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CHAPTER I
INTRODUCTION -

Many criteria have been devised for the purpose of.comparing test
statistics,: Some.of these criteria are based on the asymptotic behavior
of the test statistic; that is, on the limiting properties of the test
statistic as the sémplersiZe approaches infinity. In particular,

R. R. Bahadur /(1) has proposed two asymptotic criteria, one based on
the rate of convergence to zero of the level of significance attained
by the test statistic, and the other based on the rate of convergence
of an approximate level of significance. One point to notice is.that
these criteria do not rely on any reference to power gr size of the
test statistic, although there is a connection. The present study

investigates some of the mathematical properties of these criteria.
Approximate Bahadur Efficiency-

Denote by. s =.(Xx,, X,, ..., ad inf) a sequence of realizations:
1’ X2 4

of the random variables X,, X,, ..., whose probability distribution.

Pe- depends on a parameter 6 which belongs to a set © , and let H

be the null hypothesis H: 6 ¢ ©, » where ©0,C 6 . For n=1, 2, ,..,

let . Tn(sJ» be a real valued statistic which depends only on the first

n- observations x X, - Large values of Tn will be taken as.

1, 200y

significant for rejecting H ; that is, lending incredibility to the

tiuth of H.



Following Bahadur (1) , {Tn} is called a standard sequence if
the following conditions are satisfied:
i) There.existsfa continuous,distriﬁution function F such J
that Fn(t) + F(t) as  n-+ » Where Fn is the distri-
bution function of Tﬁ when 6 ¢ @0 .

ii} There exists 'a real number a-> 0 suéh-that_

log[1-F(t)] = - %atz[luko(l)] as t - o
iii) There exists'a positive function b(8) on 0 - 9 such
that :
T
—— + b(6) in probability [6]
n

Then c¢®)(6) defined by c¢@® (6) =0 for 6 e 0. and c(® (6)=ab?(e)

0

for 6e0-6, 1is called the (approximate) slope“of‘i{TH} . If '{Tﬁl)}

and"{Téz)} are two standard sequences with slopes éfa)(e) and

(2) ~ @y ST ©)
¢y (8) , respectively, then ¢12 (6)::;T;T?g; is called the (approxi-.
2 ?

mate) Bahadur efficiency of {Télj}_ with respect to -{ng)} .

It is-seen that 1-F(Tn(s)) is an approximation to the null-
probability of obtaining a value of Tn larger than the observed
~ value, Tn(S)v, That is,with L(t) = 1-F(t) , LCTnCs)) approximates
the level attained by the‘statisiic ‘Tn when s 1is observed.
Bahadur shows [1 ] that if Kh(s). is defined by KnCs) = -2 log L(Tn(s))g

then %gKn(s) +_c(a)(6) in probability . [6] , and hence that -

(1)
K "7 (s)
E%§T?;; - ¢§g)(e) in probability [6] . By considering as desirable

n



test statistics which yield small values of L(Tn(s)) ; it follows that

large values of Kn(s) are desirable. Thus Tél) is judged superior

(@) 4y

to Téz) if ¢(a)(6) > 1 . This is one.sense in which ¢12

12
measures the asymptotic relative efficiency of {Tﬁl)} with respect
to {T(z)} .

n

The function wlz(eo) = lim ‘(a)(e) is of special interest,

¢
. 12
6+60
partly because it is equal to the Pittman efficiency in most cases (1),

Exact Bahadur Efficiency

With Ln(t) defined by Ln(t) = 1—Fn(t) , it is seen that
Ln(Tn(s)) is the (exact) level of significance attained by Tn when
s 1s observed. In typical cases there is a function c(6) , called
the exact slope of Tn , such that - %-log Ln(Tn(s)) - ¢(6) with

probability one [6] . It follows immediately that

-2 log L (r{M (s)) G©
02(6) RS V) >

-2 10g 1L 1P 53y

as in the case of approximate slopes.

For fixed o , 0 < a < 1, let N(a,s) be the smallest integer
m such that Ln(Tn(s)) <o for all n > m ; that is, N(o,s) may
be regarded as the smallest sample size necessary to attain a level
smaller than a for all larger sample sizes when s is observed.

-2 log o

Then 1lim —N—(E-,—S—)-“

o0

= c¢(6) with probability one [6] , and

consequently,



lim NCZ)(“’S)

i (8) with probability one [6]
a>0 N (a,8)

= %92
For proofs, see Bahadur (1). This is another sense in which
¢12(e) measures the relative efficiency of {Télj}‘ with respect to

(2D
{r=1 .

For a further discussion of c(a)(e) and c¢c(8) , see (2)..
Calculation of Slopes

The actual calculation of approximate slopes is generally easy,
in contrast to the relative difficulty of calculating exact slopes.
Some techniques have been devised which greatly simplify the calcula-
tion of exact slopes for certain classes of statistics, for example
(3),, (8, and (14). A theorem will now be stated, without proof,
which utilizes large deviation theory in calculating exact slopes.

For a complete proof, see I. R. Savage (13).

Theorem 1.1: If {Tn} is a sequence of statistics which satisfy

the following two properties:

i} There exists a function b{8) , 0 < b(8) < = , such

~3

that -+ b(6) with probability one [6]

n
Vn
ii} There exists a continuous function £(t) such that

for each t in some neighborhocd of b(8) ,

-1 » -
1lim = log PO{Tn > vn t}l = £(t)

n=->oo

Then the exact slope of {Tn} is given by c(8) = 2£(b(8)) .



An example is now given to illustrate the use of Theorem

1

.1,

Example 1,1: Let Yi , 1 =1,2,... , be independent random variables,
each distributed exponentially with parameter A > .0 , that is
PX{Yi <tl=1l-e At , and consider the hypotheses H: & = Xo and
Ar h < hy where Ag > 0 is fixed. Define {Tn} by
1 Tn- 1 1
Tﬁ =‘-'/-ﬁ-. (Y1+M°+Yn:) , n=1,2,... Then T/:T = Y (Y1+000+Yn) e v

with probability one [A] , so condition i} of Theorem 1.1 is met with

1

b()\) = T o A].SO,
P, {Tn > vn t} = P, {(Y;*...#Y ) > nt}
0 0
.1
= 0 <1 e-kox dx
- (n-1J!
nt
” 1 n-1 -x
‘j D! dx
ni,t
0 K -nkot
n-1 (nkot) e
= % T
k=0 )
-nAt mr.t)2 (mr )71
=e O [1#ni  t + — 0 __;Q_m___q
0 71 SR WY
as can be seen from properties of gamma distributions (9) . Values
of concern for t are those in a neighborhood of %— s, where i < X

so it may be assumed that A

0

t

~,
>

1.

is larger than the preceding term, so

(nAOt)n—l
T T -1

—nkot
e

< PA {Tn >/ t} < e

0

—nkot
[ s B

(nJ\.O‘t)n“1

(n-1)1

2

O b4

Thus each term in the sum above



= 1, so

‘ TS n-1 -(n-1)
Using Stirling's formula, linm /2 (n-1) (n-1) e
’ n> ' (n-1)!

' ' n-1 n-1
—nkot (nkot) ) -nxot Cnxot)

1 .
lim = log[e —nT——-j——-ﬂ = lim = log[e : -]
e 1 n-1J1 o 1 /Zw(n—l)(n—l)n-le-(n-i§

n-1
1 1 n n-1
= -A.t + lim = log[ ( ) (A te)” 7]
0 - n G;TE:YS n-1 270
; 1., 1 . n-1 n. .. n-1
= -xot -v§~11m H»log 2r(n-1) + 1;m = log =Tt 1im — log Aote
. Nree hogad N>
= -Aot +0+0 * log Xote‘
= -Aot + log Aot + 1,
- s L1
Similarly, since 1lim =logn =.0 ,
n->co n
1 —nlot (nkot)n~1
lim 5-1og[e +n - e —Aot + log Agt + 1.

n-—>co

Hence ii) of Theorem 1.1 is satisfied with f(t)=l0t-1og kot -1,

AO >\0
so c(A) = 2£(b(\)) = Z[EY; - log T #] .

For the purpose of comparison, another example is now given,

which is essentially the same as one by Bahadur (1) .

Example 1.2: Let Yi be distributed as in Example 1.1, and define

X. =1 if Y, >1 and X. =0 if Y. <1, Then P {X.=1} =
i i- 1 i A1

PA{Yizl} = e , S0 H and A in Example 1.1 are equivalent to

-A
. =1} = = 0 . =11 = e ot ;
H: PA{Xi"l} =Py = e and A: PX{Xi-l; =p, =e  >p,. With



T*

. 21 . n =A
{T;} defined by T; = 1/I—_l;()(li-‘,gm)(n) , it follows that ;i- +
with probability one [A] , so b*(A) = e-k . From a result by .
Bahadur (4),
1, : L 1-t
E—log PA {T; > v/n t} > -t log (=) - (1-t) logC——fST—J .
0 e 0 I-e 70
Thus f£*(t) = t log( ) + (1-t) log (——————— ) s
e  l-e”
so by Theorem 1.1
o -2 )
c*(A) = 2£*(0* (1)) = 2[e “log(———) + (l-e JIOgC )]
e 0 1-e

By combining the results of Examples 1.1 and 1.2, it is seen

that the relative efficiency of {T;} with respect to {Tn} is

-A -A
o log(—f=) + (1-0™) log (25—
6(0) = e l-e
A A
0 0
T - log T -1

Repeated -use of L'Hospital's Rule gives w(ko) = lim ¢(r) as

A+k0

v =

These examples have immediate application to life-testing if Yi

is regarded as the life time of the ith article on test.



An Upper Bound for Exact Slopes

One of the most interesting and important aspects of Bahadur
efficiency is the relationship between exact slopes and the Kullback- .
Liebler information function., The Kullback-Liebler information

function will now be defined. Let {Pe} be a family of probability

measures on the real numbers indexed by a set © . For simplicity, .
suppose each P6 is absolutely continuous with respect to Lebesque
measure. That is, there are density functions £, such that

6
Pe(S) = jn fe(x)dx for each 8e0 and each measurable set S of
s .

real numbers. Then for 6, and 6 belonging to © , the Kullback-

0

Liebler information number is

£, ()

K{e, 6 s ] 4
( feocx)]

} = Ellog
0 )

Bahadur (3) shows that K(6, 60) provides an upper bound for
exact slopes, and that the likelihood ratio statistic attains the
upper bound. The result is formally presented without proof in the

next theoren.

Theorem 1.2: If {Tn} is a sequence of tests for the hypothesis

H: eeeo versus A: 6@@-60 with exact slope c{(8) , then for 68@-@0 5

c(8) < 2J(8) =2inf K(8, 60)

60860

If Tn is the likelihood ratio statistic, then equality holds.



An application of Theorem 1.2 is to determine if a test is close
to optimal in the sense of asymptotic efficiency, as is illustrated in

Example 5 of (14).



CHAPTER II
PARTIAL CHARACTERIZATIONS OF BAHADUR EFFICIENCY

Comparisons have been made between various criteria for judging
between tests, and in particular, Bahadur efficiency has been compared
to other measures of asymptotic efficiency (see (1) and (3)). Also,
Bahadur (1) has shown that relations exist between Bahadur efficiency

and a criterion called domination, which is now discussed.
Domination

For two-standard sequences’ {Téll} and {Téz)} and for fixed
6 and o, 0<a <1, let 851)(a]e) - Pe{LCIJCTé?)) > a}
i=1,2, and let sn(1,2}e) = supa[eézl(ale) - Bél)(dle)] . (Notice
that 1—8&1)(u]6) is the power of a size a test which rejects for
large values of Téi).) Then {ng)} is said to dominate {Télj}
at 6 if lim §_(1,2]6) =0 .

n
n-—>-oe

Two of the relations betwWeen domination and Bahadur efficiency

are given in two theorems that follow. For complete proofs, see (1).

Theorem 2,1: If {Téz)} dominates {Tél)} ~at 6 , then ¢§;)(6) <1.

Theorem 2.2: If ¢§§)(6) < 1, then {Tézj} dominates {Téll} at 6.

It is asserted in (1) and in (7) that from Theorems 2.1 and

2.2 one can conclude that ¢£g)(e) <1 if and only if

10
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if {Téz)} dominates '{Tél)} but '{Télj} does not dominate {Tﬁz)} .
However, this is not quite true. The "only if" portion of the asser-
tion readily follows from the thedrems, but the "if" portion does not,
More specifically, assuming ’{Téz)} dominates {Tﬁlj} but {Tﬁlj}
does not dominate {Téz)} , the most one.can conclude from Theorems
2.1 and 2.2 is that éfg(ej <1 . To illustrate that this is the
case, an example is now given of two standard sequences- {Tﬁl)} and
:{Téz)} for which éfg(e} =1, {TEZJ} dominates {Tﬁlj} , but

{Tglj} does not dominate {Tﬁz)} . Thus it will be seen that Bahadur
efficiency does not distinguish between tests as sharply as previously
thought, in that there are pairs of tests which are ordered by the
domination criterion but not by Bahadur efficiency. It should be-
noted at this point that the example does not counter any statement
which is proven in (1) or (7) , but instead a statement of claim

about consequences of true theorems,

Example 2.1: Let XI’ XZ’ ..., be distributed normally and indepen-
dently with variance one.and mean u , where u is equal either to

zero or to a fixed and known value m > 0, and consider the

hypotheses H: u=0 and A: u=m . For n=1,2,... take-
TTEZ) - 2 (X, + ...+ X) . Then Tﬁﬂ is distributed mormally with
vn

- mean Ynu  and variance unity for each n , so when u = 0 ,

ng)(t) =.0(t) , where ¢ is the distxibution function of a normally
distributed random variable with mean zero and unit variance. Thus
Fn(t) - @(f) , 50 condition i) in the definition of a standaxd
sequence is met. Also, ¢ has the form prescribed by condition ii)

of the definition with a=1, as is shown in (1) . Finally,
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(2)
LI T probability [u] , so condition iii) is met, and thus

/n
{Tézl} is a standard sequence with slope céalon) =-m2 .

For fixed BCZ) , 0 < 8(2) < 1 , define the sequence '{an} by
8P (a |m) = 8@ . Now take 81 such that el g oy ana
for all n=1,2,... for which @fz)(un]m) > B(l) (that is, for all =n
larger than some no) , define kn by

(2) (1) , L@
B (o m) > 84 > 8.7 ()
n n
Then define ‘{Tél)} by Tﬁij = T(zJ . ~Thus F(l) = PCZ) , so it is

k n k
(1. n n
immediately seen that {Tn }

satisfies i) and ii) of the definition
of a standard sequence with a=1 ,

Now

Z
Brgz)(oclu) =f ® N(x; v/nu,1)dx

oo

o0

N{x;0,1)dx ,
-z +/nu
6]

1

\ 2
2 (.’X-’"ii_) " o0
2 1 20
where N(x:p,07) = —— e and J/ﬁ N{x;0,1)dx = a ,
. VA
o

N

SO

i

51 (a|m) e{i’(uimz

J[‘ N({x:0,13dx .
-z +/k.m
o on
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Thus with Li defined by 'B(l) = j- N{x;0,1)dx , i=1,2, it follows.
L.

i
that L2 = -z, + /nm and from the definition of A{kn} it follows
n
that
-z +vk m<L < -z +/Vk+lm
o n - 1 n
n n
for n > n, - Now vk+l - vk = L 0 as k » =, so
» vk+l + vk
-z +vk.m~+ L, , and hence
o n 1
n
(/kn - V)m = (-2, + /kn m) - (-z, * Yn m)
n n
- Ll - L2 .

L=y Ky Ky
Thus /i; - vn + — 5 SO = - 1+ 0, and therefore 7 1.

So it is clear that

) __
(1) TR
n - n . n
o N
n
n
- m

in probability [m] , and hence {Tglj} is a standard sequence with

1]

slope c{a)(m) = m2 . Thus ¢§§)(m) 1.
Now Béz)(an]m) = 6(2) < 5(1) < Béi)(@n]m) = Bél)(@nim) for

all n > n, » SO
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sup, 1810 @@lm) - 61 (alm)]

dn(2,1]m)

s (o, Im) - 8% o |m)

v

LW @

v

>

and therefore 6#(2,1]m) does not have a limit of zero as n =+ = ,
Thus {Tél)} does not dominate {Tﬁz)} . But Bﬁz)(a]m) < Bﬁl)(a]m)
for all n > n, > SO Sn(l,Zlm) =0 for n=> n, » which implies

18y dominates {113 .
n n.
Ratio of Levels

It was seen in the previous section that if two tests are ordered
according to Bahadur efficiency, then they are also ordered according
to the domination criterion. The next theorem shows that ordering
by Bahadur efficiency also implies ordering in the sense that the
level attained by one test statistic becomes infinitely smaller than
the level attained by the other test statistic. The theorem is true
for both approximate and exact efficiency, although it is given here
in terms of approximate efficiency.

Theqrem 2.3: If {Tﬁl)} and {Téz)} are two standard sequences

L(ZJ(T£2)]

for which ¢§g)(9) < 1 , then .—TTT——EFTW‘# 0 in probability [6] .
LY (T ")
n

Proof: Now ¢§§)(e) < 1 implies cga)(e) < céa)(e) , and from

Chapter I,

2 1) (1) 4 (@)
- = log L (T70) » e70 (8)
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in probability [6] . Thus it is seen that

L@ @

—_———r— = = -1og L
Orme

- 2 10g @) 2@y 4 2 165 11 0

> e o) - o)

in probability [6] . So for e > 0 , k = cga)(e) - cga)(ej , and
n> - _ﬁ;%gg_g , it followé that
LCZJ(T(zji) ) LCZ)(T(ZJJ
o |—rr>—(;m';l e ‘m‘m o

e

N 1)(T(1

;| L) (2D
= — Og - - > -
M
‘,

Y
Is
o

=

=3

—liog :

= P S -
n (1) (T(ljj

> Pe g = log —TTT?;Ff;; ki < 5 |

and the theorem is established.

Notice that the contrapositive shows that if the ratio of levels
converges to a constant (regardless of how large), then ¢(a) @

An example is now given to illustrate Theorem 2.3 and to

emphasize even more strongly the fact that asymptotic results based
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on approximate levels may be misleading, as is discussed by Bahadur in

(1) . The statistics used in the example are those of Example 2 of
aj.

Example 2.2: Let Xl’ X2, ... be normally and independently distri-

. . 2 . 2
buted with mean zero and variance o , and consider H: ¢” =1

and A: o2 > 1 . As is shown in (1), with Tﬁzjn /gggg - /2n and

Tés) = -l-(zxi - n) , the approximate Bahadur efficiency is given by

v2n
(a) 4
¢ .
23(0) [1+a]2
L) (2

Thus &;g(o) < 1, so by Theorem 2.3, in probability

ORSS
[c] . It should be noticed that for fixed n , both statistics are
monotone functions of ZX? and hence for practical purposes are
equivalent, although both the relative efficiency and the limit of
the ratio of levels indicate superiority of T(S) over Tiz)e This

n
(3

is a result of the fact that L(z) = L , but Tﬁs) is always larger

than Téz), Closer analysis reveals this point, as follows.

Now

2 1 2) 2
ZXi = 5'(Tn + /55) , SO

%—(Téz) + 2n)2 -n

v2n

@

T
-2, f_ﬂ__l_
n 2 V2n

030,
n

2

atso, FP ) = s®(e) = oge) (See (1) ), so



(2) . (2) _ (2)
L CTn ) ) K ®(Tn )
3,03, (3)
L (Tn ) 1 - @(Tn )
J N(E30,1)dt
T(Z)
N(t;O,l)dt
T(3J
f N(t;0,1)dt
jl 2 N(t;0,1)dt
[t +
2/2n
where, for the sake‘of notation, t = Téz) Now from (5) , for
x>0,
2 _ o 1
= N(x30,1) <j N(t;0,1)dt < & N(x30,1)
x X
Hence

1.2
ti - 1 B 7tn
N(t;0,1)dt 3 e
- t t
- n__ N n ,
w _ Ll . th
f ti N(t:0,1)dt 1 . 2% 'n on
[t +——] 2
n t
2/55 [t + n

" 2/7n

17
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3 4
t t
1..2 .2 n n
t t2 -1 - 7[tn-tn_2' — - —-—]
n., n 2vV2n 8n
= tn(l + ) 3 e
2V2n  t
n
.
2 (—— =+ )
caeny Sl 2w e
wm ot
n
Now
t /2;:;?— V2n
2/2n 2vV2n
2
) l. ZXi 1]
) n
S > %—(c - 1) in probability [o] .
t2 -1 t3' t:’ll
Also, 5 +1 and (—o + ) + .« in probability [¢] ,
tn- 2v2n 16n
2 2
| L(2) (7(2),
so it follows that - SJ(T 3)) + o in probability [c]
n

The preceding theorem reveals the asymptotic behavior of the ratio
of levels when the:efficiency is not unity. A theorem is now presented
which provides a tool for examining the behavior of the ratio of levels
when the efficiency is equal to one. First, however, notice that the

equation
- 2-1og L(T ) =»c(a)(e) + € where e_ ~ 0 in probability [6]
n n n’ n

follows from the fact that the left hand side converges to c(a)Ce) in
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probability [8] . (see (1)).

Theorem 2.4: For two standard sequences {Télj} with equal slopes,
write - %—1og Lcl)(Tﬁl)) = c(a)(e) * eﬁl) , 851) +~ 0 in probability
L 2 (D)
[6] . Then L(z)(T 2)) converges -to zero, toO one, to infinity, or
n
W ()
n

does .not converge depending on whether n(en

converges to

infinity, to zero, to negative infinity, or does not converge,

respectively.
| -2 log Ltl)(Tél)] @) )
Proof: From = c - 7(0) + N it is seen that
n
- P_(c(a) (8) + e(i))
(3) (p (1) ¢ n
L (T7") =.e s
n
so

LD (1) - 2@y « 1y

_e

e— %{c(a)(ej + eéz))

n. (1) (2)
_e- ?(En - En )

]

The conclusion of the theorem follows immediately.

Suppose {Tél)} and {Téz)} are two standard sequences which
from all appearances are equally good. One may suspect that the ratio
of their levels would converge to unity. However, Theorem 2.4 can be
used to show this is not necessarily the case, as is illustrated in

the next example,
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Example 2.3: Let Xi be distributed normally and independently with
mean p and variance unity, and suppose the sample size n = 2k ,
k =1,2,,.. 1is always even, Consider the hypotheses H: u=0 and

: (1) (2)
At u>0. Let T = ko (Xp+...#X)  and T, = '3 Ky yq e ¥X)
Then Tél) is a standard sequence with slope %- whose distribution

function is ¢ under H, i =1, 2.

- 2@ oyve )
Now, as in the proof of Theorem 2.4, L(Tn) = e

- ST2[148 (T )]
and from the definition of a standard sequence, L(Tn) = e s
Ti (a) Ti
where 1lim 8(t) = 0 . Thus e = ﬁfH -c (8)) + —E-G(Tn) . Hence

trco .

2 2 2 2
net- ey apr W By r @ gy o @ 5Py,
' 1.2

2 - 5 xT[1+8(x)]

since Cfa)(u) =-C§a)(u) = %-, and where 1 - &(x) = e Z

By Theorem 2.4, if ;TETE;%iT; >-1 , then. n(aél) - €£2)) -0 .
’ ! n

From (5),
1.2 1 .2 1 2
SRS T N RACH € ) I R T 2
[—-—-g-— —— O < e < I 0 m—
S o

So after -some.manipulation,

log(/E; x) < %—xz S(x) < log(/fﬁxz/[xz—l]),

Thus, for two real numbers x > 0 and y.> 0 ,

3/ [x2-1] _ tog V2T ) [x%-1]

log
Y V2r y
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log (V21 x°/[x%-11) - log(/2ry)

1.2 1.2
7 X8(x) - 5y ey

v

log (V21 x) - log(vZr y°/[y*-11)

A

V21 x

= log e
/2y Iy*-1]

n

- log ys/[zz'l]

X

Therefore, 3( ) 2( )
: 1 1)
log I A S WO YO EO I r g r(2y
(2) 2 "'n n n n
Tn
r @ @
> -_log n . n_
Neh)
n
out 3 2 (1)) (1) 2 j]
(1) (1) : ( ) o1
T, /1T —1]_(7%'—)/[1/% T n
: : —_— ’ o
Tr(12) Tn‘
/o
,,\/:o.‘) [(@‘) }
L
V2
= 1,
. 3 5
S0 : T (1)/[T (1) - 1]
log L n >0



and similarly, 3 ’
n n

eS)
n

log -0 .

2 2
Hence T (lJS(T(l)) - T (ZJG(T(Z)) -0,
n n n n

Since
2 2 2 2
n(eél) - séz)) =.Tn(1)6(T£1)) - Tn(2)6(T§ZD)+Tn(1)-Tn(2)

_ 2 2
it follows that n(eél) - aéZ)) > 0 only if Tn“3 - Tn(23 0,

which in turn occurs only if Tél)— Téz) + 0 , because

2 2 ,
P @ @) 1@y ) @)y
n n n n n n

It will now be shown that Tﬁll - T(z) does not converge to zero in

| L (1) (1),
probability, and hence that 2 does not converge to unity
(2) . (2)

L (Tn )
in probability. To do so, let & < K%i Then

P {]T(l) - T(z)l <er=p{T® oo« T ) oy
n n on n n

EU[PU{T£2) e < T£1)<T§2)+6]T£2)}]

<E[2€=_.1_.]
H V2
= 2
V2
<1,
The first inequality holds because Tgl) is normally distributed with

variance one and is independent of T£2) , and the fact that
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for any K and v . Thus for ¢ < Z%E R Pu{]T£1)~ ng)] < e} is

bounded by a constant smaller than one, and hence the probability

cannot converge to one, and the desired conclusion is established.
One final example is now presented to show that two tests can

be judged equivalent according to approximate Bahadur efficiency, and

yet have the ratio of levels converge to infinity.

Example 2.4: Let Xi be distributed normally and independently with

mean u and variance one, and consider H: u=0 versus A: u#0 .

2 2
Define Tﬁl) and Tézj by Tn(l) = n%X’ and Tn(2)= (n + VS)YQG

e

n .

Then - - ]u] in probability [n] , i=1,2, . Also, nYQ has a

n

chi-square distribution with one degree of freedom when u=0 , and

n+vn

n

+ 1 , so both Tﬁl) and Téz) converge in distribution to the
square root of a chi-square with one degree of freedom. Hence from

[ L e ==, 50 6B =1,

12
I
Now F(t) = — e dx , so 1-F(t) = 2[1-8(t)] .
V2T
-t
Thus
1.2 1.2
2 - =t - =t
25l Lo e <1Fm <23 —=e ?

t3 /2 V2m



S0

L) (1)

=1

ﬂ —~ X2 .
because - nn oL y  e—
n -2

X
Vol G in probability [u]

1-F(T£1))

" 1-F(T£23)

( T 1 1 \ - %-T

n
——————— (S
T

[ 3]

2 (1)

Boows

-~ 1 in probability one [u] , . and
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CHAPTER III
SOME INFORMATION THEORETIC  PROPERTIES OF EXACT SLOPES

As was stated in Theorem 1.2, there is an intimate relation
between exact slopes and the Kullback-Liebler information function.
If {T } is the sequence of likelihood ratio statistics for testing

the hypothesis H: 6e6, wversus the alternative A: 6e0-06 , then

0
the exact slope of {Tn} is given by

c(8) = 2 inf K(6, 90) s

60560

where K(9, 60) is the Kullback~Liebler information function. This
fact suggests that exact slopes in general may have some of the

properties of information functions.
Some Desirable Properties Of Information Functions

Assume X is a random variable distributed according to a
probability distribution Pe which is indexed by a parameter 60 .
There are various functional measures of the amount of information
about 6 in an observation X ; that is, functions which are
%bcalculated according to some formula involving € and the family of
distributions .{Pe} . Such a function hopefully reflects.the quality

of inference about 6 which can be made from X . Following are

some generally accepted desirable properties for an information

25



function, which will be denoted by IX(G) (see (12))

i)

ii)

1ii)

iv)

v)

Nonnegativity: Ix(e) >0 for all 880 .

Invariance under parametric, transformations: Let 6
and ¢ be two parameter spaces which both index the
family of probability measures, and let g be a 1-1
transformation from © onto ¢ , If Ix(e) and

Jx(¢) are two information functions calculated from
the same algorithm with respect to © and ¢ res-
pectively, then IXCGJ = JX(g(ej) . (This property

is possessed by the Kullback-Liebler information
function but not by the Fisherian information function,

which is defined by

F(6) = 5[5%_ 1n £(x,8)]°

No information in a random variable whose distribution 1is
independent of 6: If Pe(X < x) is independent of 6 ,

then Ix(e) =0 ,

No increase in information by data manipulation: If T

is a function of X , then IT(S) f'IX(e) .

Additivity of information in independent observations:
If X and Y are two independent random variables, then

IX,Y(e) = Ix(e) + IY(G) .

Exact Slopes As An Asymptotic Measure Of Information

It was seen in Chapter I that if the exact slope: 01(9) of a

26

sequence of tests {Tél)} is smaller than the exact slope- cz(e) of
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a séquence of tests {Téz)} , then {Téz)} is ‘judged superior to
'{Tél)} onbthe basis that the sequenée of levels '{Léz)(Téz))}
attained by {Tézl} converges to zero at a more rapid exponential
rate than the sequence of levels '{Lél)(Tél))} “attained by»'{Tgl)} .
In this’sensé exact slopes reflect the quality of inference that may
be made concerning the truth or falsity of the null hypothesis, and
thus may be considered an asymptotic measure of the amount “of infor-
mation in the sequence of tests about the parameter o . To further
substantiate this claim, it will now be shown that exact slopes
possess properties ‘analogous to the desirable properties of infor-
mationifunctions.given in the previdﬁs.éection,\

In developing these properties, restrict the tests to be
continuous, Then for eeeo the levels are distributed uniformly.

on the interval (0,1).
-2 log Ln(Tn)

i) Nonnegativity: The inequality = > 0
holds because Ln(Tn) < 1 . Hence
-2 log L _(T.)
c(8) = 1lim : LU LR I

Tn->x h -

ii)  Invariance under parametric transformations: Denote
by '{Pe}, 6e0 , the family of probability measures -
indexed by 6e0 , and let {Pe} be reparametrized by
¢ = g(6) , where ¢ belongs~to a new parameter space
¢ and g is a one-to-one”mépping from © onto ¢ .
That is, the family {Pe} , 6e0 , may be written
{Q(Q, $c® , where ¢ = g(8) implies Q¢(A)»= Py ()

for each measurable set A . Suppose c(6) 1is the
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exact slope of a sequence of tests ;{Tn} with respect

to the parameter space © . This means that
pP.{- z-log L »c(8)} =1
" n n :

From this equation, it may be concluded as follows that
b{Tn} has an exact slope with respect to the parameter
space ¢ , and that it is invariant with respect to the
parametric transformation g . Let c*(¢)=c(g-1(¢)) .

Then

i]

Q,l- é'log L > c* (4} Q- ;2; log L~ clg™ (43}

Q (o)l = log Ly » clg™ (@@}

2
Pe{- E-log Ln + c(8)}

=1,

with ¢ = g(6) . Hence c*(¢) 1is the exact slope of

'{Tn} with respect to ¢ , and c(8) = c*(g(6)) .

iii) No information in sequence of tests {Tn} whose distri-
bution does not depnd on 6: It will be shown that if
the distribution of Tn is independent of 6 , then
Pe{- %-log L, = 0} =1 for all 6 , and hence c¢(8) = 0 .
For simplicity, write Ln(Tn(s)) :(Ln(s) .
Now if the sequence s 1is such that - g!log Ln(s) does not
converge to zero, then there is an €y > 0 such that -»%-log Ln(sjzas
for infinitely many n . For e > 0 and positive integers m ,

define Am c by

3
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2 |
Ap e = {s: - =log L (s) > e for some n > m}

It follows that saAm c. for each m . Hence seAE , Where, for
*Ts s

e>0, Aa = 4:} Am,s'° Now Pe(Ae) = lim Pe(Am’e)' because {Am’ 1

e €
is a decreasing sequence in m Also, A = U {s: - g-log L (s)»e}
: S ‘ ° ’ m,e: N=m n e TphrLT?
S0
o0 : . 2
Pe{Am,e} < I Pe{s. - H-log Ln(s) > e}
n=m
n
o _...2_.5
= I Pe{s: Ln(s) <e 1

n=m

But Ln is distributed uniformly on (0,1) for all 6 , so

n
0 _.é.g
PI{A } & % e
6 "m,e n=m
o _E
= I (e ZJn
n=m
_me
2
_ e
e
l-e 2
Thus P, {A } {A_ } o~ (ne/2)
us = lim P _{A = lim - = 0 for each ¢ > 0 .
8 e . 9 m,e _— l_e—(e72)
Now {s: - %-log Ln(s) does not converge to zerolc U As 5
e>0 '
® 1
and EQO A = %:ﬁ AEn , where € =3 SO
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P.{s: - %-log Ln(s) does not converge to zero} < Pe{(*} AQ}

o e>0
| =P {{J A 1}
O k=1 Bk
<z PoiA, 1
k=1 k
=0 .
. Hence
2
Pe{s. < H—log Ln(s) +‘9}
= 1-Pe{s: - %-1og Ln(sJ-does not converge to zero}
=1 for all 6g0 , ’

and therefore c¢(8) £ 0 .

iv) No increase in slopes by data manipulation: It will be
shown thaggif {Tn} is a sequence of tests with exact
slope c(®) and if..{gn} is a sequence of functions which
obey a certain restriction, then the sequence {T;} s where
T; = gn(Tn) » has exact slope c*(8) < c(8) ..

Assume there exists a sequence of positive real numbers {th} s

tn .o as n - « , such that

Pe{s: there exists N. such that T (s) > t. for n> N_} =1
s n n s

for all ese-eo ,
and assume that the function gn{x) is monotone increasing for x > tn .
With these assumptions, sequences s which yield a large value of

Tn(S) also yield a large value of T;(s) . Thus T; woeuld tend to

reject for the same values of s. for which Tn rejects, -and perhaps



some other values. An example of this concept is given in the-

Appendix.
Now let s' be a fixed sequence such that Tn(s') >t for
n > Ns' . Then n > Ns" implies

L;(s?) Po{s: T;(s) > T;(s')}4

1V

Po{s: gn(Tn(s)) gn(Tn(s'))}

]

Po{s: gn(Tn(s))

IV

+ PO{S: gn(Tn(s))

1V

gn(Tn(s')) and Tn(s) >_tn}

g (T (s')) and T (s) < t 3

Since n > Ns' , it follows that Tn(s') > tn . Hence the condi-

tion Tn(s) > tn and gn(Tn(s)) > gn(Tn(s')) is equivalent to

Tn(s) > Tn(S') because g, is monotone for values larger than too-

Thus
L;(s') = Po{s: Tn(s) > Tn(s')}
+ Pols: g (T (s)) > g (T (s')) and T _(8) < t }
< Po{s: T (s) z-Tn(s')}
= Ln(s') .
Hence
c*(8) = lim - ngog L*{s')
’ n n
n—rw
< lim - 2 log L_(s')
- no° n
>0

= c(8) .
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v) Additivity of slopes of independent sequences: Let {T£13}
and {Téz)} be two sequences of test statistics for the hypotheses
H: 6e®

and A: 6e0-0, which have exact slopes 01(9) and cz(e) 5

0 0
respectively. It is desired to measure the combined information in
{Tél)} and {Téz)} . Recall that exact slopes are based upon the rates

of convergence for a fixed s' of the probabilities-

Ln(Tn(s'}) = Po{s: Tn(s) >-Tn(s')}

||}

Po{obtaining a value of T larger than
the observed Tn(s')}e :

Thus it would appear that the combined information in- {Til)} and
'{Tiz)} might be measured by theée rate of convergence for a fixed s*

of

(1)

and Tcz)nlarger
n n

Po{obtaining values of T

than the observed values T')(s') and

Téz)(s')}

= pyis: T£13(53>T£13csv) and Tézjﬁs) >‘T£2)(S')}'
= pyts: T (2>1 (s193p 151 (2o lB (s 13
1 Wa®eny 1B a® )

So if one defines

182 Wy, 1@ )y = 1P aMey - 1P aPy

it follows immediately that with prgbability one [8] ,
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-2 10g LI P M 6), 1P (s3) = - 2 10g LﬁlJ(TélD(s))L£23(T§2)(s))

2 1og LCI)CT(I)(S)) log LCZ)(T(23(s))

-> cl(e) + c2(6) .

Hence in this sense exact slopes are additive for independent tests.
However, to remain in the true framework of exact slopes, there must
be one sequence of tests {Tn} from which the exact slopes are
calculated. Perhaps the most common procedure for-combiningvindepen~
dent tests, sometimes called Fisher's method, relies on the fact

that if a random variable U is distributed uniformly on (0,1},
then -2-log U 1is distfibuted as a chi-square with two degrees of

freedom. Hence, for 65@0 ,. the statistic
-2 log Lé?)(Tél))LézltTéz)) = -2 log Lél)(Tél)) -2 log L£23(T£2))

is distributed as a chi-square with four degrees of freedom. It will
now be shown that exact slopes are additive under this method of
combining.

Define the sequence {Tn} by

1220 1Dl 1B a®
n /n n
Then
Tn 2 10g 1M @Dy - L2 (22
-2 log Lél)(Télj) -2 log L£23(T§23)

n
n
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> cl(e) + cz(e) with probability one [6]

Thus condition i) of Theorem 1.1 is met with b(e)=c1(e)+c2(e) .
To obtain condition ii) of Theorem 1.1, a lemma is needed concerning
the distribution of the product of two uniformly distributed random

variables.

Lemma 3.1: If X and Y are two independent random variables, each
distributed uniformly on the interval (0,1) then the distribution of

their product Z = X:Y is given by

P{Z < 2z} = z(l-log z) .
Proof: Now

P{Z < z} = P{XY < z}
= P{X < g}
= E{P{X < &Y}

Y Y
z 21 1 .
=f, P{X < };y}dy +[ P{X < 37])"} dy .,
0 Z

S

Now, for y < z , P{X <,§& =1, and for z <y , P{X < =} == Hence,

z
7 -

<

recalling the independence of X and Y ,

P{Z < z}

]
k_’\
()
§
A
<
.
<
[a ¥
<

B

Y
z + z(log y y=z)



and the lemma is proved.
“Thus

1

+ log PO{Tn > /nt}

[

-

Therefore condition ii) of Theorem 1.1 is met with f(t) =

i

'z -z log z

L]

z(l-log z) ,

35

(1) (1), (2) o (2)).
1 -2 log Ln (Tn )Ln (Tn ) i )
= log P > Vot
n 0 o
, n
1 o (1) (1) (2) T
5-10g PO{Ln (Tn ) Ln(TIi ) < e }
.ot
1 2 nt
= logle * (1 +39)]
t 1 nt
-7t gl (1+ 3=
E-as > o
-3 n .
t
§- o SO,

using Theorem 1.1, it follows that

1]

c(®) = 2£(b(6))

_, ; cl(e) + cz(e)
2

cl(e) + cz(e) s

which establishes the desired result that exact slopes are additive

when the tests are combined using the method of Fisher.



It will be seen in the next chapter that the additivity of exact
slopes continues to hold when any number of independent tests are

combined using this method.
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CHAPTER IV
EXACT SLOPES OF COMBINED TESTS

In this chapter the concept developed in Chapter III of calcula- -
ting exact slopes of combined independent tests will be extended to
include tests of different hypotheses, different methods of combining,

and tests based on unequal sample sizes.
Notation and Setting

Let Scl), cets S(p) be p sample spaces from which samples

5(1) = (xfl), eeos ad inf), ..., s(p) = (xgp), .+., ad inf) are

observed, and let the probability measures {Pé%)} i=1l,...,p

(1) T

, i=1,...,p respectively, be indexed by parameters

o (1)

defined on S

6. , i=1,...,p , which belong to parameter. spaces' s i=l,...,p .

i
Also let {Téla} , i=1,...,p , be p sequences of test statistics

for the null hypotheses H(1): eieecl) , i=1,...,p , where @él)c: @(1),

0
i=l,,..,p . Denote by L(l)(s(l?) , i=1,...,p , the levels attained
n k) 3
by Tél) when s@) 4 observed from s) , and suppose. {Tgl)}
has exact slope Ci(ei) , i=1,.,.,p . That is,suppose
2

- = log Lrgi)(s (i)) > ci(eib

‘with probability one [ei] , i=l,...,p .

37
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It will be the objective of the next section to test.the combined
null hypothesis, obtained by forming the cross-product of the individual
null p;rametef spaces, utilizing a sequence of tests formed by combining
the {Téi)} , i=1,...,p . In symbols, define ®=OﬁuLx cee X QCP)
and 0, = @éllx e X @ép) . Then the sequences '{Tﬁi)} , i=1,...,p ,

will be combined to form a test of H: 6=(61,u;q,6p)a®0 versus
A: GEO—OO'.
Fisher's Method of Combining Independent Tests
The sequence- {Tn} of combined tests using Fisher's method is

obtained by defining

T =J-2 log Lél) : LIEZJ — LTEP)

The exact slope c¢(6) will be calculated using Theorem 1.1. First,

T :
L =.V/- z-log L(l) coo L(p)
‘/1‘1' n n n

=\/{ Z-log L(l) - ee. = 3-1og L(pJ
n n 5 n - n

+1¢él(61) .. +_cp(ep)

with probability one [6] .. Thus: b(6) =\/01(61) oo +‘cp(ep)

To calculate f(t) for pait ii) of Theorem 1.1, a result from (1),
is used concerning the form of the distribution function of a random
variable distributed as the squafé root of a chi-square. For a proof,

see (1).
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Lemma 4.1: If F(x) = P(X < x) , where X is distributed as the square

root of a chi-square with k degrees of freedom, then F has the.

form
X2.
log[l - F(x)] = - 5-[1+o(1)] as ' X > o,
. o i o . 2
Now, for es@o , that is, for 6is®é ) s 1=1,...,D Tn is

distributed as the square root of a chi square random variable with

2p degrees of freedom. Hence, for t » 0 ,

1]

i %Jlog P (T > /at} = - 2 log[1-F(/at)]

, |
= - 2 Z 1] as nv

t2
i-[1+o(1)] as n =+

t2

2

2
Thus f(t) =A%- , and therefore, by Theorem 1,1,

c(8)

2£(b(8))

" ' w2
RS
2

H

cl(el) * L.l * cp(ep)

That is, the slope of the test combined by Fisher's method is the sum

of the slopes of the individual tests.



Combined Test Based On Maxiﬁum Level

Considexr the test procedure of rejecting HO if all the levels
are smaller than some specified quantity. This suggests that the
significance level should be the maximum level.  This procedure may:

be analytically expressed as the sequence of tests V{T;} , Where
T* = - g-log max L(l) 5
n n . on -

Theorem 1.1 will again be used to calculate c*(6) , the exact slope

' %
of {Tn} .
It follows easily that b*(6) = min ci(ei) , because
i

T* .

L. %-log max Lél)

Vn i
(i)

= - %-m?x log L

n

. 2 (i)
min (- E-log Ln )
~+ min ci(ei) with probability one [6]

Another lemma will be utilized to calculate f£*(t) for ii) of Theorem
1.1.

Lemma 4,2: If. Xi" i=1,...,p , are distributed independently and
exponentially with parameter X\ ,that is, PA{Xi >t} =,e—Xt s

i=1l,...,p , then the smallest order statistic Y1 = min Xi is
i

40
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distributed exponentially with parameter pi .

Proof: Since P {X, >t} =7, i=I,...,p , it follows that

PA{YI >t} = Pk{m;n Xi > ¢}

u

P,{X; > t, i=l,...,p}

P
= I P {Xi >t}
i=1
P
= T e At
i=1
-pit

which yields 'the desired result.

o » 2 log L(;) is distributed -as a chi-square with
1

two degrees of freedom, -which is exponentialwithparameter X = 5

Now; under H

Thus, under H0 s

/A T* = min(-2 log Lﬁl))

1

%
n

is distributed as the smallest order statistic from a random sample of
1

size p from an exponential distribution with parameter A =3 So,
by Lemma 4.2,
1 % 5 /o = - " * 5
- = log PO{Tn > /nt} = - = log PO{VE_T nt}
-pnt
2
= .- — log e
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Therefore, f£*(t) = g&. » S0 by Theorem 1.1,

c*(8)

1]

2£* (b* (8))

P m;n ci(ei)

2

1]

p - m;n ci(ei) )

That is, the slope of the combined test based on the maximum level is

the number of tests times the minimum of the individual slopes.
Combined Test Based on Minimum Level

As a third test procedure, consider using the minimum level. The
sequence of tests {Tn} analytically expresses the procedure, where

T = :2-1og min Lél) .

n
n i
Once again, Theorem 1.1 is employed to calculate c¢(8) , the
exact slope of {Tn}
Now

=22 log min L(i)
n ; N

gf\lls'—l*

=2 min 1ogh L(l)
n n

- 2 (1)
= m?ng5~log L )



43

<+ max ci(ei) with probability one [6] .
i N

Thus i) of Theorem 1,1 is satisfied with b(9) = max e, (0) . To
- i
calculate f(t) for ii) of Theorem 1.1, write

o~

PO{/H T > nt}

PyiT, > V/nt}

i

Po{~2 log min Lﬁlj > nt}
i

_ (i)
1P0{m?x( 2 log L77) > nt}

PO{-Z log Lﬁl) > nt for at least one i}

1—PO{—2 log Lél) < nt for all i, i=1,...,p}

[}

1- (1-¢"E/2yP

()
2nt

B e ) ST e ()™

~ Jnt
2

il
—
1

I o

j

Now for j > 1 ,

+ 0 as n > «

SO
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. _ it
z (-—1);3 (p)e 2
2o j
J ~0 as n~» o,
C ot
P 2
(1) ©
Therefore,
. jnt «
. - e t
-15 (-7 (P) e = (p) ’e-~121— (1) as n > =
j=2 J = 1 [0} o
Hence
_nt
T 1 = [P 2 o
PO{Tn > /nt} = (1) e [1+0(1)] as n + = ,
$0
1 T = l. p tr; o
- E-log PO{Tn > /nt} = - = log (1) + 5{1+o(l)} as n -
- L
2 i3

Thus f£(t) = %, and Theorem 1.1 gives

c(8) = 2 . £(b(8))
m?x’ci(si)
2

fi

m?x ci(ei) .

That is, the slope of the combined test based on~the minimum level is

equal to the maximum of the individual slopes.
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Combining Tests With Unequal Sample Sizes

In the preceding section, the combined tests were each based on

(i)

np observations; n from each T,

, i=1l,...,p . Now suppose n,

observations are used for the ith sequence, where

n .
lin = =)
n—>eo np

i=1,...,p , and n1+9,°+np =n ., Then R(1)+ +x(p) = 1, and

with probability one [ei] , SO

-2 i i =2 (i)
o tog Ln, " "n n. 1anLn,

1 1 1

> pa ) ¢ (95)

With the three combined tests defined as in the previous sections, that

is, with
T =J.2 log L) ... L@ |
n n n ,
T* = lg-log max L&) R
n ." Tn
n i
and T =22 log min 4 ,
n — . n
n i

it follows that



T .
L =\// = log Lcl) - 2 log L(p)
n n n

+\/§chl(61) L., ¥ pkpcp(ep)
= b(6)

(1)

i

—— = min —-log L
Vn i

~ min pxici(ei)
i

b* (6)

1

and

— 2

L@

1E

ma 1og
Vn i

min pxici(ei)
i

b(6) .

Now, for the null 6 , the distribution of the levels does not depend

on the sample size, so

-1 -
= log Py{T > vnt}

¥
ot

N

£(t) ,

-1

> ; pt
= log Py{T* > v/nt}

l

1]

£x(t) ,

46
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-1 . t
and = l\og PO{Tn + /nt} ~ >
= 1) .
Hence, c(8) = 2f(b(8))
= pAjcy(8)+ ... +pkpcpcep) s
c*(8) = 2f*(b*(8))
= p m?n pkici(ei) )
i
and c(8) = 2£(b(8))

= max pkici(ei) .
i
Thus, the slopes of the combined tests for unequal sample sizes follow
the same form as for equal sample sizes with the individual slopes

weighted in the same ratio as the sample sizes.
Comparison of the Three Methods of Combining

Observe that all three sequences of tests, {Tn} , {T;}, and
{%n} , are.calculated from the levels of the individual tests, based
upon the product, the maximum, and the minimum of the levels,
respectively. Thus, for p=2., rejection regions for the tests would

be baunded by curves as illustrated in Figure 1.
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L) L(2)
n n .
/"“Q'
v oo
2
- 7 L]
ZIy:
1
L (1 L)
n n n
T T*: T
n n n
Figure 1.

Recall that the null hypotheéis is H: (el,acu,ep]segl)xoooxeép) s

and the alternative is A: (61,0oo,ep)eecl)xeogx@(p)-eél)xnoox@(p) .

0
Thus H 1is false if any of the individual H(l) are false. If, say,

Hél) is false and Héz)

small values for Lﬁlj but not necessarily so for

is true, then one would expect
L(2)
n

for p=2 ,
, and for
this case Figure 1 indicates that {Tn} or {%n} would be more
liekly to reject H  than would {T}} . The superiority of {Th}
and {%n} over {T;} for this type of situation is élso reflected

in the exact slopes, since 6 aecl)méél}and 8 EGéZ) yields

1 2
cl(el) > 0 and cz(ez) = 0 , and hence c¢(8) = 01(61) , ¢*¥{6) =0,

and Ece) = 01(61) . On the other hand, if Hcl) and H(z) are both

false, then {T;} would appear more likely to yield rejection of

el

H, than in the previous case when only’ were false. This is

0

also reflected in the slopes, especially for 04 and 62 such that

cl(el) and c2(62) are nearly equal. For then c(8) = cl(el) +

02(62) is approximately the same as c(6) = 2 min{cl(elj , cz(ezj} s
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and c*(9) = max{cl(elj, 02(62)} is only about half as large as
either c¢(6) or c(8) . Figure 2 is useful for determining the

relative sizes of the three exact slopes c¢(8) , c*(8) and c(8) .

¢, (0,) €y=2¢y €1=¢,
c*<;<c ;<c*<c
- é<c*<c
=c¥<g=cm -
0=c <7\iﬁii/‘9 c=c*<c
cl=202
c*<;<c
0=c*<;=c=c
1:2 cl(el)

Figure 2.

As an application of comparing the combining procedures, consider

an example given by Naik (11).

Example 4.1: Let Xfl),‘,an, Xél) be a random sample of size n from
a normal distribution with mean ei and variance one, i=1,2, and

consider Hcl): ei < 0 and Acl): ei >0, i=1,2 . Then the combined

hypotheses.are H: <0 and 6, <0 versus A: 6, >0 or 6, >0,

O < 2 1 2
S0 9=(el, 62) , B=(=», ©)x(-», «) , and ®0=(—w;'0]x(~w, 0] . Take:
Til) to be based on the sample mean of the ith sample; that is,

Tél) = /ﬁ-i{l) . Now the distribution of Tél) depends on ei even
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for eiaeél) » S0 let the level attained by Tél) be defined by

(1) ,..
L (t) = sup [1-F_(t,8)] .
n ) N n
eie@é1)

(This is the definition of Ln(t) taken by R. R. Bahadur when he
wishes to consider tests whose distribution may depend on eseo s

e.g. in (2).) In this example,

t
sup [1~Fn(t,e)] sup [1 --/ﬁ N(x;/gei,l)dx]

6.E‘@(:L) eiso -
i"0
t-/ﬁei .
= sup [l - J( » " N(x;0,1)dx]
8.<0
i<
t-%ﬁei
=1 - inf;_/n N(x;0,1)dx
6.<0
1" -0
rt
= 1 -.Jr N(x;0,1)dx
=1 - 9o(t) ,-

so Ln(t) =.1-6(t) , as in the case of 6(1) = {0} . Hence, as was"

0
? for 6. > 0 .
i i

seen in Example 2.1, ci(ei) = 0
Now,: §ince @-@0 = (-w, ©)x(-», ©) - (~-»,0]x(-2,0] , there are
6's in 0-0

(1)
%

for which 91 or 62 (but not both) may belong to

, respectively. Thus, in order to calculate c(86) on

0

or @éz)

/7
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e—eo , it is necessary to have ci(ei) defined on 6513 , i=1,2
that is, for 0, < 0 . For ei=o , 1t was seen in Chapter III that

-2
E-log Ln(Tn) + 0

with probability one [6=0] , so ci(O) =0 ., Also, for 6i;< 0,

with probability one [6] and thus -

2 2
—-E-log Ln(Tn) ~-ﬁ-10g [I-Q(Tn)]

+ 0
with probability one [6]. Therefore, ci(ei) = ei , for o, > 0,

and ¢, (6.) =0 for 6,
ivi

;3 0 . It then follows that the slopes for

the combined tests are given as illustrated in Figure 3.

Naik (11) has made "equal probability" comparisons. of Fisher's'
Method ({Tn}) and the method based on minimum level ({%n}) , which
he refers to as the Union-Intersection Principle . This is done by
bounding ei away from zero in the alternative parameter space by
a distance & > 0 . This subset E, of the alternative space is the
region located above and to the right of the dotted lines-in Figure 3.
Then for each method of combining,an a* is found such that the test
has type one exrror probability of o* (at (91, 823 = (0,0)) and

also has maximum type two error probability of a* , where the
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; _ a2 a2 2
c(@) = 62 ‘ c(8) = el + 82
c*(8) = 0 c*(8) = 2 min(ef, eg)
- a2 - - 2 .2
c(8) = 62 c(8) = max(el, 62)
_______________ -

|

I

|

|

|

!

i 2

I c(6) =96

| 1

| c*¥(8) =0

| - 2

Figure 3.

maximization is taken over (61, 62) £ EO . This maximum occurs for

~ one of the 0, equal to ¢ and the other equal to minus infinity

(See Theorem A.2 of the Appendix), :Then.the nethod of combining

which yields the smaller o* is judged superior to the method which
yields the larger ao* . A table in (11) calculated for various values
of v/n & gives uniformly smaller ao* values for the Union-
Intersection Principle (U-IP) thap for Fisher's method (FM), indicating
superiority of the U-IP over FM. In the Appendix it is shown that

for one of the ei equal to § and the other equal to -« and

for all sizes a , the U-IP yields a more powerful test than does

FM. That is,
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1-8(0) > 1-8(a) , 0<ac<l,

where 1-B(a¢) and 1-8(a) are the powers of the combined tests of

size o wusing the U-IP and FM, respectively. The quantities a* and

a* are found by solving the equations

"
Q
%

B (0*)

and

i
Q
*

B(a*)

Since 1-B(0) .is an increasing function of o, it follows that

a* < a* , because o* > o* implies-

1-8(a%) > 1-B(a*)
= ]l-o%
> 1-a*
= 1'é(&*) 3
which contradicts 1-8{a) < l-é(a) for all o . Thus, in fact, accord-

ing to the equal probability criterion, the U-IP is superior to FM.
Bahadur efficiency does not distinguish between the U-IP and FM

of combining the tests of this example at precisely the same para-

meter values employed in making the equal probability comparison (i.e.,

one of ei equal to & and the»other equal to =-=) , for there

c(8) = ;(e) = 62 . However, in the region where Bahadur efficiency

does distinguish, that is, in the first quadrant, it judges FM superior
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2
2

between Bahadur efficiency and power might lead one to conjecture.

to U-IP because c(8) = ef + 0, > max(ei, e;) = c(6) . The relation

that for 6 = (61, 62) in the first quadrant, FM gives a more powerful

combined test than the U-IP. Theorem 2.2 implies this is true for at

least some o .
Optimality of Fisher's Method

It is clear that the sequence {Tn} obtained by Fisher's method
always yields a larger exact slope than the'sequence {T;} based on
maximum level oy the sequence {%n} based on minimum level., It is
shown in the following theorem that if {Téi)} has maximum slope for
testing H(i): eieoéi) s i=1,...,p , then Fisher's method is the

optimal method of combining the {Tél)} in order to test

. (1) (p)
HO' (el,OQ,,ep)eeo X ..o X 60 .

Theorem 4.1: Suppose '{Téi)} has maximum slope for testing

H(i): eieeéi) s i=l,...,p o If c'(6) 1is the exact slope of any
sequence of tests {Tﬂ} obtained by combining the {Tﬁi)} for
testing H : (9),...,8 )¢ egl) X ... X @ép)’ then c(8) > c'(8) ,
where c(8) 1is the exact slope of the sequence {Tn} obtained by
Fisher's method. In fact, c¢(8) is the maximum slope of all

sequences of tests of H , combined or not.

Proof: Since {Tél)} is optimal for n(t) , it follows that

c.(6,) = 2 inf K(., 6.,.) by Theorem 1.2. View the data as
i1 (1) i i0
8. €O
ip 0
A @)
(xl s Xy )

2

x = B, L, 1P

[



Then the probability density function he(x) is

hy () = £ e @y L e PPy
1 2 3]

‘where fél)(x(l)) is the probability density function of the ith

i .
random variable Xcl) . Hence, by Theorem 1.2, the maximum slope of

(1)

(p) e o
o s rees Xo )} is given by

a sequence"{Tﬂ} based on {xn} = {(x

i
N

r h, (X3-
2. inf K(e,'eo) = inf E!Eog ‘1
8

84€9 8559 heo(X)

I f§13(x(1))

I

= 2 inf E{log
8

%05 1 fél)(x(13)
i i0
fél) (X(l) -
R i
= 2 inf E|X log = :
6 €0, 6 L. ffl){lejg
0%%0 6
: i0
fe(l) (X(I))
. \ 1
=2 inf I E log . :
8,50, 1 8 félj(xflj)
i0
=2 inf z x®o., 054)
§.e0,. 1 . 1
0%%0
=3 2 inf K(13(eis 8. 0)
i (i)
®:10%%
= ? ci(ei)
= C(e) s

which completes the proof.



CHAPTER V
EXTENSIONS

In Chapter II, an example was given to show that Bahadur effici-
ency is not always in the same agreement with power as is stated in
(1) > A7) This raises the question of whether in general a sequence
constructed as {Tél)} of Example 2.1 was constructéed will result in
¢12 = 1 , Also, in Chapter II examples of various behavior of the .
ratio of levels are given. However, some situations are not illustra-
ted; in particular, examples of the ratio converging to finite non-
zero constants would be interesting. An example with approximate
efficiency equal to one and a limit of ratios of approximate levels
equal to zero is given, but the author has been unable to construct
an example of the analogous situation involving exact slopes.

There are undoubtedly aspects of information theory other than
those in Chapter -III which have analogies in terms .of exact slopes.,
For instance, theorems in information theory concerning the concept
of sufficiency could lead to a search for similar relations between
exact slopes and sufficiency.

It seems quite desirable to extend the theory of Chapter IV to
combining tests which are not necessarily independent. Following

Fisher's method, one might base a combined test on-

PQ{Tgl) > Tél)(s), Téz) > Téz)(s)} =

36
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= PO{T§1)>T§1)(S)} . PO{T£2)>T§2)(s)]T£1)>T£1)}

The difficulty with this approach lies in the fact that-
Pgl){Téz) > Tﬁz)(s)[Tél) > Tél)(s)} does not appear to be uniformly

distributed for 6890 » and hence the quantity
-2 log PO{T§1)>T§1)(5), Té2)>T§2)(s)}
= -2 log PO{T£1)>T£1)(S)}- 2 log PO{T£1)>T§1)(S)IT£2)>Té2)(S)}

‘does not have a chi-square distribution, as was the case with indepen-
dent tests.

A theory of combining dependent tests would appear to have appli-
cations in the investigation of the role of sufficiency with regard

to exact slopes. For instance, if it happens that

c(8) = c1(6) + czll(e)

where c¢(8) 1is the slope of the combined-test, 01(6) is the slope
of~‘{T£1)} and Czllce) is the slope of {Téz)}' given {Tsij} R
then it would follow immediately that in searching for tests with
maximum slope, one may limit the search to functions of -a sufficient
statistic,

A more practical application would be in measuring how much is
gained in combining two tests, neither of which have maximum slope.
An example of this situation is combining a sign test and a Kolmogorov-
Smirnov type statistic for testing about a location parameter of a

given family of distributions.
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The relation between the equal probability criterion and Bahadur
efficiency deserves further investigation. Conditions under which the
two criteria agree would‘be desirable. The rate of convergence of a;
should also be studied, where; for fixed eeeo-o s Bn(a;, 8) = a; o
It is shown in (2) that - %-1og a, c(8) , where for fixed 629—90
and fixed g, 0 < B <1, Bn(a»,»e) = 8 . The geometric interpre-
tations of {qﬁ} and {d;} are given in Figure 4, where the curves

are those of B = Bn(a, 8), n=1,2,...

Figure 4

Two examples are now given, one in which the rate of convergence
of a; to zero is the same as the rate of convergence of a  to zero,

and one in which the two rates are much different.
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Example 5.1: Let Xi s i=1,2;,=° be independent and identically

distributed random variables with distribution given by Pé{Xi > X} o=

e-(x~e) for x > 6 and Pe{Xi > x} =0 for x <8 . Define
T
T =+aX , where X._ = min {X,} . Then — = X._ -6 with
n In In X In
1§1§n n

probability one [6]. Now

Pe{x1n > x}

L]

Pe{x.1 > x , i=1,...,n}

e—n(x—e)

hence

1 e 1. |
- = log Py{T > /nt} = - = log Pp{X, >t}

nt

- %~1og e
=t-,
So by Theorem 1.1, c(6) = 20 , and hence 'é-log a ¥ 26 , where
Bylans ©) = 8 .
Let the critical regions. of the equal probability test based on

{T_} be given by (/Etn, =), n=1,2,... . That is, {t } isa

sequence of positive numbers such that
= % = % = /o
PoIT, > /nt } = a* = g (a%,8) = P,{T < /nt } .

Then

SO
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Therefore

1+ene

-né -2n6
e e

-3n6
+ €

fl

-4né
e +

e-n6[1+0(1)1 as nre .

It follows that

-2 10g e [120(1)]

1]

2 *
- H-log ar

26 - %-1og [1+0(1)]
-+ 206 as n>e
and thus the sequences {mn} and ‘{a;}' converge to zero at the same

exponential rate,

Examgle'S,Z: Let Xl, X2, ... be independently and identically distri~-
buted normal random variables with mean u and variance one. Define

T, =vn X . It was.seen in Example 2.1 that c(u) = u2 , and thus

2 2 .
—.H-log % <+ 'y~ , where Bn(uh, W) = B . Now for fixed u » 0 , take

t sﬁch'that
n

o¥ = Po{T >/t } =P AT < /ot } =8 (ah, W) .

Now

]

P {T_ > /;tn} J/ n(x;0,1)dx
/n
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and ‘/I“I-tn
P {T_ < /Efn}' -jﬂ n(x;/n u,1)dx

i1

| n{x;0,1)dx

= n(x;0,1)dx ,

/-t )
50
v (-t ) = /nt

and hence

ct
1]
[T

Thus

|
o
wQ
e
*
i

by results of Example 2.1,
Figure 5 shows the areas which give the type one and type two error

probabilities for Examples 5.1 and 5.2. The curves represent the density

T T

functions of — = X of Example 5.1 and —E

= X of Example 5.2.
/n In %
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3y

y

\
. - ,_a/<§§f t:§§§@ﬁ~“
0 8t 0 t

Figure 5

u

Notice that it is the highly skewed distribution of Example 5.1
for which the exponential rates of convergence of o, and u; are
the same, whereas the rates are quite different for the symmetrical
distribution of Example 5.2. This is because the numbers t, of
Example 5.1 tend to be closer to the alternative parameter © than to
the null parameter value of zero, and in Example 5.2, the t, quanti-
ties are midway between the null parameter value of zero and the alter-
native value of u . uIt would thus appear that, at least for
hypotheses concerning location parameters, the more the distribution
is skewed to the right, the more nearly the same are the rate of
convergence of the equal probability error and the rate of convergence -

of the type one error with fixed type two error.



CHAPTER VI
SUMMARY

This investigation dealt with the role of Bahadur efficiency in
certain apsects of the foundations of statistical inference.  In
Chapter I, Bahadur efficiency was presented, and examples were given
illustrating its application.

Chapter II was concerned with the relation between Bahadur effi-
ciency and a criterion called domination, which has to do with power,
and éhe relation between Bahadur efficiency and the convergence of
the ratio of significance levels. An example was given which shows
that Bahadur efficiency and power are not quite as closely related

as previously ‘thought. - It was shown that if ¢12 < 1 , then

L(2)
n

converges to zero, and examples were given showing various.
L)
n .
behaviors of the ratio of levels when ¢12 =1,

Analogies were drawn in Chapter III between properties of informa-
tion functions and exact slopes. The analogies held for properties
of non-negativity, invariance, lack of information in statistics whose
distribution is independent of 6 , inability to increase information
by data manipulation, and the additivity of information in independent
observations.

In Chapter IV, it was shown that the exact slopes of the tombined

63



tests are Z c. (9 ) , p min c; (8, ) and max c.(e.) , where the

i i
combining is based on the product (Flsher method), the maX1mum level,
and the minimum level, respectlvely° It was.shown that Bahadur

efficiency is not in complete agreement with the equal ?robability

criterion, when it comes to choosing between methods of combining.
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APPENDIX

The following example illustrates the existence of unbiased test

statistics for the hypothesis H: e=60 versus A: 6#80 which are

non-unimodal functions of a statistic X , whose density has strict

monotone likelihood ratio in x . See (10) for a complete discussion.
Example A.1: Let Xl’ oo Xn denote a random sample from a normal

distribution with mean u and variance one, and consider the hypotheses:

H: u=0 and  A: u#0 . Define

It is clear that T is a bimodal function of X .
Let t_ be such that P, {T_ >t } = o . (Notice that t_  does
o 0" 'n o o
not depend on n , since the distribution of vn X , and hence of T

3
is the same for all n when - u=0.) The power of Tn is ‘given by

1-8, (0, W) = P (T, >t}
=P {/n X < -a }+P {-b </n¥xp }+P {V/nX > a } ,
M G o G a U o
a2 b2
2 2
where 0 <b <a and t =ate? =bte?
o o o o o
This gives
-a b
o o o
1-8, (os u) = ‘Jﬁ n(x;vnp,1)dx + J{‘ n(x;:v/nu,1)dx +‘j’ n(x;v/nu,1)dx .
—00 -b a
o o
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Now, for constants <y and ¢

c, cz—/ﬁu 5
=X
-}ﬁ n(x;vnu,1)dx = J( —%:-e 2 ax s
Jo V2r
<, ¢, -vny
S0
. € /H [ -(cl-/ﬁujz/z -_.(czu/ﬁuz)/zj
—_— n(x;%ﬁh,l)cx = — | e - e .
H V2m
1
Thus
5 . = —E—ad—/ﬁu)z/Z . -(-bu-/gu)Z/Z
—gg[ -8 (0, W = [z [(-e (e
(PR L R CYSX. P
-e ) o+ile ™ )]
T N -
n T2 o o ny —aa nu)
= -2-&—— e [e (e - &
-b2/2 b A b/
- e (e -e )]
2
— .Y
i/%‘ € 2 hn(OC, H) o,
2 - 2 -
-a“/2 a vnu -a /nu -b%/2 b Vnu -b_vnp
where hn(&, u) =e o (e o -e © )-e ¢ (e o -e © ) .

9
It is clear that 5;{1—Bn(a, w)] = 0 if and only if hn(a, u) =0 .

Now 2 - -
-a /2 a_vnu -aa/nu

3 .
-Tu-hn(d, U)—l/;aue (e + e )

. —b2/2 ba/ﬁu - -b /i
- Vhba e % (e + e )
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= 2/n t&l[cosh(adV;h) - cosh(baﬂﬁh)]
>0 for u >0 since 0<b <a .
a a

i
v a
Hence hn(a, u) =J[\ [gﬁ_.hn(u, v) ]dv
0

>0 for u>0,

2
: o
3 n 2, -
SO *—au‘ [l—BnCOL, U)] “\/ T e hn(ua ]—1)
>0 for u=>0.
Thus l—Bn(a,\—u) is strictly increasing in u for w > 0 . Also,

l—Bn(a, u) = l—Bn(a, -u) , so 1—Bn(u, v} 1is minimized for u=0 ,
and therefore Tn is unbiased. EX?

It will now be shown that the statistic ]/Hfl—l e 2 has exact
slope c(u) = u2 . Let Yn = nYQ , which has a chi-square distribution
with one degree of freedom when u=0 for each n . In order to use

Theorem 1,1, define

Y /2
T; =‘\/ 1og(Y;11/2 e ! )

|1 :
= \/E(Yn—log Yn)

- - -1 nYQ/Z
Obviously, T; is ‘equivalent to Tn = [v/nX|"" e

Now

o

~\/1 (-Yn log Yn>
"VZ\n T T
>/ %Cuz—o)

N



=] B

= — s

2

2
so, for i) of Theorem 1.1, - b(n) =\/%— .

Also,

i '
= PO%V[%{Yn-log Yﬁ) > /av}

s

A

o
*

1v

=

<

et
I

2
PO{Yn-log Y > 2nv by

. t "
PO{Yn < yn} + PO{Yn > yn} s

where yév and yg, are the two solutions to Vg - log Yy = 2nv2 s

and 0 < Yp < Yy

\

2nv

\

Figure 6

It is clear from‘Eigure 6 that yﬁ +.0 and yﬁ > ® a5 n >,

log yo 2
$0 ~—w— =+ 0 as n >« , From the equation. y! - log y!" = 2nv
yn : n n
o leevp h
follows that == [1 - ——] = v~ for each n , and hence =~
2n ° Yn 2n

Thus

7

2

0

it



and

1 » B
’ | : n T
n log PO{YH > Yn} n 1og Po{/?; S V&n}

1 - (/;g)z[l+o(1)]
-5 loge

_%H'YHE1+0(1)]

2
TV as n-rew

SinCe\ yﬁ - lOg yﬂ = 2nv

s it follows that

L1
n log yn = H{va yn)
- 2\)2 s e
1 1 1
. | , - i‘ -‘E
NOW PO{Y < }"} = ,_—‘l"ﬂ;-ﬂ,__ 1 t . dt
noon P(%)zz‘
. 0
y! .
But ] _2_11_ - —121—
5] 2/;; ..

—

2Vyﬁ

i

71
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1
Yn_ .
- = 1lo e- 7 = 2&1
08 ~ 2n
~ 0 s

SO

lim[- %—1og PO{Yn < yﬂ}] = lim[- %mlog Yyl

. oo n-oe n

n
lim[- 7 log yﬁ]

nH>oo
2
= v,
Now, if '{Pn} and '{Qn} are two sequences of positive numbers

.1 .1 \ .
such that iiz E-log Pn = iiz E—log Qn = k ,then, since 2 mln(Pn,Qn)f

. .1
Pn * Qn <2 max(Pn,Qn), it follows that E—log (Pn+Qn) + k also,

Thus

21 1 : .
- 5 log Po{T* < /vl = - = Log[Po{Y_<y!}+P {Y >y!'}]

0

2

>V s

2
so f(v) = vz . Hence Theorem 1.1 gives c(u)=2f(b(p))=2°(§-) = U

2 o
This conclusion is in accordance with the result of Chapter III
which stated thaﬁ the slope of T* = gn(]/H'YT) canno; exceed the
slope of |v/n X| . For this example g (x) = ]x[—l & /2 , which is
monotone increasing in ]/ﬁ'iw for values larger than ome.
The importance of the next theorem to this thesis is that the
proof is derived from the invariance property of exact slopes of

Chapter IIi? The theorem is also given in (12)., K is the Kullback-

Liebler information function.
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Theorem A.l: Let k be a one-to-one mapping of O onto itself, and
let k* be the mapping of ¢ onto itself defined by k*(¢) = k(8) ,

where ¢ = g(e) . Then K(e’k(e)) = K*(¢, k*(¢)) o

Proof: Denote by  f(x, 6) and f*(x,‘¢)v the density functions of x’

relative to © and & , respectively. Then f£(x,8)=f*(x,g(8)) , where

¢ = g(6) . Let T(x) = fx,0) be the likelihood ratio statistic
- £(x,k(8))
. N erapcire “A G Er(x,4)
for testing H: k(8)wersus A6 , let T*(x) = —————=2I— be

, £*(x,k*(8))
the likelihood ratio statistic for testing H*: k*(¢) versus A*: ¢ .

Then, by Theorem 1.2, c(8) = 2K(8, k(8)) and c*(4) = 2K*(6, k*(¢)) .
But for ¢ =k(8) , £(x,8) = f*(x,¢) gives T(x) = T*(x) . Hence by
invariance of exact slopes, c¢(8) = c*(¢) , so K(6,k(6))=K*(¢,k*(¢))
for ¢ = g(6) .

The last theorem shows a stronger superiority of the UI-P over

FM than is given in (11)

Theorem A.2: ’~Assume .the situation of Example 4.1 for a fixed n ,

and for simplicity let Ti = Tél), For each o , 0 < a < 1 , and each
§ > 0 , the maximum type two error probability of the U-IP is smaller
than the maximum type two error probability of FM, where the maximi-

zation is taken over the subset {(61,82): 6, > §, 6, > 8},

2

Proof: Let L., and L2 be the levels attained by the tests T

1
,and T2 , and let za and Ea be defined by

1

Pollysly > 2,3 = Polly > &, Ly > & } = 1-a
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Then za and zu are the distances from the coordinate axes to
the points of intersection of the boundaries of the size o critical

regions (in terms of levels) of FM and the UI-P, respectively, with the -

sides of the unit square. (See Figure 1). It is clear that zq < za .

Now the type two error probabilities at the parameter point

(el, 82) for FM and the UI-P are given by - 8(o: 61,82) =P6162{L1L2>£a}
and B(a; 6,,6,) = Pelez{L1 > %, Ly >4 ) . Thus
B(a; 61’62) = Pe 0 {LlL2 > 2@}
172
=E [P, (L >£9‘-IL}]
91 62 2 L1 1

1A

L
: ¢!
E[P_ (L, > +[L2],
8 1
1
since Ly and L2 are independent and Pe {L2 > 4} 1is a montone
2
decreasing function of 6 Now P_;O{L2 >4} =1 if & <1 and

5 -
ZOL
P L, > 2} =0 if 2>1. Hence E [P_J{L,> [L}] =P, {L; > ¢},
04 1 1

SO

sup B(a; 6.,6,) = P {L. > & } .

6.56 1°72 § 1 o

1...

Also
B(a; el,ez) = Pe 0 {L1 > B> L2 > zu}
1’°2
= P6 {L1 > 2q} Pe {L2 >4 1}



Therefore

sup B(a; 6,,0,) = Ps{Ll > 2}

which is the désired result,

A

fi

Pel{L1 > xa} P_w{L2 > Za}

A

PS{L1 > zu}

sup B(a; 6., 6,) ,
0,56 1* 72
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