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CHAPTER I 

INTRODUCTION 

Shortleaf pine (Pinus echinata Mill.) has the widest range of any 

of the southern pines (Figure 1). It currently comprises about 25 per­

cent of the total standing cubic volume of southern pine forests, and is 

an important commercial species in many areas throughout the south­

eastern United States. 

As with most commercial tree species, research is needed to improve 

the quantity and quality of shortleaf pine wood produced. Knowledge of 

variation in wood properties due to genetic influences will help tree 

breeders make informed decisions concerning improvements in wood quan­

tity and quality. 

There have been many published reports on both geographic variation 

in and heritability of wood characteristics of many commercial forest 

tree species. Loblolly (Pinus taeda L.) and slash (Pinus elliottii 

Engelm.) pine have been studied more than shortleaf pine because of 

their comparatively rapid initial growth rate. Some research on geo­

graphic variation in wood properties of shortleaf pine has been reported, 

but no work could be found on estimating the genetic variability avail­

able in wood properties of the species. 

The shortleaf pine wood properties which were examined in this 

study are: unextracted specific gravity, extracted specific gravity, 

percent extractive content, number of rings per inch, percent 

1 
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sununerwood, and tracheid length. Individually and jointly, these wood 

properties are of interest to industries which desire to produce quality 

wood products efficiently. 



CHAPTER II 

LITERATURE REVIEW 

Sampling Procedures for Measurements 

of Wood Properties 

Cores with diameters ranging from 10 to 12 millimeters have been 

used for about two decades as an efficient, nondestructive method of 

obtaining wood samples from a tree. There have been several studies 

which have shown that increment cores are acceptable wood samples for 

the estimation of specific gravity and tracheid lengths (Boyce and 

Kaeiser, 1960; TAPPI Forest Biology Subcommittee No. 2, 1968; Gilmore 

et al., 1966; Spurr and Hsiung, 1954). Such cores are usually taken at 

breast height. High correlations between wood properties of cores taken 

at diameter breast height and wood properties of the merchantable por­

tion of the stem have been reported (Goggans, 1962; Smith, 1966). 

An important consideration to be made when using core samples is 

the number of core samples needed per tree to produce reliable estimates 

of wood properties. Goggans (1962) reported that two core samples from 

opposite sides of a tree would yield about the same information as a 

disk cut from a tree. However, many studies in the past have used only 

one radial core (Fielding and Brown, 1960; Wahlgren and Fassnacht, 

1959). According to Zobel and Rhodes (1955), success in using only one 

radial core depends on the sampling of a large number of trees. In 

4 
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studies which use only a small number of trees, Goggans (1962) felt that 

two radial cores per tree were needed to obtain measurable between tree 

variation. 

Wood Properties and Their Measurement 

Specific Gravity 

Wood specific gravity is probably the most widely studied wood 

property. Specific gravity is a principle factor in the segregation of 

poles, pilings, and structural-grade timber (Mitchell, 1958). Zobel 

et al. (1961) found that specific gravity was strongly correlated with 

pulp yield, and Namkoong et al. (1969) reported that specific gravity 

had a major affect on paper tear strength. The quantity and quality of 

wood products produced from a tree is dependent upon the specific 

gravity of the merchantable stem of the tree. 

A specific gravity estimate is affected by many different factors 

within the wood sample. Some of these factors are: the presence or 

absence of juvenile wood, the amount of extractives, the percent summer­

wood, and the rate of diameter growth. The influence of these factors 

on specific gravity varies from tree to tree. If they are not accounted 

for, erroneous conclusions may be drawn about specific gravity 

estimates. 

The presence of juvenile wood is a recognized concern in the esti­

mation of whole tree specific gravity. Juvenile wood is produced near 

the pith (Paul, 1960), and is typified by low density and high longitu­

dinal shrinkage relative to mature wood. Juvenile wood has a highly 

variable specific gravity which is lowest near the pith and increases 
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outward (Larson, 1957; Paul, 1960; Spurr and Hsiung, 1954; Zobel and 

McElwee, 1958). Zobel et al. (1972) found that trees which produce 

juvenile wood of high specific gravity also produce mature wood of high 

specific gravity. The reason trees first produce juvenile wood and then 

change production to mature wood is not completely understood. Paul 

(1960) and Zobel and McElwee (1958) both found that trees grown in plan­

tations produced juvenile wood several years longer than trees in natu­

ral stands. They suggested that competition for some vital factor 

triggers the trees' conversion from juvenile wood production to mature 

wood production. In most cases it was found that pines grown in planta­

tions on good sites were producing mature wood around the age of eight 

(Larson, 1957; Zobel and McElwee, 1958). The trees required a transi­

tion period of one or two years to switch from production of juvenile 

wood to mature wood (Zobel and McElwee, 1958). 

Wood extractives found in pines include resin acids, essential 

oils, fats, fatty acids, and unsaponifiable or inert matter (Tarras and 

Saucier, 1967). If extractives are present in a core sample they will 

alter the specific gravity measurements. For example, resins have a 

lower density than the wood, but they fill the lumans and intercellular 

cavities which would otherwise be empty (Spurr and Hsiung, 1954). The 

filled cavities will increase the specific gravity of the core sample. 

It has been noted by several researchers that the rate of diameter 

growth influences the extractive content in pine (Ifju and Labesky, 

1972; Tarras and Saucier, 1967). Ifju and Labesky (1972), showed that 

springwood contained more extractives on a per weight basis than sununer­

wood. This fact supports findings by other researchers who reported 

that faster growing trees contain more extractives (Kurth, 1933; Tarras 
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and Saucier, 1967). In shortleaf pine, Posey and Robinson (1969) found 

age to be one of the most important influences on extractive content. 

As the pine tree ages it builds up extractives. These extractives are 

stored prima~ily near the pith, and the amount of extractives present 

decreases outward. Stonecypher and Zobel (1966) determined that extrac­

tive content in five year old loblolly pine was extremely low. However, 

most researchers feel that conclusions based on unextracted specific 

gravity in pine may be risky (Goggans, 1962; McCullough, 1972; Posey and 

Robinson, 1969; Zobel et al. 1960). The effects of extractives on spe­

cific gravity can easily be nullified by removing the extractives from 

the wood samples. 

It has been widely publicized that specific gravity and percent 

sunnnerwood are strongly correlated (Dadswell and Wardrop, 1959; Gilmore 

et al. 1966; Goggans, 1962; Ifju and Labesky, 1972). The relationship 

is due to the fact that summerwood is more dense than springwood 

(Dadswell and Wardrop, 1959; Goggans, 1962; Mitchell, 1958). In a study 

by Squillace et al. (1962), specific gravity was found to be only weakly 

correlated with percent sunnnerwood. They suggested the possibility that 

in relatively young trees large amounts of juvenile wood would tend to 

weaken the expected relationship between specific gravity and percent 

sunnnerwood. 

There have been several reports on the relationship between diam­

eter growth and specific gravity in pines. These reports contain con­

flicting data on whether specific gravity is positively or negatively 

correlated with growth rate, but all reports show only weak correlations 

between the traits (Schafer, 1949; Squillace et al., 1962; Wheeler and 

Mitchell, 1949; Zobel et al., 1961). Later studies have shown that the 
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environment, which greatly influences diameter growth, sununerwood pro­

duction, and specific gravity, may be the cause of the observed correla­

tions between diameter growth and specific gravity (Jayne, 1958; Larson, 

1957; McCullough, 1972; Paul, 1958). 

Zobel and Rhodes (1955) observed that they could not account for 

all the variation in specific gravity with correlations of specific 

gravity with other wood properties and environmental factors. Many 

other studies confirmed the findings of Zobel and Rhodes. These studies 

reported large tree to tree variation in specific gravity (Dadswell 

et al., 1961; Echols, 1958; Goggans, 1962; Mitchell, 1958; Zobel and 

Rhodes, 1955). Zobel and McElwee (1958) felt that there was enough un­

explained tree to tree variation in specific gravity to warrant addi­

tional investigation into the genetics of the trait. 

Studies of specific gravity in pines have demonstrated the presence 

of enough genetic variation to allow acceptable gains in the trait 

through selection (Namkoong et al., 1969). When reviewing the litera­

ture it becomes apparent that not all genetic control over specific 

gravity is additive in nature. 

Narrow sense heritability estimates of .37 and .49 calculated by 

using different procedures in loblolly pine (van Buijtenen, 1962), .56 

for control pollinated and .12 for open pollinated families in slash 

pine (Squillace et al., 1962), and .2 in Monterey pine (Pinus radiata 

D. Don.) (Fielding and Brown, 1960), can be compared with broad sense 

heritabilities of .64, .84, .73, .54, and .74 by the same authors for 

the same species. Most studies which report both narrow sense and broad 

sense heritability estimates indicate that a considerable amount of the 

genetic variation present in specific gravity can be attributed to 



additive genetic variation. 

Number of Rings Per Inch 

The diameter growth of a tree may be measured as rings per inch. 

Rings per inch is a relatively easy method of measuring diameter growth 

rate when working with core samples. Zobel et al. (1959, p. 347) sug­

gested that "rings per inch is an illegitimate reversal of variables,n 

but then stated it was an acceptable method of measuring diameter 

growth in even aged stands. 

9 

The influence of diameter growth rate on wood properties in pine is 

of interest. This interest stems from the fact that diameter growth 

rate responds to silvicultural practices. Tracheid lengths seem to be 

weakly correlated to diameter growth rate. Most studies conclude that 

fast diameter growth rate will cause a slight increase in summerwood 

tracheid length (Spurr and Hyvarinen, 1954; Zobel et al., 1960; Zobel 

et al., 1972). Significant correlations of diameter growth rate with 

percent extractive content has also been reported. Several authors have 

demonstrated that faster growing trees contain a higher extractive con­

tent than slower growing trees (Paul, 1958; Tarras and Saucier, 1967). 

However, extractive content does not appear to greatly affect other wood 

properties. 

Stonecypher et al. (1972) reported low narrow sense heritability 

estimates for radial growth in loblolly pine. The low heritability 

indicated that most of the variation in radial growth is due to the 

environment. It has been found that in general, environmental factors 

that increase radial growth increase tracheid lenth and extractive con­

tent, but decrease specific gravity and percent summerwood. However, 



the environmental factors that may significantly improve radial growth 

have only a minor effect on these other wood properties (Zobel et al., 

1959). 

Percent Summerwood 

10 

There are distinct anatomical differences between summerwood and 

springwood. Mark (1928, p. 48) defined summerwood as "all tracheids in 

which the common wall between two cell cavities multiplied by two is 

numerically equal to or greater than the width of the luman." Spring­

wood contains tracheids with thin c.ell walls. The thicker cell walls 

of summerwood account for its greater density. The higher density of 

summerwood helps to explain the large number of reports which found 

high correlations between percent summerwood and specific gravity. 

The amount of summerwood produced by a tree in a growing season 

seems to depend on four major factors. The first two are environmental; 

available moister and available nutrients. The other factors are the 

age of the tree producing the summerwood and the genetic influence of 

the genotype on summerwood production (Larson, 1957; Paul, 1958; Smith 

and Wilsie, 1962; Zahner and Oliver, 1962). 

Larson (1957) presented strong evidence that moisture stress 

affects the production of auxins. Auxins in turn influence the rate and 

type of radial growth put on by a tree. He suggests that moisture 

stress is needed to initiate summerwood production in pines. Many 

studies have reported that heavy spring rains greatly increase the 

amount of springwood produced in a single growing season, and that dry 

springs with adequate rain in the mid summer results in increase in pro­

duction of summerwood in a single growth season (Gilmore et al., 1966; 
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Jayne, 1958; Larson, 1957; Smith, 1956). Zahner and Oliver (1962) 

demonstrated that with the use of thinning and pruning they could delay 

moisture stress and reduce the annual amount of summerwood produced by 

a tree. 

Paul and Marts (1954) found that when they fertilized longleaf pine 

with nitrogen, specific gravity was reduced. It was discovered that the 

amount of springwood and summerwood was increased, but the proportion of 

springwood produced was greater than normal. Zobel et al. (1961) sup­

ported these findings in a later study on loblolly pine. In addition, 

they reported that there was tree to tree variation in response to the 

nitrogen fertilizer. 

Only a few heritability estimates have been reported for percent 

summerwood. Dadswell et al. (1961) estimated broad sense heritability 

in Monterey pine for percent summerwood as .47 in seedlings and .54 in 

clones for growth rings two through eight. Squillace et al. (1962) cal­

culated both narrow and broad sense heritabilities for percent summer­

wood in slash pine. The narrow sense heritability estimates were .08 

for open pollinated progeny and .26 for controlled pollinated progeny. 

The broad sense heritability estimate was much higher at .48, than were 

the narrow sense heritability estimates. Squillace's broad sense herit­

ability estimate for slash pine was very similar to Dadswell's estimate 

for Monterey pine. These heritability estimates suggest that summer­

wood production is under a fair amount of genetic control, but a large 

portion of this genetic control may be nonadditive. 

Tracheid Length 

Tracheid length is a wood property of special interest to paper 
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manufacturers. The length of tracheids used in the manufacturing of 

paper has some influence on the strength and quality properties of the 

paper produced (Dadswell and Wardrop, 1959). 

There have been a large number of studies reported on variation in 

tracheid length of pines. These studies can be divided into two main 

types: those that deal with variation within trees, and those that deal 

with variation among trees. 

The first major work performed on tracheid length variation within 

a tree was by Sanio (1872). He developed some general conclusions on 

variation of tracheids within a tree which were later refecred to as 

"Sanio's laws" by Bailey and Shepard (1915). The laws developed by 

Sanio (1872) are: 

1. In the stem and branches the tracheids everywhere 
increase in size from within outward, throughout a 
number of annual rings, until they have attained a 
definite size, which then remains constant for the 
following annual rings. 

2. The constant final size changes in the stem in such 
a manner that it constantly increases from below 
upward, reaches its maximum at a. definite height, 
and then diminishes toward the summit. 

3. The final size of the tracheids in the branches is 
less than those in the stem, but is dependent on 
the latter, inasmuch as those branches which arise 
from the stem at a lev.el where the tracheids are 
larger themselves have larger tracheids than those 
which arise at a level where the constant size is 
less. 

4. In the gnarled branches of the summit the constant 
size in the outer rings increases toward the apex, 
and then falls again, but here irregularities occur 
which may be absent in regularly grown branches. 

5. In the root the width of the elements first increase, 
then falls, and next rises to a constant figure. An 
increase in length also takes place, but could not be 
exactly determined (p. 69). 
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There has since been considerable controversy about the validity of 

Sanio's laws. The statement which created the main controversy is the 

last part of the first law which concludes that tracheids eventually 

reach a maximum length which then remains constant for the following 

growth rings. Bailey and Shepard (1914) were the first to disagree with 

this statement. They found that tracheid lengths varied greatly from 

growth ring to growth ring in the mature wood. Several other studies 

reached the same conclusion as Bailey and Shepard (Gerry, 1916; Ifju and 

Labesky, 1972). However, there are some studies which supported the 

phrase in Sanio's first law (Goggans, 1962; Jackson and Greene, 1958; 

Zobel et al., 1959). Spurr and Hyvarinen (1954) feel that they may have 

cleared up the controversy with the results of their study. Their find­

ings are that if a tree has relatively steady growth, the tracheid 

length will remain constant from growth ring to growth ring, and if the 

tree has sporadic growth, tracheid length will vary from growth ring to 

growth ring. 

Ifju and Labesky (1972), working with loblolly pine, studied tra­

cheid variation within trees further. They observed that tracheid 

length increases across the growth ring. The shortest tracheids were 

found in the early springwood growth and the length increased through to 

the last formed sunnnerwood. This report of the gradual increase in 

tracheid length across the growth ring is new. However, it has been 

reported many times that there is a difference in the average springwood 

and summerwood tracheid length (Goggans, 1962; Jackson and Greene, 1958; 

McCullough, 1972). Sunnnerwood tracheids are always longer. 

Within tree variation in tracheid length can be reduced consider­

ably when comparing trees by taking tracheid samples from the same 
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height and same age growth ring of each tree. In studies comparing 

tracheid lengths among trees in a stand, significant variation was found 

(Dorman, 1976; McCullough, 1972; Zobel and Rhodes, 1955). Other studies 

involving large segments of a species' range showed geographic variation 

in tracheid length (Dorman, 1976; Echols, 1958). The variation among 

trees and the lack of evidence that environment has much affect on 

tracheid length seems to indicate that tracheid length is largely under 

genetic control (Dadswell et al., 1961; Goggans, 1962; Jackson and 

Greene, 1958). Goggans (1962) estimated narrow sense heritabilities for 

loblolly pine at two different locations for both sunnnerwood and spring­

wood tracheid lengths. These estimates were .97 and .85 for summerwood 

tracheid length and .54 and .77 for springwood tracheid length. 

Goggan's narrow sense heritability estimates supported a report by 

Mitchell (1958), who concluded that sunnnerwood tracheid lengths are 

under more genetic influence than springwood tracheid lengths. In a 

study reported by Jackson and Greene (1958), evidence was found that the 

female parent may have more influence over tracheid length than the male 

parent in slash pine. For shortleaf pine, McCullough (1972) reported 

that there was significant among tree and among stand variation for 

tracheid length. 

With the combination of high narrow sense heritability and a large 

amount of among tree variation, genetic improvement in tracheid length 

for pines seems practical. With information generated by this study 

shortleaf pine breeders will be able to obtain some idea of the possible 

improvements obtainable through breeding procedures for tracheid length 

and the other wood properties examined. 



CHAPTER III 

MATERIALS AND METHODS 

Introduction 

Considerable care was taken to duplicate the field and laboratory 

procedures used by McCullough (197 2). McCullough 1 s procedures were dup-

1 icated in order to use his data as parent information for parent 

progeny regression heritability estimates. 

Field Collection 

The trees used in this study are open pollinated progeny from the 

measurement trees used in a study of geographic variation in Oklahoma 

shortleaf pine reported by McCullough (1972). The parent trees are from 

natural stands in southeastern Oklahoma (Figure 2). The open pollinated 

progeny from these parents were planted at two locations in southeastern 

Oklahoma (Figure 2), and were sampled in their 14th growing season. The 

two locations are Broken Bow, which is in the coastal plain, and 

Stilwell, which is in the Quachita mountains. Heritability estimates and 

genetic correlations calculated from data on these trees will be applic­

able to the shortleaf pine population in southeastern Oklahoma. 

The study material was outplanted in a randomized complete block 

design at each location. A location consists of six replicates, each of 

which contain 100 families in four tree row plots. Fifty-six unrelated 

15 
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half-sib families were sampled at each location for this study. These 

fifty-six families were sampled because they had no missing plots. One 

core taken all the way through the diameter of the sample tree was ob­

tained. The core was removed at diameter breast high with a 12 milli­

meter increment bore. Care was taken to avoid taking core samples which 

contained wood from limbs or knots. A soft lead pencil was used to 

label each core with its tree number. The core samples were placed in 

plastic tubes and the tubes were labeled with location and rep. numbers 

for the tree which the core sample represented. These tubes were stored 

in a freezer at zero degrees centigrade until processed in the 

laboratory. 

Laboratory Procedures 

Introduction 

The core samples from each replication were randomly divided into 

two equally sized batches within a location. Each batch went through 

all laboratory procedures together. A total of 24 different batches 

were processed through the laboratory procedures. 

Each core sample was divided into four core segments. The core was 

first divided at the pith, producing two radial core segments. Each 

radial core segment was divided to produce one core segment containing 

growth rings 1 to 10 and a second core segment containing growth rings 

11 through 13. The core segments were then individually labeled in 

pencil with their tree number and segment letters. Segment letters were 

assigned by reconstructing the core sample, and assigning letters A, B, 

C, and D in alphabetical order to core segments across the core sample 
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(Figure 3). The method used to assign segment letters always gave the 

letters A and D to the core segments consisting of growth rings 11 

through 13, and letters Band C to core segments consisting of growth 

rings 1 to 10. 

Unextracted Specific Gravity 

The maximum moisture method as described by Smith (1954) was used 

to measure specific gravity. The maximum moisture method requires the 

weight of a wood sample at maximum moisture and the weight of the same 

wood sample void of moisture. The two weights for the sample are then 

placed in a formula used to calculate specific gravity (Smith, 1954). 

specific gravity = 1 
x-y + 1 

y 1. 531 (3 .1) 

x = sample weight at maximum moisture, in grams 

y = sample weight, dried, in grams 

The maximum moisture of the core segments was obtained by placing 

the core segments into an air tight container. A vacuum was applied for 

a period of one hour. Water was then added to the air tight container 

possessing the core segments. A shut-off valve prevented the loss of 

vacuum when the water was added. The core segments were then allowed to 

soak in the vacuum for 24 hours. After soaking, the vacuum was removed 

and core segments were weighed. The core segments were kept submerged 

in water until weighing. Surface moisture was removed from the core 

segments by rolling them across damp paper towels. All core segments 

were weighed individually to the nearest .001 of a gram. 

The dry weight of the core segments was obtained by placing the 
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Figure 3. Division of a Core into Segments 



core segments in a drying oven set at 107 degrees centigrade for 48 

hours. The core segments were then removed from the drying oven and 

placed in desiccant jars. While in the dessicant jars, the cores were 

allowed to cool to room temperature. Each core segment was removed 

individually from the desiccant jar and weighed immediately to the 

nearest .001 of a gram. 

20 

The time intervals and the weighing precision used to obtain the 

maximum moisture and oven dry weights were derived by the use of a trial 

batch of cores. An extra batch of cores was gathered for this purpose 

while in the field. These cores were soaked for several different time 

intervals and weighed after each soaking. The same was done for the 

oven drying procedure. Duncan's new multiple range test (Steele and 

Torrie, 1960) was used to compare the different time interval means at 

a .05 significance level. In both tests no significant differences were 

discovered between the minimum and maximum time intervals. For maximum 

moisture, the minimum soaking interval was 24 hours. The maximum 

soaking interval was 96 hours. For oven dried weight, the minimum 

drying interval was 48 hours, and the maximum drying interval was 96 

hours. While weighing the cores in the test batch it was discovered 

that moisture gain for oven dried weighings and moisture loss for maxi­

mum moisture weighings could be observed at .00001 gram on the Mettler 

scale. An actual rate of moisture gain or loss in a certain time inter­

val was never calculated. However, it was felt that no additional 

accuracy would be gained by weighing the core segments at the .00001 

gram level. 
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Extracted Specific Gravity 

The extractives found in southern pines contain resin acids, essen­

tial oils, fats, fatty acids and unsaponifiable or inert material. 

These extractives can be removed from wood samples by the use of several 

different regeants and an extraction procedure. A modified ASTM (1954) 

procedure for extraction, as described by Goggans (1962), was used in 

this study. A modified soxhlet, described by Brown et al. (1977), was 

used to perform the extractions. The chemical regeants, soaking times, 

and soxhlet processing times are as follows: 

1. Soak wood samples in a 2 part benzene and 1 part ethanol 

solution for 8 hours. 

2. Process wood samples in the soxhlet with a 2 part benzene 

and 1 part ethanol solution for 16 hours. 

3. Soak wood samples .8 hours in ethanol. 

4. Process wood samples in the soxhlet with ethanol for 

8 hours. 

5. Remove ethanol from soxhlet and replace it with water, 

and process the wood samples in the soxhlet for 8 hours. 

6. Boil wood samples in water for 4 hours or until all 

traces of benzene are removed. 

At the completion of the extraction process, the extracted specific 

gravity was determined by the maximum moisture method. The maximum 

moisture method is the same method used to determine unextracted 

specific gravity and has been previously described. 

Number of Rings 

The length of each core segment was measured to the nearest .001 of 
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an inch. Rings per inch was then calculated for each segment by <livid-

ing the number of rings in the segment by segment length. The same 

method was used to obtain rings per inch for the total core. 

Number of Rings Per Inch = number of rings 
(3. 2) length of core segments 

Percent Summerwood 

Summerwood ring widths were measured to the nearest .001 of an 

inch. The measurements were obtained by using a dissecting scope equip-

ped with vernier calipers. Summerwood rings were highlighted by stain-

ing the core with a one part hydrochloric acid, one part water solution 

(Holz, 1959). 

False rings were measured and included as summerwood in this study. 

False rings are indistinguishable from normal summerwood rings unless 

observed with the proper equipment. The density of a false ring pro-

duced by a tree is about the same as the summerwood produced by the 

same tree (Panshin and deZeeuw, 1980). After considering these facts, 

it was decided that false rings would be included as summerwood. This 

decision made measuring summerwood more efficient and may have improved 

the correlation of percent summerwood with specific gravity. 

The percent summerwood for each core segment and whole core was 

computed by dividing the summed widths of summerwood rings by the total 

core segment length, then multiplying by 100. 

Percent Summerwood summerwood ring widths = - x 100 
segment length (3. 3) 



Tracheid Length 

Tracheids were obtained from the summerwood in the fifth and 

twelfth growth rings. The summerwood from the fifth growth rings in 

the B and C core segments were sliced into thin disks and placed in 

separate vials. The same was done for the twelfth growth rings in the 

A and D core segments. It was discovered that core segments that had 

been heavily stained with the hydrocholoric acid solution used when 

measuring percent summerwood were easier to slice. 
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The summerwood disks were macerated in the vials by the use of a 

procedure described by Buxton (1970). Each vial was filled approxi­

mately one-third full with a 1 to 1 solution of hydrogen peroxide and 

glacial acetic acid. The vials were then placed in an oven set at 66 

degrees centigrade. The vials remained in the oven until the summerwood 

disks took on a silvery appearance. The vials were removed from the 

oven and the hydrogen peroxide-glacial acetic acid solution was removed. 

Water was used as a rinse to remove any remaining hydrogen peroxide­

glacial acetic acid from the summerwood. The vials were next filled 

one-half full with water and ten drops of Safranin 0 dye were added. 

The vials were then shaken to separate the tracheids. 

One wet slide was made from each vial, and 20 whole tracheids were 

measured per slide. The tracheid lengths from a slide were next aver­

aged together. This produced an average tracheid length for each core 

segment. The average tracheid length for segments A and D of the same 

tree were then averaged. The same was done for segments B and C in the 

same tree core sample. These averages produced one tracheid length for 

the fifth growth ring and one tracheid length for the twelfth growth 

ring in a core sample. This was done to obtain an estimate of the mean 



tracheid length for the growth rings in question for each tree. 

The measuring of tracheid lengths was performed with the aid of a 

bioscope and a calibrated ruler. The bioscope projected the tracheids 

onto a screen. The tracheids were then measured on the screen with a 

ruler which was calibrated to convert the projected tracheid lengths 

into acutal tracheid lengths. The tracheids were measured to the 

nearest .01 of a millimeter. 

Data Analysis 

Analysis of Variance 
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A hierarchal analysis of variance (Snedecor and Cochran, 1967) was 

computed for all six wood properties for each segment age by location. 

A pooled analysis of variance was computed for each wood property and 

age by the analysis of variance over locations. Tests for significant 

differences among stands, among families in stands, stand by location 

interaction, and family in stand by location interaction, were computed 

using the F-test. The analysis of variance tables were also used to 

estimate components of variance for the calculation of half sib herit-· 

abilities and genetic correlations (Table I and Table II). 

Genetic Correlations 

Genetic correlations are used to estimate the response to selection 

of one trait on.the genotypic variation of another trait. Genetic 

correlations were computed for all possible combinations of wood pro­

perties measured in the study. The genetic correlations were derived by 

the use of the half sib progeny data from each location and from the 



Source of 
Variation 

Stand 

TABLE I 

COMPONENTS OF VARIANCE FROM ANALYSIS OF 
VARIANCE TABLE FOR A SINGLE LOCATION 

Expected Mean 
df Squares 

11 a2 + scr2 + fscr2 
e fs s 

44 cr2 + scr 2 
e fs 

Family (stand) 

Error 269 a2 
e 

a2 = stand variance component s 

a2 = family in stand variance component 
fs 

a2 = error variance component e 
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Actual Mean 
Squares 

MS s 

MSfs 

MS 
e 

S, fs are respective coefficients of the expected mean squares 

MS , MSf , MS are respective actual mean squares 
s s e 



TABLE II 

COMPONENTS OF VARIANCE FROM ANALYSIS OF 
VARIANCE TABLE FOR POOLED DATA 
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Source of Expected Mean Actual Mean 
Variation df Sg,uares 

Stand 11 cr2 + scr2 + lscr2 
e fxs fs 

Stand x location 11 02 + So2 + ls0~ 5 e fxs 

Family (stand) 44 02 + s02 + lscr2 
e fxs fs 

Family (stand) 44 02 + scr2 
x location e fxs 

Error 550 02 
e 

o2 = Stand variance component 
s 

02 = Stand by location interaction variance 
sxl 

cr2 = Family in stand variance component fs 

+ fs0 2 + 
sxl 

+ fs0 2 
sxl 

component 

02 = Family in stand by location interaction variance fxs 

02 = Experimental error variance component e 

Sguares 

fs0 2 MS 
s SC 

MS 
sxl 

MS 
fsc 

MSf XS 

MS 
ec 

component 

S, ls, fs are respective coefficients of the expected mean squares 

MS , MS 1 , MSf , MSf , MS are respective actual mean squares sc sx SC XS ec 
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pooled analysis. The formula used to calculate the half sib genetic 

correlations is: 

rg = 
MPfs - MPe 

/&~sl x &r:; (3.4) 

rg 

MP fs 

MP 
e 

=Genetic Correlation between trait 1 and trait 2. 

= The family (stand) mean cross product for traits 
1 and 2. 

= The residual mean cross product for traits 1 and 2. 

cr~sl = Family (stand) variance component estimate for 
trait 1. 

cr~s 2 = Family (stand) variance component estimate for 
trait 2. 

Genetic correlations were also estimated by a procedure involving 

all possible combinations of progeny on parent regression coefficients 

for two traits. The formula used to calculate the parent progeny re-

gression genetic correlations is: 

I b 
01P2 

x b 
02P1 

rg = b x b02P2 01P1 (3. 5) 

rg = Genetic correlation between trait 1 and trait 2. 

b = Regression coefficient of progeny trait 1 on parent 
01P2 trait 2. 

b = Regression coefficient of progeny trait 2 on parent 
02P1 trait 1. 

b = Regression coefficient of progeny trait 1 on parent 
01P1 trait 1. 

b = Regression coefficient of progeny trait 2 on parent 
02P2 trait 2. 
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Narrow Sense Heritability 

Heritability is a measure of the proportion of phenotypic variation 

among individuals that is.under genetic control. Narrow sense herit-

ability estimates the proportion of phenotypic variation due to additive 

gene action. Additive gene action is the cause of similarities between 

parents and offspring. The proportion of genetic control due to addi-

tive gene action is a function of the difference in frequencies of cer-

tain alleles among individuals within a population (Falconer, 1960). 

Narrow sense heritability was computed for each wood property using 

two methods, half sib correlations and parent progeny regression. It 

must be realized that the progeny in these tests are not true half sibs. 

They are open pollinated progeny of a parent tree in a natural stand. 

If there are enough progeny in the study that are really full sibs the 

variance of families within stands will contain more than the assumed 

one-fourth additive variance. This would inflate the half sib herit-

ability estimates. It was assumed in this study that open pollinated 

progeny are true half sibs. 

The half sib correlation method for estimating heritability uses 

the components for variance from the analysis of variance shown in 

Table I (Falconer, 1960). Heritabilities were estimated using both 

single location and pooled location analysis of variance. The equation 

used to calculate heritability at one location is shown below. 

hz = 4 ccr2fs) 

02 + cr2 
e fs 

h2 = Narrow sense heritability 

(3.6) 



Family (stand) component of variance estimate 

a2 = Error component of variance estimate 
e 

The one parent progeny regression method estimates heritability 

estimates by multiplying the regression coefficient of progeny on par-

ents by two (Falconer, 1960). The regression coefficient of progeny 

data on parent data produces an estimate of one half the additive 

genetic variation over the phenotypic variation. 
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(3.7) 

x = independent variable, parent measurements 

y = dependent variable, family average 

Due to skewness in the percent summerwood parent data, the parent 

and progeny data were transformed using the arcsine transformation 

(Snedecor and Cochran, 1967). It must also be noted that the parent 

tree data for the older core segments covers a ten year growth period, 

while in the progeny, it covered a three year period. When studying 

the parent progeny regression heritability estimates it will be impor-

tant to keep in mind the affects of tree age on wood properties and the 

amount of environmental variation that may be added by seven extra years 

of growth. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Environment 

The two progeny test locations used in this study represent two 

contrasting sites found in the shortleaf pine range of Oklahoma. The 

Broken Bow site is located on a small ridge in the coastal plain at 

about 850 feet above sea level. The soil type at the location is a 

deep sandy loam, which receives approximately 52 inches of rain 

annually. The Stilwell site is located at over 1000 feet above sea 

level in the Quachita mountains on a shallow silt loam soil. The 

Stilwell planting is in the flood plain of a small creek. The Stilwell 

area receives about 45 inches of rain per year. In a study by Tauer and 

McNew (In press), of the same two progeny tests the difference between 

the two environments manifested itself in terms of survival. The Broken 

Bow location had a high survival of 90 percent. The Stilwell location 

survival was much lower at 60 percent. The shallow soil and dry moun­

tainous climate of the Stilwell location seemed to be a harsher environ­

ment for shortleaf pine than that found at the Broken Bow location. 

In this study, percent survival added another dimension to the 

environmental effects. Only families which had no missing plot at 

either location were sampled in order to provide a balanced experi­

mental design. The effects of different spacing on the sampled plots 
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due to the difference in survival at the two locations may cause added 

environmental variation in the pooled data. 

Specific Gravity and Percent Extractives 
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Significant variation among families for unextracted and extracted 

specific gravity was found at the Broken Bow location. The variation 

was significant for both mature wood and juvenile wood (Appendix A, 

Table V and Table VI). Many researchers have reported similar results 

for among tree variation of specific gravity (Dadswell et al., 1961; 

Echols, 1958; Goggans, 1962; McCullough, 1972). No significant differ­

ence among stands was found. 

The Stilwell location, like Broken Bow, possessed significant among 

family variation for unextracted and extracted specific gravity in both 

mature and juvenile wood. The Stilwell location also exhibited, in the 

mature wood, significant variation among stands for unextracted and 

extracted specific gravity. Stands from dry areas of Oklahoma may pos­

sess increased drought tolerance or the ability to grow better under dry 

conditions. The bulk of rain received at Stilwell during the shortleaf 

pine growing season is in the late spring and early sunnner followed by 

two to three months of drought conditions. The shallow soil and the 

rainfall distribution does not allow for large increments of dense 

sunnnerwood to be formed. Families from stands located in dry environ­

ments possess the ability to produce more sumrnerwood growth during 

periods of drought than those families from less draughty areas (Larson, 

1957; Zobel and McElwee, 1958). This was found to be true for the 

families examined in this study. When stand means for percent sunnner­

wood and specific gravity are compared, stands from the drier areas have 



a larger percentage of summerwood and a higher specific gravity 

(Appendix B, Table XII, Table XIII, and Table XV). 
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The pooled over location data contained variation among families 

and among stands for both unextracted and extracted specific gravity 

(Appendix A, Table V and Table VI) of the juvenile wood. As stated pre­

viously, significant variation among families in the juvenile wood 

agrees with the documented significant tree to tree variation in spe­

cific gravity reported by others. In the juvenile wood for both unex­

tracted and extracted specific gravity, stands performed similarly at 

both locations (Appendix B, Table XII and Table XIII). Based on the 

information from the pooled data, genetic gains may be increased for 

junvenile wood specific gravity if selections are made first among stands 

and then among individuals in the best stands. 

In older trees, percent extractives might make up an important part 

of the phenotypic variation found in specific gravity. However, due to 

the young age of the trees in this study, the amount of percent extrac­

tives was small (Appendix B, Table VII). There was no significant 

genetic variation in percent extractives at either location or in the 

pooled data for mature and juvenile wood (Appendix A, Table VIII). Most 

of the variation in percent extractives at an individual location was 

among replications. In the pooled data the bulk of the variation for 

percent extractives is due to the differences between location. The 

presence of a large proportion of variation among replications and be­

tween locations is an indication that the environment plays an important 

role in the variation of percent extractives found in shortleaf pine. 

A significant genotype by environment interaction was detected in 

the mature wood for unextracted and extracted specific gravity pooled 
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data (Appendix A, Table V and Table VI). This genotype by environment 

interaction was not detected in any of the juvenile wood data. The sig-

nificant variation found in the family x location interaction may have 

two causes. The first is the difference in the magnitude of both the 

unextracted and the extracted specific gravity estimates between the two 

locations. The difference in magnitude can easily be seen when compar-

ing location means (Table III). 

TABLE III 

LOCATION MEANS FOR UNEXTRACTED AND 
EXTRACTED SPECIFIC GRAVITY 

Broken Bow Stilwell 

Unextracted 
Specific Gravity 

Extracted 
Specific Gravity 

.447 

.424 

.377 

.346 

The other possible cause for family x location interaction is the 

significant interchange of family rankings noted between location. The 

significant difference in family performance at the two locations may 

cause an averaging effect when the data is pooled. This averaging 

effect would hide significant variation among families. 

Narrow sense heritability estimates for unextracted specific 

gravity, extracted specific gravity, and percent extractive content were 
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calculated by use of half sib correlations and parent progeny regression 

for both the mature wood and the juvenile wood (Table IV). The half sib 

correlation procedure of calculating heritability was used to obtain 

heritability estimates for each location and for the pooled data. The 

parent progeny regression was used to obtain heritability estimates by 

regressing the pooled data family means on the parent tree data. 

The mature wood heritability estimates for the Broken Bow location 

were .364 for unextracted specific gravity, .345 for extracted specific 

gravity, and .109 for percent extractives. An unextracted specific 

gravity heritability estimate higher than the extracted specific gravity 

heritability estimate was unexpected. With the removal of extractives 

from the mature wood core segments a reduction of phenotypic variation 

is expected. The reduction in phenotypic variation due to the removal 

of extractives would produce a higher heritability estimate for ex­

tracted specific gravity. Apparently because the mature wood core seg­

ments from Broken Bow contained an extremely small amount of extrac­

tives, (Appendix B, Table XI) the slight difference between unextracted 

and extracted specific gravity heritability estimates is due to sample 

variation in the data. 

The juvenile wood heritability estimates from Broken Bow followed 

an expected pattern. The unextracted specific gravity heritability es­

timate of .320 is lower than the extracted specific gravity heritability 

estimate of .417. The percent extractives heritability estimate at .06 

did not vary much from the heritability calculated for the mature wood 

core segments for the same trait. 

Heritability estimates for the mature wood core segments from 

Stilwell are .446 for unextracted specific gravity, .501 for extracted 



TABLE IV 

NARROW SENSE HERITABILITY ESTIMATES 

Unextracted Extracted Percent Number of Rings Percent Tr ache id 
Specific Gravity Specific Gravity Extractives Per Inch S unune rwo od Length 

h2 s.e. h2 s.e. h2 s.e. h2 s.e. h2 s.e. h2 s. e. 

Mature Wood 

Pooled Data .100 .157 .145 .147 -.060 .117 .194 .132 .038 .105 .147 .124 
Half Sibs 

Broken Bow .364 .205 .345 .211 .109 .173 .263 .192 .066 .168 .350 .206 
Half Sibs 

Stilwell .446 .217 .501 .223 .229 .168 .124 .173 .100 .139 .331 .203 
Half Sibs 

Parent .033 .033 .190 .080 .015 .021 .081 .261 .382 .385 .382 .400 
Progeny 
Regression 

Juvenile Wood 

Pooled Data .346 .156 .242 .165 .012 .086 .312 .129 -.039 .104 .230 .137 
Half Sibs 

Broken Bow .320 .202 .417 .197 -.065 .145 .250 .194 -.001 .104 .271 .191 
Half Sibs 

Stilwell .545 .194 .567 .227 .282 .144 .161 .182 -.060 .149 .279 .199 
Half Sibs 

Parent .037 .054 .190 .086 .013 .024 -.240 .282 .360 .757 
Progeny 
Regression 

w 
\JI 



specific gravity, and .229 for percent extractives. The heritability 

estimates for the juvenile wood core segments are .545 for unextracted 

specific gravity, .567 for extracted specific gravity, and .282 for 

percent extractives. 
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In general, the half sib heritability estimates for specific 

gravity calculated by locations are very similar to those obtained by 

other researchers for other so.uthern pines (Namkoong ·et al., 1969; 

Squillace et al., 1962; van Buijtenen, 1962). The heritability esti­

mates for percent extractives at each location are quite high. The 

effect of a common environment within a location may be one reason for 

the high heritability estimates for percent extractives. It is a known 

fact that environment and age strongly influence the extractive content 

in a tree (Ifju and Labesky, 1972; Kurth, 1933; Posey and Robinson, 

1969). 

The unextracted specific gravity, extracted specific gravity, and 

percent extractives heritability estimates calculated from the Stilwell 

data are larger than those obtained from the Broken Bow data. If it is 

assummed that the additive genetic variance of the trees at the two 

locations are the same, then the phenotypic variation at Broken Bow is 

greater than that at Stilwell. The difference in variation can be ob­

served when comparing the replication mean squares of the two locations 

in Table VII. 

The half sib heritability estimates from the pooled data for the 

mature wood are considerably lower than those estimated at either loca­

tion. As discussed previously, there is significant genotype by envi­

ronment interaction and non-significant among family variation in the 

pooled specific gravity data. The averaging effect caused by pooling 
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the data of families which performed significantly different between 

locations reduces the among family variation. The reduction of varia­

tion among families indicates the degree of resemblance among half sibs 

is not very good. This leads to a reduction in the estimation of addi­

tive genetic variance. The half sib heritability estimates for the 

pooled mature wood core segment data is .100 for unextracted specific 

gravity, .145 for extracted specific gravity, and -.060 for percent ex­

tractives. The negative percent extractive heritability estimate pos­

sesses a large standard error (Table IV). When the percent extractive 

data was pooled, the effect of the conunon environment within a location 

was lost. With the loss of the common environment effect the estimate 

of additive genetic variance was reduced while the estimate of pheno­

typic variation was increased. The pooled data suggest that heritabil­

ity estimates calculated with data from only one location may be in­

flated due to the confounding of the family in stand variance component 

by the genotype by environmental interaction component. 

In the juvenile wood, the heritability estimates for unextracted 

and extracted specific gravity are only slightly smaller than those cal­

culated for each location. The unextracted specific gravity heritabil­

ity estimate is .346 which is larger than the extracted specific gravity 

heritability estimate of .242. Both unextracted and extracted herit­

ability estimates have large standard errors (Table IV), so the most 

probable reason for the difference in the heritability estimates is the 

sampling error in the pooled data. The heritability estimate for per­

cent extractives in the juvenile wood core segments is .012. The mag­

nitude of reduction in the heritability estimates for extractive percent 

in juvenile wood is similar to that found in the mature wood. 
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The pooled half sib heritability estimates for specific gravity 

were lower than expected. Variation due to genotype by environment 

interaction can be accounted for in the analysis of variance for the 

pooled data. In the analysis of variance for a single location the 

variation caused by differences in the ability to perform in certain en­

vironments is confounded in the family in stand variance component. 

This inflates the family in stand variance component which is used as an 

estimate of additive genetic variation in the calculation of half sib 

heritability estimates. Therefore, specific gravity heritability esti­

mates calculated with data from only one location may be inflated. 

Heritabilities estimated by use of parent progeny regression were 

expected to be lower than those calculated using half sibs. The parent 

data was collected from trees in their natural stands. McCullough 

(1972) reported significant variation among the stands from which the 

parent tree data was obtained. The added environmental variation in the 

parents, due to the significant among stand variation, increased the 

denominator in the parent progeny regression formula (3.7). This in­

crease in the denominator, or phenotypic variation, is the cause for the 

lower parent progeny regression heritability estimates observed (Table 

IV). However, the distortion that may be caused by the significant 

environmental variation in the parent progeny regression heritability 

estimates are not as large for traits which have low additive genetic 

variance. In the case of percent extractives the parent progeny regres­

sion heritability estimates vary little from those calculated using half 

sib family means. 

Genetic correlations were calculated for extracted and unextracted 

specific gravity with all the other measured traits in the study. 



39 

Unfortunately, due to the presence of negative variance components, only 

a few correlations were obtained (Appendix C). 

The mature wood genetic correlations for percent sununerwood with 

unextracted specific gravity (Appendix C, Table XVII) and extracted 

specific gravity (Appendix C, Table XVIII) were estimated only in the 

pooled data. Neither of these correlations was significant. Juvenile 

wood genetic correlations for percent suililllerwood with unextracted and 

extracted specific gravity were only computable for the Broken Bow data. 

These correlations, like those of the mature wood core segments, are 

non-significant. However, it was noted that all these genetic correla­

tions of specific gravity with percent summerwood were positive. This 

trend is in agreement with findings of other researchers (Ifju and 

Labesky, 1972; Jayne, 1958; Larson, 1957). 

The relationship between diameter growth and specific gravity has 

been of interest for decades. Therefore, genetic correlations of un­

extracted and extracted specific gravity with number of rings per inch 

were computed for both the mature and juvenile wood data (Appendix C, 

Table XVII and Table XVIII). All the mature wood correlations were 

positive. Only one was significant, but it was a theoretically impos­

sible 1.2. Since number of rings per inch is an inverse measure of 

diameter growth, these data suggest that diameter growth and specific 

gravity in mature wood have a negative genetic correlation. The juven­

ile wood core segments produced an opposite result for genetic correla­

tions of diameter growth with specific gravity, except at the Broken Bow 

location. These juvenile wood genetic correlations are not only non­

significant, they fail to give any possible insight on the direction of 

the correlations. The ambiguous results of the correlation of juvenile 
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wood specific gravity with number of rings per inch exemplifies the con­

troversy surrounding this particular correlation. These data suggest 

that, at least for juvenile wood, no relationship exists. 

Number of Rings Per Inch 

There was no significant variation in number of rings per inch 

observed at either location or in the pooled data for the mature wood 

(Appendix A, Table VIII). The lack of significant variation among 

families indicates that the variation in number of rings per inch can 

be attributed to factors other than additive genetic influences. The 

analysis of variance shows that the bulk of the variation in the pooled 

data for the number of rings per inch in mature wood is due to dif­

ference between locations. 

The juvenile wood number of rings per inch data contained signifi­

cant among family variation at the Broken Bow location and in the pooled 

data (Appendix A, Table VIII). Apparently, the relatively good site at 

Broken Bow allowed for the expression of genetic variation in diameter 

growth while Stilwell did not. At Stilwell where there was only 60 per­

cent survival, the environmental conditions seem to mask the expres­

sion of genetic variation in diameter growth. The significant among 

family variation in the pooled data suggest that genetic control is an 

important factor in diameter growth rate of juvenile shortleaf pine. 

The half sib heritability estimates for the mature wood number of 

rings per inch are .194 for the pooled data, .263 for Broken Bow, and 

.124 for Stilwell (Table VIII). These heritability estimates do not 

vary greatly from those reported by other researchers for other southern 

pines (Stonecypher and Zobel, 1966; Rousseau, 1980). 
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The half sib heritability estimates for the juvenile wood are 

higher than those for the mature wood core segments (Table IV). An in­

crease in heritability for diameter growth for younger material over 

those found for older material from the same tree has been found before 

(Rousseau, 1980). The heritability estimates for the juvenile wood 

number of rings per inch seem reasonable when compared to other herit­

ability estimates reported on the trait. However, these estimates are 

low when compared to narrow sense heritability estimates calculated by 

Tauer (in press) for diameter growth of trees from the same progeny 

test. The heritabilities estimated by Tauer may be inflated somewhat 

due to the use of families with missing plots. 

The parent progeny regression heritability estimates varied greatly 

between the mature wood core segments and the juvenile wood core seg­

ments. The mature wood parent progeny regression heritability estimate 

was .081, which is lower than the heritability estimates produced by 

the half sib family mean procedure of estimating heritability. The 

reason for the low parent progeny regression heritability estimate is 

possibly the fact that the parent tree data was collected from natural 

stands and possesses a large amount of environmental variation. In the 

juvenile wood the parent progeny regression gave the lowest heritabil­

ity estimate reported in this study, -.240. Again, the cause of the 

extremely low heritabilities produced by the parent progeny regression 

lies in the large amount of environmental variation present in the 

parent data. If the parent progeny regression heritability estimates 

are considered unreliable and only the half sib heritability estimates 

are taken into account for both the mature and juvenile wood, some gains 

in diameter growth rate may be obtained through selection. 



A few genetic correlations were computed for number of rings per 

inch and percent summerwood in both mature wood and juvenile wood 

(Appendix C, Table XIX). These genetic correlations were nonsignifi­

cant, but they did suggest a definite positive trend. 
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Number of rings per inch was not genetically correlated with any 

of the other traits measured, except for the previously discussed rela­

tionship with specific gravity. 

Percent Summerwood 

There was no significant genetic variation in percent summerwood 

at either location or in the pooled data for the juvenile and mature 

wood (Appendix A, Table IX). The lack of genetic variation in percent 

summerwood was not expected. Previous studies have demonstrated a 

strong environmental influence on percent summerwood in other southern 

pines (Larson, 1975; Squillace et al., 1962). 

The half sib heritability estimates calculated for percent summer­

wood are low (Table IV). The mature wood produced slightly higher her­

itability estimates than the juvenile wood. The low heritability 

estimates were expected. The lack of variation among families and 

stands indicates a minimal amount of additive genetic variation. 

McCullough (1972) found that his percent summerwood data were skewed, 

and used an arcsine of the square root of the percent summerwood trans­

formation as a correction factor. The same transformation was tried on 

the progeny data, but the transformation had no real effect on the dis­

tribution of the progeny data. The half sib heritability estimates 

changed little with the use of the transformation. The transformation 

was used on both the parent and progeny data for the calculation of 



parent progeny regression heritability. The parent progeny regression 

heritability estimates are higher than the half sib heritability esti­

mates. The transformation reduced the amount of phenotypic variation 

in the parent data which is the denominator in the parent progeny re­

gression heritability equation (3.7). Also, the magnitude of the 

regression of the progeny data onto the parent data may have been in­

creased by the transformation. The effects of the transformation on 

the distribution of both the parent and progeny data may be the cause 

for the parent progeny regression heritability estimates to be higher 

than those calculated by use of half sib family means. The half sib 

heritability estimates appear to be the most reliable. 

All genetic correlations of interest for percent surmnerwood, and 

their implications, have been discussed previously. 

Tracheid Length 

43 

It would have been impossible to obtain tracheid length estimates 

for all the juvenile and mature wood growth rings in the time period in 

which this study was performed. Therefore, the fifth growth ring was 

chosen to represent the juvenile wood and the twelfth growth ring was 

chosen for the mature wood. The analysis of variance for tracheid 

length by location and pooled data for the fifth and twelfth growth 

rings shows an unexpected large amount of environmental influence 

(Appendix A, Table X). Work reported on other pines has produced evi­

dence that tracheid lengths are under predominantly genetic control 

(Dadswell et al., 1961; Goggans, 1962; Jackson and Greene, 1958). Some 

indications of genetic influence on shortleaf pine tracheid lengths were 

detected in the Broken Bow data for both growth rings sampled. The 
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genetic control is in the form of variation among families. Significant 

among family variation suggests the presence of additive genetic varia­

tion. In the pooled data for the juvenile wood tracheid lengths signif­

icant among stand variation was found. McCullough (1972) discovered 

significant among stand variation in the parent trees. The significant 

among stand variation may be at least partly attributed to differences 

in the contents of the stand gene pools. However, the overriding evi­

dence in these data suggest a significant amount of variation in short­

leaf pine tracheid 'lengths is due to non-additive and environmental 

influences. 

The mature wood tracheid length half sib heritability estimates of 

. 350 for Broken Bow and . 331 for Stilwell are relatively similar (Table 

IV). The half sib heritability estimate for the pooled data of .147 is 

somewhat lower than the individual location heritability estimates. 

Significant variation between locations is the cause for the small her­

itability estimate for tracheid length in the pooled data. The parent 

progeny regression heritability estimate could only be calculated for 

the mature wood because only tracheid lengths for mature wood were 

available from McCullough's data. The heritability calculated by use 

of a parent progeny regression is .382. This heritability estimate is 

similar to those calculated for the mature wood tracheid length using 

half sib family means. The parent data obtained by McCullough (1972) 

consisted of the averaging of tracheid length measurements from the 

eleventh, fifteenth, and twentieth growth ring sununerwood segments. 

The twelfth growth ring pooled progeny data was then regressed on 

McCullough's parent data to obtain a mature wood core segment heritabil­

ity estimate. If one accepts all of Sanio's (1892) laws then the parent 
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progeny regression heritability estimate is valid. If Sanio's (1892) 

laws are considered false, then the parent progeny regression heritabil­

ity estimate contains added phenotypic variation caused by variation 

among growth rings in the mature wood. 

The juvenile wood tracheid length half sib heritability estimates 

are lower than those calculated for the mature wood {Table IV). Like 

the mature wood heritability estimates, the juvenile wood heritability 

estimates are grouped close together. Even the pooled data half sib 

heritability estimate for the juvenile wood is close in magnitude to 

those calculated for the individual locations. 

All the heritability estimates calculated for tracheid length in 

this study are considered low when compared to tracheid length herit­

ability estimates for other pines. However, the precision of the group­

ings of the heritability estimates in the study may indicate that the 

amount of additive genetic control of tracheid length in shortleaf pine 

is less than that found in other pines. Still, these heritability 

estimates are of a sufficient magnitude to allow adequate genetic gains 

in a selection program. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The objective of this study was to estimate genetic variation in 

six wood properties of shortleaf pine in southeastern Oklahoma. The 

variation components estimated for unextracted specific gravity, ex­

tracted specific gravity, percent extractives, number of rings per inch, 

percent sunnnerwood, and tracheid lengths were used to compute narrow 

sense heritability and genetic correlations, 

The trees used in this study are open pollinated progeny of meas­

urement trees used in a study of geographic variation in Oklahoma short­

leaf pine reported by McCullough (1972). The parent trees are located 

in natural stands throughout the shortleaf pine range in southeastern 

Oklahoma. The open pollinated progeny were planted at two contrasting 

sites in the shortleaf pine range of southeastern Oklahoma. A random­

ized complete block design consisting of six replications each con­

structed of 100 four tree family row plots were used at both locations. 

The fifty-six unrelated half sib families without missing plots at both 

locations were sampled. The experimental design was balanced. The wood 

sample from a tree was divided into two main segments; the mature wood 

segment consisting of growth rings (11-13), and the juvenile wood seg­

ment consisting of growth rings (1-10). Analysis of variance for each 

wood property was computed within each growth segment group. 

Heritability estimates were calculated by use of half sib family 
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means and parent progeny regression. The half sib heritability proce­

dure was performed for each wood property within growth segment groups 

for individual locations and pooled data. The parent progeny regression 

method for calculating heritability was used only with the pooled pro­

geny data for both growth segment groups. 

The half sib heritability estimates calculated in this study by 

location for unextracted and extracted specific gravity of shortleaf 

pine are similar to those reported for other pines. The pooled half sib 

heritability estimates are similar to each other, but they are lower 

than those calculated for individual locations. The parent progeny 

heritability estimates are considerably lower than the half sib herit­

ability estimates, probably due to a large amount of environmental var-

iation in the parent data. On the average, the extracted specific 

gravity heritability estimates are higher than those calculated for the 

unextracted specific gravity. The removal of extractives from the core 

samples reduces the amount of phenotypic variation present without much 

effect on the amount of add·itive genetic variation. The trend found 

between juvenile and mature wood heritability estimates suggests that 

specific gravity in juvenile wood may be slightly more heritable than 

specific gravity in mature wood. However, there is a possibility that 

some of the variation discovered in the mature wood may be due to the 

fact that not all trees were producing mature wood at ages 11 through 

13. It seems probable, based on this study's data, that heritability 

for specific gravity is of an adequate size to achieve acceptable 

genetic gains through selection for specific gravity. 

Narrow sense heritability estimates for extractive content varied 

greatly. In most cases the standard error of the heritability estimate 
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was larger than the heritability estimate itself. Generally, heritabil­

ity estimates produced from individual location data were high, and 

those estimated from pooled data and by parent progeny regression were 

low. Even though it is difficult to give definite values for the ex­

pected heritability of extractive content, it is apparent that herit­

ability is fairly low. Factors such as age and site appear to have a 

great influence on the extractive content of a shortleaf pine. 

Percent sutmllerwood heritability estimates increased from juvenile 

wood to mature wood; however, all the half sib percent summerwood herit­

ability estimates were extremely low and have large standard errors. 

The parent progeny regression heritability estimates were of a moderate 

magnitude but the standard error of the heritability estimates did not 

improve over that of the half sibs. It would be very risky to make any 

interpretations about the nature of the genetic variance of percent 

summerwood found in this study due to the over-riding environmental 

influences. 

The number of rings per inch half sib heritability estimates were 

fairly similar between locations and between wood segment age groups. 

The Stilwell location produced slightly lower half sib heritability 

estimates due to large environmental variations which may be the result 

of low survival. The heritability estimates produced for number of 

rings per inch by using half sib families are similar to those reported 

for other pines. The probable cause of an extremely low heritability 

estimate produced by the parent progeny regression is the large amount 

of environmental variation in the parent data. 

The heritabilities calculated for tracheid lengths are higher for 

the mature wood than for juvenile wood. Both mature wood and juvenile 
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wood tracheid length heritability estimates are low when compared to 

heritability estimates for tracheid lengths of other southern pines re­

ported in the literature. Although the heritability estimates for 

tracheid lengths estimated in this study are comparatively low, they are 

of sufficient size to indicate that an adequate amount of genetic gain 

can be obtained through selection. 

The genetic correlations estimated in this study have large 

standard errors, and at best, can only provide some idea of the direc­

tion of the relationships. For both tracheid length and percent ex­

tractives, no correlations of interest were observed. Weak positive 

genetic correlations were found for specific gravity with percent 

summerwood.. Stronger positive correlations were observed for number of 

rings per inch with percent summerwood. Positive genetic correlations 

were also found for specific gravity with number of rings per inch in 

all of the mature data and in the juvenile data from Broken Bow. The 

rest of the juvenile data produced negative specific gravity with num­

ber of rings per inch genetic correlations. It is improbable, using the 

genetic correlations calculated in this study, to obtain accurate esti­

mates of genetic response of one wood property to selection for another. 
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TABLE V 

ANALYSIS OF VARIANCE BY LOCATIONS AND POOLED 
DATA FOR UNEXTRACTED SPECIFIC GRAVITY 

Mature Wood Juvenile Wood 

Pooled Data 

Source D.F. Mean Squares F-Test D.F. Mean Squares F-Test 

Location 1 0.81914 1 0.00076 
Replication (Loe.) 10 0.00168 10 0.00296 
Stand 11 0.00350 2.279 11 0.00204 3.643* 
Stand x Loe. 11 0.00154 .990 11 0.0056 . 776 
Family (Stand) 44 0.00191 1.266 44 0.00136 1. 863* 
Family (Stand) xLoc 44 0.00156 1.604* 44 0.00073 1.196 
Error 550 0.0097 550 0.0061 
Total 671 671 

Broken Bow 

Source 

Replication s 0.00897 5 0.00908 
Batch (Rep.) 6 0.03145 6 0.01345 
Stand 11 0.01604 .941 11 0. 01100 1.410 
Family (Stand) 44 0.01763 1.513* 44 0.00781 1. 592* 
Error 269 0.01170 269 0.00490 
Total 335 335 

Stilwell 

Source 

Replication 5 0.01802 5 0.03739 
Ba.tch (Rep. ) 6 0 .01129 6 0.00489 
Stand 11 0.02460 2.46* 11 0.0853 1.036 
Family (Stand) 44 0.01004 1.923* 44 0.00822 1.74* 
Error 269 0.00521 269 0.00473 
Total 335 335 

*Significance at the .05 level. 



TABLE VI 

ANALYSIS OF VARIANCE BY LOCATIONS AND POOLED 
DATA FOR EXTRACTED SPECIFIC GRAVITY 
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Mature Wood .Juvenile Wood 

Pooled Data 

Source D.F. Mean Squares F-Test D.F. Mean Squares F-Test 

Location 1 1.02890 1 0.02704 
Replication (Loe.) 10 0.00196 10 0.00127 
Stand 11 0.00345 2.447 11 0.00205 4.578* 
Stand x Loe. 11 0.00140 1.052 11 0.00045 .7680 
Family (Stand) 44 0.00167 1.307 44 0.00100 1.724* 
Family (Stand) x Loe 44 0.00134 1. 672* 44 0.00058 1.275 
Error 550 0.00080 550 0.00046 
Total 671 671 

Broken Bow 

Source 

Replication 5 0.02688 5 0.01566 
Batch (Rep.) 6 0. 00411 6 0 .00472 
Stand 11 0.01781 1.171 11 0.00923 1.640 
Family (Stand) 44 0.01523 1. 692* 44 0.00569 1. 555* 
Error 269 0.00905 269 0.00366 
Total 335 335 

Stilwell 

Source 

Replication 5 0.00484 5 0.00196 
Batch (Rep.) 6 0.00985 6 0~00456 
Stand 11 0.01840 2.424* 11 0.00796 1.588 
Family (Stand) 44 0.00768 1. 97 4~': 44 0.00501 1. 851* 
Error 269 0.00391 269 0.00272 
Total 335 335 

*Significance at the .05 level. 



TABLE VII 

ANALYSIS OF VARIANCE BY LOCATIONS AND POOLED 
DATA FOR PERCENT EXTRACTIVES 
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Mature Wood Juvenile Wood 

Pooled Data 

Source D.F. Mean Squares F-Test D.F. Mean Squares F-Test 

Location 1 17711. 00 1 2227.30 
Replication (Loe.) 10 94.8729 10 125.490 
Stand 11 2.61226 .510 11 2.90539 . 772 
Stand x Loe. 11 5.12479 1.082 11 3.76530 .586 
Family (Stand) 44 3.84201 .809 44 6.22853 .969 
Family (Stand) x Loe 44 4.73607 .901 550 5.28345 1.216 
Error 550 5.15226 671 
Total 671 

Broken Bow 

Source 

Replication 5 171. 360 5 90.4816 
Batch (Rep.) 6 215.876 6 125.453 
Stand 11 7.97314 . 779 11 4.70866 .588 
Family (Stand) 44 10.2190 1.144 44 8.02925 1.155 
Error 269 8.93361 269 6.95530 
Total 335 

Stilwell 

Source 

Replication 5 61. 7065 5 329. 960 
Bat. (Rep) 6 56 .1728 6 74.8943 
Stand 11 5.09461 1.899 11 6.66810 .865 
Family (Stand) 44 2.67679 .613 44 0.84509 .613 
Error 269 4.37055 269 7.25365 
Total 335 335 

*Significance at the .05 level. 



TABLE VIII 

ANALYSIS OF VARIANCE BY LOCATIONS AND POOLED 
DATA FOR NUMBER OF RINGS PER INCH 
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Mature Wood Juvenile Wood 

Pooled Data 

Source D.F. Mean Squares F-Test D.F. Mean Squares F-"Test 

Location 1 382.527 1 2.48768 
Replication (Loe.) 10 2.92906 10 4. 32770 
Stand 11 0.84300 .477 11 0.82297 .637 
Stand x Loe. 11 1.76076 1.475 11 1. 22339 1. 631 
Family (Stand) 44 1. 90010 1.583 44 1. 60576 2.141* 
Family (Stand) x Loe 44 1.19401 1.040 44 0.75003 .871 
Error 550 1.14863 550 0.86090 
Total 671 671 

Broken Bow 

Source 

Replication 5 1.94220 5 1.32405 
Batch (Rep.) 6 1.41089 6 0.78124 
Stand 11 1.98525 1.070 11 0.91055 .798 
Family (Stand) 44 1. 85560 1.392 44 1.14292 1.829* 
Error 269 1.33355 269 0.62456 
Total 335 335 

Stilwell 

Source 

Replication 5 3.91592 5 7.33136 
Batch (Rep.) 6 1.41430 6 0.88987 
Stand 11 0.64398 .538 11 1.09640 .865 
Family (Stand) 44 1.19447 1.239 44 1.26999 1.165 
Error 269 0.95810 269 1.09063 
Total 335 335 

*Significance at the .05 level. 



TABLE IX 

ANALYSIS OF VARIANCE BY LOCATIONS AND POOLED 
DATA FOR PERCENT SUMMERWOOD 
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Mature Wood Juvenile Wood 

Pooled Data 

Source D.F. Mean Squares F-Test D.F. Mean Squares F-Test 

Location 1 14079.4 1 26530.8 
Replication (Loe.) 10 108.417 10 117 .806 
Stand 11 18.0021 1.617 11 44.2214 .425 
Stand x Loe. 11 11.1229 .427 11 104. 031 1.517 
Family (Stand) 44 23.2635 .898 44 76.7234 1.118 
Family (Stand) x Loe 44 26.0340 1.115 44 68.5986 .978 
Error 550 23.3503 550 70.1214 
Total 671 671 

Broken Bow 

Source 

Replication 5 144.022 5 133.400 
Batch (Rep.) 6 98.6361 6 181. 349 
Stand 11 14.1009 .456 11 103.794 .999 
Family (Stand) 44 30.7359 1.098 44 103.865 .990 
Error 269 27.9931 269 104.000 
Total 335 335 

Stilwell 

Source 

Replication 5 72.8129 5 102. 213 
Batch (Rep.) 6 60.0056 6 67.4587 
Stand 11 14.9751 1.120 11 50.6708 1.581 
Family (Stand) 44 13.3591 .764 44 32.0564 .914 
Error 269 17.0636 269 35.1046 
Total 335 335 

*Significance at the .05 level. 



TABLE X 

ANALYSIS OF VARIANCE BY LOCATIONS AND POOLED 
DATA FOR TRACHEID LENGTH 

62 

Mature Wood Juvenile Wood 

Pooled Data 

Source D.F. Mean Squares F-Test D.F. Mean Squares F-Test 

Location 1 15.6930 1 16.3594 
Replication (Loe.) 10 1. 82379 10 0.25655 
Stand 11 0.11614 1.837 11 0.09173 3.597* 
Stand x Loe. 11 0.06320 .465 11 0.02549 . 311 
Family (Stand) 44 0.13581 1. 257 44 0.08161 1.437 
Family (Stand) x Loe 44 0.10806 1.029 44 0.05681 1.059 
Error 550 0.10497 550 0.05365 
Total 671 671 

Broken Bow 

Source 

Replication 5 2.12749 5 0.30570 
Batch (Rep.) 6 0.41166 6 0.06528 
Stand 11 0.05085 .406 11 0.04227 .489 
Family (Stand) 44 0 .12522 1. 563~'( 44 0.08638 1.425* 
Error 269 0.08009 269 0.06063 
Total 335 335 

Stilwell 

Source 

Replication 5 1. 52010 5 0.20740 
Batch (Rep.) 6 0.61357 6 0.08782 
Stand 11 0.11152 .951 11 0.08660 1.814 
Family (Stand) 44 0 .11733 1.045 44 0. 04775 1.041 
Error 269 0.11261 269 0.04587 
Total 335 335 

*Significance at the . 05 level. 
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Stand Pooled 

1 10.5 

3 10.3 

6 10.0 

7 10.0 

15 9.78 

16 9.91 

23 9.89 

26 9. 73 

39 10.0 

45 10 .1 

47 9.93 

49 9.79 

TABLE XI 

STAND MEANS OF PERCENT EXTRACTIVES 

Juvenile Wood 
Broken Bow Stilwell Pooled 

8.52 12.65 6.69 

8.07 12 .69 6.49 

8.60 11.46 6.92 

8.38 11. 68 6.73 

7.83 11. 72 6.71 

8.20 11.62 6.40 

8.03 11. 76 6.65 

8.02 11.44 6.36 

8 .10 12.06 6.34 

8.66 11. 73 6.71 

7.95 11. 91 6.68 

8.42 11.17 6.11 

Mature Wood 
Broken Bow Stilwell 

5.54 7.55 

6.16 8.60 

5.50 8.34 

5.64 8.22 

6.14 8.65 

5.28 8.20 

5.88 8.30 

5.54 7.55 

5.96 7.97 

5.91 8.37 

5.59 8.08 

5.98 7.91 

°' +" 



Stand 

1 

3 

6 

7 

15 

16 

23 

26 

39 

45 

47 

49 

TABLE XII 

STAND MEANS OF UNEXTRACTED SPECIFIC GRAVITY 

Juvenile Wood Mature Wood 
Pooled Broken Bow Stilwell Pooled Broken Bow Stilwell 

0.379 0.375 0.384 0.393 0.431 0.356 

0.392 0.386 0.391 0.409 0.439 0.378 

0.395 0.399 0.391 0.413 0.449 0.376 

0.396 0.393 0.400 0.408 0.437 0.379 

0.394 0.398 0.390 0.409 0.454 0.364 

0.401 0.401 0.402 0.417 0.449 0.385 

0.396 0.395 0.397 0.420 0.454 0.385 

0.404 0.406 0.402 0.414 0.450 0.378 

0.394 0.394 0.395 0.412 0.451 0.373 

0.402 0.399 0.404 0.415 0.448 0.382 

0.391 0.388 0.393 0.403 0.436 0.369 

0.405 0.401 0.409 0.427 0.452 0.401 

O"I 
\J1 



Stand 

1 

3 

6 

7 

15 

16 

23 

26 

39 

45 

47 

49 

TABLE XIII 

STAND MEANS OF EXTRACTED SPECIFIC GRAVITY 

Juvenile Wood Mature Wood 
Pooled Broken Bow Stilwell Pooled Broken Bow Stilwell 

0.339 0.343 0.335 0.367 0.405 0.329 

0.351 0.355 0.347 0.383 0.419 0.345 

0.355 0.364 0.346 0.384 0.424 0.344 

0.356 0.359 0.353 0.381 0.414 0.348 

0.356 0.367 o. 344 0.382 0.431 0.332 

0.361 0.368 0.355 0.390 0.428 0.353 

0.357 0.363 0.350 0.392 0.431 0.353 

0.365 0.374 0.356 0.388 0.426 0.350 

0.354 0.362 0.347 0.386 0.429 0.343 

0.360 0.364 0.357 0.388 0.425 0.350 

0.351 0.357 0. 346 0.376 0.413 0.339 

0.365 0.367 0.363 0.400 0.432 0.369 

(J'\ 

°' 



TABLE XIV 

STAND MEANS OF NUMBER OF RINGS PER INCH 

Juvenile Wood 
Stand Pooled Broken Bow Stilwell Pooled 

1 4. 78 4.53 5.02 5.02 

3 4.94 4.82 5.06 5.30 

6 4.82 4.73 4.90 4.92 

7 4.67 4.76 4.58 4.93 

15 4.97 5.04 4.91 5.16 

16 4.83 4.67 4.98 4.97 

23 4.88 4.90 4.86 5.02 

26 4.69 4.49 4.88 4.95 

39 5.06 5.00 5 .13 5.16 

45 4. 78 4. 78 4. 78 5.03 

47 4.89 4.58 5.21 4.89 

49 4.84 5.03 4.65 5.07 

Mature Wood 
Broken Bow Stilwell 

5.42 4.49 

5.52 4.43 

5.39 4.34 

5.37 4.22 

5.79 4.18 

5.32 4.67 

5.45 4 .15 

5.58 4.36 

5.52 4.37 

5.64 4.15 

5.44 4.18 

5.54 4 .'15 

(J\ 

"'-I 



Stand Pooled 

1 20.32 

3 19.37 

6 18.79 

7 19.38 

15 20 .19 

16 20.15 

23 19 .42 

26 18. 71 

39 18.83 

45 19.78 

47 18.84 

49 19.87 

TABLE XV 

STAND MEANS OF PERCENT SUMMERWOOD 

Juvenile Wood · Mature Wood 
Broken Bow Stilwell Pooled Broken Bow Stilwell 

25.34 15.31 25.61 29.98 21.23 

23.99 14.76 24.50 30.96 18.05 

23.57 14.01 23.55 29.64 17.45 

24.16 14.59 25.15 29.43 20.88 

24.49 15.89 26.61 35.55 17.67 

23.61 16.70 23.42 28.67 18.31 

23.58 15. 26 25.00 30.16 19.83 

23.08 14.47 25.18 32.70 17.65 

23.72 13.93 24.57 31.17 17 .96 

24.04 15.52 24.84 31.56 18.12 

23.67 14.01 23.86 30.70 17.02 

25.17 14.56 25.18 31. 21 19.16 

°' 00 



Stand Pooled 

1 2.0 

3 1.9 

6 2.0 

7 1.9 

15 2.0 

16 2.0 

23 2.0 

26 1.9 

39 1.9 

45 2.0 

47 2.0 

49 2.0 

TABLE XVI 

STAND :MEANS OF TRACHEID LENGTH 

Juvenile Wood 
Broken Bow Stilwell Pooled 

2.2 1.8 3.0 

2.1 1.8 3.0 

2.2 1.9 3.0 

2.1 1.8 3.0 

2.2 1.9 3.0 

2.2 1. 9 3.0 

2.1 1.8 3.0 

2.1 1.8 3.1 

2.1 1.8 3.0 

2.2 1.8 2.9 

2.1 1.8 3.0 

2.1 1.8 2.9 

Mature Wood 
Broken Bow Stilwell 

3.2 2.8 

3.2 2.8 

3.1 2.8 

3.2 2.8 

3.1 2.9 

3.1 3.0 

3.1 2.8 

3.2 2.9 

3.1 2.9 

3.2 2.7 

3.1 2.8 

3.1 2.7 

°' '° 
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Extracted 
Specific 
Gravity 

Percent 
Extractives 

Pooled 

~ s.e. 

.99 .03 

TABLE XVII 

GENETIC CORRELATIONS OF UNEXTRACTED SPECIFIC GRAVITY 
WITH ALL MEASURED WOOD PROPERTIES 

Juvenile Wood Mature Wood 
Parent Parent 
Progeny Broken Progeny Broken 

Bow Stilwell Regression Pooled Bow Stilwell Regression 

~ s .e. !.& s.e. .££. !.& s.e. 3 s.e . ~ s.e. !'.& 

.96 .04 .96 .04 .29 .90 .15 .99 .02 .99 .01 1.09 

Number of Rings -.06 
per Inch 

.34 1.16 2.34 -.26 . 63 -1. 25 .91 .99 .32 .51 .11 .51 

Percent 
Summerwood 

Trac he id 
Length 

.31 .87 .10 1.45 

...... 
~ 



Pooled 

Unextracted 
Specific 
Gravity 

Percent 
Extractives 

.!.& 

.99 

Number of Rings -.lS 
per Inch 

Percent 
Summerwood 

Trac he id 
Length 

s .e. 

.03 

.36 

TABLE XVIII 

GENETIC CORRELATIONS OF EXTRACTED SPECIFIC GRAVITY 
WITH ALL MEASURED WOOD PROPERTIES 

Juvenile Wood Mature Wood 
Parent Parent 
Progeny Broken Progeny Broken 

Bow Stilwell Regr~ssion Pooled Bow Stilwell Regression 

.!.& s.e. .!.& s.e. .!'..& .!.& s.e. .!.& s.e. .!.& s.e. .!.& 

. 96 .04 .96 .04 .79 .90 .lS .99 .03 .99 .01 1.09 

.32 .78 

.23 .40 -.32 .62 -.37 1.22 1.10 .18 .so 

.SS .96 -.06 .29 1.37 

...... 
"-> 



Unextracted 
Specific 
Gravity 

Extracted 
Specific 
Gravity 

Percent 
Extractives 

Percent 
Summerwood 

Tr ache id 
Length 

Pooled 

~ s.e. 

-.06 .34 

-.15 .37 

TABLE XIX 

GENETIC CORRELATIONS OF NUMBER OF RINGS PER 
INCH WITH ALL MEASURED WOOD PROPERTIES 

Juvenile Wood 
Parent 

Broken Progeny 
Bow Stilwell Regression Pooled 

Mature Wood 
Parent 

Broken Progeny 
Bow Stilwell Regression 

~ s.e. ~ s. e. !.& !..£ s.e. ~ s.e. Ell s.e. Ell 

1.16 2.34 -.26 .63 -1.25 .91 .99 .32 .51 .11 .51 

.33 .40 -.32 .62 -.367 1.22 1.09 .18 .51 

.13 .63 

1.19 1.25 

-...J 
VJ 



Unextracted 
Specific 
Gravity 

Extracted 
Specific 
Gravity 

Percent 
Extractive 

Number of Rings 
per Inch 

Trac he id 
Length 

Pooled 

E_g_ s.e. 

TABLE XX 

GENETIC CORRELATIONS OF PERCENT SUMMERWOOD 
WITH ALL MEASURED WOOD PROPERTIES 

Juvenile Wood Mature Wood 
Parent Parent 
Progeny Broken Progeny Broken 

Bow Stilwell Regression Pooled Bow Stilwell Regression 

E.8. s.e. E_g s.e. Di E_g s.e. !:.& s .e. !:.& s .e. ~ 

.31 .87 .10 1.45 

.55 .96 -.06 .29 1.37 

1.19 1.25 .56 . 77 

...., 
+--
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