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Date of Degree: May, 2016

Title of Study: DECOMPOSITION ALGORITHMS FOR DETECTING LOW-
DIAMETER CLUSTERS IN GRAPHS

Major Field: Industrial Engineering and Management

Detecting low-diameter clusters in graphs is an effective graph-based data mining
technique, which has been used to find cohesive subgraphs in a variety of graph models
of data. Low pairwise distances within a cluster can facilitate fast communication
or good reachability between vertices in the cluster. A k-club is a subset of vertices,
which induces a subgraph of diameter at most k. For low values of the parameter k,
this model offers a graph-theoretic relaxation of the clique model that formalizes the
notion of a low-diameter cluster. The maximum k-club problem is to find a k-club
with maximum cardinality in a given graph. The goals of this study are focussed
on developing decomposition and cutting plane methods for the maximum k-club
problem for arbitrary k.

Two compact integer programming formulations for the maximum k-club problem
were presented by other researchers. These formulations are very effective integer
programming approaches presently available to solve the maximum k-club problem
for any given value of k. Using model decomposition techniques, we demonstrate
how the fundamental optimization problem of finding a maximum size k-club can
be solved optimally on large-scale benchmark instances. Our approach circumvents
the use of complicated formulations in favor of a simple relaxation based on neces-
sary conditions, combined with canonical hypercube cuts introduced by Balas and
Jeroslow. Next, we demonstrate that by using a delayed constraint generation ap-
proach in a branch-and-cut algorithm, we can significantly speed-up the performance
of an integer programming solver over the direct solution of the implementation of
either formulation.

Then, we study the problem of detecting large risk-averse 2-clubs in graphs subject to
probabilistic edge failures. To achieve risk aversion, we first model the loss in 2-club
property due to probabilistic edge failures as a function of the decision (chosen 2-club
cluster) and randomness (graph structure). Then, we utilize the conditional value-at-
risk of the loss for a given decision as a quantitative measure of risk, which is bounded
in the stochastic optimization model. A sequential cutting plane method that solves
a series of mixed integer linear programs is developed for solving this problem.
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CHAPTER 1

INTRODUCTION

The need for extracting hidden information from large data-sets in different applica-

tions, such as social network analysis, bioinformatics, text-mining, internet analytics,

and finance, increased a need for scalable techniques in data mining [70, 96, 60].

Generally, the process of analyzing data and summarizing it into useful information

(knowledge) is called data mining [95]. Graph theory can be used to model the compo-

nents of a system and the relations among them in different data mining applications.

In these applications, graphs can also be used as visualization tools that represent the

interconnected information about the elements of a system which are shown by points

(vertices, nodes) in space that are connected by lines (edges, arcs) [65]. A variety of

graph algorithms and optimization techniques are then used to find specific patterns

from a graph model in various data mining applications [32, 70, 104].

1.1 Graph models of data

A graph G is defined by a set of vertices V in which some pairs of vertices are

connected by a set of edges E and is denoted by G = (V,E). Figure 1.1 illustrates a

simple graph.

Graphs are used to model real-world systems in a variety of applications, such as

social network analysis (SNA) [105], bioinformatics, internet analytics, text-mining,

etc. In these graph models, vertices represent the entities of a system and edges show

similarities/dissimilarities between them.
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Figure 1.1: A graph example

Social networks are graph models in which sociological information, such as ac-

quaintance or friendship among people, is represented. In these networks, people are

considered as vertices and edges represent the relationship between them [105]. Sci-

entific collaboration networks show the collaborations between authors in a specific

scientific community in which authors are shown by vertices and co-authorship be-

tween them is modeled by edges [43, 48, 51, 92]. The connections between IP addresses

are modeled in internet graphs in which IP addresses are represented by vertices and

the flow of information between those IP addresses are shown by edges [25]. A call

graph has vertices representing telephone numbers; edges in such graphs indicate a

call placed between two vertices in a specific time interval [1]. Stock-market graphs

represent the correlation between stock prices. In these graphs, stocks are shown by

vertices and an edge between two stocks exists if their prices are positively correlated

over a period of time in the stock-market history [20, 18, 19]. Protein interaction

networks (PIN), gene co-expression networks (GCE), and metabolic networks are bi-

ological networks that model relationships between biological entities. PINs model

protein interaction information. In these networks, vertices represent proteins and an

edge between two proteins exists if they interact with each other [52, 39, 93]. GCEs

have vertices representing genes and an edge exists between two genes if they are

2



co-expressed with a correlation higher than a specific threshold in micro-array exper-

iments [80]. In metabolic networks, metabolites are shown by vertices and conversion

of metabolite i to metabolite j is represented by the directed edge from i to j.

1.2 Cluster models in graphs

Detecting graph-theoretic clusters is an effective graph-based data mining technique,

which has been used to find tightly-knit subgraphs in a variety of graph models of data.

The notion of a graph-theoretic cluster could be described by considering one or more

of the following structural properties: (1) Each vertex is adjacent to large number

of vertices inside the cluster (vertex degree), (2) The pairwise distances between the

vertices in the subgraph induced by the cluster is small (distance), (3) A large number

of edges with both endpoints is included in the cluster (edge density), and (4) The

minimum number of vertices or edges whose removal causes a disconnected cluster is

large [79].

A clique is an ideal cluster model according to the aforementioned properties. A

clique is a subset of vertices for which the induced subgraph is complete. In other

words, a clique is a subgraph in which all vertices are pairwise adjacent. Evidently,

deletion of any node in a clique does not violate the clique structure of the remaining

nodes. Cliques have been used in several real-world applications in which detecting

“tightly-knit” subgraphs, called cohesive subgraphs, is necessary [38, 86]. However,

the requirement of complete pairwise adjacency in a clique makes it overly restrictive

for most real-world problems and led to the use of clique relaxation structures [16].

These relaxations are based on the aforementioned structural properties, which are

as follows: vertex degree (k-plex), distance (k-clique and k-club), and edge density

(γ-quasi-clique) [16]. This dissertation investigates k-clubs, which are distance-based

relaxations that model low-diameter clusters in graphs.

The k-clubs have been the choice for clusters in a variety of applications. For
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example, k-club models have been used to detect protein complexes in PINs. Protein

complexes, which are identified as functional modules, are cellular entities that per-

form certain biological functions. Researchers in biology need to find these modular

structures in order to understand how cells function [15]. Terveen et al. [96] used

the 2-club model in order to cluster web sites. They studied approaches to enable

faster search among web sites to gain specific information by using the 2-club models.

Miao and Berleant [70] used the concept of the k-club models in document graphs in

which vertices represent documents and edges represent links between paragraphs of

the documents. They investigated retrieving information from documents and found

that the two-hop transitivity captured by the 2-club concept is very intuitive in this

application.

1.3 Notations and definitions

We consider a simple, undirected, connected graph G = (V,E) with a set of vertices

V = {1, . . . , n} and a set of edges E. G[S] = (S,E ∩ (S × S)) denotes the subgraph

induced by S ⊆ V . The distance between a pair of vertices i and j in G, denoted

by dG(i, j), is the length of the shortest path in number of edges. The maximum

distance between any pair of vertices in G is called the diameter of G and denoted by

diam(G), i.e., diam(G) = max{dG(i, j) | i, j ∈ V }. The edge density of G, denoted

by ρ, measures how many edges are in set E compared to the maximum possible

number of edges between vertices in set V . A power graph is defined as follows: k-th

power of G is denoted by Gk = (V,Ek) where Ek = {(i, j)|dG(i, j) ≤ k, i < j}. The

neighborhood of vertex i is a set of vertices adjacent to i in G, which is denoted by

NG(i). The closed neighborhood of vertex i is the set of neighbors of i denoted by

NG[i], i.e., NG[i] = NG(i) ∪ {i}.

The k-neighborhood of i in G is defined as Nk
G(i) = {j ∈ V : 1 ≤ dG(i, j) ≤ k}.

The 2-neighborhood of node 1 in Figure 1.2 is N2
G(1) = {2, 3, 4, 5}. The set I ⊆ V
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is called an independent set if no two vertices of I are adjacent. It is known as

a k-independent set if for every distinct pair of vertices i, j ∈ I, dG(i, j) ≥ k + 1.

In Figure 1.2, the sets I = {1, 4, 7} and I ′ = {1, 7} are independent set and 2-

independent set respectively.

1

2 3

54

6 7

8

Figure 1.2: In this graph, {1, 4, 7} is an independent set while {1, 7} is 2-independent.
It is also a 2-dominating set

The set S ⊆ V is a k-dominating set if for any υ ∈ V \S there exist υ′ ∈ S

such that dG(υ, υ
′) ≤ k. When k = 1, it is simply called a dominating set. The set

S = {1, 7} is a 2-dominating set in the graph in Figure 1.2. A subset of vertices in

which every pair of vertices are adjacent is a clique. Figure 1.3 illustrates a clique.

1

2 3

54

Figure 1.3: A clique

The maximum clique problem is to find a clique with maximum cardinality in a

graph. The clique number of G is denoted by ω(G), which is the size of a clique with

maximum cardinality in G.
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Definition 1 ([15, 3, 71]) A subset of vertices S is called a k-clique if dG(u, v) ≤ k

for all u, v ∈ S. A subset S is a k-clique in G if and only if S is a clique in the power

graph Gk.

Definition 2 ([15, 3, 71]) A subset of vertices S is called a k-club if diam(G[S]) ≤

k.

Invariant ω̃k(G) denotes the k-clique number of G that is the size of a k-clique

with maximum cardinality in G. The size of a k-club with maximum cardinality in

G is called the k-club number of G, and is denoted by ωk(G). The maximum k-club

problem (MkCP), which is the focus of this dissertation, is to find a k-club with

maximum cardinality in G.

When k = 1, k-cliques and k-clubs represent a clique, and a relaxation when

k ≥ 2. Since dG[S](i, j) ≥ dG(i, j), a k-club is always a k-clique but the converse is

not true. For example, in the graph illustrated in Figure 1.4, the set S = {1, 2, 3, 4, 5}

is a 2-clique but not a 2-club since dG(1, 5) = 2 and dG[S](1, 5) = 3.

1

2

6

3

4

5

Figure 1.4: 2-cliques vs. 2-clubs: S = {1, 2, 3, 4, 5} is a 2-clique that is not a 2-club

In the next chapter, we review related literature on solving the maximum k-club

problem and provide the required background to highlight the challenges involved.

The specific research objectives of this dissertation are also identified in the next

chapter.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

A review of complexity, approximation, polyhedral results, and algorithms for the

distance-based clique relaxations (k-clique and k-club) is presented in this chapter.

2.1 Nonhereditary nature of k-clubs

The maximum clique problem has been the subject of extensive research. Several sur-

veys [77, 21, 54] document work on this central combinatorial optimization problem.

Also, many researchers have studied clique relaxations and their applications [16, 79].

Recently, Shahinpour and Butenko [91] surveyed distance-based clique relaxations,

namely k-cliques and k-clubs. In this chapter, we limit our focus to complexity, ap-

proximation, polyhedral results, and algorithms for the distance-based clique relax-

ations. Before reviewing the relevant literature, we highlight a combinatorial feature

of k-clubs that makes it both challenging and interesting to study.

After the clique model was used to find tightly-knit groups in social network

analysis by Luce and Perry [63], a generalized version of clique, called k-clique, was

introduced by Luce [62]. Although the concept of k-clique was pioneered by Luce,

it lacked a computational procedure for detecting one [3]. Other researchers [22, 11]

worked on developing procedures to find these clusters. The k-clique model relaxed

the requirement of adjacency in the clique to a shortest path requirement. This model

led to another clique relaxation, the k-club [3, 71]. The difference between these two

models is discussed in detail by Balasundaram et al. [15]. In the k-clique model, a

vertex from outside the group can be considered in the shortest path between vertices
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of the group, which could be a drawback for some applications in social network

analysis. The k-club model overcomes this drawback. Recalling that ω(G) denotes

the clique number, ω̃k(G) represents the k-clique number, and ωk(G) indicates the

k-club number, the following inequality is valid for all graphs in general:

ω(G) ≤ ωk(G) ≤ ω̃k(G).

Notice that finding a maximum k-clique in G is equivalent to finding a maximum

clique in Gk. For example, Figure 2.1 represents the square of the graph illustrated

in Figure 1.4. In this graph, set S = {1, 2, 3, 4, 5} is a clique which is a 2-clique in

the graph presented in Figure 1.4.

Figure 2.1: Graph G2

The k-clique model is hereditary in the sense that every subset of a k-clique is

a k-clique. In contrast, the k-club model is not hereditary. For example, the set

S = {1, 2, 4, 5, 6} in the graph in Figure 1.4 is a 2-club in which every subset is a

2-clique but not necessarily a 2-club. For instance, subset {1, 2, 4, 5} is a 2-clique but

not a 2-club. This property of the k-club model makes it extremely challenging to

develop exact and heuristic algorithms for the MkCP [65].
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2.2 Complexity and approximation

Bourjolly et al. [24] proved that the MkCP is NP-hard for any fixed positive integer

k. Balasundaram et al. [15] showed that the MkCP is NP-hard in graphs of fixed

diameter with diam(G) > k and thus is NP-hard even in graphs with diameter k+1.

Kahruman-Anderoglu et al. [55] demonstrated that the problem of recognizing a gap

between ωk and ωℓ (if there is a positive gap between them) is NP-hard for any

positive integers k and ℓ (k ̸= ℓ). This result was then used to show that, unless P =

NP, a polynomial-time algorithm cannot be designed to detect a k-club of size greater

than ∆(G)+ 1 in any graph G with ωk > ∆(G)+ 1 and for any fixed positive integer

k ≥ 2, where ∆(G) denotes the maximum degree of a vertex in G.

Marincek and Mohar [68] proved that the MkCP is inapproximable within a factor

of n
1
3
−ϵ for any ϵ > 0 as long as P ̸= NP. Following which, Asahiro et al. [10] improved

this result by showing that it is inapproximable even within a factor of n
1
2
−ϵ. Further,

Asahiro et al. [10] developed approximation algorithms of factor n
1
2 and n

1
3 for even

and odd k, respectively.

Downey and Fellows [35] proved that detecting cliques of a particular size is not

fixed-parameter tractable and, in fact, it is a basic W [1]-hard problem. In stark

contrast to cliques, k-clubs (for k ≥ 2) are fixed-parameter tractable with respect to

the size of a solution. The MkCP is solvable in O(nk2) on trees, in O(n2) on interval

graphs, and when k = 2, in O(n5) on bipartite graphs [87].

In this dissertation, the maximality and minimality of sets are defined based on

inclusion and exclusion, respectively. Meaning that, a maximal set is one that is not a

proper subset of another set [65] also satisfying a required property. Mahdavi Pajouh

and Balasundaram [66] derived results on the intractability of testing inclusion-wise

maximality of k-clubs. Since k-clubs are non-hereditary, their results were in contrast

to polynomial-time verifiability of maximal cliques. They also found a class of graphs

for which maximality testing is polynomial-time solvable.

9



2.3 Formulations

The MkCP for general positive integer k can be formulated as follows [24, 15]:

ω̄k(G) = max
∑
i∈V

xi (2.1)

subject to:

xi + xj ≤ 1 +
∑

ℓ:P ℓ
ij∈Pij

yℓij ∀(i, j) /∈ E, (2.2)

xp ≥ yℓij ∀p ∈ V (P ℓ
ij), P ℓ

ij ∈ Pij, (i, j) /∈ E, (2.3)

xi ∈ {0, 1} ∀i ∈ V, (2.4)

yℓij ∈ {0, 1} ∀P ℓ
ij ∈ Pij, (i, j) /∈ E, (2.5)

where Pij indicates an indexed collection of all paths of length at most k between

vertices i and j in G, and P ℓ
ij denotes a path with index ℓ between vertices i and j.

According to this formulation, if vertices i, j are selected in a k-club, all the vertices

in at least one of the paths of length at most k between them should be selected.

The special cases where k = 2, 3 admit compact formulations, which has facilitated

more detailed analysis [32, 28, 6, 7]. Note that |Pij| could be exponentially large with

respect to the number of vertices and k. Therefore this formulation is difficult to

handle for large instances, and for large k.

To address this drawback, Veremyev and Boginski [101] formulated the MkCP as

a binary polynomial programming problem. They showed that the linearization of

their mathematical formulation yields a compact formulation that is far more practical

than the path-based formulation. This binary polynomial programming formulation

is presented next. In the following, aij is used to denote the i-th and j-th element of

the adjacency matrix of graph G.

10



ω̄k(G) = max
∑
i∈V

xi (2.6)

subject to:

xi + xj − 1 ≤ aij +
∑
ℓ∈V

aiℓaℓjxℓ +
∑
ℓ∈V

∑
m∈V

aiℓaℓmamjxℓxm

+
∑
ℓ∈V

∑
m∈V

∑
t∈V

aiℓaℓmamtatjxℓxmxt

+ · · ·

+
∑
i1∈V

· · ·
∑

ik−1∈V

aii1 . . . aik−2ik−1
aik−1jxi1 . . . xik−1

∀i < j ∈ V, (2.7)

xi ∈ {0, 1} ∀i ∈ V. (2.8)

Note that if xi = xj = 1, then at least one of the terms in the right-hand side of

the constraint in this formulation must be 1. If aij ̸= 1, then some binary product

term must be 1. The correctness of the formulation follows from the observation

that a term aii1ai1i2 . . . aiℓ−2iℓ−1
aiℓ−1jxi1 . . . xiℓ−1

is 1 if and only if G contains a path

i − i1 − · · · − iℓ−1 − j of length ℓ, and all the internal vertices on this path are also

selected in the solution x. This “nonlinear” approach to formulating this problem

immediately yields a linearization formulation presented next, which is referred as F1

in this document.

The trick used in this linearization is not the textbook technique for linearizing

binary polynomial products [73]. This formulation recursively forces the linearizing

variables zℓij to take on the correct value using the “connectedness” property in these

linearizing variables that is required by the induced path requirements of a k-club.

This mathematical formulation uses O(kn2) decision variables and constraints, which

is significantly less than the formulation (2.1)-(2.5) that uses O(nk+1) entries.
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(F1) ω̄k(G) = max
∑
i∈V

xi (2.9)

subject to:

xi + xj − 1 ≤ aij +
k∑

ℓ=2

zℓij ∀i < j ∈ V, (2.10)

z2ij ≤ xi, z2ij ≤ xj, z2ij ≤
n∑

ℓ=1

aiℓaℓjxℓ ∀i < j ∈ V, (2.11)

z2ij ≥
1

n

( n∑
ℓ=1

aiℓaℓjxk

)
+ (xi + xj − 2) ∀i < j ∈ V, (2.12)

zℓij ≤ xi, zℓij ≤
n∑

t=1

aitz
ℓ−1
tj ∀ℓ = 3, . . . , k; ∀i < j ∈ V, (2.13)

zℓij ≥
1

n

( n∑
t=1

aitz
ℓ−1
tj

)
+ (xi − 1) ∀ℓ = 3, . . . , k; ∀i < j ∈ V, (2.14)

xi ∈ {0, 1} ∀i ∈ V, (2.15)

zℓij ∈ {0, 1} ∀i < j ∈ V ; ℓ = 2, . . . , k. (2.16)

Another important point to note here is that unlike the path-based formulation

that is not suitable for direct-solution, this formulation is compact using O(kn2)

variables and constraints. This means a general-purpose solver could be leveraged to

solve relatively larger-scale instances, especially for larger values of k. This was one

of the key computational advantages demonstrated by Veremyev and Boginski [101].

Recently, Veremyev et al. [102] introduced a slightly different formulation, which

improves the performance of solvers over using formulation F1. This formulation is

presented next and referred to as F2 in this document.
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(F2) ω̄k(G) = max
∑
i∈V

xi (2.17)

subject to:

xi + xj − 1 ≤ uk
ij, ∀i, j ∈ V | i ̸= j, (2.18)

u1
ij = 0, ∀(i, j) /∈ E | i ̸= j, (2.19)

u1
ij = uℓ

ij, ∀(i, j) ∈ E, ℓ = 2, . . . , k, (2.20)

uℓ
ij ≤

n∑
t=1

aitu
ℓ−1
tj , ∀(i, j) /∈ E | i ̸= j, ℓ = 2, . . . , k, (2.21)

uℓ
ij ≤ xi, uℓ

ij ≤ xj, ∀i, j ∈ V | i ̸= j, ℓ = 1, . . . , k, (2.22)

uℓ
ij = uℓ

ji, ∀i, j ∈ V | i ̸= j, ℓ = 1, . . . , k, (2.23)

uℓ
ij ∈ [0, 1], ∀i, j ∈ V | i ̸= j, ℓ = 1, . . . , k, (2.24)

xi ∈ {0, 1}, ∀i ∈ V. (2.25)

2.4 Polyhedral results

Denoted byQk(G), the k-club polytope of a graphG is the convex hull of the incidence

vectors of k-clubs in G. Balasundaram et al. [15] developed the first family of facet

of Q2(G). Theorems 1 and 2 present their results.

Theorem 1 ([15]) Consider the 2-club polytope Q2(G) of a graph G = (V,E).

1. dim(Q2(G)) = n.

2. xi ≥ 0 induces a facet of Q2(G) for every i ∈ V .

3. For i ∈ V , xi ≤ 1 induces a facet of Q2(G) if and only if dG(i, j) ≤ 2 ∀j ∈ V .

Theorem 2 ([15]) The inequality
∑

i∈I xi ≤ 1 induces a facet of Q2(G) if and only

if I is a maximal 2-independent set in G.

Carvalho and Almeida [28] presented valid inequalities for 2-club polytope and de-

veloped necessary and sufficient conditions under which these inequalities will define
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facets for the polytope. In another study, Almeida and Carvalho [5, 4] introduced new

mathematical formulations for the MkCP. A new upper bound for the maximum 3-

club problem is defined in their study by using a compact formulation as a relaxation

of their proposed formulations. Also, they derived new families of inequalities for the

3-club polytope and used them to strengthen the linear programming (LP) relaxation

of their mathematical formulations. More recently, Mahdavi Pajouh et al. [67] intro-

duced a family of facet inducing inequalities that unify the results presented in [28]

and [15]. Theorem 3 presents this result.

Theorem 3 ([67]) Let I be an independent set in G. Then the inequality

∑
i∈I

xi −
∑
j∈V \I

(|NG(j) ∩ I| − 1)+xj ≤ 1

is valid for the 2-club polytope, where (t)+ = max{0, t}. If, in addition, I is a 2-

dominating set, i.e., if I is an independent 2-dominating set, then this inequality

induces a facet of the 2-club polytope.

2.5 Exact algorithms and heuristics

Well-known exact algorithms for cliques like the algorithms developed by Carraghan

and Pardalos [27] and Österg̊ard [76] are not directly extended to k-clubs since they

are nonhereditary and testing inclusionwise maximality is NP-hard. Bourjolly et

al. [24], Schäfer [87], and Mahdavi Pajouh and Balasundaram [66] introduced com-

binatorial algorithms for the problem. A k-clique number is used by Bourjolly et

al. [24] as an upper bound at each node of the search tree, while Mahdavi Pajouh

and Balasundaram [66] use the distance-k coloring problem to obtain upper bounds

at each node of the search tree. The former approach provides tighter bounds but

needs to solve an NP-hard problem (the maximum k-clique problem) at each node of

the search tree. The upper bounds provided by the latter approach are weaker, but
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this approach employs a heuristic coloring algorithm, which is faster, at each node to

obtain the bounds. Chang et al. [30] implemented a combinatorial branch-and-bound

algorithm, which is shown to solve the MkCP in O(1.62n). Schäfer [87] introduced

a fixed-parameter tractable algorithm to find a k-club of size c (if it exists) in G in

O((c− 2)c× c!× c3n+ nm) time. Mahdavi Pajouh et al. [67] presented a new family

of facet inducing inequalities for the 2-club polytope (see Theorem 3) and developed

a branch-and-cut algorithm to find a maximum 2-club in a graph.

Heuristic algorithms for finding k-cliques and k-clubs have been widely studied

recently [23, 28, 36, 55]. Three heuristic algorithms, which were named CONSTEL-

LATION, DROP, and k-Clique & DROP were described in [23]. The principle of the

CONSTELLATION algorithm stemmed from the idea that a star graph provides a 2-

club. This idea was then generalized to find k-clubs for k ≥ 3. The DROP algorithm

computes the length of the shortest path between every pair of vertices in G then,

removes a vertex with smallest size of k-neighborhood until G becomes a k-club. The

k-Clique & DROP algorithm applies the DROP algorithm in a subgraph induced by

a largest k-clique in G. Carvalho and Almeida [28] presented a heuristic algorithm,

which was similar to DROP. The main difference was that the optimal solution from

the LP relaxation of the k-club formulation is used to guide the deletion of vertices

from the graph. Chang et al. [30] introduced a heuristic algorithm called iterative

DROP (iDROP). For each vertex i in the graph, iDROP applies the DROP algo-

rithm to find a k-club in the subgraph induced by the k-neighborhood of i and then,

returns the k-club with the largest cardinality among them. A sufficient condition

for testing maximality of a given k-club is provided by Shahinpour and Butenko [90].

Following which, they develop a variable neighborhood search that is used to provide

a lower bound for initializing the exact algorithm from [66]. The heuristic algorithm

introduced in [28] used the LP relaxation of the formulation for the 2-club problem to

compute an upper bound on the 2-club number of the graph and guide the generation
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of feasible solutions. In the heuristic algorithm presented in [36], the k-clique model

was used to separate a graph into several subgraphs and lead the algorithm to find a

k-club. The heuristic algorithms could be used to improve the lower bound in exact

approaches like the combinatorial branch-and-bound algorithms as reported in [90].

2.6 CVaR in optimization

In this dissertation, we also explore the maximum 2-club problem in a probabilistic

setting, specifically, assuming independent probabilistic edge failures. In the proba-

bilistic setting, we model the low-diameter cluster detection problem as a Conditional

Value-at-Risk (CVaR) constrained optimization problem.

Rockafellar and Uryasev [84, 85] defined the notion of CVaR, which is a measure

of downside risk of heavy losses. A loss function L(x, Y ) quantifies losses as a function

of a decision vector x and uncertainty, modeled by a random vector Y . Then, for

a given decision vector x0 and α ∈ (0, 1), α-Value-at-Risk (VaR) is the α-quantile

of the loss distribution Ψ(x0, ℓ) = Pr{L(x0, Y ) ≤ ℓ}, and α-CVaR is the mean of

the (1-α)-tail of the loss distribution. Rockafellar and Uryasev [84, 85] pioneered the

approach minimizing CVaR rather than VaR in the context of portfolio optimization,

and laid the mathematical foundations for this approach. Uryasev [98] also found

through empirical studies that portfolios that were CVaR optimal for their test-bed

were also near-optimal in terms of VaR. CVaR is also considered a coherent measure

of risk in the sense of Artzner et al. [9]. Consequently, this approach has been adapted

in a variety of ways for designing optimal portfolios and in other financial applications

(See [8, 81]).

Rockafellar and Uryasev [84] showed that the computation of CVaR can be stated

as the following univariate minimization problem for a given decision x:
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α-CVaR[L(x, Y )] = min
ζ∈R

{
ζ +

1

1− α
E
[
[L(x, Y )− ζ]+

]}
. (2.26)

If the distribution of random vector Y is approximated by a set of N samples

y1, . . . , yN with probability πl for l = 1, . . . , N , this optimization problem can be

approximated as follows:

α-CVaR[L(x, Y )] ≃ min
ζ∈R

{
ζ +

1

1− α

N∑
l=1

πl[L(x, y
l)− ζ]+

}
. (2.27)

Based on this observation, the generic CVaR-constrained optimization problem with

a user specified limit d can be stated as follows:

max
x∈P

cTx (2.28)

subject to:

min
ζ∈R

{
ζ +

1

1− α

N∑
l=1

πl[L(x, y
l)− ζ]+

}
≤ d. (2.29)

Following Krokhmal et al. [58], the CVaR constraint (2.29) can be replaced with

the equivalent constraint (2.31) resulting in the following formulation:

max
ζ∈R,x∈P

cTx (2.30)

subject to:

ζ +
1

1− α

N∑
l=1

πl[L(x, y
l)− ζ]+ ≤ d. (2.31)

For the sake of argument, let us assume that the loss function is linear in x, and

P is a polyhedron in formulation (2.30)-(2.31). Then, direct solution of this formu-
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lation using large-scale linear optimization methods is possible after using additional

variables to linearize constraint (2.31). Typically, a good approximation of the loss

function’s probability distribution requires a large number of samples, which in turn

results in the linearization (2.31) requiring a large number of variables. Thus, solv-

ing a direct reformulation/linearization of problem (2.30)-(2.31) can be a challenging

task. If the loss function is convex and piecewise linear in x (as is the case with

our loss function in Chapter 5), after linearizing constraints (2.31), we would have

to linearize L(x, yl), which would require additional variables. Finally, when P is

nonconvex (as it is in Chapter 5 due to binary restrictions on x), other issues need to

be addressed to solve (2.30)-(2.31).

2.7 Research gaps and objectives

The lack of exact sophisticated algorithms, such as decomposition algorithms to ad-

dress the MkCP for general k is evident. The nonhereditary nature of the k-club

model is a fundamental challenge in developing exact and heuristic algorithms for

the MkCP. Even though the nonhereditary nature of k-clubs has been considered in

the literature (see [15, 66]), developing exact algorithms for solving the MkCP for

general k is very much open. The known exact algorithms to solve the MkCP are

limited to the two branch-and-bound algorithms presented in [24] and [66]. These

algorithms show weaknesses to solve the MkCP for instances larger than 200-vertex

graphs. There are two compact and linear integer programming formulations avail-

able in the literature (see [101, 102]). The performance of these formulations reduces

when size of graph and value of k increase.

Besides, the existing literature on the k-club model is limited to deterministic

graphs. There is no study of the MkCP on random graphs in which vertices or edges

have probabilities for failure.

These facts have motivated us to conduct an algorithmic study of the k-club model
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on deterministic and random graphs in order to address the gaps in literature for this

distance-based clique relaxation model. Our research objectives in this dissertation

are as follows:

• Objective 1. Investigate model decomposition and relaxation techniques for

solving the MkCP for arbitrary k.

• Objective 2. Investigate the performance of the decomposition algorithms based

on different type of cuts.

• Objective 3. Explore the maximum 2-club problem in graphs subject to prob-

abilistic edge failure using a CVaR-constrained optimization model; extend al-

gorithmic techniques from literature to solve this model.

2.8 Organization of the dissertation

A basic decomposition algorithm for solving the MkCP for general k is presented in

Chapter 3. Chapter 4 shows that adding the constraints (2.10)-(2.14) in a delayed

fashion as cuts in a branch-and-cut algorithm results in a more effective decomposi-

tion algorithm, which equips us to solve the MkCP faster for general k. Chapter 5

investigates detecting large 2-clubs in graphs subject to probabilistic edge failures.

We quantify the risk of losing the desired 2-club property in detected clusters due to

edge failures using the concept of conditional value-at-risk. Finally, Chapter 6 con-

cludes this dissertation and presents some interesting research directions for future

work.
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CHAPTER 3

A BASIC DECOMPOSITION APPROACH1

A new approach to solve the MkCP for general k is proposed in this chapter, which

is of particular interest for k ≥ 3. The path-based integer programming (IP) formu-

lation of the MkCP discussed in Section 2.3 introduced by Bourjolly et al. [24] has

exponentially many variables and constraints. Mahdavi Pajouh et al. [67], Almeida

and Carvalho [6, 7], and Carvalho and Almeida [28] have studied the special cases of

this IP formulation where k = 2 and 3, which admit compact formulations. The two

IP formulations introduced by Veremyev and Boginski [101] and Veremyev et al. [102]

discussed in Section 2.3 are promising for arbitrary k for direct solution using integer

programming solvers. These two IP formulations are compared in our computational

studies to show the effectiveness of our proposed approach.

3.1 Decomposition and branch-and-cut

Our basic approach for solving the MkCP using decomposition is presented in this

section. Since every k-club is also a k-clique, the simple edge-based formulation of

the maximum k-clique problem, which is presented next, is used as a relaxation of

1Contents of this chapter are reproduced with permission from E. Moradi and B. Balasundaram.
Finding a maximum k-club using the k-clique formulation and canonical hypercube cuts. Optimiza-
tion Letters, page 1-11; 2015. DOI: 10.1007/s11590-015-0971-7 c⃝ Springer
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the MkCP in our proposed approach.

(P0) ω̃k(G) = max
∑
i∈V

xi (3.1)

subject to:

xi + xj ≤ 1 ∀i, j ∈ V, dG(i, j) > k, (3.2)

xi ∈ {0, 1}, ∀i ∈ V. (3.3)

Our approach starts by solving the relaxation (P0) using a branch-and-bound

(BB) approach. Suppose an IP feasible solution x̂ ∈ {0, 1}n is encountered in some

node of the BB tree. If x̂ corresponds to a k-club, the BB node will be pruned by

feasibility. Otherwise, x̂ corresponds to a k-clique, which is not a k-club, a cut will be

added that eliminates x̂ without cutting off solutions corresponding to k-clubs. This

algorithm is called the Decomposition and Branch-and-Cut (DBC) algorithm for the

MkCP. The DBC algorithm is shown in Algorithm 1. In this chapter, the canonical

hypercube cut (CHC), which was proposed by Balas and Jeroslow [12], is used as a

cutting plane in Step 9 of Algorithm 1. This cutting plane is presented below:

n∑
i=1

xi(1− x̂i) + (1− xi)x̂i ≥ 1. (3.4)

Suppose x̂ ∈ {0, 1}n is an incidence vector of k-clique that is encountered and

the decision vector x ∈ {0, 1}n is an incidence vector of a k-club. Notice that all

the components of x̂ ∈ {0, 1}n and x ∈ {0, 1}n cannot be the same. Therefore, the

k-clique x̂ encountered at the BB node is cut-off and a tighter relaxation is re-solved

at the same BB node. As a consequence, the number of cuts added in DBC is exactly

the number of k-cliques encountered in all BB nodes, which are not k-clubs. This

interesting quantity is measured and reported in the computational results.
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Algorithm 1 Generic Decomposition and Branch-and-Cut Approach

1: procedure DBC(G, k)
2: lb← 0, t← 0, x∗ ← 0⃗, and z := {P0}.
3: while z ̸= ∅ do
4: Select the problem P t from z; z := z \ P t

5: Solve P t

6: Let xt be the optimal solution found for P t and zt the value of the objective
function

7: if xt ∈ {0, 1}n and zt > lb then
8: if xt is not a k-club then
9: Add violated cuts to P t

10: Add this node with appropriate node-ID to z
11: else
12: x∗ ← xt and lb← zt

13: end if
14: else
15: if xt /∈ {0, 1}n and zt > lb then
16: Branch on some fractional component of xt

17: Generate and add child nodes with appropriate node-IDs to z
18: else
19: Prune the node
20: end if
21: end if
22: end while
23: Return x∗ and lb
24: end procedure

It should be noted that the model decomposition algorithms developed in this

dissertation when combined with graph decomposition techniques [14, 72] can enable

us to solve the MkCP on very large power-low graph instances.

3.2 Computational results

The computational performance of the DBC algorithm described in Section 3.1 in

solving the MkCP is studied in this section. The direct solution of our implemen-

tations of the IP formulations F1 and F2 from Section 2.3 serve as our comparison.

The DBC, F1, and F2 were implemented in C++, and GurobiTM optimizer 6.0 was

used to solve the IP formulations [44]. All numerical experiments were conducted on
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a 64-bit Linuxr computer node with dual quad-core Intelr Xeonr E5620 2.40GHz

processor and 96 GB RAM.

We conduct our study on the same test-bed of 540 randomly generated instances

used by Veremyev and Boginski [101], summarized in Table 3.1. The results reported

are average running times in seconds measured over ten instances of each order (n)

and edge density (ρ) considered. The MkCP was solved on these instances for k =

2, 3, . . . , 7 using Algorithm 1 with CHC (3.4) in Step 9, and compared against the

direct solution of implementations F1 and F2. In Table 3.1, the fastest average

running time for every pair of n and ρ is highlighted in bold font. We can observe that

the decomposition approach becomes more effective as k gets larger; F2 is consistently

the fastest when k = 2, but we can see the model decomposition ideas starting to pay-

off computationally for the DBC algorithm when k = 3, 4, and 5. We also observe that

implementation F2 is consistently faster than the F1 implementation it was meant to

replace for all k, n, and ρ considered.

Table 3.1: A comparison of average running times (secs) for k = 2 and 3 on the
test-bed from Veremyev and Boginski [101].

n ρ DBC F1 F2 DBC F1 F2 DBC F1 F2

k = 2 k = 4 k = 6

100
2% 1.63 0.92 0.87 3.64 4.89 3.21 6.04 11.04 7.80
3% 1.73 0.90 0.76 9.52 14.78 9.86 16.79 25.62 15.74
4% 1.67 0.95 0.85 34.64 46.25 35.34 17.96 33.65 23.07

200
1% 7.47 6.01 4.47 11.02 18.21 15.24 93.36 132.85 89.41
1.5% 9.17 7.11 5.15 43.02 65.44 53.32 769.22 912.17 596.52
2% 9.69 7.93 6.33 519.80 925.29 750.68 319.51 417.79 274.16

300
0.5% 21.82 17.85 13.55 30.15 40.52 33.57 45.29 71.58 48.34
1% 23.78 20.48 14.44 130.82 145.36 121.83 7213.84 10806.20 6898.40
1.5% 28.73 27.17 18.59 2664.82 3173.93 2499.35 1075.26 1844.03 1330.49

k = 3 k = 5 k = 7

100
2% 3.05 2.81 2.24 4.83 7.74 5.56 6.16 13.46 7.85
3% 5.10 6.07 4.49 20.57 28.14 22.53 13.75 39.70 19.18
4% 12.34 14.26 10.82 18.36 28.85 21.50 25.28 56.51 27.91

200
1% 9.45 13.72 11.06 41.55 69.75 52.21 96.95 316.55 150.47
1.5% 18.17 24.59 19.53 354.28 646.81 501.52 141.34 465.75 241.18
2% 51.78 70.11 55.44 589.66 816.57 633.91 248.58 811.13 422.30

300
0.5% 30.86 33.13 29.61 31.77 43.31 33.55 25.44 98.50 54.38
1% 46.42 51.34 47.18 735.11 968.11 725.84 3557.13 14086.39 8181.91
1.5% 253.01 258.27 217.29 10557.38 13380.10 9781.28 834.63 3706.48 2181.13

The next group of 60 test instances are 200-vertex graphs that we generated using

the randomized generation procedure introduced in [24]; 20 instances were generated
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for each ‘challenging edge density’ associated with each of the three values of k we con-

sidered. Since determining challenging edge densities for each k is a time consuming

process, we limit ourselves to only three values for parameter k in these experiments.

The edge densities considered are 15% and 5% for the maximum 2-club and the

maximum 3-club problems, respectively. These values were shown to be challenging

densities in the numerical experiments of Mahdavi Pajouh and Balasundaram [66]

for the respective k values. For the maximum 4-club problem, edge density 2.5%

produced challenging test instances based on our preliminary experiments. These in-

stances for k = 2 and 3 seem to be much harder than the previous group of instances

based on the average running times on 200-vertex instances in both groups. Since the

generation procedures are similar, this illustrates the sensitivity of the difficulty level

of the test-bed to edge density and vertex degree variance controlled by parameters

in the generation procedure. Table 3.2 reports average metrics over the 20 instances

generated for each value of k. On this test-bed we see that DBC is several times

faster than solving the implementations of F1 and F2 using Gurobi. Notably, F2 can

be solved in half the time taken to solve F1, or less, on this test-bed.

Table 3.2: A comparison of average metrics over 20 instances with 200 vertices for
each k value.

DBC F1 F2
k ω̄k(G) #CHC Time (secs) Time (secs) Time (secs)
2 53.15 499.95 144.51 2713.12 1313.31
3 34.55 6615.20 139.82 3720.06 1739.96
4 64.30 2389.10 133.06 1268.99 597.43

In addition to the randomly generated test instances, Table 3.3 lists the DIMACS

clustering benchmark instances that were also used in our experiments; these graphs

model real data and/or real-life situations as described in [42]. Observations for

the DIMACS clustering benchmarks are in many ways similar to the synthetic test-

bed from [101]. Tables 3.4, 3.5, and 3.6 report the k-club numbers, the number of
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canonical hypercube cuts, #CHC, and the running times for DBC, F1, and F2, for

k = 2, 3, and 4, respectively.

For k = 2, we find F2 to be fastest when the instances are small enough (|V | <

200). But for the larger instances with |V | > 1000, the DBC algorithm is faster than

solving the F2 implementation with speed-ups by a factor of 3 to 14 observed; with one

instance (‘netscience’) being solved 35-times faster using the DBC algorithm. When

k = 3, 4, the DBC algorithm is clearly the favorite for the smaller instances. At the

same time, considering only the larger instances, DBC offers speed-ups anywhere in

the range of 1.75–4 times faster in comparison to solving the F2 implementation, which

is consistently the faster of the two implementations by a very significant margin. Two

notable exceptions being the instances ‘netscience’ and ‘power’ on which the speed-

ups are actually much higher than the others; when k = 3 these two instances exhibit

speed-ups by a factor of 32 and 16 respectively when using DBC over solving F2, and

when k = 4 the speed-ups are by a factor of 117 and 21 respectively when DBC is

used over solving F2.

As guidelines for a practitioner, at the risk of oversimplification, we can state that

when seeking 2-clubs, direct solution of the formulation F2 is more effective among

the approaches considered here unless we are solving large-scale instances with 1000+

vertices. For such larger instances, or for larger values of the parameter k, the DBC

algorithm proposed here is relatively a better choice.
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Table 3.3: Number of vertices, edges, and edge density for DIMACS clustering bench-
marks used in this study.

Graph |V | |E| ρ

karate 34 78 13.90%
lesmis 77 254 8.68%
polbooks 105 441 8.08%
adjnoun 112 425 6.84%
football 115 613 9.35%
celegans-metabolic 453 2025 1.98%
email 1133 5451 0.85%
polblogs 1490 16715 1.51%
netscience 1589 2742 0.22%
power 4941 6594 0.05%
hep-th 8361 15751 0.05%
PGPgiantcompo 10680 24316 4.3e-2%

Table 3.4: The 2-club number, the number of cuts added, and the running time in
seconds for DBC, F1, and F2 on the DIMACS test-bed.

DBC F1 F2

Graph ω̄2(G) #CHC Time Time Time

karate 18 22 1.76 0.68 0.31
lesmis 40 71 5.85 2.49 1.17
polbooks 28 257 12.38 7.11 2.63
adjnoun 50 98 2.60 5.23 2.98
football 16 321 14.91 10.53 5.16
celegans-metabolic 238 410 217.51 334.89 217.68
email 72 410 605.14 10324.91 3923.47
polblogs 352 2646 6784.01 44675.08 19657.04
netscience 35 196 179.51 10804.17 6374.46
power 20 244 341.35 11211.45 4596.69
hep-th 51 708 527.22 14625.92 5411.59
PGPgiantcompo 206 285 867.55 19907.45 11745.40
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Table 3.5: The 3-club number, the number of cuts added, and the running time in
seconds for DBC, F1, and F2 on the DIMACS test-bed.

DBC F1 F2

Graph ω̄3(G) #CHC Time Time Time

karate 25 55 3.71 67.19 28.22
lesmis 59 146 15.05 106.32 48.91
polbooks 53 943 32.41 119.03 61.90
adjnoun 82 470 14.69 165.38 105.84
football 58 866 44.49 202.91 105.51
celegans-metabolic 371 2085 629.45 998.49 449.32
email 111 5173 3618.30 15096.08 6491.31
polblogs 398 15276 7348.60 66652.89 27994.21
netscience 54 370 296.87 17032.56 9708.56
power 30 1462 698.47 19121.44 11281.65
hep-th 67 2214 7992.10 39976.19 15990.48
PGPgiantcompo 302 1092 17270.12 45089.13 23897.24

Table 3.6: The 4-club number, the number of cuts added, and the running time in
seconds for DBC, F1, and F2 on the DIMACS test-bed.

DBC F1 F2

Graph ω̄4(G) #CHC Time Time Time

karate 33 54 3.01 120.23 42.08
lesmis 75 128 7.92 214.59 120.17
polbooks 68 522 15.93 291.08 163.00
adjnoun 107 268 4.12 486.11 243.06
football 115 405 53.40 1367.15 615.22
celegans-metabolic 432 571 3725.71 10897.36 5993.55
email 468 2680 6789.00 26945.82 11856.16
polblogs 970 10405 8604.65 81635.49 31021.49
netscience 68 405 126.21 31675.24 14253.86
power 45 683 654.59 33069.42 11904.99
hep-th 184 1868 11537.96 58607.19 30475.74
PGPgiantcompo 1161 408 28774.66 73972.05 42903.79
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CHAPTER 4

A DELAYED CONSTRAINT GENERATION APPROACH1

As discussed in Chapter 2 (Section 2.3), a compact integer programming formulation

for this problem was presented by Veremyev and Boginski [101]. Solving this formu-

lation (F1) and an improvement of this formulation (F2), published recently [102],

are effective integer programming approaches presently available to solve the MkCP

for any given value of k. In this chapter, we demonstrate that by using a delayed

constraint generation approach we can significantly speed-up the performance of an

IP solver. We demonstrate performance gains on the same test-bed of instances used

by Veremyev and Boginski [101], as well as benchmark instances from the recent DI-

MACS clustering challenge. We also compare against the CHC based DBC algorithm

introduced in Chapter 3.

The main contribution of this chapter is to show that adding the constraints in the

formulation developed by [101] in a delayed fashion as cuts in a branch-and-cut (BC)

algorithm results in a more effective decomposition algorithm that is much faster

than solving a complete, direct implementation of the same. This approach further

enhances our DBC approach from Chapter 3 in which we showed that the MkCP

can be solved optimally for arbitrary values of k on the same test-bed without using

the MkCP formulations. Specifically, we began with (3.1)-(3.3) of the maximum k-

clique problem as the master relaxation. Whenever a k-clique that is not a k-club

was detected as an IP feasible solution in the BC tree, we added a naive cutting-

plane that requires the IP feasible solutions encountered subsequently to differ in at

1Contents of this chapter have been submitted to European Journal of Operational Research for
publication.
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least one component, from the IP feasible solution detected at that node of the BC

tree. While even this naive cutting-plane in a decomposition algorithm allowed us to

improve over solving the direct implementation, the potential for further improvement

with stronger cutting-planes was open. Addressing this gap by using the constraints

developed in Veremyev and Boginski [101] is the main theme of this chapter.

In our computational studies, we employ the implementation of F2 presented in

Chapter 2, solved directly using a commercial IP solver, and the DBC algorithm using

CHC introduced in Chapter 3, in comparisons against two variations of a delayed

constraint generation approach in a BC using the constraints of F1. We elaborate on

our proposed approaches in the next section.

4.1 Delayed constraint generation in a branch-and-cut

Similar to the DBC algorithm in Chapter 3, the master relaxation that we commence

solving with a BC algorithm is the maximum k-clique problem. Note that every k-

independent set intersects every k-clique or k-club in G in at most one vertex. In

fact, S ⊂ V is a k-clique if and only if |S ∩ I| ≤ 1 for every k-independent set I in

G. The following maximum k-clique formulation that serves as our master relaxation

(henceforth referred to as MkCPR) is based on combining the aforementioned equiv-

alent characterization of k-cliques via k-independent sets and the more elementary

Definition 1 presented in Chapter 1.

(MkCPR) max
∑
i∈V

xi (4.1)

subject to: ∑
t∈Iij

xt ≤ 1, ∀i, j ∈ V | dG(i, j) ≥ k + 1, (4.2)

xi ∈ {0, 1}, ∀i ∈ V, (4.3)
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where Iij is a k-independent set containing vertices i and j that is also maximal

by inclusion. Note that instead of (4.2), we could simply use (3.2), resulting in

the “edge formulation” of the maximum k-clique problem used in Chapter 3. But

constraint (4.2) dominates the edge constraint (3.2) and is a facet inducing inequality

(when Iij is maximal) for the convex hull of incidence vectors of k-clubs in G.

The basic principle behind the delayed constraint generation approaches we pro-

pose in this chapter are similar to the approach introduced in Chapter 3. In the

previous chapter, we solve the edge formulation for k-cliques using a BC algorithm,

and whenever a BC node encounters IP feasibility, we verify if the detected k-clique

is a k-club. If it is not, we add the canonical hypercube cut which disallows precisely

this single binary vector from becoming feasible again, and every other binary vec-

tor distinct from it will satisfy this cut. Hence, the potential for improvement using

stronger cuts is arguably quite significant. But the challenge is that the only family

of facet-inducing inequalities presently known for arbitrary k are the aforementioned

maximal k-independent set inequalities. We have taken advantage of some of these

strong inequalities in formulating our initial master relaxation. Hence, any IP feasi-

ble solution encountered during the progress of the BC will correspond to a k-clique,

and will not violate any of the maximal k-independent set inequalities generated in

constraints (4.2). Hence, in place of facets of the convex hull that are unknown to

us, we instead use the constraints developed in [101] as we seek to cut-off integral

solutions, not fractional optima of the LP relaxation.

Suppose we encounter x̂ ∈ {0, 1}n as the LP relaxation optimum in some node

of the BC tree. If x̂ corresponds to a k-club, then we can allow the BC node to

be pruned, and update the incumbent if x̂ is a better solution. Suppose x̂ does not

correspond to a k-club, then because of the master relaxation (MkCPR) used at the

root node of this BC tree, we are guaranteed that x̂ corresponds to a k-clique. Now

let S , {i ∈ V | x̂i = 1} be the detected k-clique that is not a k-club. Hence,
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diam(G[S]) ≥ k + 1 and the set of “violated pairs,” defined as:

V , {(i, j) | i, j ∈ S, i < j, dG[S](i, j) ≥ k + 1},

is nonempty. Note that however, for every (i, j) ∈ V , dG(i, j) ≤ k. Now for every

(i, j) ∈ V there exists a constraint (2.7) in the original Veremyev-Boginski formula-

tion, enforcing any one of which will eliminate x̂ from further consideration. Fur-

thermore, the polynomial constraint corresponding to one such violated pair can also

eliminate other binary solutions corresponding to k-cliques that are not k-clubs, con-

taining the same violated pair. These observations clearly continue to hold if we

enforce a group of constraints corresponding to every violated pair in V . Of course,

the polynomial constraint is not added explicitly, instead the corresponding linearized

constraints are added. The two variations of the delayed constraint generation ap-

proach we propose in this chapter, referred to as One-VP (“one violated pair”) and

All-VP (“all violated pairs”) are summarized next.

1. One-VP : Select the lexicographically smallest (i, j) ∈ V , add the corresponding

constraints (2.10)-(2.14) at that node of the BC tree.

2. All-VP : For every (i, j) ∈ V detected, generate and add all the corresponding

constraints (2.10)-(2.14) at that node of the BC tree.

We illustrate some observations about One-VP and All-VP schemes with the

example graph in Figure 4.1. Suppose that the IP feasible solution obtained as

optimum to the LP relaxation at some node of the BC tree corresponds to the set

S = {1, 2, 3, 4, 7, 8} in Figure 4.2 and suppose that it is a 2-clique in the graph

considered in this example.

Associated with this solution are the violated pairs given by V = {(1, 7), (1, 8), (7, 8)}.

This solution will be eliminated by adding the constraints for any one of the violated
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Figure 4.1: A graph of diameter two.
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Figure 4.2: The graph induced by the 2-clique {1, 2, 3, 4, 7, 8} (shown with bold edges)
has diameter three.

pairs. But the 2-clique in Figure 4.3 will not be cut-off by adding constraints cor-

responding to (1, 7) ∈ V , but those in Figures 4.4 and 4.5 will be. Similarly, the

2-clique in Figure 4.4 will not be eliminated by using constraints for (1, 8) ∈ V , but

those in Figures 4.3 and 4.5 will be. The constraints corresponding to (7, 8) ∈ V will

eliminate the 2-cliques in Figures 4.3 and 4.4, but not the one in Figure 4.5. All the

2-cliques in Figures 4.3–4.5 will be eliminated in one pass of the All-VP scheme.
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Figure 4.3: For S = {1, 2, 3, 4, 5, 7, 8}, dG[S](1, 7) = 2, but dG[S](1, 8) = dG[S](7, 8) = 3.

In the computational study presented in this chapter, either One-VP cuts or All-

VP cuts are used in Step 9 of Algorithm 1, which was presented in Chapter 3, and
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Figure 4.4: For S = {1, 2, 3, 4, 6, 7, 8}, dG[S](1, 8) = 2, but dG[S](1, 7) = dG[S](7, 8) = 3.
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Figure 4.5: For S = {1, 2, 3, 4, 7, 8, 9}, dG[S](7, 8) = 2, but dG[S](1, 7) = dG[S](1, 8) = 3.

the master relaxation used in the root node is MkCPR (4.1)-(4.3).

Note that One-VP requires less effort in the sense that the strength of the cutting-

planes are not considered as we add the constraints corresponding to the first violated

pair detected, and no other violated pairs are used (or even detected). By contrast,

All-VP represents the most effort to tighten the relaxation within the scope of our

delayed constraint generation framework. Naturally, further strengthening is possible

by the addition of problem-specific cutting-planes at the nodes of the BC tree, espe-

cially at those with fractional LP relaxation optima. However, that digresses from the

purpose of this study, which is to demonstrate how much more effectively the com-

pact formulation introduced in [101] can be used to solve the MkCP by employing

delayed constraint generation. We do so in the next section via computational ex-

periments on an test-bed of benchmark instances introduced in Chapter 3. Although

problem-specific cuts are not used, the IP solver we use by default employs a variety

of general-purpose cutting planes in the BC algorithm.
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4.2 Computational study

As emphasized earlier, the objective of our computational study is to assess the

performance gains (measured in terms of the running time) that can be achieved by

using the delayed constraint generation frameworks One-VP and All-VP described in

Section 4.1. Between the two approaches, there is a basic trade-off in the sense that the

former adds fewer constraints in any one pass, resulting in a relatively smaller sized LP

that is potentially easier to re-solve. The latter adds the maximum possible number

of constraints in any one pass, resulting in a relatively tighter LP relaxation that

potentially produces better bounds. The baseline for comparison is the computational

results for directly solving the implementations of F1 and F2 described in Section 4.1.

These complete formulations start with the largest possible system in comparison, at

the root node of the BC tree as all the constraints are added a priori at the root node.

The downside is the need to solve this very large LP relaxation at the root node and

at all descendants subsequently. In fact, in our preliminary experiments with F1 and

F2, when simplex was used as the root node solver, the size and potential degeneracies

in the formulation resulted in much longer running times in comparison to using an

interior-point LP solver at the root node. This is a significant computational overhead

that can be avoided by the delayed constraint generation approaches that begin with

the MkCPR formulation at the root node. We expect our master relaxation (4.1)-

(4.3) to offer a better compromise between smaller upper-bounds and a smaller sized

LP relaxation at the root node.

All approaches (One-VP,All-VP, F1, F2) were implemented in C++, and GurobiTM

optimizer 6.0 was used to solve the mathematical models [44]. One-VP and All-

VP were implemented using the ‘lazy constraints’ feature of Gurobi. F1 and F2

used a barrier method as the root node LP solver, set using the Gurobi parameter

‘NodeMethod’. All other Gurobi default settings were unchanged. All numerical

experiments were conducted on a 64-bit Linuxr compute node with dual quad-core
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Intelr Xeonr E5620 2.40GHz processor and 96 GB RAM. The performance of all the

approaches are compared for k = 2, . . . , 7 on these instances. We use the same test-

bed used by Veremyev and Boginski [101] and selected DIMACS clustering benchmark

instances [42] in our experiments similar to Chapter 3.

Table 4.1: A comparison of average running times (secs) on the test-bed from Vere-
myev and Boginski [101] for k = 2 and 3.

n ρ One-VP All-VP DBC F1 F2

k = 2

100
2% 1.48 1.64 1.63 0.92 0.87
3% 1.60 1.65 1.73 0.90 0.76
4% 1.54 1.80 1.67 0.95 0.85

200
1% 7.27 7.13 7.47 6.01 4.47

1.5% 8.68 8.93 9.17 7.11 5.15
2% 9.38 9.32 9.69 7.93 6.33

300
0.5% 19.12 19.95 21.82 17.85 13.55
1% 21.03 21.02 23.78 20.48 14.44

1.5% 25.28 25.62 28.73 27.17 18.59

k = 3

100
2% 2.42 2.68 3.05 2.81 2.24
3% 4.22 4.43 5.10 6.07 4.49
4% 9.82 11.22 12.34 14.26 10.82

200
1% 8.55 8.88 9.45 13.72 11.06

1.5% 15.36 16.74 18.17 24.59 19.53
2% 45.95 46.96 51.78 70.11 55.44

300
0.5% 24.35 26.88 30.86 33.13 29.61
1% 38.07 40.59 46.42 51.34 47.18

1.5% 202.13 219.89 253.01 258.27 217.29

Tables 4.1, 4.2, and 4.3 report the average running time for the synthetic test-

bed from [101], and the fastest running times are highlighted in bold font. The first

clear observation is that One-VP consistently performed better on this test-bed than

All-VP indicating that the time needed to re-build and re-solve the relaxation in

All-VP outweighs any savings gained by the tighter relaxation potentially leading to

less enumeration. At the same time, One-VP is only slightly faster than All-VP until

we get to the larger n (= 200, 300) and k (= 6, 7), where the savings are noticeable.

Nonetheless, it is also possible that the balance may shift in favor of All-VP on
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Table 4.2: A comparison of average running times (secs) on the test-bed from Vere-
myev and Boginski [101] for k = 4 and 5.

n ρ One-VP All-VP DBC F1 F2

k = 4

100
2% 2.97 3.20 3.64 4.89 3.21
3% 7.71 7.94 9.52 14.78 9.86
4% 28.10 29.84 34.64 46.25 35.34

200
1% 8.62 10.01 11.02 18.21 15.24

1.5% 33.24 38.05 43.02 65.44 53.32
2% 409.60 455.28 519.80 925.29 750.68

300
0.5% 22.71 25.75 30.15 40.52 33.57
1% 99.46 108.97 130.82 145.36 121.83

1.5% 2062.62 2180.59 2664.82 3173.93 2499.35

k = 5

100
2% 3.71 3.91 4.83 7.74 5.56
3% 15.77 17.04 20.57 28.14 22.53
4% 13.95 15.01 18.36 28.85 21.50

200
1% 31.69 35.68 41.55 69.75 52.21

1.5% 280.19 303.24 354.28 646.81 501.52
2% 469.62 515.73 589.66 816.57 633.91

300
0.5% 22.68 22.77 31.77 43.31 33.55
1% 537.04 550.26 735.11 968.11 725.84

1.5% 7452.14 7501.50 10557.38 13380.10 9781.28

a different test-bed. Finally, addressing the main objective of this computational

study, we find that One-VP is faster than DBC, which is faster than solving F2

for all k ≥ 3, but slower when k = 2. This is acceptable since the maximum 2-

club problem has a more compact common neighborhood formulation that has been

the subject of other polyhedral studies [15, 28, 67]. So better IP approaches and

combinatorial algorithms [46] are available for the case k = 2. However, for the

larger values of k, One-VP was 1.06− 4.52 times faster than solving F2 except when

n = 100, ρ = 2%, k = 3 and n = 200, ρ = 1.5%, k = 6 when it was slower by a factor

of 1.08 and 1.01, respectively. The DBC algorithm was 1.02− 2.61 times faster than

solving F2 for the 56% of instances. For the 44% of instances, it was 1.01 − 2.30

times slower. It should also be noted that All-VP was faster than solving F1 and

F2 for k = 4, . . . , 7. While these observations are indicative, a performance profile
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Table 4.3: A comparison of average running times (secs) on the test-bed from Vere-
myev and Boginski [101] for k = 6 and 7.

n ρ One-VP All-VP DBC F1 F2

k = 6

100
2% 4.26 4.97 6.04 11.04 7.80
3% 11.56 13.53 16.79 25.62 15.74
4% 12.33 14.62 17.96 33.65 23.07

200
1% 69.06 79.75 93.36 132.85 89.41

1.5% 604.49 643.21 769.22 912.17 596.52
2% 239.89 275.03 319.51 417.79 274.16

300
0.5% 29.76 33.55 45.29 71.58 48.34
1% 4588.58 5427.19 7213.84 10806.20 6898.40

1.5% 679.58 825.12 1075.26 1844.03 1330.49

k = 7

100
2% 3.91 4.53 6.16 13.46 7.85
3% 8.84 10.23 13.75 39.70 19.18
4% 16.22 18.73 25.28 56.51 27.91

200
1% 60.93 74.03 96.95 316.55 150.47

1.5% 84.68 105.49 141.34 465.75 241.18
2% 148.19 187.29 248.58 811.13 422.30

300
0.5% 16.20 17.82 25.44 98.50 54.38
1% 2093.17 2434.86 3557.13 14086.39 8181.91

1.5% 482.86 562.84 834.63 3706.48 2181.13

across the entire test-bed for all k values can better summarize the performance of

each approach.

A performance profile is defined as the empirical cumulative distribution function

f(τ) of an appropriate performance ratio τ [34]. The profiles offer an effective way to

summarize, visualize, and compare the performance of different solvers. In our case,

the performance metric is the running time of the different approaches, namely, One-

VP, All-VP, DBC, F1, and F2, and the performance ratio is the ratio of the running

time of each solver on a given instance to the minimum running time among all solvers

for that instance. Figure 4.6 plots the performance profiles across all instances, for

all values of k considered in our study to present a broad picture of their effectiveness

as a general purpose MkCP solver.

Tables 4.4, 4.5, and 4.6 present the results for the DIMACS clustering benchmark
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Figure 4.6: Performance profiles comparing running time ratios of One-VP, All-VP,
DBC, F1, and F2. For a given τ , the larger f(τ) implies that a larger fraction of the
instances were solved under a factor-τ of the instance-wise minimum running time.

instances for k = 2, 3, and 4, respectively. For these instances we only report the

running times of One-VP, DBC and F2, and the fastest of the three is highlighted in

bold font. We excluded All-VP and F1 running times as they were consistently slower

than their counterparts, similar to what we observed with the test-bed of [101]. These

tables again demonstrate that One-VP was the fastest approach for k = 3, 4 and it

was the fastest for k = 2 on the DIMACS instances with n > 400. Although not

reported, we observed that again All-VP was consistently faster than DBC, which

is faster than solving F1 and F2 when k = 3, 4 and for k = 2 when the instances

have 1000+ vertices. It is also important to note that on the instances with 1000+

vertices, One-VP is at least 3 times faster when k = 2, reducing the running time

by a factor of 37 for one instance, at least twice as fast as solving F2 for k = 3, 4

38



with some instances showing speed-ups by a massive factor, e.g., ‘netscience’ is solved

44-times faster with One-VP when k = 3, and 150-times faster when k = 4. The

DBC algorithm is at least 1.38 times faster than F2 for the instances with 1000+

vertices. When k = 4, DBC is solved 113 times faster than F2 for ‘netscience’.

Table 4.4: The 2-club number and running time (secs) for One-VP, DBC, and F2 for
the DIMACS clustering instances.

Graph ω̄2(G) One-VP DBC F2

karate 18 1.61 1.76 0.31
lesmis 40 5.26 5.85 1.17
polbooks 28 11.02 12.34 2.63
adjnoun 50 2.26 2.60 2.98
football 16 14.01 14.91 5.16
celegans-metabolic 238 204.46 217.51 217.68
email 72 574.88 605.14 3923.47
polblogs 352 6444.81 6784.01 19657.04
netscience 35 172.33 179.51 6374.46
power 20 320.87 341.35 4596.69
hep-th 51 485.04 527.22 5411.59
PGPgiantcompo 206 772.12 867.55 11745.40

Table 4.5: The 3-club number and running time (secs) for One-VP, DBC, and F2 for
the DIMACS clustering instances.

Graph ω̄3(G) One-VP DBC F2

karate 25 2.71 3.71 28.22
lesmis 59 11.59 15.05 48.91
polbooks 53 26.25 32.41 61.90
adjnoun 82 10.72 14.69 105.84
football 58 31.59 44.49 105.51
celegans-metabolic 371 478.38 629.45 449.32
email 111 3147.92 3618.30 6491.31
polblogs 398 5217.51 7348.60 27994.21
netscience 54 219.68 296.87 9708.56
power 30 544.81 698.47 11281.65
hep-th 67 6153.92 7992.10 15990.48
PGPgiantcompo 302 12434.49 17270.12 23897.24

Based on a comprehensive computational study, this chapter has demonstrated

that a decomposition algorithm (One-VP) that uses the constraints from a well-

known compact formulation (F1) is a very effective approach for solving the MkCP
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Table 4.6: The 4-club number and running time (secs) for One-VP, DBC, and F2 for
the DIMACS clustering instances.

Graph ω̄4(G) One-VP DBC F2

karate 33 1.84 3.01 42.08
lesmis 75 4.75 7.92 120.17
polbooks 68 12.26 15.93 163.00
adjnoun 107 2.80 4.12 243.06
football 115 34.71 53.40 615.22
celegans-metabolic 432 2570.74 3752.71 5993.55
email 468 4820.19 6789.00 11856.16
polblogs 970 5851.16 8604.65 31021.49
netscience 68 94.65 126.21 14253.86
power 45 484.40 654.59 11904.99
hep-th 184 8653.47 11537.96 30475.74
PGPgiantcompo 1161 20142.26 28774.66 42903.79

for arbitrary large values of k, especially for k = 2 . . . 6, that are likely more interesting

in real-life networks. In the next chapter, we proceed to study the special case, k = 2,

but in graphs that are subject to probabilistic edge failures. We focus on the 2-clubs

since this is the first study of this kind on the MkCP in a stochastic setting.
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CHAPTER 5

RISK-AVERSE 2-CLUBS IN RANDOM GRAPHS1

In this chapter, we change our focus to the special case of k = 2 for which F1, F2,

and the path-based formulation (2.1)-(2.5) coincide, but in a stochastic setting. In

graph models where the edge relationships are uncertain, cluster detection approaches

discussed in this chapter will be useful. Specifically, we are interested in detecting

large 2-clubs in graphs subject to probabilistic edge failures, in such a way that the

risk of losing the desired 2-club property in detected clusters due to edge failures is

limited. To quantify risk, we employ the notion of CVaR introduced in Section 2.6.

To model “risk-averse” solutions to our problem, we first define the loss in 2-club

property due to random edge failures as a function of the decision vector x (chosen

2-club) and random vector Y (indicating edge failures). Then, to limit the risk of

heavy losses, we bound the CVaR of the loss function for a given decision in the

optimization model. The formal description of our problem is presented next.

5.1 Problem description

Consider a random graph G̃ = (V, Ẽ) in which the vertex set V is deterministic and

the edge set Ẽ is random. Assume that V = {1, . . . , n} and each edge (i, j) ∈ Ẽ exists

independently of the others with probability pij. Let G = (V,E) denote the support

graph, where (i, j) ∈ E if and only if pij > 0, and let |E| = m. Let A = [aij]n×n

denote the symmetric, zero-diagonal, adjacency matrix of the support graph G in

which aij = aji = 1 if and only if (i, j) ∈ E. We use a random vector Y with image

1Results of this chapter have been submitted to Annals of Operations Research for publication.
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in {0, 1}m to indicate the existence of an edge, and hence, Pr{Yij = 1} = pij > 0 for

all (i, j) ∈ E.

In our model, the decision vector x must be an incidence vector of a 2-club in the

support graph G. The set P containing incidence vectors of all 2-clubs in graph G

can be formulated as,

P ,
{
x ∈ {0, 1}n : xi + xj −

∑
k∈V

aikajkxk ≤ 1 + aij, ∀i, j ∈ V | i < j
}
. (5.1)

Given a decision x0 ∈ P corresponding to a 2-club S0 in G and a realization

y0 of the random vector Y , our loss function L(x0, y0) counts the total number of

non-adjacent pairs of vertices in S0 without a common neighbor in S0. Note that S0

is a 2-club in the support graph G, but it may not necessarily form a 2-club under

the realization y0. Given a real number β, let [β]+ = max{0, β}. Then, for a 2-club

x0 ∈ P , the random loss function L(x0, Y ) is defined as,

L(x0, Y ) ,
n−1∑
i=1

n∑
j=i+1

[ϕ(x0, Y, i, j)]+, (5.2)

where ϕ(x0, Y, i, j) , x0
i + x0

j − 1− aijYij −
∑
t∈V

aitajtYitYjtx
0
t .

Therefore, given a graph subject to probabilistic edge failures, we are interested

in finding a largest cardinality 2-club in the support graph such that the CVaR of the

loss function defined above does not exceed a user-defined threshold d. As stated next,

this is a CVaR-constrained, single-stage stochastic program in decision vector x ∈ P ;

and henceforth, is referred to as the CVaR-constrained maximum 2-club problem.

max
x∈P

{
1Tx | α-CVaR[L(x, Y )] ≤ d

}
(5.3)

Figure 5.1 illustrates the CVaR concept, where L(x0, Y ) is given by (5.2). Assume

that G = (V,E) is a star with |V | = 20, and x0 is the incidence vector of V . We
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further assume that pij = 0.75 for all (i, j) ∈ E and α = 0.90. For these parameter

values, α-VaR[L(x0, Y )] = 112 and α-CVaR[L(x0, Y )] = 119.77.
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Figure 5.1: Illustration of the CVaR concept using loss function (5.2) on a star sup-
port graph of order 20 in which all vertices are selected as the 2-club solution. The
probability of existence of each edge is 0.75 and α = 0.90.

The remainder of this chapter is organized as follows. In Section 5.2, we provide

a brief background on the optimization of CVaR and summarize literature closely

related to solving the CVaR-constrained maximum 2-club problem (5.3). The de-

tails of the proposed algorithm for solving (5.3), based on an existing decomposition

approach for solving CVaR-constrained mixed integer programs is presented in Sec-

tion 5.3. Section 5.4 contains the numerical results we obtained by solving (5.3) using

Algorithm 2 on a test-bed of randomly generated graphs, and real-life biological and

social networks. We study the computational performance of Algorithm 2 in terms

of solution quality, running time and number of iterations, averaged over multiple
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replications.

5.2 Review of literature on CVaR optimization

The literature on handling CVaR in optimization models can be divided into two

groups based on how CVaR is incorporated into the optimization model. One group

consists of models that find a feasible solution that minimizes CVaR; and the other

group optimizes a different objective (e.g., total cost) while ensuring that CVaR of

a suitable loss function is bounded from above by a user-specified parameter. The

models could also be classified as single-stage decision models and two-stage decision

models that accommodate recourse actions. The algorithmic approaches, specifically

decomposition techniques, while related in principle, are not necessarily interchange-

able. Of course, a model could also employ multiple loss functions and incorporate

multiple CVaR constraints.

Decomposition techniques form the vast majority of exact approaches for CVaR

optimization due to the model structure. However, non-differentiable convex opti-

mization based approaches are also suitable whenever the loss function is convex in

x. For instance, Lim et al. [61] developed a convergent algorithm based on vari-

able target value method for non-differentiable optimization, for CVaR minimization

applied to portfolio optimization problems. The overall algorithm includes a pertur-

bation technique as a pre-processing step, and for linear loss functions, an optional

post-processing step using the simplex method to facilitate finite convergence. We

next highlight several existing decomposition approaches for CVaR optimization with

linear loss functions in continuous variables.

Künzi-Bay and Mayer [59] studied solving single-stage CVaR minimization by

reformulating it as a two-stage stochastic programming problem and specializing

the L-shaped method [99] for this form, leading to a new algorithm for minimiz-

ing CVaR. A central result in their work was the polyhedral reformulation of the
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CVaR constraint (2.31) that facilitated their decomposition approach. This polyhe-

dral representation was in turn based on the work of Haneveld and van der Vlerk [45]

dealing with expectation constrained stochastic optimization. Schultz and Tiede-

mann [89] investigated the use of CVaR to quantify the uncertain second stage cost

in two-stage stochastic optimization problems with integer recourse. They studied

its convexity properties, developed a Lagrangian decomposition strategy and solved

it using a subgradient-based method. Their modeling approach is also related to the

investigation of mean-risk stochastic programs by Ahmed [2].

Several authors (Fábián [37], Subramanian and Huang [94], and Huang and Sub-

ramanian [50]) have developed decomposition techniques and other iterative schemes

based on the result of [59], as well as extended their approach to solve single-stage and

two-stage stochastic optimization problems involving CVaR constraints or objective,

typically with linear loss functions and continuous variables. Very recently Ma et

al. [64] developed a polyhedral reformulation for piecewise linear losses and used the

linear constraints in a decomposition and branch-and-cut approach for a stochastic

network design problem. The decomposition ideas we explore in Section 5.3 were in-

troduced in [64], designed to handle our convex piecewise linear loss function without

additional linearization variables. We then combine the reformulation ideas from [64]

with the cutting plane method from [94] leading to our algorithm for the CVaR-

constrained maximum 2-club problem.

5.3 Row-generation-based decomposition algorithm

Künzi-Bay and Mayer [59] developed a polyhedral reformulation approach and cut-

ting plane method for linear loss functions and continuous variables. Subramanian

and Huang [94] used their approach to solve single-stage CVaR-constrained mixed in-

teger linear programming problems with linear loss functions. Ma et al. [64] extended

the results of [59] to convex piecewise linear losses and showed how the linear refor-
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mulation constraints can be used as cutting planes decomposition branch-and-cut.

This section presents our row-generation approach based on [59, 94, 64] for solving

the CVaR-constrained maximum 2-club problem.

We use the following equivalent representation introduced by Künzi-Bay and

Mayer [59] for the generic CVaR constraint (2.31):

(1− α)ζ +max
ϕ∈Φ

{∑
l∈ϕ

πl[L(x, y
l)− ζ]

}
≤ d(1− α), (5.4)

where Φ is the power set of {1, . . . , N} and the sum is taken to be zero when ϕ is empty.

Constraint (5.4) is equivalent to the following (exponentially many) constraints:

(1− α)ζ +
∑
l∈ϕ

πl[L(x, y
l)− ζ] ≤ d(1− α), ∀ϕ ∈ Φ. (5.5)

Therefore, problem (5.3) can be reformulated as follows:

max
ζ∈R,x∈P

1Tx (5.6)

subject to:

(1− α)ζ +
∑
l∈ϕ

πl[L(x, y
l)− ζ] ≤ d(1− α), ∀ϕ ∈ Φ. (5.7)

Formulation (5.6)-(5.7) is a large-scale mixed integer program with exponentially

many convex, piecewise linear constraints. Note that the loss function in our problem

is piecewise linear and convex. To solve this problem, we devise Algorithm 2, which

adopts and extends the approach proposed by Subramanian and Huang [94] in con-

junction with the approach introduced in Ma et al. [64] for replacing the piecewise

linear constraints with linear constraints.

For a given realization of Y , say y0, L(x, y0) is a piecewise linear convex function

of x. Now, for a given 2-club x0, let h(x0,y0)(x) denote the linear function describing
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a piece of L(x, y0) in a region near x0 described as follows:

h(x0,y0)(x) =
∑

(i,j)∈S(x0,y0)

ϕ(x, y0, i, j), (5.8)

where

S(x0, y0) =
{
(i, j) : i, j ∈ V, i < j, and ϕ(x0, y0, i, j) > 0

}
. (5.9)

Therefore, in iteration t of Algorithm 2, an inequality of type (5.7) violated by the

optimum solution x∗(t) that is detected by solving the constructed problem in Step 1

of Algorithm 2, is replaced by the following linear constraint:

(1− α)ζ +
∑
l∈ϕ

πl[h(x∗(t),yl)(x)− ζ] ≤ d(1− α). (5.10)

The constraints of type (5.10) are preferred since the problem remains a linear

integer program throughout the iterations of the algorithm and avoids the use of

additional variables to linearize the piecewise linear constraint (5.7).

Algorithm 2 is a two-phase procedure. In Phase 1, a continuous relaxation of for-

mulation (5.6)-(5.7) is obtained by removing constraints (5.7) and relaxing the binary

restriction on x. This relaxation is solved using a sequential cutting plane method

that adds cutting planes of type (5.10). The goal of Phase 1 is to find cutting planes

of type (5.10) such that the continuous relaxation optimum in the presence of these

cutting planes does not violate any of the constraints of type (5.7). This effectively

solves the continuous relaxation of formulation (5.6)-(5.7) to optimality. This is a

warm-up procedure to initialize the problem for Phase 2, which in each iteration

solves a mixed-integer linear program using a sequential cutting plane method that

adds cutting planes of type (5.10) until the integer optimum does not violate any of

the constraints of type (5.7). This solves the original CVaR-constrained problem to
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optimality whenever an optimal solution exists.

In both phases, given the optimal solution to the relaxation under consideration,

we scan the scenarios to find a ϕ ⊆ {1, . . . , N} that corresponds to the most violated

constraint of type (5.7), if one exists. This is in turn used to construct a cutting

plane of type (5.10). If no violated constraint of type (5.7) exists in Phase 1 the

algorithm proceeds to Phase 2, and if no violated constraint of type (5.7) exists in

Phase 2 the algorithm terminates optimally. If the relaxation becomes infeasible

during an iteration of Phase 1 or Phase 2, then the problem (5.6)-(5.7) is infeasible

and Algorithm 2 terminates by infeasibility.

Algorithm 2 A sequential cutting plane method for solving the CVaR-constrained
maximum 2-club problem

Procedure SCPM(G, (π1, . . . , πN), (y1, . . . , yN), d, α)

1: Phase 1. Construct RP1 by removing all constraints of type (5.7) from formu-
lation (5.6)-(5.7) and relaxing x to be continuous; t← 1

2: Solve RP1; if RP1 is infeasible, then return infeasibility of formulation (5.6)-
(5.7); otherwise, suppose x∗(t), ζ∗(t) is the optimal solution found

3: ϕ(t)←
{
l ∈ {1, . . . , N} | L(x∗(t), yl)− ζ∗(t) > 0

}
4: If the constraint of type (5.7) associated with ϕ(t) is violated by x∗(t), ζ∗(t), then

go to Step 5; otherwise, go to Step 7
5: Update RP1 by adding the cutting plane (1 − α)ζ +

∑
l∈ϕ(t)

πl[h(x∗(t),yl)(x) − ζ] ≤

d(1− α)
6: t← t+ 1 and go to Step 2
7: Phase 2. Initialize RP2 with RP1 and restrict x to be binary; t← t+ 1
8: Solve RP2; if RP2 is infeasible, then return infeasibility of formulation (5.6)-

(5.7); otherwise, suppose x∗(t), ζ∗(t) is the optimal solution found
9: ϕ(t)←

{
l ∈ {1, . . . , N} | L(x∗(t), yl)− ζ∗(t) > 0

}
10: If the constraint of type (5.7) associated with ϕ(t) is violated by x∗(t), ζ∗(t),

then go to Step 11; otherwise, return by x∗(t), ζ∗(t) as the optimal solution to
formulation (5.6)-(5.7)

11: Update RP2 by adding the cutting plane (1 − α)ζ +
∑

l∈ϕ(t)
πl[h(x∗(t),yl)(x) − ζ] ≤

d(1− α)
12: t← t+ 1 and go to Step 8

End-Procedure
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5.4 Numerical experiments

In this section, we study the computational performance of Algorithm 2 and we assess

the performance of the algorithm based on the solution quality, number of iterations,

and total running time.

Algorithm 2 was implemented in C++ and all numerical experiments were con-

ducted on a 64-bit Linux compute node with dual quad-core Intel Xeon E5620

2.40GHz processors and 96GB RAM. IBM ILOG CPLEX Optimizer 12.6r was used

to solve the relaxation in single-threaded mode.

The test-bed consists of randomly generated instances along with selected real-life

biological and social networks. Randomly generated instances include ten 50-vertex

graphs and ten 100-vertex graphs generated by the algorithm described in [24]. The

edge density of the graphs produced by this algorithm is controlled by two parameters

a and b. The expected edge density is (a+ b)/2 and vertex degree variance increases

as a function of b − a. We considered density 10% with a = b = 10%, which is

known to be a challenging density for the deterministic maximum 2-club problem as

demonstrated in [66]. If the degree variance is high, the maximum degree vertex and

its neighbors are more likely to form a maximum cardinality 2-club in the support

graph, a situation we try to avoid to the extent possible in our randomly generated

test-bed by setting a = b.

For the real-life networks, we use protein interaction networks of two organisms,

and a coauthor network of mathematicians. These three networks are large, but

very sparse networks that exhibit a power-law degree distribution [31]. The protein

interaction data for organism S. cerevisiae, commonly known as baker’s yeast [53],

which has 2114 proteins and 2203 known interactions was obtained from [29]. The

other protein interaction network is for a gastric bacterium called H. pylori that

has 1570 proteins and 1399 interactions [82, 57]. More information on the Erdös

collaboration network (|V | = 511, |E| = 1604) can be found in [43].
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The failure probability for each edge in each test instance was generated randomly

from a uniform distribution between 0 and 1. The value of parameter α = 0.95 in

all our experiments, and the right-hand side of the CVaR constraint (parameter d)

is set based on preliminary experiments to find a meaningful value for parameter

d. If d is too large, the CVaR constraint is redundant and if it is too small, the

problem becomes infeasible. For each test-instance, 1000 scenarios are sampled based

on the edge probabilities; five replications were carried out based on five different sets

of samples, and average performance is reported for each performance metric. The

running time limit for each algorithm is 10800 seconds. If the algorithm terminates

reaching the time-limit, an upper-bound on the optimal solution is reported.

Table 5.1 presents results of our experiments with the 50-vertex test instances for

Algorithm 2. This table shows the performance of the algorithm based on the average

number of iterations and average running time. The computational results obtained

by solving the CVaR-constrained maximum 2-club problem on randomly generated

100-vertex instances are reported in Table 5.2. For these instances, our algorithm

terminated reaching the time limit. Since, our algorithm is sequential cutting plane

method solving a relaxation in each iteration, feasibility cannot be guaranteed under

this type of termination. Nonetheless, a valid upper bound on the optimal objective

value is available from the algorithm. Table 5.3 reports the results of our experiments

with the social and biological networks.

The preliminary computational study conducted in this chapter is indicative of the

possibilities, as well as the challenges in solving this problem in a stochastic setting.

We reach the limits of our ability to solve the problem to optimality, rather quickly.

A decomposition branch-and-cut instead of a sequential cutting plane method can

help improve this situation.
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Table 5.1: Average solution size (Sol. Size), number of iterations and running time
(in seconds) over the five replications using Algorithm 2 on ten randomly generated
50-vertex instances are reported. In these experiments, d = 10, N = 1000, and
α = 0.95. The size of a maximum 2-club in the support graph of each instance (Det.
Sol. Size) is also reported.

Instance # Det. Sol. Size Sol. Size Iterations # Running Time (Sec.)
1 11 7 294.4 409.7
2 12 5.2 2359.2 8567.6
3 12 5.8 2556.3 10133.6
4 12 7 723.4 1413.1
5 11 6 800.4 1641.1
6 11 6 741.2 1202.1
7 11 6 789.2 1753.6
8 10 6 408.8 526.9
9 15 6 1426.2 5364.7
10 15 7 1932.6 10227.0

Table 5.2: Average number of iterations and upper-bound over the five replications
using Algorithm 2 on ten randomly generated 100-vertex instances are reported. In
these experiments, d = 20, N = 1000, and α = 0.95. The size of a maximum 2-club
in the support graph of each instance (Det. Sol. Size) is also reported.

Instance # Det. Sol. Size Iterations# Upper-Bound
1 21 481.4 16
2 22 401.2 15
3 23 359.7 15
4 22 318.0 16
5 22 453.2 15
6 19 600.4 14
7 20 565.4 13
8 20 680.0 13
9 22 444.2 13
10 20 425.2 15
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Table 5.3: Solution size (Sol. Size), number of iterations and running time (in seconds)
in each of the five replications using Algorithm 2 on real-life biological and social
networks. In these experiments, N = 1000, and α = 0.95. The size of a maximum
2-club in the support graph of each instance (Det. Sol. Size) is reported along with
values for parameter d.

Graph Det. Sol. Size Sol. Size Iterations # Running Time (Sec.)

56

54 47 2922.5
H. pylori 55 40 2913.5
(d=1300) 55 41 2904.0

54 43 3023.0
55 34 2816.7

57

56 59 7433.7
Yeast 55 63 8632.7

(d=1350) 56 57 7668.4
56 55 6924.3
56 58 7012.8

52

51 41 512.7
Erdös 51 44 549.2

(d=700) 51 38 418.5
50 76 806.8
51 52 573.0
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Detecting low-diameter clusters is an important graph-based data mining technique

used in social network analysis, bioinformatics, text-mining, and internet analytics.

This chapter summarizes our contributions in developing exact algorithms for detect-

ing k-clubs in graphs. At the end, some directions for future work are identified in

this chapter.

6.1 Contributions

New approaches for exactly solving the MkCP through model decomposition and

cutting planes is developed in this dissertation. We demonstrated that by using a

delayed cutting plane/constraint generation approach in a branch-and-cut algorithm,

we can solve the MkCP optimally for arbitrary values of parameter k. We showed in

Chapter 3 that complicated formulations of the MkCP can be disregarded in favor of a

simple relaxation based on necessary conditions, combined with canonical hypercube

cuts introduced by Balas and Jeroslow. The canonical hypercube cut is used as a

“lazy” cutting plane in the proposed decomposition algorithm enabling us to show

that this approach is effective even when a naive valid inequality is used. As a

consequence of using the canonical hypercube cut, we can see how often k-cliques

that are not k-clubs are encountered by the decomposition and branch-and-bound

algorithm.

Using the constraints developed in [101] in two different ways (One-VP and All-

VP), this study showed that using delayed constraint generation in a branch-and-
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cut outperformed directly solving F1 and F2 formulations. Although, using All-VP

cuts eliminates more infeasible integral solutions at each iteration of the proposed

approach, they are not favorable compared to using One-VP cuts in terms of overall

running time.

In large-scale networks that are error-prone, the uncertainty associated with the

existence of an edge between two vertices can be modeled by assigning a failure

probability to that edge. In Chapter 5, we study the problem of detecting large

risk-averse 2-clubs in graphs subject to probabilistic edge failures. To achieve risk

aversion, we first model the loss in 2-club property due to probabilistic edge failures

as a function of the decision (chosen 2-club cluster) and randomness (graph structure).

Then, we utilize the CVaR of the loss for a given decision as a quantitative measure

of risk for that decision, which is bounded in the model. We adapt and apply ideas

introduced in the recent literature [59, 94, 64] to design a sequential cutting plane

method for the CVaR constrained maximum 2-club problem.

6.2 Future work

Studying the k-club polytope to discover new families of facet inducing inequalities

for the general parameter k would be an interesting direction for future work. Using

the discovered families of facet inducing inequalities in the proposed decomposition

and branch-and-cut algorithms to solve the MkCP would likely be computationally

beneficial, which is another interesting research direction. In particular, integrating

the decomposition ideas for general k-clubs and CVaR 2-clubs developed in this dis-

sertation for the general CVaR-constrained maximum k-club problem for arbitrary k

is an interesting direction for immediate future research.

A generalization of k-clubs was introduced by Veremyev and Boginski [101] called

r-robust k-clubs. An r-robust k-club is a subset of vertices in which there are at

least r node-disjoint paths of length at most k between every pair of vertices. The
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motivation for r-robust k-clubs rose from the fact that k-clubs may be vulnerable to

failure of the edges/nodes of the induced subgraph. For example, a star is a 2-club

in which failure of the hub node will destroy the 2-club property of the subgraph.

The maximum r-robust k-club problem is to find an r-robust k-club with maxi-

mum cardinality in G. There is a lack of compact mathematical formulations anal-

ogous to F1 and F2 for this problem in the literature. Veremyev and Boginski [101]

presented a formulation that guarantees the distinctness of the r paths, but cannot

ensure the node-disjointedness requirement of r-robust k-clubs.

Developing compact formulations for the maximum r-robust k-club problem is

a good future research direction. Using decomposition techniques proposed in this

dissertation for developing a decomposition and branch-and-cut algorithm to solve

this problem for general values of parameters r and k would be another interesting

research direction. It would also be interesting to conduct polyhedral studies to

discover strong valid inequalities for this problem.

55



BIBLIOGRAPHY

[1] J. Abello, P. M. Pardalos, and M. G. C. Resende. On maximum clique problems

in very large graphs, 1999.

[2] S. Ahmed. Convexity and decomposition of mean-risk stochastic programs.

Mathematical Programming, 106:433–446, 2006.

[3] R. D. Alba. A graph-theoretic definition of a sociometric clique. Journal of

Mathematical Sociology, 3:113–126, 1973.

[4] M. T. Almeida and F. D. Carvalho. Integer models and upper bounds for the

3-club problem. Technical report, CIO-Centro de Investigação Operacional,

2008.

[5] M. T. Almeida and F. D. Carvalho. The k-club problem: New results for k = 3.

Technical report, CIO-Centro de Investigação Operacional, 2008.

[6] M. T. Almeida and F. D. Carvalho. Integer models and upper bounds for the

3-club problem. Networks, 60:155–166, 2012.

[7] M. T. Almeida and F. D. Carvalho. An analytical comparison of the LP relax-

ations of integer models for the k-club problem. European Journal of Opera-

tional Research, 232:489–498, 2014.

[8] F. Andersson, H. Mausser, D. Rosen, and S. Uryasev. Credit risk optimization

with conditional value-at-risk criterion. Mathematical Programming, 89:273–

291, 2001.

56



[9] P. Artzner, F. Delbaen, J. M. Eber, and D. Heath. Coherent measures of risk.

Mathematical Finance, 9:203–228, 1999.

[10] Y. Asahiro, E. Miyano, and K. Samizo. Approximating maximum diameter-
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