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PREFACE 

In 1935 Hopf first introduced the three nontrivial fiberings of 
. 3 2 1 7 4 3 15 8 7 spheres by spheres, {S ,p,S ,S }, {S ,p,S ,S }, and {S ,p,S ,S }. 

These fiberings provided useful relationships between some of the 

higher homotopy groups of these spheres. The existence of these fiber­

ings and the usefullness of these relationships immediately led to the 

question of the existence of other such fiberings of spheres by spheres. 

Some twenty seven years passed before the question was finally resolved 

when Adams showed that these were the only three fiberings. 

The purpose of this thesis is to trace the history of the solution 

to this classical problem. In Chapter I the concept of a fibre bundle 

is introduced along with some elementary results from the homotopy 

theory of fibre bundles. The three fiberings of spheres by spheres 

are then developed. By employing some elementary homotopy theory and 

the concept of the Hopf invariant the problem of the existence of 

fiberings of spheres by spheres is then reduced to the problem of find-
2n-l n ing maps f : S + S with Hopf invariant ±1. 

In Chapter II cup-i products are introduced and many of their 

properties are developed. Using the cup-i products we then define 

the Steenrod Squaring operations, and list many of the properties of 

these operations. 

In Chapter III we introduce the Eilenburg-Maclane spaces and 
n define the fundamental class of H (X;n). These are used extensively 
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in Chapter IV. 

In Chapter IV we prove an important family of relationships between 

the Steenrod Squaring operations, the Adem Relations. Using the Adem 

Relations we then prove a principle result of this thesis, if 

f : s2n-l + sn is a sphere fibering, then n = 2k. 

In Chapter V we investigate the Steenrod Algebra and its dual. 

Finally in Chapter VI we survey the methods used to finally 

resolve the question of existence of fiberings of spheres by spheres. 

The primary tool used - that of spectral sequences - are briefly intro­

duced. We then prove a theorem of Serre, describing the cohomology of 

K(Z2,n), which was used in a crucial way in Chapter IV. We finally 

indicate, briefly the method used by Adams to finally resolve the 

problem of fibering spheres by spheres. 

Chapters I-V are readily accessible to anyone having a standard 

graduate course in algebraic topology. Chapter VI, however, is some­

what accelerated and some basic knowledge of spectral sequences, fibre 

spaces, and some elementary homological algebra will probably be needed. 

The author wishes to express appreciation to his advisor, Professor 

Benny Evans~ for his guidance and assistance. Appreciation is also 

expressed to Professor Paul Duvall for his help and valuable suggestions. 

An expression of gratitude is also due to Professor Hirosh~ Uehara, 

whose help was invaluable during the course of this investigation. 

A note of thanks is also due to Mrs. Ann Henson, who typed this 

manuscript. 

A special note of thanks is extended to my parents, Allan Doyle 

and Haroldene Ward, for their support and patience. 
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CHAPTER I 

THE FIRERING OF SPHERES BY SPHERES 

Definition 1.1: A fibre bundle 8 = {E,p,B,F} cor~sists of 1) a 

space E called a bundle space, 2) a space B called a base space, 

3) a map p : E -+ B called a bundle map, and 4) a space F called the 

fibre such that the following condition is satisfied: 

¥x e: B 3 open neighborhood U of x and a homeomorphism <t> U x F- p -l ( U) 

making the following diagram commutative, 

cf> 

U X F------~ p-l{U} 

'1 1 
u 

where ~ 1 is projection on the first coordinate. E is sometimes called 

a F-bundle over B. 

A fibre bundle may be viewed as building up E by glueing together 

products of open neighborhoods of B and F along homeomorphisms of F. 

A bundle space then is locally products but may contain global "twists". 

The next three examples may serve to illuminate the fibre bundle con-

cept. 

Example 1.2 (Product Bundle): Let E = B x F and p : E-+ B be 

given by projection on the first coordinate. Yx E B let U = B and 

cf> : B x F-+ p-1(B) be identity map. The followin~ diagram is trivially 
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satisfied, thus {B X F' p' B, f} is fibre bundle. 

B X F 
tP 

1Tl 1 1Tl 
B 

Example 1.2 is a trivial example of a bundle. The next example 

is simple, however shows how a space may be locally a product while 

displaying a global structure much different from a product. 

Example 1.3 (Mobius Band): Let M be quotient space of I xI by 

identifying (O,y).v (1,-y). Let B = S' and p: M+ B be projection 

onto the first coordinate. 

p 

Figure 1. Mobius Band 

Considering F =I, 'V-x E: S' let U be any open interval (not S') con­

taining x. p- 1(U) is clearly homeomorphic to U x ]. Thus {M,p,S' ,I} 

is fibre bundle. 
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Example 1.4 (Double Covering of s•): Consider the double covering 
1 1 

of s· as illustrated in Figure Z. Given x e S choose an open inter-

val U (not s1) containing x. p-1(U) is simply two disjoint copies of 

U, ie, p-1(U) is homeomorphic to product of U and a discrete space con­

sisting of two points. Thus we have a bundle with discrete fibres. 

p 

Figure 2. Double Covering of s1 

Some Homotopy Results for Fibre Bundles 

We begin by recalling the definition of relative homotopy groups. 

Let X be a space and x sAc X. Let In denote then-cube, ie, 
0 

In= {(t1, ... , t) s Rn I 0 < t. < 1}. The initial (n-1)-face is n - 1 

defined by tn = 0 and the union of all remaining (n-1)-faces of In 

will be denoted by Jn-l. Considering maps f : (In,In-l,Jn-l) ~ 

(X.~ A, x0 ),it can easily be shown that the homotopy classes of such 

maps form a group with respect to the natural definition of addition. 

This group is called the n-th relative homotopy group of X modulo A at 
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x0 and is denoted ~n(X,A,x0 ). Clearly homotopy groups are special 

cases of relative homotopy groups with A = x0 . 

4 

We can define a boundary homomorphism a n (X,A,x ) ~ n 1(A,x ) n o n- o 
in the following manner: If [fJs nn(X,A,x0 ) then consider f I I~' . 

n-1 n-1 f\ n-1 n-1 1 Since I = I J and f maps J to x0 then f I"-• is a map of 

(In-1,ain-1) into (A,x0 ). Thus [f I I"_,J s nn_ 1(A,x0 ). Define aLfJ= 

[f I I n·• J 

I" 

Figure 3. Boundary Homomorphism 

We also recall that if h : (X,A,x0 ) ~ (Y,B,y0 ) then h induces a homo­

morphism h*: nn(X,A,x0 ) ~ nn(Y,B,y0 ) vvhere h*( rf1) = (hfJ. 

Now given the triple (X,A,x0 ) we consider the inclusion maps 

i (A,x0 ) ~ (X,x0 ) and j : (X,x0 ,x0 ) ~ (X,A,x0 ). These maps, along 

with a, induce the following long exact sequence called the homotopy 

sequence of (X,A,x0 ). 

j* 
nn(X,x0 ) ~ nn(X,A,x0 ) ~ ... ~ n0 (X,x0 ) 

( 1. 5) 

Theorem 1.6: The sequence 1.5 is exact. 



Proof: We will show exactness only at ~n(X,x0 ). The proof con­

sists of showing (i) j*i* = 0 and (ii) if [fJ E ~ (X,x ) and n o 

j*([fJ) = ,o then there exists tg] E ~n(A,x0 ) such that i*(r.gj) =(fJ. 

To show (i) consider j*i* ([fJ). This element is [jifj and is in 

~n(X,A,x0 ). Clearly jif(In) c A and thus CjifJ = 0. 

To show (ii) j*(CfJ) = 0 implies there is homotopy ft : In~ X 

o < t < 1 such that f 0 = f and f 1(In) = x0 and ft E ~n(X,A,x0 ) for 

a 11 0 < t < 1. Define a homotopy gt : In ~ X 0 < t 2_ 1 by , 

= { f2t (t1, ... ,tn_1,o) if 0 2. 2tn 2. t 

f t ( t 1, ... tn_ 1, 2tn -1 ) if t 2. 2tn 2. 2 
2-t 

then g0 = f,g 1(In) c A and gt(oin) = x0 for every t. It is easy to 

establish that i*cg~ = [fl and this completes the proof of the 

theorem. 

A triple (E,p,B) where p : E ~ B is a map is said to have the 

homotopy lifting property (HLP) for a class of spaces C if, for any 

X c C, any homotopy h : X xI~ Band h : X~ E such ph(x) = h(x,O), 
- -then there exists a homotopy h : X x I ~ E such that ph = h. The 

above is contained in the following commutative diagram. 

h 
X X {0} E 

1 
- / / / ~ 1 
h ..... p ..... .... ..... 

/ 

X X I B 
h 

-
h is called a lift of h. 
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Theorem 1.7 Fibre bundles have HLP for paracompact spaces. 

We will only indicate the proof of Theorem 1.7 for the special 

case of X a compact simplicial complex. We begin by considering the 

special case where the fibre space is a product. 

Lemma 1.7.1: Let p1 X x Y +X be projection on the first 

coordinate. Suppose f : a x I~x is map where a is a. simplex._S.uppose 

g: (ax {O}}U {aa xI)+ X x Y is liftoff on (ax {O})U (ao xI). 

Then there is extension G of g such that G is a liftoff on ax I. 

Proof: Considering a x I c Rn for suitable n we choose a point 

P 'above' a x {1}. 

I 
I 
I 

J 
z: 

Using radial projection and suitable parameterization we may consider 

any point in ax I uniquely as rz where z e (ax {0}) u {ao x I). 

Define G : ax I+ X x Y by G(rz) = (f(rz)~p2 g{z)}where p2 is 

projection on the second coordinate. It is easily checked that G is 

the desired liftoff on ax I. 

We may now proceed with the proof of Theorem 1.7. 

Proof of 1.7: Let X be a compact simplicial complex and 

h : X x I + B is a homotopy and ii : X + E is such that pii(x) = h(x,O). 

Choose an open covering {U } of B such that each P-I(u ) is a product. 
a a 

The collection h-1(u ) forms an open cover for X X I. Since X x I 
a 

is compact there is a refinement of the form {WA x I~} where {WA} is 
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finite open covering of X and {I } is finite open covering for I. 
ll 

We may assume Ill meets only Ill_1 and Ill+1 for each p,except the first 

and last Ill. Choose numbers 0 = t 0 < t 1 < ••• < tr = 1 such that 

t e I n I +1. We shall assume inductively that h has been lifted 
Jl ll ].l 

for all t ~ tJ.l. We 0ill lift h over [tJ.l, tJ.l+1J of I. 

We may triangulate X sufficiently fine so that every simplex of 

X is contained in some WA of the cover constructed above. Hence, for 

each simplex a we may choose some U e {U } such that h(x,t) e U for 
a. 

X E a, t < t < t +1. 
].l- - ].l 

-1-
If Tis a vertex of X we define h(T,t) = ~(h(T,t),p2 ~ h(T,t!l)) 

for t < t < t +1. Here ~ is the homeomorphism ~ : U x F 7 p- 1(U) and 
].l- - ].l -p2 is natural projection p2 : U x F 7 F. We have thus defined h on 

-the 0-skeleton of X. Assume h has been defined on the (n-1)-skeleton 

for each t e [t , t +1) . 
Jl Jl -

If a is simplex then h has been defined on (ax {0}) u (ax 
-

ltJ.l,tll+1]. By applying Lemma l .7.1 we get lift h of h on 

ox Ct!l,tJ.l+1]. This completes the construction. 

The next theorem establishes a relationship between the homotopy 

groups of E and B. It is often referred to as the Fundamental Homo­

topy Theorem for Fibre Bundles. 

Theorem 1.8: Let {E,p,B,F} be a fibre bundle, 80 c B, 

E0 = p-1(80 ), p(e0 ) = b0 e 80 . Then p* : nn(E,E0 ,e0 ) 7 nn(B,B0 ,b0 ) is 

isomorphism for n > 2. 

Proof: (i) p* is onto: Let CfJ e nn(B,B0 ,b0 } then 
n n-1 n-1 ) n-1 f : (I ,I ,J ) 7 (B,B0 ,b0 . Since J is strong deformation 

retract of In, using the HLP it can easily be shown that there exists 
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n n-1 -1 map g : I 7 E such that pg = f and g(J ) = e0 . Since E0 = p (B0), 
then pg = f implies that g(In-l) c E and therefore g : (In,In-1,Jn-1) 7 

(E,E0 ,e0 ). Since pg = f we have p*lgl = [fJ thus p* is onto. 

(ii) p* is one-to-one: Let (fl, [gJs nn(E,E0 ,e0 ) such that p*[fJ = 
n n-1 n-1 p*fgJ. Since (pfJ = [pgJthere exists map F : (I x I, I x I,J x 

I)~(B,B0y0 ) such that F(z,O) = pf(z) and F(z,l) = pg(z) for all 

z s In. Consider the closed subspace T = (In x 0) U (Jn-1 x I) u 

(In x 1) of In x I. Define a map G : T 7 E by 

f(z) for Z s In, t = 0 

G{z,t) = eo for Z sJn-l,t, I 

g(z) for Z n si,t=1 

Clearly pG = F I r· Since T is strong deformation retract of In then, 
~ n -

as mentioned above, G has extension G : I x I--E such that pG = F. 

Also G(In-1 xI) c E0 thus G : (In x I,In-1 x I,Jn-1 x I) 7 (E,E0 ,e0 ). 

Clearly G(z,O) = f(z) and G(z,l) = g(z) for all z sIn thus G is homo­

topy of f to g and t f l = r g J . 

Corollary 1.8.1: p* : n (E,F ,y ) + n (B,b ) is isomorphism for 
n o o n o 

n > 2 where F0 is fiber of b0 . 

Proof: This follows directly from the results of Theorem 1.8 by 

considering E = F = p- 1(b ) 0 0 0 . 

Now consider the triple (E,F0 ,e0 ) where F0 is a fiber. From 1.5 

we have the exact sequence 

+ n +.1(E,F ,e ) + n (F)+ n (E)+ nn(E,F0 ,x0 ) + ... + n0 (X) (1.9) n o o · n o n 

Let q denote p regarded as map (E,F0 ,e0 ) + (B,b0 b0 ), then gj = p 

where j is inclusion map E + (E,F0 ). By Corollary 1.8.1 we can define 
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Since p* = q*j* we may construct 

from 1.9 the following exact sequence called the homotopy sequen~e 

of the bundle {E!p,B,F} 

(1.10) 

The Hopf Maps 

In 1935 Hopf [2J found three fiberings of spheres by spheres, ie, 

bundles with E,B,F all spheres. In this section we will describe, 

in detail, these three fiberings. We will also briefly describe two 

alternate methods for defining these fiberings. The rest of the paper 

will address the question of whether other such fiberings of spheres 

by spheres exist. 

For the following discussion let C represent either the complex, 

quaternion, or Cayley numbers. Let E' = C x C - {(0,0)}, C* be the 

one point compactification of C (oo will denote the point at infinity), 

and Q = { q E C I 11 q II = 1}. 

In E' define an equivalence relation~ as follows: (x,y) ~ a(x,y) 

for a strictly positive real number. Let E = E'/-. Denote rx,y] as 

equivalence class in E. 

Define p : E + C* by 

p(cx,yJ) = if y 'I 0 

if y = 0 

It is clear that p is well defined, continuous and onto. We will 

now show that {E,p,C*,Q} is a fibre bundle. 
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Let v1 = {x E C* I M XII < 2} and v2 = {X E C* I" XII> 1 then {V1,V1} 

. -1 is open cover for C*. Def1ne ~ 1 : v1 x Q + p (V1) and ¢.2 : v2 x Q + 

p -1 (V2) by 

~ 1 (x,q) = [Xq,q] 
-1 

~·2 (x,q) ={ (q,x ql 

l [q ,0] 

ifx::foo 

if X = oo 

First, we must verify that ~l and ~ 2 take the two sections v1 x Q and 

v2 X Q onto E. Choose [X,YJ E E. 

Case 1: Suppose uxy- 111 < 2. Then (xy- 1 ,YIIIYU) E V, x Q and 

~. 1 (xy-1 ,x/uyn) =[-L'L)= (x,yJ 
UYII IIYII 

Case 2: Suppose y ::f 0 uxy-1" > 1. -1 Then(xy ,X/II XII) E v2 X Q and 
-1 

~ 2 (xy ,x/uxn) = [-L,_L1= (x,yJ 
uxn uxn·J 

Case 3: Suppose y = 0 Then ( ro' x/ II XII) E v 2 X Q and 

~ 2 (oo,x/uxn) = [x/nxu,OJ = [x,OJ 

To complete our argument it remains only to show that ~ 1 and ~ 2 are 

homeomorphism. Since E may be identified with a sphere of proper 

dimension, E is compact and Hausdorf thus it is enough to establish 

that ¢1 and ¢2 are one-to-one. 

~lis one-to-one: Suppose ¢. 1(x,q) = ~ 1 (x• ,q•). By definition 

[xq,q] = rx•q• ,q•] thus (xq,q) = a(x•q• ,q•) for some strictly positive 

(real) a. This implies q = aq• and nqn = lalltq•n = 1. Thus tal= 1 

implying a = 1. Thus q = q• and x = x•. 

~ 2 is one-to-one: Suppose i 2(x,q) = ~2 (x•,q•). We must consider 

three cases: 
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~i) Suppose x ~ x' = oo then result is obvious. 

(ii) Suppose x = oo x' 1 oo. This situation is immediately excluded 

since x-1q 1 0. 

(iii) Suppose x 1 x' 1 oo 

= (q',x-lq') 

Now the same argument used for ¢1,yields q = q' and x = x'~ thus 

~ 1 and ¢2 are homeomorphisms. 

We have just shown that {E,p,C*,Q} is a fibre bundle. Consider­

ing C separately as the complex, quaternions and Cayley numbers we 

get the following identifications: 

We have thus derived the three Hopf maps s3 . ~. s2, s7 + s4, 
S15 + SB. 

The method we have used to construct the Hopf maps has the 

advantage that a si~gle construction yields all three maps. The 

following construction is more common in the literature and has the 

advantage of yielding a large class of fibre bundles of ~hi~h s3 + s2 

and s7 + s4 are special cases. Its disadvantage is that s15 + s8 can-

not be deduced from its construction and must be considered separately. 

Let Cn ben copies of C (reals, quaternions, complexes) considered 

as right vector space over C. Let S = {x E Cn I uxn = 1}. Define 

x - y (in S) if q E C such that x = yq with "q» = 1. Let p : S + 

s;- (=Mn) be natural projection. It can be shown that {S,p,Mn,Q} is 

bundle where Q = {q E C I 11 qu = 1}. S is unit sphere in Cn and Mn is 

identified with n dimensional projective space (over reals, complexes, 

or quaternions). For the special case n = 2,Mn may be identified with 
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s1,s2,54 yielding the double covering of s1 and the first two Hopf maps. 

The above construction does not yield s15 + 58 for if we let C be 

Cayley numbers ~ is not an equivalence relation due to the non associ­

ativity of the Cayley numbers. 515 + s8 therefore requires a separate 

construction. An example of an alternate approach is given in Steenrod 

[fi.J and requires the construction of coordinate bundles (a coordinate 

bundle is a bundle where the open neighborhoods and homeomorphisms are 

prespeci.fi.ed and carrying an addition a 1 group structure that tells what 

glueings of the products are allowed). Although additional structure 

is incorporated into the construction, it has the disadvantage of 

requiring considerable development in the theory of coordinate bundles. 

thus we will not describe its construction. 

We give one more construction of f : 53 + 52 This construction 

is, by far, the mast geometric construct of the three methods we wi 11 

discuss. Consider s3 = aB4 = a(B2 x B2) = (B2 x aB2) u (aB2 x B2). 

Thus the 3 sphere may be viewed as the union of two solid tori glued 

together a 1 ong their boundary, i e, 53 = T 1 U T 2" On T 1 consider the 

standard diagonal. On T1 decompose the boundary into curves parallel 

to the di agona 1. (We note that the above description may be made pre­

cise by considering points of the boundary of T1 as pairs of complex 

numbers. We avoid this because the construction is intuitive and the 

equations necessary to describe this construction do not make it easier 

to visualize.) Now map the diagonal to any point on the boundary of a 

2-cell, oi. By suitably parametering the curves parallel to the diago­

nal we may naturally map each curve continuously to points on the bound-
2 ary of o1. 
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This process may be repeated at each level of T1 mapping curves 

to points on s1 at corresponding levels of o12(see Rigure 4.) 

This process defines map (T1, aT 1 )~(o1 2 ,ao 1 2 ). Repeat this process 

getting similar map (T2,aT2)--.(o/,ao/) for second torus. Glueing 

T1 and T2 along their boundaries by matching diagonal curves we induce 

glueing of o1 and o2 along their boundaries. Thus we get map 

14 

f : s3 = T1 V T2 + 01 v 02 = s2 It is clear that each point inverse 

of f ii an s1 Inverses of small ball neighborhoods are s1 x o2 ~s thus 

we arrive at the desired fibre bundle. 

We may easily generalize this process to obtain the remaining two 

fiberings. Notice that the construction relies on the existence of 

multiplication of points on a sphere, emphasizing the interplay between 

the algebraic and geometric descriptions of the sphere fiberings. 

. 2n-1 2n ( n n) From po1nt set topology we have S = aB = a B x B ; 

(Bn X as") u (aBn X Bn) = (Bn X s"-1) u (s"-1 X Bn). For the cases 

. n-1 n = 2, 4, 8 po1nts on S may be represented a complex, quaternion or 

Caley number respectively. Any point in Bn may uniquely be represented 

b ( 1 0) h . . t sn -1 y rx 2 r 2 w ere x 1s a po1n on . Consider the following 

diagram: 

The map p1 

The map p2 

T 

Bn x s"-1--.s" is given by p1(rx,y) = rxy- 1 and 

Bn sn-1 B . . b ( ) -1 d . x ~ 1 s g1 ven y p2 rx ,y = ryx an 1 s 

is onto. 

onto. 



15 

The map id : asn + aBn is the identity map. 

n n-1 n n-1 The map T : aB x S + aB x S is given by T(x,y) = (y,x). 

It is easily checked that this diagram is commutative for points in 

aBn x Sn-1, and p1- 1(x) and p2- 1(x) are (n-1)-spheres for all x e Bn. 

It can be shown Bn x Sn-1 U Bn x Sn-1 is S2n-1 and Bn U,4 Bn is Sn. 

Thus the diagram induces the desired fiberings SZn-1___.sn for n = 2,4,8. 

A Result on the Non-Existence of Fiberings of 

Spheres by Spheres 

In the previous section we described three non-trivial fiberings 

of spheres by spheres. vie will now address the question of whether 

other such fiberings exist. Our construction of these fiberings sug-

gests that the existence of other real division algebras or the 

existence of multiplication on spheres in other dimensions would pro-

vide use with tools to construct other fiberings. In fact the 

existence of sphere fiberings and the existence of real division 

algebras and multiplication on spheres are intimately related. This 

fact, in part, was responsible for much of the interest in the question 

of the existence of sphere fiberings. Later we will discuss this 

relationship in more detail. We now will derive a1 necessary condition 

for the existence of sphere fiberings. We will then give a few exam-

ples to illustrate the usefullness of such fiberings. 

Theorem l . 11 : n+k n k Let f : S + S be a bundle map and S be the 

( n ( k n+k fiber. Then n. S ) ~ n. 1 S ) 00 n.{S ) 
J J- J 

Proof: L t . sk sn+k d . sn+k (Sn+k sk) b . 1 . e 1 : + an J : + , e 1 nc us 1 on 

maps. Consider the homotopy sequence for the pair (Sn+k,Sk). 



k ;* n+k j* n+k k 3 k i* n+k 
•·· + 11j(S) + rrj(S ) + rrj(S ,S) + rrj_ 1(s) + •. rrj_ 1(s ) + 

Since Sk contracts in Sn+k, i : Sk. + Sn+k is null homotopic and i* 

is the zero homomorphism. By exactness im a = ker i* thus a is a~ 

epimorphism. Also im i* = ker j*,thus j* is monomorphism. The homo­

topy sequence for (Sn+k,Sk) therefore yields the following short exact 

sequence 
n+k j* n+k k a k 

0 + rr.(S ) + rr.(S ,S ) + rr. 1(s ) + 0 
J J J- (l.ll.l) 

We claim that 1.11.1 is split exact. To show exactness we need to 

display a homomorphism h : n. 1(sk) + ·rr.(Sn+k,Sk) such that ah is the 
J- J 

identity map. Let Cfl Err. 1(sk) 
J-

G 

f 
n-1 n Considering I as front face of I we define map g (In- 1 x {0} U 

(3ln X I) l) (In- 1 X {l }) + Sn+k by: 

X E (In-1 x {0}) 
g(x) = { 

f(x) 

xo X E (aln X I) U (In X {1}) 

We may now extend g to a map G : (In,In-1,Jn-1) + (Sn+k,Sk,x0 ) 

We define h(tfJ) = tGJ. By construction a(rGJ) = (fJ, thus ah is the 

identity and 1.11.1 is split exact as claimed. 

He now have 'ITJ·(Sn+k,Sk) ~'IT. 1(sk)( ffi 1f.(Sn+k). By Corollary 1.8.1 
J- J 

( n+k k ( n) rrj S ,S ) ~ rrj S for j ~ 2. The theorem now follows. 
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Theorem 1.12 Iff Sm + Sn is fibering of sphere by sphere 

then m = 2n -1. 

Proof: 

However, this implies that nn_ 1 is the first non-zero homotopy 

group of sk, thus n-1 = k. Therefore n-1 = m-n or m = 2n-1. This 

completes the proof. 

The results of this section indicate the importance of bundle 

theory in the computation of some higher homotopy groups of spheres. 

By 1heorem 1 .11 and the fi beri ngs of spheres by spheres we have :::. 

established, we have the following results. 

~;(S2 ) ~ n;_1(s•) ~ n;(S3) i > 2 
4 3 7 n;(S ) ~ n;_1(S ) ~ n;(S ) i > 2 
8 7 15 ni(S ) ~ ni_ 1(S ) ~ n;(S ) i > 2 

Using the known results that 

1 f 0 n.(S)= . 
1 z 

i ~ 1 

i = 1 

we get the following relations 
2 3 

n.(S)~n.(S) i>3 
1 1 

n3(s2) ~ Z 

4 3 n;(S) ~ ni_1(s) 2 < i < 6 
8 7 n;(S ) ~ n;_1(s ) 2 < i < 14 
4 3 

n 7(S ) ~ n6(S ) ~ Z 

8 7 
TI15(S ) ~ TI14(S ) ~ z 

i < n 

i = n 

(1.13.1) 

{1.13.2) 

(1.13.3) 

{1.13.~) 

(1.13.5) 

(1.13.6) 

{1.13.7) 

(1.13.8) 

(1.13.9) 

Although, except for 1.13.5 they do not give complete answers, they 

do provide important relationships between various homotopy groups. 

17 
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The Hopf Invariant 

In the previous section we have shown that any fibering of sphere> 

by sphere must have the form s2n-l ~ Sn. This suggests the study of 

maps f : s2n-l ~ Sn. We will show that to any such map we may assign 

to it an integer H(f), called the Hopf invariant. We will give two 

definitions of the Hopf invariant and show that these two definitions 

are equivalent (up to sign). 

The first definition, due·to Hopf, is in terms of linking numbers, 

thus , 1 t is of a geometric nature. The second defi ni ti on is in terms of 

cohomology and is more suitable for the more algebraic discussions to 

follow. It will follow trivially from the second definition that the 

Hopf invariant H(f) depends only on the homotopy type of f. 

We will finally show that if f : s2n-l ~ Sn is a fibering of a 

sphere by sphere, then H(f) = ~1. By considering orientations the sign 

may be determined, but we will not have need to do so. 

Definition 1.14: Suppose f : s2n-l ~ Sn is a simplicial map 

1 · · 1 t · f s2n-l ·d· sn L t d b re at1ve to some tr1angu a 1ons o an . e x1 an x2 e 

n -1 ( ) interior points of some n-simplexes of S , th~n y1 = f x1 and 

y2 = f- 1(x2) are (n-1)-manifolds in s2n-l. There is a natural orienta-

. h . 2n-1 n h tion assigned to r1 and y2 1n er1ted from S and S , t erefore r1 

and r2 have a linking number. We define the Hopf invariant, H(f), 

to be this number. 

We will now give an equivalent definition of H(f). 

Definition 1 . 15: Suppose f : s2n-l ~ Sn is a map. Let Sf denote 

the mapping cylinder off, ie, Sf= S2n-l X I/- where x1 X {l} 



x2 x fl} iff f(x 1) = f(x2). The cohomology sequence for the pair 

(Sf,s2n-1) is 

(1.15.1) 

Sf and Sn have the same homotopy type thus from l .15.1 we get the 

following exact sequence 

( 2n-1 We then get that the cohomology of the pair Sf,S ) is given by 

. 2 1· f Z i = 0 , n , 2n 
H,(sf,s n- ) = . o 

otherwise 

n 2n-1 2n 2n-1 · Let ~and T generate H (Sf,S ) and H (Sf,S ). The self 

cup product of sis an integral multiple of T, ie, s2 = H'(f) . T 

for some integer H'(f). We define the Hopf invariant off to be 

the integer H' (f). 

A couple of observations should be made at this point. First, 

Definition 1.15 makes it clear that H' (f) depends only on the homotopy 

type of f. Second, until we establish the equivalence of efinition 

1.14 and l?efinition 1.15 it will not be clear that Definition 1.14 

makes sense, for it is not at all obvious that H(f) is independent of 

our choices of x1 and x2. 

In most of the literature H'(f) is defined using the complex 

Sn (where B2n is a 2n-cell) in place of (Sf,s2n-l). Since 

Sn and sf;s2n- 1 have the same homotopy type, the definitions 

are essentially the same. The reason for our approach is that it is 
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2n 2n-l 2n-1 2n-l) easy to establish a relationship between H (Sf,S ) and H (S 



that will be needed in th2 proof of Theorem 1.17. 

We now will translatL · efinition 1.18 into the language of coho­

mology. Referring to the notation of Definition 1.18, x1 and x2 are 

0-cycles in Sn. Let u1 and u2 be their dual cocycles. The f*(u 1) 

d f*( ) 1 · s2n-l d d 1 t d L t an u2 are cocyc es 1n an are ua o r 1 an r 2. e r 

be ann-chain bounding y, and let a be the dual (n-1)-cochain of r 

(Clearly oa = f*(u 1) s~nce or= r 1). Consider r A r 2. Its dual 

cochain is a~ f*(u 2). 

Figuri 5. Linking Number of y1 and r 2 

Figure 6 summarizes the above statements with the first column 
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being the chains (cycles) and the second column their respective cochains 

(cocycles). 



xl ul 

x2 u2 

yl f*{u 1) 

y2 f*{u 2) 

r a 

r n r2 • ,. a v f*{ u2) 

Figure 6. List of Duals 

( 2n-1 r 1\ r 2 is a 0-cycle. If a is generator of H0 S ) then 

r ~ r 2 is an integral multiple of a and this integral multiple is 

the intersection number of r and r 2, (up to sign), thus the link­

ing number of r 1 and r 2. It now follows that if n generates 

H2n-l(s2n-l) then a~ f*(u 2) is an integral multiple of n and that 

this integral multiple is the linking number of r 1 and r 2 (up to 

sign). We have thus shown the following: 
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h 1 16 2n -1 n . d d f. d T eo rem . : If f : S + S 1 s a map an a, u2, n are e 1 ne 

as above, then a~ f*(u 2) = H(f) • n (up to sign). 

Theorem 1.17: Definitions 1.14 and 1.15 are equivalent up to 

sign, ie, H(f) = ±H'(f). 

Proof: The first step is to choose an appropriate generator for 

H2n(Sf,s2n-l). Let u2 from 1.14 generate Hn(Sn). If p : Sf+ Sn is 

natural projection through the product structure, then p* : Hn(Sn) + 

Hn(Sf) is an isomorphism. Let n1 = p*(u2). Now from 1.15.1 we get 



i* : Hn(Sf,s2n-l) + Hn(Sf) is also an isomorphism. Let n = i*-1(n1), 

then n generates Hn(s2n-l). This is summarized by: 

Notice if u is any other generator of Hn(Sn) then i*-lp*(u) = ±n. 
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The next step is to establish a relationship between H2n(Sfss2n-l) 

and H2n-l(s2n-1). . s d sn h h h S1nce f an ave t e same omotopy type, 

1 . 15. 1 gives 

0 + H2n-1( 52n-1) ~* H2n(Sf,52n-1) + 0 (1.17.1) 

thus a* : H2n-l(s2n-l) + H2n(Sf,s2n-l) is isomorphism 

The map a* provides us with the desired relationship between 
2n-1 2n-1) 2n 2n-1 H (S and H (Sf,S ). To complete the theorem we need to 

show that if a~ f*{u 2) is from Definition 1.14 then a*(a ~ f*(u 2)) = 

±n ~ n. Recall that a* is defined from the following system: 

0 + 

0 + 

c2n(sf,s2n-1) i* 

c2n-l(s:.s2n-1) i* 
0 

0 

To compute a*(a ~ f*(u 2))we refer to the following commutative diagram. 

Cn-1( 52n-1) ___ 8 __ ~ Cn{ 52n-1) f* Cn{Sn) 

i* / "z / p*(") 

cn-l(Sf) --------------~ Cn(Sf) 

~* 
Cn(Sf,s2n-1) 
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The first step in computing a*(a ~ f*(u 2)) is to display an 

2n-1 ) element of C (Sf which gets mapped to a '..J f*(u 2) under·i*. Define 

v £ Cn-l(Sf) by extending a by assigning zero to all (n-1) simplexes 

not in s2n-l. Since n1 £ Cn(Sf)' then v ~ n1 £ c2n-l(Sf). Now 

i * ( v ......, n 1 ) = a '-"" f* ( u 2 ) . 

The next step is the computation of o(v '-' n1). Since n1 is a 

cocycle o(v '-' n1) = ov '..J n1. Now ov= i*-1oi*v = i*-1oa = i*-lf*(u1) 

= ± n1. Thus o(v '-' n1) = ±n1 '-' n1. 

Finally we compute i*(n1 "--' n1). i*(n1 '-'n1) = i*n 1 '-"' i*n1 = n'-'rh 

thus i*(±n1- n1) = ±n .._, n. These computations show a*(a _.. f*{u 2)) = 

±n - n and the theorem is shown. 

Theorem 1.18: Iff : s2n-l ~ Sn is a fibering of sphere by 

sphere then H(f) = ±1. 

Proof: We will use Definition 1.14. To show that the linking 

number of y1 and y2 is ±1 we need to show i* : Hn_ 1(y2) ~ 

Hn_ 1(s2n-l- y 1) is an isomorphism. Consider Sn- x1 and f : s2n-l­

y 1 ~ Sn - x1 ._ Si nee Sn - x1 deformation retracts to x2, by the HLP 
2n-1 for bundles there exist retract of S - y1 to y2. The results 

now follow. 

Using the geometric construction of the fibering s3 ~ s2 one can 

"see" that the Hopf invariant of this map is ±1. Using the core of 

the torus as y2 and uny diagonal on surface as Yl it is easy to see 

that the linking number is ±1. 
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Figure 7 H(f) = ±1 for s3 + s2 

The problem of fiberings spheres by spheres is closely related to 

the existence of real division algebras and the existence of multi­

plications on spheres. Below is a diagram indicating the various 

implications. 

Rn is real division algebra 
~-

sn-1 - H S 1s an - pace 

n 
There is fibering f : s2n-l + sn 

It is clear then that the non-existence of fiberings of spheres 

by spheres implies the non-existence of real division algebras. We 

will eventually show that if f : s2n-l + Sn is a fibering of a sphere 

by sphere then n = 2,4,8. This results thus answers negatively 

whether any other division algebra exist, other than R, C, the 

Quaternions and the Cayley numbers. 

Theorem 1.18 reduces our problem of finding necessary conditions 

for fiberings of sphere by sphere to finding necessary conditions for 

a map f: s2n-1 + Sn to have H(f) = ±1. The development of this problem 

has thus far been as geometric as possible. Further investigation 
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however will requir~a far more algebraic approach than has been thus 

far used and, in our case, at the sacrifice of much geometric 11 feeling 11 • 

Many of the definitions and concepts that will be introduced in 

succeeding chapters may be give totally algebraically and usually com­

pletely obscurring the geometry. We will however, when a reasonable 

choice exists, try to develop the material from the most geometric 

approach as possible. 



CHAPTER II 

THE STEENROD SQUARES 

Roughly speaking, algebraic topology is a process of associating 

algebraic objects with topological spaces in such a way that continuous 

functions are naturally incorporated into the algebraic structure. It 

is, in this way, sometimes possible to investigate certain properties 

of continuous functions by examining an algebraic system. This approach 

is first encountered in the development of homotopy groups and, in par­

ticular, the fundamental group. To any space we may associate with it 

a fundamental group such that if we have a continuous function between 

two spaces, this functions induces a morphism between their associated 

fundamental groups. 

Many questions concerning the nature of functions between two 

spaces may be answered by examining their associated morphisms. For 

example, suppose we wish to know whether there exists a homeomorphism 

between two spaces. It is easily established that a homeomorphism 

induces an isomorphism between fundamental groups. If no isomorphism 

exist between the two fundamental groups then the two spaces in ques­

tion cannot be homeomorphic (eg rr 1(S') = Z and rr 1(B2) = 0 thus s• ¢ B2). 

One may also answer questions of whether maps of certain types 

exist. Using higher homotopy groups one can establish, by similal~ 

methods, that there does not exist a retract of Bn onto Sn. 
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Now suppose we may associate spaces with algebraic objects having 

more structure, thus making it 'harder' for a map to be a morphism. 

This should allow us to answer more questions concerning the topolo-

gical system. The following is an example of this idea. 

Cohomology theory attaches to each space a graded abelian group 

{Hn}. Homeomorphisms between spaces induce isomorphisms between 

their associated cohomology groups. It is quite possible though that 

non-homeomorphic spaces have isomorphic cohomology groups (eg. R' and 

R2). Cohomology groups, however, naturally admit an additional struc­

ture. It is possible to define a multiplication on these groups 

making them into a ring. A homeomorphism must then not only induce 

a group isomorphism, but also ring isomorphism. There exists examples 
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of spaces whose cohomology groups are isomorphic but have non-isomorphic 
. m n m n m+n cohomology r1ngs (eg, S x S and S v S v S ). 

Another approach is possible. Within an algebraic system we may 

introduce algebraic constructions, such as exact sequences, morphisms, 

etc. Continuous function must be compatible with many of these con-

structs. Theorem 1.11 took advantage of this required compatibility. 

The existence of a sphere fibering had two implications which was 

incorporated into the homotopy sequence. One implication was that a 

particular inclusion map was null homotopic. The other implication was 

that the map induced isomorphism between certain homotopy groups. 

Using this information we were able to conclude that only fiberings of 

a specific form were compatible with the homotopy exact sequence. The 

homotopy exact sequence was a relatively simple algebraic construction 

within a relatively simple algebraic system. It seems reasonable that 



the necessity of compatability with algebraic constructions within 

systems with more structure could lead to further results. 

This discussion is simplified, but it does convey the general 

motivation for this type of approach. In this chapter we will intra-

duce certain operations on the cohomology ring of a space. The 

properties of these operations will allow us to draw some conclusions 

concerning the existence of certain types of maps f : s2n-l + Sn. 

More specifically we will introduce the Steenrod squaring opera­

tions Sq i : Hp + Hp+i. ~Je will define these operations using a 

generalization of cup products. These new products, called cup-i 
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products, will be morphisms ~i cP ® Cq + Cp+q-i. In general, cup-i 

products of cocycles do not yield cocycles. This difficulty does not 

arise if we use z2 as our coefficient module. Since we will not have 

use for the more general case, in the following development we will 

assume all coefficients are z2. This development, although essentially 

the same as for general coefficients, allows for some simplification. 

The reader may refer to Steenrod C7J for development of the more 

general case. 

Cup-i Products 

Suppose we have a simplicial complex X with a fixed ordering A on 

the vertices. One can define a natural product ~ : HP ® Hq + Hp+q as 

follows: Let u E cP, v E cq and l; be a (p + q)-simplex in X. Let 

(u""" v)t; = u(front p face of t;) • v{back q face of t;). This defines 

~ : cP ® Cq + cp+q. It is well known that if u and v are cocycles 

then u~ vis cocycle in Cp+q, thus we may pass to cohomology. This 
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product, called cup product,. has many well known properties. These 

properties allow us to give Hn a ring structure (a richer algebraic 

system!) as follows: Let H* =I Hn. Addition in H* is coordinatewise. 

For homogeneous elements u, v of H* define a product by u • v = uv v 

and extend linearly. H* is called the cohomology ring of X. 

Let us view the definition of cup product in the following manner. 

Given u £ cP and v £ Cq, to define an element in Cp+q we must describe 

its action on a (p + q)-simplex ~ in X. To use u and v we must split 

~ into a p simplex and q simplex (we also would want these simplices to 

span ~). Using the ordering ~ inherits from A there is a most natural 

way to do this; the front p-face and back q-face. Viewed in this way 

the definition of the cup product is very natural. 

Now suppose we wish to generalize the cup product to a product 

cP ® Cq + Cp+q-i. A natural approach is to seek a splitting of a 

(p + q - i)-simplex into a p-simplex and q-simplex and mimic the defi­

nition of cup product. The definition of cup product suggests using 

the front p-face and back q-face of ~. However, if one pursues this 

approach, then even under very restrictive conditions the product of 

cocycles does not yield a cocycle, making passage to cohomology impos­

sible. We must, therefore, allow for more general splittings of~. 

i-regular splittings turn out to be the appropriate splittings to use. 

Definition 2.1: Let i be non-negative integer, K be complex with 

fixed ordering A. Let cr, T, ~ be p, q, p + q - i simplexes respectively 

with ordering agreeing with A. The ordered pair (cr, T) is said to be 

i-regular if the following conditions are satisfied: (-1) cr, T span ~. 

This implies cr and T have (i + 1) vertices in common, say V0 , v1, ... vi 



with orderinq aqreeing with A. 

(0) v0 is first vertex of T 

(1) v0v1 are adjacent in (J 

(2) v1v2 are adjacent in T 

(j+1) vjvj+1 are adjacent in a (T) if j is even (odd) 

(i+1) vi is last vertex of a (T) if i is even (odd) 

If the above definition is satisfied we sometimes say (cr, T) is 

i-regular splitting of~. The following are examples of i-regular 

splittings under various circumstances. 

1. 1-regular splittings of (0,1 ,2,3) for p = q = 2 

1" = (0,1,2) (J = (0,2,3); T = (1,2,3) (J = (0,1,3) 

2. a) 1-regular splittings of (0,1,2,3,4,5) for p = 1 = 3 

1" = (0,1,2,3) CJ = (0.3,4,5); T = (1 ,2,3,4) CJ = (0,1,4,5); 

T = (2,3,4,5) (J = (0,1,2,5) 

b) 2-regular splittings of (0,1,2,3,4) for p = q = 3 

1" = (0,1,2,3) CJ = {0,2,3,4); T = {0,1,2,4) CJ = (0,2,3,4); 

1" = (1,2,3~4) (J = {0,1,3,4) 

c) 1-regular splittings of (0,1,2,3,4) for p = 2 q = 3 

1" = {0,1,2,3) CJ = {0,3,4); T = (1,2,3,4) CJ = {0,1,4) 

3. a-splitting for any (A0 ,A1, ... Ap+q) 

( 0 1 p p p+q cr = A ,A , ... A ) cr = (A , ... A ) 

Notice that 0-regular splitting of p + q simplex is just the front 

p-face and back q-face. 
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We first will define the cup-i product on elementary cochains. We use 

the following notation: If a, T, ~ are simplexes in K then a, T, ~ 

will denote elementary cochains that attach 1 to these simplexes and 

0 to all other simplexes. 

Definition 2.2: Let a E cP(K) T E Cq(K) then a '-'j T E cp+q-i(K) 

is defined by 

- -cr'-".T = 
1 f 0 if (a, T) not i-regular 

€ if (a, T) i regular,where ~ is span of a and T. 

Si nee no ambiguity can occur we wi 11 denote a '"'i T by a -i T. 

(Remark: If general coefficients are used, then an algorithm is needed 

to decide whether to attach a + 1 or -1 to ~-) 

Let u E cP(K) and v E Cq(K). Then u and v may be uniquely represented 

by u = L ajaj and v = L bkTk where aj(Tk) are the distinct p(q) sim~ 

plexes of K with order A and aj E z2 bk E z2. 

on arbitrary cochains. 

We may now define ........ . 
1 

Definition 2.3: If u E cP(K) and v E Cq(K) are given by their 
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unique representation as described above, then U'-"i v = L (ajbk)aj'iT k 

The following examples help illustrate Definition 2.3. 

Example 2.4: Let K be the 3-simplex (0,1,2,3) 

3 

0 z 

The distinct 2-simplexes in this order are (0,1,2), (1,2,3), (0,1,3) 

(0,2,3). Let u, v E c2 ( K) be given by 

u = 1 • (0,1,2) + 1 • (1,2,3) + 1 • (0,1,3) + 1 • (0,2,3) 

v = 1 • (0,1,2) + 0 • (1,2,3) + 1 • (0,1,3) + 0 • (0,2,3) 



Then by previous example the only 1-regular splittings of (0,1,2,3) 

are I) a= (0,2,3) T = (0,1,2) and 2) a= (0,1,3) T = (1,2,3) thus 

u -1 v = ( 1 • 0 ) • ( 0 ' 2 • 3 ) ._1 ( 0 ' 1 ·' 2 ) + 

-- ( 1 • l) . ( 0 '1 '3) '-'1 ( 1 '2 '3) = 
= 1: .• (0,1 ,2,3). 

Example 2.5: Let K be the 4-simplex (0,1,2,3,4). Let u e c2(K) 

be given by attaching 1 to each ordered 2 simplex and v e C3(K) be 

given by qttaching 1 to each ordered 3 simplex. By previous example 

the only 1-regular splittings of (0,1,2,3,4) for p = 2 q = 3 are 

T = (0,1,2,3) a= (0,3,4) and T = (1 ,2,3,4) a= (0,1 ,4) thus 

u ~ 1v = (1 • 1) (0,1,2,3,4) + (1 • 1) (0,1,2,3,4) 

= 0. (0,1,2,3,4) 

From the definition of cuo-i products the proof of the following 

two facts are immediate. 

l) "-'i is bilinear 

2) u -i v = 0 if i > p or q 

Notice that we have, in fact generalized the cup product. Let 

( o 1 Ap+q) A ,A, ... , be a p + q simplex. As previously mentioned the 

only 0-regular splittings of (A0 ,A1, ... ,Ap+q) are a= (A0 ,A1, ... ,AP) 

d - (AP Ap+q) Th ·f cP d cq then an T - , ... , . us 1 u e an v e 

( 0 p+q) - \ ( ) ( 0 p+q) u ~6 v A , ... ,A - L aj • bk aj "-J0 Tk A , ... ,A = a • b = 

u(a) · v(T) where a is coefficient attached to a by u and b coeffi­

cient attached to T by v. Thus u ~ v on a simplex is just u(front 

p-face) • v(back q fac~, which is the cup product. 
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We now give an alternate formulation for cup-i products. Although 

its form is more natural than than of ~efiniti-on 2.3, it is, except in 



a few cases, more difficult to manage in the types of arguments that 

follow. Let u E cP and v E Cq and suppose s is a (p + q)-simplex. 

Then u -i v(s) = I u(a) • v(T) where the sum is taken over all 

i-regular splittings (a, T) of s. We will use this form in the proof 

of the following theorem. 

Theorem 2.6: Iff : K1 ~ K is order preserving simplicial map, 

then f*(u -..... v) = f*(u) ........ f*(v). 
1 1 

Proof: Using .efinition 3.1 it is easy to verify that if (a, T) 

is i-regular splitting of s then (f(a), f(T~)is i-regular splitting of 

f(s). Moreover, any i-regular splitting of f(s) are the images, under 

f, of ani-regular splitting of s. (f*(u) i f*(v))(~) = 

I (u o f(a)) • (v o f(T)) where sum is taken over all i-regular 

splittings (a, T) of s· Now I (u e f(a)) • (vo f (T)) = 
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I u(q 1 ) • v(T 1 ) where last sum is taken over all i-regular splittings 

(a•, T1 ) of f(s). This equality follows directly from the above 

remarks. We therefore have 

( f* ( u ) _.i f* ( v ) )( s ) = I u (a • ) • v ( T • ) = ( u ...... i v ) f ( s ) 

= f* ( u i v ) ( s ) . 

Thus far we have defined the cup-i product on the cochain level. 

If we are to pass to cohomology we need to know the behavior of cup-i 

product under the coboundary operations. To determine this behavior 

is is first necessary to derive certain join formulas. These formulas 

describe the effect of cup-i products on elementary cochains when one 

joins a vertex. The proof of these formulas, although fairly long, 

provide the reader with an opportunity to work with Definition 2.1 at 

an elementary level. 



Suppose a is p-simplex of K, A a vertex in K such that A follows a in 

the order A. Define crA £ cP+1(K) as follows: 

0 if A is vertex of a or cr*A doesn't span a (p+1)-simplex 

crA = i_n K 

1 otherwise 

If u = I a-cr. is unique representation for u £ cP(K)~ let uA = 
J J 

I a.cr.A(cr.*A) 
j J J J 

Theorem 2.7: Suppose the vertex A follows all vertices of a and 

-r where cr(T) is a p(q) simplex in K, then 

i even 

i odd 

(2. 7 .2) (crA) i T =JO 
L(cr'-'. -r)A 

1 

i even 

i odd 

(2.7.3) (crA)~i(TA) 

Before we prove 2.7 let us consider an example. This example will 

give some insight as to the method of proof for 2.7. 

Example 2.8: Let K be complex given by (0,1 ,2,3), a= (0,2), 

T = (0,1,2) A =(3). Notice that (cr,T) are 1-regular thus 

(J ..._..1 T = 1 • ( 0,1 , 2) 

cr*A = (0,2,3), T*A = (0,1,2,3) and i = 1?thus we are working in the 

i is odd case of 2.7. 

(i) a ~ 1TA = 0 Since (a, T*A) is not 1-regular,for condition 

(i + 1) fails in 2.1 ,thus 2.7.1 holds 
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(ii) aA\,J1 -r = 1 • (0,1,2,3) since (a*A,T) is 1-regular 

By definition .a ~1 T A = f 1 on (0,1,2,3) 

0 otherwise 

thus condition 2.7.2 is satisfied 

(iii) oA '-1 TA = 0 since (o*A,T*A) not 1-regular for condition 

(-1) not satisfied in 2.1 

\a O T)A = 0 Since a O T = 0 because (a,T) not 0-regular, 

thus 2.7.3 is satisfied 

Thus for this example Theorem 2.7.1 is satisfied. 

Proof of 2.7.1: If i is odd, since A is not in a the last vertex 

common to o and T*A is not A thus condition (i + 1) fails to hold and 

(a,T*A) not i-regular. 

Now consider i to be even. If o, r, A together don't span a 

(p + q - i + 1)-simplex the both sides vanish, therefore suppose they 

do. Then T*A 1 0 and condition (-1) for i-regularity holds for both 

(a,-r) and (o,T*A). If any other conditon fails to hold for (o,T*A) it 

will also fail to hold for (o,T) and both sides of 2.7.1 vanish. We 

thus only need to consider when (a,T*A) is i-regular. If this is the 

case then we can easily check that (a,T) is i-regular also, thus 2.7.1 

is satisfied. 

Proof of 2.7.2: Argument is similar to 2.7.1 

Proof of 2.7.3: If vertices of o, -r, A together do not span a 

(p + q - i + 2)-simplex then both sides vanish. If they do condition 

(-1) for regularity of (o, T) and (a*A, ,*A) are satisfied. Notice 

that vi =A so that condition (i + 1) for i-regularity of (o*A,T*A) is 
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satisfied for i both even or odd. To check condition i for i-regularity 
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of (a*A, T*A) say vi-1A must be adjacent in a*A (T*A) if i is even 

i-1 ) (odd). This is equivalent to V is last vertex of a(T) tf (i-1 

is even (odd). This is precisely condition (i) for (i-1) regularity of 

(a,T). Thus these two conditons hold or fail to hold together. A 

similar argument shows conditions (j) for i-regularity of (a*A, T*A) 

and (i-1)-regularity of (a,T) hold or fail to hold together. This 

completes proof of 2.7.3. 

We now will consider how the coboundary acts on cup-i products. 

Theorem 2.9 (Coboundary Formula): Let u E cP(K) and v f. Cq(K) 

then 6 ( u '-"1· v) = u ~ 1v + v Y 1 u + 6u -. v + u -.....: ov 
1- 1- 1 1 

Proof: By Theorem 2.6 if 2.9 holds for complex K then it holds 

for any subcomplex. Since any complex may be considered a subcomplex 

of a simplex if suffices to show 2.9 for simplex. We will proceed by 

induction on the number of vertices. To start induction suppose sim­

plex consists of single vertex A. Then, unless i is 0 or 1, all terms 

vanish. If i = 0 all terms vanish since A~. A = 0 and A = 0. If 

i = 1 then only surviving terms are A-1 A+ A,....1 A= 0, thus 2.9 is 

satisfied. 

Now assume 2.9 holds for s• = (A0 ... An- 1) and letS= (A0 , ... , 

An- 1,An). Note that if a is p-simplex in s• then oa = o1 a + aA where 

61 is coboundary operator in s•. Let a(T) be oriented p(q) simplex. 

We must consider four separate cases. 

Case 1: a and Tare both in s•. 
o(a'-'. T) = o1 (a.._,, T) +(a'-'. T)A =a-: 1T + T'-:' 1a + 

1 1 1 1- 1-

01 a '-. T + a ~. 6 1 T + (a -. T )A 
1 1 1 

The last equality is by induction hypothesis. The first two 



terms are as desired. Consider 

oa ...... T + a -". oT = o 1 a -. T + aA ....,, T + a ....... o 1 T + a -. T )A 1 1 1 1 1 1 

o(a'-"1• T) =a""-':' 1T + T --:-.1cr +ocr-. T +a ...... OT +a-. TA 1- 1-r 1 1 1 

+ (cr--; T)A 

Now if i even,by 2.7.1 crA'-"; T = 0 and cr._,; o:A =(a-; T)A 

and again the terms match in 2.9. 

Case 2: a not in S • , T in S • . 
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If cr = A then A ._, · T = A':"' 1 o: = T "'="' 1 A = 0 s i nee A and T have 1 1- 1-

no vertices in common. 

A ...... 1.oo:=A-.J·o 1 T +A ....... TA=O sincecondi-
1 1 

tion (-1) or (0) in 2.1 fail to hold, 

oA ...... iT = 0 s i nee oA = 0. 

thus 2.9 holds since all terms vanish 

We then need to consider a = a 1 *A where a• is in s• 

If i is even then calculating each term of 2.9 (here we use o(cr 1 A) = 

cr ..._ - •A..... - (cr•- )A ··1T-cr . 1T- . 1T 1- 1- 1-

T -; -1a = T i -1a I A = 0 

= 0 + (cr 1 ':" 1 T)A 
1-

by 2.7.2 

by 2.7.2 

by 2.7.1 

by 2.7.2 

by 2.7.2 and 2.7.3 

The only non-zero terms cancel,thus 2.9 is satisfied. 



Let i be odd then calculating each term 

o(o'-; -r) = o{o 1 A.._.i ,) = o (o 1 .... i -r)A = o1 (o 1 -. -r) A 
1 

= o''-:.1 T + T--=-1 0 1 + 0 1 0 1 .._.· L + 0 1-. 0 1 T A 
1- 1- 1 1 

-by induction hypothesis on 6 1 
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= (o 1i_1 -r)A + hi_1 o1 )A + (o'o 1 '-'i T)A + (o 1i o1 T)A 

(J "'-:' 1 "[ = o1AY "[ = 1- 1-1 

"[ "":- 1 1-
(J = T '":"' 1 1- o1 A = 

ocr "-. T = (o 1 o')A-. "[ 
1 1 

(J ....... OT = o1 A-. (o',+ 
1 1 

0 

( "[ '-;"' 1 1-
(J I )A 

= (o'o' -. T )A 1 

TA) = (J I A-. c;•, 
1 + o 1A-. cA 

1 

by 2.7.2 

by 2. 7.1 

by 2.7.2 

= o1 A-. o=1 + ( (J I '-;' T)A 1 1-1 by 2.7.2 and 2.7.3 

Substitution into 2.9 shows both sides identical thus 2.9 is 

satisfied. 

Case 3: o in S 1 , T not ins' is similar to Case 2 

Case 4: o not in s',-r not ins' is similar to above cases. 

This completes the proof. 

Remark: It is both cumbersome and unnecessary to keep ordering on K. 

By defining cup-i products on singular cohomology Steenrod has shown 

that the definition of~ is independent of the ordering. We will 

not show this but the reader may refer to Steenrod [8] for the proof. 

Definition 2.10: The Steenrod Squaring operations are homo­

morphisms Sqi : Hp(K)-+ Hp+i(K) given by Sqi{u) = u "-J. u. p-1 
For Definition 2.10 to make sense we must verify that up:; u is a 

cocycle in Cp+i (K). Clearly u p-i u .£ Cp+i {K) if u t: cP(K). By 

Theorem 2.9 o(u -P_ 1. u) = u ......... u + u - . u + ou ...., . u + u '-". ou. p-1 p-1 p-1 p-1 
If u is cocycle the last two terms vanish and the first two terms add 

to zero {mod 2), thus u IP-iu is cocycle in Cp+i and Sqi is well defined. 
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Theorem 2. 11 : Let f : K • -+ K be map. Then f*Sq i = Sq if* for a 11 i . 

Proof: f*Sqi u = f* [ u -p- 1· u) = f*(u) ._ · f*(U) = Sqi f*u p-1 
= Sqif* u. 

i 
We now list the characterizing properties of Sq . 

Theorem 2.12: Sq i has following properties: 

(2.12.1) Sqi is natural homomorphism Hp(K)-+ Hp+i(K) 

(2.12.2) If i > p then Sq i ( Li) = 0 u e: Hp(K) 

( ) i ( ) 2 u C' Hi ( K) 2 . 1 2 . 3 Sq u = u .._.. u = u "" 

(2.12.4) 

(2.12.5) 

(2.12.6) 

Sq0 is identity homomorphism 

Sq1 is Bockstein homomorphism associated with 

o -+ z2 -+ z4 -+ z2 -+ o 
oSqi = Sqio 

(2.12.7) 

(2.12.8) 

Sqi( u v- v) =I (Sqju)- (Sqi-jv) (Cartan Formula) 

If a < 2b SqaSqb = I_ (~=~~ 1 )Sqa+b-cSqc where 

binomial coefficient is mod2 .. (Adem Relations) 

In Theorem 2.12 the limits in the sums are implicit, thus omitted . 
. 

All properties except (2.12.5), (2.12.7) and (2.12.8) follow immedi-

ately from the definition of Sqi. We will not have need of (2.12.5) 

and therefore will not prove it. We will shortly prove (2.12.7). 

This is known as Cartan formula and describes behavior of Sqi on 

products. (2.12.8) are known as the Adem relations. It is a very 

difficult property to prove and much of the next two chapters will 

be devoted to developing the necessary machinery to verify it. This 

time, however, is well spent for the Adem relations are crucial in 

the powerful theory we will develop in later chapters. 
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To verify the Cartan formula 2.12.7 we first introduce a product 

x : HP(x) ® Hq(X) ~ Hp+q{X x X), called the external .cross product, and 

give its relationship to the cup product. We will then show that the 

form of the Cartan formula ho"lds vJith the external cross product 

replacing the cup product, ie, Sqi (u x v) = L Sqj(u) x Sqi-j(v). 

Once this is estabiished 2.12.7 will easily follow. 

Let u £ cP(x) and v £ Cq(X) and all coefficients are z2 (any 

ring suffices). Define u x v £ Cp+q(X x X) by the composition 

Cp+q (X x X) __9_. C (X) ® C (X) u ® v z2 ® z2 ~ z2 

where Q is a fixed natural chain map, u ® v is defined to be zero on 

any term not lying in CP(X) ® Cq(X), and m is natural multiplication 

in z2. This defines a product at the cochain level X : cP(x) ® Cq(X) ~ 

·. Cp+q(X x X). One can show (for example see Vick[llJ that if u and v 

are cocycles, then u x v is cocycle thus we have well defined product 

on the cohomology level. 

HP(x) ® Hq(X) ~ Hp+q(X x X) called the external cross product~ 

The external cross product and cup product are related as follows: 

Let d : X~ X x X be standard diagonal map. Using the Acyclic Models 

Theorem and the Alexander-Whitney diagonal approximation one can show 

that the cup product is given by the following composition: 

We now establish the Cartan formula 12.2.7. 

Definition 2.13: Let K be finite complex. A system of cup-i 

products {'"""i} is a sequence of bilinear maps i : cP(K) ® Cq(K) ~ 

Cp+q-i(K) such that the following conditions hold: 



(2.13.1) 

(2.13.2) 

(2.13.3) 

{2.13.4) 

;P _... .:rq is cocha in in StcrP 1\ Sh q, where Stcrp 
1 

denotes the star of crP. 
o o -o cr '-'" cr = cr 

0 

if i < o then u -i. v = 0 for arbitrary u and v 

Coboundary formula: o(u ....... v) = u o.....: 1 v + v ~ 1 u + 
1 1- l-

ou ._,i v + u i ov, where is coboundary operator. 

It is trivial to verify that the cup-i products defined by 2.3 

for a system of cup-i product in the since of 2.13. Now given any 

system of cup-i products, by 2.13.4 we may define squaring operations 

as in Definition 2.10. The following theorem due to Nakaoka C5J 

states that any system of cup-i products, in fact, induce the Steenrod 

squaring operations. 

Theorem 2.14: In K, suppose there ex·ists two systems of cup-i 

products {~i} and {...! i}. If Sq i and Sq i 1 are the squaring operations 

induced by { .... i} and {"i'} respectively, then Sqi = Sqi 1 ~that is any 

two systems of cup-i products induce the Steenrod squaring operations. 

We will now show that the Cartan formula holds with the product 
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viewed as external cross product. We will do this be defining a system 

of cup-i products on K x K with the fbrm of 2.12.7 built in. 

Define ..... ~ : cP(K x K) ~ Cq (K x K) -.Cp+q-i (K x K) by 
1 

(u1 x u2) .._~ 1 (v1 x v2) = I (u 1 -j v1) x (u2 i-j v2) where '-'i is 
. I 

cup-i product in K. Straightforward calculations show that ~i 
i is a system of cup-i products in K x K. We thus have Sq (u x v) = 

(u x v) p-i (u x v) = I (u j-q u) x (v ......... v) p-i-j 

= I (u '"J-p u) x (v 
.._... v) p-i+j 

= I Sqj(u) x Sqi-j(v) 
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It is now·easy to establish 2.12.7. 

i if ( )' d*(S i( )) d*(' Sqj(u) X Sqi-j(v)) Sq ( u '-' v) = Sq \ d* u X v ) = q u X v = [.. 

= I d*(Sqj(u) x Sqi-j(v)) 

= I Sqj ( u) ...... Sq i- j ( v) 

The Cartan formula makes it clear that the squaring operations are 

homomorphisms only in the sense of groups. We may, however, use the 

squaring operations to define a ring homomorphism, Sq. Although we 

will be primarily concerned with Sqi as group homomorphism, we will 

have occasional use for Sq. 

Let u be a homogeneous element in the cohomology ring H*. Define 

Sq(u) = I Sqi(u) and extend by linearity. Notice the sum is essen­

tially finite by 2.12.2. 

Theorem 2.14: Sq : H* + H* is ring homomorphism. 

Proof: Sq ( u) "-' Sq ( v) == 0: Sq \) '-J (L Sqj v) . By the Ca rtan 

formula Sqi(u v v) is the (p + q + i)th term of the right hand side, 

thus Sq(u) v Sq(v) = Sq(u ~ v) 

We will now describe the action of Sqi on one dimensional classes. 

Theorem 2.15: If us H1 (K) then Sqi(uj) == (~)uj+i 
1 

2 . 2 . 
Proof: Sq(u) = Sq0u + sq•u = u + u Sq(uJ) ==(u + u )J = 

uj I (~)uk+j. Theorem follows by comparing the coefficients.of the 

two sides. 

Notice the implication of 2.15. It completely describes the action 

of Sqi on all one dimensional classes. Suppose we have a space whose 

cohomology ring is generated by a one-dimensional class. 2.15 then 

determines completely, the action of Sqi on the cohomology ring. This 

fact will, on numerous occasions, be exploited in later chapters. 



CHAPTER I II 

K(Z2,n) SPACES 

In this chapter we introduce a special class of spaces, called 

Eilenburg-MacLane spaces. These prove crucial in developing some of 

the properties of the Steenrod squaring operations, in particular the 

Adem relations. These spaces form a set of test spaces in the follow-

ing sense: one may many times conclude that relations involving 

squaring operations hold for general spaces from the fact that they 

hold for Eilenburg-MacLane spaces (in fact they need only to hold for 

a small class of these spaces.) 

Definition 3.1: Let~ be a group and n > 1. An Eilenburg-MacLane 

space K(~,n) is a space with the homotopy type of a C-W complex such 

that the only non-trivial homotopy group is ~n(K(~,n)) = ~. 

In this investigation we will only be concerned with the special case 

~ = z2. We begin by showing that infinite dimensional projective space 

is a K(Z2,1) space. 

Theorem 3.2: Let Pro = U Pn be infinite dimensional projective 

space, that is, the limit Pn ~ Pn+1 of n dimensional real projective 

spaces under natural injections. Then Pro is K(Z2,1) space. 

Proof: It is well known that Soo is a covering space for P00
• The 

covering group is z2, thus ~ 1 (P) = z2. Since higher homotopy groups 
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of the covering space and base space are isomorphic, ~n(P00 ) = 0 

for n ~ 2 since ~ (Soo ) = 0 for n > 2. This establishes that noo is n - I' 

a Eilenburg-Maclane space of the type K(z2,1). 

We will now calculate the cohomology ring H*(P 00 ;Z2). We first 

calculate the cohomology of Poo using cellular homology theory. 

We consider the following standard cellular decompositions of Soo 

and Poo. Soo is considered as S0 c s1 c s2 c . . . where each k -skeleton 

is Sk and Skis the equator of Sk+1. In each dimension the k-skeleton 

yields two cells e+k and e-k' the upper and lower hemispheres. 

antipodal map A(x) = -x clearly has the property that A(e+k) = 

The 
-

e k. 
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Since Soo is covering space for P~ with projection ~ begin the identi­

fication map A(x) - x, we get a decomposition of Poo :P?c P1c P2c ... 

where each Pk is k-dimensional projective space. In this decompositon 

we get one cell, e•k' in each dimension. 

The chain groups Ck(S00
) have two z2 factors in each dimension 

+ . (generated bye k and e-k). The chain groups Ck(Poo) have one z2 

factor in each dimension (generated by e•k). To determine the homology 

of P00 we need to determine the behavior of the boundary operator on e•k. 

Direct calculation yields 

~*(e+k-1 + e-k-1) = e•k-1 

H (P00 ;Z2) = z2 for all n. 

' + + 
a(e•k) = a~*(e k+1) = ~*a(e k+1) = 
+ e•k-1 = 0 thus 3 = 0. This yields 

By duality we have Hn(Poo; z2) for all n. 

We note that the preceeding argument may be applied to Pn to give 

for 0 < k < n 

otherwise 

We make one other observation that will be needed to calculate the 

h l f Poo If 0 d · Pm Pn · h · 1 · co omo ogy o . < m < n an 1 : + 1s t e 1nc us1on map 



then i* : Hk(Pn;Z2) + Hk(Pm;Z2) is an isomorphism for k < m. This 

observation is clear from our construction. 

We will now establish that H*(Poo; z2) = z2(u) where u is non­

. trivial cohomology class in H1(P 00 ;Z2). This result follows immedi­

at~ly from the following ~hearem. 

Theorem 3.3: H*(P";z2) = z2(un) subject to u~+1 = 0 where un is 

nontrivial cohomology class in H1(Pn;z2) 

Proof~ Since u~ s Hn(Pn;Z2) is is clearly sufficient to prove 

u~ i 0. We will proceed by induction. Trivially ui f 0. Assume 
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u~:t i 0. From previous observation i*(u~- 1 ) = u~:t f 0 thus u~- 1 1 0. 

By Poincare duality there exists element v E H1 (Pn;Z2) such that 

unn- 1~ v f 0. But v must be u thus un t 0 and the theorem now 
n n 

follows. 

Notice that H*(Poo;Z2) is generated by a a one dimensional class. 

Theorem 2.15 says that under· such conditions the complete actions of 

Sqi on the cohomology ring may be determined. The following example 

describes the action of Sqi on H*(Poo;Z2). 

Example 3.4: Let u be generator H1 (Poo;Z2). Any element of 

H*(P00 ;Z2) has the form x = a0 + a1u + ~ 2 u 2 + 
i i 2 . 

Sq (x) = Sq (a0 + a1u + a2u + ... ) = Sq1 (a0 ) 

i 2 + Sq (a2u ) + ... 
i ; i 2 = a0Sq (1) + a1Sq (u) + a2sq (u ) + ... 

+ a un a 
n 

+ Sqi(a1u) + 

0 1 1 +i 2 2+i n n+i = a0 (i) + a(i)u + a2(i)u + ... an(i)u 

Specifically 

Sq1(x) = a1u2 + a3u4 + a5u6 + 

€ z2' thus 

2 4 5 n Sq (x) = a2u + a3u other terms vanish since (2) is even from n > 3. 
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Example 3.5: In Chapter II we defined Sq H* ~ H*. We will now 

calculate Sq for a particular case. Consider x 

Sq(x) = Sq(l + u + u2) = Sq(l) + Sq(u) + Sq(u2) 

+ Sql(u) + Sqo(u2) + Sql(u2) + Sq2(u2) 

' 2 00 

= 1 + u + u s H*(P ;Z2) 

= Sq 0 (1) + Sq0 (u) 

= 1 + u + u2 + u2 + 0 + u4 = 1 + u + u4 

The Fundamental Class and Kn 

Recall that a space X is n-connected if
1
Tii(X) = 0 fori < n." The 

Hurewicz Theorem states that if X is (n-1) connected then the Hurewicz 

homomorphism h : Tii(X) ~·Hi(X) is isomorphism fori < n. 

the Universal coefficients theorem gives 

If TI (X) = 1T 
n 

(3.6) 

Definition 3.7: Let X be (n-1)-connected and Tin(X) = TI. Then 

h-1 c Hom (Hn(X); TI). By 3.6 there is element ln s Hn(X;TI) correspond-
-1 n ing to h . The fundamental class of H (X,TI) is defined to be this ln. 

Notice that K(TI,n) spaces always have a fundamental class. This 

fundamental class will have important applications in several settings. · 

For example, in Chapter VI we will show that the coho.mo1ogy ring of 

K(1T,n) is determined by the action of squaring operations on ln. 

Another example of the importance of the fundamental class is the next 

theorem, which we will use several times. The proof,although not difficult 
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requires some development in obstruction theory (and wi11-not-be qi"venr-

Theorem 3.8: Let X be any space. Then there exists a one-to­

one correspondence X, K( 1r ,-n) ~ Hn (X, 1T). This correspondence is 

given by ffJ~ f*( 1n) where t J denotes homotopy class and 1n is 

fundamental class of K(1r,n)~ 

Proof: See Mosher and Tangora C4J , pp 3. 

Let Kn be n copies of K(Z2 ,1). If X; is the nontrivial one 

dimensional class of the ith copy of K(Z2 ,1) then by K~nneth Theorem 

H*(Kn,z2) is polynomial ring over z2 with generators X;- We will make 

considerable use of particular elements of H*(Kn;Z2), the symmetric 

polynomials, a . . 
1 

+ x2x4 + ... xn-l'xn. Note that an= x1x2x3 xn. 

Theorem 3.9: In H*(K ;Z2) Sq; (a ) = a a. (1 < i _< n) n n n 1 -

Proof: Sq(an) = Sq( ~X;) = ~Sq(x;) = 

=~(X;+ X~)= an(~(l +X;)) .. 
= an ~ a; 

The theorem now follows by comparing dimension. 

Corollary 3.9.1: In H*(K(Z2 ,n);Z2) Sqi(1n) t 0 for 0 < i < n 

- Proof: We will use theorem 3.13 with Kn = X. Theorem 3.13 says 

there is a map f : Kn + K(Z2,n) such that f*(1n) = an. 

f*Sqi(1n) = Sqif*(1n) = Sqicrn. By theorem 3.9 this is nonzero thus 

Sq i ( 1n) 1 0. 

It is worthwhile to consider the method of proof of Corollary 

3.9.1. The action of Sqi on a particular element (crn) of H*(Kn,z2) was 

easy to calculate. Theorem 3.8 establishes, via a homomorphism, a 
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relationship between a and 1 • We were then able to gain some infor-
n n 

mation concerning the action of Sq1 on 'n· Now that we have this 

information of how Sqi acts on 1 we may now use the full power of n 
3.8. Suppose y E H*(X;Z2) where X is any space, where y is homogeneous. 

Theorem 3.8 gives us a means to relate y and tn' via homomorphism for 

suitable n. 

It may now be possible to gain results concerning the action of 

Sq1 on y from our knowledge of action of Sqi on 'n· The remark, men­

tioned in the introduction of this chapter, that Eilenburg-Maclane 

space, in a sense, form a class of test-spaces may now be somewhat 

clearer. The necessary link between test space and arbitrary spaces 

is supplied by Theorem 3.8. 



CHAP-TER IV 

We begin this chapter with some observations of some actions of 

Sqi on H*(Kn;Z2) and, in particular, actions on crn. First we will 

introduce some necessary notation. 

Let I be a sequence of non-negative integers that are eventually 
I i i i zero ( i 1, i 2, ... i r ,0 ,0, ... ) . We will 1 et Sq = Sq Sq ... Sq . 

A sequence J 2 I iff jk 2 ik Vk. The degree of I, d(I) =I ik. 

Definition 4.1: A sequence I is said to be admissible if 

ik ~ 2ik+1 for k < r. 

If I is an admissible sequence then we define (length of I) £(I) = r 

. and (the excess) e(I) = 2i 1 - d(I) = i 1,-i 2- ... -ir = (i 1 - 2i 2) + 

Example 4.2: 

+ i . 
r 

Let I= (3,1,0,0, ... ) then I is admissible. 

£(I)= 2 d(I) = 4 e(I) = 3(2) - 4 = 2. Let u + u2 E H*{K(Z2 ,1)~Z2 ) 

then Sqi(u + u2) = Sq3sq1(u + u2) =· Sq3(sq1(u) + Sq 1(u2)) = 

Sq3({i)u1+1 = Sq3(u2) = 0. 

Lemma 4.3: Sqi(xy) = I Sqi-J(x)SqJ(y) (sum over J 2 I) 

Proof: We will show lemma by induction on £(I). If£(!)= 1 

then 4.3 is just Cartan formula. Assume true for £(I) = k - 1. 

If I = ( i 1, i 2, ... , ), 1 et I ' = ( i 2, i 3 , . . . ) . 
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Sqi(xy) = Sqi Sqi' (xy) = Sqi (I Sqi'-J' (x)SqJ' (y))by induction hypothesis 

=I Sqi (Sqi'-J' (x)SqJ' (y)) =I (I Sqi -jSqi'-J' (x)SqjSqJ' (y)) 

= I Sqi-J(x) SqJ(y). 

Theorem 4.4: Let yk = x1,x2 ... xk be in H*(Kn,z2) where X; 's are 

distinct, one dimensional elements. If d(I) ~ k then Sq1(yk) t 0. 
. I 

In particular if d(I) ~ n then Sq (an) t 0. 

Proof: We will show 4.4 by induction on k < n. For k = l results 

are clear. Assume results hold for yk_ 1. Let d(I) ~ k. Again if 

I = ( i 1, i 2... ) then let I • = ( i 2, i 3,.. . ) . We will write yk = xy 

where y = x1 ... xk_ 1 and x a one dimensional element distinct from 
I I . I I 

x1, ... ,xk_1. Sq (yk) = Sq (xy) = Sq 1'Sq (xy) = 
= Sqi• (I Sqi'-J' (x)SqJ(y)) 

= Sq ;, (Sq0 (x)Sqi' (y) + I Sqi.!J' (x)SqJ'(y)) 

Last term in parenthesis is summed over d(I' - J') ~ 1 thus all terms 

contain xp (p ~ 2), in particular no te~ms involve x. Since 
o I' I' i I' Sq (x)Sq (y) = xSq (y) it suffices to show Sq '(xSq (y)) t 0. 

Sqi' (xSqi' (y)) =I Sqi' -j(x)SqjSqi' (y) = Sq0 (x)Sqi' Sqi' (y) + 

Sq1(x)Sqi,-1Sqi' (y) = xSqiy + isq(i, -1,i 2 ,iJ , ... )(y) 

By induction hypothesis last term is nonzero since 

d((i 1-l ,i 2,i 3, ... )) ~ k - l. This completes the proof. 

The reader is urged to note the proof of 4.4, for many of the 

proof of subsequent theorems follow a similar pattern. 

At this point we introduce a theorem of Serre which yields the 

cohomology ring of K(Z2,n). Its proof requires machinery we will not 

introduce until Chapter VI and we will postpone the proof until then 



Theorem 4.5 (Serre): H*{K(Z2,n);Z2) is the polynomial ring with 

generators {Sqi(ln)} as I runs through all admissible sequences of 

excess less that n. 

Corollary 4.5.1: If f:Kh-+ K(Z2,n) is such that f*(1n) =on 

then f* is monomorphism through dimension 2n. 

Proof: Note that Sqi(,~) has dimension less than 2n. By 4.4 

we need only to show f*(Sqi{t )) 1 0 if d(I) <h. But f*(Sqi(tn} = 
n -

Sqi{f*(1n) = Sqi(crn). By Theorem 4.4 right hand side is nonzero. 

Adem Relations 
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LIIJz] 

Let Adem relations be denoted by R ~ SqaSqb + I (~=~~ 1 )sqa+b-cSqc 
e., 

. mod 2, a < 2b . 

In the above ra/21 ts greatest integer< a/2 and conventions (;) = 0 

if y < 0 or x <yare in use. Since the limits are implicit they will 

be suppressed. Using the approach mentioned in Chapter 3 we begin by 

showing the Adem relations hold in H*(~,Z2 ) 

Theorem 4.6: If y s H*(~;Z2 ) then R(y) = 0 'VR. In particular 

R(crn) = 0 \fR. 

Proof: It is sufficient to show R(y) = 0 for y the product of 

one dimensional elements. We will induct on the number of one dimen­

sional elements in this product. For fixed a, b let Ac = (~=~~1 ) 

The case when y = x;, is easily verified. 

Assume 4.6 holds for_y = x;,···x; and let y' = xy for one dimensional 

element. By direct application of Cartan formula we get: 



a b Sq Sq (xy) (4.6.1) 

= xSqaSqby + x2Sqa-lsqby + x2SqaSqb-ly + x4Sqa-25qb-ly 

I A Sqa+b-csqc(xy) = Sqa(xSqby + /sqb-ly) 
c 

= (b~l)Sqa+bxy + I AcSqa+b-c(xSqcy + x2Sqc-ly) 
c;o 
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= (b-l)Sqa+bxy + I A Sqa+b-c(xSqcy) + I A Sqa+b-c(x2Sqc-ly) 
a t+o c c:~o c 

= (b-l)Sqa+bxy + L A xSqa+b-c5qcy + I A x2Sqa+b-c-15qcy 
a c•o C Uo C 

+ I A x2Sqa+b-c5qc-ly + I A x4Sqa+b-c-2 5qc-ly 
ch C c" C 

= (b-l)xSqa+by + (b-l)x2Sqa+b-ly + xi A Sqa+b-csqcy 
a a cto c 

+ x2I A Sqa+b-c-lsqcy + x2I A Sqa+b-c5qc-ly 
CiO C t•~ C 

+ x4I A Sqq+b-c~2sqc-ly _(4.6.2) 
Cio C 

The first and third terms of 4.6.2 equals first term of 4.6.1 by 

induction hypothesis. The second and fourth terms of 4.6.2 equals 

the second term of 4.6.1 by induction hypothesis. Fifth term of 

4.6.2 equals third term of 4.6.1 by shift of indices and induction 
4, (a-2)+(b-1)-c c hypothesis. Rewriting last term of 4.6.2 x L AcSq Sq y 

this equals last term of 4.6.1 by induction hypothesis. This completes 

proof. 

Proof of 2.12.8 (Adem Relations): 

Step 1: Let y be cohomology class of dimension n of any space 

·x with z2 coefficients. In R let a + b ~ n, then 

R(y) = 0. 

There is map f:Kri-+ K(Z2,n) such that f*(1n) =an. By corollary 

4.5.1, f* is monomorphism through dimension 2n. R(crn) = Rf*(1n) = 

f*(R(ln)). By theorem 4.6 f*(R(1n)) = 0. Since dimension of 
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have R(tn) = 0. To get desired results R( 1n) .::_ a + b + n .::_ 2n we 

for y choose g:X +K(Z2,n) 

= g* ( R ( \n ) = 0. 

such that g*(1n) = y. Then R(y) = R(g*(1 .)) 
n 

Step 2: If R(y) = 0 ·for every class y of dimension p, then 

R( Z) = 0 for every class of dimension (p- 1). 

We recall that in showing the Cartan formula for cup-products we proved 

the Cartan formula holds if the products are interpreted as external 
1 . 

cross products. Let u generate H'(S ~z2 ). Then Sq 1 (u) = 0 for all 

i > 0. By Cartan formula R(u x z) = u x R(z). But u x z has dimension 

p thus u x R(z) = 0, thus R(z) = 0. 

The Adem Relations now easily follow from Steps l and 2 by 

induction. 

Further Results on Non-Existence of Fiberings of 

Sphere by Spheres 

Below we list a short table of some Adem relations 

sq1sq1 = o sq 1sq3 = o 
Sq1Sq2 = Sq3 Sq1Sq4 = Sq5 

Sq2sq2 = Sq3sq1 Sq2Sq6 = Sq7sq 1 

Sq2Sq3 = Sq5 + Sq4Sql 

Sq2Sq4 = Sq6 + Sq5Sql 

Sq3Sq2 = Sq6Sql 

Sq3Sq2 = 0 -

Sq3Sq3 = Sq5Sql 

Sq2n-15qn = 0 

Sq1Sq2n+l = O 

Sq1Sq2n = Sq2n+1 

Sq2Sq4n-2 = Sq4n-15q1 

Sq2Sq4n-1 = Sq4n+l +Sq4nsql 

Sq2Sq4n = Sq4n+2 + Sq4n+lsql 

Sq2Sq4n+l = Sq4n+2Sq1 

Sq3Sq4n+2 = 0 



Example 4.7: In example 4.2 we calculated Sq3sq1(u + u2) = 0 
1 . 3 1 2 2 for u e: H (K(Z2 ,1)~Z2 ). By Adem relat1ons Sq Sq = Sq Sq . 

Sq2sq2(u + u2) = Sq2(sq2u + Sq2u2) = Sq2(u4) = 0. 

Example 4.8: By the Adem relations Sq3 = Sq 1sq2 Let 
1 33 6 123 u e: H ( K ( z2 , 1) ; z2) ~ Sq ( u ) = u . Sq Sq ( u ) = 

= Sql (u5) = u6 

An examination of the table of Adem relations shows that Sqi 

i < 6 may be written in terms of Sq 1,sq2,sq4,eg, Sq 3 = sq1sq2 

Sq5 = Sq2sq1Sq2 + Sq4Sq 1 Sq6 = Sq2sq4 + Sq2sq 1sq2sq 1. Also we 

observe Sq2and Sq4 cannot be written in terms of squares of lower 

order. This observation motivates the following definition. 
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Definition 4.9: Sqi is said to be decomposible if Sqi =I Sq 1 

for some seq~ences Ij such that no Ij = {i ,0,0, ... ). Sqi is indecom­

posible if no such relation exists. 

3 5 6 From our previous observations Sq , Sq , Sq are decomposible 

while Sq1, Sq2, Sq4 are indecomoosible. The form of the indeco~rosi­

ble elements sugqest the results of the next theorem. 

Theorem 4.10: Sqi is indecomposible if and only if i k 
= 2 for 

some k. 

Proof: Suppose i = 2k and let u be generator for H1(K(z2,l);Z2) 
. i 2 i i 2i 

then Sq(u1) = (Sq u) = (u + u ) = u + u {all other powers vanish 

. . 2k) s1nce 1 = • 

t . 

I 
i Thus Sq (u1) = u t = 0 
2i t = i u 

0 otherwise 

Since Sqt(u1) = 0 for 0 < t < i, Sqi is obviously indecomposible. 
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Conversely, suppose i = a+ b where b = 2k for some k and 0 <a < b. 
a b b-1 a+b , b-c-1 a+b-c c By Adem relation Sq Sq = ( a )Sq + L ( a-2c)Sq Sq 

2k 1 
From number theory ( a- ) = 1 (mod 2) therefore 

(b-c-1) a+b-c c 
2 Sq Sq . a- c 

Since Sqi is sum. of 

composites of squares of lower order, Sqi is decomposible. 

Theorem 4.10 is the result that much of the work of the 

previous three chapters was aimed. Theorem 4.10 says that all squaring 

operations are 'generated' by elements tif a·particular .type; ie, 

{Sq2 ~1 k = 0,1,2, ... } . The specific form of these generators allows 

one to draw conclusions concerning spaces whose cohomology ring has 

certain specific forms. Theorem 4.11 is one such case. For others 

the reader may refer to Steenrod and Epstein [9] . 

We may now prove the principle results of this investigation. 

Recall iff : SZn-l ~ Sn then by Definition 1.15, if a generates 

Hn(K~Z2 ) and T generates H2n(K~Z2 ),then 02 = H(f) • T where K = e2nufsn. 

Iff is fibering of sphere by sphere then H(f) = + 1. Observe that f 

has odd Hopf invariant if and only if Sqn(0) = 02 = T in z2 cohomology. 

This observation leads to the following theorem. 

Theorem 4.11: If f:S2n- 1 ~ Sn is fibering of sphere by sphere 

then n ~ 2k for some k. 

Proof: Suppose that n t 2k. By Theorem 4.10 Sqn is decomposible. 

However, since K only has non-trivial cohomology in dimensions O,n,2n 

Sqi(0) = 0. 0 < i < n. Since Sqn(a) =, t 0 we have a contradiction 

thus n = 2k. 



Theorem 4.11 is a very significant result. However, the final 

results, that n = 2,4,8, does not seem obtainable from the analysis 
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of the squaring operations alone. This problem may be viewed in the 

following manner. We took an algebraic structure (cohomology ring) 

associated with a space and made this structure richer by incorporating 

certain operations. This 'richer' structure yielded extra information 

(eg. Theorem 4.11). It appears that, even with this extra structure, 

our system is not sufficient to give us the results needed for the 

final resolution of our problem. By incorporating other operations 

into our system we may be able to derive more restrictive results. 

Adams tlJ introduced new operations called secondary cohomology 

operations which led to the complete resolution of the problem. 

One pays a high price, however, in this algebraic enrichment 

program. The more structure in an algebraic system the more 'compli­

cated' the system becomes. The study of secondary cohomology operations 

mentioned above requires the investigation of a very complicated 

algebraic system, based on the squaring operations, called the Steenrod 

Algebra. In the next chapter we introduce this algebra and develop 

some of its properties. 



CHAPTER V 

THE STEENROD ALGEBRA 

Let R be commutative ring with unit. By a graded R-module M we 

mean a sequence M; (i ~ 0) of R-modules. A homomorphism f:M + N of 

graded R-modules is a sequence {fi} of R-homomorphisms, fi :M; Ni. 

The tensor product of two graded R-modules is a graded R-module 

defined by setting (M ® N)n =I Mi ® Nn-i" 

By a graded R-algebra A we mean the following: 

0) A is graded R-module 

1) there is homomorphism m:A ®A+ A called multiplication 

2) there is homomorphism e:R +A called unit 

3) the following two diagrams are commutative 

m 
A® A -----_,.A 

mal l l m 

A ® A ® A A ® A A ® A A ® A 
1 ® m 

If A and B are graded R-algebras, then consider A ® B as tensor 

products of graded R-modules. We may give A® B an algebra structure 
k by defining mA®B as (a 1 ® b1) (a2 ® b2) = (-1) (a1a2 ® b1b2) where 

k = (deg a2)(deg b1). 

Suppose M is graded R-module we define the Tensor Algebra T(M) by 
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(T(M))n = I M. 
1 

~ M. 
1 

il + i2 + ... + ik = n 

sum taken over ik ~ 0 

Multiplication is the tensor product. 

A(2) 

We will now describe an algebraic system defined by the Steenrod 
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squaring operations and derive some of its properties. We will first 

introduce a space P which will play much the same role as H*(Kn;z2) in 

the previous chapter. 

Let P = z2(u1,u2, ... ), ie, the z2 polynomial algebra generated 

by u1,u2, ... where each ui has degree 1. Homz~(P,P) is a graded 

algebra where the nth grading is those homomorphisms which increase 

the degree by n. We now will define a graded sub a 1 gebra cA of Homz
1 

( P, P). 
i . A will be the subalgebra generated by a certain set of elements {St }. 

We will define Sti inductively as follows. 

st0(un) = un 

u n i = 0 

Sti(u ) = u2 i = 1 n h 

0 otherwise 

This defines Sti on all elements of degree one. To define Sti 

on arbitrary elements we will define Sti inductively on monomials and 

extend linearly. If X = u x• where X' is monomial of degree n - l n 

we let 

(5 .l) 



This now defines<Ac Homz~(P,P). Notice that (5.1) is just the 

Cartan formula described in previous chapters, thus we have built 

an algebra with the Cartan formula built into the system. This 

suggests that many of the properties of the squaring operations hold 

in~ . Not only is this true, but most of the proofs are exactly 

the same as those given in ChapteriV. When this is the case we will 

simply refer to the appropriate theorem for our proofs. We will 

continue to use the notation introduced in Chapter IV. 

Theorem 5.2: Sti(u k) = (~)u~+i 
_;____;:...:..:.....:..;..:.;__c.;:;__ n 1 

Proof: See Theorem 2.1S 

Corollary 5.2.1: Sti(un2K) = 2 
un i = 0 

2Ktl 

i 2K un = 

0 otherwise 

Proof: This follows directly from Theorem 5.2 and the observa-

tion 
2K. 

that (i ) = 0 mod 2 for 0 < i < 2 

Remark: Theorem 5.2 describes st1 on one dimensional elements. 

Remark: Corollary 5.2.1 implies st1(un) = 0 unless 

I= {2k,2k-l~ ... 2,1,0,0, ... } with the possibility of zeros inter-

spaced between non-zero elements. 

Theorem 5.3: St1(xy) = I Sti-J(x)StJ(y) for all x, y E P 

Proof: See Lehma 4.3 

Theorem 5.4: 

Proof: See Theorem 4.6 
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We now define the Steenrod Algebra A{2). Let V be the graded 

z2-module defined by v0 = 0 Vn = z2(Sqn) n ~ 1. Let T(V) be the 

Tensor Algebra. We list the first four gradings of T(V). 

(T{V)) O = z2 

{T{V)) 1 = z2(sq1) 

(T{V)) 2 = z2(sq2) ffi z2(sq 1 ® Sq 1) 

(T{V)) 3 = z2(sq3) ffi z2(sq2 ® Sq 1) ffi z2(sq 1 ® Sq2) ffi 

Z2(Sql ® Sql ® Sql) 
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(T{V)) 4 = Z2(sq4) ffi z2(sq3 ® Sq 1) ffi z2(sq1 ® Sq3) ffi z2(sq2 ® Sq2) 

ffi z2(sq2 ® Sq 1 ® Sq 1) ffi z2(Sq 1 ~ Sq2 ® Sq 1) ffi 

z2(sq2 ® Sq 1 ® Sq 1) ffi z2(sq1 ~ Sq 1 ® Sq 1 ~ Sq1) 

Now let J be the two sided ideal generated by the Adem relations, 
a b b 1 · · +b · · 

ie, elements of the form Sq ® Sq - l (a=2jJ)Sqa -J ® SqJ for 

a < 2b. We define the Steenrod Algebra A(Z) = T(V)/J. If p is the 

natural projection we denote p(Sqi' ® ••• ® Sqin) by Sqi' Sqi2 ••• Sqin 

In Chapter IV v.1e calculated some of the Adem relations. Using these 

we get the following partial list: 

(A{2)) 0 = z2(sq0) 

(A{2)) 1 = z2(sq1) 

(A{2)) 2 = z2(sq2) 

{A{2)) 3 = z2(sq3) ffi z2(sq2sq 1) 

(A{2)) 4 = z2(sq4) ffi z2(sq3sq1) 



We will now show that P can be made into a A(2)-module. We 

need to define Q : A(2) ® P + P. We first define Q' : T(V) ® P + P 

as follows: A basis element of T(V) is of the form Sqi ® ... ® Sqi 

We let Q'(Sqi ® ... ® Sqi ®X)= Sti ... Sti (x) for x e: P. 

By theorem 5.4 if R is a generator of J. then R • x = 0 thus 

Q' induces Q : A(2) ® P + P. Thus our module structure is 

Sq I • x = S t I ( x) . 

We will now describe a particular basis for A(2). 
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Examining (A(2)) n we notice that in each grading n we have 

z2-vector space generated by elements of the form Sqi for I admissible 

and d(I) = n. This observation leads to the following theorem. Let 

~be set of all admissible sequences. 

Theorem 5.6: {Sqi I I E: ~}forms a basis for A(2) as z2-vector 

space. 

Proof: Given I= {i 1,i 2, ... ik,O,O, ... } let the moment of I 

be given by m(I) = I S is. Now suppose I i 9 then Sqi = SqJSqaSqbSqK 

where a < 2b. By Adem relations Sqi= I (b-2l:j)SqJSqa+b-jSqjSqK and 
a- J 

a+ b - j ~ 2j. We have traded in monomial that was not admissible 

at some point in I for a sum of monomials that are all admissible at 

that point. We cannot be sure, though, that we have not introduced 

inadmissibility at some other point in the sequence, ie, last terms 

of J or first term of K. We do however observe that this process 

decreases the moment. To see this let I = {J,a,b,K} and 

I' = {J,a+b-j,j,K} then m(I') - m(I) = s(a+b-j) + (s+l)j -as- b(s+l) 

= j - b < 0. Since the moment is finite then the process must 



terminate after finite number of steps, yielding Sqi as sum of 

SqJ for J s ~. This shows {Sqi I I s ~} spans A(2). We now must 

show they are linearly independent. 

We proceed by induction on d(I). For n = 1 result is trivial. 
I Now suppose {Sq I I s g d(I) = n - 1} are linearly independent. 

I Let I AISq = D. Let max ~(I) = k, then 
clll)~l'\ 

Recalling that Pis an A(2) module we multiply (5.6.1) by 

u • 
n = U " X n getting 

I AISqi(unx) + I AISqi(unx) = 0 
lU\~k AUl=k 

Consider each term separately. By Cartan formula we have 

I Aisq 1(unx) = I ~ I ) I-J 
L A1Sq (un Sq (x) 

ltr)<K J~I llt)<k 

{5.6.1) 

(5.6.2) 

By corollary 5.2.1 since k 
~(I) < k only powers of un less than 2 

can appear in any term. Applying Cartan formula to the first term 

we get 

A1sq1(unx) = I I. A1SqJ(un)Sqi-J(x) = 

= I AISqJo (un)Sqi-Jo (x) + I 
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Where J = {2k-l 2k-2 2 1 0 0 } s. 1 . . t 0 , , ... , , , , , ... . 1nce on y surv1v1ng erms 

of second term are when J has same form as J0 but with smaller length, 

all powers of un in second term are less than 2k. We may therefore 

write 5.6.2 as (note SqJo (un) = u~ ): 
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u~ I AISqi-J (x) + terms with powers of un less than 2k = 0. 

Since I - J0 s ~ and d(I - J0) < n then by induction AI = 0 

¥ I with 2(I) = k. Repeating this argument we get AI = 0 ~I. Therefore 

{Sqi I I s~} are linearly independent and since they span A(2) the 

theorem is shown. 

Theorem 5.6 gives us a basis for A(2) as graded z2-vector space. 

This basis is called Serre-Cartan basis. Applying the results of 
i Theorem 4.10 we can see that the set {Sq I i power of 2} is a set of 

generators for A(2) as algebra. We remark that this is in fact a 

minimal set of generators, however they do not generate A(2) freely. 

A(2) as Hopf Algebra 

Definition 5.7: B is a graded R-coalgebra if 

0) B is graded R-module 

1) there is homomorphism~ B + B ® B called comultiplication 

2) there is homomorphism C B + R called counit 

3) the following two diagrams commute 

8-----+B ® B 

~ 1 l ~ ® 1 
B ® B B ® B ® B 

R®B 8 B®R 

C®l j / ~ ll®C 
8 ® 8 ~ ~ 8 ® 8 

Definition 5.8: A is a Hopf Algebra over R if 

1) A is graded R-algebra with multiplication m and unite 

2) A is graded R-coalgebra with comultiplication ~ and counit e 

3) e : R +A is coalgebra morphism 
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4) C A+ R is algebra morphism 

5) b A+ A ® A is algebra morphism 

It can be shown that 5.8.5 is equivalent to m : A ® A+ A is 

coalgebra morphism. Roughly speaking a Hopf algebra is a graded 

R-module with both algebra and coalgebra structure such that coalgebra 

operations 1 respect 1 algebra operation and conversely. We will now 

show that A(2) can be given a Hopf algebra structure. A(2) has 

already been given an algebra structure (e : z2 + (A(2)) 0 is given by 

1 + Sq0 ). In fact A{2) is a connected z2 algebra (a graded R-algebra 

A is connected if A0 = R). To give A(2) a Hopf algebra structure we 

need to define b and C and verify 5.8.3, 5.8.4 and 5.8.5. 

To define counit C : A{2) z2 we let Sq; = f 1 i = 0 
0 i 1 0. 

5.84 is easily checked. 

To define b A{2) + A(2) ® A(2) consider the following diagram 

p 
T(V) A(2) = .... 01 .. ~-----6 

T(V)/tl. 

A(2) ® A(2) 

Define a: T{V) + A(2) ® A(2) by o{Sqi ® Sqi ) = I Sqi-J ® SqJ 

where I= {i 1, ... ,ik} and extend linearly. If we can show that o is 

algebra homomorphism and o{I) = 0 then o will induce an algebra homo-

morphism b : A(2) + A(2) ® A(2). 

Proposition 5.9: o is an algebra homomorphism. 

Proof: By definition o is graded vector space homomorphism, thus 

we need only to show that o preserves multiplication. 



Let I = { i 1 , ... , i k} J = { j 1 ' · · · ' j t} · 

8 {Sqi'® ... ® Sqi~) • (Sqj' ® ... ® Sqj'-) 

= 8{Sqi, ® ... ® Sqi"'® Sqj' ® ... ® SqjJ. 

= L Sq ( I 'J ) - ( I I 'J I ) ® Sq ( I I 'J I ) 

= (I Sqi-I' ® Sqi') (L SqJ-J' ® SqJ') 

= 8 (Sqi' ® ... ® Sqi") 8(Sqj' ® ... ® Sqj 1 ) 

This shows that 8 is an algebra homomorphism. 

It remains to show that o{&) = 0. It turns out to be inconven-

ient to verify that o is zero on generators of J. We will instead 

used the following 'trick'. 

Let P = Pz2 (u1, ... un, .. ) P = Pzl(w1, ... wn ... ) 

P = Pz2 (u1' ... un ... w1' ... wn, ... ) 

p 
T(V) A{2) 

1 ~2n 
A(2) ® A(22 p ® p -p 

An ® An P("') ·-

For each n > 0 define An ( Sq I) I ... ,un) = Sq ( u 1, 

(Sqi) I ... ,wn) A = Sq (w1, 

A (Sqi) = I Sq ( u 1, ... ,un' w1' ... wn) 

p be natural isomorphism 
-

One can show that An' ~n ~2n are monomorphisms for {A{2))j for 

j ~ n. The proof is similar to the proof of Theorem 5.6. Since z2 
-is a field An ® An is also a monomorphism over the same range. 
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Proposition 5.11: The previous diaoram is commutative. 

Proof: Consider basis element Sqi ® ... ® Sqi of T(V). 
i i = I I 

. ).2n (Sq ® ••• ® Sq ) = ).2n(Sq ) = Sq (ul' ... un' W1 ... Wn) = 

\ I-J J 
t.. Sq ( u 1 , . . . u n ) Sq ( W 1 Wn). The last equality is by the 

Cartan formula. 

p(An ® In) o(Sq i ® Sq i ) = p(An ® An) I Sql-J ® SqJ = 

I J J . 
p(I Sq - (u 1 ... un) ® Sq (W1 ... Wn) 

I-J - J -
= I Sq . (u1 ... un) Sq (Wl ... Wn) Thus r2np = (An ® ~n). 

It is now easy to establish that o(~) = 0. Choose x c J then 
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p(x) = 0 thus I 2np(x) = 0. Choosing n larger than deg (x) we have by 

proposition 5.11 that p(An ®I) (x) = 0. But p(A ®I) is monomorphism 
n · n n 

in the range j < n thus o(x) = 0. This establishes the existence of 

algebra homomorphism~: A(2) + A(2) ® A(2). It is now easy to 

establish 5.8.3. 

Structure of A*(2) 

We have established that {A(2), m, e, ~, c} is a Hopf Algebra. 

Now consider the dual A*(2) = (A(2))i*. Since (A(2) ® A(2))* is 

naturally isomorphic to A*(2) ® A*(2) the comultiplication ~naturally 

induces a multiplication ~*on A*(2) by the following diagram. 



Similarly m induces comultiplication m* A*(2) + A*(2) ® (A*(2) 

e induces counit 

C induces unit 

e* A*(2) + z2 

C* z2 + A*(2) 

It is well known that {A*(2), ~*, E*, m*, ~*}is a Hopf Algebra. 

The structure of A(2) as an algebra is a fairly complicated system. 

It is surprising, then, that the structure of A*(2) is very simple. 

The majority of this section will be devoted to showing that A*(2) is 

a polynomial algebra over z2. We will also give a description of the 

comultiplication m*. 

Since {Sqi I I E~} is a vector space base for A(2) then (Sq 1)* is 

a vector space base for A*(2). 

and let ~ = ( Sq 1 ) *. Note ~k e 

k-1 k-2 Let Ik = {2 ,2 , ... 2,1,0,0, ... } 

(A*(2)) 2~_ 1 . We will show that (Sq 1)* 

for I E~ may be written as product of ~k's. Since the basis elements 

for A*(2) may be written as monomials in ~k' it follows that A*(2) as 

an algebra is the z2 polynomial algebra generated by sk's. 

Let 9 again denote all admissible sequences and R all sequences 

eventually zero. Define V: ~-R by V(i 1, ... in,0, ... ) = 

(i 1-2i 2, i 2-2i 3, ... in_ 1-2in, in' 0, 0, ... ) 

Let ~V( I) = s i, -2iz s i2 -2i5 s in·• -ins i" 
1 2 n-1 n 

The following facts follow immediately: 

1) V is onto 

2) As I runs through J, sV(I) runs through all monomials 

3) deg (sV(I)) = deg(I) 

From the above facts if we can show ~V{I)(SqJ) = I = J 

otherwise 
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it follows that ~V(I) = (Sqi)*, which will verify the claim of the 

structure of A*(2) as algebra. 

We first examine the multiplicative structure on A*(2). If 1 

f, g £ A(2)*, I £ ~ (f • g)(Sqi) = ~*(f ® g)(Sqi) = ~*p(f ® g)( Sqi) = 

p(f ® g)(~Sqi) = p(f ® g)(I Sqi-J ® SqJ) = I f(Sqi-J) • g(SqJ) where 

p represents the canonical isomorphism from (A (2) ® A(2))* ~ 

A*(2) ® A*(2). 

Theorem 5.12: A*(2) as an algebra is polynomial algebra over z2 

generated by ~ 1 , ~2 , .... 

Proof: From previous comments it is sufficient to show (Sqi)* = 

~ V (I) for I £ ~ • In we consider the 1 exi cographi ca 1 ordering, i e, 

if I= (i 1,i 2, ... ik,o,o, ... ) J = (J 1,j 2, ... j 1,o,o, ... )then 

I < J if i 1 > j 1 or if i 1 = j 1 and i 2 > j 2 or ; 1 = j 1, i 2 = j 2 and 

; 3 > j 3 and so forth. We proceed by downward induction. Clearly 

I= (~,0, ... ) is •largest• sequence and (Sq0 )* = ~V(O,O, ... ). 

Assume ~V(J) = (SqJ)* and J >I. If I= {a1,a2, ... ak,0,0, ... }let 

I I _ 2k-1 2k-2 0 - {a1- , a2- , ... ak-1,0, , ... }. Then I 1 £ ~ and I• >I. 

Since V(I) = {a1-2a2, a2-2a3, ... , ak,0,0, ... }and V(I•) = {a1-2a2, 
V(I) _ v(I•) a2-2a3, ... , ak-1,0,0, ... } we see that~ - ~ • ~k· Consider 

~V(I)(SqJ) = ~V(I 1 )~k(SqJ) = ~* p(~V(I 1 ) ® ~k)(SqJ) = 

I (~V(I•)(sqJ-J•). ~k(sqJ·). 

The only surviving term on right hand side is where J• = {2k-1, 

2k- 2, ... ,2,1,0,0, ... } = Ik thus ~V(I)(SqJ) = ~V(I•)(SqJ-Ik). 

Noting that J - Ik £ ~ by induction J - Ik = I• but I - Ik = I 1 

implying that I = J as was to be shown. 
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We now wish to investigate the comultiplicative structure of A*{2). 

m* is given by the following diagram 

m* 
A*(2) ----~(A(:) ~r A(:))* 

m* 

A(2)* ® A*(2) 

Theorem 5.13: Considering A*(2) as Hopf Algebra, then comulti­

plication is given by iii*(t;k) =I t;~~i ® t;i. 

Proof: We will show 5.13 by showing m*(sk)(Sq 1 ® SqJ) = 

P(L t;~~i ® si)(Sq1 ® SqJ)~ m*(sk)(Sq 1 ® SqJ) =t;km(Sq 1 ® SqJ) = 

t;k(Sqi • SqJ) = sk(Sq(I,J)). 

Let Ik . = {2k-l,2k-2 2i 0 0 } d I. = {2i-l, 2 1 0 0 } 
'1 ' •.• ' ' ' ' . . . an 1 •.• ' ' ' ' ' ' ' 

We now get the following: 

if I = Ik,i J = I; for some i 

otherwise 

Now we must calculate p(' r- 2' ® s1.)(Sqi ® SqJ). First we make two 
L.. <, k-i 

observations: 

sV(IK,i) = sk2'. 
-1 

= s. 
1 

(5.13.1) 

{5.13.2) 

5 13 1 f 11 . v ( ) 0 0 2; 0 0 h 2 i . . . . o ows s 1 nee I k i = { , , ••• , , , , ••• } w ere 1 s 1 n 
' 

(k-i)th place. 

5.13.2 follows since V(Ii) = {0,0, ... , 1 ,0,0, ... } where 1 is in the 

.th 1 1 p ace. 
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2K. I J 2K I 
From the above p(~k-l ® ~;) (Sq ® Sq ) = ~k-l(Sq ) 

if Ik . J = I. 
'1 1 = 

othen'li se 

Thus p(I 
2 1 I J 

sk-i a s;)(sq a sq ) = f : if Ik . J ,1 
= I; for some i 

otherwise 

This completes proof. 

Let A be graded R-algebra and M, N be graded (left) A-modules. 

Let Hom~(M,N) be those A-homomorphisms of deqree t, ie Hom!(M,N) = 

{f : M + N I f(Mn) c Nn+t} Take a projective resolution 

do dl o + M + x0 + x1 + (5.14) 

of M by projective graded A-modules, X;. 
·- 1 

Now take Hom~( ,N) of 5.14 and we arrive at the following cochain 

complex: 

(5.15) 

We define E~'tU~,N) = H5 (Hom!(x ,N)). One may show that this defini­

tion is independent of the choices made. 

We now let A= A(2), the Steenrod Algebra and M = N = z2. The 

computation of Ext~(~)(z2 ,z2 ) will prove to be of great importance in 

Chapter VI. At first one might suspect that since z2 is small that 

Ext~(~)(z2 ,z2 ) might be easy to calculate. However, we must get a 

resolution 0 + z2 + X0 + x1 + •.. of z2 by projective A(2) modules, 



and these Xi's turn out to be huge. In fact, Ext~{i)(z2 ,z2 ) is known 

only for a finite range of s. 

The following theorem, due to Adam's [2], gives us a partial 

result in the computation of Ext~(i)(z2 ,z2 ). We then list, in 

Figure 8 values of Ext~(i)(z2 ,z2 ) for s - t < 14. 

Theorem 5.16: Extl(i)(z2,z2) has as a z2-basis a generator for 
i each t which is a power of 2. The generator in the 2 ·graduation is 

denoted hi. Ext~(i)(z2 ,z2 ) is generated by the products hihj 

subject to the relations hihi+l = 0 (i .~ 0). Extl(i)(z2,z2) the 
2 3 products hihjhk are subject to the relations hihi+2 = 0 and hi = 

2 
hi~lhi+l and the relations implied by hihi+l = 0. There are other 

generators for Extl(i)(z2,z2) however. The first such generator c0 

appears in the bigrading s = 3, t = 11. 

When referring to Table II it is to be understood that there is 

a nonzero generator h~ s Ext~(~~~2 ,z2 ) for every s ~ 0, but otherwise 

all other generators are shown. 

In this chapter we have constructed an algebraic system with the 
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properties of the Steenrod squaring operations built in. The Adem 

relations are :imposed directly in the definition of A(2). The Cartan 

formula gives us the diagonal map which makes A(2) into a Hopf Algebra. 

It also allows us to view the cohomology ring of a space as an algebra 

over the Hopf Algebra A(2). In the next chapter we will use the 

Steenrod Algebra to deduce further restrictions on fibering spheres 

by spheres. 
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CHAPTER VI 

SPECTRAL SEQUENCES AND FIBRE SPACES 

In this chapter we first introduce some algebraic machinery needed 

to complete our investigation - that of the spectral sequence. In 

general spectral sequences are extremely difficult to work with~ how-

ever, in many important cases the spectral sequence 11collapses 11 or 

satisfies certain conditions which make it more manageable. Chapter 

15 of Switzer [10] gives several such examples and provides useful 

practice in working with spectral sequences. 

We will, in particular, introduce the cohomology spectral sequence 

of a fibre space. From this spectral sequence several important results 

may be derived, such as the exact cohomology sequence of a fibre space 

and the proof of Theorem 4.5. 

As was previously mentioned, the final resolution of our fibering 

problem requires the introduction of certain cohomology operations 

called secondary operations. Using these operations and the Adam's 

spectral sequence it is possible to show that if f : s2n-l + sn is a 

sphere fibering then n = 2,4,8. The proof, however, is very long and 

complicated. We will therefore only introduce the needed concepts 

and indicate the general approach in the proof. 
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Spectral Sequences 

Definition 6.1: (A,8, F) is a cochain complex with a decreasing 

filtration if: 

(6.1.1) 0 8 1 8 A:+ 0 + .. + 0 +A +A + ... +is chain complex of 

R-modules 

(6.1.2) For all integers p there is a subcomplex FPA, ie, 

FPA : 0 + ... + FpAo + FPA1 + ... is chain complex, 

FpAn submodule of An and coboundary is restriction of o. 

to FpAn 

(6.1.3) Fp+lA is subcomplex of FPA 

p is called the degree of filtration. 
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We impose the following restrictions of filtration F called strong 

convergence conditions. 

(6.2.1) FpAn =An if p ~ 0 

(6.2.2) FpAn = 0 if p > n 

Consider the following exact sequence of complexes. 

(6.3) 

From general theory 6.3 induces the long exact sequence (using zig-zag 

scheme) 

ti* 

ti* 



... ~ Hp+q(Fp-rA) ~ ... 

t ; 
Hp+q-l Fp+r+lA 1 Hp+q(Fp-r+lA) ~ .•. 

Fp+r+2A f i 

. 
t i 

~ Hp+q(Fp-lA) ~ 

f,; 
~ Hp+q(FPA) ~ 

1 i 
Hp+q(Fp+!A) i Hp+q(FPA/Fp+!A) t Hp+q+~(F:+!A) ~ 

Hp+q+l(Fp+2A) 
t . 

1 

t ; 

Hp+q+l(Fp+r) 

t ; 
Hp+q+l(Fp+r+lA) 

t 

Figure 9. Long Exact Zig-Zag Pile Up 



The long exact sequences may be piled together yielding Figure 7. 

We now define 

k- 1 o i(r-1) : Hp+q+1(Fp+rA) ~ Hp+q(FPA;FP+1A) 
E~'q = j(ker i(r-1)): Hp+q(Fp-r+lA) ~ Hp+q(FPA/Fp+lA) 

j(Hp+q(FPA) 
E~'q = (j o s)(Hp+q-1(A/FPA)) 

In E~'q, sis the homomorphism Hp+q-l(A/FPA) ~ Hp+q(FPA) which 

is induced by 0 ~ FPA ~A ~ A/FPA ~ 0. 

Proposition 6.5: If Ep,q and Ep,q are defined as above, then 
r 

(6.5.1) If r = 1 then E~'q = Hp+q(FPA/Fp+lA) 

(6.5.2) E~,q = Ep,q if r ~max(p,q+l) 

Proof: 6.5.1 is trivial and 6.5.2 follows directly from the 

strong convergence condition which states that for sufficiently large 

r, Fp+rA = 0 and Fp-r+1A = A. 

We will now define a differential d.r : E_~,q ~ E~+r,q-r+l 

x £ Ep,q where x is a representative of x. The kx = i(r-1)y for some 
r 

y £ Hp+q+1(Fp+rA). We define dr(x) = j(y). It is a routine exercise 

to show dr is well defined and has the proper range. 

Proposition 6.6: dr o dr = 0 

Proof: Choose Z e Ep-r,q+r- 1, then there is au£ Hp+q(Fp+lA) 
r 

such that i{r-l)u = k(Z). By definition dr(Z) = j(u). By exactness 
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kj(u) = 0 therefore choose 0 e Hp+q+1(Fp+rA) and i(r-l)(O) = kj(u) = 0, 

thus we may use 0 in definition of dr. It follows that dr o dr(Z) = 

j(O) = 0. 

By 6.6 we may define H(E~+q) = ker dr/im dr. The following 

theorem tells how one may compute Ep,q from Ep,q and dr. r+l r 



Theorem 6.7: 

{~~,q' dr} is called the Leray spectral sequence for (A,o,F). 

Our final goal is to use this spectral sequence to gain information 

about Hn(A). We will do this by defining a composition series of 

Hn(A), that is, a decreasing sequence of subgroups of Hn, then relate 

the terms of this series to the Ep,q terms. This is accomplished in 
00 

the following manner. 
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Let Hn{A) = Hn(F0A) and i(p) : Hn(FPA) + Hn(F0A). We define 

FpHn(A) = im i(p). This results in the following {finite) composition 

series for Hn(A): 

The following theorem states that successive quotients of the series 

6.8 are the groups Ep'q. 
00 

Under these conditions we say our·spectral sequence converges to 

H*(A). 

The previous results supply us with a computational tool for 

gaining information about Hn(A). 6.5.1 allows us to start by comput­

ing E~'O We then determine d1 and Theorem 6.7 allows us to compute 

E~' 0 . Repeating this process, by 6.5.2 we eventually arrive at E:· 0. 

This gives us the FnHn(A) terms of our composition series. Repeating 

the above process n-1 1 · n-1 1 (starting at E1 ' ) we can compute E"" ' . This 

(up to extension) gives us Fn-lHn(A). Successive computations lead to 

(after a finite number of steps) Hn(A), up to extension. 

This is not to suggest that the problem of finding Hn(A) is 



routine. Determining the differentials and solving the extension 

problems are, in general, very difficult. However in many important 

special cases these computations may be carried out. 

The Cohomology Spectral Sequence for Fibre Spaces 

We begin by recalling that if E and B are spaces and p a map of 

E onto B, then {E,p,B} is said to be a fibre space in the sense of 

Serre if {E,p,B} has the HLP for finite complexes. Notice that fibre 

bundles are a special case of fibre spaces. In all our discussions 

we will assume that B, the 11 base space", is arcwise connected, and 

we will refer to p as the "fibre map 11 • 

Choose a base point * in B. Then p-1(*) is a subspace of E, 

called the fibre F of the fibre space. For any b E B, p-1(b) is 

called the fibre over b. It is well known that any two fibres, which 

are both finite complexes, have the same homotopy type. 

The following are important examples of a fibre space. 

Example 6.10: Let B be arcwise connected space,* a base point, 

E the space of paths in B beginning at * (with the compact-open 

topology) , and let p project a path onto its terminal point. Then 

{E,p,B} is a fibre space with the fibre being nB, the space of loops 

in B at * It is easy to see that E is contractable, thus the homo­

topy sequence for a fibre space yields rrn(nB) ~ rrn+l(B). 

78 

Example 6.11: Let B be a K(rr,n) space. Construct the fibre space 

{E,p,B} given by Example 6.10. Then the fibre F = nB is a K(rr,n-1) 

space, thus we have the following fibre space: 



F = K(rr, n-1) ~ E 

+ 
B = K(rr,n) 

Fibre spaces may be thought of as a generalized product spaces. 

In cohomology the relationship between the total space E and the pro-

duct space B x F is expressed by means of a spectral sequence which, 

under certain hypothesis, starts with the product of the cohomology 

of B and F and converges to the cohomology of E. 

Theorem 6.12 (Serre): Let {E,p,B} be a fibre space with fibre F, 

and suppose B and F are arcwise connected. Let our coefficient module 

R be a ring. 

{6.12.2) Ep,q 
1 = cP(B) ® Hq(F) 

{6.12.3) Ep,q = Hp{B;Hq(F)) if B is simply connected. 2 
(6.12.4) The spectral sequence converges to H*(E) 

Although, in general, fibre spaces do not yield long exact 

sequences in cohomology as it does in homotopy, Theorem 6.13 gives 

a result in that direction. 

Theorem 6.13: Let {E,p,B} be a fibre space with B simply con­

nected. Suppose Hi(B) ~ 0 for 0 < i < p and Hj(F) = 0 for 0 < j < q. 

Then there is a finite exact sequence: 

H1(E) ~ ... ~ Hp+q-2(F) l Hp+q- 1(8) £*Hp+q~1 (E)i! Hp+q- 1(F). 
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Proof: From 6.12.3, E~'j = 0 when either 0 < i < p or 0 < j < q. 

Using 6.8 the series collapses to the exact sequence. 

From general theory we have the exact sequence 

O ~ EO,n-1 ~ EO,n-1 d~ En,O ~ En,O ~ O 
ro n n ro . 

(6.13.1) 

(6.13.2) 



80 

Now from 6.12.3 if n < p + q we have En,O<= Hn(B) and EO,n-1= Hn- 1(F). 
n n 

6.15.2 thus yields the exact sequence. 

0 + EO,n- 1 + Hn-1(F) 1 Hn(B) + En,O + 0 
00 00 

(6.13.3) 

Now splicing together 6.13.1 and 6.13.3 for n < p+q we get the 

finite exact sequence. One may check that the remaining connecting 

homomorphisms are, in fact, p* and i*. 

The map T : Hn- 1(F) + Hn(B) which corresponds to dO,n- 1 is called 
n 

the transgression. Thus far it is only defined for n < p+q, where p,q 

satisfy Theorem 6.13. Let us, however, define the transgression more 

generally as d~,n- 1 E~,n- 1 + E~' 0 . Then the transgression has a 

subgroup of Hn-1(F) as its domain and takes values in a quotient group 

of Hn(B). We say that x £ Hn- 1(F) is transgressive if T(x) is defined 

or equivalently, if.di(x) = 0 for all i < n. One may show that this 

is equivalent to the condition that &x € im p* c Hn(E,F) where 

pis considered as a map p : (E,F) + (B, *); moreover, if ox= p*(y), 

then T(x) contains y. 

The next lemma immediately follows from the preceding remarks. 

Lemma 6.14: If xis transgressive, then so also is Sq1(x); 

moreover, if y £ T(x), then Sqi(y) £ T(Sqi(x)). 

Definition 6.15: A graded ring Rover z2 is said to have the 

ordered set {Xi'Xi ... X; I i1 < ·j2 < •.• <. ir} form a z2-basis 

for Rand if, for each n, only finitely many X; have graduation n. 

The following theorem is due to A-Borel and, along with Lemma 6.14 

provide us with the tools to prove Theorem 4.5. This will complete 

our verification of the Adem relations. 
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Theorem 6.16 (A. Borel): Let {E,p,B} be a fibre space with fibre 

F and E ae:)'Cl,ic. Suppose H*(F;Z2) has a simple system {x;} of trans­

gressive generators. Then H*{B;Z2) is the polynomial ring in the 

{T(Xi) }• 

Theorem 6.16 (4.5): H*(K(z2,q);Z2) is the polynomial ring over 

z2 with generators {Sqi(tq)} where I runs through all admissible 

sequences of excess less than q. 

Proof: r-1 r-2 Let L(P,r) denote the sequence 2 p,2 p, ... , 4p,2p,p 

where p > 0 and r ~ 0. If r = 0 we write L( ,0). Then the excess of 

L(p,r) is p, and the length of L(p,r) is r, and the degree of L(p,r} 

is p(2r-1). 

The theorem has been shown for q = 1. We proceed by induction 

on q. Suppose it is true for q and consider the fibre space (see 

Example 6.13) 

F = K(Z2 ,q)-+ E 

+ 
B = K(Z2,q+1) 

By hypothesis H*(F;Z2) is the polynomial ring over z2, with 

generators {Sqi(tq) I I£ t' e(I) < q} . We will write H*{F;Z2) = 

P {Zj} where {Zj} are the Sq 1(tq) suitably indexed. Let Pj denote 

the dimension of Zj (which is q plus the degree of the corresponding I). 

Then {Zj) 2 = Sql{p ,r)(Zj). And the {(Zj) 2 } form a simple system 

of generators for H*{F;Z2). Since tq is obviously transgressive, 

T(tq) = tq + 1, all these generators are transgressive and Theorem 6.18 

applies: 
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= P {T (Z2 )} = P {T Sql(P ,r)Z.} = P {Sql(P ,r)T(Z.)} 
J J.~ 

= p {Sql(P ,r)Sqi'q+1} . (I is from Zj). 

The theorem will be proved when we have shown that, as I runs 

thro~gh all admissible sequences with e(I) < q, L(q + d(I),r) • I runs 

exactly once through all the admissible sequences with e(I) < q + 1. 

It is clear that every L( ... ) • I is admissible. We will now 

construct an inverse function J + LI where J E i and e(J) < q +1. 

This will complete the proof. 

Any admissible sequence J = {j 1,j2, ... ,js} may be written (in at 

least one way) as J = {j 1, ... jt} • · {jt+1' ... ,js} where ji = 2(ji+1) 

for all i ~ t- 1 (t may be zero). Then J = L(jt,t) • I and e(J) = 

jt + e{I) - 2{jt+1) if t ~ 1; e(I) = e(J) if t = 0. Since 

e{I) = 2i 1 - d(I) then substitution yields e(J) = jt- d(I) fort> 1. 

Now if t = 0, each J with e(J) < q has unique expression L( ,0)· I 

with e{I) < q; if e(J) = q, then J obviously has a unique expression 

of the form LI. 

If t ;..1, we have e(J) = jt- d(I). Hence e(J) = 1 iff · 

jt = q + d(I). Thus if e (J) = 1, J has a unique expression L( ,0) · I 

with e(I) q. If e(J) = q, we choose t as the minimum t such that 

J = l(q + d{I),t) • I (with e(I) < q), namely, the t for which 

jt > 2(jt+1). 

This completes the proof of the theorem. 
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The Final Result on Fibering Spheres by Spheres 

In Adams (1J the question of the existence of fibering spheres by 

spheres was finally resolved. In this paper Adams showed that unless 
n m m+n . m+n m n = 2,4,8 that Sq : H (K;Z2) ~ H (K;Z2) 1s zero where K = B u S : 

This implies that unless n = 2,4,8 f : s2n-1 ~ Sn cannot be a fiber-

ing of a sphere by sphere. 

The method of proof is analogous to that of Theorem 4.10. In 

this theorem it was shown that unless n = 2k that Sqn was decomposible 

into elements of the first kind (that is, squaring operations). 
k+1 m 2 If n = 2 , k ~ 3 and u t: H (X;Z2) such that Sq (u) = 0 for 

0 < i ~ k it is possible to define operations of the second kind 

g,:,. on.;u, 0 < i < j t i + 1 and j < k. The value <P· . (u) is a coset 
l,J - - l,J 

in Hq(X,Z2) where q = m + (2i + 2j- l),that is <Pi,j(u) t: H*(X;Z2)/ 

Q*(X;i,j). Q*(X;i ,j) is the sum of images of composites of Steenrod 

squares. 

Adams defined a certain spectral sequence whose E2 term was 

naturally isomorphic to ExtA( 2)(z2,z2) described in Chapter V. Using 

this spectral sequence he was able to establish a formula, which is the 

same for all spaces: 

Sqn(u) =I A .. k. <J?1. J.(u) modulo I A1. J. k Q*(x;i,j). 
1 ,J ' ' ' ' 

In this formula each A .. k is a certain sum of composites of Steenrod 
1 ,J' 

squares. Applying this formula to K = Bm+nLI Sm we can conclude that if 

u t: Hm(K;Z2) then Sq2 (u) = 0 for 0 < i < k. The cosets <P· .(u) will 
1 ,J 

thus be defined for j ~ k and they will be cosets in zero groups. The 

formula will be applicable and shows that Sqn(u) = 0 modulo zero. Since 



n = 2k+l k > 3 this shows that for f : s2n-l ~ sn (n 1 2,4,8), 

H(f) 1 ±1, thus the nonexistence of fiberings of spheres by spheres 

unless n = 2,4,8. 

We make an additional remark. Using K-theory there exists an 

expecially short proof of the~results of Adams. The reader who is 

familiar with K-theory may refer to Husemoller [3J for the proof. 
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