
USE OF THE COMPILER-WRITING TOOLS LEX -
AND YACC TO CONSTRUCT 3-D OBJECTS

By

JIA-PYNG HWANG
II

Bachelor of Science

National Cheng Kung University

Taiwan, R. 0. c.

1979

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fullfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1985

USE OF THE COMPILER-WRITING TOOLS LEX

AND YACC TO CONSTRUCT 3-D OBJECTS

Thesis Approved:

Dean of the Graduate College

ii

1236424 i

PREFACE

This thesis describes the procedures of using LEX and

YACC to construct 3-D object images. The theory of

syntactic pattern recognition is introduced. Several

examples are presented to illustrate the method we use in

constructing the desired images.

I would like to thank Dr. G. E. Hedrick and Dr. S.

Thoreson, my committee members, for their contributions and

advice, and to Dr. K. L. Davis for substituting during my

oral examination. A special thanks goes to my major

advisor, Dr. Michael J. Folk, for his guidance and

assistance on this thesis.

A final thanks is due to my parents for their

encouragement and support which made this thesis possible.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION AND LITERATURE REVIEW • 1

1
3
6

Statement of Problem ••
Literature Review ••••
Structure of the Thesis •

. . .

II. BACKGROUND THEORY 7

Basic Theory • • . • . . . • • . • 7
Description of Lin's Method • . . • • . . • 10
LEX and YACC Overview . • • • . . • . • 16

III. CONSTRUCTION OF 3-D OBJECTS USING LEX AND YACC • 22

Introduction • • • ••.
Programs Description
Examples and Explanations

22
23
30

IV. DISCUSSION •••• 53

Advantages of the Proposed Approaches • 53
Limitations • . • . • • • . • • 54
Potential of Applications • • . . • . • 55

v. SUMMARY, CONCLUSIONS, AND SUGGESTIONS
FOR FUTURE RESEARCH . • • • . • • . 58

Summary and Conclusions • • • . • • • • • • 58
Suggestions for Future work • . • . • • • • 59

SELECTED BIBLIOGRAPHY • 61

64

66

68

70

72

APPENDIX A - MAKE SPECIFICATION
APPENDIX B - CODES OF FUNCTION "odenq4"
APPENDIX c - CODES OF FUNCTION "cdcntl"
APPENDIX D - CODES OF FUNCTION "tdraw"
APPENDIX E - CODES OF FUNCTION "main"
APPENDIX F - LEX SOURCE FOR STATIC APPROACH 74

iv

Figure

1.

2.

3.

4.

5.

6.

7.

B.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

LIST OF FIGURES

Block Diagram of a Syntactic Pattern
Recognition System •••••

A Derived Bottle Image
The Attaching Curve Entities {Primitives)

of the Bottle Image • • • • • • • • • •

Pictorial Interpretations of Production
Rules of the Bottle Image • . • • •

. . . .

. . . .

An Overview of LEX
LEX with YACC •

. A Parallelogram Patch •

Primitives of Example 1
3-D Image of Example 1

Primitives of Example 2 •

3-D Picture of Example 2

Primitives of Example 3 ••

3-D Picture of Example 3

. . . .

.

. . . .

Primitives of Example 4 •••

3-D Picture of Example 4
Primitives of Example 5 •• . . .
3-D Picture of Example 5
Primitives of Example 6 •
3-D Picture of Example 6
Primitives (Cells) of Example 7

v

Page

8

13

14

15

18

20

24

31

31

35

36

38

39

41

42

44

45

47

47

48

Figure

21. Construction of a random Picture
Using Dynamic Approach

vi

Page

52

CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Statement of Problem

The three-dimensional (3-D) object image is getting

more important in the field of computer-aided design.

Researchers in computer graphics have developed several ap

proaches to representing or constructing 3-D images [23, 24,

27]. Each of these approaches has its advantages and weak

points. Other effective approaches are still needed to

adapt to different applications.

Lin and Fu [18, 19] have proposed a syntactic approach

to describing the structures of 3-D objects. The object of

this thesis is to propose a similar approach which is based

on the same concept but with a different construction

method.

The syntactic approach grows out of the field of

compiler-writing. In the process of compiler-writing there

are two important phases: lexical analysis and syntax

analysis. To generate the intermediate codes there exists a

scheme called "syntax-directed translation", which allows

semantic actions to be attached to the production rules of a

context-free grammar [1]. The form of a production rule can

be represented as

1

A --> be { semantic actions } ;

Semantic actions are associated with each production. The

UNIX system has two powerful tools, LEX and YACC, that can

handle these complicated procedures adequately. LEX gen

erates a program designed for lexical processing of charac

ter input streams [17]. YACC provides a general tool for

imposing structure on the input to a computer program [15].

2

The basic idea for this thesis is to use these practi

cal compiler-writing tools to construct 3-D object images

from small sets of simple patterns of 2-D primitives. We

can regard the notations in this environment as similar to

those used for a programming language, where the terminal

symbol (token) represents each 2-D primitive which will be

recognized by LEX. The whole structure of the 3-D image

will be constructed via the production rules of YACC. The

input should be a sentence defined by those rules. The pro

cess is analogous to that of parsing a language sentence.

In this thesis we will develop two different kinds of

approaches: the static construction approach and the dynam

ic construction approach. The static approach is similar to

the scheme proposed by Lin and Fu [18]. Corresponding to

each single object there is a unique set of production

rules. For constructing a different object the production

rules and the semantic actions associated with these rules

must be redefined. The grammatical form in this thesis is

simpler than the 3-D plex-grammar proposed by Lin and Fu

3

[18], and can be revised very easily, if necessary.

The dynamic approach is more flexible and convenient in

performing image construction. We consider a 3-D object to

be composed of many small 2-D "primitive cells". By con

trolling the expanding directions of these cells we can con

struct a desired object. Only LEX is needed for this ap

proach, and its rules are fixed. We need only input termi

nal symbols representing primitive cells and their direc

tions. Cells of various sizes and shapes can be defined for

designing different objects. We can even establish a "cell

bank" so that diverse cells can be retrieved for many dif

ferent applications.

A common attractive aspect of these approaches is the

recursive property of grammars. A grammar rule can be ap

plied any number of times for some basic structures, result

ing in a very compact way of representing the infinite sets

of sentences.

In this thesis we assume that all necessary descrip

tions of 2-D primitives have been provided, though they can

be calculated via simple geometric methods. We will display

several examples. All cases are implemented on the GIGI

graphics terminal.

Literature Review

The syntactic pattern recognition approach applied to

computer graphics and image processing has gained much at

tention recently. Many papers related to this field have

4

been published. Several typical methods have been

developed and discussed, and some tasks have been performed

in these methods. All aspects are based on the same theory.

Rosenfeld [25] has discussed some problems about image

pattern recognition. Fu [8] gives a comprehensive introduc

tion of the syntactic pattern recognition approach, includ

ing theory and many applications. We will describe the

basic theory in the next section.

Some discussions of the syntactic approach are concen

trated on the applications of 2-D images. Chen [4] collects

several articles describing the applications to signal pro

cessing by using the syntactic pattern recognition method.

Pavlidis et al [22] describe a parser whose input is a

piecewise linear encoding of a contour and whose output is a

string of high-level descriptions: arcs, corners, protru

sions, intrusions, etc. Such a representation can be used

not only for description but also for recognition. Simple

grammars are used by them for the contour description. You

et al [28] propose a syntactic method used to describe the

structure of a two-dimensional shape by grammatical rules

and the local details by primitives. They use both semantic

and syntactic information to perform the primitive extrac

tion and syntax analysis at the same step. Another applica

tion of syntactic methods in computer graphics is also

presented by Slavik [26]. He uses attributed pair grammars

for syntax directed translation of picture descriptions in

appropriate data structures. The attributes describe

5

geometric relations among graphical objects. Belaid et al

[3] propose a system for the interpretation of 2-D mathemat

ical formulas based on a syntactic parser. This system is

able to recognize a large class of 2-D mathematical formulas

written on a graphics tablet.

Since the tendency is towards using 3-D object in com

puter graphics, the applications of syntactic approach to

3-D images are getting more popular. Requicha et al [23,

24] and Srihari [27] have introduced some concepts for con

structing 3-D object from 2-D primitives. Gips [12]

describes a syntax-directed program that performs a three

dimensional perceptual task. His program uses a fixed set

of syntactic rules to analyze line drawings. He mentioned

that this is the first use of formal syntactic techniques in

the analysis of pictures of three-dimensional objects.

Jakubowski [13] uses syntactic methods to describe rotary

machine elements defined by contours. Segments are defined

as intervals of straight lines or curves. · A broken line

constructed of segments is a contour. Similar configura

tions of segments are included in a class. All such classes

are subsets of a language generated by the local adjunct

grammar. An algorithm deciding if any contour belongs to a

class has been given. Choi et al [5] describe an algorithm

ic procedure to identify machined surfaces for a workpiece

directly from its 3-D geometric description. They define a

machined surface type as a pattern of faces, and use a syn~

tactic pattern recognition method to find the machined sur-

face from the boundary file. A 3-D object representation

scheme which uses surfaces as primitives and grammatical

production rules as structural relationship descriptors is

proposed by Lin et al [18]. Possible selections of surface

primitives are discussed in their paper, and several exam

ples are given to illustrate the object description method.

In this thesis we adopt concepts similar to those of

Lin et al but use different implementation methods. Lin's

method with a simple example will be described in the fol

lowing section.

Structure of the Thesis

6

The next chapter of this thesis, Chapter II describes

the basic theory of the syntactic pattern recognition ap

proach, illustrating the method that Lin and Fu [18] use to

represent 3-D objects, and providing a brief overview of LEX

and YACC. Chapter III discusses in detail the procedures we

propose, including the programs and several examples. The

advantages and limitations of the approaches, and the poten

tial of applications will be discussed in Chapter IV. And

finally, in Chapter V, we will summarize the methods used in

this thesis, drawing conclusions, and suggesting the future

research directions.

CHAPTER II

BACKGROUND THEORY

Basic Theory

In this section we give a simple introduction to the

basic theory of general syntactic pattern recognition sys

tem. This will be followed by a description of Lin's

method, then an overview of LEX and YACC.

Fu [8, 9, 10] shows a block diagram of a syntactic pat

tern recognition system as Figure 1. The block diagram has

been divided into the recognition part and the analysis

part, where the recognition part consists of preprocessing,

primitive extraction (including relations among primitives

and subpatterns), and syntax (or structural) analysis, and

the analysis part includes primitive selection and grammati

cal (or structural) inference.

In the syntactic approach, a pattern is represented by

a sentence (a string, a tree, or a graph of pattern primi

tives and their relations) in a language which is specified

by a grammar. This approach draws an analogy between the

structure of patterns and the syntax of a language. The

language which provides the structural description of pat

terns is sometimes called the "pattern description

language". The rules governing the composition of

7

I t Cl
Preprocess in~ ,

pattern and description

Pattern representation

~ Segmentation Primitive Syntax
or ~ (and relation 7 (or structural) -

Decomposition recognition analysis

~~ \

Recognition
-

Analysis

Sample Primitive Grammatical

patterns (and relation) 7 (or structural)
selection inference

Figure 1. Block Diagram of a Syntactic Pattern Recognition System

OD

9

primitives into patterns are specified ~y the so-called

"pattern grammar". A number of special languages have been

proposed for the description of patterns such as English and

Chinese characters, chromosome images, spark chamber pic

tures, two-dimensional mathematics, chemical structures,

carotid pulse waveforms, two-dimensional airplane shapes,

spoken words, and finger-print patterns.

For shape description in terms of boundary of an ob

ject, straight line segments or curve segments are often

suggested as primitives. Length, slope and curvature can be

used as the attributes of the primitives. The contour of an

object is represented as a sequence of primitives. A set of

structural or syntax rules can be inferred to characterize

the structural interrelationships of these sequences (or

strings of primitives) describing the object of interest.

Some higher-dimensional grammars such as web grammars,

graph grammars, tree-grammars and shape grammars have been

used for syntactic pattern recognition in describing high

dimensional patterns [10].

Fu [11] mentioned that a method recently proposed for

syntactic shape recognition is the use of attributed gram

mars. In this method, a primitive is defined by a symbol

and its associated attributes. The rules governing the con

struction of the objects from the primitives consists of

syntax rules which provide the basic structural description

as well as semantic or attribute rules which assign meaning

to that description. This concept is very similar to the

10

method used in this thesis.

Parsing efficiency has become a concern in syntactic

recognition. Special grammars and parallel parsing algo

rithms have been suggested for speeding up the parsing time.

Syntactic representation of patterns such as hierarchi

cal trees and relational graphs should also be very useful

for database organization.

For more complete information on syntactic pattern

recognition please refer to [8].

Description of Lin's Method

Lin and Fu [18] proposed a 3-D object description

scheme using surfaces as primitives and grammatical produc

tion rules as structural relationship descriptors. They ex

tended Feder's plex-grammar describing 2-D structures [6] to

a 3-D plex-grammar. The idea is to use the attaching curve

entity, considering each terminal or nonterminal symbol as a

primitive or composite surface having an arbitrary number of

attaching curves for joining to other surfaces. Every at

taching curve has an identifier. Interconnections of enti

ties can explicitly be made through the specified attaching

curves in the grammatical production rules.

Conventionally, a grammar for a formal language is de

fined as a 4-tuple [2]:

where

G = (N, E, P, S)

N is a finite set of nonterminal symbols;

E is a finite set of terminal symbols,

disjoint from N;

P is a finite set of (NUE)*N(NUE)*x(NUE)*;

The elements in P are called productions;

S is a distinguished symbol in N called

the start symbol.

A 3-D plex-grammar can be represented by a six-tuple:

G = (N, E, P, S, I, i)

11

where N, E, P, and S play the same roles as the formal

language's, and N, E, and S represent the attaching curve

entities. I is a finite set of symbols called identifiers,

disjoint from (NUE). 1, a member of I, is a special iden

tifier called the null identifier.

Lin and Fu considered that an unrestricted 3-D plex

grammar is too broad to be of much practical use and then

proposed the context-free 3-D plex-grammar whose productions

have the form

A !J.A------> X(;.~
It is more adequate to explain this type of productions of

the 3-D context-free plex-grammar by giving an example, as

below.

Figure 2 illustrates the image of a bottle to be

derived. Figure 3 shows the attaching curve entities (prim-

itives) of this image. Figure 4 is the pictorial in

terpretations of some production rules. The following 3-D

plex-grammar generates the surfaces of this class of ob

jects:

G = (N, E, P, S, I, i) where

N = {<BOTTLE>, <CAP>, <BODY>, <SIDE>, <BOTTOM>},

E = {<a>, , <c>, <d>, <e>},

S = <BOTTLE>,

I = {0, 1, 2},

i = 0,

and P consists of the following rules:

1) <BOTTLE>{} --> <CAP><BODY><BOTTOM>{ll0;012}{}

2) <CAP>{l} --> <a>{ll}{02}

3) <BODY>{2} --> <c><SIDE>{21}{10;02}

4) <SIDE>{2} --> <d><SIDE>{l2}{01;20}

5) <SIDE>{2} --> <d>{}{l;2}

6) <BOTTOM>{l} --> <e>{}{l}.

12

The fourth production rule indicates that <SIDE> can be re

cursively constructed as <SIDE> attached by <d>. In this

case, ~A= {1,2}, ~ {01;20}, and(;= {12}. 6Aindicates

that <SIDE> (right-hand side) is connected to the rest of

the plex by its tie curves labeled 1 and 2. The first field

of6~ 01, indicates that curve 1 of <SIDE> (right-hand side)

connects to the rest of the plex, while <d> is not involved

in this connection. The connection is made at the curve

13

Figure 2. A Derived Bottle Image

(a)

(d)

Figure 3.

(c)

(b)

(e)
(f)

The Attaching Curve Entities
(Primitives) of the Bottle
Image

14

15

Figure 4. Pictorial Interpretations of Production
Rules of the Bottle Image

16

corresponding to curve 1 in <SIDE> (left-hand side), as

indicated by the first entry in 4 That is, curve 1 of

<SIDE> (left-hand side) corresponds to curve 1 of <SIDE>

(right-hand side). The other field of 6~20, indicates that

curve 2 of <d> connects to the rest of the plex, while

<SIDE> (right-hand side) is not involved in this connection.

The connection is made at the curve corresponding to curve 2

in <SIDE> (left-hand side), as indicated by the second entry .
in~. That-is, curve 2 of <SIDE> (left-hand side)

corresponds to curve 2 of <d>. Since~= {21}, curve 2 of

<SIDE> (right-hand side) is connected to curve 1 of <d>.

Productions 3), 2), and 1) can be interpreted similarly.

LEX and YACC Overview

In the field of compiler-writing there are a number of

tools developed specifically to help construct compilers.

These tools range from scanner and parser generators to com

plex systems [1]. Owing to the same principle of syntactic

structures we can also use some of these tools to construct

3-D object images.

In the UNIX system there are two such powerful tools

called LEX [17] and YACC [15]. The use of them to construct

3-D object images is the heart of this thesis. The follow-

ing sections are brief overviews of them.

17

LEX Description

LEX is a program generator designed for lexical pro

cessing of character input streams. It helps write programs

whose control flow is directed by instances of regular ex

pressions in the input stream, and is well suited for

editor-script type transformations and for segmenting input

in preparation for a parsing routine.

LEX source is a table of regular expressions and

corresponding program fragments. The general format of LEX

source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often om-

itted. The rules represent the user's control decisions, in

which the left column contains regular expressions and the

right column contains actions, program fragments to be exe-

cuted when the expressions are recognized. The table is

translated to a program which reads an input stream, copying

it to an output stream and partitioning the input into

strings which match the given expressions. The generated

program is named yylex. Figure 5 is an overview of LEX.

Source ~ yylex

Input ~ Output

Figure. 5 An Overview of LEX

18

The recognition of the expressions is performed by a

deterministic finite automaton generated by LEX. The pro

gram fragments written by the user are executed in the order

in which the corresponding regular expressions occur in the

input stream. The lexical analysis programs written with

LEX accept ambiguous specifications and choose the longest

match possible at each input point. If necessary, substan

tial lookahead is performed on the input, but the input

stream will be backed up to the end of the current parti

tion, so that the user has general freedom to manipulate it.

For the details of LEX source, regular expressions, ac-

tions, ambiguous source rules, source definition, usage,

etc. please refer to [17].

19

YACC Description

YACC provides a general tool for imposing structure on

the input to a computer program. The YACC user prepares a

specification of the input process, including rules describ

ing the input structure, code to be invoked when these rules

are recognized, and a low-level routine (the lexical

analyzer, LEX here} to do the basic input. The class of

specification accepted is the LALR(l) grammars with disambi

guating rules. The basic specification consists of three

sections: the declarations, (grammar} rules, and programs.

A full specification file looks like

declarations
%%
rules
%%
programs

where the declarations and programs section may be empty.

The rules section is made up of one or more grammar rules.

With each grammar rule, the user may associate actions to be

performed each time the rule is recognized in the input pro

cess. A rule has the form:

NT : BODY { ACTIONS }

NT represents a nonterminal name, and BODY represents a se

quence of zero or more names and literals.

YACC then generates a function to control the input

process. This function, called yyparse, is a parser which

calls the lexical analyzer (LEX here} to pick up the basic

items (tokens) from the input stream. These tokens are

organized according to grammar rules.

For the details of how the parser works, how it deals

with ambiguity and conflicts, precedence, error handling,

etc., please refer to [15].

The Combination of LEX and YACC

LEX programs recognize only regular expressions; YACC

writes parsers that accept a large class of context free

grammars, but require a lower level analyzer to recognize

20

input tokens. Thus, a combination of LEX and YACC is often

appropriate.

When used as a preprocessor for a later parser genera-

tor, LEX is used to partition the input stream, and the

parser generator assigns structure to the resulting pieces.

Figure 6 shows the flow of control in such a case.

lexical grammar
rules rules

~
LiX yr

Input yvlex >I Parse input y parse~

Figure 6. LEX with YACC

21

Normally, the default main program on the LEX library

calls yylex() routine. But if YACC is loaded, and its main

program is used, YACC will call yylex(). IN this case each

LEX rule should end with

return(token):

where the appropriate token values is returned. Supposing

the YACC source file to be yfile and the LEX source file to

be lfile the UNIX command sequence can be:

yacc yfile
lex lfile
cc y.tab.c -ly -11 -lS

The YACC library (-ly) should be loaded before the LEX li

brary (-11) to obtain a main program which invokes the YACC

parser. The generations of LEX and YACC programs can be

done in either order.

CHAPTER III

CONSTRUCTION OF 3-D OBJECTS

USING LEX AND YACC

Introduction

Two approaches to construct 3-D object image using LEX

and YACC will be introduced in this chapter. As explained

in Chapter I, these approaches are the static construction

approach and the dynamic construction approach.

Detailed procedures for each method will be described,

as well as the data structures of the programs, the input

format, and the specification forms of LEX and YACC.

These tasks have been implemented on the GIGI graphics

terminal. The line drawing and coordinates controlling

functions are specific to the GIGI facilities. UNIX is used

as the host system. All routines are written in the C

language.

We will also show seven examples in this chapter. Ex

ample 1-6 are of the static approach, and example 7 is of

the dynamic approach. For reasons of simplicity and expli

citness only objects with straight line edges will be illus

trated, though objects with curve edges can be constructed

using the same procedures but with a little more complicated

data structures and drawing functions. Integer values will

22

23

be assumed as the sizes of primitives for the same rea-

sons.

Programs Description

Data Structures and Supporting Routines

Besides the use of LEX and YACC there are several rou-

tines used to support the work. These routines and their

data structures are in common for each approach. Each rou

tine will be kept in a separated file so that it is easier

to be traced and edited. These routines, together with LEX

and YACC sources and their generated programs will be com

piled and linked by using the program maintaining tool MAKE

[7], which exists on UNIX system. The specification and

usage of MAKE used in this thesis will be listed in Appendix

A.

The external declarations are collected in a file

called "extern.h", which will be included in the main pro-

gram. Here we use a structure array

struct prim {
int prix:
int priy:

} pmtv[]

to accommodate the information of 2-D primitives. If only

the straight lines are used, the members of this structure

simply represent the size and drawing direction of one edge

of a primitive. According to the rules of the GIG! graphics

terminal we take the right and down directions as positive,

and the left and up directions as negative for coordinates.

24

The information assigned to the structure array "pmtv" in

cludes the positive and negative values representing line

drawing directions. For example, Figure 5 is a parallelo

gram with 5 units length in each side. The values assigned

to array "pmtv" are

pmt v [] = [5 , 0 , -4 , 3 , -5 , 0 , 4 , -3}

(0)

5

(2)

Figure 7. A Parallelogram Patch

Each pair of values represents one edge of this parallelo

gram. The numbers inside the parentheses represent the

drawing order, starting from 0. The order can be arbitrary

but is very important for the construction of the final (3-

D) image. The assignment of values to the array for each

edge should correspond to the edge drawing order. In Figure

5, we start from edge (0), which is to the right by 5 units

horizontally and without any movement in the vertical direc

tion. Thus the values assigned are [5, 0}. For edge (1}

the movement is to the left by 4 units and down by by 3 un-

25

its. Thus the values assigned are {-4, 3}, and so forth.

If there are curve edges in the primitives, e.g., qua

dric surfaces, the structure should include additional

members to represent the curve type (vector, arc, circle,

curve, etc.).

The primitive information is a data source permanently

stored in array "pmtv". We have another array called

"pridx" which is used to store the indexes of separated

primitives. Any primitive can be retrieved any number of

times via this index array when needed. If there is a lot

of data, i.e., many different kinds of primitives forming a

"primitive bank", which is also a more practical condition,

it is more appropriate to store these data in files.

For drawing the final image the method we use is the

storing of the primitive edges in a queue in the order they

will be drawn. The drawing order is determined by the

parameters of the function that put the order numbers into

the queue and the YACC specifications (grammar rules). The

queue is a large array named "plotq". If the 3-D image to

be derived is a very complex one that needs too many order

numbers, it is also appropriate to use a sequential file to

accommodate these numbers to avoid using an extra-large ar

ray, although this makes the process run more slowly.

To put the order numbers of the primitive edges into

the queue we establish several functions, named "odenq?",

where the ? can be replaced by a number greater than 2. The

2-D primitives used to construct 3-D object images can be

26

many different kinds of shapes (even for the plans with

only straight line edges), e.g., triangles, rectangles, hex

agons, and other regular or irregular polygons. The effects

of the "odenq?" functions perform the input of the queue for

these different primitive shapes. For triangles which have

three edges the function "odenq3" will be used, and for rec

tangles the function "odenq4" will be used, and so forth.

These functions are very similar in between. A typical ex

ample of "odenq4" is as

odenq4(dxl, dx2, dx3, dx4, n)

where the dxl to dx4 are the order numbers of edges that

will be put in queue, and the n represents the index in the

"pridx" array. For a surface patch with five edges the

queueing function is

odenq5(dxl, dx2, dx3, dx4, dx5, n).

The only difference from odenq4 is the increase of the

parameter dx5 and, of course, a statement for queueing an

additional edge. The stored order numbers are the indexes

of edges in the "pridx" array.

There is another function named "cdcntl" which is used

to control the starting point for the drawing of the next

primitive patch. The form of this is

cdcntl(cx, cy)

where the parameters ex and cy are the coordinates of the

next starting point. They are also stored in a queue (a

one-dimensional array) to be retrieved for use.

27

The drawing function "tdraw" will draw the entire 3-D

image. The method involves the retrieval of the order

numbers stored in the queue previously which correspond to

primitive edges, and the use of the GIGI commands for the

line drawing of these edges. The relative coordinates capa

bility of the GIGI terminal is quite useful in the drawing

tasks.

The driving program "main" is very simple. The steps

are entering the graphics mode of GIGI, clearing the screen,

specifying a starting point, constructing and drawing the

picture, and then escaping from the graphics mode.

The intact programs described above are listed in Ap

pendix B - E.

LEX and YACC Sources

The LEX and YACC sources are the heart of the whole

task. An overview of these tools has been shown in Chapter

II. Basically, LEX performs pattern matching and YACC or

ganizes these input patterns according to the syntactic

rules provided. These are the normal procedures for a syn

tactic pattern recognition approach that can achieve a task.

Nevertheless, as mentioned in Chapter II, both LEX and YACC

have the capabilities of associating actions with their

rules (regular expression rules and grammar rules). LEX is

therefore powerful enough and can sometimes accomplish a job

independently. In this thesis we will use LEX and YACC in

the static construction approach, and use only LEX in the

dynamic construction approach.

28

In the static construction approach there is a one to

one correspondence between grammars and objects.

Corresponding to each single object there is a unique set of

production rules.

The LEX source for the static approach is quite simple.

The regular expressions in the left-hand-side are the pat

terns representing 2-D primitives. They can be arbitrary

symbols, or meaningful names if desired. We shall simply

use one alphabet to represent each primitive. In the

right-hand-side are the actions that return token numbers

·which will be called by YACC. A lot of patterns can be es

tablished in advance for objects that need different amounts

of primitives. A source form of LEX is listed in Appendix

F.

Each YACC source for the static approach contains the

production rules needed for constructing an object image.

This set of rules plays the role of an acceptor. As

described before, in the left-hand-side are the nonterminal

symbols (again they can be arbitrary symbols or meaningful

names; capital letters will be used here) which derive a set

of terminal symbols (the primitive patterns). Token numbers

returned by LEX should be declared to correspond to the ter

minal symbols in the upper part of the YACC source. Associ

ated with each production rule are semantic actions, which

are the queueing functions and the coordinates control func-

29

t~on ~n our project. These actions can also be put in the

LEX source though, and we ~hall treat them this way in the

dynamic approach. The YACC specifications and actions are

still needed for controlling the coordinates of some discon

tinuous patches. Furthermore, via the grammar rules a sen

tence is parsed so that it is much more obvious and con

venient to have an input of a sentential form for construct

ing the desired object. The input format will be shown em

bedded in the example~ in the next section.

For the dynamic approach only LEX is used. The LEX

source is fixed, i.e., from only one fixed source we can ob

tain different object images as long as the primitive sym

bols for the desired objects have existed in the source.

This goal is achieved by controlling the extending direc

tions of certain primitives and the switching between dif

ferent primitives via the input patterns. Such primitives

can be regarded as cells, and their extensions are just like

the growing of cells. There may be various types of cells,

i.e., the primitives with different shapes and sizes. In

this approach the queueing functions and the coordinate con

trol function are associated with the LEX's regular expres

sion rules. The detailed image construction steps for this

approach will be illustrated in the next section by a simple

example.

30

Examples and Explanations

In this section several examples will be displayed.

For each example the figures of the separated primitives and

the final constructed picture will be shown. The YACC pro-

duction rules and their associated actions are listed with

each example, and the steps will be explained only in Exam

ple 1 for the static approach (Example 1-6). With the

dynamic approach example (Example 7) the LEX source will be

listed and the detailed process will be described.

Example 1

Figure 8 shows the primitives of the images in Figure

9. The YACC specification for Figure 9(a) is as below:

%token a 301 b 302
%%
5 A E

E a D { odenq4(1, 2, 3, 0, 0); cdcntl(O,O); } . ,
D b c { odenq4(0, 1, 2, 3, 1); cdcntl(-100,50);}

c a B { odenq4(0, 1, 2, 3, 0); cdcntl(lOO,O); } . ,
B b { odenq4(0, 1, 2, 3, 1); cdcntl(-100,50);} . ,
A a { odenq4(0, 1, 2, 3, 0); cdcntl(O,O); } . ,

The input patterns for this image are

a a b a b

(~)

a

(0)

(2)

a
Figure 8.

Figure 9.

31

C.O)

<J.-)

b

Primitives of Example 1

b

3-D Images of Example 1

32

The input patterns for this image are

a d d c c a b a b

The parsing of the image construction sentence is a

bottom-up type.

The queueing order of the edges of primitives in this

example is clockwise. The order numbers (in the

parentheses) are shown in Figure 8. The order can also be

counterclockwise, as we shall see in other examples. Which

edge in a primitive is the beginner is not crucial. It

depends on the conditions that are convenient for construct-

ing the final image. The most deeply affected part is the

coordinates control for the starting point of a primitive.

This task is related to both the drawing order of primitive

33

edges and the production rules. We have to trace the last

point in each stage of the construction of the picture and

decide the starting point the next primitive should be drawn

from. The coordinates control. function "cdcntl" whose two

parameters are the starting point coordinate relative to

that of last point can do this job conveniently.

In this example we can see that if the last point hap

pens to match with the starting point of the next primitive,

the parameters of "cdcntl" are (0, 0), i.e., in the same po

sition. Otherwise, the values must be filled according to

the next starting point for the next starting edge of primi

tive. The starting edge of the next primitive is not neces

sarily the edge (0). The starting edge (the first one being

queued) in the topmost production rule for Figure 9(a) is

edge (1). It completely depends on the convenience for con

structing the desired picture. Of course, the coordinates

must be controlled accordingly.

The production rules for an image can also vary, as

long as they can lead to the desired final 3-D picture.

Sometimes the semantic action associated with a rule is only

a coordinates control function for combining the partly con

structed images. Some such cases can be seen in the follow

ing examples.

Example 2

Figure 10 and Figure 11 are the primitives and the 3-D

object picture for this example. The YACC specification is

as below:

%token
%token
%token
%%
STAIRS

DHEAD

WALK

SEGMENT

SIDE1

SIDE2

STEP

UHEAD

USTEP

UBLOCK

a 301
f 306
k 311

b 302
9 307
1 312

c 303
h 308

d 304
i 309

UHEAD WALK DHEAD DHEAD

e 305
j 310

h f h g {odenq4(0,1,2,3,7)~ cdcntl(O,O)~
odenq4(0,1,2,3,5)~ cdcntl(30,0)~
odenq4(0,1,2,3,7)~ cdcntl(-56,83)~
odenq4(1,2,3,0,6)~ cdcntl(206,-83);}

SEGMENT
WALK SEGMENT

SIDE1 STEP SIDE2

e d c {odenq4(0,1,2,3,4); cdcntl(O,O);
odenq4(0,1,2,3,3); cdcntl(30,0)~
odenq4(0,1,2,3,2); cdcntl(0,118);}

-c de {odenq4(0,1,2,3,2); cdcntl(O,O)~
odenq4(0,1,2,3,3)~ cdcntl(30,0);
odenq4(0,1,2,3,4); cdcntl(-238,51); J

b a {odenq4(0,1,2,3,1)~ cdcntl(-28,21);
odenq4(0,1,2,3,0)~ cdcntl(l78,-139)~J

UBLOCK USTEP UBLOCK
{cdcntl (-270, ·-73) ~ J

1 {odenq4(0,1,2,3,11)~ cdcntl(150,-118)~ J

k j k i {odenq4(0,1,2,3,10)~ cdcntl(O,O)~
odenq4(0,1,2,3,9)~ cdcntl(30,0);
odenq4(0,1,2,3,10)~ cdcntl(O,O)~
odenq4(1,2,3,0,8); cdcntl(0,118)~J

34

35

(O) (O) {O)

(3) I 1<.1> r.?Jj /{tJ v (2} (.:t) ti'

a b (.0)

(_?.)
tl) d

(.0)
c

~)

(J))

(.~)

t2.} t:f,)
(.'3)

e.

(.'1.)

(D)

(0)

CP) (_3) ti> LA (J.)

) .
L1-) J

h ~)

(O) __ /---17
1

Figure 10. Primitives of Example 2

36

Figure 11. 3-D Picture of Example 2

The input patterns for this image are

Example 3

k j k i 1 k j k i e d c b a c d e e

d c b a c d e e d c b a c d e e d c

b a c d e h f h g h f h g

37

Figure 12 and Figure 13 are the primitives and the 3-D

picture. The YACC source is as below:

%token
%token
%token
%%
5

c

B

A

.
'

.
'

.
'

.
'

a 301
f 306
k 311

C a

A B
C A B

b 302 c 303 d 304
g 307 h 308 i 309
1 312

e 305
j 310

{odenq4(0,1,2,3,0); cdcntl(O,O);}

c b c {odenq4(3,0,1,2,2); cdcntl(O,O);
odenq4(3,0,1,2,1); cdcntl(200,0);
odenq4(3,0,1,2,2); cdcntl(-90,-110);}

a d {odenq4(0,1,2,3,0); cdcntl(-60,80);
odenq4(0,1,2,3,3); cdcntl(O,O); }

The input patterns for this image are

a d c b c a d c b c a d c b c a

d c b c a d c b c a

(3)

CO)

(:1.)

~~~ (p) 

!J.) 1 
( ) 

l~) I 

c d 

tO) 

().) 

b 

(0) 

Figure 12. Primitives of Example 3 

38 

;<1) 



39 

Figure 13. 3-D Picture of Example 3 



40 

Example 4 

Figure 14 and 15 are the primitives and the 3-D pic

ture. The YACC source is as below: 

%token 
%token 
%token 
%% 
s 

J 

I 

G 

F 

E 

c . , 
B 

A 

a 301 
f 306 
k 311 

b 302 
g 307 
1 312 

c 303 
h 308 

d 304 
i 309 

e 305 
j 310 

J C h {odenq4(2,3,0,1,7); cdcntl(O,O);} 

E F G I G FE {cdcntl(-250, 30); } 

i {odenq8(1,2,3,4,5,6,7,0,8);cdcntl(140,0); } 

g {odenq4(0,1,2,3,6); cdcntl(O,O);} 

f {odenq4(0,1,2,3,5); cdcntl(80,0);} 

e {odenq5(0,1,2,3,4,4); cdcntl(O,O);} 

B A 

a {odenq10(0,1,2,3,4,5,6,7,8,9,0);cdcntl(160,220);} 

c b d {odenq4(0,1,2,3,2); cdcntl(O,O); 
odenq4(0,1,2,3,1); cdcntl(140,0); 
odenq4(0,1,2,3,3); cdcntl(-50,-140); } 

The input patterns for this image are 

e f g i g f e a c b d h 



41 

(O) <A-> 
(O) 

@)I l c1) 

ll> (.2) 

b 

(§) 

<.7) 

(.2) 

(9) 

(_0) 
(.'3) 

~) ~~ ~) 
d-> -

~) 

c_'}J f 
s 

d 
(o) ~) 

e 
(.i) (_3) 

cJ-) (5) 
(_O) c1) 

l;~ ~ 
(].) 

h (_b) 
• 
1 

Figure 14. Primitives of Example 4 



42 

Figure 15. 3-D Picture of Example 4 



43 

Example 5 

Figure 16 and Figure 17 are the primitives and the 3-D 

picture. The YACC source is as below: 

%token a 301 b 302 c 303 d 304 e 305 
%token f 306 g 307 h 308 i 309 j 310 
%token k 311 1 312 
%% 
s u F w a {odenq7(2,3,4,5,6,0,1,0); cdcntl(O,O); } 

F f {odenq7(0,1,2,3,4,5,6,5); cdcnt1(-34,118);} 

w v B {cdcntl(-10, 20); } 

v B c d {odenq4(0,1,2,3,2); cdcnt1(100,-78); 
odenq4(0,1,2,3,3); cdcnt1(80,102); } 

U E HI J I G HE {cdcntl(-316, -8); } 

G g {odenq8(3,4,5,6,7,0,1,2,6); cdcntl(8,-16);} 

J j {odenq4(0,1,2,3,9); cdcntl(l28,0);} 

I i {odenq4(0,1,2,3,8); cdcntl(-8,16); } 

H h {odenq4(0,1,2;3,7); cdcntl(90,12); } 

E e {odenq6(0,1,2,3,4,5,4); cdcntl(O,O);} 

B b {odenq4(0,1,2,3,1); cdcntl(60,8};} 

The input patterns for this image are 

e h i j i g h e f b c d b a 



44 

c_o) 

a 

b 

(C) 

(o) (4) 

(5) ~h ~) l!l2; 
f 

(2) 

l'-J 
@) 

3 
(}-) Co) fP) to) 

ti) (!1) 
L3> d.) 

l~) <!-) 

(J.) t_i) (2.) 

. . 
h 1 J 

Figure 16. Primitives of Example 5 



45 

Figure 17. 3-D Picture of Example 5 



46 

Example 6 

Figure 18 and Figure 19 are the primitives and the 3-D 

picture. The YACC source is as below: 

%token 
%token 
%token 
%% 
s 

a 301 
f 306 
k 311 

b 302 
g 307 
1 312 

C X C B A B 

c 303 
h 308 

d 304 
i 309 

e 305 
j 310 

X f de { odenq8(0,1,2,3,4,5,6,7,5); cdcnt1(100,0); 
odenq4(0,1,2,3,3); cdcnt1(300,0); 
odenq8(0,1,2,3,4,5,6,7,4);cdcntl(0,-150);} 

C c {odenq4(0,1,2,3,2); cdcntl(0,150);} . , 
B b {odenq4(1,2,3,0,1); cdcntl(0,-150);} 

A a {odenq8(1,2,3,4,5,6,7,0,0); cdcnt1(-300,150);} . , 
The input patterns for this image are 

c f d e c b a b 



ep) 
lP) l!J) 

lO) cJ>)o ,1:) 

l?-) 
(}.) 

c 

&J (!-) 

e 
b 

(_O) 
(_~ ({)) 

£/? rJ,) 
~) 

<'}1 t d e 
Figure lB· 

primitives of Eltample 6 



48 

Example 7 

In this example the dynamic construction approach will 

be illustrated. Figure 20 shows a cubic block and three 

primitives which are decomposed from this block. The draw

ing order of edges is represented as before. 

b 

t~u 
(.0) 

~ar 

c;J 
tb 

a1 
~ 

l'» }ad cl/ 

a C 

Figure 20. Primitives (Cells) of Example 7 



49 

The terminal symbols now represent not only primitives 

(cells) but also extending directions and switches of primi-

tives. For example, in this case "ar" represents the primi

tive 'a' extending to the right direction (other symbols 

'1', 'u', 'd' represent the directions of left, up, and down 

respectively), "ard" represents that the primitive 'a' that 

is now extending to the right direction will be changed to 

the down direction, and "arcl" represents that the primitive 

'a' that is now extending to the right direction will be 

switched to the primitive 'c' and extended to the left 

direction. For the switches between different primitives 

(these are necessary for the construction using primitives 

with different shapes and orientations) some can be done 

directly, but some can't. If "ar" is changed to "bd", it 

has to be changed to "aru" or "ard" first, then to "aubd" or 

"adbd", and then to "bd". 

The LEX source of this example is as below: 

%{ /* 

%} 
%% 
ar 
al 
au 
ad 
br 
bl 
bu 
bd 
cr 
cl 
cu 

a, b, c represent the primitives. 
r, 1, u, d represent the directions of right, 
left, up, and down respectively. */ 

{odenq4(0,1,2,3,0); cdcntl(lOO,O); } 
{odenq4(1,2,3,0,0); cdcntl(-100,0); } 
{odenq4(3,0,1,2,0); cdcntl(0,-100); } 
{odenq4(1,2,3,0,0); cdcntl(0,100); } 
{odenq4(0,1,2,3,1); cdcntl(lOO,O); } 
{odenq4(1,2,3,0,1); cdcntl(-100,0); } 
{odenq4(3,0,1,2,1); cdcntl(70,-70); } 
{odenq4(1,2,3,0,1); cdcntl(-70,70); } 
{odenq4(3,0,1,2,2); cdcntl(70,-70); } 
{odenq4(0,1,2,3,2); cdcntl(-70,70); } 
{odenq4(2,3,0,1,2); cdcntl(0,-100); } 



50 

ed {odenq4(0,1,2,3,2); edentl(O,lOO); } 
aru {edentl(-100,0); } 
ard {edentl(O,lOO); } 
arl {edentl(-100,0); } 
arer {edentl(O,O); } 
arel {edentl(O,O); } 
alu {edentl(O,O); } 
ald {edcntl{lOO,lOO); } 
alr {edentl(lOO,O); } 
aler {edentl(O,O); } 
alel {edentl(O,O); } 
aur {edentl(lOO,O); } 
aul {edentl(O,O); }. 
aud {edentl(lOO,lOO); } 
aubu {edentl(O,O); } 
aubd {edentl(lOO,O); } 
adr {edentl(0,-100); } • adl {edentl(-100,-100); } 
adu {edentl(-100,-100); } 
adbu {edcntl(-100,0); } 
adbd {edcntl(O,O); } 
bru {edentl(-100,0); } 
brd {edentl(-70,70); } 
brl {edcntl{-100,0); } 
breu {edentl(-70,70); } 
bred {edentl{O,O); } 
blu {edentl(O,O); } 
bld {edcntl(30,70); } 
blr {edentl(lOO,O); } 
bleu {edcntl(-70,70); } 
bled {edcntl(O,O); } 
bur {edentl{lOO,O); } 
bul {edcntl(O,O); } 
bud {edcntl(30,70); } 
buau {edentl(O,O); } 
buad {edentl{30,70); } 
bdr {edentl{70,-70); } . 

bdl {edcntl(-30,-70); } 
bdu {edentl{-30,-70); } 
bdau {cdentl(-100,0); } 
bdad {edcntl(O,O); } 
eru {edentl{-70,70); } 
erd {edcntl{O,lOO); } 
erl {edentl(-70,70); } 
erar {edentl(O,O); } 
eral {edentl(O,O); } 
elu {cdentl(O,O); } 
eld {edentl(70,30); } 
elr {edcntl(70,-70); } 
elar {cdcntl{O,O); } 



clal 
cur 
cul 
cud 
cubr 
cubl 
cdr 
cdl 
cdu 
cdbr 
cdbl 

{cdcntl(O,O); } 
{cdcntl(70,-70); } 
{cdcntl(O,O); } 
{cdcntl(70,30); } 
{cdcntl(70,-70); } 
{cdcntl(70,-70); } 
{cdcntl(0,-100); } 
{cdcntl(-70,-30); } 
{cdcnt1(-70,-30); } 
{cdcntl(O,O); } 
{cdcntl(O,O); } 

51 

The queueing order of edges for each primitive is 

determined according to the direction that the primitive is 

going to be extended. The changes of directions or switches 

between primitives are performed via the coordinates control 

function. The method is to find the starting point of a 

certain primitive in a certain direction. The desired con-

struction can begin after the change or switch has been 

done. 

When each input pattern is recognized its associated 

actions are invoked. Therefo~e, the construction of a pic-

ture depends on the layout of the input patterns. Figure 21 

displays the steps of constructing a random picture with 

their corresponding input patterns. The arrows represent 

the route of construction. 



ar ar 

ar ar arcr cr cr 
cru cu ou 

ar ar arcr cr cr 
crtl cu cU cub 1 

bl 111 bl bld 

bJad &d ad 

t 

t 

::tr ar arcr cr- cr 

t 

a~ ar arr:r cr cr cru cu c. Lt 
cUbl b1 bl b1 

ar ar ater cr cr cru. 
CIA C.U CIJbl bl bl bl 

bld bdad ad ad adbd 

bd bdacl ad 

t 

Figure 21. Construction of a Random Picture 
Using Dynamic Approach 

52 



CHAPTER IV 

DISCUSSION 

Advantages of the Proposed Approaches 

The use of LEX and YACC is an implementation of syntac

tic pattern recognition approach to constructing 3-D object 

images. Most of the advantages of the method proposed in 

this thesis are common to any syntactic approach to pattern 

recognition. 

As mentioned before, these approaches are very compact 

and concise. Useful information can be extracted from the 

grammar for machine vision applications. Only a grammar is 

needed for describing a large number of object models due to 

the versatility of the grammatical production rules. If an 

object contains several identical primitive surface patches, 

only a single representation of the patch need be stored in 

the database. 

In general, it is easier to identify the visible primi

tive surface patches than to recognize the object directly. 

This is because the primitive surface patch is simpler in 

shape. YACC uses a bottom-up control strategy. Its control 

proceeds from the identification of the visible primitive 

surface patches to establish the correspondence of the 

vertices and finally to the construction of 3-D object im-

53 



54 

age. 

A successful recognition also generates a structural 

description of the pattern. The left parse produced by YACC 

is a compact description of the pattern. 

For the dynamic approach in this thesis only one set of 

LEX rules needs be established. These rules can adequately 

include the patterns that are very frequently used for the 

desired applications. 

By using the grammatical production rules we can attri

bute the control of coordinates and order of drawing the edges 

of primitives to the parameters of associated functions. 

Therefore, it is very easy to revise the objective picture 

as desired. 

Limitations 

There are some limitations for the proposed methods: 

1. The 2-D primitives are decomposed from the 3-D ob

ject to be constructed. In some cases a decomposition which 

does not agree with the intuitive notion has to be performed 

due to the limitations of the connecting rules for the sur

face patches. The decomposition not only creates more prim

itive surface patches but also adds more production rules. 

Thus the decomposition increases the complexity of the gram-

mar. 

2. The parsing requires an exact match between the 

unknown input sentence and a sentence generated by the pat

tern grammar. Such a rigid requirement often limits the ap-



plicability of the syntactic approach to noise-free or ar

tificial patterns. 

55 

3. When using this approach most designers can con

struct the grammar only based on the a priori knowledge 

available and their experiences, either manually or interac

tively. 

Potential of Applications 

The syntactic pattern recognition approach is useful in 

many fields of applications, including character recogni

tion, waveform analysis, speech recognition, automatic in

spection, fingerprint classification and identification, 

geological data processing, target recognition, machine part 

recognition, and remote sensing [8]. Myers [21] also pointed 

out that pattern recognition by computer has found employ

ment primarily in two fields: the processing of satellite 

or space images, and medicine. 

The use of the syntactic approach in representing or con

structing 3-D objects is even more important for real world 

applications. The world is intrinsically three dimensional. 

While constraints can be added to limit variability in or 

minimize the need for the third dimension, such information 

is still necessary. Very few manufactured items are two di

mensional. Printed wiring boards and silicon circuits ap

proach 2-D but still have important vertical components. 

Handling of objects, either ·manually or by robots, is int

rinsically 3-D [14]. 



56 

A current interesting application for 3-D object is the 

machine vision. Machine vision is a key to the development 

and use of generic parts-presentation equipment. Most in

dustrial applications of computer vision can be categorized 

into two groups. They are (1) machine parts recognition and 

(2) visual inspection. To successfully satisfy robot vision 

requirements a three dimensional representation of a real 

scene must be provided. True 3-D vision could simplify many 

current robot applications that were built using less

capable 2-D vision systems. To aid in the development of 

3-D vision systems representational problems must be 

researched. 

To identify one type of machine part among many is to 

match it successfully against the corresponding model of 

those stored in memory. The model only needs enough data to 

identify unequivocally one part among the others that may be 

present. A model is a simple word description of a part 

which specifies the important spatial relationships between 

distinct components of the part. Fu [11] introduced some 

such methods by using a context-free grammar for building 

machine parts from picture primitives. Myers [21] mentioned 

that in industrial pattern recognition it needs to "see" 

only well enough to perform the task at hand. 

The key point of inspection is the conformity of the 

part to some previously established standard. The syntactic 

pattern recognition approach is a way to achieve generic 



57 

property verification -- a visual inspection technique. 

The input pattern is first extracted and processed and then 

represented by a string. The grammar rules are then applied 

to the string to detect local defects. Fu [9] described some 

tasks performed successfully by using this inspection tech

nique. Apparently, such a technique can be applied success

fully only when the inspection criteria can be transformed 

into a set of rules that can be applied equally well 

throughout the image. When the inspection criteria demand 

uneven tolerances at different places, this technique is 

crippled. 

The advantages for industrial applications in syntactic 

approach are inexpensiveness, real-time processing, low er

ror rates, and flexibility. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND SUGGESTIONS 

FOR FUTURE RESEARCH 

Summary and Conclusions 

The procedures of using LEX and YACC to construct 3-D 

object images are described in this thesis. The background 

theory is the same as that of the syntactic pattern recogni

tion approach. The basic idea of syntactic pattern recogni

tion is to represent a pattern in terms of its components 

and the relations among them. 

LEX and YACC are the compiler-writing tools existing on 

UNIX system. We use these tools to implement the construc

tion of 3-D object images from small sets of simple patterns 

of 2-D primitives. LEX recognizes the terminal symbol 

representing each 2-D primitive. The whole structures of 

the 3-D image will be constructed via the production rules 

of YACC. Some supporting functions are regarded as semantic 

actions associated with grammar rules or regular expression 

rules. 

This thesis provides the programs for 3-D object con

struction with a hierarchical and systematic approach. It 

reduces the problem of identifying a 3-D object to subprob

lems of primitive surface patches identification and util-

58 



izes the. structural relationship descriptive capability of 

YACC to perform structural analysis. 

59 

The method used here is also an implementation of the 

proposed attributed grammar for modeling 3-D object with 

regular shapes. It presents a framework of syntactic pat

tern recognition in solving 3-D object recognition problems. 

This approach is useful for robotic vision applications. 

Suggestions for Future Research 

There are some directions suitable for extending from 

the current work: 

1. In the current scheme the primitive surface patches 

are fixed, both in size and orientation. The system will be 

more powerful and economical if functions can be developed 

to elongate the edges of the primitive surface patches 

and/or, to rotate the primitive surface patches in plane 

based on the existed patches. Additional condition options 

may be needed in programs for achieving this goal. 

2. For the purpose of flexibility and applicability 

the research direction can be toward the implementation of 

error-correcting parsing which has been proposed! We can 

also specify the ranges for the edges of primitive surface 

patches to relax the restriction of dimension. 

3. Ideally, it would be nice to have a grammatical 

inference machine which would infer a grammar or structural 

description from a given set of patterns. The problem of 

grammatical inference is concerned mainly with the pro-



60 

cedures that can be used to infer the syntactic rules of 

an unknown grammar based on a finite set of sentences or 

strings from the language generated by this grammar. Since 

the use of YACC is an attributed grammar in nature, it is 

more difficult to perform the inference. 



[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

SELECTED BIBLIOGRAPHY 

Aho, A. v., J.D. Ullman. Principles of Comeiler 
Design Reading MA: Addison-Wesley Publish1ng Co., 
1979. 

Aho, A. v., J.D. Ullman. The Theory of Parsinr, 
Translation, and Computing~olume l :-Parsing , En
glewood Cl1ffs, NJ : Prentlce-Hall, 1972. 

Belaid, A., J. Haton. "A Syntactic Approach for 
handwritten mathematical formula recognition." IEEE 
Trans. Pattern Anal. & Mach. Intell. , PAMI-6, 1 
(1984), 105-111-.- --

Chen, c. H. Pattern Recognition and Signal Processing 
, Sijthoff & Noordhoff, 1978. 

Choi, B. K., M. M. Barash, D. c. Anderson. "Automatic 
Recognition of Machined Surfaces from a 3D Solid 
Model." Computer-Aided Design , 16, 2 (1984), 81-86. 

Feder, J. "Plex Languages." Information Science , 3 
(1971}, 225-247. 

Feldman, S. I. "Make-- A Program for Maintaining Com
p~ter Programs." Unix Programmer'~ Manual , 7th Edi
tlon, 1979. 

Fu, K. s. Syntactic Pattern Recognition and Applica
tion , Englewood Cliffs, NJ : Prentice-Hall, 1982. 

Fu, K. S. "Pattern Recognition for Automatic Visual In
spection." Computer , 15, 12 (1982}, 34-40. 

[10] Fu, K. S. "Recent Development in Pattern Recognition." 
IEEE Trans. Comput. , C-29, 10 (1980), 845-854. 

[11] Fu, K. S. "Robot Vision for Machine Part Recognition." 
Proceedings of SPIE, 442, (1983), 2-14. 

[12] Gips, J. "A Syntax-Directed Program That Performs a 
Three-Dimensional Perceptual Task." Pattern Recogni
tion , Pergamon Press, 6 (1974), 189-199. 

[13] Jakubowski, R, A. Kasprzak. "A Syntactic Description 
and Recognition of Rotary Machine Elements." IEEE 

61 



62 

Trans. Comput. , C-26, 10 (1977), 1039-1043. 

[14] Jarvis, J. F. "Research Directions in Industrial 
Machine Vision: A Workshop Summary." Computer , 15, 12 
(1982), 55-61. 

[15] Johnson, S. C. "YACC : Yet Another Compiler-Compiler." 
CSTR 32, Bell Laboratories, Murray Hill, N. J., 1975. 

[16] Kernighan, B. w., D. M. Ritchie. The£ Programming 
Language , Englewood Cliffs, NJ : Prentice-Hall, 1978. 

[17] Lesk, M. E., E. Schmidt. "LEX- A Lexical Analyzer Gen
erator." CSTR 39, Bell Laboratories, Murray Hill, N. 
J., 1975. 

[18] Lin, w. c., K. S. Fu. "A Syntactic Approach to 3-D Ob
ject Representation." IEEE Trans. Pattern Anal. & 
Mach. Intell. , PAMI-'6,"3 (1984), 351-364-.-

[19] Lin, W. c., ~· S. Fu. ~Syntactic Approach to 3D Object 
Representat1on and Recognition , TR-EE 84-16, School 
of Electrical Engineering, Purdue University, 1984. 

[20] Mcfarland, w. D. "Three-Dimensional Images for Robot 
Vision." Proceedings of SPIE , 442, (1983), 108-116. 

[21] Myers w. "Industry Begins to Use Visual Pattern Recog
nition." Computer , 13, 5 (1980), 21-31. 

[22] Pavlidis, T., and F. Ali. "A Hierarchical Syntactic 
Shape Analyzer." IEEE Trans. Pattern Anal. & Mach. In
tell. , PAMI-1, r-\I979), 2-9. 

[23] Requicha, A. A. G. "Representations for Rigid Solids : 
Theory, Methods, and Systems." Computing Surveys , 12 
(1980), 437-464. 

[24] Requicha, A. A. G., and H. B. Voelcker. "Solid Modeling: 
A Historical Summary and Contemporary Assessment." 
IEEE Comput. Graphics Applications , May, (1982), 9-
24. 

[25] Rosenfeld, A. "Image Pattern Recognition." Proc. IEEE, 
69 (1981), 596-605. 

[26] Slavik P. "Syntactic Methods in Computer Graphics." Eu
rographics'83 (1983), 133-142. 

[27] Srihari, S. N. "Representation of Three-Dimensional Di
gital Images." Computing Surveys , 13 (1981), 399-424. 

[28] You, K. c., K. S. Fu. "A Syntactic Approach to shape 



63 

Recognition Using Attributed Grammars." IEEE Trans. 
SMC , SMC-9, {1979), 334-345. 



APPENDIX A 

MAKE SPECIFICATION 

64 



Below is the MAKE specification for Example 2. 

saml : dxenq4.o y.tab.o lex.yy.o tdraw.o main.o cdcntl.o 
cc dxenq4.o y.tab.o lex.yy.o tdraw.o main.o\ 

cdcntl.o -ly -11 -o saml 
dxenq4.o : dxenq4.c 

cc -c dxenq4.c 
lex.yy.c : exllex.l 

lex exllex.l 
lex.yy.o : lex.yy.c 

cc -c lex.yy.c 
y.tab.c : exlyacc.y 

yacc exlyacc.y 
y.tab.o : y.tab.c 

cc -c y. tab. c • 
tdraw.o : tdraw.c 

cc -c tdraw.c 
main.o : main.c extern.h 

cc -c main.c 
cdcntl.o : cdcntl.c 

cc -c cdcntl.c 

65 



APPENDIX B 

CODES OF FUNCTION "odenq4" 

66 



odenq4(dxl, dx2, dx3, dx4, n) 
int dxl, dx2, dx3, dx4, n: 
{ 

} 

extern int plotqq[], pridx[], ptx: 

plotq[ptx++] = pridx[n] + dxl: 
plotq[ptx++] = pridx[n] + dx2; 
plotq[ptx++] = pridx[n] + dx3; 
plotq[ptx++] = pridx[n] + dx4; 

67 



APPENDIX C 

CODES OF FUNCTION "cdcntl" 

68 



edentl(ex, ey) 
int ex, ey; 
{ 

} 

extern int eheo[], rveo[]; 
extern int exr, egr, ptx; 
eheo[exr++] = ptx-1; 
rveo[egr++] = ex; 
rveo[egr++] = ey; 

69 



APPENDIX D 

CODES OF FUNCTION "tdraw" 

70 



#include <stdio.h> 

tdraw () 
{ 

} 
} 

int ix=O, pl, xl, cr=O, cg=O, ctx, cty: 
extern int basex, basey, plotq[], rvco[], chco[]: 
extern struct prim { 

int prix: 
int priy: 

} pmtv[]: 

pl = chco[cr++]: 
ctx = rvco[cg++]: 
cty = rvco[cg++]: 
while(plotq[ix]!=-1) { 

xl = plotq[.ix]: 
basex = basex+pmtv[xl].prix: 
basey = basey+pmtv[xl].priy: 
if(pmtv[xl].prix >= 0) { 

} 

if(pmtv[xl].priy >= 0) 
printf("v[+%d,+%d]",pmtv[xl].prix,pmtv[xl].priy): 

else 
printf("v[+%d,%d]",pmtv[xl].prix,pmtv[xl].priy): 

else { 

} 

if(pmtv[xl].priy >= 0) 
printf("v[%d,+%d]",pmtv[xl].prix,pmtv[xl].priy): 

else 
printf("v[%d,%d]",pmtv[xl].prix,pmtv[xl].priy): 

while ( ix==pl) { 

} 

basex=basex+ctx: 
basey=basey+cty: 
printf("p[%d,%d]",basex,basey): 
pl = chco[cr++]: 
ctx = rvco[cg++]: 
cty = rvco[cg++]: 

ix++: 

71 



APPENDIX E 

CODES OF FUNCTION "main" 

72 



#include <stdio.h> 
#include "extern.h" 

main () 
{ 

} 

printf(" 33Pp"); 
printf("p[350, 10]"); 
printf("s(E)"); 
yyparse(); 
plotq[ptx] = -1; 
tdraw(); 
printf(" 33\"); 

73 



APPENDIX F 

LEX SOURCE FOR STATIC APPROACH 

74 



75 

%% 
a return(301); 
b return(302); 
c return(303); 
d return(304); 
e return(305); 
f return(306); 
g return(307); 
h return(308); 
i return(309); 
j return(310); 
k return(3ll); 
1 return(312); 



·1____..~ 

VITA 

Jia-Pyng Hwang 

Candidate for the Degree of 

Master of Science 

Thesis: USE OF THE COMPILER-WRITING TOOLS LEX AND YACC TO 
CONSTRUCT 3-D OBJECTS 

Major Field: Computing and Information Science 

Biographical: 

Personal Data: Born in Taiwan, R.O.C., November 10, 
1956, The son of Chung-Yen and Ying-Huei Hwang. 

Education: Graduated from Kaohsiung High School, 
Taiwan, R.O.C., in May, 1975; received Bachelor 
of Science degree in Mineral & Petroleum 
Engineering from National Cheng Kung University, 
Taiwan, R.O.C., in May, 1979; completed 
requirements for the Master of Science degree at 
Oklahoma State University in December, 1985. 

Professional Experience: Mechanical engineer, Taiwan 
Power Company, Taiwan, R.O.C., from September, 
1981 to July, 1983. 


