell the ordering quality when 

used in conjunction with L.  
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7.3 Synthetic Data Set 

We use five synthetic data sets in our experiments with sizes of 100,200, 300, 

400 and 500 points respectively. They all have a data space of [0,1) ×[0,1) and we use 

a query window size of 0.1 by 0.1. The points in the data sets are generated randomly 

within the data space and with the following restrictions:  

First, the extended region of a point intersects with no more than N other 

Extended Regions. This is to ensure that the lengths of the hyperedges are bounded 

by the constant N to be complied with the requirement of the optimization methods. 

We choose N to be 10 in the experiments.  

Second, the distances between a point and the points that fall into its extended 

region are no less than 1% of the radius of the query window (0.0005 in our 

experiments). This is to prevent from generating very tiny intersected regions to 

ensure that the weights of hyperedges is not too small to be meaningful for 

optimization.  

Finally we remove the points whose extended region does not intersect with 

any other extended regions since they do not contribute to orderings. This might make 

the sizes of some data sets slightly less than their original size. For example, data sets 

1, 3, 4 and 5 listed in Table 7-1 where their number of points are less than 100, 300, 

400 and 500, respectively. Table 7-1 shows the parameters of the five data sets. It can 

be observed that as the number of points increases, both the number of hyperedges 

and the average nodes per hyperedge increase.  
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Table 7-1. Parameters of the Synthetic Data Sets 

Data 
Set 

# of 
Points 

# of  
Hyperedges 

Total  # of Nodes 
in All Hyperedges 

Average Nodes
Per Hyperedge

1 96 253 667 2.64
2 200 1054 3393 3.22
3 294 1796 6358 3.54
4 382 2111 8854 4.19
5 452 2147 10802 5.03

 

7.3.1 Experiments Using The DBW Cost Model 

We compare six orderings for each of the five data sets: the minimum of  

1000 random orderings, the maximum of 1000 random orderings, the average of 1000 

random orderings, the Hilbert SFC ordering, the R-Tree traversal ordering and the 

optimized R-Tree traversal ordering. The results are listed in Table. 7-2 through Table 

7-4.  

Table 7-2. Results of 1000 Random Orderings Under DBW Cost Model 
for Synthetic Data Sets 

 
Data 
Set 

Minimum 
AT  

(Rand_Min) 

Maximum 
AT  

(Rand_Max) 

Average 
AT  

(Rand_Ave) 

Improvement 

AveRand
MinRandRand

_
_max_ −  

1 31.67 47.8 40.19 40.13%
2 81.02 102.24 92.86 22.85%
3 142.27 171.42 154.95 18.81%
4 200.15 239.73 222.11 17.82%
5 272.65 317.27 297.09 15.02%
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Table 7-3. Comparisons of Hilbert and R-Tree Traversal Ordering With 1000 
Random Orderings Average Under DBW Cost Model for Synthetic Data Sets 

 
Data 
Set 

Rand-Ave 
 
 
 
 

Hilbert 
Ordering 

(HO) 
 
 

R-Tree Ordering
(RO) 

 
 
 

Hilbert  
Ordering 

Improvement 
1_

−
HO

AveRand  

R-Tree Ordering 
Improvement 

1_
−

RO
AveRand  

1 40.19 41.47 27.06 -3.09% 48.52%
2 92.86 94.15 63.04 -1.37% 47.30%
3 154.95 152.31 94.87 1.73% 63.33%
4 222.11 211.08 135.93 5.23% 63.40%
5 297.09 294.84 178.86 0.76% 66.10%

 
Table 7-4. Comparison of Optimized Ordering, R-Tree Ordering and 1000 

Random Orderings Average Under DBW Cost Model for Synthetic Data Sets 
 

Data  
Set 

Rand-Ave 
 
 
 

R-Tree 
Ordering  

(RO) 
 

Optimized  
R-Tree Ordering

(OO) 
 

R-Tree 
Improvement 

1_
−

RO
AveRand  

Opt-
Improvement 

1−
OO
RO  

Overall 
Imrpovement 

1_
−

OO
AveRand  

1 40.19 27.06 22.7 48.52% 19.29% 77.05%
2 92.86 63.04 52.77 47.30% 19.45% 75.97%
3 154.95 94.87 63.07 63.33% 50.43% 145.68%
4 222.11 135.93 101.21 63.40% 34.30% 119.45%
5 297.09 178.86 121.9 66.10% 46.72% 143.72%

 

From the results we can see that the improvements of 1000 random orderings 

drop from 40% to 15% (Table 7-2). This is expected. The reason behind is that as the 

number of points goes up, the ratio (r) of the number of examined orderings in the 

algorithm to the number of all possible orderings  (1000/n!) drops exponentially. 

Thus finding a good ordering by examining a fixed number of random orderings is 

not a feasible solution.  
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The result (Table 7.3) also shows that Hilbert SFC ordering may be better or 

worse than the 1000 random orderings average for the five synthetic data sets.  On the 

contrary, the R-Tree traversal orderings improve the 1000 random orderings average 

significantly, from 47% to 66%. The optimized ordering further improves the R-tree 

traversal ordering, which varies from 19% to 47%. Consequently, the overall 

improvement (Table 7-4) of the optimized ordering over the 1000 random orderings 

average varies from 76% to 146%.  

7.3.2 Experiments Using ATData
Sep Cost Model 

Similar to the experiments on the synthetic data sets based on the DBW cost 

model, the corresponding results based on the ATData
Sep cost model are listed in Table 

7-5 through Table 7-7. The overall improvement of the R-Tree traversal ordering 

heuristic and the optimization method varies from 17% to 30%. One of the noticeable 

patterns is that the improvement percentage is significantly less than that under DBW 

cost model. This can be explained as follows. Recall the cost model for a single 

complex query under the Separate Channel scheme: 

]
2

)
2
1(

8
1[1

2
2

2
−−

−+==
LL

L
L

AT Sep
Data

 

This cost reaches its minimum (L/2) when L2=0, i.e., it takes half of the cycle 

to reach the first data item. Similarly ATData
Sep reaches its maximum (L) when L2=L, 

i.e., all the data items in the broadcast cycle are accessed. The possible value of 

ATData
Sep varies from L/2 to L, while it varies from 1 to L for DBW. According to our 

definition of improvement (ATOrg/ATOpt-1), the upper bound of ATData
Sep  
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improvement is 11
2/

=−
L

L  (100%), while the upper bound of DBW improvement is 

L/1-1=L-1. Note that these upper bounds are not reachable.    

Table 7-5. Results of 1000 Random Orderings Under ATData
Sep Cost 

Model for Synthetic Data Sets 
Data 
Set 

Minimum 
AT  

(Rand_Min) 

Maximum 
AT  

(Rand_Max) 

Average 
AT  

(Rand_Ave) 

Improvement 

AveRand
MinRandRand

_
_max_ −  

1 72.19 81.07 77.09 11.52% 
2 158.12 170.73 165.28 7.63% 
3 246.22 259.50 252.63 5.26% 
4 328.01 345.44 338.24 5.15% 
5 405.33 423.26 415.65 4.31% 

 

Table 7-6. Comparisons of Hilbert and R-Tree Traversal Ordering 
Access Time with 1000 Random Orderings Average of Access Time Under 

ATData
Sep Cost Model for Synthetic Data Sets 

Data 
Set Rand-Ave 

 
 
 

Hilbert Ordering
(HO) 

 
 

R-Tree Ordering
(RO) 

 
 

Hilbert  
Ordering 

Improvement 
1_

−
HO

AveRand  

R-Tree Ordering 
Improvement 

1_
−

RO
AveRand  

1 77.09 78.02 69.03 -1.19% 11.68%
2 165.28 165.46 145.76 -0.11% 13.39%
3 252.63 251.42 214.79 0.48% 17.62%
4 338.24 333.08 287.20 1.55% 17.77%
5 415.65 411.55 352.06 1.00% 18.06%

 

Table 7-7. Comparison of Access Time for Optimized Ordering, R-Tree 
Ordering and 1000 Random Orderings Average Under ATData

Sep Cost Model for 
Synthetic Data Sets 

Data  
Set 

Rand-Ave 
 
 
 

R-Tree 
Ordering  

(RO) 
 

Optimized  
R-Tree 

Ordering 
(OO) 

R-Tree 
Improvement 

1−
−

RO
AveRand  

Opt-
Improvement 

1−
OO
RO  

Overall 
Imrpovement 

1_
−

OO
AveRand  

1 77.09 69.03 65.64 11.68% 5.16% 17.44%
2 165.28 145.76 141.40 13.39% 3.08% 16.89%
3 252.63 214.79 197.47 17.62% 8.77% 27.93%
4 338.24 287.20 269.45 17.77% 6.59% 25.53%
5 415.65 352.06 319.79 18.06% 10.09% 29.98%
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7.3.3 Experiments Using ATData
Mul Cost Model 

The experiment results based on the ATData
Mul cost model are listed in Table 7-

8 through Table 7-10. The results are similar to what we reported in the two previous 

sections. The R-Tree traversal heuristic and the optimization method together provide 

an overall improvement of  14% to 39% for the five synthetic data sets.  

Although it is tempting to compare the access time of the orderings under the 

two cost models and then determine which one is better, we warn readers not to do so. 

The reason is the possible non-proportional split of access time to index and access 

time to data under the SEP and MUL schemes. In the MUL scheme, it takes half of 

the broadcast cycle length of the multiplexed channel to reach the beginning of the 

index and it takes additional access time to the index to reach the first data item. This 

is to say that reaching the beginning of the index and the beginning of the data are 

correlated. However, they are separate in the SEP scheme. The final result might be 

determined by the data set and the allocation of the bandwidth between the index 

channel and the data channel.  

Table 7-8. Results of 1000 Random Orderings Under ATData
Mul Cost Model for 

Synthetic Data Sets 
Data 
Set 

Minimum 
AT  

(Rand_Min) 

Maximum 
AT  

(Rand_Max) 

Average 
AT  

(Rand_Ave) 

Improvement 

AveRand
MinRandRand

_
_max_ −  

1 61.13 72.33 67.62 16.56% 
2 138.00 152.63 145.89 10.03% 
3 211.69 234.90 223.80 10.37% 
4 280.71 315.15 301.38 11.43% 
 5 356.31 390.89 373.93 9.25% 
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Table 7-9. Comparisons of Hilbert and R-Tree Traversal Ordering Access Time 
With 1000 Random Orderings Average of Access Time Under ATData

Mul Cost 
Model for Synthetic Data Sets 

Data 
Set Rand-Ave 

 
 
 

Hilbert Ordering
(HO) 

 
 

R-Tree Ordering
(RO) 

 
 

Hilbert  
Ordering 

Improvement 
1_

−
HO

AveRand  

R-Tree Ordering 
Improvement 

1_
−

RO
AveRand  

1 67.62 40.32 35.2 -2.68% 11.48%
2 145.89 199.4 182.42 1.24% 10.66%
3 223.80 328.93 283.52 0.99% 17.16%
4 301.38 300.12 304.4 9.58% 8.04%
5 373.93 243.6 218.69 11.06% 23.71%

 
 

Table 7-10. Comparison of Access Time for Optimized Ordering, R-Tree 
Ordering and 1000 Random Orderings Average Under ATData

Mul Cost Model for 
Synthetic Data Sets 

 
Data  
Set 

Rand-Ave 
 
 
 

R-Tree 
Ordering  

(RO) 
 

Optimized  
R-Tree Ordering

(OO) 
 

R-Tree 
Improvement 

1−
−

RO
AveRand  

Opt-
Improvement 

1−
OO
RO  

Overall 
Improvement 

1_
−

OO
AveRand  

1 67.62 60.65 58.3 11.49% 4.03% 15.99%
2 145.89 131.84 128.15 10.66% 2.88% 13.84%
3 223.80 191.01 167.86 17.17% 13.79% 33.33%
4 301.38 278.96 248.11 8.04% 12.43% 21.47%
5 373.93 302.26 269.69 23.71% 12.08% 38.65%

 

7.4 The Zip-code Point Data Sets 
The centers of the zip codes are in the form of latitude/longitude pairs. We 

choose the following query window sizes in our experiments for the zip code data 

sets: 0.05 degree by 0.05 degree, 0.1 degree by 0.1 degree, 0.5 degree by 0.5 degree, 

1 degree by 1 degree and 5 degree by 5 degree. The smallest query window size is 

approximately 5 kilometers by 5 kilometers and the largest query window size is 
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approximately 500 kilometers by 500 kilometers. We believe these query window 

sizes are meaningful in real applications. We set the maximum numbers of nodes in a 

hyperedge to be 10, 20, 30, 40 and 50 for the five query window sizes, respectively. 

Note that for some data sets that have small areas but a large number of zip codes 

(points), such as the Washington D.C. data set and the Rode Island data set, it is 

impossible for a large query window to contain fewer than the threshold numbers of 

points centered at any point in those data sets. Consequently there is no hypergraph 

generated for the data set. In this case we simply discard the data set for the particular 

query window. Although it is possible for the data sets with a large area but small 

number of points to have hypergraphs that all hyperedges of which have only one 

node for small query windows, i.e., no two extended regions intersect with each other, 

this scenario does not happen in our experiments. This is primarily due to the 

clustered distribution of the data sets.  

Due to the volume of the data sets and their experimental results, we list them 

in the appendix A. Table A-1 lists the parameters that characterizing the hypergraphs 

for each of the data sets in terms of the number of points for sequencing, the number 

of hyperedges (i.e., the number of possible distinct query result sets) and the average 

number of nodes per hyperedge. Table A-3 through Table A-17 list the experiment 

results for the data sets using the five query window sizes under the three cost 

models.  The meanings of the column names in these 15 tables are listed in Table A-

2. The computation time for the optimization methods (DBW/ATData
Sep and ATData

Mul) 
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are listed in Table A-18. The average access times under the three cost models and 

five query windows for the zip code data sets are listed in Table 7-11. 

Table 7-11. Summary of Results of Zip Code Data Sets 

Cost 
Model 

Window 
Size 

Rand 
_Ave 

HO RO OO 1_
−

RO
AveRand  1−

OO
RO  

1_
−

OO
AveRand  

0.05 158.56 157.93 61.02 42.07 160.19% 51.81% 290.33% 
0.1 178.07 177.30 77.84 57.58 144.75% 44.76% 254.83% 
0.5 330.23 326.75 153.78 114.38 130.03% 42.62% 229.57% 
1 419.02 418.95 224.95 177.96 89.10% 30.03% 144.89% 

DBW 

5 141.78 140.84 95.35 67.26 46.92% 43.32% 109.26% 
0.05 282.15 282.14 218.02 206.12 27.66% 6.65% 36.05% 
0.1 309.92 309.48 245.46 233.22 26.52% 6.09% 34.20% 
0.5 548.01 546.07 438.52 414.86 25.50% 6.24% 33.31% 
1 637.31 637.32 526.39 499.88 20.52% 5.82% 27.49% 

SEP 

5 175.59 175.37 155.09 141.87 11.47% 9.11% 21.56% 
0.05 250.65 250.31 201.66 192.59 23.50% 6.07% 30.89% 
0.1 276.09 275.45 224.71 216.07 23.43% 5.46% 30.14% 
0.5 489.8 488.09 398.75 377.27 22.55% 7.43% 31.62% 
1 572.85 572.04 473.57 453.62 20.11% 7.35% 28.84% 

MUL 

5 162.37 161.29 134.85 124.27 20.27% 14.49% 38.28% 
 

 From Table A-1 to A-18 and the summary table (Table 7-11) we can see the 

similar results as those in the five synthetic data sets. For the zip code data sets, on 

average, the optimized orderings are better than 1000 times random ordering average 

1.09 to 2.90 times under DBW, 22% to 36% under SEP and 30% to 38% under MUL, 

respectively. The R-Tree heuristics contribute approximately 2/3 to the overall 

improvement and the optimization methods contribute approximately 1/3 to the 

overall improvements. The Hilbert orderings have similar performance as the 1000 

times random ordering average. The results show that both the R-Tree traversal 

heuristic and the optimization methods are effective which makes the orderings based 

on them query efficient. We next analyze the computation times for the optimizations, 

i.e., the time it takes to run the optimization methods.  
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The computation time for the optimization method for DBW/ATData
Sep and 

ATData
Mul are listed in Table A-18 and shown in Fig. 7-2 and Fig. 7-3, respectively. 

Note that the trend lines for query window 0.05 by 0.05 and query window 0.1 by 0.1 

are almost overlapped due to their small computation times. From the results we can 

see that the computation times are generally quadratic with respect to the number of 

nodes in the hypergraphs. They support the theoretical result of MinLA (on which the 

DBW optimization method is based ) given in (Bar-Yehuda, 2001) and our ATData
Mul 

optimization method very well. The computation time for our ATData
Mul optimization 

method is about 2/3 of that of the MinLA algorithm.  

The computation times for running  DBW/ATData
Sep and ATData

Mul 

optimization reach their maximum for PA data set for 1.0 by 1.0 query window, 

which are 127 and 76 seconds respectively. The hypergraph representation of the PA 

data set has 1847 nodes, 17447 hyperedges and 8.69 nodes per hyperedge on average. 

The PA data set also has the largest computation time for both optimization methods 

under the 0.5 by 0.5 query window, which are 46 and 34 seconds respectively and its 

hypergraph representation has 2075 nodes, 6862 hyperedges and 5.62 nodes per 

hyperedge on average. For PA data set, although it has more nodes in the hypergraph 

representation under the 0.5 by 0.5 query window than the hypergraph representation 

under 1.0 by 1.0 query window, the number of hyperedges and the number of nodes 

per hyperedge under the 1.0 by 1.0 query window is significantly larger than the 

number of hyperedges and the number of nodes per hyperedge under the 0.5 by 0.5 

query window respectively. This explains why it takes more time for both 
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optimization methods under the 1.0 by 1.0 query window than that under 0.5 by 0.5 

query window. The similar thing happens to the SD data set in 5.0 by 5.0 query 

window. Although the SD data set under the query window has only the 6th largest 

number of nodes among all the data sets, it has the largest number of hyperedges and 

considerable large average number of nodes per hyperedge, thus it takes the longest 

computation times for the two optimization methods, which are 33 and 15 seconds, 

respectively. The results show the importance of the hidden const factor behind the 

big O notation.  
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 Fig. 7-2. Computation Time for DBW/ATData
Sep Optimization Method of 

Zip Code Data Sets 
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Fig. 7-3. Computation Time for ATData
Mul Optimization Method For Zip 

Code Data Sets 

Although it takes about two minutes to optimize the ordering for the most 

complex data set (PA under 1.0 by 1.0 query window and running DBW/ATData
Sep 

optimization) , as we have discussed in the introduction, geographical data changes 

relatively slow  in practice. Furthermore, since the optimizations are done on the 

server side, we believe that the optimization time can be significantly reduced by 

using more powerful processors to fulfill the requirements in practice. Due to the 

divide-and-conquer nature of the optimization methods, it is also possible to explore 

parallelism to further reduce the computation time. 
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7.4 Texas Transportation Network Data Set 
The data set is shown in Fig 7-4.  There are 62 nodes (cities) and 120 edges 

(major roads) in the transportation network. The number of all-pair shortest paths is 

62*(62-1)/2=1891, i.e., the hypergraph representation for network path query has 

1891 hyperedges. For spatial range queries, the query window we use is a 100 by 100 

square miles area. The resulting hypergraph representation has 62 nodes (cities) and 

420 hyperedges. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-4. Texas Road Network 
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We explore the following ordering heuristics for experiments using the DBW 

cost model (c.f. Fig. 7-1): random, original graph traversal/EAFG traversal 

(BFS/DFS), traversal of the original graph partition tree, traversal of the derived 

hypergraph partition tree, traversal of EAFG partition tree, Hilbert SFC and R-Tree 

traversal. For BFS/DFS traversals, start at different nodes will generate different 

orderings. We report min, max and average of the n BFS/DFS orderings using 

different nodes as the starting node where n is the number of vertices in the network. 

For the R-Tree traversal ordering heuristic, we vary the branch factor from 4 to 9. We 

also evaluate the optimized orderings using the following BDTs: the original graph 

partition tree, the EAFG partition tree, the hypergraph partition tree and the 

decomposed R-Tree built from treating graph nodes as geographical points. These 

heuristic orderings and optimized orderings based on the hypergraph representation of 

network path queries on graph data are evaluated first on the network path queries. 

The same orderings are then evaluated on the hypergraph representation of spatial 

range queries on point data.  The results are shown in Table 7-12.   

From the results we can see that for network path queries, traversal of the 

graph (original graph, EAFG and hypergraph) partition tree orderings and their 

optimized orderings achieve much better results than both the graph traversal 

orderings and geometric based heuristic orderings. Among these orderings, traversal 

of the hypergraph partition tree ordering as an ordering heuristic is the best. On the 

other hand, the optimized ordering based on the EAFG partition tree is the best 

135 



among the three optimized orderings although they are pretty close. The optimized 

ordering based on the original graph partition tree has the largest improvement ratio 

over its graph partition tree traversal ordering heuristic.  

Table 7-12. Summary of Results of Texas Transportation Network Data 
Set Under DBW Cost Model 

Orderings  Path Query Range Query
n-Rand-min 35.55 26.68  
n-Rand-max 45.10 34.25
n-Rand-Avg 40.79 30.46
n-EAFG-BFS-min 35.16 21.58
n-EAFG-BFS-max 42.57 32.24  
n-EAFG-BFS-avg 39.35 27.97
n-EAFG-DFS-min 32.54 18.58
n-EAFG-DFS-max 40.23 27.93  
n-EAFG-DFS-avg 37.31 23.50
Traversal of original graph partition tree 30.69 21.33
Optimization based on original graph 
partition tree 22.56 20.04
Traversal of EAFG partition tree 26.37 20.61
Optimization based on EAFG partition tree 22.26 21.16
Traversal of hypergraph partition tree 24.25 25.19
Optimization based on hypergraph partition 
tree 22.74 18.69
Hilbert SFC 38.63 25.61
Traversal of R-Tree –min 35.73 17.76
Traversal of R-Tree –max 39.97 25.92
Traversal of R-Tree –avg 37.99 21.24
Optimization R-Tree –min 33.53 13.31
Optimization R-Tree –max 35.87 22.41
Optimization R-Tree –avg 34.30 13.49

 

Since the EAFG and the original graph has the same topology, their breadth 

first search orderings and depth first search orderings are also the same. Among the 

EAFG traversal ordering heuristics, DFS seems to be better for all n-min/max/avg 

cases than those of BFS. The Hilbert ordering, although better than the maximum of 
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random ordering orderings, is worse than their average. The R-Tree traversal 

orderings average is slightly worse than the DFS traversals average of EAFG, but is 

better than BFS traversals average of EAFG. The results suggest that the geometric 

based heuristic orderings (R-Tree traversal) and their optimized orderings are not as 

good as graph partition based ones (Original/EAFG/Hypergraph partition tree 

traversal). 

It is interesting to see that geometric-based ordering heuristics and their 

optimized orderings where optimizations are based on the hypergraph representation 

of spatial range queries perform better than graph partition orderings and their 

optimized orderings where the optimizations are based on the hypergraph 

representation of network path queries. We thus draw our conclusion that geometric 

based orderings should be used for spatial range queries and graph partition based 

orderings should be used for network path queries.  

We next perform experiments using the ATData
Mul cost model on network path 

queries. Several new ordering heuristics, such as Maximum Spanning Tree , MAX, 

MAX-LD, NODE-WEIGHT and EDGE-WEIGHT as discussed in Chapter 5,  are 

available under MUL scheme but not under DBW/SEP scheme.  

Although the Maximum Spanning Tree based orderings do not make much 

sense under the DBW cost model, it works well under the ATData
Mul cost model since 

they put nodes (or edges) with larger weights as close to the beginning of a broadcast 

cycle as possible. The similar arguments can be made for MAX, MAX-LD, NODE-

WEIGHT and EDGE-WEIGHT heuristics. Note that the Prim’s MST algorithm and 
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the Kruskal MST algorithm although generate the same MST, might have different 

orderings. For the Prim MST, we set each node in the graph as the source and record 

the sequence of nodes being visited to obtain n Prim’s MST orderings.  While the 

MAX and MAX-LD heuristics cannot be extended to hypergraph easily, the NODE-

WEIGHT and EDGE-WEIGHT heuristics can be used for both a regular graph and a 

hypergraph. We also include graph partition tree traversal orderings and their 

optimized orderings. Note that when applying optimizations, the original graph and 

the EAFG are used only to generate the BDTs while the hypergraph is still used as the 

underlying representation in all the three optimizations.  Like the experiments under 

the DBW cost model, we also include the Hilbert and the R-Tree traversal ordering 

heuristics. Again R-Trees are used only for generating the BDTs . The results are 

listed in Table 7-13. For the numbers that stride multiple columns, they are the same 

by nature for the types of graphs denoted by the columns.  

From the results we can see that graph partition based heuristic orderings and 

their optimized orderings remain among the best orderings under ATData
Mul cost 

model. The Kruskal-MST heuristic on the EAFG, the MAX and the MAX-LD 

heuristics on the original graph/EAFG are slightly better than the rest heuristic 

orderings. Although they are still slightly worse than the 1000 random ordering 

minimum, they are better than the 1000 random ordering average. Considering the 

computation cost of these heuristics and the cost of examining 1000 random 

orderings, they are preferred to random orderings. Although the optimized orderings 

using R-tree as BDTs improve the R-Tree traversal ordering heuristics by 5% on 
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average, they are still only comparable to the Kruskal-MST heuristic on the EAFG, 

the MAX and the MAX-LD heuristics on original graph/EAFG. Thus we do not 

recommend performing optimization using R-Tree as the BDT construction to 

optimize broadcast ordering for network path query processing.  

Table 7-13. Summary of Results of Texas Transportation Network Data 
Set Under ATData

Mul Cost Model 
Graph Types Orderings  

ORGN EAFG Hyper 
1000-Rand-min 47.39 
1000-Rand-max 53.39 
1000-Rand-Avg 51.00 
n-BFS-min 47.78 N/A
n-BFS-max 53.49 N/A
n-BFS-avg 50.41 N/A
n-DFS-min 48.67 N/A
n-DFS-max 53.07 N/A
n-DFS-avg 51.35 N/A
n-Prim-MST-Min 47.89 48.67 N/A
n-Prim-MST-Max 53.09 52.18 N/A
n-Prim-MST-Avg 49.56 50.47 N/A
Kruskal-MST 49.61 47.01 N/A
MAX 47.79 N/A
MAX-LD 47.64 N/A
NODE-WEIGHT 52.28 52.00 52.43 
EDGE-WEIGHT 50.91 53.15 51.95 
Traversal of partition tree 44.38 47.79 45.01 
Optimization based on partition tree 41.76 41.31 41.20 
Hilbert SFC 50.71 
Traversal of R-Tree –min 48.50 
Traversal of R-Tree –max 51.09 
Traversal of R-Tree –avg 50.09 
Optimization R-Tree –min 46.04 
Optimization R-Tree –max 48.79 
Optimization R-Tree –avg 47.56 

 



Chapter 8 

Conclusions and Future Work 

Geographical information has been widely used in our everyday lives. Most 

geographical information are public and many of them are frequently requested by a large 

number of users. We believe broadcasting geographical information over air is an 

attractive solution for emerging location dependent services, in terms of scalability, 

mobility management at the server side and power consumption  at the client side. In 

addition, geographical information broadcast may play unique roles in many applications, 

such as in unusual event monitoring, disaster rescue and military operations.  

In this study, our focuses were to develop cost models and optimization 

algorithms for placing geographical data items onto a broadcast channel based on their 

spatial semantics to reduce the response time and energy consumption for processing 

spatial queries over the broadcast channel. Our work can be summarized as follows:  

1. We divided data access time into four components, namely IPW, IBW, DPW and 

DBW. This is an extension to the classic division of access time into Probe Wait 

and Bcast Wait. The extension allows studying access time to index and access 

time to data separately. While the classic division mostly targets at the 

multiplexing broadcast scheme, the extension works for both the multiplexing 

broadcast scheme (MUL) and the broadcast scheme that uses separate channels 

for index and data (SEP).  

2. We developed the cost models for computing the data access time for processing 

spatial queries over broadcast geographical data, including DBW, ATData
Mul  and 
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ATData
Sep. Although DBW and ATData

Mul are relatively straightforward, deriving 

ATData
Sep has gone through much elaborated work. The derived simple quadratic 

form of ATData
Sep for processing a single complex query is not only easy to use 

but also theoretically meaningful, which is the base for us to propose using DBW 

to approximate ATData
Sep. 

3. Given a query window size, we proposed a method for computing all possible 

query result sets and their weights for point data. This result also lays the 

foundation for representing a spatial range query result as a hypergraph edge in a 

hypergraph and for relating data placement problem with graph MinLA problem.  

4. We discussed a family of low-cost heuristics for data placement in a broadcast 

channel and put them into a cohesive classification structure. These heuristics can 

be used to generate the orderings of broadcast sequences directly or used as the 

initial orderings for further optimization.  Specifically we discussed the following 

heuristics in detail: R-tree traversal ordering, Hilbert SFC ordering, graph 

partition tree traversal ordering, ordering based on degree/weight, and spanning 

tree ordering.  

5. We provided three optimization methods for reducing data access time under the 

cost models, DBW, ATData
Mul  and ATData

Sep, respectively. They can be applied to 

spatial range queries, network path queries or any other types of complex queries.  

We first proposed to use an efficient graph MinLA  algorithm to optimize DBW. 

Since our cost model of ATData
Sep shows the monotonic relationship between 

DBW and  ATData
Sep,  we proposed to use DBW to approximate ATData

Sep and use 

the same algorithm to optimize ATData
Sep. Our most significant contribution 
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related to optimization is the novel method to optimize ATData
Mul. Although 

following the same divide-and-conquer strategy and using BDT as a global 

constraint for ordering as in (Bar-Yehuda, 2001), we compute 

)}(),...(),(max{ 21 knnn πππ directly by efficiently computing the total sizes of the 

sub-trees to the left of the path from the ending node of {n1,n2,…nk}to the root of 

a BDT. This is quite different from the strategy adopted in (Bar-Yehuda, 2001) 

which transforms computing |π(u)-π(v)| for an edge to recursive summations of 

the sub-tree sizes of a BDT. However, the strategy adopted in (Bar-Yehuda, 2001) 

can not be applied to  computing )}(),...(),(max{ 21 knnn πππ  in optimizing 

ATData
Mul due to its non-linear nature. 

6. We performed experiments on five synthetic point data sets, 51 zip code point 

data sets of 51 states of US, and the Texas road network graph data set. The 

results show that the three proposed  optimization methods are very effective. For 

the 51 zip data sets, on average, the data access time based on the optimized 

ordering is only about 1/3 of that of the 1000 time random orderings average 

under the DBW cost model. The performances are also improved about 30% 

under the ATData
Mul and the ATData

Sep cost models, both with acceptable 

computation overheads.  The results from the geometric and graph-based 

heuristics and their optimizations under the DBW and the ATData
Mul cost models 

applied to the Texas road network data set show that geometric heuristic should 

be applied to optimizations of spatial range queries for point data sets and graph 

heuristic should be applied to optimizations of network path queries for graph 

data sets.   
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For future work, we first plan to take access time to the index channel into 

consideration. Although index placement has been extensively studied, very few 

techniques are specifically designed for multi-dimensional data that can be applied to 

geographical information. Although not considered in this study, it is possible that there 

exists a better scheme to combine index and data other than the MUL and SEP. 

Specifically, for MUL scheme, it is desirable to consider access frequencies of query 

result sets and their access paths to an index tree simultaneously. The challenge might be 

to handle hypergraphs for unordered data accesses and index trees for a combination of 

ordered data access (parent/ child) and unordered data access (siblings) at the same time.  

Second, although the complexities in our proposed optimization methods, either 

adopted from the graph MinLA problem or developed by ourselves, are the smallest to 

the best of our knowledge, they are still super-quadratic. They might not be applicable 

when the number of data items in a data set (or the number of nodes in the data set’s 

hypergraph representation) is large. A solution might be to follow the multi-scale 

paradigm, i.e., the size of a hypergraph is first reduced by collapsing nodes and edges to 

generate a higher level graph/hypergraph. The nodes of the higher level 

graph/hypergraph, the number of which is much smaller than the number of nodes in the 

original hypergraph, are then ordered. The nodes of the lower level graph/hypergraph are 

then ordered recursively until all the nodes of the lowest level graph/hypergraph are 

sequenced, i.e., all the nodes in the original hypergraph are ordered. (Koren, 2002) 

proposed a multi-scale algorithm for graph MinLA, however, we are not clear of its 
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applicability and extensibility in data placement of a broadcast channel, especially under 

the ATData
Mul cost model. 

Finally, we plan to investigate on more efficient methods to compute access 

frequencies (i.e., weights of hyperedges) of point data sets, explore more ordering 

heuristics, and perform more experiments using both synthetic and real data sets with 

different sizes and distributions to examine the practical effectiveness and scalabilities of 

the optimization methods. 
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Table A-1. Hypergraph Parameters Under the Five Query Window Sizes for Zip Code Data Sets 

153

     0.05*0.05 0.1*0.1 0.5*0.5 1.0*1.0 5.0*5.0Data  
Set Node  Edge ANPE     Node Edge ANPE Node Edge ANPE Node Edge ANPE Node Edge ANPE
AK 109 36 3.03 109 36 3.03 115 79 5.71 130 137 8.18 250 860 10.03 
AL             364 135 2.70 393 142 3.01 643 797 5.85 780 3230 6.27    
AR                200 82 2.44 200 82 2.44 517 468 3.03 694 3196 4.26 46 679 20.29
AZ                310 110 2.89 314 115 2.93 387 952 6.32 414 1813 12.16 305 2304 11.68
CA               1543 597 2.64 1707 745 2.98 1905 4628 6.63 1797 8451 8.45 393 4883 15.74
CO               316 115 2.75 331 120 2.83 422 816 6.33 527 1555 9.13 348 5903 12.55
CT             211 74 2.85 250 90 3.43 410 1511 6.03 380 3736 9.43    
DC          53 15 3.53 47 16 3.88       
DE               43 14 3.07 58 15 3.87 95 156 7.26 97 411 9.28 50 1026 20.71
FL                821 319 2.57 840 350 2.69 1242 4221 7.02 1125 6632 9.17 46 179 17.93
GA                417 162 2.57 434 167 2.87 697 926 5.48 841 3492 5.54 45 431 22.26
HI               60 22 2.73 57 21 2.71 89 130 3.49 96 328 5.60 68 1124 12.77
IA             238 99 2.40 235 101 2.35 802 885 3.41 1052 6656 3.96    
ID                113 43 2.63 129 44 2.93 187 98 3.23 281 427 4.44 292 6507 15.14
IL             532 207 2.62 591 240 2.81 1378 3780 5.53 1420 11143 5.86    
IN                432 164 2.63 455 171 2.78 904 1404 4.64 983 6343 6.21
KS                135 55 2.45 138 59 2.85 393 1065 6.37 767 4421 9.15 185 4682 15.09
KY                504 193 2.61 550 205 2.83 1080 2699 4.19 1114 9616 8.04 46 362 22.06
LA             412 154 2.68 419 156 2.79 594 818 5.91 696 2882 6.91    
MA                354 137 2.78 377 183 2.92 643 3077 5.71 568 6206 9.68
MD                289 111 2.62 317 126 2.90 578 2053 5.35 507 4596 8.16 36 424 14.09
ME                185 76 2.43 188 78 2.45 452 743 3.26 519 3995 5.69 137 1958 18.86
MI                428 177 2.42 470 189 2.70 942 2615 5.55 1075 6808 6.76 190 3418 17.74
MN                190 81 2.35 255 103 3.43 687 1373 4.99 1007 4596 6.31 229 4104 16.43
MO                319 125 2.67 342 149 3.05 894 1880 5.14 1132 7310 6.04 50 604 25.74
MS                271 98 2.77 273 102 2.90 381 297 5.72 531 1229 5.74 95 744 21.62
MT                145 52 2.79 146 53 2.81 158 66 2.86 259 206 2.92 409 7826 11.62
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                NC 521 204 2.55 546 208 2.75 901 964 4.25 1016 4848 5.81 90 1277 20.27
ND                61 22 2.77 62 23 2.78 129 70 2.71 390 635 2.73 328 7365 15.14
NE                104 43 2.42 104 43 2.42 342 894 6.85 565 3220 7.17 217 4951 12.66
NH                97 40 2.43 99 41 2.41 277 537 2.90 292 2859 5.62 44 531 23.48
NJ             300 120 2.58 433 228 2.66 657 5110 7.10 436 5131 11.08    
NM                231 85 2.72 244 88 2.81 304 257 6.53 379 746 10.02 402 4925 11.85
NV                145 48 3.02 145 48 3.02 169 232 7.69 178 299 10.74 127 461 11.24
NY            901 362 2.62 1140 703 3.16 1845 6149 5.51 1712 17056 7.65    
OH               748 304 2.49 797 337 2.64 1393 3915 6.32 1418 11404 8.07
OK                336 138 2.43 336 150 2.81 502 840 6.96 757 2442 7.05 170 2868 19.04
OR                155 63 2.46 159 70 3.01 291 415 4.94 400 1235 4.92 303 5843 13.31
PA             1120 424 2.66 1312 561 3.06 2075 6862 5.62 1847 17447 8.69    
RI            38 17 2.24 41 20 2.40 90 533 6.89 90 1339 11.23
SC                273 105 2.60 290 107 2.73 437 385 4.66 537 2108 6.49 48 454 23.71
SD                70 29 2.41 72 30 2.40 148 124 4.75 371 811 4.61 337 8495 14.70
TN                317 122 2.64 340 134 3.01 662 909 5.21 744 3956 5.91 48 631 23.56
TX                1227 488 2.51 1347 534 2.90 1837 4624 6.35 2167 9231 8.46 497 5921 15.15
UT               197 61 3.23 199 64 3.59 269 326 5.00 279 826 6.06 196 1718 12.97
VA                543 182 2.98 570 202 3.17 1082 2091 5.76 1106 7017 6.52 50 597 22.79
VT             109 44 2.48 113 47 2.49 307 464 2.76 314 2835 5.13    
WA                304 116 2.62 327 128 3.14 503 1163 5.71 633 2614 8.50 370 5706 16.81
WI                317 131 2.42 343 144 2.72 694 1056 4.82 893 4335 5.38 111 1554 19.97
WV                331 122 2.71 396 131 3.11 900 1850 3.52 928 8843 7.05 50 1017 23.58
WY              91 34 2.68 91 34 2.68 105 44 2.70 138 81 2.64 198 2098 7.77
Avg.                344 132 2.65 375 156 2.88 650 1547 5.21 728 4415 7.02 184 2822 17.04

 

 



 

Table A-2. Definitions of the Meanings of Columns Used in Table A3-A18 

Rand-Min-1000 Minimum access time of 1000 random orderings 
Rand-Max1000 Maximum access time of 1000 random orderings 
Rand-Avg-1000 Average access time of 1000 random orderings 
Hilbert Access time of Hilbert space filling curve ordering 
R-Tree Access time of R-Tree traversal ordering 
Optimized Access time of Optimized ordering using R-Tree as BDT 
Hilbert- 
Improv. 

Improvement of the Hilbert ordering compared with 1000 random orderings 
average (Hilbert/Rand-Avg-1000) 

R-Tree   
Improv. 

Improvement of the R-Tree traversal ordering compared with 1000 random 
orderings average (R-Tree/ Rand-Avg-1000) 

Opt 
Improv. 

Improvement of the optimized ordering compared with the R-Tree traversal 
ordering (Optimized/ R-Tree) 

R-Tree+Opt  
Improv. 

Improvement of the optimized ordering compared with 1000 random orderings 
average (Optimized/ Rand-Avg-1000) 
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Table A-3. Results of DBW Under Query Window (0.05*0.05)  for Zip Code Data Sets 

 
Rand-Min  

-1000 
Rand-Max  

 -1000 
Rand-Avg 

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK 48.44 66.31 57.60 60.30 22.45 10.69 31.02% -4.48% 1.57 1.10 4.39
AL  156.07 191.75 173.30 179.21 80.29 48.01 20.59% -3.30% 1.16 0.67 2.61
AR  68.43 98.00 85.98 91.87 43.35 27.29 34.39% -6.41% 0.98 0.59 2.15
AZ  136.01 171.21 154.91 160.27 69.16 55.30 22.72% -3.34% 1.24 0.25 1.80
CA  675.02 747.45 711.71 698.85 207.46 172.72 10.18% 1.84% 2.43 0.20 3.12
CO   134.72 171.88 152.47 154.27 62.56 48.78 24.37% -1.17% 1.44 0.28 2.13
CT  93.36 119.01 105.80 109.70 53.16 30.06 24.24% -3.56% 0.99 0.77 2.52
DC  22.89 35.72 30.83 29.26 14.17 8.28 41.62% 5.37% 1.18 0.71 2.72
DE   14.37 28.07 23.13 23.37 10.28 6.88 59.23% -1.03% 1.25 0.49 2.36
FL  345.06 399.22 371.33 363.69 65.49 49.13 14.59% 2.10% 4.67 0.33 6.56
GA  165.13 212.13 189.93 191.67 57.60 43.05 24.75% -0.91% 2.30 0.34 3.41
HI  20.13 34.65 28.99 26.63 10.37 6.02 50.09% 8.86% 1.80 0.72 3.82
IA  86.92 115.64 102.09 105.24 39.33 25.75 28.13% -2.99% 1.60 0.53 2.96
ID  40.96 61.12 52.42 49.52 31.70 18.64 38.46% 5.86% 0.65 0.70 1.81
IL  214.58 266.72 239.59 225.61 111.13 69.85 21.76% 6.20% 1.16 0.59 2.43
IN  180.38 218.71 201.14 205.79 83.28 48.83 19.06% -2.26% 1.42 0.71 3.12
KS  46.99 70.45 59.49 56.95 20.01 10.15 39.44% 4.46% 1.97 0.97 4.86
KY  206.29 251.09 232.40 213.77 123.82 95.84 19.28% 8.71% 0.88 0.29 1.42
LA  174.96 213.47 194.36 183.50 63.50 44.28 19.81% 5.92% 2.06 0.43 3.39
MA   146.98 184.21 166.77 170.48 95.54 50.21 22.32% -2.18% 0.75 0.90 2.32
MD   119.15 151.92 134.39 139.57 50.29 35.91 24.38% -3.71% 1.67 0.40 2.74
ME  65.71 94.83 79.85 68.80 36.78 28.40 36.47% 16.06% 1.17 0.30 1.81
MI  163.73 202.90 182.43 185.69 67.80 43.94 21.47% -1.76% 1.69 0.54 3.15
MN  64.50 91.96 78.44 76.79 20.90 14.61 35.01% 2.15% 2.75 0.43 4.37
MO   129.95 165.64 148.09 149.46 50.66 34.00 24.10% -0.92% 1.92 0.49 3.36
MS   116.39 148.20 131.71 132.37 61.04 40.63 24.15% -0.50% 1.16 0.50 2.24
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   MT 58.97 83.77 71.50 71.43 23.38 15.68 34.69% 0.10% 2.06 0.49 3.56
NC   22.03 36.41 30.10 26.75 11.74 8.00 47.77% 12.52% 1.56 0.47 2.76
ND   34.38 53.30 44.72 44.63 16.63 11.22 42.31% 0.20% 1.69 0.48 2.99
NE  210.12 257.74 236.14 236.58 77.66 66.74 20.17% -0.19% 2.04 0.16 2.54
NH  32.04 49.29 41.72 41.40 16.10 10.79 41.35% 0.77% 1.59 0.49 2.87
NJ  122.26 152.99 137.68 132.14 95.14 56.12 22.32% 4.19% 0.45 0.70 1.45
NM  90.64 124.60 110.15 112.66 60.53 45.96 30.83% -2.23% 0.82 0.32 1.40
NV  64.00 87.24 76.12 82.97 18.57 14.94 30.53% -8.26% 3.10 0.24 4.10
NY  378.71 441.87 410.29 425.63 132.48 102.11 15.39% -3.60% 2.10 0.30 3.02
OH   297.02 355.51 326.96 318.06 150.89 102.84 17.89% 2.80% 1.17 0.47 2.18
OK  128.07 160.95 144.63 145.29 54.98 39.03 22.73% -0.45% 1.63 0.41 2.71
OR  56.65 82.25 67.87 69.97 24.34 17.21 37.72% -3.00% 1.79 0.41 2.94
PA  484.33 558.74 523.50 508.99 191.64 146.91 14.21% 2.85% 1.73 0.30 2.56
RI  9.39 20.05 15.04 13.45 9.08 5.21 70.88% 11.82% 0.66 0.74 1.89
SC  106.51 139.33 124.99 123.15 43.94 31.20 26.26% 1.49% 1.84 0.41 3.01
SD  20.40 37.51 30.48 30.36 8.86 4.80 56.14% 0.40% 2.44 0.85 5.35
TN  129.62 163.97 147.90 153.96 65.62 41.05 23.23% -3.94% 1.25 0.60 2.60
TX  506.39 571.12 542.37 541.71 154.03 95.03 11.93% 0.12% 2.52 0.62 4.71
UT  93.67 121.30 108.52 112.47 51.08 32.64 25.46% -3.51% 1.12 0.57 2.32
VA  260.89 306.64 281.44 279.41 76.12 48.09 16.26% 0.73% 2.70 0.58 4.85
VT  38.66 56.88 48.16 47.03 27.61 16.22 37.83% 2.40% 0.74 0.70 1.97
WA   122.09 155.98 139.37 138.95 82.96 60.65 24.32% 0.30% 0.68 0.37 1.30
WI  118.66 156.58 135.55 147.86 71.96 49.61 27.97% -8.33% 0.88 0.45 1.73
WV   142.30 172.81 158.74 166.93 81.68 45.92 19.22% -4.91% 0.94 0.78 2.46
WY  30.79 51.47 43.23 30.08 12.92 10.21 47.84% 43.72% 2.35 0.27 3.23
Avg.   141.09 174.72 158.56 157.93 61.02 42.07 29.35% 1.47% 1.60 0.52 2.90
 

 



Table A-4. Results of DBW Under Query Window (0.1*0.1) for Zip Code Data Sets 

 
Rand-Min  

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  48.44 66.31 57.60 60.30 22.45 10.69 31.02% -4.48% 1.57 1.10 4.39
AL   176.36 212.80 195.41 196.44 78.54 55.56 18.65% -0.52% 1.49 0.41 2.52
AR   68.43 98.00 85.98 91.87 43.35 27.29 34.39% -6.41% 0.98 0.59 2.15
AZ   139.25 172.97 157.57 166.21 66.23 55.27 21.40% -5.20% 1.38 0.20 1.85
CA   768.71 849.32 812.33 802.73 265.47 213.28 9.92% 1.20% 2.06 0.24 2.81
CO   143.31 178.44 162.95 159.80 85.56 61.72 21.56% 1.97% 0.90 0.39 1.64
CT   111.26 146.52 131.00 131.42 65.57 46.47 26.92% -0.32% 1.00 0.41 1.82
DC   18.00 31.31 25.58 26.86 13.65 7.69 52.03% -4.77% 0.87 0.78 2.33
DE   26.40 42.09 36.41 23.60 16.64 12.41 43.09% 54.28% 1.19 0.34 1.93
FL   352.46 407.21 381.02 384.99 152.47 98.30 14.37% -1.03% 1.50 0.55 2.88
GA   176.17 216.20 196.02 193.24 104.97 81.64 20.42% 1.44% 0.87 0.29 1.40
HI   20.25 33.89 27.65 26.19 6.44 4.02 49.33% 5.57% 3.29 0.60 5.88
IA   83.29 114.43 97.98 97.68 38.36 27.62 31.78% 0.31% 1.55 0.39 2.55
ID   54.91 75.81 66.57 65.90 39.24 32.56 31.40% 1.02% 0.70 0.21 1.04
IL   249.97 297.33 276.88 271.30 105.13 74.82 17.10% 2.06% 1.63 0.41 2.70
IN   197.05 241.46 218.73 211.66 73.98 47.62 20.30% 3.34% 1.96 0.55 3.59
KS   50.67 70.73 61.12 60.19 16.91 12.07 32.82% 1.55% 2.61 0.40 4.06
KY   241.52 290.67 266.20 272.64 113.43 77.16 18.46% -2.36% 1.35 0.47 2.45
LA   175.15 216.07 195.37 190.62 83.39 58.76 20.94% 2.49% 1.34 0.42 2.32
MA   144.01 190.63 169.31 161.22 65.55 46.84 27.54% 5.02% 1.58 0.40 2.61
MD   136.48 170.30 153.20 157.53 91.68 51.49 22.08% -2.75% 0.67 0.78 1.98
ME   68.36 91.99 80.83 75.66 32.76 19.50 29.23% 6.83% 1.47 0.68 3.15
MI   188.98 239.10 214.21 212.72 65.88 49.60 23.40% 0.70% 2.25 0.33 3.32
MN   114.40 145.62 131.08 134.17 74.77 49.01 23.82% -2.30% 0.75 0.53 1.67
MO   140.98 174.97 159.19 162.54 92.03 73.73 21.35% -2.06% 0.73 0.25 1.16
MS   117.00 146.89 133.01 136.33 64.84 45.21 22.47% -2.44% 1.05 0.43 1.94
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   MT 57.84 83.13 71.93 72.42 24.34 15.99 35.16% -0.68% 1.96 0.52 3.50
NC   234.51 279.56 257.11 258.74 132.56 106.89 17.52% -0.63% 0.94 0.24 1.41
ND   22.67 37.30 30.52 27.64 12.37 9.25 47.94% 10.42% 1.47 0.34 2.30
NE   34.38 53.30 44.72 44.63 16.63 11.22 42.31% 0.20% 1.69 0.48 2.99
NH   32.38 50.22 42.28 42.62 15.89 7.72 42.19% -0.80% 1.66 1.06 4.48
NJ   183.43 233.06 205.18 200.67 93.17 79.05 24.19% 2.25% 1.20 0.18 1.60
NM   105.87 135.35 120.31 112.71 55.66 38.40 24.50% 6.74% 1.16 0.45 2.13
NV   64.00 87.24 76.12 82.97 18.57 14.94 30.53% -8.26% 3.10 0.24 4.10
NY   486.21 554.90 522.27 523.88 208.76 163.38 13.15% -0.31% 1.50 0.28 2.20
OH   330.36 381.00 356.34 338.11 166.80 134.44 14.21% 5.39% 1.14 0.24 1.65
OK   128.20 161.86 145.86 148.64 60.12 43.25 23.08% -1.87% 1.43 0.39 2.37
OR   57.43 80.80 70.85 73.47 24.60 17.14 32.99% -3.57% 1.88 0.44 3.13
PA   607.16 674.88 642.25 659.88 250.54 206.76 10.54% -2.67% 1.56 0.21 2.11
RI   8.98 21.42 16.22 18.91 6.63 2.97 76.70% -14.23% 1.45 1.23 4.46
SC   125.39 155.20 139.36 136.36 56.91 39.76 21.39% 2.20% 1.45 0.43 2.51
SD   22.58 37.61 31.37 28.47 11.83 9.71 47.91% 10.19% 1.65 0.22 2.23
TN   136.12 175.95 156.67 154.60 84.40 48.97 25.42% 1.34% 0.86 0.72 2.20
TX   602.04 665.53 634.37 643.69 380.21 299.13 10.01% -1.45% 0.67 0.27 1.12
UT   94.19 121.28 110.08 105.59 59.50 39.65 24.61% 4.25% 0.85 0.50 1.78
VA   273.26 320.31 299.00 304.33 146.69 98.26 15.74% -1.75% 1.04 0.49 2.04
VT   37.64 58.58 49.96 50.36 14.61 8.38 41.91% -0.79% 2.42 0.74 4.96
WA   139.45 171.44 156.83 158.42 66.57 49.51 20.40% -1.00% 1.36 0.34 2.17
WI   131.62 169.93 153.91 144.16 70.55 59.42 24.89% 6.76% 1.18 0.19 1.59
WV   191.71 232.39 211.47 206.97 99.47 82.02 19.24% 2.17% 1.13 0.21 1.58
WY   30.79 51.47 43.23 30.08 12.92 10.21 47.84% 43.72% 2.35 0.27 3.23
Avg.   159.80 194.41 178.07 177.30 77.84 57.58 27.85% 2.17% 1.45 0.45 2.55

 



 
Table A-5. Results of DBW Under Query Window (0.5*0.5) for Zip Code Data Sets 

 
Rand-Min  

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
  

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

52.97 73.50 64.19 65.14 19.61 15.41 31.98% -1.46% 2.27 0.27 3.17
284.42 353.00 317.62 324.39 129.06 82.91 21.59% -2.09% 1.46 0.56 2.83
195.68 261.63 227.09 234.41 88.93 65.46 29.04% -3.12% 1.55 0.36 2.47
197.52 235.69 216.94 215.53 69.30 57.59 17.59% 0.65% 2.13 0.20 2.77
971.52 1067.38 1027.06 1039.00 480.89 378.83 9.33% -1.15% 1.14 0.27 1.71
196.79 243.05 222.38 224.22 101.71 73.96 20.80% -0.82% 1.19 0.38 2.01
231.08 263.76 246.93 241.27 131.16 101.90 13.23%

 

Opt 

AK  
AL   
AR   
AZ   
CA   160 CO   
CT   2.35% 0.88 0.29 1.42
DC   
DE   37.70 65.03 54.66 26.33 20.65 14.45 50.00% 107.60% 1.65 0.43 2.78
FL   672.49 755.95 716.29 734.65 317.04 234.60 11.65% -2.50% 1.26 0.35 2.05
GA   297.57 355.36 329.09 311.87 140.98 97.69 17.56% 5.52% 1.33 0.44 2.37
HI   28.90 49.25 40.12 41.85 10.67 5.86 50.72% -4.13% 2.76 0.82 5.85
IA   295.20 370.71 331.37 308.70 183.64 130.39 22.79% 7.34% 0.80 0.41 1.54
ID   81.25 107.74 95.77 88.83 46.43 24.68 27.66% 7.81% 1.06 0.88 2.88
IL   631.23 724.62 676.05 677.34 240.02 195.20 13.81% -0.19% 1.82 0.23 2.46
IN   408.95 474.94 443.88 437.35 252.16 203.20 14.87% 1.49% 0.76 0.24 1.18
KS   180.92 225.77 204.57 199.54 147.61 83.88 21.92% 2.52% 0.39 0.76 1.44
KY   498.60 571.41 538.49 533.11 238.94 164.52 13.52% 1.01% 1.25 0.45 2.27
LA   270.78 327.96 301.55 301.83 128.94 110.73 18.96% -0.09% 1.34 0.16 1.72
MA   336.29 376.36 357.63 339.57 227.55 205.97 11.20% 5.32% 0.57 0.10 0.74
MD   292.39 338.90 314.80 312.82 153.95 119.29 14.77% 0.63% 1.04 0.29 1.64
ME   188.25 228.60 211.02 214.75 100.16 72.68 19.12% -1.74% 1.11 0.38 1.90
MI   444.99 514.84 482.82 480.69 262.97 208.85 14.47% 0.44% 0.84 0.26 1.31
MN   319.61 389.41 353.91 327.91 133.38 78.83 19.72% 7.93% 1.65 0.69 3.49
MO   371.18 439.97 407.77 408.35 148.83 87.72 16.87% -0.14% 1.74 0.70 3.65
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   MS 173.54 212.42 193.51 191.66 92.19 78.75 20.09% 0.97% 1.10 0.17 1.46
MT   64.73 89.39 77.88 76.18 24.93 18.07 31.66% 2.23% 2.12 0.38 3.31
NC   403.14 469.04 436.44 438.82 266.71 185.27 15.10% -0.54% 0.64 0.44 1.36
ND   47.75 77.49 63.28 61.48 30.51 16.02 47.00% 2.93% 1.07 0.90 2.95
NE   142.16 185.26 167.72 150.05 94.37 56.72 25.70% 11.78% 0.78 0.66 1.96
NH   107.00 138.83 123.00 122.92 65.51 51.96 25.88% 0.07% 0.88 0.26 1.37
NJ   371.87 416.24 396.26 390.99 167.37 127.26 11.20% 1.35% 1.37 0.32 2.11
NM   136.45 172.30 154.44 152.84 49.96 40.36 23.21% 1.05% 2.09 0.24 2.83
NV   77.88 104.63 93.26 99.10 39.77 29.70 28.68% -5.89% 1.35 0.34 2.14
NY   863.52 948.15 907.38 888.53 368.01 187.46 9.33% 2.12% 1.47 0.96 3.84
OH   636.94 709.68 670.91 669.16 330.05 271.67 10.84% 0.26% 1.03 0.21 1.47
OK   189.44 249.98 225.48 225.53 85.04 69.44 26.85% -0.02% 1.65 0.22 2.25
OR   102.82 150.24 127.70 125.26 51.82 33.56 37.13% 1.95% 1.46 0.54 2.81
PA   1107.13 1195.13 1147.08 1141.64 591.92 540.70 7.67% 0.48% 0.94 0.09 1.12
RI   45.05 58.67 53.14 52.23 32.58 21.56 25.63% 1.74% 0.63 0.51 1.46
SC   197.19 253.57 220.78 223.55 90.45 78.80 25.54% -1.24% 1.44 0.15 1.80
SD   55.11 82.42 69.33 69.57 37.23 27.11 39.39% -0.34% 0.86 0.37 1.56
TN   278.63 346.52 314.72 300.89 100.88 60.00 21.57% 4.60% 2.12 0.68 4.25
TX   912.25 1004.69 960.25 972.93 451.01 349.98 9.63% -1.30% 1.13 0.29 1.74
UT   119.70 158.42 141.54 142.29 69.32 42.63 27.36% -0.53% 1.04 0.63 2.32
VA   524.28 590.48 558.12 560.57 267.00 193.24 11.86% -0.44% 1.09 0.38 1.89
VT   121.52 155.62 138.26 151.08 48.89 40.01 24.66% -8.49% 1.83 0.22 2.46
WA   233.43 281.78 258.78 250.87 139.48 91.27 18.68% 3.15% 0.86 0.53 1.84
WI   271.32 339.78 306.78 292.17 126.09 87.53 22.32% 5.00% 1.43 0.44 2.50
WV   439.08 504.91 473.52 457.67 276.35 196.85 13.90% 3.46% 0.71 0.40 1.41
WY   37.09 58.95 49.85 39.94 17.03 8.39 43.85% 24.81% 1.93 1.03 4.94
Avg.   302.91 355.39 330.23 326.75 153.78 114.38 22.16% 3.65% 1.30 0.43 2.30

 

 



Table A-6. Results of DBW Under Query Window (1.0*1.0) for Zip Code Data Sets 
 

 
Rand-Min  

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  63.63 84.47 75.40 78.23 42.92 26.52 27.64% -3.62% 0.76 0.62 1.84
AL   396.83 441.29 421.83 426.41 257.10 227.65 10.54% -1.07% 0.64 0.13 0.85
AR   327.28 372.47 351.65 353.46 166.60 114.75 12.85% -0.51% 1.11 0.45 2.06
AZ   209.57 263.10 240.25 236.61 150.41 106.25 22.28% 1.54% 0.60 0.42 1.26
CA   1008.75 1087.33 1051.61 1065.39 382.50 338.12 7.47% -1.29% 1.75 0.13 2.11
CO   256.99 308.43 285.55 303.43 144.76 126.28 18.01% -5.89% 0.97 0.15 1.26
CT   263.48 302.81 284.27 269.78 210.72 167.92 13.84% 5.37% 0.35 0.25 0.69
DC   
DE   55.66 70.62 63.27 61.24 41.96 33.06 23.64% 3.31% 0.51 0.27 0.91
FL   710.43 770.15 742.47 732.95 439.94 367.45 8.04% 1.30% 0.69 0.20 1.02
GA   419.76 467.68 444.91 441.73 179.47 142.08 10.77% 0.72% 1.48 0.26 2.13
HI   42.64 60.77 52.17 51.97 19.37 13.42 34.75% 0.38% 1.69 0.44 2.89
IA   515.91 556.94 536.85 539.69 272.41 236.14 7.64% -0.53% 0.97 0.15 1.27
ID   130.44 164.13 148.36 151.10 88.34 67.08 22.71% -1.81% 0.68 0.32 1.21
IL   787.16 835.90 811.66 813.48 387.80 323.27 6.00% -0.22% 1.09 0.20 1.51
IN   579.82 628.31 601.23 603.96 265.93 227.46 8.07% -0.45% 1.26 0.17 1.64
KS   317.22 362.26 338.35 364.37 134.51 113.00 13.31% -7.14% 1.52 0.19 1.99
KY   671.97 724.03 699.24 697.09 345.99 286.59 7.45% 0.31% 1.02 0.21 1.44
LA   365.09 417.63 394.10 403.24 238.81 190.63 13.33% -2.27% 0.65 0.25 1.07
MA   399.30 436.38 417.93 413.15 125.18 109.16 8.87% 1.16% 2.34 0.15 2.83
MD   326.53 367.54 346.51 352.38 181.13 138.11 11.84% -1.67% 0.91 0.31 1.51
ME   301.64 331.29 316.87 324.69 178.17 137.45 9.36% -2.41% 0.78 0.30 1.31
MI   587.02 636.29 613.49 618.92 282.59 237.01 8.03% -0.88% 1.17 0.19 1.59
MN   464.92 517.43 493.14 488.90 290.79 243.38 10.65% 0.87% 0.70 0.19 1.03
MO   544.52 596.26 570.92 564.76 343.23 273.06 9.06% 1.09% 0.66 0.26 1.09
MS   251.96 295.00 274.65 286.93 150.94 123.79 15.67% -4.28% 0.82 0.22 1.22
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   MT 107.92 144.34 127.14 130.99 68.96 47.50 28.65% -2.94% 0.84 0.45 1.68
NC   554.46 602.34 577.78 568.39 323.77 228.35 8.29% 1.65% 0.78 0.42 1.53
ND   149.25 193.50 169.72 167.84 108.56 91.17 26.07% 1.12% 0.56 0.19 0.86
NE   247.89 280.78 266.19 247.07 153.03 109.78 12.36% 7.74% 0.74 0.39 1.42
NH   176.86 198.71 187.90 184.02 141.76 107.98 11.63% 2.11% 0.33 0.31 0.74
NJ   286.97 333.72 314.94 308.55 210.28 134.80 14.84% 2.07% 0.50 0.56 1.34
NM   169.52 214.06 196.07 193.54 101.91 58.31 22.72% 1.31% 0.92 0.75 2.36
NV   82.97 115.27 99.96 99.95 44.48 33.71 32.31% 0.01% 1.25 0.32 1.97
NY   1086.11 1153.78 1117.40 1113.09 674.70 521.48 6.06% 0.39% 0.66 0.29 1.14
OH   851.90 915.17 883.49 871.84 553.29 446.11 7.16% 1.34% 0.60 0.24 0.98
OK   322.91 371.44 348.74 352.27 230.49 179.04 13.92% -1.00% 0.51 0.29 0.95
OR   168.19 209.94 188.82 187.03 104.05 75.71 22.11% 0.96% 0.81 0.37 1.49
PA   1240.22 1308.13 1276.63 1280.00 738.48 528.05 5.32% -0.26% 0.73 0.40 1.42
RI   56.55 72.33 65.15 65.15 33.69 24.06 24.22% 0.00% 0.93 0.40 1.71
SC   295.30 329.29 314.07 309.31 176.42 146.61 10.82% 1.54% 0.78 0.20 1.14
SD   142.20 181.31 162.82 168.15 107.59 77.34 24.02% -3.17% 0.51 0.39 1.11
TN   385.59 426.19 404.01 405.35 191.22 148.73 10.05% -0.33% 1.11 0.29 1.72
TX   1105.12 1214.36 1167.14 1159.44 559.64 446.74 9.36% 0.66% 1.09 0.25 1.61
UT   139.71 173.35 158.74 163.86 90.89 61.71 21.19% -3.12% 0.75 0.47 1.57
VA   638.38 694.00 669.65 661.07 394.32 331.84 8.31% 1.30% 0.70 0.19 1.02
VT   188.68 209.96 199.17 197.31 124.53 102.35 10.68% 0.94% 0.60 0.22 0.95
WA   317.11 366.79 343.70 331.80 162.59 126.32 14.45% 3.59% 1.11 0.29 1.72
WI   432.96 488.04 459.89 468.46 296.62 217.36 11.98% -1.83% 0.55 0.36 1.12
WV   579.32 634.41 609.72 611.47 302.79 260.28 9.04% -0.29% 1.01 0.16 1.34
WY   52.46 77.74 65.29 57.91 31.78 23.16 38.72% 12.74% 1.05 0.37 1.82
Avg.   395.54 440.15 419.02 418.95 224.95 177.96 14.92% 0.17% 0.89 0.30 1.45

 

 



Table A-7. Results of DBW Under Query Window (5.0*5.0) for Zip Code Data Sets 
 

 
Rand-Min  

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  136.87 163.87 150.52 155.15 78.41 41.28 17.94% -2.98% 0.92 0.90 2.65
AL   
AR   30.18 43.60 37.82 34.72 26.77 23.68 35.48% 8.93% 0.41 0.13 0.60
AZ   214.58 246.46 233.51 233.47 163.09 82.70 13.65% 0.02% 0.43 0.97 1.82
CA   258.62 315.86 288.84 300.13 170.54 103.66 19.82% -3.76% 0.69 0.65 1.79
CO   256.64 290.28 277.07 274.60 206.36 143.29 12.14% 0.90% 0.34 0.44 0.93
CT   
DC   
DE   38.33 47.69 44.12 38.64 37.33 28.54 21.21% 14.18% 0.18 0.31 0.55
FL   18.83 43.82 34.45 39.22 22.23 11.37 72.54% -12.16% 0.55 0.96 2.03
GA   29.41 43.11 36.86 39.01 27.90 23.85 37.17% -5.51% 0.32 0.17 0.55
HI   51.35 60.26 57.56 56.71 38.79 35.43 15.48% 1.50% 0.48 0.09 0.62
IA   
ID   219.08 244.77 232.40 236.60 139.71 90.31 11.05% -1.78% 0.66 0.55 1.57
IL   
IN   
KS   130.24 160.38 146.21 141.51 112.64 64.00 20.61% 3.32% 0.30 0.76 1.28
KY   30.19 43.71 36.98 40.18 33.95 28.30 36.56% -7.96% 0.09 0.20 0.31
LA   
MA   
MD   29.41 33.91 32.60 31.83 27.95 26.83 13.80% 2.42% 0.17 0.04 0.22
ME   100.07 123.15 113.99 117.29 91.33 51.78 20.25% -2.81% 0.25 0.76 1.20
MI   140.74 167.19 155.80 160.82 102.51 88.39 16.98% -3.12% 0.52 0.16 0.76
MN   151.63 191.43 173.57 186.78 91.08 69.28 22.93% -7.07% 0.91 0.31 1.51
MO   25.93 48.33 36.72 37.48 28.39 18.54 61.00% -2.03% 0.29 0.53 0.98
MS   61.86 92.15 78.85 81.39 68.50 39.86 38.41% -3.12% 0.15 0.72 0.98
MT   297.69 324.36 312.13 315.42 227.66 174.70 8.54% -1.04% 0.37 0.30 0.79
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   NC 57.42 84.72 73.75 74.11 53.87 31.67 37.02% -0.49% 0.37 0.70 1.33
ND   237.45 275.60 258.28 252.75 235.03 118.66 14.77% 2.19% 0.10 0.98 1.18
NE   153.29 182.99 170.71 167.40 95.85 79.52 17.40% 1.98% 0.78 0.21 1.15
NH   27.24 42.83 36.11 32.93 32.98 29.01 43.17% 9.66% 0.09 0.14 0.24
NJ   
NM   300.01 339.36 320.13 313.03 218.53 180.36 12.29% 2.27% 0.46 0.21 0.78
NV   52.41 80.27 67.94 63.06 32.86 27.71 41.01% 7.74% 1.07 0.19 1.45
NY   
OH   
OK   102.40 142.52 125.41 108.74 53.68 34.59 31.99% 15.33% 1.34 0.55 2.63
OR   212.85 248.37 232.56 218.94 141.27 114.49 15.27% 6.22% 0.65 0.23 1.03
PA   
RI   
SC   29.88 46.80 38.99 35.33 35.56 21.73 43.40% 10.36% 0.10 0.64 0.79
SD   251.76 283.55 269.83 275.59 236.90 164.00 11.78% -2.09% 0.14 0.44 0.65
TN   30.66 45.39 39.20 37.52 32.15 25.12 37.58% 4.48% 0.22 0.28 0.56
TX   334.06 398.70 370.27 351.09 187.91 152.77 17.46% 5.46% 0.97 0.23 1.42
UT   135.67 160.98 149.26 147.56 91.10 75.91 16.96% 1.15% 0.64 0.20 0.97
VA   28.72 47.27 39.24 36.98 26.69 19.34 47.27% 6.11% 0.47 0.38 1.03
VT   
WA   270.59 319.65 296.77 290.20 165.79 130.36 16.53% 2.26% 0.79 0.27 1.28
WI   75.97 99.29 88.61 90.44 71.28 40.68 26.32% -2.02% 0.24 0.75 1.18
WV   37.68 48.28 44.63 47.22 46.91 30.15 23.75% -5.48% -0.05 0.56 0.48
WY   134.71 151.57 144.14 147.12 74.32 66.64 11.70% -2.03% 0.94 0.12 1.16
Avg.   126.88 153.58 141.78 140.84 95.35 67.26 25.98% 1.11% 0.47 0.43 1.09

 

 



Table A-8. Results of ATData
Sep Under Query Window (0.05*0.05) for Zip Code Data Sets 

 
Rand-Min  

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  88.16 97.79 93.15 94.76 70.97 64.25 10.34% -1.70% 31.25% 10.46% 44.98%
AL   291.75 311.51 301.31 305.43 240.04 221.69 6.56% -1.35% 25.52% 8.28% 35.92%
AR   151.46 169.26 161.37 165.57 131.23 122.90 11.03% -2.54% 22.97% 6.78% 31.30%
AZ   250.91 268.79 260.29 262.93 209.83 200.03 6.87% -1.00% 24.05% 4.90% 30.13%
CA   1243.99 1287.36 1266.48 1261.68 930.88 907.63 3.42% 0.38% 36.05% 2.56% 39.54%
CO   254.59 273.78 263.31 264.30 207.45 197.64 7.29% -0.37% 26.93% 4.96% 33.23%
CT   170.77 184.76 177.47 178.84 145.41 130.98 7.88% -0.77% 22.05% 11.02% 35.49%
DC   43.36 49.57 47.06 45.99 37.62 34.09 13.20% 2.33% 25.09% 10.35% 38.05%
DE   32.63 39.57 37.20 37.96 29.79 27.82 18.66% -2.00% 24.87% 7.08% 33.72%
FL   655.79 688.61 670.95 667.73 466.75 453.85 4.89% 0.48% 43.75% 2.84% 47.84%
GA   328.27 353.65 340.93 341.27 255.94 244.03 7.44% -0.10% 33.21% 4.88% 39.71%
HI   45.63 53.53 50.26 48.93 38.65 35.79 15.72% 2.72% 30.04% 7.99% 40.43%
IA   182.31 199.29 190.86 192.93 149.59 141.07 8.90% -1.07% 27.59% 6.04% 35.29%
ID   86.83 98.16 93.28 91.16 79.11 72.12 12.15% 2.33% 17.91% 9.69% 29.34%
IL   419.12 448.18 433.20 425.77 347.07 322.36 6.71% 1.75% 24.82% 7.67% 34.38%
IN   344.80 364.99 355.63 358.68 276.96 257.94 5.68% -0.85% 28.40% 7.37% 37.87%
KS   102.63 114.70 109.12 108.37 83.34 76.68 11.06% 0.69% 30.93% 8.69% 42.31%
KY   398.49 423.73 413.51 402.69 340.67 324.68 6.10% 2.69% 21.38% 4.92% 27.36%
LA   330.82 352.06 340.47 335.87 253.84 240.85 6.24% 1.37% 34.13% 5.39% 41.36%
MA   280.78 301.86 291.78 293.75 242.71 217.29 7.22% -0.67% 20.22% 11.70% 34.28%
MD   229.78 247.51 237.62 240.57 182.28 173.20 7.46% -1.23% 30.36% 5.24% 37.19%
ME   140.61 157.37 149.20 142.29 120.18 116.10 11.23% 4.86% 24.15% 3.51% 28.51%
MI   333.15 355.71 343.52 346.30 266.59 250.91 6.57% -0.80% 28.86% 6.25% 36.91%
MN   142.43 159.20 151.34 150.16 111.58 107.78 11.08% 0.79% 35.63% 3.53% 40.42%
MO   251.43 271.16 261.60 261.66 196.36 187.41 7.54% -0.02% 33.22% 4.78% 39.59%
MS   218.45 234.36 225.96 227.29 181.17 168.52 7.04% -0.59% 24.72% 7.51% 34.08%
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   MT 113.89 127.76 121.38 121.69 91.01 85.78 11.43% -0.25% 33.37% 6.10% 41.50%
NC   408.24 437.18 425.01 424.74 321.31 314.58 6.81% 0.06% 32.27% 2.14% 35.10%
ND   46.54 54.49 51.34 48.54 40.50 37.46 15.49% 5.77% 26.77% 8.12% 37.05%
NE   77.68 88.79 83.86 83.87 65.95 62.11 13.25% -0.01% 27.16% 6.18% 35.02%
NH   73.39 82.77 78.49 78.90 61.86 58.05 11.95% -0.52% 26.88% 6.56% 35.21%
NJ   235.85 255.22 245.85 244.65 216.60 194.67 7.88% 0.49% 13.50% 11.27% 26.29%
NM   180.26 199.37 191.97 192.85 160.86 151.07 9.95% -0.46% 19.34% 6.48% 27.07%
NV   116.80 129.92 123.53 127.25 89.08 86.16 10.62% -2.92% 38.67% 3.39% 43.37%
NY   718.48 754.03 736.26 744.07 554.56 531.70 4.83% -1.05% 32.76% 4.30% 38.47%
OH   587.50 619.68 603.94 599.20 484.69 455.30 5.33% 0.79% 24.60% 6.46% 32.65%
OK   261.24 279.61 270.26 269.39 210.30 199.22 6.80% 0.32% 28.51% 5.56% 35.66%
OR   119.10 132.54 125.38 127.14 97.68 92.72 10.72% -1.38% 28.36% 5.35% 35.22%
PA   36.65%900.00 940.30 923.15 917.44 704.95 675.58 4.37% 0.62% 30.95% 4.35%
RI   26.60 33.02 30.26 29.83 26.64 23.85 21.22% 1.44% 13.59% 11.70% 26.88%
SC   212.86 232.43 224.17 222.95 170.12 161.16 8.73% 0.55% 31.77% 5.56% 39.10%
SD   50.63 60.52 56.46 56.02 42.83 39.78 17.52% 0.79% 31.82% 7.67% 41.93%
TN   251.26 270.56 260.94 265.29 207.87 191.17 7.40% -1.64% 25.53% 8.74% 36.50%
TX   975.40 1010.49 995.63 996.54 735.60 695.44 3.52% -0.09% 35.35% 5.77% 43.17%
UT   163.31 176.63 170.28 173.20 134.81 124.22 7.82% -1.69% 26.31% 8.53% 37.08%
VA   448.62 475.25 460.86 461.13 330.60 311.66 5.78% -0.06% 39.40% 6.08% 47.87%
VT   82.34 93.87 88.53 88.72 74.31 68.35 13.02% -0.21% 19.14% 8.72% 29.52%
WA   240.13 258.50 249.95 251.43 210.82 198.83 7.35% -0.59% 18.56% 6.03% 25.71%
WI   243.33 266.61 254.60 263.69 210.51 196.79 9.14% -3.45% 20.94% 6.97% 29.38%
WV   265.14 283.54 274.81 279.28 223.27 204.40 6.70% -1.60% 23.08% 9.23% 34.45%
WY   68.53 80.04 75.63 68.31 56.43 54.59 15.22% 10.72% 34.02% 3.37% 38.54%
Avg.   272.28 291.17 282.15 282.14 218.02 206.12 9.24% 0.21% 27.66% 6.65% 36.05%

 



Table A-9. Results of ATData
Sep  Under Query Window (0.1*0.1) for Zip Code Data Sets 

 
Rand-Min 

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  88.17 97.79 93.15 94.76 70.97 64.25 10.33% -1.70% 31.25% 10.46% 44.98%
AL   319.13 337.83 328.71 329.13 254.15 238.77 5.69% -0.13% 29.34% 6.44% 37.67%
AR   151.46 169.26 161.37 165.57 131.23 122.89 11.03% -2.54% 22.97% 6.79% 31.31%
AZ   255.09 272.28 263.93 269.50 209.27 201.68 6.51% -2.07% 26.12% 3.76% 30.87%
CA   1389.19 1433.63 1411.41 1403.64 1052.91 1019.20 3.15% 0.55% 34.05% 3.31% 38.48%
CO   266.61 285.14 277.06 275.57 227.94 211.71 6.69% 0.54% 21.55% 7.67% 30.87%
CT   203.20 222.40 212.40 212.42 171.71 159.21 9.04% -0.01% 23.70% 7.85% 33.41%
DC   37.14 43.79 40.98 41.58 34.02 30.41 16.23% -1.44% 20.46% 11.87% 34.76%
DE   47.11 54.37 51.96 45.47 41.11 38.32 13.97% 14.27% 26.39% 7.28% 35.59%
FL   671.20 703.97 686.96 689.29 532.30 501.57 4.77% -0.34% 29.06% 6.13% 36.96%
GA   342.22 364.35 353.94 352.30 290.79 277.54 6.25% 0.47% 21.72% 4.77% 27.53%
HI   43.73 51.04 47.79 46.99 34.70 32.66 15.30% 1.70% 37.72% 6.25% 46.33%
IA   178.10 197.06 187.11 187.49 147.21 140.23 10.13% -0.20% 27.10% 4.98% 33.43%
ID   102.76 113.98 109.10 109.12 94.37 89.52 10.28% -0.02% 15.61% 5.42% 21.87%
IL   471.37 498.20 485.80 483.93 373.42 355.33 5.52% 0.39% 30.09% 5.09% 36.72%
IN   366.07 390.27 377.20 371.84 281.48 266.32 6.42% 1.44% 34.01% 5.69% 41.63%
KS   105.76 117.02 111.56 112.15 83.77 79.89 10.09% -0.53% 33.17% 4.86% 39.64%
KY   443.97 468.99 456.22 458.09 355.38 337.15 5.48% -0.41% 28.38% 5.41% 35.32%
LA   334.63 356.79 345.06 342.42 271.84 256.97 6.42% 0.77% 26.93% 5.79% 34.28%
MA   293.59 318.42 307.10 301.18 240.97 227.16 8.09% 1.97% 27.44% 6.08% 35.19%
MD   253.67 272.86 263.05 265.93 220.90 200.15 7.30% -1.08% 19.08% 10.37% 31.43%
ME   143.76 158.72 151.43 148.33 119.99 111.08 9.88% 2.09% 26.20% 8.02% 36.33%
MI   370.20 395.99 382.99 382.63 287.78 277.32 6.73% 0.09% 33.08% 3.77% 38.10%
MN   204.79 222.76 213.97 215.46 180.67 165.39 8.40% -0.69% 18.43% 9.24% 29.37%
MO   270.18 290.91 280.47 281.87 237.64 223.74 7.39% -0.50% 18.02% 6.21% 25.36%
MS   218.53 235.86 227.80 230.44 183.22 171.49 7.61% -1.15% 24.33% 6.84% 32.84%
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   MT 114.83 128.38 122.21 122.71 92.24 86.58 11.09% -0.41% 32.49% 6.54% 41.15%
NC   436.82 461.55 449.50 451.00 369.50 354.09 5.50% -0.33% 21.65% 4.35% 26.95%
ND   46.95 55.54 52.14 49.91 41.13 39.21 16.47% 4.47% 26.77% 4.90% 32.98%
NE   77.68 88.79 83.86 83.87 65.95 62.11 13.25% -0.01% 27.16% 6.18% 35.02%
NH   73.54 84.99 79.97 79.87 62.91 56.83 14.32% 0.13% 27.12% 10.70% 40.72%
NJ   344.49 371.13 357.27 354.62 286.96 278.94 7.46% 0.75% 24.50% 2.88% 28.08%
NM   196.64 212.35 204.44 200.70 162.83 153.08 7.68% 1.86% 25.55% 6.37% 33.55%
NV   116.80 129.92 123.53 127.25 89.08 86.16 10.62% -2.92% 38.67% 3.39% 43.37%
NY   914.76 950.19 932.51 932.00 724.40 693.61 3.80% 0.05% 28.73% 4.44% 34.44%
OH   631.81 661.29 646.87 635.04 525.68 504.20 4.56% 1.86% 23.05% 4.26% 28.30%
OK   259.68 279.99 270.86 272.12 213.43 203.02 7.50% -0.46% 26.91% 5.13% 33.42%
OR   121.76 134.96 129.04 130.21 99.48 94.71 10.23% -0.90% 29.71% 5.04% 36.25%
PA   1070.17 1111.18 1093.13 1102.59 858.83 828.54 3.75% -0.86% 27.28% 3.66% 31.93%
RI   28.20 35.68 32.64 34.02 26.48 23.70 22.92% -4.06% 23.26% 11.73% 37.72%
SC   232.55 248.22 240.72 240.63 186.91 177.62 6.51% 0.04% 28.79% 5.23% 35.53%
SD   53.14 62.10 58.08 55.59 45.89 44.36 15.43% 4.48% 26.56% 3.45% 30.93%
TN   267.82 290.81 278.82 278.60 227.01 208.18 8.25% 0.08% 22.82% 9.05% 33.93%
TX   1092.34 1126.74 1109.37 1115.71 943.46 904.75 3.10% -0.57% 17.59% 4.28% 22.62%
UT   165.11 178.53 172.07 170.53 141.08 131.18 7.80% 0.90% 21.97% 7.55% 31.17%
VA   471.72 496.01 485.16 487.79 390.60 362.35 5.01% -0.54% 24.21% 7.80% 33.89%
VT   85.44 97.10 91.75 91.59 69.62 64.49 12.71% 0.17% 31.79% 7.95% 42.27%
WA 262.23 280.45 271.84 272.96 215.36 203.87 6.70% -0.41% 26.23% 5.64% 33.34%
WI   266.55 288.45 278.47 272.60 224.59 216.93 7.86% 2.15% 23.99% 3.53% 28.37%
WV   326.00 349.99 337.34 336.37 268.88 261.01 7.11% 0.29% 25.46% 3.02% 29.24%
WY   68.53 80.04 75.63 68.31 56.43 54.59 15.22% 10.72% 34.02% 3.37% 38.54%
Avg.   299.94 319.18 309.92 309.48 245.46 233.22 8.89% 0.55% 26.52% 6.09% 34.20%

 

 

 



Table A-10. Results of ATData
Sep Under Query Window (0.5*0.5) for Zip Code Data Sets 

 

 
Rand-Min 

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  93.37 104.42 99.73 100.08 74.49 71.02 11.08% -0.35% 33.88% 4.89% 40.43%
AL   517.05 553.65 536.38 535.54 418.52 389.47 6.82% 0.16% 28.16% 7.46% 37.72%
AR   400.86 438.38 418.02 422.30 327.60 310.42 8.98% -1.01% 27.60% 5.53% 34.66%
AZ   326.74 344.84 336.37 334.62 248.40 239.06 5.38% 0.52% 35.41% 3.91% 40.71%
CA   1606.49 1653.97 1634.25 1638.71 1300.69 1242.15 2.91% -0.27% 25.64% 4.71% 31.57%
CO   348.04 371.20 360.76 363.36 285.04 269.93 6.42% -0.72% 26.56% 5.60% 33.65%
CT   355.88 370.30 362.78 360.97 295.50 284.46 3.97% 0.50% 22.77% 3.88% 27.53%
DC   
DE   74.75 88.25 83.23 69.26 64.74 60.31 16.22% 20.17% 28.56% 7.35% 38.00%
FL   1066.42 1105.90 1089.09 1099.03 849.83 799.15 3.63% -0.90% 28.15% 6.34% 36.28%
GA   558.96 589.92 575.00 565.42 450.85 427.60 5.38% 1.69% 27.54% 5.44% 34.47%
HI   67.19 77.85 73.08 74.71 54.05 50.23 14.59% -2.18% 35.21% 7.61% 45.49%
IA   616.03 657.18 636.51 622.39 535.86 503.48 6.46% 2.27% 18.78% 6.43% 26.42%
ID   149.83 164.22 157.57 153.26 126.80 114.63 9.13% 2.81% 24.27% 10.62% 37.46%
IL   1128.41 1177.86 1149.44 1152.30 869.44 841.59 4.30% -0.25% 32.20% 3.31% 36.58%
IN   737.86 772.31 754.51 754.53 639.99 608.01 4.57% 0.00% 17.89% 5.26% 24.09%
KS   321.47 342.50 332.00 328.98 293.58 263.14 6.33% 0.92% 13.09% 11.57% 26.17%
KY   887.41 924.99 907.41 907.07 718.07 665.80 4.14% 0.04% 26.37% 7.85% 36.29%
LA   481.96 513.33 500.01 499.13 397.09 384.48 6.27% 0.18% 25.92% 3.28% 30.05%
MA   548.54 568.58 558.80 550.14 482.26 470.78 3.59% 1.57% 15.87% 2.44% 18.70%
MD   485.99 508.69 498.27 497.17 406.52 385.15 4.56% 0.22% 22.57% 5.55% 29.37%
ME   360.22 382.29 372.33 374.45 300.65 284.07 5.93% -0.57% 23.84% 5.84% 31.07%
MI   778.56 813.47 795.65 796.52 660.74 634.65 4.39% -0.11% 20.42% 4.11% 25.37%
MN   559.67 592.90 576.64 560.31 444.38 410.25 5.76% 2.91% 29.76% 8.32% 40.56%
MO   710.48 747.65 729.79 728.03 559.58 519.05 5.09% 0.24% 30.42% 7.81% 40.60%
MS   310.09 331.54 321.15 320.79 259.60 251.37 6.68% 0.11% 23.71% 3.27% 27.76%
MT   126.25 138.56 132.23 130.58 100.06 94.87 9.31% 1.26% 32.15% 5.47% 39.38%
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   NC 731.23 765.21 748.30 746.89 641.54 590.09 4.54% 0.19% 16.64% 8.72% 26.81%
ND   99.53 115.04 107.88 106.88 87.37 77.84 14.38% 0.94% 23.47% 12.24% 38.59%
NE   270.91 295.43 283.94 275.63 238.67 216.76 8.64% 3.01% 18.97% 10.11% 30.99%
NH   217.09 234.65 225.61 225.85 189.20 179.88 7.78% -0.11% 19.24% 5.18% 25.42%
NJ   573.58 594.06 584.96 582.46 458.40 432.29 3.50% 0.43% 27.61% 6.04% 35.32%
NM   247.13 266.43 256.54 256.79 190.33 184.95 7.52% -0.10% 34.79% 2.91% 38.71%
NV   137.39 152.61 145.61 148.67 115.78 107.63 10.45% -2.06% 25.76% 7.57% 35.29%
NY   1520.35 1567.40 1544.88 1532.60 1194.12 1087.50 3.05% 0.80% 29.37% 9.80% 42.06%
OH   1136.94 1175.87 1156.24 1153.24 943.18 906.49 3.37% 0.26% 22.59% 4.05% 27.55%
OK   387.46 420.94 408.49 409.76 315.93 305.12 8.20% -0.31% 29.30% 3.54% 33.88%
OR   26.51%221.74 247.72 235.16 232.80 185.88 174.40 11.05% 1.01% 6.58% 34.84%
PA   1776.30 1820.37 1797.00 1790.46 1478.43 1443.91 2.45% 0.37% 21.55% 2.39% 24.45%
RI   76.09 82.57 79.56 78.44 67.72 62.52 8.14% 1.43% 17.48% 8.32% 27.26%
SC   354.79 385.11 368.23 368.63 287.40 279.07 8.23% -0.11% 28.12% 2.98% 31.95%
SD   113.07 128.40 120.74 122.44 100.57 94.69 12.70% -1.39% 20.06% 6.21% 27.51%
TN   527.99 565.44 547.18 539.50 411.96 385.21 6.84% 1.42% 32.82% 6.94% 42.05%
TX   1540.12 1587.13 1560.94 1568.73 1240.95 1184.95 3.01% -0.50% 25.79% 4.73% 31.73%
UT   219.95 238.70 230.06 228.56 184.19 168.86 8.15% 0.66% 24.90% 9.08% 36.24%
VA   25.01%898.02 932.09 916.16 919.71 732.85 694.35 3.72% -0.39% 5.54% 31.94%
VT   240.67 259.17 250.33 257.30 194.10 185.86 7.39% -2.71% 28.97% 4.43% 34.69%
WA   414.33 438.79 426.83 421.55 353.06 324.69 5.73% 1.25% 20.89% 8.74% 31.46%
WI   542.75 579.18 562.36 553.31 438.17 414.88 6.48% 1.64% 28.34% 5.61% 35.55%
WV   18.60%747.62 780.15 765.49 762.36 645.45 605.85 4.25% 0.41% 6.54% 26.35%
WY   81.25 92.13 87.18 81.12 66.28 60.34 12.48% 7.47% 31.53% 9.84% 44.48%
Avg.   533.90 561.19 548.01 546.07 438.52 414.86 6.88% 0.86% 25.50% 6.24% 33.31%

 

 



Table A-11. Results of ATData
Sep Under Query Window (1.0*1.0) for Zip Code Data Sets 

 
Rand-Min 

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  108.15 118.23 113.69 114.80 95.53 87.11 8.87% -0.97% 19.01% 9.67% 30.51%
AL   656.86 680.74 669.97 670.26 576.85 559.56 3.56% -0.04% 16.14% 3.09% 19.73%
AR   573.21 597.76 586.20 588.43 473.07 442.65 4.19% -0.38% 23.91% 6.87% 32.43%
AZ   348.13 372.47 362.47 361.48 310.50 286.85 6.72% 0.27% 16.74% 8.24% 26.36%
CA   34.39%1561.55 1600.59 1580.70 1585.74 1207.31 1176.20 2.47% -0.32% 30.93% 2.64%
CO   438.19 463.92 452.86 460.87 368.69 356.96 5.68% -1.74% 22.83% 3.29% 26.87%
CT   354.90 367.45 361.59 355.97 333.10 312.21 3.47% 1.58% 8.55% 6.69% 15.82%
DC   
DE   84.73 91.41 88.33 87.67 76.17 72.89 7.56% 0.75% 15.96% 4.50% 21.18%
FL   1012.31 1037.54 1025.01 1023.29 870.92 832.74 2.46% 0.17% 17.69% 4.58% 23.09%
GA   705.72 728.92 718.72 719.25 554.19 529.72 3.23% -0.07% 29.69% 4.62% 35.68%
HI   30.30%77.95 86.83 83.12 83.22 63.79 59.70 10.68% -0.12% 6.85% 39.23%
IA   881.04 901.33 892.00 891.83 725.17 702.87 2.27% 0.02% 23.01% 3.17% 26.91%
ID   229.51 246.59 238.36 239.24 203.83 192.07 7.17% -0.37% 16.94% 6.12% 24.10%
IL   1232.35 1256.27 1245.85 1247.45 1000.16 966.20 1.92% -0.13% 24.57% 3.51% 28.94%
IN   26.87%869.48 891.16 879.04 880.85 692.86 666.88 2.47% -0.21% 3.90% 31.81%
KS   607.35 633.77 620.86 632.49 491.31 479.26 4.26% -1.84% 26.37% 2.51% 29.55%
KY   992.71 1014.65 1003.95 1004.81 807.39 776.76 2.19% -0.09% 24.35% 3.94% 29.25%
LA   594.46 617.65 607.22 610.42 521.20 495.93 3.82% -0.52% 16.50% 5.10% 22.44%
MA   531.17 543.81 537.44 535.55 389.34 376.12 2.35% 0.35% 38.04% 3.51% 42.89%
MD   461.21 477.39 469.71 470.77 385.70 356.48 3.44% -0.23% 21.78% 8.20% 31.76%
ME   456.31 470.75 463.84 466.68 384.49 362.70 3.11% -0.61% 20.64% 6.01% 27.89%
MI   926.17 950.68 939.29 942.02 751.53 720.37 2.61% -0.29% 24.98% 4.33% 30.39%
MN   821.65 851.34 836.46 833.58 711.78 680.25 3.55% 0.35% 17.52% 4.64% 22.96%
MO   942.03 969.30 954.68 951.39 815.71 774.97 2.86% 0.35% 17.04% 5.26% 23.19%
MS   438.99 459.77 450.53 455.48 374.31 358.93 4.61% -1.09% 20.36% 4.28% 25.52%
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   MT 206.26 224.40 216.28 219.33 181.77 168.18 8.39% -1.39% 18.99% 8.08% 28.60%
NC   877.90 899.02 889.03 885.73 734.33 683.07 2.38% 0.37% 21.07% 7.50% 30.15%
ND   302.70 326.78 313.88 313.24 276.17 263.35 7.67% 0.20% 13.65% 4.87% 19.19%
NE   456.31 474.85 466.31 454.62 390.28 368.18 3.98% 2.57% 19.48% 6.00% 26.65%
NH   261.58 270.51 266.31 263.63 242.05 224.59 3.35% 1.02% 10.02% 7.77% 18.58%
NJ   402.66 416.55 410.57 407.75 356.71 319.40 3.38% 0.69% 15.10% 11.68% 28.54%
NM   308.16 332.51 321.84 321.66 263.23 238.50 7.57% 0.06% 22.27% 10.37% 34.94%
NV   145.49 161.96 153.74 154.53 122.53 116.82 10.71% -0.51% 25.47% 4.89% 31.60%
NY   1550.34 1579.69 1564.49 1562.66 1327.22 1245.28 1.88% 0.12% 17.88% 6.58% 25.63%
OH   1264.08 1290.45 1278.52 1272.91 1104.94 1044.99 2.06% 0.44% 15.71% 5.74% 22.35%
OK   607.62 634.44 621.73 623.41 543.21 513.27 4.31% -0.27% 14.45% 5.83% 21.13%
OR   319.10 341.52 330.71 332.01 275.56 259.89 6.78% -0.39% 20.01% 6.03% 27.25%
PA   1701.69 1728.22 1715.23 1716.47 1426.09 1324.75 1.55% -0.07% 20.28% 7.65% 29.48%
RI   81.80 87.24 84.96 84.64 70.97 64.54 6.40% 0.38% 19.71% 9.96% 31.64%
SC   462.90 479.84 472.06 468.29 392.54 376.90 3.59% 0.81% 20.26% 4.15% 25.25%
SD   284.41 307.51 298.00 301.41 263.95 245.62 7.75% -1.13% 12.90% 7.46% 21.33%
TN   631.94 651.47 640.84 642.29 519.58 493.29 3.05% -0.23% 23.34% 5.33% 29.91%
TX   1830.10 1881.82 1858.34 1857.77 1485.57 1419.04 2.78% 0.03% 25.09% 4.69% 30.96%
UT   234.04 250.93 243.91 245.86 204.66 188.17 6.92% -0.79% 19.18% 8.76% 29.62%
VA   973.36 996.81 985.96 980.07 832.48 792.34 2.38% 0.60% 18.44% 5.07% 24.44%
VT   280.26 289.77 285.04 283.89 244.11 232.74 3.34% 0.41% 16.77% 4.89% 22.47%
WA   531.82 556.35 544.46 537.04 434.92 416.15 4.51% 1.38% 25.19% 4.51% 30.83%
WI   744.96 771.76 757.59 760.96 655.88 615.96 3.54% -0.44% 15.51% 6.48% 22.99%
WV   836.49 858.39 849.36 852.37 692.11 665.01 2.58% -0.35% 22.72% 4.08% 27.72%
WY   107.35 121.67 114.33 110.10 93.77 87.72 12.53% 3.84% 21.93% 6.90% 30.34%
Avg.   626.19 647.30 637.31 637.32 526.39 499.88 4.58% 0.04% 20.52% 5.82% 27.49%

 

 



Table A-12. Results of ATData
Sep Under Query Window (5*5) for Zip Code Data Sets 

 
Rand-Min  

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  213.47 227.24 220.47 222.41 178.16 159.53 6.25% -0.87% 23.75% 11.68% 38.20%
AL   
AR   42.19 45.85 44.62 43.58 39.92 39.01 8.20% 2.39% 11.77% 2.33% 14.38%
AZ   285.20 295.22 291.09 290.52 259.27 218.83 3.44% 0.20% 12.27% 18.48% 33.02%
CA   357.91 380.22 370.82 375.36 315.85 278.91 6.02% -1.21% 17.40% 13.24% 32.95%
CO   330.15 340.16 336.09 335.59 307.12 283.40 2.98% 0.15% 9.43% 8.37% 18.59%
CT   
DC   
DE   47.83 49.89 49.24 48.52 47.08 44.49 4.18% 1.48% 4.59% 5.82% 10.68%
FL   37.72 45.92 43.98 44.89 38.71 32.90 18.64% -2.03% 13.61% 17.66% 33.68%
GA   40.67 44.86 43.53 44.11 40.45 38.25 9.63% -1.31% 7.61% 5.75% 13.80%
HI   64.93 67.15 66.58 66.43 60.90 59.46 3.33% 0.23% 9.33% 2.42% 11.97%
IA   
ID   276.05 284.73 281.40 282.81 241.41 218.34 3.08% -0.50% 16.57% 10.57% 28.88%
IL   
IN   
KS   173.31 181.81 178.32 176.23 161.70 140.39 4.77% 1.19% 10.28% 15.18% 27.02%
KY   41.38 45.90 44.09 44.90 42.21 40.81 10.25% -1.80% 4.45% 3.43% 8.04%
LA   
MA   
MD   34.91 35.88 35.64 35.49 34.82 34.41 2.72% 0.42% 2.35% 1.19% 3.57%
ME   128.82 135.46 132.91 133.70 124.65 108.27 5.00% -0.59% 6.63% 15.13% 22.76%
MI   179.90 187.39 184.56 186.10 163.17 156.95 4.06% -0.83% 13.11% 3.96% 17.59%
MN   210.38 222.88 217.80 222.24 182.27 169.22 5.74% -2.00% 19.49% 7.71% 28.71%
MO   42.33 49.98 46.71 46.19 43.54 38.69 16.38% 1.13% 7.28% 12.54% 20.73%
MS   86.66 94.84 92.58 93.77 88.61 77.08 8.84% -1.27% 4.48% 14.96% 20.11%
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   MT 385.57 394.11 390.45 391.22 352.93 328.93 2.19% -0.20% 10.63% 7.30% 18.70%
NC   81.93 89.57 87.12 87.78 81.39 69.84 8.77% -0.75% 7.04% 16.54% 24.74%
ND   309.54 320.50 315.77 313.96 305.55 256.60 3.47% 0.58% 3.34% 19.08% 23.06%
NE   204.31 212.61 209.10 207.73 175.94 165.99 3.97% 0.66% 18.85% 5.99% 25.97%
NH   38.53 44.00 42.74 42.13 41.98 40.97 12.80% 1.45% 1.81% 2.47% 4.32%
NJ   
NM   381.44 392.75 387.91 385.54 352.92 334.47 2.92% 0.61% 9.91% 5.52% 15.98%
NV   101.51 115.22 109.56 107.98 89.87 86.39 12.51% 1.46% 21.91% 4.03% 26.82%
NY   
OH   
OK   151.04 165.69 160.48 155.16 122.88 113.58 9.13% 3.43% 30.60% 8.19% 41.29%
OR   284.36 294.72 290.18 287.18 250.05 234.68 3.57% 1.04% 16.05% 6.55% 23.65%
PA   
RI   
SC   41.76 47.96 46.24 45.37 44.71 38.52 13.41% 1.92% 3.42% 16.07% 20.04%
SD   321.27 330.00 326.19 326.86 312.90 285.26 2.68% -0.20% 4.25% 9.69% 14.35%
TN   42.57 47.87 46.22 46.10 42.19 39.99 11.47% 0.26% 9.55% 5.50% 15.58%
TX   459.03 479.70 470.47 466.34 380.10 360.12 4.39% 0.89% 23.78% 5.55% 30.64%
UT   180.55 189.94 185.85 184.96 163.18 153.35 5.05% 0.48% 13.89% 6.41% 21.19%
VA   43.23 49.89 47.72 46.77 42.92 38.68 13.96% 2.03% 11.18% 10.96% 23.37%
VT   
WA   349.11 363.23 357.21 355.50 303.38 280.68 3.95% 0.48% 17.74% 8.09% 27.27%
WI   102.04 109.84 106.74 107.54 100.58 86.45 7.31% -0.74% 6.12% 16.34% 23.47%
WV   48.04 49.90 49.42 49.79 49.77 45.60 3.76% -0.74% -0.70% 9.14% 8.38%
WY   184.06 189.38 186.90 187.99 155.22 150.32 2.85% -0.58% 20.41% 3.26% 24.33%
Avg.   170.37 178.98 175.59 175.37 155.09 141.87 6.80% 0.18% 11.47% 9.11% 21.56%
 

 



Table A-13. Results of ATData
Mul Under Query Window (0.05*0.05) for Zip Code Data Sets 

 

 
Rand-Min  

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  75.96 89.8 82.81 84.37 66.65 58.57 16.71% -1.85% 24.25% 13.80% 41.39%
AL   258.17 281.16 268.26 271.49 224.15 208.28 8.57% -1.19% 19.68% 7.62% 28.80%
AR   133.19 149.4 142.45 145.01 119.06 111.42 11.38% -1.77% 19.65% 6.86% 27.85%
AZ   220.93 241.01 232.01 231.5 188.45 179.93 8.65% 0.22% 23.11% 4.74% 28.94%
CA   1106.34 1148.33 1126.91 1124.82 873.89 856.38 3.73% 0.19% 28.95% 2.04% 31.59%
CO   224.81 243.34 233.8 234.58 188.81 181.38 7.93% -0.33% 23.83% 4.10% 28.90%
CT   151.18 165.74 157.87 160.6 128.45 118.12 9.22% -1.70% 22.90% 8.75% 33.65%
DC   37.42 44.91 41.39 40.21 33.72 29.91 18.10% 2.93% 22.75% 12.74% 38.38%
DE   28.7 35.84 32.55 32.7 25.16 23.77 21.94% -0.46% 29.37% 5.85% 36.94%
FL   580.92 611.68 595.65 591.99 442.61 433.68 5.16% 0.62% 34.58% 2.06% 37.35%
GA   291.63 313.74 303.06 304.89 239.27 229.85 7.30% -0.60% 26.66% 4.10% 31.85%
HI   39.42 47.48 44 42.77 35.55 32.93 18.32% 2.88% 23.77% 7.96% 33.62%
IA   160.72 177.97 169.55 170.85 138.58 131.12 10.17% -0.76% 22.35% 5.69% 29.31%
ID   75.84 87.61 82.23 80.67 72.91 65.85 14.31% 1.93% 12.78% 10.72% 24.87%
IL   369.17 399.15 385.35 377.48 321.97 308.89 7.78% 2.08% 19.69% 4.23% 24.75%
IN   304.63 327.35 316.09 317.94 256.09 239.9 7.19% -0.58% 23.43% 6.75% 31.76%
KS   90.8 102.73 96.73 94.53 78.09 72.18 12.33% 2.33% 23.87% 8.19% 34.01%
KY   353.12 379.82 367.76 357.1 312.73 299.85 7.26% 2.99% 17.60% 4.30% 22.65%
LA   291.33 314.11 302.74 299.49 237.57 227.42 7.52% 1.09% 27.43% 4.46% 33.12%
MA   247.93 269.99 259.96 260.87 226.73 200.74 8.49% -0.35% 14.66% 12.95% 29.50%
MD   201.42 222.56 211.11 214.25 169.7 161.03 10.01% -1.47% 24.40% 5.38% 31.10%
ME   123.49 140.09 131.98 127.34 110.34 104.91 12.58% 3.64% 19.61% 5.18% 25.80%
MI   294.65 315.97 304.64 304.27 246.06 235.37 7.00% 0.12% 23.81% 4.54% 29.43%
MN   125.69 141.53 133.68 133.35 102.32 100.53 11.85% 0.25% 30.65% 1.78% 32.98%
MO   222.69 244.01 233.04 234.25 178.91 173.46 9.15% -0.52% 30.26% 3.14% 34.35%
MS   192.84 209.64 200.76 199.34 164.47 153.94 8.37% 0.71% 22.06% 6.84% 30.41%
MT   100.47 114.24 107.76 106.43 82.81 79.26 12.78% 1.25% 30.13% 4.48% 35.96%
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   NC 365.36 390.14 378.09 380.94 301.29 295.39 6.55% -0.75% 25.49% 2.00% 28.00%
ND   40.28 48.97 45.05 43.56 36.38 33.85 19.29% 3.42% 23.83% 7.47% 33.09%
NE   67.41 78.86 73.87 73.08 59.1 57.06 15.50% 1.08% 24.99% 3.58% 29.46%
NH   64.09 73.36 68.88 68.9 55.78 53.31 13.46% -0.03% 23.49% 4.63% 29.21%
NJ   207.75 228.19 218.36 214.02 194.56 174.42 9.36% 2.03% 12.23% 11.55% 25.19%
NM   160.5 177.95 170.07 168.27 142.07 137.68 10.26% 1.07% 19.71% 3.19% 23.53%
NV   103.27 117.26 110.08 110.18 81.12 79.62 12.71% -0.09% 35.70% 1.88% 38.26%
NY   637.21 672.7 655.01 666.3 527.77 506.74 5.42% -1.69% 24.11% 4.15% 29.26%
OH   519.44 550.5 537.02 530.78 449.84 423.42 5.78% 1.18% 19.38% 6.24% 26.83%
OK   230.68 248.67 239.81 240.8 194.24 184.99 7.50% -0.41% 23.46% 5.00% 29.63%
OR   104.17 118.59 110.94 112.54 88.5 85.01 13.00% -1.42% 25.36% 4.11% 30.50%
PA   800.92 842.42 821.33 817.88 657.64 637.76 5.05% 0.42% 24.89% 3.12% 28.78%
RI   23.34 28.74 26.02 25.24 23.11 21.18 20.75% 3.09% 12.59% 9.11% 22.85%
SC   187.99 207.31 198.43 197.7 158 151.14 9.74% 0.37% 25.59% 4.54% 31.29%
SD   43.24 55 49.73 48.64 39.33 36.86 23.65% 2.24% 26.44% 6.70% 34.92%
TN   220.22 241.05 231.95 234.09 190.46 177.03 8.98% -0.91% 21.78% 7.59% 31.02%
TX   866.94 900.25 884.22 882.45 690.64 658.89 3.77% 0.20% 28.03% 4.82% 34.20%
UT   142.43 160.11 152.19 153.73 120.38 111.1 11.62% -1.00% 26.42% 8.35% 36.98%
VA   397.32 425.37 411.78 411.49 306.02 291.12 6.81% 0.07% 34.56% 5.12% 41.45%
VT   72.69 83.08 78.1 78.74 70.09 62.45 13.30% -0.81% 11.43% 12.23% 25.06%
WA   211.14 230.08 221.2 221.54 188.47 176.9 8.56% -0.15% 17.37% 6.54% 25.04%
WI   216.82 237.14 225.73 231.82 189.29 180.03 9.00% -2.63% 19.25% 5.14% 25.38%
WV   234.75 254.28 244.38 249.3 204.6 186.47 7.99% -1.97% 19.44% 9.72% 31.06%
WY   60.62 71.45 66.67 60.48 51.02 49.33 16.24% 10.23% 30.67% 3.43% 35.15%
Avg.   240.82 260.01 250.65 250.31 201.66 191.97 10.75% 0.49% 23.50% 6.07% 30.89%
 

 



Table A-14. Results of ATData
Mul Under Query Window (0.1*0.1) for Zip Code Data Sets 

 

 
Rand-Min  

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  75.96 89.8 82.81 84.38 66.65 58.57 16.71% -1.86% 24.25% 13.80% 41.39%
AL   282.38 303.98 293.68 296.77 227.12 217.41 7.35% -1.04% 29.31% 4.47% 35.08%
AR   133.19 149.4 142.45 145.01 119.06 111.42 11.38% -1.77% 19.65% 6.86% 27.85%
AZ   224.23 243.69 235.26 234.98 190.09 181.59 8.27% 0.12% 23.76% 4.68% 29.56%
CA   1234.6 1285.02 1259.15 1253.78 986.41 963.21 4.00% 0.43% 27.65% 2.41% 30.72%
CO   235.03 255.61 246.58 244.55 207.86 198.62 8.35% 0.83% 18.63% 4.65% 24.15%
CT   180.23 199.38 190.1 189.79 158.24 144.57 10.07% 0.16% 20.13% 9.46% 31.49%
DC   29.39 39.63 35.76 36.62 29.11 26.5 28.64% -2.35% 22.84% 9.85% 34.94%
DE   41.5 50.45 46.67 38.6 37.41 34.9 19.18% 20.91% 24.75% 7.19% 33.72%
FL   590.32 624.16 610.07 611.81 490.1 465.51 5.55% -0.28% 24.48% 5.28% 31.05%
GA   301.67 325.93 314.47 311.43 270.33 255.13 7.71% 0.98% 16.33% 5.96% 23.26%
HI   37.6 45.49 41.8 41.53 31.35 29.77 18.88% 0.65% 33.33% 5.31% 40.41%
IA   157.85 173.3 165.92 168.22 135.64 129.59 9.31% -1.37% 22.32% 4.67% 28.03%
ID  12.93% 90.34 102.91 97.19 97.74 85.47 81.91 -0.56% 13.71% 4.35% 18.65%
IL   416.63 446.73 433.47 430.29 349.25 336.89 6.94% 0.74% 24.11% 3.67% 28.67%
IN   323.94 347.69 336.3 330.34 261.65 248.02 7.06% 1.80% 28.53% 5.50% 35.59%
KS   92.81 105.02 99.04 98.66 75 73.43 12.33% 0.39% 32.05% 2.14% 34.88%
KY   394.37 419.53 407.58 404.82 333.58 319.12 6.17% 0.68% 22.18% 4.53% 27.72%
LA   292.56 318.22 306.67 309.66 242.48 234.26 8.37% -0.97% 26.47% 3.51% 30.91%
MA   254.98 284.38 272.66 266.65 207.43 192.74 10.78% 2.25% 31.45% 7.62% 41.47%
MD   222.59 245.88 234.6 235.74 196.46 179.56 9.93% -0.48% 19.41% 9.41% 30.65%
ME  10.90% 126.96 141.56 133.95 130.43 108.7 102.1 2.70% 23.23% 6.46% 31.19%
MI   329.15 357.13 341.62 337.48 268.33 257.89 8.19% 1.23% 27.31% 4.05% 32.47%
MN   181.99 202.03 192.57 193.56 166.66 154.34 10.41% -0.51% 15.55% 7.98% 24.77%
MO   236.92 261.68 250.14 251.58 221.55 210.79 9.90% -0.57% 12.90% 5.10% 18.67%
MS  9.23% 193.37 212.06 202.48 200.85 169.51 157.87 0.81% 19.45% 7.37% 28.26%
MT   101.6 115.62 108.45 107.66 83.79 79.53 12.93% 0.73% 29.43% 5.36% 36.36%
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   NC 389.03 415.87 401.07 401.33 335.53 320.58 6.69% -0.06% 19.53% 4.66% 25.11%
ND   41.4 49.87 45.78 45.95 37.71 35.95 18.50% -0.37% 21.40% 4.90% 27.34%
NE   67.41 78.86 73.87 73.08 59.1 57.06 15.50% 1.08% 24.99% 3.58% 29.46%
NH   64.37 74.69 70.13 69.85 56.64 52.85 14.72% 0.40% 23.82% 7.17% 32.70%
NJ   298.33 335.73 318.69 316.31 267.21 254.52 11.74% 0.75% 19.27% 4.99% 25.21%
NM   173.39 189.47 181.63 178.83 150.37 141.06 8.85% 1.57% 20.79% 6.60% 28.76%
NV   103.27 117.26 110.08 110.18 81.12 79.62 12.71% -0.09% 35.70% 1.88% 38.26%
NY   5.96%808.74 851.95 830.65 834.21 674.31 636.41 5.20% -0.43% 23.19% 30.52%
OH   557.45 594.1 575.94 567.88 475.08 455.35 6.36% 1.42% 21.23% 4.33% 26.48%
OK   232.16 251 240.41 243.25 197.56 189.18 7.84% -1.17% 21.69% 4.43% 27.08%
OR   107.77 121.36 114.42 113.54 91.45 87.05 11.88% 0.78% 25.12% 5.05% 31.44%
PA   955.85 1002.05 976.58 986.82 782.69 762.35 4.73% -1.04% 24.77% 2.67% 28.10%
RI   24.53 31.25 28.12 28.98 23.37 21.45 23.90% -2.97% 20.33% 8.95% 31.10%
SC   204.73 222.76 214.2 214.33 170.62 163.48 8.42% -0.06% 25.54% 4.37% 31.03%
SD   4.17%46.83 55.99 51.17 49.12 41.56 40.52 17.90% 23.12% 2.57% 26.28%
TN   236.13 259.52 248.05 245.44 209.46 198.93 9.43% 1.06% 18.42% 5.29% 24.69%
TX   968.72 1009.81 990.16 997.1 858.55 812 4.15% -0.70% 15.33% 5.73% 21.94%
UT   143.32 161.88 153.97 152.35 126.67 116.57 12.05% 1.06% 21.55% 8.66% 32.08%
VA   -0.90%417.19 447.94 433.94 437.89 348.24 333.16 7.09% 24.61% 4.53% 30.25%
VT   73.47 86.72 81.01 82.34 62.65 59.27 16.36% -1.62% 29.31% 5.70% 36.68%
WA   231.49 252.05 241.44 243.59 195.36 187.69 8.52% -0.88% 23.59% 4.09% 28.64%
WI   237.55 257.73 248.03 243.56 202.77 196.34 8.14% 1.84% 22.32% 3.27% 26.33%
WV   289.47 314.8 303.14 298.39 242 232.54 8.36% 1.59% 25.26% 4.07% 30.36%
WY   60.62 71.45 66.67 60.48 51.02 49.33 16.24% 10.23% 30.67% 3.43% 35.15%
Avg.   265.01 286.28 276.09 275.45 224.71 214.28 10.92% 0.77% 23.43% 5.46% 30.14%

 



Table A-15. Results of ATData
Mul Under Query Window (0.5*0.5) for Zip Code Data Sets 

 

 
Rand-Min 

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  81.88 95.42 89.02 89.5 66.22 63.65 15.21% -0.54% 34.43% 4.04% 39.86%
AL   452.81 500.73 480.08 477.13 404.2 366.2 9.98% 0.62% 18.77% 10.38% 31.10%
AR   350.18 390.82 371.74 368.35 311.29 291.71 10.93% 0.92% 19.42% 6.71% 27.43%
AZ   287.82 313.67 301.7 300.22 218.84 206.45 8.57% 0.49% 37.86% 6.00% 46.14%
CA   1423.01 1497.23 1465.45 1482.29 1160.3 1072.39 5.06% -1.14% 26.30% 8.20% 36.65%
CO   305.75 334.52 321.86 322.23 251.57 235.19 8.94% -0.11% 27.94% 6.96% 36.85%
CT   315.71 339.35 327.9 323.14 265.95 244.33 7.21% 1.47% 23.29% 8.85% 34.20%
DC   
DE   62.77 81.09 74.31 56.1 59.45 50.78 24.65% 32.46% 25.00% 17.07% 46.34%
FL   952.28 1002.85 978.57 1001.06 750.14 699.7 5.17% -2.25% 30.45% 7.21% 39.86%
GA   485.08 536.4 512.59 504.39 434.58 412.66 10.01% 1.63% 17.95% 5.31% 24.22%
HI   56.83 70.3 64.13 66.91 54.06 49.19 21.00% -4.15% 18.63% 9.90% 30.37%
IA   533.01 591.49 566.27 555.47 501.07 476.23 10.33% 1.94% 13.01% 5.22% 18.91%
ID   131.43 150.04 140.89 138.9 115.28 106.13 13.21% 1.43% 22.22% 8.62% 32.75%
IL   995.9 1060.41 1026.53 1027.91 816.42 790.91 6.28% -0.13% 25.74% 3.23% 29.79%
IN   645.42 695.77 673.42 681.43 588.77 556.9 7.48% -1.18% 14.38% 5.72% 20.92%
KS   277.05 315.47 298.3 292.33 264.66 252.65 12.88% 2.04% 12.71% 4.75% 18.07%
KY   783.29 832.49 808.65 800.74 655.25 623.95 6.08% 0.99% 23.41% 5.02% 29.60%
LA   427.22 466.56 447.26 455 365.91 356.51 8.80% -1.70% 22.23% 2.64% 25.46%
MA   486.46 514.55 499.77 489.52 417.88 399.39 5.62% 2.09% 19.60% 4.63% 25.13%
MD   430.39 464.13 445.99 441.56 366.58 348.28 7.57% 1.00% 21.66% 5.25% 28.06%
ME   316.44 344.65 330.84 331.97 277.81 263.55 8.53% -0.34% 19.09% 5.41% 25.53%
MI   690.58 732.73 712.11 702.75 605.4 575.02 5.92% 1.33% 17.63% 5.28% 23.84%
MN   492.8 547.31 520.03 503.07 391.95 355.11 10.48% 3.37% 32.68% 10.37% 46.44%
MO   621.55 675.07 650.23 651.65 529.21 457.64 8.23% -0.22% 22.87% 15.64% 42.08%
MS   272.3 299.95 286.94 291.28 228.03 220.19 9.64% -1.49% 25.83% 3.56% 30.31%

180

MT   110.09 125.29 117.46 117.51 93.39 86.93 12.94% -0.04% 25.77% 7.43% 35.12%
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   NC 643.71 692.51 668.34 673.93 566 532.1 7.30% -0.83% 18.08% 6.37% 25.60%
ND   84.96 104.95 95.74 96.11 83.05 71.16 20.88% -0.38% 15.28% 16.71% 34.54%
NE   237.44 268.71 254.51 240.48 202.09 178.3 12.29% 5.83% 25.94% 13.34% 42.74%
NH   184.26 211.33 199.39 195.88 170.26 162.54 13.58% 1.79% 17.11% 4.75% 22.67%
NJ   510.03 540.04 526.29 526.26 455.73 423.29 5.70% 0.01% 15.48% 7.66% 24.33%
NM   218.06 239.32 228.81 225.09 168.98 158.38 9.29% 1.65% 35.41% 6.69% 44.47%
NV   120.27 140.01 130.52 133.54 110.09 101.72 15.12% -2.26% 18.56% 8.23% 28.31%
NY   1343.2 1406.19 1375.85 1358.15 1091.47 992.74 4.58% 1.30% 26.05% 9.95% 38.59%
OH   1003.42 1061.78 1031.22 1032.22 838.64 807.27 5.66% -0.10% 22.96% 3.89% 27.74%
OK   343.88 386.99 363.1 361.44 286.46 277 11.87% 0.46% 26.75% 31.08%

42.89%
24.99%
31.27%
30.30%
19.45%

385.57 349.42 11.09% 2.15% 26.60% 10.35% 39.70%
TX   1366.03 1429.34 1398.61 1403.2 1077.36 1019.87 4.53% -0.33% 29.82% 5.64% 37.14%
UT   17.05%190.37 220.09 204.76 207.44 174.93 164.65 14.51% -1.29% 6.24% 24.36%
VA   796.38 843.2 819.84 818.99 674.93 629.86 5.71% 0.10% 21.47% 7.16% 30.16%
VT   207.17 233.58 222.4 227.97 176.4 166.97 11.88% -2.44% 26.08% 5.65% 33.20%
WA   360.71 397.26 380.22 376.63 324.61 290.48 9.61% 0.95% 17.13% 11.75% 30.89%
WI   476.02 522.65 499.75 492.13 418.3 384.43 9.33% 1.55% 19.47% 8.81% 30.00%
WV   666.12 704.31 686.4 681.21 580.91 534.77 5.56% 0.76% 18.16% 8.63% 28.35%
WY   70.3 82.78 76.84 72.9 61.53 57.62 16.24% 5.40% 24.88% 6.79% 33.36%
Avg.   470.39 507.59 489.8 488.09 398.75 373.92 10.35% 0.99% 22.55% 7.43% 31.62%

3.42%
OR   190.47 222.13 208.9 209.33 156.81 146.2 15.16% -0.21% 33.22% 7.26%

TN   461.4 515.55 488.14 477.88

PA 1583.88 1639.66 1610.7 1611.58 1319.13 1288.67 3.46% -0.05% 22.10% 2.36%
RI 65.85 74.63 71.11 71.83 62.9 54.17 12.35% -1.00% 13.05% 16.12%
SC 311.04 346.17 328.38 326.91 260.39 252.01 10.70% 0.45% 26.11% 3.33%
SD 96.23 118.13 108.14 111.16 96.78 90.53 20.25% -2.72% 11.74% 6.90%

 

 



Table A-16. Results of ATData
Mul Under Query Window (1*1) for Zip Code Data Sets 

 

 
Rand-Min 

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 

 
Hilbert 

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  94.21 109.68 102.14 102.25 91.12 81.12 15.15% -0.11% 12.09% 12.33% 25.91%
AL   582.05 616.23 600.48 601.78 543.68 523.05 5.69% -0.22% 10.45% 3.94% 14.80%
AR   508.31 534.04 522.38 520.13 433.27 396.63 4.93% 0.43% 20.57% 9.24% 31.70%
AZ   309.14 341.7 326.63 322.29 264.93 254.69 9.97% 1.35% 23.29% 4.02% 28.25%
CA   1383.79 1453.19 1423.52 1431.52 1107.75 1080.58 4.88% -0.56% 28.51% 2.51% 31.74%
CO   387.51 424.77 405.79 419.53 349.68 335.69 9.18% -3.28% 16.05% 4.17% 20.88%
CT   313.46 345.71 331.41 321.66 315.83 273.45 9.73% 3.03% 4.93% 15.50% 21.20%
DC   
DE   72.84 85.75 79.67 82.19 71.53 69.16 16.20% -3.07% 11.38% 3.43% 15.20%
FL   913.64 955.5 933.23 926.55 785.55 730.84 4.49% 0.72% 18.80% 7.49% 27.69%
GA   626.04 658.58 642.47 639.14 498.18 478.54 5.06% 0.52% 28.96% 4.10% 34.26%
HI   66.03 79.2 73.62 76.04 57.32 51.59 17.89% -3.18% 28.44% 11.11% 42.70%
IA   781.21 805.89 793.98 793.68 661.81 639.27 3.11% 0.04% 19.97% 3.53% 24.20%
ID   200.52 225.1 214.15 214.79 176.84 168.42 11.48% -0.30% 21.10% 5.00% 27.15%
IL   1093.03 1134.04 1115.26 1121.8 883.99 842.27 3.68% -0.58% 26.16% 4.95% 32.41%
IN   776.95 806.95 791.74 794.52 614.79 596.86 3.79% -0.35% 28.78% 3.00% 32.65%
KS   532.61 569.78 552.45 562.33 438.33 422.33 6.73% -1.76% 26.04% 3.79% 30.81%
KY   886.37 923.88 906.02 905.2 688.61 659.4 4.14% 0.09% 31.57% 4.43% 37.40%
LA   525.34 560.05 544.73 550.69 480.03 449.99 6.37% -1.08% 13.48% 6.68% 21.05%
MA   471.82 508.82 492.5 493.92 314.03 297.03 7.51% -0.29% 56.83% 5.72% 65.81%
MD   410.68 439.33 426.03 429.4 318.43 290.56 6.72% -0.78% 33.79% 9.59% 46.62%
ME   406.61 427.84 417.45 420.6 338.1 318.67 5.09% -0.75% 23.47% 6.10% 31.00%
MI   822.35 860.3 843.6 839.93 656.19 633.89 4.50% 0.44% 28.56% 3.52% 33.08%
MN   725.07 769.26 749.63 741.44 668.99 588.39 5.89% 1.10% 12.05% 13.70% 27.40%
MO   833.02 866.92 851.05 847.95 738.53 702.64 3.98% 0.37% 15.24% 5.11% 21.12%
MS   388.23 415.32 402.52 408.71 331.75 308.21 6.73% -1.51% 21.33% 7.64% 30.60%
MT   178.97 206.32 192.53 191.41 162.75 152.03 14.21% 0.59% 18.30% 7.05% 26.64%
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   NC 778.19 810.65 796.36 788.23 650.67 602.68 4.08% 1.03% 22.39% 7.96% 32.14%
ND   263.1 294.54 279.38 272.82 247.02 223.43 11.25% 2.40% 13.10% 10.56% 25.04%
NE   400.9 427.61 415.29 411.2 376.82 360.68 6.43% 0.99% 10.21% 4.47% 15.14%
NH   230.67 245.91 239.46 238.19 216.05 192.62 6.36% 0.53% 10.84% 12.16% 24.32%
NJ   356.88 390.06 374.95 374.11 326.34 263.93 8.85% 0.22% 14.90% 23.65% 42.06%
NM   271.09 301.06 287.06 286.33 240.71 221.64 10.44% 0.25% 19.26% 8.60% 29.52%
NV   124.66 150.25 138.49 139.86 109.88 89.47 18.48% -0.98% 26.04% 22.81% 54.79%
NY   1385.39 1436.02 1413.95 1408.46 1197.06 1090.12 3.58% 0.39% 18.12% 9.81% 29.71%
OH   1125.92 1172.72 1150.28 1139.85 1010.84 914.22 4.07% 0.92% 13.79% 10.57% 25.82%
OK   531.4 569.78 552.52 542.6 496.99 473.75 6.95% 1.83% 11.17% 4.91% 16.63%
OR   280.37 308.41 294.03 290.04 252.37 234.93 9.54% 1.38% 16.51% 7.42% 25.16%
PA   1533.13 1586.56 1561.46 1561.23 1281.2 1189.17 3.42% 0.01% 21.87% 7.74% 31.31%
RI   68.76 82.31 77.16 75.54 72.08 66.46 17.56% 2.14% 7.05% 8.46% 16.10%
SC   411.32 435.99 425.17 423.04 344.26 331.45 5.80% 0.50% 23.50% 3.86% 28.28%
SD   253.01 280.02 266.6 268.31 247.03 233.23 10.13% -0.64% 7.92% 5.92% 14.31%
TN   558.71 587.25 573.56 568.92 458.22 442.95 4.98% 0.82% 25.17% 3.45% 29.49%
TX   1618.99 1707.75 1666.87 1674.69 1292.3 1267.05 5.32% -0.47% 28.98% 1.99% 31.56%
UT   207.37 228.97 218.4 222.68 178.67 171.63 9.89% -1.92% 22.24% 4.10% 27.25%
VA   862.3 908.54 887.29 875.62 786.43 738.67 5.21% 1.33% 12.83% 6.47% 20.12%
VT   249.36 261.6 256.04 256.43 218.36 205.96 4.78% -0.15% 17.26% 6.02% 24.32%
WA   467.26 504.75 487.81 481.15 370.28 348.87 7.69% 1.38% 31.74% 6.14% 39.83%
WI   655.61 692.94 675.88 678.82 602.6 554.75 5.52% -0.43% 12.16% 8.63% 21.84%
WV   744.14 786.35 768.28 766.53 622.45 593.87 5.49% 0.23% 23.43% 4.81% 29.37%
WY   91.08 108.81 101.17 97.82 87.95 80.45 17.52% 3.42% 15.03% 9.32% 25.76%
Avg.   555.19 588.06 572.85 572.04 473.57 444.75 7.81% 0.12% 20.11% 7.35% 28.84%

 



Table A-17. Results of ATData
Mul Under Query Window (5*5) for Zip Code Data Sets 
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Rand-Min  

-1000 
Rand-Max    

 -1000 
Rand-Avg  

-1000 
Hilbert

 
R-Tree 
 

Opt 
 

Rand- 
Improv. 

Hilbert- 
Improv. 

R-tree- 
Improv. 

Opt- 
Improv. 

R-Tree+Opt- 
-Improv. 

AK  189.58 208.84 199.73 203.53 156.9 145.61 9.64% -1.87% 27.30% 7.75% 37.17%
AL   
AR   34.02 44.86 41.38 41.9 40.03 39.53 26.20% -1.24% 3.37% 1.26% 4.68%
AZ   256.1 278.54 268.83 267.56 217.37 184.6 8.35% 0.47% 23.67% 17.75% 45.63%
CA   312.43 362.14 340.32 349.45 267.19 222.19 14.61% -2.61% 27.37% 20.25% 53.17%
CO   298.62 322.79 312.12 309.79 283.38 270.35 7.74% 0.75% 10.14% 4.82% 15.45%
CT   
DC   
DE   40.64 48.63 46.55 40.08 38.84 37.65 17.16% 16.14% 19.85% 3.16% 23.64%
FL   24.27 44.63 39.69 41.85 23.48 19.63 51.30% -5.16% 69.04% 19.61% 102.19%
GA   31.78 44 40.39 40.83 33.41 27.6 30.26% -1.08% 20.89% 21.05% 46.34%
HI   58.34 63.96 62.26 61.48 54.58 52.65 9.03% 1.27% 14.07% 3.67% 18.25%
IA   
ID   248.55 270.29 261.81 261.92 208.16 185.7 8.30% -0.04% 25.77% 12.09% 40.99%
IL   
IN   
KS   148.06 173.66 165.11 161.86 137.81 118.34 15.50% 2.01% 19.81% 16.45% 39.52%
KY   33.65 45 40.89 43.48 41.85 39.73 27.76% -5.96% -2.29% 5.34% 2.92%
LA   
MA   
MD   31.58 34.61 33.82 33.81 34.06 32.84 8.96% 0.03% -0.70% 3.71% 2.98%
ME   113.75 132.26 124.99 129.7 121.08 118.27 14.81% -3.63% 3.23% 2.38% 5.68%
MI   155.94 180.4 172.34 176.41 152.3 136.09 14.19% -2.31% 13.16% 11.91% 26.64%
MN   183.62 214.95 200.93 207.69 156.52 142.49 15.59% -3.25% 28.37% 9.85% 41.01%
MO   30.52 49 43.08 49 38.47 37.12 42.90% -12.08% 11.98% 3.64% 16.06%
MS   69.24 93.66 86.29 83.32 80.3 57.92 28.30% 3.56% 7.46% 38.64% 48.98%
MT   349.48 369.38 360.09 358.96 315.02 273.75 5.53% 0.31% 14.31% 15.08% 31.54%
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   NC 60.43 87.95 81.48 83.72 83.46 74.33 33.78% -2.68% -2.37% 12.28% 9.62%
ND   274.82 306.58 292.75 290.73 277.34 232.48 10.85% 0.69% 5.56% 19.30% 25.92%
NE   180.31 202.55 193.31 189.93 147.43 117.74 11.50% 1.78% 31.12% 25.22% 64.18%
NH   29.86 43 39.53 36.08 39.98 38.68 33.24% 9.56% -1.13% 3.36% 2.20%
NJ   
NM   346.23 372.68 360.44 351.26 304.55 271.37 7.34% 2.61% 18.35% 12.23% 32.82%
NV   81.48 109.28 97.01 91.05 55.59 48.27 28.66% 6.55% 74.51% 15.16% 100.97%
NY   
OH   
OK   123.24 159.9 147.23 130.95 97.97 56.74 24.90% 12.43% 50.28% 72.66% 159.48%
OR   250.11 276.33 267.2 257.78 237.58 220.66 9.81% 3.65% 12.47% 7.67% 21.09%
PA   
RI   
SC   35.35 46.98 42.92 40.24 41.85 36.43 27.10% 6.66% 2.56% 14.88% 17.81%
SD   287.36 315.66 302.8 298.26 279.52 228.56 9.35% 1.52% 8.33% 22.30% 32.48%
TN  3  32.59 46.71 43.1 43.19 32.66 27.71 2.76% -0.21% 31.97% 17.86% 55.54%
TX  11.87% 402.1 453.51 433.23 416.2 316.02 305.14 4.09% 37.09% 3.57% 41.98%
UT   160.94 180.85 172.12 172.56 125.85 121 11.57% -0.25% 36.77% 4.01% 42.25%
VA   33.68 48.77 44.25 48.56 33.7 29.1 34.10% -8.88% 31.31% 15.81% 52.06%
VT   
WA   307.11 348.22 332.99 330.9 247.23 239.56 12.35% 0.63% 34.69% 3.20% 39.00%
WI   86.94 107.98 99.26 103.55 81.81 63.08 21.20% -4.14% 21.33% 29.69% 57.36%
WV   41.25 48.84 46.86 47.79 48.47 35.67 16.20% -1.95% -3.32% 35.88% 31.37%
WY   164.99 175.14 170.56 172.4 137.83 134.08 5.95% -1.07% 23.75% 2.80% 27.21%
Avg.  18.88% 148.89 170.61 162.37 161.29 134.85 119.53 0.44% 20.27% 14.49% 38.28%
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0.05*0.05 0.1*0.1 0.5*0.5 1.0*1.0 5.0*5.0Data  
Set Node  DBW MUL        Node DBW MUL Node DBW MUL Node DBW MUL Node DBW MUL
AK 0109 0 0 109 0 115 0 0 130 0 0 250 1 0
AL    364 1 1 393 0 1 643 2 2 780 7 6 / / / 
AR   200 0 0 200 0 0 517 1 1 694 5 3 46 0 0
AZ   310 0 0 314 0 0 387 1 0 414 4 2 305 4 2
CA   1543 7 8 1707 11 13 1905 28 22 1797 63 42 393 16 8
CO   316 0 1 331 1 0 422 1 0 527 3 2 348 14 7
CT      211 1 0 250 0 0 410 1 2 380 6 4
DC       53 0 0 47 0 0   
DE 43 0 0 58 0 0 95 0 0 97 0 0 50 0 0
FL   821 1 2 840 2 2 1242 15 11 1125 39 25 46 0 0
GA   417 1 0 434 0 1 697 3 2 841 7 5 45 0 0
HI 60 0 0 57 0 0 89 0 0 96 0 0 68 1 0
IA    238 0 1 235 0 0 802 2 3 1052 12 9  
ID  113 0 0 129 0 0 187 0 0 281 0 0 292 26 13
IL  532 1 1 591 1 1 1378 12 10 1420 41 26   
IN     432 0 0 455 1 1 904 5 4 983 18 12
KS   135 0 0 138 0 0 393 1 1 767 12 7 185 9 4
KY   504 1 1 550 1 1 1080 8 6 1114 54 30 46 0 0
LA      412 0 1 419 0 1 594 1 1 696 5 4
MA      354 1 0 377 1 0 643 5 3 568 16 10
MD   289 0 0 317 0 0 578 3 2 507 8 5 36 0 0
ME   185 0 0 188 0 1 452 1 1 519 6 4 137 3 1
MI  428 1 1 470 1 0 942 7 6 1075 23 15 190 7 4
MN   190 0 0 255 0 1 687 2 2 1007 13 9 229 14 7
MO   319 0 0 342 0 0 894 6 5 1132 22 14 50 0 0
MS   271 0 1 273 0 0 381 0 0 531 1 2 95 1 0
MT   145 0 0 146 0 0 158 0 0 259 1 0 409 24 12
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   NC 104 0 0 104 0 0 342 1 1 565 5 3 217 9 4
ND   521 1 1 546 0 1 901 4 3 1016 12 8 90 1 1
NE 61 0 0 62 0 0 129 0 0 390 1 1 328 21 11
NH 97 0 0 99 0 0 277 0 1 292 2 1 44 1 0
NJ      300 0 0 433 1 1 657 10 6 436 10 6
NM   231 1 0 244 0 0 304 0 0 379 2 1 402 9 6
NV   145 0 0 145 0 0 169 0 0 178 0 0 127 1 0
NY      901 2 3 1140 4 5 1845 36 26 1712 115 68
OH      748 2 2 797 2 2 1393 16 12 1418 57 34
OK   336 0 0 336 0 0 502 1 1 757 6 4 170 5 3
OR   155 0 0 159 0 0 291 1 0 400 1 1 303 19 9
PA      1120 4 5 1312 5 5 2075 46 34 1847 126 76
RI   38 0 0 41 0 0 90 0 0 90 1 0  
SC   273 1 1 290 0 1 437 1 1 537 3 3 48 0 0
SD 70 0 0 72 0 0 148 0 0 371 1 0 337 33 15
TN   317 0 0 340 0 0 662 2 2 744 7 4 48 1 0
TX   2167 76 51 497 21 111227 4 4 1347 4 5 1837 34 26
UT 197 0 0 199 0 269 0 1 279 1 1 196 2 10
VA  1 1 570 1 1 1082 8 6 1106 27 17 50 0543 0
VT 109 0 0 113 0 0 307 0 0 2 1    314
WA 304 0 1 327 1 503 2 2 633 6 4 370 28 130
WI 317  0 343 0 0 694 2 1 893 10 7 111 20 1
WV 331 1 0 396 0 1 900 4 4 928 17 50 1 027
WY 91 0 0 91 0 0 0 0 138 0 0 198 1 1105
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