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CHAPTER|
INTRODUCTION
1.1 The Principle of Genetic Algorithms

Genetic algorithms (GAs) are optimization techniques based on the
concepts of natural selection and genetics [1-5]. In this approach, the variables
are represented as genes on an artificial chromosome. Similar to Simplex
optimization (this will be discussed in 1.2), GAs feature a group of candidate
solutions (population) on the response surface. Through natural selection and the
genetic operators, mutation and recombination, chromosomes with better fitness
(response function scores) are found. Natural selection guarantees that
chromosomes with the best fitness will propagate in future populations. Using
the recombination operator, the GA combines genes from two parent
chromosomes to form two new chromosomes (children) that have a high
probability of having better fitness than their parents. Mutation allows new areas
of the response surface to be explored. One of the reasons GAs work so well is
that they offer a combination of hill-climbing ability (natural selection) and a
stochastic method (recombination and mutation).

The simple GA is comprised of four steps as shown in the flowchart in
Figure 1-1. First, the initial population of chromosomes is created either randomly
or by perturbing an input chromosome. The population size (Np) remains
constant throughout the optimization and is a user-controlled option. In the
second step, evaluation, the fitness is computed. The third step is the

exploitation or natural selection step. In this step, the chromosomes with the
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Figure 1-1 Flowchart of a genetic algorithm [7].

largest fitness score are placed one or more times into a mating subset in a
semi-random fashion. Some chromosomes with low fitness scores are removed
from the population. There are several methods for performing exploitation. One
of the most common methods is the binary tournament mating subset selection
method and is discussed in reference 8. The fourth step, exploration, consists of
the recombination and mutation operators. Thus the principal data object of the
GA is the chromosome and its utility is generally known as its fitness. The

principal operators which manipulate these chromosomes are known as




crossover, mutation and selection. The crossover, mutation, selection cycle of
the GA is known as a generation and is equivalent to the iterations of traditional
techniques. Now we use an example to illustrate the basic idea [9, 10].
1) Reproduction and mutation

Reproduction creates a new chromosome from two parents. The most
common technique for this is known as crossover, and it comes in two flavors. In
one-point crossover, the program combines a pair of parents by randomly
selecting a point at which pieces of the parents’ bit swapped. Figure 1-2 [9]
shows four examples of crossover. The vertical bar in the child chromosome

indicates the point of crossover.

Father Mother Crossover Child
Chromosome | Chromosome Point Chromosome
10010011 | 10110110 - 3 100/10110
10000000 10110110 6 100000|10
10110110 11101110 2 10/101110
10110110 11101110 5 10110110

Figure 1-2. One-point crossover examples.

Another technique is two-point crossover, which swaps the beginning and

end of one parent and the middie of another, using two randomly selected bit




positions. Figure 1-3 [9] shows two-point crossover wurks. CroLsoser atlows the i =

mixing of attributes from different chromosomes.:

Father Mother Cross Cross Child
Chromosome | Chromosome Point 1 Point 2 Chromosome
10010011 10110110 3 6 100[1011|1
10000000 10110110 0 4 1000/0110
10110110 11101110 2 3 10[10/0110

Figure 1-3. Two-point crossover examples.

Reproduction also involves mutation, a random change of one or more
bits in each chromosome of the new population. The primary purpose of
mutation is to increase variation in a population; mutation is most important in
pobulations where the initial population may be a small subset of all possible
solutions.

2) The Selection Operator

The selection operator ensures that the number of representatives a
chromosome receives in the following generation is dependant upon its fitness in
proportion to the average fithess of the current population. The most common
technique is Roulette Wheel Selection [11], a spinning circle divided into different
pie-shaped slots. For a genetic algorithm, each slot on the wheel represents a

chromosome from the parent generation; the width of each slot represents the



relative fitness of a given chromosome. Essentially, the simulated roulette wheel
generates a random number that is some fraction of the total fitness of the parent
population; then it counts around the wheel until it finds the selected
chromosome. The largest fitness values tend to be chosen since they have
larger slots.

Let’s look at a small example with a hypothetical population of five. Figure

1-4 [9] shows a five-member population and its corresponding fitness values.

Order Chromosome Fitness
1 10110110 20
2 10000000 5
3 11101110 15
4 10010011 8
5 10100010 12

Figure 1-4. Hypothetical population and its fitness.

The total fitness of this population is 60. Figure 1-5 shows the relative size of pie
slices as assigned by fitness. Chromosome 101101110 (order 1) has a 34%
chance of being selected as a parent, where 10000000 (order 2) has only an 8%
chance of generating a new chromosome. Each chromosome in a new
generation will be parented by chromosomes selected, by fitness, from the old

generation.




Chromosome Fitness on a Roulette Wheel

20% 1

13%

25% 8%

Figure 1-5. Pie chart of fitness.

The stopping condition is usually dependent either upon some fitness
criterion having been reached or upon a certain number of generations having
taken place.

1.2 Simplex Optimization

Simplex optimization methods combine response surface methodology
such as experimental designs and hill-climbing approaches such as steepest
ascent/descent. Box and coworkers developed the first simplex-type method and
noted the similarities between this method and Darwin’s theory of evolution,
hence the name evolutionary optimization (EVOP) [12,13]. EVOP was able to
vary multiple factors simultaneously and to make intelligent guesses as to what
experiments should be performed next. Unlike experimental design methods, the

variable settings to be studied were not known in advance. This method



consisted of a series of two-level factorial designs with the concept that the
design would "walk" around the response surface moving in the most favorable
direction. At each "step", a simple multifactor model with interaction terms was
built using the responses from each experiment in the design. The model was
used to estimate the direction of the slope of the response surface. The
experiment (i.e., combination of variable settings) that produced the worst
response was removed and a new step was taken in the favorable direction. The
drawback to the EVOP approach was the large number of experiments that
needed to be performed in the initial step. The calculation of the first model
required 2" experiments, where n is the number of variables beiﬁg optimized.

In 1962, Spendley et al. developed a fixed-size sequential simplex method
that was more efficient than the EVOP method [14]. A simplex is defined as a
geometric figure consisting of one more vertex than the number of variables
being optimized. By employing a simplex instead of a two-level factorial design,
n + 1 versus 2" experiments were required initially. Although the fixed-size
simplex is able to reach the global optimum region, it has difficulties in finding the
exact optimum due to its rigid shape.

In 1965, Nelder and Mead tried to improve the method of Spendley by
giving the simplex the ability to accelerate in favorable directions, decelerate in
poor directions, and change its shape [15]. Their algorithm, termed the variable-
sized simplex, is very simple and consists of five logical steps. The possible
movements for the variable-sized simplex in a two-dimensional case are

illustrated in Figure 1-2. First, an initial simplex is created either randomly or by



perturbing a vector of input variable settings. The coordinates of the vertices in
the simplex represent individual combinations of variable settings. Each vertex is

ranked according to its corresponding response score.

N

In Figure 1-6, the vertices have been ranked and are designated B, N, and

Figure 1-6. lllustration of the relationships between the vertices for simplex
optimization. P is the middle point between B and N.

W for best, next-to-worst, and worst, respectively. The centroid, P, of the simplex
is computed by averaging the coordinates for all vertices except the worst one.
Next, a step is away from the worst vertex by reflecting through P as shown in
Eq. 2-1.

R=P+(P-W) (2-1)



Distance WP should equa; PR. WC,, should equal C,P and PC,. This new step
is shown in Figure 1-6 as R. The new simplex replaces the old simplex and now
consists of the vertices B, N, and R. Based on the response score for R, one of
three moves can be taken.

First, if the response score of R is greater than B, then an expansion is
performed. Expansions allow the simplex to move quickly in a favorable
direction. An expansion is a larger move in the direction of R and is shown in
Figure 1-6 as E. The equation for an expansion is shown in Eq. 2-2.

E=R+(P-W) (2-2)

Next, the response of E is computed. If the response for E is greater than
R, then the new simplex is E, B, and N, the vertices are ranked, and the
algorithm restarts by eliminating the worst of E, B, and N and computing a new
step. If the response for E is less than R, then the new simplex is R, B, and N,
the vertices are ranked, and the algorithm repeats as above.

The second possible case occurs if the response at R is less than the
response at B, but greater than at N. In this case, neither expansion nor
contraction is performed. The new simplex is B, R, and N, the vertices are
ranked, and the algorithm restarts. The third case occurs if the response score
at R is less than at N. In this case, a new vertex is selected with the span of the
previous simplex. This is termed a contraction. Contractions allow the simplex
to shrink in size. If the response at R is less than at N, but greater than at W,
then a contraction closer toward R is made by use of Eq. 2-3.

Cr=P +0.5(P-W) (2-3)



The new simplex is B, N, and Cr, the vertices are ranked, and the algorithm
restarts. If the response at R is less than at W, then a contraction closer to W is
be taken by use of Eq. 2-4.

Cw=P-05P-W) (2-4)

This is termed a negative contraction. The new simplex consists of B, N, and
Cw, the vertices are ranked, and the algorithm restarts. Movements (iterations)
are made until a termination criterion such as a fixed number of movements is
met.

The primary disadvantage of Simplex optimization is the inability to move
from local optima that may occur on the response surface. Furthérmore,
according to the investigation of Virginia Torczon [16], the simplex procedure of
Nelder and Mead is inherently not robust and fails disastrously when the number
of variables is as large as 16, and sometimes when it is as large as 8. Thus,
whenever the method is employed, the number of variables should not be large.
1.3 Artificial Neural Network

Since the artificial neural network (ANN) is going to be used to investigate the
proposed algorithm, thus, the principle of ANN is introduced briefly. Generally,
the ANN is categorized into feedforward and feedback networks[17]. In a
feedforward network, information is propagated through the network in one
direction until it emerges as the network’s output. However, in a feedback
(recurrent) network, the input information is propagated through the network but

can also cycle back into the network (the signal is recurrent).
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In this paper, the feedforward network is employed. Thus, the introduction
of ANN will be focused on this type of network.
1.3.1 Multilayer Neural Network Architecture

In a typical three-layer feedforward neural network the first layer contains
the input variables and is called the input layer. The last layer contains the output
variables and is called the output layer. Layers in-between the input and output
layers are called hidden layers; there can be more than one hidden layer. The
processing unit elements are called nodes (Fig. 1-7): each of them is connected
to the nodes of neighboring layers. The parameters associated with each of
these connections are called weights [18].

The node (Fig. 1-8) sums the product of each connection weight (wj) from
a node j to a node k and an input (x;) to get the value SUM (see eq.1) for node k.

This sum is simply the dot product of the input and weight vectors.

sumy = Exjwﬂ( + ¥y (1)
¥

It can be conveniently represented by matrix notation as
sum= [x")w"] + [y]" 2

where M is the layer.

11



Woo ()

Figure 1-7. Three-layer neural network architecture. The first layer is input layer,

h: hidden layer, the last layer is the output layer.

In vector notation, an additional dot product is used to give y, which is
called the bias value. The output of a bias j is always 1.0, and the weight y's are
treated in the same fashion as the wy’s. This additional set of weights gives the
network added degrees of flexibility, which enables it to solve more difficult
problems. The value SUM is then supplied to a transfer function and outputs a

value OUT[19].
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Figure 1-8. (a) is the composition of the neuron that will be represented by (b).
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1.3.2 Transfer Function [20]

Any continuous and differentiable function may be used as a transfer
function. However, the following logstical function is most prevalent (S-shaped).

f(x) = 1/(1+e™) (3)

The transfer function (also known as an activation or squashing function)
forces the output to be within a specific range, usually zero to one for the logistic

function, indicating an active or inactive node.
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CHAPTER Il
METHODOLOGY
2.1 Research Background

The genetic algorithm is a robust technique, based on the natural
selection and genetic production mechanism. It processes a group or population
of possible solutions within a search space. The search is probability guided,
rather than deterministic or random searching, which distinguish it from traditional
methods. The performance of the previous population guides the next
generation.

A complex search often involves a trade-off between exploiting the best
solutions and robustly exploiting the space. The genetic algorithm is such a
robust technique. However, robustness is not enough. When the vicinity of the
global optimum has been located. A more powerful local tuning method is
expected. Nelder and Mead presented a local searching technique, which is
widely accepted. Compared to the genetic algorithm, this technique is well tuned
for local searching but is not as robust as a genetic algorithm. Thus the idea is
that hybridization of these two methods may improve the efficiency of the
optimization.

2.2 Combination with the Simplex Downhill Method

It is widely believed that genetic algorithms are good at global
optimization, but bad at fine, detailed local searching [21-24]. Some researchers
suggest optimizing in two steps: first, using genetic algorithms to locate the area

where the global optimum is, and then using other methods for further tuning. A
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combination with the Nelder and Mead downhill method is the strategy we are
going to explore.

The simplex downhill method presented by Nelder and Mead involves
three basic operations: expansion, reflection, and contraction. Expansion is
enlarging the particular search area. By reflection, a new point located on the
other side of the worst point across the centroid of the remaining points is
generated. Contraction is to select the point halfway between the worst point
and the centroid. By repeatedly generating new points using one of the three
basic operations, this simple method finds its way downhill to converge toward an
optimum. However, Virginia J. Torczon [16] pointed that the Nelder-Mead
simplex algorithm only rescales the entire simplex as a last resort. If no
improvement can be found by taking any other step, the algorithm takes a
“shrink” step, which is equivalent to the contraction step of the multi-dimensional
search algorithm [16]. According to her claim, if the original simplex and its
reflection are in a region where the function is convex, then the Nelder-Mead
simplex algorithm will not consider the shrink step. Thus, in this search, the
contraction step is avoided.

The genetic algorithm can help us to locate the most promising area. The
use of the downhill method is intended to speed up the search when a promising
area has been found when the number of parameters is less than 8 to 16
according to the investigation of Virginia J. Torczon. However, the restriction is
released since only reflection and averaging are used in the simplex method.

When selecting the next population of points based on the previous population of

16



points, we first consider the reflection operation. If the reflection does not work,
however, we choose averaging. These two operations don not change the
shape of the simpex, and thus avoid the problem pointed out by Torczon.

The simplex downhill method is not globally optimal but has a better local
tuning property. If the genetic algorithm can be combined with it, improvement in
performance can be expected. The combination can be made by generating parn
of the new points by the simplified genetic algorithm and part of them by the
downhill method. The proportion of points generated by the two methods can be
constant or is allowed to vary as the global optimum is approached. From the
beginning of the search, a very low proportion of points are from the global
optimum. As the search progress, the points will gradually approach the global
optimum and then a high proportion of points generated by the downhill method
is needed to speed up convergence.

2.3 Consideration of Genetic Diversity

Genetic diversity is very important for genetic algorithms. The loss of
diversity means premature convergence and failure to achieve the global
optimum. Community size and mutation probability can increase diversity and
lead to global optimizing at the expense of slowing the procedure and taking
more time. The proposed above guidelines, such as the one-couple, one-child
policy, can avoid to some extent the loss of genetic diversity. A more efficient
procedure is introduced by considering the distance among the points to purge
the unwanted candidates and maintain a certain degree of diversity [25].

To measure diversity, the Euclidean distance between two points

17



d= [i(xi _ yf)z ]Hz

is used. Where x; and y; are the ith values of points x and y, respectively. Itis
evident that the bigger the value of d, the further the distance between the two
points. For instance, d = 0 means that the two points are identical, that is, there
is no difference between them. Obviously, to keep one of them in the community
is enough. When d is very close to zero, the two points are almost identical; if
they produce a new point, this new point must be very close to their parents and
is unlikely to bring much further improvement, unless they are close to the global
optimum. Therefore, the distance d from the best-so-far point can be considered
as a factor to save some of the promising candidates and improve the
performance of the algorithm.
2. 4 Basics of Simple Genetic Algorithm with Simplex Local Tuning
Objective function:

f=1(x1, X2, ...p Xn)

g<x<hi=123..,n
where X; is the ith variable and a; and b; are the limits of that variable. The
algorithm is summarized as follows:
Step 1) Initialization: randomly select m distinct points of that variable from the
search space with equal probability. That is, generate a random number subject
to a uniform (0, 1) distribution. Calculate the value of the first variable by

X = a; + Xi(b; — &)
Do the same for the other variables. These steps identify the first point in the

search space. Repeat this procedure m times.
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Step 2) Fitness Evaluation: Calculate the objective function values of the m
points.
Step 3) Point ranking: Sort the m points in order of descending objective function
value, so that the first point represents the worst and the last point represents the
best.
Step 4) Assigning probabilities to each point: Each of the points is assigned a
probability p;, i = 1, 2, ..., m, giving higher probabilities to the points with lower
function value and lower probabilities to those with higher function values. Thus,
the best point has the highest probability ps, while the worst point has the lowest
probability pm. The other points have probabilities ranging from pn, to ps. The
following linear relation can be used.

Pi=pm+[(i-1)/(m-1))P1-pPm), =128, .., m-i
Probability is nonnegative and the total probability should sum to one.
Step 5) Selecting parents: randomly select two points from the m points
according to the probability p,. Make sure that the two points are not identical.
Step 6) Crossover: For each of the genes (variables), randomly select one value
from the corresponding two selected points to construct a new point.
Step 7) Mutation: Occasionally, with a small probability pm, alter the newly
created point. To do this, for each of the genes of the newly created point,
generate a random number r, if pm > 1, replace the value of that gene by another
uniformly distributed (0, 1) random number.
Step 8) Repeat k times Step 5 ~ 7 so that k new points are generated; k is a

number between 0 and m, which is controlled by the following equations:
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P4 = kK/km (2-1)

Pg=1-Py (2-2)
where Py and Py are the proportion of the points generated by the genetic
algorithm and by the downhill method, respectively. k is the generation sequential
number, and kn, is the maximum number of generations expected. The rest of
the offspring will be generated by a simplex downhill method. (Step 1 ~ Step 8
are the genetic method)
Step 9) Construct a subcommunity: Randomly select s points from the m old
points according to their probabilities to construct a subcommunity.
Step 10) Check whether this subcommunity is identical to any one of the
previouse constructed subcommunities of this generation. If it is, go back to Step
9 again; otherwise, go to Step 11.

Step 11) Compute the centroid of them without including the worst point, that is,

sl .
Xe=[1/(s-11Y, x5 1=1,2,3,..,n.

=
Step 12) Construct a new point by reflecting the worst point through the centroid
point, that is,

Vi=2Xe— X, i=1,2, 3, ...,.Nn.
where Xx;s is the worst one of the s points. Then, evaluate the objective function
value. If this point is better than the worst point of the older generation, then go
to Step 15; otherwise, go to Step 13.
Step 13) Use the centroid point as the new point and evaluate its objective
function value. If this point is still not better than the worst point, go to Step 14;

otherwise go to Step 15.

20



Step 14) Randomly construct a new point within the feasible space.

Step 15) Repeat m - k times Step 9 ~ 14 until the size of the new generation is
the same size as that of their parents m. (Step 9 ~ Step 15 are downhill simplex
method)

Step 16) These new points produced by the two methods represent the offspring
population and are going to compete with their parents.

Step 17) Sort the newly created points into descending order.

Step 18) If the best point of the new generation (the last one) is not better than
the best one of the old generation, then replace the worst point of the new
generation by the best point of the old generation and re-sort them. This step is
to ensure that the current best-so-far point in the community is always retained.
Step 19) Start from the second-best point of the new generation and compare it
with the point in the same rank of the old generation. If the new point is better
than the old one and is farther away from the best-so-far point, then keep the
new on and discard the old one; then compare the rest until they are all finished.
Go to Step 22; otherwise, go to Step 20.

Step 20) If the distance of the old point is farther away from the best-so-far point
than the new one and has better fitness, then keep the old one and reject the
new one and go to Step 19 to screen others; otherwise, go to Step 21.

Step 21) If the distance of the new one from the best-so-far point d, times the
objective function value of the old one f; is greater than the distance of the old
one dp times the objective function value of the new one f,, (i.e., dnfo > dofs), then

select the new one and go to Step 19, otherwise, generate a random number. If
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it is greater than 0.5, then keep the old one and discard the new one and vice
versa.
Step 22) Repeat Step 5 ~ 21 until either a predetermined iterative number or an
acceptable objective function value is reached.

The neural network structure is employed for investigating the above
algorithm and the program is written in C** language. The objective function has

been restricted to:

S = (Y -x))"?

=l
where y is computed output, x is experimental output. The purpose of training
the neural network is to minimize the objective function by adjusting the weights
during the program iterations with the proposed algorithm. This strategy of

minimizing the objective function value is maintained for all cases in this paper.
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CHAPTER Il
RESULTS AND DISCUSSION

3.1 Case 1. Minimize a simple, single-minimum function,
10
f(x‘ls X2, X3, ..., x10) = EI? )
i=]

-2<x<10,i=1,2, 3, ..., 10.

This function has a unique minimum at x; = 0. This problem can be solved by
many methods efficiently. In order to demonstrate the improvement provided by
the proposed genetic algorithm, a comparison between using and not using
genetic diversity measurements was conducted.

When the genetic diversity measurement is not used, the genetic
algorithm simply produces one generation after another, following the traditional
genetic algorithm method. The proposed simplified genetic algorithm method is
as follows. With the mutation probability pm = 0.10, different community sizes are
used and the ten-run-average best-so-far objective function value is calculated
for various numbers of objective function evaluations.

Table 1 shows two attractive advantages of using diversity guidance.
Firstly, performance is different when genetic diversity guidance is used: the
efficiency of the genetic algorithm is remarkably improved. 200 epochs with
genetic diversity guidance produces a much better result than 3200 epochs

without genetic diversity guidance.
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Table 1. Comparison of the impact of using genetic diversity guidance for the

simplified genetic algorithm, case 1, pn = 0.1.

200 epochs 3200 epochs
m (a) (b) (a) (b)
5 123.48 2.16 117.89 0.024
10 63.09 2.00 57.94 0.020
20 38.34 177 34.92 0.034
90 17.44 3.70 13.98 0.69

m : Community size; (a): Not using genetic diversity guidance; (b): Using genetic

diversity guidance.

Secondly, when genétic diversity guidance is introduced, the genetic
algorithm prefers a smaller community size, rather than a bigger one. When the
community size is large enough, the efficiency of the genetic diversity guidance is
damped because a large community size can contain almost every possible
character. That may be the reason why traditional genetic algorithms need a
very large community size. However, as the search progresses, all points
converge gradually to the global minimum. Not considering diversity guidance
can result in many identical or semi-identical points in the community and can
slow down the approach to the global minimum. Therefore, no matter how large
the community size is, the introduction of diversity guidance can improve the

_ efficiency of the genetic algorithm.




3.2 Case 2. Genetic algorithm (GA) or Combination with the Downhill Method
(GD) in Application of lon-selective Electrodes of Analytical Chemistry.
For the data listed in the Table 2, set p,, = 0.10 and use Egs (2-1) and (2-

2) to control the portion of new points generated by the genetic algorithm and
downhill method. The objective function S = (¥ (y, —x,)* )" (where y is
i=l

computed output, x is experimental output) is minimized for each iteration.

Table 2. Training set for the K*/Ca®*/NO*/CI" system [26].

No. Conc. (mmol ™) Potential (mv)
K Ca NO3 Cl K Ca NO3 Cl

1 0.100 0.100 0.100 0.300 -1478 -225 2282 227.0
2 0.990 0.099 0.099 1.188 -90.8 -23.3 2272 1955
3 9991 0.090 0.090 10.171 -31.4 -274 2098 141.2
4 0.498 0498 0.100 1.493 -109.8 -3.3 226.5 189.1
5 4988 0475 0095 5938 -496 -56 217.12 1545
6 0.100 0.999 0.100 2.098 -146.9 3.0 2194 180.5
7 0990 0.990 0.099 2970 -91.6 4.3 219.3 1722
8 9991 0.900 0.90 11.791 -314 0.8 2046 137.7
9 0.498 5.224 0.100 10.945 -110.8 23.2 205.6 1404
10 4988 4.988 0.095 14.964 -50.8 22.0 201.2 1322

11 0.100 11.089 0.100 22.278 -150.3 27.6 1948 123.2
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12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

0.990
9.991
0.498
4.988
0.100
0.990
9.991
0.498
4.988
0.100
0.990
9.991
0.498
4.988
0.100
0.990
9.991
0.498
4.988
0.100
0.990
9.991

0.498

10.990
9.991
0.100
0.095
0.500
0.495
0.450
0.995
0.950
5.245
5.198
4.725
11.045
10.546
0.100
0.099
0.090
0.498
0.475
5.245
5.198
4,725

0.995

0.099
0.090
0.498
0.475
0.500
0.495
0.450
0.498
0.475
0.500
0.495
0.450
0.498
0.475
0.999
0.990
0.900
0.995
0.950
0.999
0.990
0.900

0.995

22.970
29.973
0.697
5.178
1.099
1.980
10.891
2.488
6.888
10.589
11.386
19.442
22.587
26.081
0.300
1.188
10.171
1.493
5.938
10.589
11.386
19.442

2.488

-93.8
-33.6
-109.3
-50.8
-1486.1
-92.3
-32.3
-109.0
-50.5
-147.6
-93.1
-32.6
-111.0
-51.5
-142.5
-91.1
-29.9
-108.3
-48.1
-145.2
-92.8
-32.6

-107.6

30.6
28.9
252
-27.4
-5.8

-5.1

3.5
2.1
20.7
21.5
18.8
29.1
29.3
-24.2
-24.0

-27.7

-5.8
22.0
22.5
20.3

3.8

196.5
190.8
188.4
187.9
187.6
188.6
185.9
188.6
187.6
184.2
185.2
182.5
180.0
179.5
169.9
170.9
171.4
171.7
171.9
170.9
171.4
171.2

171.4

122.5
1156.1
207.5
157.6
196.5
181.2
138.5
176.6
150.8
143.4
140.9
125.2
122.5
118.3
227.9
195.5
140.0
185.8
152.5
140.9
138.7
124.7

175.1
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35 4988 0.950 0.950 6.888 -48.1 2.6 1722 156.7

36 0.100 11.089 0.999 22278 -144.9 30.8 169.2 122.0
37 0.990 10.990 0.990 22970 -923 30.8 1694 1213
38 9.991 09.991 0900 29.973 -326 29.1 168.7 113.9
39 0.498 0.100 5.224I 0.697 -1056 -269 1299 2075
40 4988 0.095 4988 5.178 -50.0 -279 1322 1579

At the very beginning, we would like to show the over_fit which happens
when the number of data training set points is less than the number of
parameters of the neural network. Thus the K* concentrations and their
corresponding potentials in Table 2 were chosen to train the network. The neural
network architecture is three layers with one neuron in the input layer, three
neurons in the hidden layer, and one neuron in the output layer. It seems that we
have 40 data in the training data, however, the concentrations of K* only have
five distinguished data set points, re-measured eight times each. In contrast,
there are six parameters in the neural network. The neural network generation
was trained using only the K" data set. Figure 3-1 depicts the over-fit
phenomenon. The range of input potential is from —160 mv to —20 mv (Table 3).
When the output is plotted against input data, the over-fit is observed apparently
specially when the potential is quite low. For instance, when the potential is
around —150 mv, the slope is extremely large. Then turning up of the fitted curve

at low values of the potential is not supported by the data.
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Table 3. Generation data for over-fit

Potential Log(K) Potential Log(K) Potential Log(K) Potential Log(K)

(mv) (mv) (mv) (mv)

-160 0.1995 -124  -0.5926 -88 0.0882 -52 0.6829
-159  -0.0628 -123  -0.5726 -87 0.1060 -51 0.6981
-158  -0.3055 -122  -0.5527 -86 0.1236 -50 0.7133
-157 -0.5012 -121 -0.5328 -85 0.1412 -49 0.7284
-156  -0.6519  -120 -0.5130 -84 0.1587 -48 0.7435
-155  -0.7654 -119  -0.4932 -83 0.1761 -47 0.7585
-154  -0.8493 -118  -0.4735 -82 0.1935 -46 0.7734
-153  -0.9101 -117  -0.4538 -81 0.2108 -45 0.7882
-152  -0.9527 -116  -0.4342 -80 0.2280 -44 0.8030
-151 -0.9811 -115  -0.4147 -79 0.2452 -43 0.8178
-150 -0.9984 -114  -0.3952 -78 0.2623 -42 0.8324
-149  -1.0062 -113  -0.3758 77 0.2793 -41 0.8470
-148  -1.0093 -112  -0.3565 -76 0.2963 -40 0.8615
-147  -1.0062  -111 -0.3372 -75 0.3131 -39 0.8760
-146  -0.9990 -110  -0.3180 -74 0.3300 -38 0.8903
-145  -0.9888 -109  -0.2988 -73 0.3467 -37 0.9047
-144  -0.9761 -108  -0.2797 -72 0.3634 -36 0.9189
-143  -0.9616 -107  -0.2607 -71 0.3800 -35 0.9331
-142  -0.9456 -106  -0.2418 -70 0.3966 -34 0.9472
-141 -0.9286 -105  -0.2229 -69 0.4131 -33 0.9613
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-140
-139
-138
-137
-136
-135

-134

-132
-131
-130
-129
-128
-127
-126

-125

-0.9107

-0.8921

-0.8731

-0.8537

-0.8340

-0.8142

-0.7941

-0.7740

-0.7539

-0.7337

-0.7135

-0.6933

-0.6731
-0.6529
-0.6328

-0.6127

-104

-103

-102

-101

-100

-0.2040

-0.1853

-0.1666

-0.1479

-0.1294

-0.1109

-0.0924

-0.0741

-0.0778

-0.0375

-0.0193

-0.0012

0.0168

0.0348

0.0527

0.0705

0.4295
0.4458
0.4621
0.4783
0.4945
0.5105
0.5265
0.5425
0.5583
0.5741
0.5900
0.6055
0.6211
0.6367
0.6521

0.6675

0.9753
0.9892
1.0030
1.0168
1.0305
1.0442
1.0578
1.0713
1.0848
1.0962
1.1115
1.1248

1.1380
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log(K Conc.) vs. Potential (mv)
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Figure 3-1. Over-fit phenomenon.
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In order to overcome the over-fit problem, now, we use a three-layered
neural network architecture with one neuron in the input layer, one neuron in the
hidden layer and one neuron in the output layer. Therefore, there are only two
parameters in the neural network. In the generation the range of input potential is
still kept from =160 mv to —20 mv (Table 4). When output is plotted against input
data, a linear line was obtained shown in Figure 3-2, which demonstrates the
elimination of the over-fit problem.

Now, let us deal with the whole data set in Table 2. The neural network
model is a three-layered architecture with four nodes in the input layer, two
nodes in the hidden layer and four nodes in the output layer. The input data set

includes the potentials corresponding to their concentrations.

Table 4 Generation data for elimination of over-fit

Potential log(K) Potential log(K) Potential log(K) Potential log(K)

(mv) (mv) (mv) (mv)

-160  -1.1961  -124 -05749  -88  0.0462  -52  0.6674
-159  -1.1789 -123  -0.5577 -87 0.0635 -51 0.6846
-158  -1.1616  -122 -0.5404 -86 0.0807 -50 0.7019
-157  -1.1443  -121 -0.5232 -85 0.0980 -49 0.7191
-156  -1.1271 -120  -0.5059 -84 0.1152 -48 0.7364
-155  -1.1098 -119  -0.4887 -83 0.1325 -47 0.7537
-154  -1.0926 -118 -0.4714 -82 0.1497 -46 0.7709

-153 -1.0753 o k7 -0.4542 -81 0.1670 -45 0.7882

31




-152  -1.0581 -116 -0.4369 -80 0.1843 -44 0.8054
-151 -1.0408 -115 -0.4197 -79 0.2015 -43 0.8227
-150  -1.0236 -114  -0.4024 -78 0.2188 -42 0.8400
-149 -1.0063 -113  -0.3851 ~77 0.2360 -41 0.8572
-148 -0.9891 112 -0.3679 -76 0.2533 -40 0.8744
-147  -0.9718 -111 -0.3506 -75 0.2705 -39 0.8917
-146 -0.9545  -110 -0.3334 -74 0.2878 -38 0.9089
-145  -0.9373 -109  -0.3161 -73 0.3050 -37 0.9262
-144  -0.9200 -108  -0.2989 =72 0.3223 -36 0.9435
-143  -0.9028 -107  -0.2816 -71 0.3395 -35 0.9607
-142 -0.8855 -106  -0.2644 -70 0.3568 -34 0.9780
-141 -0.8683 . -105  -0.2471 -69 0.3741 -33 0.9952
-140  -0.8510 -104  -0.2299 -68 0.3913 -32 1.0125
-139 -0.8338 -103  -0.2126 -67 0.4086 -31 1.0297
-138  -0.8165 -102 -0.1954 -66 0.4258 -30 1.0470
-137 -0.7993 -101 -0.1781 -65 0.4431 -29 1.0642
-136 -0.7820 -100  -0.1608 -64 0.4603 -28 1.0815
-135 -0.7647 -99 -0.1439 -63 0.4776 -27 1.0987
-134  -0.7475 -98 -0.1263 -62 0.4948 -26 1.1160
-133 -0.7302 -97 -0.1091 -61 0.5121 -25 1.1333
-132 -0.7130 -96 -0.0918 -60 0.5293 -24 1.1505
-131 -0.6957 -95 -0.0746 -59 0.5466 -23 1.1678
-130 -0.6785 -94 -0.0573 -58 0.5639 -22 1.1850
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-129 -0.6612 -93 -0.0401 -57 0.5811 -21 1.2023
-128 -0.6440 -92 -0.0228 -56 0.5984 -20 1.2195
-127 -0.6267 -91 -0.0056 -55 0.6156
-126 -0.6095 -90 0.0117 -54 0.6329

-125 -0.5922 -89 0.0290 -53 0.6501

Table 5 shows clearly that a combination with the downhill method can
further improve the efficiency of the genetic algorithm, especially when a more
accurate result is expected. This is because the genetic algorithm only drives the
points into the vicinity of the global minimum. The rest of the work is left for the
downhill method to finish.

Table 6 shows the data obtained from the network using the proposed
algorithm compared to the experimental data.

With the weights from the above training algorithms, for test data in Table

7 the test results are presented in Table 8.
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Figure 3-2. Elimination of over-fit.
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Table 5. Comparison of the pure genetic algorithm and the combination with
downhill method, case 2, pm =0.10, m = 5, s = 3. Neural network

composition (neurons in the different layer) = 4:2:4.

Ten-run-average, Best-so-far objective
function value
Generations GA GD
40 8.19 2.15
80 3.84 1.56
160 2.47 0.95
320 1.76 0.53
640 1.03 0.28

Table 6. Training result of data set in Table 2 using GD method, case2, pm = 0.2,
m =5, s = 3, epochs = 1000000, neural network composition = 4:2:4.

Objective function value is 0.061.

No. Experimental Conc. (mmol™) Computed Conc. (mmol™)

K Ca NO; Cl K Ca NO; Cl
1 0.100 0.100 0.100 0300 0.100 0.100 0.103 0.303
2 0.990 0.099 0.099 1.188 0940 0.099 0.101 1.188
3 9.991 0.090 0.090 10.171 9.881 0.097 0.105 9.907
4 0.498 0.498 0.100 1.493 0524 0.515 0.078 1.466

5 4988 0.475 0.095 5938 5.172 0.463 0.096 5.769
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6 0.100 0.999 0.100 2.098 0.100 1.037 0.079 2.113
7 0990 0.990 0.099 2970 0948 1.008 0.094 2714
8 9.991 0900 0.0 11791 9.397 0900 0916 12.615
9 0.498 5.224 0.100 10.945 0517 5.816 0.088 11.660
10 4988 4988 0.095 14964 5.144 5145 0.105 15.07
11 0.100 11.089 0.100 22278 0.100 11.063 0.104 21.773
12 0.990 10.990 0.099 22970 1.035 10.393 0.095 22.716
13 9.991 9.991 0.090 29.973 9.255 10.012 0.089 29.617
14 0498 0.100 0.498 0.697 0.487 0.094 0.504 0.702
15 4988 0.095 0475 5178 3.306 0.095 0489 4,948
16 0.100 0500 0500 1.099 0.100 0.500 0.535 1.100
17 0990 0495 0495 1980 0.922 0479 0599 1.932
18 9.991 0450 0450 10.891 9375 0408 0456 10.765
19 0498 0995 0498 2488 0474 1.015 0474 2341
20 4988 0950 0475 6888 4.761 0944 0445 7.150
21 0.100 5245 0.500 10.589 0.100 4.919 0.497 10.512
22 0990 5.198 0495 11.386 0.986 4.463 0.491 11.635
23 9.991 4.725 0.450 19.442 9.204 4447 0444 20.012
24 0.498 11.045 0.498 22587 0.498 11.043 0.489 21.670
25 4988 10.546 0.475 26.081 5445 10.038 0.468 26.105
26 0.100 0.100 0.999 0.300 0.100 0.096 1.090 0.269
27 0.990 0.099 0990 1.188 0.922 0.100 0.992 1.184
28 9.991 0.090 0.900 10.171 9.978 0.099 0.934 10.735
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29 0498 0498 0995 1493 0459 0541 0979 1.665
30 4988 0475 0950 5938 5354 0499 0.895 6.051
31 0.100 5245 0.999 10589 0.100 5.280 1.050 11.040
32 0.990 5.198 0.990 11.386 0.990 5.231 0.931 12.004 |
33 9.991 4725 0900 19.442 9.141 5.189 0.849 20.153
34 0498 0995 0.995 2488 0509 1.057 0.997 2493
35 4988 0950 0950 6.888 4828 0939 0964 6.824
36 0.100 11.089 0.999 22278 0.100 11.120 1.083 21.866
37 0990 10.990 0.990 22970 1.054 10453 1.005 22.608
38 9.991 9.991 0.200 29973 9.357 10.105 0.903 29.903
39 0.498 0.100 5.224 0.697 0525 0.092 5.187 0.724
40 4988 0.095 4988 5.178 5.150 0.097 4.990 4.996
Table 7. Test data set for the K*/Ca®*/NO3/CI system [26].
No. Experimental Conc. (mmol ™) Potential (mv)
K Ca NO; Cl K Ca NO; Cl
1 0.100 0.100 0.100 0.300 -147.8 -225 228.2 227.0
2 0.990 0.099 0.099 1.188 -90.8 -23.3 227.2 1955
3 9.991 0.090 0.090 10.171 -314 -274 209.8 141.2
4 0498 0.498 0.100 1.493 -109.8 -3.3 226.5 189.1
5 4988 0475 0.095 5938 -49.6 -5.6 21712 1545
6 0.100 0.999 0.100 2.098 -146.9 3.0 219.4 1805
7 0.990 0.990 0.099 2970 -91.6 4.3 2193 172.2
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8 9991 0800 090 11.791 -314 0.8 204.6 1377
9 0.498 5224 0.100 10.945 -1108 23.2 2056 1404
10 4988 4.988 0.095 14964 -50.8 22.07" 202" “1132.2

Table 8. Test result for data set in Table 7 using GD method, case2, pm = 0.2,

m =5, s = 3, neural network composition = 4:2:4. Objective function value is

0.056.
No. Experimental Conc. (mmol™) Computed Conc. (mmol™)
K Ca NOs Cl K Ca NO; Cl
1 0.100 0.100 0.100 0.300 0.100 0.100 0.100 0.303
2 0.990 0.099 0.099 1.188 0.940 0.099 0.098 1.185
3 9.991 0.090 0.090 10.171 9.881 0.097 0.090 9.908
4 0498 0498 0.100 1.493 0524 0515 0.100 1.466
5 4988 0475 0.095 5.938 5172 0463 0.096 5.769
6 0.100 0999 0.100 2098 0.100 1.037 0.100 2.113
7 0.990 0.990 0.099 2970 0948 1.008 0.098 2714
8 9.991 0.900 0.900 11.791 9.797 0.890 0.920 11.620
9 0498 5.224 0.100 10.945 0.516 5816 0.100 10.866
10 4988 4988 0.095 14964 5143 5.145 0.093 15.074

In this case, we would like to examine sensitivity of parameters on the

efficiency of the genetic with downhill method. There are a few parameters in the
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proposed algorithm that need to be determined. Some of them are for encoding,
while others are for the algorithm itself. The proposed algorithm has three
parameters of its own, they are the community size m (the number of points for
each generation), the mutation probability pm, and the subcommunity size s.
Case 1 shows some general guidelines for the selection of these three
parameters. However, the selection of the parameters may be problem-related.
Parameters suitable for the problem in case 1 may not be suitable for the
problem in case 2, but there must be some general guidelines. Some
researchers have discussed the selection of parameters of traditional genetic
algorithms, on the other hand, their results are unlikely to be suitable for the
proposed algorithm because of improvements and modifications.

To investigate the sensitivity of the parameters for the proposed algorithm,
various parameters are used and again the ten-run-average, best-so-far
objective function values are calculated. The results of 800 and 1600 epochs of
objective function evaluations (Table 9) show the following points:

(@) The proposed algorithm for Case 2 has a performance almost
similar to that for the former cases, and it is not so sensitive to the
parameters. Therefore, it is a very robust algorithm and can be
expected to be successfully used in many conditions.

(b)  The algorithm is not too sensitive to community size and
subcommunity size, though it seems to prefer smaller values. The

values m = 5 and s = 3 yields the best performance.
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(c)  The algorithm is relatively more sens'iiive to mutation probability pm
than the other two parameters m and s. Its careful selection can

improve the performance of the algorithm.

Table 9. Sensitivities to the parameters of the proposed algorithm, Case 2, ten-

run-average, best-so-far objective function values.

Sensitivity to mutation probability pm form=5,s =3
Pm 0.00 0.01 0.05 0.10 0.20 0.30 0.50
800 epochs 7.26 1.48 1.04 0.82 0.99 1.06 1.18
1600 epochs 5.38 1.24 0.97 0.68 0.82 0.88 0.98

Sensitivity to community size m for pn=0.10,s =3

m 4 5 10 20
800 epochs 1.34 1.35 1.04 1.14
1600 epochs 0.93 . 0.90 099 0.97

Sensitivity to subcommunity size m for pm, =0.10, m =10

S 3 4 5 6
800 epochs 1.24 1.32 1.27 1.71
1600 epochs 0.99 1.27 1.21 1.03
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4.3. Case 3. Chemical Engineering.

The investigation of the efficiency of the proposed algorithm is also
extended to solve some problems in chemical engineering. The experimental
data in Table 10 [27] are the viscosity measurements in different temperatures
and pressures. In this investigation, the neural network architecture is a three-
layered structure with two nodes in the input layer, five nodes in the hidden layer

and one node in the output layer. The purpose of training the network is to

minimize the objective function S =2( y, —x,)* (where y is computed output, x is

i1
experimental output) in each iteration.

For comparison, the genetic algorithm (notice that this is not a traditional
GA, because of the modification) and the downhill search generating procedure
(notice the difference with the Nelder and Mead method because the contraction
and reflection are not used in the proposed algorithm ) are also calculated. The
above suggested parameters are used for the proposed algorithm. Furthermore,
they also apply to the corresponding GA and downhill searching.

Table 11 shows that genetic algorithm with simplex downhill method (GD)
can gradually reach the global minimum. As the generation grows, the
probability of reaching the global minimum is increased. Using the modified GA
alone enables the vicinity of the global minimum to be reached with increasingly
probability as time goes on, while the downhill method cannot reach the global
minimum at all. The downhill method is always trapped in one of the local
minima. Tables 12 and 13 demonstrate the training, test and generation data

using the proposed algorithm, respectively.
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Table 10. Data for the lubricant viscosity at different temperatures and pressures

[27].
Temperature ("C) Pressure (atm) Infviscosity]
(experimental)
0.0 1.0 5.106
0.0 740.8 6.387
0.0 1407.5 7.385
0.0 363.2 5.791
0.0 1.0 5.107
0.0 805.5 6.361
0.0 3907.5 11.927
0.0 4125.5 12.426
0.0 2572.0 9.156
25.0 1.0 4.542
25.0 805.0 5.825
25.0 1505.9 6.705
25.0 2340.0 7.716
25.0 422.9 5.298
25.0 5064.3 11.984
25.0 5280.9 12.444
25.0 3647.3 9.523
25.0 2813.9 8.345
37.8 516.8 5.173
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37.8

37.8

37.8

37.8

37.8

37.8

37.8

37.8

37.8

37.8

37.8

37.8

98.9

98.9

98.9

98.9

98.9

98.9

98.9

98.9

98.9

98.9

98.9

1738.0
1008.7
2749.2
1375.8
1911
1.0
4849.8
5605.8
6273.9
3636.7
1949.0
1298.5
1.0
686.0
1423.6
2791.4
4213.4
2103.7
402.2
1.0
2219.7
6344.2

7469.4

6.650
5.807
7.741
6.232
4.661
4.298
10.511
11.822
13.068
8.804
6.855
6.119
3.381
4.458
5.207
6.291
7.327
5.770
4.088
3.374
5.839
8.914

9.983
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98.9 5640.9 8.323

98.9 4107.9 7.132

Table 11. Performance of the proposed algorithm (GD), Case 3, neural network

composition = 2:5:1

Ten-run-average, best-so-far objective function value

generation GA Downhill GD
50 1.41633 3.99894 1.24233
100 0.94665 3.88616 0.722244
200 0.930796 3.73996 0.541633
400 0.789369 3.50923 0.285179
1000 0.700704 3.00807 0.158261
2000 0.639371 2.89261 0.0724673
4000 0.538636 2.88345 0.045308

Table 12. Training data for the lubricant viscosity at different temperatures and
pressures, m = 5, s=3, pm = 0.10, epoch = 8000, neural network
composition = 2:5:1, objective function value = 0.019, using the

proposed algorithm.

Temperature ('C)  Pressure (atm) In[viscosity] In[viscosity]

(experimental) (calculated)

0.0 1.0 5.106 5.162

0.0 740.8 6.387 6.417




0.0

0.0

0.0

0.0

0.0

0.0

0.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

37.8

37.8

37.8

37.8

37.8

37.8

37.8

1407.5
363.2
1.0
805.5
3907.5
4125.5
2572.0
1.0
805.0
1505.9
2340.0
422.9
5064.3
5280.9
3647.3
2813.9
516.8
1738.0
1008.7
2749.2
1375.8
191.1

1.0

7.385
5.791
5.107
6.361
11.927
12.426
9.156
4.542
5.825
6.705
7.716
5.208
11.984
12.444
9.523
8.345
5.173
6.650
5.807
7.741
6.232
4.661

4.298

7.474
5.732
5.162
6.532
11.697
11.997
9.300
4.472
5.799
6.754
7.629
5.071
12.010
12.253
9.619
8.242
4.953
6.655
5.860
7.583
6.323
4.424

4.237
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37.8 4849.8 10.511 10.858
37.8 5605.8 11.822 12.062
37.8 6273.9 13.068 12.621
37.8 3636.7 8.804 8.793
37.8 1949.0 6.855 6.830
37.8 1298.5 6.119 6.240
98.9 1.0 3.381 3.689
98.9 686.0 4.458 4.337
98.9 1423.6 5.207 5.856
98.9 2791.4 6.291 6.239
98.9 4213.4 7.327 6.944
98.9 2103.7 5.770 6.003
98.9 402.2 4.088 3.900
98.9 1.0 3.374 3.689
98.9 2219.7 5.839 6.046
98.9 6344.2 8.914 9.124
98.9 7469.4 9.983 9.957
98.9 5640.9 8.323 8.289
98.9 4107.9 7.132 6.873

46




Table 13. Test and generalization data for the proposed algorithm, Case 3,

neural network composition = 2:5:1.

Temperature (°C)

Test data, objective function value = 0.0016

Pressure (atm)

In[viscosity]

(experimental)

7.385

11.927

6.705

12.444

6.232

8.804

6.291

9.983

Generation data

0.0 1407.5

0.0 3907.5
25.0 1505.9
25.0 5280.9
37.8 1375.8
37.8 3636.7
98.9 27914
98.9 7469.4

Temperature (°C) Pressure (atm)

0.0 1868.1

0.0 3285.1
25.0 1168.4
25.0 2237.3
25.0 4216.9
37.8 2922.9
37.8 4044.6

Infviscosity]

(experimental)

7.973

10.473

6.226

7.574

10.354

7.967

10.511

In[viscosity]
(calculated)
7.408
11.898
6.605
12.170
6.160
8.730
6.508

10.044

In[viscosity]
(calculated)
8.191
10.968
6.206
7.458
10.710
7.772

9.401
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98.9

98.9

3534.8

4937.7

6.726

7.768

6.969

7.729
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CHAPTER IV
CONCLUSIONS

Itis well-known that genetic algorithm is a method for global optimizing.
Therefore, this method has been used in many situations such as calibration of
model parameters in water resource analysis and hydrology. When the method
is used to solve some tough optimizing problems, such as the optimization of the
parameters of artificial neural networks, it results in a satisfactory outcome.

From the traditional and classic genetic algorithm and simplex downhill
method, Genetic algorithm with simplex downhill method (GD) was constructed
with the combination of the two methods, inheriting the advantagés of both
algorithms. Experimentally, this algorithm was tested with different cases.
Based on the experimental resuits, the following conclusions can be drawn.

(1) The GD algorithm is reasonable, well grounded, correct, and effective.

(2) The proposed algorithm is robust. It can avoid local minima, reach the global
optimum efficiently, and quickly settle down.

(3) The amount of computing time needed for the many iterations may be large

and expensive and could be a financial constraint in some cases.
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APPENDIX A

PROGRAM LISTING

e
1/ Thesis program

I/ Title:Simple genetic alogrithm with simplex downhill
I local tuning

I/ Name:Lu, Jianping

/! Place:Department of Computer Science,

17 Oklahoma State University

1l Date: September 1, 1999
T T T LT T T LT

T T T T
I This is the main program. In this program, you have a couple
//of chices, such as training the neural network, test the neural
//network, and neural network generalization.

T T T T T
#include"layer_2.h"

#include"option_2.h"

#include<iostream.h>

#include<fstream.h>

#include<stdlib.h>

#include<string.h>

#include<ctype.h>

void main()
{
char response;
srand( (unsigned)time( NULL ) );

cout<<"You have four options to run this program.“<<endl;
cout<<"Enter D to test diversity with sigle-minimum function."<<endl;
cout<<"Enter T to train the network."<<end|;
cout<<"Enter E to test the network."<<endl;
cout<<"Enter G to run the generalization."<<endl;
cin>>response;
response = toupper(response);
if(response=="D")
diversity();
else if(response==TT)
training();
else if(response=="E’)
test();
else if(response=="G')

53




generalization();

else{
cout<<"please enter yes or no."<<endl;
exit(1);

}

}
L
//option_2.h head file

//\n this head file, there are four functions, such as

//training, test, generalization. For training function,

/lyou have three ways to train the neural network, simple

//genetic method, simplex down hill method, and simple

/lgenetic method with simplex downhill.

T T T T LT T T T L T

” — =============::ff
/ffunction prototypes

/ =

void diversity();

void training();

void test();

void generalization();

—————— ===//

void diversity()
{

char what, response;

int i, points, iterations;

ofstream ouffile;

outfile.open("dout.dat", ios::out);

network::get_layer_info('D’);

cout<<"How many points do you want?"<<endl;

cin>>points;

GD myGD(points, 'D’);

cout<<"How many iterations do you want?"<<endl;

cin>>iterations;

cout<<"Enter 'N’ for not using diversity;"<<endl;

cout<<"Enter ’I’ for using diversity;"<<endl;

cin>>what;

response = toupper(what);

switch(response){

case ‘N cout<<"The program is running, please
be patient."<<end|;
for(i=0; i<iterations; i++){

myGD.single_genetic();
myGD.next_single_generation();
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outfile<<myGD<<endl;
break;
case’l’: cout<<"The program is running, please

be patient."<<end|;

for(i=0; i<iterations; i++){
myGD.single_genetic();
myGD.single_competition();
myGD.next_single_generation();

outfile<<myGD<<endl;
break;

default: cout<<"Enter N or | for the single-minimum

fuction test."<<endl;

//function training

//In this function, you have three methods to choose to
//get your weights for the neural network. The final output
//corresponding to the data in the target file, standard
/ldeviation. and standard deviation are save in the output
//file called out.dat

//

void training()

inti, pd, pg, points, choose, flag, check, sub_sz;
long iterations;

ofstream ouffile;

outfile.open("out.dat", ios::out);
network::get_layer_info('T’);
network::get_input_data();
network::get_output_data();

cout<<"How many points do you want?"<<endl;
cin>>points;

GD myGD(points);

cout<<"How many iterations do you want?"<<endl;
cin>>iterations;

cout<<"What algorithm do you want to use?"<<endl;
cout<<"Enter 1 for pure genetic algorithm;"<<endl;

cout<<"Enter 2 for modified simple genetic algorithm;"<<endl;
cout<<"Enter 3 for modified simplex downhill algorithm;"<<endl;
cout<<"Enter 4 for simple genetic with simplex downhill."<<endl;

cin>>choose;
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switch(choose){
case 1: cout<<"The program is running, please be
patient."<<endl;
for(i=0; i<iterations; i++){
myGD.genetic(points);
myGD.next_generation();
check = myGD.examine_points();
if(check==1){
cout<<"When the all points are
the same,"<<endl;
cout<<"the iteration number is: "
<<i+1<<endl;
break;
}
}
outfile<<myGD<<endl;
break;
case 2: cout<<"The program is running, please be
patient."<<endl;
for(i=0; i<iterations; i++){
myG D.genetic(points);
myGD.competition();
myGD.next_generation();
check = myGD.examine_points();
if(check==1){
cout<<"When the all points are
the same,"<<end|;
cout<<"the iteration number is: "
<<i+1<<end|;
break;

}

outfile<<myGD<<endl;
break;

case 3: cout<<"Now, you chose simplex downbhill

method,"<<endl;

cout<<"the points you chose is "<<points

<<endl;

cout<<"you need to choose a sub_size which
must be less"<<endl;

cout<<"than the number of points."<<endl;

cin>>sub_sz;

myGD.set_sub_size(sub_sz);

cout<<"The program is running, please be
patient."<<endl;
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case 4:

flag = 1;

for(i=0; i<iterations; i++){
myGD.downhill(points, flag);
myGD.competition();
myGD.next_generation();
flag =0;
check = myGD.examine_points();
if(check==1){
cout<<"When the all points are the

same,"<<endl;

cout<<"the iteration number is: "

<<i+1<<endl;
break;
}
outfile<<myGD<<endi;
break;

cout<<"Now, you chose genetic with simplex
downhill method,"<<endl;
cout<<"the points you chose is "<<points
<<endl;
cout<<"you need to choose a sub_size which
must be less"<<endl;
cout<<"than the number of points."<<endl|;
cin>>sub_sz;
myGD.set_sub_size(sub_sz);
cout<<"The program is running, please be
patient."<<endl;
flag=1;
for(i=0; i<iterations; i++){
pd = points * i/iterations;
pg = points - pd,;
myGD.genetic(pg);
//when the pd>=1, downhill starts to work
if(pd>=1){
/ flag=1;
myGD.downhill(pd, flag);
flag = O;
}
myGD.competition();
myGD.next_generation();
check = myGD.examine_points();
if(check==1){
cout<<"When the all points are the
same,"<<endl;
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cout<<"the iteration number is: *

<<i+1<<end|;
break;
}
outfile<<myGD<<end|;

break;

default: cerr<<"choose 1, 2, or 3."<<endl;
exit(1);
Y/end_switch
outfile.close();

}

// = = ——— === === =
/ffunction test

//In this function, you need to input the test input file, test

/ltarget file, and weight file. The final results is in the

//output file called test.dat. The test.dat file shows output

//data coressponding to the data in the target file, standard
//deviation,

f/ o e o S o n
void test()
{
ofstream ouffile;
outfile.open("test_out.dat", ios::out);
network::get_layer_info('E’);
network::get_test_input();
network::get_test_output();
network net;
net.set_train_weights();
net.calc_out();
outfile<<net;
ouffile.close();
}
// e —— et e . - —

/ffunction generalization

//In this function, you need to input the input file, weight file.
// After the program finishes execution, the output file,
/ftrain_out.dat, contains the data you search for.

/ === — e == == == =

void generalization()

ifstream infile;
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ofstream ouffile;

char filename 1[50}, filename2[50];

double max_input, min_input, max_output, min_output;
outfile.open("train_out.dat", ios::out);

cout<<"Enter your input file:"<<endl;
cin>>filename1;

cout<<"Enter your weight file:"<<endl;
cin>>filename2;

network::get_layer_info('G’);

cout<<"Enter maxmium input, minimum input, maxinum
output, minimum output'<<endl;

cout<<"(those data reflect the data when you trained

your network)"<<endl;

cout<<"in this way: max_in min_in max_out, min_out."<<end|;

cin>>max_input>>min_input>>max_output>>min_output;

network::get_input_data();

network net;
net.set_train_weights();
net.calc_out();
outfile<<net;
outfile.close();
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L L
/Nayer_2.h head file

//In this head file, there are three classes, network,

//GD(genetic downhill), and regression. Their functions

//will be introduced when they are implemented,

/Irespectively.
T
#include<iostream.h>

#include<stdlib.h>

#include<fstream.h>

#include<time.h>

#include<math.h>

"l —e— et — -’/
//Global function random_weights. This function is used

//to generate a random number in a ceratin range when

/it is called.

/f============ ==== === -"/
double random_weights()

{

double number;

inti;

//random_weights will return a doubling point
/Ivalue between -20 and 10

//generate a random number subject to uniform (0, 1)
//distribution
for(i=0; i<10; i++)

number = double (rand()/32767.0);
//lchange the random number to a value between -20 to 10
number = -20 + number * (10 - (-20));

return number;

}

/f — — - — - e =:======:=======f /
//Global function random_geberator. This function is used

/lto generate a random number between 0 and 1 when it is

/lcalled.

/ l —— == = — === = — :f!
double random_generator()
{

int i;

double number;

for(i=0; i<10; i++)
number = double (rand()/32767.0);




return number;

}

//

/IGlobal function segmoid function. this function is used
/to change the input entering a neuron to the ouput of
/lthe neural in the range of 0 and 1.

/f=========__—_..==:=—'—'——'—— —————— ==== "!
double segmoid(double act)
{
return 1/(1 + exp(-act));
}
//class network
I/ ————————————— = === =——=xf/

class network

{

private:
static int layer{5]; //store neurons in the diffrent layer
static int number_of_layers;
static double input_data[10][80];
//nomalized input data array
static double nom_input_data[10][80];
static double target_data[10][80];
//nomalized output data array
static double nom_target_data[10][80];
static int num_input_data;
static int num_target_data;
static char way;
static int num_weights;
double std_dev;  //standard deviation
int num_output_data;
/Istore the output of the neural network
double final_out[10]{47];
/Istore the weights of the neural network
double weights[80];
friend class GD;

public:
network(); //constructor
~network();  //destructor
static void get_layer_info(char c);
static void get_input_data();
static void get_output_data();
void randomize_weights();
void calc_out();
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void single_calc_out();

void get_first_layer_input(double *temp, int nm);

void calc_temp_out(double *temp1, double *temp2,
int nr1, int nr2,
int &count, int last);

void calc_error();

int get_num_weights();

int get_last_layer_nodes();

int get_num_target_data();

static void get_test_input();

static void get_test_output();

void set_train_weights();

friend ofstream& operator<<(ofstream& myout, network& nt);

/I Implementation of the constructor

/ / e —. — — - =/ /
network::network()
{

}

std_dev = 0.0;

/

//Initialization of all class variables.

/ === ==== == ====

/

int network::layer[5];

int network::number_of_layers = 0;
double network::input_data[10][80];
double network::nom_input_data[10][80];
double network::target_data[10][80];
double network::nom_target_data[10][80];
char network::way;

int network::num_input_data = 0;

int network::num_target_data = 0;

int network::num_weights = 0;

f/ —— = = —— //

/Nimplementation of function get_layer_info.
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= = =//
void network::get_layer_info(char c)

{

inti;
I
//Get layer sizes for the network
I

cout<<"Please enter in the number of layers for your
network."<<endl;
cout<<"You can have a minumum of 3 to a maximum of
5."<<endl;
cout<<"3 implies 1 hidden layer; 5 implies 3 hidden
layers:"<<endl;

cin>>number_of_layers;

cout<<"Enter in the layer sizes separated by spaces."<<end|;

cout<<"For a network with 3 neurons in the input layer,"<<endl;

cout<<"2 neurons in a hidden layer, and 4 neurons in the"<<endl;

cout<<"output layer, you would enter: 3 2 4."<<end|;

cout<<"You can have up to 3 hidden layers, for five maximum
entries:"<<end|;

for(i=0; i<number_of_layers; i++)

cin>>layerfi];
I
/Isize of layers:
/ input_layers layer_size[0]
/I output_layers layer_size[number_of_layer-1]
I middle_layers layer_size[1]
I optional:layer_size[number_of_layers-3]
/ optional:layer_size[number_of_layers-2]
/l
for(i=1; i<number_of_layers; i++)
num_weights += layer[i-1] * layer(i] + layerfi];
/ltwo additional weights, one for objective function value,
//last one for probability
num_weights = num_weights + 2;
//assign the way of solving the problem
way = C;
}
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Jl=======——=—=—— = ===/

f —===sssms=mTms === =
void network::get_input_ data()
{

—_——== ———— / /

char filename[50];

double data, min_in, max_in;
inti, j;

ifstream infile;

//get input data from individual file
for(i=0; i<layer[0]; i++){
cout<<"Input your input file "<<i+1<<" name:"<<endl;
cin>>filename;
infile.open(filename, ios::injios::nocreate);
j=0;
infile>>data;
while(linfile.eof()){
input_data[i][j] = data;
jH
infile>>data;
}
num_input_data = j;
infile.close();

}

/Inormolize the input data
for(i=0; i<layer[0Q]; i++){
min_in = input_data[i][0];
max_in = input_data[i][0];
for(j=0; j<num_input_data; j++){
if(input_data[i][jl<min_in)
min_in = input_datal[i][j];
if(input_data[i][j]>max_in)
max_in = input_data[i][j];
}
input_data[i][num_input_data] = min_in;
input_datafij[num_input_data+1] = max_ in;
for(j=0; j<num_input_data; j++)
nom_input_data[i][j] = 1.0/(max_in-min_in)*
(input_datali][j}-min_in);

/ ———— —— = —- —— —— — ==ﬂf




/[This function is to get input test data.

/ — —_—— = ———— e
void network::get_test_input()
{

S e —
=5 e

char filename[50];

double data, min_in, max_in;
inti, j;

ifstream infile;

//get input data from individual file
for(i=0; i<layer[0]; i++){

cout<<"Input your test input file "<<i+1<<
" name:"<<end];

cin>>filename;

infile.open(filename, ios::injios::nocreate);

=0;

infile>>data;

while(linfile.eof()){
input_data(i][j] = data;
i+
infile>>data;

}

num_input_data = j;

infile.close();

cout<<"Input max_in during the corresponding input
training file:"<<endl;

cin>>max_in;

cout<<"Input min_in during the corresponding input
trining file:"<<endl;

cin>>min_in;

input_data[ij[num_input_data] = min_in,;

input_data[i][num_input_data+1] = max_in;

for(j=0; j<num_input_data; j++)
nom_input_data[i][j] = 1.0/(max_in-min_in)*
(input_data[i][j]l-min_in);

}

ﬂ==—_===$==========__——-———— == - —_— ;J/
/[This function is to get input date for
/trainning the neural network.

// = === ————— ——— :'!"

void network::get_output_data()

char filename[50];
double data, min_out, max_out;
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int i, j;
ifstream infile;

/fget output data from individual file
for(i=0; i<layer[number_of_layers-1]; i++){
cout<<"Input your output file "<<i+1<<" name:"<<end|;
cin>>filename;
infile.open(filename, ios::injios::nocreate);
=0;
infile>>data;
while(linfile.eof()){
target_data[i][j] = data;
J++;
infile>>data;
}
num_target_data = j;
infile.close();

}

//normolize the output data
for(i=0; i<layer[0]; i++){
min_out = target_data[i][0];
max_out = target_datali][0];
for(j=0; j<num_target_data; j++){
if(target_datal[i][jl<min_out)
min_out = target_datal[i][j];
if(target_datali][jl>max_out)
max_out = target_datali][j];
}
target_data[ij[num_target_data] = min_out;
target_data[i][num_target_data+1] = max_out;
for(j=0; j<num_target_data; j++)
nom_target_data[i][j] = 1.0/(max_out-min_out)*
(target_data(i][j]-min_out);

}

/=== = —— == = //
/[This function is to get output data for test the
/Ineural nework.

e

// = ==== === et —

void network::get_test_output()

char filename[50];
double data, min_out, max_out;
inti, j;
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ifstream infile;

//get output data from individual file
for(i=0; i<layer[number_of_layers-1]; i++){

cout<<"Input your output file "<<i+1<<
" name:"<<end|;

cin>>filename;

infile.open(filename, ios::injios::nocreate);

i=0;

infile>>data;

while(linfile.eof()){
target_data(i][j] = data;
j++
infile>>data;

}

num_target_data = j;

infile.close();

cout<<"Input max_out during the corresponding output
training file:"<<endl;

cin>>max_out;

cout<<"Input min_out during the corresponding output
training file:"<<endl;

cin>>min_out;

target_data[i][num_target_data] = min_out;

target_data[i][num_target_data+1] = max_out;

for(j=0; j<num_target_data; j++)
nom_target_data[i][j] = 1.0/(max_out-min_out)*
(target_datal[i][j]l-min_out);

}
}
/[This function is to get number of the target data
f/—.— ettt == :'========="""—"=,/
int network::get_num_target_data()
{ ;
return num_target_data;
}
!f —t— e e o e — ———— ——————— ==I/
//This function is to get how many nodes in the output layer
//of the neural network.
// et ettt }:://
int network::get_last_layer_nodes()
{

return layer[number_of_layers-1];
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}

// ——— - e

1/

//implementation of function set_train_weights.
/[This function is only uesd
/lwhen the user asks test or generalize the neural network.

/=== ——— = ——

void network::set_train_weights()
{
char filename[50];
ifstream infile;
int i;
double weight;
Ji=0

cout<<"Input your weight file name:"<<endl;
cin>>filename;
infile.open(filename, ios::injios::nocreate);

infile>>weight;

while(linfile.eof()){
weights[i] = weight;
infile>>weight;
i++;

}

infile.close();

}

//

/j==== — === =

//implementation of function randomize_weights.
//This function is use to fill the
//[radom weights for the network.

//

/f —— —— ====ﬂ=======:======”
void network::randomize_weights()
{

int i;

for(i=0; i<num_weights-2; i++)

weights[i] = random_weights();

}
I/ —— = -

/llmplementation of function calc_out.
/[This function is used to get the output
//the neurons in the output layer.
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[====

== =—=crbmo—e— = g =//

void network::calc_out()

{

int h, i, j, k, m, n, weight_count, last_layer;

0;
0;

0;

0;

TS

i

double temp1_out[100], temp2_out{100];
while(k<num_input_data){

weight_count = 0;
get_first_layer_input(temp1_out, k);
for(j=1; j<number_of_layers; j++){
last_layer = j;
calc_temp_out(temp1_out, temp2_out, layer|j-1],
layer[j], weight_count, last_layer);
for(m=0; m<layer{j]; m++)
temp1_out[m] = temp2_out[m];
}

i++;

for(n=0; n<layer[number_of_layers-1]; n++){
final_out[n][k] = temp1_out[n];

}
K++;
}
}
// - — N ST === === 1= !/
//implementation of function get_first_layer_ input

void network::get_first_layer_input(double *temp, int nm)
{
inti;
for(i=0; i<layer[0]; i++){
templ[i] = nom_input_data[i][nm];

” =———==—====== — ===—== —— -_-=:==f/
//implementation of function calc_temp_out.
//This function is used to calculate
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// the output of the neurons in the hidden layers.
/ f —— — — — — :—_=f }‘
void network::calc_temp_out(double *temp1, double *temp2,

int nr1, int nr2, int &count,
int last)

inti, j;
double value;

for(i=0; i<nr2; i++){
value = 0.0;
for(j=0; j<nr1; j++)}{
value += temp1[j]*weights[count];
(count)++;
}
value = value + weights[count];
(count)++;
if(last'=number_of_layers-1)
temp2[i] = segmoid(value);
else
temp2[i] = value;

//implementation of function calc_error.

//this function is used to calculate

//the standard deviation of the output the
//neural network related to thethe target data.

void network::calc_error()

{

inti, ;
double sum;
sum = 0.0;

for(i=0; i<layer[number_of_layers-1]; i++)
for(j=0; j<num_target_data; j++) ,
sum += (nom_target_datal[i][j]-final_out[i][j])*
(nom_target_data[i][j]-final_out{i][j]);

std_dev = sqrt(sum);

weights[num_weights-2] = std_dev;

}

void network::single_calc_out()

{

inti;
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double value;
value = 0.0;
for(i=0; i<num_weights-2; i++)
value += weights[i] * weights][i];
/l std_dev = sqrt(value/double (num_weights-3));
weights[num_weights-2] = value;

== =//

//implementation of function get_num_weights.
/[This function is used to get the total number
//of weights in the neural network.

/ / e e e e e T s

= :==f/

int network::get_num_weights()

return num_weights;

//

//implementation of friend function to print resuits.

[|========== —— =

===//

ofstreamé& operator<<(ofstream& myout, networké& nt)

{
inti, j;
double data;

myout<<"The final outputs are:"<<endl;
if(nt.way!="D’)
for(i=0; i<nt.get_last_layer_nodes(); i++){
for(j=0; j<nt.num_target_data; j++){
//denormliazation
data = nt.final_out[i][j]*

(nt.target_datali][nt.get_num_target_data()+1]-
nt.target_data[i][nt.get_num_target_data()])+
nt.target_data[il[nt.get_num_target_data()];

myout<<data<<endl;

myout<<endl;
}
myout<<end|;
if(nt.way=="T"||nt.way=="D"){
myout<<"the standard deviation is: "<<
nt.weights[nt.num_weights-2}<<endl;
myout<<"the weights are: "<<endl;
for(i=0; i<nt.get_num_weights()-2; i++)
myout<<nt.weights[ij<<" *;
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myout<<endl;
}
if(nt.way=="E'){
nt.calc_error();
myout<<"the standard deviation is: "<<
nt.weights[nt.num_weights-2]<<endl;

}

return myout;
}
ﬂ===== = i = =”
/Idestructor of network.

network::~network()

{
}

1/ = —— —— = ===/
/Iclass GD(genetic downhill method
” e ,-'/
class GD.
{
private:

network net[100];

network new_net[100];
int num_of_points;
char C;
int sub_size;
network two_points[2]; //for genetic, to choose two parents
network cross;
//for downhill, to choose a subcommunity
network first_s_points[10];
/ffor downhill, to choose a subcommunity
network second_s_points[10];
public:
GD(int pts);//constructor
GD(int pts, char c);//constructor
~GD() {}; /destructor
void genetic(int PG);
void single_genetic();
void downhill();
void heapsort(network arr{], int size);
void heapify(network arr(], int pos, int size);
void assign_probability();
int get_index(double rd);
void select_two_points();
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void crossover();

void mutation();

void select_s_points(int Flag);

void construct_subcommunity(int Flag);
void compute_centroid(int dn);

void downhill(int PD, int Flag);

void competition();

void single_competition();

double distance(network nt[], int index);
void next_generation();

void next_single_generation();

int examine_points();

void set_sub_size(int sub_siz);

friend ofstream& operator<<(ofstream& out, GD& gd);

|5
”:.-.==== —— — —— —— — 'J/
//lmplementation of constructor
GD::GD(int pts)
{
int i;
num_of_points = pts;
for(i=0; i<num_of_points; i++){
netfi].randomize_weights();
net[i].calc_out();
netli].calc_error();
}
heapsort(net,num_of_points);
assign_probability();
}
// ——= —— — — — //
//llmplementation of constructor
H===== — —====——====c===/
GD::GD(int pts, char c)
{

inti;

num_of_points = pts;

for(i=0; i<num_of_points; i++){
net[i].randomize_weights();
net[i].single_calc_out();

}

heapsort(net,num_of_points);

assign_probability();
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}

/Nmplementation of single genetic.
” — —— — ======.—:=:===ﬂ
void GD::single_genetic()
{
genetic(num_of_points);
}
” —==—==—= === = === ;"/
//implementation of function heapsort, to sort the
//points in ascending order according to the
//objective function values.
ﬂ -— — - =============f f
void GD::heapsort(network arr{], int size)
{
network x, temp;
inti, j;
for(i=(size-1)/2; i>=0; i--)
heapify(arr, i, size);
for(i=size-1; i>0; i--){
for(j=0; j<temp.get_num_weights()-1; j++){
x.weights[j] = arr[0].weights[j];
arr[0].weights[j] = arr[i].weights[j];
arrfi].weights[j] = x.weights[j];
}
heapify(arr, 0, i);
}
}
” = = ——==== ——— ,.’/
/implementation of heapify function. 7
// == === et —1 —— ==== == ==

void GD::heapify(network arr[], int pos, int size)
{

intj, |, r, K, largest;
network x, temp;

j = pos;

while(j<size-1){
|=2%;
r=2%+1;
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if(l<=size-1)
if(arr{l].weights[temp.get_num_weights()-2]>
arrfj].weights[temp.get_num_weights()-2])
largest = |;
else
largest = j;
}
if(r<=size-1){
if(arr[r].weights[temp.get_num_weights()-2]>
arr(largest].weights[temp.get_num_weights()-2])
largest=r;

}
if(largest!=j}{
for(k=0; k<temp.get_num_weights()-1; k++){
x.weights[k] = arr[j].weights[k];
arrfj].weights[k] = arr[largest].weights[k];
arrflargest].weights[k] = x.weightsk];

j} = largest;
}
else
break;
}/end_while
}
f S============ = === / /

//implementation of function get_index.
/[This function is used to find a point
//index by the probability assigned to
//it when a random number is given.
int GD::get_| mdex(double rd)

{

network temp;

double start, end;

int i, target_index;

start = end = 0.0;

if(rd<net[0].weights[temp.get_num welghts() 1])
target_index = 0;

for(i=1; icnum_of_points; i++){
start += net[i-1].weights{temp.get_num_weights()-1];
end = start+net[i].weights[temp.get_num_weights()-1];
if(start<rd && rd<=end){

target_index = i;

}
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}

return target_index;

/Nlmplementation of function assign_probability.
/[This function is used to assign a probability
/Inumber to a point according to its objective
//function value. The smaller the objective
/ffunction value is, the greater the probability
//number is.
i/: ——t— e = = !f
void GD::assign_probability()
{

network temp;

int i;

double c, pm, pb, p;

c=0.5;

pm = 0.5/double(num_of_points);

pb = (2-c)/double(num_of_points);

for(i=num_of_points; i>0; i--){
p = pm+(double(i-1)/double(num_of_points-1))*(pb-pm);
//put the probability in the last row of the weight array
net[num_of_points-i].weights[temp.get_num_weights()-1] = p;
}
}

f;’ o o . o o e S i et s e st S = —_— :==/f
//implementation of function set_sub_size.
//this function is for downhill method.

/ e e —— e ot o o e s e —_ ::::l/
//implementation of select_two_points.
/[This function is for genetic method.

Il — =~ e S el SSS = /l
void GD::select_two_points()
{

network temp;
int i, j, index, flag;
double rd_num;
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flag = 1;
while(flag == 1){
for(i=0; i<2; i++){
rd_num = random_generator();
index = get_index(rd_num);
for(j=0; j<temp.get_num_weights()-2: j++)
; two_points{i].weights(j] = net[index].weights{j];
//check whether the points are the same
for(i=0; i<temp.get_num_weights()-2; i++)
if(two_points[0].weights[i] != two _points[1].weights[i]){
flag = 0;
break;

Ylend_while
}

” == ===== = — === = _."/
//implementtaion of function crossover,
//This function is for genetic method.

” e e ——— — ,o‘/
void GD::crossover()
{

network temp;

int i;

double rd_num;

for(i=0; i<temp.get_num_weights()-2; i++){
rd_num = random_generator();
if(rd_num >= 0.5)
cross.weights{i] = two_points[0].weightsi];
else
cross.weights[i] = two_points[1].weights]i];

}

//implementation of function mutation.

/[This function is for genetic method. )
/; — —_—=== = 7
void GD::mutation()

{

network temp;

double rd_num;

inti;

for(i=0; i<temp.get_num_weights()-2; i++){
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rd_num = random_generator();
if(rd_num < 0.50)
cross.weights[i] = random_weights();

//\'mplementation of function genetic.
//In this function, the genetic way to
//create a new population is carried out.

void GD::genetic(int PG)
{
network temp;
inti, j;
for(i=0; i<PG; i++){
select_two_points();
crossover();
mutation();
/lcopy the point after mutation into weights
for(j=0; j<temp.get_num_weights()-2; j++) Iy
new_netfi].weights[j] = cross.weights][j]; |

}

// ='_"====_.—'-'._========x=:==ﬂI
//implementation of function select_s_points.

//This function is for downhill method.

” — ] — =
void GD::select_s_points(int Flag)

{

i
i
i
L

network temp;
inti, j, k, same;
int index;
double rd_num;
same = 1;

if(Flag==1){
for(i=0; i<sub_size; i++){
rd_num = random_generator();
index = get_index(rd_num);
for(i=0; j<temp.get_num_weights()-2; j++)
first_s_points[i].weights[j] = net[index].weights][j];
}
}

//if not first time to create three points
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else{
while(same==1){
for(i=0; i<sub_size; i++){
rd_num = random_generator();
index = get_index(rd_num);
for(j=0; j<temp.get_num_weights()-2; j++)
second_s_points[i].weights[j] =
net[index].weights[j];
Y/end_for
/Inow to check the second_s_points to see whether it is
/lidentical to the first_s_points
for(i=0; i<sub_size; i++){
for(k=0; k<sub_size; k++){
for(j=0; j<temp.get_num_weights()-2; j++){
if(first_s_points[i].weights][j]!=
second_s_points[k].weights[j]){
same = 0;
break;//break the first for
Ylend_if
Y/end_j_for
if(same==0)
break;//break the second for
Y/end_k_for
if(same==0)
break;
Y/end_i_for
}//end_while
/Inow copy the second_s_points into the first_s_points
for(i=0; i<sub_size; i++)
for(j=0; j<temp.get_num_weights()-2; j++)
first_s_points{i].weights[j] =
second_s_points{il.weights[j];

/ e —_— ;’,

=====”

Il

void GD::construct_subcommunity(int Flag)

{

int i;

select_s_points(Flag);

for(i=0; i<sub_size; i++){
first_s_points][i].calc_out();
first_s_points[i].calc_error();
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}

//implementation of function compute_centroid.
/[This function is used to create
//a new population of points.

void GD::compute_centroid(int dn)

{

network temp1, temp2;
temp1.randomize_weights();
temp2.randomize_weights();
inti, j;

double value;

heapsort(first_s_points, sub_size);

//lcompute the centroid of them without including the worst point

for(i=0; i<temp1.get_num_weights()-2; i++){
value = 0.0;
for(j=0; j<sub_size-1; j++)

value += first_s_points[j].weightsfi];

value = value/double(sub_size-1);
temp1.weights]i] = value;

}

temp1.calc_out();

temp1.calc_error();

/lconstruct a new point by reflectinng the worst point through the
/lcentroid point y(ij) = 2x(ic)-x(is)
for(i=0; i<temp1.get_num_weights()-2; i++)
temp2.weights[i] = 2*temp1.weights]i] -
first_s_points[sub_size-1].weightsi];
temp2.calc_out();
temp2.calc_error();

if(temp2.weights[temp1.get_num_weights()-2]<
first_s_points[sub_size-1].weights[temp1.get_num_weights()-2]){
for(i=0; i<net[0].get_num_weights()-2; i++)
new_net{dn].weights[i] = temp2.weightsi];
}
else if(temp1.weights[temp1.get_num_weights()-2]<
first_s_points[sub_size-1].weights[temp1.get_num_weights()-2]){
for(i=0; i<temp1.get_num_weights()-2; i++)
new_net[dn].weights[i] = temp1.weightsi];

else{
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for(i=0; i<temp1.get_num_weights()-2; i++)
new_net[dn].weights[i] = random_weights();

}

//Implementation of funchon downhill.

/[This function is used to perform the

//downhill method.

/I e i

void GD::downhili(int PD, int Flag)
{

inti;

for(i=(num_of_points-PD); i<num_of_points; i++){
construct_subcommunity(Flag);
compute_centroid(i);

}

//implementation of function competition,
//After the execution of the this function,
/Ithe best-so-far point is always kept for next generation.

”==:======

void GD::competition()

{

— — q:_____ﬂ___zu___==================”

network temp;

inti, j;

double rd_num;

for(i=0; i<num_of_points; i++)}{
new_net[i].calc_out();
new_net[i].calc_error();

}

heapsort(new_net, num_of_points);

/lcheck the best point in the new_net and the best point

//in the net

if(new_net[0].weights[temp.get_num_weights()-2]>
net[0].weights[temp.get_num_weights()-2]){

/Ireplace the point in the new_net by the corresponding point int net
for(i=0; i<temp.get_num_weights()-1; i++)
new_net[num_of_points-1].weights[i] = net[0].weights]i];

heapsort(new_net, num_of_points);

}

//check other points

for(i=1; i<num_of_points; i++){
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if((new_net[i].weights[temp.get_num_weights()-2]<
net[i].weights[temp.get_num_weights()-2])&&
(distance(new_net, i)>distance(net, i))){
//keep the new point

else if((distance(net, i)>distance(new_net, i))&&
(net[i].weights[temp.get_num_weights()-2]<
new_net[i].weights[temp.get_num_weights()-2])){
//replace the new point with the corresponding point
for(j=0; j<temp.get_num_weights()-1; j++)

new_netfi].weights[j] = net[i].weights][j];
heapsort(new_net, num_of_points);

else if(distance(new_net, i)*
netfi].weights[temp.get_num_weights()-2]>
distance(net, i)*
new_neti].weights[temp.get_num_weights()-2]){

1

}
else{
rd_num = random_generator();
if(rd_num>0.5){
for(j=0; j<temp.get_num_weights()-1; j++)
new_net[i].weights[j] = net[i].weights[j];
heapsort(new_net, num_of_points);
}
else
}
}
}
// . ettt et ———— _""-__=_-"_'____.-f/
//This function is used for single competition.
et et = '!’
void GD::single_competition()
{
network temp;
inti, j;

double rd_num;

for(i=0; i<num_of_points; i++){
new_net[i].single_calc_out();

}

heapsort(new_net, num_of_points);

/Icheck the best point in the new_net and the best point
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/fin the net
if(new_net[0].weights[temp.get_num_weights()-2]>
net[0].weights[temp.get_num_weights()-2]){
/Ireplace the point in the new_net by the corresponding point int net
for(i=0; i<temp.get_num_weights()-1; i++)
new_net[num_of_points-1].weights[i] = net[0].weights]i];
heapsori(new_net, num_of_points);
}
//check other points
for(i=1; i<num_of_points; i++){
if(new_net[i].weights[temp.get_num_weights()-2]<
netfi].weights[temp.get_num_weights()-2]&&
distance(new_net, i)>distance(net, i)){
//keep the new point

}

else if(new_net[i].weights[temp.get_num_weights()-2]>
netfi].weights{temp.get_num_weights()-2]&&
distance(net, i)>distance(new_net, i)){
/Ireplace the new point with the corresponding point
for(j=0; j<temp.get_num_weights()-1; j++)

new_net[i].weights[j] = net[i].weights[j];

heapsort(new_net, num_of_points);

else if(new_net[i].weights[temp.get_num_weights()-2]<
net[i].weights[temp.get_num_weights()-2]&&
distance(new_net, i)>distance(net, i)){
//keep the new point

else if(distance(new_net, i)*
net[i].weights[temp.get_num_weights()-2]>
distance(net, i)*
new_net[i].weights[temp.get_num_weights()-2]){

}
else{
rd_num = random_generator();
if(rd_num>0.5){
for(j=0; j<temp.get_num_weights()-1; j++)
new_net[i].weights[j] = net[i].weights][j];
heapsort(new_net, num_of_points);
}
else
}
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}

//m === —
//Implementation of function distance.
/lthis function is used to calculate
/fthe distance between two points.

f/ — :=ﬂ
double GD::distance(network ntf], int index)
{

network temp;

double d;

int i;

d =0.0;

for(i=0; i<temp.get_num_weights()-2; i++)
d += (nt[index].weights[i] - new_net[0].weights[i])*
(ntlindex].weights]i]-
new_net[0].weightsl[i]);

return sqri(d);

}
” ——— ====”
/limplementation of function next_generation.
void GD::next_generation()
{
network temp;
int i, j;
for(i=0; i<num_of_points; i++){
new_netfi].calc_out();
new_net[i].calc_error();
}
heapsort(new_net, num_of_points);
/lcopy new_net into net, ready for next generation
for(i=0; i<num_of_points; i++){
for(j=0; j<temp.get_num_weights()-1; j++)
net[i].weights[j] = new_net[i].weights]j];
}
for(i=0; i<num_of_points; i++){
netli].calc_out();
net[i].calc_error();
)
heapsort(net, num_of_points);
assign_probability();
}

84



{/: —— = —=== ======’=.‘===========/f

/[This function is used for single next generation.

ff::::: == = = ;/
void GD::next_single_generation()
{

network temp;

inti, j;

for(i=0; i<num_of_points; i++){
new_net[i].single_calc_out();
}

heapsort(new_net, num_of_points);
/lcopy new_net into net, ready for next generation
for(i=0; i<num_of_points; i++){
for(j=0; j<temp.get_num_weights()-1; j++)
net[i].weights[j] = new_net[i].weights(j];

}

for(i=0; i<num_of_points; i++){
net[i].single_calc_out();
}

heapsort(net, num_of_points);
assign_probability();

}j — — ====//
//implementation of examine_points. If the all

/[corresponding weights in the allpoints are

/lthe same, thus the global minumumis approached,

/Itherefore the program should be stopped.

// — '==================='={]'
int GD::examine_points()
{

network temp;

inti, j, repeat;

int total_weights;

repeat = 0;

total_weights = 0;
total_weights = (num_of_points-1) * (temp.get_num_weights()-2);
for(i=1; i<num_of_points; i++)

for(j=0; j<temp.get_num_weights()-2; j++)

if(net[0].weights[j]==net[i].weights[j])
repeat++;

if(repeat==total_weights)

return 1;

85



else
return O;

}

/’ = = == ==== ====

I

//implementation of friend function. To print the results.

” = = ———

ofstream& operator<<(ofstream& out, GD& gd)

{
out<<gd.net[0];

return out;
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