
SOFTWARE PLAGIARISM DETECTION

USING ABSTRACT SYNTAX TREE

AND GRAPH-BASED

DATA MINING

By

HSI-YUE SEAN HSIAO

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

2002

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the Degree of
MASTER OF SCIENCE

May, 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215255931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

SOFTWARE PLAGIARISM DETECTION

USING ABSTRACT SYNTAX TREE

AND GRAPH-BASED

DATA MINING

Thesis Approved:

Dr. Istvan Jonyer
Thesis Adviser

Dr. Debao Chen

Dr. Johnson Thomas

Dr. A. Gordon Emslie
Dean of the Graduate College

iii

ACKNOWLEDGMENTS

 I wish to express my sincere gratitude to my advisor, Dr.

István Jónyer, for his intelligent supervision, guidance, and

advice. My sincere gratitude extends to my other

committee members Dr. Johnson Thomas and Dr. Debao

Chen, for their guidance, assistance and suggestions.

I would also like to give my profound appreciation to my

beloved grand parents and parents for their encouragement.

Thanks also go to my uncles and sister for their selfless

support.

Finally, I would like to express my special appreciation

to my wife, Jane, for all of her support and love.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

1. INTRODUCTION .. 1

2. RELATED WORK.. 3

2.1 Attribute Counting Systems .. 3

2.2 Structure-Metric Systems.. 4

2.2.1 Measure of Software Similarity.. 4

2.2.2 Yet Another Plague... 4

2.2.3 JPlag .. 4

2.3 Document Fingerprinting Using Graph Grammar Induction................................ 5

3. SOFTWARE PLAGIARISM DETECTOR .. 6

3.1 Overview... 6

3.2 Extracting the Abstract Syntax Tree ... 7

3.2.1 Overview .. 7

3.2.2 Generating the Abstract Syntax Tree ... 8

3.2.4 GNU Compiler Collection (GCC) ... 10

3.3 Abstract Syntax Tree to SubdueGL Converter.. 10

3.3.1 AST Format .. 10

3.3.2 Convertion to SubdueGL Format..11

v

3.3.3 Noise cancellation.. 13

3.4 Subdue... 14

3.4.1 The Subdue knowledge discovery system... 14

3.4.2 SubdueGL... 17

3.5 Computing the Similarity.. 21

3.5.1 Submatch.. 21

4. EXPERIMENTS... 26

4.1 Artificial Domain .. 26

4.2 Real World Experiments ... 31

5. DISCUSSION... 37

6. CONCLUSIONS .. 41

REFERENCES ... 43

vi

LIST OF TABLES

Table 1. Results of experiment of choosing SubdueGL options....................................... 27

Table 2. Results of experiment of choosing conversion method 28

Table 3. Partial program comparison .. 30

Table 4. Software plagiarism detector versus MOSS ... 31

Table 5. Comprehensive test on Assignment 1 ... 32

Table 6. MOSS on Assignment 1 .. 32

Table 7. DFGGI test on Assignment 1 .. 33

Table 8. JPlag test on Assignment 1.. 33

Table 9. Comprehensive test on Assignment 2 ... 34

Table 10. MOSS on Assignment 2 .. 34

Table 11. DFGGI test on Assignment 2 .. 35

Table 12. JPlag on Assignment 2 .. 35

Table 13. Partial test on real world data.. 36

Table 14. Experiment results of canceling scope.. 38

vii

LIST OF FIGURES

Figure 1. Diagram of Software Plagiarism Detector .. 7

Figure 2. Phases of compiler... 8

Figure 3. Example of lexical analyzer .. 9

Figure 4. Example of AST .. 9

Figure 5. AST dumping results from g++..11

Figure 6. Input graph format of SubdueGL .. 12

Figure 7. Converter flowchart... 13

Figure 8. Example of noise data ... 14

Figure 9. MDL example graph.. 15

Figure 10. Pseudo code of Subdue.. 17

Figure 11. Example of input graph of SubdueGL... 18

Figure 12. First production ... 19

Figure 13. Input graph after the first production... 19

Figure 14. Second production ... 20

Figure 15. Third production.. 20

Figure 16. Final production returned by SubdueGL... 20

Figure 17. Example comparison performed by Submatch.. 22

Figure 18. Example of inexact graph match ... 23

Figure 19. Example of comparing two results of SubdueGL ... 24

Figure 20. Graph representation of Figure 19... 25

1

CHAPTER 1

INTRODUCTION

Since the computer was invented, software plagiarism has always been a serious

problem. People can copy other’s painstaking efforts, and pretend it is written by them or

use it arbitrarily. Plagiarism is even easier to commit in the age of the Internet. At the

same time, plagiarism is not easy to catch. Thus, we would like to automate the discovery

of cases of plagiarism.

Currently, the techniques for plagiarism detection, such as Attribute Counting

System [3, 9], Measure of Software Similarity (MOSS) [10], Yet Another Plague (YAP)

[7], and JPlag [13] are focusing on text patterns. In this research, I will use graph-based

data mining to analyze the syntactic structure of software, using their abstract syntax tree

(AST). The reason we chose to compare the AST of programs rather than the source code

itself is because the AST describes the structure of a computer program. We hypothesize

that the syntactic structure of software is important in detecting plagiarism, because this

structure holds repetitive patterns that only occur in ASTs of similar, potentially

plagiarized software. That is, there will be no two similar syntactic structures unless the

source codes are similar.

Based on the hypothesis, we created a tool to analyze the AST of computer programs.

Based on our hypothesis, the system works by extracting repetitive patterns from ASTs of

programs, then compares these patterns. High similarity between the patterns would

2

mean high likelihood of plagiarism. Sine the AST is a tree structure, we chose a

graph-based data mining system called SubdueGL to for the extraction of patterns.

This work is organized as follows. In Chapter 2, I will explain how the text

patterned-based techniques work, their advantages and disadvantages. In Chapter 3, I will

discuss the fundamental concepts of our software plagiarism detector system, which

includes a compiler, graph-based data mining, tree converter, and a graph matcher. In

Chapter 4, I will illustrate the experiments we have performed. In Chapter 5, I will

discuss the results that we have obtained from the experiments, and the advantages and

disadvantages of our system. In Chapter 6, I will conclude this research and discuss the

future work.

3

CHAPTER 2

RELATED WORK

In this chapter, I will discuss the current plagiarism detection concepts. Section 2.1

will introduce the earliest plagiarism detection method–Attribute Counting System.

Section 2.2 will introduce the Structure-Metrics System, and Section 2.3 will introduce

the Document Fingerprinting Using Graph Grammar Induction system.

2.1 Attribute Counting Systems

The Attribute Counting System (ACS) [3, 9, 12] is the earliest system which used

Halstead’s software science metrics to detect similarity between program pairs. The

measurable and countable properties are:

n1 = number of unique or distinct operators

n2 = number of unique or distinct operands

N1 = total usage of all of the operators

N2 = total usage of all of the operands

ACS focuses on the reserved words in a programming language to judge similarity,

and uses the above properties to calculate the similarity metrics. However, G. Whale has

demonstrated that a system based on attribute counters is incapable of detecting similar

programs [11].

4

2.2 Structure-Metric Systems

2.2.1 Measure of Software Similarity

Measure of Software Similarity (MOSS) [10] is a system that detects

document-based textual similarity. It works as follows. First, it collects the significant

words from the desired document and cancels the noise data. The noise data, such as

comments, white space, punctuations, and capitalizations, can be ignored by applying

“whitespace insensitivivity” and “noise suppression”. After cleaning the data of noise,

MOSS will combine the rest of the strings and divide them into small substrings by

k-grams. K-grams are the number of characters of a substring. For example, 3-grams

means the length of each substring is three. Then MOSS will assign index numbers which

are created by a hash function to represent each substring. Then MOSS will compare the

index numbers of two files to judge similarity. The MOSS system is available online, and

allows users to send documents or source code files over the internet.

2.2.2 Yet Another Plague

Yet Another Plague (YAP) [7] is a system that also focuses on text patterns, but it

works differently than MOSS. First, YAP reorganizes the source code by doing the

following: Remove comments, translate upper-case to lower case, map of synonyms to a

common form, reorder functions, and remove all tokens that are not reserved words.

Basically, YAP wants to find a maximal set of common contiguous substrings. YAP3, the

third version of YAP, is the newest version which was introduced in 1996.

2.2.3 JPlag

JPlag WWW system allows users to compare the documents over the internet. It is

5

another system which works with the text pattern. JPlag system operates in two phases.

The first phase converts the source code into token strings. In the first phase, the “noise

cancellation” is applied to ignore white spaces, comments, and names of identifiers. And

the second phase compares each token string that from the first phase to the substring of

some token strings from the first phase. The “Greedy String Tiling” method is used for

the comparison and generating the similarity value. JPlag was publicly available online

since 2001. It supports C, C++, and Java currently.

2.3 Document Fingerprinting Using Graph Grammar Induction

Document Fingerprinting Using Graph Grammar Induction (DFGGI) was

introduced in 2004 [1]. It converts the source code to a graph based on the textual

relationship, and use graph-based data mining technique to find the fingerprint of the

source code. Then it compares the fingerprints to judge the similarity between two source

codes. Essentially, this system is another branch of using graph-based data mining to

detect plagiarism behaviors, except DFGGI focuses on the textual relationship and our

system focuses on the structure of the source code.

6

CHAPTER 3

SOFTWARE PLAGIARISM DETECTOR

In this chapter, I will discuss all the concepts and algorithm that involved in this

research. Section 3.1 is the overview of our software plagiarism detector. Section 3.2 will

discuss the compiler and how the abstract syntax tree extracted. Section 3.3 will discuss

the format converter which will be applied to convert AST format to Subdue format.

Section 3.4 will discuss the graph-based data mining algorithm–Subdue. Section 3.5 will

discuss the similarity computing method–Submatch.

3.1 Overview

Unlike the existing structure-metric plagiarism detecting methods, we chose to

examine the structure of programs in the form of the abstract syntax tree (AST). In our

system, we first send the source code to the compiler, which parses the code and

generates the AST. Then, we extract repetitive patterns from the AST using a graph-based

data mining system, called SubdueGL. Lastly, we compare the patterns reported by

SubdueGL on pairs of ASTs, to arrive at the measure of similarity.

The compiler to be used in the system is dependent of the programming language

used. We restricted our study to the C language, and used the GNU C compiler, gcc. The

output from gcc must be converted to a graph format that is compatible with SubdueGL,

which is accomplished using a simple format converter. After the graph files are analyzed

by SubdueGL, the results will be compared by a graph matching program called

7

Submatch that computes the similarity between graphs. Figure 1 shows a diagram of the

system, and how it is applied to compare two computer programs.

Our system consists of four major parts: AST extraction, graph conversion,

SubdueGL, and the Submatch system. In the remaining portion of this chapter, I

introduce each of these in detail.

Program1 GCC Compiler
Tree Format
Converter

SubdueGL

Executable
File1

Executable
File2

Submatch Similarity

Program2 GCC Compiler
Tree Format
Converter

SubdueGL

Figure 1. Diagram of Software Plagiarism Detector

3.2 Extracting the Abstract Syntax Tree

In our system we use a compiler to parse the source code into the abstract syntax

tree. In the following section, I briefly describe how a compiler works. Section 3.2.1 will

introduce the general idea of compiler; Section 3.2.2 will introduce how the abstract

syntax tree is generated.

3.2.1 Overview

Compilers act as translators. They transform human-oriented programming

languages into computer-oriented machine languages. A modern compiler is organized

8

into several phases. Figure 2 shows the general phases of the compiler.

In this research, we only use the first three phases, which are lexical analysis,

parsing and semantic actions. This is because the semantic actions stage of the compiler

generates the full abstract syntax tree, and the rest of the stages are not needed.

Lex Translate
Semantic
Actions

Parse Canonicalize
Instruction
Selection

LinkerAssemblerCode Emission
Register

Allocation
Dataflow
Analysis

Control Flow
Analysis

Front-End

Back-End

Back-End

Figure 2. Phases of compiler

3.2.2 Generating the Abstract Syntax Tree

If a language is a set of strings, then a string is a finite sequence of symbols. The

symbols themselves are taken from a finite alphabet. Therefore, in the lexical analysis

phase of a compiler the source code is converted to regular expressions, and then these

regular expressions are converted to deterministic finite automata (DFA). The reason we

use DFA versus non-deterministic finite automata (NFA) is because no two edges leading

from the same state are labeled with the same symbol, and DFA are easy to implement by

a computer language. Figure 3 is an example of how lexical analyzer works.

For parsing, we can view the string as a source program, the symbols as lexical

tokens, and the alphabet as the set of token types returned by the lexical analyzer. The

parse stage analyzes the phrase structure of the program. It uses a context-free grammar

9

to describe the programming language.

if (strcmp(“line”, “lines”))

{

Return 0.;

}

IF LPAREN ID(strcmp) LPAREN STRING(line) COMMA STRING(lines)

RPAREN RPAREN LBRACE RETURN REAL(0.0) SEMI RBRACE EOF

Lexical Analyzer

Figure 3. Example of lexical analyzer

After the parse tree is built, the compiler will construct a syntax tree representation

of the input program. It indicates its relationship to the actual syntax and parse tree. Since

the compilation process is driven by the syntactic structure of a source program, in this

tree, the compiler needs to do semantic processing. For the code “i = i + 1”, the tree will

look as in Figure 4,

=

ID(i) +

ID(i) Const(1)

Figure 4. Example of AST

After the Semantic Actions phase, the abstract syntax tree is built, which can be

output to a text file.

10

3.2.4 GNU Compiler Collection (GCC)

GNU Compiler Collection (GCC) is a free compiler which is developing by the

GCC team. The first beta version was released in March 1987 and the latest stable

version is 3.4.3 which was released in November 2004.

GCC contains two parts which are the “front-end” and the “back-end”. The

front-end will convert the all the general concepts that can be found in all high level

languages to a stack-based assembly language–RTL. The back-end will optimize the RTL

and convert it into the machine language which is recognized by CPU.

There are many different kinds of programming language compilers. The reason we

chose GCC is because it can compile several popular programming languages such as C,

C++, Objective-C, Fortran, Java, and Ada and it shares the same back-end, which means

if GCC want to include a new language, it only need a new front-end for the new

language. We can use GCC to generate AST’s for all of the languages that GCC supports.

3.3 Abstract Syntax Tree to SubdueGL Converter

The format of an AST which is generated by g++ is different from the input format

required by SubdueGL. So, we need a converter to transform the format. Also, there is

some unnecessary (noise) information in the original AST format that we have to filter

during the transformation process.

3.3.1 AST Format

There are several options in g++ which generate abstract syntax trees. These

options are –fdump-tree-original, –fdump-tree-optimized, and –fdump-translation-unit.

We chose the –fdump-tree-original option because we wanted to compare the AST’s

11

without any modification. The usage is “g++ –fdump-tree-original filename.c”. It will

output the AST tree to filename.c.original as shown in Figure 5.

Each subprogram has its own AST. The first two lines of each section are to describe

the function of this tree. The “@” symbol stands for a node. For example, @1 is node 1.

The name following the node number is the node name. Following the node name are the

edge name and destination. For example, node 1 in the first tree above is named

function_decl; it has 3 edges which link it to node 2, node 3, and node 4.

;; Function int main() (main)
;; enabled by -dump-tree-original
@1 function_decl name: @2 type: @3 srcp: round.c:9
 C extern body : @4
@2 identifier_node strg: main lngt: 4
@3 function_type size: @5 algn: 64 retn: @6
 prms : @7
@4 compound_stmt line: 20 body: @8 next: @9
@5 integer_cst type: @10 low : 64
…
@132 integer_cst type: @107 low : 33
@133 pointer_type size: @61 algn: 32 ptd : @38
@134 fix_trunc_expr type: @6 op 0: @39
;; Function int round(double) (_Z5roundd)
;; enabled by -dump-tree-original
@1 function_decl name: @2 mngl: @3 type: @4
 srcp : round.c:23 args: @5
 extern body : @6
@2 identifier_node strg: round lngt: 5
@3 identifier_node strg: _Z5roundd lngt : 9
…
@33 fix_trunc_expr type: @8 op 0: @34
@34 plus_expr type: @11 op 0: @5 op 1: @35
@35 real_cst type: @11

Figure 5. AST dumping results from g++

3.3.2 Convertion to SubdueGL Format

The SubdueGL system input format consists of two parts, vertices and edges.

Vertices used in edge definitions must always be defined before the edge that uses them.

In SubdueGL’s input format, v stands for vertex followed by the vertex number and the

vertex’s name. e stands for edge followed by the source vertex number, the target vertex

12

number, and the edge name. Figure 6 shows an example of SubdueGL input format.

v 1 function _decl
v 2 identifier _node
v 3 function _type
v 4 parm_decl
v 5 compound_stmt
…
e 1 2 name
e 1 3 type
e 1 4 args
e 1 5 body
e 3 6 size

Figure 6. Input graph format of SubdueGL

The way I convert the AST format to SubdueGL format is as follows. For each line

the converter reads, if this line contains “;;” symbol, then omit this line. If this line

contains “@” symbol, then analyze the first two tokens, and convert the “@” symbol to v,

then store this part into a file named V. The converter also needs to store the vertex

number at the same time. This number will be used as the source number of the edge. All

other vertices part will append to this file. The next step is to analyze the rest of the line.

If a token contains the “@” symbol, then convert the “@” symbol to e and store this part

include the vertex number that we stored it earlier into a file name E. During the edge

part conversion, the converter will also filter some unnecessary information. This kind of

information will be discussed in next 3.4.3. This process will continue until it reaches the

next “;;” symbol. After each process, the converter has to combine the V file and the E

file together, and delete the V and E file; this is for a function. After the whole file has

been converted, the converter will combine all the functions together. Figure 7 is the

converter flowchart.

We have also created the alternate conversion way which to provide us another view

of conversion. We substituted all the variable names to a string–identifier_node.

13

The reason we did this is because we wanted to know whether the variable name affects

the results.

AST File

Encounter ;;?

File End?

Convert V part

Read a line

V part file

Convert E part E part file

Line end?

Yes

No

No

No

Delete current V
and E fileV + E fileYes

Combine all
the converted

functionsYes

Figure 7. Converter flowchart

3.3.3 Noise cancellation

In the original AST format, there is some information which is useful for the

compiler but not needed in the SubdueGL system. The noise data in Figure 8 are

underlined. For example, the lines beginning with “;;” are comments and

srcp: round.c:9 in @1 is to tell the compiler where is this function begins in the

14

source code. We have to filter this kind of information because it does not have vertex or

edge information.

;; Function int main() (main)
;; enabled by -dump-tree-original
@1 function_decl name: @2 type: @3 srcp: round.c:9

C extern body: @4
@2 identifier_node strg: main lngt: 4
@3 function_type size: @5 algn: 64 retn: @6
 prms : @7
@4 compound_stmt line: 20 body: @8 next: @9
@5 integer_cst type: @10 low : 64
…
@132 integer_cst type: @107 low : 33
@133 pointer_type size: @61 algn: 32 ptd : @38
@134 fix_trunc_expr type: @6 op 0: @39

Figure 8. Example of noise data

3.4 Subdue

The Subdue knowledge discovery system [2, 4, 5, 6, 8] is the tool that analyzes the

abstract syntax tree in our system. In this section, I introduce the Subdue system. Section

3.4.1 will introduce the fundamental ideas; Section 3.4.2 will introduce the SubdueGL

algorithm which is an extension of Subdue.

3.4.1 The Subdue knowledge discovery system

The Subdue knowledge discovery system is created at University of Texas Arlington

[2, 4, 5, 6, 8]. It finds repetitive subgraphs (substructures) in the input data, which is a

labeled, directed graph. The search is driven by the minimum description length principle

(MDL) which was introduced by Rissanen (1989). The MDL principle has been used for

wide area, such as image processing, decision tree induction, concept learning for

relational data, and learning models of non-homogeneous engineering domains. The

MDL heuristic can calculate the value of a substructure using the formula

)|()()(SGDLSDLsValue += (eq. 1)

15

where)(SDL is the description length of the substructure, G is the input graph,

and)|(SGDL is the description length of the input graph compressed by the

substructure. The Figure 9 is the MDL example graph, and I will use it to illustrate how

MDL works.

x

y

fish

pond

name

in

name

Figure 9. MDL example graph

First, we define the minimum description length of a graph to be the number if bits

which is necessary to completely describe the graph. The bits include three parts–vbits,

rbits, and ebits. The vbits is the number of bits which needs to encode the vertex labels of

the graph. The rbits is the number of bits which needs to encode the row of the adjacency

matrix A. The adjacency matrix A represents the graph connectivity. If A[i,j]=1, then

there is a connection between vertex i and vertex j. If A[i,j]=0, then there is no connection

between vertex i and vertex j. The ebits is the number of bits which needs to encode the

edges represented by the entries A[i,j]=1 of the adjacency matrix A. In this example, the

adjacency matrix is shown below.

0000

1000

0000

0110

pond

y

fish

x

Then MDL uses the following three equations to calculate the bits.

16

ulvvvbits lglg += (eq. 2)

 ∑
=

++=
v

i ik

v
bvrbits

1

lg)1lg()1((eq. 3)

 mKleebits u lg)1()lg1(+++= (eq. 4)

where v is number of vertices in the graph, ul is number of unique labels in the graph,

ik is the number of 1 in thi row of adjacency matrix, b is the maximum number of

ik , e is the number of edges in the graph, K is the number of 1s in the adjacency

matrix A, and m is the maximum number of edges between vertex i and vertex j.

For the example in Figure 9, v = 4, ul = 6, b = 2, e = 3, K =3, and m =1.

Therefore

34.126lg44lg =+=vbits ,

51.12
0

4
lg

1

4
lg

0

4
lg

2

4
lg)3lg(5 =

+

+

+

+=rbits , and

75.101lg)13()6lg1(3 =+++=ebits .

The total encoding of graph needs 6.3575.1051.1234.12 =++ bits.

The Subdue algorithm works as follows. First, it begins by collecting all

single-vertex subgraphs, each of which may have many instances. The algorithm finds

the subgraphs that are deemed the best by the MDL heuristic. Then, it expands the best

substructures by all neighboring edges, one at a time, creating new substructures. After a

substructure is discovered, each instance of the substructure in the input graph will be

replaced by a single vertex. The best structure will be saved in a list. After all the possible

substructures have been evaluated or the computation exceeds a user-defined limit, the

algorithm returns the best structures. Figure 10 shows the pseudo code of the Subdue

17

algorithm.

Subdue (graph G, int Beam, int Limit)
 queue Q = { v | v has a unique label in G }
 bestSub = first substructure in Q

repeat
 newQ = {}

for each S in Q
 newSubs = S extended by an adjacent edge from G
 in all possible ways
 newQ = newQ U newSubs
 Limit = Limit - 1
 evaluate substructures in newQ by compression of G
 Q = substructures in newQ with top Beam compression
 scores

if best substructure in Q better than bestSub
then bestSub = best substructure in Q

until Q is empty or Limit <= 0
return bestSub

Figure 10. Pseudo code of Subdue

3.4.2 SubdueGL

Based on the Subdue approach, an extended algorithm called Subdue Grammar

Learner, or SubdueGL [2, 4, 5, 6] was created. SubdueGL is a bottom-up graph grammar

learning algorithm and to discover the common substructures in graphs. The graph

grammar is a set of grammar production rules that describe a graph-based database. In

SubdueGL, if a grammar production is found, it will be replaced by a non-terminal graph.

Like Subdue, SubdueGL is driven by the minimum description length (MDL) principle as

well. SubdueGL keeps the substructures when it is the best of MDL heuristic evaluation.

SubdueGL iterates until the whole input graph is replaced by a single non-terminal graph,

or a user-defined stopping condition is reached. In other words, SubdueGL will generate

18

all the possible grammar rules for the input graph.

There are two features in SubdueGL which are not found in the original Subdue:

detecting recursion and variables. If an instance of substructure is connected to any other

instances by an edge, it is possible to have a recursive production. In Figure 12, the

square-looking subgraph is an example of a recursive production. Variable-detection is

for substructures in which all instances have the same structure, as in a regular

substructure, but some of the labels differ in the same isomorphic position. These vertices

can be substituted by variables. Figure 14 is an example of variable or alternative

production.

Figure 11 to Figure 16 are the example of how SubdueGL works. Figure 11 is the

input graph; it contains two triangle shape structures, two square shape structures, a

vertex, and several edges. The letters in the vertices are the name of the vertex. The

letters on the edges are the name of the edge.

a

i

h

f

g

e

hg

fe

db

a

cb

t t

t n

s

s

s

s

s

s

s

s

n

n

n

t

t t

Figure 11. Example of input graph of SubdueGL

19

Let us follow vertex “e” and keep in mind that all the expansions are working in

parallel. So, start from the vertex “e”, it generates some 2-vertex substructures–(e, s, f), (e,

s, g), and (f, n, e). Since the first two substructures have two instances and the last one

has one instance, we choose the compress the first two substructures. After several

expansions, the substructure will have vertices {e, f, g, h}, it is the first biggest and

common substructure. Also, the recursive production found that this {e, f, g, h}

substructure is a recursive grammar rule. It can be replaced by a single vertex shown in

Figure 12. Figure 13 is the result of extension of vertex “e”.

S1

hg

feS1

hg

fe

Figure 12. First production

a

i

S1

db

a

cb

Figure 13. Input graph after the first production

In the next iteration we use the graph after the first production as input graph. In

these two triangle shape graphs, a vertex {a, b} and edge (a, t, b) can be found as a

20

substructure and have two instances. However, if the extension goes further, by an edge,

it will encounter different label name–vertex “c” and vertex “d”. Although the shape is

the same, SubdueGL cannot compress this substructure directly. SubdueGL will use

variable-detection to substitute those label names. In this example, SubdueGL will

replace it with a non-terminal variable S3, shown in Figure 14. The second production is

shown in Figure 15. Figure 16 shows the fully parsed graph.

S2S3b

aS2

S3b

a

Figure 14. Second production

cS3 d

Figure 15. Third production

i

S1

S2

Figure 16. Final production returned by SubdueGL

To operate SubdueGL, we need to know the options of SubdueGL. There are about

37 options of SubdueGL. I will introduce some options that are commonly used. For

21

example, -save is for saving the result in predefined substructure file format under the

name <input graph file>.s. -exhaust can be used with -cluster to exhaustively

analyze the graph. That is, even if there is no compression, but there are original vertices

to classify, clustering will continue. -gg enables discovery of graph grammars. It also

turns on recursion, variables, and relationship finding. -norecursion disables the

discovery of recursive substructures, when turned on by -gg. -novariables disables

the discovery of variables, when turned on by -gg.

3.5 Computing the Similarity

The last stage of our system is graph match. SubdueGL will generate a fingerprint,

which consists of grammar rules. These are the significant substructures of the AST. We

use a program called Submatch to compare the grammars which are generated by

SubdueGL. Submatch will take two grammar files and output the similarity in percentage

between these two files.

3.5.1 Submatch

Submatch is a program which compares two grammar files from the SubdueGL

system. It loads two grammar files and compares each substructure in the first output file

(G1) to the every substructure in the second output file (G2). Once G1 finds a match in

G2, the substructure in G2 will be removed. In Figure 17, the best structure 1 of program

1 compares all the best structures of program 2, and found a match in best structure 3 of

program 2. Best structure 3 of program 2 is removed. Then the best structure 2 of

program 1 compares all the best structures of program 2, and found a match in best

structure 2 of program 2. Best structure 2 of program 2 is removed. Then the best

22

structure 3 of program 1 compares all the best structures of program 2, and found a match

in best structure 1 of program 2. Best structure 3 of program 1 is removed and Submatch

is terminated

Best Substructure
1

Best Substructure
3

Best Substructure
2

Program1

Best Substructure
1

Best Substructure
3

Best Substructure
2

Program2

Figure 17. Example comparison performed by Submatch

If a substructure in the first output file is similar to a substructure in the second

output file, the transformation cost is equal to the edge difference between G1 and G2.

The transformation cost is estimated by an “Inexact graph match” algorithm which is also

used in SubdueGL system. Inexact graph match was designed to deal with those graphs

with slightly differences by Bunke and Allermann (1983). In this algorithm, every

transformation such as insertion, deletion, and substitution of vertices and edges will be

assign a cost. SubdueGL system uses branch-and-bound search to extend Bunke’s

algorithm to get better performance. Branch-and-bound search can guarantee an

optimized solution, the search ends as soon as the first complete mapping is found.

23

a b

a b

d

e1

e1

c

e2

e3

Tranformation cost is 2

1 transformation

1 transformation

G1

G2

Figure 18. Example of inexact graph match

In figure 18, vertex a, vertex b and edge e1 are the same in both graphs. So the

transformation cost between G1 and G2 is 2 by adding 2 sets of vertices and edges.

Submatch will use the total value of transformation cost to determine the similarity by

using equation 4.

%100*
1

1

ructureGTotalSubst

ostformationCTotalTransructureGTotalSubst
Similarity

−= (eq. 4)

Figure 19 is an example that how the Submatch compares two result files of

SubdueGL. Grammar 1 contains three best substructures. Grammar 2 contains two best

substructures. Figure 20 is the graph representation of Grammar 1 and Grammar 2. From

Figure 20 we can observe the first rule in Grammar 1 matches the second rule in

Grammar 2. Since they are matched perfectly, no transformation cost is needed and the

second rule in Grammar 2 is removed. The second rule in Grammar 1 matches the first

rule in Grammar 2. Again, there is no transformation cost is needed because they are

24

matched perfectly and the second rule in Grammar 2 is removed. Now, there are no more

rules in Grammar 2 but one more left in Grammar 1. Therefore, the third rule in Grammar

1 needs three transformation cost because there are one vertex and two sets of vertices

and edges need to be added to an empty graph to match the third rule in Grammar 1. The

total substructure of G1 is 24, so the similarity is equal to (24 - 3) / 24 * 100% = 87.5%.

Figure 19. Example of comparing two results of SubdueGL

Grammar 1

Grammar 2

% Result of 1. iteration:
s 3

v 1 integer_type
v 2 integer_cst
v 3 integer_cst Rule 1
v 4 integer_cst
v 5 integer_cst

e 1 2 min
e 1 3 max
e 4 1 type
e 5 1 type

% Result of 2. iteration:
s 3

v 1 call_expr
v 2 addr_expr
v 3 pointer_type
v 4 function_decl
v 5 function_type Rule 2

e 1 2 fn
e 2 3 type
e 2 4 _Compilerop0
e 3 5 ptd
e 4 5 type

% Result of 3. iteration:
s 2

v 1 Sub_2
v 2 pointer_type
v 3 integer_type Rule 3

e 1 2 args
e 1 3 prms

% Result of 1. iteration:
s 3

v 1 call_expr
v 2 addr_expr
v 3 pointer_type
v 4 function_decl
v 5 function_type Rule 1

e 1 2 fn
e 2 3 type
e 2 4 _Compilerop0
e 3 5 ptd
e 4 5 type

% Result of 2. iteration:
s 3

v 1 integer_type
v 2 integer_cst
v 3 integer_cst Rule 2
v 4 integer_cst
v 5 integer_cst

e 1 2 min
e 1 3 max
e 4 1 type
e 5 1 type

25

integer_type

integer_cst

integer_cst

integer_cst

integer_cst

min

m
ax ty
pe

type

call_ expr

addr_expr pointer_type

function_typefunction_decl

fn

type

pt
d

_C
om

pi
le

r
op

0

type

Sub_2

pointer_type integer_type

ar
gs

prm
s

Rule 2

Rule 1

Rule 3

Grammar 1

integer_type

integer_cst

integer_cst

integer_cst

integer_cst

min

m
ax ty
pe

type

call_expr

addr_expr pointer_type

function_typefunction_decl

fn

type

pt
d

_C
om

pi
le

r
op

0

type

Rule 1

Rule 2

Grammar 2

Figure 20. Graph representation of Figure 19

26

CHAPTER 4

EXPERIMENTS

In this research, we performed three experiments. Section 4.1 describes an artificial

domain. In this experiment, we use a source code written in C to test our concept. Section

4.2 describes experiments using real world data. We arbitrarily chose 19 students’ source

codes from Assignment 1 and 20 students’ source codes from Assignment 2. We also

used MOSS, DFGGI, and JPlag to compare the data in section 4.1 and 4.2 for

comparison.

4.1 Artificial Domain

In this experiment, we used a C source code named “AD.c”. AD contains seven

functions, and the length of AD is 788 lines. We also created some test programs which

were slightly modified from the original AD program. There were five test programs

which were renamed three to fifteen variables from the original AD program, and five

test programs which were rearranged the function sequence.

SubdueGL discovers recursion and variables. These options were discussed in

Chapter 3.3.2. We would like to know how these two options affect our system, so we

performed experiments to see what options give us the best results. In other words, we

would like to know which options generate the fingerprints that work best for plagiarism

detection. Results are shown in Table 1.

From the results, we observed that the recursions and variables options only make

27

slight differences for variable renamed data; however it makes a big difference for the

function rearranged data. So, we chose to turn off those two options to get better results

in both rearranged and renamed data.

Description
variables

&
recursions

variables
&

norecursions

novariables
&

recursions

novariables
&

norecursions

Itself 100.00% 100.00% 100.00% 100.00%

Renamed 3 Variables 100.00% 100.00% 100.00% 100.00%

Renamed 6 Variables 100.00% 100.00% 100.00% 100.00%

Renamed 9 Variables 99.86% 99.87% 100.00% 100.00%

Renamed 12 Variables 99.70% 99.77% 100.00% 100.00%

Renamed 15 Variables 99.64% 99.68% 100.00% 100.00%

Rearranged 1 time 21.57% 20.44% 97.07% 95.43%

Rearranged 2 times 35.46% 28.92% 95.00% 98.22%

Rearranged 3 times 28.12% 25.72% 68.68% 98.22%

Rearranged 4 times 33.18% 31.27% 68.68% 98.22%

Rearranged 5 times 21.93% 23.31% 97.87% 100.00%

Table 1. Results of experiment of choosing SubdueGL options

Next, we had to decide which conversion should be used in this research. In Chapter

3.4.2, I introduced two methods of conversion, the original which I used to perform the

previous experiment, and the variable substitution. We performed experiments to help us

to determine which is the best way.

In Table 2, we observed that variable substitution does affect the results. Using

28

“identifier_node” to substitute the original variable names only affects the results of

rearranged data. However, we still chose “with variables” to be our future conversion

method. The reason is both methods can provide us the high percentage results, but with

variables method provides more variable information to us. This information is important

especially for our “Partial Test” method which will be introduced later in this Chapter.

Description With Variables Without Variables

Itself 100.00% 100.00%
Renamed 3 Variables 100.00% 100.00%
Renamed 6 Variables 100.00% 100.00%
Renamed 9 Variables 100.00% 100.00%

Renamed 12 Variables 100.00% 100.00%
Renamed 15 Variables 100.00% 100.00%

Rearranged 1 time 95.43% 100.00%
Rearranged 2 times 98.22% 100.00%
Rearranged 3 times 98.22% 100.00%
Rearranged 4 times 98.22% 100.00%
Rearranged 5 times 100.00% 100.00%

Table 2. Results of experiment of choosing conversion method

There is a function of our software plagiarism detector that no other systems

currently do. In this approach, we can compare each function of the program separately,

because each program has its own AST and they are independent. The benefit of doing

this is if the plagiarism happened only in one or two functions, the similarity between the

two programs is low but will be high in individual functions.

During the conversion process, each AST was converted and combined to

SubdueGL format file. However, those before-combination individual files still exist and

are in SubdueGL format. We can compare these individual files one by one to find out

which function is plagiarized. This is the reason that we keep the variables during the

conversion process, because it can help us to identify which function shows sign of

plagiarism. The italic numbers in Table 3 show the plagiarized functions. No matter how

29

the variables or the sequence changed, we observed that our system can find the functions

plagiarized.

AD-0 AD-1 AD-2 AD-3 AD-4 AD-5 AD-6
AD-0 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD-1 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD-2 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD-3 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD-4 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD-5 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD-6 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%

AD_R1-0 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_R1-1 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_R1-2 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_R1-3 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD_R1-4 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_R1-5 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%
AD_R1-6 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_R2-0 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_R2-1 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_R2-2 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_R2-3 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_R2-4 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%
AD_R2-5 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_R2-6 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD_R3-0 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_R3-1 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_R3-2 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_R3-3 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_R3-4 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%
AD_R3-5 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_R3-6 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD_R4-0 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_R4-1 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%
AD_R4-2 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_R4-3 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_R4-4 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_R4-5 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD_R4-6 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_R5-0 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%
AD_R5-1 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_R5-2 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_R5-3 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_R5-4 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_R5-5 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD_R5-6 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_V1-0 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_V1-1 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_V1-2 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_V1-3 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_V1-4 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%

30

AD_V1-5 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_V1-6 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%
AD_V2-0 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_V2-1 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_V2-2 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_V2-3 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_V2-4 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD_V2-5 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_V2-6 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%
AD_V3-0 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_V3-1 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_V3-2 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_V3-3 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_V3-4 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD_V3-5 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_V3-6 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%
AD_V4-0 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_V4-1 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_V4-2 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_V4-3 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_V4-4 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD_V4-5 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_V4-6 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%
AD_V5-0 100.00% 2.07% 8.88% 12.73% 37.50% 0.35% 27.42%
AD_V5-1 2.07% 100.00% 15.29% 4.55% 4.13% 10.25% 4.55%
AD_V5-2 8.88% 15.29% 100.00% 7.69% 5.33% 14.49% 0.00%
AD_V5-3 12.73% 4.55% 7.69% 100.00% 6.94% 0.00% 25.81%
AD_V5-4 37.50% 4.13% 5.33% 6.94% 100.00% 4.24% 19.44%
AD_V5-5 0.35% 10.25% 14.49% 0.00% 4.24% 100.00% 0.00%
AD_V5-6 27.42% 4.55% 0.00% 25.81% 19.44% 0.00% 100.00%

Table 3. Partial program comparison

The last experiment of this artificial domain compares MOSS, DFGGI, and JPlag.

MOSS and JPlag are mature system and DFGGI uses graph grammar induction like our

system does. We would like to know how our system compares to MOSS, DFGGI, and

JPlag system deal with our artificial domain. Table 4 shows the results of comparing our

system to MOSS, DFGGI, and JPlag system. As we can see, all systems can find

plagiarism in the artificial domain.

The above experiments tell us that our software plagiarism detector is working. It

also helps us to determine which options are appropriate for use in future experiments.

Description SOFTWARE
PLAGIARISM
DETECTOR

DFGGI JPlag MOSS

31

Itself 100.00% 100.0% 100.0% 99%
Renamed 3 Variables 100.00% 99.3% 100.0% 99%
Renamed 6 Variables 100.00% 97.5% 100.0% 99%
Renamed 9 Variables 100.00% 98.0% 100.0% 99%

Renamed 12 Variables 100.00% 97.6% 100.0% 99%
Renamed 15 Variables 100.00% 96.7% 100.0% 99%

Rearranged 1 time 96.50% 44.4% 100.0% 99%
Rearranged 2 times 96.50% 37.2% 99.3% 99%
Rearranged 3 times 96.50% 40.6% 99.7% 99%
Rearranged 4 times 96.50% 47.2% 99.3% 97%
Rearranged 5 times 96.75% 43.1% 99.7% 97%

Table 4. Software plagiarism detector versus MOSS

4.2 Real World Experiments

In this chapter, I will use the software plagiarism detector to deal with real world

data. The data we chose are actual student programming assignments. There are two

assignments, both written in C or C++. We performed three experiments on these source

codes.

In Assignment 1, the comprehensive test detected two sets of programs (4,9) and

(8,9) have over 60% similarities in Table 5.

Then we used MOSS on Assignment 1. The results are extracted in Table 6. It also

indicated the 8th and the 9th programs are the most similar programs in the data set 1.

But MOSS only got 36% on the program 4 and 8. Essentially, MOSS system also

detected higher similarity among the programs 4, 8, 9, and 19, these four source codes are

also the highest percentage in our system.

We also applied DFGGI and JPlag to Assignment 1. Table 7 shows the results of

DFGGI. It indicates a 65% similarity between the programs 8 and 9 program. Table 8

shows the results of JPlag, and it indicates a 67% similarity between the program 8 and 9.

32

1 100
2 23 100
3 26 26 100
4 41 34 25 100
5 26 24 21 33 100
6 29 38 21 34 23 100
7 32 19 19 28 19 17 100
8 41 33 32 50 39 33 30 100
9 43 32 24 63 30 31 29 67 100

10 33 21 22 29 18 26 24 27 25 100
11 31 27 14 34 16 50 20 29 28 23 100
12 43 27 22 36 27 31 19 39 37 30 29 100
13 45 27 19 45 24 38 17 36 43 31 33 46 100
14 20 37 18 22 18 35 17 23 23 20 31 27 27 100
15 21 40 20 20 15 29 21 22 20 21 32 22 27 35 100
16 23 23 15 31 25 26 20 26 26 24 14 26 24 21 25 100
17 16 23 12 17 8 23 12 16 14 13 21 21 20 19 19 19 100
18 30 26 24 40 30 26 28 39 38 27 26 34 26 15 20 34 16 100
19 32 28 38 39 23 23 23 48 49 28 20 28 27 18 18 16 10 25 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Table 5. Comprehensive test on Assignment 1

File 1 File 2 Lines Matched

./p1/8.c (59%) ./p1/9.c (58%) 231

./p1/4.c (36%) ./p1/8.c (35%) 133

./p1/19.c (35%) ./p1/9.c (32%) 117

./p1/19.c (35%) ./p1/8.c (32%) 110

./p1/4.c (32%) ./p1/9.c (31%) 100

./p1/19.c (32%) ./p1/4.c (30%) 105

./p1/15.c (18%) ./p1/7.c (15%) 70

./p1/1.c (17%) ./p1/7.c (14%) 70

./p1/16.c (14%) ./p1/7.c (13%) 58

./p1/2.c (16%) ./p1/7.c (12%) 57

./p1/7.c (12%) ./p1/8.c (15%) 45

Table 6. MOSS on Assignment 1

In Assignment 2, the comprehensive test detected two sets of programs (4, 9,

and 10). Table 9 shows the results of the comprehensive test on Assignment 2.

33

2 28

3 34 40

4 30 45 46

5 27 41 47 44

6 27 36 23 36 33

7 37 50 48 51 59 33

8 35 46 41 57 52 30 48

9 34 49 44 52 52 28 48 65
10 49 51 43 44 44 26 46 46 50

11 24 47 41 45 44 33 43 47 50 34

12 18 28 13 25 29 37 25 28 30 31 34

13 51 47 45 47 44 27 50 51 51 55 50 33

14 48 46 40 41 41 25 45 44 46 48 43 30 50

15 33 45 44 44 51 33 43 43 48 43 44 34 42 38

16 35 49 53 45 54 36 50 50 52 41 49 36 42 40 48

17 32 44 35 39 40 27 36 40 41 42 48 31 38 37 36 38

18 31 37 41 42 41 40 41 45 46 39 41 42 42 34 37 38 43

19 19 33 40 45 47 34 36 43 43 25 38 34 29 21 40 40 35 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Table 7. DFGGI test on Assignment 1
1 100

2 11 100
3 - - 100

4 - - - 100
5 - - 32 - 100

6 - - - - - 100
7 24 11 14 - 14 - 100

8 - 11 - 54 17 - - 100
9 - - - 36 - - - 67 100

10 - - - - - - - - - 100
11 - - - - - - - 10 - - 100

12 - - - - - - - - - - - 100
13 - - - - - - - - - - - - 100

14 13 - - - - - 10 - - - - - 11 100
15 16 - - - 12 - 14 - - - - - - - 100

16 - - - - - - - - 17 - - - - - - 100
17 - - - - - - - - - - - - - - - - 100

18 - 12 - - - - - 11 11 - - - - - - 15 - 100
19 - - - 30 - - - 42 37 - - - - - - 17 - 11 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

- : Similarity < 10

Table 8. JPlag test on Assignment 1

We applied MOSS to Assignment 2, and the results were extracted in Table 10. It

provided similar results, except that, according to their system, the most similar source

codes are the 4th and the 9th programs, while according to our system the most similar

source codes are the 9th and the 10th programs. But both systems caught these three

plagiarism programs.

34

1 100
2 24 100
3 28 20 100

4 31 42 13 100
5 30 41 20 41 100
6 24 15 36 19 22 100
7 37 18 29 23 27 21 100
8 24 16 25 21 22 25 33 100
9 27 51 14 57 52 17 19 21 100

10 25 45 19 61 53 17 16 22 82 100
11 34 45 34 18 25 27 40 27 24 20 100

12 27 45 24 38 39 11 31 24 43 40 27 100
13 34 26 22 24 34 23 36 27 26 24 22 32 100
14 18 10 20 9 11 16 17 14 9 10 16 11 17 100
15 25 31 20 19 42 25 25 18 26 28 24 24 25 9 100
16 35 19 38 18 25 35 34 29 18 17 32 27 32 22 14 100
17 28 14 24 14 25 16 34 19 16 18 32 23 25 22 21 29 100
18 30 43 18 53 42 19 32 24 47 45 22 51 28 12 28 23 15 100

19 34 21 27 19 29 22 35 26 23 23 50 25 28 17 19 21 22 22 100
20 18 28 8 26 28 14 16 23 28 27 24 30 35 14 29 19 15 27 16 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Table 9. Comprehensive test on Assignment 2

Table 11 shows the results of applying DFGGI on Assignment 2. The DFGGI system

provided similar results of our system this time. It indicates the 4th, the 9th, and the 10th

programs are the most similar programs of Assignment 2.

File 1 File 2 Lines Matched

./p3/4.c (78%) ./p3/9.c (77%) 238

./p3/10.c (39%) ./p3/9.c (43%) 129

./p3/10.c (36%) ./p3/4.c (40%) 121

./p3/11.c (38%) ./p3/16.c (21%) 88

./p3/20.c (6%) ./p3/7.c (7%) 17

./p3/5.c (5%) ./p3/9.c (7%) 20

./p3/4.c (7%) ./p3/5.c (5%) 20

./p3/10.c (6%) ./p3/5.c (5%) 20

./p3/15.c (6%) ./p3/7.c (5%) 9

./p3/18.c (5%) ./p3/8.c (4%) 9

./p3/1.c (5%) ./p3/7.c (5%) 9

Table 10. MOSS on Assignment 2

Table 12 shows the results of applying JPlag on Assignment 2. JPlag found the

programs 4, 9, and 10 are the most similar programs of Assignment, except it does not

indicates high similarity between the programs 4 and 10.

35

2 25

3 39 40

4 33 47 44

5 52 38 42 44

6 31 37 38 45 33

7 32 44 34 40 23 24

8 33 40 42 32 30 40 33

9 27 46 39 69 27 36 42 18

10 31 45 29 60 32 29 49 18 60
11 44 44 35 41 42 35 41 22 45 46

12 54 36 33 42 54 19 46 13 41 46 36

13 50 35 20 41 53 23 46 15 35 41 34 48

14 46 39 16 43 44 21 49 13 40 45 34 42 42

15 42 45 42 48 35 28 49 18 46 50 37 34 35 37

16 35 37 41 31 33 36 33 26 30 35 16 32 34 40 32

17 40 42 29 41 40 44 41 42 41 41 39 39 39 40 40 41

18 49 37 33 42 50 20 44 15 39 45 38 50 47 45 47 27 34

19 40 42 29 41 40 44 41 42 41 41 39 39 39 40 40 41 26 39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Table 11. DFGGI test on Assignment 2

1 100
2 - 100

3 - 6 100
4 6 - - 100

5 - - - 13 100
6 - - - - - 100

7 - - - - - 5 100
8 - - - - - - 8 100

9 6 - - 82 9 - - - 100
10 6 - - 35 9 - - - 52 100

11 5 - - - - - - - - - 100
12 - - - - - - - - - - - 100

13 - - - - - - - - - - - - 100
14 - - - - - - - - - - - - - 100

15 - - - - - 5 - - - - - - - - 100
16 - - - - - - - - - - 37 - - - - 100

17 - - - - - - - - - - - - - - - - 100
18 7 - - 14 9 9 6 7 12 - - - - - - - - 100
19 5 - - 14 5 6 - - - - 7 - - - - 6 - - 100

20 - - - - - - - 8 - - - - - - - - - - 7 100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

- : Similarity < 5

Table 12. JPlag on Assignment 2

The last experiment of real world data is to test our partial plagiarism detection

concept. In this experiment, I chose two source codes from Assignment 1, and named it A

and B. These two source codes, without cheating behavior, were written in C++ language.

Then I copied two functions in A to B, and made sure it could pass the compiler. The

comprehensive test shows a similarity of 38.08%, and MOSS system shows 21%.

However, in our partial plagiarism detection idea, it is easy to find out which functions

are the same. In Table 13, we can see that the first function in A and the sixth function in

36

B are the same; the second function in A and the seventh function in B are the same as

well. There are also some 100.00% functions in Table 13. The reason of this situation is

because they use the same library. I will discuss more in Chapter 5.

0 100 2 1 9 0 2 4 2 18 9 0 2 0 7

1 4 4 5 9 2 3 100 2 5 8 0 24 13 36

2 2 2 14 7 33 5 2 100 6 10 0 12 0 16

3 0 13 3 9 0 24 1 0 10 10 0 2 8 2

4 6 4 0 3 13 4 33 16 5 0 8 56 23 94

5 9 28 23 9 1 32 0 0 33 14 2 1 0 2

6 6 4 16 11 41 14 5 54 12 14 2 14 0 20

7 8 6 9 8 9 7 55 16 9 8 0 26 33 39

8 0 5 5 5 65 8 4 63 9 0 11 20 0 22

9 0 0 2 2 0 0 5 12 3 4 0 14 0 21

10 0 7 9 7 7 6 61 18 5 8 0 25 15 41

11 0 0 1 6 36 0 5 25 9 0 13 23 0 15

12 0 4 10 5 13 10 0 25 4 0 6 17 2 17

13 0 4 10 5 13 10 0 25 4 0 6 17 2 17

14 0 12 18 26 4 17 2 6 25 20 0 2 1 1

15 0 0 0 0 9 0 0 0 0 0 100 21 0 4

16 2 0 0 2 16 2 24 12 3 0 21 100 17 50

17 0 0 0 4 0 6 13 0 3 0 0 17 100 21 38 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 Comprehensive MO SS

Table 13. Partial test on real world data

37

CHAPTER 5

DISCUSSION

In this chapter, I would like to discuss the results we got from the experiments. The

results provide some useful information to help us find out how this approach works. It

also raises some new questions which we did not think about at the beginning.

During the real world data experiments, we found an edge information that will

affect the result. This edge is called scpe which stands for scope. Scope is the variable

visibility of the compiler. If the variable is global, then its scope is the whole program. If

the variable is local, then its scope is that local function. In other word, local variables

only can be used in the local function. Global variables can be used by the whole

program and local function cannot declare the variable with the same name. We are

considering deleting this specific edge information is because in the experiments we

found the same function but in different place of the program will have one difference in

AST which is the scope edge. This edge will make the whole AST structure contain

different repetitive structure and the SubdueGL system will generate different grammars.

There are not only one scope edge in the AST tree, the specific one we want to filter is

the one which does not link to the original (@1) point. Table 14 is the results of scope

cancellation experiment on the artificial domain. The results of experiment with scope

from the AST are slight better than the without one which matches our expectation.

These results raise another question–why this scope edge only affects the real world data?

From the results in Table 14, we can observe that cancel the scope edge will not affect the

38

result too much. Our guess is the artificial domain we used did not generate the repetitive

substructures like the real world data did. In other words, we think it is a coincidence that

the artificial domain was not affected by the scope edge. Therefore, we want to take this

scope edge out. Again, we are not focus on the actual percentage of similarity, as long as

they both are high. Cancel the scope edge can provide us more consistent experiments,

because we do not want this kind of unexpected information which is generated by the

compiler affect the AST structure.

In our fundamental assumption, we should compare the AST information without

any modification. However, this scope edge affects the results too much, we have no

choice but to remove this edge. We do not know whether this scope edge will affect the

results in other languages. It needs further research to proof.

Description With SCOPE Without SCOPE

Itself 100.00% 100.00%

Renamed 3 Variables 100.00% 100.00%
Renamed 6 Variables 100.00% 100.00%
Renamed 9 Variables 100.00% 100.00%

Renamed 12 Variables 100.00% 100.00%
Renamed 15 Variables 100.00% 100.00%

Rearranged 1 time 100.00% 96.50%
Rearranged 2 times 100.00% 96.50%
Rearranged 3 times 100.00% 96.50%
Rearranged 4 times 100.00% 96.50%
Rearranged 5 times 100.00% 96.75%

Table 14. Experiment results of canceling scope

In the rest of this Chapter, I would like to discuss the advantage and the

disadvantages of our software plagiarism detection system. The advantage of our system

is partial function comparison. The current structure-metrics system cannot find if the

program contains some plagiarism functions, especially when the functions are relatively

small in the whole program. This problem is because their systems have to work with the

entire source code; but in this research, the compiler separates the functions for us. So we

39

can compare those separated functions to find whether plagiarism occurs in those

functions or not.

There are four disadvantages. The first one is the abstract syntax tree generating

problem. In the hypothesis, we assume the GCC can provide us AST for all kinds of

languages that it supports; however, we can only use the dump option for g++ which

means we only can compare C and C++ languages. I tried to modify the source code of

GCC and extracted the AST information for JAVA successfully; however, that

information is used for real-time compiler processing. It is impossible to modify it into

the AST information we want, because it is too large and complex. If this problem is

solved, then this system can be used in those popular languages.

The second problem is the compiler problem. This is the major problem of this

research, because the compiler is the source of this research. It is in charge of generating

the abstract syntax tree. However, it generates some information that we did not expect.

For example, there are only two functions regarding to plagiarism in Table 13; however,

we have seen more than two 100% similarities in the table. After we dug into those

functions, we found the compiler generates the AST not only for the functions, but also

for some specific library or declaration ways. For example, both source codes use

“namespace” at the beginning of the code, so the AST of the first functions are for the

namespace. It will cause two problems; one is that we don’t know how the compiler

generates the AST, we cannot prevent it. The second one is, if one of two similar

programs contains several “namespace”, the similarity of comprehensive test will be

lower. This problem can be solved by using the partial test approach. Table 13 is an

example.

40

The third problem is about a program can be compiled or not will affect the result.

We found that if a source code cannot pass the compiler, the compiler will only generate a

partial AST. This partial generation occurs because the stages of the compiler are working

in parallel. The AST is building when the compiler is parsing the rest of the code. So, if

an error occurs, the compiler process will be terminated disallowing the AST to fully

generate. We can compare partial ASTs; however, the problem that with two similar

programs, one can pass the compiler and the other one cannot, the similarity of the

comprehensive and the partial tests will be lower, even though the source codes are very

alike.

The last problem is the performance problem. Our system requires graph-based data

mining technique, it takes time especially when the graph is large. During the experiment,

there was an AST file which contained 177 functions; it took about five hours to run

SubdueGL on a Pentium 4 computer to generate a grammar file. In contrast with MOSS

gives us feedback in seconds and JPlag gives us feedback in a minute.

41

CHAPTER 6

CONCLUSIONS

Software plagiarism is widely seen on student assignments and commercial software.

Because of the complexity of source codes we would like to automate the discovery of

cases of plagiarism. We use graph-based data mining to examine the source code

structure–abstract syntax tree. Basically, we obtain the AST from the compiler during the

compile process. Then we use a graph-based data mining tool–SubdueGL to find the

significant structures in the AST. Then we use a program called Submatch to compare the

grammar file that SubdueGL generated. There are some existing solutions to help people

to catch it automatically, such like MOSS and YAP. They all focus on the text pattern.

Thus, we would like to use the other way to find a solution.

We performed experiments on two kinds of data–artificial and real world data. The

experiments of the artificial data helped us to discover the optimize option of SubdueGL

and also proved that this concept is feasible. The experiments of the real-world data

indicated our system can deal with real plagiarism behaviors. In some experiments, our

system was more sensitive than the MOSS and the DFGGI system. And in the partial test

comparison, our system provided a new method to catch the plagiarism. From the

experiments we have performed, we can prove our software plagiarism detector opens

another door to detect software plagiarism. Although this system is slow and depends on

a compiler, I think some of these problems can be overcome in the future.

The major problem of this system is the compiler which is the source of this system.

42

If the source is not stable, then the rest of system cannot be performed. We will find a

way to extract AST for every language in the future. We will make the AST data more

reliable; but we cannot overcome the “Compiled or Not” problem.

In future work, more noise cancellation work might be considered to add to our

system. Since the compiler generates AST for those specific libraries and functions and

that extra AST information is for the compiler, it is not necessary to compare them. In

other words, this system wants to compare the AST only as it exists in the source code. I

think this idea can make the AST more reliable. It also can solve the “Compiler

Problem.”

43

REFERENCES

[1] I. Jonyer, P. Apiratikul, and J. Thomas, “Source Code Fingerprinting Using Graph
Grammar Induction,” Proceedings of the Eighteenth Annual Florida AI Research
Society, May 2005.

[2] I. Jonyer and L. B. Holder, and D. J. Cook “MDL-Based Context-Free Graph
Grammar Induction and Applications,". International Journal of Artificial
Intelligence Tools, Volume 13, 2004.

[3] X. Chen, B. Francia, M. Li, B. Mckinnon, A. Seker, “Shared Information and
Program Plagiarism Detection,” IEEE Transactions on Information Theory, 2004.

[4] I. Jonyer, L. Holder, and D. J. Cook, “MDL-Based Context-Free Graph Grammar
Induction,” Proceedings of the Sixteenth International Conference of the Florida AI
Research Society, 2003.

[5] I. Jonyer, L. B. Holder, and D. J. Cook, “Concept Formation Using Graph
Grammars,” Proceedings of the KDD Workshop on Multi-Relational Data Mining,
2002.

[6] I. Jonyer, L.B. Holder, and D.J. Cook, “Graph-Based Hierarchical Conceptual
Clustering,” Journal of Machine Learning Research, 2001.

[7] M. J. Wise, “YAP3: Improved Detection of Similarities in Computer Program and
Other Texts,” SIGCSE Bulletin, 1996

[8] D. J. Cook and L. B. Holder, “Substructure Discovery Using Minimum Description
Length and Background Knowledge,” Journal of Artificial Intelligence Research,
Volume 1, pages 231-255, 1994.

[9] K. J. Ottenstein, “An algorithmic approach to the detection and prevention of
plagiarism,” SIGCSE Bulletin, 1977.

[10] A. Aiken, Measure of Software Similarity. [Online] [Cited 16 October 2004]
Available: <http://www.cs.berkeley.edu/~aiken/moss.html>

[11] G. Whale, “Identification of program similarity in large populations,” The Computer
Journal, 1990.

[12] M. H. Halstead, “Natural laws controlling algorithm structure?,” ACM SIGPLAN
Notices, 1972.

44

[13] L. Prechelt, G. Malpohl, M. Philippsen, “Finding plagiarisms among a set of
programs with JPlag,” [Online] [Cited 8 March 2005] Available: <
http://page.mi.fu-berlin.de/~prechelt/Biblio/jplag_jucs2001.pdf>

[14] J. L. Donaldson, A. Lancaster, P. H. Sposato, “A plagiarism detection system,” ACM
SIGSCE Bulletin, 1981.

[15] S. Grier, “A tool that detects plagiarism in Pascal programs,” ACM SIGSCE Bulletin,
1981.

VITA

Hsi-Yue Sean Hsiao

Candidate for the Degree of

Master of Science

Thesis: SOFTWARE PLAGIARISM DETECTION USING ABSTRACT SYNTAX
TREE AND GRAPH-BASED DATA MINING

Major Field: Computer Science

Biographical:

Personal Data: Born in Taipei, Taiwan, February 17th, 1974, the son of Hsien-Chi
Hsiao and Ching-Hua Pai. He, his wife, Hui-Chen Jane Chou live in
Stillwater, OK currently.

Education: Received Bachelor of Science degree in Computer Science from
Oklahoma State University in December 2002. Completed the requirements
for the Master of Science degree with a major in Computer Science at
Oklahoma State University in May 2005.

Professional Experience: Network System Administrator and Project Team Leader,
Exsior Data & Information Technology Inc. 1997~1998

Name: Hsi-Yue Sean Hsiao Date of Degree: May, 2005

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SOFTWARE PLAGIARISM DETECTION USING ABSTRACT
SYNTAX TREES AND GRAPH-BASED DATA MINING

Pages in Study: 44 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: This study is using a graph-based data mining technique
to discover cases of software plagiarism. We hypothesize that repetitive patterns
found in the abstract syntax tree (AST) representation of source code will only
match such patterns of other source code if the author of both are the same. A
graph-based data mining technique was used for analyzing the AST and extracting
the patterns. The results from the data miner were compared using a graph matching
algorithm, which provided the measure of similarity. We used artificial test sets and
actual student assignments for evaluation.

Findings and Conclusions: The experiments identified plagiarism behaviors in both
artificial and real-world data. These findings proved the system to be feasible. This
system can be applied to every kind of programming language that use abstract
syntax trees for compilation, and these ASTs can easily be extracted using the
compiler. An advantage of this system over other plagiarism detectors is that it can
deal with partial source code plagiarism behavior, which others do not currently do.
Disadvantages of our approach include slow speed because of the graph-based data
mining system used, and dependence on compilers to provide the AST. Also, if a
source code cannot be compiled, the compiler will not provide a full AST, and the
results will be inaccurate.

Advisor’s Approval: Dr. Istvan Jonyer ______________________________________

