
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SEQUENCING GEOGRAPHICAL DATA FOR EFFICIENT

QUERY PROCESSING ON AIR IN MOBILE COMPUTING

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

In partial fulfillment of the requirements for the

Degree of

Doctor of Philosophy

By

JIANTING ZHANG

Norman, Oklahoma

2004

UMI Number: 3138520

__
UMI Microform 3138520

Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

__

ProQuest Information and Learning Company
300 North Zeeb Road

PO Box 1346
Ann Arbor, MI 48106-1346

SEUQENCING GEOGRAPHICAL DATA FOR EFFICIENT QUERY

PROCESSING ON AIR IN MOBILE COMPUTING

A Dissertation APPROVED FOR THE SCHOOL OF COMPUTER SCIENCE

By

 Dr. Le Gruenwald (Chair)

 Dr. Mohammed Atiquzzaman

 Dr. Changwook Kim

 Dr. Pakize Pulat

Dr. Krishnaiya Thulasiraman

©Copyright by JIANTING ZHANG 2004

All Rights Reserved.

Acknowledgment

My deepest appreciation goes to all who have helped me during my entire

Ph.D. study. My special thanks to the committee members, Dr. Le Gruenwald, Dr.

Mohammed Atiquzzaman, Dr. Chang-wook Kim, Dr. Pakize Pulat, and Dr.

Krishnaiya Thulasiraman. I appreciate their time, advice and patience as I have gone

through this process.

I would like to express my sincere gratitude to my committee chair, Dr. Le

Gruenwald. She inspired me to begin my career in computer science four years ago

and has been guiding me ever since. Her guidance and supports, both mentally and

financially, are essential to the completion of this dissertation.

I acknowledge the generous financial supports from Dr. V. Lakshmanan at the

Cooperative Institute for Mesoscale Meteorological Studies (CIMMS), who has

provided me with a research assistantship through his NSF grant. The flexible RA

work schedule has helped me greatly in my dissertation research, conference travels

as well as overcoming family hardships.

I also would like to acknowledge the support from my wife, Guomei Cao. I

am indebted to her for the numerous nights that I stayed in my office while leaving

her alone at home during her pregnancy and taking care of our baby thereafter. My

one-year-old son, John Zhongyao Zhang, has provided me with a much needed

refuge from the stress.

iv

Finally I am indebted to my parents, Shijiang Zhang and Deqin Miao, for their

enthusiastic encouragement and unconditional support. Although they have suffered

from some significant medical problems, they have never stopped encouraging me to

complete my studies. May this dissertation be dedicated to them.

v

Table of Contents

1 Introduction 1

1.1 Data Broadcast 2

1.2 Geographical Information 5

1.3 Geographical Information Broadcast 7

1.4 Possible Application Areas 8

1.5 Research Challenges 11

1.6 Research Objectives and Dissertation Outline 13

2 Literature Review 16

2.1 Data Broadcast 17

2.2 Spatial Indexing and Query Processing 24

2.3 Page Ordering and Graph Layout 27

2.4 Other Related Work 31

3 Geographical Data Broadcast Cost Models 33

3.1 Cost Models for Processing a Single Complex Query 37

3.2 Spatial Range Query for Point Data 40

3.3 Network Path Query for Graph Data 46

3.4 Discussions on Related Work 47

4 Hypergraph Representation of Spatial Semantics 50

4.1 The Hypergraph Representation 50

4.2 Computing Hypergraph Weights for Point Data 53

vi

4.3 Relationship with MinLA 59

4.4 Efficient Hypergraph Data Structures 60

4.5 Converting Hypergraph to Regular Graph 63

4.6 Discussions on Related Work 65

5 Ordering Heuristics 70

5.1 Overview 70

5.2 R-Tree Traversal Ordering 73

5.3 Hilbert SFC Ordering 74

5.4 Graph Partition Tree Traversal Ordering 77

5.5 Ordering Based on Degree/Weight 79

5.6 Spanning Tree Ordering 83

5.7 Discussions on Other Related Work 85

5.8 Further Discussions 89

6 Optimization Methods 91

6.1 The Approximation Algorithm 92

6.2 Proof of Correctness for Hypergraph Case 96

6.3 Generating BDT 99

6.4 Optimizing DBW 104

6.5 Optimizing ATData
Sep 110

6.6 Optimizing ATData
Mul 111

7 Experiments and Evaluations 117

7.1 Experiment Software Modules 117

7.1 Data Sets and Performance Metrics 119

vii

7.3 Synthetic Data Sets 122

7.3.1 Experiments Using DBW Cost Model 123

7.3.2 Experiments Using ATData
Sep Cost Model 125

7.3.3 Experiments Using ATData
Mul Cost Model 127

7.4 The Zip-code Point Data Sets 128

7.5 Texas Transportation Network Data Set 134

8 Conclusions and Future Work 140

 References 145

 Appendix 153

viii

List of Figures

Fig. 1-1 Geographical Data Broadcasting for Mobile Computing 7

Fig. 1-2 Disk Based and Broadcast Channel Based Data Access 12

Fig. 1-3 Dissertation Outline 15

Fig. 2-1 Illustration of TT and AT 18

Fig. 3-1 The Four Components in Access Time 34

Fig. 3-2 Illustration of L1, L2 and L3 37

Fig. 3-3 Illustration of the Overestimation in Case 2 38

Fig. 3-4 The Possible Distribution of Centers of Query Regions That Contain
Pu

41

Fig. 3-5 The Possible Distribution of Centers of Query Regions That Contain
Both Pu and Pv

41

Fig. 4-1 Hypergraph Representation of Spatial Relationship of Point Data 51

Fig. 4-2 Hypergraph Representation of Spatial Relationship of Graph Data 52

Fig. 4-3 Computing the Smallest Intersected Regions 54

Fig. 4-4 The Intersect-Assemble Method for Generating Hyperedge Weights 55

Fig. 4-5 The R-Tree Based Method for Generating Hyperedge Weights 57

Fig. 4-6 Illustration of the Hypergraph Data Structures 63

Fig. 4-7 Illustration of EAFG Derivation 64

Fig. 4-8 Illustration of the SOM Model and its Graph Representation 66

Fig. 5-1 The Classification Structure of Ordering Heuristics 71

Fig. 5-2 A Simple Point Data Set, Its R-Tree and Traversal Ordering 73

ix

Fig. 5-3 Illustration of Non-Optimal R-tree Traversal Ordering 74

Fig. 5-4 Illustration of Recursively Generating Hilbert SFC 75

Fig. 5-5 Illustration of a Non-Optimal Hilbert SFC Ordering for a Query
Window

77

Fig. 5-6 R-Tree Generated by Inserting Points Dynamically for the Data Set
in Fig. 5-5 (Hilbert-Codes Are Used As Leaf Node Labels)

77

Fig. 5-7 Illustration of Graph Partition Tree 78

Fig. 5-8 An Illustrative Graph for Degree/Weight Based Orderings and
Spanning Tree Ordering

80

Fig. 5-9 The Binary Tree Generated from MST Ordering Process and its
Balanced Tree After Rotations Using the Graph in Fig. 5-8

85

Fig. 5-10 Illustration of Constructing Delaunay Triangulation Network from a
Point Data Set

89

Fig. 6-1 Illustration of a Binary Decomposition Tree 93

Fig. 6-2 Proof of the Number of Possible Orderings of a BDT 93

Fig. 6-3 An Orientation Tree Corresponding to the BDT in Fig. 6-1 96

Fig. 6-4 The BDT Structure in an Ordering Sequence for an Hyperedge 97

Fig. 6-5 Illustration the Access Graph and its Three Decompositions 100

Fig. 6-6 Replacing an R-Tree Node by a BDT Sub-Tree 102

Fig. 6-7 The Process of Generating a BDT From an R-Tree 103

Fig. 6-8 Determining the Beginning/Ending Node of a Hyperedge 106

Fig. 6-9 The BDT of the Example for Illustrating DBW Optimization 108

Fig. 6-10 The Orientation Trees of Two Possible Orientations of T11 in DBW
Optimization Example

108

Fig. 6-11 Comparison of Access Time of Linear Versus Quadratic Models 111

Fig. 6-12 The Process of Optimizing ATData
Mul 112

x

Fig. 6-13 Illustration of Computing Position of a BDT Node 113

Fig. 6-14 The BDT of the Example for Illustrating ATData
Mul Optimization 114

Fig. 6-15 Illustration of Computing AT(2) and AT(1) Under 1-Orientation of
T11 in ATData

Mul Optimization Example
114

Fig. 6-16 Illustration of Computing AT(T12) Under 1- and 0-Orientations in
ATData

Mul Optimization Example
115

Fig. 6-17 Complexity Analysis of ATData
Mul Optimization Method 116

Fig. 7-1 Overall Data Flow of the Experiments 118

Fig. 7-2 Computation Time for DBW/ATData
Sep Optimization Method of Zip

Code Data Sets
132

Fig. 7-3 Computation Time for ATData
Mul Optimization Method of Zip Code

Data Sets
133

Fig. 7-4 Texas Road Network 134

xi

List of Tables

Table 6-1 The Hyperedges and Their Weights for the Point Data Set in Fig.
4-1

107

Table 7-1 Parameters of the Synthetic Data Sets 123

Table 7-2 Results of 1000 Random Orderings Under DBW Cost Model for
Synthetic Data Sets

124

Table 7-3 Comparisons of Hilbert and R-Tree Traversal Ordering Access
Times with 1000 Random Orderings Average Under DBW Cost
Model for Synthetic Data Sets

124

Table 7-4 Comparisons of Optimized Ordering, R-Tree Ordering and 1000
Random Orderings Average Under DBW Cost Model for Synthetic
Data Sets

124

Table 7-5 Results of 1000 Random Orderings Under ATData
Sep Cost Model

for Synthetic Data Sets
126

Table 7-6 Comparisons of Hilbert and R-Tree Traversal Ordering Access
Time with 1000 Random Orderings Average of Access Time
Under ATData

Sep Cost Model for Synthetic Data Sets

126

Table 7-7 Comparison of Access Time for Optimized Ordering, R-Tree
Ordering and 1000 Random Orderings Average Under ATData

Sep
Cost Model for Synthetic Data Sets

126

Table 7-8 Results of 1000 Random Orderings Under ATData
Mul Cost Model

for Synthetic Data Sets
127

Table 7-9 Comparisons of Hilbert and R-Tree Traversal Ordering Access
Time with 1000 Random Orderings Average of Access Time
Under ATData

Mul Cost Model for Synthetic Data Sets

128

Table 7-10 Comparison of Access Time for Optimized Ordering, R-Tree
Ordering and 1000 Random Orderings Average Under ATData

Mul
Cost Model for Synthetic Data Sets

128

Table 7-11 Summary of Results of Zip Code Data Sets

130

xii

Table 7-12 Summary of Results of Texas Transportation Network Data Set
Under DBW Cost Model

136

Table 7-13 Summary of Results of Texas Transportation Network Data Set
Under ATData

Mul Cost Model
139

Table A-1 Hypergraph Parameters Under the Five Query Window Sizes for
Zip Code Data Sets

153

Table A-2 Definitions of the Meanings of Columns Used in Table A-3 to
Table A-18

155

Table A-3 Results of DBW Under Query Window (0.05*0.05) for Zip Code
Data Sets

156

Table A-4 Results of DBW Under Query Window (0.1*0.1) for Zip Code
Data Sets

158

Table A-5 Results of DBW Under Query Window (0.5*0.5) for Zip Code
Data Sets

160

Table A-6 Results of DBW Under Query Window (1.0*1.0) for Zip Code
Data Sets

162

Table A-7 Results of DBW Under Query Window (5.0*5.0) for Zip Code
Data Sets

164

Table A-8 Results of ATData
Sep Under Query Window (0.05*0.05) for Zip

Code Data Sets
166

Table A-9 Results of ATData
Sep Under Query Window (0.1*0.1) for Zip Code

Data Sets
168

Table A-10 Results of ATData
Sep Under Query Window (0.5*0.5) for Zip Code

Data Sets
170

Table A-11 Results of ATData
Sep Under Query Window (1.0*1.0) for Zip Code

Data Sets
172

Table A-12 Results of ATData
Sep Under Query Window (5*5) for Zip Code Data

Sets
174

Table A-13 Results of ATData
Mul Under Query Window (0.05*0.05) for Zip

Code Data Sets
176

xiii

Table A-14 Results of ATData
Mul Under Query Window (0.1*0.1) for Zip Code

Data Sets
178

Table A-15 Results of ATData
Mul Under Query Window (0.5*0.5) for Zip Code

Data Sets
180

Table A-16 Results of ATData
Mul Under Query Window (1*1) for Zip Code

Data Sets
182

Table A-17 Results of ATData
Mul Under Query Window (5*5) for Zip Code

Data Sets
184

Table A-18 Computation Time for Optimizing DBW and ATData
Mul for Zip

Code Data Sets
186

xiv

Abstract

Geographical data broadcasting is suitable for many large scale dissemination-

based applications due to its independence of number of users, and thus it can serve

as an important part of intelligent information infrastructures for modern cities. In

broadcast systems, query response time is greatly affected by the order in which data

items are being broadcast. However, existing broadcast ordering techniques are not

suitable for geographical data because of the multi-dimension and rich semantics of

geographical data. This research develops cost models and methods for placing

geographical data items in a broadcast channel based on their spatial semantics to

reduce response time and energy consumption for processing spatial queries on point

data and graph data.

Three cost models are derived to measure Data Broadcast Wait (DBW), Data

Access Time in the multiplexing scheme (ATData
Mul) where both data and indices are

broadcast in the same channel, and Data Access Time in the separate channel scheme

(ATData
Sep) where data and indices are broadcast in two separate channels. Hyper-

graph representations are used to represent the spatial relationships of both point data

and graph data. The broadcast data placement problem is then converted to the graph

layout problem. A framework for classifying ordering heuristics for different types of

geographical data is presented. A low-polynomial cost approximation graph layout

method is used to solve the DBW minimization problem. Based on the proven

monotonic relationship between ATData
Sep and DBW, the same approximation method

is also used for ATData
Sep optimization. A novel method is developed to optimize

xv

xvi

ATData
Mul. Experiments using both synthetic and real data are conducted to evaluate

the performance of the ordering heuristics and optimization methods. The results

show that R-Tree traversal ordering heuristic in conjunction with the optimization

methods is effective for sequencing point data for spatial range query processing,

while graph partition tree traversal ordering heuristic in conjunction with the

optimization methods is suitable for sequencing graph data for network path query

processing over air.

Chapter 1

Introduction

Analog radio broadcast has played important roles in modern society during

the past decades. The last decade saw great expansions and interconnections of digital

information, the World Wide Web for example. While the client/server architecture

of the Web and the underlining point-to-point communication infrastructure of the

Internet work fine for moderate traffic, they do not scale well when millions of people

request similar information from a website. The problem is even severe as more and

more information systems are extending to wireless and mobile networks to allow

information access anytime and anywhere. Due to the limited nature of wireless

bandwidth, scalability in such large systems is very likely to be a big issue.

Broadcast is suitable for dissemination-based applications with the following

characteristics (Aksoy, 1998): large scale, high overlapped demands among users and

the asymmetric data flow from sources to users. Broadcast is a promising alternative

to point-to-point access in many cases since resource consumption in a broadcast

system is independent of the number of users in the system. Geographical information

has been widely used in our everyday lives. Geographical information broadcasting

can serve as an important component of intelligent information infrastructures for

modern cities.

Due to the sequential nature of a data broadcast system, query processing over

air medium is significantly different from that in a disk or main memory resident

1

database system. The ordering of a broadcast sequence plays an important role in the

query performance. However, existing broadcast ordering techniques are not suitable

for geographical data because of the multi-dimensional and rich semantics

characteristics of geographical data. The objectives of this study are to provide cost

models and techniques for ordering geographical data in broadcast channels that

improve spatial query processing on air.

In this chapter, we first introduce some background on data broadcast,

geographical information and geographical information broadcast. We then discuss

some application areas and point out the research challenges concerning geographical

information broadcasting. Finally we state our research objectives and present the

dissertation outline.

1.1 Data Broadcast
Data broadcast can be performed on either wired or wireless network using

either a single-hop or a multi-hop communication infrastructure. An excellent

example of single-hop data broadcast is the Datacycle project at Bellcore more than

15 years ago where a database circulates on a high bandwidth optical network (140

Mbps) (Herman, 1987). From the application perspective, the current Internet

multicast can be treated as multi-hop broadcast to a user group on fixed networks.

Disseminating data from a node to all the other nodes in a wireless sensor network is

a good example of multi-hop broadcast on wireless network. Multi-hop broadcast is

more energy-efficient than single-hop broadcast since the received signal power

decreased much faster than the communication distance (p’=p*r-α, where p is the

2

transmission power, p’ is the received power, r is the distance and α is a parameter

typically between two and four) (Wieselthier, 2002). However, when there are special

nodes in wireless networks that are free from energy constraints, it is advantageous to

use single-hop broadcast as discussed shortly.

In this study we are interested in geographical data broadcast to support

location dependent services. We adopt single-hop wireless data broadcast for several

practical reasons. First, cellular networks, the most popular form of wireless mobile

communication at present, use wireless broadcast at their last hop where the base

stations are the special nodes that are generally thought to be free from energy

constraints. It is beneficial to utilize cellular networks by setting broadcast servers at

the base stations. Second, even in wireless ad-hoc networks, it is very likely that there

are some mobile units have more power supplies and computing powers than others.

It is beneficial to tradeoff energy consumption with coverage and mobility

management overheads. For the rest of this dissertation, we refer “single-hop digital

wireless data broadcast” as “broadcast” or “data broadcast”.

Data broadcast can be classified into two main categories, pull-based and

push-based (Aksoy, 1998). In pull-based broadcast, the broadcast server receives

explicit requests from clients and schedules a broadcast sequence based on the

requests. In this case there are no unwanted data in the broadcast sequence which can

improve channel utilization. In push-based broadcast, the data access patterns are

assumed to be fixed and the broadcast sequence is pre-determined. It is possible that

there are data items in the broadcast channel that are not needed by any clients at

3

particular time slots. Although the broadcast channel might not be fully utilized in

push-based broadcast, it has two advantages. The first is that it does not need on-

demand scheduling which could be very expensive. The second is that no up-link

communication between clients and the broadcast server is needed which makes it

suitable for light-equipped and inexpensive handsets.

In addition to the excellent scalability as discussed earlier, there are several

additional advantages for single-hop wireless and push-based broadcast. First, data

communication through broadcast consumes less energy since users are in receiving

mode instead of sending mode. Second, there is no mobility management problem for

the broadcast server when users are in the receiving range of the server while there

are significant overheads in mobility management in cellular or ad-hoc mobile

networks. Third, since handsets in such broadcasts systems do not need up-link

communication components to send data, their sizes/weights and manufacturing cost

can be significantly reduced. The reduction of sizes and/or weights can further reduce

power consumption.

Compared with analog radio broadcast, digital broadcast allows automatic

data filtering and integration of multiple resources to provide targeted and

personalized data without having to physically tuning to radios. Digital broadcast of

newspapers to individual subscribers can be traced back as early as 1985 when

personal computers are still not powerful enough to accommodate several Kbps data

transfer rate (Gifford, 1985). Several standards have been proposed for digital

broadcast, such as the ATSC data broadcast in North America (Chernock, 2001),

4

digital audio broadcast (Hoeg, 2001) and digital video broadcast (Reimers, 2001)

standards in Europe. However, such techniques are mostly designed for streamed

multimedia broadcast and do not support interactive queries over broadcast data. It is

worth to mention that these multimedia broadcast standards are not specially designed

for wireless broadcast. Actually they are currently more suitable to apply to cable

networks. Although multimedia broadcast and database broadcast can share the same

broadcast techniques at the physical level for broadcasting data bits, unlike

audio/video broadcast which has a predefined order based on time sequence,

orderings of the data items (and their indices as well) in database broadcast will affect

the performance of query processing significantly.

The digital audio broadcast standard (Reimers, 2001) has defined data

services and applications which allow broadcasting data other than audio and video,

such as “Broadcast Web Site” (TS 101 498). Although the standard suggests

prioritizing data objects based on their individual access frequencies similar to our

preliminary work in (Zhang, 2002), it does not take the case in which multiple data

items are accessed together into consideration. Further discussions on this problem

will be provided in Section 1.5 and Section 2.1 in Chapter 2.

1.2 Geographical Information
Geographical information has been widely used in our everyday lives. It has

been used in applications such as finding service locations (e.g. restaurants and ATM

machines) and getting traffic and travel information. The National Academy of

Sciences estimates that 80 percents of the information on the Internet have a spatial

5

component ([HREF 1]). The importance of geographical information has been

recognized in mobile computing in the context of location management in cellular

and ad-hoc networks (Wong 2000), position-based routing protocols (Mauve, 2001)

and location based services (Virrantaus, 2001), etc.

Geographical Information Systems (GIS) have been used for geographical

data management. In the database community, research on geographical data falls

into the category of spatial databases (Rigaux, 2002; Shekhar, 2003). Geographical

data types, such as point, polyline and polygon, are often modeled as objects, thus

research on geographical data management is also related to object-oriented

databases. ORACLE versions 8 through 10 define various geographical data types

and use its object-relational data model to manage geographical data ([HREF 2]).

Oracle version 9 and higher support spatial window (range), spatial join, nearest

neighbor and other spatial queries ([HREF 2]).

Almost all the existing research on geographical data management assumes

the underlining access medium is disk and much effort has been put on reducing I/Os.

We envision that non-disk based spatial databases will attract more and more research

interests in the areas such as main-memory spatial databases and spatial databases

over air. Broadcasting spatial databases over air allows an unlimited number of users

to access the spatial databases simultaneously using simple and cheap receiver any

time and anywhere.

6

1.3 Geographical Information Broadcast

Geographical data are especially suitable for broadcasting. It serves a great

number of users, such as users in metropolitan areas. It is public and has no or very

few privacy concerns. It is mostly read-only and changes relatively slowly. Most

importantly, it is distributed in nature which can eliminate the biggest disadvantage of

broadcast, i.e., limited broadcast range. This is because most of geographical data

accesses are local, i.e., people are more likely to access the geographical data that are

near to them. We can adopt the cellular structure and distribute geographical data to

the base stations for distributed broadcast. Fig. 1-1 illustrates the idea of geographical

information broadcast for mobile computing at different levels of wireless networks.

Geographical data at a global scale can be broadcast over satellite channels, while

those at the country or state scales can be distributed to local broadcast servers

through wired or wireless Wide Area Network (WAN) and those at the local scales

(such as urban areas, communities or buildings) can use base stations in cellular

networks as broadcast servers.

Global

WAN

LAN

Fig. 1-1. Geographical Data Broadcasting for Mobile Computing

7

We are particularly interested in push-based geographical data broadcast since

the expected number of users in our applications is very big and it is too expensive to

schedule a broadcast as that done in pull-based broadcast. For example, there could

be millions of people who request traffic data at the same time in peak traffic time in

metropolitan areas. The capability of allowing inexpensive mobile handsets to

perform spatial queries over broadcast geographical data is a plus for push-based

broadcast.

1.4 Possible Application Areas
We envision that geographical data broadcast over air has a broad scope of

application areas, ranging from location dependent services in metropolitan areas,

unusual event warnings in remote areas, disaster rescuing and military related

applications.

A. Location Dependent Services
There are several ways for users to be aware of their locations. The Global

Position System (GPS) provides very accurate position information. An inexpensive

hand-held GPS receiver can provide an accuracy of 10 meters or better (Leonhardi,

2002). The infrastructures of most cellular networks can at least tell which cell a

mobile user is currently in; this is a part of location/mobility management in the

networks (Wong 2000). With the help of the neighboring base stations, the networks

have the capability to tell the users their positions more accurately. In many cases,

the position information provided by GPS, network infrastructures or their

combinations (Konig-Ries, 2002) are accurate enough to perform Location

8

Dependent Queries (LDQ) and request Location Dependent Services (LDS) (Seydim,

2001). Two examples of such queries are “find all the ATM machines within 2 miles

of my current location” and “tell me the shortest path from the White House to

University of Maryland campus”. These services can be very useful for users in

unfamiliar places. Furthermore, intelligent navigation systems can be built on top of

LDS over broadcast geographical data, such as shopping guidance in big malls,

transferring flights in busy airports, finding books in a library and locating rooms in

skyscrapers. By issuing LDQs continuously over broadcast geographical data, the

users’ intelligent agents will lead the users to their destinations. Comparing with

using point-to-point communication for such services, all the advantages of data

broadcast we discussed before apply.

B. Unusual Event Monitoring
Unusual events, such as traffic jams, storms and hurricanes, affect our

everyday lives greatly. Some of them are matters of life and death. A public warning

system is extremely useful in these situations. Traffic jams and road accidents have

been broadcasting in analog form during the past decades and are going to be

broadcast digitally ([HREF 3]). A new industry called Telemetrics that explore digital

data broadcast technologies is coming into being (Xu, 2000). Energy consumption in

those applications is usually not a problem since such events happen infrequently and

users usually have continuous power supply, such as in cars. The reason of using data

broadcast technologies from the sender’s perspective is primarily for its scalability

and wide coverage. From the receiver’s perspective, it is crucial to reduce query

9

response time for queries that inquire whether there are or there are no such unusual

events within a spatial range of some specific locations. This is especially important

for the events that are broadcast through satellites to wide regions in remote areas.

Since the number of such events is large while the available satellite bandwidths are

limited, the broadcast cycle can be long and it is crucial to reduce response time by

careful data placement.

C. Disaster Rescue
The power supply of a handset is usually very limited when a disaster

happens. If the disaster happens far away from base stations, in a dessert for example,

it is quite possible that the handset power might be quickly depleted after several

unsuccessful connections. An alternative way might be to broadcast the geographical

information and other related information in the disaster area. By using such

information, people that are trapped by the disasters might be able to make right

decisions. Power consumption is the primarily concern in such cases.

D. Military Operations
Communications in battlefield are crucial. One of the advantages of data

broadcast in battlefield is safety. Since a soldier does not interact with the server by

only listening to broadcast geographical and other types of data, he/she cannot be

detected based on signal his/her handset emits. Data broadcasting is also

advantageous when a soldier is isolated and has very limited power left and cannot

afford active communication. Geographical data broadcast can also be used for group

dispatch or guidance. For example, a group of soldiers in a particular region should

10

move to another region or follow a particular route. A broadcast server can also

broadcast road networks and topography in a particular area, updated information to

data stored on the CD or other medium that go with soldiers, etc.

1.5 Research Challenges
Most existing geographical information systems are disk-resident. Spatial

indexing and query processing techniques are mostly designed for reducing the

number of I/Os. However a broadcast channel as an access medium is essentially one-

dimensional and only allows sequential access which is quite different from disk or

main memory based data access. The difference between disk-resident data access

and broadcast channel data access is illustrated in Fig. 1-2. In disk resident data

access, the read/write arm first moves the read/write head to the desired disk track,

and the disk then rotates to the desired sector. Although the sequence of data items

still plays an important role in performance as explained in Chapter 2, disk resident

data access as well as main-memory data access can be generally treated as random.

In broadcast data access, although only some data items (including both index and

data) are needed (those that are shaded in Fig. 1-2), a client will have to wait between

two needed data items (those that are non-shaded in Fig. 1-2). More detailed

explanations for broadcast channel based data access are given in Section 3.1.

11

 Accesses

Pointers

D IndexI

Broadcast Cycle

D I I I D D D D D I

Data

Fig. 1-2. Disk Based (The Left Figure) And Broadcast Channel Based
(The Right Figure) Data Access

Geographical data is multi-dimensional spatial data that has rich semantics

which renders existing broadcasting techniques not suitable for its broadcasting. In

this study we mostly target the first and the second application scenarios discussed

above, i.e., location dependent query and unusual events monitoring. We are

interested in two major geographical data types that are widely used in mobile

computing, i.e., point data and graph data. Point data has explicit geometric

coordinates and the spatial semantics among them are implicit. For graph data, the

spatial semantics are explicitly expressed in terms of the weights of edges between

the nodes of a graph. In this study, we assume graph data are two-dimensional

geometric network and thus their vertices are also points. A typical application

scenario of point data broadcast is a spatial range query that retrieves all the gas

stations within 2 miles of a user’s current location over a broadcast channel. A typical

graph data broadcast scenario is a network path query that finds the shortest path from

location A to location B over a broadcast channel. In these queries, there may be

more than one data items (restaurants or locations) in the query results. We use the

12

term “Complex Query” (Lee, 2002a) to denote the queries whose result sets have

multiple data items.

Query response time is greatly affected by the order in which geographical

data items are being broadcast. Suppose there are six data items {1,2,3,4,5,6} to

broadcast and there are two data items {2,5} in a spatial query result set. It only takes

two units of time to retrieve the query result if the data items 2 and 5 are placed next

to each other. However, it would take four units of time to retrieve them in the natural

ordering. The placement is complicated when there are many such complex queries

with different access frequencies over broadcast data.

1.6 Research Objectives and Dissertation Outline
Using air as an access medium for geographical data broadcast, or spatial

databases on air, requires a new scheme for data organization and query processing.

The objectives of this study are to develop cost models and methods for placing

geographical data items onto a broadcast channel based on their spatial

semantics to reduce the response time and energy consumption for processing

spatial queries over broadcast channels. In order to achieve the objectives, this

dissertation performs the following tasks:

• Derive the cost models of computing the data access time for processing

spatial queries over broadcast geographical data under different scenarios.

• Provide hypergraph representations for spatial relationships of both point

data sets and graph data sets and relate the broadcast data placement problem

with graph layout problems.

13

• Present a coherent framework for classifying ordering heuristics and

discuss their applicability for different types of geographical data.

• Develop efficient and effective optimization methods to reduce data

access time under different cost models.

• Perform experiments on both ordering heuristics and the optimization

methods using both synthetic and real data sets.

This dissertation is outlined as in Fig. 1-3 where arrows show the

dependencies between chapters. We first review the related work in Chapter 2. We

then present our three cost models for spatial range queries and network path queries

under two different scenarios in Chapter 3. We propose to use a hypergraph to

represent the spatial semantics of a data set in our applications in Chapter 4. In

Chapter 5, we discuss several heuristics to generate the orderings of broadcast

sequences for both point data and graph data. The orderings based on the heuristics

can be used as initial orderings for optimization. We provide several methods to solve

the optimization problems efficiently in Chapter 6 under different scenarios. Chapter

7 presents experiments on the heuristics and optimization methods based on our cost

models using real and synthetic data.

14

Chapter 8: Conclusions and Future Work Directions

Chapter 2:
Literature Review

Chapter 5:
Ordering Heuristics

Chapter 1: Geographical Data Broadcasting
• Spatial Range Queries
• Network Path Queries

Chapter 7: Experiments & Evaluations

Chapter 6:

Optimization Methods

Chapter 4:
Hypergraph Representation

Chapter 3:
Cost Models for Access Time

Fig. 1-3. Dissertation Outline

15

Chapter 2

Literature Review

In this chapter, we first review the existing work on generic data broadcast

and we then turn to spatial indexing and spatial query processing in disk-resident

spatial databases. Although extensive work has been done in both fields, we believe

we are the first to address the problem of sequencing geographical data items on

broadcast channels for efficient spatial query processing. As shown in Chapter 3, we

transform the sequencing problem to a graph layout problem based on spatial

semantics. Thus our work is also related to the page ordering research in disk-resident

database systems and graph layout problems from a theoretical perspective. Finally,

we provide brief reviews of other related work, such as graph partition, spatial

clustering, location-based services and moving object data management. It is our

vision that geographical data broadcasting can be used for location-based services as

explained in the introduction chapter. We also envision that moving object queries

over air is a very promising alternative to current disk-resident databases on top of

point-to-point communication infrastructures. Graph partition and spatial clustering

are used for generating heuristic orderings and optimizations as discussed in Chapter

5 and Chapter 6.

16

2.1 Data Broadcast

In a broadcast system, a minimum logical unit in a broadcast sequence is

called a bucket/frame and a set of continuous buckets (either index or real data) are

called a segment. The time to broadcast a segment can be calculated as the volume of

a data segment divided by the bandwidth allocated for broadcasting. For the sake of

simplicity, it is generally assumed that all the broadcast data items have the same

volume and it takes a unit time to broadcast a data item. Based on this assumption we

can measure the broadcast parameters discussed below using the positions of the data

items in a broadcast sequence and their intervals (lengths or durations) as the

measurements of access time.

Different from disk resident data accesses, accesses to broadcast sequence are

essentially one-dimensional. There are two important parameters in evaluating the

performance of a broadcast system, namely Tune-in Time (TT) and Access Time

(AT, or latency). TT is the amount of time spent by a client listening to the channel.

AT is the average time elapsed from the time a client requests data to the time when

all the required data are downloaded by the client. AT is the sum of the Probe Wait

(PW) and the Bcast Wait (BW) where the former is the average duration for getting to

the nearest index segment and the later is the average duration between the time the

index segment is reached till all the required data items are downloaded. In Fig. 2-1,

TT is equal to the summation of the lengths of the required data items (shaded) while

AT is the duration between the initial access time and the time to access the last

required data item.

17

T
T

S
N

T2 T1

There

that the energ

50µW for AT

data broadcas

index and on

extensive ind

Strategies tha

number of da

be accessed, A

data items in

consumption

response time

1: Time to begin accessing the broadcast channel
2: Time when all requested data items are downloaded

haded boxes: required data items
on-Shaded boxes: not required data items
Fig. 2-1. Illustration of TT and AT

 is a well-known tradeoff between AT and TT based on the assumption

y consumption in TT is far greater than that in AT (250mW versus

&T Hobbit chip, Imielinski, 1997). Two extreme strategies exist for

ting (Imielinski, 1997). For the Access Opt strategy, there will be no

ly data is broadcast to minimize AT. While for the Tune Opt strategy,

exing is used to minimize unnecessary active channel listening (TT).

t combine the two are often adopted. Although TT is determined by the

ta items in a query result and the number of index segments that need to

T is determined by the length of a broadcast cycle and the ordering of

a broadcast sequence. The purpose to reduce TT is primarily for energy

while reducing AT will reduce both energy consumption and query

.

18

The idea of using air as a data access medium is first proposed in (Imielinski,

1993). (Imielinski, 1997) and its related work (Imielinski, 1994a; Imielinski, 1994b)

presented both a framework and several indexing methods for data broadcasting over

the air. However, their work only takes one-dimensional tree indexing (B-Tree) into

consideration. For the multiple-attribute case, they proposed to build multiple indices

for each fragment of the first attribute. This is actually using one-dimensional

indexing methods consecutively for multidimensional indexing which is inefficient

(Kriegel, 1984). Using signature techniques for information filtering in wireless and

mobile environments was presented in (Lee, 1996). A hybrid method by combining

tree indexing and signature methods was proposed with demonstrated advantages

(Hu, 2001a). However, signature based index methods only work for categorical data.

They cannot be used for geographical data that is multidimensional and continuous in

nature. The issue of multi-attribute data broadcast and query was explicitly addressed

in (Hu, 2001b). However, it can only handle conjunction/disjunction queries that

involve fewer than three attributes. Except for (Hu, 2001b), none of them considers

different access frequencies of data items. Their focus is to trade TT with AT by

using indices and reduce PW by index replication.

The Broadcast Disk technique (Achrya, 1995) was proposed to broadcast data

over multiple channels to reduce total access time by allocating bandwidth to disks

(channels) based on the access frequencies of the data items placed in the channels.

(Shivakuma, 1996) proposed an alphabetic Huffman tree based scheme to broadcast

the index over multiple channels. In this scheme, the number of channels has to be

19

equal to the levels of the constructed alphabetic Huffman tree. In (Peng, 2000), a

heuristic algorithm VFK was proposed to assign data items to multiple data channels

based on the constructed imbalanced index tree which was again based on access

frequencies. In this scheme, the number of channels can be arbitrary. Recently (Hsu,

2002) extended the distributed indexing technique proposed in (Imielinski, 1997) to

multiple channels. It first assigned Broadcast Segments (BS) to channels in the

decreasing order of the summation of access frequencies of data items in the BSs. For

the BSs in the same channel, it replicated the BSs based again on the summation of

frequencies and distributed the replicated BSs on the channel as evenly as possible.

This technique was applied again for the data items within each BS based on their

access frequencies. Considering data access frequencies will generally improve the

average access time. However, all these techniques only consider retrieving a single

data item from broadcast channels. It is obviously inefficient to retrieve multiple data

items in a query result set by applying these methods multiple times.

To the best of our knowledge, none of the above studies addresses the

ordering problem of data items to be broadcast to reduce access time incurred in

accessing multiple data items in a query result set. Although (Imielinski, 1997)

proposed to chain data items that have the same values in different meta-segments in

its nonclustering index and multi-index methods, it cannot be applied to data items

that have different values but are often in the same query result (such as spatial range

queries and network path queries). Furthermore, in the performance analysis, their

work assumed that it would take a whole broadcast cycle to retrieve non-clustered

20

data items of a particular value which is an overestimation. As we illustrate in

Chapter 7, we can improve query response time and clients’ energy consumption by

carefully ordering data items in the broadcast channel before they are broadcast.

We believe that (Gondhalekar, 1997) was the first to address the problem of

retrieving multiple data items from wireless broadcast channels. They showed that the

problem is in general NP-complete for both a non-indexed data layout and indexed

data layout with unit access frequency. They related the non-indexed data layout to

the Optimal Linear Arrangement problem in graph theory. They also provided two

heuristics for optimizing the broadcast sequence for the indexed layout. Their cost

model for the non-indexed data layout is essentially our DBW and their cost model

for indexed data layout is essentially our DPW+DBW under the multiplexing scheme

as presented in Chapter 3. We will further discuss the two heuristics in Chapter 5.

The recent works on object-oriented database broadcast (Chehadeh, 1999) and

relational database broadcast (Si, 1999; Lee, 2002; Lee 2003) allow multiple data

items to be accessed in a query. The works presented in (Chehadeh, 1999; Lee, 2002)

are only applicable to the cases where initial access must be done at the beginning of

a broadcast cycle. They assumed the access to data items has a predefined order and

thus are not suitable for spatial range queries since data items in a query result do not

necessarily have a predefined order. Furthermore, the ordering heuristics proposed in

the papers are greedy. The graph representation in (Si, 1999) allows each entity type

to be accessed as the first one with a certain probability. The optimal ordering is

obtained through the branch-and-bound technique. However, it might be too

21

expensive when the number of entity types is large since the complexity of the

branch-and-bound technique is exponential with respect to the number of items to be

sequenced in the worst case. In (Lee, 2003), a regular graph called data access graph

is first constructed. The weight of an edge (u,v) is the summation of the frequencies

of all queries that include both data items u and v. It then extended the iterative node

combination process for sequencing tree-structured data proposed in (Chehadeh,

1999) to sequence the data access graph. The ordered binary combination processes

determine the broadcast sequence. We provide further discussions on the graph

representation of both (Si, 1999) and (Lee, 2003) in Chapter 4 and the scheduling

algorithm of (Lee, 2003) in Chapter 5.

The work presented in (Chung, 2001) is most similar to our cost model under

the broadcast scheme that data and index are broadcast in different channels. Its QEM

scheduling method and its extensions in (Lee, 2003) are essentially greedy, which is

quite different from the optimization philosophy we adopt in this study. We recently

found that the proof of the relationship between the average AT presented in (Chung,

2001) and the concept of Query Distance (QD) on which the methods in (Chung,

2001; Lee, 2003) are based is incorrect. The first author of (Chung, 2001) has

recognized our finding (email communication, 2003). We discuss the cost model of

(Chung, 2001) in Chapter 3 and the QEM-alike scheduling algorithms (Chung, 2001;

Lee, 2003) in Chapter 5.

(Tan, 1998) presented an algorithm (NrBP) to generate broadcast sequences

that facilitate range queries without sacrificing much on the advantages of

22

nonuniform broadcast for single data item retrieval. The basic idea is to range

partition the data file into disjoint key ranges. Their analytical results showed that the

uniform broadcast program (UBP) is the best for range access while the classic

nonuniform broadcast program (NBP) is best for single data item retrieval which is

based on the broadcast disk technique. They concluded that NrBP was a better choice

for both single data item access and range access. However, the proposed algorithm is

only applicable to one-dimensional data. An additional problem with their analytical

study on the average access time for accessing items in a given range is as follows.

Suppose there are n data items to broadcast and i is the ith data item, they assumed

that the range a user can specify varies from 1 to n-i and any range between 1 to n-i

are equally accessed. While the assumption might be reasonable if the data items are

uniformly distributed, usually it does not hold for arbitrarily distributed data such as

the distribution of service locations.

To the best of our knowledge, the only previous work on geographical data

broadcast is (Hambrusch, 2001). It studied the execution of spatial queries on

broadcast tree-based spatial index structures. It assumed that the client has such a

limited memory that the whole R-tree cannot fit into the client memory and the client

has to discard some retrieved R-Tree nodes to hold more useful ones during the query

process. Their work focused on reducing extra access time incurred by having to

access multiple broadcast cycles due to the replacement of the R-tree nodes in the

client’s memory. Our work differs from theirs in that we aim to generate a good

sequence of geographical data items for spatial queries after we have already had

23

indices, either from a separate index channel or from the same channel that broadcasts

both data and indices, and a client only needs to access one broadcast cycle at most to

retrieve desired data items. Since memory is getting cheaper and cheaper, we assume

that the client memory can hold the entire index segments related to a query and we

believe this assumption is more practical.

Using multiple broadcast channels for data (not including indices) that

supports complex queries was addressed in (Huang, 2003). This work proposed

genetic algorithms for broadcast sequencing. Initially random sequences are

generated for each query and their fitness (defined as the average access time) are

computed. In the selection phase the selection probability of each sequence is set to

be the weights of their fitness. In the crossover phase, the Partially Mapped Crossover

(PMX) is performed and new sequences are generated. The best sequence is then

selected according to the fitness. The process is repeated for a predefined number,

i.e., the number of generations for genetic evolution. The philosophy of their method

is quite different from that of graph-theoretic approaches.

2.2 Spatial Indexing and Query Processing

Traversal of spatial indexing trees and Space Filling Curves (SFC) generate

orderings of data items. Structures of spatial indexing trees reflect spatial

relationships between data items and can be used to produce better orderings.

A comprehensive overview of multidimensional indexing and access methods

was presented in (Gaede, 1998). The original R-Tree method was proposed in

24

(Guttman, 1984). Two R-Tree variations, namely R+-Tree (Sellis, 1987) and R*-Tree

(Beckmann, 1990) were introduced later. SFC, such as row-wise enumeration of the

cells (Samet 1990), Peano curve (Morton, 1966) or Z-Ordering (Orenstin, 1984),

Hilbert-Ordering (Faloutsos, 1989; Jagadish 1990) and Gray-Ordering (Faloustsos

1988) could be used to transform multi-dimensional data into one-dimensional data,

and consequently, one-dimensional index techniques such as B-Tree can be used for

spatial indexing. Several characteristics such as jumps, continuity, reverse order and

bias towards a particular dimension were studied theoretically and experimentally in

(Aref, 2000). The mean-variance analysis of the performance of spatial ordering

methods was studied in (Kumar, 1998) for disk-resident spatial data. Since they used

a block factor of 1 (i.e., there is only one data item in a block) and the measurement is

the number of clusters (a cluster is a group of consecutive disk blocks according to a

SFC ordering) of a range query result set in a SFC ordering, their studies can also be

interpreted as the measurement on the number of mode switches (between active and

doze/sleep) in a spatial range query over a broadcast sequence.

Since we assume the geographical data items to be broadcast are known prior

to broadcast, they can be treated as static data. In disk-resident database systems,

several methods were proposed for building indices for static spatial data, such as

NEXT-X (Roussopoulos, 1985), STR (Sort-Tile-Recursive, Leutenegger, 1997), TGS

(Top-down Greedy Splitting Algorithm, García, 1998), Small-Tree-Large-Tree

Approach (Chen 1998; Chen 2002) and its generalization (Choubey, 1999). Hilbert

25

R-Tree which is a R-Tree based on Hilbert-Ordering was proposed in (Kamel,

1994).

Several proposed cost models (Kamel, 1993; Pagel, 1993; Theodoridis, 1996;

Theodoridis, 2000) for R-Trees use the number of disk accesses as the performance

measurement. These models are based on the observation that the number of node

accesses to a R-Tree is proportional to the summation of the extended node sizes of

all the nodes in the R-Tree, assuming the data sets are uniformly distributed. Suppose

the MBR (Minimum Bounding Rectangle) of a two-dimensional R-Tree node is (Nx,

Ny) and the query window size is (Qx, Qy), then the extended node size is defined as

(Nx+Qx)*(Ny+Qy). The buffer effect was further considered in (Theodoridis, 2000)

where if an R-Tree node is already in the buffer then no upload from disks is needed.

More recently, (An, 2003) proposed to use a density file data structure for more

accurate spatial range query cost estimations. They claimed that their method did not

make any assumptions about the data set. In our hypergraph representation of spatial

range queries on point data sets (Chapter 4), we compute the weights of all possible

spatial range query result sets, thus the applicability of our method is also data set

independent. Although storing and manipulating hypergraphs have larger overhead

than the density file structure, the overhead is well justified since the response time

and energy consumption for air access is much more expensive than disk I/Os

considering a high number of users.

The Compact Path Encoding structure was first proposed in (Agrawal, 1989)

and later extended to a hierarchical scheme for path query in transportation networks

26

by (Jing, 1998). (Shekhar, 1997a) presented a connectivity-clustered access method

for disk-based networks and network computations. It proposed using edge access

frequencies to partition a network into smaller ones for efficient data accesses. (Zhao,

2001) proposed a different method by indexing segmented graph data rather than

partitioning the graph data for indexing. Materialization tradeoffs (storing pre-

computed paths versus on-demand computation) in hierarchical shortest path

algorithms using graph partition was addressed in (Shekhar, 1997b). Finding the

shortest path in large networks based on hierarchical graphs was proposed in (Chan,

2001). All these works on graph data query processing assume main memory or disk

as the data access medium while our interest is on graph data access on the air

medium.

2.3 Page Ordering and Graph Layout

The ordering problem of data items has been addressed in disk-resident

database systems although in a different context than broadcast sequencing. To store

two or more dimensional spatial data in disk-resident databases and process spatial

queries efficiently, it is important to take advantage of the characteristics of disk

management where a disk page is used as a basic unit which might contain multiple

data items. The basic idea is to store semantically related data items in the same pages

so that only a minimum number of I/Os is necessary even though multiple data items

might be requested in a query. The order of data items will determine whether two

data items can be put into the same page, and thus, it has a great impact on query

27

processing performance. However, the order of data items within a page is

insignificant in terms of the number of I/Os. This is quite different from broadcast

channel based data access where the position of each data item matters as formalized

in Chapter 3. Almost all tree-based spatial indexing methods exploit spatial

adjacency in forming node split/merge policies. Traversing a spatial index tree or a

hierarchical clustering tree gives an order of spatial data items. SFCs generate orders

of multi-dimensional data items. More details are discussed in Chapter 5.

(Bachmann, 1994) discussed the problem of assigning spatial data items to

buckets (pages) to minimize access cost based on their region (range) query cost

model. By converting the problem to a Minimum Weighted Matching Problem in a

graph, an O(n3) solution for the case where the bucket capacity equals two (i.e. each

bucket can have two data items at most) was proposed. However, they showed that

for arbitrary bucket capacity the problem is NP-complete and proposed using

Simulate Annealing (SA) for optimization.

(Cho, 2000) argued that ordering based on SFCs does not take into account

the uneven distribution of spatial data and the types of spatial queries. They assumed

spatial data items had been grouped into pages and transformed the page ordering

problem into a Traveling Salesman Problem (TSP) of a weighted graph, the weight of

which is defined by the performance measurement of its cost model. They also

proposed using the SA method to solve this NP-complete problem. However, it is our

belief that using the SA might be too costly to be practically useful in online

28

applications since SA based approaches are generally very slow to achieve good

results ([HREF 4]).

Join query processing involves two or multiple data sets. There are two types

of problems. The first one is to determine the optimal access sequence that uses the

minimum buffer without any page being fetched more than once. The second is to

determine the optimal access sequence that minimizes the number of pages re-

accessed given a fixed buffer size. By forming a join connectivity graph between the

pages, several heuristics have been proposed (Pramanik 1985; Fotouhi , 1989; Chan

1997; Lim, 1999).

Spatial join is usually very expensive, and thus, deserves more computation

resources for a better join plan. Spatial join has been extensively studied in different

scenarios since it is possible that none, only one or both participating data sets have

spatial index. For static data sets, a page connectivity graph can be pre-computed.

Given a buffer with size B, (Shekhar, 2002) transferred the problem of reducing

redundant I/Os to minimizing the interrelations between pages that are B away in the

ordering sequence. They proposed using graph partition techniques for spatial

clustering and provided several heuristics for better graph partition. (Xiao 2000)

proposed an approximation algorithm for solving the Maximum Overlapping problem

which is essentially the same as the Longest Path problem. Its result is guaranteed to

be at least half of the value (in terms of size of the total overlapping between pages)

of the optimal order.

29

Page ordering in disk-resident systems and broadcast systems, although

strongly related to each other, are also quite different. The purpose of the former is to

find an ordering that maximizes the overlapping spatial relationships between pages

(clusters), while the latter is to minimize the total weighted intervals between the

beginning and ending data items in all possible query result sets. While both problems

are NP-complete, the latter is practically more complex. Intuitively, all connected

edges contribute their costs to the total costs in our problem while only the

neighboring edges in the optimized ordering contribute costs to the total costs in their

problem. Furthermore, the purposes of page ordering in a disk-resident system and

data item ordering in a broadcast system are different. The former aims at making use

of data items that are already in memory as much as possible to reduce the number of

I/Os while the latter aims at reducing data access time directly.

In many of the above studies, spatial relationships are represented as graphs.

From graph algorithms’ perspective, sequencing graph nodes can be treated as a

graph layout problem. A survey on graph layout problems was presented in (Daiz,

2002). A comprehensive analysis of heuristics for both symmetric TSP (Johnson,

2002a) and asymmetric TSP (Johnson, 2002b) were provided. Spreading metric

algorithms were proposed to solve a special type of graph layout problems known as

the Linear Arrangement (Ordering) problem (Kuo, 1997; Rao, 1998; Even, 2000). A

window-based vertex orderings with applications to circuit clustering was presented

in (Alpert, 1996) where unordered vertices are iteratively added to the ordering based

on their attractions to the previously ordered vertices. Various choices of attraction

30

can capture Depth First Search (DFS), Breadth First Search (BFS) and other well-

studied graph traversals. (Bar-Yehuda, 2001) presented a polynomial time algorithm

for computing an optimal orientation (ordering) of a balanced decomposition tree for

the graph linear arrangement problem. Although the theoretical approximation ratios

were not improved, the experiments showed good results. A multi-scale scheme for

the linear arrangement problem was presented in (Koren, 2002). Different from (Bar-

Yehuda, 2001) which imposes global constraints on the ordering through a Binary

Decomposition Tree (BDT), it imposes many local constraints restricting small sets of

vertices throughout the entire multi-scale hierarchy. The optimization methods

presented in this dissertation (Chapter 6) are closely related to the work of (Bar-

Yehuda, 2001).

2.4 Other Related Work

Surveys on graph partition and spatial data clustering were presented in

(Alpert, 1995; Schloege, 2000) and (Han, 2001), respectively. Network clustering

methods have been proposed, such as graph partition based (Shekhar, 1997a), spatial

proximity based (Huang, 1996) and network traversal based (Woo, 2000).

(Seydim 2001) presented a preliminary work on location dependent queries

processing. (Ren 2000) proposed using semantic caching to manage location

dependent data in mobile computing. Simulation results showed that their Furthest

Away Replacement (FAR) cache replacement policy has better performance than

conventional page caching. (Zheng, 2001) specifically addressed location dependent

31

32

queries in a multi-cell wireless environment. They used Voronoi diagrams to

construct an index and a semantic cache for improving data reusability. They also

proposed several scheduling methods for handoff clients. Both (Ren 2000) and

(Zheng 2001) assumed a point-to-point data communication architecture and the

client can provide its exact location when it submits location dependent queries.

Although a client can explicitly and continuously submit its location dependent

queries and retrieve results, (Lam, 2001) addressed another kind of location

dependent continuous queries. In this case, once a client has submitted a location

dependent query, the system will automatically update the client’s location and

retrieve the updated information.

In this study we only address the problem of static geographical data

broadcasting, i.e., geographical data items that do not change over time, such as

locations of ATM machines and gas stations. It might be interesting to investigate on

broadcasting moving objects. The possible applications include monitoring natural

hazard events in remote areas and locating taxi in urban areas. Several data models

(Guting, 2000; Forlizzi, 2000), storage (Chon, 2001), indexing (Kollios, 1999;

Agarwal, 2000; Pfoser, 2000; Saltenis, 2000) and query processing methods (Sistla,

1997; Wolfson, 1999; Vazirgiannis, 2001) have been proposed for moving objects in

disk-resident databases. However to the best of our knowledge, none of them has

addressed the problem of broadcast moving data objects over air.

Chapter 3

Geographical Data Broadcast Cost Models

As discussed in Section 2.1, AT is further divided into two components,

namely Probe Wait and Bcast Wait. We argue that it might be more appropriate to

divide AT into four components: Index-Probe Wait (IPW), Index-Bcast Wait (IBW),

Data-Probe Wait (DPW) and Data-Bcast Wait (DBW). IPW is the same as Probe

Wait defined in (Imielinski, 1997), i.e., the time duration of getting to the nearest

index segment. IBW is the time duration from the time when the first index segment

is reached to the time when the last index segment is reached. DPW is defined as the

duration from the time the last index segment is reached to the time when the first

data segment is reached. DBW is defined as the duration from the time when the first

data segment is reached to the time when the last data item is downloaded. The

summation of IBW, DPW and DBW is equivalent to the Bcast Wait defined in

(Imielinski, 1997). These four components are illustrated in Fig. 3-1 for two

scenarios. We assume each index segment contains a certain number of pointers each

of which points to a data segment, and each data segment contains only one data item.

We use the intervals between the beginning and ending positions of data items as the

measurements of the four components of access time as discussed in Chapter 2.

33

 Non-Required Data DNon-Required IndexI

Required DataDRequired Index I

Pointers

(a) Index and Data Are Multiplexed Into One Single Broadcast Channel

I I I D D D D D D D D I I D D D …… D

Broadcast Cycle

T5

IPW IBW DPW

T2 T3
T4

T1

DBW

Access Sequence

D

I I I I I

D D D D D D D D

I I ……

Index Broadcast Cycle

D

Pointers

Access Sequence

IPW

I

IBW

DBW DPW

T2
T3

T4

T5

T1

Data Broadcast Cycle

(b) Index and Data Use Two Separate Broadcast Channels

 T1: Time to begin accessing the broadcast channel
T2: Time to reach the first requested index segment
T3: Time when all requested index segments are downloaded
T4: Time to reach the first requested data segment
T5: Time when all requested data segments are downloaded
Fig. 3-1. The Four Components of Access Time

34

The definitions allow measuring the performance of index sequencing and

data sequencing separately. Furthermore, they allow measuring the performance

when index and data are broadcast using separate channels where the definitions in

(Imielinski, 1997) only allow measuring the performance when index and data are

broadcast using a single channel. In this study, we aim at reducing access time by

providing a smarter arrangement of data items in the broadcast channel.

We believe reducing DBW is more important due to the following reasons.

First, a client is able to remain in sleep mode during Probe Waits (IPW or DPW).

However, it must switch modes during Bcast Waits (IBW or DBW). Generally we

can assume that the shorter the DBW is, the fewer mode switches occur. The reason

is that data segments that need to be downloaded are more likely to be in a

consecutive order for a smaller DBW, and thus, the number of mode switches among

them can be reduced. Compared with IBW, DBW is much larger since data is usually

much larger than its index, and thus, it is critical to minimize DBW. Second, only one

pointer (the position of the nearest index segment) is recorded during IPW and at

most k pointers are recorded during IBW+DPW where k is the number of data items

in a query result set. However, there could be up to k data items that are recorded

during DBW. Since usually the size of a data item is much larger than that of a

pointer, it is desirable to reduce DBW as much as possible to reduce energy

consumption for storing data items that have already been downloaded during the

data access process.

35

We are also interested in the total access time to data, i.e.,

ATData=DBW+DPW. In this dissertation we consider two popular scenarios that

involve both DBW and DPW. The first is that we assume the data and the index are

multiplexed into one single broadcast channel. Here both the data and index segments

are broadcast only once in a cycle and the index segments are placed ahead of the

data segments. Without loss of generality we assume the index is placed at the

beginning of a broadcast cycle since the broadcast sequence is cyclic. In this case, a

client will have to wait for the beginning of a broadcast cycle (Fig. 3-1a) before

accessing data items. The second scenario is that the data and index segments are

broadcast in two separate channels and both the data and index segments are

broadcast only once in their respective cycles. In this case, a client might begin to

access the data channel at any position after it retrieves the pointers to the data

segments from the index channel (Fig. 3-1b). We call the first scenario as

“Multiplexing Scheme” or MUL, and the second scenario as “Separate Channels

Scheme” or SEP.

Throughout this dissertation, we use “access time cost” to refer to the access

time needed to complete a complex query over a broadcast sequence. For the rest of

this chapter, we first propose the cost models to compute the DBW and the ATData

under the two scenarios for a single complex query. We then present the cost models

to compute the total DBW and the access time to data in the two scenarios for all

queries over a data set. We handle spatial range queries for point data and network

path queries for graph data separately although they both follow a similar framework.

36

3.1 Cost Models for Processing a Single Complex Query
Suppose the length of the broadcast cycle of a data channel is L. Let L2 denote

the access time of a single complex query result, i.e., DBW. Let L1 and L3 denote the

time before L2 and after L2 in the broadcast sequence as shown in Fig. 3-2. Note that

L=L1+L2+L3.

T1: Time to begin a broadcast cycle
T2: Time to access the first required data item
T3: Time to access the last required data item
T4: Time to end a broadcast cycle

T4

T3 T2

T1
L

L3L2L1

Fig. 3-2. Illustration of L1, L2 and L3

We next compute the average cost for a single complex query under the

Multiplexing scheme and Separate Channels scheme assuming a client begins to

access the data channel randomly.

• Multiplexing Scheme: the access time cost to the data channel can be

calculated as:
21 LLAT Mul

Data +=

• Using Separate Channels: there are three cases that a client might begin to

access the data channel. We compute their total access time costs seperately

and then compute the average access time cost.

37

Case1: a client begins to access the data channel during L1. Suppose its initial

access poistion is i then it has to wait for an amount of time equivalent to (L1-i) before

downloading data during L2, thus the total costs over all possible i is:

21

11
1

0
21 *

2
)1()(1

1

LLLLLiLCost
L

i

+
+

=+−= ∑
−

=

Case 2: a client begins to access the data channel during L2. Regardless of its

initial access position, it has to wait for the whole broadcast cycle to retrieve all the

data items. Thus the total cost is:

2*2 LLCost =

Note that there is a slight overestimation here as shown in Fig. 3-3 (the shaded

data items are the ones in the query result set). We need a part of L2 in the current

broadcast cycle (L2c) and a part of L2 in the next broadcast cycle (L2n). However their

total might be less than L2 since the rest of L2, i.e., L2m= L2 - L2c - L2n, is not required.

Suppose there are n data items in the query result set and they are evenly distributed

among L2, then the overestimation on average is the half of the interval between two

required data items among L2, i.e., L2/(2n). We omit this overestimation to make our

result more concise and easy to use as can be seen in computing the average shortly.

T0

T1 T3 T2

L2mL2n

D

L2c

L2

D D DDDDDD

T0: Time to begin access the broadcast channel
T1: The end of the current broadcast cycle
T2: The beginning of the next broadcast cycle (The same as T1)
T3: Time to access the last required item in the next broadcast cycle

Fig. 3-3. Illustration of the Overestimation in Case 2

38

Case 3: a client begins to access the data channel in L3. It has to wait for the

rest of the time in L3 in the current broadcast cycle and L1+L2 in the next broadcast

cycle. Thus the total cost is:

∑∑
−

=

−

=

−
−=−=++−=

1

0

33
3

1

0
213

33

2
)1(

*)()(3
L

i

L

i

LL
LLiLLLiLCost

Since there are totally L intial access positions, the average is :

]
2

)1)((
[1

]
2

)1)((
[1

]
2

)1*2)((
[1

]
2

)1)((
)(*[1

)](**
2

)1)((
[1

)](**
2

)1)((
[1

]
2

)1(

2
)1(

[1

)321(1

222

3122

31122

312
21

2

121
312

3221
3131

33
3221

11

−−−
−=

−+−
−=

−+−−
−=

+−−
+−−=

−++
+−−

=

+++
+−+

=

−
−+++

+
=

++=

LLLL
L

L

LLLL
L

L

LLLLL
L

L

LLLL
LLLL

L

LLLLL
LLLL

L

LLLLL
LLLL

L

LL
LLLLLL

LL
L

CostCostCost
L

AT Sep
Data

From the result we can see that the average access time to the data channel in

the Separate Channels scheme is determined only by L and L2. Usually the number of

data items in a query result is far fewer than the total number of data items in a whole

broadcast cycle, thus it is reasonable to assume L-L2>>1. Under this assumption, the

formula can be simplified as
L

LLLAT Sep
Data 22

2
2

2 −+=

39

To further investigate the relationship between the average access time to the

data channel and L2, we can rewrite the formula as follows:

]
2

)
2
1(

8
1[1

]
2

4
1)

2
1()

2
(*2)(

[1

]
2

)()([1

2
2

2

222
2

2

2
2

22

−−
−+=

−+
−

−−
−=

−−−
−=

LL
L

L

LLLL
L

L

LLLLL
L

AT Sep
Data

Since L2<L, the average cost decreases monotonically as L2 decreases.

Let function g(L2) be
L

LLL
22

)g(L
2

2
22 −+= . We will use this in the following

analysis.

3.2 Spatial Range Query for Point Data
In this section we first compute all possible query result sets and their weights

by exploring spatial semantics of a point data set and then we develop the cost models

for DBW and the two scenarios of ATData by summarizing the weighted access time of

individual query results we have developed in the last section.

 Let DS=[x1,x2)× [y1,y2) be the data space that defines all the geographical

data points. Let the range query window size be (qx,qy). We define the Extended

Region Ru of point Pu as the rectangle of size (qx,qy) centered at Pu. As shown in Fig.

3-4, the distribution of the centers of the query window regions of size (qx,qy) that

contain the data item Pu is the extended region of Ru. Furthermore, from Fig. 3-5 we

can see that the distribution of the centers of the query window of size (qx,qy) that

contain both the data items Pu and Pv is the intersection of their extended regions Ru

40

and Rv. This relationship can be extended to higher orders, up to the intersected region

among all n extended regions.

Pu

qy/2

qx/2

 Fig. 3-4. The Possible Distribution of Centers of Query Regions That Contain Pu

Pv

Pu

qy/2

qx/2

qy/2
qx/2

Fig. 3-5. The Possible Distribution of Centers of Query Regions That Contain

Both Pu and Pv (Shaded Area)

We assume that all the locations inside the study region are equally likely to

be the users’ locations at the time they issue a spatial range query, i.e., the centers of

query windows. The access frequencies of a subset of data points resulted from the

spatial range location-dependent queries is proportional to the area of the distributions

41

of the centers of the query windows that contain the subset of data points. Thus, the

access frequency of such data points in the subset is proportional to the intersection

area of their extended regions (area). Assume the number of spatial range queries

requested in the studied area is a fixed number (M), let c=
)(*)(1212 yyxx

M
−−

, then the

access frequency of the query result set (freq) is freq=c*area. For the sake of

simplicity we omit the constant factor c and only use area as the access frequency for

a query result set. Note that the access frequency of a subset S is no less than the

access frequency of another subset S’ if S⊆S’ since the intersection area of the

extended regions of the points in S’ is a subset of the intersected area of the extended

regions of the points in S.

Let be the area of RiA i, be the intersection area of RjiA , i and Rj, …, be

the intersection area of R

nA ...2,1

1, R2…Rn. Let iA~ be the part of that solely contains point

P

iA

i, jiA ,
~ be the part of that solely contains points PjiA , i and Pj, … nA ...2,1

~ be the part of

the intersection area of R1, R2…Rn that contains all n points. It is easy to see that we

have the following relations:

nn

n

kjik
kjijiji

n

jij
jiii

AA

AAA

AAA

..2,1,...2,1

,1
,,,,

,1
,

~
...

~

~

=

−=

−=

≠≠=

≠=

U

U

42

Let function π(u) map point u to its position in the broadcast sequence.

According to our previous definitions and assumptions, the DBW for a single query

result set that contains k data items n1, n2 … nk, which is the definition of L2 (c.f. Fig.

3-2), is))(),...(),(min())(),...(),(max(2121 kk nnnnnn ππππππ − . Correspondingly, L1

is min{)}(),...(),(21 knnn πππ .

The total DBW cost for a query window (qx,qy) is the summation of the

weighted DBW for all possible query result sets. For a query result set that contains

only two points i and j, the interval between them in the broadcast sequence is |π(i)-

π(j)|. Its weight is jiA ,
~ and its weighted DBW is |)()(|*~),(jiA yx qq

ij ππ −

)))(),(

. Note that i

and j can be any two points the extended regions of which intersect with each other.

Similarly the weighted DBW for a query result set that contain three points, i, j and k,

is),(min())(),(),(max(* (~),(
,, ikjA yx qq
kji ππππ − kj πiπ and so on. Thus the total

DBW cost for all possible query result sets with query window of size (qx,qy) can be

written as follows:

)))()...2(),1(min())()...2(),1((max(*~
...

)))(),(),(min())(),(),((max(*~

|)()(|*~

),(
,...2,1

1

),(
,,

1

),(

),(

nnA

kjikjiA

jiA

Cost

yx

yx

yx

yx

qq
n

nkji

qq
kji

nji

qq
ij

qq

ππππππ

ππππππ

ππ

−+

+

−+

−=

∑

∑

≤≤<≤

≤<≤

43

The final total cost of DBW is the summation of DBWCost over all

possible query windows Q, i.e.,

),(yx qq

)))()...2(),1(min())()...2(),1((max(*~
...

)))(),(),(min())(),(),((max(*~

|)()(|*
~

),(
,...2,1

),(

1

),(
,,

),(

1

),(
,

),(

),(

),(

nnA

kjikjiA

jiA

CostCost

yx

yx

yx

yx

yx

yx

yx

yx

qq
n

Qqq

nkji

qq
kji

Qqq

nji

qq
ji

Qqq

Qqq

qqDBW

ππππππ

ππππππ

ππ

−+

+

−+

−=

=

∑

∑∑

∑∑

∑

∈

≤≤<≤∈

≤<≤∈

∈

∑

∑

∑

∑

∈

∈

∈

∈

=

=

=

=

Qqq

qq
nn

Qqq

qq
kjikji

Qqq

qq
jiji

Qqq

qq
ii

yx

yx

yx

yx

yx

yx

yx

yx

Aw

Aw

Aw

Aw

),(

),(
,...2,1,...2,1

),(

),(
,,,,

),(

),(
,,

),(

),(

~
...

~

~

~Let

Then

)))()...2(),1(min())()...2(),1((max(*
...

)))(),(),(min())(),(),((max(*

|)()(|*

,...2,1

1
,,

1
,

nnw

kjikjiw

jiw

DBW

n

nkji
kji

nji
ji

ππππππ

ππππππ

ππ

−+
+

−+

−

=

∑

∑

≤≤<≤

≤<≤

44

Similarly, the costs of access time to data under the Multiplexing scheme,

, and Separate Channels scheme, are as follows: SepATMul
DataAT Data

))()...2(),1(max(*
...

))(),(),(max(*

))(),(max(*

)(*

,...2,1

1
,,

1
,

1

nw

kjiw

jiw

iw

AT

n

nkji
kji

nji
ji

ni
i

Mul
Data

πππ

πππ

ππ

π

+
+

+

+

=

=

∑

∑

∑

≤≤<≤

≤<≤

≤≤

)))()...2(),1(min()))()...2(),1((max(*
...

)))(),(),(min())(),(),((max(*

|))()((|*

,...2,1

1
,,

1
,

nngw

kjikjigw

jigw

AT

n

kji
kji

nji
ji

Sep
Data

ππππππ

ππππππ

ππ

−+
+

−+

−

=

∑

∑

≤≤<≤

≤<≤

Note that we omit the access times of queries that only have a single data item

(which is L/2) in the SEP scheme since they are constant and do not contribute to the

determination of optimal ordering.

45

3.3 Network Path Query for Graph Data
Let V denote the vertex set of the network. Let Sij denote a path sequence with

access frequency f(i,j) for source vertex i and destination vertex j. Assume the order

of the k vertexes in the path are S0
ij, S1

ij, ….Sk
ij. The total DBW cost for the queries of

all pairs of the shortest paths between any two vertexes over the broadcast sequence

can be computed as follows:

)))(min())((max(*),(

00,
ij

m
k

m
ij

m
k

mVjVi
SSjifDBW ππ

==
∈∈

∀−∀= ∑

This is essentially the same as the cost for spatial range queries. f(i,j) is

equivalent to wi,j, wi,j,k,…w1,2…,.n depending on the number of vertexes along the path

between vertex i and j. If we group f(i,j) by k=|Sij| and denote this as f(i,j)k, then

f(i,j)2≡ wi,j, f(i,j)3≡ wi,j,k, … f(i,j)n≡ w1,2,..n.

Similarly, the costs of access time to the data channel under the Multiplexing

and Separate Channels schemes for network path query of graph data are as follows

correspondingly:

))(max(*),(

0,
ij

m
k

mVjVi

Mul
Data SjifAT π

=
∈∈

∀= ∑

)))(min())((max(*),(

00,
ij

m
k

m
ij

m
k

mVjVi

Sep
Data SSgjifAT ππ

==
∈∈

∀−∀= ∑

Now our problem is how to minimize the DBW and the access time to data

under the Multiplexing and Separate channels schemes. To solve this problem, we

first present a unified hypergraph representation of the spatial range query for point

data and network path query for graph data in Chapter 4. Based on this representation

46

we relate the optimization problem with the well-known graph layout problems. We

then present the optimization methods for the access time under the three cost models

which are presented in Chapter 6.

3.4 Discussions on Related Work
The cost model presented in (Chung, 2001) is the work most related to our

cost model under the Multiplexing scheme. The cost model is restated as follows

using our definitions for the purpose of consistency. Let tj=dj+δj where dj is the time

to access the jth required item and δj is the time between the jth and (j+1)th required

data items in a broadcast channel. Let F(y) be the access time of query q begin to

access the broadcast channel at time (position) y in the broadcast sequence. They

considered two scenarios when accessing the jth data item in the broadcast sequence.

When a user begins to access the broadcast channel during 0~|dj|, the user has to wait

for the whole broadcast cycle to retrieve dj, thus F(y)=L. During |dj| ~tj, a user begins

to access the channel at position y during δj and it takes L-y units time at most to

retrieve the jth data item, thus F(y)=L-y+|dj|. The average cost for processing the query

can be written as follows as derived in (Chung, 2001):

∑

∑

∫ ∫

∑ ∫ ∫

∫ ∑ ∫

=

=

=

=

−=

−−=

+−+=

+=

==

n

i
j

n

i
jj

d t

d j

n

j

d t

d

L n

j

t

L
L

dt
L

L

dydyLLdy
L

dyyFdyyF
L

dyyF
L

dyyFCost

j j

j

j j

j

j

1

2

1

||

0 ||

1

||

0 ||

0 1 0

2
1

|)|(
2
1

]|)|(1

])()([1

)(1)(

δ

47

The authors also defined a new measure called Query Distance (QD) to

approximate the cost for a complex query q under ordering π as follows: QD(q,π)=L-

δk, where δk is the maximum of all δjs. If δk=L-L2 we can see that QD is L2. Thus

their proposal using QD to approximate the average access time is similar to ours

using L2 to approximate g(L2) as explained in details in Section 6.5.

The authors also claimed that if QD(q, π1)≥ QD(q, π2), then cost(π1) ≥cost(π2)

as the rationale for the approximation. Unfortunately their proof on the induction of

“if δk(π1)≤ δk(π2), then ∑ ” is incorrect. A counter example is as

follows. Suppose we have only three data items. Their δ

∑
==

≤
n

i
i

n

i
i

1

2
2

1

2
1)()(πδπδ

∑
=

n

i
i

1

2
2)(πδ

js under π1 are 2, 4, 4 and 3,

3, 4 under π2. Thus δk(π1) and δk(π2) are both 4. Although we have δk(π1)≤δk(π2),

=2*2+4*4=20≤ =3*3+3*3=18 does not hold in the second

induction step.

∑
=

n

i
i

1

2
1)(πδ

Since they failed to prove the correctness of using QD (L2) to approximate the

cost (g(L2)), it is natural for readers to question the validity of our cost model and

approximation proposal (using L2 to approximate g(L2)). We next show that under

certain circumstances we can reduce their complex cost model to ours and prove the

validity of our approximation proposal.

In (Chung, 2001), when δk=L-L2 and δj=0 (for all j=1~n and j≠k), this cost

model is essentially the same as ours. Although this condition does not hold in most

48

cases, when δk is large, δk
2

 dominates the term due to the quadratic

relationship and we can use δ

∑
=

n

i
j

1

2δ

k
2 to approximate ∑ . We believe that the condition

can be satisfied in the orderings based on reasonably good heuristics that utilize

spatial relationship. For orderings based on these heuristics, data items in the same

queries are likely to be close to each other in the orderings which makes δ

=

n

i
j

1

2δ

k=L-L2

much larger than other δi.

In summary, the work (Chuang 2001) first provided an accurate yet complex

cost model. They proposed to use a simpler parameter (QD) to approximate the cost

computed by the model. Unfortunately, their proof of the monotonic relationship

between QD and the cost model is not correct. On the other hand, we make some

approximations (by omitting L2m as discussed in Section 3.1) at the beginning of

deriving our cost model. The derived cost model is simpler and easier to compute. In

addition, we are able to show the monotonic relationship between L2 and g(L2) which

provides a theoretical foundation for approximation.

49

Chapter 4

Hypergraph Representation of Spatial Semantics

In Section 3.2 and Section 3.3 of Chapter 3 we treat each query result set

individually without considering the relationships between the elements in multiple

query result sets. From the graph theory perspective we can represent all the elements

in the query result sets as nodes and the query result sets as the hyperedges. A

hyperedge is an extension of a regular edge and consists one or more nodes. This

representation allows the application of many well-studied hypergraph/graph

algorithms to our applications directly or after some modifications. In this chapter we

first introduce the hypergraph representation for both spatial range queries and

network path queries. We then present an efficient method to compute the weights of

the hypergraph for spatial range queries in point data sets. We propose an

approximation method to covert a hypergraph into a regular graph that allows the use

of regular graph algorithms, such as traversal and partition algorithms, in generating

heuristic orderings (Chapter 5) and developing optimization methods (Chapter 6).

4.1 The Hypergraph Representation

In our hypergraph representation, the node set is all the points in a point data

set or all vertexes in a graph data set. The points of a spatial range query result set

{n1,n2..nk} or the vertexes along a path between vertex i and vertex j, i.e., {S0
ij, S1

ij,

….Sk
ij } form a subset of the node set V. Each of such subsets makes a hyperedge

50

(Fig. 4-1 and Fig. 4-2). Note that the circled numbers represent the hypergraph nodes

and the numbers inside rectangles denote the weights of the hyperedges.

In Fig. 4-1, the query window size is (10,10), thus all the four points have

extended areas (R1, R2, R3 and R4) of size 100, i.e. A1=A2=A3=A4=100. The

intersection of R1 and R2 is R12 (shaded) and the area of which is A12=36. Similarly we

have A13=16, A23=56, A24=7, A34=12, A123=14, A234=4. By using the Inclusion-

Exclusion Theorem in set operations, we can compute 1
~A as

1
~A =A1-(A12+A13-A123)=100-36-16+14=62

Similarly we can have 2
~A =19, 3

~A =34, 4
~A =85, 12

~A =22, 13
~A =2, 23

~A =38, 24
~A =3,

34
~A =8, 123

~A =14, 234
~A =4.

Part of hyper-graph
where each edge has
three nodes

Part of hyper-graph
where each edge has
two nodes
 (Regular Graph)

Part of hyper-graph
where each edge has
only one node

85
3462

4
3

2
1

19

4

14
4

3
2

1

8

3

2

3822 4

3

2

1

R12 R2 R1

4

3

2 1

Fig. 4-1. Hypergraph Representation of Spatial Relationships of Point Data

In Fig. 4-2, the first component of the hypergraph representation is the four

vertexes. They can be treated as the degenerated cases for path query results where

the source vertex i is the same as the destination vertex j, i.e., ||Sij||=1. The second

component includes paths (1,2), (2,3) and (2,4) where ||Sij||=2, the third component

includes paths (1,2,3), (2,3,4) and (1,2,4) where ||Sij||=3.

51

For spatial range queries, we use wi, wi,j, wi,j,k…w1,2,..n as the weights for the

hyperedges that have 1,2,…n nodes. For network path queries, we use f(i,j) as the

weights for the hyperedges. Although the weights of the hypergraph can be computed

based on the geometry of the points in a point data set as shown in the next section,

the weights of the hypergraph of graph data, which are the access frequencies of the

paths in the graph data, can only be measured or estimated by domain experts. For

example, the access frequency of a highway between two cities is determined by the

mutual attraction factors and the transportation cost between them that is decided not

only by the distance but also by road conditions and other complex interrelated

factors.

+

+
4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

Fig. 4-2. Hypergraph Representation of Spatial Relationship of Graph Data

52

4.2 Computing Hypergraph Weights for Point Data
Although the method based on the Inclusion-Exclusion theorem used in the

last section to compute the weight of the hypergraph edges is straightforward, the

implementation based on it is not very efficient. We will refer to this method as the

Inclusion-Exclusion method. The reasons are as follows. Suppose the number of data

points in a data set is n. First of all we need to compute , … for all

possible 0<i<n, 0<i<j<n, …etc. This can be done by computing the intersections

among all R

iA jiA , nA ...2,1

iA

is to get Ai,j, computing the intersections among all Ri,j to get Ai,j,k, etc.

This process might repeat up to n rounds and the number of regions to be intersected

in each round increases monotonically. For each round, the computation complexity

can be reduced from O(N2) of an intuitive method, which exhaustively examines the

intersection between two regions, to O(N*logN) by using the well known Line

Sweeping algorithm (Cormen, 2001) where N is the number of regions to be

intersected in each round. Thus the total number of intersections performed is in the

order of where N∑
=

n

i
ii NN

1
log* i is the number of regions to be intersected in each

round i. N1 is the number of regions to be intersected in the initial data set, i.e., N1=n.

Since N1<N2…<Nn, this number is at least in the order of (n2log(n)). Second,

maintaining the relationships among , … in order to compute iA jiA , nA ...2,1
~ , jiA ,

~ ,

… nA ...2,1
~ is either very time consuming or very space consuming. Furthermore, the

implementation of the Line Sweeping algorithm is not trivial.

53

R6

R5

R4

R3

R2

R1

654

321

X11X3X1 X0

Y11

X2

Y0
Y1

Fig. 4-3. Computing the Smallest Intersection Regions

We next describe a simple intuitive method with a complexity of O(n3). The

idea behind the method is that we first compute all the possible smallest intersection

regions (e.g., regions 1-6 in Fig. 4-3) and then assemble them in their corresponding

result set (Cixiang Zhan, Environmental Research Institute - ESRI, 2001, Personal

Communication). We call this method Intersect-Assemble method. The process is

shown in Fig. 4-4. It first sorts the coordinates of all points along the x and y

directions respectively. For each of the two neighboring coordinates along the x and y

direction, xi and xi+1 and yi and yi+1, a smallest rectangle can be constructed using

these coordinates. For each of such rectangles, the algorithm examines which original

regions contain it and all the labels of these original rectangles form a final result set.

If multiple smallest rectangles are contained in a result set, their area will be summed

up and set as the area of the result set.

Assume there are six regions (R1 through R6) to be intersected as shown in Fig

4-3. They have 12 distinct coordinates along the x and y directions, thus there are (12-

54

1)*(12-1) smallest rectangles. We focus on the three regions on the top-left since

they intersect with one another while do not intersect with the other three regions.

There are six smallest rectangles in region R3 as numbered 1 through 6. Rectangle 1 is

contained in both region R1 and R3, thus its label is L13, similarly rectangle 4 is

labeled as L123 and rectangle 5 is labeled as L23. Rectangles 2, 3 and 6 are all labeled

as L3 and their areas are summed up. Thus we have

3
~A =area(2)+area(3)+area(6), 23

~A =area(5), 13
~A =area(1), 123

~A =area(4)

End

Input: An array of n regions Rect
Output: A hash table H, each entry of which stores the label (hash key) and the area value.

Set H to empty

 Extract x and y coordinates of the points in the n regions into two arrays X and Y with size
of 2*n.

Sort these two arrays, in ascending order.
 For each i from 0 to 2*n-1

 For j from 0 to 2*n-1
 Build a rectangle (tempRect) with the following four coordinates (X[i],Y[j],

X[i+1],y[j+1])
 Set the label set (L) of tempRect to empty.
 For k=0 to n-1
 If tempRect is within Rect[k] then
 Add k to L

 End if
 End for k

 If L is not empty
 If L is already in H

 H(L)=H(L)+area(tempRect)
 Else

 H(L)= area(tempRect)
 End if
 End if

 End For j
End For i

Fig. 4-4. The Intersect-Assemble Method

for Generating Hyperedge Weights

55

It takes four comparisons to determine whether tempRect is within an original

rectangle. Assuming it takes Q0 time on average to perform a lookup in a hash table,

since in the worst case there is always an update for each lookup which is also

assumed to take Q0 time, the cost of processing a single smallest rectangle is at most

4*n+ Q0+ Q0=4*n+2*Q0. Since there are (2n-1)*(2n-1) of such smallest rectangles

(i.e., i and j loops), the complexity of the algorithm is (2n-1)*(2n-1)*(4n+2*Q0).

Since usually it takes sub-linear complexity to look up a data item in a hash table by

using a reasonable hash function, i.e., O(Q0)<O(n). Thus the above algorithm has

approximately O(n*n*n)=O(n3) complexity. Although the theoretical complexity of

the Intersect-Assemble method is higher than that of Inclusion-Exclusion method, it is

still competitive due to the simple implementation when n is small. However, the

computation cost is prohibitive when n is big and we need a more efficient method.

We observe that the number of intersection rectangles associated with each

intersection line, i.e., a unique coordinates along either the x or y direction as shown

in Fig. 4-3, is very likely to be much smaller than n. A region often only intersects

with a limited number of other regions since the size of a region is limited. According

to a hypergraph representation, this also means the number of nodes in a hyperedge is

bounded by a constant. In fact, this is one of the assumptions in our complexity

analysis of one of the proposed optimization methods as detailed in Section 6.6 of

Chapter 6. As an example, in Fig. 4-3, the number of regions to be intersected is six

while the maximum number of regions that intersect with one another is only 3.

56

Based on this observation, we propose a new method in computing the weights of the

hypergraph for a point data set. Since the method explores R-Tree spatial index

(Guttman, 1984), we call it the R-Tree based method.

For each of the extended regions of the points in a point data set, the method

first retrieves all the extended regions that intersect with it. It then applies the

Intersection-Assemble method on these regions. For each of the entries in the

resultant hash table, the method first checks whether the label of the entry contains

the label of the extended region under consideration. If true, the method further

checks whether the entry has already existed in the output hash table. It will add the

area value of the entry to the output hash table if the entry does exist, otherwise it will

add the entry to the output hash table. The process is shown in Fig. 4-5.

Input: An array of n regions Rect
Output: A hash table H, each entry of which stores the label (hash key) and the area value

1. Construct an R-Tree for Rect
2. For each leaf node ni in the R-Tree (i.e., an extend region)

2.1 Retrieve all the extended regions that intersect ni from the R-Tree and store it in array
Rect’

2.2 Apply the Intersect-Assemble method for Rect’ (c.f. Fig.4-4) and store the result in a
hash table H’

2.3 For entry (L,A) pair in H’ where L is the hash key and A is the value of the entry
 Test whether the entry can be found in H and set the corresponding flag array

element F(L)
 End for
 2.4 For entry (L,A) pair in H’
 If L contains the label of ni and F(L) then
 If L is already in H then
 H(L)=H(L)+A
 Else
 H(L)=A
 End if
 End If
 End For

End For
Fig. 4-5. The R-Tree Based Method for Generating Hyperedge Weights

57

The efficiency of the R-Tree based method is achieved by only performing the

expensive O(n3) Intersection-Assemble method for a subset of the point data set.

Although an extended region of a point might be involved multiple times when

calling the Intersection-Assemble method, the overall computation complexity can be

reduced as analyzed in the following. Although the strict complexity analysis of R-

Tree and its variant R*-tree (Beckmann, 1990) is not available, they are

experimentally shown to be low-cost spatial indexing methods which is super linear

but sub-quadratic. We assume R-Tree construction complexity is O(n*log(n)) and the

search complexity in an R-Tree is O(log(n)) (which is the lower bounds of sorting and

searching in tree data structures), where n is the number of points in a point data set.

We also assumes the number of extended regions intersecting with the extended

region of a node is bounded by a constant as discussed above, the cost of the

Intersection-Assemble method on them is also independent of n. We use CIA to denote

such a cost. Thus the total cost of the R-Tree based method in the best scenario is in

the order of n*log(n)+n*(log(n)+CIA), i.e. O(n*log(n)+n*CIA). Theoretically when n

is big, the n*log(n) term will dominate and reduce the complexity to O(n*log(n)).

However, for practical n values (e.g., 100-10000), the CIA constant is likely to be

much larger than log(n). Thus we are expecting this algorithm to be linear with

respect to n with a large hidden factor.

58

4.3 Relationship with MinLA
Using the hypergraph representation, our problem of minimizing the total

query cost is related to the graph Minimum Linear Arrangement problem (MinLA) as

explained below.

The goal in MinLA is to find an ordering that minimizes the weighted sum of

the edge lengths. The edge length is defined as the difference of the positions of the

beginning node and the ending node of an edge in an ordering. Let w(u,v) be the

weight of the edge (u,v) and π(u) be the position mapping function the same as

defined in Chapter 3. The weighted sum of the edge lengths with respect to an

ordering is defined as follows (Daíz, 2002).

|)()(|)*,()(

),(

vuvuwGla
Evu

ππ∑
∈

−=

As we can see that the definition of DBW is the same as that of la(G) except

that we need to replace a regular graph edge with a hypergraph edge and set u and v

to be the nodes that have the maximum/minimum positions in the ordering. However,

ATData
Mul depends only on the maximum position of nodes the in a hyperedge and

ATData
Sep has a quadratic relation with respect to the difference of the

maximum/minimum positions of the nodes in a hyperedge. Both of them are non-

linear with respect to the difference (or the “edge length” defined in MinLA) that

makes the existing MinLA methods (Bar-Yehuda, 2001; Koren, 2002) not suitable to

solve our problems. Nevertheless they can be the basis for further improvement.

59

Actually we propose to use DBW to approximate ATData
Sep and then use an efficient

MinLA algorithm to optimize it which is discussed in detail in Chapter 6.

4.4 Efficient Hypergraph Data Structures
Since we represent all possible query result sets as a hypergraph, we next

introduce several efficient hypergraph data structures that are crucial in achieving

efficiency for our methods. Some of them have also been used in the implementation

of (Bar-Yehuda, 2001).

First, the nodes of the hyperedges are stored sequentially in an array (called a

node array) and the positions that mark the endings of the hyperedges in the array are

stored in another array (called an edge index array), which serve as indexes to the

nodes in the hyperedges. The weights of the hyperedges are stored in a third array

(weight array). An inverse hypergraph is also built for the hypergraph. The inverse

hypergraph has an array to store the hyperedge IDs that contain the nodes in the

original graph sequentially (called an edge array). Similar to the index array used in a

hypergraph, the positions that mark the endings of hyperedges containing the nodes

are stored in a second array (called a node index array) of the inverse hypergraph. We

will show how these arrays can be used to efficiently manipulate a hypergraph

through an example shortly.

To build the hypergraph data arrays, a hypergraph data file is needed to be

scanned twice. The hypergraph data file is assumed to be stored in the order of

hyperedges and the numbers of nodes and hyperedges are given. Each hyperedge is

60

stored as a record in the data file with the following format: its number of nodes in

the hyperedge, followed by the IDs of the nodes, then its weight. During the first

scan, the edge index array and the weight array are filled. After the first scan, the total

number of nodes in all hyperedges is computed and the node array of the hypergraph

is then allocated. During the second scan, the node array is actually filled while

scanning.

Once the hypergraph data arrays are constructed, the inverse hypergraph data

arrays can be constructed in a more efficient manner since their constructions require

only memory access to the hypergraph data arrays. The node array of a hypergraph is

first scanned to compute the number of hyperedges associated with each node. These

numbers are accumulated and filled in the node index array of the corresponding

inverse hypergraph. The node array of the hypergraph is then scanned the second time

to find the edge number of each node that is contained in the edge and which is then

put into the proper position of the edge array of the inverse hypergraph.

From the construction processes, we can see that both the time complexity and

space complexity of the node array, the edge index array and weight array in a

hypergraph are linear with respect to the number of total nodes in all hyperedges, the

number of hyperedges and the number of hyperedges, respectively. Similarly, both

the time complexity and space complexity of the edge array and the node index array

are linear with respect to the number of total nodes in all hyperedges and the number

of nodes in a hypergraph, respectively.

61

By using the arrays of a hypergraph and the corresponding inverse

hypergraph, we can perform the following operations efficiently. First, we can

retrieve all the nodes in a hyperedge of ID e by first retrieving the ending position of

the previous edge (e-1) and the ending position of e from the edge index array and

then retrieving all the nodes from the node array of the hypergraph. Second, we can

retrieve all the hyperedges that contain a node v by first retrieving the ending position

of the previous node (v-1) and the ending position of v from the node index array and

then retrieving all the IDs of the hyperedges between the two positions from the edge

array of the corresponding inverse hypergraph. Note that we can retrieve the weight

of a hyperedge by accessing the weight array of the hypergraph by its ID e directly.

We next illustrate these hypergraph data structures using the hypergraph

shown in Fig. 4-1. For the sake of simplicity, we remove the edges that have only one

node. The node array, edge index array and the weight array of the hypergraph, and

the edge array and the node index array of the inverse hypergraph are shown in Fig.

4-6. From the node index array of the inverse hypergraph, we know that there are 8-

3=5 hyperedges passing through node 2. By seeking the 4th through the 8th elements

in the edge array of the inverse hypergraph we know that they are hyperedges 2, 3, 5,

6, and 7. By accessing the weight array of the hypergraph, we know that their weights

are 38, 22, 3, 14 and 4, respectively. Furthermore, by looking up at the edge index

array of the hypergraph, we know that there are 13-10 =3 nodes in the hyperedge 6

and we know that they are the 11th to the 13th elements in the node array of the

hypergraph, which are nodes 1, 2 and 3 respectively.

62

Hypergraph:

Node Array:
[1,3,2,3,1,2,3,4,2,4,1,2,3,2,3,4]
Edge Array:
[0,2,4,6,8,10,13,16]
Weight Array:
[2,38,22,8,3,14,4]

Inverse Hypergraph:
Edge Array:
[1,3,6,2,3,5,6,7,1,2,4,6,7,4,5,7]
Node Array:
[0,3,8,13,16]

Hyperedge Node
List

Weight

1 1,3 2
2 2,3 38
3 1,2 22
4 3,4 8
5 2,4 3
6 1,2,3 14
7 2,3,4 4

4

14

4
3

2
1

8

3

2

+

38 22 4

3

2

1

The example hypergraph

Fig. 4-6. Illustration of the Hypergraph Data Structures

4.5 Converting A Hypergraph to A Regular Graph

As we have discussed in Section 4.1, the spatial relationships between points

in a point data set are implicit. The purpose of computing the weights of the

hyperedges in our hypergraph representation for a point data set is to make such

spatial relationships explicit. For graph data, the spatial relationships are explicitly

expressed as the access frequencies of paths and can be observed or estimated by

domain experts. Many graph algorithms related to ordering or partitioning have been

well studied, however, unfortunately, there are no corresponding hypergraph

algorithms. In order to apply these algorithms, one way is to convert a hypergraph to

a regular graph through approximations.

63

The approximation is simple for point data since we can build a graph by

adding an edge between two nodes (points) if their extended regions intersect with

each other and using the intersection area as the weight of the graph. For graph data

we propose to build a graph by summarizing the access frequencies of the paths that

pass by an edge in the original graph. The weight of edge (u,v) in the converted graph

is defined as follows:

∑ ∈
∀=)),((),(
),(

jifvuw
ijSvu

where Sij is a path that contains edge (u,v) and f(i,j) is the access frequency of

path Sij.

We call the resulting regular graph an Edge Access Frequency Graph (EAFG).

EAFG has the same topology as the original graph (not the derived hypergraph) since

neither the node set and the edge set is changed. The only difference is the weights

associated with them. In the example shown in Fig. 4-7, there are two paths passing

by edge (3,7), namely path S4,6 of [4,3,7,8,6] and path S1,5 of [1,3,7,5]. The edge

access frequency of edge (3,7) is computed as w(3,7) =f4,6+f1,5.

+f1,5 +f1,5
+f4,6

+f4,6
+f4,,6

+f1,5 +f4,6

10

7

12

3

4 9

5 6

8

11

2

1

10

7

12

3

4 9

5 6

8

11

2

1

Fig. 4-7. Illustration of EAFG Derivation

64

Since there are n! orderings for n points (for point data) or vertices (for graph

data) which are exponential with respect to n, it is impractical to enumerate all of

them and find a globally optimal ordering. Thus low-cost approximation algorithms

are desirable. We first present a family of ordering heuristics for both point data and

graph data in Chapter 5. They can be used either as the low-cost ordering techniques

when speed is a primary concern, or as the initial orderings for further improvement

using the optimization methods we are going to present in Chapter 6.

4.6 Discussions On Related Work
There are some existing work proposed to represent access patterns as data

access graphs and then use graph-theoretical approaches to generate broadcast

sequences. Compared to representing complex query result sets as hypergraphs

directly, these representations are essentially approximate in nature, similar to what

we proposed in Section 4.5 of this chapter for spatial data.

(Si, 1999) presented a Semantic Ordering Model (SOM) for relational/object-

oriented database broadcast using entity type (field/attribute) as the basic broadcast

unit (data item) and represented the access patterns of a broadcast database by a

directed graph as shown in Fig. 4-8. Each node vi is associated with a cost of

accessing an entity type (si, which reflects the total size of all entities belonging to the

entity type). Each node vi is further associated with a probability pi denoting the

probability of being accessed as the first entity in a query. Pi can be estimated as ni/n

where ni is the number of queries that accesses vi as the first entity type and n=Σni.

65

Each edge eij is associated with a weight αij indicating the likehood that vj will be

accessed by a query that vi has been accessed by the same query.

s5 p5
s3 p3

s4 p4

s2 p2s1 p1

α5,4

α1,2

α2,1 α2,3

α3,2

α2,4

α4,2
α1,5

V4

V3

V2 V1

V5

Fig. 4-8. The SOM Model and its Graph Representation (Si, 1999)

The SOM model and the directed graph representation are suitable for the

scenario where the precedence relationship between vi and vj can be easily

determined, such as the referential integrity constraints in relational databases and the

parent-children relationship in object-oriented databases. They are not applicable for

the scenario where a set of entity types is involved in a query processing but has no

precedence order between the entity types in the set. It is also worth to note that the

SOM model and the graph representation are designed for using an entity type

(attribute) as the minimum broadcast unit, i.e., vertical partition of database. Due to

the bandwidth limitation, usually only hot data items and frequent attributes are

chosen to broadcast. If almost all attributes are required by clients which is very

likely in practice, it will take almost a whole broadcast cycle to retrieve only a single

66

data item in the vertical partitioning broadcast scheme. Also since location is the most

selective attributes in spatial queries (where often most attributes are needed) and

usually only a small portion of all the data items is in a spatial query result set, we

believe tuple (record) selection rather than entity type selection is more practical in

geographical data broadcast. Thus the SOM model and its graph representation are

not suitable for geographical data broadcast.

The graph representation in (Lee, 2002) was also based on directed graph. For

each query pattern, they classified the related attributes into three groups, the select

attribute (SA), the join attributes(JA) and the project attributes (PA). They assumed

the order of the three groups to be SA JA PA. However, the attributes inside each

group are unordered. An initial graph can be built as proposed in (Si, 1999). The

unordered pairs in an attribute group in a query pattern are scanned through the rest

query patterns to determine their precedence relationship by using the SA JA PA

orders. For the attributes that still do not have a precedence relationship with any

other attributes, all the attributes in SA have directed edges with the attributes in JA,

and similarly, all the attributes in JA have directed edges with all the attributes in PA.

During the process, if there are two directed edges between node u and node v with

access frequency fuv and fvu then the two directed edges will be replaced by one

directed edge with access frequencies fuv-fvu. Although (Lee, 2002) provided several

additional methods in determining the precedence relationship between two attributes

according to SQL query patterns, it has the same problems as (Si, 1999). In the

simplest SQL query patterns where SA and JA are empty and only PA exists, it will

67

be impossible to determine the precedence relationship between the attributes in PA.

Although it is beneficial to put attributes that are often queried together near each

other, unfortunately, it is impossible to do so based on the graph representation of

query patterns proposed in (Lee, 2002a).

The method presented in (Lee, 2003) also represented query patterns as a

graph. They assumed a data item (which can be a tuple/record or an object) is the

basic broadcast unit and the data items in a query result set are unordered. Thus their

problem is essentially the same as ours. They constructed a graph before sequencing

as well. For each query and for any two data items in the query, they will put an

undirected edge between the two data items with the weight being the access

frequency of the query. The final graph is generated by combining identical edges and

setting the summation of their weights as the final weights for the combined edges.

The resulting graph in (Lee, 2003) is a combination of m complete graph where m is

the number of queries and is very likely to be dense, which makes it hard to handle.

For spatial range query on point data, we can prove that the graph generated

by the method of (Lee, 2003) is exactly the same as the approximation graph

generated by the method proposed for point data in Section 4.5 in this chapter. In

order to do so, it is sufficient to prove the weight of an edge between two arbitrary

nodes in the graph is the same in the two methods. The weight of the edge between

any two nodes (without lose of generality, we assume they are node 1 and node 2) is

Ai,j in our method. The possible query result set that contains data items 1 and 2 are

{1,2}, {1,2,3},{1,2,4},…{1,2,n},{1,2,3,4},…{1,2,…n}. Their weights, according to

68

the spatial semantics presented in Section 3.2 of Chapter 3 are 2,1
~A , 3,2,1

~A , 4,2,1
~A … nA ,2,1

~

4,3,2,1
~A … A n...2,1

~ . The weight of edge (1,2) based on the method proposed in (Lee,

2003) is the summation of these weights. By using the Inclusion-Exclusion theorem,

the summarized weight is A1,2, which is the same as our result. The method of (Lee,

2003), although applicable for handling generic complex queries, suffers from the

exponential number of possible queries with respect to the number of data items when

applied to spatial range queries. Furthermore, even if the number of queries is

bounded by a constant M, their graph construction method has the complexity of

O() where m∑
=

M

i 1

∑
=

M

i 1

im 2

im 2

i is the number of data items in a query. Our method is much

simpler by exploring spatial semantics. The worst case complexity of our method is

O(n*log(n)) using the Line Sweeping algorithm, where n is the number of nodes in

the graph, or the number of points in the data set. Although for all i, mi is less than n,

O() is likely to be much more expensive than O(n*log(n)).

69

Chapter 5

Ordering Heuristics

In this chapter, we discuss several heuristics to generate orderings of point

data. They are based on the state-of-the-art techniques in spatial data handling.

Although we try our best to cover all known heuristics that are related to our work,

obviously, they are far from complete. Nevertheless, we manage to classify them into

a coherent framework in hope that new heuristics can find their places in the

classification structure and be plugged into the architecture for further optimization

and evaluation as shown in Chapter 6 and Chapter 7.

5.1 Overview
The ordering heuristics can be generally classified into two categories. The

first category is geometry-based and the second category is graph-based. The first

category can be further divided into hierarchical and non-hierarchical sub-categories.

The hierarchical sub-category includes orderings generated by traversal of

hierarchical spatial clustering trees and traversal of spatial indexing trees, such as

Quad-Tree and the family of R-Trees (Gaede, 1998). The second sub-category of

geometry-based heuristics includes all kinds of Space Filling Curves (SFCs), such as

Z-ordering and Hilbert (Gaede, 1998). The graph-based heuristics can also be

classified into the hierarchical and non-hierarchical sub-categories. The hierarchical

graph-based heuristics are based on the traversal of recursive graph partition trees

70

(Schloegel, 2000). The non-hierarchal graph-based heuristics include classical graph-

traversals, such as Breadth-First Search (BFS), Depth-First Search (DFS) and

ordering by node degree (Gondhalekar, 1997), node weight and edge weight ([HREF

5]). We discuss heuristics based on node degree, node weight and edge weight and

their complexities in Section 5.5 since they are less explored. The BFS/DFS heuristics

are purely based on the graph topology while heuristics based on spanning tree

(Cormen, 2001) are combinations of graph topology and edge weights. We discuss

spanning tree based heuristics in Section 5.6 since it is the Maximum Spanning Tree

rather than the Minimum Spanning Tree that is proposed for broadcast ordering

(Liberatore, 2002), and there are several interesting points that need further

discussions. The classification is illustrated in Fig 5-1.

Edge
Weight

Node
Weight

Node
Degree

Graph
Traversal

Spanning
Tree

DFS BFS

Traversal
of Graph
Partition
Trees

Hilbert-
Ordering

Z-OrderingR-Trees Quad
-Tree

Traversal
of Spatial
Clustering
Trees

Space Filling
Curves

Traversal
of Spatial
Index
Trees

Non-HierarchicalHierarchicalNon-HierarchicalHierarchical

Graph-Based Geometry-Based

Ordering Heuristics

Fig. 5-1. The Classification Structure of Ordering Heuristics

71

Except for constructing graph partition trees, the heuristics we present here

have very low computation overheads. Constructing SFC codes for a point is

independent of the number of points in a data set while sorting the codes and

generating a SFC ordering takes O(n*log(n)) time using the quick sort algorithm

(Cormen, 2001). The time complexity for constructing spatial indexing trees varies,

but popular spatial indexing tree methods are sub-quadratic in order to be practically

useful. Hierarchical spatial clustering algorithms that have time complexity from O(n)

to O(n2) have been proposed (Han, 2001) where n is the number of points in the data

set. The BFS has O(V+E) complexity and the DFS has Θ(V+E) complexity, the MST

(or its variants) of Kruskal’s algorithm and Prim’s algorithm has complexities of

O(E*log(V)) and O(E*log(E)), respectively (Cormen, 2001), where V is the number

of nodes and E is the number of edges in a graph. Furthermore, many of the data

structures that are needed by the heuristics already exist in spatial databases for other

purposes (e.g. indexing), thus the extra cost, if there is any, to generate an ordering is

generally only O(n) for traversing different types of trees (Cormen, 2001). The low

cost of these heuristics make it suitable to use them to generate broadcast sequences if

speed is the primary concern or use them as the initial orderings for further

optimization if the query processing cost is the primary concern.

We explain the following ordering heuristics in detail in the subsequent

sections due to their popularity in practice, namely R-Tree traversal ordering (Section

5.2), Hilbert SFC ordering (Section 5.3), graph-partition tree traversal ordering

(Section 5.4), ordering based on degree/weights (Section 5.5) and spanning tree

72

ordering (Section 5.6). In addition, we discuss the more recent ordering methods in

Section 5.7. These ordering heuristics are used for comparisons in Chapter 7.

5.2 R-Tree Traversal Ordering
The R-Trees are extensions of B-Trees to K-dimension (Guttman, 1984) and

originally designed for disk-resident spatial data indexing. Putting spatially adjacent

data items into the same node in an index tree, the search space is reduced quickly as

the level of the R-Tree increases. Since the R-Tree is balanced, the search speed is

logarithmic with respect to the number of data items it is indexing.

In this study, we are concerned more on ordering quality rather than search

speed. In Fig. 5-2, points 1 and 2 have more chances to be queried together, thus

putting points 1 and 2 close to each other in the broadcast sequence, instead of putting

them far away from each other, will be very likely to reduce the total access time to

the data broadcast channel. Similarly we can argue for data points 3 and 4. An

ordering can be generated by the traversal of the branches in their R-Tree index.

4 321

4
3

2
1

 Traversal
Ordering:
[1, 2, 3, 4]

Fig. 5-2. A Simple Point Data Set, Its R-Tree and Traversal Ordering

However, the order of the sibling branches, which determines the access time

of a query result set that has points stranding over multiple branches, can not be

optimally determined by in-order traversal (left-to-right) as shown in Fig. 5-3.

73

Suppose the R-Tree branching factor is 3 and fill factor is 0.5 then there are at least

two branches within a node. Considering the case where we insert four data items in

the order of 1, 2, 3 and 4, then we get the R-tree as shown in Fig. 5.3. The R-tree

traversal ordering will be [1,4,2,3]. If our query region consists of points 1 and 2 then

the total length of access time will be 3 while it could be as small as 2. If our query

region consists of point 3 and 4 then we might need the next broadcast cycle to get

point 3. On the other hand, the order of [1,2,3,4] is optimal for both of the spatial

range queries. Our optimization methods proposed in Chapter 6 first decompose an

R-Tree into a binary tree and then switch the left sub-trees and the right sub-trees of

the binary tree recursively to find the best ordering in 2n-1 possible orderings.

4

3 2 4 1

32 1

Fig. 5-3. Illustration of Non-Optimal R-tree Traversal Ordering

5.3 Hilbert SFC Ordering
The SFCs first partition the whole space of a data set with a grid. Each of the

grid cells is labelled with a unique number that defines its position in the total order.

The points in the given data set are then sorted to generate a sequence. We choose

Hilbert ordering as one of the ordering heuristics to be evaluated in Chapter 7

primarily because of its theoretical capability in preserving the proximity of two

74

dimensional points in one dimensional sequence (Jagadish, 1990) and its practical

popularity as well.

Although generating Hilbert SFC for arbitrary dimensional data is not trivial,

it is relatively easy to do so in two-dimensional data. An algorithm to generate a two-

dimensional Hilbert SFC can be found in (Shekhar, 2003). Fig 5-4 shows an example

of how to construct a Hilbert SFC recursively where grid resolution refers to the

number of bits used to represent a point coordinates (in both the x and y directions).

Examples of the Hilbert SFCs of grid resolution 2 and of resolution 4 are shown in

the top and bottom parts of Fig. 5-4, respectively. We next illustrate how to generate a

resolution 4 SFC from a resolution 2 SFC.

1001

00 11
Copy

Counter-Clock
Rotation

Clockwise
Rotation

Fig. 5-4. Illustration of Recursively Generating Hilbert SFC

75

In Fig. 5-4, the grid resolution 2 Hilbert SFC is treated as a unit. A translation

is performed for a copy of the unit and these two units are put at the top of the grid

resolution 4 Hilbert SFC under generation. A copy of the two units are then made. A

90 degree clockwise rotation is performed for the left unit and a 90 degree counter-

clockwise rotation is then performed for the right unit. These two units are put at the

bottom to complete the resolution 4 Hilbert SFC.

Unlike generating R-Trees, generating Hilbert code for a point is independent

of other points in the data set. The finer the resolution, the more number of bits will

be needed to represent the coordinates and the more time is needed to generate a

Hilbert code. Since using 20 bits to represent a coordinate has a resolution of about 3

meters even the range of the data set is the whole global Earth which is sufficient for

broadcast geographical information in most cases, we can treat the computation cost

to generate the Hilbert code for a point as a small constant. Thus generating Hilbert

codes for all the points in a data set is linear with respect to the number of points. The

complexity in the sorting step is in the order of O(n*log(n)) using the quick sort

algorithm. Thus the complexity of the complete method is in the order of

O(n*log(n)).

One problem we found regarding Hilbert-ordering (and SFC orderings in

general) is that, although data items adjacent to each other in the generated ordering is

also adjacent to each other in the original space (to a certain extent), the other way

around is not true. Two adjacent points might fall far apart in the SFC orderings. In

Fig.5-5, suppose that our data points have an ordering of [0,1,7,8,9,14] according to

76

the Hilbert SFC ordering. If a query window contains points 1 and 14, then the access

time will be almost the whole broadcast cycle. On the other hand, if we order the data

objects by traversing the dynamically generated R-Tree (Fig. 5-6) then the latency

could be only 2 for the same query window. We will evaluate their performances of

Hilbert SFC ordering using both real and synthetic data sets in Chapter 7.

4

3

10 9

87

65

4

3 2

10

Fig. 5-5. Illustration of a Non-Optimal Hilbert SF0

for a Query Window

9 8 7 141 0

Fig. 5-6. R-Tree Generated by Inserting Points Dynam

Set in Fig. 5-5 (Hilbert-Codes Are Used As Leaf Nod

5.4 Graph Partition Tree Traversal Ordering
We can make an analogy between using R-Trees for geom

where geometric space is hierarchically partitioned, and hierarch

77
11
2
1
1
5
1
 1
C Ordering

ically for the Data
e Labels)

etric data indexing,

ical graph partition.

Traversal of a hierarchical graph partition tree can also generate an ordering as shown

in Fig. 5-7. In the figure, the graph is partitioned into two sub-graphs divided by thick

dotted line. In the partition tree, we represent the whole graph with root node T0 and

the two sub-graphs with its two child nodes, T1 and T2, respectively. We further

partition the right sub-graph into two sub-graphs divided by a thin dotted line. Since

the numbers of nodes in these sub-graphs are below a predefined threshold (four in

the example), they are not further partitioned. We represent these two sub-graphs with

leaf nodes 1 and 2 respectively and put them as the child nodes of T1. Similarly the

left sub-graph is further partitioned into two sub-graphs divided by another thin

dotted line. We present them with leaf nodes 3 and 4 respectively and put them as the

child nodes of T2.

Fig. 5-7. Illustration of Graph Partition Tree

T2

T1

T0

T2T1

43 21

T0

In graphs, the relationships between two nodes are explicitly defined by the

weights of the edges between them. To take such explicit relationships into

consideration, graph partition is a natural choice to retain the main features of the

78

graph while reducing the complexity of the relationships, which is the basis for many

graph problems (see the surveys in (Alpert, 1995; Schloege, 2000) for details).

Although the graph data in this study is assumed to be geometric, nodes in the

graph data that are spatially closest to each other do not always have the strongest

relationship. For example, two big cities linked by a highway have a stronger

geographical relationship in road networks than two small towns even though the

distance between them is much longer than that between the two small towns. In

addition, for some transformed graphs, such as EAFG discussed in Section 4.4 of

Chapter 4, geometric information is generally irrelevant to their semantics. Generally

speaking, traversal of a graph partition tree can be a good ordering heuristic since it

keeps nodes with strong relationships close to each other, provided that efficiency is

not a problem. In this study we use the recursive graph partition technique

implemented in METIS and HMETIS ([HREF 6]), which is freely available over the

Internet.

5.5 Ordering based on Degree/Weight
We use the graph shown in Fig. 5-8 to demonstrate the ordering heuristics

discussed in this section and in the next section. The graph has 12 nodes and 20

edges.

(Gondhalekar, 1997) provided two heuristics for optimizing broadcast

sequence under the scenario where a user begins accessing the broadcast channel

from the beginning of a broadcast cycle and there are only two data items in a query.

The MAX heuristic orders of the data items by their descending out degree. For

79

undirected graph, the out degree of a node is defined as the nodes that are directly

connected with the node. For the graph in Fig. 5-8, the ordering will be: [2, 6, 0,4, 8,

1,3,7,9, 5, 10, 11]. If there is a tie during the order, the tie will be broken by node ID

(or node number), i.e., the node with smaller ID value will be placed first.

4

5

1
2

23

5

2

4

3 4

2

6

1

5

4

3

3

3 2

9

6

11

2

3 8

4 5

7

10

1

0

Fig. 5-8. An Illustrative Graph for Degree/Weight Based Orderings and

Spanning Tree Ordering

The MAX-LD heuristic consists of two steps. The first step is to obtain an

initial ordering by sorting the vertices by descending degree, i.e., using the MAX

heuristic. In the second step, the following operation is repeated for i=1,…,n-1: if the

left degree of vertex i+1 exceeds that of vertex i, the positions of the two vertices are

interchanged. The left-degree of vertex v is defined as the number of edges that have

v as the ending node in an ordering sequence, i.e., ld(v)=|{(u,v):(u,v)∈E ∩ (π(u)<

π(v)}|. This is based on the observation that ∑ ∑
∈ ∈

=
Evu Vv

vldvvu
),(

)(*)())(),(max(πππ : the

left hand side calculates the cost by considering each edge and finds the larger

position of its two nodes (or the position of the right endpoint), while the right side

80

hand counts the number of edges which are ended at each vertex and multiplied by

the position of that vertex. The MAX heuristic takes O(m) to calculate the vertex

degrees and O(n*log(n)) time to sort, where m is the number of edges and n is the

number of nodes. Thus the MAX heuristic takes O(m+n*log(n)) time. The MAX-LD

heuristic takes additional O(m+n) time to perform the left-degree check compared

with MAX, thus its total complexity is still O(m+n*log(n)) (Gondhalekar, 1997). For

the graph in Fig. 5-8, the ordering will be (the tie is broken by node ID again):

[2,0,4,6, 1,3,7,8, 9, 5, 11,10]. Compared with the MAX heuristic result of [2, 6, 0, 4,

8, 1, 3, 7, 9, 5, 10, 11], node 8 is moved from the 5th to the 8th position. This is

reasonable since node 8, although has a total larger out-degree, only has the out-

degree of one to the nodes [2, 6, 0, 4] that have already been scheduled for broadcast.

One of the possible problems with this method is that, for two nodes v1 and v2,

although when ld(v1)>ld(v2) it is beneficial to exchange v1 and v2 under the sequence

of …v1v2…, for the exchanged sequence …v2v1…, it is still possible to have

ld(v2)>ld(v1). It is unclear how to handle this case in the heuristic. In the above

example, the problem happens when switching the node pairs (6,0), (6,4), (8,7) and

(10,11). One solution might be to compute)(*)()(*)(2211 vldvvldv ππ + under both

the sequences and choose the one that has the smaller value.

An extension of the MAX heuristic is to use the summation of the weights of

edges that contain a node instead of the degree of the node (where the weight can be

treated as a unit), i.e., the order of a node is determined by the summation of the

weights of edges that contain it. We call this heuristic NODE-WEIGHT. In Fig.5-8,

81

the ordering based on the NODE-WEIGHT is [6,2,0,4,8,3,9,7,1,5,10,11]. Since the

NODE-WEIGHT heuristic is also per-node based, similar to the MAX-LD heuristic,

we can also develop the NODE-LEFT-WEIGHT heuristic. In Fig.5-8, the ordering

based on the NODE-LEFT-WEIGHT is [6,0,4,2,8,9,3,7,1,5,11,10]. Since adding the

weights up has the same complexity of counting degrees, NODE-WEIGHT and

NODE-LEFT-WEIGHT also have the complexity of O(m+n*log(n))

Similar to the NODE-WEIGHT heuristic we propose the EDGE-WEIGHT

heuristic. We first sort the edges according to their deceasing weights. The nodes in

the edge that has the largest weight are placed at the beginning of the broadcast

sequence. We then check the edge that has second largest weight and place its nodes

that haven’t been placed onto the broadcast sequence. This process is repeated until

all the nodes in the graph are placed. In this heuristic, with m as the number of edges,

it takes O(m*log(m)) time to sort weights of the edges, O(m) time to place the edges

onto the broadcast channel, provided that time to check whether a node has already

been in the placed node list is constant. Thus the total complexity of the heuristic is

O(m*log(m)). In Fig.5-8, the ordering based on the EDGE-WEIGHT heuristic is [3,

9, 0, 4, 2, 6, 7, 8, 1, 5, 10, 11].

Note that all the heuristics in this section are only applicable to the

multiplexing scheme (MUL). Some of them, such as NODE-WEIGHT and EDGE-

WEIGHT, can be easily extended to hypergraphs too. Conceptually the weight-based

heuristics are better than the degree-based heuristics since they take the weights into

consideration.

82

5.6 Spanning Tree Ordering
(Liberatore, 2002) proposed to use the Maximum Spanning Tree (MST)

heuristic for broadcast sequencing. The underlining philosophy is similar to the

construction of index trees: placing nodes that have stronger relationships (larger

weights) as close to each other as possible. Clearly a Maximum Spanning Tree can be

generated using the algorithms for the Minimum Spanning Tree problem: we only

need to replace the weight wi,j between node i and node j with W- wi,j where W is a

constant that is larger than the maximum of wi,j for all (i,j)∈E. There are two popular

algorithms to generate a minimum/maximum spanning tree: the Prim’s algorithm and

the Kruskal’s algorithm (Cormen, 2001).

(Liberatore, 2002) adopted the Kruskal’s method. Initially each node is treated

as a singleton. At the beginning the algorithm places the nodes i and j next to each

other if the edge (i,j) has the maximum weight. As the algorithm processes, if edge

(i,j) has the largest weight among the remaining edges, it combines the ordering that

contains node i and the ordering that contains node j. For the graph in Fig. 5-8, the

process is as follows. The edge that has the largest weight is (3,9) with a weight of 6,

the next three largest weight edges are (0,4), (2,6), (8,7) with all weights of 5. These

four edges are not connected up to now. The largest weight edge among the

remaining edges is (3,2) with a weight of 4 and thus edges (3,9) and (2,6) are

combined since they contain the source and the target nodes of edge (3,2),

respectively. Since edge (3,9) has larger weight than edge (2,6), the combined

sequence will be (3,9,2,6). Similarly for the next largest weight edge (3,8), the

83

sequence (3,9,2,6) is combined with the edge (8,7) to form a sequence of

(3,9,2,6,8,7). This process continues until all the nodes are sequenced and the final

sequence is [3, 9, 2, 6, 8, 7, 0, 4, 5, 1, 11, 10].

Although the maximum spanning tree does not need to be explicitly generated

for ordering, the process of combining previous orderings is binary and hierarchical.

Thus a Binary Decomposition Tree (BDT) can be generated from the process and

used further for optimization as shown in Chapter 6. In fact, we can see that there are

two possible ways to combine two existing orderings: one can be put ahead of the

other and vice versa. However, it is very likely that the generated BDT might be very

unbalanced since balance is not considered in the MST algorithm, which will

degenerate the complexity of the algorithm from quadratic to exponential. In the

above example, the BDT is shown in Fig. 5-9(left). We rotate the tree to generate a

balanced BDT as shown in Fig. 5-9(right) by first performing four zigs (a zig is a

right rotation of a binary tree) on the whole tree followed by performing a zag (a zag

is a left rotation of a binary tree) on the sub-tree rooted at (3,5).

The Prim’s Minimum Spanning Tree algorithm is essentially identical to

Dijkstra’s algorithm for shortest paths (Weiss, 1997). At any point of the algorithm,

there is a set of vertices that have already been in the tree. For each step, the

algorithm finds a new vertex to add to the tree by choosing the edge that has the

smallest (largest for Maximum Spanning Tree) weight among all edges of (u,v) where

u is in the tree and v is not. The ordering of adding new vertices to the tree will be

used as the broadcast sequence. Since every node can be the source, there could be as

84

many as n such orderings. We evaluate the MST orderings using both the Prim’s

algorithm and the Kruskal’s algorithm in Chapter 7.

Zag

Four Zigs

(3,5)

(0,4)

40

(3,10)

(3,1)

(3,11)

15

11 10

(3,10)

(3,1)

(3,11)

(3,5)

(3,0)

(3,8)

(3,2) (0,4)

(8,7)(2,6)(3,9)

1

5

11

4

10

0

786293

(3,10)

(3,11)

(3,1)

(3,5)

(3,0)

(3,8)

(3,2)

(0,4) (8,7) (2,6) (3,9)

11154 100 7 8 6 2 9 3

Fig. 5-9. The Binary Tree Generated From MST Ordering (Left) and its

Balanced Tree After Rotations (Right) Using the Graph in Fig. 5-8

5.7 Discussions of Other Related Work
The QEM algorithm presented in (Chuang 2001) is essentially the extension

of the hypergraph version of the EDGE-WEIGHT heuristic for the Separate Channel

scheme. It begins with the hyperedge that has the largest weight and tries to append

the nodes, which are on the hyperedge that has the next-largest weight but are not in

previously placed node list yet, to both sides of the list and compare their resulting

Query Distances (QD, c.f. Section 3.4 in Chapter 3). The one with smaller QD will be

kept for further expansion and the one with larger QD will be discarded. A left/right

append is defined as appending new nodes to the left/right of an existing sequence.

85

The left append will be used if there is a tie. The order of the unordered nodes in the

previous list (nodes under ordering) will be split according to the newly appended

nodes. An example shown in (Chuang 2001) is as follows. Suppose the first

hyperedge contains unordered nodes [2,3,4,6] and the second hyperedge contains

unordered nodes [3,4,5,7], then the left-append will be [5,7][3,4][2,6] and the right-

append will be [2,6][3,4][5,7]. The unordered nodes of [2,3,4,6] are split into the two

unordered set [3,4] and [2,6] since [2,6] is the intersection of the first node set and the

second node set. This process continues until all the hyperedges are processed. This

algorithm is greedy since the order of previously processed nodes cannot be changed.

This method was further extended in (Lee, 2003) by moving (reordering)

nodes that have already been ordered to achieve less total QD. However, although the

moving might benefit current expansion, it might increase the total QD for later

expansions. Thus they proposed to use a weight threshold and any hyperedge whose

weight is below this threshold will not be checked for moving. In addition, they

proposed to check whether the summation of the frequencies of the remaining queries

(i.e., the weights of the remaining hyperedges) that benefit from the moving is larger

than the summation of the frequencies of the remaining queries which may be lost by

applying the moving.

One problem with the QEM algorithm is its greedy expanding nature. In

addition, it only considers the largest weight hyperedge for expansion without

considering the hyperedges, which although have smaller weights individually, might

have greater influences when combined. The modification in (Lee 2003) imposes

86

significant computation demands. The complexity of the QEM, and its extensions as

well, is O(m*n) (Chung, 2001) where m is the number of queries (hyperedges) and n

is the number of data items (nodes). When m is greater than n, which is the case in the

hypergraphs based on spatial semantics of point data, the complexity is more than

O(n2).

(Chehadeh, 1999) proposed two heuristics: Approximate Linear Ordering for

unit weight directed graph and Partial Linear Ordering for weighted directed graph.

The Approximate Linear Ordering heuristic proposed to traverse the DAG using the

principles of smaller out-degree first, DFS traversal and placing nodes immediately

after their parents are placed. The first principle is somehow contradictory to the

MAX heuristic as we discussed in Section 5.5. One explanation might be that the

Approximate Linear Ordering is designed for directed graph with a special node that

has in-degree of zero which is often serves as the first data item in a broadcast

sequence. Using the smaller out-degree first principle will allow the queries that have

a smaller number of data items to span less, i.e., have less access time. In conjunction

with the DFS principle, the queries that have a larger number of data items will also

span less. The reason is that these data items have less possibility to be interleaved by

data items that have smaller out-degrees since they have already been placed onto the

broadcast channel. The MAX heuristic, on the other hand, is designed for queries

involved exactly two data items. Using the MAX heuristic to place node u, since it

does not need to worry about placing nodes other than the immediate neighbors of u,

87

the heuristic is well justified since the cost of ∑))(),(max(iu ππ will be minimized if

we put node i as close to u as possible where i is the immediate node of u.

The Partial Linear Ordering heuristic takes a weighted directed graph as its

input and produces a linear sequence. It iteratively combines nodes until all the nodes

are combined and the sequence of combinations denotes an ordering. The order of the

previous ordering and the node that is currently being combined is determined by the

weighted distance di,j which can be computed as follows:

∑

>−
+−

=
jiallEdges jii

ji
ji nodegleordernodegleordernodemultilength

w
d

)_(sin)_(sin)_(
,

,

where multi_node is the previously combine sequence (denoted as node i) and

length(multi_nodei) is the number of nodes within the multi_node i. The

order(single_node) is the position of the single_node within the multi_node. If di,j is

larger than dj,i then the order will be node i followed by j and vice versa.

(Lee, 2003) extends this heuristic to undirected graph. The formula to

compute du,v is revised as follows:

 =)
)]()()([

,
)()()(

,
max(,

, ∑
∈
∈ +−−+−

vj
ui

jiji
vu jorderiorderulengthL

w
jorderiorderulength

w
d

 where L is the broadcast cycle length, i and j are regular nodes and u and v

are multi_nodes. In (Lee, 2003), the combining process always combines nodes i and

j where edge (i,j) has the largest weight. However, at the very beginning of the

algorithm where both node i and node j are single nodes, it is not clear how to

determine the order of i and j. It is also worth to note that in the formula to calculate

88

du,v, u is always the multi-node while v is always the single node. Thus it always takes

n-1 steps to finish the algorithm.

5.8 Further Discussions
Although it is intuitive to use geometry-based heuristics for point data and use

graph-based heuristics for graph data, there are some other options. In Chapter 4, we

proposed a hypergraph representation of spatial semantics for spatial range queries on

point data. The representation allows us to use graph-based heuristics if they can be

extended to hypergraphs, such as the NODE-WEIGHT and EDGE-WEIGHT as

discussed in Section 5.5. Another option is to construct a Delaunay Triangulation

(Aurenhammer, 1991) network as shown in Fig. 5-10 to convert a point data set into a

graph data set and then we can use graph-based heuristics. The construction process

generally has a complexity of O(n*log(n)) (Aurenhammer, 1991). On the other hand,

since the graph data sets in this study are two-dimensional geometric graphs, we can

use the geometry of their vertices as points and use geometry-based heuristics. We

evaluate these heuristics based on our cost models by experiments using a real data

set in Section 7.4 of Chapter 7.

Fig. 5-10. Illustration of Constructing Delaunay Triangulation Network
From a Point Data Set

89

90

In summary, among the heuristics we have discussed, we suggest to explore

geometric-based heuristics, such as Hilbert SFC ordering and R-Tree traversal

ordering if computation time is the primary concern. On the other hand, if ordering

quality is the primary concern, ordering based on graph or hypergraph partition tree

might be a good candidate. We should also take pre-existing spatial data structures,

such as SFCs, R-Trees and Delaunay Triangulation Networks, into consideration for

efficiency purposes.

Chapter 6

 Optimization Methods

As discussed in Section 4.3 of Chapter 4, our problem of minimizing the total

query cost is related to the graph Minimum Linear Arrangement problem (MinLA).

The graph MinLA problem is a well-studied problem and several efficient

approximation methods have been proposed (Bar-Yehuda, 2001; Koren, 2002).

 By extending an edge of (u,v) to a hyperedge {n1,n2..nk} and defining the

“edge length” of a hyperedge length as

L2=)}(),...(),(min{)}(),...(),(max{ 2121 kk nnnnnn ππππππ − , the problem of

minimizing DBW is essentially the same as the hypergraph MinLA problem. We

want to use the existing efficient MinLA approximation methods to solve our

geographical data broadcast sequencing problem. In this chapter we propose to use

the low-polynomial cost approximation method presented in (Bar-Yehuda, 2001) to

solve the DBW minimization problem. We then propose to use L2 to approximate

g(L2) (as defined in Section 3.1 of Chapter 3) to solve the ATData
Sep optimization

problem. An novel approach is developed to optimize ATData
Mul.

For the rest of this chapter, we first briefly introduce the algorithm of (Bar-

Yehuda, 2001) and we then prove the correctness of using this algorithm for

hypergraphs. We show the importance of generating the Binary Decomposition Tree

(BDT) (Bar-Yehuda, 2001) and propose to use R-Tree as the basis for generating a

91

BDT. The methods for optimizing DBW, ATData
Sep and ATData

Mul are presented in

Section 6.4 through Section 6.6. For each of the three methods, DBW optimization,

ATData
Sep optimization, ATData

Sep optimization, we illustrate its process through a

simple example using the data set shown in Fig. 4-1 of Chapter 4.

6.1 The Approximation Algorithm
(Bar-Yehuda, 2001) proposed a divide and conquer method to approximately

solve the graph MinLA problem in low-cost polynomial time. The space complexity

of the proposed implementation is O(2depth(T)) where T is the BDT (Fig. 6-1) of the

graph. If T is balanced then space complexity is O(n) where n is the number of nodes

in a graph. For time complexity, if the out-degrees of the nodes in the graph are

bounded by a constant, it is linear in ∑
∈Tt

tdepth)(2 (Bar-Yehuda, 2001). This is quadratic

if T is perfectly balanced and O(n2.2) if T is 1/3-balanced (Bar-Yehuda, 2001).

The approximation algorithm proposed in the paper imposes a global ordering

constraint on a hypergraph by using a BDT. A BDT T (Fig. 6-1) is a binary tree that

has all the nodes in a hypergraph as its leaf nodes. For each tree t∈T that has two sub-

trees t1 and t2, there are two options in placing the nodes under it onto a broadcast

channel, i.e., either the nodes of t1 are placed ahead of the nodes of t2 (called 0-

orientation), or the nodes under t2 are placed ahead of the nodes under t1 (called 1-

orientation). The orientations at each intermediate node of the BDT form a tree that

has the same structure as the BDT. The orientation tree determines an ordering

sequence of all the nodes in a graph.

92

Since t has two orientations and the orientations of its two sub-trees, t1 and t2,

are independent of each other, it can be proved that there are 2n-1 orderings for a full

and balanced BDT as shown in Fig. 6-2.

 9 10

11

6 7

8

3 4

5

0 1

 2

Fig. 6-1. Illustration of a Binary Decomposition Tree

W

regards to

Let n be the number of nodes in a graph whose BDT T is full and
balanced, i.e., n=2k. Let S(n) be the number of possible orderings of T
We have S(1)=1

S(n)=2*S(n/2)*S(n/2)=2*[S(n/2)]2

=2*[2*S(n/22)]2=2*22*S(n/23)
=…….
=)1(2

132 2...2221 S
k −+++++

12 −
k

k

= 11212 222 −−− == n

Fig. 6-2. Proof of the Number of Possible Orderings of a BDT

e next describe the approximation algorithm briefly. The Cost L,V(t),R,π with

 a BDT sub-tree under ordering π is defined as

93

∈∩∈−
∈∩∈
∈∩∈−

= ∑
∈ otherwise

RvtVuutVvuw
LvtVuuvuw
tVvtVuvuvuw

Evu 0
)()(|)(|)*,(
)()(*),(

)()(|)()(|)*,(

],[Cost
),(

RV(t),L, π
π

ππ

π

where V(t) is the node set of t, L and R are the node sets that are to the left of V(t) and

to the right of V(t), respectively. When t is the whole BDT, L=R=∅, CostL,V(t),R,π is

exactly the la(G). The costs under the two orientations can be efficiently computed as

briefly described in the following.

Let t be a BDT node corresponding to the ordered partition which consists of

L, V(t) and R. Let t1 and t2 be the sub-trees of t. The left child of t is called left and the

right child of t is called right under both orientations of t. Suppose that each child of

the BDT is assigned a cost for both the 0-orientation (i.e., cost(left(0) and

cost(right(0)) and 1-orientation (i.e., cost(left(1) and cost(right(1)). The cost of t

under the two orientations are computed as follows:

cost0=cost(left(0))+cost(right(0)) +|V(t2)|.cost(V(t1),R) +|V(t1)|.cost(L,V(t2))
(1)

cost1=cost(left(1))+cost(right(1))+|V(t1)|.cost(V(t2),R) +|V(t2)|.cost(L,V(t1))

where cost(L,V(t1)) and cost(L,V(t2)) are called left outer cuts (or left_cut for short),

cost(V(t1),R) and cost(V(t2),R) are called right outer cuts (or right_cut for short) and

|V(t)| denotes the number of leaf nodes of t. Both the left outer cuts and the right

outer cuts can be computed recursively as follows.

Let t denote the orientation of the root node of t, left_cut() and right_cut(t)

be the left outer cut (i.e., cost(L,V(t1)) or cost(L,V(t2))) and the right outer cut (i.e.,

ˆ t̂ ˆ

94

cost(V(t1),R) or cost(V(t2),R)) of t , respectively. Let in_cut be the total cost of edges

whose beginning node and ending node have t as the Least Common Ancestor (LCA).

When is a leaf node, the values of the outer cuts are computed by considering the

edges incident to t. When t is an intermediate node the following formulas hold:

ˆ

t̂

ˆ

cost(left_cut(t))=cost(left_cut(left()))+cost(left_cut(right(t)))-cost(in_cut(t)) ˆ t̂ ˆ

cost(right_cut(t))=cost(right_cut(left(t)))+cost(right_cut(right(t)))-cost(in_cut(t)) ˆ ˆ ˆ

Also formula (1) can be rewritten as:

cost0=cost(left(0))+cost(right(0)) +|V(t2)|.cost(right_cut()+|V(t1)|.cost(left_cut(t))

cost1=cost(left(1))+cost(right(1))+|V(t1)|.cost(right_cut(t)) +|V(t2)|.cost(left_cut())

1t̂

2ˆ

2ˆ

1t̂

(2)

As discussed earlier, the cost of t is the lower of the two costs, cost0 and cost1,

and the orientation that has the lower cost will be set as the winner. The orientation

that has less cost (access time in our case) will be adopted for t.

For illustration convenience, we use “+” to denote the 1-orientation and “-“ to

denote the 0-orientation hereafter. When the orientation of the root of tree T is

determined, the ordering of all the data items can be determined based on the

orientations of the nodes on the path from the root to the leaf nodes (data items). For

example, in Fig. 6-3, the orientations along the path from the root to node 6 are “+ + -

+” and the position of node 6 in the ordering is 4 (starting at 0).

Note that in_cut(t) is independent of the orientation of t and can be pre-

computed after the BDT is built. Both left_cut (t) and right_cut () can be computed

from t’s two children under the same orientation by one addition and one subtraction.

ˆ t̂

95

Thus this algorithm is very efficient. We refer the readers to (Bar-Yehuda, 2001) for a

detailed complexity proof.

4 3

+ 5

0 1

- 2

- -

-

7 6

+ 8

9 10

- 11

- -

+

+

Fig. 6-3. An Orientation Tree Corresponding to the BDT in Fig. 6-1

6.2. Proof of Correctness for Hypergraph Case

The method given in (Bar-Yehuda, 2001) is only applicable to regular graphs.

We next prove the method is also applicable to hypergraphs. For a hyperedge e of

{n1,n2..nk}, let u be the first node and v be the last node according to an ordering π.

To prove the value computed by formula (2) equals the hypergraph version of la(G)

and, hence, DBW, it is sufficient to prove that for any hyperedge e, the cost computed

by formula (2) equals |)()(|)*(vuew ππ − .

Let the least common ancestor of all nodes of e in the decomposition tree be

t0, then all the nodes involved in computing the costs regarding e are within t0. Thus

we do not need examining the nodes that are outside of t0 in the proof. In Fig. 6-4., let

the right-most node in t0’s left child () be x and the left-most node in t0’s right child

(t) be y. Clearly π(y) - π(x)=1. Suppose the nodes on the path from t1 to u are L1,

1t̂

2̂

96

…Lk-2, Lk-1, Lk, and the sizes of the right sub-trees of the trees having L1, …Lk-2, Lk-1,

Lk as the root nodes are p1, …pk-2, pk-1, pk, respectively, we have p1+p2+…+pk= π(x)-

π(u) since they are the number of the nodes between node u and node x. Note that L1

is the root node of t1.

t2

t1

p1

t0

pk

pk-1

pk-2

Right Cuts
u

L1

v y x u

Lk-2

 x

y
v

Fig. 6-4. The BDT Structure in an Ordering Sequence for a Hyperedge

Now let us expand formula (2) completely and examine which terms involve

w(e). According to the method used for deriving formula (2), w(e) appears in the

following cases: appear once as the tree cost when the sub-tree is a leaf node and

labeled as v, appear in the right outer cuts from (L) to t (R) and appear as the left

outer cuts from t (R) to t (L). We examine the left outer cuts first.

1̂t 2̂

2̂ 1̂

Observe that only sub-trees that contain node u can contribute costs in terms

of w(e) to the left outer cuts of node v. In the generalized form of formula (2)

97

cost(t)=cost()+cost(t) +|V(t2)|.cost(right_cut(t)+|V(t1)|.cost(left_cut()) ˆ
1̂t 2̂ 1ˆ 2t̂

only cost(t) and cost(left_cut(v)) can contribute to the left outer cuts of node v.

Cost(t) can contribute to the left outer cuts of node v because when it is computed

recursively another level down, the left outer cuts of node v with regard to e will

appear. Since we are only concerning costs with regard to e, left_cut() with regard

to e is w(e). Since |V(t1)| =L1 at root level of t1, |V(t1)|.cost(left_cut(t)) = L1 * w(e).

Continue the recursion process till leaf node u is reached and the total left outer cuts

with regard to e is as follows:

1̂

1̂

2̂t

2ˆ

Similarly we

Recall that w(e) will

respect to w(e) is:

Since for an

|)()(|)*(vuew ππ − ,
| Lk|*w(e) +| Lk-1|* w(e) +…+ | L1|* w(e)

=pk* w(e) + pk-1* w(e) +…+ p1* w(e)

 =(p1+p2+…+pk)* w(e)

 = [π(x)- π(u)]* w(e)
 can prove that the right outer cut of is [π(v) - π(y)]*w(e).

 appear once as the tree (leaf node) cost, thus the total cost with

1̂t

[π(x)- π(u)]* w(e)+ [π(v)- π(y)]* w(e)+w(e)

=[π(v)- π(u)]* w(e)+[π(x)+1-π(y)]* w(e)

=[π(v)- π(u)]* w(e)

y hyperedge e, the cost computed using formula (2) equals

 we can claim that the total cost computed by formula (2) for a

98

hypergraph having the set of the hyperedges E is exactly the definition of la(G) for a

hypergraph, i.e.,

∑
∈

−=
Ee

kk nnnnnnHGla)}(),...(),(min{)}(),...(),(max{)(2121 ππππππ

where e={n1, n2, …nk}, which is the same as our cost model. Thus we can

apply the algorithm proposed in (Bar-Yehuda, 2001) for optimizing broadcast

sequencing.

6.3. Generating BDT
A BDT can be generated from an arbitrary ordering sequence. However, the

possible number of orderings using a BDT is reduced from n! to 2n-1 which means that

some of the orderings are not possible under certain decompositions, thus the global

optimal ordering might be missed. A good decomposition will lead to good ordering

which is shown through the following simple example.

In Fig 6-5, for the example access graph, where the numbers inside rectangles

are the weights of the corresponding edges, the four possible orderings of

decomposition #1 is {{0,1,2}, {0,2,1}, {1,2,0}, {2,1,0}} and the corresponding total

access time costs are {13,11,11,13}. The four possible orderings of decomposition #2

is {{1,2,0}, {1,0,2}, {2,0,1}, {0,2,1}} and the corresponding costs are {11,12,12,11}.

The four possible orderings for decomposition #3 is {{2,1,0}, {2,0,1}, 1,0,2},

{0,1,2}} and the corresponding costs are {13,12,12,13}. Although it is possible for

decomposition #1 and decomposition #2 to obtain the globally optimal solution, it is

simply not possible for decomposition #3 due to its bad binary decomposition. Thus

generating the initial BDT is very important to obtain good results.

99

(d)(c)(b)(a)

01

 2

0 2

 1

21

 0

3

4 2

1 2

0

Fig. 6-5. (a) The Access Graph (b) Decomposition #1
(c) Decomposition #2 (d) Decomposition #3

In the example, the minimum cost (one of the orderings in decomposition #1

and #2) is obtained when node 0 and node 2 are placed next to each other. Thus to

reduce the total access time, an intuitive idea would be to cluster data items that have

larger edge weight into the same sub-tree. Actually we can prove the following

general case.

For three data items i, j and k, without loss of generality, we assume their edge

weights wi,j>wj,k >wi,k, L1 is the interval between the first and the second item and L2

is the interval between the second and the third item, then the order of (i,j,k) or (k,j,i)

has the smallest cost among all possible six orderings.

Proof:

L2L1(k,i,j) jik

L2L1

L2L1

(j,k,i) ikj

(k,j,i) ijk

L2L1(j,i,k) kij

L2L1

L2L1

(i,k,j) jki

(i,j,k) kji

100

Cost(i,j,k)= wi,j *L1 + wj,k *L2+ wi,k *(L1+L2)

Cost(i,k,j)= wi,k *L1+wk,,j* L2+ wi,j *(L1+L2)

Cost(j,i,k)=wj,i* L1+ wi,k * L2+ wj,k *(L1+L2)

Then

Cost(i,j,k) - Cost(i,k,j)=- wi,j *L2+wi,k*L2=(wi,k- wi,j)*L2<0

Cost(i,j,k) - Cost(j,i,k)=- wj,k*L1+wi,k*L1=(wi,k-wj,k)*L1<0

Thus the order of (i,j,k) has the smallest cost among (i,j,k), (i,k,j) and (j,i,k).

Similarly,

Cost(k,j,i)=wk,j*L1 +wj,i*L2+wk,i*(L1+L2)

Cost(j,k,i)=wj,k*L1+wk,i* L2+wj,i*(L1+L2)

Cost(k,i,j)=wk,i* L1+wi,j* L2+wk,j*(L1+L2)

Then

Cost(k,j,i) - Cost(j,k,i)=- wj,i*L1+wk,i*L1=(wk,i-wj,i)*L1<0

Cost(k,j,i) - Cost(k,i,j)=- wk,j*L2+wk,i*L2=(wk,i-wk,j)*L1<0

Thus the order of (k,j,i) has the smallest cost among (k,j,i), (j,k,i) and (k,i,j).

On the other hand,

 Cost(i,j,k)- Cost(k,j,i)=wi,j*(L1-L2)-wj,k* (L1-L2)=(wi,j-wj,k)*(L1-L2)

The relationship between Cost(i,j,k) and Cost(k,j,i) also depends on the

relationship between L1 and L2. Nevertheless we can draw the conclusion that the

order of (i,j,k) or (k,j,i) has the smallest cost among all six possible orderings. In

either case, data items i and j are placed next to each other.

101

Spatial index trees, such as the R-Tree (Guttman, 1984), R+-Tree (Sellis,

1987) and R*-Tree (Beckmann, 1990), are designed to put data items spatially close

to each other into the same branch while put data items spatially far away from each

other into different branches. Based on our hypergraph representation, the extended

regions of the points represented by the nodes of a hyperedge generally have a larger

portion of overlap in the case where these nodes are from the same branch than in the

case where these nodes are from different branches. In other words, the weight of a

hyperedge whose nodes are from the same branch is generally larger than the weight

of a hyperedge whose nodes are from different branches in spatial range queries. Thus

tree-based spatial index methods are good candidates to generate a BDT for point

data. We use R-Tree to generate a BDT in this study due to its popularity in spatial

databases for geographical data. We replace an m-branches R-tree node with a small

binary tree and connect all such small binary trees to build the BDT. An illustration is

given in Fig. 6-6.

Fig. 6-6. Replacing an R-Tree Node by a BDT Sub-Tree

102

Algorithm RTreeToBDT
Input:

r_root: the root of an R-Tree
m: the number of the children of r_root

Output:
 b_root: the root of the built BDT

Put the children of r_root in array seq
b_root=GenBDT(seq,0,m)

Algorithm GenBDT
Input:

seq: An array of the children node of an R-Tree
 first: The beginning position to build a BDT in seq
 last: The ending position to build a BDT in seq
Output:

 root: The pointer to the root of the BDT being built

 Allocate memory for root
 If first equals last
 If(seq[first]) is a non-leaf R-Tree node
 Mark root as the intermediate node

Let new_root be the pointer of a BDT node
Let num be the number of children of seq[first]

 new_root =RTreeToBDT(seq[first],num)
Set the first child of root to the first child of new_root
Set the second child of root to the second child of new_root

 else
 Set the ID of root to the ID of seq[first]

Set the two children of root to NULL
 Else
 Mark root as the intermediate node

middle=(first+last)/2
Set the first child of root to the result of GenBDT(seq, first, middle)
Set the second child of root to the result of GenBDT(seq, middle+1,last)

 Return(root)

Fig. 6-7. The Process of Generating a BDT From an R-Tree

The process of generating an BDT from an R-Tree is presented in Fig. 6-7.

We begin with the root of the R-Tree and divide the immediate nodes of the root into

two groups recursively to build a small binary tree. The root of the small binary tree

will be the root of the BDT. This process is performed recursively until the leaf nodes

of the R-Tree are reached. Since the algorithm runs in a divide and conquer manner

103

and each R-Tree node is processed exactly once, we claim that the complexity of the

algorithm is linear with respect to the number of nodes in the R-Tree. The proof is

similar to the proof of linearity of the tree traversal problem as shown in (Cormen,

2001).

6.4 Optimizing DBW
Due to the similarity between DBW and la(G) as we discussed in Section 4.3

of Chapter 4, we can use the MinLA method proposed in (Bar-Yehuda, 2001).

Although the paper only handles the graph MinLA problem, its implementation can

handle the hypergraph MinLA problem, however, with two restrictions. The first

restriction is that it requires that there are at least two nodes in a hyperedge while

hyperedges (query result sets) in our representation might only include one node

(either a point in a point data set or a vertex in a graph data set). The second

restriction is that the implementation assumes that all hyperedges have unit weight.

Since the DBW for accessing a single data item is always 0, the first restriction is not

a problem. We also modify the implementation to allow hyperedges to have different

weights.

In the implementation, for each of the node in the BDT, there is a pointer to its

parent and two pointers to its two children. An orientation flag is also associated with

each of the node in the BDT. The parent pointer of the root of BDT is empty and the

two children pointers of a leaf node of BDT are also empty. We next briefly introduce

the Least Common Ancestor Tree (LCA-Tree) data structure used in the

104

implementation to efficiently determine whether a node is the beginning/ending node

of a hyperedge.

The LCA-Tree is constructed during preprocessing. An auxiliary array is

needed in the construction. The pointers in the array map hypergraph nodes to the

corresponding leaf nodes in the BDT of the hyper graph. For each of the nodes in a

hyperedge, the corresponding BDT node is first retrieved and the path from the node

all the way to the root of the BDT is travelled. The ID of the hyperedge is assigned as

the flag of all the intermediate nodes on the paths. Next, starting from the root of the

BDT, the implementation first tries to find a node of the BDT whose both children’s

flags have the value of ID of the hyperedge. In case only one child whose flag has

the value of ID of the hyperedge, the implementation follows the child until a node

whose both children’s flags have the value of ID of the hyperedge is reached. This

process is performed recursively until the leaf nodes of the BDT is reached. The

implementation adds a node in the LCA tree in both cases, i.e., either a BDT node

whose both children’s flags are the assigned ID or it is a leaf BDT node. Fig. 6-8

shows the process, where the ID represents the edge number of the hyperedge of

{1,4,5,6} and the dashed lines shows the correspondences between the nodes in the

BDT and the LCA tree.

For a hyperedge with k nodes, it takes at most log(n) for each of them to reach

the root of the BDT where n is the number of the nodes in the hypergraph and the

BDT. From the root of the BDT, it takes at most log(n) to reach each of the nodes at

the leaves of the BDT. Thus the time complexity of constructing a LCA tree is

105

O(k*log(n)). Since we assume k is bounded by a constant, thus the total time

complexity for constructing LCA trees for the m hyperedges is O(m*log(n)). The

space complexity of a LCA tree is in the order of O(k) , thus the space complexity for

constructing the LCA trees is O(m), provided that k is bounded by a constant.

 9 10

11

6 7

8

3 4

 5

0 1

 2

ID

ID

IDID

ID

ID

ID

ID

ID

ID

54

1

6

Fig. 6-8. Determining the Beginning/Ending Node of a Hyperedge

By using the LCA tree, whether a leaf node of the BDT is the

beginning/ending node of a hyperedge can be determined efficiently. First start with

the root of the LCA tree of the node and then follow the left/right child (depending on

the orientation of the sub-tree rooted at the node) until we reach a leaf node of the

LCA tree. Since the nodes of a LCA tree is a subset of the nodes of the BDT tree, the

ID of the LCA leaf node and the ID of the BDT leaf node can be compared and

decision can be made. The cost of the traversal from the root to a leaf node of a LCA

tree is in the order of log(k) where k is the number of nodes in the corresponding

hyperedge. Since we assume the maximum number of the nodes in a hyperedge of the

106

hypergraph is bounded by a constant, thus the determination can be made in small

constant time.

 We use the example data set shown in Fig. 4-1 to illustrate the optimization

method for broadcast sequencing. The data set has 4 nodes and 11 hyperedges. The

hyperedges and their weights are listed in Table 6-1. This simple data set will also be

used to illustrate the other two proposed optimization methods subsequently.

Table 6-1. The Hyperedges and Their Weights for the Data in Fig. 4-1

Hyperedge Nodes Weight
1 62
2 19
3 34
4 85
1,3 2
2,3 38
1,2 22
3,4 8
2,4 3
1,2,3 14
2,3,4 4

We first remove the 4 hyperedges each of which has only one single node as

discussed above. We then build an R-Tree with a branch factor of 3. The resulting R-

tree has two leaf nodes in each of its two sub-trees as shown in Fig. 6-9 and we use it

as the BDT. Traversal of the R-Tree gives an ordering of [1,2,4,3] and we use it as

our initial ordering. Among the 7 hyperedges, edge {1,2} rooted at T11 with in_cut of

22, edge {3,4} rooted at T12 with in_cut of 8 and the rest rooted at T0 with their total

in_cuts being the summation of the following values: 2 for edge {1,3}, 38 for edge

107

{2,3}, 3 for edge {2,4}, 14 for edge {1,2,3}and 4 for edge {2,3,4}, Thus the total

inner_cut is 61.

T12T11

3421

T0

Fig. 6-9. The BDT of the Example for Illustrating DBW Optimization

(b) 0-Orientation (a) 1-Orientation

T12 T11

T0

21 34

--

+
T12 T11

T0

123 4

+-

+

Fig. 6-10. The Orientation Trees of Two Possible Orientations of T11

For the orientation tree in Fig. 6-10(a), the ordering is [4, 3, 2, 1]. Node 2 is

the ending node of edges {2,3}, {2,4} and {2,3,4}, thus the left_cut of node 2 is

38+3+4=45. Node 2 is also the beginning node of edge {1,2} and thus its right_cut is

22. Similarly, the left_cut of node 1 is 2+14+22=38 and the right_cut of node 1 is 0.

Since nodes 1 and 2 are leaf nodes, their costs are the same as their left_cuts which

are 45 and 38, respectively. Thus the left_cut and the right_cut of their parents, T11,

are 45+38-22=61 and 22+0-22=0, respectively. The total cost of T11 under the current

1-orientation can be computed as 45+38+(22-22)*1+(38-22)*1=99. If the orientation

of T11 is switched to 0-orientation, we can get the left_cut of node 1 as 2, the right_cut

108

of node 1 as 22, the left_cut of node 2 as 81 and the right_cut of node 2 as 0, thus the

left_cut and the right_cut of T11 under the current 0-orientation are 2+81-22=61 and

22+0-22=0, respectively. The total cost of T11 is 2+81+(22-22)*1+(81-22)*1=142.

Since the 1-orientation of T11 has the smaller cost (99) than the 0-orientation (142) of

T11, we set the 0-orientation to T11. Similarly, we set the 0-orientation to T12 since its

0-orientation cost (15) is smaller than its 1-orientation cost (66) as shown in Fig. 6-10

(b). The left_cut and the right_cut under the 0-orientation of T12 are 0 and 61,

respectively. Thus the total cost of T0 is 99+15+(61-61)*2+(61-61)*2=114. This is

the global optimal value of all possible 4!=24 orderings. The cost of the optimized

ordering [1,2,3,4] is 44.1% better than the initial ordering {1,2,4,3} whose cost is

165.

To examine how the BDT affects the best optimization we can achieve, we

put nodes 2 and 4 in a branch and nodes 1 and 3 in another branch of the BDT to use.

Although the cost of the initial ordering [2,4,1,3] has the worst cost (233) among the

possible 24 orderings, the cost of the optimized ordering [4,2,3,1], which is 139, is

67.6% better. However, it is still 21.9% worse than the optimized ordering using R-

tree traversal as the initial ordering. This simple example demonstrates the

effectiveness of both the proposed optimization method and the proposed heuristics

of generating BDT from R-Tree and generating initial ordering using R-Tree

traversal.

109

6.5 Optimizing ATData
Sep

Recall the cost model of ATData
Sep as we have derived in Section 3.2 in

Chapter 3.

)))()...2(),1(min()))()...2(),1((max(*
...

)))(),(),(min{))(),(),((max(*

|))()((|*

,...2,1

1
,,

1
,

nngw

kjikjigw

jigw

AT

n

kji
kji

nji
ji

Sep
Data

ππππππ

ππππππ

ππ

−+
+

−+

−

=

∑

∑

≤≤<≤

≤<≤

For the function
L

LLL
22

)g(L
2

2
22 −+= as defined in Section 3.1 in Chapter 3,

we observe that the cost model for a single query in terms of ATData
Sep (DPW+DBW),

i.e., g(L2), increases monotonically as DBW, i.e., L2, increases and vice versa. Thus

L2, which is the hypergraph version of “edge length”, is a good linear approximation

of g(L2). By doing so we are expecting that the optimized ordering where the

optimization is based on the definition of la(G), which is linear with respect to L2, is

also a good ordering according to g(L2).

To compare the goodness of the approximation, we enumerate all possible

4!=24 orderings and compute both the linear cost and quadratic cost as shown in Fig.

6-11. They have the same trends which supports our theoretical result. The access

110

time under the quadratic model is always larger than the linear model as expected

since the former includes both DPW and DBW while the latter only includes DBW.

Fig. 6-11. Comparison of Access Time of Linear Versus Quadratic Models

6.6 Optimizing ATData
Mul

Recall the cost model of ATData
Mul as we have derived in Section 3.2 in

Chapter3.

))()...2(),1(max(*
...

))(),(),(max(*

))(),(max(*

)(*

,...2,1

1
,,

1
,

1

nw

kjiw

jiw

iw

AT

n

nkji
kji

nji
ji

ni
i

Mul
Data

πππ

πππ

ππ

π

+
+

+

+

=

=

∑

∑

∑

≤≤<≤

≤<≤

≤≤

111

By relating w(u,v) with wi, wi,j…w1,2...n and relating |π(u)-π(v)| with

)}(),...(),(max{ 21 knnn πππ we can see that the problem of optimizing the total access

time is structurally similar to the MinLA problem. Rather than computing |π(u)-π(v)|

for an edge directly, (Bar-Yehuda, 2001) computes it as a serial summations of the

sub-tree sizes of the BDT to achieve its efficiency. Unfortunately, this is not possible

to compute)}(),...2 kn(),(max{ 1 nn πππ in a similar manor for ATData
Mul optimization

due to its nonlinearity. In this study, we adopt the divide-and-conquer strategy and

propose a new method for ATData
Mul optimization. Like (Bar-Yehuda, 2001), the

method checks all possible 2n-1 orderings that can be derived from a BDT in O(n2)

time complexity.

 The process of the proposed method is shown in Fig. 6-12. The hypergraph

data structures described in Section 4.4 of Chapter 4, the BDT enhancements and the

LCA tree structure described in Section 6.4 of this chapter are also needed in the

method. In addition, for each BDT node, we also compute the size of the sub-trees of

the BDT rooted at the node.

1 Set the positions of all nodes to the specified initial order, or the natural order of {1,2…n} if
no initial order is available. Set tree t to the root of the BDT. Do the following recursively.

2 If t is an intermediate node of the BDT:
a) Test the two orientations of its sub-trees t1 and t2 by adding the access time of t1 and t2

under the orientations.
b) Set the orientation of t to the one that has less access time.

3 If t is a leaf node of the BDT:
a) Set the access time associated with the node to zero.
b) Compute the position of the node.
c) Retrieve all the queries that contain this node and their corresponding weights.
d) For each query that has the node as the ending node in the broadcast sequence, add

position*weight to the access time associated with the node.

Fig. 6-12. The Process of Optimising ATData
Mul

112

Before illustrating the method with a simple example and performing

complexity analysis, we next show how to compute the position of a node in an

ordering efficiently which is crucial in the proposed method. As shown in Fig. 6-13,

start at a leaf node (node 6 in our example), we use the parent pointer associated with

the BDT node to travel from the leaf node all the way to the root of the BDT. We

check the orientation of the BDT nodes along the path. If the sub-tree rooted at the

node is the right sub-tree of its parent then we add the sub-tree size of its sibling to

the position, otherwise we just skip. In the BDT shown in Fig. 6-13, in the first step,

since node 6 is the right child of T1 we add 1 to the position. In the second step, since

T1 is the left child of T2, we just skip. In the third step, since T2 is the right child of T3,

we add 3, which is the size of the left sub-tree of T3, to the position value. Finally

since T3 is the left child of T4, which is the root of the BDT, we skip again. Thus we

get the position of node 6 as 3+1=4. The cost of computing the position of a leaf

node is in the order of log(n) if the BDT is balanced where n is the number of nodes

in the hypergraph and the BDT.

Fig. 6-13. Illustration of Computing Position of a BDT Node

T2

T3

T4

T1

4 3

+ 5

0 1

- 2

- -

-

7 6

+ 8

9 10

- 11

- -

+

+

113

We use the same example in Section 6.4 to illustrate the proposed ATData
Mul

optimization method. The BDT we use is shown in Fig 6-14.

T12T11

4321

T0

Fig. 6-14. The BDT of the Example for Illustrating ATData
Mul Optimization

22
38

14

2
+ -

12 43

+

19
38

4

3
+ -

124 3

+

Fig. 6-15. Computing ATData
Mul for Nodes 1 and 2 Under 1-Orientation of T11

We use AT(x) to denote ATData
Mul of x, where x can be either a leaf node or a

sub-tree of the BDT. If x is a sub-tree, we also denote its orientation by putting 0 or 1

in its top-right part. For T11 in the 1-orientation, as shown in Fig. 6-15, the position of

node 2 is 2 and the position of node 1 is 3, thus AT(2)=2*(4+38+19+3)=128,

AT(1)=3*(2+14+22+62)=300 and AT(T11
1)=128+300=428. Similarly we can also

compute AT(T11
0)=428. According to our convention, we choose the 0- orientation if

the two orientations have the same cost. We next compute the cost of T12 under both

orientations.

114

85

8

- -

2143

+

34
8

- +

2134

+

Fig. 6-16. Computing AT(T12) Under 1- and 0-Orientations

For the T12 in the 1-orientation, as shown in Fig 6-16, the position of node 3 is

1 and the position of node 4 is 0, thus AT(3)=1*(8+34)=42, AT(4)=0 and

AT(T12
1)=42+0=42. Similarly for T12 in the 0-orientation, AT(3)=0, AT(4)= 1*(8+85)=

93, thus AT(T12
0)=0+93=93. Since 42 is less than 93, the 0-orientaiotn of T12 is the

winner. Thus the total cost of T0 under the 1-orientation is AT(T0
1)= AT(T11

1)+

AT(T12
0) = 428+42= 470. Similarly we can compute the AT(T0) under the 0-

orientation as 517. Thus the 1-orientation of T0 is the winner and the final optimized

ordering is [4,3,1,2] whose access time is 14.9% better than the access time of the

natural ordering of [1,2,3,4].

Let the computation cost of sequencing an n-node hypergraph be S(n). At each

t∈T having n nodes (i.e. n=|t|) we need to calculate the costs of its two children under

two orientations which results in 4*S(n/2). We also need one addition for each

orientation (to add the costs of t1 and t2) and one comparison (to compare the costs of

the two orientations). Thus the complexity analysis of the total access time, in terms

of the number of data items n, is shown in Fig. 6-17.

115

3)nS(*4S(n) +=

Fi

S(1) ha

of a node in S

the node by u

hyperedges th

determine wh

Step 3.d is a

reasonably bi

multiplication

and the averag

constant for p

complexity of

1*4)1(*

3*
14

14)1(*)2(

3*)1...44()1(*4

33*43*4...)
2

(*4

33*4...]3)
2

([4

...

33*4)
2

(*4

3]3)
2

(*4[*4

2

22

1
2

1

2
2

2

−+=
−

−
+=

+++=

++++=

++++=

=

++=

+++=

+

−

nSn

S

S

nS

nS

nS

nnS

k
k

kkk

k
k

k

k
k

g. 6-17. Complexity Analysis of ATData
Mul Optimization Method

s the following components. It takes O(log(n)) to compute the position

tep 3.b. It takes constant time to retrieve all the hyperedges that contain

sing the inverse hypergraph in Step 3.c. We assume the number of

at contain a node is bounded by a constant, so it takes constant time to

ether a node is the ending node of a hyperedge, thus the total cost in

lso bounded by a constant. Furthermore, in real applications, for a

g number n (e.g., from 100 to 10000), log(n) (7-14) is less than the

 of the average number of hyperedges that contain a node (e.g. 10-20)

e depth of the LCA tree (e.g. 3-5) and we can treat log(n) as a bounded

ractical values of n. Thus the proposed method approximately has a

 O(n2).

116

Chapter 7

Experiments and Evaluations

7.1 Experiment Software Modules
We use several publicly available packages to make our experiments possible.

They are the Boost Graph Library (BGL) at the Indiana University ([HREF 5]), the

binary version H-Metis graph partition package from George Karypis at the

University of Minnesota([HREF 6]), the Java version R-Tree package from Marios

Hadjieleftheriou at the University of California, Riverside ([HREF 7]) and the C

version Hilbert SFC package from Doug Moore at the Rice University ([HREF 8]).

The software modules we developed are: Java version hypergraph generation package

for spatial point data, the C version implementation of Floyd-Warshall algorithm for

generating all pair shortest paths and its corresponding hypergraph, the C version

EAFG generation module, the C version R-Tree to BDT conversion module and the

C++ versions of MAX/MAX-LD heuristics for regular graphs, NODE-

WEIGHT/EDGE-WEIGHT heuristics for regular graphs and NODE-

WEIGHT/EDGE-WEIGHT heuristics for hypergraphs. The overall data flow of the

experiments are shown in Fig. 7-1. The dashed line from “Graph Data Set” to “Point

Data Set” means we use the geometries of the graph data set and treat them as a point

data set. The modules are combined differently when applied to different data sets

which will be described in detail in Section 7.2 and Sections 7.3 through 7.5 when

experiments are performed on these data sets.

117

* MUL Only

Optimization

BDT

Evaluation

Graph Data SetPoint Data Set

Prim/Kruskal
Spanning Tree *

EAFG
Generation

Hypergraph
Partition

Graph
Partition

NODE/EDGE
-WEIGHT *

MAX/
MAX-LD*

BFS/DFS

Traversal
Ordering

R-Tree to
BDT
conversion

R-Tree

Hilbert SPC
Ordering

Floyd-Warshall
algorithm for generating
all pair shortest paths
and use them as
hyperedges of the

Hypergraph
generation

Fig. 7-1. Overall Data Flow of the Experiments

118

7.2 Data Sets and Performance Metrics

The majority of the data sets we use in this study are point data sets due to

availability reasons. We first generate five random point data sets. The real data sets

we use are the centers of the zip codes among the 50 states and the District of

Columbia of the United States. The graph data set we use is the transportation

network of the State of Texas manually input from an AAA map.

We start with the synthetic data sets and use a single query window. The small

volumes of the data sets allow us listing all the experiment results for analysis under

the three cost models individually. The 51 real data sets vary from a great scope of

the covered areas, number of points, densities and distributions. Due to the huge

volume of the results on the data sets under the five query window sizes and three

cost models, the analysis is performed based on the average results while the detailed

results are listed in the appendix. In addition to evaluating the ordering qualities, we

also evaluate the computation time for running the optimization algorithms on the real

data sets.

The experiments on the transportation network are designed to compare the

geometric-based heuristics and graph-based heuristics for network path queries on

graph data as discussed in Chapter 5. Besides the graph-based heuristics, the

geometric-based heuristics are also used for network path queries. All the heuristic

orderings and their optimized orderings of the graph data set for network path queries

are also evaluated on the hypergraph representation of spatial range queries for

comparison purposes.

119

For each of the point data sets, we first generate the hypergraph

representations for the given query windows. To comply with the assumption in the

optimization methods presented in Chapter 6 which states that the number of nodes in

hyperedges is bounded by a constant, we discard the points (nodes) whose extended

region contains more than a certain number of points. We also remove the points that

only fall into their own extended regions, i.e., hyperedges that have only one node,

for optimizations of DBW and ATData
Sep while keeping them as they are for

optimizations of ATData
Mul.

For the graph data set, i.e., the transportation network of the State of Texas,

due to lack of access frequency information, we use all pair shortest paths of the

network as query sets and they have unit weights. Although we illustrate the

optimization methods in Chapter 6 using a point data set, they can be applied to the

optimization of graph data without any modification due to the reasons discussed in

Section 3.3 of Chapter 3. Because of the monotonic relationship between DBW and

ATData
Mul for a single complex query, and more importantly, due to the fact that DBW

is more important than DPW as discussed in Chapter 3, we focus on DBW for the

experiments on the graph data. We also perform experiments on graph data for the

heuristics that are applicable to only MUL scheme. The results of these heuristic

orderings are compared with the results of the optimized orderings under MUL

scheme.

120

Our experiments are all done on a Dell Dimension 4100 personal computer

with 866 MHZ Intel processor and 512M memory under the Windows 2000

professional operating system.

Our cost models presented in Chapter 3 measure the access time in terms of

weight*time where weight is the access frequency of a query and the time is the data

access time to broadcast channel to retrieve all the data items in the query result set.

To make the experiment results more intuitive and comparable to each other, we

define a new measurement called Normalized Data Access Time (NAT). Let ATData

(DBW, ATData
Sep or ATData Mul) be the access time to data according to the three cost

models. Let W be the summation of the weights of the hyperedges of a hypergraph

and L be the length of a broadcast cycle (i.e., number of data items to broadcast), the

measurement is defined as
W

AT
NAT Data=

The NAT value will be greater than 0 and less than L. Generally speaking, the

larger the average number of nodes in the hyperedges of a hypergraph, the larger

NAT. This is because a larger access time is needed to access all the data items even

if they are next to each other in a broadcast sequence. We could have defined another

measurement NAT/L, which will be between 0 and 1. However, it will be very small

for hypergraphs that have a large number of nodes, i.e., larger broadcast cycle length.

This is because we assume the average number of nodes per hyperedge is bounded

by a constant. The definition of NAT is more suitable than NAT/L since it eliminates

weighting factor while still having the capability to tell the ordering quality when

used in conjunction with L.

121

7.3 Synthetic Data Set

We use five synthetic data sets in our experiments with sizes of 100,200, 300,

400 and 500 points respectively. They all have a data space of [0,1) ×[0,1) and we use

a query window size of 0.1 by 0.1. The points in the data sets are generated randomly

within the data space and with the following restrictions:

First, the extended region of a point intersects with no more than N other

Extended Regions. This is to ensure that the lengths of the hyperedges are bounded

by the constant N to be complied with the requirement of the optimization methods.

We choose N to be 10 in the experiments.

Second, the distances between a point and the points that fall into its extended

region are no less than 1% of the radius of the query window (0.0005 in our

experiments). This is to prevent from generating very tiny intersected regions to

ensure that the weights of hyperedges is not too small to be meaningful for

optimization.

Finally we remove the points whose extended region does not intersect with

any other extended regions since they do not contribute to orderings. This might make

the sizes of some data sets slightly less than their original size. For example, data sets

1, 3, 4 and 5 listed in Table 7-1 where their number of points are less than 100, 300,

400 and 500, respectively. Table 7-1 shows the parameters of the five data sets. It can

be observed that as the number of points increases, both the number of hyperedges

and the average nodes per hyperedge increase.

122

Table 7-1. Parameters of the Synthetic Data Sets

Data
Set

of
Points

of
Hyperedges

Total # of Nodes
in All Hyperedges

Average Nodes
Per Hyperedge

1 96 253 667 2.64
2 200 1054 3393 3.22
3 294 1796 6358 3.54
4 382 2111 8854 4.19
5 452 2147 10802 5.03

7.3.1 Experiments Using The DBW Cost Model

We compare six orderings for each of the five data sets: the minimum of

1000 random orderings, the maximum of 1000 random orderings, the average of 1000

random orderings, the Hilbert SFC ordering, the R-Tree traversal ordering and the

optimized R-Tree traversal ordering. The results are listed in Table. 7-2 through Table

7-4.

Table 7-2. Results of 1000 Random Orderings Under DBW Cost Model
for Synthetic Data Sets

Data
Set

Minimum
AT

(Rand_Min)

Maximum
AT

(Rand_Max)

Average
AT

(Rand_Ave)

Improvement

AveRand
MinRandRand

_
max −

1 31.67 47.8 40.19 40.13%
2 81.02 102.24 92.86 22.85%
3 142.27 171.42 154.95 18.81%
4 200.15 239.73 222.11 17.82%
5 272.65 317.27 297.09 15.02%

123

Table 7-3. Comparisons of Hilbert and R-Tree Traversal Ordering With 1000
Random Orderings Average Under DBW Cost Model for Synthetic Data Sets

Data
Set

Rand-Ave

Hilbert
Ordering

(HO)

R-Tree Ordering
(RO)

Hilbert
Ordering

Improvement
1_

−
HO

AveRand

R-Tree Ordering
Improvement

1_
−

RO
AveRand

1 40.19 41.47 27.06 -3.09% 48.52%
2 92.86 94.15 63.04 -1.37% 47.30%
3 154.95 152.31 94.87 1.73% 63.33%
4 222.11 211.08 135.93 5.23% 63.40%
5 297.09 294.84 178.86 0.76% 66.10%

Table 7-4. Comparison of Optimized Ordering, R-Tree Ordering and 1000

Random Orderings Average Under DBW Cost Model for Synthetic Data Sets

Data
Set

Rand-Ave

R-Tree
Ordering

(RO)

Optimized
R-Tree Ordering

(OO)

R-Tree
Improvement

1_
−

RO
AveRand

Opt-
Improvement

1−
OO
RO

Overall
Imrpovement

1_
−

OO
AveRand

1 40.19 27.06 22.7 48.52% 19.29% 77.05%
2 92.86 63.04 52.77 47.30% 19.45% 75.97%
3 154.95 94.87 63.07 63.33% 50.43% 145.68%
4 222.11 135.93 101.21 63.40% 34.30% 119.45%
5 297.09 178.86 121.9 66.10% 46.72% 143.72%

From the results we can see that the improvements of 1000 random orderings

drop from 40% to 15% (Table 7-2). This is expected. The reason behind is that as the

number of points goes up, the ratio (r) of the number of examined orderings in the

algorithm to the number of all possible orderings (1000/n!) drops exponentially.

Thus finding a good ordering by examining a fixed number of random orderings is

not a feasible solution.

124

The result (Table 7.3) also shows that Hilbert SFC ordering may be better or

worse than the 1000 random orderings average for the five synthetic data sets. On the

contrary, the R-Tree traversal orderings improve the 1000 random orderings average

significantly, from 47% to 66%. The optimized ordering further improves the R-tree

traversal ordering, which varies from 19% to 47%. Consequently, the overall

improvement (Table 7-4) of the optimized ordering over the 1000 random orderings

average varies from 76% to 146%.

7.3.2 Experiments Using ATData
Sep Cost Model

Similar to the experiments on the synthetic data sets based on the DBW cost

model, the corresponding results based on the ATData
Sep cost model are listed in Table

7-5 through Table 7-7. The overall improvement of the R-Tree traversal ordering

heuristic and the optimization method varies from 17% to 30%. One of the noticeable

patterns is that the improvement percentage is significantly less than that under DBW

cost model. This can be explained as follows. Recall the cost model for a single

complex query under the Separate Channel scheme:

]
2

)
2
1(

8
1[1

2
2

2
−−

−+==
LL

L
L

AT Sep
Data

This cost reaches its minimum (L/2) when L2=0, i.e., it takes half of the cycle

to reach the first data item. Similarly ATData
Sep reaches its maximum (L) when L2=L,

i.e., all the data items in the broadcast cycle are accessed. The possible value of

ATData
Sep varies from L/2 to L, while it varies from 1 to L for DBW. According to our

definition of improvement (ATOrg/ATOpt-1), the upper bound of ATData
Sep

125

improvement is 11
2/

=−
L

L (100%), while the upper bound of DBW improvement is

L/1-1=L-1. Note that these upper bounds are not reachable.

Table 7-5. Results of 1000 Random Orderings Under ATData
Sep Cost

Model for Synthetic Data Sets
Data
Set

Minimum
AT

(Rand_Min)

Maximum
AT

(Rand_Max)

Average
AT

(Rand_Ave)

Improvement

AveRand
MinRandRand

_
max −

1 72.19 81.07 77.09 11.52%
2 158.12 170.73 165.28 7.63%
3 246.22 259.50 252.63 5.26%
4 328.01 345.44 338.24 5.15%
5 405.33 423.26 415.65 4.31%

Table 7-6. Comparisons of Hilbert and R-Tree Traversal Ordering
Access Time with 1000 Random Orderings Average of Access Time Under

ATData
Sep Cost Model for Synthetic Data Sets

Data
Set Rand-Ave

Hilbert Ordering
(HO)

R-Tree Ordering
(RO)

Hilbert
Ordering

Improvement
1_

−
HO

AveRand

R-Tree Ordering
Improvement

1_
−

RO
AveRand

1 77.09 78.02 69.03 -1.19% 11.68%
2 165.28 165.46 145.76 -0.11% 13.39%
3 252.63 251.42 214.79 0.48% 17.62%
4 338.24 333.08 287.20 1.55% 17.77%
5 415.65 411.55 352.06 1.00% 18.06%

Table 7-7. Comparison of Access Time for Optimized Ordering, R-Tree
Ordering and 1000 Random Orderings Average Under ATData

Sep Cost Model for
Synthetic Data Sets

Data
Set

Rand-Ave

R-Tree
Ordering

(RO)

Optimized
R-Tree

Ordering
(OO)

R-Tree
Improvement

1−
−

RO
AveRand

Opt-
Improvement

1−
OO
RO

Overall
Imrpovement

1_
−

OO
AveRand

1 77.09 69.03 65.64 11.68% 5.16% 17.44%
2 165.28 145.76 141.40 13.39% 3.08% 16.89%
3 252.63 214.79 197.47 17.62% 8.77% 27.93%
4 338.24 287.20 269.45 17.77% 6.59% 25.53%
5 415.65 352.06 319.79 18.06% 10.09% 29.98%

126

7.3.3 Experiments Using ATData
Mul Cost Model

The experiment results based on the ATData
Mul cost model are listed in Table 7-

8 through Table 7-10. The results are similar to what we reported in the two previous

sections. The R-Tree traversal heuristic and the optimization method together provide

an overall improvement of 14% to 39% for the five synthetic data sets.

Although it is tempting to compare the access time of the orderings under the

two cost models and then determine which one is better, we warn readers not to do so.

The reason is the possible non-proportional split of access time to index and access

time to data under the SEP and MUL schemes. In the MUL scheme, it takes half of

the broadcast cycle length of the multiplexed channel to reach the beginning of the

index and it takes additional access time to the index to reach the first data item. This

is to say that reaching the beginning of the index and the beginning of the data are

correlated. However, they are separate in the SEP scheme. The final result might be

determined by the data set and the allocation of the bandwidth between the index

channel and the data channel.

Table 7-8. Results of 1000 Random Orderings Under ATData
Mul Cost Model for

Synthetic Data Sets
Data
Set

Minimum
AT

(Rand_Min)

Maximum
AT

(Rand_Max)

Average
AT

(Rand_Ave)

Improvement

AveRand
MinRandRand

_
max −

1 61.13 72.33 67.62 16.56%
2 138.00 152.63 145.89 10.03%
3 211.69 234.90 223.80 10.37%
4 280.71 315.15 301.38 11.43%
 5 356.31 390.89 373.93 9.25%

127

Table 7-9. Comparisons of Hilbert and R-Tree Traversal Ordering Access Time
With 1000 Random Orderings Average of Access Time Under ATData

Mul Cost
Model for Synthetic Data Sets

Data
Set Rand-Ave

Hilbert Ordering
(HO)

R-Tree Ordering
(RO)

Hilbert
Ordering

Improvement
1_

−
HO

AveRand

R-Tree Ordering
Improvement

1_
−

RO
AveRand

1 67.62 40.32 35.2 -2.68% 11.48%
2 145.89 199.4 182.42 1.24% 10.66%
3 223.80 328.93 283.52 0.99% 17.16%
4 301.38 300.12 304.4 9.58% 8.04%
5 373.93 243.6 218.69 11.06% 23.71%

Table 7-10. Comparison of Access Time for Optimized Ordering, R-Tree
Ordering and 1000 Random Orderings Average Under ATData

Mul Cost Model for
Synthetic Data Sets

Data
Set

Rand-Ave

R-Tree
Ordering

(RO)

Optimized
R-Tree Ordering

(OO)

R-Tree
Improvement

1−
−

RO
AveRand

Opt-
Improvement

1−
OO
RO

Overall
Improvement

1_
−

OO
AveRand

1 67.62 60.65 58.3 11.49% 4.03% 15.99%
2 145.89 131.84 128.15 10.66% 2.88% 13.84%
3 223.80 191.01 167.86 17.17% 13.79% 33.33%
4 301.38 278.96 248.11 8.04% 12.43% 21.47%
5 373.93 302.26 269.69 23.71% 12.08% 38.65%

7.4 The Zip-code Point Data Sets
The centers of the zip codes are in the form of latitude/longitude pairs. We

choose the following query window sizes in our experiments for the zip code data

sets: 0.05 degree by 0.05 degree, 0.1 degree by 0.1 degree, 0.5 degree by 0.5 degree,

1 degree by 1 degree and 5 degree by 5 degree. The smallest query window size is

approximately 5 kilometers by 5 kilometers and the largest query window size is

128

approximately 500 kilometers by 500 kilometers. We believe these query window

sizes are meaningful in real applications. We set the maximum numbers of nodes in a

hyperedge to be 10, 20, 30, 40 and 50 for the five query window sizes, respectively.

Note that for some data sets that have small areas but a large number of zip codes

(points), such as the Washington D.C. data set and the Rode Island data set, it is

impossible for a large query window to contain fewer than the threshold numbers of

points centered at any point in those data sets. Consequently there is no hypergraph

generated for the data set. In this case we simply discard the data set for the particular

query window. Although it is possible for the data sets with a large area but small

number of points to have hypergraphs that all hyperedges of which have only one

node for small query windows, i.e., no two extended regions intersect with each other,

this scenario does not happen in our experiments. This is primarily due to the

clustered distribution of the data sets.

Due to the volume of the data sets and their experimental results, we list them

in the appendix A. Table A-1 lists the parameters that characterizing the hypergraphs

for each of the data sets in terms of the number of points for sequencing, the number

of hyperedges (i.e., the number of possible distinct query result sets) and the average

number of nodes per hyperedge. Table A-3 through Table A-17 list the experiment

results for the data sets using the five query window sizes under the three cost

models. The meanings of the column names in these 15 tables are listed in Table A-

2. The computation time for the optimization methods (DBW/ATData
Sep and ATData

Mul)

129

are listed in Table A-18. The average access times under the three cost models and

five query windows for the zip code data sets are listed in Table 7-11.

Table 7-11. Summary of Results of Zip Code Data Sets

Cost
Model

Window
Size

Rand
_Ave

HO RO OO 1_
−

RO
AveRand 1−

OO
RO

1_
−

OO
AveRand

0.05 158.56 157.93 61.02 42.07 160.19% 51.81% 290.33%
0.1 178.07 177.30 77.84 57.58 144.75% 44.76% 254.83%
0.5 330.23 326.75 153.78 114.38 130.03% 42.62% 229.57%
1 419.02 418.95 224.95 177.96 89.10% 30.03% 144.89%

DBW

5 141.78 140.84 95.35 67.26 46.92% 43.32% 109.26%
0.05 282.15 282.14 218.02 206.12 27.66% 6.65% 36.05%
0.1 309.92 309.48 245.46 233.22 26.52% 6.09% 34.20%
0.5 548.01 546.07 438.52 414.86 25.50% 6.24% 33.31%
1 637.31 637.32 526.39 499.88 20.52% 5.82% 27.49%

SEP

5 175.59 175.37 155.09 141.87 11.47% 9.11% 21.56%
0.05 250.65 250.31 201.66 192.59 23.50% 6.07% 30.89%
0.1 276.09 275.45 224.71 216.07 23.43% 5.46% 30.14%
0.5 489.8 488.09 398.75 377.27 22.55% 7.43% 31.62%
1 572.85 572.04 473.57 453.62 20.11% 7.35% 28.84%

MUL

5 162.37 161.29 134.85 124.27 20.27% 14.49% 38.28%

 From Table A-1 to A-18 and the summary table (Table 7-11) we can see the

similar results as those in the five synthetic data sets. For the zip code data sets, on

average, the optimized orderings are better than 1000 times random ordering average

1.09 to 2.90 times under DBW, 22% to 36% under SEP and 30% to 38% under MUL,

respectively. The R-Tree heuristics contribute approximately 2/3 to the overall

improvement and the optimization methods contribute approximately 1/3 to the

overall improvements. The Hilbert orderings have similar performance as the 1000

times random ordering average. The results show that both the R-Tree traversal

heuristic and the optimization methods are effective which makes the orderings based

on them query efficient. We next analyze the computation times for the optimizations,

i.e., the time it takes to run the optimization methods.

130

The computation time for the optimization method for DBW/ATData
Sep and

ATData
Mul are listed in Table A-18 and shown in Fig. 7-2 and Fig. 7-3, respectively.

Note that the trend lines for query window 0.05 by 0.05 and query window 0.1 by 0.1

are almost overlapped due to their small computation times. From the results we can

see that the computation times are generally quadratic with respect to the number of

nodes in the hypergraphs. They support the theoretical result of MinLA (on which the

DBW optimization method is based) given in (Bar-Yehuda, 2001) and our ATData
Mul

optimization method very well. The computation time for our ATData
Mul optimization

method is about 2/3 of that of the MinLA algorithm.

The computation times for running DBW/ATData
Sep and ATData

Mul

optimization reach their maximum for PA data set for 1.0 by 1.0 query window,

which are 127 and 76 seconds respectively. The hypergraph representation of the PA

data set has 1847 nodes, 17447 hyperedges and 8.69 nodes per hyperedge on average.

The PA data set also has the largest computation time for both optimization methods

under the 0.5 by 0.5 query window, which are 46 and 34 seconds respectively and its

hypergraph representation has 2075 nodes, 6862 hyperedges and 5.62 nodes per

hyperedge on average. For PA data set, although it has more nodes in the hypergraph

representation under the 0.5 by 0.5 query window than the hypergraph representation

under 1.0 by 1.0 query window, the number of hyperedges and the number of nodes

per hyperedge under the 1.0 by 1.0 query window is significantly larger than the

number of hyperedges and the number of nodes per hyperedge under the 0.5 by 0.5

query window respectively. This explains why it takes more time for both

131

optimization methods under the 1.0 by 1.0 query window than that under 0.5 by 0.5

query window. The similar thing happens to the SD data set in 5.0 by 5.0 query

window. Although the SD data set under the query window has only the 6th largest

number of nodes among all the data sets, it has the largest number of hyperedges and

considerable large average number of nodes per hyperedge, thus it takes the longest

computation times for the two optimization methods, which are 33 and 15 seconds,

respectively. The results show the importance of the hidden const factor behind the

big O notation.

y = 2E-06x2.0872

y = 9E-06x1.8409

y = 1E-06x2.2556y = 0.001x1.6615

y = 2E-05x2 + 0.0049x - 4.3198

-20

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500

of nodes

Se
c

005

01

05

1

5

 Fig. 7-2. Computation Time for DBW/ATData
Sep Optimization Method of

Zip Code Data Sets

132

0

y = 0.0002x1.4167

y = 3E-07x2.3184

y = 7E-06x1.9749

y = 9E-06x2.0501

y = 0.009x1.1679

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500

of nodes

se
c

005

01

05

1

5

Fig. 7-3. Computation Time for ATData
Mul Optimization Method For Zip

Code Data Sets

Although it takes about two minutes to optimize the ordering for the most

complex data set (PA under 1.0 by 1.0 query window and running DBW/ATData
Sep

optimization) , as we have discussed in the introduction, geographical data changes

relatively slow in practice. Furthermore, since the optimizations are done on the

server side, we believe that the optimization time can be significantly reduced by

using more powerful processors to fulfill the requirements in practice. Due to the

divide-and-conquer nature of the optimization methods, it is also possible to explore

parallelism to further reduce the computation time.

133

7.4 Texas Transportation Network Data Set
The data set is shown in Fig 7-4. There are 62 nodes (cities) and 120 edges

(major roads) in the transportation network. The number of all-pair shortest paths is

62*(62-1)/2=1891, i.e., the hypergraph representation for network path query has

1891 hyperedges. For spatial range queries, the query window we use is a 100 by 100

square miles area. The resulting hypergraph representation has 62 nodes (cities) and

420 hyperedges.

Fig. 7-4. Texas Road Network

134

We explore the following ordering heuristics for experiments using the DBW

cost model (c.f. Fig. 7-1): random, original graph traversal/EAFG traversal

(BFS/DFS), traversal of the original graph partition tree, traversal of the derived

hypergraph partition tree, traversal of EAFG partition tree, Hilbert SFC and R-Tree

traversal. For BFS/DFS traversals, start at different nodes will generate different

orderings. We report min, max and average of the n BFS/DFS orderings using

different nodes as the starting node where n is the number of vertices in the network.

For the R-Tree traversal ordering heuristic, we vary the branch factor from 4 to 9. We

also evaluate the optimized orderings using the following BDTs: the original graph

partition tree, the EAFG partition tree, the hypergraph partition tree and the

decomposed R-Tree built from treating graph nodes as geographical points. These

heuristic orderings and optimized orderings based on the hypergraph representation of

network path queries on graph data are evaluated first on the network path queries.

The same orderings are then evaluated on the hypergraph representation of spatial

range queries on point data. The results are shown in Table 7-12.

From the results we can see that for network path queries, traversal of the

graph (original graph, EAFG and hypergraph) partition tree orderings and their

optimized orderings achieve much better results than both the graph traversal

orderings and geometric based heuristic orderings. Among these orderings, traversal

of the hypergraph partition tree ordering as an ordering heuristic is the best. On the

other hand, the optimized ordering based on the EAFG partition tree is the best

135

among the three optimized orderings although they are pretty close. The optimized

ordering based on the original graph partition tree has the largest improvement ratio

over its graph partition tree traversal ordering heuristic.

Table 7-12. Summary of Results of Texas Transportation Network Data
Set Under DBW Cost Model

Orderings Path Query Range Query
n-Rand-min 35.55 26.68
n-Rand-max 45.10 34.25
n-Rand-Avg 40.79 30.46
n-EAFG-BFS-min 35.16 21.58
n-EAFG-BFS-max 42.57 32.24
n-EAFG-BFS-avg 39.35 27.97
n-EAFG-DFS-min 32.54 18.58
n-EAFG-DFS-max 40.23 27.93
n-EAFG-DFS-avg 37.31 23.50
Traversal of original graph partition tree 30.69 21.33
Optimization based on original graph
partition tree 22.56 20.04
Traversal of EAFG partition tree 26.37 20.61
Optimization based on EAFG partition tree 22.26 21.16
Traversal of hypergraph partition tree 24.25 25.19
Optimization based on hypergraph partition
tree 22.74 18.69
Hilbert SFC 38.63 25.61
Traversal of R-Tree –min 35.73 17.76
Traversal of R-Tree –max 39.97 25.92
Traversal of R-Tree –avg 37.99 21.24
Optimization R-Tree –min 33.53 13.31
Optimization R-Tree –max 35.87 22.41
Optimization R-Tree –avg 34.30 13.49

Since the EAFG and the original graph has the same topology, their breadth

first search orderings and depth first search orderings are also the same. Among the

EAFG traversal ordering heuristics, DFS seems to be better for all n-min/max/avg

cases than those of BFS. The Hilbert ordering, although better than the maximum of

136

random ordering orderings, is worse than their average. The R-Tree traversal

orderings average is slightly worse than the DFS traversals average of EAFG, but is

better than BFS traversals average of EAFG. The results suggest that the geometric

based heuristic orderings (R-Tree traversal) and their optimized orderings are not as

good as graph partition based ones (Original/EAFG/Hypergraph partition tree

traversal).

It is interesting to see that geometric-based ordering heuristics and their

optimized orderings where optimizations are based on the hypergraph representation

of spatial range queries perform better than graph partition orderings and their

optimized orderings where the optimizations are based on the hypergraph

representation of network path queries. We thus draw our conclusion that geometric

based orderings should be used for spatial range queries and graph partition based

orderings should be used for network path queries.

We next perform experiments using the ATData
Mul cost model on network path

queries. Several new ordering heuristics, such as Maximum Spanning Tree , MAX,

MAX-LD, NODE-WEIGHT and EDGE-WEIGHT as discussed in Chapter 5, are

available under MUL scheme but not under DBW/SEP scheme.

Although the Maximum Spanning Tree based orderings do not make much

sense under the DBW cost model, it works well under the ATData
Mul cost model since

they put nodes (or edges) with larger weights as close to the beginning of a broadcast

cycle as possible. The similar arguments can be made for MAX, MAX-LD, NODE-

WEIGHT and EDGE-WEIGHT heuristics. Note that the Prim’s MST algorithm and

137

the Kruskal MST algorithm although generate the same MST, might have different

orderings. For the Prim MST, we set each node in the graph as the source and record

the sequence of nodes being visited to obtain n Prim’s MST orderings. While the

MAX and MAX-LD heuristics cannot be extended to hypergraph easily, the NODE-

WEIGHT and EDGE-WEIGHT heuristics can be used for both a regular graph and a

hypergraph. We also include graph partition tree traversal orderings and their

optimized orderings. Note that when applying optimizations, the original graph and

the EAFG are used only to generate the BDTs while the hypergraph is still used as the

underlying representation in all the three optimizations. Like the experiments under

the DBW cost model, we also include the Hilbert and the R-Tree traversal ordering

heuristics. Again R-Trees are used only for generating the BDTs . The results are

listed in Table 7-13. For the numbers that stride multiple columns, they are the same

by nature for the types of graphs denoted by the columns.

From the results we can see that graph partition based heuristic orderings and

their optimized orderings remain among the best orderings under ATData
Mul cost

model. The Kruskal-MST heuristic on the EAFG, the MAX and the MAX-LD

heuristics on the original graph/EAFG are slightly better than the rest heuristic

orderings. Although they are still slightly worse than the 1000 random ordering

minimum, they are better than the 1000 random ordering average. Considering the

computation cost of these heuristics and the cost of examining 1000 random

orderings, they are preferred to random orderings. Although the optimized orderings

using R-tree as BDTs improve the R-Tree traversal ordering heuristics by 5% on

138

139

average, they are still only comparable to the Kruskal-MST heuristic on the EAFG,

the MAX and the MAX-LD heuristics on original graph/EAFG. Thus we do not

recommend performing optimization using R-Tree as the BDT construction to

optimize broadcast ordering for network path query processing.

Table 7-13. Summary of Results of Texas Transportation Network Data
Set Under ATData

Mul Cost Model
Graph Types Orderings

ORGN EAFG Hyper
1000-Rand-min 47.39
1000-Rand-max 53.39
1000-Rand-Avg 51.00
n-BFS-min 47.78 N/A
n-BFS-max 53.49 N/A
n-BFS-avg 50.41 N/A
n-DFS-min 48.67 N/A
n-DFS-max 53.07 N/A
n-DFS-avg 51.35 N/A
n-Prim-MST-Min 47.89 48.67 N/A
n-Prim-MST-Max 53.09 52.18 N/A
n-Prim-MST-Avg 49.56 50.47 N/A
Kruskal-MST 49.61 47.01 N/A
MAX 47.79 N/A
MAX-LD 47.64 N/A
NODE-WEIGHT 52.28 52.00 52.43
EDGE-WEIGHT 50.91 53.15 51.95
Traversal of partition tree 44.38 47.79 45.01
Optimization based on partition tree 41.76 41.31 41.20
Hilbert SFC 50.71
Traversal of R-Tree –min 48.50
Traversal of R-Tree –max 51.09
Traversal of R-Tree –avg 50.09
Optimization R-Tree –min 46.04
Optimization R-Tree –max 48.79
Optimization R-Tree –avg 47.56

Chapter 8

Conclusions and Future Work

Geographical information has been widely used in our everyday lives. Most

geographical information are public and many of them are frequently requested by a large

number of users. We believe broadcasting geographical information over air is an

attractive solution for emerging location dependent services, in terms of scalability,

mobility management at the server side and power consumption at the client side. In

addition, geographical information broadcast may play unique roles in many applications,

such as in unusual event monitoring, disaster rescue and military operations.

In this study, our focuses were to develop cost models and optimization

algorithms for placing geographical data items onto a broadcast channel based on their

spatial semantics to reduce the response time and energy consumption for processing

spatial queries over the broadcast channel. Our work can be summarized as follows:

1. We divided data access time into four components, namely IPW, IBW, DPW and

DBW. This is an extension to the classic division of access time into Probe Wait

and Bcast Wait. The extension allows studying access time to index and access

time to data separately. While the classic division mostly targets at the

multiplexing broadcast scheme, the extension works for both the multiplexing

broadcast scheme (MUL) and the broadcast scheme that uses separate channels

for index and data (SEP).

2. We developed the cost models for computing the data access time for processing

spatial queries over broadcast geographical data, including DBW, ATData
Mul and

140

ATData
Sep. Although DBW and ATData

Mul are relatively straightforward, deriving

ATData
Sep has gone through much elaborated work. The derived simple quadratic

form of ATData
Sep for processing a single complex query is not only easy to use

but also theoretically meaningful, which is the base for us to propose using DBW

to approximate ATData
Sep.

3. Given a query window size, we proposed a method for computing all possible

query result sets and their weights for point data. This result also lays the

foundation for representing a spatial range query result as a hypergraph edge in a

hypergraph and for relating data placement problem with graph MinLA problem.

4. We discussed a family of low-cost heuristics for data placement in a broadcast

channel and put them into a cohesive classification structure. These heuristics can

be used to generate the orderings of broadcast sequences directly or used as the

initial orderings for further optimization. Specifically we discussed the following

heuristics in detail: R-tree traversal ordering, Hilbert SFC ordering, graph

partition tree traversal ordering, ordering based on degree/weight, and spanning

tree ordering.

5. We provided three optimization methods for reducing data access time under the

cost models, DBW, ATData
Mul and ATData

Sep, respectively. They can be applied to

spatial range queries, network path queries or any other types of complex queries.

We first proposed to use an efficient graph MinLA algorithm to optimize DBW.

Since our cost model of ATData
Sep shows the monotonic relationship between

DBW and ATData
Sep, we proposed to use DBW to approximate ATData

Sep and use

the same algorithm to optimize ATData
Sep. Our most significant contribution

141

related to optimization is the novel method to optimize ATData
Mul. Although

following the same divide-and-conquer strategy and using BDT as a global

constraint for ordering as in (Bar-Yehuda, 2001), we compute

)}(),...(),(max{ 21 knnn πππ directly by efficiently computing the total sizes of the

sub-trees to the left of the path from the ending node of {n1,n2,…nk}to the root of

a BDT. This is quite different from the strategy adopted in (Bar-Yehuda, 2001)

which transforms computing |π(u)-π(v)| for an edge to recursive summations of

the sub-tree sizes of a BDT. However, the strategy adopted in (Bar-Yehuda, 2001)

can not be applied to computing)}(),...(),(max{ 21 knnn πππ in optimizing

ATData
Mul due to its non-linear nature.

6. We performed experiments on five synthetic point data sets, 51 zip code point

data sets of 51 states of US, and the Texas road network graph data set. The

results show that the three proposed optimization methods are very effective. For

the 51 zip data sets, on average, the data access time based on the optimized

ordering is only about 1/3 of that of the 1000 time random orderings average

under the DBW cost model. The performances are also improved about 30%

under the ATData
Mul and the ATData

Sep cost models, both with acceptable

computation overheads. The results from the geometric and graph-based

heuristics and their optimizations under the DBW and the ATData
Mul cost models

applied to the Texas road network data set show that geometric heuristic should

be applied to optimizations of spatial range queries for point data sets and graph

heuristic should be applied to optimizations of network path queries for graph

data sets.

142

For future work, we first plan to take access time to the index channel into

consideration. Although index placement has been extensively studied, very few

techniques are specifically designed for multi-dimensional data that can be applied to

geographical information. Although not considered in this study, it is possible that there

exists a better scheme to combine index and data other than the MUL and SEP.

Specifically, for MUL scheme, it is desirable to consider access frequencies of query

result sets and their access paths to an index tree simultaneously. The challenge might be

to handle hypergraphs for unordered data accesses and index trees for a combination of

ordered data access (parent/ child) and unordered data access (siblings) at the same time.

Second, although the complexities in our proposed optimization methods, either

adopted from the graph MinLA problem or developed by ourselves, are the smallest to

the best of our knowledge, they are still super-quadratic. They might not be applicable

when the number of data items in a data set (or the number of nodes in the data set’s

hypergraph representation) is large. A solution might be to follow the multi-scale

paradigm, i.e., the size of a hypergraph is first reduced by collapsing nodes and edges to

generate a higher level graph/hypergraph. The nodes of the higher level

graph/hypergraph, the number of which is much smaller than the number of nodes in the

original hypergraph, are then ordered. The nodes of the lower level graph/hypergraph are

then ordered recursively until all the nodes of the lowest level graph/hypergraph are

sequenced, i.e., all the nodes in the original hypergraph are ordered. (Koren, 2002)

proposed a multi-scale algorithm for graph MinLA, however, we are not clear of its

143

144

applicability and extensibility in data placement of a broadcast channel, especially under

the ATData
Mul cost model.

Finally, we plan to investigate on more efficient methods to compute access

frequencies (i.e., weights of hyperedges) of point data sets, explore more ordering

heuristics, and perform more experiments using both synthetic and real data sets with

different sizes and distributions to examine the practical effectiveness and scalabilities of

the optimization methods.

Reference
(In DBLP Format)

1. Swarup Acharya, Rafael Alonso, Michael J. Franklin, Stanley B. Zdonik:
Broadcast Disks: Data Management for Asymmetric Communications
Environments. SIGMOD Conference 1995: 199-210.

2. Pankaj Agarwal, Lars Arge, Jeff Erickson: Indexing Moving Points. PODS,
2000:175-186.

3. Rakesh Agrawal, H. V. Jagadish: Materialization and Incremental Update of
Path Information. ICDE, 1989: 374-383.

4. Demet Aksoy, Mehmet Altinel, Rahul Bose, Ugur Çetintemel, Michael J.
Franklin, Jane Wang, Stanley B. Zdonik: Research in Data Broadcast and
Dissemination. AMCP 1998: 194-207.

5. Charles J. Alpert, Andrew B. Kahng: Recent Directions in Netlist Partitioning.
Integration, the VLSI Journal, 19(1-2): 1-81(1995).

6. Charles J. Alpert, Andrew B. Kahng: A General Framework for Vertex
Orderings With Applications to Circuit Clustering. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 4(2): 240 –246(1996).

7. Ning An, Ji Jin, Anand Sivasubramaniam: Toward an Accurate Analysis of
Range Queries on Spatial Data. IEEE Transaction on Knowledge and Data
Engineering 15(2): 305-323 (2003).

8. Walid G. Aref, Ibrahim Kamel: On Multi-dimensional Sorting Orders. DEXA
2000: 774-783.

9. Franz Aurenhammer: Voronoi Diagrams - A Survey of a Fundamental
Geometric Data Structure. ACM Computing Surveys 23(3): 345-405 (1991).

10. Lukas Bachmann, Bernd-Uwe Pagel, Hans-Werner Six: Optimizing Spatial
Data Structures For Static Data. IGIS 1994: 247-258.

11. Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger:
The R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles. SIGMOD Conference 1990: 322-331.

12. Chee Yong Chan, Beng Chin Ooi: Efficient Scheduling of Page Access in
Index-Based Join Processing. IEEE Transaction on Knowledge and Data
Engineering 9(6): 1005-1011 (1997).

13. Edward P. F. Chan and Ning Zhang: Finding Shortest Paths in Large Network
System. ACM-GIS 2001:160-166.

145

14. Y. C. Chehadeh, Ali R. Hurson, Mohsen Kavehrad: Object Organization on a
Single Broadcast Channel in the Mobile Computing Environment. Multimedia
Tools and Applications 9(1): 69-94 (1999).

15. Li Chen, Rupesh Choubey, Elke A. Rundensteiner: Bulk-Insertions Into R-
Trees Using the Small-Tree-Large-Tree Approach. ACM-GIS 1998: 161-162.

16. Li Chen, Rupesh Choubey, Elke A. Rundensteiner: Merging R-Trees:
Efficient Strategies for Local Bulk Insertion. GeoInformatica 6(1): 7-34
(2002).

17. Richard Steven Chernock, Data Broadcasting: Understanding the ATSC Data
Broadcast Standard, McGraw-Hill, 2001.

18. Dae-Soo Cho, Bong-Hee Hong: Optimal Page Ordering for Region Queries in
Static Spatial Databases. DEXA 2000: 366-375.

19. Hae Don Chon, Divyakant Agrawal, Amr El Abbadi: Storage and Retrieval of
Moving Objects, MDM 2001: 173-184.

20. Rupesh Choubey, Li Chen, Elke A. Rundensteiner: GBI: A Generalized R-
Tree Bulk-Insertion Strategy. SSD 1999: 91-108.

21. Yon Dohn Chung, Myoung-Ho Kim: Effective Data Placement for Wireless
Broadcast. Distributed and Parallel Databases 9(2): 133-150 (2001).

22. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliff Stein:
Introduction to Algorithms (Second Edition), MIT Press and McGraw-Hill,
2001.

23. Josep Daiz, Jordi Petit, María Serna: A Survey on Graph Layout Problems.
ACM Computing Surveys 34(3): 313-356(2002).

24. Guy Even, Joseph Naor, Satish Rao, Baruch Schieber: Divide-and-Conquer
Approximation Algorithms via Spreading Metrics. Journal of ACM 47(4):
585-616 (2000).

25. Christos Faloustos: Gray-Codes for Partial Match and Range Queries. IEEE
Transaction on Software Engineering 14(10): 1381-1393(1988).

26. Christos Faloutsos, Shari Roseman: Fractals for Secondary Key Retrieval.
PODS 1989: 247-252.

27. Luca Forlizzi, Ralf Hartmut Güting, Enrico Nardelli, Markus Schneider: A
Data Model and Data Structures for Moving Objects Databases. SIGMOD
Conference 2000: 319-330.

28. Farshad Fotouhi, Sakti Pramanik: Optimal Secondary Storage Access
Sequence for Performing Relational Join. IEEE Transaction on Knowledge
and Data Engineering 1(3): 318-328 (1989).

146

29. Volker Gaede, Oliver Günther: Multidimensional Access Methods. ACM
Computing Surveys 30(2): 170-231 (1998).

30. Yvan J. Garcia, Mario A. Lopez, Scott T. Leutenegger: A Greedy Algorithm
for Bulk Loading R-Trees. ACM-GIS 1998: 163-164.

31. David K. Gifford, John M. Lucassen, Stephen T. Berlin: The Application of
Digital Broadcast Communication to Large Scale Information Systems. IEEE
Journal on Selected Areas in Communications 3(3): 457-467 (1985).

32. Veena Gondhalekar, Ravi Jain, John Werth: Scheduling on Airdisks: Efficient
Access to Personalized Information Services via Periodic Wireless Data
Broadcast. ICC (3) 1997: 1276-1280.

33. Ralf Hartmut Guting, Michael H. Böhlen, Martin Erwig, Christian S. Jensen,
Nikos A. Lorentzos, Markus Schneider, Michalis Vazirgiannis: ACM
Transactions on Database Systems 25 (1): 2000:1-42.

34. Antonin Guttman: R-Trees: A Dynamic Index Structure for Spatial Searching.
SIGMOD Conference 1984: 47-57.

35. Susanne E. Hambrusch, Chuan-Ming Liu, Walid G. Aref, Sunil Prabhakar:
Query Processing in Broadcasted Spatial Index Trees. SSTD 2001: 502-521.

36. Gary E. Herman, Gita Gopal, K. C. Lee, Abel Weinrib: The Datacycle
Architecture for Very High Throughput Database Systems. SIGMOD
Conference 1987: 97-103.

37. Jiawei Han, Micheline Kamber, Anthony K. H. Tung: Spatial Clustering
Methods in Data Mining: A Survey, in Harvey J. Miller, Jiawei Han (editors),
Geographic Data Mining and Knowledge Discovery, Taylor and Francis,
2001:1-29

38. Wolfgang Hoeg: Digital Audio Broadcasting: Principles and Applications,
Wiley, 2001.

39. Qinglong Hu, Wang-Chien Lee, Dik Lun Lee: A Hybrid Index Technique for
Power Efficient Data Broadcast. Distributed and Parallel Databases 9(2): 151-
177 (2001).

40. Qinglong Hu, Wang-Chien Lee, Dik Lun Lee: Indexing Techniques for Power
Management in Multi-Attribute Data Broadcast. Mobile Networks and
Applications 6(2): 185-197(2001).

41. Jiun-Long Huang, Ming-Syan Chen: Broadcast Program Generation for
Unordered Queries with Data Replication. SAC 2003: 866-870.

42. Yun-Wu Hung, Ning Jing, Elke A.Rundensteiner: Effective Graph Clustering
for Path Queries in Digital Map Databases. CIKM 1996: 215-222.

43. Tomasz Imielinski, B. R. Badrinath: Data Management for Mobile
Computing. SIGMOD Record 22(1): 34-39 (1993).

147

44. Tomasz Imielinski, S. Viswanathan, B. R. Badrinath: Energy Efficient
Indexing on Air. SIGMOD Conference 1994: 25-36.

45. Tomasz Imielinski, S. Viswanathan, B. R. Badrinath: Power Efficient
Filtering of Data an Air. EDBT 1994: 245-258.

46. Tomasz Imielinski, S. Viswanathan, B. R. Badrinath: Data on Air:
Organization and Access. IEEE Transactions on Knowledge and Data
Engineering 9(3): 353-372(1997).

47. H. V. Jagadish: Linear Clustering of Objects with Multiple Attributes.
SIGMOD Conference 1990: 332-342.

48. Ning Jing, Yun-Wu Huang, Elke A. Rundensteiner: Hierarchical Encoded
Path Views for Path Query Processing: An Optimal Model and Its
Performance Evaluation. IEEE Transactions on Knowledge and Data
Engineering 10(3): 409-432(1998).

49. David S. Johnson, Lyle A. McGeoch: Experimental Analysis of Heuristics for
the STSP, in Gregory Gutin, Abraham P. Punnen (Editors), “The Traveling
Salesman Problem and its Variations”, Kluwer Academic Publishers,
2002:369-443.

50. D. S. Johnson, G. Gutin, Lyle A. McGeoch, A. Yeo, Weixiong Zhang, A.
Zverovich: Experimental Analysis of Heuristics for the ATSP, in Gregory
Gutin, Abraham P. Punnen (Editors), “The Traveling Salesman Problem and
its Variations”, Kluwer Academic Publishers, 2002: 445-487.

51. Ibrahim Kamel, Christos Faloutsos: On Packing R-trees. CIKM 1993: 490-
499.

52. Ibrahim Kamel, Christos Faloutsos: Hilbert R-tree: An Improved R-tree using
Fractals. VLDB 1994: 500-509.

53. George Kollios, Dimitrios Gunopulos, Vassilis J. Tsotras: On Indexing
Mobile Objects. PODS 1999: 261-272.

54. Birgitta Konig-Ries, Kia Makki, S. A. M. Makki, Charles E. Perkins, Niki
Pissinou, Peter L. Reiher, Peter Scheuermann, Jari Veijalainen, Ouri Wolfson:
Report on the NSF Workshop on Building an Infrastructure for Mobile and
Wireless Systems. SIGMOD Record 31(2): 73-79 (2002).

55. Yehuda Koren, David Harel: A Multi-scale Algorithm for the Linear
Arrangement Problem. WG 2002: 296-309.

56. Hans-Peter Kriegel: Performance Comparison of Index Structures for Multi-
Key Retrieval. SIGMOD Conference 1984: 186-196.

57. Akhil Kumar, Waleed A. Muhanna, Raymond A. Patterson: Mean-Variance
Analysis of the Performance of Spatial Ordering Methods. International
Journal of Geographical Information Science 12(3): 269-289 (1998).

148

58. Ming-Ter Kuo, Chung-Kuan Cheng: A Network Flow Approach for
Hierarchical Tree Partitioning. DAC 1997: 512-517.

59. Kam-yiu Lam, Özgür Ulusoy, Tony S. H. Lee, Edward Chan, Guohui Li: An
Efficient Method for Generating Location Updates for Processing of
Location-Dependent Continuous Queries. DASFAA, 2001: 218-225.

60. Guanling Lee, Shou-Chih Lo, Arbee L. P. Chen: Data Allocation on Wireless
Broadcast Channels for Efficient Query Processing. IEEE Transactions on
Computers 51(10): 1237-1252 (2002).

61. Guanling Lee, Shou-Chih Lo: Broadcast Data Allocation for Efficient Access
of Multiple Data Items in Mobile Environments. Mobile Networks and
Applications 8(4): 365-375 (2003).

62. Wang-Chien Lee, Dik Lun Lee: Using Signature Techniques for Information
Filtering in Wireless and Mobile Environments. Distributed and Parallel
Databases 4(3): 205-227 (1996).

63. Alexander Leonhardi, Kurt Rothermel: Architecture of a Large-Scale
Location Service. ICDCS 2002: 465-466.

64. Scott T. Leutenegger, J. M. Edgington, Mario A. Lopez: STR: A Simple and
Efficient Algorithm for R-Tree Packing. ICDE 1997: 497-506.

65. Vincenzo Liberatore: Multicast Scheduling for List Requests. INFOCOM
2002: 1129 – 1137.

66. Andrew Lim, Jennifer Lai-Pheng Kwan, Wee-Chong Oon: Page Access
Scheduling in Join Processing. CIKM 1999: 276-283.

67. Martin Mauve, Jörg Widmer, Hannes Hartenstein: A survey on position-based
routing in mobile ad hoc networks. IEEE Network Magazine 15(6):0-39
(2001).

68. G. Morton: A Computer Oriented Geodetic Database and a New Technique in
file Sequencing, IBM Ltd., Ottawa, Canada, 1966.

69. Jack A. Orenstein, T. H. Merrett: A Class of Data Structures for Associative
Searching. PODS 1984: 181-190.

70. Bernd-Uwe Pagel, Hans-Werner Six, Heinrich Toben, Peter Widmayer:
Towards an Analysis of Range Query Performance in Spatial Data Structures.
PODS 1993: 214-221.

71. Wen-Chih Peng, Ming-Syan Chen: Dynamic Generation of Data Broadcasting
Programs for a Broadcast Disk Array. CIKM 2000: 38-45.

72. Dieter Pfoser, Christian S. Jensen, Yannis Theodoridis: Novel Approaches to
the Indexing of Moving Object Trajectories. VLDB, 2000: 395-406.

149

73. Dieter Pfoser, Christian S. Jensen: Querying the trajectories of on-line mobile
objects. MobiDE 2001: 66-73.

74. Sakti Pramanik, David Ittner: Use of Graph-Theoretic Models for Optimal
Relational Database Accesses to Perform Join. ACM Transaction on Database
Systems 10(1): 57-74 (1985).

75. Satish Rao, Andréa W. Richa: New Approximation Techniques for Some
Ordering Problems. SODA 1998: 211-218.

76. Ulrich Reimers: Digital Video Broadcasting (DVB): The International
Standard for Digital Television, Springer, 2001.

77. Qun Ren, Margaret H. Dunham: Using Semantic Caching to Manage Location
Dependent Data in Mobile Computing. MOBICOM 2000: 210-221.

78. Philippe Rigaux, Michel O. Scholl, Agnes Voisard, Spatial Databases: With
Application to GIS, Academic Press, 2002 .

79. Nick Roussopoulos, Daniel Leifker: Direct Spatial Search on Pictorial
Databases Using Packed R-Trees. SIGMOD Conference 1985: 17-31.

80. Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, Mario A. Lopez:
Indexing the Positions of Continuously Moving Objects. SIGMOD
Conference 2000: 331-342.

81. Hanan Samet: The Design and Analysis of Spatial Data Structures, Addison-
Wesley, 1990.

82. Kirk Schloegel, George Karypis, Vipin Kumar: Graph Partitioning for High
Performance Scientific Simulations, in J. Dongarra, I. Foster, G. Fox, K.
Kennedy, A. White (editors), “CRPC Parallel Computing Handbook”, Morgan
Kaufmann, 2000.

83. Timos K. Sellis, Nick Roussopoulos, Christos Faloutsos: The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects. VLDB 1987: 507-518.

84. Ayse Y. Seydim, Margaret H. Dunham, Vijay Kumar: Location dependent
query processing. MobiDE 2001: 47-53.

85. Shashi Shekhar, Duen-Ren Liu: CCAM: A Connectivity-Clustered Access
Method for Networks and Network Computations. IEEE Transactions on
Knowledge and Data Engineering 9(1): 102-119(1997).

86. Shashi Shekhar, Andrew Fetterer, Bjajesh Goyal: Materialization Trade-Offs
in Hierarchical Shortest Path Algorithms. SSD 1997:94-11.

87. Shashi Shekhar, Chang-Tien Lu, Sanjay Chawla, Sivakumar Ravada: Efficient
Join-Index-Based Spatial-Join Processing: A Clustering Approach. IEEE
Transactions on Knowledge and Data Engineering 14(6): 1400-1421 (2002).

150

88. Shashi Shekhar, Sanjay Chawla: Spatial Databases: A Tour, Prentice Hall,
2003.

89. Narayanan Shivakumar, Suresh Venkatasubramanian: Energy-efficient
Indexing for Information Dissemination in Wireless Systems. Mobile
Networks and Applications 1(4), 1996: 433-446.

90. Antonio Si, Hong Va Leong: Query Optimization for Broadcast Database.
Data and Knowledge Engineering 29(3): 351-380 (1999).

91. A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, Son Dao: Modeling and
Querying Moving Objects. ICDE 1997: 422-432.

92. Kian-Lee Tan, Jeffrey Xu Yu: Generating Broadcast Programs that Support
Range Queries. IEEE Transactions on Knowledge and Data Engineering
10(4): 668-672 (1998).

93. Yannis Theodoridis, Timos K. Sellis: A Model for the Prediction of R-tree
Performance. PODS 1996: 161-171.

94. Yannis Theodoridis, Emmanuel Stefanakis, Timos K. Sellis: Efficient Cost
Models for Spatial Queries Using R-Trees. IEEE Transactions on Knowledge
and Data Engineering 12(1): 19-32 (2000).

95. Michalis Vazirgiannis, Ouri Wolfson: A Spatiotemporal Model and Language
for Moving Objects on Road Networks. SSTD 2001: 20-35.

96. Kirsi Virrantaus, Jouni Markkula, Artem Garmash, Vagan Y. Terziyan, Jari
Veijalainen, Artem Katanosov, Henry Tirri: Developing GIS-Supported
Location-Based Services. WISE (2) 2001: 66-75.

97. Mark A. Weiss, Data Structures and Algorithm Analysis in C, Addison-
Wesley, 1997.

98. Jeffrey E. Wieselthier, Gam D. Nguyen, Anthony Ephremides: Energy-Aware
Wireless Networking with Directional Antennas: The Case of Session-Based
Broadcasting and Multicasting. IEEE Transactions on Mobile Computing
1(3): 176-191 (2002).

99. Ouri Wolfson, A. Prasad Sistla, Sam Chamberlain, Yelena Yesha: Updating
and Querying Databases that Track Mobile Units. Distributed and Parallel
Databases 7(3): 257-387 (1999).

100. Vincent W.-S. Wong, Victor C. M. Leung: Location management for next-
generation personal communications networks. IEEE Network, 14(5): 18 –24(
2000).

101. Sung-Ho Woo, Sung-Bong Yang: An improved network clustering method for
I/O-efficient query processing. ACM-GIS, 2000:62-68.

151

152

102. Jitian Xiao, Yanchun Zhang, Xiaohua Jia, Xiaofang Zhou: A schedule of join
operations to reduce I/O cost in spatial database systems. Data and Knowledge
Engineering 35(3): 299-317 (2000).

103. Yonglong Xu: Development of Transport Telematics in Europe,
GeoInformatica 4(2): 179-200 (2000).

104. Reuven Bar-Yehuda: Computing an optimal orientation of a balanced
decomposition tree for linear arrangement problems. Journal of Graph
Algorithms and Applications 5(4),1-27(2001).

105. Jianting Zhang, Le Gruenwald: Prioritized sequencing for efficient query on
broadcast geographical information in mobile-computing. ACM-GIS 2002:
88-93.

106. J. Leon Zhao, Hsing K. Cheng: Graph Indexing for Spatial Data Traversal in
Road Map Databases. Computers and Operations Research 28 (3): 223-
241(2001).

107. Baihua Zheng, Dik Lun Lee: Processing location-dependent queries in a
multi-cell wireless environment. MobiDE 2001: 54-65.

[HREF 1] The Proposed .geo Top-Level Domain Name executive summary,
http://www.dotgeo.org/summary.html
[HREF 2] http://download-west.oracle.com/docs/cd/B10501_01/appdev.920/
a96630/toc.htm
[HREF 3] Traffic & Travel Information Broadcasting, http://www.tpeg.org/
[HREF 4] http://www.nist.gov/dads/HTML/simulatedAnnealing.html
[HREF 5] http://www.boost.org/libs/graph/doc/index.html
[HREF 6] http://www-users.cs.umn.edu/~karypis/metis/hmetis/
[HREF 7] http://www.cs.ucr.edu/~marioh/spatialindex/index.html
[HREF 8] http://www.caam.rice.edu/~dougm/twiddle/Hilbert/

Table A-1. Hypergraph Parameters Under the Five Query Window Sizes for Zip Code Data Sets

153

 0.05*0.05 0.1*0.1 0.5*0.5 1.0*1.0 5.0*5.0Data
Set Node Edge ANPE Node Edge ANPE Node Edge ANPE Node Edge ANPE Node Edge ANPE
AK 109 36 3.03 109 36 3.03 115 79 5.71 130 137 8.18 250 860 10.03
AL 364 135 2.70 393 142 3.01 643 797 5.85 780 3230 6.27
AR 200 82 2.44 200 82 2.44 517 468 3.03 694 3196 4.26 46 679 20.29
AZ 310 110 2.89 314 115 2.93 387 952 6.32 414 1813 12.16 305 2304 11.68
CA 1543 597 2.64 1707 745 2.98 1905 4628 6.63 1797 8451 8.45 393 4883 15.74
CO 316 115 2.75 331 120 2.83 422 816 6.33 527 1555 9.13 348 5903 12.55
CT 211 74 2.85 250 90 3.43 410 1511 6.03 380 3736 9.43
DC 53 15 3.53 47 16 3.88
DE 43 14 3.07 58 15 3.87 95 156 7.26 97 411 9.28 50 1026 20.71
FL 821 319 2.57 840 350 2.69 1242 4221 7.02 1125 6632 9.17 46 179 17.93
GA 417 162 2.57 434 167 2.87 697 926 5.48 841 3492 5.54 45 431 22.26
HI 60 22 2.73 57 21 2.71 89 130 3.49 96 328 5.60 68 1124 12.77
IA 238 99 2.40 235 101 2.35 802 885 3.41 1052 6656 3.96
ID 113 43 2.63 129 44 2.93 187 98 3.23 281 427 4.44 292 6507 15.14
IL 532 207 2.62 591 240 2.81 1378 3780 5.53 1420 11143 5.86
IN 432 164 2.63 455 171 2.78 904 1404 4.64 983 6343 6.21
KS 135 55 2.45 138 59 2.85 393 1065 6.37 767 4421 9.15 185 4682 15.09
KY 504 193 2.61 550 205 2.83 1080 2699 4.19 1114 9616 8.04 46 362 22.06
LA 412 154 2.68 419 156 2.79 594 818 5.91 696 2882 6.91
MA 354 137 2.78 377 183 2.92 643 3077 5.71 568 6206 9.68
MD 289 111 2.62 317 126 2.90 578 2053 5.35 507 4596 8.16 36 424 14.09
ME 185 76 2.43 188 78 2.45 452 743 3.26 519 3995 5.69 137 1958 18.86
MI 428 177 2.42 470 189 2.70 942 2615 5.55 1075 6808 6.76 190 3418 17.74
MN 190 81 2.35 255 103 3.43 687 1373 4.99 1007 4596 6.31 229 4104 16.43
MO 319 125 2.67 342 149 3.05 894 1880 5.14 1132 7310 6.04 50 604 25.74
MS 271 98 2.77 273 102 2.90 381 297 5.72 531 1229 5.74 95 744 21.62
MT 145 52 2.79 146 53 2.81 158 66 2.86 259 206 2.92 409 7826 11.62

154

 NC 521 204 2.55 546 208 2.75 901 964 4.25 1016 4848 5.81 90 1277 20.27
ND 61 22 2.77 62 23 2.78 129 70 2.71 390 635 2.73 328 7365 15.14
NE 104 43 2.42 104 43 2.42 342 894 6.85 565 3220 7.17 217 4951 12.66
NH 97 40 2.43 99 41 2.41 277 537 2.90 292 2859 5.62 44 531 23.48
NJ 300 120 2.58 433 228 2.66 657 5110 7.10 436 5131 11.08
NM 231 85 2.72 244 88 2.81 304 257 6.53 379 746 10.02 402 4925 11.85
NV 145 48 3.02 145 48 3.02 169 232 7.69 178 299 10.74 127 461 11.24
NY 901 362 2.62 1140 703 3.16 1845 6149 5.51 1712 17056 7.65
OH 748 304 2.49 797 337 2.64 1393 3915 6.32 1418 11404 8.07
OK 336 138 2.43 336 150 2.81 502 840 6.96 757 2442 7.05 170 2868 19.04
OR 155 63 2.46 159 70 3.01 291 415 4.94 400 1235 4.92 303 5843 13.31
PA 1120 424 2.66 1312 561 3.06 2075 6862 5.62 1847 17447 8.69
RI 38 17 2.24 41 20 2.40 90 533 6.89 90 1339 11.23
SC 273 105 2.60 290 107 2.73 437 385 4.66 537 2108 6.49 48 454 23.71
SD 70 29 2.41 72 30 2.40 148 124 4.75 371 811 4.61 337 8495 14.70
TN 317 122 2.64 340 134 3.01 662 909 5.21 744 3956 5.91 48 631 23.56
TX 1227 488 2.51 1347 534 2.90 1837 4624 6.35 2167 9231 8.46 497 5921 15.15
UT 197 61 3.23 199 64 3.59 269 326 5.00 279 826 6.06 196 1718 12.97
VA 543 182 2.98 570 202 3.17 1082 2091 5.76 1106 7017 6.52 50 597 22.79
VT 109 44 2.48 113 47 2.49 307 464 2.76 314 2835 5.13
WA 304 116 2.62 327 128 3.14 503 1163 5.71 633 2614 8.50 370 5706 16.81
WI 317 131 2.42 343 144 2.72 694 1056 4.82 893 4335 5.38 111 1554 19.97
WV 331 122 2.71 396 131 3.11 900 1850 3.52 928 8843 7.05 50 1017 23.58
WY 91 34 2.68 91 34 2.68 105 44 2.70 138 81 2.64 198 2098 7.77
Avg. 344 132 2.65 375 156 2.88 650 1547 5.21 728 4415 7.02 184 2822 17.04

Table A-2. Definitions of the Meanings of Columns Used in Table A3-A18

Rand-Min-1000 Minimum access time of 1000 random orderings
Rand-Max1000 Maximum access time of 1000 random orderings
Rand-Avg-1000 Average access time of 1000 random orderings
Hilbert Access time of Hilbert space filling curve ordering
R-Tree Access time of R-Tree traversal ordering
Optimized Access time of Optimized ordering using R-Tree as BDT
Hilbert-
Improv.

Improvement of the Hilbert ordering compared with 1000 random orderings
average (Hilbert/Rand-Avg-1000)

R-Tree
Improv.

Improvement of the R-Tree traversal ordering compared with 1000 random
orderings average (R-Tree/ Rand-Avg-1000)

Opt
Improv.

Improvement of the optimized ordering compared with the R-Tree traversal
ordering (Optimized/ R-Tree)

R-Tree+Opt
Improv.

Improvement of the optimized ordering compared with 1000 random orderings
average (Optimized/ Rand-Avg-1000)

155

Table A-3. Results of DBW Under Query Window (0.05*0.05) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 48.44 66.31 57.60 60.30 22.45 10.69 31.02% -4.48% 1.57 1.10 4.39
AL 156.07 191.75 173.30 179.21 80.29 48.01 20.59% -3.30% 1.16 0.67 2.61
AR 68.43 98.00 85.98 91.87 43.35 27.29 34.39% -6.41% 0.98 0.59 2.15
AZ 136.01 171.21 154.91 160.27 69.16 55.30 22.72% -3.34% 1.24 0.25 1.80
CA 675.02 747.45 711.71 698.85 207.46 172.72 10.18% 1.84% 2.43 0.20 3.12
CO 134.72 171.88 152.47 154.27 62.56 48.78 24.37% -1.17% 1.44 0.28 2.13
CT 93.36 119.01 105.80 109.70 53.16 30.06 24.24% -3.56% 0.99 0.77 2.52
DC 22.89 35.72 30.83 29.26 14.17 8.28 41.62% 5.37% 1.18 0.71 2.72
DE 14.37 28.07 23.13 23.37 10.28 6.88 59.23% -1.03% 1.25 0.49 2.36
FL 345.06 399.22 371.33 363.69 65.49 49.13 14.59% 2.10% 4.67 0.33 6.56
GA 165.13 212.13 189.93 191.67 57.60 43.05 24.75% -0.91% 2.30 0.34 3.41
HI 20.13 34.65 28.99 26.63 10.37 6.02 50.09% 8.86% 1.80 0.72 3.82
IA 86.92 115.64 102.09 105.24 39.33 25.75 28.13% -2.99% 1.60 0.53 2.96
ID 40.96 61.12 52.42 49.52 31.70 18.64 38.46% 5.86% 0.65 0.70 1.81
IL 214.58 266.72 239.59 225.61 111.13 69.85 21.76% 6.20% 1.16 0.59 2.43
IN 180.38 218.71 201.14 205.79 83.28 48.83 19.06% -2.26% 1.42 0.71 3.12
KS 46.99 70.45 59.49 56.95 20.01 10.15 39.44% 4.46% 1.97 0.97 4.86
KY 206.29 251.09 232.40 213.77 123.82 95.84 19.28% 8.71% 0.88 0.29 1.42
LA 174.96 213.47 194.36 183.50 63.50 44.28 19.81% 5.92% 2.06 0.43 3.39
MA 146.98 184.21 166.77 170.48 95.54 50.21 22.32% -2.18% 0.75 0.90 2.32
MD 119.15 151.92 134.39 139.57 50.29 35.91 24.38% -3.71% 1.67 0.40 2.74
ME 65.71 94.83 79.85 68.80 36.78 28.40 36.47% 16.06% 1.17 0.30 1.81
MI 163.73 202.90 182.43 185.69 67.80 43.94 21.47% -1.76% 1.69 0.54 3.15
MN 64.50 91.96 78.44 76.79 20.90 14.61 35.01% 2.15% 2.75 0.43 4.37
MO 129.95 165.64 148.09 149.46 50.66 34.00 24.10% -0.92% 1.92 0.49 3.36
MS 116.39 148.20 131.71 132.37 61.04 40.63 24.15% -0.50% 1.16 0.50 2.24

156

157

 MT 58.97 83.77 71.50 71.43 23.38 15.68 34.69% 0.10% 2.06 0.49 3.56
NC 22.03 36.41 30.10 26.75 11.74 8.00 47.77% 12.52% 1.56 0.47 2.76
ND 34.38 53.30 44.72 44.63 16.63 11.22 42.31% 0.20% 1.69 0.48 2.99
NE 210.12 257.74 236.14 236.58 77.66 66.74 20.17% -0.19% 2.04 0.16 2.54
NH 32.04 49.29 41.72 41.40 16.10 10.79 41.35% 0.77% 1.59 0.49 2.87
NJ 122.26 152.99 137.68 132.14 95.14 56.12 22.32% 4.19% 0.45 0.70 1.45
NM 90.64 124.60 110.15 112.66 60.53 45.96 30.83% -2.23% 0.82 0.32 1.40
NV 64.00 87.24 76.12 82.97 18.57 14.94 30.53% -8.26% 3.10 0.24 4.10
NY 378.71 441.87 410.29 425.63 132.48 102.11 15.39% -3.60% 2.10 0.30 3.02
OH 297.02 355.51 326.96 318.06 150.89 102.84 17.89% 2.80% 1.17 0.47 2.18
OK 128.07 160.95 144.63 145.29 54.98 39.03 22.73% -0.45% 1.63 0.41 2.71
OR 56.65 82.25 67.87 69.97 24.34 17.21 37.72% -3.00% 1.79 0.41 2.94
PA 484.33 558.74 523.50 508.99 191.64 146.91 14.21% 2.85% 1.73 0.30 2.56
RI 9.39 20.05 15.04 13.45 9.08 5.21 70.88% 11.82% 0.66 0.74 1.89
SC 106.51 139.33 124.99 123.15 43.94 31.20 26.26% 1.49% 1.84 0.41 3.01
SD 20.40 37.51 30.48 30.36 8.86 4.80 56.14% 0.40% 2.44 0.85 5.35
TN 129.62 163.97 147.90 153.96 65.62 41.05 23.23% -3.94% 1.25 0.60 2.60
TX 506.39 571.12 542.37 541.71 154.03 95.03 11.93% 0.12% 2.52 0.62 4.71
UT 93.67 121.30 108.52 112.47 51.08 32.64 25.46% -3.51% 1.12 0.57 2.32
VA 260.89 306.64 281.44 279.41 76.12 48.09 16.26% 0.73% 2.70 0.58 4.85
VT 38.66 56.88 48.16 47.03 27.61 16.22 37.83% 2.40% 0.74 0.70 1.97
WA 122.09 155.98 139.37 138.95 82.96 60.65 24.32% 0.30% 0.68 0.37 1.30
WI 118.66 156.58 135.55 147.86 71.96 49.61 27.97% -8.33% 0.88 0.45 1.73
WV 142.30 172.81 158.74 166.93 81.68 45.92 19.22% -4.91% 0.94 0.78 2.46
WY 30.79 51.47 43.23 30.08 12.92 10.21 47.84% 43.72% 2.35 0.27 3.23
Avg. 141.09 174.72 158.56 157.93 61.02 42.07 29.35% 1.47% 1.60 0.52 2.90

Table A-4. Results of DBW Under Query Window (0.1*0.1) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 48.44 66.31 57.60 60.30 22.45 10.69 31.02% -4.48% 1.57 1.10 4.39
AL 176.36 212.80 195.41 196.44 78.54 55.56 18.65% -0.52% 1.49 0.41 2.52
AR 68.43 98.00 85.98 91.87 43.35 27.29 34.39% -6.41% 0.98 0.59 2.15
AZ 139.25 172.97 157.57 166.21 66.23 55.27 21.40% -5.20% 1.38 0.20 1.85
CA 768.71 849.32 812.33 802.73 265.47 213.28 9.92% 1.20% 2.06 0.24 2.81
CO 143.31 178.44 162.95 159.80 85.56 61.72 21.56% 1.97% 0.90 0.39 1.64
CT 111.26 146.52 131.00 131.42 65.57 46.47 26.92% -0.32% 1.00 0.41 1.82
DC 18.00 31.31 25.58 26.86 13.65 7.69 52.03% -4.77% 0.87 0.78 2.33
DE 26.40 42.09 36.41 23.60 16.64 12.41 43.09% 54.28% 1.19 0.34 1.93
FL 352.46 407.21 381.02 384.99 152.47 98.30 14.37% -1.03% 1.50 0.55 2.88
GA 176.17 216.20 196.02 193.24 104.97 81.64 20.42% 1.44% 0.87 0.29 1.40
HI 20.25 33.89 27.65 26.19 6.44 4.02 49.33% 5.57% 3.29 0.60 5.88
IA 83.29 114.43 97.98 97.68 38.36 27.62 31.78% 0.31% 1.55 0.39 2.55
ID 54.91 75.81 66.57 65.90 39.24 32.56 31.40% 1.02% 0.70 0.21 1.04
IL 249.97 297.33 276.88 271.30 105.13 74.82 17.10% 2.06% 1.63 0.41 2.70
IN 197.05 241.46 218.73 211.66 73.98 47.62 20.30% 3.34% 1.96 0.55 3.59
KS 50.67 70.73 61.12 60.19 16.91 12.07 32.82% 1.55% 2.61 0.40 4.06
KY 241.52 290.67 266.20 272.64 113.43 77.16 18.46% -2.36% 1.35 0.47 2.45
LA 175.15 216.07 195.37 190.62 83.39 58.76 20.94% 2.49% 1.34 0.42 2.32
MA 144.01 190.63 169.31 161.22 65.55 46.84 27.54% 5.02% 1.58 0.40 2.61
MD 136.48 170.30 153.20 157.53 91.68 51.49 22.08% -2.75% 0.67 0.78 1.98
ME 68.36 91.99 80.83 75.66 32.76 19.50 29.23% 6.83% 1.47 0.68 3.15
MI 188.98 239.10 214.21 212.72 65.88 49.60 23.40% 0.70% 2.25 0.33 3.32
MN 114.40 145.62 131.08 134.17 74.77 49.01 23.82% -2.30% 0.75 0.53 1.67
MO 140.98 174.97 159.19 162.54 92.03 73.73 21.35% -2.06% 0.73 0.25 1.16
MS 117.00 146.89 133.01 136.33 64.84 45.21 22.47% -2.44% 1.05 0.43 1.94

158

159

 MT 57.84 83.13 71.93 72.42 24.34 15.99 35.16% -0.68% 1.96 0.52 3.50
NC 234.51 279.56 257.11 258.74 132.56 106.89 17.52% -0.63% 0.94 0.24 1.41
ND 22.67 37.30 30.52 27.64 12.37 9.25 47.94% 10.42% 1.47 0.34 2.30
NE 34.38 53.30 44.72 44.63 16.63 11.22 42.31% 0.20% 1.69 0.48 2.99
NH 32.38 50.22 42.28 42.62 15.89 7.72 42.19% -0.80% 1.66 1.06 4.48
NJ 183.43 233.06 205.18 200.67 93.17 79.05 24.19% 2.25% 1.20 0.18 1.60
NM 105.87 135.35 120.31 112.71 55.66 38.40 24.50% 6.74% 1.16 0.45 2.13
NV 64.00 87.24 76.12 82.97 18.57 14.94 30.53% -8.26% 3.10 0.24 4.10
NY 486.21 554.90 522.27 523.88 208.76 163.38 13.15% -0.31% 1.50 0.28 2.20
OH 330.36 381.00 356.34 338.11 166.80 134.44 14.21% 5.39% 1.14 0.24 1.65
OK 128.20 161.86 145.86 148.64 60.12 43.25 23.08% -1.87% 1.43 0.39 2.37
OR 57.43 80.80 70.85 73.47 24.60 17.14 32.99% -3.57% 1.88 0.44 3.13
PA 607.16 674.88 642.25 659.88 250.54 206.76 10.54% -2.67% 1.56 0.21 2.11
RI 8.98 21.42 16.22 18.91 6.63 2.97 76.70% -14.23% 1.45 1.23 4.46
SC 125.39 155.20 139.36 136.36 56.91 39.76 21.39% 2.20% 1.45 0.43 2.51
SD 22.58 37.61 31.37 28.47 11.83 9.71 47.91% 10.19% 1.65 0.22 2.23
TN 136.12 175.95 156.67 154.60 84.40 48.97 25.42% 1.34% 0.86 0.72 2.20
TX 602.04 665.53 634.37 643.69 380.21 299.13 10.01% -1.45% 0.67 0.27 1.12
UT 94.19 121.28 110.08 105.59 59.50 39.65 24.61% 4.25% 0.85 0.50 1.78
VA 273.26 320.31 299.00 304.33 146.69 98.26 15.74% -1.75% 1.04 0.49 2.04
VT 37.64 58.58 49.96 50.36 14.61 8.38 41.91% -0.79% 2.42 0.74 4.96
WA 139.45 171.44 156.83 158.42 66.57 49.51 20.40% -1.00% 1.36 0.34 2.17
WI 131.62 169.93 153.91 144.16 70.55 59.42 24.89% 6.76% 1.18 0.19 1.59
WV 191.71 232.39 211.47 206.97 99.47 82.02 19.24% 2.17% 1.13 0.21 1.58
WY 30.79 51.47 43.23 30.08 12.92 10.21 47.84% 43.72% 2.35 0.27 3.23
Avg. 159.80 194.41 178.07 177.30 77.84 57.58 27.85% 2.17% 1.45 0.45 2.55

Table A-5. Results of DBW Under Query Window (0.5*0.5) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

52.97 73.50 64.19 65.14 19.61 15.41 31.98% -1.46% 2.27 0.27 3.17
284.42 353.00 317.62 324.39 129.06 82.91 21.59% -2.09% 1.46 0.56 2.83
195.68 261.63 227.09 234.41 88.93 65.46 29.04% -3.12% 1.55 0.36 2.47
197.52 235.69 216.94 215.53 69.30 57.59 17.59% 0.65% 2.13 0.20 2.77
971.52 1067.38 1027.06 1039.00 480.89 378.83 9.33% -1.15% 1.14 0.27 1.71
196.79 243.05 222.38 224.22 101.71 73.96 20.80% -0.82% 1.19 0.38 2.01
231.08 263.76 246.93 241.27 131.16 101.90 13.23%

Opt

AK
AL
AR
AZ
CA 160 CO
CT 2.35% 0.88 0.29 1.42
DC
DE 37.70 65.03 54.66 26.33 20.65 14.45 50.00% 107.60% 1.65 0.43 2.78
FL 672.49 755.95 716.29 734.65 317.04 234.60 11.65% -2.50% 1.26 0.35 2.05
GA 297.57 355.36 329.09 311.87 140.98 97.69 17.56% 5.52% 1.33 0.44 2.37
HI 28.90 49.25 40.12 41.85 10.67 5.86 50.72% -4.13% 2.76 0.82 5.85
IA 295.20 370.71 331.37 308.70 183.64 130.39 22.79% 7.34% 0.80 0.41 1.54
ID 81.25 107.74 95.77 88.83 46.43 24.68 27.66% 7.81% 1.06 0.88 2.88
IL 631.23 724.62 676.05 677.34 240.02 195.20 13.81% -0.19% 1.82 0.23 2.46
IN 408.95 474.94 443.88 437.35 252.16 203.20 14.87% 1.49% 0.76 0.24 1.18
KS 180.92 225.77 204.57 199.54 147.61 83.88 21.92% 2.52% 0.39 0.76 1.44
KY 498.60 571.41 538.49 533.11 238.94 164.52 13.52% 1.01% 1.25 0.45 2.27
LA 270.78 327.96 301.55 301.83 128.94 110.73 18.96% -0.09% 1.34 0.16 1.72
MA 336.29 376.36 357.63 339.57 227.55 205.97 11.20% 5.32% 0.57 0.10 0.74
MD 292.39 338.90 314.80 312.82 153.95 119.29 14.77% 0.63% 1.04 0.29 1.64
ME 188.25 228.60 211.02 214.75 100.16 72.68 19.12% -1.74% 1.11 0.38 1.90
MI 444.99 514.84 482.82 480.69 262.97 208.85 14.47% 0.44% 0.84 0.26 1.31
MN 319.61 389.41 353.91 327.91 133.38 78.83 19.72% 7.93% 1.65 0.69 3.49
MO 371.18 439.97 407.77 408.35 148.83 87.72 16.87% -0.14% 1.74 0.70 3.65

161

 MS 173.54 212.42 193.51 191.66 92.19 78.75 20.09% 0.97% 1.10 0.17 1.46
MT 64.73 89.39 77.88 76.18 24.93 18.07 31.66% 2.23% 2.12 0.38 3.31
NC 403.14 469.04 436.44 438.82 266.71 185.27 15.10% -0.54% 0.64 0.44 1.36
ND 47.75 77.49 63.28 61.48 30.51 16.02 47.00% 2.93% 1.07 0.90 2.95
NE 142.16 185.26 167.72 150.05 94.37 56.72 25.70% 11.78% 0.78 0.66 1.96
NH 107.00 138.83 123.00 122.92 65.51 51.96 25.88% 0.07% 0.88 0.26 1.37
NJ 371.87 416.24 396.26 390.99 167.37 127.26 11.20% 1.35% 1.37 0.32 2.11
NM 136.45 172.30 154.44 152.84 49.96 40.36 23.21% 1.05% 2.09 0.24 2.83
NV 77.88 104.63 93.26 99.10 39.77 29.70 28.68% -5.89% 1.35 0.34 2.14
NY 863.52 948.15 907.38 888.53 368.01 187.46 9.33% 2.12% 1.47 0.96 3.84
OH 636.94 709.68 670.91 669.16 330.05 271.67 10.84% 0.26% 1.03 0.21 1.47
OK 189.44 249.98 225.48 225.53 85.04 69.44 26.85% -0.02% 1.65 0.22 2.25
OR 102.82 150.24 127.70 125.26 51.82 33.56 37.13% 1.95% 1.46 0.54 2.81
PA 1107.13 1195.13 1147.08 1141.64 591.92 540.70 7.67% 0.48% 0.94 0.09 1.12
RI 45.05 58.67 53.14 52.23 32.58 21.56 25.63% 1.74% 0.63 0.51 1.46
SC 197.19 253.57 220.78 223.55 90.45 78.80 25.54% -1.24% 1.44 0.15 1.80
SD 55.11 82.42 69.33 69.57 37.23 27.11 39.39% -0.34% 0.86 0.37 1.56
TN 278.63 346.52 314.72 300.89 100.88 60.00 21.57% 4.60% 2.12 0.68 4.25
TX 912.25 1004.69 960.25 972.93 451.01 349.98 9.63% -1.30% 1.13 0.29 1.74
UT 119.70 158.42 141.54 142.29 69.32 42.63 27.36% -0.53% 1.04 0.63 2.32
VA 524.28 590.48 558.12 560.57 267.00 193.24 11.86% -0.44% 1.09 0.38 1.89
VT 121.52 155.62 138.26 151.08 48.89 40.01 24.66% -8.49% 1.83 0.22 2.46
WA 233.43 281.78 258.78 250.87 139.48 91.27 18.68% 3.15% 0.86 0.53 1.84
WI 271.32 339.78 306.78 292.17 126.09 87.53 22.32% 5.00% 1.43 0.44 2.50
WV 439.08 504.91 473.52 457.67 276.35 196.85 13.90% 3.46% 0.71 0.40 1.41
WY 37.09 58.95 49.85 39.94 17.03 8.39 43.85% 24.81% 1.93 1.03 4.94
Avg. 302.91 355.39 330.23 326.75 153.78 114.38 22.16% 3.65% 1.30 0.43 2.30

Table A-6. Results of DBW Under Query Window (1.0*1.0) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 63.63 84.47 75.40 78.23 42.92 26.52 27.64% -3.62% 0.76 0.62 1.84
AL 396.83 441.29 421.83 426.41 257.10 227.65 10.54% -1.07% 0.64 0.13 0.85
AR 327.28 372.47 351.65 353.46 166.60 114.75 12.85% -0.51% 1.11 0.45 2.06
AZ 209.57 263.10 240.25 236.61 150.41 106.25 22.28% 1.54% 0.60 0.42 1.26
CA 1008.75 1087.33 1051.61 1065.39 382.50 338.12 7.47% -1.29% 1.75 0.13 2.11
CO 256.99 308.43 285.55 303.43 144.76 126.28 18.01% -5.89% 0.97 0.15 1.26
CT 263.48 302.81 284.27 269.78 210.72 167.92 13.84% 5.37% 0.35 0.25 0.69
DC
DE 55.66 70.62 63.27 61.24 41.96 33.06 23.64% 3.31% 0.51 0.27 0.91
FL 710.43 770.15 742.47 732.95 439.94 367.45 8.04% 1.30% 0.69 0.20 1.02
GA 419.76 467.68 444.91 441.73 179.47 142.08 10.77% 0.72% 1.48 0.26 2.13
HI 42.64 60.77 52.17 51.97 19.37 13.42 34.75% 0.38% 1.69 0.44 2.89
IA 515.91 556.94 536.85 539.69 272.41 236.14 7.64% -0.53% 0.97 0.15 1.27
ID 130.44 164.13 148.36 151.10 88.34 67.08 22.71% -1.81% 0.68 0.32 1.21
IL 787.16 835.90 811.66 813.48 387.80 323.27 6.00% -0.22% 1.09 0.20 1.51
IN 579.82 628.31 601.23 603.96 265.93 227.46 8.07% -0.45% 1.26 0.17 1.64
KS 317.22 362.26 338.35 364.37 134.51 113.00 13.31% -7.14% 1.52 0.19 1.99
KY 671.97 724.03 699.24 697.09 345.99 286.59 7.45% 0.31% 1.02 0.21 1.44
LA 365.09 417.63 394.10 403.24 238.81 190.63 13.33% -2.27% 0.65 0.25 1.07
MA 399.30 436.38 417.93 413.15 125.18 109.16 8.87% 1.16% 2.34 0.15 2.83
MD 326.53 367.54 346.51 352.38 181.13 138.11 11.84% -1.67% 0.91 0.31 1.51
ME 301.64 331.29 316.87 324.69 178.17 137.45 9.36% -2.41% 0.78 0.30 1.31
MI 587.02 636.29 613.49 618.92 282.59 237.01 8.03% -0.88% 1.17 0.19 1.59
MN 464.92 517.43 493.14 488.90 290.79 243.38 10.65% 0.87% 0.70 0.19 1.03
MO 544.52 596.26 570.92 564.76 343.23 273.06 9.06% 1.09% 0.66 0.26 1.09
MS 251.96 295.00 274.65 286.93 150.94 123.79 15.67% -4.28% 0.82 0.22 1.22

162

163

 MT 107.92 144.34 127.14 130.99 68.96 47.50 28.65% -2.94% 0.84 0.45 1.68
NC 554.46 602.34 577.78 568.39 323.77 228.35 8.29% 1.65% 0.78 0.42 1.53
ND 149.25 193.50 169.72 167.84 108.56 91.17 26.07% 1.12% 0.56 0.19 0.86
NE 247.89 280.78 266.19 247.07 153.03 109.78 12.36% 7.74% 0.74 0.39 1.42
NH 176.86 198.71 187.90 184.02 141.76 107.98 11.63% 2.11% 0.33 0.31 0.74
NJ 286.97 333.72 314.94 308.55 210.28 134.80 14.84% 2.07% 0.50 0.56 1.34
NM 169.52 214.06 196.07 193.54 101.91 58.31 22.72% 1.31% 0.92 0.75 2.36
NV 82.97 115.27 99.96 99.95 44.48 33.71 32.31% 0.01% 1.25 0.32 1.97
NY 1086.11 1153.78 1117.40 1113.09 674.70 521.48 6.06% 0.39% 0.66 0.29 1.14
OH 851.90 915.17 883.49 871.84 553.29 446.11 7.16% 1.34% 0.60 0.24 0.98
OK 322.91 371.44 348.74 352.27 230.49 179.04 13.92% -1.00% 0.51 0.29 0.95
OR 168.19 209.94 188.82 187.03 104.05 75.71 22.11% 0.96% 0.81 0.37 1.49
PA 1240.22 1308.13 1276.63 1280.00 738.48 528.05 5.32% -0.26% 0.73 0.40 1.42
RI 56.55 72.33 65.15 65.15 33.69 24.06 24.22% 0.00% 0.93 0.40 1.71
SC 295.30 329.29 314.07 309.31 176.42 146.61 10.82% 1.54% 0.78 0.20 1.14
SD 142.20 181.31 162.82 168.15 107.59 77.34 24.02% -3.17% 0.51 0.39 1.11
TN 385.59 426.19 404.01 405.35 191.22 148.73 10.05% -0.33% 1.11 0.29 1.72
TX 1105.12 1214.36 1167.14 1159.44 559.64 446.74 9.36% 0.66% 1.09 0.25 1.61
UT 139.71 173.35 158.74 163.86 90.89 61.71 21.19% -3.12% 0.75 0.47 1.57
VA 638.38 694.00 669.65 661.07 394.32 331.84 8.31% 1.30% 0.70 0.19 1.02
VT 188.68 209.96 199.17 197.31 124.53 102.35 10.68% 0.94% 0.60 0.22 0.95
WA 317.11 366.79 343.70 331.80 162.59 126.32 14.45% 3.59% 1.11 0.29 1.72
WI 432.96 488.04 459.89 468.46 296.62 217.36 11.98% -1.83% 0.55 0.36 1.12
WV 579.32 634.41 609.72 611.47 302.79 260.28 9.04% -0.29% 1.01 0.16 1.34
WY 52.46 77.74 65.29 57.91 31.78 23.16 38.72% 12.74% 1.05 0.37 1.82
Avg. 395.54 440.15 419.02 418.95 224.95 177.96 14.92% 0.17% 0.89 0.30 1.45

Table A-7. Results of DBW Under Query Window (5.0*5.0) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 136.87 163.87 150.52 155.15 78.41 41.28 17.94% -2.98% 0.92 0.90 2.65
AL
AR 30.18 43.60 37.82 34.72 26.77 23.68 35.48% 8.93% 0.41 0.13 0.60
AZ 214.58 246.46 233.51 233.47 163.09 82.70 13.65% 0.02% 0.43 0.97 1.82
CA 258.62 315.86 288.84 300.13 170.54 103.66 19.82% -3.76% 0.69 0.65 1.79
CO 256.64 290.28 277.07 274.60 206.36 143.29 12.14% 0.90% 0.34 0.44 0.93
CT
DC
DE 38.33 47.69 44.12 38.64 37.33 28.54 21.21% 14.18% 0.18 0.31 0.55
FL 18.83 43.82 34.45 39.22 22.23 11.37 72.54% -12.16% 0.55 0.96 2.03
GA 29.41 43.11 36.86 39.01 27.90 23.85 37.17% -5.51% 0.32 0.17 0.55
HI 51.35 60.26 57.56 56.71 38.79 35.43 15.48% 1.50% 0.48 0.09 0.62
IA
ID 219.08 244.77 232.40 236.60 139.71 90.31 11.05% -1.78% 0.66 0.55 1.57
IL
IN
KS 130.24 160.38 146.21 141.51 112.64 64.00 20.61% 3.32% 0.30 0.76 1.28
KY 30.19 43.71 36.98 40.18 33.95 28.30 36.56% -7.96% 0.09 0.20 0.31
LA
MA
MD 29.41 33.91 32.60 31.83 27.95 26.83 13.80% 2.42% 0.17 0.04 0.22
ME 100.07 123.15 113.99 117.29 91.33 51.78 20.25% -2.81% 0.25 0.76 1.20
MI 140.74 167.19 155.80 160.82 102.51 88.39 16.98% -3.12% 0.52 0.16 0.76
MN 151.63 191.43 173.57 186.78 91.08 69.28 22.93% -7.07% 0.91 0.31 1.51
MO 25.93 48.33 36.72 37.48 28.39 18.54 61.00% -2.03% 0.29 0.53 0.98
MS 61.86 92.15 78.85 81.39 68.50 39.86 38.41% -3.12% 0.15 0.72 0.98
MT 297.69 324.36 312.13 315.42 227.66 174.70 8.54% -1.04% 0.37 0.30 0.79

164

165

 NC 57.42 84.72 73.75 74.11 53.87 31.67 37.02% -0.49% 0.37 0.70 1.33
ND 237.45 275.60 258.28 252.75 235.03 118.66 14.77% 2.19% 0.10 0.98 1.18
NE 153.29 182.99 170.71 167.40 95.85 79.52 17.40% 1.98% 0.78 0.21 1.15
NH 27.24 42.83 36.11 32.93 32.98 29.01 43.17% 9.66% 0.09 0.14 0.24
NJ
NM 300.01 339.36 320.13 313.03 218.53 180.36 12.29% 2.27% 0.46 0.21 0.78
NV 52.41 80.27 67.94 63.06 32.86 27.71 41.01% 7.74% 1.07 0.19 1.45
NY
OH
OK 102.40 142.52 125.41 108.74 53.68 34.59 31.99% 15.33% 1.34 0.55 2.63
OR 212.85 248.37 232.56 218.94 141.27 114.49 15.27% 6.22% 0.65 0.23 1.03
PA
RI
SC 29.88 46.80 38.99 35.33 35.56 21.73 43.40% 10.36% 0.10 0.64 0.79
SD 251.76 283.55 269.83 275.59 236.90 164.00 11.78% -2.09% 0.14 0.44 0.65
TN 30.66 45.39 39.20 37.52 32.15 25.12 37.58% 4.48% 0.22 0.28 0.56
TX 334.06 398.70 370.27 351.09 187.91 152.77 17.46% 5.46% 0.97 0.23 1.42
UT 135.67 160.98 149.26 147.56 91.10 75.91 16.96% 1.15% 0.64 0.20 0.97
VA 28.72 47.27 39.24 36.98 26.69 19.34 47.27% 6.11% 0.47 0.38 1.03
VT
WA 270.59 319.65 296.77 290.20 165.79 130.36 16.53% 2.26% 0.79 0.27 1.28
WI 75.97 99.29 88.61 90.44 71.28 40.68 26.32% -2.02% 0.24 0.75 1.18
WV 37.68 48.28 44.63 47.22 46.91 30.15 23.75% -5.48% -0.05 0.56 0.48
WY 134.71 151.57 144.14 147.12 74.32 66.64 11.70% -2.03% 0.94 0.12 1.16
Avg. 126.88 153.58 141.78 140.84 95.35 67.26 25.98% 1.11% 0.47 0.43 1.09

Table A-8. Results of ATData
Sep Under Query Window (0.05*0.05) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 88.16 97.79 93.15 94.76 70.97 64.25 10.34% -1.70% 31.25% 10.46% 44.98%
AL 291.75 311.51 301.31 305.43 240.04 221.69 6.56% -1.35% 25.52% 8.28% 35.92%
AR 151.46 169.26 161.37 165.57 131.23 122.90 11.03% -2.54% 22.97% 6.78% 31.30%
AZ 250.91 268.79 260.29 262.93 209.83 200.03 6.87% -1.00% 24.05% 4.90% 30.13%
CA 1243.99 1287.36 1266.48 1261.68 930.88 907.63 3.42% 0.38% 36.05% 2.56% 39.54%
CO 254.59 273.78 263.31 264.30 207.45 197.64 7.29% -0.37% 26.93% 4.96% 33.23%
CT 170.77 184.76 177.47 178.84 145.41 130.98 7.88% -0.77% 22.05% 11.02% 35.49%
DC 43.36 49.57 47.06 45.99 37.62 34.09 13.20% 2.33% 25.09% 10.35% 38.05%
DE 32.63 39.57 37.20 37.96 29.79 27.82 18.66% -2.00% 24.87% 7.08% 33.72%
FL 655.79 688.61 670.95 667.73 466.75 453.85 4.89% 0.48% 43.75% 2.84% 47.84%
GA 328.27 353.65 340.93 341.27 255.94 244.03 7.44% -0.10% 33.21% 4.88% 39.71%
HI 45.63 53.53 50.26 48.93 38.65 35.79 15.72% 2.72% 30.04% 7.99% 40.43%
IA 182.31 199.29 190.86 192.93 149.59 141.07 8.90% -1.07% 27.59% 6.04% 35.29%
ID 86.83 98.16 93.28 91.16 79.11 72.12 12.15% 2.33% 17.91% 9.69% 29.34%
IL 419.12 448.18 433.20 425.77 347.07 322.36 6.71% 1.75% 24.82% 7.67% 34.38%
IN 344.80 364.99 355.63 358.68 276.96 257.94 5.68% -0.85% 28.40% 7.37% 37.87%
KS 102.63 114.70 109.12 108.37 83.34 76.68 11.06% 0.69% 30.93% 8.69% 42.31%
KY 398.49 423.73 413.51 402.69 340.67 324.68 6.10% 2.69% 21.38% 4.92% 27.36%
LA 330.82 352.06 340.47 335.87 253.84 240.85 6.24% 1.37% 34.13% 5.39% 41.36%
MA 280.78 301.86 291.78 293.75 242.71 217.29 7.22% -0.67% 20.22% 11.70% 34.28%
MD 229.78 247.51 237.62 240.57 182.28 173.20 7.46% -1.23% 30.36% 5.24% 37.19%
ME 140.61 157.37 149.20 142.29 120.18 116.10 11.23% 4.86% 24.15% 3.51% 28.51%
MI 333.15 355.71 343.52 346.30 266.59 250.91 6.57% -0.80% 28.86% 6.25% 36.91%
MN 142.43 159.20 151.34 150.16 111.58 107.78 11.08% 0.79% 35.63% 3.53% 40.42%
MO 251.43 271.16 261.60 261.66 196.36 187.41 7.54% -0.02% 33.22% 4.78% 39.59%
MS 218.45 234.36 225.96 227.29 181.17 168.52 7.04% -0.59% 24.72% 7.51% 34.08%

166

167

 MT 113.89 127.76 121.38 121.69 91.01 85.78 11.43% -0.25% 33.37% 6.10% 41.50%
NC 408.24 437.18 425.01 424.74 321.31 314.58 6.81% 0.06% 32.27% 2.14% 35.10%
ND 46.54 54.49 51.34 48.54 40.50 37.46 15.49% 5.77% 26.77% 8.12% 37.05%
NE 77.68 88.79 83.86 83.87 65.95 62.11 13.25% -0.01% 27.16% 6.18% 35.02%
NH 73.39 82.77 78.49 78.90 61.86 58.05 11.95% -0.52% 26.88% 6.56% 35.21%
NJ 235.85 255.22 245.85 244.65 216.60 194.67 7.88% 0.49% 13.50% 11.27% 26.29%
NM 180.26 199.37 191.97 192.85 160.86 151.07 9.95% -0.46% 19.34% 6.48% 27.07%
NV 116.80 129.92 123.53 127.25 89.08 86.16 10.62% -2.92% 38.67% 3.39% 43.37%
NY 718.48 754.03 736.26 744.07 554.56 531.70 4.83% -1.05% 32.76% 4.30% 38.47%
OH 587.50 619.68 603.94 599.20 484.69 455.30 5.33% 0.79% 24.60% 6.46% 32.65%
OK 261.24 279.61 270.26 269.39 210.30 199.22 6.80% 0.32% 28.51% 5.56% 35.66%
OR 119.10 132.54 125.38 127.14 97.68 92.72 10.72% -1.38% 28.36% 5.35% 35.22%
PA 36.65%900.00 940.30 923.15 917.44 704.95 675.58 4.37% 0.62% 30.95% 4.35%
RI 26.60 33.02 30.26 29.83 26.64 23.85 21.22% 1.44% 13.59% 11.70% 26.88%
SC 212.86 232.43 224.17 222.95 170.12 161.16 8.73% 0.55% 31.77% 5.56% 39.10%
SD 50.63 60.52 56.46 56.02 42.83 39.78 17.52% 0.79% 31.82% 7.67% 41.93%
TN 251.26 270.56 260.94 265.29 207.87 191.17 7.40% -1.64% 25.53% 8.74% 36.50%
TX 975.40 1010.49 995.63 996.54 735.60 695.44 3.52% -0.09% 35.35% 5.77% 43.17%
UT 163.31 176.63 170.28 173.20 134.81 124.22 7.82% -1.69% 26.31% 8.53% 37.08%
VA 448.62 475.25 460.86 461.13 330.60 311.66 5.78% -0.06% 39.40% 6.08% 47.87%
VT 82.34 93.87 88.53 88.72 74.31 68.35 13.02% -0.21% 19.14% 8.72% 29.52%
WA 240.13 258.50 249.95 251.43 210.82 198.83 7.35% -0.59% 18.56% 6.03% 25.71%
WI 243.33 266.61 254.60 263.69 210.51 196.79 9.14% -3.45% 20.94% 6.97% 29.38%
WV 265.14 283.54 274.81 279.28 223.27 204.40 6.70% -1.60% 23.08% 9.23% 34.45%
WY 68.53 80.04 75.63 68.31 56.43 54.59 15.22% 10.72% 34.02% 3.37% 38.54%
Avg. 272.28 291.17 282.15 282.14 218.02 206.12 9.24% 0.21% 27.66% 6.65% 36.05%

Table A-9. Results of ATData
Sep Under Query Window (0.1*0.1) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 88.17 97.79 93.15 94.76 70.97 64.25 10.33% -1.70% 31.25% 10.46% 44.98%
AL 319.13 337.83 328.71 329.13 254.15 238.77 5.69% -0.13% 29.34% 6.44% 37.67%
AR 151.46 169.26 161.37 165.57 131.23 122.89 11.03% -2.54% 22.97% 6.79% 31.31%
AZ 255.09 272.28 263.93 269.50 209.27 201.68 6.51% -2.07% 26.12% 3.76% 30.87%
CA 1389.19 1433.63 1411.41 1403.64 1052.91 1019.20 3.15% 0.55% 34.05% 3.31% 38.48%
CO 266.61 285.14 277.06 275.57 227.94 211.71 6.69% 0.54% 21.55% 7.67% 30.87%
CT 203.20 222.40 212.40 212.42 171.71 159.21 9.04% -0.01% 23.70% 7.85% 33.41%
DC 37.14 43.79 40.98 41.58 34.02 30.41 16.23% -1.44% 20.46% 11.87% 34.76%
DE 47.11 54.37 51.96 45.47 41.11 38.32 13.97% 14.27% 26.39% 7.28% 35.59%
FL 671.20 703.97 686.96 689.29 532.30 501.57 4.77% -0.34% 29.06% 6.13% 36.96%
GA 342.22 364.35 353.94 352.30 290.79 277.54 6.25% 0.47% 21.72% 4.77% 27.53%
HI 43.73 51.04 47.79 46.99 34.70 32.66 15.30% 1.70% 37.72% 6.25% 46.33%
IA 178.10 197.06 187.11 187.49 147.21 140.23 10.13% -0.20% 27.10% 4.98% 33.43%
ID 102.76 113.98 109.10 109.12 94.37 89.52 10.28% -0.02% 15.61% 5.42% 21.87%
IL 471.37 498.20 485.80 483.93 373.42 355.33 5.52% 0.39% 30.09% 5.09% 36.72%
IN 366.07 390.27 377.20 371.84 281.48 266.32 6.42% 1.44% 34.01% 5.69% 41.63%
KS 105.76 117.02 111.56 112.15 83.77 79.89 10.09% -0.53% 33.17% 4.86% 39.64%
KY 443.97 468.99 456.22 458.09 355.38 337.15 5.48% -0.41% 28.38% 5.41% 35.32%
LA 334.63 356.79 345.06 342.42 271.84 256.97 6.42% 0.77% 26.93% 5.79% 34.28%
MA 293.59 318.42 307.10 301.18 240.97 227.16 8.09% 1.97% 27.44% 6.08% 35.19%
MD 253.67 272.86 263.05 265.93 220.90 200.15 7.30% -1.08% 19.08% 10.37% 31.43%
ME 143.76 158.72 151.43 148.33 119.99 111.08 9.88% 2.09% 26.20% 8.02% 36.33%
MI 370.20 395.99 382.99 382.63 287.78 277.32 6.73% 0.09% 33.08% 3.77% 38.10%
MN 204.79 222.76 213.97 215.46 180.67 165.39 8.40% -0.69% 18.43% 9.24% 29.37%
MO 270.18 290.91 280.47 281.87 237.64 223.74 7.39% -0.50% 18.02% 6.21% 25.36%
MS 218.53 235.86 227.80 230.44 183.22 171.49 7.61% -1.15% 24.33% 6.84% 32.84%

168

169

 MT 114.83 128.38 122.21 122.71 92.24 86.58 11.09% -0.41% 32.49% 6.54% 41.15%
NC 436.82 461.55 449.50 451.00 369.50 354.09 5.50% -0.33% 21.65% 4.35% 26.95%
ND 46.95 55.54 52.14 49.91 41.13 39.21 16.47% 4.47% 26.77% 4.90% 32.98%
NE 77.68 88.79 83.86 83.87 65.95 62.11 13.25% -0.01% 27.16% 6.18% 35.02%
NH 73.54 84.99 79.97 79.87 62.91 56.83 14.32% 0.13% 27.12% 10.70% 40.72%
NJ 344.49 371.13 357.27 354.62 286.96 278.94 7.46% 0.75% 24.50% 2.88% 28.08%
NM 196.64 212.35 204.44 200.70 162.83 153.08 7.68% 1.86% 25.55% 6.37% 33.55%
NV 116.80 129.92 123.53 127.25 89.08 86.16 10.62% -2.92% 38.67% 3.39% 43.37%
NY 914.76 950.19 932.51 932.00 724.40 693.61 3.80% 0.05% 28.73% 4.44% 34.44%
OH 631.81 661.29 646.87 635.04 525.68 504.20 4.56% 1.86% 23.05% 4.26% 28.30%
OK 259.68 279.99 270.86 272.12 213.43 203.02 7.50% -0.46% 26.91% 5.13% 33.42%
OR 121.76 134.96 129.04 130.21 99.48 94.71 10.23% -0.90% 29.71% 5.04% 36.25%
PA 1070.17 1111.18 1093.13 1102.59 858.83 828.54 3.75% -0.86% 27.28% 3.66% 31.93%
RI 28.20 35.68 32.64 34.02 26.48 23.70 22.92% -4.06% 23.26% 11.73% 37.72%
SC 232.55 248.22 240.72 240.63 186.91 177.62 6.51% 0.04% 28.79% 5.23% 35.53%
SD 53.14 62.10 58.08 55.59 45.89 44.36 15.43% 4.48% 26.56% 3.45% 30.93%
TN 267.82 290.81 278.82 278.60 227.01 208.18 8.25% 0.08% 22.82% 9.05% 33.93%
TX 1092.34 1126.74 1109.37 1115.71 943.46 904.75 3.10% -0.57% 17.59% 4.28% 22.62%
UT 165.11 178.53 172.07 170.53 141.08 131.18 7.80% 0.90% 21.97% 7.55% 31.17%
VA 471.72 496.01 485.16 487.79 390.60 362.35 5.01% -0.54% 24.21% 7.80% 33.89%
VT 85.44 97.10 91.75 91.59 69.62 64.49 12.71% 0.17% 31.79% 7.95% 42.27%
WA 262.23 280.45 271.84 272.96 215.36 203.87 6.70% -0.41% 26.23% 5.64% 33.34%
WI 266.55 288.45 278.47 272.60 224.59 216.93 7.86% 2.15% 23.99% 3.53% 28.37%
WV 326.00 349.99 337.34 336.37 268.88 261.01 7.11% 0.29% 25.46% 3.02% 29.24%
WY 68.53 80.04 75.63 68.31 56.43 54.59 15.22% 10.72% 34.02% 3.37% 38.54%
Avg. 299.94 319.18 309.92 309.48 245.46 233.22 8.89% 0.55% 26.52% 6.09% 34.20%

Table A-10. Results of ATData
Sep Under Query Window (0.5*0.5) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 93.37 104.42 99.73 100.08 74.49 71.02 11.08% -0.35% 33.88% 4.89% 40.43%
AL 517.05 553.65 536.38 535.54 418.52 389.47 6.82% 0.16% 28.16% 7.46% 37.72%
AR 400.86 438.38 418.02 422.30 327.60 310.42 8.98% -1.01% 27.60% 5.53% 34.66%
AZ 326.74 344.84 336.37 334.62 248.40 239.06 5.38% 0.52% 35.41% 3.91% 40.71%
CA 1606.49 1653.97 1634.25 1638.71 1300.69 1242.15 2.91% -0.27% 25.64% 4.71% 31.57%
CO 348.04 371.20 360.76 363.36 285.04 269.93 6.42% -0.72% 26.56% 5.60% 33.65%
CT 355.88 370.30 362.78 360.97 295.50 284.46 3.97% 0.50% 22.77% 3.88% 27.53%
DC
DE 74.75 88.25 83.23 69.26 64.74 60.31 16.22% 20.17% 28.56% 7.35% 38.00%
FL 1066.42 1105.90 1089.09 1099.03 849.83 799.15 3.63% -0.90% 28.15% 6.34% 36.28%
GA 558.96 589.92 575.00 565.42 450.85 427.60 5.38% 1.69% 27.54% 5.44% 34.47%
HI 67.19 77.85 73.08 74.71 54.05 50.23 14.59% -2.18% 35.21% 7.61% 45.49%
IA 616.03 657.18 636.51 622.39 535.86 503.48 6.46% 2.27% 18.78% 6.43% 26.42%
ID 149.83 164.22 157.57 153.26 126.80 114.63 9.13% 2.81% 24.27% 10.62% 37.46%
IL 1128.41 1177.86 1149.44 1152.30 869.44 841.59 4.30% -0.25% 32.20% 3.31% 36.58%
IN 737.86 772.31 754.51 754.53 639.99 608.01 4.57% 0.00% 17.89% 5.26% 24.09%
KS 321.47 342.50 332.00 328.98 293.58 263.14 6.33% 0.92% 13.09% 11.57% 26.17%
KY 887.41 924.99 907.41 907.07 718.07 665.80 4.14% 0.04% 26.37% 7.85% 36.29%
LA 481.96 513.33 500.01 499.13 397.09 384.48 6.27% 0.18% 25.92% 3.28% 30.05%
MA 548.54 568.58 558.80 550.14 482.26 470.78 3.59% 1.57% 15.87% 2.44% 18.70%
MD 485.99 508.69 498.27 497.17 406.52 385.15 4.56% 0.22% 22.57% 5.55% 29.37%
ME 360.22 382.29 372.33 374.45 300.65 284.07 5.93% -0.57% 23.84% 5.84% 31.07%
MI 778.56 813.47 795.65 796.52 660.74 634.65 4.39% -0.11% 20.42% 4.11% 25.37%
MN 559.67 592.90 576.64 560.31 444.38 410.25 5.76% 2.91% 29.76% 8.32% 40.56%
MO 710.48 747.65 729.79 728.03 559.58 519.05 5.09% 0.24% 30.42% 7.81% 40.60%
MS 310.09 331.54 321.15 320.79 259.60 251.37 6.68% 0.11% 23.71% 3.27% 27.76%
MT 126.25 138.56 132.23 130.58 100.06 94.87 9.31% 1.26% 32.15% 5.47% 39.38%

170

171

 NC 731.23 765.21 748.30 746.89 641.54 590.09 4.54% 0.19% 16.64% 8.72% 26.81%
ND 99.53 115.04 107.88 106.88 87.37 77.84 14.38% 0.94% 23.47% 12.24% 38.59%
NE 270.91 295.43 283.94 275.63 238.67 216.76 8.64% 3.01% 18.97% 10.11% 30.99%
NH 217.09 234.65 225.61 225.85 189.20 179.88 7.78% -0.11% 19.24% 5.18% 25.42%
NJ 573.58 594.06 584.96 582.46 458.40 432.29 3.50% 0.43% 27.61% 6.04% 35.32%
NM 247.13 266.43 256.54 256.79 190.33 184.95 7.52% -0.10% 34.79% 2.91% 38.71%
NV 137.39 152.61 145.61 148.67 115.78 107.63 10.45% -2.06% 25.76% 7.57% 35.29%
NY 1520.35 1567.40 1544.88 1532.60 1194.12 1087.50 3.05% 0.80% 29.37% 9.80% 42.06%
OH 1136.94 1175.87 1156.24 1153.24 943.18 906.49 3.37% 0.26% 22.59% 4.05% 27.55%
OK 387.46 420.94 408.49 409.76 315.93 305.12 8.20% -0.31% 29.30% 3.54% 33.88%
OR 26.51%221.74 247.72 235.16 232.80 185.88 174.40 11.05% 1.01% 6.58% 34.84%
PA 1776.30 1820.37 1797.00 1790.46 1478.43 1443.91 2.45% 0.37% 21.55% 2.39% 24.45%
RI 76.09 82.57 79.56 78.44 67.72 62.52 8.14% 1.43% 17.48% 8.32% 27.26%
SC 354.79 385.11 368.23 368.63 287.40 279.07 8.23% -0.11% 28.12% 2.98% 31.95%
SD 113.07 128.40 120.74 122.44 100.57 94.69 12.70% -1.39% 20.06% 6.21% 27.51%
TN 527.99 565.44 547.18 539.50 411.96 385.21 6.84% 1.42% 32.82% 6.94% 42.05%
TX 1540.12 1587.13 1560.94 1568.73 1240.95 1184.95 3.01% -0.50% 25.79% 4.73% 31.73%
UT 219.95 238.70 230.06 228.56 184.19 168.86 8.15% 0.66% 24.90% 9.08% 36.24%
VA 25.01%898.02 932.09 916.16 919.71 732.85 694.35 3.72% -0.39% 5.54% 31.94%
VT 240.67 259.17 250.33 257.30 194.10 185.86 7.39% -2.71% 28.97% 4.43% 34.69%
WA 414.33 438.79 426.83 421.55 353.06 324.69 5.73% 1.25% 20.89% 8.74% 31.46%
WI 542.75 579.18 562.36 553.31 438.17 414.88 6.48% 1.64% 28.34% 5.61% 35.55%
WV 18.60%747.62 780.15 765.49 762.36 645.45 605.85 4.25% 0.41% 6.54% 26.35%
WY 81.25 92.13 87.18 81.12 66.28 60.34 12.48% 7.47% 31.53% 9.84% 44.48%
Avg. 533.90 561.19 548.01 546.07 438.52 414.86 6.88% 0.86% 25.50% 6.24% 33.31%

Table A-11. Results of ATData
Sep Under Query Window (1.0*1.0) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 108.15 118.23 113.69 114.80 95.53 87.11 8.87% -0.97% 19.01% 9.67% 30.51%
AL 656.86 680.74 669.97 670.26 576.85 559.56 3.56% -0.04% 16.14% 3.09% 19.73%
AR 573.21 597.76 586.20 588.43 473.07 442.65 4.19% -0.38% 23.91% 6.87% 32.43%
AZ 348.13 372.47 362.47 361.48 310.50 286.85 6.72% 0.27% 16.74% 8.24% 26.36%
CA 34.39%1561.55 1600.59 1580.70 1585.74 1207.31 1176.20 2.47% -0.32% 30.93% 2.64%
CO 438.19 463.92 452.86 460.87 368.69 356.96 5.68% -1.74% 22.83% 3.29% 26.87%
CT 354.90 367.45 361.59 355.97 333.10 312.21 3.47% 1.58% 8.55% 6.69% 15.82%
DC
DE 84.73 91.41 88.33 87.67 76.17 72.89 7.56% 0.75% 15.96% 4.50% 21.18%
FL 1012.31 1037.54 1025.01 1023.29 870.92 832.74 2.46% 0.17% 17.69% 4.58% 23.09%
GA 705.72 728.92 718.72 719.25 554.19 529.72 3.23% -0.07% 29.69% 4.62% 35.68%
HI 30.30%77.95 86.83 83.12 83.22 63.79 59.70 10.68% -0.12% 6.85% 39.23%
IA 881.04 901.33 892.00 891.83 725.17 702.87 2.27% 0.02% 23.01% 3.17% 26.91%
ID 229.51 246.59 238.36 239.24 203.83 192.07 7.17% -0.37% 16.94% 6.12% 24.10%
IL 1232.35 1256.27 1245.85 1247.45 1000.16 966.20 1.92% -0.13% 24.57% 3.51% 28.94%
IN 26.87%869.48 891.16 879.04 880.85 692.86 666.88 2.47% -0.21% 3.90% 31.81%
KS 607.35 633.77 620.86 632.49 491.31 479.26 4.26% -1.84% 26.37% 2.51% 29.55%
KY 992.71 1014.65 1003.95 1004.81 807.39 776.76 2.19% -0.09% 24.35% 3.94% 29.25%
LA 594.46 617.65 607.22 610.42 521.20 495.93 3.82% -0.52% 16.50% 5.10% 22.44%
MA 531.17 543.81 537.44 535.55 389.34 376.12 2.35% 0.35% 38.04% 3.51% 42.89%
MD 461.21 477.39 469.71 470.77 385.70 356.48 3.44% -0.23% 21.78% 8.20% 31.76%
ME 456.31 470.75 463.84 466.68 384.49 362.70 3.11% -0.61% 20.64% 6.01% 27.89%
MI 926.17 950.68 939.29 942.02 751.53 720.37 2.61% -0.29% 24.98% 4.33% 30.39%
MN 821.65 851.34 836.46 833.58 711.78 680.25 3.55% 0.35% 17.52% 4.64% 22.96%
MO 942.03 969.30 954.68 951.39 815.71 774.97 2.86% 0.35% 17.04% 5.26% 23.19%
MS 438.99 459.77 450.53 455.48 374.31 358.93 4.61% -1.09% 20.36% 4.28% 25.52%

172

173

 MT 206.26 224.40 216.28 219.33 181.77 168.18 8.39% -1.39% 18.99% 8.08% 28.60%
NC 877.90 899.02 889.03 885.73 734.33 683.07 2.38% 0.37% 21.07% 7.50% 30.15%
ND 302.70 326.78 313.88 313.24 276.17 263.35 7.67% 0.20% 13.65% 4.87% 19.19%
NE 456.31 474.85 466.31 454.62 390.28 368.18 3.98% 2.57% 19.48% 6.00% 26.65%
NH 261.58 270.51 266.31 263.63 242.05 224.59 3.35% 1.02% 10.02% 7.77% 18.58%
NJ 402.66 416.55 410.57 407.75 356.71 319.40 3.38% 0.69% 15.10% 11.68% 28.54%
NM 308.16 332.51 321.84 321.66 263.23 238.50 7.57% 0.06% 22.27% 10.37% 34.94%
NV 145.49 161.96 153.74 154.53 122.53 116.82 10.71% -0.51% 25.47% 4.89% 31.60%
NY 1550.34 1579.69 1564.49 1562.66 1327.22 1245.28 1.88% 0.12% 17.88% 6.58% 25.63%
OH 1264.08 1290.45 1278.52 1272.91 1104.94 1044.99 2.06% 0.44% 15.71% 5.74% 22.35%
OK 607.62 634.44 621.73 623.41 543.21 513.27 4.31% -0.27% 14.45% 5.83% 21.13%
OR 319.10 341.52 330.71 332.01 275.56 259.89 6.78% -0.39% 20.01% 6.03% 27.25%
PA 1701.69 1728.22 1715.23 1716.47 1426.09 1324.75 1.55% -0.07% 20.28% 7.65% 29.48%
RI 81.80 87.24 84.96 84.64 70.97 64.54 6.40% 0.38% 19.71% 9.96% 31.64%
SC 462.90 479.84 472.06 468.29 392.54 376.90 3.59% 0.81% 20.26% 4.15% 25.25%
SD 284.41 307.51 298.00 301.41 263.95 245.62 7.75% -1.13% 12.90% 7.46% 21.33%
TN 631.94 651.47 640.84 642.29 519.58 493.29 3.05% -0.23% 23.34% 5.33% 29.91%
TX 1830.10 1881.82 1858.34 1857.77 1485.57 1419.04 2.78% 0.03% 25.09% 4.69% 30.96%
UT 234.04 250.93 243.91 245.86 204.66 188.17 6.92% -0.79% 19.18% 8.76% 29.62%
VA 973.36 996.81 985.96 980.07 832.48 792.34 2.38% 0.60% 18.44% 5.07% 24.44%
VT 280.26 289.77 285.04 283.89 244.11 232.74 3.34% 0.41% 16.77% 4.89% 22.47%
WA 531.82 556.35 544.46 537.04 434.92 416.15 4.51% 1.38% 25.19% 4.51% 30.83%
WI 744.96 771.76 757.59 760.96 655.88 615.96 3.54% -0.44% 15.51% 6.48% 22.99%
WV 836.49 858.39 849.36 852.37 692.11 665.01 2.58% -0.35% 22.72% 4.08% 27.72%
WY 107.35 121.67 114.33 110.10 93.77 87.72 12.53% 3.84% 21.93% 6.90% 30.34%
Avg. 626.19 647.30 637.31 637.32 526.39 499.88 4.58% 0.04% 20.52% 5.82% 27.49%

Table A-12. Results of ATData
Sep Under Query Window (5*5) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 213.47 227.24 220.47 222.41 178.16 159.53 6.25% -0.87% 23.75% 11.68% 38.20%
AL
AR 42.19 45.85 44.62 43.58 39.92 39.01 8.20% 2.39% 11.77% 2.33% 14.38%
AZ 285.20 295.22 291.09 290.52 259.27 218.83 3.44% 0.20% 12.27% 18.48% 33.02%
CA 357.91 380.22 370.82 375.36 315.85 278.91 6.02% -1.21% 17.40% 13.24% 32.95%
CO 330.15 340.16 336.09 335.59 307.12 283.40 2.98% 0.15% 9.43% 8.37% 18.59%
CT
DC
DE 47.83 49.89 49.24 48.52 47.08 44.49 4.18% 1.48% 4.59% 5.82% 10.68%
FL 37.72 45.92 43.98 44.89 38.71 32.90 18.64% -2.03% 13.61% 17.66% 33.68%
GA 40.67 44.86 43.53 44.11 40.45 38.25 9.63% -1.31% 7.61% 5.75% 13.80%
HI 64.93 67.15 66.58 66.43 60.90 59.46 3.33% 0.23% 9.33% 2.42% 11.97%
IA
ID 276.05 284.73 281.40 282.81 241.41 218.34 3.08% -0.50% 16.57% 10.57% 28.88%
IL
IN
KS 173.31 181.81 178.32 176.23 161.70 140.39 4.77% 1.19% 10.28% 15.18% 27.02%
KY 41.38 45.90 44.09 44.90 42.21 40.81 10.25% -1.80% 4.45% 3.43% 8.04%
LA
MA
MD 34.91 35.88 35.64 35.49 34.82 34.41 2.72% 0.42% 2.35% 1.19% 3.57%
ME 128.82 135.46 132.91 133.70 124.65 108.27 5.00% -0.59% 6.63% 15.13% 22.76%
MI 179.90 187.39 184.56 186.10 163.17 156.95 4.06% -0.83% 13.11% 3.96% 17.59%
MN 210.38 222.88 217.80 222.24 182.27 169.22 5.74% -2.00% 19.49% 7.71% 28.71%
MO 42.33 49.98 46.71 46.19 43.54 38.69 16.38% 1.13% 7.28% 12.54% 20.73%
MS 86.66 94.84 92.58 93.77 88.61 77.08 8.84% -1.27% 4.48% 14.96% 20.11%

174

175

 MT 385.57 394.11 390.45 391.22 352.93 328.93 2.19% -0.20% 10.63% 7.30% 18.70%
NC 81.93 89.57 87.12 87.78 81.39 69.84 8.77% -0.75% 7.04% 16.54% 24.74%
ND 309.54 320.50 315.77 313.96 305.55 256.60 3.47% 0.58% 3.34% 19.08% 23.06%
NE 204.31 212.61 209.10 207.73 175.94 165.99 3.97% 0.66% 18.85% 5.99% 25.97%
NH 38.53 44.00 42.74 42.13 41.98 40.97 12.80% 1.45% 1.81% 2.47% 4.32%
NJ
NM 381.44 392.75 387.91 385.54 352.92 334.47 2.92% 0.61% 9.91% 5.52% 15.98%
NV 101.51 115.22 109.56 107.98 89.87 86.39 12.51% 1.46% 21.91% 4.03% 26.82%
NY
OH
OK 151.04 165.69 160.48 155.16 122.88 113.58 9.13% 3.43% 30.60% 8.19% 41.29%
OR 284.36 294.72 290.18 287.18 250.05 234.68 3.57% 1.04% 16.05% 6.55% 23.65%
PA
RI
SC 41.76 47.96 46.24 45.37 44.71 38.52 13.41% 1.92% 3.42% 16.07% 20.04%
SD 321.27 330.00 326.19 326.86 312.90 285.26 2.68% -0.20% 4.25% 9.69% 14.35%
TN 42.57 47.87 46.22 46.10 42.19 39.99 11.47% 0.26% 9.55% 5.50% 15.58%
TX 459.03 479.70 470.47 466.34 380.10 360.12 4.39% 0.89% 23.78% 5.55% 30.64%
UT 180.55 189.94 185.85 184.96 163.18 153.35 5.05% 0.48% 13.89% 6.41% 21.19%
VA 43.23 49.89 47.72 46.77 42.92 38.68 13.96% 2.03% 11.18% 10.96% 23.37%
VT
WA 349.11 363.23 357.21 355.50 303.38 280.68 3.95% 0.48% 17.74% 8.09% 27.27%
WI 102.04 109.84 106.74 107.54 100.58 86.45 7.31% -0.74% 6.12% 16.34% 23.47%
WV 48.04 49.90 49.42 49.79 49.77 45.60 3.76% -0.74% -0.70% 9.14% 8.38%
WY 184.06 189.38 186.90 187.99 155.22 150.32 2.85% -0.58% 20.41% 3.26% 24.33%
Avg. 170.37 178.98 175.59 175.37 155.09 141.87 6.80% 0.18% 11.47% 9.11% 21.56%

Table A-13. Results of ATData
Mul Under Query Window (0.05*0.05) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 75.96 89.8 82.81 84.37 66.65 58.57 16.71% -1.85% 24.25% 13.80% 41.39%
AL 258.17 281.16 268.26 271.49 224.15 208.28 8.57% -1.19% 19.68% 7.62% 28.80%
AR 133.19 149.4 142.45 145.01 119.06 111.42 11.38% -1.77% 19.65% 6.86% 27.85%
AZ 220.93 241.01 232.01 231.5 188.45 179.93 8.65% 0.22% 23.11% 4.74% 28.94%
CA 1106.34 1148.33 1126.91 1124.82 873.89 856.38 3.73% 0.19% 28.95% 2.04% 31.59%
CO 224.81 243.34 233.8 234.58 188.81 181.38 7.93% -0.33% 23.83% 4.10% 28.90%
CT 151.18 165.74 157.87 160.6 128.45 118.12 9.22% -1.70% 22.90% 8.75% 33.65%
DC 37.42 44.91 41.39 40.21 33.72 29.91 18.10% 2.93% 22.75% 12.74% 38.38%
DE 28.7 35.84 32.55 32.7 25.16 23.77 21.94% -0.46% 29.37% 5.85% 36.94%
FL 580.92 611.68 595.65 591.99 442.61 433.68 5.16% 0.62% 34.58% 2.06% 37.35%
GA 291.63 313.74 303.06 304.89 239.27 229.85 7.30% -0.60% 26.66% 4.10% 31.85%
HI 39.42 47.48 44 42.77 35.55 32.93 18.32% 2.88% 23.77% 7.96% 33.62%
IA 160.72 177.97 169.55 170.85 138.58 131.12 10.17% -0.76% 22.35% 5.69% 29.31%
ID 75.84 87.61 82.23 80.67 72.91 65.85 14.31% 1.93% 12.78% 10.72% 24.87%
IL 369.17 399.15 385.35 377.48 321.97 308.89 7.78% 2.08% 19.69% 4.23% 24.75%
IN 304.63 327.35 316.09 317.94 256.09 239.9 7.19% -0.58% 23.43% 6.75% 31.76%
KS 90.8 102.73 96.73 94.53 78.09 72.18 12.33% 2.33% 23.87% 8.19% 34.01%
KY 353.12 379.82 367.76 357.1 312.73 299.85 7.26% 2.99% 17.60% 4.30% 22.65%
LA 291.33 314.11 302.74 299.49 237.57 227.42 7.52% 1.09% 27.43% 4.46% 33.12%
MA 247.93 269.99 259.96 260.87 226.73 200.74 8.49% -0.35% 14.66% 12.95% 29.50%
MD 201.42 222.56 211.11 214.25 169.7 161.03 10.01% -1.47% 24.40% 5.38% 31.10%
ME 123.49 140.09 131.98 127.34 110.34 104.91 12.58% 3.64% 19.61% 5.18% 25.80%
MI 294.65 315.97 304.64 304.27 246.06 235.37 7.00% 0.12% 23.81% 4.54% 29.43%
MN 125.69 141.53 133.68 133.35 102.32 100.53 11.85% 0.25% 30.65% 1.78% 32.98%
MO 222.69 244.01 233.04 234.25 178.91 173.46 9.15% -0.52% 30.26% 3.14% 34.35%
MS 192.84 209.64 200.76 199.34 164.47 153.94 8.37% 0.71% 22.06% 6.84% 30.41%
MT 100.47 114.24 107.76 106.43 82.81 79.26 12.78% 1.25% 30.13% 4.48% 35.96%

176

177

 NC 365.36 390.14 378.09 380.94 301.29 295.39 6.55% -0.75% 25.49% 2.00% 28.00%
ND 40.28 48.97 45.05 43.56 36.38 33.85 19.29% 3.42% 23.83% 7.47% 33.09%
NE 67.41 78.86 73.87 73.08 59.1 57.06 15.50% 1.08% 24.99% 3.58% 29.46%
NH 64.09 73.36 68.88 68.9 55.78 53.31 13.46% -0.03% 23.49% 4.63% 29.21%
NJ 207.75 228.19 218.36 214.02 194.56 174.42 9.36% 2.03% 12.23% 11.55% 25.19%
NM 160.5 177.95 170.07 168.27 142.07 137.68 10.26% 1.07% 19.71% 3.19% 23.53%
NV 103.27 117.26 110.08 110.18 81.12 79.62 12.71% -0.09% 35.70% 1.88% 38.26%
NY 637.21 672.7 655.01 666.3 527.77 506.74 5.42% -1.69% 24.11% 4.15% 29.26%
OH 519.44 550.5 537.02 530.78 449.84 423.42 5.78% 1.18% 19.38% 6.24% 26.83%
OK 230.68 248.67 239.81 240.8 194.24 184.99 7.50% -0.41% 23.46% 5.00% 29.63%
OR 104.17 118.59 110.94 112.54 88.5 85.01 13.00% -1.42% 25.36% 4.11% 30.50%
PA 800.92 842.42 821.33 817.88 657.64 637.76 5.05% 0.42% 24.89% 3.12% 28.78%
RI 23.34 28.74 26.02 25.24 23.11 21.18 20.75% 3.09% 12.59% 9.11% 22.85%
SC 187.99 207.31 198.43 197.7 158 151.14 9.74% 0.37% 25.59% 4.54% 31.29%
SD 43.24 55 49.73 48.64 39.33 36.86 23.65% 2.24% 26.44% 6.70% 34.92%
TN 220.22 241.05 231.95 234.09 190.46 177.03 8.98% -0.91% 21.78% 7.59% 31.02%
TX 866.94 900.25 884.22 882.45 690.64 658.89 3.77% 0.20% 28.03% 4.82% 34.20%
UT 142.43 160.11 152.19 153.73 120.38 111.1 11.62% -1.00% 26.42% 8.35% 36.98%
VA 397.32 425.37 411.78 411.49 306.02 291.12 6.81% 0.07% 34.56% 5.12% 41.45%
VT 72.69 83.08 78.1 78.74 70.09 62.45 13.30% -0.81% 11.43% 12.23% 25.06%
WA 211.14 230.08 221.2 221.54 188.47 176.9 8.56% -0.15% 17.37% 6.54% 25.04%
WI 216.82 237.14 225.73 231.82 189.29 180.03 9.00% -2.63% 19.25% 5.14% 25.38%
WV 234.75 254.28 244.38 249.3 204.6 186.47 7.99% -1.97% 19.44% 9.72% 31.06%
WY 60.62 71.45 66.67 60.48 51.02 49.33 16.24% 10.23% 30.67% 3.43% 35.15%
Avg. 240.82 260.01 250.65 250.31 201.66 191.97 10.75% 0.49% 23.50% 6.07% 30.89%

Table A-14. Results of ATData
Mul Under Query Window (0.1*0.1) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 75.96 89.8 82.81 84.38 66.65 58.57 16.71% -1.86% 24.25% 13.80% 41.39%
AL 282.38 303.98 293.68 296.77 227.12 217.41 7.35% -1.04% 29.31% 4.47% 35.08%
AR 133.19 149.4 142.45 145.01 119.06 111.42 11.38% -1.77% 19.65% 6.86% 27.85%
AZ 224.23 243.69 235.26 234.98 190.09 181.59 8.27% 0.12% 23.76% 4.68% 29.56%
CA 1234.6 1285.02 1259.15 1253.78 986.41 963.21 4.00% 0.43% 27.65% 2.41% 30.72%
CO 235.03 255.61 246.58 244.55 207.86 198.62 8.35% 0.83% 18.63% 4.65% 24.15%
CT 180.23 199.38 190.1 189.79 158.24 144.57 10.07% 0.16% 20.13% 9.46% 31.49%
DC 29.39 39.63 35.76 36.62 29.11 26.5 28.64% -2.35% 22.84% 9.85% 34.94%
DE 41.5 50.45 46.67 38.6 37.41 34.9 19.18% 20.91% 24.75% 7.19% 33.72%
FL 590.32 624.16 610.07 611.81 490.1 465.51 5.55% -0.28% 24.48% 5.28% 31.05%
GA 301.67 325.93 314.47 311.43 270.33 255.13 7.71% 0.98% 16.33% 5.96% 23.26%
HI 37.6 45.49 41.8 41.53 31.35 29.77 18.88% 0.65% 33.33% 5.31% 40.41%
IA 157.85 173.3 165.92 168.22 135.64 129.59 9.31% -1.37% 22.32% 4.67% 28.03%
ID 12.93% 90.34 102.91 97.19 97.74 85.47 81.91 -0.56% 13.71% 4.35% 18.65%
IL 416.63 446.73 433.47 430.29 349.25 336.89 6.94% 0.74% 24.11% 3.67% 28.67%
IN 323.94 347.69 336.3 330.34 261.65 248.02 7.06% 1.80% 28.53% 5.50% 35.59%
KS 92.81 105.02 99.04 98.66 75 73.43 12.33% 0.39% 32.05% 2.14% 34.88%
KY 394.37 419.53 407.58 404.82 333.58 319.12 6.17% 0.68% 22.18% 4.53% 27.72%
LA 292.56 318.22 306.67 309.66 242.48 234.26 8.37% -0.97% 26.47% 3.51% 30.91%
MA 254.98 284.38 272.66 266.65 207.43 192.74 10.78% 2.25% 31.45% 7.62% 41.47%
MD 222.59 245.88 234.6 235.74 196.46 179.56 9.93% -0.48% 19.41% 9.41% 30.65%
ME 10.90% 126.96 141.56 133.95 130.43 108.7 102.1 2.70% 23.23% 6.46% 31.19%
MI 329.15 357.13 341.62 337.48 268.33 257.89 8.19% 1.23% 27.31% 4.05% 32.47%
MN 181.99 202.03 192.57 193.56 166.66 154.34 10.41% -0.51% 15.55% 7.98% 24.77%
MO 236.92 261.68 250.14 251.58 221.55 210.79 9.90% -0.57% 12.90% 5.10% 18.67%
MS 9.23% 193.37 212.06 202.48 200.85 169.51 157.87 0.81% 19.45% 7.37% 28.26%
MT 101.6 115.62 108.45 107.66 83.79 79.53 12.93% 0.73% 29.43% 5.36% 36.36%

178

179

 NC 389.03 415.87 401.07 401.33 335.53 320.58 6.69% -0.06% 19.53% 4.66% 25.11%
ND 41.4 49.87 45.78 45.95 37.71 35.95 18.50% -0.37% 21.40% 4.90% 27.34%
NE 67.41 78.86 73.87 73.08 59.1 57.06 15.50% 1.08% 24.99% 3.58% 29.46%
NH 64.37 74.69 70.13 69.85 56.64 52.85 14.72% 0.40% 23.82% 7.17% 32.70%
NJ 298.33 335.73 318.69 316.31 267.21 254.52 11.74% 0.75% 19.27% 4.99% 25.21%
NM 173.39 189.47 181.63 178.83 150.37 141.06 8.85% 1.57% 20.79% 6.60% 28.76%
NV 103.27 117.26 110.08 110.18 81.12 79.62 12.71% -0.09% 35.70% 1.88% 38.26%
NY 5.96%808.74 851.95 830.65 834.21 674.31 636.41 5.20% -0.43% 23.19% 30.52%
OH 557.45 594.1 575.94 567.88 475.08 455.35 6.36% 1.42% 21.23% 4.33% 26.48%
OK 232.16 251 240.41 243.25 197.56 189.18 7.84% -1.17% 21.69% 4.43% 27.08%
OR 107.77 121.36 114.42 113.54 91.45 87.05 11.88% 0.78% 25.12% 5.05% 31.44%
PA 955.85 1002.05 976.58 986.82 782.69 762.35 4.73% -1.04% 24.77% 2.67% 28.10%
RI 24.53 31.25 28.12 28.98 23.37 21.45 23.90% -2.97% 20.33% 8.95% 31.10%
SC 204.73 222.76 214.2 214.33 170.62 163.48 8.42% -0.06% 25.54% 4.37% 31.03%
SD 4.17%46.83 55.99 51.17 49.12 41.56 40.52 17.90% 23.12% 2.57% 26.28%
TN 236.13 259.52 248.05 245.44 209.46 198.93 9.43% 1.06% 18.42% 5.29% 24.69%
TX 968.72 1009.81 990.16 997.1 858.55 812 4.15% -0.70% 15.33% 5.73% 21.94%
UT 143.32 161.88 153.97 152.35 126.67 116.57 12.05% 1.06% 21.55% 8.66% 32.08%
VA -0.90%417.19 447.94 433.94 437.89 348.24 333.16 7.09% 24.61% 4.53% 30.25%
VT 73.47 86.72 81.01 82.34 62.65 59.27 16.36% -1.62% 29.31% 5.70% 36.68%
WA 231.49 252.05 241.44 243.59 195.36 187.69 8.52% -0.88% 23.59% 4.09% 28.64%
WI 237.55 257.73 248.03 243.56 202.77 196.34 8.14% 1.84% 22.32% 3.27% 26.33%
WV 289.47 314.8 303.14 298.39 242 232.54 8.36% 1.59% 25.26% 4.07% 30.36%
WY 60.62 71.45 66.67 60.48 51.02 49.33 16.24% 10.23% 30.67% 3.43% 35.15%
Avg. 265.01 286.28 276.09 275.45 224.71 214.28 10.92% 0.77% 23.43% 5.46% 30.14%

Table A-15. Results of ATData
Mul Under Query Window (0.5*0.5) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 81.88 95.42 89.02 89.5 66.22 63.65 15.21% -0.54% 34.43% 4.04% 39.86%
AL 452.81 500.73 480.08 477.13 404.2 366.2 9.98% 0.62% 18.77% 10.38% 31.10%
AR 350.18 390.82 371.74 368.35 311.29 291.71 10.93% 0.92% 19.42% 6.71% 27.43%
AZ 287.82 313.67 301.7 300.22 218.84 206.45 8.57% 0.49% 37.86% 6.00% 46.14%
CA 1423.01 1497.23 1465.45 1482.29 1160.3 1072.39 5.06% -1.14% 26.30% 8.20% 36.65%
CO 305.75 334.52 321.86 322.23 251.57 235.19 8.94% -0.11% 27.94% 6.96% 36.85%
CT 315.71 339.35 327.9 323.14 265.95 244.33 7.21% 1.47% 23.29% 8.85% 34.20%
DC
DE 62.77 81.09 74.31 56.1 59.45 50.78 24.65% 32.46% 25.00% 17.07% 46.34%
FL 952.28 1002.85 978.57 1001.06 750.14 699.7 5.17% -2.25% 30.45% 7.21% 39.86%
GA 485.08 536.4 512.59 504.39 434.58 412.66 10.01% 1.63% 17.95% 5.31% 24.22%
HI 56.83 70.3 64.13 66.91 54.06 49.19 21.00% -4.15% 18.63% 9.90% 30.37%
IA 533.01 591.49 566.27 555.47 501.07 476.23 10.33% 1.94% 13.01% 5.22% 18.91%
ID 131.43 150.04 140.89 138.9 115.28 106.13 13.21% 1.43% 22.22% 8.62% 32.75%
IL 995.9 1060.41 1026.53 1027.91 816.42 790.91 6.28% -0.13% 25.74% 3.23% 29.79%
IN 645.42 695.77 673.42 681.43 588.77 556.9 7.48% -1.18% 14.38% 5.72% 20.92%
KS 277.05 315.47 298.3 292.33 264.66 252.65 12.88% 2.04% 12.71% 4.75% 18.07%
KY 783.29 832.49 808.65 800.74 655.25 623.95 6.08% 0.99% 23.41% 5.02% 29.60%
LA 427.22 466.56 447.26 455 365.91 356.51 8.80% -1.70% 22.23% 2.64% 25.46%
MA 486.46 514.55 499.77 489.52 417.88 399.39 5.62% 2.09% 19.60% 4.63% 25.13%
MD 430.39 464.13 445.99 441.56 366.58 348.28 7.57% 1.00% 21.66% 5.25% 28.06%
ME 316.44 344.65 330.84 331.97 277.81 263.55 8.53% -0.34% 19.09% 5.41% 25.53%
MI 690.58 732.73 712.11 702.75 605.4 575.02 5.92% 1.33% 17.63% 5.28% 23.84%
MN 492.8 547.31 520.03 503.07 391.95 355.11 10.48% 3.37% 32.68% 10.37% 46.44%
MO 621.55 675.07 650.23 651.65 529.21 457.64 8.23% -0.22% 22.87% 15.64% 42.08%
MS 272.3 299.95 286.94 291.28 228.03 220.19 9.64% -1.49% 25.83% 3.56% 30.31%

180

MT 110.09 125.29 117.46 117.51 93.39 86.93 12.94% -0.04% 25.77% 7.43% 35.12%

181

 NC 643.71 692.51 668.34 673.93 566 532.1 7.30% -0.83% 18.08% 6.37% 25.60%
ND 84.96 104.95 95.74 96.11 83.05 71.16 20.88% -0.38% 15.28% 16.71% 34.54%
NE 237.44 268.71 254.51 240.48 202.09 178.3 12.29% 5.83% 25.94% 13.34% 42.74%
NH 184.26 211.33 199.39 195.88 170.26 162.54 13.58% 1.79% 17.11% 4.75% 22.67%
NJ 510.03 540.04 526.29 526.26 455.73 423.29 5.70% 0.01% 15.48% 7.66% 24.33%
NM 218.06 239.32 228.81 225.09 168.98 158.38 9.29% 1.65% 35.41% 6.69% 44.47%
NV 120.27 140.01 130.52 133.54 110.09 101.72 15.12% -2.26% 18.56% 8.23% 28.31%
NY 1343.2 1406.19 1375.85 1358.15 1091.47 992.74 4.58% 1.30% 26.05% 9.95% 38.59%
OH 1003.42 1061.78 1031.22 1032.22 838.64 807.27 5.66% -0.10% 22.96% 3.89% 27.74%
OK 343.88 386.99 363.1 361.44 286.46 277 11.87% 0.46% 26.75% 31.08%

42.89%
24.99%
31.27%
30.30%
19.45%

385.57 349.42 11.09% 2.15% 26.60% 10.35% 39.70%
TX 1366.03 1429.34 1398.61 1403.2 1077.36 1019.87 4.53% -0.33% 29.82% 5.64% 37.14%
UT 17.05%190.37 220.09 204.76 207.44 174.93 164.65 14.51% -1.29% 6.24% 24.36%
VA 796.38 843.2 819.84 818.99 674.93 629.86 5.71% 0.10% 21.47% 7.16% 30.16%
VT 207.17 233.58 222.4 227.97 176.4 166.97 11.88% -2.44% 26.08% 5.65% 33.20%
WA 360.71 397.26 380.22 376.63 324.61 290.48 9.61% 0.95% 17.13% 11.75% 30.89%
WI 476.02 522.65 499.75 492.13 418.3 384.43 9.33% 1.55% 19.47% 8.81% 30.00%
WV 666.12 704.31 686.4 681.21 580.91 534.77 5.56% 0.76% 18.16% 8.63% 28.35%
WY 70.3 82.78 76.84 72.9 61.53 57.62 16.24% 5.40% 24.88% 6.79% 33.36%
Avg. 470.39 507.59 489.8 488.09 398.75 373.92 10.35% 0.99% 22.55% 7.43% 31.62%

3.42%
OR 190.47 222.13 208.9 209.33 156.81 146.2 15.16% -0.21% 33.22% 7.26%

TN 461.4 515.55 488.14 477.88

PA 1583.88 1639.66 1610.7 1611.58 1319.13 1288.67 3.46% -0.05% 22.10% 2.36%
RI 65.85 74.63 71.11 71.83 62.9 54.17 12.35% -1.00% 13.05% 16.12%
SC 311.04 346.17 328.38 326.91 260.39 252.01 10.70% 0.45% 26.11% 3.33%
SD 96.23 118.13 108.14 111.16 96.78 90.53 20.25% -2.72% 11.74% 6.90%

Table A-16. Results of ATData
Mul Under Query Window (1*1) for Zip Code Data Sets

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000

Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 94.21 109.68 102.14 102.25 91.12 81.12 15.15% -0.11% 12.09% 12.33% 25.91%
AL 582.05 616.23 600.48 601.78 543.68 523.05 5.69% -0.22% 10.45% 3.94% 14.80%
AR 508.31 534.04 522.38 520.13 433.27 396.63 4.93% 0.43% 20.57% 9.24% 31.70%
AZ 309.14 341.7 326.63 322.29 264.93 254.69 9.97% 1.35% 23.29% 4.02% 28.25%
CA 1383.79 1453.19 1423.52 1431.52 1107.75 1080.58 4.88% -0.56% 28.51% 2.51% 31.74%
CO 387.51 424.77 405.79 419.53 349.68 335.69 9.18% -3.28% 16.05% 4.17% 20.88%
CT 313.46 345.71 331.41 321.66 315.83 273.45 9.73% 3.03% 4.93% 15.50% 21.20%
DC
DE 72.84 85.75 79.67 82.19 71.53 69.16 16.20% -3.07% 11.38% 3.43% 15.20%
FL 913.64 955.5 933.23 926.55 785.55 730.84 4.49% 0.72% 18.80% 7.49% 27.69%
GA 626.04 658.58 642.47 639.14 498.18 478.54 5.06% 0.52% 28.96% 4.10% 34.26%
HI 66.03 79.2 73.62 76.04 57.32 51.59 17.89% -3.18% 28.44% 11.11% 42.70%
IA 781.21 805.89 793.98 793.68 661.81 639.27 3.11% 0.04% 19.97% 3.53% 24.20%
ID 200.52 225.1 214.15 214.79 176.84 168.42 11.48% -0.30% 21.10% 5.00% 27.15%
IL 1093.03 1134.04 1115.26 1121.8 883.99 842.27 3.68% -0.58% 26.16% 4.95% 32.41%
IN 776.95 806.95 791.74 794.52 614.79 596.86 3.79% -0.35% 28.78% 3.00% 32.65%
KS 532.61 569.78 552.45 562.33 438.33 422.33 6.73% -1.76% 26.04% 3.79% 30.81%
KY 886.37 923.88 906.02 905.2 688.61 659.4 4.14% 0.09% 31.57% 4.43% 37.40%
LA 525.34 560.05 544.73 550.69 480.03 449.99 6.37% -1.08% 13.48% 6.68% 21.05%
MA 471.82 508.82 492.5 493.92 314.03 297.03 7.51% -0.29% 56.83% 5.72% 65.81%
MD 410.68 439.33 426.03 429.4 318.43 290.56 6.72% -0.78% 33.79% 9.59% 46.62%
ME 406.61 427.84 417.45 420.6 338.1 318.67 5.09% -0.75% 23.47% 6.10% 31.00%
MI 822.35 860.3 843.6 839.93 656.19 633.89 4.50% 0.44% 28.56% 3.52% 33.08%
MN 725.07 769.26 749.63 741.44 668.99 588.39 5.89% 1.10% 12.05% 13.70% 27.40%
MO 833.02 866.92 851.05 847.95 738.53 702.64 3.98% 0.37% 15.24% 5.11% 21.12%
MS 388.23 415.32 402.52 408.71 331.75 308.21 6.73% -1.51% 21.33% 7.64% 30.60%
MT 178.97 206.32 192.53 191.41 162.75 152.03 14.21% 0.59% 18.30% 7.05% 26.64%

182

183

 NC 778.19 810.65 796.36 788.23 650.67 602.68 4.08% 1.03% 22.39% 7.96% 32.14%
ND 263.1 294.54 279.38 272.82 247.02 223.43 11.25% 2.40% 13.10% 10.56% 25.04%
NE 400.9 427.61 415.29 411.2 376.82 360.68 6.43% 0.99% 10.21% 4.47% 15.14%
NH 230.67 245.91 239.46 238.19 216.05 192.62 6.36% 0.53% 10.84% 12.16% 24.32%
NJ 356.88 390.06 374.95 374.11 326.34 263.93 8.85% 0.22% 14.90% 23.65% 42.06%
NM 271.09 301.06 287.06 286.33 240.71 221.64 10.44% 0.25% 19.26% 8.60% 29.52%
NV 124.66 150.25 138.49 139.86 109.88 89.47 18.48% -0.98% 26.04% 22.81% 54.79%
NY 1385.39 1436.02 1413.95 1408.46 1197.06 1090.12 3.58% 0.39% 18.12% 9.81% 29.71%
OH 1125.92 1172.72 1150.28 1139.85 1010.84 914.22 4.07% 0.92% 13.79% 10.57% 25.82%
OK 531.4 569.78 552.52 542.6 496.99 473.75 6.95% 1.83% 11.17% 4.91% 16.63%
OR 280.37 308.41 294.03 290.04 252.37 234.93 9.54% 1.38% 16.51% 7.42% 25.16%
PA 1533.13 1586.56 1561.46 1561.23 1281.2 1189.17 3.42% 0.01% 21.87% 7.74% 31.31%
RI 68.76 82.31 77.16 75.54 72.08 66.46 17.56% 2.14% 7.05% 8.46% 16.10%
SC 411.32 435.99 425.17 423.04 344.26 331.45 5.80% 0.50% 23.50% 3.86% 28.28%
SD 253.01 280.02 266.6 268.31 247.03 233.23 10.13% -0.64% 7.92% 5.92% 14.31%
TN 558.71 587.25 573.56 568.92 458.22 442.95 4.98% 0.82% 25.17% 3.45% 29.49%
TX 1618.99 1707.75 1666.87 1674.69 1292.3 1267.05 5.32% -0.47% 28.98% 1.99% 31.56%
UT 207.37 228.97 218.4 222.68 178.67 171.63 9.89% -1.92% 22.24% 4.10% 27.25%
VA 862.3 908.54 887.29 875.62 786.43 738.67 5.21% 1.33% 12.83% 6.47% 20.12%
VT 249.36 261.6 256.04 256.43 218.36 205.96 4.78% -0.15% 17.26% 6.02% 24.32%
WA 467.26 504.75 487.81 481.15 370.28 348.87 7.69% 1.38% 31.74% 6.14% 39.83%
WI 655.61 692.94 675.88 678.82 602.6 554.75 5.52% -0.43% 12.16% 8.63% 21.84%
WV 744.14 786.35 768.28 766.53 622.45 593.87 5.49% 0.23% 23.43% 4.81% 29.37%
WY 91.08 108.81 101.17 97.82 87.95 80.45 17.52% 3.42% 15.03% 9.32% 25.76%
Avg. 555.19 588.06 572.85 572.04 473.57 444.75 7.81% 0.12% 20.11% 7.35% 28.84%

Table A-17. Results of ATData
Mul Under Query Window (5*5) for Zip Code Data Sets

184

Rand-Min

-1000
Rand-Max

 -1000
Rand-Avg

-1000
Hilbert

R-Tree

Opt

Rand-
Improv.

Hilbert-
Improv.

R-tree-
Improv.

Opt-
Improv.

R-Tree+Opt-
-Improv.

AK 189.58 208.84 199.73 203.53 156.9 145.61 9.64% -1.87% 27.30% 7.75% 37.17%
AL
AR 34.02 44.86 41.38 41.9 40.03 39.53 26.20% -1.24% 3.37% 1.26% 4.68%
AZ 256.1 278.54 268.83 267.56 217.37 184.6 8.35% 0.47% 23.67% 17.75% 45.63%
CA 312.43 362.14 340.32 349.45 267.19 222.19 14.61% -2.61% 27.37% 20.25% 53.17%
CO 298.62 322.79 312.12 309.79 283.38 270.35 7.74% 0.75% 10.14% 4.82% 15.45%
CT
DC
DE 40.64 48.63 46.55 40.08 38.84 37.65 17.16% 16.14% 19.85% 3.16% 23.64%
FL 24.27 44.63 39.69 41.85 23.48 19.63 51.30% -5.16% 69.04% 19.61% 102.19%
GA 31.78 44 40.39 40.83 33.41 27.6 30.26% -1.08% 20.89% 21.05% 46.34%
HI 58.34 63.96 62.26 61.48 54.58 52.65 9.03% 1.27% 14.07% 3.67% 18.25%
IA
ID 248.55 270.29 261.81 261.92 208.16 185.7 8.30% -0.04% 25.77% 12.09% 40.99%
IL
IN
KS 148.06 173.66 165.11 161.86 137.81 118.34 15.50% 2.01% 19.81% 16.45% 39.52%
KY 33.65 45 40.89 43.48 41.85 39.73 27.76% -5.96% -2.29% 5.34% 2.92%
LA
MA
MD 31.58 34.61 33.82 33.81 34.06 32.84 8.96% 0.03% -0.70% 3.71% 2.98%
ME 113.75 132.26 124.99 129.7 121.08 118.27 14.81% -3.63% 3.23% 2.38% 5.68%
MI 155.94 180.4 172.34 176.41 152.3 136.09 14.19% -2.31% 13.16% 11.91% 26.64%
MN 183.62 214.95 200.93 207.69 156.52 142.49 15.59% -3.25% 28.37% 9.85% 41.01%
MO 30.52 49 43.08 49 38.47 37.12 42.90% -12.08% 11.98% 3.64% 16.06%
MS 69.24 93.66 86.29 83.32 80.3 57.92 28.30% 3.56% 7.46% 38.64% 48.98%
MT 349.48 369.38 360.09 358.96 315.02 273.75 5.53% 0.31% 14.31% 15.08% 31.54%

185

 NC 60.43 87.95 81.48 83.72 83.46 74.33 33.78% -2.68% -2.37% 12.28% 9.62%
ND 274.82 306.58 292.75 290.73 277.34 232.48 10.85% 0.69% 5.56% 19.30% 25.92%
NE 180.31 202.55 193.31 189.93 147.43 117.74 11.50% 1.78% 31.12% 25.22% 64.18%
NH 29.86 43 39.53 36.08 39.98 38.68 33.24% 9.56% -1.13% 3.36% 2.20%
NJ
NM 346.23 372.68 360.44 351.26 304.55 271.37 7.34% 2.61% 18.35% 12.23% 32.82%
NV 81.48 109.28 97.01 91.05 55.59 48.27 28.66% 6.55% 74.51% 15.16% 100.97%
NY
OH
OK 123.24 159.9 147.23 130.95 97.97 56.74 24.90% 12.43% 50.28% 72.66% 159.48%
OR 250.11 276.33 267.2 257.78 237.58 220.66 9.81% 3.65% 12.47% 7.67% 21.09%
PA
RI
SC 35.35 46.98 42.92 40.24 41.85 36.43 27.10% 6.66% 2.56% 14.88% 17.81%
SD 287.36 315.66 302.8 298.26 279.52 228.56 9.35% 1.52% 8.33% 22.30% 32.48%
TN 3 32.59 46.71 43.1 43.19 32.66 27.71 2.76% -0.21% 31.97% 17.86% 55.54%
TX 11.87% 402.1 453.51 433.23 416.2 316.02 305.14 4.09% 37.09% 3.57% 41.98%
UT 160.94 180.85 172.12 172.56 125.85 121 11.57% -0.25% 36.77% 4.01% 42.25%
VA 33.68 48.77 44.25 48.56 33.7 29.1 34.10% -8.88% 31.31% 15.81% 52.06%
VT
WA 307.11 348.22 332.99 330.9 247.23 239.56 12.35% 0.63% 34.69% 3.20% 39.00%
WI 86.94 107.98 99.26 103.55 81.81 63.08 21.20% -4.14% 21.33% 29.69% 57.36%
WV 41.25 48.84 46.86 47.79 48.47 35.67 16.20% -1.95% -3.32% 35.88% 31.37%
WY 164.99 175.14 170.56 172.4 137.83 134.08 5.95% -1.07% 23.75% 2.80% 27.21%
Avg. 18.88% 148.89 170.61 162.37 161.29 134.85 119.53 0.44% 20.27% 14.49% 38.28%

Table A-18. Computation Time for Optimizing DBW and ATData
Mul for Zip Code Data Sets

186

0.05*0.05 0.1*0.1 0.5*0.5 1.0*1.0 5.0*5.0Data
Set Node DBW MUL Node DBW MUL Node DBW MUL Node DBW MUL Node DBW MUL
AK 0109 0 0 109 0 115 0 0 130 0 0 250 1 0
AL 364 1 1 393 0 1 643 2 2 780 7 6 / / /
AR 200 0 0 200 0 0 517 1 1 694 5 3 46 0 0
AZ 310 0 0 314 0 0 387 1 0 414 4 2 305 4 2
CA 1543 7 8 1707 11 13 1905 28 22 1797 63 42 393 16 8
CO 316 0 1 331 1 0 422 1 0 527 3 2 348 14 7
CT 211 1 0 250 0 0 410 1 2 380 6 4
DC 53 0 0 47 0 0
DE 43 0 0 58 0 0 95 0 0 97 0 0 50 0 0
FL 821 1 2 840 2 2 1242 15 11 1125 39 25 46 0 0
GA 417 1 0 434 0 1 697 3 2 841 7 5 45 0 0
HI 60 0 0 57 0 0 89 0 0 96 0 0 68 1 0
IA 238 0 1 235 0 0 802 2 3 1052 12 9
ID 113 0 0 129 0 0 187 0 0 281 0 0 292 26 13
IL 532 1 1 591 1 1 1378 12 10 1420 41 26
IN 432 0 0 455 1 1 904 5 4 983 18 12
KS 135 0 0 138 0 0 393 1 1 767 12 7 185 9 4
KY 504 1 1 550 1 1 1080 8 6 1114 54 30 46 0 0
LA 412 0 1 419 0 1 594 1 1 696 5 4
MA 354 1 0 377 1 0 643 5 3 568 16 10
MD 289 0 0 317 0 0 578 3 2 507 8 5 36 0 0
ME 185 0 0 188 0 1 452 1 1 519 6 4 137 3 1
MI 428 1 1 470 1 0 942 7 6 1075 23 15 190 7 4
MN 190 0 0 255 0 1 687 2 2 1007 13 9 229 14 7
MO 319 0 0 342 0 0 894 6 5 1132 22 14 50 0 0
MS 271 0 1 273 0 0 381 0 0 531 1 2 95 1 0
MT 145 0 0 146 0 0 158 0 0 259 1 0 409 24 12

187

 NC 104 0 0 104 0 0 342 1 1 565 5 3 217 9 4
ND 521 1 1 546 0 1 901 4 3 1016 12 8 90 1 1
NE 61 0 0 62 0 0 129 0 0 390 1 1 328 21 11
NH 97 0 0 99 0 0 277 0 1 292 2 1 44 1 0
NJ 300 0 0 433 1 1 657 10 6 436 10 6
NM 231 1 0 244 0 0 304 0 0 379 2 1 402 9 6
NV 145 0 0 145 0 0 169 0 0 178 0 0 127 1 0
NY 901 2 3 1140 4 5 1845 36 26 1712 115 68
OH 748 2 2 797 2 2 1393 16 12 1418 57 34
OK 336 0 0 336 0 0 502 1 1 757 6 4 170 5 3
OR 155 0 0 159 0 0 291 1 0 400 1 1 303 19 9
PA 1120 4 5 1312 5 5 2075 46 34 1847 126 76
RI 38 0 0 41 0 0 90 0 0 90 1 0
SC 273 1 1 290 0 1 437 1 1 537 3 3 48 0 0
SD 70 0 0 72 0 0 148 0 0 371 1 0 337 33 15
TN 317 0 0 340 0 0 662 2 2 744 7 4 48 1 0
TX 2167 76 51 497 21 111227 4 4 1347 4 5 1837 34 26
UT 197 0 0 199 0 269 0 1 279 1 1 196 2 10
VA 1 1 570 1 1 1082 8 6 1106 27 17 50 0543 0
VT 109 0 0 113 0 0 307 0 0 2 1 314
WA 304 0 1 327 1 503 2 2 633 6 4 370 28 130
WI 317 0 343 0 0 694 2 1 893 10 7 111 20 1
WV 331 1 0 396 0 1 900 4 4 928 17 50 1 027
WY 91 0 0 91 0 0 0 0 138 0 0 198 1 1105

	Contents.pdf
	Acknowledgment

	chapter1.pdf
	Chapter 1
	Introduction
	Data Broadcast
	Geographical Information
	Geographical Information Broadcast
	Possible Application Areas
	Location Dependent Services
	Unusual Event Monitoring
	Disaster Rescue
	Military Operations

	Research Challenges
	Research Objectives and Dissertation Outline

	chapter2.pdf
	Chapter 2
	Literature Review
	Data Broadcast
	Spatial Indexing and Query Processing
	Page Ordering and Graph Layout
	Other Related Work

	chapter3.pdf
	Chapter 3
	Geographical Data Broadcast Cost Models
	Cost Models for Processing a Single Complex Query
	Spatial Range Query for Point Data
	Network Path Query for Graph Data
	Discussions on Related Work

	chapter4.pdf
	Chapter 4
	Hypergraph Representation of Spatial Semantics
	The Hypergraph Representation
	Computing Hypergraph Weights for Point Data
	Relationship with MinLA
	Converting A Hypergraph to A Regular Graph
	Discussions On Related Work

	chapter5.pdf
	Chapter 5
	Ordering Heuristics
	Overview
	R-Tree Traversal Ordering
	Hilbert SFC Ordering
	Graph Partition Tree Traversal Ordering
	Ordering based on Degree/Weight
	Spanning Tree Ordering
	Discussions of Other Related Work
	Further Discussions

	chapter6.pdf
	Chapter 6
	Optimization Methods
	The Approximation Algorithm
	Proof of Correctness for Hypergraph Case
	Fig. 6-4. The BDT Structure in an Ordering Sequence for a Hyperedge

	Generating BDT
	Fig. 6-6. Replacing an R-Tree Node by a BDT Sub-Tree
	Fig. 6-7. The Process of Generating a BDT From an R-Tree

	Optimizing DBW
	Optimizing ATDataSep
	Optimizing ATDataMul

	chapter7.pdf
	Chapter 7
	Experiments and Evaluations
	7.1 Experiment Software Modules
	7.2 Data Sets and Performance Metrics
	7.3 Synthetic Data Set
	7.3.1 Experiments Using The DBW Cost Model
	7.3.2 Experiments Using ATDataSep Cost Model
	7.3.3 Experiments Using ATDataMul Cost Model

	7.4 The Zip-code Point Data Sets
	7.4 Texas Transportation Network Data Set
	Table 7-12. Summary of Results of Texas Transportation Network Data Set Under DBW Cost Model
	Table 7-13. Summary of Results of Texas Transportation Network Data Set Under ATDataMul Cost Model

	chapter8.pdf
	Chapter 8
	Conclusions and Future Work

	References.pdf
	Reference

	UMI_PGnocr.pdf
	UMI Number: 3077409
	__
	UMI Microform 3077409
	
	
	
	300 North Zeeb Road
	PO Box 1346

