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Abstract 

 

In this work the electronic properties of n-type and p-type quantum wells (QWs) made 

of narrow gap InSb and InGaAs materials have been studied experimentally. The 

narrower band gap in these materials leads to smaller effective masses for electrons and 

holes, therefore higher mobilities are expected. High intrinsic electron mobility due to 

the small effective mass for electrons in these materials makes them attractive as the 

channel material in n-type transistors. The layer structure, doping and growth 

parameters were further optimized to enhance the mobility for electrons in InSb and 

InGaAs QWs. A room-temperature electron mobility of 11,600cm2/Vs and 

44,700cm2/Vs were achieved in our QWs made of In0.64Ga0.36As and InSb, respectively.  

The hole effective mass in InSb QWs with different strain and confinement was studied. 

To achieve high hole mobilities, strain and confinement must be maximized. Both 

parameters increase the energy splitting between heavy and light hole bands and lower 

the effective mass for in-plane motion. The smallest hole effective mass of 0.017me was 

observed in an InSb QW with 1.05% strain and 7nm well width. Hole mobility in 

strained InSb QWs grown on GaAs(001) substrates can be significantly improved by 

better buffer layer design. The effect of the thickness and the Al composition in the 

Alxln1-xSb initial buffer layer on hole mobility of p-type InSb QWs was also studied. A 

room-temperature hole mobility of 1,050cm2/Vs has been achieved in our improved p-

type InSb QW with 1.32% strain, 7nm well width and a 0.8m thick Al0.15In0.85Sb 

initial buffer layer. The compressive strain was introduced into InyGa1-yAs QWs by 

increasing the Indium composition (y) in the well slightly above the value needed for 
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lattice matching (y=0.53) with InP (001) substrates. A room temperature hole mobility 

of 230cm2/Vs was obtained in our In0.75Ga0.25As QW with remotely, Be -doped 

In0.45Al0.55As barrier layers.  

An experimental study of growth, structural and electronic properties of elemental Sb 

QWs with GaSb barriers was performed to explore their potential as topological 

insulators. Molecular beam epitaxy growth procedures on GaAs(111)A and 

GaSb(111)A were developed to realize ultra-thin layers of Sb with a thickness  4nm. 

Transmission electron microscopy and scanning electron microscopy indicated good 

crystalline quality in these ultra-thin layers of Sb. Resistivity measurements indicated 

that Sb QWs with a thickness above ~2nm were metallic, whereas thinner wells showed 

insulating behavior.  

 

 

 

 

 

 

 

 

 

 

 

 



xviii 
 

Dissertation Outline 

 

In order to obtain high-performance, complementary metal oxide semiconductor 

(CMOS) circuits require both n-type and p-type transistors with high mobility carriers. 

Because of the comparable electron and hole mobilities for Si and the well-established 

fabrication techniques, Si based transistors have been the workhorse for the CMOS 

circuits until now. Narrow gap III-V channel based n-type field effect transistors 

(FETs), however, have demonstrated better performance due to their high intrinsic 

electron mobility and saturation velocity compared to Si. Therefore they have the 

potential to enable future high speed electronic devices that operate under lower power. 

Their narrower band gap is beneficial because it leads to smaller effective masses for 

electrons and holes which will lead to higher mobility. Quantum wells (QWs) made out 

of III-V narrow gap materials such as InSb and InGaAs with high electron mobility, 

unfortunately, exhibit low hole mobility. Additionally, the lack of a good native oxide 

as a gate dielectric is also an issue facing narrow gap channel FETs for use in future 

logic applications. This dissertation is concerned with electron and hole mobility in 

InSb and InGaAs QWs as well as the integration of high- dielectrics with these 

materials.  

Sb based materials exhibit inherently large spin orbit coupling which makes InSb also 

suitable for spintronic device applications, and elemental Sb has potential for a new 

class of materials called topological insulators (TIs). In TIs the bulk is insulating due to 

an energy gap while the surface is conducting due to un-gapped protected surface states. 

Quantum confinement is predicted to open up a gap for the bulk states in semimetallic 
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Sb, revealing the new TI properties of the surface states. Still thinner films should 

ultimately display trivial insulator properties. This dissertation also discusses the 

realization of ultra-thin films of Sb and a semimetal-to-insulator transition in these 

films.  

The dissertation chapters are organized in the following way:   

Chapter 1: All narrow-gap InSb, InGaAs and Sb QWs reported in this dissertation are 

grown by molecular beam epitaxy. This chapter reviews the experimental procedures 

used in molecular beam epitaxy growth.  

Chapter 2: Material characterization by use of high resolution x-ray diffraction 

(HRXRD) and Hall effect measurements are important in optimizing the growth, 

structural and electronic properties of the MBE grown heterostructures. This chapter 

reviews the fundamentals and experimental methods for determining the structural and 

electronic parameters of these materials using HRXRD and Hall effect measurements. 

Chapter 3: A study of the dependence of the electrical properties of two-dimensional 

electron systems in InSb and InGaAs QWs on structural and growth parameters is 

described in this chapter. Further optimization of these parameters led to further 

increases in electron mobility in these materials. A collaborative study of high- gate 

dielectrics on InyGa1-yAs channel material is also briefly discussed in this chapter.  

Chapter 4: Strain and confinement effects alter the valence band structure in a way that 

lowers the effective mass of the holes thereby increasing the hole mobility. Our research 

efforts to improve the hole mobility in two-dimensional hole systems in InSb and 
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InGaAs QWs by use of biaxial strain, confinement and optimization of the buffer layer 

structure are discussed in this chapter.  

Chapter 5:  A successful growth procedure to realize ultra-thin Sb QWs with the 

thickness ranging from ~1 to 4nm with GaSb barrier layers is described in this chapter. 

Dominant quantum confinement effects resulted in a metal-to-insulator transition in our 

ultra-thin Sb wells with a thickness below ~2nm.  

Chapter 6: This chapter summarizes the results obtained in this dissertation work and 

makes suggestions for future work.  
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Chapter 1 

Molecular Beam Epitaxy 

 

1.0 Introduction 

Molecular beam epitaxy (MBE) is an experimental technique for growing thin films 

of a wide variety of materials, ranging from oxides to semiconductors to metals. In this 

technique, a beam of atoms or molecules travels through an ultra-high vacuum 

(UHV~1×10-8 Torr) to a heated crystalline substrate to form a crystalline layer in 

registry with the substrate.  MBE has the ability to precisely control the thickness (to an 

atomic level), composition, and doping of these layers by changing the beam fluxes and 

substrate temperature. The UHV environment preserves the purity of the growing film 

and the surface of the growing film can be monitored using a technique called 

Reflection High Energy Electron Diffraction, RHEED. Because of this control, MBE 

grown structures such as superlattices, quantum wells and quantum dots can be 

developed not only for fundamental research but also for creating novel electronic and 

optical devices. 

This chapter describes the main components of an MBE system and the 

experimental procedures used in MBE growth. 
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1.1 MBE system in the Department of Physics and Astronomy at OU 

An Intevac Modular Gen II MBE system with two-growth chambers and a shared 

central analysis chamber are installed at the Department of Physics and Astronomy, 

University of Oklahoma. The analysis chamber is equipped with XPS (X-ray 

photoelectron spectroscopy) and AES (Auger electron spectroscopy) instruments and 

isolates the III-V and IV-VI MBE systems from each other. The schematic of typical 

MBE growth chamber and a picture of the III-V side of the MBE system at OU are 

shown in Figure 1.1.  

 

 

Figure 1.1: (a) Schematic of MBE system [1] and (b) a picture of III-V MBE system in 

the physics department at OU. 

 

1.2 Experimental methods 

The III-V part of the MBE system primarily consists of three vacuum chambers: a 

growth chamber, a buffer chamber and a load lock or entry-exit chamber, each with a 
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suitable pumping system. All three chambers are isolated from each other by gate 

valves. 

 

1.2.1 Entry-Exit Chamber 

In the entry-exit chamber, new substrates, individually mounted in a uni-block 

(Indium-free mounting), are installed on a trolley which can transport them from 

chamber to chamber. After being opened to atmosphere, the chamber can be pumped 

down to <10mTorr by a rough pumping system with a scroll pump and a molecular drag 

pump. This reduces the gas load introduced into the main vacuum when opening the 

valve to the rest of the system. The UHV (<10-8 Torr) in the entry-exit chamber is then 

achieved by using a small cryopump.  When the pressure is low enough (<5×10-7 Torr) 

the chamber is heated at 200C in order to outgas the substrates and their holders for a 

minimum of 2 hours. The trolley is transferred to the buffer chamber when the entry-

exit chamber is cooled back down to the room temperature.  

 

1.2.2 Buffer Chamber 

The buffer chamber is used as a transition tube between the entry-exit chamber and 

the growth chamber and the shared analysis chamber. The new substrates are 

transferred to another trolley stored in the buffer chamber, so that the grown wafer can 

be unloaded without exposing the un-grown substrates to the air. The substrates are 

further degassed at a heated station in the buffer chamber (GaAs at 300C for 12 hours 
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and InP at 200C for 2-3 hours) before transfer into the growth chamber.  The 

magnetically coupled transfer rods are used to move uni-blocks between the trolley, the 

substrate holder in the growth chamber and the heated station in the buffer chamber. 

This can be done since the uni-blocks are made out of nonmagnetic materials and since 

the bearings provide a smooth transport of the trolley in the vacuum. The proper 

alignment of pin positions in the transfer rods with those of the uni-blocks on the trolley 

is also necessary for a smooth and secure transfer of the substrate. The UHV in the 

buffer chamber is achieved by using an ion pump and a Ti sublimation pump (which is 

used primarily after venting the chamber). The idle pressure in the buffer chamber is 

~5×10-10 Torr and it increases up to 1×10-7 Torr at the beginning (and to ~2-5×10-9 Torr 

at the end) of the substrate degasing procedure.  

 

1.2.3 Growth Chamber 

The critical part of the process occurs in the growth chamber. It contains the 

following essential components for MBE growth as shown in Fig.1 (a).  

a. Cryopanels 

b. Beam sources 

c. Substrate manipulator  and heater 

d. Beam flux gauge and mass spectrometer 

e. RHEED 

The most important requirement in MBE is that the vacuum surrounding the 

growing epilayer must be kept as low as possible to avoid contamination from the 
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background gases. To maintain the UHV, the components of the MBE system are made 

out of materials that outgas negligibly at higher temperatures such as molybdenum and 

tantalum [2]. Liquid nitrogen cooled cryopanels are used in the growth chamber in 

addition to a cryopump (pumping speed of air, ~1500 l/s) and the ion pump (pumping 

speed of air, 400 l/s) to keep the partial pressure of unwanted gases such as H2O and 

CO2 below 10-11 Torr. The flux of residual gases is much less than that of the beam 

sources at UHV conditions. Therefore a slow growth rate of < 1ML/s can still keep the 

impurity level of the growing layer at one part per million or less [2]. The whole 

chamber must be baked at 200C for about a week to re-obtain the UHV conditions, 

after venting to refill the source materials or for maintenance. A mass spectrometer is 

used for residual gas analysis (RGA) and for leak detection. Typically, the III-V growth 

chamber is operated for more than 10 months without exposure to atmosphere with 

careful use and proper maintenance of the system. In this case the predominant 

background gases in the system are the high vapor pressure group V (As and Sb) 

elements.  

The III-V MBE system has 8 source ports, 7 are being used for the effusion cells 

and the remaining port is used for a viewing window. The group III elements (Gallium, 

Indium and Aluminum) and the dopant elements (Silicon for n-type and Beryllium for 

p-type) are loaded in 50 cc and 5cc conical shaped crucibles, respectively, (with an 

insert for Al) which are made out of pyrolytic boron nitride (PBN). All the cells are 

surrounded by a chilled alcohol (-37C) shroud which keeps them thermally isolated 

from each other. Antimony (Sb) is stored in the bulk (evaporator) part of the dual zone 

effusion cell with a thermal cracker which breaks the Sb4 into Sb2. Arsenic (As) is 



6 
 

stored in a valved cracker effusion cell with a large crucible. The automated valve 

positioner operates the valve inside the cell to control the As flux (As2). Since the As 

and Sb cells extend outside the cooling panel, cooling water runs around the cells for 

dissipating heat.  The In, Ga, and Al charges are melted slowly by controlling the power 

to the cells. In particular, melting or solidifying Al needs to be done carefully. If the 

temperature fluctuates around the melting point (~660C) due to rapid melting or 

cooling, the crucible can be cracked by contraction since Al adheres to the crucible 

walls.  

A battery backup is used to maintain the temperature of the Al and Ga cells in 

the event of a power failure. Sudden freezing of the Ga charge during a power failure 

(while alcohol and liquid nitrogen cooling are running) can also crack the crucible since 

Ga solidifies at room temperature. After heating each source independently until a 

molecular beam flux is generated, the intensity of the beam is controlled by changing 

the cell temperature with proportional, integral and derivative (PID) controllers. In 

UHV, the atoms or molecules in these beams have a long mean free path so that they 

travel straight to the substrate without collisions. Mechanically controlled shutters in 

front of the cells switch the beams on and off. The molecular beams of the source 

materials come onto the substrate from different directions and thus the beam flux is not 

uniform over the large substrate; therefore the substrate is continuously rotated (~25 

rpm) during growth to avoid having concentration or  thickness gradients in the grown 

layer. This substrate rotation manipulator is called Continual Azimuthal Rotation 

(CAR).  
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Good control of the MBE growth requires precise control over the substrate 

temperature and the III/V beam flux ratio. The substrate temperature is therefore 

measured by a thermocouple attached to the back side of the holder and by a pyrometer 

which analyzes the radiation coming off of the hot substrate.  The RHEED system with 

a phosphor-coated window mounted in another port serves as an in situ growth 

monitoring tool. The details of the RHEED system are described in section 1.2.4. The 

ion gauge mounted on the opposite side of the substrate holder can be used to measure 

and monitor the beam flux or the beam equivalent pressure (BEP).  A constant III/V 

flux ratio is maintained during the growth. BEP measurements can be used as a growth 

rate parameter after the calibration is determined by RHEED oscillations. The growth 

rate calibration changes rapidly when the source materials become increasingly 

depleted; therefore a good record of BEP saves significant time and materials by 

avoiding frequent calibrations.  

 

1.2.4 Reflection High Energy Electron Diffraction 

Reflection high energy electron diffraction (RHEED) is one of the most 

important real time surface analytical tools in an MBE system [2]. The RHEED system 

consists of an electron gun and a phosphorus screen. High energy electrons (9.5keV) are 

directed at the substrate at a low angle of 1-3 which minimizes the penetration of the 

electrons deep into the substrate. The resulting diffraction pattern on the phosphor 

screen is recorded and analyzed with a charge-coupled device (CCD) camera and KSA 

4000 software.  
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The atoms in the two–dimensional (2D) surface lattice produce a lattice of 

infinite rods in the reciprocal space.  The diffraction pattern is produced when these 

lattice rods in reciprocal space intersect with the Ewald sphere of the incident electron 

beam.  

 

1.2.4.1 Surface Reconstruction 

The surface of a semiconductor can be reconstructed or relaxed to minimize the 

surface energy.  When a surface is created by cleavage or by growth, at least one bond 

per atom is unsatisfied, leaving unstable dangling bonds with unpaired electrons [3]. 

The atoms with these dangling bonds can seek new positions and change the periodicity 

or the translational symmetry. Surface relaxation describes the case when the surface 

atoms are displaced from their bulk positions. This reconstruction appears in the 

RHEED pattern as “fractional order features” positioned between the “integral” (bulk) 

order diffraction streaks.  

The RHEED pattern is also used to determine whether the native oxide layer on 

the surface of the substrate is desorbed before growth. Since the oxide is amorphous, a 

diffuse diffraction pattern is observed before it is removed from the surface. The oxide 

desorption temperature for GaAs(001) is 600C - 640C and shows a 2× pattern along 

the [11 0] azimuth and facets along the [110] azimuth with an Sb background pressure. 

RHEED can also be used to determine the substrate temperature or the flux ratio 

(stoichiometry) by observing the transition from one surface reconstruction to another 

(phase transition). InSb (at ~340C) or Al0.1In0.9Sb (at ~300C) undergoes a phase 
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transition from pseudo (1×3) to c(4×4) as the substrate temperature is decreased with 

the V/III flux ratio of 1.1-1.2. It is believed that the pseudo (1×3) pattern results from a 

mixture of different (2×4) phases of the surface [4].  Fig. 2 shows a pseudo (1×3) 

surface reconstruction of InSb and a c(4×4) reconstruction of a Al0.1In0.9Sb layer under 

a static condition (with an Sb overpressure). 

 

 

Figure 1.2: RHEED image of (a) pseudo 3× periodicity in a (1×3) surface reconstruction 

during InSb growth and (b) 4× periodicity in a c(4×4) surface reconstruction of 

Al0.1In0.9Sb under a static condition in the [110] azimuth. 

 

1.2.4.2 Growth rate calibration using RHEED intensity oscillations 

 The specular beam intensity oscillations of RHEED are used to calculate the 

growth rates of the materials. From the intensity of the diffraction features one can tell 

whether the surface is rough or smooth at the monolayer scale. The maximum intensity 

is obtained when the arriving atoms complete a monolayer. As more atoms are 
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deposited, 2D islands are formed and the surface becomes relatively rough; at this point 

the minimum intensity is obtained. As the growth proceeds, these islands coalesce with 

adjacent islands to form a complete layer. The diffraction spot oscillates in brightness 

due to the periodic roughening and smoothing of the surface as the growth proceeds. 

The time for one period of oscillation is equals to the time for one monolayer growth. 

Figure 1.3 shows a surface coverage of 2D islands and the corresponding RHEED 

intensity oscillations.  

 

 

Figure 1.3: Schematic diagram of surface coverage of 2D islands and corresponding 

RHEED intensity oscillations [5]. 
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 In and Sb growth rates are calibrated during the growth of  an InSb epilayer 

(~1m thick) on a GaAs (001) substrate.  The In and Sb growth rate calibration is 

difficult since this can be done only in a narrow range of flux ratios and growth 

temperatures. The group V/III flux ratio during the growth of the epilayer and during 

the calibration needs to be maintained at 1.0-1.1 to obtain good oscillations. After 

growing the epilayer at a substrate temperature of 380C, the temperature is decreased 

to 25C below the transition from pseudo (1×3) to c(4×4). The In shutter is opened for 

8-10 sec while the Sb shutter is open, and a few monolayers of InSb are grown to 

calculate the In growth rate. For Sb calibration, the In shutter is first opened for 8-10 sec 

while the Sb shutter is closed. Then the In shutter is closed and the Sb shutter is opened 

to grow InSb and calculated the Sb growth rate. The RHEED intensity oscillations 

obtained for In and Sb are shown in Fig. 1.4.  

 

Figure 1.4: Intensity oscillations of the specular beam for (a) In limited growth on InSb 

and for (b) Sb limited growth of InSb.  
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Ga and Al are calibrated on a GaAs epilayer grown on a GaAs (001) substrate. 

The GaAs epilayer (~0.5m) is grown at the oxide desorption temperature (or 20C 

higher than that) with an As:Ga ratio of 15:1. The Al growth rate can be determined 

using the same As flux since it is not critical for this calibration. The Ga (Al) shutter is 

opened for 8-10sec while As is open to calculate the Ga (Al) growth rate. After doing 

the Al calibration, a few monolayers of GaAs are grown to cover the AlAs layer to 

preserve the smoothness and the purity of the surface for further calibration. RHEED 

intensity oscillations for As can be only seen for the lower growth rates if the valve is 

kept only slightly opened to reduce the flux. The As growth rate is rarely calibrated 

using intensity oscillations since As related growths are done using much higher As 

fluxes than used for As calibration. Instead, BEP measurements are used in As related 

growths and a V/III ratio of 15-20 is maintained during the growth. 
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Chapter 2 

Structural and Electrical Characterization of MBE Grown Heterostructures 

 

2.0 Introduction 

Characterization techniques play an important role in the development of MBE 

grown structures. High resolution X-ray diffraction (HRXRD) and Hall effect 

measurements were widely used to characterize the structural and electrical properties 

of the MBE grown structures described in this dissertation. Therefore, basic definitions 

and experimental procedures for HRXRD (section 2.1) and Hall effect measurements 

(section 2.2) are described in this chapter. Structural properties such as strain, defects 

and potential barrier height depend on the alloy compositions of the QW and the 

barrier/buffer layers. In order to determine the structural properties and to optimize the 

growth conditions, alloy compositions were experimentally determined by HRXRD 

measurements. Density and mobility for electrons and holes in InSb and InGaAs QWs 

and resistivity in Sb QWs are the major concerns of this thesis work. Experimental 

determinations of these properties were carried out by means of the Hall effect using 

Van der Pauw methods.  

 

2.1 High Resolution X-ray Diffraction  

 High resolution x-ray diffraction is a well-established technique for the 

structural characterization of single crystal semiconductor thin films and 
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heterostructures. This technique can be rapidly performed without destroying the 

sample. The lattice parameters, alloy composition, layer thickness, strain and the 

interface roughness of epilayers can be determined accurately using the X-ray 

diffraction (XRD) patterns.  

 HRXRD measurements were carried out using a Philips Materials Research 

Diffractometer with an incident beam from a four-reflection Ge (220) monochromater 

and an initial power of 1200W. The incident x-ray source is CuK1 and producea a 

monochromatic x-ray beam with a wavelength () of 1.5406Å. The goniometer, sample 

alignment, XRD scans and simulations were performed using Philips X’Pert software.  

 

2.1.1 Experimental setup and basic scattering geometries 

 Figure 2.1 shows the experimental arrangement in real space for an XRD 

measurement. The angle  is the incident angle of the x-ray beam with respect to the 

sample surface. The angle 2 is the angular position of the detector (to detect the 

diffracted beam) with respect to the incident beam. It is 0 when the detector is directly 

facing the incident beam.  The goniometer with the sample can be rotated about the 

sample normal, the y-axis ( angle) and about the x-axis ( -tilt angle) to align the 

sample and to allow for reflections from different crystalline planes. 
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Figure 2.1: Schematic of an experimental set up of x-ray diffraction measurement. 

 

In an x-ray diffraction experiment, a set of lattice planes (hkl) is selected 

according to the incident conditions of the beam and the lattice spacing dhkl is 

determined by Bragg’s law [1]. The diffraction from planes parallel to the sample 

surface is defined as symmetric scans [Fig. 2.2(a)] and the diffraction from the planes 

inclined by an angle  (tilt angle) with respect to the sample surface are defined as 

asymmetric scans [Fig. 2.2 (b) and (c)].  Symmetric scans provide information about the 

sample parameters along the growth direction perpendicular to the surface such as 

perpendicular lattice constant c, the strain component  and the layer thickness. Using 

asymmetric scans, lattice constants both perpendicular and parallel to the surface, and 

in-plane strain can be calculated.  
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Figure 2.2 Schematic of (a) symmetric diffraction, and two incident conditions (b) 

shallow and (c) steep for asymmetric diffraction geometries.  is the layer tilt from the 

surface for the asymmetric geometry. 

 

2.1.2 Scan modes 

Two main scan modes,  scan and -2 (or 2-) scan are available to probe 

the reciprocal lattice points which satisfy the diffraction conditions. The intensity is 

recorded as a function of  ( for 2- scans). An  scan is performed with the 

detector fixed at the 2B position, where B is the Bragg angle, and  is swept through a 

few degrees by rotating the sample stage about the diffractometer (z-axis). In -2 

scans, the detector is also rotated, but twice as fast as the sample. Generally  scans are 

performed to align the sample. In the alignment procedure, the  and  angular 

positions are moved to bring the h-vector (normal to the sample surface) and s- vector 

(any other vector on the sample perpendicular to  and 2 axes) into the diffracting 

plane. These angles are optimized by performing  scans to get the maximum 

intensities for the substrate peak. For the symmetric scans  optimization is sufficient 
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but for the asymmetric scans both  and  optimizations are necessary. Once the 

alignment procedure is completed, an -2 scan is performed for the desired (hkl) 

reflection.  

 

2.1.3 Layer mismatch, strain and alloy composition 

2.1.3.1 Basic definitions 

 The basic definitions of the physical quantities used to describe a strained 

heterostructures are given here. The mismatch (m) of heteroepitaxial layer is defined as 

[1]: 

݉ ൌ ௔ಽି௔ೄ
௔ೄ

              2.1 

where aL and aS are the unstrained (cubic form) lattice parameters of the epilayer and 

the substrate, respectively. The two unit cells are assumed to be in the same orientation. 

The strain induced in the film changes the lattice from cubic to tetragonal or to a lower 

symmetry lattice. In this case the parallel and perpendicular lattice mismatches with 

reference to the interface between film and substrate can be written as:   
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,    
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ൌ ௖ି௔ೄ
௔ೄ

                                                                     2.2 

Where ܽ௅
∥=a, and ܽ௅

 ൌ ܿ are the strained lattice parameters of the layer. Lattice 

mismatch is the difference between the actual relaxed lattice parameters of the layers 

forming a heterostructure.  
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The strain is defined as the relative deformation of the lattice with respect to its bulk 

parameters induced by a stress. For a cubic lattice the parallel and perpendicular strain 

are defined as [1]: 

∥ ൌ ௔ಽ
∥ି௔ಽ
௔ಽ

,    ୄ ൌ ௔ಽ
ି௔ಽ
௔ಽ

                                                                          2.3 

For a cubic lattice, the epitaxial layers grown along <001> direction (coincident with 

the z-axis) the strain is biaxial and the epilayer lattice parameters are deformed along 

the interface (x and y directions). Therefore the components of the strain are given by: 

ୄ ൌ െ2 ௖భమ
௖భభ

∥                                                                                                                 2.4 

Where, c12 and c11 are the elastic constants. The Poisson ratio () is defined in terms of 

elastic constants. For a cubic crystal and for high symmetry directions such as <001>, 

<011> and <111>, the Poisson ratio is given by: 

 ൌ ௖భమ
௖భభା௖భమ

                                                                                                                      2.5  

Then the misfit can be written in terms of the Poisson ratio and the parallel and 

perpendicular lattice mismatches.  

݉ ൌ ௔ಽି௔ೄ
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ଵି
ଵା
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                                                                                       2.6 

The average bulk lattice parameter for the layer can be calculated from Equation 2.6.  

ܽ௅ ൌ ∆ܽ ଵି
ଵା

൅ ∆ܽ∥ ଶ
ଵା

൅ ܽௌ                                                                                         2.7 
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Equation 2.7 can be used to calculate the strain and alloy compositions of 

heterostructures of the cubic form.  

In the case of a pseudomorphic growth, the parallel lattice parameter is matched to that 

of the substrate, but the perpendicular lattice parameter is deformed along the growth 

direction due to the effect of biaxial strain. Both in-plane and perpendicular strain 

components are at their maximum values. In this case the epilayer is said to be 

completely strained.  Then the average lattice constant is given by: 

 ܽ௅ ൌ ∆ܽ ଵି
ଵା

൅ ܽௌ ,  ܽ௅ ൌ ሺܿ െ ܽௌሻ
ଵି
ଵା

൅ ܽௌ                                                               2.8 

where c is the perpendicular lattice parameter of the strained layer. 

For lattice mismatched growths beyond a particular critical thickness, the layer changes 

from pseudomorphic to metamorphic. Then the epilayer is said to be partially relaxed. 

In a partially relaxed layer both perpendicular and parallel lattice parameters are 

different from the unstrained values and also from the substrate lattice parameters. The 

average lattice constant of a partially relaxed layer is calculated by using Equation 2.7 

and is given as: 

ܽ௅ ൌ
ଵି
ଵା

ܿ ൅ ଶ
ଵା

ܽ                                                                                                          2.9 

where c and a are the perpendicular (out-of-plane) and parallel (in-plane) lattice 

parameters of the epilayer, respectively.  
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2.1.3.2 Determination of the lattice parameters, alloy composition and relaxation. 

 When an alloy composition is derived from symmetric reflections, the layer is 

assumed to be fully relaxed. If grow thick enough on a mismatched substrate, strain 

relaxation is accompanied by the onset of misfit dislocations and results in 

misorientation of the lattice cells (tilt) at the layer-substrate interface [1]. Therefore in 

general it is more accurate when the alloy composition is derived from asymmetric 

reflections and the assumption is that the layer is partially relaxed. For the MBE grown 

structures in this dissertation, the In compositions in InGaAs/InAlAs or Al composition 

in AlInSb epilayers are determined using asymmetric reflections.  

 The choice of the asymmetric reflection is limited by the sample orientation, and 

by the need for a high asymmetry angle to enhance the parallel component of the dhkl 

spacing [1]. For (001) oriented cubic structures, (335), (224) or (115) asymmetric 

reflections can be used. In order to determine the In composition in InGaAs, (115) or 

(335) asymmetric reflections with “shallow” incident (-) [Fig. 2.2(b)] and “steep” 

incident (+) [Fig. 2.2(c)] geometries were used. The tilt angle  of the layer from (001) 

surface can be directly determined using a pair of asymmetric reflections, hhl and -h-hl 

[2]. On the other hand, the misorientation of the layer planes (=) with respect to the 

substrate lattice planes can be eliminated by choosing azimuthal angle  differing by . 

For this case, measurements need to be taken at =0 (-) and =180 (+) for a 

selected asymmetric reflection (hhl). For each reflection, -2 scans were performed 

and the peak positions were recorded. Figure 2.3 shows the intensity profile recorded by 



21 
 

-2 scan for (004) and (115) reflections. The tilt angle  and lattice parameters a and c 

are calculated using the peak separations.  

 

Figure 2.3: HRXRD Intensity profiles for symmetric and asymmetric reflections. The 

sample number is P019. The Bragg angle difference between the substrate and the layer 

is determined by the peak separations. The peak parameters are listed in Table 2.1 and 

Table 2.2 for symmetric and asymmetric reflections, respectively.  

 

The lattice plane spacing dhhl, the Bragg angle B and the plane tilt angle  for 

hhl reflection are related by the following equations [3].  
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From Equations 2.10 and 2.11, c and a can be obtained: 
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ܿ ൌ ఒ௟

ଶ ୱ୧୬ఏ ୡ୭ୱఝ
  and ܽ ൌ ௖௛

௟
√2 cot ߮                                                            2.12 

The Bragg angle difference between the layer and the substrate  is given by the 

average of the peak separations 1, and 2 for the (-) and (+) incident geometries, 

respectively. 

ߠ∆  ൌ ∆ఠభା∆ఠమ

ଶ
                                                                                        2.13 

The tilt between the layer and the substrate  is half the difference of the two peak 

separations for the (-) and (+) reflections and it is given by: 

∆߮ ൌ ∆ఠభି∆ఠమ

ଶ
,                                                                                                              2.14 

The tilt of the layer  from (001) surface is directly calculated from half the difference 

of the two peak positions - (hhl) and +
 (-h-hl) [2].  

߮ ൌ ఠమିఠభ

ଶ
                                                                                                                    2.15 

 

Calculations: 

The out-of-plane lattice constant c is calculated from (004) reflections, using equation 

2.12. In this case, - and + correspond to =0 and =180 incidences and =. The 

corrected Bragg angle for the layer is given by: 

 ൌ ௌ െ                                                                                                                   2.16 

where S (=31.669) is the substrate (InP) Bragg angle for the (004) reflection and can 
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be calculated by setting h=0, =1.5406Å and c=a=5.8687Å in above the formula. From 

B=31.8263 and =0.004, c is calculated. The values are given in Table 2.1. 

 Substrate (InP) Epilayer (InxGa1-xAs) 

h k l S 

(theor.) 

-  

(=0) 

+ 

(=180) 

-

(=0) 

+ 

(=180) 

  B c (Å) 

0 0 4  31.669 30.4499 33.1519 30.6112 33.3052 -0.1573 0.004 31.8263 5.8427 

 -0.1613 -0.1533  

 

Table 2.1: X-ray diffraction data obtained from (004) reflections and calculated lattice 

parameters for InxGa1-xAs grown on an InP (001) substrate. 

 

The in-plane lattice constant a is calculated from asymmetric reflections (115) and 

(-1-15) by using the formula, ܽ ൌ ௖௛

௟
√2 cot ߮ and calculated c value from (004) 

reflection. The parameters are given in Table 2.2. 

The bulk lattice constant aL is calculated using Equation 2.9 with =0.33 and is found to 

be; aL =5.8582Å. 

 Epilayer (InxGa1-xAs) 

h k l  - +   ave a (Å) 

1 1 5  0 26.2959 57.7202 15.7121 15.7104 5.8751 

180 28.9935 60.4111 15.7088 

 

Table 2.2: X-ray diffraction data obtained from (115) and (-1-15) reflections and 

calculated in-plane lattice parameter for InxGa1-xAs grown on a InP (001) substrate.                                 
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The Indium composition x in InxGa1-xAs is calculated using Vegard’s law. In an alloy 

AxB1-x, the lattice parameter aL(x) is proportional to the stoichiometric coefficient x: 

ܽ௅ሺݔሻ ൌ ஺ܽݔ ൅ ሺ1 െ ݔ ,  ሻܽ஻ݔ ൌ ௔ಽି௔ಳ
௔ಲି௔ಳ

                                                                     2.17 

ூ௡ீ௔஺௦ݔ ൌ
௔ಽି௔ಸೌಲೞ

௔಺೙ಲೞି௔ಸೌಲೞ
ݔ  , ൌ ହ.଼ହ଼ଶିହ.଺ହଷଷ

଺.଴ହ଼ଷିହ.଺ହଷଷ
ൌ 0.506 

The calculated In composition of InxGa1-xAs is 50.6%.  

The percentage relaxation is given by: 

ܴ% ൌ ௔ି௔ೄ
௔ಽି௔ೄ

100%                                                                                                       2.18 

ܴ ൌ ହ.଼଻ହଵିହ.଼଺଼଻

ହ.଼ହ଼ଶିହ.଼଺଼଻
100% ൌ െ60.9%                                                                                               

The calculated percentage relaxation is -60.9%. The layer is said to be 100% (0%) 

relaxed (completely strained) when a equals to the lattice constant of bulk alloy, aL 

(substrate, aS).  

 

2.1.4 XRD Simulation 

 For pseudomorphic growths or for very thin layers, the peak separation depends 

at the same time on the composition, strain and the thickness of the epilayer. In this 

case, simulations are performed and the composition is determined by the simulation 

profile that best fits the experimental diffraction profile. Figure 2.4 shows an -2 scan 

and the best fit simulation curve of the (004) reflection for a MBE grown 

InP(001)/100nm In0.52Al0.48As/300nm In0.53Ga0.47As structure. The X’pert Epitaxy 
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software uses the Takagi-Taupin theory to calculate the intensity diffracted by strained 

heteroepitaxial structures of the cubic form [4]. A background intensity of 5cnts/sec, 

noise of 0.1cnts/sec, and diffuse scattering of 130cnts/sec were added to the simulation 

curve to match with the experimental XRD intensity profile. The thickness of 96nm 

(298nm) and the In composition of 50.6% (51.9%) for InAlAs (InGaAs) layer were 

deduced from the simulation curve.  

 

 

Figure 2.4: (004) HRXRD -2 scan and the simulation curve for MBE grown 

InP(001)/100nm In0.52Al0.48As/300nm In0.53Ga0.47As structure. The compositions and 

the layer thicknesses deduced from the best fit simulation are given by InP(001)/96nm 

In0.506Al0.494As/ 298nm In0.519Ga0.481As. 
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2.1.5 Determination of the layer thickness 

 For the diffraction from a thin nearly-perfect heteroepitaxial layer, thickness 

fringes arise. The layer thickness (t) is related to the spacing of the thickness fringes 

() by the formula given bellow [4]. 

߱ߜ ൌ ఒୱ୧୬ ௘

௧ ୱ୧୬ ଶఏೌೡ
                                                                                                               2.19 

where e is the angle between the diffracted beam and the sample surface, which is given 

by (2av - ) and 2av is the average value of 2 for the two fringes.  is the peak 

separation for the two thickness fringes and is measured in radians. 

 When thickness fringes are not seen for diffraction from a single layer, the layer 

thickness (t) is related to the full width at half maximum,  (FWHM) of the diffraction 

peak by the formula (Scherrer equation) [5]: 

 ൌ ଴.଼ଽఒ

௧ ୡ୭ୱఏ೗
                                                                                                                     2.20 

where 0.89 is the Scherrer constant and l is the peak position of the (00l) reflection for 

the layer. For an example, the thicknesses of the Sb films grown on GaSb (111)A 

substrates determined using this formula are given in Chapter 5.    

 

2.2 Hall Effect measurement 

 The classical Hall Effect measurement is one of the most common and most 

useful electrical characterization techniques for semiconductors. Electrical transport 
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properties such as resistivity, carrier density, carrier type and the mobility of a QW or 

an epilayer can be determined using this technique. In the Classical limit, the transport 

fundamentals are derived according to the simple Drude model approximation.  

 

2.2.1 Drude Model 

In the Drude model, valence electrons in a solid or a metal are considered as a 

free electron gas and are free to move, whereas ions or heavy positive charges are 

considered to be immobile [6]. Moreover it assumes that electrons change their velocity 

by bouncing off ion cores and therefore electron-electron collisions are ignored. The 

mean time between collisions , or the relaxation time, is independent of the velocity 

and the position of the electron. Under an electric field, electrons drift with an average 

velocity, vd.   

 

2.2.2 Electrical conductivity 

 According to the Drude model under an electric field the current density in a 

conducting wire is given by Ohm’s law: 

ࡱ ൌ  2.21                                                                                                                          ࢐ߩ

Where, E is the electric field, j is the current density and  is the resistivity 

(proportionality constant between E and j) of the wire and depends only on the material 

properties. The resistivity is related to the resistance by R=L/A, where L is the length 
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and A is the cross-sectional area of the wire. If the wire has n electrons per volume 

moving with velocity vd, the current density can be expressed as: 

࢐ ൌ െ݊݁࢜ࢊ , and ࢜ࢊ ൌ
௘ࡱఛ

௠
          2.22 

where e is the electron charge and m is the electron mass. From 2.22, current density 

can be written as: 

࢐ ൌ ଴2.23             , ࡱ 

where 0 is the electrical conductivity and is given by: 

଴ߪ	  ൌ
௡௘మఛ

௠
 =	ଵ

ఘ
            2.24 

and mobility,  is defined as: 

ߤ ൌ ௘ఛ

௠
             2.25 

 

2.2.3 Hall Effect 

 When a current passes across a conducting sheet placed under an external weak 

magnetic field (B) perpendicular to the surface, an electric field develops in the opposite 

edges on the surface perpendicular to the current and the magnetic field directions. 

Electrons deflect to an opposite edge until steady state is reached. This is known as the 

Hall Effect [6]. The voltage drop is perpendicular to the current direction is called the 

Hall voltage. Once the steady-state conditions are reached, the Lorentz force is balanced 
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by the Hall voltage and current continues to flow across the sample independent of the 

B field. The equation of motion for the electrons at the steady state is given by: 

െ݁ሺࡱ ൅ ࢊ࢜ ൈ ሻ࡮ ൌ ௠࢜ࢊ
ఛ

                                    2.26 

This can be written in the tensor form: 

൤
௫ܧ
௬ܧ
൨ ൌ ൥

௠

௘ఛ
െܤ

ܤ ௠

௘ఛ

൩ ቂ
௫ݒ
 ௬ቃ,                                2.27ݒ

By using j=-nevd and =e/m, equation 2.27 can be rewritten in the form: 

൤
௫ܧ
௬ܧ
൨ ൌ ିଵ ൤

1 െܤ
ܤ 1 ൨ ൤

݆௫
݆௬
൨,                                           2.28 

where, =en is the zero B field conductivity.              

The resistivity tensor can be written in the same form: 

 ൤
௫ܧ
௬ܧ
൨ ൌ ቂ

௫௫ߩ ௫௬ߩ
௬௫ߩ ௬௬ቃߩ ൤

݆௫
݆௬
൨          2.29 

where, ߩ௫௫ ൌ
ଵ

ఙ
ൌ ଵ

௘௡ఓ
                      2.30 

and  ߩ௫௬ ൌ െߩ௬௫ ൌ
ଵ

௘௡
 and                     2.31 ܤ

xx is called the longitudinal resistivity and xy is called the transverse resistivity or Hall 

resistivity and linearly increases with B in the low field limit. RH= -1/en is known as the 

Hall coefficient. The sign is opposite for holes. 
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2.2.4 Hall Effect measurement and the van der Pauw geometry 

 The sheet carrier density, the resistivity and the mobility of the conducting 

sample is experimentally determined by the Hall measurement in the van der Pauw 

geometry. While the Hall effect measurement can be performed in a lithographically 

defined Hall bar, we prefer to use a square specimen directly cleaved from a MBE 

grown wafer. For the samples described in this dissertation, the Hall measurement was 

performed on a square specimen [Fig. 2.5]. Pure In or an In-Zn alloy (for p-type InSb 

QWs) was applied at the corners of the sample for ohmic contacts. Temperature-

dependent Hall measurements were done in a closed-cycle He refrigerator from 300K to 

20K. Poor ohmic contacts can freeze out at low temperature; therefore, contacts were 

annealed at 230C for ~7min (for InSb QWs) or ~400C for ~10min (for InGaAs QWs) 

in a H2 (~20%) and N2 (~80%) environment. Detailed discussion of mobility and 

density and limiting factors are given in Chapter 3. 

 

 

Figure 2.5: Square geometry of samples used for the Hall measurements. Magnetic field 

B is applied along the z-direction perpendicular to the sample surface. 
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At steady state, transverse current is zero (jy=0), therefore , from equation 2.29, 

௫ܧ ൌ ௬ܧ ; ௫௫݆௫ߩ ൌ  ௬௫݆௫           2.32ߩ

From equation 2.32 and 2.31, transverse resistivity is given by:  

௫௬ߩ ൌ
௏ಹ
ூ
ൌ െ ଵ

௘௡ೞ
 2.33           ܤ

where VH is the transverse voltage drop and is measured between contacts 2 and 4 (V24) 

while a constant current, I is passed between 3 and 1 (I31) with a perpendicular magnetic 

field. Here ns is the sheet carrier density and is related to the bulk concentration, n=ns /t, 

where t is the thickness of the conducting layer. The sheet carrier density is determined 

from the Hall coefficient (RH), the slope of transverse resistivity versus B field. 

Typically the B field is swept between 0 and 0.12T for the low field limit. A linear Hall 

relationship is observed for a single carrier type, (electrons or holes) and the carrier type 

is determined by the sign of VH. VH is positive (negative) if the carriers are electrons 

(holes).  

݊௦ ൌ െ ଵ

௘

ଵ

൬
೏ഐೣ೤
೏ಳ

൰
           2.34 

Mobility is calculated using the longitudinal resistivity at B=0 (equation 2.30) and the 

calculated carrier density as given in equation, 2.34. 

ߤ ൌ ଵ

௘௡ೞఘೣೣ
            2.35 

From equation 2.32 longitudinal resistivity, in this case the sheet resistivity, at B=0 is 

given by: 
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௫௫ߩ ൌ
௫ܸ

ܫ
 

 The longitudinal resistivity or the sheet resistivity of the sample is measured 

according to the van der Pauw geometry [7] with B=0. Van der Pauw described a 

method to determine the sample resistivity independent of its shape and the size. In this 

technique, the sample is assumed to be homogenous in thickness and carrier density, 

and very large in comparison to the point-like contacts which are placed at the 

boundaries. Then the longitudinal resistivity is given by the formula: 

௫௫ߩ ൌ
గ

௟௡ଶ
ቂ
ோభమ,రయାோరయ,భమାோమయ,భరାோభర,మయ

ସ
ቃ ݂ ൤

ோభమ,రయାோరయ,భమ
ோమయ,భరାோభర,మయ

൨       2.36 

where, R12,43 is the four point resistance and given by; 

ܴଵଶ,ସଷ ൌ
௏భమ
ூరయ

,  

V12 is the dc voltage drop between contacts 1 and 2 when the current I is passed from 

contact 4 to 3.  

R43,12, R23,14, R14,23 are defined similarly. f is the correction term for the arbitrary shape 

of sample. For a square sample with small contacts, f is 1. Then the longitudinal 

resistance can be written as; 

௫௫ߩ ൌ
గ

௟௡ଶ
ܴ௔௩ , where, ܴ௔௩ ൌ ቂ

ோభమ,రయାோరయ,భమାோమయ,భరାோభర,మయ
ସ

ቃ      2.37 

 

 The previous calculation has assumed that only one type of carrier with a single 

mobility is present in the system. This is true at all temperatures for most of the 2D 
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systems doped with electrons, but for some p-type doped InSb QWs at room 

temperature, non-linear Hall curves were observed due to the presence of intrinsic 

electrons. For the case where both electrons and holes are present, the Hall coefficient is 

given by [8]: 

ܴு ൌ
௣ఓ೓

మି௡ఓ೐మ

௘ሺ௣ఓ೓ା௡ఓ೐ሻమ
             2.38 

where, p and n are 2D electron and hole densities, respectively. h and e are hole and 

electron mobilities, respectively.  
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Chapter 3 

2D Electron Systems in InSb and InyGa1-yAs Quantum Well Structures 

 

3.0 Introduction 

 Among III-V materials InSb and InGaAs are promising candidates for future 

high speed, ultra-low-power digital logic applications, because of higher electron 

mobility and saturation velocity.  A comparison of III-V n-type quantum-well field 

effect transistors (QWFETs) with standard silicon metal oxide semiconductor FETs 

(MOSFETs) shows that the energy-delay product, an important figure of merit, is more 

favorable (lower the better) for the FETs made of InSb and InGaAs quantum wells [1]. 

However, a major challenge is to find a suitable gate dielectric stack compatible with 

III-V channel FETs in order for these devices to be used in digital logic applications.  

This chapter is organized as follows. The first section discusses the growth of 

n-type InSb QWs and the dependence of the electrical properties on structural 

parameters with a goal of high mobility electrons. The second section discusses the 

growth of remotely doped n-type InyGa1-yAs QWs with InxAl1-xAs barriers and their 

electrical properties. Growth of undoped InyGa1-yAs QWs with InxAl1-xAs barriers for 

MOSFET applications and epilayers for development of high- dielectric integration is 

discussed in the third section. This project was a collaboration with Intel Corp. and 

others for which we provided InyGa1-yAs/InxAl1-xAs layer structures for the high- 

dielectric experiments.  
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3. 1.0 High electron mobility InSb quantum well structures 

InSb has the narrowest band gap (0.18eV at room temperature) and the smallest 

effective mass for the electrons (0.014me) of all the III-V’s which leads to the highest 

intrinsic mobility for electrons. InSb also exhibits the highest saturation velocity for 

electrons (5×107 cm s-1) [2]. These characteristics make InSb a promising candidate for 

ultra-high speed low power electronic devices [3] and ballistic transport devices [4, 5]. 

QWFETs fabricated from an InSb QW with a remotely doped AlxIn1-xSb barrier have 

already demonstrated the highest switching speed and lowest power dissipation in a 

comparative study with other III-V QWFETs and Si MOSFETs [6]. Because of the 

large spin-orbit effects for electrons InSb is also an attractive material for spintronic 

devices [7].  

The quantum confinement and the mobility of the InSb QWs can be increased 

by further optimization of the layer structure, doping and growth parameters. Increased 

carrier mobility and density in these structures will lead to improved device 

performance. Therefore the growth and the study of the dependence of the electrical 

properties on structural parameters are motivated by the potential for producing high 

mobility electrons for device applications and for the basic research on quantum 

transport.  
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3.1.1 Simplified method of calculating the electron density in an n-type QW with a 

single -doping layer placed a distance d from the well  

 In a finite potential well, electrons are free to move in the x-y plane and are 

confined in the z-direction (growth direction). The quantum confinement leads to the 

quantization of the electronic states (subbands). A simple method of calculating the 

electron density for a QW -doped on one side and with one occupied subband is given 

here. Figure 3.1 shows a schematic energy diagram. 

 

 

Figure 3.1: Schematic energy diagram of a QW with single -doping layer. 

At low temperature, the electron density in the well with a single occupied 

subband (ground state) is calculated by integrating the two-dimensional density of 

states, D(E) =	݉∗/԰ଶ and given by Equation 3.1 [8]: 

E0

EA
‐
‐
‐
‐
‐
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d L

Eb

-doping

Growth direction
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݊ ൌ ௠∗

గ԰మ
ሺܧி െ   ଴ሻ                 3.1ܧ

where m* is the in-plane effective mass, EF is the Fermi level energy, and E0 is the 

ground state energy. From this equation EF can be written as:  

ிܧ ൌ
గ԰మ௡

௠∗ ൅  ଴                                                                                                              3.2ܧ

Assuming that the Fermi level is pinned to the conduction band edge at the -doped 

layer, the electric field in the spacer layer can be written as:  

௤௡


ൌ ா್ିாಷିாಲ

௤ௗ
                        3.3 

where Eb is the barrier height. The left hand side of the Equation 3.3 is obtained from 

Poisson’s Equation, where q is the charge of the electron and  is the permittivity of the 

well material ( =180 for InSb). In the right hand side, EA (=13.6m*/2 eV) is the 

activation energy of the ionized dopants and d is the spacer layer thickness. Substituting 

EF in Equation 3.3 and rearranging gives: 

݊ ൌ ா್ିாబିாಲ
ഏ԰మ

೘∗ ା
೜మ೏


		                                                                                                               3.4 

In general, Eb > (EA+E0) is necessary to populate the QW. EA is ignored since EA is 

much smaller than Eb and E0. The electron density dependence on the spacer layer 

thickness d can be expressed as: 

݊ ൎ ா್ିாబ
ഏ԰మ

೘∗ ା
೜మ೏


		            3.5 
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The barrier height of AlxIn1-xSb can be calculated by assuming that the 62% of the band 

offset appears in the conduction band for InSb [9]. E0 can be calculated using the 

energies predicted by the infinite potential well approximation. 

଴ܧ ൌ
గమ԰మ

ଶ௠∗௅మ
              3.6 

Where, L is the thickness of the QW. The electron density in the well depends on the 

spacer layer thickness when the donor density Nd is larger than the electron density 

predicted by the Equation 3.5. For smaller Nd, the electron density is simply equal to Nd.  

 

3.1.2 Design parameters and the factors limiting electron density and mobility in InSb 

QWs 

  Fabrication of a high quality two-dimensional electron gas (2DEG) is 

challenging due to the lack of suitable substrate and barrier materials for InSb QWs. For 

this reason GaAs substrate and AlxIn1-xSb buffer/barrier layers are often used. The 

design parameters for InSb QWs with AlxIn1-xSb barrier layers are QW width (L), 

doping density (Nd), spacer layer thickness (d), and the barrier height (Eb), besides the 

buffer layer structures. In order to obtain high carrier density, according to equations 3.5 

and 3.6, a wider well and a higher barrier height are required. A thicker well, below the 

critical thickness, can be grown on an AlxIn1-xSb buffer layer with low x (Al 

composition). But for high barrier heights, AlxIn1-xSb buffer layers with high x are 

required. A strain balanced InSb QW structure design would allow one to grow a 

thicker well on a low x AlxIn1-xSb buffer layer while having high x barrier layers [10]. 
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In this design, InSb QW and high x AlxIn1-xSb barrier layers are compressively and 

tensilely strained to the low x thick relaxed AlxIn1-xSb buffer layer, respectively. The 

well width and the barrier thickness are calculated such that the compressive strain in 

the InSb well is balanced by the tensile strain in the high x AlxIn1-xSb barrier layers.  

On the other hand, higher mobility (>100,000cm2/Vs at low temperature) with 

lower density (~2.51011cm-2) is required in order to obtain a gate-controled 2DEG in 

gated InSb QWs using a top gating approach [11]. Mobility at low temperature is 

limited by the defects from lattice mismatched growth and ionized dopant scattering 

arising from the Si -doping layer that provides the electrons to the well. The two -

doping layers with optimal doping densities are necessary to avoid parallel conduction 

through the -doping layers. The -doping layer near the surface needs to be placed 

away from the well in order to minimize the ionized dopant scattering. This distance is 

limited by the requirement of a shallow well (a short distance to the surface from the 

well) for the fabrication of a top gate with gate dielectric depositions and gate 

controllability of carrier density in InSb QWs [11].  The shallow QWs are also 

beneficial for other device processing techniques such as optical and electron beam (E-

beam) lithography.   

 

3.1.3 Layer structure of remotely doped InSb QWs. 

All the InSb/AlxIn1-xSb heterostructures were grown on semi-insulating, off axis 

(2 off [001] toward [110]) GaAs(001) substrates by MBE. A typical layer structure for 

an asymmetrically doped InSb QW with an interlayer buffer is shown in Figure 3.2.  
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Figure 3.2: The layer structure of asymmetrically doped InSb QW with Al0.20In0.80Sb 

barrier layers. 

Due to the large lattice mismatch (~14.5%) between GaAs and InSb, structural 

defects such as microtwins (MT) and threading dislocations (TD) are created during the 

growth of the buffer layers [12]. These defects at the QW layer limit the electron 

mobility in the well and depend strongly on the Al composition of the buffer layers 

located between the substrate and the lower barrier layer [13]. A 2 off axis GaAs 

substrate is chosen to reduce the MTs density at the QWs [14]. The buffer layers as 
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shown in Fig 3.2, in growth order, consist of an initial 0.5m thick Al0.10In0.90Sb layer 

followed by two Al0.20In0.80Sb interlayers separated by a 0.3m Al0.10In0.90Sb matrix 

layer and a 2.8m thick relaxed Al0.10In0.90Sb buffer layer. Two Al0.20In0.80Sb interlayers 

were introduced in the buffer to reduce the density of TDs that propagate to the QW 

[13, 15]. The matrix layers, interlayers and the thick buffer layer were grown at a 

substrate temperature of 380C with a V/III flux ratio of 1.2-1.3 after the initial oxide 

desorption at ~640C -650C under an Sb2 flux.  

The strain-balanced 20nm thick InSb QW is sandwiched between Al0.20In0.80Sb 

barrier layers on the Al0.10In0.90Sb relaxed buffer layer. Since the compressive strain of 

the InSb is balanced by the tensile strain of the Al0.20In0.80Sb barrier layers, a thicker 

QW (than would be possible on a relaxed Al0.20In0.80Sb) can be grown on the relaxed 

Al0.10In0.90Sb layer [9]. To supply electrons to the well, a single Si -doped layer is 

placed in the upper barrier a distance 10 nm  d  18nm above the InSb QW in order to 

minimize the ionized dopant scattering. A second Si -doped layer (donor density of 

~3.0-3.6×1011 cm-2) placed in the Al0.10In0.90Sb cap layer near the surface, provides 

electrons to surface states. The InSb cap layer minimizes the oxidization of the 

Al0.10In0.90Sb layers underneath.  The InSb QW, two Si- delta doping layers and the cap 

layers were grown at 35C below the transition temperature where the pseudo (1×3) 

reconstruction of the Al0.10In0.90Sb surface changes to c(4×4) to obtain maximum 

doping efficiency [16]. The growth rate of the QW layer is ~0.52 ML/s and the V/III 

ratio is kept at ~1.3.  
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3.1.4 Electron mobility and density in remotely doped InSb QWs  

All the InSb QWs were characterized by the Hall and van der Pauw methods 

[Sec. 2.2] on ~88 mm2 samples in magnetic fields up to 0.13 T over the temperature 

range from 300K to 20K in a closed cycle He refrigerator.  Four electrical contacts were 

made at each corner of a sample by annealing In at 230C in a H2(~20%) and N2(~80%) 

environment (in order to minimize the surface oxidization) for ~7min. Ohmic contact 

was checked through observation of linear current voltage characteristics at 300K, 

150K, 77K and 25K. A linear Hall voltage with applied magnetic field was observed for 

all the samples at all temperatures. Fig 3.3 shows the typical temperature dependence of 

the mobility and density for an n-type InSb QW. The electron density (mobility) 

decreases (increases) as the temperature decreases and saturates at low temperature. A 

high mobility of 229,500cm2/Vs with a density of 2.9×1011cm-2 was achieved. The Hall 

data for a series of asymmetrically doped InSb QWs is given in Appendix A Table A.1.  

 

Figure 3.3: Density and mobility of InSb QW structure (t341) as a function of 

temperature.  
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Three structures which had identical layer structures as shown in Fig 3.2 except 

without the InSb cap layer, and the same donor density (ND~ 3.6×1011 cm-2) in both Si 

-doped layers were grown with different spacer layer thickness d. Mobility and density 

as a function of temperature for these structures are shown in Fig. 3.4. The mobility in 

all the samples at 300K is lower than at low temperature. The mobility at higher 

temperatures is limited by polar optical phonons [17]. The effect of scattering by defects 

of the mobility is important at all temperatures. The mobility at any temperature is 

higher for the structure with d=15nm compared to the structure with d=10nm. A 

decrease in the carrier density (by factor of 1.5) which is expected according to the 

equation 3.5 is observed for this structure.  

The mobility at low temperature is limited by the scattering from ionized 

dopants, unintentional ionized background impurities in the AlxIn1-xSb layers, and a 

rough interface between well and barrier. A low-temperature mobility limited by 

interface roughness scattering has been observed in InSb QWs for a well thickness of  

20nm [18]. A strong dependence of low temperature mobility on the spacer layer 

thickness implies that the effect of ionized dopant scattering would be more significant 

than the interface roughness scattering in our InSb QW structures.   
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Figure 3.4: Temperature dependence of electron (a) mobility and (b) density of InSb 

QWs with different spacer layer thickness. 
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The dependence of mobility and density of the well on the spacer layer thickness 

at low temperature are shown in Fig. 3.5 with two additional samples. As shown in 

Figure 3.5, both the highest mobility and the highest density are observed in structure 

with d=15nm and an InSb cap layer. The reduced ionized dopant scattering in structure 

t335 resulted in a highest mobility of 251,000 cm2/Vs and density of 3.1×1011 cm-2 at 

25K. An improvement in the room temperature mobility of 44,700 cm2/Vs and density 

of 5.4×1011 cm-2 were also observed in this structure. The -doped layer near the well 

was placed in the lower barrier below the QW with the same doping density and 

d=15nm for the structure t350. The mobility at 25K in this structure is however a factor 

of ~2.3 lower than that of the other two structures with d=15nm. An increase in the 

carrier density (5.41011cm-2) by a factor of ~2 was also observed in this structure 

compared to the other two structures with d=15nm at 25K. The high carrier density in 

this structure could be due to the migration of dopants in to the well, which would also 

increase the ionized dopant scattering in this structure. However further studies are 

needed in order to make a strong conclusion.  
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Figure. 3.5: The dependence of (a) mobility and (b) density with spacer layer thickness 

at 25K. Open square and diamond symbols represent the structure t335 with an InSb 

cap layer, and the structure t350 with the -doped layer in the lower barrier below the 

QW, respectively. 
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The effect of the doping concentration on the mobility and density was also 

studied. In order to achieve lower density, doping near the well needs to be lowered. 

QW structures, as shown in Fig. 3.2 with d=15nm, were grown with different donor 

concentrations in the -doped layers. Table 3.1 summarizes the -doping densities in 

these structures along with the carrier mobility and density. The carrier mobility and 

density as a function of temperature for these structures are compared in Fig. 3.6.  

 

Sample -doping   
(×1011 cm-2) 

Average density 
 (cm-2) 

Average mobility 
(cm2/Vs) 

surface well 20K 300K 20K 300K 
t335 3.6 3.6 3.1 5.4 251,000 44,700 
t339 3.6 1.8 2.0 3.6 171,500 39,800 
t397 3.0 0.9 1.6 3.7 139,200 37,600 
t402 3.0 0.7 1.0 2.6 84,500 35,300 

 

Table 3.1: A comparison of mobility and density in InSb QWs with different Si -

doping concentrations. 

Both density and mobility decreased as the doping density near the well is 

decreased. Screening of scattering potentials from the electrons in the -doping plane at 

high doping density is also important in enhancing the mobility [19]. As the doping 

density increases, the increased occupation in the doping plane results in increased a 

screening and reduces the ionized dopant scattering. Since parallel conduction was not 

evident (t339), the observed low mobility at low doping structures could be due to the 

unscreened ionized dopant scattering. It has been observed that the screening of remote 
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ionized dopant scattering by electrons in the -doped plane has less effect on mobility 

for low doped InSb QWs [19].  

 

 

Fig 3.6: The temperature dependence of (a) mobility and (b) density for different doping 

concentrations in -doped layers. -doping near the surface was 3.6×1011 cm-2(3.0×1011 

cm-2) for the structures t335 and t337 (for t397 and t402).  
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3.1.5 Electron mobility and density in symmetrically doped InSb QWs  

 In symmetrically doped InSb QWs, -doped layers with equal doping densities 

are placed on both sides of the well with an equal spacer layer thickness of d from the 

well.  Therefore electrons in the well feel a zero net electric field and the field in one 

side of the spacer is now half as much as given by equation 3.3. The density is now 

accordingly higher than given by equation 3.5. A QW structure designed in the previous 

section with well thickness of 20nm, d=15nm, and x=0.2 in AlxIn1-xSb barriers was 

chosen since this shows better performance. Because of the short distance from surface 

to well (60nm), these structures can be used for device processing by optical and E-

beam lithography. Therefore, symmetrically doped InSb QW structures were used by 

Dr. Murphy’s group at OU to fabricate nano-wires by E-beam lithography to study the 

spin relaxation via anti-weak localization [20]. QWs with low temperature densities of 

3-51011cm-2 with no parallel conduction and low mobility (~50,000cm2/Vs) were 

required for this study in order for the spin relaxation theory to be applied.  

Since high mobility is not required a series of symmetrically doped InSb QWs 

with Al0.20In0.80Sb barrier layers were grown with a buffer layer of constant composition 

instead of several interlayers. The typical layer structure is shown in Fig. 3.7. A single 

relaxed 1.8m thick Al0.20In0.80Sb buffer layer was grown on semi-insulating 

GaAs(001) (2 off [001] toward [110]) substrate. A 0.25m thick Al0.10In0.90Sb layer 

was grown prior to the QW growth to observe the transition from pseudo (1×3) to 

c(4×4). A Si -doped layer near the well (the surface) provide the carriers to the well 
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(surface states). A summary of a series of symmetrically doped InSb QWs along with 

the doping density is given in Appendix A Table A.2. 

 

 

Figure 3.7: The layer structure of a symmetrically-doped InSb QW with Al0.20In0.80Sb 

barriers. Two -doped layers are placed 15nm from the well.  
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the electrons in the well experience a zero net electric field, the peak of the electron 

probability density will remain in the middle of the well. Therefore both ionized dopant 

scattering and interface roughness scattering have less effect on mobility in 

symmetrically doped QWs compared to the asymmetrically doped QWs. Mobility both 

at 300K and 20K in these QWs was lower than that of in asymmetrically doped QWs 

because of the relatively thin non-interlayer buffer (~2m). The mobility at low 

temperature in these QWs is limited mainly by the defects due to the lattice mismatch 

between the buffer layer and the substrate. However the electron densities in 

symmetrically doped QWs are slightly higher than in asymmetrically doped QWs which 

is expected for the similar net doping densities.  

An observed electron density of 3.81011 cm-2 for the structure t340 with two 

delta doped layers of net Nd ~ 3.61011 cm-2is slightly higher than that of 3.11011 cm-2 

for the structure t335 with a single delta doped layer with the same doping density. A 

decrease in the carrier density with decreasing -doping density near the well was 

observed for these structures. The structure with the lowest doping density near the well 

(ND~1.1×1011 cm-2 in each side) showed the highest mobility:  = 78,300 cm2/Vs with n 

= 3.0×1011 cm-2 at 20K and  = 36,700 cm2/Vs with n = 3.7×1011 cm-2 at room 

temperature.  
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Sample -doping   

(×1011 cm-2) 

Average density 

 (cm-2) 

Average mobility 

(cm2/Vs) 

surface well 20K 300K 20K 300K 

t337 3.6 1.8 3.8 5.4 51,780 27,260 

t340 3.6 1.3 3.6 4.9 56,360 29,000 

t348 3.0 1.1 3.0 3.7 78,280 36,700 

 

Table 3.2: The Hall mobility and density observed for a few symmetrically doped InSb 

QWs with 15nm spacer layer and 20nm Al0.20In0.80Sb barrier layers are listed.  

 

3.2 High mobility InyGa1-yAs/InxAl1-xAs QW structures  

InGaAs/InAlAs high electron mobility transistors (HEMTs) have long been 

studied for potential in millimeter wave applications and optical communications 

because of their excellent high frequency and low noise performances [21, 22].  InyGa1-

yAs/ InxAl1-xAs QWs are grown metamorphically (0.3y0.7) on GaAs substrates with 

graded buffer layers (mHEMTs) or pseudomophically (0.53y0.7) on InP substrates 

with lattice matched In0.52Al0.48As barriers (pHEMTs). InyGa1-yAs QWs (0.15y0.3) 

are also grown pseudomorphically with wide band gap AlGaAs barriers on GaAs 

substrates, which make pHEMT suitable for high power applications [23].  It was found 

recently that InyGa1-yAs based QWFETs are suitable for logic applications with better 

performance than Si transistors as they can be operated at low supply voltage down to 

0.5V [24]. High In content In0.7Ga0.3As channel QWFETs have already been 
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demonstrated with excellent performance with gate lengths down to 50nm and 

operating at a supply voltage of 0.5V [25, 26].  

The smaller effective mass for electrons (0.045me) in In0.53Ga0.48As which leads 

to higher mobility and high saturation velocity, arises from the large energy difference 

between  and L valley (~0.55eV [27]), and makes this material attractive as the 

channel material. Since In0.53Ga0.47As and In0.52Al0.48As are lattice matched to InP 

substrates, a high quality 2DEG can easily be fabricated with the electron mobility in 

In0.53Ga0.47As closer to the intrinsic values which is half way between GaAs and InAs. 

Electron mobility in InyGa1-yAs/InxAl1-xAs QWs can be further increased with even 

higher densities by introducing strain into the well by slightly increasing the indium 

content (y>0.53) in the channel. Strain can be introduced into the barriers by slightly 

increasing the Al composition beyond the value needed for lattice matching (x<0.52) in 

InxAl1-xAs barrier layers. Larger barrier height due to the strain and the increased band 

gap in InxA1-xlAs barriers enables higher densities without populating the 2nd sub band.  

Therefore growth of high mobility InyGa1-yAs/InxAl1-xAs QWs was motivated 

by their potential for electronic device applications. Growth of strained-well (y=0.64, 

x=0.52) and strained-well-and-barrier (y=0.64, x=0.45) remotely doped pseudomorphic 

InyGa1-yAs/InxAl1-xAs QWs along with their mobility and density is described in this 

section. Since the compressive strain in the In0.64Ga0.36As well is balanced by the tensile 

strain in the In0.45Al0.55As barriers, the whole structure is dislocation free and therefore 

referred as a strain balanced structure. These QW structures in general exhibit higher 

densities. An attempt was also made to grow lattice matched InGaAs/InAlAs QW 
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structures with modulation doping by increasing the spacer layer thickness in order to 

obtain lower density (2-3×1011cm-2).  

 

3.2.1 The layer structures of remotely doped InyGa1-yAs/InxAl1-xAs QWs. 

 Remotely doped InyGa1-yAs/InxAl1-xAs structures were grown on semi-

insulating, on-axis, quarter of a 2� InP (001) substrates at or slightly above the oxide 

desorption temperature for InP. The growth rate of strained (y=0.64) and lattice matched 

(y=0.53) InyGa1-yAs channels was kept at ~0.53ML/s and ~0.63ML/s, respectively. The 

growth rate of the strained (x=0.45) and lattice matched (x=0.52) InxAl1-xAs barrier 

layer was kept at ~0.73ML/s and ~0.64ML/s respectively in these structures. A 15-20 

times higher As2 flux than the group III fluxes was used during the growth of all the 

structures. 

The typical layer structure for strained and strain balanced, modulation doped, 

pseudomorphic In0.64Ga0.36As/InxAl1-xAs QWs is shown in Fig. 3.8(a). Since the InP 

substrates are nearly lattice matched to the InyGa1-yAs/InxAl1-xAs QW structure, a 

100nm thick In0.52Al0.48As buffer layer which is lattice matched to InP was grown prior 

to the QW as shown in Fig. 3.8(a). A 10nm thick In0.64Ga0.36As QW layer was 

sandwiched between InxAl1-xAs (x=0.52, 0.45) barrier layers to obtain quantum 

confinement. A higher In percentage in the strained well with the strained In0.45Al0.55As 

barriers is expected to increase the mobility and the carrier confinement in this 

structure, respectively. A single Si -doped layer was placed in the upper InxAl1-xAs 

barrier a distance d (10nm, 18nm) above the well to provide the electrons to the well. A 
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second Si -doped layer placed in the In0.52Al0.48As layer near the surface provides the 

electrons to the surface states. A 10nm In0.53Ga0.47As cap layer was grown on the top to 

prevent the oxidation of the In0.52Al0.48As layer.  

 In lattice matched In0.53Ga0.47As/In0.52Al0.48As QWs, a 300nm In0.52Al0.48As 

buffer layer was grown prior to the 20nm In0.53Ga0.47As QW as shown in Fig. 3.8(b). A 

lower carrier density can be achieved by lowering the doping concentrations or by 

increasing the spacer layer thickness. Therefore a Si -doped layer, which provides the 

electrons to the well was placed a spacer thickness of 50nm above the QW.  The second 

Si -doped layer which provides the electrons to the surface states was placed a distance 

140nm away from the first -doped layer. A 20nm thick In0.53Ga0.47As cap layer was 

grown on the top.   
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Figure 3.8: The layer structure of (a) strained /strain balanced In0.64Ga0.36As QW and (b) 

lattice matched In0.53Ga0.47As/In0.52Al0.48As QWs. The strain balanced (strained) QWs 

are realized with In0.45Al0.55As (In0.52Al0.48As) barriers in structure (a). 
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In0.64Ga0.36As/InxAl1-xAs QWs along with the channel growth temperature and the 

spacer layer thickness. 

 

sample x d 

(nm) 

mobility (cm2/Vs) density (×1012cm-2) Tsub 

(C) 300K 25K 300K 25K 

P103 0.45 10 6,500 11,380 1.22 1.05 420 

P110-c 0.52 10 1,300 730 (32K) 0.57 0.47 (32K) 460 

P122 0.45 18 11,680 53,790 1.10 1.05 505 

P123 0.45 10 10,800 40,830 1.25 1.20 505 

 

Table 3.3: The average mobility and density for strained (x=0.52) and strain balanced 

(x=0.45) In0.64Ga0.36As/InxAl1-xAs QWs along with the growth temperature. 

  

 Both strained and strained balanced In0.64Ga0.36As QW structures grown at low 

temperature (<480C) showed poor electrical properties. Low temperature growth can 

result in the incorporation of background impurities into the growing film and degrade 

their electrical properties. Strained balanced In0.64Ga0.36As/In0.45Al0.55As QW structures 

grown at higher temperatures on the other hand have shown better transport properties 

at all temperatures.  

The highest mobility and density were observed for the structures grown at 

higher substrate temperature (505C) with an 18nm spacer layer in comparison to the 

structure with a 10nm spacer. A room temperature (low temperature) mobility of 
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11,680cm2/Vs (53,790cm2/Vs) and density of 1.11012cm-2 (1.01012cm-2) was 

observed for the structure with an 18nm spacer, due to the reduced ionized dopant 

scattering.  

All lattice matched In0.53Ga0.47As/In0.52Al0.48As QWs had a 50nm spacer layer 

thickness and were grown at a fixed substrate temperature of 500C with different 

doping densities. The electron mobility and density obtained for a few low-doping 

lattice matched InGaAs/InAlAs QWs are listed in Table 3.4. 

 

sample -doping 
(×1011 cm-2) 

mobility 
(cm2/Vs) 

density 
(×1011cm-2) 

well surface 300K 77K 20K 300K 77K 20K 

P219 5.7 20.5 7,400 13,200 12,900 12.1 8.5 8.0 

P231 4.1 13.8 9,370 27,800 17,500 3.3 3.8 2.0 

P234 4.6 13.8 9,200 29,600 
(65K) 

26,900 3.8 2.8 
(65K) 

2.8 

 

Table 3.4: The average mobility and density for lattice matched 

In0.53Ga0.47As/In0.52Al0.48As QWs along with the doping density for the well and surface 

are listed.  

 

Mobilities of lattice matched structures were lower than those of the strain 

balanced InGaAs QW structures at all temperatures. The highest mobility of 

9,400 cm2/Vs was observed in structure P231 with the density of 3.31011cm-2 at 300K. 

The highest low temperature mobility of 29,600 cm2/Vs was observed in structure P234 
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with a density of 2.81011cm-2 at 77K. The temperature dependent mobility and density 

are shown in Fig. 3.9. Degradation in the mobility has been observed in these QW 

structures for temperatures below ~77K. Achieving higher mobility with lower carrier 

density (2-3×1011cm-2) was challenging due to the large spacer layer thickness and/or 

due to the lower doping density. 

 

 

Figure 3.9: (a) Electron mobility and (b) density of a few low-doping lattice matched 

In0.53Ga0.47As/In0.52Al0.48As QWs grown on InP(001) substrates. 
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3.3 High mobility InyGa1-yAs QWs for high- dielectric based MOSFETs 

The advantage of having high mobility In0.53Ga0.47As as a channel material over 

GaAs and Si in MOSFET technology has long been recognized [28, 29]. As Si-

MOSFET scaling has reached the fundamental limit, attention has focused on 

alternative high mobility, smaller band gap III-V channel materials such as InSb and 

InyGa1-yAs and alternative high dielectric constant (high-) materials such as HfO2 

instead of SiO2 for Si-MOSFETs. A high density of interfacial states due to the absence 

of an ideal native oxide, unlike SiO2, for Si has been the key issue in III-Vs being used 

as the channel in MOSFETs. High quality and good thermal stability of the gate 

dielectric are necessary to passivate the interface states and prevent Fermi level pinning 

at the III-V/gate dielectric interface [30]. Much research has been devoted towards 

realizing a high quality thermodynamically stable insulator/III-V channel interface.  

Ga2O3 [31] and Al2O3 [32] dielectrics and passivation techniques using Si [33] or 

Ge [34] interface passivation layers (IPLs) on GaAs or low In content In0.2GA0.8As have 

been studied. However, only a few studies have been done on small band gap channel 

materials such as InSb, InAs and high In content InyGa1-yAs with high- dielectrics such 

as HfO2 for MOSFET applications.  

In order to address this issue InyGa1-yAs channel MOSFETs were investigated 

using high- dielectrics and different passivation techniques by Intel Corp. First 

standard In0.53Ga0.47As/In0.52Al0.48As structures on InP substrates were grown, in order 

to estimate the mobility and concentration baselines for comparison with the improved 

structures. These transistor layer structures were provided to Intel and their 
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collaborators to deposit dielectric layers and fabricate MOSFETs.  Feedback from the 

results of the device performance was used to develop improved structures with high In 

content. Increasing x beyond 0.53 is expected to enhance electron-transport properties, 

which translate to higher cutoff frequency and higher gain. A brief summary of the 

layer structures grown for MOSFETs, evolution of dielectric integration and the results 

of the HfO2 based In0.53Ga0.47Aa channel MOSFETs are given in this section.  

 

3.3.1 Layer structure growth and characterization 

Undoped, n-doped, and p-doped In0.53Ga0.47As and In0.52Al0.48As layers were 

grown by MBE on 2 on-axis semi-insulating (SI) and doped (n, p - type) InP(001) 

substrates respectively. Undoped In0.53Ga0.47As/ In0.52Al0.48As epilayers grown on SI InP 

substrates were used for MOS capacitor fabrication whereas doped In0.53Ga0.47As 

channels and In0.52Al0.48As buffer layers grown on doped InP substrates were used for 

MOSFET fabrication. Figure 3.10 shows different layer structures grown for MOS 

capacitors and MOSFET fabrications. Si (Be) was used as the n-type (p-type) dopant. 

In0.53Ga0.47As and In0.52Al0.48As layers were grown at a rate of ~0.63ML/s  and a V/III 

ratio of 15:1 was maintained. Growth temperatures of 480C and 500C were used for 

the growth on doped SI substrates.  

An amorphous arsenic (As) cap layer was grown on some of the InGaAs 

structures shown in Fig. 3.10(a) that were used to study ex-situ dielectric depositions 

such as LaAlO3 [35] and Al2O3. An As cap layer prevents the formation of a native 

oxide and contamination during air transfer and minimizes interfacial defect density 
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[36]. The substrate heater was turned off after growth of the layer structure and the 

wafer was cooled down overnight inside the growth chamber prior to the As deposition. 

An arsenic cap layer was deposited by exposing the wafer to an As2 flux of 110-5 Torr 

for 3 (~300nm) to 1 (100nm) hours while being rotated very slowly for uniform 

deposition. The substrate temperature was increased to ~10C during the As deposition 

by heating from the hot arsenic cell. Calibrations of doping and In compositions were 

performed on 300nm-500nm thick uniformly doped In0.53Ga0.47As epilayers grown on 

SI InP(001) substrates by using Hall effect and HRXRD measurements (Chap. 2), 

respectively.  

 

Figure 3.10: Schematic of doped In0.53Ga0.47As/In0.52Al0.48As layer structures for (a) n-

channel and (b) p-channel MOS capacitors and (c) un-doped 

In0.53InGa0.47As/In0.52Al0.48As layers for MOSFET fabrication.  

 

 

N+  InP (001) 
substrate

100, 200, 400 nm 
In0.53Ga0.47As, n= 10

18

100nm
In0.52Al0.48As, n=3, 51017

(a)

SI InP (001) substrate

200nm 
In0.53Ga0.47As 

100, 150 nm 
In0.52Al0.48As

(c)

P+ InP (001) substrate

300nm 
In0.53Ga0.47As, 1= 10

17

100nm
In0.52Al0.48As, p=10

17

(b)



63 
 

3.3.2 Results and discussion (from papers) 

MOS capacitors (MOSCAPs) were fabricated with HfO2 dielectric layers 

deposited by physical vapor deposition (PVD) on the 100nm thick doped 

(n=11018cm-3) In0.53Ga0.47As channel structures shown in Fig. 3.10(a). These have 

been used to study the effect of post-deposition anneal (PDA) time on material and 

electrical characteristics of MOSCAPs with high- HfO2 [37].  It was found that 

compared to GaAs, high- dielectrics on high In content In0.53Ga0.48As channel 

MOSCAPs exhibit much higher quality interfaces with reduced Ga-O and As-O bonds 

after PDA and excellent capacitance voltage (C-V) characteristics with a thin equivalent 

oxide thickness (EOT) of ~1.1nm [37].  

The frequency dispersion of parasitic capacitance has been another issue for 

high- dielectrics on III-V channels since it is correlates with the interface density [38]. 

MOSCAPs fabricated on the structures shown in Fig. 3.10(a) with HfO2 and a Si 

interface passivation layer (IPL) deposited by PVD showed very low frequency 

dispersions (<1%), indicating a better interface quality with low interface trap density in 

comparison to those without a Si IPL at different PDA conditions [38, 39]. n-MOSFETs 

fabricated on the 200nm In0.53Ga0.47As structures shown in Fig. 3.10(c) using the ring-

FET transistor pattern and the same gate stack (HfO2 and Si IPL) deposited by 

PVD [38] and dc sputtering [40] also showed improved device performances.  Studies 

on effects of PDA temperatures and Si IPL thickness on n-In0.53Ga0.47As channel 

MOSFETs showed that the annealing temperatures are critical for determining the 

transistor performance [39].  
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MOSFETs and MOSCAPs were fabricated on 200nm and 400nm In0.53Ga0.47As 

structures with HfO2 and thin Ge IPLs [41]. Among these, MOSCAPs have 

demonstrated low frequency dispersions and low leakage current with Ge IPL. The n- 

and p-type MOSCAPs fabricated with HfO2 and a Ge IPL on the structures shown in 

Fig. 3.10(a) and (b) were studied with different PDA conditions and compared with n- 

and p-type InAs, GaAs and InSb MOSCAPs [42]. All n-type MOSCAPs with HfO2 and 

a Ge IPL showed good C-V characteristics with low frequency dispersion (<10%) 

compared to those without a Ge IPL. However, MOSCAPs on p-type GaAs and 

In0.53Ga0.47As exhibited poor C-V characteristics while p-type InAs and InSb exhibited 

good C-V characteristics. It was found that the poor C-V characteristics of p-MOSCAPs 

based on HfO2 and Ge IPL were due to strong Fermi level pinning and it became worse 

with Ge passivation.   
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Chapter 4 

2D Hole Systems in InSb and InyGa1-yAs Quantum Well Structures 

 

4.0 Introduction  

Complementary Metal Oxide Semiconductor (CMOS) technology is the most 

desirable technology for modern digital logic applications because of the lower static 

power consumption and high performances [1]. CMOS circuits require p-channel 

transistors with high hole mobility, in addition to n-channel transistors with high 

electron mobility. The Si/SiO2 material system has long dominated the CMOS 

technology due to the advantages of nearly matching electron and hole mobilities and 

well established fabrication procedures. The performance of III-V based field effect 

transistors (FETs) for the CMOS configuration are lagging behind, mainly due to low 

hole mobilities and a lack of suitable gate insulators.  

Because the narrower band gap leads to a smaller effective mass for the 

electrons and holes in III-V materials, higher mobilities are expected in these materials 

if the mean scattering time is similar. III-V quantum well (QW) materials with high 

electron mobilities, including InSb and InyGa1-yAs, however, exhibit relatively low hole 

mobilities, presumably due to a larger effective mass for holes. Heavy-hole (HH) and 

light-hole (LH) valence bands are degenerate at the  point in a bulk III-V 

semiconductor. In a QW, the degeneracy can be lifted by the strain and the confinement 

in a way that increases the hole mobility. Biaxial compressive strain is introduced into 
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an InSb QW with an intentional lattice mismatch between the InSb well and AlxIn1-xSb 

buffer/barrier layer in a controlled way by choosing the appropriate Al composition (x). 

Biaxial compressive strain is introduced into an InyGa1-yAs QWs by slightly varying the 

indium composition (y>0.53) in the channel. A study of the dependence of hole 

mobility on structural parameters is described in this chapter, with the goal of achieving 

high hole mobility in InSb and InyGa1-yAs QWs. 

The chapter is organized as follows. First, an experimental study of the effective 

mass of holes in InSb QWs with different strain, confinement and carrier densities is 

reported. The smallest hole effective mass of 0.017me is observed in our InSb QW with 

a 1.05% compressive strain [2]. The hole mobility in the strain engineered QW can be 

further increased through improvement in crystal quality with minimal defects and other 

irregularities, via better buffer layer design. Next, the effect of the buffer layer structure 

on hole mobility in p-InSb QWs will be discussed. 2D hole systems in InyGa1-yAs QWs 

were realized by remotely doping the InxAl1-xAs barriers with Be. The mobilities and 

densities are reported at the end of the chapter.  

 

4.1 Effect of strain and confinement on the valence band of III-V QWs 

The valence band structure in a bulk III-V semiconductor consists of a highly non-

parabolic heavy-hole (HH) band, a light-hole (LH) band and a split-off band which is 

shifted far away in energy [3]. The HH band and the LH hole band are degenerate at the 

center of the Brillouin zone, and both bands are occupied resulting a lower hole 

mobility. The strain and confinement in a QW lifts the degeneracy in an interesting 
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way. In the (001) growth direction, the HH (LH) band has a heavier (lighter) effective 

mass. In other words, the “heavy” and “light” names correspond to the mass in the 

growth direction. 

 

Figure 4.1: Schematic diagram of the relevant hole sub-bands for a III-V QW. The 

hole energy is plotted versus the hole wave vector for in-plane motion. The upper (HH) 

and lower (LH) curves describe holes that are light and heavy, respectively for in-plane 

motion. Expected anti-crossings are shown in dash lines. 

 

The quantum confinement induced by the narrow channel width will lift the 

degeneracy as shown schematically in Figure 4.1. Because the higher-energy band (HH) 

has a lighter hole mass in the plane of the QW while the lower-energy band (LH) has a 

heavy hole mass in the plane of the QW, the hole mobility can be significantly 



E

‘anti‐crossing’
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enhanced by confinement if only the higher energy band is occupied in a QW channel 

since the in-plane mass of the higher band is lighter. 

Biaxial strain breaks the cubic symmetry of III-V semiconductors and alters the 

band structure. Biaxial compressive strain splits HH and LH bands such that the 

effective mass of the higher energy band (HH) in Figure 4.1 is lighter in the in-plane 

direction and heavier in the growth direction similar to effect of the confinement. 

Therefore in order to maximize the hole mobility, both biaxial compressive strain and 

confinement should be maximized to induce a large energy separation between the 

maxima for the two bands  [Figure 4.1]. However, the “anti-crossings” of the two 

bands can add significantly to their non-parabolicity, resulting in mixing of the heavy 

and light characters when close to the anti-crossing points as shown in Figure 4.1. 

Therefore, anti-crossings of the bands significantly affects the hole mobility as the 

Fermi level gets close to the anti-crossing points. 

 

4.2 Effect of Strain, confinement and density on effective mass of Holes in InSb QWs 

   Because the energy separation of the maxima for the two bands  (Figure 4.1) 

increases with increasing biaxial compressive strain and decreasing well width as 

described in section 4.1, one can conclude that the effective mass at the Fermi level will 

depend on strain, well width, and hole density. The effective mass of holes in strained 

InSb QW structures was studied and the results are discussed in this section.   
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4.2.1 Layer structures 

The five QW structures in this study were grown on semi-insulating 2 off, 

GaAs (001) substrates by molecular beam epitaxy [4].  The layer sequences are shown 

in Figure 4.2.  For the sequences shown in Figure 4.2 (a) and 4.2 (b), the Be -doped 

layer near the surface provides holes to surface states, while the other -doped layer 

supplies holes to the nearby InSb QW.  For the sequence shown in Figure 4.2 (c), a 

single -doped layer supplies holes to both the surface states and the QW.  A two-

dimensional hole system is confined within the InSb QW (7, 9, or 15 nm thick) by 

Al0.20In0.80Sb barrier layers.  The InSb QW is compressively strained to the lattice 

constant of the relaxed 2 m-thick AlxIn1-xSb (x=0.15 or 0.20) buffer layer. Three QW 

structures (Structures A, B, and C) followed the layer sequence shown in Figure 4.2 (a). 

These structures had different hole densities in the well due to different doping densities 

and/or different values for d, the separation between the well and dopant layers.  The 

QWs in these three structures were 15nm thick and compressively strained by 0.8% to 

the lattice constant of Al0.15In0.85Sb.  The layer sequence for Structure D is shown in 

Figure 4.2 (b).  The hole density is similar to that in Structure B, but the QW is thinner 

(9 nm thick) and under more compressive strain (1.05% strain) due to the Al0.20In0.20Sb 

buffer layer.  The layer sequence for Structure E is shown in Figure 4.2 (c).  The hole 

density is similar to that of Structure C, but the QW is thinner (7 nm thick) and under 

more compressive strain (1.05% strain).  The separation between the two hole bands,  

in Figure 4.1, is due to strain and confinement.  Strain alone would make  equal to 70 

meV and 93 meV for Structures A-C and D-E, respectively [5].   
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Figure 4.2: The layer sequences for the p-type InSb QWs in this study.  The dashed 

lines indicate Be -doped layers.  Structures A and B are described by (a) with d=20 

nm; Structure C is described by (a) with d=10 nm. Structures D and E are described by 

(b) and (c), respectively.  

 

4.2.2 Measurements 

The hole density and the hole mobility for all five structures were deduced from 

van der Pauw and Hall effect measurements [sec. 2.2].  The measurements were made 

in a closed-cycle refrigerator at temperatures from 300K to 20K, and the magnetic field 

was swept between 0 and 0.12T.  Electrical contact was made at the corners of square 

samples (8 mm × 8 mm) by annealing indium-zinc contacts at 230°C for 7 minutes in a 

20% H2:80% N2 atmosphere.  The density and mobility values at 20K and 300K are 
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listed in Table 4.1, along with the values for QW width and strain.  The hole densities in 

all five structures are low enough that one can expect only the higher energy band of 

Figure 4.1 to be occupied at low temperature. 

 

Structure W (nm) Strain (%) p (1011cm-2) 

20K [300K] 

h (cm2/Vs) 

20K [300K] 

m* (me) 

A (t196) 15 0.80 2.1 [12.7] 24,500 [260] 0.046 

B (t194) 15 0.80 3.1 [11.1] 26,300 [460] 0.055 

C (t198) 15 0.80 5.1 [9.8] 21,500 [570] 0.083 

D (t212) 9 1.05 3.5 [7.1] 20,000 [660] 0.062 

E (t241) 7 1.05 4.7 [ ... ] 55,600 [ ... ] 0.017 

 

Table 4.1: Structural and electronic parameters of p-type InSb QWs at 20K and 300K.  

W is the width of the quantum well.  At 300K, Structure E had an electron density of 

2.9×1011 cm-2 and an electron mobility of 11,200 cm2/Vs. 

 

The effective mass of the holes was deduced from magneto-optical 

measurements in the Faraday geometry using a Fourier transform infrared spectrometer, 

with an applied magnetic field up to 3T, and at a temperature of 4.2K.  The magnetic 

field and the propagation direction of the incident photons were perpendicular to the 

QW plane.  A bolometer was placed below the QW structure to measure the intensity of 

the transmitted infrared light.  At low magnetic fields, holes undergo cyclotron orbits 

with a cyclotron frequency of c=eB/m*, where m* is the hole effective mass.  A 

minimum in the transmitted intensity is expected when the frequency of the incident 
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photons is in resonance with the cyclotron frequency, or equivalently when the photon 

wavenumber is K=(e/c)(B/m*) where c is the speed of light.  Therefore a value for m* 

can be deduced from a measurement of the transmission minimum as a function of B. 

 

4.2.3 Results and Discussion 

Figure 4.3 shows cyclotron resonance data for Structures A and E.  The 

transmission spectrum at a constant magnetic field T(B) is normalized by dividing by 

the zero-field transmission spectrum T(0), and plotted as a function of the photon 

wavenumber.  We observed a well-defined single cyclotron feature in a normalized 

transmission curve with 1.0TB3.5T.  The low-B limit for observing cyclotron 

resonance is determined by the requirement that a complete cyclotron orbit is made 

before a hole is scattered, which requires that B1, or by the spectrometer’s beam 

splitter, which absorbs light with K below ~30 cm-1.  Since quantum mechanical effects 

are stronger at high B (the discrete spin-split Landau levels are well resolved), our semi-

classical interpretation would be less valid.   

Despite the limited B and K ranges for observing semi-classical cyclotron 

resonance, enough data were collected to deduce the hole effective mass in all five QW 

structures.  Figure 4.4 shows a plot of the observed cyclotron resonance positions for 

the five QW structures, as functions of B and K.  For each set of points, an effective 

mass can be deduced from a linear fit that is forced to intersect the origin.  The deduced 

effective mass for each structure is listed in Table 4.1.  We will now compare the 

experimentally deduced values with theoretical expectations. 
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Figure 4.3: Normalized transmission through a p-type InSb QW, versus incident photon 

wavenumber for (a) Structure A and (b) Structure E with an applied magnetic field as 

indicated. 
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Figure 4.4: Cyclotron resonance wavenumber as a function of applied magnetic field for 

five QW structures. The effective mass for the holes is between 0.017me and 0.083me 

and depends on the strain and confinement. 

 

The effective mass for the three structures (A, B, and C) with the same well 

thickness and compressive strain, increased with increasing hole density. This 

qualitative dependence is expected from Figure 4.1, where the anti-crossings should 

increase the effective mass of the higher band as the Fermi level approaches the anti-

crossing points.  Figure 4.5 (a) and (b) show a schematic of the energy band structures 

for a p-type QW with the Fermi level for low and high hole densities, respectively. The 
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Fermi level is closer to the lower energy band which has higher effective mass for in-

plane motion.  

 

 

Figure 4.5: Schematic of energy band diagram of a p-type InSb QW with (a) low and 

(b) high hole densities. For low hole densities the Fermi level is closer to the upper 

energy band (a) which has a light in-plane hole mass, whereas for high hole densities 

the Fermi level is closer to the lower energy band which has a heavy effective mass for 

the in-plane motion. 

 

The hole density in Structure D (p=3.5×1011cm-2) is similar to that in Structure 

B (p=3.1×1011cm-2), but the QW is thinner and under more compressive strain.  The 

measured effective mass in Structure D (0.062me where me is the mass of an electron in 

free space) is slightly heavier than in Structure B (0.055me).  This behavior is expected 

for low hole densities where the dominant effect of increased strain and confinement 

would be to increase the effective band gap, the energy difference between the ground-

state subbands for electrons and holes.  One should expect an increase in the band edge 
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masses for analogous reasons to the increase in carrier masses in III-V materials with 

increasing band gap.   The hole density in Structure E (p=4.7×1011cm-2) is similar to 

that in Structure C (p=5.1×1011cm-2), but the QW is thinner and under more 

compressive strain.  The measured effective mass in Structure E (0.017me) is much 

lighter than in Structure C (0.083me).  This behavior is expected for high hole densities 

where the dominant effect of increased strain and confinement would be to increase the 

energy where the anti-crossings occur.  Moving the anti-crossings further from the 

Fermi energy reduces their effect on the curvature of the band at Fermi level.  This 

would result in a lighter effective mass.  

The Luttinger model is one of the few analytical models that predicts the in-

plane hole masses [3, 6].  It does not explicitly account for well width, strain, or the 

anti-crossings between the two valence bands.  According to that model, the masses for 

the two bands in Figure 4.1 would be me/(1+2)=0.019me and me/(1-2)=0.050me 

where 1=36.13 and 2=16.24 are empirical parameters determined from bulk InSb 

measurements [7].  The expected anti-crossings between the two bands should result in 

a mass for the upper band (Figure 4.1) that varies from 0.019me near the bottom of the 

upper band to 0.050me as the bottom of the lower band is approached.  Our measured 

values span a wider mass range (0.017me for Structure E to 0.083me for Structure C) 

than predicted by the Luttinger model. 

In Reference 8, the effective mass for holes in In0.20Ga0.80As QWs under biaxial 

compressive strain was measured using cyclotron resonance.  An observed m*2~p 

dependence was explained by a two-band model.  The intercept of a plot of m*2 versus p 

yielded a value for the effective mass at the band edge.  The m* values measured in our 
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cyclotron resonance experiments do not show the p dependence predicted by the two-

band model.   

Radosaljevic et at. [9] report the results of an 8-band kp model that explicitly 

incorporates strain in an InSb QW.   The upper limit for the effective mass of the upper 

band was chosen to be the bulk value for the heavy hole mass (0.26me) rather than the 

value from the Luttinger model (0.050me).  It is difficult to make a quantitative 

comparison between our measured effective masses with the calculation because the 

well width for the calculation was not disclosed and the number of calculated data 

points in our density range is small.  However, the calculation does correctly predict our 

observed strain dependence at low density (Structures B and D) and high density 

(Structures C and E).  A rough interpolation of their calculated data points yields a 

value of ~3-5×1011cm-2 (~20 meV and ~0.04 me) for the crossover between low and 

high density behavior, in agreement with our observations.   

One would expect that a structure with a lower effective mass would have a 

higher mobility if the mean scattering time is similar for all the structures grown.  

Indeed, Structure E has both the highest mobility and lowest effective mass at low 

temperature.  However, the effects of scattering, primarily by defects [10] and ionized 

dopants at low temperatures may not be the same in all the grown layers.  This would 

explain why higher low-temperature mobility does not perfectly correlate with a lower 

effective mass.   

The hole mobility at 300K is much lower than implied by the ratio of the 

measured effective mass for holes to the electron effective mass (~0.02 me).  This may 

be due to the occupation of higher-energy hole subbands (within both the heavy and 
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light bands), which are expected to have a heavier effective mass than measured at the 

Fermi level.  The average effective mass of the holes in the different subbands at 300K 

may have a different dependence on strain, confinement, and hole density than does the 

Fermi-level mass measured at 4.2K.  This would explain why Structure D has a higher 

mobility than Structures A-C at 300K, but not at 20K.  More experiments are required 

to determine why Structure E, which contains less doping than Structures A-D, is n-type 

at 300K.  

In summary, our measurements of the effective mass of holes in InSb QWs 

(0.017 me to 0.083 me) indicate a strong dependence on hole density, strain, and 

confinement.  A promising candidate to explain our data is an 8-band kp or Luttinger 

model that incorporates strain and confinement [9, 11].  The measured effective masses 

are lighter than previously reported for other III-V QWs at comparable hole density, 

including GaAs (>0.5me [12]), In0.20Ga0.80As (>0.19me [8]), and InxGa1-xSb (0.1me [13]) 

QWs.  

 

4.3 Hole mobility in compressively strained InSb QWs 

 InSb is an attractive channel material for n-type electronic devices because of 

the high electron mobility. We have achieved room-temperature electron mobility of 

44,700cm2/Vs for a QW made of InSb as discussed in Chapter 3. A room temperature 

hole mobility of 700cm2/Vs was reported by our group for an InSb QW with 1.05% 

strain and remote doping with Be [4]. The fabrication and performance of p-type InSb 

QW FETs was reported at about the same time by researchers at Intel and QinetiQ [9]. 

They achieved room temperature hole mobility of 1,230cm2/Vs for an InSb QW with 
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1.9% strain. These mobilities are higher than the reported hole mobilities for InyGa1-yAs 

(260cm2/Vs [14], 265cm2/Vs [15], 380, 390, and 400cm2/Vs [16] with x=0.2, 0.65, 

0.73, 0.77, 0.82 respectively). However, these mobilities are still lower than the hole 

mobilities observed in In0.40Ga0.60Sb QW (1500cm2/Vs) [13] or in Ge QW 

(3100cm2/Vs) [17].  The key concepts behind enhancing the hole mobility in Ge, InSb, 

or In0.40Ga0.60Sb are the remote doping, quantum confinement and strain engineered 

QW structure.  

The energy splitting  between the two bands as shown in Figure 4.1 can be 

further increased by decreasing the QW thickness (10-5nm) and by increasing the 

compressive strain in the QW. Simulation studies on strain dependent band structure 

show that the hole mobility can be further improved up to ~1600cm2/Vs in InSb QWs 

by increasing the biaxial compressive strain up to ~2% compared to QWs made of 

GaAs or GaSb [18]. Theoretical calculations have shown that biaxially compressively 

strained InSb can provide the highest hole mobility at room temperature with a SiO2 

gate insulator compared to Ge, GaSb or In0.70Ga0.30As with same hole density, but 

In0.70Ga0.30As also exhibits a promising mobility enhancement [19].  

 

4.4 Improved 2D hole systems in InSb QWs 

Structure E, which contains a single doping layer and a  metamorphic Al0.20In10.80Sb 

buffer layer with an Al0.05In0.90Sb initial layer, had the smallest effective mass and the 

highest hole mobility at low temperature. Compared to Structures A-D with double 

delta doped layers, having a single doping layer in structure E may be advantageous in 
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avoiding parallel conducting paths. However, Structure E showed n-type conductance at 

room temperature. A series of compressively strained InSb QWs with a single Be delta 

doping layer, and AlxIn1-xSb buffer layers (x= 0.2-0.25) were investigated with an initial 

buffer layer with different Al compositions and thicknesses, to investigate the cause. All 

the p-type InSb QWs grown on GaAs(001) substrates are listed in Appendix B. A study 

of the effect of interlayers and the Al composition of the interlayers on defect reduction 

in n-type InSb QWs, have previously been done by our group [20]. It has been observed 

that the interlayers with 15% difference in the Al composition had 59% lower TD 

density compared to the non-interlayer structure and hence improve the low temperature 

electron mobility [20]. The effect of the initial buffer layer composition, and the 

thickness on hole mobility and density in p-type InSb QWs was also studied and are 

described in this section.   

 

4.4.1 Layer structures of strained p-type InSb QWs 

The layer structures were grown on semi insulating GaAs(001) 2 off substrates 

by MBE. The layer sequences are shown in Figure 4.6. For all the structures, a single 

Be -doped layer provides holes to both the surface states and the QW. A two 

dimensional (2D) hole system is confined within the InSb QW (6 or 7nm thick) by 

Al0.20In0.80Sb (in structure F) or Al0.25In0.75Sb (in structures G-M) barrier layers. The 

InSb QW is compressively strained to the lattice constant of the relaxed 1.5-1.8m thick 

AlyIn1-ySb (y=0.20 or 0.25) buffer layer. An initial buffer layer of AlxIn1-xSb (x=0.07, 
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0.09, 0.10 or 0.15) was grown prior to the thick relaxed buffer layer and the QW 

structure. The thickness of the initial buffer layer is varied between 0 and 0.88m. 

 

 

Figure 4.6: The layer structures for the p-type InSb QWs. Structure F is described by 

(a). Structures G, H, I, and J are described by (b) with t1=0m, 0.3m, 0.5m, 0.88m 

respectively. Structures K, L and M are described by (c) with x=0.07, x=0.09 and 

x=0.15 respectively. 

 Structure F followed the layer sequence shown in Figure 4.6 (a). The QW 

thickness in this structure was 7nm thick and compressively strained by 1.05% to the 

lattice constant of Al0.20In0.80Sb, similar to Structure E. The initial buffer layer thickness 
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was 0.75m and the Al composition was 7%. This structure had a lower hole density 

due to the lower doping density. All the other structures, G-M had same doping density. 

The QW structures G-J followed the layer sequence shown in Figure 4.6 (b). In these 

structures a 7nm thick QW was compressively strained by 1.32% to the lattice constant 

of a 1.8m thick relaxed Al0.25In0.75Sb buffer layer. Structure G had no initial layer and 

Structures H, I, and J had an Al0.10In0.90Sb initial layer with a thickness of 0.3, 0.5 and 

0.88m, respectively. Structures K-M followed the layer sequence shown in Figure 4.6 

(c). The QW was compressively strained by 1.32% to the lattice constant of 

Al0.25In0.75Sb, similar to Structures G-J but the Al composition in the initial layer was 

varied between 7% and 15%. Structure K had a 0.8m thick Al0.07In0.93Sb initial layer 

and a 1.5m thick Al0.25In0.75Sb buffer layer. Structure L had a 0.9m Al0.09In0.91Sb 

initial layer and a 1.7m thick Al0.25In0.75Sb buffer layer. Structure M had a 0.8m thick 

Al0.15In0.85Sb initial layer and a 1.8m thick Al0.25In0.75Sb buffer layer.  

 

4.4.2 Results and Discussion 

 The mobility and density of the p-type InSb QW structures F-M at 20K and 

300K along with the structural parameters are listed in Table 3.2. We observed that the 

difference between the Al compositions of the initial and the thick relaxed buffer layer 

had a significant effect on the hole mobility both at room temperature and low 

temperature.  
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Structure 
W 

(nm) 

Strain 

(%) 

AlxIn1-xSb 

Initial layer 

composition 

(x) 

Initial 

layer 

thickness 

(m) 

Al0.25In0.75Sb 

buffer layer 

thickness 

(m) 

Density 

(1011cm-2) 

20K [300K] 

Mobility 

(cm2/Vs) 

20K [300K] 

F (T386) 7 1.06 0.07 0.75 1.80 +2.6 [-1.8] +70,000[-7380] 

G (T453) 7 1.32 0.00 0.00 1.80 +4.0 [+5.7] +11,900 [+900] 

H (T403) 7 1.32 0.10 0.30 1.80 +4.9 [+8.2] +24,700 [+770] 

I (T400) 7 1.32 0.10 0.50 1.80 +4.8[+19.0] +32,900 [+350] 

J (T396) 7 1.32 0.10 0.88 1.80 +4.7 [-6.0] +50,600[-1400] 

K (T388) 6 1.32 0.07 0.80 1.50 +3.6 [-2.2] +49,600 [-8080] 

L (T393) 7 1.32 0.09 0.90 1.70 +4.4 [-2.5] +52,200 [-4200] 

M (T447) 7 1.32 0.15 0.80 1.80 +3.9 [+5.8] +23,900 [+1050] 

 

Table 4.2: Structural and electronic parameters of the p-type InSb QW structures F-M at 

20K and 300K. W is the width of the QW. The (+) indicates holes and (-) indicates the 

electrons.   

All the structures without an initial layer were p-type at all temperatures, but 

showed lower hole mobility at low temperatures and high hole mobility at room 

temperature. The structures E, F and J-L with an initial layer (thickness between 0.75-

1.0 m) were n-type at 300K but had higher hole mobility at low-temperatures 

compared to the structures with no initial layer. The percentage difference between the 

Al compositions of the initial and the thick relaxed buffer layer of the structures E, F, J, 

K and L were 15%, 13%, 15%, 18% and 16% respectively.  Figure 4.7 shows hole 

mobility and density at 20K as a function of the difference between the Al compositions 
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of the initial and thick relaxed buffer layers.  Both high hole mobility 

(h=52,200cm2/Vs) and high hole density (p=4.4×1011cm-2) were observed in the 

structure with 16% difference between the Al compositions at the interface of the initial 

and thick relaxed buffer layers with similar thicknesses at 20K. This structure showed a 

factor of 4.4 higher hole mobility compared to the structure with no initial layer for the 

given strain and confinement at 20K. The observed high hole mobility at low 

temperature in the structures with 15-16% Al percentage difference at the interface 

could be due to the reduced TD defect density in the well.  

 

 

Figure 4.7: The effect of the Al percentage difference at the interface of the initial and 

thick relaxed buffer layers on hole mobility at 20K. 
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The thickness of the initial buffer layer also had a significant effect on the hole 

mobility. In Figure 4.8, the hole mobility and the density (a) at 20K and (b) at 300K are 

plotted as a function of the initial layer thickness for the structures G (with no initial 

layer) and H, I and J which had a 15% Al percentage difference at the interface between 

initial and thick relaxed buffer layers. A high hole density and mobility was observed in 

the structures with an initial buffer layer compared to the structures with no initial 

buffer layer at 20K. The hole density at 20K was relatively thickness independent, 

whereas hole mobility at 20K increased with increasing thickness of the initial layer. 

High hole mobility (h=50,600 cm2/Vs) and density (p=4.7×1011cm-2) were observed in 

the structure with 0.88m thick initial buffer layer. At 20K this structure had a factor of 

4.2 (1.5) higher hole mobility compared to the structure with no (structure with 0.5m) 

initial buffer layer. 

On the other hand the room temperature hole mobility showed a different 

dependence on the thickness of the initial layer in these structures.  As the thickness of 

the initial buffer layer decreases from 0.88m (Structure J) to 0.5m (Structure I) the n-

type behavior at room temperature changes to p-type and the room temperature hole 

mobility increases as the thickness is further decreased [Fig.4.8 (b)]. The n-type 

conductance at room temperature could be due to the thermally excited intrinsic carriers 

in the initial layer. In the structures with low Al compositions, the intrinsic carrier 

density decreases as the thickness of the initial layer decreases.  
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Figure 4.8: The effect of the initial buffer layer thickness on hole mobility (a) at 20K 

and (b) at 300K. The Al percentage difference at the interface was 15% for the 

structures with an initial buffer layer. 
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Figure 4.9 shows a plot of hole mobility and density as a function of the Al 

percentage difference at the interface of the initial and thick relaxed buffer layer at room 

temperature. Structure M with a 0.8m thick Al0.15In0.85Sb initial layer was p-type at all 

temperatures and had the highest hole mobility (h=1,050cm2/Vs) at 300K. Structure G 

(h=900cm2/Vs), with no initial buffer layer, had the next highest mobility at 300K. The 

percentage difference between the Al composition of the initial and thick relaxed buffer 

layer of Structure M was 10% and it was lower than that in structures which were n-

type at 300K. 16% room-temperature hole mobility improvement was observed in the 

structure with an initial layer compared to the non-initial layer structure.  

 

 

Figure 4.9: The effect of the Al percentage difference at the interface of the initial and 

thick relaxed buffer layers on hole mobility at 300K. 
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In summary, both hole mobility and density were further enhanced in the 

structures with an initial buffer layer, with a dependence on the percentage difference 

between the Al compositions and the thickness of the initial and thick relaxed buffer 

layer for a given strain and confinement. This may be due to the different defect 

densities and/or their propagation through the initial layer in to the QW, which may not 

be the same in the structures with different Al compositions and the thicknesses. The 

hole mobility and density at 20K in InSb QWs was enhanced by adding an initial buffer 

layer with the thickness > 0.8m and 15-16% difference in the Al compositions. The 

hole mobility at 300K was enhanced by adding an initial buffer layer with the difference 

in the Al compositions  10%. A high hole mobility of 1,050cm2/Vs was achieved in 

the improved p-type InSb QW with 1.32% compressive strain and a 0.8m thick initial 

buffer layer with a 10% difference in the Al compositions.  

 

4.5 2D Hole systems in InyGa1-yAs QWs  

Strained p-type InyGa1-yAs QWs with remotely Be-doped InP barriers on InP 

substrates [16], and GaAs barriers on GaAs substrates [8] have previously been 

reported. Lattice matched (y=0.53) and strained (y=0.65) p-type InyGa1-yAs QWs with 

Al0.52In0.48As barriers have also been reported. 2D hole systems were also realized by 

direct doping the InyGa1-yAs QW with Be [15]. A doped QW design may increase the 

ionized dopant scattering as these ionized dopants remain in the well and degrade the 

carrier mobility. To the best of our knowledge, no transport data were reported for p-

type InyGa1-yAs QWs with remotely Be-doped AlxIn1-xAs barriers. We have 
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investigated the doped barrier approach for p-type InyGa1-yAs QWs and the hole 

mobility and density measurements are reported in this section.  

 

4.5.1 Layer structures of p-type InyGa1-yAs/InxAl1-xAs QWs. 

A series of strain engineered p-type InyGa1-yAs with remotely Be-doped InyAl1-

xAs barriers were grown on on-axis, semi-insulating InP (001) substrates by MBE.  The 

layer sequences of the QW structures are shown in Figure 4.10. The well and the barrier 

layers were grown pseudomorphically on a 100nm thick In0.52Al0.48As buffer layer. 

Biaxial compressive strain was introduced into the InyGa1-yAs layer by slightly varying 

the In composition in the well or the InxAl1-xAs barrier layers (x  0.52), which are 

lattice matched to InP when y=0.53 and x=0.52. The 2D hole systems were confined 

within a 10nm thick well. The In composition, y in the InyGa1-yAs QW and that of x in 

the 20nm thick InxAl1-xAs barrier layers were 0.64 and 0.52 respectively, for the 

strained well structure. The Indium composition (y) in the well was further increased to 

0.64 and 0.75 with the In0.45Al0.55As barriers in order to further improve the hole 

mobility. The Be -doping layer which provides the holes to the well was placed at a 

spacer thickness of 10nm above the well in the upper barrier. Another Be -doped layer 

which provides the holes to the surface states was placed in the middle of the upper 

In0.52Al0.48As layer, followed by a 10nm thick In0.53Ga0.47As capping layer. A selective 

p-type InyGa1-yAs QWs grown on InP(001) substrates are listed in Appendix B. 
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Figure 4.10: The layer structure of a p-type InyGa1-yAs/InxAl1-xAs QW with y=0.64, 

0.75 and x=0.52, 0.45. 

 

4.5.2 Results and Discussion 

The hole mobility and density were determined by van der Pauw and Hall effect 

measurements [sec. 2.2] made in a closed cycle refrigerator at temperatures from 300K 

to 20K. The electrical contacts were made at the corners of a 8×8mm2 square pieces by 

annealing indium contacts at 400C for 7min in a 20% H2:80% N2 atmosphere. The 
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QW composition was observed. The temperature dependence of the mobility and the 

density for a p-type QW with y=0.64 and x=0.52 is shown in Figure 4.11.   

 

structure y x p (1011cm-2) 

25K [300K] 

h (cm2/Vs) 

25K [300K] 

P179 0.64 0.52 9.1 [20.0] 5,340 [140] 

P178 0.64 0.45 9.0 [19.0] 4,160 [130] 

P185 0.75 0.45 12.3 [11.8] 4,500 [230] 

 

Table 4.3: Structural and electronic parameters of the p-type InyGa1-yAs QWs with Be-

doped InxAl1-xAs barriers. 

 

 

Figure 4.11: The hole mobility and density versus temperature for a strained p-type 

In0.64Ga0.36As QW with Be-doped In0.52Al0.48As barriers. 
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The mobility in the p-type QW with y=0.64 and x=0.52 was ~9 (~70) times 

smaller at 25K (300K) than in an n-type QW with the same layer structure. Improved 

mobility and density were observed with increased strain. A hole mobility of 230 

cm2/Vs (4,500 cm2/Vs) was observed for the structure with y=0.75 and x=0.45 with a 

hole density of 11.8×1011 cm-2 (12.3×1011cm-2) at 300K (25K). The mobility in this 

structure was ~4 (~47) times smaller at 25K (300K) than in n-type QW with same layer 

structure. The low-temperature hole mobility for p-type InyGa1-yAs QW was as 

expected from the ratio of the hole masses (mh/me), however the room-temperature 

mobility was much lower than expected from the ratio of the mh/me. Population of 

higher subbands with larger mh* at 300K may be the reason for the observed low 

mobilities at 300K. The observed hole mobility in the p-type In0.75Ga0.75As QW 

(230cm2/Vs) was comparable to the reported hole mobility for InyGa1-yAs QW 

(260cm2/Vs) with y=0.2 [14] and (265 cm2/Vs) with y=0.65 [15] at 300K. This hole 

mobility, however, was lower than that of 380, 390, 400 cm2/Vs for y=0.73, 0.77, 0.82 

respectively [16] at 300K. Further optimization of the growth conditions and layer 

thickness in order to fully utilize the strain, would be needed to obtain higher hole 

mobility in our InyGa1-yAs QWs.  
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Chapter 5 

Epitaxial Growth of Elemental Sb Quantum Wells 

 

5.0 Introduction 

Since the 1980s, there have been several reports on the formation of antimony 

(Sb) thin films. An Sb film was evaporated on GaAs (110) [1, 2], InP (110) [2, 3] and 

InP (100) [4] for use as a capping layer or as a Schottky barrier. Efforts on the epitaxial 

growth of Sb on InSb (111) [5] and GaSb (111) [6-8] were also reported. InSb and 

GaSb are direct gap semiconductors whereas Sb is a semimetal with an indirect 

negative band gap. The motivation in Reference 6-8 was to develop the Sb/GaSb system 

as an indirect narrow gap/direct gap superlattice, presuming that sufficient quantum 

confinement would open up an indirect gap in the Sb layers. Since the Sb films in the 

initial research were restricted to a thickness greater than ~16 nm, the indirect gap in Sb 

was not observed.  Some subsequent research was reported on ultra-thin films of Sb on 

Si (111) [9, 10].  

Elemental Sb has gained more attention recently because calculations indicate 

that the inherently large spin-orbit coupling enables topological insulator (TI) behavior 

[11].  The large atomic number of Sb results in a large spin-orbit coupling for electrons 

in crystalline Sb and in compounds and alloys that contain Sb. TIs are a new class of 

materials that are electrical insulators in their bulk interior, but electrical conductors at 

their surfaces. Their conducting surface states are topologically protected from elastic 

backscattering [11], unlike those found in ordinary two-dimensional (2D) electron 
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systems. Although elemental bulk Bi and Sb are semimetals, particular alloy 

compositions of BiSb are semiconducting and these alloys were the first materials 

identified as three-dimensional (3D) TIs. While the semimetallic states in bulk Sb 

preclude TI behavior, recently topoelectronic phase transitions in Sb films as a function 

of film thickness have been predicted [12]. A semimetal-to-3D TI transition induced by 

quantum confinement is expected at a critical thickness of ~7.8 nm, a 3D TI-to-2D 

quantum spin Hall state transition at a critical thickness of ~2.7 nm, and a trivial 

semiconductor state for films thinner than ~1 nm [12]. The search for these topological 

phases has motivated our recent studies of atomically flat, ultra-thin Sb films.  

Sb crystallizes in a rhombohedral structure with the atoms forming in bilayers 

(BLs). Angle-resolved photoemission spectroscopy (ARPES) experiments have been 

performed on a 20-BL (~7.2 nm) Sb film prepared on a Bi-terminated Si (111) substrate 

[10]. The ARPES measurement revealed surface states that crossed in a Dirac cone at 

the zone center; however no transport measurements were reported.  The 2D TI 

properties of a different thin film TI (1-BL Bi thin films grown on Bi2Te3 substrates) 

have been experimentally observed using scanning tunneling microscopy (STM), 

scanning tunneling spectroscopy (STS) [13] and ARPES [14]. Our effort focuses on a 

comparable suppression of the semimetallic behavior by means of quantum 

confinement in order to enable electrical transport experiments that probe the 

topological surface states. A quantum-confined 2D TI was first discovered in a HgTe 

QW with Hg0.3Cd0.7Te barriers and was observed through transport measurements [15]. 

Zincblende GaSb can serve as a barrier material for rhombohedral Sb. Its 

bandgap (0.8 eV at low temperature) is larger than predicted for Sb layers thicker than 3 
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bilayers [12] and both GaSb (111) and Sb have a hexagonal arrangement of surface 

atoms with nearly identical nearest-neighbor distances [6]; therefore epitaxial growth of 

Sb is feasible on the (111) surface of GaSb. To study transport in any TI material, it is 

essential to minimize non-topological bulk and surface states originating from defects 

or unintentional dopants, as they can dominate the conductivity if their density is 

sufficiently high. The elemental composition of Sb may result in fewer crystalline 

defects compared to compounds (Bi2Te3, Bi2Se3) or alloys (BixSb1-x) which are also 

being studied as potential topological materials.   

We have developed a molecular beam epitaxy (MBE) procedure to realize ultra-

thin films of Sb with good crystalline quality. In the procedure used by earlier 

researchers [5-8], Sb was epitaxially grown by cooling the substrate while exposing it to 

a flux of Sb. However, the growth of Sb at intermediate temperatures increases the 

uncertainty in film thickness. Depositions of Sb thin films with controlled thicknesses 

have been discussed in the literature [2-4, 9], but the films were not grown by MBE and 

the thickness was not considered a critical variable for potential as a TI. In our revised 

procedure, Sb is epitaxially grown by opening the Sb shutter only after the substrate has 

reached a fixed low temperature. In this chapter, epitaxial Sb ultra-thin films grown 

using the revised procedure, including characterization of the structural and electrical 

properties will be described.  

The chapter is organized as follows. First, a brief review of topological 

insulators is given. Next, epitaxial Sb QWs grown using the revised procedure on 

GaAs(111)A substrates, and their structural and electrical properties are described. 

Resistivity measurements indicated that Sb wells with a thickness above ~2 nm were 
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metallic (relatively temperature-independent resistivity) whereas thinner wells showed 

insulating or semiconducting behavior (resistivity increased with decreasing 

temperature) [16]. In order to minimize the defects, the Sb QWs were grown on GaSb 

(111)A substrates. Then, the structural and electrical properties of the films grown on 

GaSb(111)A substrate are described.  

In order to measure the semiconducting band gap of quantum confined Sb using 

transport experiments, existing bulk conduction through GaSb epilayers need to be 

reduced. As a potential solution, AlSb which exhibits high resistivity was substituted as 

the barrier material for Sb. Preliminary results of our initial experimental investigations 

on epitaxial growth of Sb with AlSb barrier layers on a GaAs (111) substrate are 

reported at the end of the chapter.  

 

5.1 Brief review of Topological Insulators 

 Interest in topological insulators has exploded because of their exotic properties 

which can be used for future spintronics and quantum computing applications. These 

are a new class of materials that are insulating in the bulk due to an energy gap 

separating the valence and conduction bands, but conducting at the surface due to 

gapless states on the boundary. TIs can be 3D or 2D. The 3D TIs are bulk insulators 

with 2D metallic surface states, whereas the 2D TIs, which are also known as 2D 

quantum spin hall (QSH) state, have one-dimensional (1D) edge states. These 

surface/edge states are generated by the spin orbit interactions and are distinct from all 

other known states of matter, including quantum Hall (QH) state. The surface/edge 

states in a TI are protected from elastic backscattering by time reversal (TR) symmetry 
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[11]. These metallic states are “helical”, that is the spin of the carriers are locked in a 

right angle with its momentum. A pair of edge states at a given edge counter propagate 

with opposite spins [11]. The up spins propagate in one direction while down spins 

propagate in the other direction (Fig. 5.1). These helical edge states can be transmitted 

through even strong disorder by flipping the spin and changing the path by  - (- ) = 

2 full rotation in the disordered region [17].  

 

 

Figure 5.1: Pair of Edge states in the QSH insulator. (a) The interface between a QSH 

state and an ordinary insulator (ex. vacuum). Up and down spins propagate in opposite 

directions. (b) The edge states have Dirac like dispersion in the gap. Figure is adapted 

from ref. 11. 

 

Ordinary insulators and TIs mathematically distinguished by distinct topological 

invariants Z2 (0=0, 1) depending on the role of TR symmetry for spin ½ particles [11, 

18]. For 3D case, strong and weak TIs can be found. 0 = 0 identifies the weak TI 

whereas 0= 1 identifies a strong TI. The surface Brillouin zone has four TR invariant 

points 1,2,3,4 [Fig. 5.2(a) and (b)]. In a TIthese points are degenerate (Kramers theorem) 
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with up and down spins [Fig. 5.2(a) and (b)] and form 2D Dirac points [Fig. 5.2(c)] 

[11]. Whether an odd or even number of spin degenerate Dirac points are enclosed by 

the Fermi surface determines the strong or weak nature of the TI state. If the Fermi 

furface encloses an odd number of Dirac points, the surface become a strong TI [Fig. 

5.2(b)]. When the Fermi surface encloses an even number of Dirac points, the state is 

referred to as a weak TI [Fig 5.2(a)]. The surface states in a weak TI are not protected 

against strong disorder by the TR symmetry.  

 

 

 

Figure 5.2: Fermi circles in the surface Brillouin zone for (a) a weak TI and (b) a strong 

TI. The spin of the metallic surface states go around the Fermi circle required by the TR 

symmetry such that states at momenta k and –k have opposite spins (helical).  (c) In the 

strong TI the Fermi circle encloses a single (simplest case) Dirac point. Figure is 

adapted from ref. 11. 

 

In a QH state back scattering by an impurity is suppressed, but TR symmetry is 

broken in the presence of a magnetic field. The edge states give rise to quantized 

conductance, which take integer values in units of e2/h (1/25,813) at low temperature 

and high magnetic field. In a TI state spin-polarized spatially separated edge states 
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which form a single Dirac cone on the boundary will give rise to conductance (non-

quantized) even without a magnetic field [17]. In strong topological insulators, under an 

applied magnetic field  the surface Hall conductivity will be quantized in half integers, 

xy = (n+1/2) e2/h [19]. Half integer quantization of the Hall conductivity in strong 

topological insulators can be explained by the surface Dirac fermions whose sign of the 

effective mass plays an important role [17, 19, and 20]. The Hall conductance for 

massless Dirac fermions is (n + 1/2) e2/h [20]. This can be applied to the strong TI. Due 

to the spin texture the Dirac fermions in TI acquire a mass (Zeeman term) which opens 

a gap by breaking the TR symmetry on the surface (but not in the bulk) under an 

applied magnetic field [17, 19]. In a slab geometry the strong TI with a single Dirac 

point on the surface can be considered as an interface between two phases, the vacuum 

(conventional insulator) and TI. These two phases are shared by the 3D (2+1) Dirac 

fermions whose mass is equal but (+) on top and (-) on the bottom and leads to massless 

(gapless) Dirac fermions in between (on the surface) at zero energy. Therefore when the 

two surfaces share a single Dirac point and the Fermi level crossing the zero mode 

Landau level the surface Hall conductivity is half integer quantized. However, in the 

standard transport experiments, both surfaces will be measured in parallel doubling the 

half.  

Search for topological insulators is growing rapidly, since it was first discovered 

experimentally in HgTe quantum wells. Material compounds composed of heavy 

elements such as Bi, Sb, Te or Hg exhibit strong spin-orbit coupling which enables the 

topological insulator behavior. In HgTe QW with CdTe barriers, the bulk band 

inversion lead to the Dirac like dispersion of the surface bands revealing a 2D QSH 
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state, for the well thickness, d > 6.3nm [15]. A conductance plateau of 2e2/h was 

measured independent of the sample width indicating that the transport was at the edge. 

BixSb1-x was predicted to be a strong 3D TI for a certain range of composition, x (0.09 < 

x < 0.18) [19] and was the first experimentally discovered TI for the 3D class [21]. 

Topologically nontrivial surface states were mapped in an angle-resolved 

photoemission spectroscopy (ARPES). Later, it has been observed in the newer 

generation 3D materials such as Bi2Se3 [22], Bi2Te3 [23], and elemental Sb [10]. In all 

these cases the surface states with a single Dirac cone were mapped in ARPES or in 

STM. Because of the non-topological surface states due to the anti-site defects and 

intrinsic doping, the transport experiments in TI are challenging. Successful transport 

experiments have been performed on thin HgTe QWs [15] and 70nm thick, strained 

HgTe layer [24] by revealing 2D and 3D TI, respectively. Low carrier density in these 

materials lead to the bulk insulating regime at low temperature and observation of the 

QH effect from the TI states. Majority of these high quality TI materials are grown by 

the MBE. Our studies on searching for new TI in elemental Sb focus on suppression of 

the bulk semimetallic behavior of Sb by means of quantum confinement. Once the 

materials are available with sufficient purity in supporting the bulk insulating behavior, 

topological insulators will offer a platform to explore many new topoeltronic devices.  

 

5.2 Experimental Procedures 

5.2.1 Substrate preparation 

 The 2 inch diameter semi-insulating GaAs (111) substrates used in this study 

were double side polished with one side A and the other side B. Surface A (B) of the 
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GaAs(111) substrate is Ga (As) terminated with a single dangling bond per atom. The 

wafer was cleaved into four pieces by scribing on the back side or B side. Because these 

wafers were thinner (thickness ~300m) than usual 2 inch InP(001) or 2 inch 

GaAs(001) wafers (typical thickness> 325m) they did not fit very well within the 

spring plates which are made to hold 600m thick wafers. Therefore, a quarter of a 2 

inch GaAs (111)A wafer was loaded with another quarter of the same wafer in a stack 

to avoid the fluctuations of substrate temperature during rotation.  Each GaAs (111)A 

substrate was degased at 300C for ~12 hours at the heated station in the buffer 

chamber before loading into the growth chamber. The native oxide layer was desorbed 

(680C-720C) with an Sb2 over pressure. The substrate was annealed for 3-5min at a 

temperature of ~10C higher than the oxide desorption temperature.  

The 2 inch GaSb (111) wafers used in this study were ~1mm thick, n-type 

doped, only polished on the A side. The wafer was cleaved into ~1×1cm2 pieces by 

scribing on the back side and placing between two glass slides covered with particle 

free clean paper. Each GaSb (111)A substrate was degased at 250C for ~12 hours at 

the heated station prior to transferring in to the growth chamber. The native oxide layer 

was desorbed at ~450-460 C under an Sb flux. The substrate was then annealed for ~10 

and 5min at a temperature of ~10 and 20C higher than the oxide desorption 

temperature, respectively. 
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5.2.2 Epitaxial growth and post growth characterization 

All growths were performed in an Intevac Gen II MBE chamber equipped with 

an Sb cracker cell. The growth was monitored in situ by using reflection high energy 

electron diffraction (RHEED).  

Sb QW structures were structurally characterized through scanning electron 

microscopy (SEM), field-emission SEM (FE-SEM) and field-emission transmission 

electron microscopy (FE-TEM). Due to the absence of RHEED intensity oscillations 

during the deposition of Sb, the growth rate was determined from cross-sectional SEM 

measurements of thick Sb films with deposition times of 9 to 60 min. The thickness and 

structural parameters of one ultra-thin Sb layer was determined by cross-sectional TEM 

measurements. Some of the thicker Sb films were characterized through high resolution 

X-ray diffraction measurements (HR-XRD). 

The electrical resistivity of the Sb films was measured in the van der Pauw 

geometry using four-wire measurements in a closed-cycle refrigerator at temperatures 

from 300 to 20K. The electrical contact was made by pressing pure indium on the 

corners of square pieces with ~5 or ~8 mm long edges. The indium contacts were not 

annealed in order to avoid parallel conduction through the substrate. Ohmic contact was 

checked using two-wire measurements and confirmed through observation of linear 

current -voltage characteristics at 300, 77 and 20K.  
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5.3 Epitaxial growth of Sb: revised procedure on GaAs (111)A 

A series of Sb quantum well (QW) structures were grown on semi-insulating 

GaAs (111)A substrates with GaSb buffer layers.   The simple layer sequence for the Sb 

QW structures is shown in Fig. 5.3. The GaSb buffer layer and the GaSb cap layer are 

expected to act as barriers for carriers in the Sb layer.  

Prior to the growth of the Sb layer, a 0.5m thick GaSb (111) buffer layer was 

grown on the GaAs (111)A substrate at a temperature of ~100C below the oxide 

desorption temperature (580C), at a rate of 0.45 monolayers (ML) per second, and 

under an Sb2 rich condition with an Sb2:Ga beam flux ratio of ~4.1. The surface 

reconstruction gave rise to a 2×6 RHEED pattern that was maintained during the growth 

of the GaSb buffer layer as shown in Figs. 5.4(a) and 5.5(a).  

 

 

 

Figure 5.3: Layer sequence for the Sb QW structures grown on GaAs(111)A substrate. 

 

Following the original growth procedure, the substrate temperature was lowered 

to ~220°C under an Sb flux after closing the Ga shutter. The RHEED pattern changed to 

5×1 as the temperature was lowered [Fig. 5.4(b)] and gradually weakened as Sb began 

GaAs (111)A substrate

0.5μm GaSb buffer

1nm - 360nm Sb well

~3 - 6nm GaSb cap
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to nucleate on the cooling surface [Fig. 5.4(c)]. It eventually changed to 1×2 when a 

sufficiently thick Sb layer formed on the surface [Fig. 5.4(d)]. We found that this 

method was impractical for realizing ultra-thin films of Sb because it provided only 

limited thickness control. 

 

 

 

Figure 5.4: RHEED patterns along the 110 and 211 directions for a GaSb (111)A 

surface under an Sb flux at (a) ~580C after growth of the GaSb buffer layer, (b) 

~470°C with negligible Sb on the surface, (c) ~330°C with some Sb at the surface, and 

(d) ~220°C with complete Sb coverage of the surface.  

 

In the revised procedure, the Sb layer is epitaxially grown at a fixed substrate 

temperature. After closing the Ga shutter [Fig. 5.5(a)], the substrate temperature was 
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lowered under an Sb flux with the RHEED pattern changing from 2×6 to 5×1. The Sb 

shutter was closed at a substrate temperature of ~65C below this transition 

temperature. The substrate temperature was further lowered about ~200C without an 

Sb flux. The RHEED pattern remained 5×1 after the Sb shutter was closed [Fig. 5.5(b)] 

and during the additional temperature reduction.  The Sb shutter was reopened at a 

substrate temperature of ~300C or ~280C (~265C below the transition temperature) 

to grow an epitaxial thin Sb layer at this fixed temperature with a constant flux. A 

streaky 1×1 RHEED pattern observed after growth of the Sb layer indicated a smooth 

surface [Fig. 5.5(c)]. After deposition of the Sb layer, migration enhanced epitaxy [25] 

(MEE) was used to grow a GaSb cap layer [Fig. 5.5(d)]. For this capping layer the 

shutters were cycled multiple times through a two-step sequence (only Ga shutter open 

for ~1ML, followed by only Sb shutter open for ~1ML) or a three-step sequence (both 

shutters closed for ~1sec between steps 1 and 2). Uncapped structures were also grown 

in order to investigate the surface morphology of the Sb layer.  

 

5.3.1 Structural Properties and surface morphology 

Figures 5.6(a) and 5.6(b) show cross-sectional SEM images of two thick films of 

Sb deposited using the revised growth procedure at 300C. The Sb layer deposited for 

30 min (~174 nm) was almost exactly half as thick as the Sb layer deposited for 60 min 

(~360 nm), indicating that the growth rate of Sb is well controlled using the revised 

growth procedure. From these data, the growth rate of Sb was found to be 0.1 nm/sec 

for a substrate temperature of 300C.  A similar growth rate was found for a substrate 

temperature of 280C.  
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Figure 5.5: RHEED patterns along the 110 and 211 directions for a GaSb(111)A 

surface (a) at ~600C, after the growth of a GaSb buffer layer under an Sb flux, and a 

GaSb (111)A surface at ~ 280C without a Sb flux, (b) just before the Sb QW growth, 

(c) after the Sb QW growth, and (d) after the GaSb cap layer growth. The RHEED 

patterns in (d) were captured during a different growth than the patterns in (a), (b), and 

(c). 
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Figure 5.6: Cross-sectional SEM images of thick Sb films grown at 300C for 

deposition times of (a) 60 min and (b) 30 min. The images show thicknesses (~360nm 

and ~174nm) that scale well with deposition times. Roughness due to cleaving can be 

seen in the images.  

 

Figures 5.7(a) and 5.7(b) show cross-sectional TEM images of an ultra-thin Sb 

layer grown at 300C. As expected, 41 seconds of Sb growth resulted in a thickness of 

4.1 to 4.5 nm [Fig. 5.7(b)], indicating good control over the growth rate even for ultra-

thin layers. The image with higher resolution [Fig. 5.7(b)] shows well-ordered 

crystalline layers of GaSb and Sb and sharp interfaces. Within the experimental 

resolution, both GaSb and Sb have the expected crystal structures and the expected 

interatomic distances (3.52 Å for GaSb and 3.76 Å for Sb) along the growth direction. 

As evident in Figure 5.7(a) and 5.7(b), the TEM images also reveal trench features that 
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indicate that the GaSb cap layer does not completely cover the surface of the Sb film. 

An accurate measure of the surface coverage cannot be obtained from these images 

because of the limited size of the images and the thinness of the TEM specimen. 

 

 

 

 

Figure 5.7: Cross-sectional TEM images of an ultra-thin Sb structure showing (a) a 

larger area of the well-ordered ultra-thin Sb layer, and (b) sharp interfaces between the 

Sb and GaSb layers under high resolution. The images were captured from the 211 

direction. A non-uniform coverage of the GaSb cap layer is seen in both images. In (a), 

the image contrast due to a threading dislocation (TD) can be seen.    
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Three plan-view FE-SEM images are shown in Figure 5.8.  These images were 

obtained with an annular backscatter detector and with the electron beam at near normal 

incidence.  The contrast in this mode is particularly sensitive to crystalline defects and 

strain, in addition to compositional differences.  The shape of the triangular features 

appearing in all three FE-SEM images is due to the three-fold symmetry of the 

hexagonal arrangement of atoms on the surface.  The positions of dark point-like 

features correspond to the emerging edges of threading dislocations on the surface, 

which arise from the 7.8% lattice mismatch between the GaAs substrate and the GaSb 

and Sb epilayers. 

Figure 5.8(a) is a plan-view FE-SEM image of a larger area of the same 

structure analyzed in Figure 5.7.  The light gray/white areas are the GaSb cap layer, 

while the black areas are voids in the cap layer or defects in the Sb and/or cap layer.  In 

this image, the dark gray areas are also voids in the cap layer. The voids in the FE-SEM 

image of Figure 5.8(a) correspond to the holes seen in the TEM images of Figure 5.7. 

Quantitative analysis of Figure 5.8(a) yields a value of 85% for the surface coverage of 

the GaSb cap layer, which is higher than one might have expected from the TEM 

images. For this structure, the GaSb cap layer (~3 nm) was grown by the two-step MEE 

procedure at 300 C. In the series of structures grown at 280 C, a thicker GaSb cap 

layer (~6 nm) was deposited and the three-step MEE procedure was used.  The FE-SEM 

image of such a structure, with an Sb thickness of ~1.5 nm, is shown in Figure 5.8(b) 

and was obtained under different conditions than used in Figure 5.8(a).  As in Figure 

5.8(a), the light gray/white areas are the GaSb cap layer while the black areas are voids 
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in the cap layer or defects in the Sb and/or cap layer.  Quantitative analysis of Figure 

5.8(b) shows an improved coverage of 96% for the GaSb cap layer. 

In order to study the morphology of a thin Sb layer (nominally ~1.5 nm), an 

uncapped structure was grown at 280 C. The FE-SEM image of the uncapped structure 

is shown in Figure 5.8(c). Unlike in Figures 5.8(a) and 5.8(b), the bright areas 

correspond to the Sb layer while the dark areas are voids in the Sb layer or defects in the 

Sb or GaSb buffer layer. As expected, the number of threading dislocations (dark point-

like features) in Figure 5.8(c) is similar to the numbers seen in Figures 5.8(a) and 

5.8(b).  The closed-loop dark line contrasts, which were not seen in Figures 5.8(a) and 

5.8(b), are reminiscent of step edges.  In a similar uncapped Sb structure, we made a 

careful FE-SEM and atomic force microscopy (AFM) study of the same area. Line 

contrasts were observed in FE-SEM images using backscattered electrons while step 

edges were seen in AFM and low-energy (1 keV) FE-SEM images using secondary 

electrons. The line contrasts did not correlate with the step edges. We instead attribute 

the line contrasts to undulations in the strain of the thin Sb epilayer. Because bulk Sb is 

nearly lattice-matched to bulk GaSb, the appearance of the strain features is surprising. 

The interpretation may be additionally complicated by the presence of an oxide layer 

that forms during exposure of the Sb surface to air.  This oxide layer could induce the 

strain lines seen in the FE-SEM image of the Sb layer. Image analysis of Figure 5.8(c) 

yields a value of 93% for the surface coverage of the thin Sb layer.        
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Figure 5.8: Plan view FE-SEM images of the surface of an ultra-thin Sb structure (a) 

grown at 300 C with a ~3 nm GaSb cap layer, (b) grown at 280 C with a ~6 nm GaSb 

cap layer and (c) grown at 280 C without a GaSb cap layer. The thickness of the Sb 

layer is noted in each image. The surface morphology of both the cap layer and the Sb 

layer grown at 280 C is more uniform than for the capped structure grown at 300 C. 

The scale bar is 1 m long. 
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5.3.2 Electrical Properties 

Figure 5.9 shows the temperature dependence of the 2D electrical resistivity of a 

series of capped Sb layers grown at 280 C, with a nominal Sb thickness ranging from 1 

to 4 nm. The actual Sb thickness may be slightly larger (~0.6 nm) due to leakage around 

a closed Sb shutter or other systematic uncertainties.  

 

 

Figure 5.9: Two-dimensional electrical resistivity versus temperature for ultra-thin Sb 

layers with different thicknesses grown on GaAs (111)A substrates at 280C.   

 

In principle, the GaSb cap layer can affect the resistivity measurement by 

providing an alternate conduction path and/or by modifying the Fermi energy in the Sb 

layer. We have ruled out the former effect by measuring the resistivity of a 500 nm-

thick GaSb epilayer on a semi-insulating GaAs (111)A substrate.  Because the 
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measured resistivity was 8103 / at 20 K (4103 / at 300 K), we expect that a 6 

nm thick GaSb cap layer would have a resistivity of 6.7105 / at 20 K 

(3.3105 / at 300 K). This is a factor of 5 to 3300 larger at 20 K (33 to 1700 larger 

at 300 K) than the measured resistivity of the five structures represented in Figure 5.9, 

which indicates that conduction through the GaSb cap layer is negligible. 

Insight into the latter effect, Fermi energy modification, can be gained by noting 

that two of the five structures have a resistivity that is a factor of ~100 larger than the 

underlying 500 nm-thick GaSb layer.  This implies that a potential energy barrier (a 

Schottky barrier in the case of semi-metallic Sb) prevents carriers from going into the 

underlying GaSb layer. It is reasonable to assume that the GaSb cap layer also gives rise 

to a potential barrier that confines carriers to the Sb layer.  Hence the resistivity 

experiment predominantly measures conduction through the Sb layer rather than 

through the GaSb barriers. 

Because the electrical properties of a quantum well can depend on the 

composition of the barrier layers, the GaSb cap layer should fully cover the Sb layer for 

straightforward interpretation of the resistivity data. According to FE-SEM analyses, the 

GaSb coverage is similarly high for all the structures listed in Figure 5.9. Because the 

coverages of the Sb layer [(Figure 5.8(c)] and GaSb cap layer [Figure 5.8(b)] are both 

high and the uncovered areas are not clustered together, we assume that the electrical 

properties are similar to the behavior of a complete Sb layer with a complete GaSb cap.   

At a fixed temperature, the resistivity increases with decreasing film thickness 

for all five structures. At low temperature the resistivity is approximately inversely 

proportional to thickness for the films of thickness 2, 3, and 4 nm, as one would expect 
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for conduction dominated by a semimetal. The relative temperature independence of the 

resistivity for these three Sb structures is also consistent with semimetallic behavior.   

For Sb films with thicknesses of 1 and 1.5 nm, the resistivity increases with 

decreasing temperature and is significantly larger at any temperature than expected 

from extrapolating the thickness dependence of the 2, 3, and 4 nm-thick Sb layers. 

These behaviors imply that the 1 nm and 1.5 nm layers are insulating, or 

semiconducting. Recent first-principles calculations [12] have predicted insulating 

behavior for ~1 nm-thick layers of Sb and conducting behavior through topological 

surface states for a thickness of ~1 to 2.7 nm.  These predictions are consistent with our 

observations, but our resistivity measurements cannot discriminate between surface and 

interior conduction.  A qualitatively similar semimetal to semiconductor transition 

between ~30 and 20 nm was observed for Bi films grown on Si (111) and attributed to 

quantum confinement [26]. For our experiments on ultra-thin Sb films, Figure 5.8(c) 

implies that the high resistivity in the thinnest layers is not due to incomplete Sb 

coverage. Nevertheless, we have not ruled out the possibility that the observed 

insulating behavior is due to structural properties rather than quantum confinement. A 

firmer conclusion would be reached if theoretical modeling was performed to include 

the effects of GaSb barrier layers and explicitly calculate the expected electrical 

conductivity. 
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5.4 Epitaxial growth of Sb: revised procedure on GaSb(111)A substrate  

 In order to obtain Sb thin films with better crystalline quality, growth of Sb 

QWs was switched to GaSb(111)A substrates. We observed that the initial conditions 

for the epitaxial growth of Sb on GaSb (111) are on GaSb (111)A substrate is different 

compared to that of on GaAs (111)A substrate.  

A series of uncapped Sb ultra-thin films were grown on n-doped GaSb (111)A 

substrates with a GaSb homo-epitaxial buffer layer. The vacuum and the GaSb buffer 

layer are expected to act as the upper and the lower barriers respectively, for carriers in 

the Sb layer. The simple layer sequence for the Sb QW structures is shown in Fig. 5.10.   

 

 

 

Figure 5.10: Layer sequence for the Sb QW structures grown on n-GaSb(111)A 

substrate. 

 

Following the revised growth procedure on a GaAs (111)A substrate, first, a 

0.5m thick GaSb homo epitaxial layer was grown at a temperature of ~90-100C 

below the oxide desorption temperature, at a rate of 0.45 monolayers (ML) per second, 

and under an Sb2 rich condition with an Sb2:Ga beam flux ratio of ~4.1. The surface 

n-type GaSb (111)A 

substrate

0.5μm GaSb buffer

1nm – 2.9nm Sb well
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reconstruction gave rise to a 2×6 RHEED pattern that was maintained during the growth 

of the GaSb buffer layer as shown in Figure 5.11(a).  After growth of the GaSb buffer 

layer the wafer was annealed for ~5min at a temperature of 5-10C higher than the 

growth temperature under an Sb flux. The substrate temperature was then lowered 

under an Sb flux with the RHEED pattern changing from 2×6 to 5×1. The Sb shutter 

was closed at a substrate temperature of ~350C (~100C below this transition). The 

wafer was annealed without an Sb flux at this temperature until the RHEED pattern 

changes from 5×1 back to 2×6. A slower out-diffusion of Sb on the surface is necessary 

in order to obtain a smooth surface. The substrate temperature was further lowered 

~165C without an Sb flux. The RHEED pattern remained 2×6 during the additional 

temperature reduction and just before the QW growth [Fig. 5.11 (b)].  The Sb shutter 

was reopened at a substrate temperature of ~185C (~265C below the transition 

temperature) to grow an epitaxial thin Sb layer at this fixed temperature with a constant 

flux. A well-defined streaky 1×1 RHEED pattern observed after growth of the Sb layer 

indicated a smooth surface [Fig. 5.11 (c)]. Unlike on GaAs (111)A substrates, in order 

to obtain a smooth 2D crystal growth of Sb on a GaSb(111)A substrate the surface 

reconstruction of the GaSb surface needed to remain 26 prior to the Sb QW growth. 

The Sb growth attempted on a 5×1 reconstructed surface on a GaSb(111)A substrates 

(at Tsub=185C) gave rise to 1D Sb wires [27] instead of a 2D epitaxial layer, as 

indicated by the spotty RHEED pattern.  
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Figure 5.11: RHEED patterns along the 110 and 211 directions for a GaSb(111)A 

surface (a) at ~460C, after the growth of a homo-epitaxial GaSb buffer layer under an 

Sb flux, a GaSb (111)A surface at ~ 185C without a Sb flux, (b) just before the Sb QW 

growth and (c) after the Sb QW growth. 

 

5.4.1 Structural properties 

 Figure 5.12 shows a FE-SEM image of an uncapped ~1.5nm thick (15sec of Sb 

growth) ultra-thin film of Sb grown at 185C on an n-type GaSb(111)A substrate. The 

bright areas correspond to the Sb layer while the dark line contrasts are due to the strain, 

possible induced by the Sb oxide layer on the surface. Unlike in Figure 5.8 (c), 

threading dislocations indicated by dark point-like features are not seen in these images. 

The wide spatial distribution and the continuity of the strain lines and absence of voids 

on the surface indicate that the ultra-thin Sb layer is uniform and completely covers the 

surface. Threading dislocations, voids or defects on the Sb film are almost completely 
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removed by the growth on a lattice match GaSb(111)A substrate and further lowering 

the  growth temperature to 185C. 

  

 

Figure 5.12: Plan view FE-SEM image of the surface of an ultra-thin Sb structure 

grown at 185C without a GaSb cap layer on an n-type GaSb (111)A substrate. The 

surface morphology of the Sb layer shows uniform complete coverage.  

 

5.4.2 Electrical properties 

 Figure 5.13 shows the temperature dependence of the 2D electrical resistivity of 

a series of uncapped Sb QWs thickness ranging from 1.5nm to 3.2 nm, grown at 185C 

on GaSb(111)A substrates. All four structures had lower resistivities at temperatures 

above 200K than below 200K, in contrast to the films grown on GaAs(111)A, probably 

due to the lower defect density in the Sb films grown on GaSb substrates. As shown in 

Figure 5.13 the resistivity increases with decreasing film thickness for all four structures 
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indicating that the dominant contribution for the resistivity is from the Sb layer. At low 

temperature the resistivity is approximately inversely proportional to thickness for the 

films of thickness 2, 2.9 and 3.2 nm indicating that these films behave as semimetals. 

The relative temperature independence of the resistivity at low temperature for these 

three Sb films is also consistent with semimetallic behavior.  

The resistivity of the 1.5nm thick Sb film is larger than expected from 

extrapolating the thickness dependence of the 2, 2.9 and 3.2 nm thick Sb layers; 

however the resistivity is still relatively temperature independent at low temperatures. 

This behavior may indicate that the 1.5nm film grown on a GaSb(111)A substrate is 

also conducting, but through topological states as predicted by the calculations [12]. It 

is possible that the 1.5nm thick Sb film grown on a GaAs(111)A substrate goes 

insulating faster than the films grown on GaSb(111)A (assuming that the actual 

thickness is the same for both films). When grown on GaAs, the effective band gap 

would be increased by both confinement and the residual strain presence in the GaSb 

and Sb layers. These results do not contradict any of the claims made for Sb layers 

grown on GaAs substrate since the Sb film deposited for 10sec (~1nm) and 7sec 

(~0.7nm) show insulating properties (the resistivity data are not shown since the four 

wire resistance read negative values below 100K due to the high resistivity of these 

films).  

Figure 5.14 shows the 2D resistivity along with the four wire resistance along 

<211> (R12,43) and <110> (R23,14) directions for these uncapped Sb films. The 

anisotropy in the four wire resistance may be due to the defects in preferential directions 

and/or the irregular shape of the sample. However the four wire resistance along a 
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<110> direction slightly decreases with decreasing temperatures while that of along 

<211> is temperature independent for the 1.5nm thick film. This behavior may be 

associated with some structural phase change in the film but is currently under 

investigation. Figure 5.15 shows the carrier density at 20K for the Sb ultra-thin films 

grown on two different substrates as a function of the film thickness. The Sb thin films 

grown on GaSb(111)A had lower carrier density compared to the films grown on 

GaAs(111)A substrate. The high hole density which could be due to strong defect 

doping, and the lower mobility may be the obscure observation of TI states via transport 

measurement in these films. Further optimization of growth parameters and even 

thinner films will lead to lower bulk carrier density and increase the mobility in our Sb 

films.  

 

Figure 5.13: Two-dimensional electrical resistivity versus temperature for uncapped 

ultra-thin Sb layers with different thicknesses grown at 185C on GaSb (111)A 

substrate.   
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Figure 5.14: Four wire resistance along <211> (R12,43) and <110> (R23,14) directions and 

2D resistivity versus temperature for Sb QWs with different thicknesses grown on GaSb 

(111)A substrate at 185C. 
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Figure 5.15: A comparison of the carrier density at 20K with the layer thickness for the 

Sb films grown on GaAs(111)A and GaSb(111)A substrates. The Sb layers grown on 

GaSb(111)A substrate had no cap in contrast to the layers grown on GaAs(111)A 

substrates.   

 

5.5 Preliminary study of epitaxial growth of Sb on AlSb (111)A surfaces 

AlSb was substituted for GaSb, as the barrier layers for the carriers in Sb. The 

effect of strain induced by the 0.65% lattice mismatch in Sb/AlSb system, along with 

the confinement is expected to open up the bulk gap in Sb and thus reveal a 3D TI. The 

tensile strain induced by the 0.3% lattice mismatch between HgTe and CdTe had been 

the key parameter in opening up the gap in 70nm thick HgTe layer and hence reveal a 

3D TI [24]. 
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5.5.1 Epitaxial growth 

A 0.14m thick AlSb buffer layer was grown on GaAs (111)A substrate at a 

substrate temperature of ~100C below the oxide desorption temperature (580C), at a 

rate of 0.45 monolayers (ML) per second, and under an Sb2 rich condition with an 

Sb2:Ga beam flux ratio of ~4.1. The surface reconstruction gave rise to a 2×1 RHEED 

pattern that was maintained during the growth of the AlSb buffer layer. Similar RHEED 

patterns have been observed for AlSb growth on GaSb (111)A substrates and reported 

in Reference 28.  After closing the Al shutter the substrate temperature was lowered to 

300C under an Sb flux with the RHEED pattern changing from 2×1 to 2×6. The 

surface established a 1×1 pattern after 13min of deposition at this fixed substrate 

temperature, forming an epitaxial Sb layer. Further deposition of Sb resulted in poly-

crystalline growth as indicated by rings in the RHEED pattern. However, the 1×1 

RHEED pattern was recovered a few seconds after closing the Sb shutter. A GaSb cap 

layer was grown by the two-step MEE procedure at 300C. 

Sb growth was also attempted by pre-cooling the substrate without an Sb flux on 

a AlSb (111)A surface at a fixed substrate temperature of 270C. The RHEED pattern 

remained 2×1 after closing the Sb shutter at 480C and during the further temperature 

reduction to 270C. Poly-crystalline growth resulted after 18s of Sb deposition at this 

temperature as indicated by the rings in the RHEED pattern. This may be because of the 

roughness on AlSb surface due to the out diffusion of Sb at higher substrate 

temperatures during the pre-cooling or due to the lattice mismatch between the AlSb 

and GaAs (111)A substrates.  
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5.5.2 Results 

Unlike GaSb, an AlSb epilayer grown on GaAs (111)A substrate showed a 

resistivity of ~1M at 100K. Our initial growth experience showed that the initial 

nucleation of Sb on the AlSb (111)A surface is critical (maybe due to strain) compared 

to the nucleation of Sb on the GaSb (111)A surface and establishing the epitaxial 

growth of Sb on AlSb (111) surface therefore is challenging. It was noticed that the 

sticking coefficient or the growth rate of Sb (at similar substrate temperature and for a 

similar Sb flux) on AlSb (111)A is much lower than that of on GaSb (111). An Sb layer 

deposited for 15min at 300C (Structure T429) displayed very high resistivity, 

~0.1M/� at 250K, which is more than 100 times higher than the resistivity of ~1.5nm 

insulating Sb film on GaSb (111)A surface grown on a GaAs(111)A substrate at 250K.   

Further optimizations are required to establish the growth conditions to reliably 

grow epitaxial Sb on a AlSb (111)A surface.  

 

5.6 HR-XRD Results 

 X-ray diffraction scans were performed along the <111> direction of the 

reciprocal lattice in the cubic coordinate system, which is parallel to <001> in the 

hexagonal coordinate system. XRD analysis of Sb films grown by the original method 

has previously been reported [6]. Figure 5.16 shows the HR-XRD measurement of three 

films of Sb deposited using the revised growth procedure at 300C on GaAs (111)A 

substrate in this study.  
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Figure 5.16: High-resolution X-ray -2 scans from the (111) reciprocal plane of Sb 

films grown using the revised growth procedure on GaAs(111)A substrate.  
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peak was also observed for a thin film. This indicates that the Sb film become strained 

as the film thickness is reduced. Calculated strain along a <111> direction and the film 

thickness from the X-ray data are given in the Table 5.1. Out of plane strain () is 

calculated with respect to the bulk C0 (11.273Å) for Sb. The thickness of each film was 

calculated using the formula given in Equation 2.20 in Chapter 2. 

 

Sample 
Sb film 

thickness (nm) bragg 
C (Å) 

(C0=11.273) 
 

(C-C0)/C0 

Sb film 
thickness (nm) 

(by XRD)
T445 ~360 11.8335 11.2710 0.00017 ~364.8 

T448 ~175 11.8443 11.2609 0.00107 ~118.0 

T450 ~10 12.0039 11.1133 0.01417 ~16.8 

 

Table 5.1: Structural parameters of epitaxial Sb films grown on GaAs(111) substrates, 

determined by HR-XRD measurements. 

 

5.8 Summary 

In summary, a molecular beam epitaxy technique was developed to reliably 

grow ultra-thin layers of Sb with good control over the thickness down to a few 

nanometers. TEM and FE-SEM images indicate good crystalline quality. Resistivity 

experiments reveal a metal to insulator transition that may be due to quantum 

confinement.  A lower defect density and more uniform Sb ultra-thin films were 

obtained by the growth on GaSb(111)A substrates. Ongoing transport experiments at 

low temperature and high magnetic field on these ultra-thin Sb layers are being carried 

out by Dr. Murphy’s group at OU to investigate possible TI states.  
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Chapter 6 

Conclusions and Suggestions for Future Work 

 

The research performed during this dissertation work mainly focused on 

optimization of growth and structural parameters to improve the electron and hole 

mobility in narrow gap InSb and InGaAs QWs and realization of elemental Sb QWs 

with GaSb barriers in order to explore their potential as topological insulators.  

Both high electron mobility and hole mobility are required for electronic device 

applications. High electron mobility of 44,700 cm2/Vs (251,000 cm2/Vs) and 11,700 

cm2/Vs (53,800 cm2/Vs) at room temperature (low temperature) have been achieved in 

our strained balanced n-type InSb and InyGa1-yAs QWs, respectively by optimizing the 

growth, structural and doping parameters. Further optimizations of well thickness and 

the doping parameters will lead to even higher mobility in strained balanced InyGa1-yAs 

QWs. Lower density yet high mobility are required in order to develop gated InSb QWs 

for experiments in the quantum Hall regime. A low temperature mobility of 139,200 

cm2/Vs with the electron density as low as 1.61011 cm-2 has been achieved for gated 

InSb device applications.  

Hole mobility is equally as important as the electron mobility for CMOS 

applications. The p-type InyGa1-yAs QWs were realized by -doping the InxAl1-xSb 

barrier layers with Be. This approach improves the hole mobility by reducing the 

ionized dopants scattering and allows further optimization of the structural parameters. 
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The room temperature hole mobilities in our p-type In0.75Ga0.25As QWs are lower than 

the reported hole mobility of similar structures probably due to the strain relaxation. 

Further optimization of the well width along with the Al composition of the barrier 

layers will improve the hole mobility in these QWs. From the research conducted on p-

type InSb QWs, we observed that the hole mobility can be further improved by 

optimizing the buffer layer structure and further increasing the strain.  

A room temperature hole mobility of 1,050cm2/Vs was achieved in our p-type 

InSb QW with only 1.32% strain, along with an improved buffer layer structure which 

consists of an Al0.15In0.85Sb initial layer and an Al0.25In0.75Sb metamorphic thick buffer 

layer. This hole mobility is lower than the reported hole mobility for an InSb QW with 

1.9% strain (1230cm2/Vs) and the hole mobility for an InxGa1-xSb QW. Calculations 

have predicted that the compressive strain in the InSb QW can be increased up to a high 

of 2% and hence further improve the room temperature hole mobility up to 1600cm2/Vs 

[4.18]. The high room-temperature hole mobility observed in our InSb QW with only 

1.32% strain is encouraging and also suggest that even higher mobility can be obtained 

by further optimizing the structural parameters. Our studies of the effect of the buffer 

layer on hole mobility in InSb showed that the Al percentage difference in the thick 

relaxed buffer layer and the initial layer and the thickness of the initial layer have 

significant effects on the hole mobility. The percentage difference between the Al 

compositions of the thick relaxed buffer layer and the initial layer has to be lower than 

10% in order to improve the room-temperature hole mobility. Further studies on 

thickness dependence of the hole mobility at 300K with the Al0.15In0.85Sb initial layer 

will be needed for further optimizations of the buffer layer structures.  
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We were able to develop a molecular beam epitaxy procedure to reliably grow 

ultra-thin Sb QWs with good crystalline quality and good control over the thickness on 

the order of few nanometers. The structural and electrical properties of these ultra-thin 

films were studied. Resistivity experiments reveal a metal to insulator transition that 

may be due to quantum confinement and suggest that an energy gap exists in our 

thinner Sb QWs.  However calculations including the resistivity of the barrier layers 

will be needed to explicitly calculate the resistivity of the Sb QWs due to the 

confinement and to determine the existing energy gap. These ultra-thin Sb QWs provide 

a good test bed for topological insulators. Weak anti-localization studies at low 

temperature and high magnetic field are ongoing to investigate possible topological 

states in our ultra-thin Sb layers grown on GaSb (111)A substrates. Our future research 

will focus on processing devices with dimensions smaller than the phase breaking 

length of the carriers to investigate 2D TI states at zero magnetic field.  

On the other hand Sb/GaSb superlattice structures with different Sb thicknesses 

can be used to experimentally determine the band gap versus thickness via magneto-

optical experiments. For this purpose further optimization is needed to establish the 

growth conditions of the Sb/GaSb superlattice structures.  
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Appendix A 

 

Sample Buffer 

Spacer 
,Cap 

thickness 
(nm) 

Si -doping 
surface/ 

QW 
(1011cm-2) 
(11700C) 

InSb QW, 
Barrier 

Thickness 
(nm) 

Electron mobility 
/Density at 300K 

Electron mobility/ 
Density at 20K 

 
(cm2/Vs) 

n 
(cm-2) 

 
(cm2/Vs) 

n 
(cm-2) 

T319 
Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
10/10, 

10%AlInSb 
10/20 

30s/30s 
 

3.6/3.6 

20, 
20 

34,440 1.0e12 165,000 4.1e11 

T320 
Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

30s/30s 
 

3.6/3.6 

20, 
20 

38,890 6.4e11 228,380 2.5e11 

T326 
Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
18/2, 

10%AlInSb 
10/20 

30s/30s 
 

3.6/3.6 

20, 
20 

28,980 1.3e12 
62,420 
(25K) 

3.7e11 
(25K) 

T330 
Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nm InSb 

30s/30s 
 

3.6/3.6 

20, 
20 

32,150 1.4e12 
135,380 
(50K) 

5.3e11 
(50K) 

T335 
Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nm InSb 

30s/30s 
 

3.6/3.6 

20, 
20 

44,730 5.4e11 
251,540 
(15K) 

3.1e11 
(15K) 

T338 
(Triang

ular 
QW) 

Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nm InSb 

30s/30s 
 

20, 
20 

21,500 5.0e11 51,460 1.9e11 

T339 
Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nm InSb 

30s/15s 
 

3.6/1.8 

20, 
20 

39,830 3.6e11 171,500 2.0e11 

T341 
(3� 

whole 
wafer) 

Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nm InSb 

30s/30s 
 

3.6/3.6 

20, 
20 

43,100 5.0e11 229,500 2.9e11 

T350 
(doping 
in the 
lower 

barrier) 

Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nm InSb 

25s/30s 
 

3.0/3.6 

20, 
20 

35,620 8.0e11 105,300 5.4e11 

T397 
 
 
 
 

Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nm InSb 

25s/8s 
 

3.0/0.9 

20, 
20 

37,590 3.7e11 139,170 1.6e11 
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Table A.1: Summary of asymmetrically doped n-type InSb QWs with interlayer buffer 
grown on GaAs(001) 2substrates. Interlayers consist of 0.5m Al0.10In0.90Sb, 0.2m 
Al0.20In0.80Sb, and 0.3m Al0.10In0.90Sb. InSb QW is grown on a 2.8m thick relaxed 
Al0.10In0.90Sb buffer layer. 

 

Table A.2: Summary of symmetrically doped n-type InSb QWs grown on GaAs(001) 2 
off substrate. 

 

T402 
 
 
 
 

Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nm InSb 

25s/6s 
 

3.0/0.72 

20, 
20 

35,290 2.6e11 84,550 1.0e11 

T409 
(3� 

whole 
wafer) 

Interlayers 
10%AlInSb 

2.8m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nm InSb 

25s/8s 
 

3.0/0.72 

20, 
20 

35,730 4.5e11 166,280 1.7e11 

Sample 
Buffer 
Layers 

Spacer, 
Cap 

thickness 
(nm) 

Si -doping 
near 

surface/ 
QW 

(1011cm-2) 
(11700C) 

InSb QW, 
Barrier 

Thickness 
(nm) 

Mobility/ Density  
at 300K 

Mobility/ Density 
at 20K 

 
(cm2/Vs) 

n 
(cm-2) 

 
(cm2/Vs) 

n 
(cm-2) 

T337 

20%AlInSb 
1.8 m 

10%AlInSb 
0.25 m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nmInSb 

30s/15s 
3.6/1.8 

20, 
20 

27,260 5.5e11 51,780 3.8e11 

T340 

20%AlInSb 
1.8 m 

10%AlInSb 
0.25 m 

20%AlInSb
15/5, 

10%AlInSb 
10/20 

10nm InSb 

30s/11s 
20, 
20 

29,000 4.9e11 56,360 3.6e11 

T348 

20%AlInSb 
1.8 m 

10%AlInSb 
0.25 m 

20%AlInSb
15/5, 

10%AlInSb 
20/10 

10nmInSb 

25s/9s 
20, 
20 

36,730 3.7e11 78,280 3.0e11 

T351 
20%AlInSb 

1.8 m 

20%AlInSb 
15/5, 

10%AlInSb 
10/20 

10nmInSb 

20s/9s 
20, 
20 

8,970 2.9e11 4,760 1.8e11 



147 
 

Appendix B 

 

 

Table B.1 Summary of 1.05% strained p-type InSb QW structures grown on 2 off 

GaAs(001) substrates.  

 

Sample 
 

Buffer 
layer 

Structure 

Spacer, and 
Cap layer 
Structures 

 

Be 

-doping 
near QW, 
Surface 
(8500C) 

QW, 
barrier 

thickness 
(nm) 

Hole 
mobility and density 

at 300K 

Hole 
mobility and density 

at 20K 

Mobility 
(cm2/Vs) 

Density 
(cm-2) 

Mobility 
(cm2/Vs) 

Density 
(cm-2) 

T369 

0.5m 
10%AlInSb 

2.5m 
25%AlInSb 

10/10nm 
25%AlInSb 

10/20nm 
25%AlInSb 

 
 

10s, 
5s 

7, 
20 

-700 -9.8e11 -12,000 -6.5e11 

T370 

0.5m 
5% AlInSb 

2.5m 
25%AlInSb 

10/10nm 
25%AlInSb 

15/15nm 
25%AlInSb 

 

8s, 
3s 

5, 
20 

7200 2.3e11 -10,080 -3.8e11 

T371* 

0.3m 
10%AlInSb 

2.5m 
30%AlInSb 

15/5nm 
30%AlInSb 

10/20nm 
30%AlInSb 

5nmInSb 
 

10s, 
8s 

7, 
20 

-650 -1.1e12 -7,150 -7.5e11 

Sample 
 

Buffer 
layer 

Structure 

Spacer, and 
Cap layer 
Structures 

(nm) 

Be 

-doping 
near QW, 
Surface 
(8500C) 

QW, 
barrier 

thickness 
(nm) 

Hole 
mobility and density 

at 300K 

Hole 
mobility and density 

at 20K 

 
(cm2/Vs) 

n 
(cm-2) 

 
(cm2/Vs) 

n  
(cm-2) 

T361 
 

0.5m 
10%AlInSb 

2.5m 
20%AlInSb 

10/10 
20%AlInSb 

10/20 
20%AlInSb 
5 nm InSb 

12s, 
5s 

7, 
20 

-380 -1.9e12 -13,840 -6.8e11 

T372 
 

0.5m 
10%AlInSb 

2.8m 
20%AlInSb 

10/20 
20%AlInSb 

 

15s, 
 

7, 
20 

-500 -1.1e12 -10,970 -3.8e11 

T386 
 

0.75m 
7% AlInSb 

1.8m 
20%AlInSb 

20/30 
20%AlInSb 
2nm InSb 

20s 
7, 
20 

7,380 1.8e11 -70,000 -2.6e11 
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T374 

0.5m 
10%AlInSb 

2.5m 
25%AlInSb 

15/5nm 
25%AlInSb 

10/20nm 
25%AlInSb 

5nmInSb 
 

10s, 
7s 

7, 
20 

-600 -1.1e12 -15,200 -6.4e11 

T373 

0.5m 
10%AlInSb 

2.5m 
25%AlInSb 

15/5nm 
25%AlInSb 

10/20nm 
25%AlInSb 

5nmInSb 

8s, 
6s 

7, 
20 

-580 -9.9e11 -16,000 -4.4e11 

T375 

0.5m 
10%AlInSb 

2.57, 
20m 

25%AlInSb 
 

10/10nm 
25%AlInSb 

10/20nm 
25%AlInSb 

5nmInSb 

6s, 
5s 

7, 
20 

-350 -1.7e12 -17,670 -5.0e11 

T379 
3.0m 

25%AlInSb 
 

15/20nm 
25%AlInSb 

5nmInSb 
15s, 

6, 
20 

-500 -8.2e11 -3,880 -3.5e11 

T380 2.4m 
25%AlInSb 

10/30nm 
25%AlInSb 

5nmInSb 
12s 

6 
20 
 

-850 -5.8e11 -10,600 -4.3e11 

T381 2.4m 
25%AlInSb 

10/30nm 
25%AlInSb 

2nmInSb 
15s 

6, 
20 

-750 -7.1e11 -8,750 -5.2e11 

T387 

0.8m 
9% AlInSb 

1.8m 
25%AlInSb 

10/10nm 
25%AlInSb 

10/30nm 
25%AlInSb 

2nmInSb 

10s, 
10s 

7, 
20 
 

2940 3.4e11 -38,860 -5.7e11 

T388 

0.8m 
7% AlInSb 

1.5m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

6 
20 

8080 
 

2.2e11 -49,600 -3.6e11 

T393 

0.8m 
9% AlInSb 

1.7m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7 
20 

4200 2.5e11 -52,200 -4.4e11 

T396 

0.88m 
10%AlInSb 

1.8m 
25%AlInSb 

 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

1400 6.0e11 -50,600 -4.8e11 

T398 

0.88m 
10%AlInSb 

1.8m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
37s 

7, 
20 

680 1.3e12 -44,550 -5.4e11 

T401 

0.88m 
10%AlInSb 

1.8m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

1200 6.5e11 -29,300 -5.8e11 

T399 

0.88m 
10%AlInSb 

1.8m 
25%AlInSb 

20/20nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

-200 -2.6e12 -26,700 -4.3e11 

T400 

0.5m 
10%AlInSb 

1.8m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

-350 -1.9e12 -32,900 -4.8e11 
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T401 

0.8m 
7% AlInSb 

1.5m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

1200 6.5e11 -29,300 -5.8e11 

T403 

0.3m 
10%AlInSb

1.8m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

-770 -8.2e11 -24,700 -4.9e11 

T438 

0.5m 
10%AlInSb

0.2m 
25%AlInSb

0.3m 
10%AlInSb

1.8m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

23 
 

(non- 
linear 
hall 

curve) 

3.4e13 
 

(non- 
linear 
hall 

curve) 

-51,900 -5.0e11 

T439 

0.5m 
10%AlInSb

0.3m 
30%AlInSb

1.8m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

-100 -6.2e12 -22,900 -4.5e11 

T447 

0.8m 
15%AlInSb

1.8m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

-1,050 -5.8e11 -23,900 -3.9e11 

T449 

0.5m 
10%AlInSb

0.2m 
25%AlInSb

0.3m 
15%AlInSb

1.8m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

-10 
 

(non- 
linear 
hall 

curve) 

-6.6e13 
 

(non- 
linear 
hall 

curve) 

-46,750 -3.8e11 

T466 

0.5m 
10%AlInSb

0.2m 
25%AlInSb

0.3m 
15%AlInSb 

1.8m 
25%AlInSb 

20/30nm 
25%AlInSb 

2nmInSb 
25s 

7, 
20 

100 5.8e12 -34,900 -3.8e11 

 

Table B.2 Summary of 1.32% strained p-type InSb QW structures grown on 2 off 
GaAs(001) substrates. *Structure T371 had a 1.59% strained InSb QW. 

 

 

 

 

 

 



150 
 

Sample 
 

x y Spacer 
thickness 
(nm) 
 

Be 

-doping near 
QW, 
Surface 
(8500C) 
 

QW, 
barrier 
thickness 
(nm) 

Hole 
mobility and density  
at 300K 

Hole 
mobility and density 
 at 25K 

Mobility 
(cm2/Vs) 

Density 
(cm-2) 

Mobility 
(cm2/Vs) 

Density 
(cm-2) 

P104 64 45 
10 
 

1.0E+12, 
4.2E+12 

10, 
20 

-80 -3.3E+12 -2,600 -7.6E+11 

P107 64 52 10 
1.0E+12, 
4.2E+12 

10, 
20 

-40 -5.8E+12 -4,500 -7.5E+11 

P108 75 45 10 
1.0E+12, 
4.2E+12 

10, 
20 

-10 -1.6E+13 -200 -7.5E+11 

P124 64 45 10 
1.0E+12, 
4.2E+12 

10, 
20 

-90 -2.2E+12 -3,700 -4.2E+11 

P178 64 45 10 
1.0E+12, 
4.2E+12 

10, 
20 

-130 -1.9E+12 -4,160 -9.0E+11 

P179 64 52 10 
1.0E+12, 
4.2E+12 

10, 
20 

-140 -2.0E+12 -5,300 -9.1E+11 

P185 75 45 10 
1.0E+12 
4.2E+12, 

10, 
20 

-230 -1.2E+12 -4,500 -1.2E+12 

P186 64 45 10 
1.5E+12 
4.2E+12, 

10, 
20 

-110 -2.3E+12 -3,440 -9.1E+12 

P187 64 45 5 
1.0E+12 
4.2E+12, 

10, 
20 

-120 2.0E+12 -2,550 -9.3E+11 

P189 75 45 10 
1.0E+12 
4.2E+12, 

15, 
20 

-220 -1.2E+12 -1,560 -8.7E+11 

 

Table B.3 Summary of p-type InxGa1-xAs/InyAl1-yAs QW structures grown on InP(001) 

substrates.  


