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CHAPTER I

INTRODUCTION

1.1 The Principle of Genetic Algorithms J

Genetic algorithms (GAs) are optimization techniques based on the

concepts of natural selection and genetics [1-5]. tn this approach, the variables

are represented as ganes on an artificial chromosome. Similar to Simplex

optimization (this will be disclLJssed in 1.2), GAs feature a group of candidate
,

solutions (population) on the response syrfpce. Through natural selection and the

genetic operators, mutation and recombination, chromosomes with better fitness

(response function scores) are found. Natural selection guarantees that

chromosomes with the best fitness wiWpropagate in future populations. Using

the recombination operator, the GA combines genes from two parent

chromosomes to form two new chromosomes (children) that have a high

probability of having better fitness than their parents. Mutation allows new areas

of the response surface to be explored. One of the reasons GAs work so weH is

that they offer a comb:ination of hill-climbing ability (natural selection) and a

stochastic method: (recombination and mutation).

The simple GA is comprised of four steps as shown in the flowchart in

Figure 1-1'. First, the initial population of chromosomes is cr,eated either randomly

or by perturbing an input chromosome. The population size (Np) remains

constant throughout the optimization and is a user-controlled option. In the

second step, evaluation, the fftness is computed. The third step iis, the

exploitation or natural selection step. In this step, the chromosomes with the
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Figure 1-1 Flowchart of a genetic algorithm {7J.

largest fitness score are placed one or more times into a mating subset in a

semi-random fashion. Some chromosomes with low fitness scores are removed

from the population. There are s,everal methods for performing exploitation. One

of the most common methods is the binary tournament mating subset selection

method and is discussed in ref,erence 8. The fourth step, exploration, consists of

the recombination and mutation operators. Thus the principal data object of the

GA is the chromosome and its utility is generally known as its fitness. The

principal operators which manipulate these chromosomes are known as
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crossover, mutation.and selection. The crossover, mutation, selection cycle of

the GA is known as a generation and is equivalent to the iterations of traditional

techniques. Now we use an example to illustrate the basic idea [9, 10].

1) Reproduction and mutation

Reproduction creates a new chromosome from two parents. The most

common technique tor this is known as crossover, and it comes in two flavors. In

one-point crossover, the program combines a pair of parents by randomly

selecting a point at which pieces of the parents' bit swapped. Figure 1-2 [9]

shows fiour examples of crossover. The vertical bar in the child chromosome

indicates the point of crossover.

, Father Mother Crossover Child

Chromosome Chromosome Point Chromosome
I
!

i 10010011 10110110 3 100110110

10000000 10110110 6 10000°110

10110110 11101110 ! 2 101101110

10110110 11101110 5 10110111 0

Figure 1-2. One-point crossover example"s.

Another technique is two-point crossover, which swaps the beginning and

end of one parent and the middle of another, using two randomly selected bit

3



mixin~r0:fattributes from different chromosorr,;esl'-;' "I.: "

Father I Mother c·' Cross I Cross'~: I Child'.
Chromosome Chromosome Point 1 Point 2 Chromosome

10010011 101101,10 3 6 ; 1001101111

10000000 10110110 0 4 100010110

10110110 11101110 2 3 1011010110

Figure 1-3. Two-point crossover examples.

Reproduction also involves mutation, a random change of one or more

bits in each chromosome of the new population. The primary purpose of

mutation is to increase variation in a population; mutation is most important in

populations where the initial population may be a small subset of a/l possible

solutions.

2) The Selection Operator

The selection operator ensures that the number of representatives a

chromosome receives in the following generation is dependant upon its fitness in

proportion to the average fitness of the current population. The most common

technique is Roulette Whee Selection [11], a spinning circle divided into different

pie-shaped slots. For a genetic algorithm, each s'lot on the wheel repfesents a

chromosome from the parent generation; the width of each slot represents the

4



relative fitness of a given chromosome. Essentially, the simulated roulette wheel

generates a random number that is some traction of the total fitness of the parent

population; then it counts around the wheel until it finds the selected

chromosome. The largest fitness values tend to be chosen since they have

larger slots.

Let's look at a small example with a hypothetical population of five. Figure

1-4 [9] shows a five-member population and its corresponding fitness values.

Order Chromosome Fitness

1 10110110 20

2 10000000 5

3 11101110 15

4 10010011 8

5 10100010 12

Figure 1-4. Hypothe,tical population and its fitness.

The total fitness of this population is 60. Figure 1-5 shows the relative size of pie

sHces as assigned by fitness. Chromosome 101101110 (order 1) has a 34%

chance of being sel,ected as a parent, where 10000000 (order 2) has only an 8%

chance of generating a new chromosome. Each chromosome in a new

generation will be parented by chromosomes selected, by fitness, from the old

generation.

5



Chromosome Fitness on a Roulette Wheel

5
20%

4
13%

3
25%

,.

Figure 1-5. Pie chart of fitness. ,.

The stopping condition is usually dependent either upon some fitness

criterion having been reached or upon ~ certain number of generations having

taken place.

1.2 Simplex Optimization

Simplex optimization methods combine response surface methodology

such as experimental designs and hill-climbing approaches such as steepest

ascent/descent. Box and coworkers developed the first simplex-type method and

noted the s.imilarities between this method and Darwin's theory of evolution,

hence the name evolutionary optimization (EVOP) [12,13]. EVOP was able to

vary multiple factors simultaneously and to make intelligent guesses as to what

experiments should be performed next. Unlike experimental design methods, the

variable settings to be studied were not known in advance. This method

6
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consisted of a series of two-I,evel factorial des.igns with 'the epncep~ that thEt n

desi,gn would "walk" around the response,surface mpving in the. most favorable'

direction. At each "step", a simple multifactor m0del with interaction terms was

built us'ing the responses from each ,experiment in the design. The model was

used to estimate the direction of the sllope of the response surface. The

experiment (Le., combination of variable settings) that produced the worst

respons,e was removed and a new step was taken in the favorable direction. The

drawback to the EVOP approach was the large number of experiments that

needed to be performed in the initial step. The calculation of the first model

required 2n experiments, where n is the number of variables being optimized.

In 1962, Spendleyet al. developed a fixed-size sequential simplex method

that was more efficient than the EVO? method [14]. A simplex is defined as a

geometric figure consisting, of one mOire vertex than the number of variables

being optimized. By employing a simplex instead of a two-level factorial design,

n + 1 versus 211 experiments were required initially. Although the fixed-size

simplex is able to reach the global optimum region, it has difficulties in finding the

exact optimum due 10 its rigid shape.

In 1965, Neider and Mead tried to improve the method of Spendley by

giving the simplex the ability to accelerate in favorable directions, decelerate in

poor directions" and change its shape [15]. Their algorithm, termed the variable­

sized simplex, is very simple and consists of .f:ive logical steps. The possible

movements for the variabl,e-sized simplex in a two-dimensional case are

iIIustrat,ed in Figure 1-2. First, an initial simplex is created either randomly or by

7



perturbing a vector of input variable settings. The coordinates of the vertices in

the simplex represent individual combinations of variable settings. Each vertex is

ranked according to its corresponding response score.

E

(2-1)

N

In Figure 1-6, the vertices have been ranked and are designated B, N, and

Figure 1-6. Illustration of the relationships between the vertices for simplex

optimization. P is the middle point between Band N.

W for best, next-to-worst, and worst, respectively. The centroid, P, of the simplex

is computed by averaging the coordinates for a I vertices except the worst one.

Next, a step is away from the worst vertex by reflecting through P as shown in

Eq.2-1.

R = P + (P - W)

8



Distance WP should eql:Ja; PRo WCw shou:ld equal wP and Per. Tbismew step

is shown in Figure 1-6 as R. The new simplex replaces the olt!l sim,p>leX'and now

consists of the vertices B, N, and R. Based on the response score for R, one of

three moves can be taken.

First, if the response score, of R is greater than 8, then an expansion is

performed. Expansions allow the simplex ,to move quickly in a favorable

direction. An expansion is a larger move in the direction of R and is shown in

Fi,gure 1-6 as E. The equation for an expansion is shown in Eq. 2-2.

E= R+'(P-W) j' I ' (2-2)

Next, the response of E is computed. If the response for E is greater than

R, then the new simplex is E, B, and N, the vertices are ranked, and the

algorithm restarts by eliminating the worst of E, B, and N and computing a new

step. It the response for E is less than R, then the new simplex is R, B, and N,

the vertioes are ranked, and the algorithm repeats as above.

The second possible case occurs if the response at R is less than the

response at 8, but g"eat,er than at N. In this case, neither expansion nor

contraction is pe'rformed. The new simplex is B, R, and N, the veRices are

ranked, and the algorithm restarts. The third case occurs if the response score

at R is less than at N.ln this case, a new vertex is,selected with the span of the

previous simplex. This is termed a contraction. Contractions allow the simplex

to shrink in size. If the response at R is Iless than at N, but greater than at W,

then a contraction closer toward R is made by use of Eq. 2-3.

Cr = P + O.5(P - W) (2-3)



The new simpl,ex ,is B, N, and Gr, the vertices are ranked, 'and the al§orithm it"

restarts. If the response at R. is less, than at W, then a contraction closer to W is

be taken by use of Eq. 2-4.

Cw = P - O.5(P - W) (2-4) ',{

Thi!s is termed a negative contralZtion. The new si:mplex consists of.B, N, and

Gw,:the vertices are ranked, and the al!gorithm restarts. Movements (iterations)

are made until a termination criterion such as a nxed number of movements 'is

met.

The primary disadvantage of Simplex optimization,js..the inability to move

from local optima that may occur. on the'response surface. Furthermore,

according to the investigation of Virginia Torczon [16], the simplex procedure of

Neider and Mead is inherently.notlrobustand fails disastrously when the number

of variables is as large as 16, 'and sometimes when it is as large as 8. Thus,

whenever the method is ,employed, the number of variables should not be large.

1.3 Armicial Neural Network

Since the artificial neural network (ANN) is going to be used to investigate the

proposed al90rithrn" thus, the principle of ANN is introduced briefly. Generally,

the ANN is cat,egorized into feedforward and feedback networks[17]. In a

feedforward network, information is propagated through the network in one

direction until it emerges as the network's output. However, in a feedback

(recurrent) network, the input information is propagated through the network but

can also cycle back into the network (the signal is recurrent).



In this paper, the feedforward network is employed. Thus, the introduction

of ANN wililbe focused on this type of network.

1.3.1 MUltilayer Neural Network Architecture

In a typical three-Iayerfeedforward neural network the firs11ayer contains

the input variables and is called the input layer. The last layer contains the output

variables and is called the output layer. Layers in-between the input and output

layers are called hidden layers; there can be more than one hidden layer. The

processing unit ellements are called nodes (Fig. 1-7): each of them is connected

to the nodes of neighboring layers. The parameters associated with each of

these connections are called weights [18]. .

The node (Filg. 1-8) sums the product of each connection weight (Wjk) from

a node j to a node k and an input (Xj) to get the value SUM (see eq.1) for node. k.

This sum is simply the dot product of the input and weight vectors.

sumk = L.xj wjk + r (1)
j

It can be conveniently represented by matrix notation as

(2)

where M is the layer.
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Figure 1-7.· Three-layer neural network architecture. TheUrst layer is input layer,

h: hidden layer, the last layer is the output layer.

In vector notation, an additional dot product is used to give y, which is

called the bias value. The output of a bias j is always 1.0, and the weight y's are

treated in the same fashion as the Wjk'S. This additional set of weights gives the

network added degrees of flexibility, which enables it to solve more difficult

problems. The value SUM is then suppl,ied toa transfer function and outputs a

value OUT[19]j.
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Figure 1-8. (a) is the composition of the neuron that will be represented by (b).
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1.3.2 Transfer Function [20]

Any continuous and differentiable function may be used as a transfer

function. However, the following logstical function is most prevalent (S-shaped).

f(x) = 1/(1+e-X) (3)

The transfer function (also known as-an activation or squashing function)

forces the output to be within a specific range, -usually zero to one for the logistic

function, indicating an active or inactive node. ~Il ,~ .'

14



2.1 Research Backgmund

CHAPTER II

METHODOLOGY

~I •I ....

. ,f

The genetic algorithm is, a robust technique, ·based 0n the natural .

selection and genetic prodl:J:ction mechanism. It processes a group or population

of possible solutions within a s,earch space. The search is probability gUided,

rather than deterministic or random searching, which distinguish it from traditional

methods. The performance of the previous population guides the next

generation. l. • I

A complex search often involves a trade-oM between exploiting the best

solutions and robustly exploiting the'space~ The genetic ·al.gorithm is such a

robust technique. However, robustness is not enough. When the vicinity of the

global optimum has been located.. A more powerful.lQcal tuning method is

expected. Neider and Mead presented a local searching technique, which is

widely accepted. Compar:ed to the genetic algorithm, this technique is well tuned

for local searching but is not as robust as a genetic algorithm. Thus the idea is

that hybridization of these two methods may improve the efficiency of the

optimization. . ,

2.2 Combi:nation with the Simplex Downhill Method

It is wide'ly believed that genetic algorithms are good at global

optimization, but bad at fine, detailed local searching (21-24]. Some researchers

sug'gest optimizing in two steps: first, using genetic algorithms to 'locate the area

where the global optimum is, and then using other methods for further tuning. A

15



combination with the Neider and Mead downhill method is the strategy lwe are

going to explore. " ~ " ~ 1 ...... : ,

The simplex downhill method presented by Neider: and Mead involves

three basic operations: exp'ansion, reflection, and contraction. Expansion is

enlarging the particular sea.rch area. By reflection, a new point located on the

other side of the worst point across the centroid of the remaining'polnts is"

generated. Contraction is to select the point halfway between the worst point

and the centroid. By repeatedly generating new points using' one of the three

basic operations, this simplle method finds its way downhill to converge toward an

optimum. However, Virg,inia 'J. T0fczon [1'6] pointed that the Neider-Mead

simplex algorithm only rescales the entire simplfex as 8' last resort. If no

improvement can be found by takil1g'any other step, the algorithm takes a

lJshrink" step, which is equivalent to the contraction step of the multi-dimensional

search algorithm [16]. According to her claim, if the original simplex and its

reflection are in a region where the function is convex, then the Neider-Mead

simplex al'90rithm will not consider the shrink step. Thus, in this search, the

contraction step 'is avoided.,

The genetic algorithm can help us to ,locate the most promising area. The

use of the downhill method is intended to speed up the search when a promising

area has been found when the number of parameters is I'ess than 8 t,o 16

according to the investigation of Virginia J. Torczon. However, the restriction is

released since only reflection and averaging are used in the simplex method.

When selecting the next population of points 'based on the previous population of

16
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points, we first consider the reflection operation. If the reflection does not work,

however, we choose averaging. These two operations don not change the

shape of the simpex, and thus avoid the problem pointe1d out l)'Y Torczon. I

The simplex downhill method is not globally optimal but has a better local

tuning property.. If the genetic algorithm can be combined with it, improvement in

performance can be expected. The combination cain be made by generating part

of the new points by the simplified genetic'algorithm and part of them by the

downhill method. The proportion of points generated by the two methods can be

constant or is aHowed to vary as the global optimum is approached. From the

beginning of the search, a very low proportion of points are from the g'lobal

optimum. As the search progress, the points'wifl gradually approach the global

optimum and then a high proportion of points generated by the downhill method

is needed to speed up convergence.

2.3 ConsideratlilOn of Genetic Diversity

Genetic diversity is ve·ry important for genetic algorithms. The loss of

diversity means premature convergence and failure to achieve the global

optimum. Community size and mutation probability can increase diversity and

lead to global' optimizing at the expense of slowing the procedure and taking

more time. The proposed abov,e guidelines, such as the one-couple, one-child

policy, can avoid to some e,xtent the loss of geneti:c diversity. A more efficient

procedure ils introduced by considering the distance among the points to purge

the unwanted candidates and maintain a certain degree of diversity [25].

To measure diversity, the Euclidean distance between two points

17



d ~ [t(X, -y,)' T"
. , ~. .f t 18 r

i,s,used, Where XI and Yi are the ith val'ues of points X and y, re~pe~tivel,y. ,It !S­

evident that the bigger the value of d, the further the distance ,qetweerithe two- .

points. For instance, d = 0 means that the two points are identical, that is, there

is no difference between them. Obviously, to keep one of them in the commuoity

is enough. When d ils very close to zero, the two points are almost identical'; if

they,produce a ne~ point, this new point ,must be very dose to their parents and

is unlikely to bring much further improvement, unless they care close to the global:

optimum. Therefore, the distance d from the best-sa-far point can be considered. )

as a factor to save some of the promising candidates and improve the

performance of the algorithm.

2. 4 Basics of Simple Genetic Algorithm with Simplex Local Tuning

Obj!ective function:

f = f(Xl, X2, ... , xn)

aj ::; Xl ::; bi, i = 1,2,3, ... , n

where Xi is the ith variable and 8i and bi are the limits of that variable. The

algorithm is summarized as f,ollows:

Step 1,) Initialization: randomly select m distinct points of that variable from the

search space with equal probability. That is, generate a random number SUbject

to a uniform (0, 1) distribution. Calculate the value of the first variable by

Do the same for the other variables. These steps identify the first point in the

search space. Repeat this procedure m times.

18



Step 2) Fitness Evaluation: Calculate the .0bJective function values of the m

points.

Step 3) Point ranking: Sort the m points in order of descending: objective,functi,on

value, so that the first point repres,ents the worst and .the·llast point represents the

best.

Step 4) Assigning probabilities to each point: .Each of the p0ints is assigned .a

probability PI. i = 1,2, ... , m, giving higher probabilities to the points with lower

function value and 'Iower probabilities to-those with higher function values. Thus,

the best point has the highest probability P1, while the worst-point has the lowest

probability Pm.' The other points have probabilities ranging from pm to P1. The

foUowing linear, relation can be used. 1

-
Pi = Pm+ [(i -1)/(m -1)](p,- Pm), i = 1, 2, 3, ... , m-1

Probability is nonnegative and the total probability should sum to one.

Step 5) Selecting parents: randomly select two points from the m points

according to the probability PI. Make sure that the two points are not identical.

Step 6) Crossover: For each of the genes (variables), randomly select one value

from the 'corresponding two selected points to construct a new point.

Step 7) Mutation: Occaslionally, with a small probabiHty Pm, alter .the newly

creat,ed point. To do this, for each of the genes of the newly created point,

generate a random number r, if Pm> r, replace the value of that gene by another

uniformly distributed (0, 1) random number.

Step 8) Repeat k times Step 5 - 7 so that k new points are generated; I< is a

number between 0 and m, which is controHed by the following equations:

19



" (2-1)

(2-2) s

where Pg and Pd are the proportion of the points generated by the genetic ,Yo

algorithm and by the downhill method,. respectively. k is the generation sequential

number, and km is the maximum number of generations expected. ~he rest of

the offspring will·be generated by a slilmplex downhill method. (Step 1 - Step 8

are the genetic method)

Step 9) Construct a subcommunity: Randomly select s points from the mold

points according to their probabilities to construct- a subcommunity.

Step 10) Check whether this subcommunity is· identical to anyone of the

previouse constructed subcommunities of this generation. If it is, go back to Step

9 again; otherwise, go -to Step 11 . -

Step 11) Compute the centroid of them without including the worst point, that is,

$~ •

Xic = [1/{s -1)]L Xlj, 1= 1, 2,3, .. , n.
j=1

Step 12) Construct a new point by reflecting the worst point through the centroid

pQint, that is,

Yij = 2Xlc - XI,s , il = 1, 2, 3, ,. ", n.

where Xis is the worst one of the s points. Then, evaluate the objective function

value. If this point is better than the worst point of the older generation, then go

to Step 15; otherwise, go to Step 13.

Step 13) Use the centroild point as the new point and evaluate its objective

function value, If this point is still not better than the worst point, go to Step 14;

otherwise go to Step 15.

20
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Step 14) Randomly constructa new point within the ,feasible space.

Step 15) Repeat m - k t;imes Step 9 - 14 until the siz.e of the new generation is

the same size as that of their parents m. (Step 9,~ Step 15 are downhill simplex

method)

Step 16) These new points produced by the two methods represent the offspring

population and are going to compete with their parents.

Step 17) Sort the newly created points 'into descending order.

Step 18) If the best point of the new generation (the last one) is not better than

the best o-ne of the old generation, then replace the worst point of the new

generation by the best point of the old generation and re-sort them. This step is

to ,ensure that the current best-sa-far point in tlie community 'is always retained.

Step 19) Start from the second-best point of th~ new generation and compare it

with the point in the same rank of the old generation. It the new point is better

than the old one and is farther away from the best-sa-far point, then keep the

new on and discard the old one; then compare the rest until they are all finished.

Go to Step 22; otherwilse, go to Step 20.

Step 20) If the distance of the old point is farther away from the best-sa-far point

than the new one and has better fitness, then keep the old one and reject the

new one and go to Step 19 to screen others; otherwise, go to Step 21.

Step 21) If the distance of the new one from the best-sa-far point dn times the

objective function value of the old one fo is greater than the distance of the old

one do times the objective function value of the new one tn, (Le., dnfo > dofo), then

select the new one and go to Step 19, otherwise, generate a random number. If

21



it is greater than 0.5, then keep the old one and discard the new one and vice

versa.

Step 22) Repeat Step 5 - 21 until either a predetermined ,iterative number or an

acceptable objective tunction value is reached.

The neural network structure is ,employed for investigating the abov,e

algorithm and the program is wriltten in C++ language. The objective function has

been restricted to:
...

where y is computed output, x is experimental output. The purpose of training

the neural network is to minimize the objective function by adjiusting the weights

during the program iterations with the proposed algorithm. This strategy of

minimizing the objective functibn value is maintained for all cases in this paper.
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,CHAPTER 111-' ~ i' '.

HESULTS AND DISCUSSION

3.1 Case 1. Minimize a simple, single~minimum function,

10

f(x" X2, X:3.... , X1O) = Lx;2 ,
;=1

-2<Xi<10, i = 1,2,3,.... , 10.

.:/ i1

This function has a unique minimum at Xi = O. This problem can be solved by

many methods efficiiently. In order to demonstrate the improvement provided by

the proposed 91enetic algorithm, a comparison between using and not using

genetic diversity measurements was conducted.

When the genetic diversity measurement is not used, the genetic

algorithm simply produces one generation after another, following the traditional

genetic algorithm method. The proposed simplified genetic algorithm method is
• I , ..- • jl'

as follows. With the mutation probability Pm =0.10, different community sizes are

used and the ten-run-average best-so-far objective function value is calculated

for various numbers of objective function evaluations.

Table 1 shows two attractive advantages of using diversity guidance.
"

Firstly, performance is different when genetic diversity guidance is used: the
1

efficiency of the genetic algorithm is remarkably improved. 200 epochs with

genetic diversity guidance produces a much better result than 3200 epochs

without genetic diversity guidance.
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Table 1. Comparison .of the impact of using genetic ·diversi~ty guidance for the

simplified genetic algorithm, case 1,' Pm =0.1. tl

200 epochs { 3200 epochs ' \
. ,

m (a) (b) (a) (b)

5 123.48 2.16 117.89 0.024

10 63.09 2.00 57.94 0.020

20 38.34 1.77 34.92 0.034

90 17.44 3.70 13.98 0.69

m : Community size; (a): Not using genetic diversity guidance; (b): Using genetic

diversity guidance.

Secondly, when genetic diversity guidance is introduced, the genetic

algorithm prefers a smaller community size, rather than a bigger one. When the

community size is large enough, the efficiency of the genetic diversity guidance is

damped because a large community size can contain almost every possible

character. That may be the reason why traditional genetic algorithms need a

very large community size. However, as the search progresses, all points

converge gradually to the global minimum. Not considering diversity guidance

can result in many identical or semi-identical points in the community and can

slow down the approach to the global minimum. Therefore, no matter how large

the community size is, the introduction of diversity guidance can improve the

efficiency of the genetic algorithm.
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3.2 Cas,e 2. Genetic algorithm (GA) or Oombination with the Downhitl Method --..,

(GD), lin Application of lon-selective Eleptrodes of Analytical,Chemistry.

For the data listed in the Table 2, set Pm = 0.10 and use Eqs (2-1) and {2-:

2) to control the portion of new points generated by the genetic algorithm and

. n

downhill method. The objective function S = (L (Yi - xi )2 )112 (where y is
;==-1

computed output, x is experimental output) is minimized for each iteration.

Table 2. Training set for the K+/Ca2+/N03-/Cr system [26].
, \lr ., J_'

No. Potential (mv)

K Ca N03 Cl K Ca N03 Cl

1 0.100 0.100 0.100 0.300 -147.8 -22.5 228.2 227.0

2 0.990 0.099 0.099 1.188 -90.8 -23.3 227.2 195.5

3 9.9'91 0.090 0.090 10.171 -31.4 -27.4 209.8 141.2

4 0.498 0.498 0.100 1.493 -109.8 -3.3 226.5 189.1

5 4.988 0.475 0.095 5.938 -49.6 -5.6 217.12 154.5

6 0.100 0.999 0.100 2.098 -146.9 3.0 219.4 180.5

7 0.990 0.990 0.099 2.970 -91.6 4.3 219.3 172.2

8 9.991 0.900 0.90 11.791 -31.4 0.8 204.6 137.7

! 9 0.498 5.224 0.100 10.945 -110.8 23.2 205.6 140.4

10 4.988 4.988 0.095 14.964 -50.8 22.0 201.2 132.2

11 0.100 11.089 0.100 22.278 -150.3 27.6 194.8 123.2
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12 0.990 10.990 0.099 22.970 -93.8 30.6 196~5 122.5

13 9.991 9.991 0.090 29.973 -33.6 28.9, 190.8 115.1

14 0.498 0.100' 0.498 0.B9? -109.3 -25.2 188.4 207'.5

, 15 4.988 0.095 0.475 5:178 -50.8 -27.4 l87.9 157.6

16 0.100 0.500 0.500 1.099 -146.1 -5.8 1,87~6 196.5

17 0.990 0.495 0.495 1.980 -92.3 -5.1 188.6 181.2

18 9.'991 0.450 0.450 10.891 -32.3 -8.5 185.9 138.5

19 0.498 0.995 0.498 2.488 -109.0 3.5 188.6 176.6

20 4.988 0.950 0.4;75, ·'6.aS8 -50.5 2.:1. 187.6 150.8

21 0.100 5.245 0.500 :10.589 . -147.6 20.7 184.2 143.4

22 0.990 5.198 ,0.495 11.386 -93.1 21.-5 185.2 140.9

23 9.991 4.725 0.450 19..442 --32.6 18.8 182.5 125.2

24 0.498 11.045-- (;).498 22.587 -111,.0 29.1 1,80.0 122.5

25 4.988 10.546 0.475 26.081 -51.5 29.3 179.5 118.3

26 0.100 0.100 0.999 0.,300 -142.5 -24.2 169.9 227.9

27 0.990 0.099 0.990 1.188 -91.1 -24.0 170.9 195.5

28 9.99'1 ,0.090 0.900 10.171 ' -29.9 -27.7 171.4 140.0

29 0.498 0.498 0.995 1.493 -108.3 -4.1 171.7 185.8

30 4.988 0.475 .0.950 5.938 -48.1 -5.8 171.9 152..5

31 0.100 5.245 0.999 10.589 -145.2 22.0 170.9 140.9

32 0.990 5.198 0.990 11.386 -92.8 22.5 171.4 138.7

33 9.991 4.725 0.900 19.442 -32.6 20.3 171.2 124.7

34 0.498 0.995 0.995 2.488 -107.6 3.8 171.4 175.1
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: 35 '4.988, ·0.950 0.950 6.888 -48.1 2.'6 172..2 156.7

36 0.100 11.089 0.999 22.278 -144.9- 30.8
.

16'9.2 122.0

37 0.990 10.990 0.990 22.970 -92.3 30.8 169.4 121.3

38 9.991 9.991 0.900 29.973 -32.'6 29.1 168.7 113.9

39 0.498 0.100 5.224 0.697 -105.6 -26.9 129.9 207.5
<I

40 4.988' 0.095 4.988 5.178 -50.0 -27.9 132.2 157.9

At the very beginning, we woul(j like to show the over_fit which happens

when the numoer of data training set points is less than the 'number 01

parameters of the neural network. Thus the K+ concentrations and their

corresponding potentials in labile 2 were chosen to train the network.. The neural

network architecture is three layers with one neuron in the input layer, three

neurons in the hidden layer, and one neuron in the output layer. It seems that we

have 40 data in the training data, however, the concentrations of K+ only have

five distinguished data set points, re-measured eight times each. In contrast,

there are six parameters in the neural network. The neural network generation

was trained using only the K+ data set. Fi,gure 3-1 depicts the over-fit

phenomenon. The range of input potenttal is from -160 mv to -20 mv (Table 3).

When the output is plotted against input data, the over-fit is observed apparently

specially when the potential is quite low. For instance, when the potential is

around -150 my, the slope is extremely larg:e. Then turning up of the fitted curve

at low values of the potential is not supported by the data.
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Table 3. Generation data for over-fit
_... --. ...;, r

~~

Potential Log(K) Potential log(K) Potential LogfK) Potential lcig(K)

(mv) (mv) (mv) (mv)

-160 0.1995 -124 -0.5926 -88 0.0882 -52 0.6829

-159 -0.0628 -123 -0.5726 -87 0.1060 -51 0.6981

-158 -0.3055 -122 -0.~527 -86 0.1236 -50 0.7133

-157 -0.5012 -121 -0.5328 -85 0.1412 -49 0.7284

-156 -0.651,9 -120 -0.5130 -84 0.1.587 -48 0.7435

-155 -0.7654 -119 -Q.4932 -83 0.1761' -47 0.7585

-154 -0.8493 -118 -OA7~5 -82 0.1935 -46 0.7.734

-153 -0.9101 -117 -0.4538 -81 0.2108 -45 0.7882

-152 -0.9527 -116 -0.4342 -80 0.2280 -44 0.8030

-151 -0.9811 -115 -0.4147 -79 0.2452 -43 0.8178

-150 -0.9984 -114 -0.3952 -78 0.2623 -42 0.8324

-149 -1.0062 -113 -0.3758 -77 0.2793 -41 0.8470

-148 -1.0093 -112 -0.3565 -76 0.2963 -40 0.8615

-147 -1.0062 -111 -0.3372 -75 0.3131 -39 0.8760

-146 -0.9990 -110 -0.3180 -74 0.3300 -38 0.8903

-145 -0.9888 -109 -0.2988 -73 0.3467 -37 0.9047

-144 -0.9761 -108 -0.2797 -72 0.3634 -36 0.9189

-143 -0.9616 -107 -0.2607 -71 0.3800 -35 0.9331

-142 -0.945'6 -106 -0.2418 -70 0.3966 -34 0.9472

-141 -0.9286 -105 -0.2229 -69 0.4131 -33 0.9613
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-140 -0.9107 -104 -0.2040 -68 0.4295- -32 0.9753,

-139 -0.8921 -103 -0.1853 -67 0.4458 -31 0.9892

-138 -0.8731 -102 -0.1666 -66 0.4621 -30 1.0030

-137 -0.8537 -101 -0.1479 -65 0.4783 -29 1.0168

-136 -0.8340 -100 -0.1294 -64 0.4945 -28 1.0305

-135 -0.8142 -99 -0.1109 -63 0.5105 -27 1.0442

-134 -0.7941 -9'8 -0.0924 -62 0.5265 -26 1.0578

-133 -0.7740 -97 -0.0741 -61 0.5425 -25 1.0713

-132 -0.7539 -96 -0.0778 -60 0.5583 -24 1.0848

. -131 -0.7337 -95 -0.0375 -59 0.5741 -23 1.0962

-130 -0.7135 -94 -0.0193 -58 0.5900 -22 1.1115

-129 -0.6933 . -93 -0.0012 -57 0.6055 -21 1.1248

'"-128 -0.6731 -92 0.0168 -56 0.6211 -20 1.1380

-127 -0.6529 -91 0.0348 -55 0.6367

-126 -0.6328 -90 0.0527 -54 0.6521

-125 -0.6127 -89 0.0705 -53 0.6675
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,.
log(K Conc.) vs. Potent~al (my)

-. • I
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Figure 3-1. Over-fit phenomenon.
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- ) In 'order to overcome, the over-fi,t problem, now, we use a three-layered

neural network architecture with one neuron in the input layer, one neuron.in the

h'idden layer and one neuron in the output lay,er. Therefore, there are only two

parameters in the neural network. In the generation the range of input potential is

still kept from -160 mv to -20 mv (Table 4). When output is plotted against input,

data, a I,inear line was obtained shown in Figure 3-2, which demonstrates the

elimination of the over-fit problem.

Now, I'et us Ideal with the whole data set in Tablf3 2. The neural networ,k

model is a three-.Iayered architecture with four nodes in th~ input layer, two

nodes in the hidden layer and four nodes in the output layer. The input data set

includes the potentials corresponding to their concentrations.

Table 4 Generation data'for elimination of over,fit

PotenUal log(K) Potential log(K) Potential log(K) Potential log(K)

(mv) (mv) (mv) (mv)

-160 -1.1961 -124 -0.5749 -88 0.0462 -52 0.6674

-159 -1.1789 -123 -0.5577 -87 0.0635 -51 0.6846,

-158 -1.1616 -122 -0.5404 -86 0.0807 -50 0.7019

-157 -1.1443 -121 -0.5232 -85 D..0980 -49 0.7191

-16'6 -1.1271 -120 -0.5059 -84 0.1152 -48 0.7364

-155 -1.1098 -119 -0.4887 -83 0.1325 -47 0.7537

-154 -1.0926 -118 -0.4714 -82 0.1497 -46 0.7709

-153 -1.0753 -117 -0.4542 -81 0.1670 -45 0.7882
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-152 -1.0581 -116 -0.4369 -80 0.1843 -44 0.8054

-151 -1.0408 -115 -0.4197 -79 0.2015 -43 0.8227

-150 -1.0236 -114 -0.4024 -78 0.2188 -42 0.8400

-149 -1.0063 -113 -0.3851 -77 0.2360 -41 0.8572

-148 -0.9891 -112 -0.3679 -76 0.2533 -40 0.8744 .

-147 -0.9718 -111 -0.3506 -75 0.2705 -39 0.8917

-146 -0.9545 -110 -0.3334 -74 0.2878 -38 0.9089'

-145 -0;9373 -109 -0.3161, ' .. -73 0.3050 -37 0.9262

-144 -0.9200 -108· -0.2989 ~ -72 0.3223 -36 0.9435

-143 -0.9028 -107 -0.2816 -71 0.3395 -35 0.9607

-142 -0.8855 -106 -0.2644 -70 0.3568 -34 0.9780

-141 -0~8683 , -105 -0.2471 -69 0.3741 -33 0.9952

-140 -0.8510 -104 -0.2299 -68 0.3913 -32 1.0125

-139 -0.8338 -103 -0.2126 -67 0.4086 -31 1.0297

-138 -0.8165 -102 -0.1954 -66 0.4258 -30 1.0470

-137 -0.7993 -101 -0.1781 -65 0.4431 -29 1.0642

-136 -0.7820 -100 -0.1'608 -64 0.4603 -28 1.0815

-135 -0.7647 -99 -0.1439 -63 0.4776 -27 1.0987

-134 -0.7475 -98 -0.12'63 -62 0.4948 -26 1.1160

-133 -0.7302 -97 -0.1091 -61 0.5121 -25 1.1333

-132 -0.7130 -96 -0.0918 -60 0.5293 -24 1.1505

-131 -0.6957 -95 -0.0746 -59 0.5466 -23 1.1678

-130 -0.6785 -94 -0.0573 -58 0.5639 -22 1.1850

32



-129 -0.6612 -93 -0.0401 -57 0.5811 -21 1.2023 .

-128 -0.6440 -92 -0.0228 -56 0.S984 -20 1.2195

-127 -0.6267 -91 -0.0056 -55 0.6156

-126 -0.6095 -90 0.0117 -54 0.6329

-125 -0.5922 -89 0.0290 -53 0.6501

,r

Table 5 shows clearly that a combination with the downhill method can

further improve the efficiency of the genetic algorithm, especially when a more

accurate result is expected. This is because the genetic al'gorithm onty drives the

points into the vicinity of the global minimum. The rest of the work is left for the

downhill method to finish.

Table 6 shows the data obtained from the network using the proposed

algorithm compared to the experimenta~ data.

With the weights from the above training algorithms, for test data in Table

7 the test results are presented in Table 8.
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log(K C,onc.) vs. Potential (mv)
.>
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Figure 3-2. Elimination of over-fit.
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Table 5.. Comparison of the pure genetic algorithm and the pombinatiqn with

downhill method, case 2, Pm = 0.10, m =5, s =3. Neural network

composition (neurons in the different layer) = 4:2:4.' ,

Ten-run-average, Best~so-fa( objective
,

function value

Generations GA , GO

40 8.19 . 2.15

80 3.84 1.56

...
160 2.47 . ( . 0:95

320 1.76 . 0.53

, 640 f 1.03 . , 0.28 I

Table 6. Training result of data set in Table 2 using GO method, case2, Pm = 0.2,

m = 5, s =3, epochs =1000000, neural network composition =4:2:4.

Objective function va:lue is 0.061.

1\10. Experimehtal Gonc. (mmor1
) . Computed Con'c. (mmor')

K Ca N03 01 K Ca N03 ell

1 0.100 0.100 0.100 0.300 0.100 0.100 0.103 0.303

2 0.990 0.099 0.099 1.188 0.940 0.099 0.101 1.188

3 9.991 0.090 0.090 10.171 9.881 0.097 0.105 9.907

4 0.498 0.498 0.100 1.493 0.524 0.515 0.078 1.466

5 4.988 0.475 0.095 5.938 5.172 0.463 0.096 5.769
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6 0.100 0.999 0.100 2.098 0.100 1.037 0.079 2.113

7 0.990 0.990 0.099 .2.970 0.948 1.008 0.094 2.714

8 9.991 0.900 0.90 11.791 9.397 0.900 0.916 12.615

9 0.498 5.224 0.100 10.945 0.517 5.816 0.088 11.660

10 4.988 4.988 0.095 14.964 5.144 5.145 0.105 15.07

11 0.100' 11.089 0.100 22.278 0.100 11.063 0.104 21.773

12 0.990 10.990 0.099 '22.970 1.035 10.393 0.095 22.716

13 9'.991 9.991 0.090 29.973 9 ..255 10.012 0.089 29.617

14 0.498 0.100 0.498 0.697 0.487 0.094 0.504 0.702 '

15 4.988 0.095 0.475 5.1,78 3.306 0.095 0.489 4.948

16 0.100 0.500 0.500 1.099 : 0.100 0.500 0.535 1.100

17 0.990 0.495 0.495 1.980 0.922 0.479 0.599 1.932

18 9.991 0.450 0.450 10.891 9.375 0.408 0.456 10.765

19 0.498 0.995 0.498 . 2.488 0.474' 1.015 0.474 2.341

20 4.988 0.950 0.475 6.888 4.761 0.944 0.445 7.150

21 0.100 5.245 0.500 10.589 0.100 4.919 0.497 10.512

22 0.990 5.19'8 0.495 11.386 0.986' 4.463 0.491 11.635

23 9.99,1 4.725 0.450 19.442 9.204 4.447 0.444 20.012

24 0.498 11.045 0.498 22.587 0.498 11.043 0.489 21.670

25 4.988 10.546 0.475 26.081 5.445 10.038 0.468 26.105

26 0.100 0.100 0.999 0.300 0.100 0.096 1.090 0.269

27 0.990 0.099 0.990 1.188 0.922 0.100 0.992 1.184

28 9.991 0.090 0.900 10.171 9.978 0.099 0.934 10.735
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29 0.498 0.498 0.995 1.493 0.45:9 0.541 0.979 1.16'68

30 4.988 0.475 0.950 5.938 5.354 0.499 0.89S 6.051

31 0.100 5.245 0.999 10.589 0.100 5.280 1..050 111'.040

32 0.990 5.198 0.990 11.38B 0.990 5.231 O.93f 12.004

33 9.991 4.725 0.900 19.442 9'.141 5.189 0.849 20.153-

34 0.498 0.995 0.995 2.488 . 0.509 1.057 0.997 2.493

35 4.988 0.950 0.950 6.888 4.a28 0.939 0.964 6.824

36 0.100 11.089 0.999 22.278 0.100 11.120 1.083 21.866 .

37 0.990 10.990 0..990~ 22:970 1.054 1'0.453 1.005 22.608 '

38 9.991 9.991 Q.900 29.973 9.357 10.105 0.903 29.903

39 0.498 0..100 ~.224. 0.697 0.525 0.092 5.187 0.724

40 4.988 0.095 4.988 5.178 5.150 0.097 4.990 4.996

Table 7. Test data set for the K+/Ca2+/N03-/Cr system [26].'

No. Experimental Cone. (mmor') Potential (mv)

K Ca N03 CI K Ca N03 ct'

1 0.100 0.100 0.100 0.300 -147.8 -22.5 228.2 227.0

2 0.990 0.099 0.099 1.188 -90.8 -23.3 227.2 195.5

3 9.991 0.090 0.090 10.171 -31.4 -27.4 209.8 141;.2

4 0.498 0.498 0.100 1.493 -109.8 -3.3 226.5 189:.1

5 4.988 0.475 0.095 5.938 -49.6 -5.6 217.12 154.5

6 0.100 0.999 0.100 2.098 -146.9 3.0 219'.4 180.5

7 0.990 0.9'90 0.099 2.970 -91.6 4.3 219.3 172.2
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'8 9.991 0.900 0.90 11.791 -31.4 . 0.8 204.6 ... 137.7

9 0.498 5.224 0.100 10.945 -110.8 232 205.6 140.4

10 4.9"88 4.9'88 0.095 14.964 -50.8 22.0 201.2 132.2

; . -"I, 'J I " 'rifT'1 F.. <.;

Table 8. Test result for data set in Table 7 using GO method, case2, Pm = 0.2,

m = 5, s == 3. neural network composition = 4:2:4. Objective function value is

0.05'6.

No. Experimental Cone. (mmol':l
) Computed Cone. (mmor')

K Ca -NOs - CI K Ca N03 CI

1 0.100 0.100 0.100 "·0.300 0.100 0.100 0.100 0.303

2 0.990 0.099 0.099 1.188 0.940 0.099 0.098 1.185

3 9.991 oJ.090 0.090 10.171 9.881 0.097 0.090 9.908

4 0.498 0.498 0.100 1.493 0.524 0.515 0.100 1.466

5 4.988 0.475 0.095 5.938 5.172 0.463 0.096 5.769

6 0.100 0.999 0.100 2.098 0.100 1.037 0.100 2.113

7 0.990 0.990 0.099 2.970 0.948 1.008 0.098 2.714

8 9.991 0.900 0.900 11.791 9.797 0.890 0.920 11.620

9 0.498 5.224 0.100 10.945 0.516 5.816 0.100 10.866

10 4.988 4.988 0.095 14.964 5.143 5.145 0.093 15.074

In this case. we would like to examine sensitivity of parameters on the

_ efficiency of the genetic with downhill method. There are a few parameters in the
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proposed algorithm that need to be determined. Some 0f them are,for encoq,ing~

while others are for the algorithm jtse:lf. The proposed al,gorithm has three

parameters of its own, they are the commun.ity size m (the number of points for

each generation), the mutation probability Pm, and the subcommunity size s.

Case 1 shows some general guidelines for the selection of these three

parameters.. However, the selection of the parameters may be problem-related.

Parameters suitable for the problem in case 1- may not be suitable for the

problem in case 2,.but there must be some general guideJines. Some

researchers have discussed the selection of parameters .of traditional genetic

algorithms, on the other hand, their results are unlikely to beJsuitable for the

proposed algorithm because of improvements, and modifications.

To investigate the sensitivity of the parameters for the proposed algorithm,

various parameters are used and again the ten-run-average, best-sa-far

objective function values are calculated. The results of 800 and 1,600 epochs of

obj,ective function evaluations (Table 9) show the fol.lowing points:

(a) The proposed algorithm for Case 2 has a performance almost

similar to. that for the former cases, and it is not so sensitive to the

parameters. Therefore, ifis a very robust algorithm and can be

expected to be successfully used in many conditions.

(b) The algorithm is not too sensitive to community size and

subcommunity size, though it seems to prefer smaller values. The

values m = 5 and s = 3 yi,elds the best performance.
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(c) The algorithm is relatively more sensitive to mutation probability pm

than the other two parameters m and s. Its careful selection can

improve the performance of the algorithm. r .

Table 9. Sensitivities to the parameters of the proposed a'igorithm, Case 2, ten-

run-average, best-so-far objectlve function values.

Sensitivity to mutation probaMility Pm for m = 5, s =3

Po:' 0.00 0.01 0.05 0.10 0.20 p.30 0.50

800 epochs 7.26 1.48 1.04 0.B2 0.99 1.06· 1.18

1600 epochs 5.38 1.24 0.97 0.68 0.82 0.8B 0.98

Sensitivity to community size m for Pm = 0.10, s =3

m 4 5 10 20

800 epochs 1.34 1.35 1.04 1.14

1600 epochs 0.93 0.90 099 0.97

Sensitivity to subcommunity size m for Pm =0.10, m =10

s 3 4 5 6

BOO epochs 1.24 1.32 1.27 1.71

1600 epochs 0.99 1.27 1.21 1.03
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4.3. Case 3. Chemical: Engineering.. 'T • m ":,' I '1'3 ree-

The investigation of the efficiency of the proposed algorithm is also

extended to solve some problems in chemical engineerir:lg. The experimental

data in Table 10 [27] are the viscosity measur·ements in different temp~ratures

and pressures. lin this investigation, the neural network architecture is a three-

layered structure with two nodes in the input ilayer, five nodes in the hidden layer

and one node in the output layer. The purpose of training the network ,is to

n

. minimize the objective function S =L(Yi - Xi )2 (where y is computed output, x is
i=l

experimental output) in each iteratiol1.

For comparison, the genetic algorithm (notice that this is not a traditional

GA, because of the modification) and the downhill search generating procedure

(notice the difference with the Neider and Mead method because the contraction

and reflection are not used in the proposed algorithm) are also calculated. The

above suggested parameters are u$ed for the proposed algorithm. Furthermore,

they also apply to the correspondingi GA and downhill searching.

Table .11 shows that genetic algorithm with simplex downhill method (GO)

can gradually reach the global minimum. As the generation grows, the

probability of reaching the global minimum is increased. Using the modified GA

alone enables the vicinity of the global minimum to be r~ached with increasingly

probability as time goes on, while the downhill method cannot reach the global

minimum at all. The downhill method is always trapped in one of the local

minima. Tables 12 and 13 demonstrate the training, test and generation data

using the proposed algorithm, respectively.
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Table 10. Data for the lubricant viscosity at different temperatures and pressures

[27].

Temperature (uC) Pf8SSUre (atm) In{viscosity]

(experimental)

0.0 1.0 5.106

0.0 740.8 6.387

0.0 1407.5 7.385

0.0 363.2 5.791

0.0 1.0 5.107

0.0 '805.5 6.361

0.0 3907.5 11.927

0.0 4125.5 12.426

0.0 2572.0 9.156

25.0 1.0 4.542

25.0 805.0 5.825

25.0 1505.9 6.705

25.0 2340.0 7.716

25.0 422~9 5.298

25.0 5064.3 11.984

25.0 5280.9 1,2.444

25.0 3647.3 9.523

25.0 2813.9 8.345

37.8 516.8 5.173
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37.8 1738.0 6.650

37.8 1008.7 5.807

37.8 2749.2 7.741

37.8 , 1375.8 6.232

37.8 191.1 4.661

37.8 1.0 4.298 ' .,:.

37.8 4849.8 10.511
.

37.8 5605.8 11.822

37.8 6273.9 13.068

37.8 3636.7 8.804

37-.8 19491.0 6.855

37.8 1298.5 6.119

9'8.9 ' . 1.0 3.381

98.9 686.0 4.458

98.9 1423.6 5.207

98.9 2791.4 6.291

98.9 4213.4 7.327 !

98.9 2103.7 5.770

98.9 402.2 4.088

98.9 1.0 3.374

9R9 2219.7 5.839

98.9 6344.2 8.914

98.9 7469.4 9.983
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98.9

98.9

5640.9

4107.9

8.323

7.132

;; i '

Table 11. Performance of the proposed algorithm (GO), Case 3, neural network

composnion = 2:5:1

Ten-run-average, best-so-far objective function vafue

generation GA Downhill GO

50 1.41633 3.99894 1.24233

100 0.94665 3.88616 0.722244

200 0.930796 3.73996 0.541633

400 0.789369 3.50923 0.285179

1000 0.700704 3.00807 0.158261

2000 0.639371 2.89261 0.0724673

4000 0.538636 2.88345 0.045308

Table 12. Training data for the lubricant viscos'ity at different temperatures and

pressures, m = 5, s=3, Pm = 0.10, epoch = 8000, neural network

composition = 2:5:1, objective function value =0.019, using the

proposed algorithm.

Temperature (DC) Pressure (atm) In[viscosity] In[viscosity]

(experimental) (calculated)

0.0

0.0

1.0

740.8
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0.0 1407.5 7.385 7.474

0..0 363.2 5.791 5.732

0.0 1.0 5.107 5.162

0.0 805.5 6.361 6.532

0.0 3907.5 11.927 1,1.697

0.0 4125'.5 12.426 11.997

0.0 2572.0 9.156 9.300

25.0 1.0 4.542 4.472

25.0 805.0 5.825 5.799

25.0 1505.9 6.705 6.754

25.0 2340.0 7.716 7.629

25.0 422.9 5.298 5.071

25.0 5064.3 11.984 12.010

25.0 5280.9 12.444 12.253

25.0 3647.3 9.523 9.619

25.0 2813.9 8.345 8.242

37.8 516.8 5.173 4.953

37.8 1738.0 6.650 6.655

37.8 1008.7 5.807 5.860

37.8 2749.2 7.741 7.583

37.8 1375.8 6.232 6.323

37.8 191.1 4.661 4.424

37.8 1.0 4.298 4.237
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37.8 4849.8 10.511 10.958

37.8 5605.8 11.822 12.062
•A~ 1-••

37.8 6273.9 13.068 12.621

37.8 3636.7 8.804 8.793

37.8 1949.0 6.855 6.830

37.8 1298.5 6.119 6.240

98.9 1'.0 3.381 3.689

98.9 686.0 4.458 4.337

98.9 1423.6 5.207 5.856

908.9 2791.4 6.291 '6.239

98.9 4213.4 7.327 6.944

98.9 2103:7 5.770 6.003

98.9 402.2 4.088 3.900

98.9 1.0 3.374 3.689

98.9 2219.7 5.839 6.046

98.9 6344.2 8.914 9.124

98.9 7469.4 9.983 9.957'

98.9 5640.9 8.323 8.289'

98.9 4107.9 7.132 6.873
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Table 13. Test and generalization data for the proposed algorlithm, Case 3, --1

Jneural network composi,tion = 2:5:1.

Test data, objective function value = 0.0016

Temperature (oC) Pressure (atm) ,In[viscosity] In[viscosityJ

(experimental) (calculated)

0.0 1407.5 7.385 7.408

0.0 3907.5 11.927 11.898

25.0 1505.9 6.705 6.605

25.0 5280.9 12.444 12.170

37.8 1375.8 6.232 6.160

37.8 3636.7 8.804 8.730

98.9 2791.4 6.29'1 6.508

98.9 7469.4 9.983 10.044

Generation data

Temperature (oC) Pressure (atm) In[viscosity] In[viscosity}

(experimental) (calculated)

0.0 1868.1 7.973 8.191

0.0 3285.1 10.473 10.968

25.0 1168.4 6.226 6.206

25.0 2237.3 7.574 7.458

25.0 4216.9 10.354 10.710

37.8 2922.9 7.967 7.772

37.8 4044.6 10.511 9.401

47



'. .'

48

r:

" ..,.....

. r



CHAPTER IV

CONCLUSIONS . '

It is weH-known that genetic algorithm is a method for global optimiz.in9.

Therefore, this method has been used in many situations such as calibrath:~nof.

model parameters in water. resource analysis and hydrology. When the methed

is used to solve some tough optimizing problems, such as the optimization of the

parameters' of artificial neural networks, ·it results. in a satisfactory outcome.,

From the traditiona' and classic genetic algorithm and simplex downhill.

method, Genetic algoriithm with simplex downhill method (GD) was constructed

with the combination of the two. methods, inheriting the advantages of both

algorithms. Experimental\.y, this algorithm was tested with different cases.

Based on the experimental results.. the following conclusions can be drawn.

(1) The GD algorithm is reasonable, well grounded, correct, and effective.

(2) The proposed algorithm is robust. It can avoid local minima, reach the global

optimum efficiently, and qUickly settle down.

(3) The amount of computing time needed for Ithe many iterations may be large

and expensive and could be a financial constraint in some cases.
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APPENDIX A

PHOGRAM UST~NG

IIIIJlJlII//IIII/IIIIIIIIIIIIIIII/IIII//I//II/11I11III1/IIIJIII/II/lI/IIIIIIII/II/lI//IIIII/III///1111111////
II Thesis program
1/ Tit'le:Simpl,e genetic alogrithm with simplex downhill, i, I .

// local tuning
// Name:Lu, Jianping
// Place:Department of Computer Science,
/1 Oklahoma State University
1/ Date: .September 1, 1999
///111//11I11111111I//11//1//1//1111//11I111I111/1111I11/////11/11/11I11/1//111/1//11I/11//111/111111/1/1111/11

111///1/1/11I11/11/1111//11/111//11I///1/1/1//1/1/II/II/IIIII//IIIJ1/11/11/111////1////11/11//11/1/11/1/11/1///
// This is the main program. In this program, you have a couple
I/af chices, sUGh as training the neural network, test the neural
//network, and neural network general.ization. .
/111/1/1//11I11I11I/11I11I/11/1////11///11////1/1//1111I1/1////11/1/11/1/111/11/111/////11/11/1///1/11/II/I/II/
#include"layec2.h"
#includel opti.on_2.h"
#include<iostraam.h>
#inc'lude<fstream.h>
#include<stdlib.h>
#include<string.h>
#include<ctype.h>

void mainO
{

char response.;
srand( (unsigned)time( NULL) );

cout«"You have four options to run this program."«endl;
cout«"Enter D to test diversity with sigle-minimum function."«endl;
couk<"Enter T to train the network."«endl;
couk<"Enter E to test the network."«endl;
couk<"Enter G to run the generalization."«endl;
cin»response;
response = toupper(response);
if(response=='D')

diversityO;
else if(response=='T')

trainingO;
else if(response=='E')

testO;·
else if(response=='G')
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generalizationO;
else{

couk<"please enter yes or no."«endl;
exit(1); .:U;

}
}
fill////1//11/11/1/11////1/III/1/1/111//11///111//11///1/1/1/1/1/111/1/111/111/11////11/1/1/1/1/111I/1111////11//1/11I
Iloption_2.h head file
/iin this head file, there are four functions, such as
/Itraining, test, generalization. For training function,
/Iyou have three ways to train the neural network, simple
I/genetic method, simplex down hill method, and simple
I/genetic method with simplex downhill.
1/11////IJ11/JIll1//11/1IIJII11/1/11/III/IJlIJII11I1I1//JII/IIIJ/1/11I//II/I//11/111/JIIJIJIJ/11//1/11I/J/11//IIJ/IJI/

/1=================================================11
//function prototypes
1/============================================/1
void diversityO;
void trainingO;
void test();
void generalizationO;

void diversityO
{

char what, response;
int i, po'ints, iterations;
ofstream outfile;
outfile.open("dout.dat", ios: :out);
network::geClayecinfoCD');
COUk<"How many points do you want?"«endl;
cin»points;
GO myGD(points, '0');
cout«"How many iterations do you want?"«endl;
cin»iterations;
cout«"Enter 'N' for not using diversity;"«endl;
cout«"Enter 'I' for using diversity;"«endl;
cin»what;
response = toupper(what);
switch(response){

case 'N': couk<"The program is running, please
be patient."«endl;

for(4=0; kiterations; i++){
myGD.single_geneticO;
myGD.nexCsingle_generationO;

}
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case'I':

outfile«myGD«endl;
break; I I, ~ II

cout«"The program 'is running, please
. be patienU,:::<endl;

for(i=O; kiterations; i++H
myGD.single_genetic();
myGD.sing,le_competitionO~· '.,
myGD.next_single-generation() ;

}
}

default:

}
outfile«myGD«endl;
break;

coul«"Enter N or ~ for the single-miniimum
fuction.test."«endl;

. .
11===========================-.:..:==================.....-1I
IIfunction training
Illn this function, you have three methods tQ ,choose to
Ilget your weights for the neural network. lihe,final output
Ilcorresponding to the data in the target fUe, standard
/Ideviation. and standard deviation are save in the output
llfile called out.dat
//==============================_.:::.:=====================//
void trainingO
{

I ,I ~

int i, pd, pg, points, choose, flag, check, sub_sz;
long iterations;
ofstream outfile;
outfHe.open("out.dat", ios::out);
network::geClayecinfo('T');
network::geCinpuCdata(}; .
network::geCoutpuCdataO;
coul«"How many points do you want?"'«endl;
cin»points;
GD myGD(points);
cout«"How many iterations do you want?"«endl;
cin»iterations;
cout«"What algorithm do you want touse?"«endl;
cout«"Enter 1 for pure genetic algorithm;"«endl;
cout«"Enter 2 for modified simple genetic algorithm;"«endl;
cout«"Enter 3 for modified simpilex downhill algorithm;"«endl;
cout«"lEnter 4 for simple genetic with simplex downhiU."«endl;
cin»choose;
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swi:tch(choose){
case 1: couk<"The program is running, please be

patient."«endl;
tor{i=O; k'iterations; i++){

myGD.genetic(points);
myGD.next_generation{);
check = myGD.examine_pointsO;
if(chec,k==1 ){

oout«"When the,all points are
the same,"«endl;

cout«"the iteration number is: II

«i+1«endl;
break;

}
}
outfile«myGD«endl;
break;

case 2: oouk<"The program is running, please be
patienL"«endl;

for(i=O; kiterations; i++H
myGD.g,enetic(points); ,
myGD.competitionO;
myGD.next_generationO;
check = myGD.examine_points();
if(check==1 }{

couk<"When the all points are
the· same,"«endl;

couk<"the iteration number is: II

«i+1«endl;
break;

}
}
outfile«rnyGD«endl;
break;

case 3: cout«"Now, you chose simplex downhill
method,"«endl;

cout«"the points you chose is "«points
«endl;
COUt«lIyou need to choose a sub_size which

must be less"«endl;
CQut«"than the number of points."«endl;
cin»sub_sz;
myGD.set_sub_size(sub_sz) ;
cout«"The program is running, pl.ease be

patient."«endl;
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case 4:

flag = 1; I ,

for(i=O; kiterations; i++){ I

myGD.downhiU(points, flag);
myGD.competitionO;
myG,D.next-generationO;
flag = 0;
check = myGD.examine_pointsO;
if(check==1 H
CQ'Ut«"When the aU points are the

same,"«endl;
cout«"the iteration number lis: II

«i+1«endl;
break;,

}
}
outfile«myGD«endl;
break;

;cOUk<"Now, you chose genetic with simplex
downhill method,"«endl;

coul«"the points you chose is "«points
«endl;
couk<"you need to choose a sub_size which

must be less"11«endl;
CQut«"thanthe number -of points."«endl;
cin»sub_sz;
myGD.seCsub_size(sub_sz);
cQuk<"The program is running, please be

patient. II«endl;
flag = 1;
for(i=O; kiterations; i++){

pd = points * i/iterations;
pg = points - pd;
myGD.genetic(pg);

IIwhen the pd>=1, downhill starts to work
if(pd>=l){
/I flag = 1;

myGD.downhill(pd, flag);
nag =0;

}
myGD.competitionO;
myGD.next_generationO;
check = myGD.examine_pointsO;
if(check==1 H
couk<"When the aU points are the

same,"«endit;
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'"
CQuk<"the iteration number is: "

«i+1«endl,;
break;

}
}
outfile«myGO«endl;
break;

default: cerr«l'choose 1,2, or 3. 1I«endl;
exit(l);

}

}/lend_switch
outfile.closeOi -" ..I

, ,

11===============================================
Ilfunct.ion test
/lin this function, you need to input the·test input ·tile, test
Iltarget fUe, and weight fHe. The final results is in the
Iioutput flile caned test.dat.The test.dat file shows output
Iidata coressponding to the data in the target file, standard
Ildeviation,
H=====================================================:
void testO
{

ofstream outfile;
outfile.open(lItesCout.dat", ;os: :out);

network::geClayer_into('E');
network: :get_tesCinputO;
network::geCtescoutput();
network net;
net.set_train_wei,ghtsO~

net.calc_outO;
outfile«net;
outfile.closeO;

}

11=================================================
Ilfunction generalization
/lin this function, you need to input the input file, weight file.
II After the program finishes execution, the output file,
Iitrain_out.dat, contains the data you search for.
11====================================================
void generalizationO
{

ifstream infile;
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01stream outfile;
char filename1[50l, filename2[50);
double max_input, min_:input,. max_output, min_output;
0utfile.open(ltrain_out.dat"', ios::out); _

couk< 'Enter your input file:"«endl;
cin»filename1 ;
couk<"Enter your weight file:"«endl;
cin»filename2;

.
I

}

network::get_layer_info('G');
cout«"Enter maxmiuminput, minimum input, maxinum

output, minimum output"«endl;
couk<"(those 'data refl,ect the data when you trained
your network)':«endl;
cout«"in this way: max_in min_in max_out, min....;out."«endl;
cin»max_input»min_input»max_output»min....:output;
network::geCinpuCdataO;

network net;
net.seCtrain_weightsO;
net.calc~outO;

outfile«net;
Quffile.c1oseO;

r •
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------------------//

r

111I//II/11/1/111IIII1IIIIIIIIIIIJl/IIII/1/11/111/11/1/I/I/111/111I/IIIII111/111//I/11/1/11/11/11/1/1/11/1////111/1111
/llayec2.h head file
/iin this head file, there are three classes, network,
IIGD(genetic downhill), and regression. l"heir functions
IIwiU be introduced when they are implemented,
/lrespectively.
/111I/11/1//111I11111/1111I1/1//1111/1/11/1//11/III11/1//1/1/11//1/1IIII/III1/111/IIII//1III111//11I//11/1/11I1//111/I
#include<iostream.h>
#include<stdlib.h>
#include<fstream.h>
#include<time.h>
#include<math.h>
//=====================================================/1
IIGlobal function random_~.weights.This function is used
I/to generate a random number in a ceratin range when
I/it is called. .-
1/=====================================================1I
double random_weightsO
{

double number; I '.

int i;
/lrandom_weights will return a doubling point
Ilvalue betw~en -20 and 10

Ilgenerate a random number subject to uniform (0, 1)
IIdistribution
for(i=O; i<10; i++)

number = doubte (randO/327B7,O);
IIchange the random number to a value between -20 to 10
number = -20 + number * (10 • (-20»;

return number;
}

11===================================================1/
/lGlobal function random_geberator. This function is used
/Ito generate a random number between 0 and 1 when it is
/Icalled.
1/==
double random-9,enerator()
{

int i;
double number;

for{i=O; k10; i++)
number = double (randO/32767.0);
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return 1/(1 + exp(-act»;

return number;
}

N========================================================~I
IIGlobal function segmoid function. this function is used
lito change the input entering a neuron to the ouput of
lIthe neural in the range of 0 and 1.
N==========--==============================================~
double segmoid(double act)
{

}

11=========================================================11
IIclass network
11======================================================11-
class network
{
private:

static int layer[5]; IIstore neurons in the diffrent layer
static int .numbecoClayers;
static double inpuCdata[1 O][80]~

IInomalized input data array
static double nom_inpuCdata[10][80];
static double target_data[10]i80];
Iinomal;zed output data array
static double nom_target_data[10)[SO];
static int num_inpuCdata;
static int num_targeCdata;
static char way;
static int num_weights;
double std_dev; Iistandard deviation
int num_outpuCdata;
Iistare the output of the neural network
double finaLout[10][47];
Iistore the weights of the neural network
double weights{SO];
friend class GD;

public:
networkO; liconstructor
-networkO; IIdestructor
static void geClayer_info(char c);
static void get_input_dataO;
static void geCoutpuCdataO;·
void randomize_weightsO;
void calc_outO;
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void single_calc_out{);
. -voitl geCfirst_layet_input(d0uble *temp,int nm);

void calc_temp_out(double *temp1, double *temp2,
int nr1, int nr2,
int &cQunt. int last);

void catc_error();
int get_num_weightsO;
int get_lasClayer_nodesO;,
int giet_num_tal"geCdata();
static void geCtesLinputO;
static voidgeCtest..outputO;
void ·seLtrain_weightsO;
friend ofstream& operator«(ofstream& myout, network& nt);

};

1/==========================================================1
/
Illmplementafion of the constructor
11====================== "================:========/1
network::networ!kO
{

}

11==========================================================f
1
Illnitialization of all class variables.
1/=========·================================================1
/
int network::layer[5];
int network::numbecoClayers = 0;
double network::inpuCdata[10)[80];
double network: :nom_input_data[1 0][80];
double network: :targeLdata[1 0][80];
double network::nom_targeCdata[10][80];
char network::way;
int network::num_inpuLdata = 0;
int network::num_targeLdata = 0;
int network::num_weights = 0;

v========================================================a
Illmplementation of function geLlayecinfo.
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11===========--==================================11
void network::g,et_layecinfo(char c)
{

inti;
/1-----------------------------------
JlGet layer sizes for the network
ff--;--------------------------------

cout«"Please enter in the number of layers for your
network."«end);

couk<"You can have a minumum of 3 to a maximum of
5."«endl;
cout«"3 implies 1 hidden layer; 5 implies 3 hidden

layers:"«endl;

cin»number_oClayers;

cout«"Enter in the layer sizes separated by spaces."«endl;
cout«"For a network with 3 neurons in the input layer,"«endl;
cout«"2 neurons in a hidden layer, and 4 neurons in the"«endl;
cout«"output layer, you would enter: 3 2 4." «end!.;
COUk<"You can have up to 3 hidden layers, for five maximum

,entries:"«endl;

for(i=O; knumbecoClayers; i++)
cin»layer[i};

If---------------------------------------------------------
Ilsize of layers:
/I inpuClayers layer-,size[O]
/1 outpuClayers layer_size[numbecoClayer-1]
fl middle_layers layer_size[1]
/1 optional:layecsize{number_oClayers-3]
JI optional:layecsize[number_oClayers-2]
fl----------------------------------------------------------

for(i=1; knumbecoClayers; i++)
num_weights += layer[i-1] * layer[i] + layer[i];

IItwo additional weights, one for objective function value,
//Iast one for probability
num_weights = num_weights + 2;
I/assign the way of solving the problem
way =c;

- }
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11===================================================1/
IIlmplementat:ipn of function g:eCinput..:data.
1/====================================================1/
void network::get....:inpuCdataO
{

char filename[SO];
double data, min_in, max_in;
int i, j;
ifstream infile;

I/get input data from individual·file t'.
for(i:=O; klayer[O]; i++){

cout«ulnput your 'input fite u«i+1«" name:"«endl;
cin»filename; .
infile.open(flilename, ios::inlios::nocreate);
j=Oi
infile»data;
while(!infile.eofOH

inpuCdata[i]U] = data;
j++;
infile»data;

}
num_input_data = j;
infile.c1oseO,;

}

Iinormolize the input data
for(i=O; klayer[O]; i++){

min_in =input_data[i][O];
max_in = input..:data[i][O];
forG=O; j<num_input....data; j+:+-}{

if(input'-odata[i)[j]<min_in)
min_in = inpuCdata[ilu];

if(input_data[i1U]>.mIDc in)
max_in = inpuCdata[i]Ul;

}
inpuCdata[i][num_input_data] = min~in;

input_data[i}[num_inpU1_data+1):::: mIDcin;
forO=O; -j<num_!input_data; j++)

nom_input_data[i]U] = 1.0/(mrocin-min_in)*
(input_data{i)[j]-min_in)l;

}
}

1/================,===================================/1
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IfThis function is to get input test data.
I!
void network::geCtesCinput()
{

char filename[50];
double data, min_in, max_in;
int i, j;
ifstream infile;

-================11

IIget input data from individual file
for(i=O; klayer[O]; i++){

cout«"lnput your test input file u«i+1«
" name:"«endl;

cin»filename;
infile.open(filename, ios::inlios::nocreate);
i=O;
infile»data;
while(tinfile.eof(»{

inpuCdata[i][j] = data;
j++;
infile»data;

}
num_inpuCdata = j;
infile.c1oseO;
cout«"lnput ma>cin during the corresponding input

training file:"«endl;
cin»max_in;
cout«ulnput min_in during the corresponding input

trining file:u«endl;
cin»min_in;
inpuCdata[i][num_inpuCdata} = min_in;
inp!-,Cdata[i][num_input..data.+1] = max_in;
forO=O; i<num_inpuLdata; j++)

nom_inpuCdata[i][j] = 1.0/{max_in-min_in)*
(inpuCdata[i][j]-min_in);

}
}

//========================================================I!
Iffhis function is to get input date for
Iltrainning the neural network.
//======================================================-~//

void network::geLoutput_dataO
{

char filename[50];
double data, min_out, max-:out;
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int j,; oj;
ifstream infile;

/Iget output data from individual file
for(i=O; klayer[numbecoClayers-1]; i++){

cout«" Input your output fUe "«i+1«" name:"«endl;
cin» filename;
infile.open(filename, ios::inlios::nocreafe);
j=O;
infille»data;
while(!infile.eofOH

targeCdata[i]O] = data;
j++;
infile>>data;

}

}
num_targeCdata = j;
infi'le.closeO;

, I

/Inormolize the output data
for(i=O; klayer[O]; i++){

min_out = targeCdata[i][O];
max_out = targeLdata[i][O};
forO=O; i<num_target_data; .j++){

if(targeCdata[i][j]<min-:01;lt) _. ,
m;n~out= target_data[ilo};

if(targeCdata[iml>max_out)
max_out = targeCdata[ilu];

}
target_data[il[num_targeCdata] = min_out;
targ,eCdata[i][num_target_data+1} == max_out;
forO=O; j<num_target_data; j++)

nom_target_data[ilU} == 1, .O/(max_out-min_out)*
(targeCdata[UOl-min_out);

}
}

1/======================================================//
/fThis function is to get output data for test the
/lneural nework.
//====================================================/1
voi,d network: :geCtesLoutputO
{

char filename[50];
double data, min_out, max~out;
int i, j;
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}

ifstream infile;

IIget output data from individual file
for(i=O; klayer[numbecoClayers-1J; i++H

cout«"lnput your output file "«i+1«
II name:"«endl;

cin»filename;
infile.open(filename,ios::inlios::nocreate);
jl=O;
infile»data;
while(!infile.eofO}{

target_data[i][j] = data;
j++;
infile»data;

}
num_targeCdata = j;
infile.closeO;
coul«"lnput max_out during the corresponding output

training file:"«endl;
cin»max_out;
couk<"lnput min_out during the corresponding output

training file:"«,endl;
cin»min_out;
targeCdata[i][num_targeCdata] = min_out;
target_data[i][num_target:.data+1] = max_out;
forU=O; j<num_target:.data; j++)

nom_target_data[ilOJ = 1.0/(max_out-min_out)*
(target:.data[i][j]-min_out);

}

-:::. ..:./'

11==========================================================11
IlThis function is to get number of the target data.
1/=========================================================11
int network::get:.num_target_dataO
{

}

11========================================================11
IlThis function is to get how many nodes in the output layer
/Iof the neural network.
11=====================·===============================1/
int network::get_lasClayecnodesO
{

return layer[numbecoClayers-1];
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}

/1==============================.======================== II
Illmplementation of function seCtrain_weights.
I/This function is only uesd
Ilwhen the user asks t,est or generalize the neural network.
11===.=---================================================11
void network::seCtrain_weightsO
{

char filename[50];
ifstream infile;
int i;
double weight;
i=O;

cout«"lnput your weight file name:"«,endl;
cin»filename;
infile.open(fi.lename. 'ios::inlios::nocreate);

, .

infile»weight;
while(!infile.eofO){

weights[i] = weight;
infile»weight;
i++;

}
infile.closeO;

}

fi===================================================fi
//Implementation of function randomize_weights.
Irrhis function is use to fill the
Ilradom weights for the network.
11====================================================II
void network::randomize_weightsO
{

int i;,

for(i=O; knum_weights-2; i++)
weights[i] = random_weightsO;

}

11===================================================11
/llmplementation of function calc_out.
IlThis function is used to get the output
lithe neurons in the output lay,er.
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II==~;

void network::calc:.....outO
{

int h, i, j, k, m, n, weight_count,. last_layer;
n = 0;
i=O;
h =0;
k=O;

double temp1_out[1 00], temp2_out(100];
while(k<num_input~data}{

,,'
t •

II

weighCcount = 0;
geCfirsClayer_input(temp1_out, k);
forG=1; j<numbecoClayers; j++){

lasClayer = j;
calc_temp_out(temp1_out, temp2_out, layer[j-11,

layer[j]j weighCcount, last_layer);
for(m=O; m<layerU]; 'm++)

temp1_out[m] = temp2_out[m];
}
i++;

for(n=O; n<layer[numbecoClayers-1]; n++){
finaLout[n][kl = temp1_out[n];

}
k++;

}
}

1/==================================================/1
/Itmplementationof function geCfirsClayecinput.
H======================================================lj

void network::get_firsClayer_input(double *temp, int nm)
{

int i;
for(i=O; klayer[O]; i++){

temp[il = nom_inpuCdata[i][nm];

}
}

I/======~-=====·=====================================II

/lImplementation of function calc_temp_out.
I/This function is used to calculate

69



II the output of the neurons in the hidden layers.
1/==============================================11
void network::calc_temp_out(double *temp1, double *temp2,

int nr1, int nr2, int &count,
int last)

{
int i, j;
double value;

for(i=O; knr2; i++){
value = 0.0;
forO=O; j<nr1 ;..j++){

va1lue += temp1 m*weights[cDunt];
(count)++;

}
value = value + weights[count];
(count)++;
if(last!=numbecoClayers-1 )

temp2[i] = se~moid(value);

else
temp2[i] = value;

}
}

1/==================,===================---============ II
//Implementation of function calc_,error.
11this function is used to calculate
lithe standard deviation of the output the
Iineural network rel,ated to thethe target data.
~=====================================================II

void network::calc_errorO
(

int i, j;
double sum;
sum = 0.0;
for(i=O; klayer{number_oClayers-11; i++)

forU=O; j<num_targeCdata; j++)
sum += (nom_targeCdata[ilU]-finaLout[i]fj])*
(nom_targeCdata[i]fj]-finaLout[iJljn;

std_dev =sqrt(sum);
weights[num_weights-2] = std_dev;

}

void network::single_calc_out()
{

int i;
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double value;
value = 0.0;
for(i=O; knum_weights-2; i++)

value += weights[i} * weights[i};
1/ std_dev =sqrt(value/doubte (num_weights:'3»;

weights[num_weights-2] = value; 'I

}

11==================================================--il
//Implementation of function geCnum_weights.
Irrhis function is used to get the total number
Ilof weights in the neural networ.k.
V=================================================-~I

int network::geCnum_weightsO'
{

}

11=======================:====================11
IIlmplementation of friend function to 'print results.
/1========:====-=================================11
ofstream& operator«(ofstream& myout, network& nt)
{

int i, j;
double data;

myouk<"'The final outputs are:';'«endl;
if(nt.wayl='D')

for(i=O; knt.get_lasClayecnodes(); i++){
forU=O; j<nt.numdarget_data; j++){

I/denormliazation
data =nt.finaLout[i]Ul*

(nttargeCdata[i][nt.get_num_targeCdataO+1],­
nt.targeCdata[i][nt.geCnum_targeCdataO])+
nt.targeCdata[i][nt.geCnum_targeCdataO];

myouk<data«endl;
}
myout«,endl;

}
myouk<endl;,
if(ntway=='T'1Int.way=='D'){

myout«lIthe standard deviation is: "«
nt.weights[nt.num_wei.ghts-2]«endl;

myout«"the weights are: "«endl;
for(i=O; knt.geCnum_weightsO-2; i++}

myout«nt.wei9hts[i]«11 ";
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myout«endl;
}
if(nt.way=='E'){ ... l

nt.calc--.:error(); , J

myout«"the standar€l deviation is: "«
nt.weights[nt.num_weights-2]«endl;

}
return myout;

}

u==========================================================H
Ildestructor of network.
U==========================================================H
network::-network()
{
}

H---======================================================~J
Ilclass GD(genetic downhill method
II=====================================================~I
class GO.
{
private:

network net[1 00];
network new_net[1 00];
int num_oCpoints;.
char C;
int sub_siz,e;
network two_points{2]; //for genetic, to choose two parents
network cross;
lIfor downhill, to choose a subcommunity
network firsCs_points[1 0];
lIfor downhiU, to choose a subcommunity
network second_s_points[1 0];

public:
GO(int pts);/Iconstructor
GO(int pts, char c);/Iconstructor
-GOO {}; IIdestructor
void genetic(int PG);
void singil·e_geneticO;
void downhiU();
void heapsort(network arr[], int size);
void heapilfy(network arrO, int pos, int size);
void assign-probabilityO;
int geCindex(double rd);
void selecCtwo_pointsO;
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void crossoverO;
void mutation(};
void .selecCs-points(int Flag);
void construct_subcommuni1ly:(int Flag)~

void compute_centroid(int dn);
void downhill(int PO, int FI,ag);
void competitionO;
void single~competition();

double distance(network nt[l,int index);
void next_generation();
void nexcsingle-generation();
int examine_pointsO;
void seCsub~size(intsub_siz);
friend ofstr,eam& operatoY«(ofstream& out, GD& gd};

};

11============'============'=======================11
IIImplementation of constructor
11=================================================11
GD::GO(int pts)
{

int i;
num--.:oCpoints = pts;
for(i=O; knum_oCpoints~ i++){

net[i].randomize_weightsO;
net[i].oalc_autO;,
net[i].calc_error();

}
heapsort(net,num_oCpoints);
assign_probability();

}

11======================================================11
IIlmplementation of constructor
11==================================::::===============11
GD::GD(int pts, char c)
{

int i,;
num_oCpoints = pts;
for(i=O; knum_of_points; i++){

net[i].randomize_weightsO;
net[i].single_calc_outO;

}
heapsort(net,num_oCpoints);
assign_probabillityO;
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}

j;,

genetic(num_oCpoints);

. .
11=================================-=============//
//Implementation of singl,e genetic.
1/=============================================11
void GD::sing,l,e_geneticO
{

}
... 1 ~

U======================================================H
IIlmplementation of tunction heapsort, to sort the
IIpoints in ascending order according to the ' )
lIobjective function values.
/1================================================11
void GD::heapsort(network arr[], int size)
{

network x, temp;

int i, j;
for(i=(size-1 )/2; i>=O; i--)

heapify(arr, i, size);

for(i=size-1; i>O; i--){
forO=O; j<temp.get.:...num_weights()-1 ; j++){

x.we'ights'O] = arr[O].weightsU];
arr[O).wei,ghts[j] = arr[i].weights[j];
arr[i).weightsUl = x.weights[B;

}
heapify(arr, 0, i);

}
}

11======================================================11
Illmplementation of heap'ify function.
1/====================================================//
void GD::heapify(network. arr[], int pos, int size)
{

int j, I, (, k, largest;
network x, temp;

j = pas;
whileO<size-1 )(

1= 2*j;
r = 2*j+1;
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if(k=size-1 ){
if(ar,,[I].weights[temp.geCnum_weightsO-2]>

arrO].weights[temp.geCnum_weightsO-2])
largest = I;

else
largest = j;

}
if(r<=size-1 ){

if(arr{r].we'ights{temp.geCnum_weightsO-2]>
arr[largest].weights[temp.geCnum_weightsO-2])
'largest = r;

}
if(largestl=j){

for(k=O; k<temp.geLnum_weightsO-1; k++){
x.weights{k} = arrU].weights[k];
arrU].weights[k] = arr[largest].weights[kl;
arr[largest].weights{k] = x.weights[k];

}
j = largest;

}
else

break;

}

H==========================================================H
Illmplementation of function get_index.
IfThis function is used to find a point
Ilindex by the probability assigned to
Ilit when a random number is given.
11=========================,===============================11
int GD::get_index(double rd)
{

network temp;

double start, end;
int i, targ,eLindex;
start = end = 0.0;
if(rd<net[0].weights[temp.get_num_weightsO-1 ])

targ,et_index = 0;
for(i=1; knum_oCpoints; i++){

start += net[i-1 ].weights(temp.get_num_weights()-1];
end =start+net[i].weights[temp.get_num_weightsO-1];
if(starkrd && rd<=end){

targeCindex =i;
}
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}
return ,target_index;

}

'.'

11====================-=---======================11
//Implementation of function assign_probability. -/
!/This function is used to assign a probability :,,'1 .~..
Iinumber to a point according to its objective
Ilfunction value. The smaller the objective . ~

Ilfunction value is, the greater the probabi,lity
Ilnumbel' is.

11===================--==========.======================II
void GD::assign_probabilityO
{

network temp;
int i;
double c, pm, pb, p;
c =0.5;
pm = O.51double(num_oCpoints);
pb = (2-c)/double(num_oCpoints);,

for(i=num_oCpo;nts; i>D.; i--){
P = pm+(double(i-1 )/double(num_oCpoints-1 »*(pb-pm);

Ilput the probability in the last row of the we'ight array
net[num_oCpoints-i].weights[temp.geCnum_weightsO-1] = p;

}
}

1/========,==================:::;:============:=================/1
III:mplementaUon of function seCsub_size.
Iithis function is for downhill method.
#=================================:=========================fi
void GD::seCsub_size(int sub_siz) , ,
{

}

11==========================·===========================1/
!!Implementation of selecCtwo_points.
I/This functlilOn is for g,enetic method.
#==:==========================:===========:=============== H
void GD::selecCtwo_pointsO
{

network temp;
int i, j, index, flag,;
double rd_num;
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}
Ilcheck whether the points are the same

. for{i=O; ktemp.geCnum_we,ightsO-2; i++)
if(two_points[O].weights[i] != two_points[l ].we'ights[il){

flag = 0;
break;

flaQi =1;
while(Hag == 1}{

for(i=O~ k2; i++){
rd_num = random_generator();
index = get_index(rd_num);
for(j=O; j<temp.geC num_weightsO-2; j++)

.two_points[i].weights(j] =net[index].weights[j);

}

}

11======================================================11
Illmplementtaion of function crossover,
Irrhis function is for genetic method.
11=========================-.-:-==========================11
void GO::crossoverO
{

network temp;
int i;
double rd_num;

for(i=O; ktemp.gecnum_weightsO-2; i++){
rd_num = random_generator();
if(rd_num >= 0..5)

cross.weights[i] = two_points[O].weights[i];
else

cross.weights[i] = two_points[1 ].weights[i];
}

}

/1==========================================================1/
/llmplementation of function mutation.
Irrhis function is for genetic method.
11==============================·=========================1/
void GD::mutationO
{

network temp;
double rd_num;
int i;
for(i=O; ktemp.gecnum_weightsO-2; i++){
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rd_num = random_generatorO;
if(rd_num < 0.50)

cross.we'ights[i] = random_weightsO;
}

}

11========-========-==========================--===11
IJlmplementation of function genetic.
I/In this function, the genetic way to
Ilcreate a new population is carried out.
11====================================================:::=11
void GD::genetic(int PG)
{

network temp;
int i, j; '1

for(i=O; kPG; i++){
selecCtwo_pointsO;
crossoverO; ..L<->

mutationO;
Ilcopy the point after mutation into weights
for(i=O; j<temp.geCnum_weights()-2; j++)

new_net[i].weights[j] = cross.weightsUl;
}

}

H=======================================================H
//Implementation of function select_s_points.
I/This function is for downhill method.
11============-==============================================11
void GD::selecCs_points(int Flag)
{

network temp;
int i, j, k, same;
int index;
double rd_num;
same = 1;

if(Flag==1 ){
for(i=O; ksub_size; i++){

rd_num = random_generatorO;
index = get_index(rd_num);
forG=O; j<temp.get_num_weightsO-2; j++)

firsCs_points[i].weights[j] = net[index].weights[j];
}

}
//if not first time to create three points
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else{
whHe(same==1 ){

for(i=O; ksub_size; i++){
rd_num = random.:-generator();
index = get_index(rd_num);
forO=Q.; j<temp.geCnum_weightsO~2; i++)

second_s-points[i].weights[jJ =
net[index].weights[j];

}/Iend_for
IInow to check the second_s_points to see whether it is
lIidentical to the first_s-points
tor(i=O; ksub_size; i++){

for(k=O; k<sub_size; k++){
forG=O; j<temp.geCnum_weightsO~2; j++){

if(first_s_points[i].weights[j]l=
second_s_points[k].weights[j]){
same = 0;
break;/Ibreak the first for

}/Iend_if
}/Iendj_for
if(same==O) ,

break;/Ibreak the second for
}/Iend_k_for
if(same==O)

break;
}/lend_i_for

}/Iend_while
Iinow copy the second_s_points into the firsCs_points
for(i=O; ksub_size; i++)

for(j=O; j<temp.geCnum_weightsO~2; j++)
tirst_s_points(i].weightsUJ =
second_s_points[i] .weightsm;

}
}

11==========================================================/1
Illmplementation of construcCsubcommunity.·
1/======================================================11
void GD::construcCsubcommunity(int Flag}
{

int i;
select_s_points(Flag);
for(i=O; ksub_size; i++H

firsCs_points[i].calc_outO;
first_s_points[i].calc_errorO;

}
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}

N==========================--=======--=======================l1
Illmplementation of function compute_centroid.
IfThis function is used to create
lIa new population of points.
N ~

void GD::compute~centroid(intdn)
{

network temp1 , temp2;
temp1 ..randomize_wei:ghts();
temp2.. randomize_weights();
int i, j;
double value;

heapsort(firsCs-.,points, sub_size);
Ilcompute the centroid of them without including the worst point
1or(i=O; ktemp1.geCnum_weightsO-2; i++H

value = 0.0;
forU=O; j<sub_size-1 ; j++)

value += firsCs_pointsU].weights[i];
value = value/double(sub_size-1);
temp1.weights[i] = value;

}
temp1.calc_outO;
temp1.calc_error(};

Ilconstruct a new point by reflectinng the worst point through the
/Icentroid point y(ij) = 2x(ic)-x(is)
fo.r(i=O; ktemp1.g;et_num_weightsO-2; i++)

temp2.weights[i] =2*temp1.weiglhts[i] ­
first_s_points[sub_size-1 ].weights[i];

temp2.calc_outO;
temp2.calc_errorO;

if(temp2.weights[temp1.gecnum_weights()-2]<
firsCs_points[sub_size-1 ].weights[temp1.get_num_weightsO-2]){
for{i=O; knet[O].get_num_weightsO-2; i++)

new_net[dn].weights[i] = temp2.weights[i];
}
else if(temp1.weights[temp1.geCnum_weightsO-2]<

firsCs.J)oints[sub_size-1}.weights[temp1.get_num_weightsO-2]){
for(i=O; ktemp1.geCnum_weighlsO-2; i++)

new_net[dn].weights[i] = temp1.weights[i];
}
else{
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}

}

for(i=O; ktemp1.get_num_weightsO-2; i++) . I

new_net[dn].weights[i] ~ random_weightsO;
, .

jl=======================~....o-::=====================/I
Illmplementation of function downhill.
Irrhis function is used to perform the .
IIdownhill method.
1/============================--======================--jf
void GD::downhiH(int PD, int Flag) J'C1
{ , ,

int i;
for(i=(num_of.:...points-PD); knum..:...oLpoints; I++){

construcCsubcommunity(Flag);
compute_centroid(i);

}
} ,..

11============================================--==========11
Illmplementation of function competition,
/lAfter the execution of the this function,
lIthe best-so-far point is always kept for·next-generation.
11=========================·====================,======//
void GD::competitionO
{

network temp;
int i, j;
double rd_llum;
for(i=O; knum_oLpolnts; i++H

new_net[i].calc_outO;
new_net[i].calc_arrorO;

}
heapsort(new_net, num_oLpoints);'
IIcheck the best point In the new_net and the best point
Ili'O the net
if(new_net[O].weights[temp.gecnum_weightsO-2]>

net[O].weights[temp.get_num_weightsO-2]}{
Ilreplace the point in the new_net by the corresponding point int net

for(i:=O; i<temp.geCnum_weightsO-1; i++)
new_net[num_oLpoints-1}.weights[i] = net(O].weights[i];

heapsort(new_net, num_oCpoints);
}
/Icheck other points
for(i=1; knum_of.J)oints; i++){
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if((new_Iletli].weights[temp.get_nUffi_weights()-2]<
.net[il.weights[temp.geCnum_we'ightsO-2).&&
(distance(new_net, i»distance(net. i»){

, Ilkeep the new point . II I

} • j '.
e,lse if«distance(net, i»distance(new_net, i»&&

(net[i].weights[temp.geCnum_weightsO-2]<
.new_net[i].weights[temp.·get_num_weights()-2]){
IIreplace the new point with the corresponding point
forU=O; j<temp.geCnum_weightsO-1; j++)

new_net[i].weightsO) = net[i].weightsU];
heapsort(new_net, num_oCpoints);

}
else if(distance(new_net, it

net[i].weights{temp.geLnum_weightsO-2]>
distanoe(net, i}*
new_net[i].weights[temp.get_num_we·ights(}-2]){

'.

}
}

}
else{

}

rd_num == random_generatorO;
if(rd_num>O.5){

forU==O; j<temp.geCnum_weights()-1 ; j++)
new_net[i).weights[j] = net[i].weights[j];

heapsort(new_net, num_oCpoi.nts);
}
else

:::1
'"
'"If,

"
"

II---------------------------·---------------------IJ-----------------------------------------------------1/
I/This function is used for singJle competition.
11=====·===============================================1/
void GD::single_competitionO
{

network temp;
int i, j;
double rd_num;
for(i=O; i<num_oCpoints; i++){

new_net[i].single_calc_out();
}
heapsort(new_net, num_oCpoints);
IIcheck the best point in the new_net and the best point
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Ilinthe net
if(new_net[O].weights[temp.get_num_weightsO-2]>

net[O].weights[temp.geCnum_weightsO-2]){
IIreplace the point in the new_net by the corresponding point int net ­

for(i=O; ktemp.geCnum_weightsO-1; i++)
new_net[num_oCpoints-1 ].weights[i] = net[O].weights[i];

heapsort(new_net, num_oCpoints);
}
IIcheck other points
for(i=1; knum_oCpoints;, i++){

if(new_net[i].weights[temp.geCnum_weightsO-2]<
net[il.weights[temp.geCnum_weightsO-2]&&
distance(new_net, i»distance(net, i»){
Ilkeep the new point

}
else if(new_net[i].weights[temp.geCnum_weightsO-2]>

net[i].weights[temp.geCnum_weightsO-2]&&
distance(net, i»distance(new_net, i»{
fIreplace the new point with the corresponding point
for(j=O; j<temp.get_num_weightsO-1; j++)

new_net[i)..weightsm = net[i].weights[j];
heapsort(new_net, num_oCpoints);

}
else if(new_net[i].weights[temp.geCnum_weights()-2]<

netfi].weights[temp.get_num_weightsO-2]&&
distance(new_net, i»distance(net, i»).{
Ilkeep the new point

}
else if(distance(new_net, i)*

net[i].weights[temp.get_num_weightsO-2]>
distance(net, i)*
new_net[i].weights{temp.gecnum_weightsO-2]){

}
else{

rd_num = random_generatorO;
if(rd_num>O.5){

forU=O; i<temp.get_num_we,jghtsO-1; j++)
new_net[i].weights[j] = net[i].weightsOl;

heapsort(new_net, num_oCpoints);
}
else

}
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}
}

11-------------------------------------------------,/------'--.-------------,-.-------------,------,---.----f:

//Implementation of function distance.
IIthis function is used to calculate
lithe distance between two points.
//================================================//
double GD::distanoe(network ntD. int index)
{

network temp;
double d;
int i;
d =0.0;
for(i=O; ktemp.geCnum_weightsO-2; i++)

d += (nf(indexl.wei,ghts[i] - new_net[O].weights[iJ)*
(nt[index].weights[i]-
new_net[O].weights[i]);

return sqrt(d);
}

11=====================::;:==================================1/
IIImplementatiron of function next_generation.
11========================,==============================/1
void GD::next_generationO
{

network temp;
int i, j;
for(i=O; knum_oCpoints; i++){

new_net[!i].calc_out();
new_net[i].calc_error();

}
heapsort(new_net, num_oCpoints);
Ilcopy new_net into net, ready for next generation
for(i=O; knum_oCpoints; i++){

forO=O; j<temp.get_num_weightsO-1; j++)
net[i].weightsU] =new_net[i].weig,htsO];

}

for(i=O; knum_oCpoints; i++){
net[i].calc_outO;
net[i].calc_errorO;

}
heapsort(net, num--.:oCpoints);
assign_probability();

}
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11==================================================== II
I/This function is used for single next generation.
11=================================================_...It
void GD::nexCsingle_generationO
{

network temp;
int i, j;
for(i=O; knum_oCpoints; i++){

new_net[i].single_calc_outO;
}
heapsort(new_net, num_oCpoints};
I/copy new_net into net, ready for next generation
for(i=O; knum_oCpoints; i++){

forU=O; j<temp.geCnum_weights{)-1 ; j++)
net[i].weightsU] = new_net[i].weightsU];

}

for(i=O; knum_oCpoints; i++){
net(i).single_calc_outO;

}
heapsort(net, num_oCpoints);
assign_prob(,lbilityO;

}

H=======================================================--=1/
IIImpllementation of examine_points. Ii the all
IIcorresponding weights in the allpoints are
lithe same, thus the global minumumis ap,proached,
I/therefore the program should be stopped.
11===========================================================11
int GD::examine_pointsO
{

network temp;
int i, j, repeat;
int totaLweights;
repeat = 0;
totaLweights = 0;
totaLwei,ghts = (num_oCpoints-1) * (temp.geCnum_we'ightsO-2);
for(i=1; knum_oCpoints; i++)

forO=O; j<temp.geCnum_weightsO-2; i++)
if(nel[O].weightsfil==net[i].weightsU])

repeat++;,
if(repeat==totaLweights)

return 1;
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else
return 0;

}

11=======_0_-=========================================11
Illmplementation of friend functiion. To print the results.
11=====================================================/1
ofstream& operator«(ofstream& out, GO& gd)
{

out«gd.net[O];
return out;

}

86



VITA

Jianping Lu

Candidate for the Degree of

Master of Science

Thesis: SIMPLE GENETIC ALGORITHM WITH SIMPLEX LOCAL TUNING FOR
EFFICIENT GLOBAL OPTIMIZATION

Major field: Computer Science

Biog:raphical:

Education: March 1978 to .January 1981, Changcun University of Science and
Technology, P. R. China; received Bachelor of Science degree in Chemistry.
September, 1983 to June, 1986, Beijing University of Science and
Technology, P. R. China; received Master of Science degree in Chemistry.
August, 1:992 to August, 199'7, Texas Tech University, Lubbock. Texas. USA;
received Ph.D. in Chemistry. Completed the requirements for the Master of
Science degree with a major in Computer Science at Oklahoma State
University in May, 2000.

Experience: July, 1986 to April, 19'92, employed as a lecturer in Zhejiang University,
Hangzhou, Zhejiang, P. R. China.




