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Preface 

 

The objectives of the experimental portion of this work were to (a) evaluate and 

correlate existing mutual hydrocarbon-water LLE data and (b) develop an apparatus, 

including appropriate operating procedures and sampling and analytical techniques, 

capable of accurate mutual solubility (LLE) measurements at ambient and elevated 

temperatures of selected systems.  The hydrocarbon-water systems to be studied include 

benzene-water, toluene-water, and 3-methylpentane-water.  The objectives of the 

modeling portion of this work were to (a) develop a quantitative structure-property 

relationship (QSPR) for prediction of infinite-dilution activity coefficient values of 

hydrocarbon-water systems, (b) evaluate the efficacy of QSPR models using multiple 

linear regression analyses and back propagation neural networks, (c) develop a theory 

based QSPR model, and (d) evaluate the ability of the model to predict aqueous and 

hydrocarbon solubilities at multiple temperatures.          
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Chapter 1. Overview 

1.1 Rationale 

Phase equilibrium data are essential for the proper design, operation, and 

simulation of many chemical processes.  Processes such as distillation, adsorption, and 

liquid-liquid extraction are examples of prevalent applications.  A common application is 

the removal of environmentally harmful organic substances from wastewater streams in 

refineries and petrochemical plants.  Here, both sour water strippers [1], and liquid-liquid 

extraction processes (based on the equilibration of hydrocarbon-rich and water-rich liquid 

streams) are used [2].  Additionally, the development of environmental impact studies, 

such as the potential contamination of a body of water by a liquid hydrocarbon, is 

dependent on phase equilibrium data.   

Several important processes involve hydrocarbon-water liquid-liquid phase 

equilibrium (LLE).  When experimental data are unavailable, thermodynamic models for 

LLE are used to predict the phase equilibrium.  The accuracy of these models is 

dependent on the quality, as well as the quantity, of the experimental data used in the 

model development.  While sufficient literature data are available on LLE for select 

hydrocarbon-water systems at ambient or near ambient temperatures, a deficiency of data 

exists at elevated temperatures.  Due to the lack of data for elevated temperatures and 

non-studied systems, experimental work such as this is needed.   



 2

1.2 Objectives 

The objectives of this work are to (a) evaluate and correlate existing mutual 

hydrocarbon-water LLE data and (b) develop an apparatus, including appropriate 

operating procedures and sampling and analytical techniques, capable of accurate mutual 

solubility (LLE) measurements at ambient and elevated temperatures of selected systems.  

The hydrocarbon-water systems to be studied include benzene-water, toluene-water, and 

3-methylpentane-water.   

1.3 Dissertation Organization  

This dissertation is organized in two sections. Section 1, Chapter 1-6, presents the 

experimental study, and Section 2, Chapter 7-12, addresses the modeling efforts.  Further, 

the document is written in “manuscript style,” with Chapter 5 written in the form of a 

manuscript, complete with an independent set of tables, figures, nomenclature, and 

references. As a result, some introductory remarks for each chapter are repetitive. 

Following is an outline for Section 1, and a similar outline for Section 2 is given later. 

Chapter 2 presents a review of the literature.  Data for each system studied in this 

work is reviewed at ambient and elevated temperatures and pressures.  The various 

analysis methods employed and the types of apparatuses used are also considered.  A 

detailed description of the experimental apparatus is given in Chapter 3.  The 

experimental methods and procedures are discussed in Chapter 4, including sample 

preparation, sample collection, instrument calibration, and sample analysis.  In Chapter 5, 

results of the experimental measurements are presented and discussed, along with the 

expected uncertainty in the measured values.  Chapter 6 provides a summary of this 
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work, followed by the appendices.  In Appendix A, a standard operating procedure is 

given to accompany the apparatus.  The calibration techniques and the calibration data 

are given in Appendix B, and the propagated error analysis used to interpret the 

calibration data is shown in Appendix C.  A description of how the solubilities were 

calculated is given in Appendix D, and Appendix E shows how the water present in the 

ethanol feedstock was accounted for in the sample analysis.  A complete propagated error 

analysis of the experimental solubility data is presented in Appendix F.   

 



 4

 

 
 

Chapter 2. Literature Review 

2.1 Introduction 

One objective of this work is mutual solubility measurements at ambient and 

elevated temperatures of selected hydrocarbon-water systems, which include benzene-

water, toluene-water, and 3-methylpentane-water.  The amount of liquid-liquid 

equilibrium data available in the literature varies among binary systems.  While there 

exists an abundance of data for the benzene-water system with over 30 independent 

measurements at 298 K, literature data are limited for the toluene-water and 3-

methylpentane-water systems.  The majority of the available data were collected at the 

ambient temperature of 298 K with few studies measuring mutual solubilities at elevated 

temperatures and pressures.  In general, a critical evaluation of the mutual solubility data 

is complicated by the limited availability of literature data and differences in 

experimental pressure conditions when collecting data at elevated temperatures. 

2.2 Benzene-Water System 

 Solubility of Benzene in Water 

Much of the literature data for the solubility of benzene in water at atmospheric 

pressure are in reasonable agreement.  However, data by Kudchadker and McKetta [3], 

Krasnoshchekova and Gubergrits [4], Schwarz [5], and Sanemasa et al. [6] deviate 

significantly from other studies. 



 5

The reported mutual solubility data for the benzene-water system at elevated 

temperatures and pressures are in fair agreement.  The studies of Anderson and Prausnitz 

[2], Tsonopoulos and Wilson [1], Chandler et al. [7] Jou and Mather [8], Marche et al. 

[9], Miller and Hawthorne [10], and Neely et al. [11], all of which are along the three-

phase equilibrium curve, exhibit fair agreement, but measurements by Guseva and 

Parnov [12] show significant deviations from the other data. 

 Solubility of Water in Benzene 

Due to the difficulty in quantifying the low concentration of water present in the 

benzene-rich phase, the reported values of water solubility in benzene at atmospheric 

pressure are only in fair agreement.  The data of Englin et al. [13] and Bittrich et al. [14] 

are significantly lower than the values given by other studies.  Hefter [15] and Chen and 

Wagner [16] noted that water solubility in benzene data collected since 1965 have a 

tendency to be higher than the overall average, with smaller standard deviations. 

At temperatures below 325 K there is fair agreement, but at higher temperatures 

data tend to fall into two groups; agreement is fair within each group, but the two groups 

differ by approximately 25%.  The studies of Anderson and Prausnitz [2], Tsonopoulos 

and Wilson [1], and Chandler et al. [7] comprise the group of lower solubility 

measurements, while the studies of Jou and Mather [8], Chen and Wagner [16], Umano 

and Hayano [17], and Neely et al. [11] comprise the group of higher solubility 

measurements. 



 6

2.3 Toluene – Water System 

 Solubility of Toluene in Water 

There is reasonable agreement among the large number of toluene-in-water 

solubility data at ambient temperature.  The data of Krasnoshchekova and Gubergrits 

[18], Schwarz [5], Pierotti and Liabastre [19], and Sanemasa et al. [6] deviate 

significantly from other studies. 

The reported mutual solubility data for the toluene-water system at elevated 

temperatures and pressures are in fair agreement.  The studies of Anderson and Prausnitz 

[2], Chandler et al. [7], Jou and Mather [8], and Chen and Wagner [20], which are along 

the three-phase equilibrium curve, exhibit fair agreement, but the study of Miller and 

Hawthorne [10] produced somewhat lower solubility than the other data. 

 Solubility of Water in Toluene 

There is good agreement among the moderate number of studies reporting the 

solubility of water in toluene at ambient temperature, despite the difficulty in quantifying 

the small amount of water present in the hydrocarbon.  The data of Tarassenkow and 

Poloshinzewa [21, 22] and Roddy and Coleman [23] deviate significantly from other 

studies.  

The studies of Marche et al. [24], Anderson and Prausnitz [2], Chandler et al. [7], 

Jou and Mather [8], and Chen and Wagner [20], which are along the three-phase 

equilibrium curve, exhibit fair agreement, but scatter in the data becomes more 

pronounced at higher temperatures. 
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2.4 3-Methylpentane – Water System 

 Solubility of 3-Methylpentane in Water 

Four separate studies, all conducted at or near ambient temperatures, comprise the 

available literature data for the solubility of 3-methylpentane in water.  The ambient 

temperature solubility measurements of McAuliffe [25], Price [26], and Rudakov and 

Lutsyk [27] show good agreement, but the data of Polak and Lu [28] are approximately 

30% higher in solubility.  According to Hefter [15], the hydrocarbon solubilities 

measured by Polak and Lu tend to be much higher in value compared to measurements of 

other investigators.   

 Solubility of Water in 3-Methylpentane 

Polak and Lu [28] provide the only reported data, which were measured at and 

near ambient temperatures, for the aqueous solubility.  While the lack of relevant data 

precludes a critical evaluation of Polak and Lu’s data, their aqueous solubility data are 

normally consistent with other researchers in well-characterized systems [15]. 

2.5 Experimental Methods 

Generally, two types of experimental methods are used to collect liquid-liquid 

equilibrium data; namely, static cells and continuous flow apparatus.  A static cell is 

charged with a solution, agitated for some time period, and then allowed to 

gravimetrically separate before analysis.  Those investigations using a static cell to 

achieve equilibrium include McAuliffe [25, 29], Karlsson [30], Franks [31], Franks et al. 

[32], Goldman [33], Guerrant [34], Anderson and Prausnitz [2], Polak and Lu [28], 
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Chandler et al. [7], Krasnoshchekova and Gubergrits [4], Ng and Chen [35], Schatzberg 

[36], Jou and Mather [8], and Marche et al. [9].   

A continuous flow apparatus has a gravimetric separation cell, which is 

continuously charged with a well mixed, equilibrated saturated solution.  The 

investigations by Wang and Chao [37], Chen [38], Chen and Wagner [16, 20, 39], 

Bennett [40], Miller and Hawthorne [10], Neely et al. [11], Ratzlaff [41], and Stevenson 

et al. [42] use continuous flow apparatus, similar to the apparatus presented in this study, 

to collect liquid-liquid equilibrium data.  Advantages of continuous flow apparatus over a 

static equilibrium cell include more rapid measurement of phase compositions [42] and 

minimization of hydrocarbon thermal degradation [37, 42]. 

Various analytical techniques have been utilized for sample analysis.  These 

include volumetric analysis (Guerrant [34] and Umano and Hayano [17]), Karl Fischer 

titration (Polak and Lu [28], Karlsson [30], Tsonopoulos and Wilson [1], and Stevenson 

et al. [42]), ultraviolet spectrophotometry (Bradley et al. [43], Franks et al [32], and 

Arnold et al. [44]), high performance liquid chromatography (Marche, et al. [9]), and gas 

chromatography/mass spectroscopy (Miller and Hawthorne [10]).  Gas chromatography 

is probably the most common analytical technique, and studies utilizing this method 

include Chen and Wagner [16, 20, 39], Chen [38], Bennett [40], Polak and Lu [28], 

McAuliffe [25, 29], Franks et al. [32], Anderson and Prausnitz [2], Tsonopoulos and 

Wilson [1], Chandler et al. [7], Stevenson et al. [42], Jou and Mather [8], Neely et al. 

[11], and Ratzlaff [41]. 



 9

2.6 Summary 

The availability of liquid-liquid equilibrium data at elevated temperatures is 

limited for most systems, with the exception of benzene-water.  Due to the thorough 

investigation of the benzene-water system by several independent investigators, this 

system is often employed as a benchmark when testing an apparatus or analytical 

technique.  There is a moderate amount of literature data available for the toluene-water 

system, and very few literature data are available for the 3-methylpentane-water system. 

Static cells and continuous flow apparatus are the most common methods for 

collection of liquid-liquid equilibrium data.  Various analytical techniques have been 

employed among the studies presented here with gas chromatography being the most 

utilized. 
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Chapter 3. Experimental Apparatus 

3.1 Introduction 

A continuous flow apparatus, originally designed and constructed by Ratzlaff 

[11], was used to collect mutual solubility data of two liquid phases in equilibrium at 

elevated temperatures and pressures.  In brief, the experimental apparatus may be 

described as consisting of a phase separation cell, which is located in a convection oven.  

A single inlet transports two well-mixed liquids to the separation cell.  A backpressure 

regulator controls the pressure, using a pressurized nitrogen source, of the apparatus.  The 

phases are separated gravimetrically in the phase separation cell, then exit the cell 

through outlets in the top and bottom of the cell, and are collected.   

An earlier apparatus, constructed by Chen and Wagner [16], provided a basis for 

the design of the current apparatus, but a few improvements were made.  A major 

improvement [11] is the accurate controllability of the hydrocarbon-water interface in the 

separation cell at elevated pressures, which minimizes the possibility of entrainment of 

either phase.  Adequate phase separation then allows mutual solubilities at elevated 

temperatures and pressures to be measured.  Minor improvements include the addition of 

tubing connections to aid in the maintenance of the apparatus and the addition of a line to 

act as a recycle stream directing flow from the waste collection cell to a recycle 

receptacle.  The more costly 3-methylpentane was recycled with the aid of a separatory 



 11

funnel to separate the organic and aqueous phases.  A more detailed description of the 

apparatus follows. 

3.2 Description 

Figure 3-1 presents a schematic drawing of the experimental apparatus.  As 

shown, the apparatus consists of four sections: a feed section, an equilibration section, a 

separation section, and a sampling section.  The feed section introduces two pure, 

partially miscible fluids at a constant flow rate to the equilibration section, where the two 

fluids are thoroughly mixed and allowed to come to equilibrium.  After the equilibration 

section, the aqueous and hydrocarbon phases are separated in the separation section.  

Next, the separated phases are collected in the sampling section.  The total volume of the 

apparatus is approximately 120 cm3.  Abbreviations used below in the description of the 

apparatus correspond to those shown in Figure 3-1.   

 Feed Section 

The feed section contains two reservoirs for the pure liquid feedstocks 

(hydrocarbon and water), and a LCD Analytical Type NSI-33R duplex miniPump (DP1).  

The duplex miniPump supplies the liquids at a constant total flow rate of 4.0 cm3/min 

with equal parts by volume (2.0 cm3/min) of hydrocarbon and water.  The flow rate was 

varied to determine the effect on the solubilities, but no significant variation was 

observed with flow rates ranging from 1.5 to 4.5 cm3/min.  The low flow rates reduce the 

formation of emulsions in the apparatus and allow sufficient time for the two liquids to 

reach equilibrium in the equilibration section.  At the selected flow rate, the residence 

time in the system is approximately 30 minutes. 
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Figure 3-1.  Schematic Diagram of the Continuous Flow Apparatus 
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 Equilibration Section 

The equilibration section facilitates the mixing necessary for the fluids to reach 

equilibrium at the selected experimental temperature.  Immediately following the duplex 

miniPump is a Whitey three-way valve (V1), which acts as a bypass valve during startup, 

when the duplex miniPump is primed.  The two fluids then pass through approximately 

6.8 m of 0.318 cm-o.d. stainless steel tubing followed by 3.1 m of 0.835 cm-o.d. stainless 

steel tubing packed with 1.0 mm glass beads.  Next, the liquid enters a 1.0 m section of 

0.318 cm-o.d. stainless steel tubing before entering the oven. 

A Hotpack Digimatic Model 213024 air oven, with a maximum temperature 

rating of 623 K, is employed to provide a suitable thermal environment.  The oven 

temperature is controllable to within ±0.1 K of the set point, as determined by the 

manufacturer.  A J-type thermocouple, calibrated against a Minco platinum resistance 

thermometer that is NIST traceable, is used to measure the phase separation cell 

temperature.  Once the fluid reaches the oven, it enters a 15.2 m section of 0.318 cm-o.d. 

stainless steel tubing, which allows thermal equilibration of the thoroughly mixed 

hydrocarbon-water mixture before entrance to the separation section. 

 Separation Section 

The separation section consists of a phase separation cell, which is a 316 stainless 

steel Jerguson Model 12T40 Liquid Level Gage with an internal volume of 19 cm3, 

located inside the oven.  After phase separation of the hydrocarbon-water mixture inside 

the cell, the aqueous phase exits from the bottom of the cell, and the less dense 

hydrocarbon phase exits from the top of the cell.  Since a potential exists for phase 
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separation to occur in the aqueous and hydrocarbon phases due to adsorption of the solute 

on sample line surfaces [9], the separated phases exit the phase separation cell through 

0.159 cm-o.d. stainless steel capillary tubing.  This tubing minimizes dead volume, thus, 

minimizing the effects of phase separation on sample composition.  

Sampling Section 

After exiting the phase separation cell, the aqueous phase passes through an 

Autoclave Engineering micrometering valve (MV1), which due to the valve packing 

material limits the maximum operating temperature of the apparatus to 505 K.  This 

valve, which is located inside the oven, controls the flow of the aqueous phase from the 

phase separation cell.  By controlling the aqueous phase effluent rate, the hydrocarbon-

water interface level is controlled near the center of the cell, which minimizes the 

possibility of entrainment.  Each phase passes through a water-cooled heat exchanger 

20.3 cm in length prior to being collected.  Tap water is used on the shell side (0.635 cm-

o.d. stainless steel tubing) to effectively cool each phase to room temperature before 

collection, which aids in the prevention of sample volatilization. 

Since the presence of a vapor phase would interfere with the collection of the 

hydrocarbon phase from the top of the equilibrium cell, elevated pressures (above the 

three-phase pressure) in the apparatus are established using pressurized nitrogen gas to 

create a backpressure on the system.  A Grove Mity Mite S-91XW backpressure regulator 

(BPR) is used to control the pressure in the high-pressure sampling cell (C1).  To protect 

against overpressure, a spring-loaded Nupro relief valve is placed on each possible source 

of pressure.  One relief valve (RV1) is located on the liquid mixture feed line, upstream 

of the oven, and a second relief valve (RV2) is located on the nitrogen stream line.  The 
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hydrocarbon phase sample is collected in a glass bottle placed in a 300 cm3, sightless, 

high-pressure sampling cell (C1), which is pressurized by nitrogen gas.  Cell pressure is 

measured at the feed port of the phase separation cell with a Sensotec STJE pressure 

transducer and 450D readout.  The maximum pressure of the system is limited by the 

pressure transducer, which has a pressure limit of 13.8 MPa (2000 psia).  The relief 

valves are set at 12.4 MPa (1800 psia). 

A Whitey three-way valve (V2) is located between the phase separation cell and 

C1.  This valve diverts the flow of the hydrocarbon phase sample to a 400 cm3, sightless, 

high-pressure, collection cell (C2), which allows continuous flow through the system at 

elevated pressures while changing the sample bottles in C1.  The blanket of nitrogen gas 

also pressurizes C2.  The nitrogen gas may be vented when C1 and C2 are isolated from 

the system by the utilization of Whitey three-way valves.  The valve V3 is used to isolate 

C1 and the valve V4 is used to isolate C2.  When isolated, C1 or C2 may be 

depressurized to atmospheric pressure while maintaining a constant elevated pressure 

inside the apparatus.   
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Chapter 4. Experimental Methods and Techniques 

4.1 Introduction 

The experimental procedure includes the following:  preparation and collection of 

the samples, calibration of the instrument used for sample analysis, and analysis of the 

samples.  A gas chromatograph (GC) equipped with a thermal conductivity detector 

(TCD) was used for the sample analysis.  Calibration of the GC was by either a serial 

dilution technique or the use of external standards.  A weighted-least-squares regression 

was used to model the calibration data and generate a calibration curve, which was 

utilized during sample analysis to determine the concentration of the sample.  Problems 

encountered during this experimental work are also discussed. 

4.2 Sample Preparation 

Sample preparation includes selection of an appropriate solvent, for extraction of 

the hydrocarbon in the aqueous phase and homogenization of the organic phase, and 

determination of an optimum solvent amount for the aqueous and organic phase samples.  

Solvent amounts were determined using solutions of known concentrations representative 

of expected experimental sample concentrations.  Prior to sample collection, a known 

weight of solvent was added to the 1 oz sample bottles in preparation for sample analysis.  

The bottles were obtained from Alltech and used open caps with Teflon liners.   
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Aqueous Phase 

The purpose of the solvent used for aqueous phase analysis was to extract the 

hydrocarbon from the equilibrium water-rich phase. This provided a water-free sample 

for analysis.  By excluding water from the sample analysis, a reproducible analysis was 

achieved.  Depending on the system of interest, the solvent used in the aqueous phase 

samples was either decane or 2,2,4-trimethylpentane.  For the systems with benzene and 

3-methylpentane, decane was the solvent of choice, and for the system with toluene, 

2,2,4-trimethylpentane was employed as the solvent.  To avoid interference with the gas 

chromatograph analysis of the hydrocarbons of interest, the retention time of the solvents 

were used as the basis of their selection.   

 Organic Phase 

Unlike the solvent for water phase analysis (which extracted the hydrocarbon), the 

solvent used in the organic phase analysis was chosen to homogenize the hydrocarbon 

sample to a single phase, which allows the analysis of water in the presence of the 

hydrocarbon.  Since water is soluble in ethanol and good peak separation exists between 

water, ethanol, and the hydrocarbon of interest in the gas chromatograph analysis, ethanol 

was used as the homogenizing solvent in the organic phase samples. 

 Solvent Amount 

Determination of the optimum amount of solvent involved the preparation of 

known concentration solutions.  For each system studied, two calibration solutions were 

prepared for each phase.  Lower and higher concentration solutions were prepared to 

represent expected concentrations at the lowest and highest experimental temperatures, 
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respectively.  Incremental amounts of solvent were added to the initial solutions.  After 

each addition, the effect of solvent addition on the measured mole fractions was 

determined by GC analysis.  The calculated mole fraction of the solution gradually 

increased until only minor changes were observed with further solvent addition..  A 

leveling in the calculated mole fraction indicated that an optimum amount of solvent had 

been used.  Determination of the amount of solvent, 2,2,4-trimethylpentane, used in the 

aqueous phase of the toluene-water system is shown in Figure 4-1, where a solvent to 

sample mass ratio of 0.15 was chosen. 
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Figure 4-1.  Effect of Extractant Amount on Toluene Concentration 

The solvent-to-sample mass ratios used in this study are presented in Table 4-1.  . 
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Table 4-1.  Solvent-to-Sample Ratios 

Benzene – Water 
 Solvent-to-Sample Mass Ratio 

Aqueous Phase 0.40 
Organic Phase 0.70 

Toluene - Water 
Aqueous Phase 0.15 
Organic Phase 0.35 

3-Methylpentane - Water 
Aqueous Phase 0.22 
Organic Phase 0.75 

 

4.3 Sample Collection 

In order to minimize sample contact with the atmosphere, the samples were 

collected after addition of solvent to the sample bottles.  Three successive samples of 

each phase were collected at each temperature.  In general, simultaneous collection of the 

organic and aqueous phases occurred at a pressure slightly above the three-phase 

equilibrium pressure. 

4.4 Instrument Calibration 

A recently refurbished Hewlett-Packard 5890A gas chromatograph (GC), 

equipped with a thermal conductivity detector (TCD) and a Hewlett-Packard 3396A 

integrator, was used for sample analysis.  High purity helium was used as the carrier gas, 

and the column used to separate injected samples was a 3.6-m x 0.32-cm-o.d. stainless 

steel column packed with GasChrom 254, supplied by Alltech.  The GC was calibrated 

by either a serial dilution technique or the use of external standards (see Appendix B for 

details).  The range of calibration standards encompassed the experimental concentration 
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range, and these calibration standards were prepared gravimetrically and analyzed with 

the GC.  Operating conditions, which were optimized for each calibration standard and 

sample analysis, are listed in Table 4-2.  .   

Table 4-2.  Gas Chromatograph Operating Conditions 

Benzene - Water System 
Variable Water Phase Benzene Phase 

Detector Temperature, oC 300 300 
Injector Temperature, oC 250 140 
Initial Oven Temperature, oC 225 130 
Initial Time, min. 4.0 5.0 
Final Oven Temperature, oC 225 225 
Final Time, min. 0.0 2.0 
Rate, oC/min. 0.0 40.0 
Total Gas Flow, cm3/min. 30.0 30.0 

 
Toluene - Water System 

Variable Water Phase Toluene Phase 
Detector Temperature, oC 300 140 
Injector Temperature, oC 250 250 
Initial Oven Temperature, oC 225 130 
Initial Time, min. 2.5 5.0 
Final Oven Temperature, oC 225 225 
Final Time, min. 0.0 2.0 
Rate, oC/min. 0.0 40.0 
Total Gas Flow, cm3/min. 30.0 30.0 

 
3-Methylpentane - Water System 

Variable Water Phase 3-Methylpentane Phase 
Detector Temperature, oC 300 300 
Injector Temperature, oC 250 150 
Initial Oven Temperature, oC 225 130 
Initial Time, min. 5.1 4.0 
Final Oven Temperature, oC 225 180 
Final Time, min. 0.0 2.5 
Rate, oC/min. 0.0 40.0 
Total Gas Flow, cm3/min. 30.0 30.0 
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Temperature programming of the GC was employed to provide the most accurate and 

reproducible analysis in a reasonable amount of time.  A sample volume of 0.003 cm3 (3 

µL) was injected into the GC. 

The calibration curves were prepared from the solute-to-solvent weight ratio as a 

function of the solute-to-solvent area ratio, and the data were regressed using the 

nonlinear weighted-least-squares Marquardt method [45].  Uncertainty in the weight 

ratio, which was used to weight each datum in the regressions, was determined from an 

analysis of propagated error.  Details of this analysis are provided in Appendix C.   

Each calibration curve was expressed as a power law function, as follows: 

           βαARWR =  (4-1)

where WR is the weight ratio, AR is the area ratio and α and β are regressed parameters.  

The parameters from the regression of the calibration data are listed in Table 4-3, and the 

calibration curves are presented in Figures 4-2 - 4-8.  Overall, the calibration curves 

demonstrated good reproducibility, but any datum with a deviation greater than two and 

one half times the standard deviation was not included in the regression.  Since the range 

of the water – ethanol calibration for the 3-methylpentane system extended beyond the 

linear response region of the gas chromatograph, two calibration curves corresponding to 

the expected WRs at lower temperatures and higher temperatures, respectively, were 

generated to describe the calibration data.  Details concerning the calibration technique 

and the calibration data are provided in Appendix B. 
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Table 4-3.  Gas Chromatograph Calibration Parameters 

BENZENE – WATER SYSTEM 
Calibration α β 

Benzene – Decane 0.9086 1.134 
Water – Ethanol 1.027 1.170 
   

Toluene – Water System 
Toluene – 2,2,4-Trimethylpentane 0.2214 1.020 
Water – Ethanol 1.572 1.227 
   

3-Methylpentane – Water System 
3-Methylpentane – Decane 1.530 1.369 
Water – Ethanol (High Temperature) 0.1203 1.230 
Water – Ethanol (Low Temperature) 29690 4.308 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2.  Benzene – Decane Calibration 

 

Benzene - Water System
Benzene - Decane Calibration

Area Ratio

0.0010 0.0100 0.1000 1.0000

W
ei

gh
t R

at
io

0.0001

0.0010

0.0100

0.1000

1.0000

Calibration Data
Regression 



 23

 

 

 

 

 

 

 

 

 

 

Figure 4-3.  Water – Ethanol Calibration (Benzene) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4.  Toluene – 2,2,4-Trimethylpentane Calibration 
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Figure 4-5.  Water – Ethanol Calibration (Toluene) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6.  3-Methylpentane – Decane Calibration 
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Figure 4-7.  Low Temperature Water – Ethanol Calibration (3-Methylpentane) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8.  High Temperature Water – Ethanol Calibration (3-Methylpentane) 
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4.5 Sample Analysis 

Sample analyses were performed using the same GC conditions as the 

calibrations.  The amount of each component in a sample was given in the GC output as 

an area, which refers to the integrated portion under each individual curve for each 

component peak in the analysis.  The solute-to-solvent area ratio was found by dividing 

the solute area by the solvent area, and this value was used with the calibration curve, 

Equation (4-1), to calculate the solute-to-solvent weight ratio.  The weight ratio, area 

ratio, and molecular weight of the solute and solvent were used to calculate the mole 

fraction of the sample, and these solubility calculations are explained in Appendix D. 

Ethanol, used as the solvent in the organic phase, is hygroscopic and contained 

small amounts of water.  This additional water could cause the area ratio in the organic 

phase samples and, in effect, the calculated water solubility in the organic phase, to be 

slightly higher than the equilibrium value.  A strategy for the accounting of additional 

water is described in Appendix E. 

Complete description of the sample preparation, sample collection, and sample 

analysis is given as part of the standard operating procedures in Appendix A, and details 

concerning the instrument calibration are provided in Appendix B. 

4.6 Experimental Discussion 

During initial work on the selected systems, the integrator used with the GC 

failed.  After numerous attempts to repair the integrator, a refurbished model was 

purchased.  With the “new” integrator in place, the GC was found to be unresponsive 

during analyses.  Again, considerably effort was expended in attempting to repair the GC 
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on site, but eventually, it was sent to a company specializing in GC refurbishment.  The 

GC was returned along with chromatographs of selected test injections, and the 

instrument appeared to be in satisfactory working condition.  However, results of the 

analyses of organic phase samples from the benzene-water system showed large 

deviations from both literature values and previous work done with the same 

experimental apparatus and GC [11, 41].   

Typically, speculation on the origin of the experimental discrepancies centers on 

deviations from the established operating procedures, or problems arising with the 

operation or condition of the experimental apparatus.  Experimental work then consisted 

of exactly replicating all procedures involved in this work, which includes calibration, 

sampling, and analysis tasks.  Time was also spent on insuring that the experimental 

apparatus was in good working order.  Since results obtained during this period were 

consistent but still inaccurate compared to literature data, the conclusion of this 

investigation was the existence of a systematic error, which remained unidentified.   

Given the amount of time already devoted to these problems, and the need to 

proceed with other research, abandonment of the experiment appeared to be the most 

feasible option.  However, one final measure was investigated.  Originally, ethanol-water 

mixtures were serially diluted with ethanol to construct a calibration curve for use in the 

analysis of the organic phase samples, which also contain a large amount of the 

hydrocarbon of interest.  The final investigation centered on whether or not the injected 

analytical sample, which contained hydrocarbon, was truly representative of the 

employed calibration standards.  Individual external standards were prepared using a 

solvent to sample ratio similar to that expected experimentally, and a calibration curve 



 28

was constructed.  After using this new calibration method, satisfactory results were 

obtained.  There seems to be a difference in the GC since the refurbishment, perhaps due 

to all tubing and chambers being free of fouling.  Previously, the peak areas obtained 

during repeat analyses of the same sample showed a low variability as contrasted by the 

greater variability now observed.  A possible explanation for the variability and change in 

calibration method is the determination of peak areas by the GC being affected by the 

high molar vapor expansion of the water and ethanol in the detection chamber.  This 

expansion in the detection chamber could change the relative detected amounts of the 

components in the injected sample.  
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Chapter 5. Mutual Solubilities in the Benzene – Water, Toluene – Water, and 3-

Methylpentane-Water Systems 

5.1 Introduction 

 Phase equilibrium data are essential for the proper design, operation, and 

simulation of many chemical processes, which include such applications as distillation, 

adsorption, and liquid-liquid extraction.  An example of a common application is the 

removal of environmentally harmful organic substances from wastewater streams in 

refineries and petrochemical plants.  Here, both sour water strippers [1], and liquid-liquid 

extraction processes (based on the equilibration of hydrocarbon-rich and water-rich liquid 

streams) are used [2].  Increasing environmental concerns have also led to the use of 

supercritical water, instead of organics, as the solvent in some reaction processes and 

extraction methods, which include the destruction of hazardous wastes in supercritical 

water [3] and chemical processing in supercritical and near critical water [4].  

Additionally, the development of environmental impact studies, such as the potential 

contamination of a body of water by a liquid hydrocarbon, is dependent on phase 

equilibrium data.   

When experimental data are unavailable, thermodynamic models for liquid-liquid 

equilibrium (LLE) are used to predict the phase equilibrium.  The accuracy of these 

models is dependent on the quality, as well as the quantity, of the experimental data used 

in the model development.  While sufficient literature data exist on LLE for many 
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hydrocarbon-water systems at ambient or near ambient temperatures, a deficiency exists 

for data at elevated temperatures.   

The objectives of this work are to measure and correlate mutual hydrocarbon-

water LLE data for the benzene-water, toluene-water, and 3-methylpentane-water 

systems over a temperature range from ambient conditions to approximately 500 K. 

5.2 Experimental Measurements 

In order to address the need for LLE data on selected systems, a continuous flow 

apparatus [5] was utilized to obtain liquid-liquid mutual solubilities at temperatures from 

ambient to 500 K and pressures up to 13.8 MPa.  Mutual solubility data have been 

measured at temperatures from ambient to near the three-phase critical end points [6], 

540 K and 560 K, for the hydrocarbon-water systems, benzene-water and toluene-water, 

respectively.  At temperatures and pressures below the three-phase critical end point, 

three phases (liquid hydrocarbon, liquid water, and vapor) exist.  Two phases exist at 

conditions above this point consisting of a liquid water phase and a vapor phase where 

the liquid hydrocarbon phase and vapor phase now have identical properties.  The well-

documented system, benzene-water, was used to validate the proper operation of the 

apparatus, as well as the sampling and analytical techniques employed.   

 Materials 

Benzene (99.9+%) and toluene (99.8%) were supplied by Aldrich Chemical Co. 

and the 3-methylpentane (99+%) was supplied by Acros.  Additional chemicals used as 

solvents in the phase analyses included 2,2,4-trimethylpentane (99+%) and decane 

(99+%) supplied by Aldrich Chemical Co.  No further purification of these chemicals 



 31

was attempted.  Ethanol (USP grade, Absolute-200 Proof), supplied by Pharmco 

Products, was dehydrated and stored over 4A molecular sieves from Fisher Chemical 

Company for at least two months prior to use.  The Oklahoma State University School of 

Chemical Engineering supplied the nanopure, deionized water.  High purity helium 

(99.997%) and ultra-high purity nitrogen (99.999%) were obtained from Sooner Airgas, 

Inc. 

Alltech screw top bottles (1 oz.) with open-hole caps and Teflon liners were used 

for sample collection.  Hamilton 10 cm3 syringes, from Alltech, were used for preparation 

of the calibration standards and were thoroughly rinsed between uses with acetone 

(99.9%) from Pharmco Products.  Hamilton 0.01 cm3 (10 µl) syringes, from Alltech, 

were used to inject the calibration standards and experimental samples into the gas 

chromatograph.  Pharmco Products provided the ACS grade methanol (99.99%), used at 

times in combination with acetone (99.7%) to clean the apparatus and various glassware. 

 Apparatus 

A detailed diagram of the experimental apparatus is presented in Figure 5-1.  The 

apparatus consists of four sections: a feed section, an equilibration section, a separation 

section, and a sampling section.  The feed section introduces two pure, partially miscible 

fluids at a constant flow rate to the equilibration section, where the two fluids are 

thoroughly mixed and allowed to equilibrate.  After the equilibration section, the aqueous 

and hydrocarbon phases are separated in the separation section.  Next, the separated 

phases are collected in the sampling section.  The total volume of the apparatus is 

approximately 120 cm3.  Abbreviations used in the description of the apparatus 

correspond to those given in Figure 5-1.   
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 Feed Section 

The feed section contains two reservoirs for the pure liquid feedstocks, a 

hydrocarbon and water, and a LCD Analytical Type NSI-33R duplex miniPump (DP1).  

The duplex miniPump supplies the liquids at a constant total flow rate of 4.0 cm3/min 

with equal parts (2.0 cm3/min) of hydrocarbon and water.  The flow rate was varied to 

determine the effect on the solubilities, but no significant variation was observed with 

flow rates ranging from 1.5 to 4.5 cm3/min.  Flow rates in this range reduce the formation 

of emulsions in the apparatus and allow sufficient time for the two liquids to reach 

equilibrium in the equilibration section.  At the selected flow rate, the residence time of 

the system is approximately 30 minutes. 

 Equilibration Section 

The equilibration section facilitates the mixing necessary for the fluids to reach 

equilibrium at the selected experimental temperature.  Immediately following the duplex 

miniPump is a Whitey three-way valve (V1), which acts as a bypass valve when the 

duplex miniPump is primed.  The two fluids then pass through approximately 6.8 m of 

0.318 cm-o.d. stainless steel tubing followed by 3.1 m of 0.835 cm-o.d. stainless steel 

tubing packed with 1.0 mm glass beads.  Next, the liquid enters a 1.0 m section of 0.318 

cm-o.d. stainless steel tubing before entering the oven.   

A Hotpack Digimatic Model 213024 air oven, with a maximum temperature 

rating of 623 K, is utilized to provide a suitable thermal environment.  The oven 

temperature is controllable to within ±0.1 K of the set point, as determined by the 

manufacturer.  A J-type thermocouple, calibrated against a Minco platinum resistance 

thermometer that is NIST traceable, is used to measure the phase separation cell 
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temperature.  Once the fluid reaches the oven, a 15.2 m section of 0.318 cm-o.d. stainless 

steel tubing allows the thermal equilibration of the thoroughly mixed hydrocarbon-water 

mixture before entrance to the separation section. 

 Separation Section 

The separation section consists of a phase separation cell, which is a 316 stainless 

steel Jerguson Model 12T40 Liquid Level Gage with an internal volume of 19 cm3, 

located inside the oven.  After phase separation of the hydrocarbon-water mixture inside 

the cell, the aqueous phase exits from the bottom of the cell, and the less dense 

hydrocarbon phase exits from the top of the cell.  Since a potential exists for phase 

separation to occur in the aqueous and hydrocarbon phases due to adsorption of the solute 

on sample line surfaces [7], the separated phases exit the phase separation cell through 

0.159 cm-o.d. stainless steel capillary tubing.  This tubing minimizes dead volume, thus, 

minimizing the effects of phase separation on sample composition. 

 Sampling Section 

After exiting the phase separation cell, the aqueous phase passes through an 

Autoclave Engineering micrometering valve (MV1), which due to the valve packing 

material limits the maximum operating temperature of the apparatus to 505 K.  This 

valve, which is located inside the oven, controls the flow of the aqueous phase from the 

phase separation cell.  By controlling the aqueous phase effluent rate, the hydrocarbon-

water interface level is controlled near the center of the cell, which minimizes the 

possibility of entrainment.  Each phase passes through a water-cooled heat exchanger 

20.3 cm in length prior to being collected.  Tap water is used on the shell side (0.635 cm-
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o.d. stainless steel tubing) to effectively cool each phase to room temperature before 

collection, which aids in the prevention of sample volatilization. 

Since the presence of a vapor phase would interfere with the collection of the 

hydrocarbon phase from the top of the equilibrium cell, elevated pressures above the 

three-phase pressure in the apparatus are established using pressurized nitrogen gas to 

create a backpressure on the system.  A Grove Mity Mite S-91XW backpressure regulator 

(BPR) is used to control the pressure in the high-pressure sampling cell (C1).  To protect 

against overpressure, a spring-loaded Nupro relief valve is placed at each possible source 

of pressure.  One relief valve (RV1) is located on the liquid mixture feed line, upstream 

of the oven, and a second relief valve (RV2) is located on the nitrogen streamline.  The 

hydrocarbon phase sample is collected in a glass bottle placed in a 300 cm3, sightless, 

high-pressure sampling cell (C1), which is pressurized by nitrogen gas.  Cell pressure is 

measured at the feed port of the phase separation cell with a Sensotec STJE pressure 

transducer and 450D readout.  The maximum pressure of the system is limited by the 

pressure transducer, which has a pressure limit of 13.8 MPa (2000 psia).  The relief 

valves are set at 12.4 MPa (1800 psia). 

A Whitey three-way valve (V2) is located between the phase separation cell and 

C1.  This valve diverts the flow of the hydrocarbon phase sample to a 400 cm3, sightless, 

high-pressure, collection cell (C2), which allows continuous flow through the system at 

elevated pressures while changing the sample bottles in C1.  The blanket of nitrogen gas 

also pressurizes C2.  The nitrogen gas may be vented when C1 and C2 are isolated from 

the system by sequencing of the Whitey three-way valves.  The valve V3 is used to 

isolate C1 and the valve V4 is used to isolate C2.  When isolated, C1 or C2 may be 
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depressurized to atmospheric pressure while maintaining a constant elevated pressure 

inside the apparatus.   

 Methods and Procedures 

The analyses of equilibrium phase samples proceeded as follows.  First, a known 

amount of solvent, by weight, was added to the sample bottles.  For the organic phase 

analysis, the sample was mixed with the solvent, ethanol in an approximate weight ratio 

of 0.7, 0.3, and 0.8 for the benzene-water, toluene-water, and 3-methylpentane-water 

systems, respectively.  The ethanol functioned as a homogenizing cosolvent to provide a 

single-phase sample for analysis.  The ethanol contained a small amount of water, which 

was accounted for in the sample analysis. 

The water phase sample was mixed with a known weight of solvent, decane, for 

the benzene-water and 3-methylpentane-water systems and 2,2,4-trimethylpentane for the 

toluene-water system.  In order to avoid interference with the gas chromatograph analysis 

of the hydrocarbons of interest, the retention time of the solvents were used as the basis 

of their selection.  The solvent-to-sample weight ratio was 0.4 for the benzene-water 

system and 0.2 for the toluene-water and 3-methylpentane-water systems.  The solvent 

was used in the water phase to extract the hydrocarbon from the water, thus providing a 

water free sample.  A more reproducible analysis was achieved by excluding water from 

the analysis, since aqueous solutions are difficult to analyze accurately by gas 

chromatography. 

In order to avoid reopening the sample bottles and thus, minimize sample contact 

with the atmosphere, the samples were collected after addition of the solvent to the 

sample bottles.  At each temperature, samples of each phase, organic and water, were 
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collected simultaneously at a pressure slightly above the three-phase equilibrium 

pressure.  Three samples of each phase were collected for analysis at each experimental 

equilibrium condition.  

Sample volumes of 0.003 cm3 (3 µl) were analyzed using a Hewlett-Packard 

5890A gas chromatograph (GC), equipped with a thermal conductivity detector (TCD) 

and a Hewlett-Packard 3396A integrator.  The GC column used was a 3.6-m x 0.32-m 

stainless steel packed GasChrom 254, supplied by Alltech, and high purity helium was 

used as the carrier gas.   

The GC was calibrated by one of two techniques.  A serial dilution technique was 

utilized for the aqueous phase and, for the hydrocarbon phase, individually-prepared 

external standards were employed.  Calibration data were used to generate calibration 

curves, which represented the solute-to-solvent weight ratio as a function of the solute-to-

solvent area ratio.  The calibration data were regressed using a nonlinear weighted least 

squares Marquardt method [8].  The weighting of each datum was determined by an 

analysis of propagated error.  Each calibration curve was expressed empirically as a 

power law equation: 

           βα ii ARWR =  (5-1)

where, WR is the weight ratio, AR is the area ratio, and α and β are regressed parameters.  

This expression was utilized in the sample analysis to determine the solute-to-solvent 

weight ratio.  The following mass balance relation used the solute-to-solvent weight ratio, 

WR, solvent-to-sample weight ratio, SSR, and the molecular weights of the solute, MW1, 

and solvent, MW2, to calculate the mole fraction of the solute in the sample by: 
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A complete description of the apparatus and the operating procedures and techniques is 

given by Neely [9] in Chapters 3 and 4. 

5.3 Data Correlation and Evaluation 

 Correlations for the solubility of liquid hydrocarbons in water and for the 

solubility of water in liquid hydrocarbons were developed from published solubility data 

and calorimetric data for enthalpy and specific heat of solution.   

 Solubility of Hydrocarbons in Water 

Benson and Kraus [10] and Wilhem, et al. [11] have discussed the merits of 

different empirical equations for correlating the temperature dependence of solubility 

data.  The following form, correlating the mole fraction of hydrocarbon as a function of 

temperature, was selected for hydrocarbon solubility in water: 

           2
,

1
,

ln −− ++= hcrhc CTBTAx
hcr

 (5-3)

where xhc is the hydrocarbon mole fraction and Tr,hc is the temperature (absolute) of the 

system divided by the critical temperature of the hydrocarbon, hc.  The constants, A, B, 

and C in Equation (5-3) were obtained by non-linear regression, minimizing the weighted 

sum of squares (WSS) in the calculated solubilities.  All our measured solubility data for 

the three systems of interest were included in the preliminary regressions, however, any 

data point with a weighted deviation greater than 2.5 times the standard deviation was not 

included in the analysis.  A final regression was performed on the reduced data set 
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resulting in the final parameters.  Since error estimates for the data points vary with 

temperature, regressions were weighted by the expected experimental error for each data 

point, as determined through the analysis of propagated error.  The objective function, 

WSS, employed is given by: 
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where n is the number of data points, yi is the predicted data value, 
∧

iy  is the measured 

data value, and σi is the error estimate. 

 Knowledge of solvation processes and available calorimetric data can be used to 

assess the quality of the correlation.  For very dilute hydrocarbon-water systems, the 

temperature dependence of the solubility can be expressed by the Gibbs-Duhem equation 

[12]: 
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where the heat of solution, iH∆ ,is the excess enthalpy of component i, expressed as the 

difference between the partial molar enthalpy of component i in solution and the pure 

molar enthalpy of component i.  The heat capacity of solution, 
iPC∆ , is defined as: 
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This excess heat capacity is the difference between the partial molar heat capacity of 

component i in solution and the pure molar heat capacity of component i.  The derivative 

properties can be calculated from Equation (5-3) as 
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For many hydrocarbon-water systems, a minimum hydrocarbon solubility exists where 

∆Hsoln,hc = 0.  The corresponding temperature, Tmin,hc, can be estimated from Equation 

(5-7) as 

           
B
CT

T hcc
hc

 
 min,

2−
=  (5-9)

where Tc,hc is the critical temperature of the hydrocarbon.  Derivative data are very 

sensitive to the solubility measurements, but they can be compared to calorimetric data to 

provide some insight into the quality of the correlations, not to compare enthalpy effects 

from solubility and calorimetric measurements.   

 Solubility of Water in Hydrocarbons 

Based on derivative properties and the current understanding of the solvation 

process of water in hydrocarbons [13], the data for the water solubility in hydrocarbons 

were correlated by an equation expressing the mole fraction of water in hydrocarbon, xw, 

as a function of temperature, as follows: 

           wrw TBAx ,lnln +=  (5-10)

where Tr,w is the temperature (absolute) of the system divided by the critical temperature 

of water, Tc = 647.1 K.  The constants, A and B, in Equation (5-10) were obtained by non-

linear regression in a fashion similar to the hydrocarbon solubility.  All solubility 
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measurements were included in the preliminary regressions; however, data points with a 

weighted deviation greater than 2.5 times the standard deviation were not used in the 

final regressions to establish the expressions in Equations 5-3 and 5-9.  During the 

regressions, the weighting of the solubility measurements was determined through the 

analysis of propagated error.   

 Using Equation (5-10) in a similar fashion as in the hydrocarbon solubility 

section, the derivative properties, enthalpy of solution and heat capacity of solution of 

water, can be calculated, respectively, as: 

           RBTH soln,w =∆  (5-11)

and 

           RBC  wsoln, =∆  (5-12)

The solvation process of water dissolving into a non-polar hydrocarbon liquid phase is 

primarily described as a process of breaking hydrogen bonds [14].  Typical hydrogen 

bond energies are in the range of 21 to 29 kJ⋅mole-1 at 298 K, which should correspond to 

the value of ∆Hsoln,w.      

5.4 Results and Discussion 

The mutual solubility data and error estimates of the benzene-water, toluene-

water, and 3-methylpentane-water systems are reported in Table 5-1, the weighted-root-

mean-square (WRMS) error of the solubility data are given in Table 5-2, and the 

correlation parameters and derivative property values are given in Table 5-3 and Table 

5-4 for the hydrocarbon and water solubilities, respectively.  Ideally, both phases were 

collected at the same time, but occasionally additional experimental data were collected 
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for only one phase, which accounts for differences in operating temperatures and 

pressures seen in Table 5-1.  Figures 5-2 through 5-19 present the mutual solubility data 

graphically, which includes plots of the solubility, weighted deviation, and percent 

deviation for each hydrocarbon or water solubility.   

Error bars representing the uncertainty in the solubility measurements have been 

omitted from the solubility graphs since they do not extend beyond the symbols.  By error 

propagation analysis of the three systems studied, the maximum uncertainty is 4% at a 

mole fraction of 0.0027 (0.00011 absolute error) and 8% at a mole fraction of 0.0052 

(0.00044 absolute error) in the water phase and organic phase measurements, 

respectively.  The higher uncertainty associated with the organic phase measurements are 

indicative of the difficulty in accurately analyzing aqueous samples by gas 

chromatography (GC).  The contributing factors to the uncertainty in the mole fractions 

include the solvent and sample weights, the GC analysis, and the temperature.  For both 

hydrocarbon and water solubility, the solvent and sample weights account for less than 

1% of the total uncertainty.  The GC analysis and temperature account for approximately 

84% and 16%, respectively, of the total hydrocarbon solubility uncertainty and 97% and 

3%, respectively, of the total water solubility uncertainty.  The weighted deviations for 

the water-in-hydrocarbon systems were generally observed to be much less than 1.0, 

which differed from the deviations associated with the hydrocarbon-in-water systems.  

This may be indicative of an overestimation of the propagated error magnitude.  The 

calibration procedure used previously was changed for the water-in-hydrocarbon systems, 

and the propagated error estimate may need further refinement.   
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 Benzene Solubility in Water 

Benzene solubility measurements are presented in Figure 5-2.  At temperatures 

near ambient, an abundance of data exists, which allows for detailed comparisons; 

however, the system has not been investigated as thoroughly at temperatures greater than 

375 K.  The evaluations of Hefter [15] and Wagner [13] were utilized extensively in 

evaluating the quality of the data. 

Equation (5-3) was employed to correlate the benzene solubility measurements.  

Upon analysis, the measurement taken at 490.8 K was not included in the determination 

of the equation parameters due to a weighted deviation greater than 2.5 times the standard 

deviation; these weighted deviations are shown graphically in Figure 5-3.  As estimated 

by error propagation, the solubility measurements have a maximum uncertainty of 4.0% 

at a mole fraction of 0.0027 (0.00011 absolute error) and an average uncertainty of 1.6%, 

which is shown in Figure 5-4.  The WRMS error of the solubility data is 0.72. 

At temperatures less than 400 K, the solubility measurements agree within 10% of 

the broad range of literature data.  Generally, in the higher temperature range, the 

measurements agree within 10% of the more recent results reported by Jou and Mather 

[16], Chandler et al. [17], Chen and Wagner [18], Anderson and Prausnitz [2], and 

Marche et al. [7].  Deviations greater than 10%, however, were observed at higher 

temperatures in comparison with the recent studies of Ratzlaff [19] and Miller and 

Hawthorne [20].   

From Equation (5-7), the heat of mixing at 298.15 K is 1.25 kJ/mole.  This value 

agrees more favorably with the calorimetric heat of solution reported by Reid et al. [21] 

of 0.80 kJ/mole than the values reported by Gill et al. [22] of 2.08 kJ/mole and De Lisi et 
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al. [23] of 2.34 kJ/mole.  The second derivative property, the specific heat of solution, 

calculated using Equation (5-8) is 306 J/mole-K.  While this value is in good agreement 

with the value of 301 J/mole-K reported by Clarke and Glew [24], there is disagreement 

with the values of 373, 351, and 225 J/mole-K found by Makhatadze and Privalov [25], 

Wauchope and Haque [26], and Gill et al. [22], respectively.  Using Equation (5-9), the 

temperature at which the minimum solubility of benzene in water occurs is 294 K, which 

is reasonably consistent with the value of 289.0 K reported by Gill et al. [22]. 

 Water Solubility in Benzene 

The solubility of water in benzene is shown in Figure 5-5.  An abundance of 

solubility data for water in benzene exists in the literature at atmospheric pressures; 

however, Hefter [15] notes the more recent studies tend toward slightly higher solubilities 

than previous studies and with considerably smaller measurement uncertainty. 

Correlation of the water solubility measurements employed Equation (5-10).  As 

estimated by error propagation, the solubility measurements have a maximum uncertainty 

of 4.1% at a mole fraction of 0.083 (0.0034 absolute error) and an average uncertainty of 

3.2%.  The WRMS error of the solubility data is 0.61.  The weighted and percent 

deviations are shown graphically in Figure 5-6 and Figure 5-7, respectively. 

The solubility measurements from this study agree within 10% of most literature 

data.  Particularly good agreement is noted between this study and the work conducted by 

Anderson and Prausnitz [2].  Over a mid-temperature range, deviations approaching 20% 

are observed with the recent data of Jou and Mather [16], Chandler et al. [17], and Chen 

and Wagner [18], but better agreement is seen as the temperature increases.  At higher 

temperatures, large differences are seen with the work of Ratzlaff [19].   
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From Equation (5-11), the heat of solution is determined to be 21.9 kJ/mole, at 

298.15 K, which is in good agreement with the value of 20.7 and 23.3 kJ/mole reported 

by De Lisi et al. [23] and Chen and Wagner [18].  This value supports the theory stated 

by Franks [14] that liquid water dissolving into a non-polar hydrocarbon liquid phase is 

essentially a process of breaking hydrogen bonds, which possess energy in the 21-29 

kJ/mole range.  Using Equation (5-12), the heat capacity of solution at 298.15 K is 

estimated to be 73.4 J/mole-K, which is consistent with the value of 78.3 J/mole-K at 

298.15 K reported by Chen and Wagner [18]. 

 Toluene Solubility in Water 

An abundance of data exists at near ambient temperatures, but at temperatures 

greater than 325 K, the system has not been investigated as thoroughly, and the solubility 

measurements are presented in Figure 5-8.   

Equation (5-3) was utilized to correlate the toluene solubility measurements.  The 

maximum uncertainty of the solubility measurements, as estimated by error propagation, 

was 3.3% at a mole fraction of 0.00011 (0.0000035 absolute error) with an average 

uncertainty of 1.8%.  The weighted-root-mean-square (WRMS) error of the solubility 

data is 0.68.  Figure 5-9 and Figure 5-10 provide a graphical representation of the 

weighted and percent deviations, respectively. 

At temperatures less than 400 K, the solubility measurements agree within 10% of 

the broad range of literature data.  In the higher temperature range, the measurements are 

in reasonable agreement with the results of Miller and Hawthorne [20] and Anderson and 
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Prausnitz [2], but the work of Jou and Mather [16] and Chandler et al. [17] have large 

observable deviations.   

The heat of solution at 298.15 K was determined using Equation (5-7).  The 0.751 

kJ/mole value obtained is in poor agreement with the values reported by Gill et al. [22] of 

1.73 kJ/mole and De Lisi et al. [23] of 1.80 kJ/mole.  The second derivative property, the 

specific heat of solution, calculated with Equation (5-8) is 324 J/mole-K.  This value is in 

fair agreement with the values of 351 and 363 J/mole-K reported by Gill et al. [22] and 

Chen and Wagner [27], respectively, but the value of 461 J/mole-K given by Makhatadze 

and Privalov [25] is much higher.  Using Equation (5-9), the temperature at which the 

minimum solubility of toluene in water occurs is 296 K, which is consistent with the 

values of 291.6 and 297.3 K reported by Gill et al. [22] and Chen and Wagner [27]. 

 Water Solubility in Toluene 

The solubility of water in toluene is shown in Figure 5-11, and an abundance of 

literature solubility data for water in toluene was observed at near ambient temperatures. 

Equation (5-10) was used to correlate the water solubility measurements, which 

have a maximum uncertainty of 4.8% at a mole fraction of 0.022 (0.0011 absolute error) 

and an average uncertainty of 3.4%.  The WRMS error of the solubility data is 0.36.  The 

weighted and percent deviations are shown graphically in Figure 5-12 and Figure 5-13, 

respectively. 

The solubility measurements from this study agree within 10% of almost all 

literature data over the entire temperature range with a few exceptions.  These exceptions 

include the recent data of Anderson and Prausnitz [2], which approach deviations of 
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approximately 15% at higher temperatures, and Chandler et al. [17], which deviate by 

30% at high temperatures.   

From Equation (5-11), the heat of solution is determined to be 22.4 kJ/mole, at 

298.15 K, which is consistent with the values of 30.9 and 23.9 kJ/mole reported by De 

Lisi et al. [23] and Chen and Wagner [27],respectively.  Again, this value supports the 

theory [14] that liquid water dissolving into a non-polar hydrocarbon liquid phase is 

essentially a process of breaking hydrogen bonds.  Using Equation (5-12), the heat 

capacity of solution at 298.15 K is estimated to be 75.1 J/mole-K, with no available 

literature for comparison. 

 3-Methylpentane Solubility in Water 

3-Methylpentane solubility measurements are presented in Figure 5-14.  Limited 

data exist at near ambient temperatures, and the system has not been investigated at 

temperatures greater than 300 K.   

Correlation of the 3-methylpentane solubility measurements employed Equation 

(5-3), however the measurement taken at 491.9 K was not included in the determination 

of the equation parameters due to a weighted deviation greater than 2.5 times the standard 

deviation, and these weighted deviations are shown graphically in Figure 5-15.  The 

solubility measurements have a maximum uncertainty of 3.7% at a mole fraction of 

0.0000026 (0.000000097 absolute error) and an average uncertainty of 2.8%, which is 

shown in Figure 5-16.  The weighted-root-mean-square (WRMS) error of the solubility 

data is 0.52. 



 47

At a temperature of 300 K, the solubility measurement agrees within 3% of the 

measurements reported by Rudakov and Lutsyk [28], McAuliffe [29], and Price [30], but 

the work of Polak and Lu [31] shows deviations approaching 40%.  However, according 

to the critical data review by Hefter [15], other hydrocarbon solubility measurements 

made by Polak and Lu tend to be approximately 30% higher than other reported values. 

From Equation (5-7), the heat of solution at 298.15 K is –0.407 kJ/mole, and the 

second derivative property, the specific heat of solution, calculated with Equation (5-8) is 

411 J/mole-K.  Using Equation (5-9), the temperature at which the minimum solubility of 

3-methylpentane in water occurs is 299 K.  Literature data are unavailable for 

comparison. 

 Water Solubility in 3-Methylpentane 

Limited data exist at near-ambient temperatures, and the system has not been 

investigated at temperatures greater than 300 K.  The solubility of water in toluene is 

shown in Figure 5-17.   

Correlation of the water solubility measurements employed the use of Equation 

(5-10); however, the measurements taken at 350.9 and 432.4 K were not included in the 

determination of the equation parameters due to a weighted deviation greater than 2.5 

times the standard deviation, and these weighted deviations are shown graphically in 

Figure 5-18.  The solubility measurements have a maximum uncertainty of 8.4% at a 

mole fraction of 0.0052 (0.00044 absolute error) and an average uncertainty of 5.0%, 

which is presented in Figure 5-19.  The WRMS error of the solubility data is 0.10. 
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The solubility measurements from this study show reasonable agreement with the 

data reported by Polak and Lu [31].  As shown by Hefter [15], a decided lack of accuracy 

exists in Polak and Lu’s hydrocarbon solubility values, but their water solubility data are 

more consistent with those of other researchers. 

From Equation (5-11), the heat of solution is determined to be 29.3 kJ/mole, at 

298.15 K, which falls within the range of hydrogen bond energy.  Using Equation (5-12), 

the heat capacity of solution at 298.15 K is estimated to be 98.2 J/mole-K, with no 

available literature for comparison. 

5.5 Conclusions 

A continuous flow apparatus was utilized to measure mutual solubilities at 

temperatures ranging from ambient to 500 K, which is near the three-phase critical end 

point of the benzene-water and toluene-water systems.  The well-documented system, 

benzene-water, was used to validate the proper operation of the apparatus, including the 

sampling and analytical techniques employed.  Generally, adequate agreement was 

observed for the benzene-water, toluene-water, and 3-methylpentane-water systems with 

literature data.  A propagated error analysis of the three systems studied calculated the 

maximum uncertainty as 4% at a mole fraction of 0.0027 (0.00011 absolute error) and 

8% at a mole fraction of 0.0052 (0.00044 absolute error) in the water phase and organic 

phase measurements, respectively. 

Enthalpies of solution for the hydrocarbon solubility in water estimated from 

experimental measurements are in reasonable agreement with available calorimetric 

measurements from the literature.  The enthalpies of solution for the water solubility in 
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the hydrocarbons were within the range of the hydrogen bonding energies and were 

consistent with available literature data. 

5.6 Nomenclature 

α, β  constants in calibration correlations 
WR  weight ratio 
SSR  solvent-to-sample weight ratio 
AR  area ratio 
MW  molecular weight 
A, B, C constants in solubility correlations 
x  mole fraction 
T  temperature (K) 
P  pressure 
H  enthalpy 
R  ideal gas constant 

iH∆   heat of solution (kJ/mole) 

iPC∆   specific heat of solution (J/mole-K) 
WRMS weighted-root-mean-square 

∧

iy   measured data value 
yi  predicted data value 
σi  error estimate 
n  number of data points 

Subscripts 

hc  hydrocarbon 
c  critical property 
w  water 
r  reduced 
soln  solution 
1  component 
2  component 
i  component 
[32]    [33]    [34]     [35]     [30]     [36]    [37]     [38]     [1]     [39]    [40]    [41]     [42]     

[43]     [31]     [44]    [45]    [46]    [47]     [48]  [49-53]      [54]     [29]      [55-65]   [66]    

[67, 68]       [69]   
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Table 5-1.  Mutual Solubilities for Hydrocarbon-Water Systems with Error Estimates 

Aqueous Phase Organic Phase 
Benzene-Water System 

T P xbenzene 
Absolute 

Error % Error T P xwater

Absolute 
Error % Error

(K) (MPa) (-104) (-104)  (K) (MPa) (-102) (-102)  
299.1 0.194 4.13 0.057 1.3 299.0 0.204 0.32 0.012 3.8 
324.3 0.139 4.68 0.034 0.73 324.3 0.139 0.64 0.020 3.2 
350.2 0.271 6.61 0.055 0.83 350.2 0.271 1.26 0.046 3.7 
376.2 0.443 10.0 0.01 1.0 376.2 0.443 2.17 0.067 3.1 
400.3 0.638 15.2 0.099 0.65 400.3 0.638 3.83 0.10 2.6 
431.4 1.944 27.2 1.1 4.0 431.4 1.944 8.33 0.34 4.1 
461.8 3.426 48.5 1.7 3.5 461.8 3.426 14.4 0.48 3.3 
490.8 6.873 66.0* 0.73 1.1 490.8 6.873 25.5 0.051 2.0 

Toluene-Water System 

T P xtoluene 
Absolute 

Error % Error T P xwater

Absolute 
Error % Error

(K) (MPa) (-104) (-104)  (K) (MPa) (-102) (-102)  
297.8 0.115 1.07 0.035 3.3 298.5 0.112 0.3 0.0081 2.8 
324 0.199 1.31 0.0092 0.70 324.3 0.201 0.55 0.023 4.1 

350.6 0.197 1.78 0.014 0.77 350.9 0.358 1.15 0.052 4.5 
376.1 0.167 2.77 0.018 0.66 376.6 0.478 2.22 0.11 4.8 
401.6 0.792 4.49 0.084 1.9 401.5 0.716 4.11 0.18 4.3 
431.9 1.261 7.46 0.22 2.9 431.7 1.45 7.79 0.23 2.9 
461 2.04 14.5 0.60 2.4 461.8 3.076 15.4 0.35 2.3 

490.4 3.8 25.3 0.57 2.4 491.4 4.733 25.2 0.47 1.8 
3-Methylpentane-Water System 

T P x3-MP 
Absolute 

Error % Error T P xwater

Absolute 
Error % Error

(K) (MPa) (-104) (-104)  (K) (MPa) (-102) (-102)  
298.3 0.188 0.026 0.00097 3.7 295.5 0.168 0.031 0.0017 5.6 
324.5 0.275 0.031 0.0010 3.2 299.1 0.194 0.038 0.0027 7.0 
351.2 0.402 0.047 0.0010 2.2 324.3 0.139 0.11 0.0079 7.4 
377.2 0.478 0.077 0.00091 1.2 350.9 0.486 0.29* 0.0077 2.7 
401.2 0.709 0.14 0.0044 3.2 376.4 0.575 0.52 0.044 8.4 
432.2 1.924 0.26 0.0081 3.1 400.3 0.638 1.17 0.020 1.7 
462.1 3.352 0.6 0.018 3.0 432.4 2.144 2.51* 0.0935 3.7 
491.9 7.248 2.18* 0.061 2.8 491.5 5.86 13 0.43 3.3 

 
* Value was not used in the regression of the solubility parameters since the weighted 
deviation was greater than 2.5 times the standard deviation 
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Table 5-2.  WRMS for Hydrocarbon-Water Systems 

SYSTEM WRMS 
 Aqueous Phase Organic Phase 
Benzene-Water 0.72 0.61 
Toluene-Water 0.68 0.36 
3-Methylpentane- Water 0.52 0.10 

 

Table 5-3.  Derivative Properties for Hydrocarbon Solubilities 

    ∆H ∆Cp Tmin 
 Parameters in Equation (5-3) KJ/mol J/mol-K  

Solute A B C at 298.15 Kat 298.15 K K 
Benzene 11.09 -19.79 5.176 1.25 306 294 
Toluene 10.71 -19.81 4.951 0.75 324 296 
3-Methylpentane 11.74 -29.14 8.641     -0.41 411 299 

 

Table 5-4.  Derivative Properties for Water Solubilities 

   ∆H ∆Cp 
 Parameters in Equation (5-10) KJ/mol J/mol-K 

Solute A B at 298.15 K at 298.15 K
Benzene 1.029 8.824 21.9 73.4 
Toluene 1.122 9.035 22.4 75.1 
3-Methylpentane 1.215        11.81 29.3 98.2 
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Figure 5-1.  Schematic Diagram of the Continuous Flow Apparatus 
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Figure 5-2.  Solubility of Benzene in Water 
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Figure 5-3.  Weighted Deviation in the Solubility of Benzene in Water 
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Figure 5-4.  Percent Deviation in the Solubility of Benzene in Water 
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Figure 5-5.  Solubility of Water in Benzene 
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Figure 5-6.  Weighted Deviation in the Solubility of Water in Benzene 
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Figure 5-7.  Percent Deviation in the Solubility of Water in Benzene 
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Figure 5-8.  Solubility of Toluene in Water 
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Figure 5-9.  Weighted Deviation in the Solubility of Toluene in Water 
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Figure 5-10.  Percent Deviation in the Solubility of Toluene in Water 

Temperature (K)

250 300 350 400 450 500 550 600

Pe
rc

en
t D

ev
ia

tio
n

-20

0

20

40

60

80
This Work 
Pierotti & Liabastre (1972) 
Brown & Wasik (1974) 
Sanemasa et al. (1981) 
Korenman & Aref'eva (1977) 
Sanemasa et al. (1985) 
Andrews & Keefer (1949) 
Klevens (1950) 
Morrison & Billett (1952) 
McAuliffe (1963) 
McAuliffe (1966) 
Mackay & Shiu (1975) 
Sutton & Calder (1975) 
Price (1976) 
Rossi & Thomas (1981) 
Gross & Saylor (1931) 
Jou & Mather (2003) 
Chandler et al. (1998) 
Miller & Hawthorne (2000) 
Chen & Wagner (1994) 
Anderson & Prausnitz (1986) 
Bohon & Claussen (1951) 
Polak & Lu (1973) 



 

65

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11.  Solubility of Water in Toluene 

Temperature (K)

300 400 500 600

M
ol

e 
Fr

ac
tio

n 
(x

2)

1.00e-4

1.00e-3

1.00e-2

1.00e-1

1.00e+0
Correlation of this Work
This Work
Englin et al. (1965) 
Polak & Lu (1973) 
Uspenskii (1929) 
Rosenbaum & Walton (1930) 
Caddock & Davies (1960) 
Glasoe & Schultz (1972) 
Hogfeldt & Bolander (1964) 
Johnson et al. (1966) 
Klevens (1950) 
Tarassenkov & Polozhinzeva (1931) 
Wing & Johnston (1957) 
Jones & Monk (1963) 
Roddy & Coleman (1968) 
Tarassenkov & Polozhinzeva (1932) 
Jou & Mather (2003) 
Chandler et al. (1998) 
Chen & Wagner (1994) 
Anderson & Prausnitz (1986) 



 

66

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-12.  Weighted Deviation in the Solubility of Water in Toluene 
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Figure 5-13.  Percent Deviation in the Solubility of Water in Toluene 
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Figure 5-14.  Solubility of 3-Methylpentane in Water 
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Figure 5-15.  Weighted Deviation in the Solubility of 3-Methylpentane in Water 
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Figure 5-16.  Percent Deviation in the Solubility of 3-Methylpentane in Water 
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Figure 5-17.  Solubility of Water in 3-Methylpentane 
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Figure 5-18.  Weighted Deviation in the Solubility of Water in 3-Methylpentane 
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Figure 5-19.  Percent Deviation in the Solubility of Water in 3-Methylpentane
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Chapter 6. Conclusions and Recommendations 

The objectives of the experimental portion of this work were to (a) develop an 

apparatus, including appropriate operating procedures and sampling and analytical 

techniques, capable of accurate mutual solubility (LLE) measurements at ambient and 

elevated temperatures of selected systems, (b) perform experimental measurements for 

the hydrocarbon-water systems, benzene-water, toluene-water, and 3-methylpentane-

water, and (c) evaluate and correlate mutual hydrocarbon-water LLE data on these 

systems.   

6.1 Conclusions  

Based on the results of the present work, the following conclusions may be made: 

 1.  A continuous flow apparatus was utilized successfully to investigate liquid-

liquid equilibrium systems at temperatures from ambient to 500 K and at pressures from 

ambient to 13.8 MPa.  The well-characterized benzene-water system provided a means to 

validate the operational status of the apparatus and the efficacy of the sampling methods 

and analytical techniques.   

 2.  Although challenges existed in the operation of the gas chromatograph near its 

lower detection limit, standard operating procedures were developed, along with 

improved sampling and analytical techniques, which produced consistent and accurate 

data. 
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 3.  Mutual solubilities were measured for the systems benzene-water, toluene-

water, and 3-methylpentane-water.  The measurements were made near the three-phase 

equilibrium curve from ambient temperature to near the three-phase critical end point for 

the benzene and toluene systems.  Due to the limited or nonexistent amount of data 

available at temperatures greater than ambient, the solubility measurements presented 

here provide a significant addition to the general body of knowledge of liquid-liquid 

equilibrium systems. 

 4.  An error analysis was performed, which determined that approximately 90% of 

the total error in the solubility measurements was accounted for by the gas 

chromatograph analysis.  The maximum expected uncertainty was approximately 4% and 

8% in the water phase and organic phase measurements, respectively. 

6.2 Recommendations 

The apparatus, along with the sampling methods and analytical techniques, has 

been utilized successfully in obtaining mutual solubility data at elevated temperatures.  

Additional measurements should be made for systems where elevated temperature data 

do not exist, and different hydrocarbon molecules should be studied to elucidate 

structural effects on solubility.  Systems should include families of six-carbon and seven-

carbon molecules with differing bonding arrangements such as double, triple, or ring 

bonds and functional groups such as straight chain and branched alcohols, aldehydes, and 

esters.  While the investigation of new systems may be of interest, there are 

recommendations concerning the apparatus and analytical technique employed. 
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1.  Manual recycling was employed during this study, but the addition of a recycle 

stream to the apparatus would reduce chemical costs, generate less waste, and generally 

be more environmentally suitable.  This could be accomplished easily with the use of a 

large glass carboy as a recycle stream receptacle/feed tank and rearrangement of the feed 

section tubing from the current location to the carboy.    

2.  The gas chromatograph currently in use showed variations in peak area 

determinations, requiring a large number of replicate analyses at each experimental 

condition.  A solution to the effort involved in sample analysis would be the use of an 

autosampler to automate the analytical procedure.   

3.  Since the gas chromatograph is employed for analyses near its lower detection 

limit, different analytical techniques should be investigated.  Two examples of 

established techniques that could replace the GC are high performance liquid 

chromatography and fluorescence monitoring, which would also have the added benefit 

of being an “online” analysis.  A third potential technique would require the samples to 

be at supercritical conditions.  At these conditions, the hydrocarbon-water system is 

totally miscible, and the use of a standard gas chromatograph with a thermal conductivity 

detector or flame ionization detector could be used.  Solvents would not be necessary for 

the miscible hydrocarbon-water mixtures, and the calibration procedure would be 

simplified.  The use of such a technique in an “online” fashion may also be possible. 
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Chapter 7. Overview 

7.1 Rationale 

Water, which is the most common industrial solvent, plays an important role in 

many areas including separation processes, distillation units, chromatographic systems, 

waste treatment, and environmental concerns [46-52].  With growing application of 

biotechnologies, there also exists an increased need for knowledge of the phase equilibria 

of aqueous systems in those processes [53].  When experimental data are unavailable, 

thermodynamic models, such as group contribution methods, are used to predict phase 

equilibria.  The accuracy of these models in predicting infinite-dilution activity 

coefficients (γ∞) of aqueous systems is questionable.  Moreover, model development is 

hampered by a lack of (a) γ∞ data at temperatures above 300 K, and (b) γ∞ data for water-

in-hydrocarbon systems.   

Due to the unique molecular structure of water and its attendant physical 

characteristics, including hydrogen bonding, systems containing hydrocarbons and water 

often exhibit strong nonideality when compared to systems comprised only of 

hydrocarbons.  The activity coefficient, γ, is a function that quantifies the extent of 

nonideality present in a system.  When a component of a hydrocarbon-water binary 

system is sufficiently dilute, the infinite-dilution activity coefficient, γ∞, is reflective of 

only intermolecular solute-solvent and solvent-solvent interactions without the additional 
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complication of solute-solute interactions.  Insight into the chemical and physical forces 

present in an aqueous system is provided by these coefficients.   

While several experimental methods exist for the determination of infinite-

dilution activity coefficients, these methods often suffer serious limitations [54-56] and 

are time consuming.  Models for the prediction or calculation of infinite-dilution activity 

coefficients would be useful and are represented by examples from theoretical regular 

solution theory models [57-63], theoretical equation of state models [64], pure 

component models [65-67], group contribution models [68-70], empirical models [71-

76], the linear solvation energy relationship (LSER) model [77, 78], computational 

chemistry models [79-84], and quantitative structure-property relationship (QSPR) 

models [81, 82, 84-86].  These models generally do not provide satisfactory predictions, 

and early QSPR studies were limited by the involvement of only single temperature data 

of one component of the aqueous systems. 

The molecular structure of a chemical substance determines its chemical and 

physical properties.  Continuing investigations have centered on elucidation of the 

relationship between physical properties and molecular structure.  As the computational 

capability has improved, such research has revolved around developing free energy 

relationships by molecular mutation using Monte Carlo (MC) simulators [87].  Although 

this approach remains attractive, Monte Carlo is being replaced in many applications by 

QSPR models. The QSPR approach often provides predictions for chemical and physical 

properties of as-yet-unmeasured or unknown compounds based on structure information.  

High quality predictions are obtained using these descriptors since structure-property 

mapping is at an atomic level rather than at a functional group level.  QSPR models will 



 79

be influential in enabling advances in chemical design, where a key challenge is the 

development of tools permitting the rapid identification, then creation of unique 

molecules for a targeted application. Over the last ten years, QSPRs have played an 

increasingly important role in drug screening and discovery [88], and applications are 

appearing in areas outside the pharmaceutical industry.  While standard methodologies 

for chemical design result in a discovery phase of research and development requiring 

from two to three years, QSPR methodologies are estimated to result in a reduction of 

this phase to three to six months.  

7.2 Objectives 

The objectives of this work are to (a) develop a quantitative structure-property 

relationship (QSPR) for prediction of i
∞γ  values of hydrocarbon-water systems, (b) 

evaluate the efficacy of QSPR models using multiple linear regression analyses and back 

propagation neural networks, (c) develop a theory based QSPR model, and (d) evaluate 

the ability of the model to predict aqueous and hydrocarbon solubilities at multiple 

temperatures.          

7.3 Dissertation Organization  

The modeling section of this dissertation is composed of Chapters 7-12.  

Following the present introduction, Chapters 8-10 present reviews of pertinent material 

and literature concerning infinite-dilution activity coefficients, quantitative structure 

property relationships, and neural networks, respectively.  These chapters include 

information and procedures used in this study.  In Chapter 11, which is written in the 
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form of a manuscript, complete with an independent set of tables, figures, and references, 

the experimental results are presented and discussed.  Chapter 12 provides a summary of 

this work, and following this chapter the appendices appear.  In Appendix G, molecular 

structure illustrations and infinite-dilution activity coefficient values of the molecules in 

the database are provided.  During the course of QSPR model development, different 

types of models were employed where the descriptor selection and model selection were 

either “linear” or “nonlinear.”  The QSPR model types known as Type I employ linear 

methods for both descriptor and model selection and Type III utilizes nonlinear methods 

for both descriptor and model selection.  Type II models are a hybrid approach where 

descriptor selection is linear-based and model development is nonlinear.  Supporting 

material, such as summary tables, descriptor sets, data outliers, and plots for 

determination of number of descriptors, contour, difference, and results, are given in 

Appendices H, I, and J for the Type I, II, and III analyses, respectively. 
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Chapter 8. Infinite-Dilution Activity Coefficient Models 

Water, which is the most common industrial solvent, plays an important role in 

many different areas including separation processes, distillation units, chromatographic 

systems, waste treatment, and environmental concerns [46-52].  With growing 

application of biotechnologies, there also exists an increased need for phase equilibria of 

aqueous systems in those processes [53].   

Due to the unique molecular structure of water and its attendant physical 

characteristics, including hydrogen bonding, systems containing hydrocarbons and water 

often exhibit strong nonideality when compared to systems comprised only of 

hydrocarbons.  The activity coefficient, γ, is a parameter that quantifies the amount of 

nonideality present in a system.  When a component of a hydrocarbon-water binary 

system is sufficiently dilute, the infinite-dilution activity coefficient, γ∞, is reflective of 

only intermolecular solute-solvent and solvent-solvent interactions without the additional 

complication of solute-solute interactions.  Insight into the chemical and physical forces 

present in an aqueous system is provided by these coefficients.   

While several experimental methods exist for the investigation of infinite-dilution 

activity coefficients, these methods often suffer serious limitations [54-56] and are time 

consuming.  Models for the prediction or calculation of infinite-dilution activity 

coefficients would be useful and are represented by examples from theoretical models, 

pure component models, group contribution models, empirical models, the LSER model, 

and computational chemistry models. 
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8.1 Theoretical Models 

Theoretical models include those developed using regular solution theory and 

equations of state (EOS). 

 Regular Solution Theory Models 

Regular solution theory was originally conceived by Hildebrand and co-workers 

in the 1920s and is based, in part, on van Laar’s observation that a solution at constant 

temperature and volume will not have zero excess entropy of mixing.  Scatchard [57] and 

Hildebrand and Wood [58] developed a generalized method of deriving an expression for 

the excess Gibbs energy without the use of the van der Waals equation of state (EOS).  

The assumptions employed by Scatchard as listed by Malanowski and Anderko [89] 

were: 

1. The mutual energy of two molecules depends only on the distance 

between them and their relative orientation and not on the nature of the 

other molecules between or around them and not on the temperature. 

2. The distribution of the molecules is random, i.e., it is independent of 

temperature and the nature of the other molecules present. 

3. The change of volume on mixing at constant pressure is zero. 

By applying these assumptions, the estimations of activity coefficients were limited to 

mixtures composed of non-polar and similarly sized and shaped molecules. 

 Weimer and Prausnitz [59] extended the applicability of regular solution theory to 

mixtures containing polar components, using the assumption that polar component 

energy of vaporization could be separated into two parts, one concerning non-polar 
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interactions (dispersion or non-polar) and the other concerning the dipole-dipole effect 

(induction or polar).  The effects of molecular size and shape were accounted for by the 

use of a correction term based on the Flory-Huggins expression.  The infinite-dilution 

activity coefficient can then be expressed as 

           ∞∞∞ += CR
111ln γγγ  (8-1)

which consists of two contributions, residual and combinatorial.  For a non-polar 

component (x1 → 0), the infinite-dilution activity coefficient is given by 
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where v is the molar liquid volume, R is the universal gas constant, T is the temperature, 

λ is the non-polar solubility parameter, τ is the polar solubility parameter, and ψ is the 

induction (polar) energy parameter.  In Equation (8-2) the first term is the residual or 

interaction contribution and the second term is the combinatorial or size contribution.   

 Following this extension of the regular solution theory, other investigators [60-63] 

made analogous modifications which further extended the theory to polar and associating 

components by assuming that factors contributing to the energy of vaporization 

(including dispersion, induction, orientation, and hydrogen bonding) act independently 

and are additive.  In general, these models are adequate for activity coefficient prediction 

for limited classes of non-polar mixtures. 

 Equation of State Models 

An example of an EOS based model is that of Bader and Gasem [64],  which uses 

a cubic equation of state to correlate infinite-dilution activity coefficients of hydrocarbon-
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water systems.  A general form for the prediction of the infinite-dilution activity 

coefficient, γ∞, written for component 1, is given as 

           ∞∞∞∞ ++= IIIE
1111 lnlnlnln γγγγ  (8-3)

where ∞E
1γ is the excess activity coefficient, which accounts for the deficiency of the EOS 

in dealing with polar components, and ∞I
1lnγ  and ∞II

1lnγ  are terms accounting for 

repulsion and attraction, respectively.  Using the general form given in Equation (8-3) 

with the Peng-Robinson EOS [90], results in the following equations: 
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where v is the molar volume and C5 is a regressed parameter, 
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where b is the co-volume parameter, D12 is the EOS binary interaction parameter, p is the 

system pressure, R is the gas constant, and T is the temperature and, 
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where a is the energy parameter and C12 is an EOS binary interaction parameter. 

8.2 Pure-Component Models 

Inspired by the modifications of the regular solution theory, Thomas and Eckert 

[65] developed a model, the modified separation of cohesive energy density (MOSCED), 
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for predicting γ∞ from pure component parameters, which could be applied to mixtures 

containing polar and hydrogen bonding entities.  Distinguishing this model from previous 

work is the applicability to binary systems composed of more than one polar molecule 

and in the prediction of activity coefficients at both concentration ends of a binary 

system.  The general form of the MOSCED model written for component 1 is 
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where λ is the dispersion parameter, q is the induction parameter, τ is the polar 

parameter, α is the acidity parameter, β is the basicity parameter, ψ is the polar 

asymmetry parameter, ξ is the hydrogen bonding asymmetry factor, and C1 is an 

adjustable parameter.   

 The polar, acidity, and basicity parameters for the MOSCED model were 

correlated with a limited database of activity coefficients.  With the advent of 

spectroscopic measurements [77, 91-94], the acidity-basicity of the hydrogen bond and 

the dipolarity-polarizability parameters (solvatochromic parameters) could be 

determined.  A modified MOSCED model incorporating these new measurements was 

developed [66], and a new model, solvatochromic parameters for activity coefficients 

estimation (SPACE), was developed [67], which also took advantage of the expanded 

database of solvatochromic parameters and removed the adjustable parameters present in 

MOSCED.   
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8.3 Group Contribution Models 

Group contribution methods are particularly attractive since they can be employed 

to estimate activity coefficients and other excess thermodynamic properties of liquid 

mixtures when experimental data are unavailable.  The underlying assumption of these 

models is the additivity of contributions made by molecular functional groups.  A 

contribution made by a group is assumed independent of any other group contributions 

within that same molecule.   

Two methods have been used extensively: the analytical solution of groups 

(ASOG) [68] and UNIQUAC functional group activity coefficient (UNIFAC) [69].  

While the two methods share a common basis, the equation used for representing the 

Gibbs excess energy of a mixture differs.  The Wilson equation is used in ASOG, and 

UNIQUAC is used in UNIFAC.   

In the UNIFAC-93 model, the activity coefficient is expressed in two parts.  First 

is the combinatorial (entropic) term, which accounts for differences in molecular size and 

shape and is calculated from pure component properties.  Second is the residual (group 

interaction contribution) term, which represents the intermolecular forces calculated from 

mixture properties.  This model is expressed for component i as 

           resid
i

comb
ii γγγ lnlnln +=  (8-8)

The combinatorial part is a function of the molecular size and shape of the mixture 

components 

           ( )xqrfcomb
i ,,ln =γ  (8-9)
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where r is the molecular volume parameter, q is the molecular surface parameter, and x is 

the liquid mole fraction.  The residual part is a function of temperature dependent 

interaction parameters 

           ( )cbaTqfresid
i ,,,,ln =γ  (8-10)

where T is the system temperature and a, b, and c are functional group interaction 

parameters.  Detailed treatment of Equations (8-9) and (8-10) are given by Gmehling  

et al. [70]. 

 Early versions of UNIFAC failed to determine the differences between isomers 

and to account for group proximity effects.  These models often provide poor predictions 

when molecules of a binary system vary greatly in size and they fail to address hydrogen-

bonding behavior.  Additionally, these models are dependent on the quality of the 

structural parameters derived from experimental data. 

8.4 Empirical Models 

In contrast to theoretical models, several empirical models have been developed 

to correlate infinite-dilution activity coefficients in aqueous systems.  These models 

provide a means of estimating activity coefficients and other excess thermodynamic 

properties in the absence of experimental data. 

Pierotti et al. [71] developed a scheme for the prediction of γ∞ in water and other 

solvents, which was based on a number of empirical group interaction parameters for 

each solute series in a given solvent.  This approach assumes that γ∞ can be taken as the 

sum of contributions from individual interactions between pairs of structural groups in 

the solute and solvent molecules.  These interactions are dependent on the number, type, 
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and configuration of the groups within the respective molecular structures.  For various 

aromatic hydrocarbon-aqueous systems, Tsonopoulos and Prausnitz [72] developed a 

similar scheme. 

Medir and Giralt [73] developed a correlation for aqueous systems based on the 

first order molecular connectivity, number of carbon atoms, surface area, acentric factor, 

dipole moment, and total electronic energy.  For aliphatic and two aromatic families, 

monocyclic and polynuclear, the best correlating factor was the first order molecular 

connectivity and dipole moment, which is given as 

           2
131

1
211ln MDCCC ++=∞ ϑχγ  (8-11)

where 1
1
ϑχ  is the first order molecular connectivity of the organic solute, DM1 is the dipole 

moment of the organic solute, and C1 – C3 are regressed parameters.  Using solute molar 

refraction, RM1, as an input parameter, a similar correlation was developed by Dutt and 

Prasad [74], which is given as 

           1211ln MRCC +=∞γ  (8-12)

Other simple correlations between structural features and hydrocarbon solubility 

in water have been developed, which include those based on solute accessible surface 

areas [75] and number of solute carbon atoms [76].  While these methods provide greater 

accuracy in predicting γ∞ values than group contribution methods, the correlations 

involve no more than two structural features and are limited to a small set of hydrocarbon 

families.   
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8.5 LSER Model 

A linear solvation energy relationship (LSER) model was first developed by Taft 

et al. [77] in response to the limitations inherent in the early empirical models.  This 

model attempted to generalize solvation using the assumption that solute-solvent 

interactions are due to independent and additive nonspecific dipolarity/polarizability 

effects and specific hydrogen bonding interactions.  These effects are quantified by 

solvatochromic parameters as determined by spectroscopic or chromatographic 

experimentation.   

Sherman et al. [78] improved the early LSER model by the addition of a Flory-

Huggins term and the use of the saturation fugacity rather than the gas-liquid partition 

coefficient.  The final form of this model for the prediction of a hydrocarbon γ∞ 

(component 2) in water is given as 
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where I, p, a, b, and h are parameter coefficients, L16 is the partition coefficient of the 

solute between a gas and hexadecane, π* is the dipolarity/polarizability effect, α is the 

hydrogen bonding donation effect, β is the hydrogen bonding acceptance effect, v is the 

component molar volume, and f° is the standard-state fugacity.  While encouraging results 

have been obtained for aqueous systems with this model, the main disadvantage remains 

the availability and accuracy of solvatochromic data. 
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8.6 Computational Chemistry Models 

Computational chemistry methods include both molecular simulation and 

quantitative structure-property relationship (QSPR) models.   

 Molecular Simulations 

Molecular simulations for the prediction of aqueous activity coefficients include 

free energy perturbation simulations [79], and Widom insertion approaches [80].  The 

main disadvantages of molecular simulation are the computational expense and time 

involved.  As computer technology advances are made, these disadvantages will become 

less severe.  The accuracy of the prediction is also highly dependent on the ability of the 

intermolecular force potentials to adequately characterize the molecular interactions of 

the hydrocarbon-water system. 

 QSPR Modeling 

The underlying assumption of QSPR is that the physical properties of a given 

molecule are described completely by its chemical structure.  With a given set of data for 

a thermo-physical property of interest (e.g., γ∞), a quantitative relationship can be 

constructed between this property and molecular structure, which may then be used in the 

prediction of this property for other molecules based solely on their molecular structures.   

Nelson and Jurs [81] first used a QSPR for the aqueous solubility of organic 

compounds.  The QSPR employed a nine-variable regression model with the structures 

represented by topological, geometrical, and electronic descriptors.  A later study by 

Mitchell and Jurs [82] provided a QSPR for γ∞ of hydrocarbons in water.  This study 
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developed a 12-variable regression model with the molecular structures represented by 

topological, geometrical, and electronic descriptors.   

Recent work by He and Zhong [83] revisited the database used by Mitchell and 

Jurs [82] and incorporated descriptors based on molecular connectivity indices.  While 

the predictive capability of both models was similar, He and Zhong only required six 

descriptors, and these descriptors are more easily calculated than the descriptors utilized 

by Mitchell and Jurs. 

Huibers and Katritzky [84] correlated the aqueous solubility of hydrocarbons with 

molecular structure using a minimum number of geometrical, topological, and 

constitutional descriptors.  By minimizing the number of descriptors included in the 

QSPR, the contribution of each individual descriptor is more easily observed.  A three-

parameter model for the hydrocarbon solubility was given as 

           PNSABICMVSw 0523.0258.00437.013.0log 0 +−+−=−  (8-14)

where MV is the molecular volume, 0BIC is the structural information content of 0th 

order, and PNSA is the atomic charge weighted partial negative surface area.  Of the three 

descriptors, the molecular volume was determined to be the most important in correlating 

solubility and structure. 

For good predictive capability, QSPR models need an adequate database 

containing the physical property of interest for a wide variety of molecular structures.  

Additionally, current QSPR models lack versatility since activity coefficient data are 

mostly for a single temperature, commonly 298 K, and only involve one of the limiting 

activity coefficients of a binary system. 
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Chapter 9. Computational Chemistry 

9.1 Introduction 

For a homologous series of alkanes [95], the boiling point temperature increases 

in a regular fashion as a function of carbon number.  While this was considered common 

knowledge in organic chemistry, the possibility also existed that other similar regularities 

might exist between molecular structures and other physical properties or activity.  From 

this early observation, quantitative structure-activity relationship (QSAR) and 

quantitative structure-property relationship (QSPR) models have been developed.   

These theoretical models rely on the assumption that there exists a quantifiable 

relationship between the thermophysical property, chemical affinity, or biological activity 

and molecular structure.  With the utilization of QSAR and QSPR, elucidation of the 

information contained within the molecular structure is obtainable.  This chapter will 

discuss the history and the development of a general quantitative structure-property 

relationship (QSPR). 

9.2 Historical Background 

Early work in this area of computational chemistry was centered on QSAR, the 

relation between structure and a chemical activity, which was usually biological in 

nature.  The methodology of QSAR originated around 1900 with the independent studies 

of Meyer and Overton [96, 97], and their observations relating the potency of anesthetics 
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to lipophilicity.  During this same time period, the concept of biological receptors was 

emerging.  This concept states that interactions between drug molecules and certain 

proteins (receptors) are constrained to act in a specific manner to elicit a desired effect.  

Additionally, Fischer [98] determined that there was a governing stereospecificity of the 

drug-receptor interaction, which means a particular structure of the drug molecule was 

required for a particular receptor response.  From this research, the ability to create drugs 

with specific benefits was realized by maintaining the stereospecificity and completing 

alterations to the base molecular drug structure, which would result in different 

therapeutic benefits.   

QSPR is closely related to QSAR, and the general methodology of both models is 

similar.  Historically, Hammett [99] is credited with the first application of QSPR, which 

concerned the relationship between the structures of various substituted benzenes and rate 

and equilibrium constants of chemical reactions.  These relationships, which are termed 

linear free energy relationships (LFER), were extended by Taft [100] to aliphatic 

molecules.   

The use of QSAR as a practical tool for drug design was founded in the 1960s 

with the introduction of two extrathermodynamic methods.  The first method developed 

by Hansch and Fujita [101] was based on a LFER between biological activities and the 

disassociative, hydrophobic, and steric properties of congeneric drug molecules.  This 

was accomplished by using the physicochemical properties of chemical substituents on a 

common parent molecule.  The second method developed by Free and Wilson [102] was 

based on the theory that biological activity resulted from the addition of contributions 

from various substituents groups at multiple substituents positions.  Both methods 
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utilized multiple linear regression to determine the combination of substituents resulting 

in a maximum activity for congeneric molecules.  The disadvantage of these methods is 

the need for experimental data to describe the substituents group contributions rather than 

utilizing theoretical descriptions. 

With the advent of improved computational capability, multivariate chemometric 

techniques [103], and better molecular descriptors [104, 105], there has been a substantial 

increase in the number of QSAR and QSPR studies.  The QSAR methodology is used 

extensively in the pharmaceutical industry in computer aided drug design [106-111], and 

a partial list of properties described by QSPR includes pure-fluid boiling points [112, 

113], vapor pressures [114], and critical pressures [115]; hydrocarbon solubilities in 

water [116]; refractive indexes of polymers [117]; drug activity [106]; and protein and 

ligand characteristics [118, 119]. 

 

9.3 QSPR Model Development 

A general flowchart presenting the main components involved in a QSAR/QSPR 

study is given as Figure 9-1. 
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Figure 9-1.  QSPR/QSAR Model Generation Flowchart 

 

The data input component concerns the entry of molecular structures in a suitable 

topological representation, along with the property of interest.  Each molecular structure 

is next submitted for conformational analysis in the molecular modeling component.  

Next, descriptors are generated for each molecule based on the topological and 

conformational representation, and these descriptors are then analyzed in the statistical 

analysis component to determine the best subset of descriptors to use in describing the 

property of interest.  A model based on the descriptor subset is developed in the model 

construction component, and then these models are validated in the model validation 

component using an external prediction set.  A brief overview of each component 

follows. 

Data Input Molecular
Modeling

Descriptor
Generation

Statistical
Analysis

Model
Construction

Model
Validation

Steps in QSAR/QSPR Model Generation
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 Data Entry 

Initially, a database containing molecular structures and the associated property of 

interest for each molecule is required.  The structures may be represented as a two-

dimensional (2-D) stick-figure drawing, as shown for cyclohexane in Figure 9-2. 

 

 

 

Figure 9-2.  2-D Representation of Cyclohexane 

 

While this type of representation enables easy recognition of the molecule, the 

disadvantage is that the sketched figures are not amenable to automated database searches 

(data mining).   

As an alternative, simplified molecular input line entry specification (SMILES) 

provides a general purpose chemical nomenclature, which is based on the representation 

of a valence model, and a universal data format exchange, which is not limited to a 

specific computer language or program [120].  For example, the SMILES notation for 

cyclohexane would be C1CCCCC1.   

 Molecular Modeling 

Molecular modeling software is employed to generate a three-dimensional (3-D) 

structure from the 2-D structures obtained in the previous step.  The 3-D structures are 

required for generation of geometric descriptors; however, molecular structures can have 

different conformations depending on the types of bonds present, which would affect the 

geometric descriptors.  A semi-empirical molecular orbital routine such as MOPAC [121] 
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can be used to find the minimum energy conformation, which allows for accurate 

assessment of the geometric descriptors.   

 Descriptor Generation 

A major component in the development of QSPR is the generation of molecular 

structure descriptors, which can describe the entire molecular structure or any structural 

fragment.  As given by Karelson [105], Table 9-1 presents the classes and subclasses of 

theoretical descriptors. 

Table 9-1.  General Classification of Theoretical Molecular Descriptors 

Class Subclass 
Constitutional descriptors Counts of atoms or bonds 

Atomic weight based descriptors 
Topological descriptors Topological (connectivity indices 

Information theoretical descriptors 
Topochemical descriptors 

Geometrical descriptors Distance-related descriptors 
Surface area related descriptors 
Volume related descriptors 
Molecular steric field descriptors 

Charge distribution related descriptors Atomic partial charges 
Molecular electrical moments 
Molecular polarizabilities 
Molecular electrostatic field descriptors 

Molecular orbital related descriptors Frontier molecular orbital energies 
Bond orders 
Fukui’s reactivity indices 

Thermodynamic descriptors Thermodynamic functions 
Boltzmann factor weighted descriptors 

Solvation descriptors Electrostatic energy of solvation 
Dispersion energy of solvation 
Free energy of cavity formation 
Hydrogen bonding descriptors 
Entropy of solvation 
Theoretical linear solvation energy descriptors 
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Brief descriptions of these descriptor classes and the class of constructed 

descriptors along with specific descriptor examples follow, but a complete treatment of 

descriptors my be found elsewhere [105, 122].   

Constitutional Descriptors 

The chemical composition of the molecule is represented by the constitutional 

descriptors, which do not involve the geometry or electronic structure of the molecule.  

These descriptors are the easiest to conceptualize and calculate; however, the 

interpretation of individual molecular properties is frequently cumbersome.  Some 

examples of this descriptor class include total number of atoms, absolute and relative 

numbers of a specific atom, absolute and relative number of a specific functional group 

or substituents, and molecular weight. 

Topological Descriptors 

Information about the atoms and bonds present in a molecule can be formalized 

by the application of the mathematical field termed graphs.  These descriptors, or 

topological indices, are developed from the graph invariants obtained after formalization 

of the atomic structure and connectivity [123].  Examples of topological descriptors 

include the Wiener index [124], Kier shape indices [125], Kirchoff number [126], and 

bonding information content index of kth order [127]. 

Geometrical Descriptors 

 These descriptors are derived from the geometric structure of the molecule as 

determined by the 3-dimensional coordinates of the atomic nuclei and masses.  Principal 

moments of inertia characterize the molecular mass distribution and the degree of 
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different rotational transitions, and these descriptors depend only on the atomic 

coordinates and masses.  Other widely used descriptors of this class based on 2-D 

projections of the 3-D structure include molecular surface area [128], solvent-accessible 

surface area [129], molecular volume [130], and solvent-excluded volume of the 

molecule [131]. 

Charge Distribution Related Descriptors 

All chemical interactions may be classified as either electrostatic (polar) or orbital 

(covalent) in nature, according to current molecular structure theory.  Since the 

mechanism and rate of most chemical reactions and the physicochemical properties are 

determined from electron densities or charges, descriptors of this class are widely utilized 

as reactivity indices or as measures of intermolecular interactions.  Empirical schemes 

[132, 133], which involve the concept of atomic electronegativity, quantum chemical 

theory [121], and schemes involving analysis of physical observations predicted from 

wave function have been used to calculate atomic partial charges [134, 135].  Using the 

atomic partial charges, simple electrostatic descriptors including the minimum and 

maximum partial charges [121], minimum and maximum partial charges for a particular 

atom type [121], and a polarity factor [136] can be calculated.   

In order to characterize the interactions between polar molecules, Jurs et al. [137, 

138] developed the charged partial surface area (CPSA) descriptors, which are calculated 

from contributions from the partial atomic charges and the molecular solvent-accessible 

surface area. 

 By characterizing either the hydrogen bonding donor ability (HDSA1) or 

hydrogen bonding acceptor ability (HASA1) [137, 138] of the molecule through the 



 100

summation of solvent-accessible areas of potential atomic donors/acceptors, possible 

intermolecular hydrogen bonding interactions can be delineated.   

Molecular Orbital Related Descriptors 

Molecular quantum chemistry calculations provide for the development of a new 

source of descriptors that can, in principal, characterize almost any molecular geometric 

and electronic property and define intermolecular interactions.  This class of descriptors 

is composed of charge distribution-related descriptors, valency-related descriptors [139], 

quantum mechanical energy-related descriptors, and quantum mechanically calculated 

molecular solvation descriptors.  Examples of these descriptors include energies of the 

highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital, maximum 

bond order for a given pair of atomic species , HOMO-LUMO energy gap [140], and 

Born solvation energy. 

Thermodynamic Descriptors 

The use of the total molecular partition function, Q, and constitutive components, 

electronic, translational, rotational, and vibrational, enables the construction of the 

thermodynamic descriptors [141-143].  Some examples of this class of descriptors 

include thermodynamic heat of formation at 300 K, translational enthalpy of the molecule 

at 300 K, and vibrational entropy of the molecule at 300 K. 

Solvation Descriptors 

Descriptors characterizing solvation effects from chemical structures and 

properties are constructed from physical models, which describe solvation phenomena 

arising from the creation of a solvation cavity and the insertion of a solute molecule into 
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the cavity.  Examples of these descriptors include free energy of the solute cavity 

formation [144], molecular van der Waals volume [145], and Hildebrand’s solubility 

parameter [146]. 

Constructed Descriptors 

When the theoretical descriptors available in commercial QSPR software provide 

inadequate representation of the molecular structural information, new descriptors can be 

constructed.  While the effect of these descriptors is of limited influence in liquid 

property modeling, the effect becomes significant when investigating solid-state 

properties such as melting point.  Functional group descriptors, which are based on the 

concept that each functional group contributes a positive or negative increment to the 

total molecular property, are used infrequently, but their addition usually alters molecular 

properties by changing the polarizability and dipole moment of the molecule. 

 Feature Selection 

Generally in a QSPR study, the number of descriptors generated is larger than can 

be realistically employed in model construction.  Similar to over-specification of 

variables in a process unit design problem, redundant descriptors lessen the performance 

of the QSPR model and can lead to erroneous predictions.  Thus, the large initial set of 

descriptors is reduced to provide a small set, which retains sufficient information about 

the molecular structure as it affects the property to be predicted.  Reduction is 

accomplished by objective feature selection and subjective feature selection. 
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Objective Feature Selection 

Reduction of the descriptor pool by objective feature selection is limited to the 

use of only the independent variables (descriptors).  The selection of descriptors for 

deletion from the initial set is completed through the utilization of pairwise correlations, 

test of identical values, and vector space descriptor analysis.   

Subjective Feature Selection 

Once the descriptor set has been reduced by objective feature selection, subjective 

feature selection is used to further reduce the set of descriptors.  Subjective feature 

selection uses the dependent variable values (property of interest) along with the 

independent variables (descriptors) values.  Many statistical and computational 

techniques exist for subjective feature selection, including multiple linear regression 

analysis (MLR), simulated annealing (SA), principal component analysis (PCA) [147], 

partial least squares (PLS) [148], genetic algorithms (GA) [149], artificial neural 

networks (ANN) [150], support vector machines (SVM) [151], local learning (LL), self 

organizing maps (SOM) [152], cluster analysis (CA) [153], factor analysis (FA) [103], 

and discriminant analysis (DA) [154]. 

 Model Construction 

With a reduced descriptor set, a QSPR model is produced either with a statistical 

or neural network approach.  The statistical approach is usually either a MLR or PLS 

analysis.  The resultant QSPR models can be classified as one of three types depending 

on the combination of feature selection and model type as shown in Table 9-2. 
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Table 9-2.  QSPR Model Types 

Type Feature Selection Model Selection 
Type I MLR (linear) MLR (linear) 

TYPE II ANN (nonlinear) MLR (linear) 
Type III ANN (nonlinear) ANN (nonlinear) 

 

Type I models are completely linear, Type II models are a hybrid, and Type III models 

are completely nonlinear.  Generally, Type III models show the best performance in 

QSPR modeling [155].   

Multiple Linear Regression 

A multiple linear regression model is developed, which relates the molecular 

structures to the property of interest through a linear combination of the descriptors.  The 

general form of the correlation is: 

           ∑
=

+=
N

i
ii xy

1
0 ββ  (9-1)

where, y is the property of interest, β0 is the intercept, N is the number of molecular 

descriptors in the correlation, βi is the coefficient for descriptor i, and xi is the molecular 

descriptor.  The multi-parameter regression that maximizes the predicting ability is 

determined using the following strategy [136] (adapted from CODESSA documentation). 

1. All orthogonal pairs of descriptors i and j (with Rij
2 < Rmin

2) are found in a given 

data set.  Rij
2 denotes the correlation coefficient between descriptor i and j, and 

Rmin
2 is set to the recommended value of 0.1. 

2. The property analyzed is treated by using the two-parameter regression with the 

pairs of descriptors, obtained in Step 1.  The pairs with highest regression 
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correlation coefficients, Rij
2, are chosen for performing higher-order regression 

treatments. 

3. For each descriptor pair, obtained in the previous step, a non-collinear descriptor, 

k is added, and the respective three-parameter regression treatment is performed.  

If the Fisher criterion at a given probability level, F, is smaller than that for the 

best two-parameter correlation, the latter is chosen as the final correlation.  

Otherwise, the three-parameter correlations with highest regression correlation 

coefficients are chosen for the next step. 

4. For each descriptor set, chosen in the previous step, an additional non-collinear 

descriptor scale is added, and the respective (n+1) parameter regression treatment 

is performed.  If the Fisher criterion at the given probability level, F, is smaller 

than for the best two-parameter correlation, the latter is chosen. Otherwise, 

descriptor sets with highest regression correlation coefficients are chosen, and this 

step is repeated with n = n +1. 

5. The final product of the above steps is a linear relationship between molecular 

structure and the property of interest containing n parameters. 

Artificial Neural Networks 

Several types of ANNs are employed in QSPR models, with feed-forward and 

back-propagation neural networks being commonly employed.  More detail concerning 

ANNs is provided in the following chapter.  The purpose of the ANN is to create an 

association between the structural descriptors and the property of interest.  The level of 

agreement between the input and output of the property of interest in an ANN occurs 
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through the adjustment of weights, which affect individual inputs, and biases, which 

affect the net input.   

 In order to create this association, the ANN is trained using a partial set of 

structural descriptors and properties (training set), which occurs in two stages.  The first 

stage involves learning the general features of the training set, and the second stage 

involves learning the individual characteristics of the molecules in the training set.  

Property prediction of new molecular structures is enhanced by the first stage of training, 

but the second stage leads to memorization of the training set molecules (over-training).  

Over-training may be effectively avoided by the use of a cross-validation set in addition 

to the training set.  The cross-validation set is another partial set of structural descriptors 

and properties, which differ from those in the training set.  During training, the property 

of interest is periodically predicted for the cross-validation set.  The error in the 

predictions will reach a minimum and then begin to rise with additional training [156].  

When the cross-validation set reaches the error minimum, the optimum stopping point to 

cease training has been reached. 

 Other considerations in the application of ANNs in QSPR models include the 

following [136]: 

1. Random generation of the training set, cross-validation set, and prediction set (for 

validation) from the reduced set of descriptors should be made in the proportions 

of 70%, 10%, and 20%, respectively. 

2. The ratio of the molecules to the number of descriptors in the training set should 

be greater than two [157]. 
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3. The number of hidden layers in the ANN is determined empirically.  The 

determination of the best architecture involves starting with a small number and 

gradually increasing the number of hidden layers. 

4. The error observed in the cross-validation predictions should vary smoothly over 

the training period of the ANN. 

5. The starting weights and biases of the ANN should be assigned in a random 

fashion. 

 Model Validation 

The final component in the development of a QSAR/QSPR model is the 

validation of the newly constructed model.  Validation of the model is generally 

accomplished by demonstration of the predictive ability of the model; however, Monte 

Carlo randomization testing is an additional validation technique that is sometimes 

utilized.   

Predictive Ability 

Using a previously prepared prediction set consisting of structural descriptors and 

properties taken from the reduced set of descriptors, the property of interest is predicted 

using the new model.  The model should be capable of predictions at a desired level of 

accuracy, and the prediction error should be comparable to that observed for the training 

and cross-validation sets. 

Monte Carlo Randomization 

A potential danger in QSPR model development is the possibility of creating a 

model by chance correlation between the structural descriptors and property of interest.  
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To avoid this situation, the sequence of model construction is repeated using the same 

structural descriptors, but the dependent variables (property of interest) are randomly 

assigned to the molecular structures in the training set.  If a chance correlation did exist 

between the descriptors and dependent variable of a particular molecular structure, the 

randomization of the dependent variable insures the original correlation will not be 

possible.  The predictive results from the original and randomized training set models are 

compared.  If the predictive results from the randomized training set model do not exceed 

the performance of the original predictive results, then the original model is considered to 

represent a relationship between the descriptors and the dependent variables that is not 

based on a chance correlation. 
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Chapter 10. Neural Networks 

10.1 Introduction 

Artificial neural networks (ANN), commonly referred to as neural networks (NN), 

were inspired by the recognition that the manner in which the human brain computes 

differs from the computations of a conventional computer.  The concept of neurons as 

structural constituents in the brain was introduced by Ramon y Cajal [158], a pioneer in 

neurology.   

While events in a computer chip happen in the nanosecond range, neural events 

occur in the millisecond range, which are approximately six orders of magnitude slower.  

The brain compensates for the relative slowness of each neuron by using extremely large 

numbers of interconnected neurons.  One estimate for the human cortex placed the 

number of neurons on the order of 10 billion, and the number of synapses 

(interconnections) on the order of 60 trillion [159].  This neural architecture creates an 

extremely efficient structure, which has an energetic efficiency of approximately 10-16 

Joule/operation/second as compared to 10-6 Joule/operation/second for a computer [160].   

Using the efficient brain structure, which has the characteristics of a complex, 

nonlinear, and parallel computer as a model, investigators have developed NNs for 

applications to such fields as pattern recognition, optimization, coding, process control, 

drug discovery, and molecular design.  This chapter will present a brief historiography 

and a general overview of neural networks. 
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10.2 Historical Background 

The modern era of neural network theory began in the early 1940s with the 

seminal work of McCulloch and Pitts [161], which demonstrated the ability of a simple 

neural network, which was based on binary processing units termed neurons, to compute 

any arithmetic or logical function.   

Hebb [162] provided a major contribution to the theoretical aspects of neural 

networks in 1949 with the presentation of an explicit statement of a physiological 

learning rule for synaptic modification.  Specifically, as an organism learns different 

tasks, the connectivity of the brain is altered, and the results of these changes were called 

neural assemblies.  Additionally, Hebb introduced a concept of learning, which states that 

repeated activation of one neuron by another interconnected neuron increases the 

effectiveness of the synaptic connection.  This work served to inspire many investigators 

who were developing learning paradigms.   

One concern arising at this time was the design of a reliable network with neurons 

that might be considered unreliable components.  This potential problem was resolved by 

the work of von Neumann [163], which employed the concept of redundancy.  Soon after 

this, Rosenblatt [164] developed a new approach to pattern recognition problems with the 

use of perceptrons, which were basically a one layer neural network.  In 1960, a neural 

network consisting of adaptive linear elements (ADLINE), based on the least mean-

square algorithm (LMS), was introduced by Widrow and Hoff [165] for signal processing 

study.  The difference in these early network architectures lies in the training procedure.  

During the 1960s, the perceptron type networks enjoyed great popularity, but in 1969, 

Minsky and Papert [166] used extensive mathematical demonstrations to prove there are 
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fundamental limits to the computational capability of perceptrons.  They also theorized 

that the extension of perceptrons to a many layer network would not provide any 

computational benefit. 

The 1970s are often recognized as a “decade of dormancy.”  According to Cowan 

[167], factors influencing this lack of scholarship during this period include the 

following: 

1. A lack of supporting technology (computers) for adequate 

experimentation. 

2. The criticism of Minsky and Papert convinced funding agencies to cease 

support of neural network projects and offered little encouragement for 

investigators to continue working in this field. 

3. The analogy between neural networks and lattice spins, the spin-glass 

model, was not developed by Sherrington and Kirkpatrick [168] until 

1975. 

While there was a decided lack of research concerning neural networks during this time, 

one important concept to emerge was self-organizing maps using competitive learning 

[169, 170]. 

 The 1980s began a renaissance for interest and study of neural networks and 

associated areas.  In 1982, Hopfield [171] demonstrated a stable network capable of 

storing information, which was developed from using the Lyapunov (energy) function to 

analyze and understand the computations of networks with symmetric synaptic 

connections.  These types of networks are known as Hopfield networks and are 

demonstrative of the isomorphism between the Hopfield network and the Ising model 



 111

(spin systems) used in physics.  While Hopfield is noted for the concept of information 

storage, this work was based on the pioneering studies of Cragg and Tamperley [172, 

173], Cowan [167], Grossberg [174, 175], Amari [176], Wilson and Cowan [177], Little 

and Shaw [178], and Anderson et al [179]. 

 Shortly after this in 1986, the popular back-propagation algorithm for training 

multilayer networks was introduced by Rumelhart et al. [180], and later that year, a 

landmark book by Rumelhart and McClelland [181] covering back-propagation learning 

was published.  Two other researchers, Parker [182] and LeCun [183], were 

independently investigating the back-propagation (BP) algorithm at about the same time.   

 During the 1980s other notable advances in the neural network field of study 

included simulated annealing [184], Boltzmann learning [185], the principle of maximum 

information preservation [186], and the design of layered feed forward networks using 

radial basis functions [187]. 

 In the early 1990s, quantitative structure-activity relationship/quantitative 

structure-property relationship (QSAR/QSPR) studies utilizing BP neural networks to 

investigate complex relationships between molecular structure and physiochemical 

properties or biological activities began to appear in the literature with the early works of 

Aoyama et al. [188, 189], Aoyama and Ichikawa [190, 191], and de Saint Laumer et al. 

[192].  By the mid-1990s, an estimated 90% of neural networks employed some variant 

of BP [193].  Applications of BP can be found in a partial listing of such diverse areas of 

study as pharmacology [190, 191, 194-200], toxicology [201-204], carcinogenicity [204, 

205], mutagenicity [206-209], n-octanol/water partition coefficients [210-212], aqueous 

solubility [213-215], activity coefficients [82, 83, 216], heat capacity [217], melting point 
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[218], normal boiling point [208, 217, 219-225], critical properties [208, 218, 225, 226], 

and density [217]. 

10.3 Neural Network Overview 

The attributes of power and ease of use have lead to the widespread usage of 

neural networks in such diverse areas as finance, medicine, pharmaceuticals, engineering, 

geology, chemistry, and physics.  While linear techniques often fail to model complex 

functions adequately, the nonlinear nature of NNs provides a powerful and sophisticated 

technique capable of modeling complex functions.  Additionally, NNs may be utilized 

readily with a lower depth of knowledge than would be required with more traditional 

nonlinear statistical techniques.  This section will provide an overview of neural network 

construction, example architecture, and general architectural examples (more detailed 

presentations are available in a number of textbooks (e.g. [227-232]). 

 Neural Network Construction 

 A neural network attempts to replicate a biological network of neurons.  As 

applied to an artificial neuron, the nature of the biological neuron is described as follows: 

1. The neuron is the recipient of a number of inputs. 

2. Inputs are conducted to the neuron via a connection, which has an associated 

weight (or strength).  In a biological neuron these weights would correspond to a 

synaptic efficiency. 

3. The neuron has a single threshold value, which is subtracted from the weighted 

summed inputs to provide an activation value of the neuron. 
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4. This activation value is processed with an activation function to produce the 

neuronal output. 

A collection of interconnected artificial neurons composes a NN, where the 

neurons are arranged in a minimum of two layers, an input and output layer.  Figure 10-1 

presents a schematic diagram of a feed-forward two layer NN, which consists of a 

nonlinear hidden layer and a linear output layer. 
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Figure 10-1.  Schematic of a Neural Network 

 

In this schematic, the NN is provided an input set (P1, P2…PR) and produces an output 

based on the relationships between the weights (wi,j) and biases (bi,j).   

 Since the notation used in Figure 10-1 quickly becomes cumbersome with a large 

number of neurons, an abbreviated notation has been developed [233] to simplify the 

representation of the neuronal architecture, as shown in Figure 10-2. 
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Figure 10-2.  Abbreviated Notation for a Neural Network 

 

For the example in Figure 10-2, the NN is composed of an input vector p with a number 

of R values, and S hidden layer neurons.  The activation function is represented by f, 

which can be any continuous function, including typical examples such as linear, hard 

limit, soft limit, and sigmoidal.  When representing nonlinear functions, most NNs will 

employ a tan-sigmoidal hidden layer function and a linear output layer function, which 

are shown graphically in Figure 10-3.   

Figure 10-3.  Example of a Linear (left) and a Tan-Sigmoidal Activation Function (right) 
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Mathematically, the output (ai) of each neuron in Figure 10-2 may be expressed as 

           ( )bpfai += w  (10-1)

where w is a matrix of the weights, b is the bias, and f is the activation function. 

 During training of the NN, the values for the weights and biases are determined as 

a part of a nonlinear optimization problem, where an objective function is minimized 

while values of the weights and biases are varied.  A sum of squared errors is typically 

utilized as an objective function and is expressed as: 

           ( )∑
=

−=
n

i
iiD atE

1

2  (10-2)

where ai is the network response (output) and ti is the target value.  Many different 

methods have been employed for the optimization of the objective function, including 

gradient descent, line searches, conjugate gradient, quasi-Newton, and Levenberg-

Marquardt. 

 Example Neural Networks 

While a large number of structurally different NNs exist, back propagation (BP) is 

one of the most popular choices.  A variant of BP is a radial basis function (RBF) 

network.  These two networks will be described briefly. 

Back Propagation 

The back propagation network is a feed forward multi-layered network employing 

supervised learning for adjustment of the weights.  Once calculation results are passed 

from each layer until an output is generated, the error between the output and target 

values is calculated.  This error is returned to the network, which then uses the 
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information to adjust the weights.  After sufficient iteration of this process, a predefined 

tolerance is eventually met.   

 While the BP is capable of very good accuracy, there are disadvantages to this 

technique.   

1. The exact number of hidden layers and neurons in the hidden layers is unknown, 

and several repetitions using different BP architectures are used to determine an 

optimum network structure. 

2. Since optimization of the objective function involves the calculation of a gradient 

vector to move along the error surface, there are difficulties in knowing what size 

step to employ for each move of the gradient vector.  Small steps will drastically 

increase the time until a solution is reached, and large steps may over step the 

solution. 

3. Most importantly, BP networks are prone to over-learning, where the error 

associated with the input set is minimized, and predictions are poor using a new 

data set with the trained network. 

Generalization is the ability of a network to accurately predict the values of a new 

data set, and an analogy can be drawn between polynomial curve fitting and 

generalization.  When using a polynomial equation to fit data, a low order polynomial 

may not be flexible enough to fit the data accurately, but a higher order polynomial may 

become highly convoluted in order to fit the data at the expense of representing the 

underlying function.  Similar to this, NNs with more weights are able to model complex 

functions with low error, but they are prone to over-learning.  If fewer weights are used, 

the resulting model may have improved generalization capabilities, but relation to the 
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underlying function present in the input data is decreased.  While using different BP 

network structures can result in better generalizations, regularization strategies, such as 

Bayesian methods, are available to alleviate over-learning. 

Radial Basis Function 

An alternative to the BP network is the use of a RBF network, which shares the 

same general architecture as a BP with a similar flow of information.  The two networks 

differ in the choice of a hidden layer activation function, which is a fixed Gaussian 

function in a RBF and a general nonlinear function in a BP.  While the speed of the 

network is improved from that of BP, the RBF can be complicated to train, and the 

network will learn incorrect patterns as quickly as correct patterns. 

 Neural Network Architecture 

Appearing frequently in the literature, many types of networks, which include 

both newly developed networks and variants of known networks, have been applied to a 

variety of research interests.  Taxonomic categories, such as learning algorithm, network 

topology, and data type, may be applied to organize these networks.   

Learning Algorithm 

Supervised and unsupervised learning are the two main types of learning 

algorithms utilized in NNs.  Frequently, the type of learning algorithm applied may be 

difficult to classify.   

With supervised learning, the NN is given the expected results or target values.  

During training, the NN weights are adjusted in an attempt to match the output values 

with the target values.  After training, the NN is validated by providing a new set of input 
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values and observing the difference between the resulting output values and the correct 

target values.  Supervised learning algorithms are further classified as auto-associative, 

where the input values and target values are equal, and hetero-associative, where the 

target values differ from the input values. 

In unsupervised learning, the NN is not provided with any target values during 

training; however, input and target values are often equal; thus, these networks perform 

as auto-associative networks [234, 235].  Normally, these types of algorithms are 

employed for data compression, and two widely used algorithms are vector quantization 

(or "Kohonen network”) [236, 237], and Hebbian learning [231].  Another example of 

unsupervised learning is Kohonen's self-organizing (feature) map [238], which combines 

competitive learning with dimensionality reduction by separation of clusters on an a 

priori grid.   

Network Topology 

Feedforward and feedback comprise the two types of network topology.  The 

connections between neural units in a feedforward NN do not form cycles.  This enables 

the NN to quickly respond to an input.  Feedforward networks are trained with a wide 

variety of conventional numerical methods such as conjugate descent gradients, and 

Levenberg-Marquardt, but these methods do not guarantee a global optimum solution.  

To avoid local minima, conventional methods are employed with a variety of random 

starting points, or more complicated methods, simulated annealing and genetic 

algorithms, may be utilized to find a global optimum directly. 
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In a feedback NN, cycling occurs in the connections between neural units, which 

may produce slow responses to inputs.  The number of cycles may be large, and these 

networks tend to be more difficult to train than feedforward NNs. 

Data Type 

Neural networks differ in the type of input data used, and the two types are 

categorical variables and quantitative variables.  Categorical variables take on a number 

of possible values or symbolic values (classifications such as male, or female) with 

several members of each category present in the network.  When supervised learning with 

categorical target values, or unsupervised learning with categorical outputs is used, these 

types of NNs are known as classification networks. 

Quantitative variables involve the measurement of some attribute of an object, 

such as boiling points of compounds.  These measurements should reflect analogous 

relationships among the input values of the objects.  When supervised learning with 

quantitative target values is employed, these types of NNs are known as regression 

networks.  Some variables can be treated as either categorical or quantitative, such as 

number of children or any binary variable.  Organized tables of taxonomically classified 

example NNs, which were adapted from Sarle [234], are provided in Tables 10-1 - 10-3. 

 



 120

Table 10-1.  Supervised Neural Networks 

Supervised Neural Networks 
Feedforward 
 Linear  
  Hebbian - [162, 228] 
  Perceptron - [164, 166, 228, 239] 
  Adaline - [165, 228] 
  Higher Order - [227] 
  Functional Link - [240] 
 MLP: Multilayer perceptron - [227, 228, 241] 
  Backprop - [242] 
  Cascade Correlation - [228, 243] 
  Quickprop - [244] 
  RPROP - [245] 
 RBF networks - [227, 246, 247] 
  OLS: Orthogonal Least Squares - [248] 
 CMAC: Cerebellar Model Articulation Controller - [249, 250] 
 Classification only 
  LVQ: Learning Vector Quantization - [228, 251] 
  PNN: Probabilistic Neural Network - [228, 252-254] 
 Regression only 
  GNN: General Regression Neural Network - [255-257]
Feedback - [231, 258] 
 BAM: Bidirectional Associative Memory - [228, 237] 
 Boltzman Machine - [185, 228] 
 Recurrent time series 
  Backpropagation through time - [259] 
  Elman - [260] 
  FIR: Finite Impulse Response - [261] 
  Jordan - [262] 
  Real-time recurrent network - [263] 
  Recurrent backpropagation - [228, 264] 
  TDNN: Time Delay NN - [265] 
Competitive 
 ARTMAP - [266] 
 Fuzzy ARTMAP - [267, 268] 
 Gaussian ARTMAP - [269] 
 Counterpropagation - [228, 236, 270, 271] 
 Neocognition - [228, 272] 
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Table 10-2.  Unsupervised Neural Networks 

Unsupervised Neural Networks- [231] 
Competitive 
 Vector Quantization 
  Grossberg - [273] 
  Kohonen - [274] 
  Conscience - [275] 
 Self-Organizing Map 
  Kohonen - [228, 238] 
  GTM: - [276] 
  Local Linear - [277] 
 Adaptive Resonance Theory 
  ART 1 - [228, 278, 279] 
  ART 2 - [228, 280] 
  ART 2-A - [266] 
  ART 3 - [281] 
  Fuzzy ART - [282] 
 DCL: Differential Competitive Learning - [237] 
Dimension Reduction - [283] 
 Hebbian - [162, 228] 
 Oja - [284] 
 Sanger - [285] 
 Differential Hebbian - [237] 
Autoassociation 
 Linear autoassociator - [179, 228] 
 BSB: Brain State in a Box - [179, 228] 
 Hopfield - [171, 228] 

 

Table 10-3.  Nonlearning Neural Networks 

Nonlearning Neural Networks 
Hopfield - [231] 
Various networks for optimization - [286] 
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Chapter 11. Quantitative Structure-Property Relationship Models 

11.1 Introduction 

Water, which is the most common industrial solvent, plays an important role 

many areas including separation processes, distillation units, chromatographic systems, 

waste treatment, and environmental concerns [1-7].  With growing application of 

biotechnologies, there also exists an increased need for phase equilibria of aqueous 

systems in those processes [8].  When experimental data are unavailable, thermodynamic 

models, such as group contribution methods, are used to predict phase equilibrium.  The 

accuracy of these models in predicting infinite-dilution activity coefficients (γ∞) of 

aqueous systems is questionable.  Moreover, model development is hampered by a lack 

of (a) γ∞ data at temperatures above 300 K, and (b) γ∞ data for water-in-hydrocarbon 

systems.   

Due to the unique molecular structure of water and its attendant physical 

characteristics, including hydrogen bonding, systems containing hydrocarbons and water 

often exhibit strong nonideality when compared to systems comprised only of 

hydrocarbons.  The activity coefficient, γ, is a parameter that quantifies the amount of 

nonideality present in a system.  When a component of a hydrocarbon-water binary 

system is sufficiently dilute, the infinite-dilution activity coefficient, γ∞, is reflective of 

only intermolecular solute-solvent and solvent-solvent interactions without the additional 
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complication of solute-solute interactions. Insight into the chemical and physical forces 

present in an aqueous system is provided by these coefficients.   

The solubility of any solute in a given solvent may be described in terms of the 

activity coefficients ( iγ ) at a given temperature and pressure.  For a given temperature 

and pressure, the mole fraction of a solute (xi) can be expressed as follows, when the 

hydrocarbon is at low concentration:  
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where p is system pressure, °p  is the pure vapor pressure and i
∞γ  is the infinite-dilution 

activity coefficient. The subscripts i and j indicate the solute and the solvent, respectively.  

In deriving this relation, we assume low-pressure operations, where ideal-gas behavior 

applies to the vapor phase.  

While several experimental methods exist for the investigation of infinite-dilution 

activity coefficients, these methods often suffer serious limitations [9-11] and are time 

consuming.  Models for the prediction of infinite-dilution activity coefficients would be 

useful and are represented by examples from theoretical regular solution theory models 

[12-18], equation-of-state models [19], pure-component models [20-22], group 

contribution models [23-25], empirical models [26-31], the LSER model [32, 33], and 

computational chemistry models [34-39].  These models generally do not provide 

satisfactory predictions, and quantitative structure-property relationship (QSPR) studies 

have been limited to the modeling of only single-temperature data of one component of 

the aqueous systems. 
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The molecular structure of a chemical compound determines its chemical and 

physical properties.  Continuing investigation has centered on elucidation of the 

relationship between physical properties and molecular structure.  As computational 

capabilities have improved, research has revolved around developing free energy 

relationships for property prediction by molecular mutation using Monte Carlo (MC) 

simulators [40].  Although this approach remains attractive, Monte Carlo is being 

replaced in many applications by QSPR models. The QSPR approach often provides 

predictions for chemical and physical properties of as-yet-unmeasured and yet-to-be-

synthesized compounds based on structure information.  High quality property 

predictions are obtained using these descriptors since structure-property mapping is at an 

atomic level rather than at a functional group level.  QSPR models will be influential in 

enabling advances in chemical design, where a key challenge is the development of tools 

permitting the rapid design of unique molecules. Over the last ten years, QSPR have 

played an increasingly important role in drug screening and discovery [41], and its 

applications are appearing in areas outside the pharmaceutical industry.  While standard 

methodologies for chemical design result in a discovery phase of research and 

development typically require from two to three years, QSPR methodologies are 

estimated to require only three to six months. 

 The objectives of this work were to (a) develop a quantitative structure property 

relationship (QSPR) for prediction of i
∞γ  values of hydrocarbon-water systems, (b) 

evaluate the efficacy of QSPR models, using multiple linear regression analyses and back 

propagation neural networks, and (c) evaluate the ability of the model to predict aqueous 

and hydrocarbon solubility at multiple temperatures.          
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11.2 Database Development 

The database, which was developed from 96 journal literature sources dating from 

1927 to 1995, consists of 1400 infinite-dilution activity coefficients (IDAC’s) at 

temperatures ranging from 283.15 K to 373.15 K for a diverse set of structural 

classifications [42].  As a result of a literature search, this database was the most recent 

and extensive compilation available at the time of development.  Data available consist of 

both hydrocarbon-in-water and water-in-hydrocarbon IDAC’s.  The water-in-

hydrocarbon data were collected with direct measurement methods, and the hydrocarbon-

in-water data were collected by either direct measurement or indirect measurement 

methods, and both datasets were classified with reference to experimental method.  

Examples of direct measurements are gas-liquid chromatography method (GLC), 

headspace GLC method, gas-stripping method, liquid-liquid chromatography method, 

differential ebulliometry method, and differential static method.  Included under the 

general title of GLC methods are stationary phase GLC, non-steady-state GLC, and 

relative GLC.  The indirect measurements include extrapolations to infinite dilution of 

vapor-liquid equilibrium data and calculations from other thermodynamic data, such as 

liquid-liquid equilibrium data and gas-liquid partition coefficient data.   

Where provided by the source material, the database also contains uncertainty 

(“error”) estimates.  These error estimates were used to form error bars by taking the data 

point value ± the error estimate.  Table 11-1 and Table 11-2 provide a numerical analysis 

of the database and a list of the different hydrocarbon structures in the database, 

respectively.   
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The database was used as the basis for six case studies for this investigation.  The 

first three case studies, CS1-A, CS1-B, and CS2, consisted of all available data, including 

error estimates, for each of the three sections of the database; direct, indirect, and water-

in-hydrocarbon, respectively.  The fourth case study, CS3, used data from the entire 

database, but did not include the error estimates due to a software limitation on the 

number of allowed values.  The fifth and sixth case studies, CS4 and CS5 respectively, 

involved only matched hydrocarbon-in-water and water-in-hydrocarbon data.  For 

example, a measurement of hexane in water, whether from the direct or indirect set, must 

have a corresponding measurement of water in hexane for inclusion in both CS4 and 

CS5.  While the number of data points is the same in both cases, CS4 uses only the 

hydrocarbon molecular structures to represent both the hydrocarbon-in-water and water-

in-hydrocarbon data, and CS5 uses the molecular structure of water to represent the 

water-in–hydrocarbon data.  Regardless of the type of measurement, whether 

hydrocarbon-in-water or water-in-hydrocarbon, the hydrocarbon molecular structure was 

used exclusively in the other case studies, CS1-A, CS1-B, CS2, and CS3.  A summary of 

the case studies is available in Table 11-3.  After the initial step in QSPR model 

development, the CS1-A and CS1-B case studies were combined to form a case study, 

CS1, comprised of all hydrocarbon-in-water data. 

The molecular structures included in the database were prepared in the following 

manner: 

1. Molecular structures were drawn and optimized using the MMX 

molecular mechanics force field module available in ChemDraw Ultra 

[43].   

2. 2D structures were generated using ChemDraw Ultra.  
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3. Chem3D Pro [44] was employed to generate 3D molecular structures from 

exported 2D structures.   

4. These structures were initially optimized using the MOPAC [45] module 

available in Chem3DUltra.  

5. The “pre-optimized” structures were submitted to the AMPAC 6.0 [46] 

program for further geometry refinement and for the calculation of 

molecular orbital parameters. The AM1 parameterizations were used to 

calculate the quantum-chemical molecular descriptors.  

6. Output from AMPAC was used in CODESSA [47] to calculate various 

molecular descriptors. 

In addition to a small number of constructed descriptors (described below), over 

1400 descriptors from such categories as constitutional, topographical, geometric, 

electrostatic, quantum chemical, and thermodynamic [48] were generated for each 

molecular structure and are briefly described as follows: 

1. Constitutional Descriptors:  These simple descriptors reflect only the 

molecular composition of the compound without using the geometric or 

electronic structure of the molecule e.g., number of atoms, number of 

bonds, number of rings, and molecular weight. 

2. Topological Descriptors:  These descriptors provide the atomic 

connectivity in the molecule, which include molecular connectivity 

indices, substructure counts, molecular weights, weighted paths, molecular 

distance edge descriptors, kappa indices, electro topological state indices, 

and many other graph invariants [49, 50]. 

3. Geometric Descriptors:  These descriptors are calculated to encode the 3D 

aspects of the structures and include such descriptors as moments of 

inertia, solvent-accessible surface area, length-to-breadth ratios, shadow 

areas, and gravitational index [51, 52]. 
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4. Electrostatic Descriptors:  These descriptors are calculated to encode 

aspects of the structures that are electron related, which include partial 

atomic charges, HOMO energies, LUMO energies, and dipole moment. 

5. Quantum Chemical Descriptors:  These descriptors represent quantum-

chemically calculated charge distributions in the molecules.  These 

descriptors may be used to describe interactions between molecules either 

by a classical point-charge electrostatic model [53] or summation of 

absolute or squared partial charges [54-56].  The descriptors also provide 

the value of the partial charge on the atoms in the molecule (e.g., dHmin 

represents the minimum partial charge on a hydrogen atom).  Additionally, 

these descriptors relate to the strength of intramolecular interactions and 

characterize the stability of the molecules, their conformational flexibility, 

and other valency-related properties, such as the maximum bond order 

(PAB) for a given pair of atomic species A and B in the molecule [57]. 

6. Thermodynamic Descriptors:  These descriptors are calculated on the 

basis of the total partition function (Q) of the molecule and its electronic, 

translational, rotational, and vibrational components.  Examples include 

molecular vibrational enthalpy, translational enthalpy, vibrational entropy, 

rotational entropy, internal entropy, translational entropy, and vibrational 

heat capacity.  

7. Constructed Descriptors:  The descriptors generated by CODESSA do not 

provide the best modeling approach because functional group descriptors 

are neglected entirely. However, functional groups have been shown to 

play an important role in estimating properties [58, 59].  The concept of 

group contributions is based on the premise that each functional group in 

the molecule provides either a positive or negative increment to the 

molecular properties.  Specifically, addition of functional groups is likely 

to alter the properties by increasing the polarizability and possibly the 

dipole moment of the molecule; thus, these functional groups redistribute 

electrons, increase or decrease internal strains, and also change the 
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molecular symmetry and rotational entropy [58-60].  Forty-eight 

functional group descriptors, which are presented in Table 11-4, were 

constructed for each molecule.  If a functional group descriptor was 

present in the molecular structure, then that descriptor was assigned a 

numerical value corresponding to the frequency of the functional group 

appearance.  If a functional group was absent from the molecular 

structure, then the descriptor was given a zero value.  The functional group 

descriptors were then summed for each datum using either a linear 

combination or a power law combination of the functional group 

descriptors to develop a single descriptor, FGorg or FG, respectively.  

Regressions were done for each case study by minimizing the sum of 

squared errors between the infinite-dilution activity coefficient value and 

FGorg or FG.  The values of FGorg and FG were then added to the 

descriptor pool after the regression.  Other constructed descriptors consist 

of mathematical transformations of original descriptors, which included 

exponential changes and log values of the existing descriptors, and these 

are shown in Table 11-5. 

11.3 QSPR Model Development and Results 

 Development of a QSPR model for each case study consists of strategies to (a) 

reduce the number of molecular descriptors and (b) generate a suitable model.  The 

QSPR models can be classified as one of three types, depending on the combination of 

descriptor selection (linear or nonlinear) and model type (linear or nonlinear).  Type I 

models are completely linear, Type II models are a hybrid using nonlinear descriptor 

reduction and linear model development, and Type III models are completely nonlinear  
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 Type I Analysis 

The Type I analysis employs CODESSA to generate a linear model between the 

desired property (γ∞) and selected descriptors, using multiple linear regression.  To insure 

the data were more than adequately described by the model, a greater than normal 

number of parameters (25 were chosen arbitrarily) were used in a Type I analysis of each 

case study.  The results of these analyses were employed to determine outliers in the data.  

If there was a deviation greater than two standard deviations, the datum was determined 

to be an outlier and was eliminated from the case studies.  During further QSPR 

development, no additional data reductions were made.  An example of this is shown for 

the case study, CS3, in Figure 11-1, where the error lines correspond to two-standard-

deviation differences, and information concerning the number of outliers for all case 

studies is provided in Table 11-6.  While example figures are provided here, supporting 

figures for all case studies may be found elsewhere [61].    

After elimination of outliers from the data set, the descriptor set was reduced to 

approximately 200 of the most significant descriptors for each case study by elimination 

of non-orthogonal descriptors using pairwise correlations employing the following 

strategy [48] (adapted from CODESSA documentation): 

1. All orthogonal pairs of descriptors i and j are found in a given data set.   

2. The property analyzed is treated by using the two-parameter regression 

with the pairs of descriptors, obtained in step 1.   

3. For each descriptor pair, obtained in the previous step, a non-collinear 

descriptor, k is added, and the respective three-parameter regression 

treatment is performed.   
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4. For each descriptor set, chosen in the previous step, an additional non-

collinear descriptor scale is added, and the respective (n+1) parameter 

regression treatment is performed.   

5. The final product of the above steps is a linear relationship between 

molecular structure and the property of interest containing n parameters. 

CODESSA maximizes R2 by varying the descriptors in a descriptor set, where the 

number of descriptors has been specified.  CODESSA was then used with the reduced 

data set and the final descriptor sets using 14, 12, 10, 8, 6, and 4 descriptors (in order to 

generate R2 plots) for the determination of the optimum combination of R2 value and 

number of descriptors, as used by the Jurs group at Penn State University.  Although the 

R2 value will continue to increase with an increasing number of descriptors, these plots 

provide a visual aid to subjectively determine the point at which the R2 value ceases to 

significantly increase.  Tabular results for all case studies are presented in Table 11-7.  

The optimum number of descriptors, which are synonymous with model parameters, is 

shown in an R2 plot for CS3 in Figure 11-2.  From this plot, the optimum number of 

descriptors used to construct a linear model for CS3 would be ten.  While there is still an 

increase in the R2 value with more than ten descriptors, significant change in R2 has 

ceased by this point, and generally, model construction with the fewest possible 

descriptors permits the contributions of the individual descriptors to be observed more 

clearly [39].  Using these 10 parameters, calculated values of i
∞γ  were generated resulting 

in a R2 value of 0.9336, which is similar to the value found when using 25 parameters 

prior to elimination of outliers.  The Type I results for the corrected data in CS3 are 

presented graphically in Figure 11-3. 
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 Type II Analysis 

Type II analysis involves the addition of linear and nonlinear descriptors, 

descriptor reduction using a genetic algorithm, and linear analysis with CODESSA.  Prior 

to commencement of the Type II analyses, the data set of each case study was randomly 

divided into a training set, prediction set, and cross validation set composed of 70, 20 and 

10%, respectively, of the total number of data in each case study.  The prediction set was 

employed to test the viability of a priori predictive capability of the model, and the cross 

validation set was used as a measure of training in the Type III analyses.   

The added descriptors included melting point, boiling point, octanol-water 

partition coefficient, functional group parameters based on molecular structure, and 

various mathematical transformations of such descriptors as the molecular weight, 

gravitational index, and molecular volume.  Using the set of approximately 200 

descriptors for each case study from the Type I analysis and the additional descriptors, a 

genetic algorithm in NeuralPower [62] was employed to reduce the descriptor set to 50 

descriptors.   Descriptor reduction was accomplished in a stepwise fashion where the set 

is reduced by approximately 25% each time over the course of five iterations of the 

genetic algorithm.  Similar to the Type I analyses, CODESSA was used with the final 

descriptor set at various specifications of descriptors to generate R2 plots for the 

determination of the optimum combination of R2 value and number of descriptors.  The 

results, %AAD and RMSE (both in lnγ∞), for the Type II analyses are tabulated in Table 

11-8, and plots for the various case studies are presented in Figures 11-4 - 11-8. 
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 Type III Analysis 

The twenty most significant descriptors from the Type II analyses were used as a 

descriptor set for the Type III analyses, which are non linear models employing neural 

networks, and these descriptors are presented in Table 11-9.  A back propagation neural 

network was used in NeuralPower [62].  The initial weights for the network, type of 

transfer function, and network architecture were determined through trial and error.   

Once a transfer function and architecture were selected, ten replicate analyses 

using randomized initial weights were performed.  During these analyses, the root mean 

square errors (RMSE) of the training set and cross validation set were monitored as 

training cycles accumulated.  Typically the RMSE of the training set decreases until 

insignificant changes in the RMSE are realized as training of the neural network 

progresses; however, allowing training to continue to this point often results in an over-

trained network, which generally results in poor predictive capability.  By monitoring the 

RMSE of the cross validation set as the network is trained, the point at which a minimum 

in the cross validation set RMSE is attained may be identified, which should correspond 

to the best predictive capability of that network.  A contour plot can be constructed using 

the cross validation RMSE of the replicate analyses, which is utilized in determining the 

region of least RMSE of the cross validation set.  The identified region will be the 

replicate analysis used for the Type III model.   

When a replicate in a contour plot contains an extended “valley” of relatively 

unchanging RMSE values, such as shown by replicate number six in Figure 11-9, training 

is halted at a point in which the lowest RMSE value is obtained while using the fewest 

possible number of training cycles, which reduces computational burden.  Calculation of 
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the %AAD (in lnγ∞) for the training, prediction, and cross validation sets of replicate six at 

42,600 training cycles results in 13.4, 12.9, and 12.4 %AAD, respectively and at 80,000 

training cycles resulted in 13.1, 15.8, and 13.8, respectively.  As shown by the change in 

the training set %AAD, these numbers illustrate that improvement in the training set 

correlation with additional training comes at the expense of a decrease in the predictive 

capability shown by the increase in %AAD for the prediction and cross validation sets.  

In this case for CS3, replicate number six with 42,000 training cycles would be selected.  

After selection of a particular replicate and number of training cycles, the results are 

obtained for the Type III models.  The results for the Type III analyses are provided in 

Table 11-8, the descriptor sets used with the case studies are shown in, and plots of each 

case study are presented as Figures 11-10 - 11-14.   

11.4 Discussion 

 QSPR Model Development 

A critical review of the database was not attempted other than the deletion of 

outliers prior to the Type I analyses.  In some cases there are many values reported which 

differ significantly for a particular molecule at a given temperature.  Examples of this 

include chloroform (lnγ∞ = 6.35-6.91), 2-butanone (lnγ∞ = 3.23-4.19), and carbon 

tetrachloride (lnγ∞ = 7.96-9.41) all at 298 K.  The effect of many data points may skew 

training to that particular structure, and the range of the values of a particular molecular 

structure can be large in magnitude, which results in larger errors.  The absolute average 

deviation in γ∞ for the prediction set of CS1 is 119%, but with the deletion from the 

average of just three values, which differ greatly from other reported values for the same 
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compound, the error is reduced to 79%.  While this is an extreme example of the possible 

magnitude of error, other large errors are included in the error estimates.  Since the 

majority of the data in the database are collected at ambient temperature, the lack of 

extended temperature data results in network training skewed to ambient temperature 

data, and there is not a descriptor retained which accounts for temperature dependence.  

The temperature of the infinite-dilution activity coefficient measurement was used as a 

descriptor, but this temperature descriptor was eliminated during the Type I analyses due 

to its insignificance.   

Both Type II and III models showed substantial improvement over the Type I 

models.  Non-linear models, Type III, for the case studies investigated showed better 

performance in predicting infinite-dilution activity coefficients when compared to the 

linear Type II models, which did employ a descriptor set reduced in a non-linear fashion.  

On average, the Type III models reduced the absolute average deviation of the predicted 

set by approximately 30% from the Type II results.  Hybrid models, which involve the 

use of descriptors obtained from linear methods to develop non-linear models, are 

increasingly being employed due to the decrease in the amount of computational time 

required when using only non-linear methods. 

For the Type III analyses, CS3 showed the lowest predictive error, which was the 

error only associated with the predictive set, of 12.9% (%AAD in ln γ∞) and was 

followed closely by CS1 at 16.4% and CS4 at 19.5%.  As mentioned previously, the 

predictive set of CS1 included some very large errors, which may give an artificially 

inflated predictive error.  The other two case studies, CS2 and CS5, had predictive errors 

of 25.9 and 24.8%, respectively.  Since the error increases with a decrease in the case 
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study size, the increase in the predictive errors of the case studies may reflect the number 

of structures involved in the training sets.  Attempting to index matched data in CS4 and 

CS5 and the use of water molecular structure in CS5 resulted in larger errors than the 

combined data used in CS3.  The hydrocarbon-in-water data used in CS1 showed much 

better fitting (7.6 %AAD) and predictive capability than the water-in-hydrocarbon data 

used in CS2 (28.5 %AAD for fit), which may be due to both the large number of data 

points per compound and the number of structures used in training. 

The Type III model developed for the most generalized case study for predicting 

γ∞ of hydrocarbon-water systems, CS3, provided satisfactory prediction of γ∞ data (12.9 

%AAD in ln γ∞ and R2 of 0.992) considering the database employed.  The descriptors 

currently given in the literature and used in software packages do not adequately describe 

the molecular structure relationship with γ∞, but the addition of constructed descriptors 

improved the model predictions.  However, predictions at extended temperatures are still 

poor.  As stated previously, there is not a descriptor accounting for temperature 

dependence, which results in an average predictive value for a given structure.  A 

possible solution is the provision of a theoretical backbone, or framework, to the model, 

which accounts for temperature dependence in the data.   

While detailed interpretations of the molecular structure – infinite-dilution 

activity coefficient relationship are beyond the scope of this work, the resulting descriptor 

set obtained for the Type III analysis did provide insight into the relationship.  Since the 

case studies were comprised of different structures and in some cases different numbers 

of the same structures, there were differences in the inclusion of particular descriptors in 

the final descriptor set for each case study.  The final descriptor sets included the most 



 137

physically meaningful descriptors reflective of the intermolecular interactions, which lead 

to an infinite-dilution activity coefficient value.  Molecular properties, which influence 

these values, include molecular structure descriptors, polarity descriptors, and descriptors 

concerned with hydrogen bonding. 

Among the final descriptor sets were user-added descriptors including various 

functional group parameters (FG13, FG14, FG17, FG21, FG24, and FG32) and 

constructed descriptors based on the functional group parameters of each molecule (FG 

and FGorg).  The appearance of these descriptors emphasizes the importance of 

physically describing the molecule.  Other user-added descriptors such as boiling point 

(BP), octanol-water partition coefficient (logP), melting point (MP), and (gravitational 

index)0.33 have been shown to be highly correlated [63, 64] to aqueous solubility and, 

thus, infinite-dilution activity coefficient value.    

Additional molecular shape/size information was provided by topological 

descriptors (Kier & Hall indexes, Randic indexes, and complementary information 

content) and geometrical descriptors (total molecular surface area (TMSA) and 

gravitational index).  Generally, the remainder of the descriptors was from either the 

electrostatic or quantum-chemical class.  These descriptors are important in the 

description of the electronic nature of the structure and the hydrogen-bonding capability.  

Examples of these descriptors include two methods of describing hydrogen acceptors 

(HA dependent HDCA-1 and HA dependent HDCA-2/SQRT(TMSA)) by either 

hydrogen donor charged surface area (HDCA) or HDCA divided by the square root of the 

TMSA, other quantum-chemical descriptors concerned with molecular energies (LUMO 
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energy, LUMO+1 energy, and min net atomic charge), and the surface weighted charged 

partial surface area. 

 BG-QSPR Model 

Previous work [65] has shown that an integrated approach employing both 

theoretical and QSPR models is very capable of predicting saturated vapor pressures of 

pure fluids over a temperature range.  The integrated approach employs a theoretical 

framework to develop the model that adequately describes the physical behavior of the 

fluid and QSPR to generalize the parameters in the theoretical model.   

A preliminary study was done to develop an improved, integrated QSPR model 

based on the Bader-Gasem equation of state (BG EOS) [19].  Due to the lack of available 

extended temperature data, application of this model has previously been limited to a 

small database, but those initial results of 3.5 %AAD show marked improvement 

compared to models developed without a theoretical framework.    

Using the current database, molecular structures for which data existed at 

extended temperature ranges were selected for validating the BG EOS as a theoretical 

backbone for a neural network model.  In cases of multiple single temperature data 

points, averaging was used to generate a single datum, and simple plots of inverse 

temperature value versus the natural log activity coefficient value, which should be linear 

at infinite-dilution, were used to provide data consistency over a given temperature range.  

These plots should be linear according to the definition of an activity coefficient of 

species i in a solution given by the following equation, which is in the form of an 

equation for a straight line: 
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where T is the temperature, R is the universal gas constant, and GE is the partial excess 

Gibbs energy.  The final set of data for the BG EOS case study included 332 data points, 

which were randomly assigned to cross validation (10%), prediction (20%), and training 

(70%) sets, of a diverse collection of 79 molecular structures as shown in Table 11-10.   

The two adjustable parameters, C12 and D12, in the BG EOS were obtained by 

regression.  These values were then employed in a Type III analysis using the same 

descriptors and methodology as described previously.  As shown in the upper portion of 

Table 11-11, for C12, the %AAD for the training, prediction, and cross validation sets 

were 1.21, 1.98, and 0.41, respectively and for D12 were 0.17, 0.10, and 0.15, 

respectively.  Two structures, n-methylpyrrolidone and n,n-dimethylformamide, which 

account for a large portion of the prediction set error, were deleted from the database and 

not included in the final results.  With increasing temperature, these structures have 

natural log activity coefficient values ranging from negative to positive values, and this 

behavior is unique to the database.  The neural network model did not manage this 

behavior very well, and almost all the positive, higher temperature, data points were 

contained in the prediction and cross validation sets, which may have resulted in poor 

training.  For an analogous reason, data from 1,3-butanediol and 1,2-butendiol were 

deleted due to inadequate training since all of the high temperature data appeared only in 

the prediction and cross validation sets.  Due to the limited amount of higher temperature 

data available for the various structures in the database, re-randomization of the data into 

training, prediction, and cross validation sets was not attempted since this problem was 

expected to reoccur with other structures. 
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These generated values for C12 and D12 were used to calculate infinite-dilution 

activity coefficients with the BG EOS, which were then compared to the infinite-dilution 

activity coefficient values from the regressed parameters.  As shown in Table 11-11, the 

%AAD in ln γ∞ for the training, prediction, and cross validation sets was 3.23, 3.35, and 

4.26, respectively.  Figures 11-15 - 11-17 present the graphical results of the BG EOS 

case study for C12, D12, and the infinite-dilution activity coefficient, respectively.  Details 

involving these case studies are available from the Thermodynamics Group of the School 

of Chemical Engineering at Oklahoma State University [61, 66]. 

 Model Comparisons 

Model comparisons are presented in Table 11-12.  One class of models, which 

includes UNIFAC and ASOG, involves the calculation of mixture properties using 

molecular functional groups and their interactions with other functional groups.  Zhang et 

al. [67] developed a UNIFAC modification and compared their predictive results for 

approximately 400 data points to those from ASOG, UNIFAC, and other UNIFAC 

modifications.  The absolute average deviation in γ∞ was 12.7% for the Zhang et al. 

modification compared to 56.1, 65.3, 45.4, 57.0, 55.6, and 53.1% for modified UNIFAC 

(Dortmund), modified UNIFAC (Lyngby), modified UNIFAC (Hooper), UNIFAC-LLE, 

UNIFAC, and ASOG, respectively.  Another group contribution model, Group 

Contribution Solvation model (GCS), resulted in a predictive absolute error difference of 

0.5 in lnγ∞ for approximately 50 molecules consisting of alkanes, alkanols, and methyl-

ketones at a single temperature of 298 K [68].  A QSPR study of 325 molecules restricted 

to 298 K [69] resulted in an absolute difference of 0.52 and 0.02 in lnγ∞ for the training 

and test set, respectively.   
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Another class of models, which includes the MOSCED and SPACE equations, is 

based on regular solution theory and involves the determination of mixture properties 

from molecular interactions.  While an evaluation of MOSCED to aqueous systems is 

unavailable, Howell et al. [21] reported that for 78 varied solute compound classes in 

alkanes, alcohols, and akylnitriles MOSCED and a modified MOSCED provided overall 

prediction errors in γ∞ of 13% and 15%, respectively.  Earlier work [70] with the 

MOSCED model found similar errors when compared to UNIFAC.  SPACE, which was 

developed from MOSCED, was applied to aqueous systems [71], and an error of 70% 

was found in fitting γ∞ data at 298K.  

In a related study involving prediction of hydrocarbon and water mutual 

solubilities over an extended temperature range, Klamt [72] used an a priori prediction 

method, conductor-like screening model – real solvents (COSMO-RS).  While quantified 

results were not provided, the model was capable of qualitatively reproducing the 

hydrocarbon and water mutual solubility trends of 6-10 carbon n-alkanes, 1-alkenes, 

alkylbenzenes, and alkylcyclohexanes.  Larger deviations were shown at temperatures 

below 298 K for hydrocarbon solubility in water and above 473 K for water solubility in 

water.  

The predictive results, with the exception of CS1, for the Type III analyses from 

this work are better than or similar to the various UNIFAC modifications, with the 

exception of the Zhang et al. modification, and ASOG results.  There are very large errors 

associated with the directly measured small chain alkanes (C5-C8) present in the 

predictive set of CS1, which contributes to the large overall error.  The Zhang et al. 

modification demonstrated lower predictive errors, but the database used in their work 



 142

was limited to data at 298 K and they refined multiple data reported for a single 

compound.  For all the case studies, the absolute average deviation for fitting the γ∞ data 

was much smaller than the value found using the SPACE equation. 

With use of the BG EOS approach, the absolute average deviations for predictions 

were 3.35% and 12.4% in lnγ∞ and γ∞, respectively, which demonstrates considerably 

better predictive capability than any of the models previously discussed with the 

exception of Zhang et al. modification.  A minor improvement is realized when compared 

to the Zhang et al. modification; however, a significant distinction between the models is 

the lack of temperature dependence in the Zhang et al. modification, which uses data 

collected at a single temperature.  The BG-QSPR model, which accounts for temperature 

dependence and is not based on single temperature data, provides improved predictive 

capability when compared to the single temperature model constructed by Zhang et al. 

The integrated BG-QSPR approach, with a predictive absolute difference of 0.11 

in lnγ∞, performs better than the GCS [68] and QSPR [69] work described previously.  

These results indicate that an integrated approach utilizing a theoretical framework with a 

QSPR model is an effective method for the prediction of infinite-dilution activity 

coefficients and, coupled with earlier work [65], provides additional evidence for the 

validity of an integrated approach. 
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Table 11-1.  Numerical Analysis of the Database 

Type Data Error Data
Hydrocarbon-in-water   
     Direct Measurement 776 438
     Indirect Measurement 388 0
Water-in-hydrocarbon 236 66

 

 

Table 11-2.  Database Hydrocarbon Structures 

Hydrocarbon-in-water Water-in-hydrocarbon 
Direct  Indirect  

Alkanes Aliphatic Alkanes Aliphatic Alkanes 
Alkenes Cyclic Alkanes Aromatic Hydrocarbons 
Aromatic Hydrocarbons Aliphatic Alkenes Halogenated Hydrocarbons
Halogenated Hydrocarbons Cyclic Alkenes Alcohols 
Alcohols Alkynes Ketones 
Phenol and Derivatives Monocyclic Aromatics Acids 
Aldehydes Polycyclic Aromatics Aldehydes 
Ketones Halogenated Hydrocarbons Ethers 
Acids Alcohols Esters 
Esters Phenol Derivatives Compounds with Nitrogen 
Ethers Ketones   
Amines and Amides Acids   
Nitriles Esters   
Nitro Compounds Ethers   
Compounds with Sulfur Aldehydes   
  Amines and Amides   
  Nitro Compounds   
  Compounds with Sulfur   
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Table 11-3.  Summary of Case Studies 

Case Study Description Number of Values

CS1-A hydrocarbon-in-water data with error 
points – direct methods   

     Data Values 776
     Error Values 438
     Total 1214

CS1-B hydrocarbon-in-water data – indirect 
methods   

     Data Values 388
     Total 388

CS2 water-in-hydrocarbon data with error 
estimates  

     Data Values 236
     Error Values 66
     Total 302
CS3 hydrocarbon-in-water data  
     DIRECT 776
     INDIRECT 388
     WATER 236
     Total 1400
CS4 matched data – hydrocarbon structure  
     DIRECT 410
     INDIRECT 30
     WATER 154
     Total 594
CS5 matched data – water structure  
     DIRECT 410
     INDIRECT 30
     WATER 154
     Total 594
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Table 11-4.  Functional Group Constructed Descriptors 

Descriptor Functional Group  Descriptor Functional Group 
FG1 CH3  FG25 NH2 
FG2 CH2  FG26 NH 
FG3 CH  FG27 N 
FG4 C  FG28 -N= 
FG5 =CH2  FG29 -S- 
FG6 =CH  FG30 -CHO 
FG7 =C  FG31 COOH 
FG8 =C=  FG32 COO 
FG9 #CH  FG33 =O 
FG10 #C  FG34 -O-® 
FG11 CH2®  FG35 O=C® 
FG12 CH®  FG36 NH® 
FG13 C®  FG37 -N=® 
FG14 =CH®  FG38 N® 
FG15 =C®  FG39 -S-® 
FG16 F  FG40 C#N 
FG17 Cl  FG41 NO2 
FG18 Br  FG42 SH 
FG19 I  FG43 Ortho 
FG20 OH  FG44 Meta 
FG21 OH (phenol)  FG45 Para 
FG22 -O-  FG46 cis 
FG23 O=C  FG47 trans 
FG24 S=C  FG48 P=O 
Where ® indicates a ring structure and # indicates a triple bond 

 

Table 11-5.  Constructed Descriptors 

Descriptor Name 
(this work) 

Descriptor Transformation 

Con1 Molecular volume (Molecular volume)2 

Con2 Gravitational index (Gravitational index)0.33 
Con3 Gravitational index (Gravitational index)0.5 
Con4 Molecular weight log(Molecular weight) 
Con5 Relative molecular weight log( Relative molecular weight) 
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Table 11-6.  Summary of Type I Results 

Case Study Results 
CS1-A CS1-B CS2 CS3 CS4 CS5 

R2 with all Data at 
25 Parameters 0.980 0.960 0.980 0.935 0.904 0.906 

Numbers of Outliers 64 21 17 72 40 46 
% of Outliers 5.3 5.4 5.6 5.1 6.7 7.7 

 

 

 

Table 11-7.  Summary of Type I Results after Outlier Elimination 

Case Study 
Results 

CS1-A CS1-B CS2 CS3 CS4 CS5 
R2 with Reduced 
Data Set and 25 
Parameters 

0.988 0.977 0.988 0.969 0.956 0.951 

R2 at 14 
Parameters 0.979 0.962 0.975 0.949 0.951 0.936 

R2 at 12 
Parameters 0.976 0.953 0.970 0.937 0.948 0.932 

R2 at 10 
Parameters 0.971 0.947 0.954 0.934 0.942 0.923 

R2 at 8   
Parameters 0.962 0.924 0.936 0.920 0.932 0.906 

R2 at 6   
Parameters 0.943 0.900 0.896 0.898 0.910 0.872 

R2 at 4   
Parameters 0.888 0.862 0.827 0.787 0.822 0.805 
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Table 11-8.  Summary of Type I, Type II, and Type III Results 

 CS1 CS2 CS3 CS4 CS5 
TYPE I 
Descriptors   12 10 10 12 
R^2   0.970 0.934 0.942 0.932 
           
TYPE II 
Descriptors 6 5 3 3 3 
R^2 0.955 0.903 0.956 0.960 0.893 
 Results in γ∞ 
 %AAD RMSE %AAD RMSE %AAD RMSE %AAD RMSE %AAD RMSE

Training 
Set 22.2 1.04 170.5 0.78 34.1 0.89 31.1 0.55 43.6 0.94

Prediction 
Set 21.2 0.98 116.0 0.95 17.4 0.68 21.3 0.54 41.9 1.08

Cross 
Validation 

Set 
17.4 0.87 112.0 0.93 19.1 0.78 20.6 0.61 36.1 1.34

           
TYPE III 
R^2 0.991 0.965 0.992 0.984 0.949 
 Results in γ∞ 
 %AAD RMSE %AAD RMSE %AAD RMSE %AAD RMSE %AAD RMSE

Training 
Set 30.2 0.45 28.6 0.35 30.4 0.39 23.3 0.39 52.8 0.65

Prediction 
Set 119.1 0.94 33.4 0.72 35.1 0.52 48.3 0.51 42.8 1.06

Cross 
Validation 

Set 
71.0 0.82 37.1 0.88 31.7 0.57 33.1 0.44 44.2 1.29

 Results in ln γ∞ 
 %AAD %AAD %AAD %AAD %AAD 

Training 
Set 7.6 28.5 13.4 14.1 34.3 

Prediction 
Set 16.4 25.9 12.9 19.5 24.8 

Cross 
Validation 

Set 
13.8 36.6 12.4 17.6 34.1 
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Table 11-9.  Descriptors Used in the Type III Analyses 

Type III Descriptors 
CS1 CS2 CS3 CS4 CS5 

FNSA-3 Fractional 
PNSA (PNSA-3/TMSA) 
[Quantum-Chemical 
PC] 

Average 
Complementary 
Information content 
(order 0) 

HA dependent HDCA-
2/SQRT (TMSA) 
[Quantum-Chemical 
PC] 

DPSA-3 Difference in 
CPSAs (PPSA3-
PNSA3) [Quantum-
Chemical PC] 

HA dependent HDCA-
2/TMSA [Quantum-
Chemical PC] 

FG13 BP FGorg BP Number of O  atoms 

exch. eng. + e-e rep. 
for a C-O bond  

DPSA-3 Difference in 
CPSAs (PPSA3-
PNSA3) [Zefirov's PC]

FG21 
count of H-donors sites 
[Quantum-Chemical 
PC] 

HA dependent HDSA-1 
[Zefirov's PC] 

FG17 FG17 FG24 FG FG 

BP Final heat of formation 
/ # of atoms (Gravitational Index)0.33 Average Information 

content (order 0) 
1X GAMMA 
polarizability (DIP) 

HA dependent HDCA-
2/TMSA [Zefirov's PC] 

HA dependent HDCA-
1/TMSA [Zefirov's PC]

HA dependent HDCA-
1 [Quantum-Chemical 
PC] 

FG14 Gravitation index (all 
bonds) 

HACA-2/TMSA 
[Zefirov's PC] 

HACA-1 [Quantum-
Chemical PC] 

Complementary 
Information content 
(order 0) 

FG32 
Topographic electronic 
index (all bonds) 
[Zefirov's PC] 

Min partial charge for a 
C  atom [Zefirov's PC] 

PPSA-3 Atomic charge 
weighted PPSA 
[Quantum-Chemical 
PC] 

WNSA-1 Weighted 
PNSA 
(PNSA1*TMSA/1000    
) [Quan. Chem. PC] 

FPSA-3 Fractional 
PPSA (PPSA-3/TMSA) 
[Zefirov's PC] 

WNSA-1 Weighted 
PNSA 
(PNSA1*TMSA/1000) 
[Quan. Chem. PC] 

Max n-n repulsion for a 
C-H bond 

HACA-2/TMSA 
[Zefirov's PC] 

Kier&Hall index (order 
1) 

Tot molecular 1-center 
E-N attraction 

Max resonance energy 
for a C-O bond 

Min atomic state 
energy for a C atom logP LUMO energy HACA-2 [Zefirov's PC] Max SIGMA-PI bond 

order 
Min e-e repulsion for a 
O atom 

Max resonance energy 
for a C-Cl bond LUMO+1 energy HACA-2/TMSA 

[Zefirov's PC] 
Max total interaction 
for a C-Cl bond 

Min nucleoph. react. 
index for a F atom 

Min e-n attraction for a 
O atom 

Max total interaction 
for a H-O bond 

Max SIGMA-PI bond 
order 

Min nucleoph. react. 
index for a Cl atom 

logP Min net atomic charge 
for a O atom Min net atomic charge Internal entropy (300K) Min total interaction for 

a C-C bond 
Min resonance energy 
for a Br-C bond 

Min partial charge for a 
O  atom [Zefirov's PC]

Min n-n repulsion for a 
C-O bond 

Kier&Hall index (order 
2) 

min(#HA, #HD) 
[Zefirov's PC] 

MP Polarity parameter 
(Qmax-Qmin) 

No. of occupied 
electronic levels logP Kier&Hall index (order 

0) 

Randic index (order 1) HACA-2/SQRT(TMSA) 
[Zefirov's PC] Randic index (order 0) LUMO+1 energy 

HA dependent HDCA-
1 [Quantum-Chemical 
PC] 

PNSA-1 Partial 
negative surface area 
[Zefirov's PC] 

RNCS Relative neg. 
charged SA 
(SAMNEG*RNCG) 
[Quan.-Chem. PC] 

TMSA Total molecular 
surface area [Zefirov's 
PC] 

Image of the Onsager-
Kirkwood solvation 
energy  

RPCG Relative 
positive charge 
(QMPOS/QTPLUS) 
[Zefirov's PC] 

Relative number of O  
atoms 

Topographic electronic 
index (all bonds) 
[Zefirov's PC] 

Tot molecular 2-center 
resonance energy Molecular volume Tot hybridization comp. 

of the molecular dipole

Vib enthalpy (300K) Tot heat capacity 
(300K) / # of atoms 

Vib heat capacity 
(300K) Tot entropy (300K) HACA-2/TMSA 

[Zefirov's PC] 

TMSA Total molecular 
surface area [Zefirov's 
PC] 

Translational entropy 
(300K) / # of atoms 

Kier&Hall index (order 
0) 

HA dependent HDCA-
2 [Quantum-Chemical 
PC] 

WNSA-3 Weighted 
PNSA 
(PNSA3*TMSA/1000) 
[Zefirov's PC] 
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Table 11-10.  Molecules in the BG EOS Case Study 

1,1,1,2-Tetrachloroethane  Acetone  Iso-Butyl alcohol 
1,1,1-Trichloroethane  Acetonitrile  m-Cresol 
1,1,2,2-Tetrabromoethane  Acrylonitrile  m-Dichlorobenzene 
1,1,2,2-Tetrachloroethane  Aniline  Methanol 
1,1,2-Trichlorethane  Benzene  Methyl Acetate 
1,1-Dichloroethene  Bromoform  Methyl Formate 
1,2,3-Trimethylbenzene  Butyl Acetate  m-Xylene 
1,2,4-Trimethylbenzene  Butyraldehyde  Nitromethane 
1,2-Dibromoethane  Carbon Tetrachloride  o-Cresol 
1,2-Dichloroethane  Chlorobenzene  o-Xylene 
1,2-Dichloropropane  Chloroform  p-Cresol 
1,3,5-Trimethylbenzene  Cis 1,2-Dichloroethene  p-Dichlorobenzene 
1,4-Butanediol  Dibromethane  Pentane 
1-Butanol  Dichloromethane  Phenol 
1-Chloropropane  Dimethylsulfoxide  Piperidine 
1-Propanol  Ethanol  Propionaldehyde 
2,3-butanediol  Ethyl Acetate  Propyl Acetate 
2,4-Pentanedione  Ethyl Bromide  Propyl Formate 
2-Butanol  Ethyl Ether  Propylamine 
2-Butanone  Ethyl Formate  p-xylene 
2-Butoxy ethanol  Ethyl Iodide  Pyridine 
2-Heptanone  Ethylamine  Tert-Butanol 
2-Pentanol  Ethylbenzene  Tetrahydrofuran 
2-Propanol  Formic Acid  Toluene 
3-Pentanone  Heptane  Trans 1,2-Dichloroethene
Acetaldehyde  Hexane  Trichloroethene 
Acetic Acid     
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Table 11-11.  Summary of Bader-Gasem EOS Case Study 

Bader-Gasem EOS 
  QSPR Model Results for C12 QSPR Model Results for D12

 %AAD %AAD 
Training Set  1.21 0.17 
Prediction Set 1.98 0.10 
Cross Validation Set 0.41 0.15 

 
Comparison of BG-QSPR results to experimental values in ln γ∞ 

 
C12 from QSPR and 
D12 from regression

D12 from QSPR and 
C12 from regression 

C12 and D12 from QSPR 

  %AAD %AAD  %AAD  
Training Set 1.15 3.25 3.23 
Prediction Set 2.49 3.50 3.35 
Cross Validation Set 1.86 3.46 4.26 

 
Comparison of BG-QSPR results to experimental values in γ∞

 

 
C12 from QSPR and 
D12 from regression

D12 from QSPR and 
C12 from regression 

C12 and D12 from QSPR 

 %AAD %AAD %AAD  
Training Set 7.90 11.7 15.2 
Prediction Set 7.60 11.9 12.4 
Cross Validation Set 5.97 13.4 14.4 

 

Table 11-12.  Model Comparisons 

Literature Model  This Work 
%AAD in γ∞ 

modified UNIFAC (Zhang) 12.7  QSPR  
modified UNIFAC (Dortmund) 56.1       CS1 119.1 
modified UNIFAC (Lyngby) 65.3       CS2 33.4 
modified UNIFAC (Hooper) 45.4       CS3 35.1 
UNIFAC-LLE 57.0       CS4 48.3 
UNIFAC 55.6       CS5 42.8 
ASOG 53.1  BG-QSPR 12.4 
MOSCED 13    
modified MOSCED 15    
SPACE 70    
     

Absolute Difference in ln γ∞ 
GCS 0.5  BG-QSPR 0.11 
QSPR (Giralt) 0.52    
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Figure 11-1.  Infinite-Dilution Activity Coefficients of CS3 Case Study Showing Outliers 

Number of Parameters

0 5 10 15 20 25 30

R
2

0.75

0.80

0.85

0.90

0.95

1.00

Optimum number of parameters

 

Figure 11-2.  Optimum Number of Descriptors for the CS3 Case Study 
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Figure 11-3.  Infinite-Dilution Activity Coefficients of CS3 Case Study (Type I) using 
Ten Descriptors 
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Figure 11-4.  Infinite-Dilution Activity Coefficients of CS1 Case Study (Type II) 
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Figure 11-5.  Infinite-Dilution Activity Coefficients of CS2 Case Study (Type II) 
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Figure 11-6.  Infinite-Dilution Activity Coefficients of CS3 Case Study (Type II) 



 158

Experimental ln γ∞

-2.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00

C
al

cu
la

te
d 

ln
 γ

∞

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00
3 Parameters
R2 = 0.96
%AAD = 10.4

Training Set
Prediction Set
Cross Validation Set

CS4 Case Study
Type II Analysis

 

Figure 11-7.  Infinite-Dilution Activity Coefficients of CS4 Case Study (Type II) 
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Figure 11-8.  Infinite-Dilution Activity Coefficients of CS5 Case Study (Type II) 
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Figure 11-9.  Contour Plot of Cross Validation RMSE of CS3 
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Figure 11-10.  Infinite-Dilution Activity Coefficients of CS1 Case Study (Type III) 
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Figure 11-11.  Infinite-Dilution Activity Coefficients of CS2 Case Study (Type III) 

Experimental ln γ∞

-5.00 0.00 5.00 10.00 15.00 20.00 25.00

C
al

cu
la

te
d 

ln
 γ

∞

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

Training set
Prediction set
Cross validation set

CS3 Case Study
Type III Analysis

 

Figure 11-12.  Infinite-Dilution Activity Coefficients of CS3 Case Study (Type III) 
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Figure 11-13.  Infinite-Dilution Activity Coefficients of CS4 Case Study (Type III) 
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Figure 11-14.  Infinite-Dilution Activity Coefficients of CS5 Case Study (Type III) 
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Figure 11-15.  C12 Parameter of BG EOS Case Study 
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Figure 11-16.  D12 Parameter of BG EOS Case Study 
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Figure 11-17.  Infinite-Dilution Activity Coefficients of BG EOS Case Study 
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Chapter 12. Conclusions and Recommendations 

12.1 Conclusions  

The objectives of the modeling portion of this work were to (a) develop a 

quantitative structure-property relationship (QSPR) for prediction of i
∞γ  values of 

hydrocarbon-water systems, (b) evaluate the efficacy of QSPR models using multiple 

linear regression analyses and back propagation neural networks, (c) develop a theory 

based QSPR model, and (d) evaluate the ability of the model to predict aqueous and 

hydrocarbon solubilities at multiple temperatures.  Based on the present work, the 

following conclusions may be made: 

1.  Both Type II (nonlinear descriptor reduction and linear modeling) and Type III 

(nonlinear descriptor reduction and nonlinear modeling) models demonstrated 

substantially improved predictions when compared to the Type I (linear descriptor 

reduction and linear modeling) models.   

2.  Non-linear models for the case studies investigated showed either better or 

similar performance in predicting infinite-dilution activity coefficients when compared to 

the linear Type II models, which did employ a descriptor set reduced in a non-linear 

fashion.   

3.  The resulting descriptor set obtained for the Type III analysis provides insight 

into the relationship between structural molecular features and physical properties of an 

organic molecule.   
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4.  Among the final descriptor set were user added descriptors including various 

functional group parameters (FG13, FG14, FG17, FG21, FG24, and FG32), constructed 

descriptors, which are based on the functional group parameters of each molecule (FG 

and FGorg), boiling point (BP), octanol-water partition coefficient (logP), melting point 

(MP), and a mathematical transformation of the gravitational index.   

5.  A theoretical backbone (using the Bader-Gasem equation-of-state), which 

accounts for temperature dependence in the data, was combined with QSPR to provide a 

model which provided significantly improved predictions relative to other available 

models.   

12.2 Recommendations 

Hybrid models, which involve the use of descriptors obtained from linear methods 

to develop non-linear models, are increasingly being employed due to the decrease in 

computational time required when using only non-linear methods.  The Type III models 

developed in this study were generally satisfactory.  For example, the most general model 

developed for predicting γ∞ of hydrocarbon-water systems, CS3 provided predictions 

with 12.9 %AAD (ln γ∞) and a R2 of 0.992.   

While the prediction of this model compared favorably to the majority of other 

predictive models found in literature, the model did not account for temperature 

dependence.  An attempt to include a temperature descriptor failed when the descriptor 

was deemed insignificant in every case study during the Type I analyses.  The addition of 

a theoretical framework, which accounts for temperature dependence, is a viable solution 

to this problem.  Addition of the Bader-Gasem equation-of-state to account for 
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temperature dependence provided predictions with 3.35 %AAD (ln γ∞).  There are, 

however, other aspects of this study that, if addressed, may improve the overall predictive 

and the general nature of the models.   

1.  The descriptors currently given in the literature and used in software packages 

do not adequately describe the relationship between molecular structure relationship and 

γ∞, but the use of additional constructed or mathematically transformed descriptors may 

improve model predictions.  Careful analysis of the spectrum of available models may 

provide useful suggestions or insight in the development of such descriptors.  

2.  In order to avoid skewing the training during modeling development, a critical 

review of the database may be necessary to both reduce the number of data points for 

particular molecules and establish a more accurate value when a wide range in data 

values exists at a given temperature.   

3.  The lack of infinite-dilution activity coefficients over wide temperature ranges 

and of water-in-hydrocarbon data may be remedied by the addition of either new 

experimental data or “pseudo-data” generated through computational methods such as 

molecular simulation.  

4.  To further validate the BG-QSPR model, an additional database for secondary 

predictions should be assembled. 
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Appendix A. Standard Operating Procedure 

 

 The collection of operating procedures, sampling methods, and analytical 

techniques, which accompany the experimental apparatus used in this study to obtain 

liquid-liquid equilibrium data, are described in this appendix.  Figure A-1 presents a 

schematic of the experimental apparatus. 

A.1 Initialization 

 Pressurization of the Backpressure Regulator 

Before sampling at elevated temperatures and pressures, the hydrocarbon-water 

system must be raised to a pressure greater than the mixture vapor pressure.  By 

application of a nitrogen blanket to the system, controlled by a backpressure regulator 

(BPR), a sufficiently higher pressure is obtained.  In order to control the pressure, the 

BPR must be “loaded” to the desired system pressure using the following procedure: 

1. Allow nitrogen gas flow to the BPR by turning the Whitey three-way valve (V9). 

2. Turn the setscrew on the BPR labeled, “load,” counterclockwise.  This allows 

nitrogen to fill the diaphragm of the BPR. 

3. The desired BPR pressure is reached by increasing the pressure from the nitrogen 

source.  The pressure gauge (P4) will reflect changes in pressure. 

4. When the desired experimental pressure is reached, turn the setscrew on the BPR 

labeled, “load,” clockwise until closed. 
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 Isolation of the Apparatus 

Before pressurization of the system, the apparatus must be isolated from the 

atmosphere by the following procedure: 

5. Prevent nitrogen ventilation to the atmosphere by closure of the needle valves (V6 

and V7) and rotation of the three-way valve (V4). 

6. Direct the organic phase sample flow to the trash collection cell (C2) by 

manipulation of the three-way valve (V2). 

7. Connect the water phase sample line to the three-way valve (V8), via a 0.318 cm-

o.d. tubing sleeve. 

8. After tightening the tube fittings on the connection, turn V8 such that the sample 

tubing is opened to the system pressure.  This acts as a shutoff valve for the water 

phase sample. 

 Pressurization of the System 

The system may now be pressurized.  The apparatus is designed so the BPR is set 

at the desired pressure, and the nitrogen source regulator is set at a slightly higher 

pressure.  This effectively controls the system pressure by allowing any excess nitrogen 

to vent to the atmosphere at the BPR.  The following steps should be taken to pressurize 

the system:  

9. Allow nitrogen flow to the system by turning V9. 

10. Adjustment of the system pressure may be accomplished by turning the regulator 

on the nitrogen source.  The pressure readout (P1) will reflect the change in 

pressure. 
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11. If pressure at the BPR has been set too high, the pressure may require a reset to a 

lower system pressure in order for the pressure to be accurately controlled. 

12. Pressure can be lowered in the BPR by turning the setscrew on the BPR labeled, 

“vent,” counterclockwise.  The pressure gauge (P4) will reflect the change in 

pressure. 

13. When the desired system pressure has been reached, close the vent by turning the 

setscrew clockwise. 

 Preparation for Sample Collection  

With the adjustments to the system pressure finalized, the apparatus is readied for 

sample collection by the following procedures: 

14. Allowing three hours for thermal equilibration, the oven temperature is set to the 

desired temperature. 

15. After temperature stabilization, the duplex pump (DP1) is engaged and allowed to 

flush the system with at least one system volume (120 cm3) of the hydrocarbon-

water mixture.  The pump should never be started against pressures in excess of 

6.9 MPa (1000 psi) and should never be operated without fluids present. 

16. Vent the 0.159 cm-o.d. stainless steel tubing (water phase sample) by opening V8 

to the atmosphere.  When venting, a waste bottle is utilized to capture the small 

amount of water phase sample that may exit from V8. 

17. The water phase sample line from V8 is removed, which allows the water phase 

to exit from the bottom of the phase separation cell (labeled as such in Figure 

A-1) and through the water phase sample tubing. 



 180

18. Adjustment of the metering valve (MV1) inside the oven controls the amount of 

water phase exiting the phase separation cell.  While the rate at which the water 

phase exits the phase separation cell is not critical, the hydrocarbon-water 

interface must be kept at the level of the inlet, which corresponds to the center of 

the phase separation cell.  By maintaining the interface at this level, the water 

phase flow rate will be approximately one half the total flow rate.  The MV1 

should never be used as a shutoff valve as this will cause damage to the stem or 

packing and render the valve inoperable. 

 Preparation of the Sample Bottles  

After flushing the system with the hydrocarbon-water mixture and controlling the 

hydrocarbon-water interface near the inlet of the phase separation cell, the sample bottles 

are prepared according to the following procedures: 

19. Empty sample bottles, along with a cap and Teflon liner, are numbered and 

weighed. 

20. Add the extractant (decane or 2,2,4-trimethylpentane) or cosolvent (ethanol) to 

the empty sample bottles. 

21. The amount of extractant or cosolvent added is determined by weighing the 

sample bottles. 

22. Sample bottles for the aqueous phase sample collection, which contain the 

extractant, are placed in an ice bath.  The ice bath aids in the prevention of 

vaporization of the volatile hydrocarbon. 

23. A sample bottle containing the cosolvent is placed in the sampling cell (C1) with 

the organic phase sample tubing inserted in the bottle. 
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24. The cell is closed with the connected sample bottle. 

25. Pressurization of C1 is accomplished by directing the flow of nitrogen to C1 by 

closing the needle valve (V5) and turning the three-way valve (V3).  The pressure 

differential between the system pressure and C1 will result in the flow of nitrogen 

from both the system and the source, which causes a decrease in the system 

pressure.  Manipulation of V3 should occur slowly such that the flow of nitrogen 

into C1 is not greater than the flow of nitrogen from the nitrogen source; thus 

ensuring the system pressure does not decrease below the mixture vapor pressure. 

A.2 Sampling 

 Sample Collection 

After placing the organic phase sample bottle in C1 and pressurizing C1 to the 

elevated system pressure, the following steps are used to collect the sample: 

26. The organic phase sample is directed to the sample bottle in C1 through 

manipulation of V2. 

27. A sample bottle placed in an ice bath is capped with a cap and Teflon liner, which 

the water phase sample tube passes through into the bottle.  The bottle is capped 

to prevent contact with the atmosphere. 

28. Filling sample bottles to the neck reduces headspace and restricts vapor phase 

mass transfer to a minimum.  The liquid level in the water phase bottle can be 

determined visually, but since the organic phase sample is collected in a sightless 

cell, the liquid level in the organic phase bottle is determined from the organic 

phase flow rate. 
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29. When sampling of the water phase is completed, the sample tubing is removed 

and the cap is replaced with the original cap and liner from the initial weighing. 

30. When sampling of the organic phase is completed, V2 is used to direct the organic 

phase sample flow to C2. 

31. C1 is closed off from the flow of nitrogen by manipulation of V3. 

32. V5 is opened allowing the slow depressurization of C1.  Vaporization of the 

organic phase sample can occur if venting is rapid. 

33. Once C1 has been completely vented, open C1. 

34. Remove the organic phase sample bottle and cap with the original cap and liner 

from the initial weighing. 

A.3 Shut Down and Preventive Maintenance 

 Apparatus Shut Down 

After completion of sampling, the apparatus is shut down in a state where 

sampling can be resumed with minimal preparatory time. 

35. The water phase sample line is connected to V8. 

36. Pressurization of the water phase sample line is completed by opening V8 to the 

system pressure, which prevents liquid from leaking out of the apparatus from the 

water phase sample line. 

37. V2 is used to direct the flow of the organic phase to either C1 at system pressure 

or C2 at system pressure. 

38. Turn off DP1. 
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 Preventive Maintenance 

The apparatus requires little preventive maintenance, however, C2 does require 

periodic emptying by the following procedures: 

39. Ensure C1 is closed and direct the organic phase sample flow to C1 by the use of 

V2. 

40. Use the three-way valve (V4) to isolate C2 from the flow of nitrogen. 

41. Vent C2 by opening the needle valve (V6). 

42. After venting is complete, collect the waste contents of C2 by opening the needle 

valve (V7). 

43. After emptying C2, close V7 and V6. 

44. Pressurization of C2 is accomplished by directing the flow of nitrogen to C2 using 

V4.  The pressure differential between the system pressure and C2 will result in 

the flow of nitrogen from both the system and the source, which causes a decrease 

in the system pressure.  Manipulation of V4 should occur slowly such that the 

flow of nitrogen into C1 is not greater than the flow of nitrogen from the nitrogen 

source; thus ensuring the system pressure does not decrease below the mixture 

vapor pressure. 

A.4 Analysis 

 Preparation for Analysis  

After sample collection, the following procedures are followed in preparation for 

sample analysis: 
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45. The organic phase and water phase sample bottles are weighed to determine the 

sample weight. 

46. The sample bottles are vigorously shaken resulting in the homogenization of the 

hydrocarbon/water/ethanol mixture of the organic phase sample and the extraction 

of the hydrocarbon from the water phase sample. 

47. Refrigeration of the water phase for several hours allows the less dense extractant 

to separate from the water, and the chilled environment aids in the prevention of 

vaporization of the volatile hydrocarbon. 

 Sample Analysis 

The samples are analyzed using the following procedures: 

48. The organic phase may be analyzed immediately after collection. 

49. 0.003 cm3 (3 µL) of the homogenized organic phase is injected into the gas 

chromatograph (GC) for analysis.  Since the calibration involves the area ratio of 

water/ethanol versus the weight ratio of water/ethanol, the peaks of interest in the 

GC analysis of the organic phase are water and ethanol. 

50. After the water phase sample has separated into two phases (extractant phase and 

water phase), 0.003 cm3 (3 µL) of the extractant phase is injected into the GC for 

analysis.  Since the calibration is the weight ratio of hydrocarbon/extractant 

(decane or 2,2,4-trimethylpentane) versus the area ratio of 

hydrocarbon/extractant, the peaks of interest in the GC analysis of the water phase 

are the hydrocarbon and extractant. 

51. The syringe is rinsed with the solution to be analyzed, which prevents cross-

contamination between sample bottles. 
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Figure A-1.  Schematic Diagram of the Experimental Apparatus 
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Appendix B. Calibration Technique and Data 

 

The gas chromatograph (GC) is calibrated by one of two techniques.  For the 

aqueous phase (hydrocarbon in water) a serial dilution technique was utilized, and for the 

organic phase (water in hydrocarbon) individual external standards were employed.   

B.1 Aqueous Phase 

The serial dilution technique involves the dilution of a fixed amount of solute 

with increasing proportions of solvent through a series of dilutions.  The weights of the 

solute and solvent are recorded to determine the solute-to-solvent weight ratio of each 

dilution.  Using the GC, the mixtures are analyzed to obtain the corresponding solute-to-

solvent area ratio.  A calibration curve is produced, which yields the weight ratio as a 

function of the area ratio. 

 Procedure 

Dilutions of the hydrocarbon of interest (solute) in either decane or 2,2,4-

trimethylpentane (solvent) are prepared to calibrate the GC for the aqueous phase 

samples.  The following calibration procedure was employed: 

1. An empty 16 cm3 vial is weighed. 

2. The solvent is added to the vial 

3. The vial is weighed to obtain the weight of the solvent.   
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4. If the dilution is the first in the series, then pure solute is added to the vial, 

otherwise a portion of the previous dilution, the diluent, is added to the vial.  The 

vials are filled to the neck to reduce headspace evaporation effects. 

5. The vial is weighed to obtain the weight of the solute or the weight of the diluent.   

6. The same Hamilton 10 ml syringe is used to make each serial dilution.  In order to 

eliminate cross-contamination the syringe is rinsed with acetone between 

dilutions, allowed to air dry, and flushed with the diluent to be transferred before 

making the next dilution. 

7. Immediately after preparation, the solution is analyzed by gas chromatography 

using a Hamilton 10 µl syringe to inject 3 µl samples.  During analysis of the 

dilution, the vial is chilled in an ice bath to reduce evaporation.   

8. After completion of the analysis, the next dilution is made in a similar fashion 

repeating steps 1-6. 

 Material Balance 

A material balance is used to determine the mass of the solute and the mass of the 

solvent in each calibration mixture.  The weight ratio is the weight of the solute in the 

mixture, Ai, divided by the weight of the solvent in the mixture, Bi: 

           
i

i
i B

AWR =  (B-1)

If the mixture is first in the serial dilution, then the composition results from the addition 

of pure solute, Ai, and pure solvent, Bi; otherwise, the mixture composition reflects the 

addition of solvent and diluent, Di, which is a fraction, x, of the previous mixture 
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consisting of solute from the previous dilution, Ai-1, and solvent from the previous 

dilution, Bi-1, expressed as:                             

          ( )11 −− += iii BAxD  (B-2)

As the series of dilutions continues, the amount of solute in each dilution decreases; and 

Equation (B-1), may be written as: 
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Expressing Equation (B-2) in terms of Ai-1 gives: 
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but, substitution with Equation (B-1) results in: 
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and with rearrangement, 
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Solving for Ai-1, Equation (B-6) becomes: 
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Expressing Equation (B-2) in terms of Bi-1 gives: 
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Solving for Bi-1, Equation (B-9) becomes: 
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Combination of Equations (B-3), (B-7), and (B-10) results in a general equation 

for the calibration weight ratio as given by: 
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Rearrangement of Equation (B-11) gives: 
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where, WRi is the solute-to-solvent weight ratio, Ai is the weight of the pure solute, Bi is 

the weight of the pure solvent, WRi-1 is the solute-to-solvent weight ratio of the previous 

dilution, and Di is the weight of the diluent from the previous dilution added to the ith 

dilution.  Following this section, a sample calculation of the calibration is provided. 

The calibration data appear at the end of the appendix in Tables B-1 - B-3.  The 

uncertainty in the weight ratio was determined by propagated error analysis, as described 

in Appendix C.  The uncertainty was used to weight each data point in the nonlinear 

weighted-least-squares regression of the calibration data. 
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 Sample Calculation 

Toluene-Water 

1st Mixture  

 

A1 = 0.9578 grams B1 = 9.0486 grams WR0 = 0.0000  D1= 0.0000 

 

1059.0
0486.9
9578.0

1

1
1 ===

B
A

WR  

 

 

2nd Mixture 

 

A2 = 0.0000 grams B2 = 5.4519 grams WR1 = 0.1059  D2 = 4.8252 

 

( )( ) ( )( )
( )( ) 0471.0

8545.10
5110.0

8252.41059.014519.5
1059.08252.41059.010000.0

2 ==
++

++
=WR  

 

 

3rd Mixture 

 

A3 = 0.0000 grams B3 = 6.0905 grams WR2 = 0.0471  D3 = 4.0457 

 

( )( ) ( )( )
( )( ) 0183.0

4231.10
1906.0

0457.40471.010905.6
0471.00457.40471.010000.0

3 ==
++

++
=WR  

 

 

4th Mixture 

 

A4 = 0.0000 grams B4 = 5.0320 grams WR3 = 0.0183  D4 = 2.3742 
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4983.7
0434.0

3742.20183.010320.5
0183.03742.20183.010000.0
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5th Mixture 

 

A5 = 0.0000 grams B5 = 5.7385 grams WR4 = 0.0058  D5 = 3.1046 

 

( )( ) ( )( )
( )( ) 0020.0

8764.8
0180.0

1046.30058.017385.5
0058.01046.30058.010000.0
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B.2 Organic Phase 

The employment of external standards involves creating a series of standards with 

known chemical amounts covering the expected range of the quantity of interest.  For the 

organic phase analysis a desired solvent (ethanol) to solute (water) weight ratio (WR) 

was used with a constant solvent to sample (hydrocarbon + water) ratio (SSR) to 

calculate the amounts of ethanol, hydrocarbon, and water required for the calibration 

standard.  The weights of the solute and solvent are recorded to determine the solute-to-

solvent weight ratio of each standard.  Using the GC, the mixtures are analyzed to obtain 

the corresponding solute-to-solvent area ratio.  A calibration curve is produced, which 

yields the weight ratio as a function of the area ratio. 

 Procedure 

External standards containing the hydrocarbon of interest, ethanol (solvent), and 

water (solute) are prepared to calibrate the GC for the organic phase samples.  The 

following calibration procedure was employed: 
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1. An empty 1 oz bottle is weighed. 

2. Ethanol (solvent) is added to the empty bottle. 

3. The vial is weighed to obtain the weight of the solvent.   

4. Using the SSR and the weight of the solvent, the amount of the hydrocarbon of 

interest required is calculated and added to the bottle.  This assumes that the 

weight of water has a negligible contribution to the total sample weight.  During 

production of the standards, the bottles are filled nearly to the neck for the 

reduction of headspace evaporation effects. 

5. The vial is weighed to obtain the weight of the hydrocarbon.   

6. Using the WR and the weight of the solvent, the amount of solute (water) required 

for the calibration standard is calculated and added to the bottle. 

7. The bottle is shaken vigorously for a period of one minute to insure homogeneity.   

8. Immediately after preparation, the solution is analyzed by gas chromatography 

using a Hamilton 10 µl syringe to inject 3 µl samples.  During analysis of the 

dilution, the vial is chilled in an ice bath to reduce evaporation.   

9. After completion of the analysis, the next standard is made in a similar fashion 

repeating steps 1-8. 

 Material Balance 

A material balance is used to determine the mass of the solute and the mass of the 

solvent in each calibration standard.  The weight ratio is the weight of the solute in the 

mixture, Ai, divided by the weight of the solvent in the mixture, Bi: 

           
i

i
i B

AWR =  (B-14)
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A sample calculation of the weight ratio calibration is provided following this section.  

The calibration data appear at the end of this appendix in Tables B-1 - B-3.  The 

uncertainty in the weight ratio was determined by propagated error analysis, as described 

in Appendix C.  The uncertainty was used to weight each data point in the nonlinear 

weighted-least-squares regression of the calibration data. 

 Sample Calculation 

Toluene-Water 

1st Standard  

 

A1 = 0.0128 grams B1 = 5.5368 grams  

 

0023.0
5368.5
0128.0

1

1
1 ===

B
A

WR  

 

 

2nd Standard 

 

A1 = 0.0210 grams B1 = 5.3286 grams  

 

0039.0
3286.5
0210.0

1

1
1 ===

B
A

WR  

 

 

3rd Standard 

 

A1 = 0.3450 grams B1 = 5.0548 grams  
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0683.0
0548.5
3450.0

1

1
1 ===

B
A

WR  

 

 

4th Standard 

 

A1 = 1.4165 grams B1 = 7.4979 grams  

 

1889.0
4979.7
4165.1

1

1
1 ===

B
A

WR  

B.3 Calibration Results 

Results from the calibrations of the systems of interest are given in the following 

tables: 

Table B-1.  Calibration Data for the Benzene-Water System 

Benzene - Water Calibration 
Aqueous Phase 

Area Ratio Weight Ratio 
Uncertainty in the 

Weight Ratio 
0.1228 0.1019 0.00025 
0.0201 0.0093 0.00016 
0.0068 0.0031 0.00003 
0.0016 0.0007 0.00003 
0.0103 0.0047 0.00020 

   
Organic Phase 

Area Ratio Weight Ratio 
Uncertainty in the 

Weight Ratio 
0.0109 0.0060 0.00056 
0.1506 0.1007 0.00219 
0.0231 0.0134 0.00177 
0.0033 0.0012 0.00011 
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Table B-2.  Calibration Data for the Toluene-Water System 

Toluene-Water Calibration 
Aqueous Phase 

Area Ratio Weight Ratio 
Uncertainty in the 

Weight Ratio 
0.4817 0.1059 0.00580 
0.0856 0.0183 0.00291 
0.0288 0.0058 0.00030 
0.0099 0.0020 0.00005 

   
Organic Phase 

Area Ratio Weight Ratio 
Uncertainty in the 

Weight Ratio 
0.0049 0.0023 0.00020 
0.0078 0.0039 0.00036 
0.0683 0.0683 0.00137 
0.1892 0.1889 0.02474 
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Table B-3.  Calibration Data for the 3-Methylpentane-Water System 

3-Methylpentane - Water Calibration 
Aqueous Phase 

Area Ratio Weight Ratio 
Uncertainty in the 

Weight Ratio 
0.0905 0.0580 0.00092 
0.0282 0.0099 0.00082 
0.0177 0.0056 0.00027 
0.0035 0.0010 0.00008 
0.0405 0.0182 0.00084 

   
Organic Phase – High Area Ratio 

Area Ratio Weight Ratio 
Uncertainty in the 

Weight Ratio 
0.0170 0.0008 0.00006 
0.0259 0.0013 0.00006 
0.0347 0.0021 0.00019 
0.3629 0.0350 0.00070 
0.7953 0.0831 0.00528 

   
Organic Phase – Low Area Ratio 

Area Ratio Weight Ratio 
Uncertainty in the 

Weight Ratio 
0.0173 0.0008 0.00007 
0.0148 0.0004 0.00009 
0.0118 0.0001 0.00004 
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Appendix C. Propagated Calibration Error 

 

C.1 Introduction 

The calibration of the gas chromatograph involves known solute-to-solvent 

weight ratios, which are measured and given as a function of their respective solute-to-

solvent gas chromatograph area ratios.  A calculated weight ratio is a function of the 

weight measurements and the chromatographic area ratio. 

C.2 Uncertainty 

 The weight ratio, as a function of the weight measurements, is given in the 

simplified form of the governing material balance equation as: 

           
i

i
i B

A
WR =  (C-1)

where WRi is the solute-to-solvent weight ratio, Ai is the weight of the pure solute, and Bi 

is the weight of the pure solvent.  When utilizing serial dilutions, the simplified equation 

is expanded to reflect the addition of previous mixtures as shown: 

           ( )( ) ( )( )
( )( ) iii

iiii
i DWRB

WRDWRAWR
++

++
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11

1
1  (C-2)

where WRi-1 is the solute-to-solvent weight ratio of the previous dilution, and Di is the 

weight of the diluent from the previous dilution added to the ith dilution.  The dependence 

of the weight ratio on the area ratio is described by the calibrating equation:           
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           βα ii ARWR =  (C-3)

where ARi is the solute-to-solvent area ratio and α and β are regressed parameters. 

The propagated uncertainty in the weight ratio from Equation (C-3) is expressed 

in terms of variances as shown in the following equation: 
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This propagated uncertainty in the weight ratio may then be expressed in terms of 

fractional uncertainty: 
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If the weight ratios were exact, there would still exist error in the value calculated from 

the calibration relation due to the uncertainty in the area ratio obtained from the gas 

chromatograph.  The final term of Equation (C-5) accounts for this, and since this term is 

independent of any previous measurements, the uncertainty associated with the area ratio 

is not propagated. 
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C.3 Uncertainty Associated with the Weight of Pure Solute 

The partial derivative of WRi with respect to Ai is given as follows: 

           ( )( )

2

1

1

2

1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

−

−

iii

i

i

i

DWRB
WR

A
WR  (C-6)

This equation is divided by WRi
2 from Equation (C-2) to find the fractional uncertainty 

associated with the weight of pure solute added to the ith dilution.  The first term in 

Equation (C-5) then becomes: 
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C.4 Uncertainty Associated with the Weight of Pure Solvent 

The partial derivative of WRi with respect to Bi is as follows: 
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Dividing this equation by WRi
2 provides the fractional uncertainty associated with the 

weight of pure solvent added to the ith dilution, and the second term of Equation (C-5) 

then is shown as:             
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C.5 Uncertainty Associated with the Weight Ratio of the Diluent 

The partial derivative of WRi with respect to WRi-1 is: 
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The fractional uncertainty associated with the weight ratio of the i-1th dilution, the third 

term in Equation (C-5), is obtained by division of this equation by WRi
2 as follows: 
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C.6 Uncertainty Associated with the Weight of Diluent 

The partial derivative of WRi with respect to Di is: 
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The fractional uncertainty associated with the weight of the i-1th dilution added to the ith 

dilution, the fourth term of Equation (C-5), is determined by dividing this equation by 

WRi
2 as follows: 
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C.7 Uncertainty Associated with the Gas Chromatograph Area Ratio 

The partial derivative of the calibration equation, Equation (C-3), is given by 

taking the partial derivative of WRi with respect to ARi, as follows:       



 201

           ( )1−=
∂
∂ βαβ i

i

i AR
AR
WR

 (C-14)

This expression is divided by WRi to determine the fractional uncertainty associated with 

the gas chromatograph area ratio, the final term in Equation (C-5), as follows: 
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C.8 Total Fractional Uncertainty 

Combining Equations (C-7), (C-9), (C-11), (C-13), and (C-15) gives the total 

propagated fractional uncertainty in the weight ratio as shown by: 
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This uncertainty expression was used to provide weights for the weighted least 

squares regression of the calibration data for the calibration relation, Equation (C-3).  

Values of α and β were first estimated from an unweighted least squares regression and 

subsequently used in Equation (C-16).  An iterative procedure was then employed to 
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determine final values of the calibration constants and the weighting of the calibration 

data.  The variance in the weight measurements, 
iAσ , 

iBσ , and 
iDσ , was determined by 

repeated measurements and the variance in the area ratio, 
iARσ , value was determined 

from multiple analyses.  Since the uncertainty associated with the area ratio, the last term 

in Equation (C-16), is independent of any previous measurements, this uncertainty is not 

propagated.  Therefore, this term was not included when determining the variance in the 

weight ratio of the i-1th dilution, 
1−iWRσ . 

The total uncertainty is largely dependent upon the uncertainty associated with the 

gas chromatograph area ratio, the last term in Equation (C-16).  For the initial calibration 

dilutions and the external standard calibration mixtures, all other terms are negligible.  

For the final dilutions, or the mixtures lowest in concentration, the uncertainty associated 

with the gas chromatograph area ratio is approximately one-half the total uncertainty.   

C.9 Sample Calculation (Toluene-Water) 

Sample calculations are provided for the uncertainty of the first two solutions 

associated with the aqueous phase serial dilution calibration of the toluene-water system.  

If the calibration of interest involves external standards, then all calculations of 

uncertainty would be similar to those of the first example, Solution #1. 
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Solution #1 

A1 = 0.9578 grams B1 = 9.0486 grams WR0 = 0.0000  D1= 0.0000 grams 
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4.8072E-08 + 5.3861E-10 + 0.0000 + 0.0000 + 2.9395E-03 

= 2.9395E-03 

or, 

( )( )103-2.9395E
1

WRWR =σ  

= ( )( )1059.003-2.9395E  

= 5.7416E-03 
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This is the total uncertainty for the first dilution in the calibration, which is used to 

weight the first point in the weighted least squares regression of the calibration curve. 

Solution #2 (First Dilution) 

A2 = 0.0000 grams B2 = 6.0905 grams WR1 = 0.1059  D2= 4.0457 grams 
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= 2.630E-02 

or, 
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= 2.968E-03 

This is the total uncertainty for the second dilution in the calibration.  This value is used 

to weight the second point in the weighted least squares regression of the calibration 

curve.
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Appendix D. Solubility Calculations and Data 

 

Mutual solubilities are expressed as the mole fraction of solute in the sample.  

Since the weight of the solute in the sample is unknown, the solute-to-solvent weight 

ratio (WR), the solvent-to-sample weight ratio (SSR), and the molecular weights (MW) 

of the two species of interest, are used to calculate the solute mole fraction.  The resulting 

expression for the mole fraction of a binary system is as follows:   

           

( )( )

( )( )
11

1
1 1

MWMW
SSRWR
MW

SSRWR

x
+

=  (D-1)

where the subscript indicates either of the two species of interest.     

The solute-to-solvent weight ratio is given in the calibration equation as a 

function of the solute-to-solvent area ratio (AR), which is determined by gas 

chromatography.  The solvent-to-sample weight ratio is a ratio of the weight of the 

solvent added (ethanol in the organic phase and decane or 2,2,4-trimethylpentane in the 

water phase) to the weight of the sample collected. 

Each solubility measurement reported is an average of nine to fifteen 

measurements.  At each temperature studied, three samples were collected of each phase, 

and each phase sample was then analyzed a minimum of three times.  An example 

calculation is shown below. 
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D.1 Sample Calculation (Toluene-Water) 

Temperature = 350.9 K Pressure = 0.358 Mpa 
 

Aqueous Phase 

Sample # SSR AR WR Mole Fraction 
Toluene 

16 0.1421 0.02935 0.00606 1.671E-04 
16 0.1421 0.02972 0.00614 1.693E-04 
16 0.1421 0.02959 0.00611 1.685E-04 
16 0.1421 0.02963 0.00612 1.687E-04 
16 0.1421 0.02930 0.00605 1.668E-04 
17 0.1617 0.02840 0.00586 1.838E-04 
17 0.1617 0.02854 0.00589 1.847E-04 
17 0.1617 0.02818 0.00581 1.824E-04 
17 0.1617 0.02846 0.00587 1.842E-04 
18 0.1502 0.03074 0.00635 1.850E-04 
18 0.1502 0.03033 0.00626 1.825E-04 
18 0.1502 0.03056 0.00631 1.839E-04 
18 0.1502 0.03032 0.00626 1.825E-04 

Mole Fraction of Toluene = 1.776E-04 
 

Organic Phase 

Sample # SSR AR WR Mole Fraction 
Water 

13 0.36223 0.00926 0.00528 8.840E-03 
13 0.36223 0.00931 0.00533 8.907E-03 
13 0.36223 0.00992 0.0058 9.618E-03 
13 0.36223 0.01007 0.00591 9.793E-03 
14 0.30871 0.01264 0.00942 1.291E-02 
14 0.30871 0.01278 0.00956 1.309E-02 
14 0.30871 0.01319 0.00997 1.360E-02 
14 0.30871 0.01331 0.01009 1.375E-02 
16 0.37777 0.01178 0.00699 1.184E-02 
16 0.37777 0.01143 0.00671 1.142E-02 
16 0.37777 0.01121 0.00654 1.115E-02 
16 0.37777 0.01217 0.0073 1.232E-02 
16 0.37777 0.01230 0.00741 1.248E-02 

Mole Fraction of Water = 1.152E-02 
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Appendix E. Organic Phase Sample Analysis Correction 

 

E.1 Introduction 

Ethanol, which is employed as a cosolvent for the homogenization of the organic 

phase samples, is hygroscopic and contains a small amount of water (typically less than 

0.015% by GC analysis).  While the ethanol is stored over molecular sieves and contact 

with the atmosphere is kept to a minimum, a correction for the water introduced to the 

sample by the ethanol addition is necessary. 

The total weight of an ethanol aliquot, We, is the sum of the weight of the water 

fraction of the ethanol, Ww,e, and the weight of the ethanol fraction, We,e: 

           We = Ww,e + We,e (E-1)

The total weight of the organic phase sample, Ws, from the experiment is the sum of the 

weight of the water in the sample, Ww,s, and the weight of the hydrocarbon in the sample, 

Wh,s: 

           Ws = Ww,s + Wh,s (E-2)

Prior to defining the mass balance, several terms are defined, as follows: 

ERw-e = Ww,e/We,e; weight ratio of the water fraction of the ethanol, Ww,e, to the 

ethanol fraction of the ethanol, We,e 

ERw = Ww,e/We; mass fraction of water in the ethanol 

WRs-s = Ws/We; weight ratio of the sample, Ws, to the solvent, We 
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WRw-h = Ww,s/Wh,s; weight ratio of the water in the sample, Ww,s to the 

hydrocarbon in the sample, Wh,s 

MFw = Ww,s/Ws; mass fraction of water in the sample 

E.2 Material Balance 

The total weight of the ethanol in a given analysis mixture, consisting of an 

organic phase sample mixed with ethanol, is given as:      
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The total weight of the sample is expressed as: 
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                ( )hwsh WRW −+= 1,  (E-12)

The equation used in the calibration of the GC is: 

           βα ewew ARWR −− =  (E-13)

where, WRw-e is the weight ratio of the total amount of water to the total amount of 

ethanol, ARw-e is the area ratio of the total amount of water to the total amount of ethanol, 

and α and β are the calibration parameters. 

E.3 Organic Phase Sample Calculations 

After GC analysis, the results from an organic phase sample would then be 

calculated in the following manner:    

           βα sew ARWR =−  (E-14)

where, ARs is the area ratio of the total amount of water to the total amount of ethanol in 

the organic phase sample.  By mass balance, Equation (E-14) is expressed as: 
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                                            γβα ++= ss ARAR2  (E-17)

rearranging, 

           ( )( )
ss

wwss
w WR

ERERARARMF
−

−−++
=

12 γβα  (E-18)

While the calibration parameters in Equation (E-18), α, β, and γ are regressed 

from calibration data, the variables, ARs and WRs-s, are measured.  The mass fraction of 
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water in the ethanol, ERw, is unknown.  The value of ERw is accounted for by relating the 

weight ratio of the solvent to the sample of the calibration (SSRc) and sample (SSRs) 

mixtures, as shown by: 

           
s

e

ss
sc W

W
WR

SSR ==
−

1
,  (E-19)

where the subscript on SSR indicates either a calibration or sample mixture. 

E.4 Calibration Calculations 

Analyses of distilled water, ethanol, and hydrocarbon (of interest) external 

standard mixtures provide the data necessary for calibration.  Equation (E-18) is applied 

to the calibration in the following form: 

           βα s
w

wwss AR
ER

ERMFWR
=

−
+−

1
 (E-20)

but, for the calibration 

           
e

w
ss W

WWR =−  (E-21)

and 

           1=wMF  (E-22)

which results in the following expression: 

           βα c
w

wss AR
ER

ERWR
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−
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1
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where, ARc is the area ratio of the total amount of water to the total amount of ethanol in 

the calibration mixture. 
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E.5 Water Correction Calculations 

The mass fraction of water in the ethanol, ERw, is unknown and is accounted for 

by relating the weight ratios, SSRc and SSRs, of the calibration and sample mixtures.  The 

calibration standards are composed of distilled water, ethanol, and the hydrocarbon of 

interest.  These standards are prepared gravimetrically, and with due attention, a constant 

SSRc for each standard in the calibration set is maintained.  Ideally, just enough sample, 

distilled water, and hydrocarbon, is collected in the sample bottle, which contains 

ethanol, to replicate the value of SSRc; thus, equating SSRc and SSRs.  Since the SSR’s of 

the calibration and sample mixtures are equal, the mass fractions of the water in the 

ethanol, ERw, of each mixture will also have equal values.  With equal values of ERw, a 

correction for water present in the ethanol is unnecessary since analysis of the calibration 

and sample mixtures are based on the same proportion of ethanol to sample.   

However, in practice exact duplication of SSRs is difficult, which results in the 

use of a correction factor to adjust the mass fraction of water in the ethanol, ERw.  The 

correction factor, CF, is described as: 
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Application of Equation (E-23) based on the weight ratio of the sample along with the 

inclusion of CF from Equation (E-24) to the mass fraction of water in the ethanol results 

in the following expression: 
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As applied in this case, Ww, the total weight of water from an additional source, is zero.  

Solving for ERw, Equation (E-25) becomes: 
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In order to finalize the correction for differences in SSRc and SSRs, which reflects the 

introduction of water to the sample from the ethanol, Equations (E-20) and  (E-26) are 

combined to provide the corrected mass fraction of water in the sample, as given by: 
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And solving for the weight ratio of water in the sample to ethanol, WRs, gives, 
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Appendix F. Experimental Error Analysis 

 

F.1 Introduction 

The mole fraction, x, of a component in a binary mixture is expressed as: 
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where n is the number of moles and the subscript indicates either component 1 or 2.  In 

Equation (F-1), component 1 is considered to be the solute.  Replacing n1 and n2 in terms 

of the weight ratio of solute to solvent, WR, the weight ratio of solvent to sample, SSR, 

and the molecular weights of both component 1 and 2, MW1 and MW2, respectively, 

expresses x1 as the following: 
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Expected uncertainties associated with mole fractions calculated from solubility 

data are estimated by error propagation.  In general, where R is a function of the 

measured variables x1, x2,…xn, the expected variance, σ2
R, is calculated as [32]: 
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Since liquid-liquid mutual solubilities at equilibrium increase with temperature, the mole 

fraction, x, is also a function of temperature, T, as well as WR and SSR.  Equation (F-3) 

can be rewritten in the terms of variances, which account for uncertainty in the mole 

fraction, as the following: 
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however, WR is also a function of the gas chromatograph area ratio of solute-to-solvent.  

Using Equation (F-3), the variance in WR can be expressed as: 

           2
2

2
ARWR AR

WR σσ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=  (F-5)

Combination of Equations (F-4) and (F-5) results in the following expression: 
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Equation (F-6) is then expressed in terms of fractional uncertainty as: 
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F.2 Uncertainty Associated with the Solvent-to-Sample Weight Ratio 

The derivation of the uncertainty associated with SSR begins by taking the partial 

derivative of x1, from Equation (F-2), with respect to SSR as follows: 
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Combining terms, Equation (F-8) becomes: 
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Reducing the equation results in the following expression: 
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Division of Equation (F-10) by x1
2 obtains the fractional uncertainty associated with the 

solvent-to-sample weight ratio, as follows: 
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but, from Equation (F-2), 
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Substitution of Equation (F-12) into Equation (F-11) results in the following: 
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The fractional uncertainty associated with the solvent-to-sample weight ratio then 

becomes: 
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The solvent-to-sample ratio, SSR, is calculated as follows: 
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where msol is the average solvent mass and msam is the average sample mass.  Variance in 

SSR is found by application of error propagation to Equation (F-15).  The propagated 

uncertainty in SSR, as expressed in terms of variances, is a function of solvent mass and 

sample mass:                 
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The partial differentials from Equation (F-16) are: 
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Combination of Equations (F-16), (F-17), and (F-18) provides the variance associated 

with the solvent-to-sample weight ratio, as shown by: 
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The propagated fractional uncertainty associated with the solvent-to-sample weight ratio, 

which is the first term in Equation (F-7), is found by combining Equations (F-14) and 

(F-19), as follows: 
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F.3 Uncertainty Associated with the Weight Ratio 

Derivation of the uncertainty associated with WR begins with taking the partial 

derivative of x1, from Equation (F-2), with respect to WR, as given below: 
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Combining terms, Equation (F-21) becomes: 
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Reducing the equation results in the following expression:: 
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Division of Equation (F-23) by x1
2 obtains the fractional uncertainty associated with the 

weight ratio, as shown by the following expression:                 
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but, from Equation (F-2), 
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Substitution of Equation (F-25) into Equation (F-24) results in the following: 
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The fractional uncertainty associated with the weight ratio then becomes: 
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Since the weight ratio, WR, is a function of the area ratio, AR, the variance in the 

weight ratio is a function of the variance in the gas chromatograph area ratio, as given by: 

           2
2

2
ARWR AR

WR σσ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=  (F-28)

The partial derivative of the weight ratio with respect to the area ratio can be estimated 

from the slope of the calibration curve, which is expressed as: 

           βαARWR =  (F-29)

where α and β are regressed calibration parameters.  The slope of the calibration curve is 

determined as the following: 
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The second term in Equation (F-7), the propagated fractional uncertainty 

associated with the weight ratio, is found by combination of Equations (F-27), (F-28), 

and (F-30), as follows: 
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The variance in the area ratio was determined from repeated measurements. 

 

F.4 Uncertainty Associated with the Temperature 

Two sources account for the uncertainty associated with the temperature; namely 

thermometer imprecision and thermal fluctuation in the oven.  Deviation in the mole 

fraction with respect to temperature is determined by use of the slope of the solubility 

curve.  For each phase, aqueous and organic, a generally accepted correlation is used for 

the solubility curve.  The variance in the temperature was estimated to be ±0.3K. 

 Aqueous Phase 

Using non-linear regression, the solubility data from the aqueous phase are fit to 

the following correlation for a hydrocarbon mole fraction:                   

           ( ) 2ln
rr T

C
T
BAx ++=  (F-32)

where A, B, and C are regressed parameters and Tr, the reduced temperature, is found by, 
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where T is the temperature (absolute) of the system and Tc is the critical temperature of 

the hydrocarbon of interest.  The slope of the solubility curve is found by taking the 

partial derivative of x from Equation (F-32) with respect to T, as shown by: 
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Division by x1
2 expresses Equation (F-34) in terms of fractional uncertainty: 
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The final term in variance form, which is the fractional uncertainty associated with the 

temperature, for Equation (F-7) is written as: 
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 Hydrocarbon Phase 

Using non-linear regression, the solubility data from the hydrocarbon phase are fit 

to the following correlation for a hydrocarbon mole fraction: 

           ( ) rTBAx lnln +=  (F-37)

where A and B are regressed parameters and Tr, the reduced temperature, is found by, 
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T is the temperature (absolute) of the system and Tc is the critical temperature of the 

hydrocarbon of interest.  The slope of the solubility curve is found by taking the partial 

derivative of x from Equation (F-37) with respect to T, as shown by:               
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Division by x1
2 expresses Equation (F-39) in terms of fractional uncertainty: 
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The final term in variance form, which is the fractional uncertainty associated with the 

temperature, for Equation (F-7) is written as: 
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F.5 Total Fractional Uncertainty 

The total fractional uncertainty is found by substitution of Equations (F-20), 

(F-31), and either (F-36) or (F-41), when dealing with the aqueous or organic phase, 

respectively, into Equation (F-7).   
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Total uncertainty of the aqueous phase is calculated using the following equation: 
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while the total uncertainty of the organic phase is calculated by: 
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The first term represents the uncertainty associated with the solvent-to-sample 

weight ratio, the second term represents the uncertainty associated with the solute-to-

solvent weight ratio, and the final term represents the uncertainty associated with the 

temperature. 

Repeated measurements provided estimates of uncertainty required for the 

calculation of the total uncertainty associated with the measured mole fractions.  The 

uncertainty in the solvent mass, 
solmσ , and sample mass, 

sammσ , is taken as 0.0002, which 

is the standard deviation of twenty measurements of an empty, capped vial.  The 
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uncertainty in the temperature, Tσ , is 0.3 K, which is the standard deviation of ten ice 

point measurements of distilled water.  The uncertainty in the area ratio, ARσ , is the 

standard deviation in the GC analyses.  With the exception of ARσ , all uncertainties were 

considered to remain constant through the course of the study.  The uncertainties in the 

area ratio are presented at the end of the appendix in Table F-1. 
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F.6 Sample Calculations Toluene - Water 

 Toluene Solubility in Water 

Expressing uncertainty estimates as standard deviations, a sample calculation for 

the solubility of toluene in water at 324.0 K is provided, as follows: 
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00021.0=
solmσ  grams 00021.0=

sammσ  grams 

04361.1 −= EARσ   3.0=Tσ  K 

α = 0.2214   β = 1.020 

msol = 3.4535 grams  msam = 22.5932 grams  

834.921 =MW  grams/mole 015.182 =MW  grams/mole 

04307.11 −= Ex  T = 324.0 K  Tc = 591.8 K 

WR = 0.00441  SSR = 0.1529  AR = 0.02147 

A = 10.71  B = -19.81  C = 4.951 

According to Equation (F-42), the total fractional propagated uncertainty in the solubility 

measurement is calculated as: 
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Division of the uncertainty by the mole fraction of toluene determines the percentage of 

uncertainty in the mole fraction of toluene at 324.0 K, as follows: 
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The uncertainty associated with the solvent-to-sample weight ratio is negligible.  

For the hydrocarbon solubility in water measurements, the uncertainty associated with the 

weight ratio is typically 90% of the total uncertainty, while the uncertainty associated 

with the temperature accounts for the balance of the total uncertainty. 
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 Water Solubility in Toluene 

Expressing uncertainty estimates as standard deviations, a sample calculation for 

the solubility of water in toluene at 324.3 K is provided, as follows: 
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00021.0=
solmσ  grams 00021.0=

sammσ  grams 

04427.2 −= EARσ   3.0=Tσ  K 

α = 1.572   β = 1.227 

A = 1.122   B = 9.035 

msol = 6.1963 grams  msam = 13.6404 grams  

015.181 =MW  grams/mole 834.922 =MW  grams/mole 

03747.61 −= Ex  T = 324.3 K  Tc = 647.1 K 

WR = 0.00290  SSR = 0.4543  AR = 0.00742 

According to Equation (F-43), the total fractional propagated uncertainty in the solubility 

measurement is calculated as: 
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Division of the uncertainty by the mole fraction of toluene determines the percentage of 

uncertainty in the mole fraction of toluene at 324.3 K, as follows: 
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Division of each individual fractional uncertainty by the total fractional uncertainty, as 

shown below, determines the percentage of uncertainty associated with each term: 
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The uncertainty associated with the solvent-to-sample weight ratio is negligible.  

For the water solubility in hydrocarbon measurements, the uncertainty associated with the 

weight ratio is typically 97% of the total uncertainty, while the uncertainty associated 

with the temperature accounts for the balance of the total uncertainty.   
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Table F-1.  Uncertainty Estimates for the Area Ratio 

Benzene-Water System 
Benzene Solubility Water Solubility 

Temperature (K) Area Ratio 
Uncertainty (105) Temperature (K) Area Ratio 

Uncertainty (105) 
299.1 11.73 299.1     7.354 
324.3     3.859 324.3 15.46 
350.2     8.550 350.2 33.78 
376.2 13.72 376.2 42.73 
400.3     6.913 400.3 53.74 
431.4            109.2 431.4            176.1 
461.8            244.2 461.8            315.0 
490.8            101.4 490.8            377.4 

    
Toluene-Water System 

Toluene Solubility Water Solubility 

Temperature (K) Area Ratio 
Uncertainty (105) Temperature (K) Area Ratio 

Uncertainty (105) 
297.8 60.58 298.5     8.284 
324.0 13.51 324.3 16.99 
350.6 18.04 350.9 40.68 
376.1              15.69              376.6 78.20 
401.6            111.7 401.5            128.0 
431.8            334.5 431.7            142.5 
460.8 84.68              461.8            205.8 
490.4            771.1 491.4            198.3 

    
3-Methylpentane-Water System 

3-Methylpentane Solubility Water Solubility 

Temperature (K) Area Ratio 
Uncertainty (105) Temperature (K) Area Ratio 

Uncertainty (105) 
298.3   0.5510 299.1 12.86 
324.5   0.9267 324.3 26.93 
351.2 1.414 350.9 30.52 
377.2   0.7014 376.4            137.5 
401.2 3.011 400.3 39.36 
432.2 7.495 432.4            173.4 
462.1            10.89 491.5          1157 
491.9            26.72 295.5 11.44 
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Appendix G. Database Information 

This appendix contains illustrations of the molecular structures and the infinite-

dilution activity coefficient values for the molecules found in the database.  The structure 

graphics generally follow the same order as the tabulated values.  For more detailed 

information concerning the source of the experimental values please refer to the original 

publication of the database, “Measuring methods of infinite-dilution activity coefficients 

and a database for systems including water,” by Kojima, Zhang, and Hiaki in Fluid Phase 

Equilibria (1997, volume 131, pages 145-179). 
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Table G-1.  Molecular Structures Found in the Database 
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3-Methylhexane

2,2-Dimethyl pentane

2,3-Dimethyl pentane

2,4-Dimethyl pentane

3,3-Dimethyl pentane

Octane

3-Methylheptane

2,2,4-Trimethyl pentane

2,3,4-Trimethyl pentane

2,3,5-Trimethyl pentane

Nonane

4-Methyloctane

Decane

Dodecane

Cyclopentane

Cyclohexane

Methyl cyclopentane

Cycloheptane

1-Methyl cyclohexane

Cyclooctane

1,2-Dimethyl cyclohexane(cis)

Pentylcyclopentane

Ethylene

Propene

1-Butene

2-Methylpropene

1-Pentene

2-Pentene

3-Methyl-1-Butene

2-Methyl-2-Butene

1-Hexene

2-Methyl-1-Pentene

4-Methyl-1-Pentene

2,3-Dimethyl-1-butene

2-Heptene

1-Octene

1-Nonene

1,3-Butadiene

1,4-Pentadiene

2-Methyl-1,3-butadiene

1,5-Hexadiene

1,6-Heptadiene

Cyclopentene

Cyclohexene

Cycloheptene

1-Methyl cyclohexene

4-Ethenyl cyclohexene

1,4-Cyclohexadiene

Cycloheptatriene

Propyne

1-Butyne

1-Pentyne

1-Hexyne

1-Heptyne

1-Octyne

1-Nonyne

1,6-Heptadiyne

1,8-Nonanediyne

Benzene

Styrene

Indan

m-Methyl styrene

p-Methyl styrene

Toluene

Ethylbenzene

o-Xylene

m-Xylene

p-Xylene

1,2,3-Trimethylbenzene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

o-Ethyl toluene

p-Ethyl toluene

Propylbenzene
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Sec-butylbenzene

Tert-butylbenzene

1,2,4,5-Tetramethyl benzene

Naphthalene

1-Methylnaphthalene

2-Methylnaphthalene

1,3-Dimethylnaphthalene

1,4-Dimethylnaphthalene

1,5-Dimethylnaphthalene

2,3-Dimethylnaphthalene

2,6-Dimethylnaphthalene

1-Ethylnaphthalene

Biphenyl

Acenaphthene

Fluorene

Phenanthrene

Anthracene

2-Methylanthracene

9-Methylanthracene

9,10-Dimethylanthracene

Pyrene

Fluoranthene

1,2-Benzofluorene

2,3-Benzofluorene

Chrysene

Triphenylene

Naphthacene

1,2-Benzanthracene

7,12-Dimethyl-1,2-Benzanthracene

Perylene

Benzo[a]pyrene

3-Methylcholanthrene

Benzo[ghi]perylene

Coronene

Carbon Tetrachloride

Trichlorofluoromethane

Dichlorodifluoromethane

Chlorotrifluormethane

Carbon tetrafluoride

Nitrotrichloromethane

Dichlorofluoromethane

Cl

Cl

Cl

Cl

F

Cl

Cl

Cl

F

F

Cl

Cl

F

F

F

Cl

F

F

F

F

Cl Cl

Cl

N+

O O-

F

Cl

Cl

Chlorodifluoromethane

Chloroform

Trifluoromethane

Triiodomethane

Difluoromethane

Diiodomethane

Bromomethane

Chloromethane

Fluoromethane

Hexachloroethane

F

F

Cl

Cl

Cl

Cl

F

F

F

I

I

I

FF

II

Br

Cl

F

Cl

Cl

Cl

Cl

Cl

Cl

1,1,2-Trichlorotrifluoroethane

1,2-Dichlorotetrafluoroethane

Chloropentafluoroethane

1,1,2,2-Tetrabromoethane

Tetrachloroethene

Tetrafluoroethene

Hexafluoroethane

Cl

Cl

Cl

F

F

F

Cl

Cl

F

F

F

F

F

F

F

F

F

Cl

Br

Br

Br

Br

Cl

Cl

Cl

Cl

F

F

F

F

F

F

F

F

F

F
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Pentachloroethane

Bromoethane

Chloroethene

1-Bromo-2-Chloroethane

1,2-Dibromoethane

1,1-Dichloroethene

Cis 1,2-Dichloroethene

Chloroethane

3-Bromo-1-Propene

3-Chloro-1-propene

1,2,3-Trichloropropane

1,2-Dibromopropane

1,3-Dibromopropane

Cl

Cl

Cl

Cl Cl

Br

Cl

Cl
Br

Br
Br

Cl

Cl

Cl Cl

Cl

Br

Cl

Cl

Cl

Cl

Br
Br

BrBr

1,3-Dichloropropane

1-Bromopropane

2-Bromopropane

2-Iodopropane

Octafluorocyclobutane

2-Chlorobutane

1-Chloro-2-Methylpropane

1-Bromo-2-Methylpropane

1-Bromobutane

1-Bromopentane

2-Chloro-2-Methylbutane

ClCl

Br

Br

I

F

F

F

FF

F

F

F

Cl

Cl

Br

Br

Br

Cl

1-Bromo-3-Methylbutane

Hexachlorobenzene

m-Dichlorobenzene

o-Dichlorobenzene

p-Dichlorobenzene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,2,3,4-Tetrachlorobenzene

1,2,3,5-Tetrachlorobenzene

1,2,4,5-Tetrachlorobenzene

Br

Cl

Cl Cl

Cl

ClCl

Cl Cl

Cl

Cl

ClCl

Cl

Cl

Cl

Cl Cl

Cl

Cl

ClCl

Cl

Cl

Cl

Cl

Cl

Cl

Cl Cl

Cl

Pentachlorobenzene

m-Difluorobenzene

o-Difluorobenzene

p-Difluorobenzene

1-Pentanol

ClCl

Cl

Cl Cl

F F

F

F

FF

HO

2-Methyl-1-butanol

2,2-Dimethyl-1-propanol

3-Hexanol

2-Methyl-2-pentanol

2-Methyl-3-pentanol

4-Methyl-2-pentanol

3-Methyl-2-pentanol

3-Methyl-3-pentanol

2,2-Dimethyl-1butanol

2,3-Dimethyl-2-butanol

3,3-dimethyl-2-butanol

OH

OH

OH

HO

OH

HO

OH

OH

OH

HO

OH

1-Hexene-3-ol

4-Hexene-3-ol

2-Methyl-4-pentene-3-ol

2-Methyl-2-hexanol

3-Methyl-3-Hexanol

2,3-Dimethyl-2-pentanol

OH

OH

OH

HO

HO

OH

2,4-Dimethyl-2-pentanol

2,2-Dimethyl-3-pentanol

2,3-Dimethyl-3-pentanol

2,4-Dimethyl-3-pentanol

3-Ethyl-3-Pentanol

OH

HO

OH

OH

OH

1-Octanol

2,2,3-Trimethyl-3-pentanol

1-Nonanal

1-Decanol

1-Dodecanol

1-Tetradecanol

1-Pentadecanol

1-Hexadecanol

1-Heptadecanol

1-Octadecanol

HO

OH

O

HO

HO

HO

HO

HO

HO

HO
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1,3-Nonanediol

1,4-Dimethyl-2,3-octanediol

2,4-Dimethyl-2,4-nonanediol

2-Propyl1,3-heptanediol

m-Cresol

o-Cresol

p-Cresol

2-Methyl,3-pentanone

3-Methyl,2-pentanone

4-methyl-2-pentanone

3,3-Dimethyl,2-Butanone

HO

OH

OHHO

HO

OH

OH

HO

HO

O

O

O

OH

OH

O

2-Heptanone

4-Heptanone

2,4-Dimethyl,3-pentanone

5-Methyl,2-hexanone

5-Nonanone

O

O

O

O

O

2,6-Dimethyl,4-heptanone

Cyclohexanone

Acetophenone

Pentanoic acid

Hexanoic Acid

heptanoic Acid

Benzoic acid

Acetic Acid,ethenyl ester

Methyl butyrate

Ethyl propenoate

Ethyl propionate

Propyl propanoate

O

O

O

O

OH

O

OH

O

HO

O

HO

O

O

O

O

O

O

O

O

O

O

Ethyl butyrate

Butyl acetate

3-Methylbutyl acetate

Propyl butyrate

Isopropyl butyrate

Ethyl pentanoate

Cyclohexyl acetate

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Butyl pentanoate

Hypochlorous acid, tertbutyl ester

Methyl propyl ether

Methyl butyl ether

Methyl sec. Butyl ether

Ethyl isopropyl ether

Ethyl propyl ether

Isobutyl methyl ether

tert-amyl methyl ether

Isopropyl propyl ether

Dipropyl ether

Heptanol

O

O

Cl
O

O

O

O

O

O

O

O

O

OH

O

Octanal

Nonanal

5-Methylfurfural

Butyl ethylamine

Dipropylamine

1-Ethylpiperidine

3-ethyl-4-methyl pyridine

1-Propyl piperidine

Aniline

2-Amino toluene

O

O

OO

N
H

H
N

N

N

H2N

H2N

N

2-Nitropropane

Nitrobenzene

2-Nitrotoluene

N+

O

-O

N+

O

-O

N+

O

O-

3-Nitrotoluene

Carbon disulfide

Methanethiol

Ethanethiol

1-Butanethiol

Methyl sulfide

Ethyl sulfide

Thiophene

Pentane

Hexane

Heptane

Octane

N+

O

O-

C SS

SH

HS

HS

S

S

S

Benzene

Chloroform

Cl

Cl

Cl

Tetrachloroethene

1,1,1-Trichloroethane

Trichloroethene

Tribromomethane

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl
Cl

Br

Br

Br
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2-Nitro-1-methoxy benzene

O

N+

O

O-

1,1,2,2-Tetrabromoethane

1,1,2,2-Tetrachloroethane

Br

Br

Br

Br

Cl

Cl

Cl

Cl

1,1,2-Trichloroethane

1,1-Dichloroethene

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dibromoethane

1,1-Dichloroethane

1,2-Dichloroethane

1,2-Dibromopropane

Chlorobenzene

Cl
Cl

Cl

Cl

Cl

Cl
Cl

Cl Cl

Br
Br

Cl

Cl

Cl
Cl

Br
Br

Cl

1,3-Dioxolan-2-one, 4-Chloromethyl

O

O

O

Cl

Methanol

Ethanol

1-Propanol

2-Propanol

2-Propen-1-ol

1-Butanol

2-Butanol

Iso-butyl Alcohol

OH

HO

HO

HO

HO

HO

OH

HO

Tert-butyl Alcohol

2-Pentanol

2-Butoxy ethanol

Glycerol

Glycerol

Triethylene Glycol

Acetone

2-Butanone

2,4-Pentanedione

Cyclohexanone

Acetic Acid 

Acrolein

OH

OH

OH
O

OH

HO

OH

OH

HO

OH

HO
O

O
OH

O

O

OO

O

HO

O

O

Furfural

Tetrahydrofuran

O
O

O

Tetraethylene Glycol-dimethyl ether

Tripropylene Glycol-dimethyl ether

Triethylene Glycol-dibutyl ether

diethylene glycol-dibutyl ether

Tripropylene Glycol-dibutyl ether

O
O

O
O

O

O
O

O

O

O
O

O

O

O
O

O

O
O

O
O

Methyl Acetate

Ethyl Acetate

Butyl Acetate

O

O

O

O

O

O

Phosphoric acid, Butyl Esters

Phosphoric Acid,Dibutyl-Ester

Phosphoric Acid, Tributyl-Ester

phosphoric Acid,Methyl-Diphenyl Ester

Phosphoric Acid, Tri-(2-Butoxyethyl) Ester

Phthalic Acid, Dinonyl Ester

P

O

O
OH

HO

P
O

O

O
O

P
O

O
O

O

P
O

O

O
O

O

OO

P
O

O
O

OH

O

O

O

O
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Nitromethane

Acetonitrile

Acrylonitrile

Diisopropylamine

3-Methylpyridine

Dimethylformamide

Piperidine

Pyridine

Aniline

Water

p-xylene

cumene

mesitylene

butyl ether

N

N

N
H

O N

NH

H2N

H
O

H

O

N+

O

-O

N

N
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Table G-2.  Organics in Water (Direct Measurements) 

Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ
 Alkanes       
Pentane 293.15 945 6.85  Toluene 293.15 4500 8.41 
 303.15 796 6.68   296.15 10400 9.25 
 313.15 517 6.25   298.15 9186 9.13 
Hexane 293.15 2940 7.99   298.15 9490 9.16 
 298.15 40000 10.60   298.15 9170 9.12 
 303.15 2225 7.71   313.15 3249 8.09 38
 313.15 1465 7.29   313.15 3211 8.07 
 333.15 18500 9.83   313.15 3287 8.10 
 373.15 9500 9.16  Ethylbenzene 298.15 32670 10.39 
Heptane 293.15 8050 8.99   298.15 35500 10.48 
 303.15 6160 8.73   298.15 33400 10.42 
 313.15 3925 8.28  Propylbenzene 298.15 135800 11.82 
Cyclohexane 313.15 1026.5 6.93 30  298.15 127000 11.75 
 313.15 996.5 6.90   298.15 133000 11.80 
 313.15 1056.5 6.96  Butylbenzene 298.15 566260 13.25 
 Alkenes   298.15 502000 13.13 
Cyclohexene 296.15 20400 9.92   298.15 533000 13.19 
 Aromatic Hydrocarbons  o-Xylene 298.15 30540 10.33 
Benzene 293.15 2500 7.82   298.15 33300 10.41 
 293.15 2505 7.83   298.15 32500 10.39 
 293.15 2510 7.83   313.15 5859 8.68 84
 296.15 2350 7.76   313.15 5775 8.66 
 296.15 2360 7.77 52  313.15 5943 8.69 
 296.15 2308 7.74  m-Xylene 298.15 33214 10.41 
 296.15 2412 7.79   298.15 37400 10.53 
 298.15 2495 7.82   298.15 39000 10.57 
 298.15 2289 7.74  p-xylene 298.15 33257 10.41 
 298.15 2400 7.78   298.15 34100 10.44 
 298.15 2320 7.75   298.15 37900 10.54 
 298.15 2200 7.70   313.15 5634 8.64 68
 298.15 1700 7.44   313.15 5566 8.62 
 298.15 2475 7.81   313.15 5702 8.65 
 298.15 2420 7.79  Cumene 298.15 101540 11.53 
 298.15 2530 7.84   298.15 102000 11.53 
 303.15 2402 7.78   298.15 99100 11.50 
 303.15 2422 7.79  mesitylene 298.15 118810 11.69 
 303.15 2570 7.85   298.15 130000 11.78 
 313.05 2535 7.84   298.15 128000 11.76 
 313.15 1635 7.40 49  Halogenated Hydrocarbons 
 313.15 1586 7.37  Bromoform 293.15 3530 8.17 260
 313.15 1684 7.43   293.15 3270 8.09 
 323.15 2465 7.81   293.15 3790 8.24 
 333.15 1800 7.50   293.15 4340 8.38 510
 373.15 1080 6.98   293.15 3830 8.25 
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Solute T/K Exp γ ln γ Error γ Solute T/K Exp γ ln γ Error γ
Bromoform 293.15 4850 8.49   308.15 787 6.67 87
 298.15 3380 8.13   308.15 700 6.55 
 298.15 9220 9.13   308.15 874 6.77 
 303.15 4068 8.31 480  308.15 801 6.69 35
 303.15 3588 8.19   308.15 766 6.64 
 303.15 4548 8.42   308.15 836 6.73 
 308.15 3080 8.03 425  313.15 768 6.64 76
 308.15 2655 7.88   313.15 692 6.54 
 308.15 3505 8.16   313.15 844 6.74 
 308.15 5820 8.67   323.15 740 6.61 32
 313.15 3800 8.24 440  323.15 708 6.56 
 313.15 3360 8.12   323.15 772 6.65 
 313.15 4240 8.35  Carbon Tetrachloride285.65 7100 8.87 
 323.15 4050 8.31 220  293.15 2870 7.96 
 323.15 3830 8.25   293.15 6300 8.75 
 323.15 4270 8.36   293.15 4500 8.41 
 323.15 3330 8.11   293.15 12200 9.41 250
Chlorodibromomethane293.15 1990 7.60 250  293.15 11950 9.39 
 293.15 1740 7.46   293.15 12450 9.43 
 293.15 2240 7.71   293.15 9190 9.13 930
 303.15 1928 7.56 240  293.15 8260 9.02 
 303.15 1688 7.43   293.15 10120 9.22 
 303.15 2168 7.68   298.15 15400 9.64 
 313.15 1896 7.55 240  298.15 10300 9.24 
 313.15 1656 7.41   298.15 3450 8.15 
 313.15 2136 7.67   303.15 13100 9.48 100
Bromodichloromethane 293.15 1025 6.93 130  303.15 13000 9.47 
 293.15 895 6.80   303.15 13200 9.49 
 293.15 1155 7.05   303.15 9799 9.19 1000
 303.15 1050 6.96 130  303.15 8799 9.08 
 303.15 920 6.82   303.15 10799 9.29 
 303.15 1180 7.07   303.15 2150 7.67 
 313.15 1070 6.98 130  308.15 8999 9.10 1000
 313.15 940 6.85   308.15 7999 8.99 
 313.15 1200 7.09   308.15 9999 9.21 
Dibromethane 293.15 869 6.77 45  313.15 8706 9.07 860
 293.15 824 6.71   313.15 7846 8.97 
 293.15 914 6.82   313.15 9566 9.17 
 293.15 846 6.74 85  313.151399.4 7.24 45
 293.15 761 6.63   313.151354.4 7.21 
 293.15 931 6.84   313.151444.4 7.28 
 298.15 850 6.75   313.15 1490 7.31 
 303.15 803 6.69 81  313.15 13100 9.48 300
 303.15 722 6.58   313.15 12800 9.46 
 303.15 884 6.78   313.15 13400 9.50 
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Solute T/K Exp γ ln γ Error γ Solute T/K Exp γ ln γ Error γ
Chloroform 293.15 571 6.35  303.15 201 5.30 
 293.15 821 6.71  308.15 242 5.49 27
 293.15 1000 6.91  308.15 215 5.37 
 293.15 818 6.71 20  308.15 269 5.59 
 293.15 798 6.68  313.15 242 5.49 24
 293.15 838 6.73  313.15 218 5.38 
 298.15 903 6.81  313.15 266 5.58 
 298.15 857 6.75  313.15 226 5.42 7
 298.15 623 6.43  313.15 219 5.39 
 303.15 835 6.73 21  313.15 233 5.45 
 303.15 814 6.70  313.15 153 5.03 
 303.15 856 6.75 Methyl Iodide 293.15 870 6.77 
 303.15 568 6.34 1,1,2,2-Tetrabromoethane298.15 625000 13.35 
 308.15 847 6.74 30  308.15 337000 12.73 
 308.15 817 6.71  323.15 130000 11.78 
 308.15 877 6.78 Tetrachloromethane 298.15 35970 10.49 
 308.15 892 6.79  298.15 65500 11.09 
 313.15 742 6.61 21 1,1,1,2-Tetrachloroethane 293.15 9280 9.14 730
 313.15 721 6.58  293.15 8550 9.05 
 313.15 763 6.64  293.15 10010 9.21 
 313.15 425 6.05  293.15 7730 8.95 760
 323.15 862 6.76 27  293.15 6970 8.85 
 323.15 835 6.73  293.15 8490 9.05 
 323.15 889 6.79  298.15 8910 9.09 
 323.15 910 6.81  303.15 7282 8.89 720
Dichloromethane283.15 235 5.46 5  303.15 6562 8.79 
 283.15 230 5.44  303.15 8002 8.99 
 283.15 240 5.48  303.15 8530 9.05 635
 293.15 370 5.91  303.15 7895 8.97 
 293.15 209 5.34  303.15 9165 9.12 
 293.15 251 5.53 14  308.15 7216 8.88 790
 293.15 237 5.47  308.15 6426 8.77 
 293.15 265 5.58  308.15 8006 8.99 
 293.15 245 5.50 25  313.15 7057 8.86 690
 293.15 220 5.39  313.15 6367 8.76 
 293.15 270 5.60  313.15 7747 8.96 
 298.15 253 5.53  313.15 8830 9.09 645
 298.15 259 5.56  313.15 8185 9.01 
 298.15 185 5.22  313.15 9475 9.16 
 303.15 250 5.52 8 1,1,2,2-Tetrachloroethane 293.15 3850 8.26 660
 303.15 242 5.49  293.15 3190 8.07 
 303.15 258 5.55  293.15 4510 8.41 
 303.15 238 5.47 24  29315 3758 8.23 480
 303.15 214 5.37  29315 3278 8.09 
 303.15 262 5.57  29315 4238 8.35 
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Solute T/K Exp γ ln γ Error γ Solute T/K Exp γ ln γ Error γ
1,1,2,2-Tetrachloroethane 293.15 3960 8.28  323.15 5893 8.68 
 298.15 3460 8.15 1,1,1-Trichloroethane293.15 5880 8.68 75
 298.15 3790 8.24  293.15 5805 8.67 
 298.15 3360 8.12  293.15 5955 8.69 
 303.15 3726 8.22 410  293.15 5245 8.57 690
 303.15 3316 8.11  293.15 4555 8.42 
 303.15 4136 8.33  293.15 5935 8.69 
 303.15 2970 8.00 625  293.15 5660 8.64 
 303.15 2345 7.76  298.15 5903 8.68 
 303.15 3595 8.19  298.15 6030 8.70 
 308.15 3197 8.07 440  303.15 5480 8.61 60
 308.15 2757 7.92  303.15 5420 8.60 
 308.15 3637 8.20  303.15 5540 8.62 
 308.15 3460 8.15  303.15 5324 8.58 700
 313.15 3100 8.04 390  303.15 4624 8.44 
 313.15 2710 7.90  303.15 6024 8.70 
 313.15 3490 8.16  308.15 5097 8.54 700
 313.15 3570 8.18 245  308.15 4397 8.39 
 313.15 3325 8.11  308.15 5797 8.67 
 313.15 3815 8.25  308.15 6210 8.73 
 323.15 3010 8.01  313.15 4986 8.51 650
Trichloroethene 293.15 5410 8.60 160  313.15 4336 8.37 
 293.15 5250 8.57  313.15 5636 8.64 
 293.15 5570 8.63  313.15 5410 8.60 80
 293.15 4922 8.50 500  313.15 5330 8.58 
 293.15 4422 8.39  313.15 5490 8.61 
 293.15 5422 8.60  323.15 5850 8.67 
 293.15 5450 8.60 1,1,2-Trichlorethane 293.15 1500 7.31 
 296.15 4880 8.49  293.15 1520 7.33 10
 298.15 8750 9.08  293.15 1510 7.32 
 298.1510400 9.25  293.15 1530 7.33 
 303.15 5034 8.52 520  293.15 1540 7.34 150
 303.15 4514 8.41  293.15 1390 7.24 
 303.15 5554 8.62  293.15 1690 7.43 
 303.15 5180 8.55 195  303.15 1472 7.29 140
 303.15 4985 8.51  303.15 1332 7.19 
 303.15 5375 8.59  303.15 1612 7.39 
 303.15 6061 8.71  308.15 1410 7.25 125
 313.15 4973 8.51 510  308.15 1285 7.16 
 313.15 4463 8.40  308.15 1535 7.34 
 313.15 5483 8.61  308.15 1520 7.33 
 313.15 5580 8.63 290  313.15 1424 7.26 140
 313.15 5290 8.57  313.15 1284 7.16 
 313.15 5870 8.68  313.15 1564 7.36 
 313.15 5943 8.69  323.15 1220 7.11 20
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Solute T/K Exp γ ln γ Error γ Solute T/K Exp γ ln γ Error γ
1,1,2-Trichlorethane 323.15 1200 7.09   303.15 1375 7.23 
 323.15 1240 7.12   303.15 1435 7.27 
 323.15 1430 7.27   313.15 1243 7.13 130
1,1-Dichloroethene 293.15 1894 7.55 270  313.15 1113 7.01 
 293.15 1624 7.39   313.15 1373 7.22 
 293.15 2164 7.68   313.15 1370 7.22 75
 303.15 1930 7.57 270  313.15 1295 7.17 
 303.15 1660 7.41   313.15 1445 7.28 
 303.15 2200 7.70   313.15 1477 7.30 
 313.15 1936 7.57 270  323.15 1509 7.32 
 313.15 1666 7.42  1,2-Dibromoethane 298.15 2340 7.76 
 313.15 2206 7.70   308.15 2990 8.00 
Cis 1,2-Dichloroethene 293.15 856 6.75 44  323.15 1740 7.46 
 293.15 812 6.70   293.15 1080 6.98 
 293.15 900 6.80   293.15 1100 7.00 15
 293.15 819 6.71 118  293.15 1085 6.99 
 293.15 701 6.55   293.15 1115 7.02 
 293.15 937 6.84   293.15 1046 6.95 110
 298.15 870 6.77   293.15 936 6.84 
 303.15 803 6.69 116  293.15 1156 7.05 
 303.15 687 6.53   303.15 1034 6.94 100
 303.15 919 6.82   303.15 934 6.84 
 303.15 884 6.78 43  303.15 1134 7.03 
 303.15 841 6.73   308.15 1120 7.02 
 303.15 927 6.83   308.15 1240 7.12 20
 313.15 807 6.69 116  308.15 1220 7.11 
 313.15 691 6.54   308.15 1260 7.14 
 313.15 923 6.83   313.15 1017 6.92 100
 313.15 866 6.76 65  313.15 917 6.82 
 313.15 801 6.69   313.15 1117 7.02 
 313.15 931 6.84   318.15 1050 6.96 25
Trans 1,2-Dichloroethene 293.15 1200 7.09 60  318.15 1025 6.93 
 293.15 1140 7.04   318.15 1075 6.98 
 293.15 1260 7.14   323.15 1080 6.98 
 293.15 1202 7.09 130 1,2-Dichloroethane 293.15 585 6.37 6
 293.15 1072 6.98   293.15 579 6.36 
 293.15 1332 7.19   293.15 591 6.38 
 293.15 1216 7.10   293.15 626 6.44 
 293.15 1220 7.11   293.15 660 6.49 
 298.15 1260 7.14   293.15 647 6.47 54
 303.15 1202 7.09 130  293.15 593 6.39 
 303.15 1072 6.98   293.15 701 6.55 
 303.15 1332 7.19   298.15 641 6.46 
 303.15 1310 7.18 65  298.15 635 6.45 
 303.15 1245 7.13   298.15 511 6.24 
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ
1,2-Dichloroethane 303.15 610 6.41 51  293.15 2329 7.75 
 303.15 559 6.33   298.15 2330 7.75 
 303.15 661 6.49   303.15 2006 7.60 230
 308.15 600 6.40 56  303.15 1776 7.48 
 308.15 544 6.30   303.15 2236 7.71 
 308.15 656 6.49   303.15 2310 7.75 30
 308.15 597 6.39 12  303.15 2280 7.73 
 308.15 585 6.37   303.15 2340 7.76 
 308.15 609 6.41   313.15 1925 7.56 220
 308.15 604 6.40   313.15 1705 7.44 
 313.15 587 6.38 49  313.15 2145 7.67 
 313.15 538 6.29   313.15 2090 7.64 30
 313.15 636 6.46   313.15 2060 7.63 
 313.15 579 6.36 12  313.15 2120 7.66 
 313.15 567 6.34  1-Chloropropane 293.15 3500 8.16 
 313.15 591 6.38   298.15 1747 7.47 
 323.15 552 6.31   298.15 1720 7.45 
 323.15 559 6.33 6  298.15 913 6.82 
 323.15 553 6.32  2-Chloropropane 298.15 1477 7.30 
 323.15 565 6.34   298.15 1320 7.19 
Ethyl Bromide 293.15 970 6.88  1-Iodopropane 298.15 8550 9.05 
 298.15 679 6.52   298.15 9730 9.18 
 298.15 633 6.45  Bromobutane 298.15 12240 9.41 
Ethyl Iodide 293.15 2200 7.70   298.15 12800 9.46 
 298.15 2192 7.69  2-Bromobutane 298.15 8315 9.03 
 298.15 2180 7.69   298.15 15900 9.67 
1-Bromopropane 298.15 2850 7.96  Chlorobutane 298.15 7609 8.94 
 298.15 2900 7.97   298.15 7640 8.94 
2-Bromopropane 298.15 2093 7.65  tert-Butyl chloride293.15 5300 8.58 
 298.15 1950 7.58  Chloropentane 298.15 3207010.38 
1,3-Dichloropropylene293.15 1360 7.22 30  298.15 2950010.29 
 293.15 1330 7.19  Chlorohexane 298.1514080011.86 
 293.15 1390 7.24  Fluorobenzene 298.15 4796 8.48 
 298.15 1400 7.24   298.15 3440 8.14 
 303.15 1430 7.27 25 Chlorobenzene 293.15 12960 9.47 
 303.15 1405 7.25   293.15 3000 8.01 
 303.15 1455 7.28   298.15 13990 9.55 
 313.15 1460 7.29 85  298.15 12700 9.45 
 313.15 1375 7.23   303.15 10280 9.24 
 313.15 1545 7.34   313.15 7450 8.92 
1,2-Dichloropropane 293.15 2340 7.76 30  323.15 4952 8.51 
 293.15 2310 7.75  Bromobenzene 298.15 2246010.02 
 293.15 2370 7.77   298.15 20900 9.95 
 293.15 2089 7.64 240 Iodobenzene 298.15 5413010.90 
 293.15 1849 7.52   298.15 5350010.89 
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ
1,2-Dichlorobenzene 298.15 68200 11.13   357.75 1.64 0.49 
 298.15 63900 11.07   357.75 1.92 0.65 
Benzyl Chloride 298.15 31960 10.37   373.15 2.47 0.90 
 298.15 35900 10.49   373.15 2.25 0.81 
 Alcohols   373.15 2.75 1.01 
Methanol 293.15 1.68 0.52 0.12  373.15 2.24 0.81 
 293.15 1.56 0.44  Ethanol 283.15 4.38 1.48 0.21
 293.15 1.8 0.59   283.15 4.17 1.43 
 293.15 2.69 0.99   283.15 4.59 1.52 
 297.45 2.12 0.75   293.15 4.81 1.57 0.19
 298.15 1.58 0.46   293.15 4.62 1.53 
 298.15 1.65 0.50 0.01  293.15 5 1.61 
 298.15 1.64 0.49   293.15 6.51 1.87 
 298.15 1.66 0.51   293.15 4.5 1.50 
 298.15 1.74 0.55   297.45 4.74 1.56 
 298.15 1.64 0.49   298.15 3.74 1.32 
 298.15 1.46 0.38   298.15 4.03 1.39 
 298.15 1.47 0.39   298.15 3.8 1.34 
 298.15 1.64 0.49   298.15 3.73 1.32 
 300.45 2.2 0.79   298.15 3.91 1.36 
 303.15 2.53 0.93   298.15 3.92 1.37 
 303.15 1.77 0.57 0.1  298.15 3.76 1.32 
 303.15 1.67 0.51   298.15 3.69 1.31 
 303.15 1.87 0.63   298.15 3.27 1.18 0.05
 313.15 2.3 0.83   298.15 3.22 1.17 
 313.15 1.92 0.65 0.08  298.15 3.32 1.20 
 313.15 1.84 0.61   298.15 3.55 1.27 
 313.15 2 0.69   298.15 3.83 1.34 
 317.85 1.46 0.38 0.16  298.15 3.88 1.36 
 317.85 1.3 0.26   298.15 4 1.39 
 317.85 1.62 0.48   303.15 6.15 1.82 
 323.15 1.93 0.66   303.15 4.12 1.42 
 328.15 2.31 0.84   313.15 5.17 1.64 0.16
 328.15 2.13 0.76   313.15 5.01 1.61 
 328.15 2.14 0.76   313.15 5.33 1.67 
 328.45 1.49 0.40 0.05  313.15 5.5 1.70 
 328.45 1.44 0.36   313.15 6.1 1.81 
 328.45 1.54 0.43   323.15 5.01 1.61 
 337.65 1.59 0.46 0.05  323.15 5.42 1.69 
 337.65 1.54 0.43   323.15 5.21 1.65 
 337.65 1.64 0.49   323.15 4.4 1.48 
 348.25 1.52 0.42 0.12  328.15 5.94 1.78 
 348.25 1.4 0.34   328.15 5.32 1.67 
 348.25 1.64 0.49   328.15 5.11 1.63 
 357.75 1.78 0.58 0.14  328.15 6.8 1.92 
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ
Ethanol 333.15 5.59 1.72 0.12  328.15 14.11 2.65  
 333.15 5.47 1.70   328.15 12.25 2.51  
 333.15 5.71 1.74   337.55 9.5 2.25 0.4
 333.15 5.2 1.65   337.55 9.1 2.21  
 338.15 4.8 1.57   337.55 9.9 2.29  
 343.15 5.61 1.72   349.15 11 2.40 0.8
 343.15 4.3 1.46   349.15 10.2 2.32  
 348.15 7.6 2.03   349.15 11.8 2.47  
 353.15 3.2 1.16   353.15 13.62 2.61  
 363.15 5.9 1.77   357.75 11.6 2.45 0.5
 373.15 6.85 1.92   357.75 11.1 2.41  
 373.15 5.82 1.76   357.75 12.1 2.49  
 383.15 6.05 1.80   363.15 13.68 2.62  
2-Propen-1-ol 371.15 8.58 2.15   373.15 14 2.64  
1-Propanol 293.15 24 3.18   373.15 12.63 2.54  
 298.15 13.36 2.59  1-Butanol 293.15 41.4 3.72  
 298.15 14.17 2.65   298.15 50 3.91  
 298.15 13.5 2.60   298.15 53.33 3.98  
 298.15 17.2 2.84   298.15 52.24 3.96  
 298.15 10.9 2.39 0.2  298.15 53.7 3.98  
 298.15 10.7 2.37   298.15 50.5 3.92  
 298.15 11.1 2.41   298.15 45.1 3.81 1.4
 298.15 15 2.71   298.15 43.7 3.78  
 298.15 13.8 2.62   298.15 46.5 3.84  
 298.15 11.2 2.42   298.15 205.6 5.33  
 298.15 133.5 4.89   298.15 51.6 3.94  
 303.15 26 3.26   313.15 49.5 3.90  
 313.15 22 3.09   323.23 78.7 4.37  
 328.15 21.2 3.05   333.15 59.3 4.08  
 328.15 18.53 2.92   343.15 59.3 4.08  
 328.15 20.44 3.02   343.15 67.8 4.22  
 373.15 19.35 2.96   343.15 68.03 4.22  
2-Propanol 288.15 12.9 2.56 0.57  353.15 46.5 3.84  
 288.15 12.33 2.51   353.15 57.2 4.05  
 288.15 13.47 2.60   353.15 48.53 3.88  
 298.15 7.47 2.01   363.15 55.5 4.02  
 298.15 8.13 2.10   372.15 27.1 3.30  
 298.15 7.75 2.05   373.15 54 3.99  
 298.15 8.14 2.10   376.15 40.5 3.70  
 317.85 8.8 2.17 0.5  378.15 54.6 4.00  
 317.85 8.3 2.12  2-Butanol 293.15 20.8 3.03  
 317.85 9.3 2.23   298.15 26.2 3.27  
 328.05 9.6 2.26 0.5  298.15 22.4 3.11  
 328.05 9.1 2.21   323.18 35.5 3.57  
 328.05 10.1 2.31   333.55 46.49 3.84  
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ
Iso-Butyl alcohol 293.15 44.4 3.79   317.85 1 0.00 0.1
 298.15 49 3.89   317.85 0.9 -0.11 
 298.15 48.4 3.88   317.85 1.1 0.10 
 323.15 58.1 4.06   328.15 1 0.00 0.1
Tert-Butanol 293.15 11.4 2.43   328.15 0.9 -0.11 
 298.15 11.9 2.48   328.15 1.1 0.10 
 298.15 12.2 2.50   338.05 1 0.00 0.1
 323.13 19.2 2.95   338.05 0.9 -0.11 
1-Pentanol 298.15 197 5.28   338.05 1.1 0.10 
 298.15 197.5 5.29   348.05 1.2 0.18 0.1
 298.15 192 5.26 8  348.05 1.1 0.10 
 298.15 184 5.21   348.05 1.3 0.26 
 298.15 200 5.30  1,2-Propanediol 296.75 1 0.00 0.1
 298.15 338.4 5.82   296.75 0.9 -0.11 
 298.15 198.1 5.29   296.75 1.1 0.10 
 298.15 225.4 5.42   308.25 1.1 0.10 0.1
 298.15 208.9 5.34   308.25 1 0.00 
2-Pentanol 298.15 97 4.57   308.25 1.2 0.18 
 363.15 126 4.84 6  318.75 1.2 0.18 0.1
 363.15 120 4.79   318.75 1.1 0.10 
 363.15 132 4.88   318.75 1.3 0.26 
3-Methyl-Butanol 298.15 208 5.34   328.45 1.2 0.18 0.2
1-Hexanol 298.15 799 6.68   328.45 1 0.00 
 298.15 791.8 6.67   328.45 1.4 0.34 
 298.15 738.9 6.61   337.85 1.3 0.26 0.2
 298.15 1012 6.92   337.85 1.1 0.10 
 298.15 645 6.47 32  337.85 1.5 0.41 
 298.15 613 6.42   348.25 1.3 0.26 0.2
 298.15 677 6.52   348.25 1.1 0.10 
2-Hexanonal 298.15 282 5.64   348.25 1.5 0.41 
Cyclohexanol 298.15 157 5.06  1,3-Propanediol 297.95 1.2 0.18 0.2
1-Heptanol 298.15 3270 8.09   297.95 1 0.00 
 298.15 4364 8.38   297.95 1.4 0.34 
2-Butoxy ethanol 278.15 19.5 2.97   307.85 1.2 0.18 0.2
 298.15 27.4 3.31   307.85 1 0.00 
 318.15 29.7 3.39   307.85 1.4 0.34 
 338.15 37 3.61   318.65 1.7 0.53 0.2
 358.15 38.5 3.65   318.65 1.5 0.41 
Trifluoroethanol 298.15 8.65 2.16   318.65 1.9 0.64 
1,2-Ethanediol 297.45 0.8 -0.22 0.1  328.65 1.8 0.59 0.2
 297.45 0.7 -0.36   328.65 1.6 0.47 
 297.45 0.9 -0.11   328.65 2 0.69 
 308.15 0.8 -0.22 0.1  338.35 1.9 0.64 0.2
 308.15 0.7 -0.36   338.35 1.7 0.53 
 308.15 0.9 -0.11   338.35 2.1 0.74 
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ
1,3-Propanediol 347.45 1.9 0.64 0.2  318.35 2.9 1.06 0.3
 347.45 1.7 0.53   318.35 2.6 0.96 
 347.45 2.1 0.74   318.35 3.2 1.16 
1,2-Butendiol 299.15 2 0.69 0.2  326.75 3 1.10 0.3
 299.15 1.8 0.59   326.75 2.7 0.99 
 299.15 2.2 0.79   326.75 3.3 1.19 
 308.35 2.1 0.74 0.2  337.55 3 1.10 0.3
 308.35 1.9 0.64   337.55 2.7 0.99 
 308.35 2.3 0.83   337.55 3.3 1.19 
 318.05 2.2 0.79 0.2  349.85 3.1 1.13 0.4
 318.05 2 0.69   349.85 2.7 0.99 
 318.05 2.4 0.88   349.85 3.5 1.25 
 327.25 2.3 0.83 0.3 2,3-butanediol 298.95 1.6 0.47 0.2
 327.25 2 0.69   298.95 1.4 0.34 
 327.25 2.6 0.96   298.95 1.8 0.59 
 338.55 2.4 0.88 0.3  308.85 1.7 0.53 0.2
 338.55 2.1 0.74   308.85 1.5 0.41 
 338.55 2.7 0.99   308.85 1.9 0.64 
 348.35 2.4 0.88 0.3  318.45 1.9 0.64 0.2
 348.35 2.1 0.74   318.45 1.7 0.53 
 348.35 2.7 0.99   318.45 2.1 0.74 
1,3-Butanediol 299.05 2.2 0.79 0.2  327.35 2.1 0.74 0.2
 299.05 2 0.69   327.35 1.9 0.64 
 299.05 2.4 0.88   327.35 2.3 0.83 
 308.75 2.3 0.83 0.2  337.65 2.2 0.79 0.3
 308.75 2.1 0.74   337.65 1.9 0.64 
 308.75 2.5 0.92   337.65 2.5 0.92 
 318.25 2.4 0.88 0.3  347.35 1.9 0.64 0.2
 318.25 2.1 0.74   347.35 1.7 0.53 
 318.25 2.7 0.99   347.35 2.1 0.74 
 327.25 2.4 0.88 0.3  Phenol and Derivatives 
 327.25 2.1 0.74  Phenol 298.15 551.2 6.31 
 327.25 2.7 0.99   303.15 495.3 6.21 
 338.05 2.5 0.92 0.3  308.15 375.3 5.93 
 338.05 2.2 0.79  o-Cresol 298.15 403.1 6.00 
 338.05 2.8 1.03   303.15 379.4 5.94 
 347.95 2.6 0.96 0.3  308.15 314.4 5.75 
 347.95 2.3 0.83  m-Cresol 298.15 574.3 6.35 
 347.95 2.9 1.06   303.15 554.3 6.32 
1,4-Butanediol 299.35 2.8 1.03 0.3  308.15 547.7 6.31 
 299.35 2.5 0.92  p-Cresol 298.15 738.2 6.60 
 299.35 3.1 1.13   303.15 611.6 6.42 
 309.05 2.8 1.03 0.3  308.15 510 6.23 
 309.05 2.5 0.92   Aldehydes 
 309.05 3.1 1.13  Formaldehyde 298.15 2.8 1.03 
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ
Acetaldehyde 293.15 3.591.28    318.15 8.99 2.20 
 298.15 3.941.37    373.15 11.66 2.46 
 298.15 29.43.38    373.15 10.81 2.38 
 303.15 4.361.47    373.15 8.76 2.17 
 303.15 26.043.26   2-Butanone 298.15 25.6 3.24 
 308.15 32.453.48    298.15 27.8 3.33 
 313.15 3.711.31    298.15 25.98 3.26 
Propionaldehyde293.15 14.72.69    298.15 27.6 3.32 
 298.15 13.032.57    298.15 41.2 3.72 
 298.15 35.83.58    298.15 65.74 4.19 
 298.15 48.673.89    298.15 25.3 3.23 
 303.15 17.62.87    298.15 26.4 3.27 0.7
 303.15 40.13.69    298.15 25.7 3.25 
 308.15 41.793.73    298.15 27.1 3.30 
 313.15 15.42.73    303.15 29.5 3.38 
Butyraldehyde 293.15 634.14    303.15 72.32 4.28 
 298.15 48.63.88    308.15 73.86 4.30 
 298.15 29.143.37    343.15 26.7 3.28 
 298.15 69.24.24    343.15 29.5 3.38 2.5
 303.15 72.114.28    343.15 27 3.30 
 303.15 734.29    343.15 32 3.47 
 308.15 65.384.18    353.15 28.5 3.35 
 313.15 614.11    363.15 30.2 3.41 
Valeraldehyde 298.15 220.25.39    373.15 31.8 3.46 
Hexanal 298.15 813.46.70    298.15 93.4 4.54 
Octanal 298.15 82439.02    298.15 98.9 4.59 
 298.15 89209.10    298.15 102 4.62 
 Ketones   298.15 102.5 4.63 
Acetone 288.15 5.851.77    298.15 135.1 4.91 
 288.15 5.831.76    303.15 125 4.83 
 298.15 7.011.95    308.15 129.7 4.87 
 298.15 7.562.02   3-Methyl-2-Butanone 298.15 84 4.43 
 298.15 7.311.99   2,4-Pentanedione 343.15 28.6 3.35 
 298.15 21.13.05    354.15 26.1 3.26 
 298.15 61.864.12    363.15 23.9 3.17 
 298.15 7.692.04 0.3  373.15 22 3.09 
 298.15 7.392.00   3-Pentanone 298.15 107.4 4.68 
 298.15 7.992.08    298.15 113 4.73 
 303.15 7.692.04    298.15 113 4.73 
 303.15 7.72.04    298.15 134.8 4.90 
 303.15 7.652.03    298.15 106 4.66 2
 303.15 7.422.00    298.15 104 4.64 
 303.15 59.114.08    298.15 108 4.68 
 308.15 56.854.04    303.15 139.6 4.94 
 318.15 9.852.29    308.15 180 5.19 
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Solute T/K Exp γ ln γ Error γ Solute T/K Exp γ ln γ Error γ
2-Hexanone 298.15 355.7 5.87  323.15 66.8 4.20 
 298.15 329.1 5.80 Propyl Acetate 298.15 242 5.49 
3-Hexanone 298.15 412 6.02  298.15 301.6 5.71 
2-Heptanone 298.15 1397 7.24  303.15 314.4 5.75 
 298.15 1055 6.96  308.15 326.8 5.79 
 298.15 882.2 6.78 Isopropyl Acetate 298.15 195.5 5.28 
 303.15 626 6.44  298.15 251.2 5.53 
 308.15 713 6.57  303.15 233.8 5.45 
2-Nonanone 298.1516290 9.70  308.15 268 5.59 
 298.152480010.12 Butyl Acetate 298.15 814 6.70 
Cyclopentanone 298.15 29.2 3.37  298.15 1058 6.96 
 Acids  303.15 1155 7.05 
Formic Acid 298.15 0.64 -0.45  308.15 1261 7.14 
 373.15 0.736 -0.31 Isobutyl Acetate 298.15 844.4 6.74 
Acetic Acid 298.5 0.92 -0.08 Pentyl Acetate 298.15 3233 8.08 
 298.15 2.9 1.06 Isopentyl Acetate 298.15 2977 8.00 
 339.58 3.03 1.11 Hexyl Acetate 298.1512490 9.43 
 356.11 3.11 1.13 Methyl Propionate 293.15 87.1 4.47 
 366.66 3.25 1.18 Ethyl Propionate 298.15 256 5.55 
 373.15 3.65 1.29 Methyl Butyrate 293.15 331 5.80 
 373.15 2.92 1.07 Ethyl Butyrate 298.15 730 6.59 
Butyric Acid 298.15 52.9 3.97 Methyl Valerate 293.15 1259 7.14 
Propionic Acid,2-Methyl,-Methyl293.15 309 5.73 Methyl Hexanoate 293.15 3981 8.29 
 Esters  Ethers 
Methyl Formate 293.15 16.1 2.78 Ethyl Ether 268.15 72.9 4.29 
 298.15 15.5 2.74  298.15 109.6 4.70 
 303.15 17.4 2.86  298.15 69.7 4.24 
 313.5 14.2 2.65 Propyl Ether 298.15 2315 7.75 
Ethyl Formate 293.15 46 3.83  298.15 2330 7.75 
 298.15 47.3 3.86  298.15 2210 7.70 
 303.15 51 3.93  298.15 1560 7.35 
 313.15 41 3.71 Isopropyl Ether 296.15 639 6.46 
Propyl Formate 293.15 150 5.01  298.15 628 6.44 
 298.15 169 5.13  298.15 2810 7.94 
 303.15 168 5.12  298.15 496.1 6.21 
 313.15 131 4.88  298.15 667 6.50 
Methyl Acetate 298.15 22.6 3.12 butyl ether 298.154718010.76 
 313.15 27.2 3.30 1  298.152810010.24 
 313.15 26.2 3.27  298.153750010.53 
 313.15 28.2 3.34 T-Butyl-Methyl-Ether 298.15 112.5 4.72 
Ethyl Acetate 288.15 63.9 4.16 1.96 Tetrahydrofuran 293.15 16.6 2.81 0.2
 288.15 61.94 4.13  293.15 16.4 2.80 
 288.15 65.86 4.19  293.15 16.8 2.82 
 298.15 65.3 4.18  298.15 17 2.83 
 313.15 84.5 4.44  308.15 23.5 3.16 0.2
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Solute T/K Exp γ ln γ Error γ Solute T/K Exp γ ln γ Error γ
Tetrahydrofuran 308.15 23.3 3.15   328.35 1.13 0.12 0.03
 308.15 23.7 3.17   328.35 1.1 0.10 
 313.15 20.8 3.03 1  328.35 1.16 0.15 
 313.15 19.8 2.99   337.85 1.39 0.33 0.2
 313.15 21.8 3.08   337.85 1.19 0.17 
 323.15 32.8 3.49 0.5  337.85 1.59 0.46 
 323.15 32.3 3.48  Aniline 323.15 129 4.86 
 323.15 33.3 3.51   373.15 80 4.38 
Tetrahydropyran 298.15 78.6 4.36  N,N-Dimethylformamide289.35 0.58 -0.54 0.03
Anisole 298.15 3650 8.20   289.35 0.55 -0.60 
 298.15 4610 8.44   289.35 0.61 -0.49 
Phenetole 298.1515730 9.66   291.95 0.6 -0.51 0.1
 298.1515800 9.67   291.95 0.5 -0.69 
 Amines and Amides   291.95 0.7 -0.36 
Ethylamine 293.15 0.37-0.99   297.95 0.65 -0.43 0.11
 303.15 0.69-0.37   297.95 0.54 -0.62 
 313.15 0.44-0.82   297.95 0.76 -0.27 
Propylamine 293.15 2.33 0.85   298.15 0.83 -0.19 
 303.15 2.85 1.05   298.15 0.62 -0.48 
 313.15 2.44 0.89   307.75 0.81 -0.21 0.08
Propylamine 293.15 4 1.39   307.75 0.73 -0.31 
 303.15 4.7 1.55   307.75 0.89 -0.12 
 313.15 3.7 1.31   308.25 0.7 -0.36 0.1
Triethylamine 298.15 67.5 4.21   308.25 0.6 -0.51 
Diethylamine 303.15 5.4 1.69   308.25 0.8 -0.22 
Diisopropylamine 293.15 33.24 3.50   317.85 0.95 -0.05 0.11
Dimethylacetamide 298.15 1.04 0.04   317.85 0.84 -0.17 
Piperidine 343.15 6.62 1.89   317.85 1.06 0.06 
 263.15 6.89 1.93   318.05 0.8 -0.22 0.1
 273.15 7.24 1.98   318.05 0.7 -0.36 
Pyridine 298.15 19.9 2.99   318.05 0.9 -0.11 
 343.15 24.6 3.20   323.15 0.89 -0.12 0.4
 363.15 20 3.00   323.15 0.49 -0.71 
 373.15 17 2.83   323.15 1.29 0.25 
4-Methylpyridine 298.5 42.3 3.74   328.25 1.11 0.10 0.04
3-Methylpyridine 298.15 49.1 3.89   328.25 1.07 0.07 
N-Methyl pyrrolidone 298.75 0.37-0.99 0.014  328.25 1.15 0.14 
 298.75 0.356-1.03   328.25 1.11 0.10 0.1
 298.75 0.384-0.96   328.25 1.01 0.01 
 308.35 0.6-0.51 0.09  328.25 1.21 0.19 
 308.35 0.51-0.67   333.05 1.35 0.30 0.26
 308.35 0.69-0.37   333.05 1.09 0.09 
 317.95 0.86-0.15 0.15  333.05 1.61 0.48 
 317.95 0.71-0.34   337.75 1.1 0.10 0.1
 317.95 1.01 0.01   337.75 1 0.00 
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ
N,N-Dimethylformamide 337.75 1.2 0.18   308.35 0.1 -2.30 0.002
 337.95 1.3 0.26 0.4  308.35 0.098 -2.32 
 337.95 0.9-0.11   308.35 0.102 -2.28 
 337.95 1.7 0.53   317.95 0.12 -2.12 0.017
 343.05 2.67 0.98 0.15  317.95 0.103 -2.27 
 343.05 2.52 0.92   317.95 0.137 -1.99 
 343.05 2.82 1.04   328.35 0.135 -2.00 0.015
 347.35 1.1 0.10 0.1  328.35 0.12 -2.12 
 347.35 1 0.00   328.35 0.15 -1.90 
 347.35 1.2 0.18   337.85 0.17 -1.77 0.004
 Nitriles   337.85 0.166 -1.80 
Acrylonitrile 298.15 39.4 3.67   337.85 0.174 -1.75 
 373.15 35 3.56   Others 
Acetonitrile 298.15 11.1 2.41  1,4-Dioxane 298.15 5.42 1.69 
 298.15 10.09 2.31   298.15 5.45 1.70 
 298.15 16.37 2.80  Ethylene Oxide298.15 6.23 1.83 
 298.15 9.24 2.22       
 364.15 21.1 3.05       
 373.15 10.3 2.33       
Propionitrile 298.15 35.29 3.56       
 298.15 37.56 3.63       
 298.15 34.9 3.55       
Butyronitrile 298.15117.75 4.77       
 298.15112.56 4.72       
 298.15115.18 4.75       
Isobutyronitrile 298.15 117 4.76       
 298.15134.69 4.90       
Valeronitrile 298.15 401.9 6.00       
 298.15 413 6.02       
 298.15 382.8 5.95       
Hexanenitrile 298.15 1401 7.24       
Benzonitrile 298.15 1741 7.46       
 Nito Compunds       
Nitromethane 298.15 31.6 3.45       
 298.15 31.68 3.46       
 323.15 21.4 3.06       
Nitroethane 298.15 88.6 4.48       
Nitropropane 298.15 299.2 5.70       
3-Nitrotoluene 298.15 7089 8.87       
 298.15 14500 9.58       
 Compunds with Sulfur       
Carbon disulfide 298.15 3300 8.10       
Dimethylsulfoxide 298.75 0.09-2.41 0.02      
 298.75 0.07-2.66       
 298.75 0.11-2.21       
 



    255

Table G-3.  Organics in Water (Indirect Measurements) 

Solute T/K Exp γ ln γ  Solute T/K Exp γ ln γ
 Aliphatic Alkanes  Nonane 298.155.85E+0717.88
Methane 298.15 137.4 4.92  298.153.24E+0717.29
Ethane 298.15 717.1 6.58 4-Methyloctane 298.156.21E+0717.94
Propane 298.15 4230 8.35 Decane 298.151.52E+0818.84
Butane 298.15 2.19E+04 9.99  298.151.58E+0818.88
iso-Butane 298.15 1.96E+04 9.88  298.153.34E+0819.63
 298.15 1.87E+04 9.84 Dodecane 298.152.78E+0921.74
Pentane 298.15 9.09E+0411.42  298.152.56E+0921.66
 298.15 1.04E+0511.55  Cyclic Alkanes 
2,2-Dimethyl propane 298.15 1.20E+0511.70 Cyclopentane 298.152.49E+0410.12
 298.15 7.42E+0411.21 Cyclohexane 298.158.13E+0411.31
 298.15 7.11E+0411.17 Methyl cyclopentane 298.151.09E+0511.60
2-Methyl butane 298.15 8.26E+0411.32 Cycloheptane 298.151.82E+0512.11
 298.15 8.39E+0411.34 1-Methyl cyclohexane 298.153.40E+0512.74
Hexane 298.15 5.04E+0513.13 Cyclooctane 298.157.89E+0513.58
 298.15 3.40E+0512.74 1,2-Dimethyl cyclohexane(cis) 298.151.04E+0613.85
 298.15 4.35E+0512.98 Pentylcyclopentane 298.156.78E+0718.03
 298.15 3.89E+0512.87  Aliphatic Alkenes 
2,2-Dimethyl butane 298.15 2.27E+0512.33 Ethylene 298.151.99E+02 5.29
 298.15 2.60E+0512.47  298.152.02E+02 5.31
2,3-Dimethyl butane 298.15 2.27E+0512.33 Propene 298.151.04E+03 6.95
 298.15 2.13E+0512.27  298.151.15E+03 7.05
2-Methyl pentane 298.15 3.48E+0512.76 1-Butene 298.154.79E+03 8.47
 298.15 3.47E+0512.76  298.155.07E+03 8.53
3-Methyl pentane 298.15 3.70E+0512.82 2-Methylpropene 298.154.65E+03 8.44
 298.15 3.74E+0512.83 1-Pentene 298.152.63E+0410.18
Heptane 298.15 2.33E+0614.66 2-Pentene 298.151.92E+04 9.86
 298.15 1.90E+0614.46 3-Methyl-1-Butene 298.152.50E+0410.13
2-Methylhexane 298.15 2.19E+0614.60  298.15 2994010.31
3-Methylhexane 298.15 1.12E+0613.93 2-Methyl-2-Butene 298.15 17760 9.78
2,2-Dimethyl pentane 298.15 1.27E+0614.05 1-Hexene 298.15 8770011.38
2,3-Dimethyl pentane 298.15 1.06E+0613.87  298.15 8430011.34
2,4-Dimethyl pentane 298.15 1.32E+0614.09  298.15 9350011.45
 298.15 1.37E+0614.13 2-Methyl-1-Pentene 298.15 5990011.00
 298.15 1.01E+0613.83 4-Methyl-1-Pentene 298.15 9740011.49
3,3-Dimethyl pentane 298.15 9.43E+0513.76 2,3-Dimethyl-1-butene 298.15 467 6.15
 298.15 9.37E+0513.75 2-Heptene 298.15 36300012.80
Octane 298.15 9.08E+0616.02 1-Octene 298.15 231000014.65
 298.15 9.62E+0616.08 1-Nonene 298.15 629000015.65
3-Methylheptane 298.15 8.01E+0615.90 1,3-Butadiene 298.15 4090 8.32
2,2,4-Trimethyl pentane 298.15 2.86E+0614.87 1,4-Pentadiene 298.15 6780 8.82
 298.15 2.60E+0614.77 2-Methyl-1,3-butadiene 298.15 6210 8.73
2,3,4-Trimethyl pentane 298.15 2.76E+0614.83  298.15 5900 8.68
 298.15 4.67E+0615.36 1,5-Hexadiene 298.15 2700010.20
2,3,5-Trimethyl pentane 298.15 6.20E+0615.64 1,6-Heptadiene 298.15 12100011.70
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Solute T/K Exp γ ln γ Solute T/K Exp γ ln γ
 Cyclic Alkenes  298.15 3070010.33
Cyclopentene 298.15 7070 8.86  308.15 2985010.30
Cyclohexene 298.15 28600 10.26  318.15 2751010.22
Cycloheptene 298.15 80900 11.30 m-Xylene 288.15 3725010.53
1-Methyl cyclohexene 298.15 103000 11.54  298.15 3644010.50
4-Ethenyl cyclohexene 298.15 120000 11.70  298.15 3380010.43
1,4-Cyclohexadiene 298.15 4760 8.47  308.15 3518010.47
Cycloheptatriene 298.15 800 6.68  318.15 3180010.37
 Alkynes p-Xylene 288.15 3750010.53
Propyne 298.15 104 4.64  295.15 36315.510.50
1-Butyne 298.15 583 6.37  298.15 3620010.50
1-Pentyne 298.15 2410 7.79  308.15 3430010.44
1-Hexyne 298.15 12700 9.45  318.15 3314010.41
1-Heptyne 298.15 56800 10.95 1,2,3-Trimethylbenzene 288.15 11150011.62
1-Octyne 298.15 255000 12.45  298.15 8870011.39
1-Nonyne 298.15 958000 13.77  298.15 10650011.58
1,6-Heptadiyne 298.15 3100 8.04  308.15 9250011.43
1,8-Nonanediyne 298.15 53400 10.89  318.15 7836011.27
 Monocyclic Aromatics 1,2,4-Trimethylbenzene 288.15 12760011.76
Benzene 278.15 2684.7 7.90  298.15 11500011.65
 288.15 2748.8 7.92  298.15 11810011.68
 295.15 2670.4 7.89  308.15 10740011.58
 298.15 2676.9 7.89  318.15 9634011.48
 298.15 2480 7.82 1,3,5-Trimethylbenzene 288.15 14490011.88
 298.15 2400 7.78  298.15 13900011.84
 308.15 2543.2 7.84  298.15 13350011.80
 318.15 2413.8 7.79  308.15 12140011.71
Styrene 298.15 18000 9.80  318.15 11340011.64
Indan 298.15 60200 11.01 o-Ethyl toluene 298.15 7194011.18
 298.15 60000 11.00 p-Ethyl toluene 298.15 7040011.16
m-Methyl styrene 298.15 73500 11.21 Propylbenzene 288.15 14310011.87
p-Methyl styrene 298.15 73500 11.21  298.15 13100011.78
Toluene 288.15 9948.2 9.21  308.15 12130011.71
 295.15 9701.2 9.18 Propylbenzene 318.15 10420011.55
 298.5 9701.8 9.18  288.15 11210011.63
 298.15 9412 9.15  29515 109097.811.60
 308.15 9392.8 9.15  298.15 11600011.66
 318.15 8760.9 9.08  298.15 10860011.60
Ethylbenzene 288.15 36760 10.51  308.15 9722011.48
 298.15 34840 10.46  318.15 8623011.36
 298.15 35700 10.48 Sec-butylbenzene 298.15 42400012.96
 308.15 33470 10.42 Tert-butylbenzene 298.15 25300012.44
 318.15 30060 10.31 1,2,4,5-Tetramethyl benzene298.15 214000014.58
o-Xylene 288.15 35130 10.47  Polycyclic Aromatics
 298.15 32970 10.40 Naphthalene 298.15 6.83E+0411.13
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Solute T/K Exp γ ln γ Solute T/K Exp γ ln γ 
Naphthalene 298.15 6.42E+04 11.07 Trichlorofluoromethane 298.15 7040 8.86
1-Methylnaphthalene 298.15 2.82E+05 12.55 Dichlorodifluoromethane 298.15 22400 10.02
2-Methylnaphthalene 298.15 2.65E+05 12.49 Chlorotrifluormethane 298.15 64500 11.07
 298.15 2.51E+05 12.43 Carbon tetrafluoride 298.15 306000 12.63
1,3-Dimethylnaphthalene 298.15 1.09E+05 11.60 Nitrotrichloromethane 298.15 5630 8.64
1,4-Dimethylnaphthalene 298.15 7.63E+05 13.55 Dichlorofluoromethane 298.15 299 5.70
1,5-Dimethylnaphthalene 298.15 7.45E+05 13.52 Chlorodifluoromethane 298.15 1730 7.46
2,3-Dimethylnaphthalene 298.15 5.02E+05 13.13 Chloroform 293.15 810 6.70
2,6-Dimethylnaphthalene 298.15 4.69E+05 13.06 Trifluoromethane 298.15 4310 8.37
 298.15 6.53E+05 13.39 Triiodomethane 298.15 219000 12.30
1-Ethylnaphthalene 298.15 8.06E+05 13.60 Difluoromethane 298.15 658 6.49
Biphenyl 298.15 4.90E+05 13.10 Diiodomethane 298.15 11990 9.39
 298.15 4.33E+05 12.98 Bromomethane 298.15 389 5.96
Acenaphthene 298.15 3.98E+05 12.89 Chloromethane 298.15 474 6.16
 298.15 4.33E+05 12.98 Fluoromethane 298.15 787 6.67
 298.15 4.25E+05 12.96 Hexachloroethane 298.15 1640000 14.31
Fluorene 298.15 7.01E+05 13.46 1,1,2-Trichlorotrifluoroethane 298.15 61400 11.03
 298.15 5.93E+05 13.29 1,2-Dichlorotetrafluoroethane 298.15 69400 11.15
Phenanthrene 298.15 1.76E+06 14.38 Chloropentafluoroethane 298.15 148000 11.90
 298.15 1.50E+06 14.22 1,1,2,2-Tetrabromoethane 303.15 29500 10.29
Anthracene 298.15 1.84E+06 14.43 Tetrachloroethene 298.15 61360 11.02
 298.15 1.72E+06 14.36 Tetrafluoroethene 298.15 35100 10.47
 298.15 2.35E+06 14.67 Hexafluoroethane 298.15 971000 13.79
2-Methylanthracene 298.15 4.17E+06 15.24 Pentachloroethane 293.15 23900 10.08
9-Methylanthracene 298.15 1.14E+07 16.25 Bromoethane 298.15 670 6.51
9,10-Dimethylanthracene 298.15 5.77E+06 15.57 Chloroethene 298.15 1290 7.16
Pyrene 298.15 4.17E+06 15.24 1-Bromo-2-Chloroethane 303.15 1160 7.06
 298.15 3.87E+06 15.17 1,2-Dibromoethane 298.15 2530 7.84
Fluoranthene 298.15 6.02E+06 15.61 1,1-Dichloroethene 293.15 10760 9.28
1,2-Benzofluorene 298.15 6.73E+06 15.72  298.15 25600 10.15
2,3-Benzofluorene 298.15 1.60E+07 16.59 Cis 1,2-Dichloroethene 298.15 1540 7.34
Chrysene 298.15 3.41E+07 17.34 Chloroethane 298.15 394 5.98
Triphenylene 298.15 5.65E+06 15.55 3-Bromo-1-Propene 298.15 1750 7.47
Naphthacene 298.15 1.43E+07 16.48 3-Chloro-1-propene 298.15 1060 6.97
1,2-Benzanthracene 298.15 4.24E+07 17.56 1,2,3-Trichloropropane 298.15 4310 8.37
 298.15 5.41E+07 17.81 1,2-Dibromopropane 298.15 7810 8.96
7,12-Dimethyl-1,2-Benzanthracene 298.15 2.60E+07 17.07  298.15 7840 8.97
Perylene 298.15 1.15E+08 18.56 1,3-Dibromopropane 303.15 6670 8.81
Benzo[a]pyrene 298.15 3.75E+08 19.74 1,3-Dichloropropane 298.15 2300 7.74
 298.15 1.21E+07 16.31 1-Bromopropane 303.15 2770 7.93
3-Methylcholanthrene 298.15 1.61E+08 18.90 2-Bromopropane 293.15 2130 7.66
Benzo[ghi]perylene 298.15 1.89E+08 19.06 2-Iodopropane 298.15 6760 8.82
Coronene 298.15 9.82E+08 20.71 Octafluorocyclobutane 298.15 222000 12.31
 Halogenated Hydrocarbons 2-Chlorobutane 298.15 5130 8.54
Carbon Tetrachloride 293.15 11000 9.31 1-Chloro-2-Methylpropane 298.15 5560 8.62
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Solute T/K Exp γ ln γ  Solute T/K Exp γ ln γ
1-Bromo-2-Methylpropane 293.15 15000 9.62 1-Octanol 298.15 11605 9.36
1-Bromobutane 289.15 13100 9.48 2,2,3-Trimethyl-3-pentanol 298.15 1040 6.95
1-Bromopentane 298.15 6620011.10 1-Nonanal 298.154.63E+0410.74
2-Chloro-2-Methylbutane 298.15 1780 7.48 1-Decanol 298.151.77E+0512.08
1-Bromo-3-Methylbutane 293.15 4320010.67 1-Dodecanol 298.153.88E+0615.17
Hexachlorobenzene 298.153.33E+0921.93 1-Tetradecanol 298.153.97E+0717.50
 298.153.16E+0921.87 1-Pentadecanol 298.151.43E+0818.78
m-Dichlorobenzene 293.15 7350011.21 1-Hexadecanol 298.153.85E+0819.77
 298.15 6620011.10 1-Heptadecanol 298.151.79E+0921.31
o-Dichlorobenzene 293.15 6089011.02 1-Octadecanol 298.151.43E+1023.38
p-Dichlorobenzene 293.15 11700011.67 1,3-Nonanediol 298.15 610 6.41
 298.15 10200011.53 1,4-Dimethyl-2,3-octanediol 298.15 784 6.66
1,2,3-Trichlorobenzene 298.15 31900012.67 2,4-Dimethyl-2,4-nonanediol 298.15 2480 7.82
1,2,4-Trichlorobenzene 298.15 10070 9.22 2-Propyl1,3-heptanediol 298.15 940 6.85
1,2,3,4-Tetrachlorobenzene 298.52.77E+0614.83  Phenol Derivatives 
1,2,3,5-Tetrachlorobenzene 298.153.41E+0615.04 m-Cresol 298.15 276 5.62
1,2,4,5-Tetrachlorobenzene 298.152.01E+0716.82 o-Cresol 298.15 246 5.51
Pentachlorobenzene 298.152.47E+0717.02 p-Cresol 298.15 311 5.74
m-Difluorobenzene 298.15 5560010.93  Ketones 
o-Difluorobenzene 298.15 5556010.93 2-Methyl,3-pentanone 298.15 361 5.89
p-Difluorobenzene 298.15 5180 8.55 3-Methyl,2-pentanone 298.15 261 5.56
 Alcohols  4-methyl-2-pentanone 298.15 292 5.68
1-Pentanol 298.15 270 5.60 3,3-Dimethyl,2-Butanone 298.15 288 5.66
2-Methyl-1-butanol 298.15 161 5.08 2-Heptanone 293.15 1435 7.27
2,2-Dimethyl-1-propanol 298.15 136 4.91  298.15 1468 7.29
3-Hexanol 298.15 348 5.85 4-Heptanone 303.15 1653 7.41
2-Methyl-2-pentanol 298.15 170 5.14 2,4-Dimethyl,3-pentanone 298.15 1107 7.01
2-Methyl-3-pentanol 298.15 278 5.63 5-Methyl,2-hexanone 298.15 1520 7.33
4-Methyl-2-pentanol 298.15 350 5.86 5-Nonanone 303.15 21700 9.99
3-Methyl-2-pentanol 298.15 288 5.66 2,6-Dimethyl,4-heptanone 298.15 8760 9.08
3-Methyl-3-pentanol 298.15 128 4.85 Cyclohexanone 298.15 54.1 3.99
2,2-Dimethyl-1butanol 298.15 742 6.61 Acetophenone 298.15 975.6 6.88
2,3-Dimethyl-2-butanol 298.15 131 4.88  Acids 
3,3-dimethyl-2-butanol 298.15 229 5.43 Pentanoic acid 298.15 127 4.84
1-Hexene-3-ol 298.15 216 5.38 Hexanoic Acid 298.15 470.5 6.15
4-Hexene-3-ol 298.15 141 4.95  298.15 468 6.15
2-Methyl-4-pentene-3-ol 298.15 177 5.18 heptanoic Acid 303.15 2523 7.83
2-Methyl-2-hexanol 298.15 660 6.49 Benzoic acid 298.15 2004 7.60
3-Methyl-3-Hexanol 298.15 537 6.29  Esters 
2,3-Dimethyl-2-pentanol 298.15 413 6.02 Acetic Acid,ethenyl ester 293.15 416 6.03
2,4-Dimethyl-2-pentanol 298.15 476 6.17 Methyl butyrate 294.15 358.9 5.88
2,2-Dimethyl-3-pentanol 298.15 781 6.66 Ethyl propenoate 293.15 257 5.55
2,3-Dimethyl-3-pentanol 298.15 388 5.96 Ethyl propionate 298.15 260 5.56
2,4-Dimethyl-3-pentanol 298.15 916 6.82 Propyl propanoate 298.15 1019 6.93
3-Ethyl-3-Pentanol 298.15 379 5.94 Ethyl butyrate 265.15 1041 6.95
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Solute T/K Exp γ ln γ  Solute T/K Exp γ ln γ 
Butyl acetate 298.15 799.5 6.68  Amines and Amides 
3-Methylbutyl acetate 303.15 3146 8.05 Butyl ethylamine 298.15 130 4.87
Propyl butyrate 290.15 4454 8.40 Dipropylamine 298.15 134 4.90
Isopropyl butyrate 298.15 3077 8.03 1-Ethylpiperidine 298.15 127 4.84
Ethyl pentanoate 298.15 2880 7.97 3-ethyl-4-methyl pyridine 298.15 220 5.39
Cyclohexyl acetate 298.15 2720 7.91 1-Propyl piperidine 298.15 943 6.85
Butyl pentanoate 298.1519400 9.87 Aniline 298.15 147 4.99
Hypochlorous acid, tertbutyl ester 293.15 1880 7.54 2-Amino toluene 293.15 367 5.91
 Ethers   Nitro Compounds 
Methyl propyl ether 298.15 132 4.88 2-Nitropropane 298.15 292 5.68
Methyl butyl ether 298.15 546 6.30 Nitrobenzene 298.15 3530 8.17
Methyl sec. Butyl ether 298.15 302 5.71 2-Nitrotoluene 303.15 11680 9.37
Ethyl isopropyl ether 298.15 200 5.30 2-Nitro-1-methoxy benzene 303.15 5030 8.52
Ethyl propyl ether 298.15 257 5.55 3-Nitrotoluene 303.15 15300 9.64
Isobutyl methyl ether 298.15 442 6.09  Compunds with Sulfur
tert-amyl methyl ether 293.15 449 6.11 Carbon disulfide 298.15 1140 7.04
Isopropyl propyl ether 298.15 1202 7.09 Methanethiol 298.15 110 4.70
Dipropyl ether 298.15 1444 7.28 Ethanethiol 298.15 231 5.44
 Aldehydes  1-Butanethiol 298.15 8330 9.03
Heptanol 303.15 4178 8.34  298.15 6600 8.79
Octanal 303.1519230 9.86 Methyl sulfide 298.15 174 5.16
Nonanal 303.157518811.23 Ethyl sulfide 298.15 1600 7.38
5-Methylfurfural 298.15 128 4.85 Thiophene 298.15 1550 7.35
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Table G-4.  Water in Organic Measurements 

Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ
 Aliphatic Alkanes  1,2-Dichloroethane 293.15 1224.80 
Pentane 298.15 2273 7.73   308.15 764.33 
Hexane 298.15 1650 7.41   323.15 554.01 
Heptane 298.15 1422 7.26  1,2-Dibromopropane 298.15 1735.15 
Octane 298.15 1235 7.12  Chlorobenzene 293.15 329.75.80 
 Aromatic Hydrocarbons   293.15 3295.80 
Benzene 293.15 245.4 5.50   308.15 243.25.49 
 308.15 170 5.14   323.15 201.35.30 
 323.15 135.5 4.91  1,3-Dioxolan-2-one, 4-Chloromethyl 324.95 9.582.26 
 Halogenated Hydrocarbons  329.95 9.122.21 
Chloroform 293.15 200 5.30   Alcohols 
 308.15 120 4.79  Methanol 307.75 1.60.47 0.2
 323.15 88 4.48   307.75 1.40.34 
1,1,2,2-Tetrabromoethane 298.15 426 6.05   307.75 1.80.59 
 308.15 263 5.57   317.85 1.80.59 0.2
 323.15 233 5.45   317.85 1.60.47 
1,1,2,2-Tetrachloroethane 293.15 89 4.49   317.85 20.69 
 308.15 66 4.19   323.15 1.50.41 
 323.15 46 3.83   327.85 1.70.53 0.25
Tetrachloroethene 298.15 35.6 3.57   327.85 1.450.37 
1,1,1-Trichloroethane 293.15 417 6.03   327.85 1.950.67 
 308.15 313 5.75   337.05 1.760.57 0.05
 323.15 227 5.42   337.65 1.440.36 
Trichloroethene 293.15 400.5 5.99   33765 1.580.46 
 293.15 400 5.99   337.75 1.770.57 
 308.15 354.2 5.87   373.15 1.390.33 
 323.15 282.1 5.64  Ethanol 323.15 2.350.85 
Tribromomethane 298.15 455 6.12   323.15 2.490.91 
 308.15 340 5.83   351.45 2.580.95 
 323.15 256 5.55   351.45 2.520.92 
1,1,2-Trichloroethane 293.15 128 4.85  1-Propanol 370.35 3.391.22 
 308.15 85 4.44  2-Propanol 288.15 5.721.74 0.11
 323.15 59 4.08   288.15 5.611.72 
1,1-Dichloroethene 285.15 890.3 6.79   288.15 5.831.76 
 293.15 461.4 6.13   318.35 3.51.25 0.4
trans-1,2-Dichloroethene 285.15 385.6 5.95   318.35 3.11.13 
 293.15 215.5 5.37   318.35 3.91.36 
 308.15 185.3 5.22   328.15 3.391.22 0.07
cis-1,2-Dichloroethene 298.15 35 3.56   328.15 3.321.20 
1,2-Dibromoethane 298.15 317 5.76   328.15 3.461.24 
 308.15 222 5.40   337.95 31.10 0.16
 323.15 171 5.14   337.95 2.841.04 
1,1-Dichloroethane 293.15 172 5.15   337.95 3.161.15 
 308.15 127 4.84   355.35 3.11.13 
 323.15 96 4.56   355.55 3.041.11 
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ

2-Propanol 363.15 3.09 1.13   393.15 1.28 0.25 
 373.15 3.01 1.10  Triethylene Glycol 322.55 0.63 -0.46 
2-Propen-1-ol 371.15 2.72 1.00   323.15 0.668 -0.40 
1-Butanol 308.15 5.41 1.69   328.15 0.672 -0.40 
 323.23 5.2 1.65   331.45 0.66 -0.42 
 333.15 5.31 1.67   333.15 0.685 -0.38 
 343.15 3.27 1.18   338.15 0.698 -0.36 
 353.15 3.12 1.14   340.75 0.68 -0.39 
 363.15 3.07 1.12   343.15 0.714 -0.34 
 363.15 4 1.39   348.15 0.728 -0.32 
 372.15 2.97 1.09   348.95 0.716 -0.33 
 373.15 4 1.39   353.15 0.735 -0.31 
 376.15 3.98 1.38   358.15 0.748 -0.29 
 378.15 3.71 1.31   358.75 0.752 -0.29 
 383.15 2.9 1.06   363.15 0.758 -0.28 
2-Butanol 323.18 4.6 1.53   368.15 0.774 -0.26 
 353.15 3.16 1.15   373.15 0.779 -0.25 
Iso-butyl Alcohol 323.15 5.3 1.67   378.15 0.807 -0.21 
 379.15 3.94 1.37   383.15 0.828 -0.19 
Tert-butyl Alcohol 323.13 4.9 1.59   Ketones 
2-Pentanol 363.15 3.8 1.34 0.2 Acetone 307.85 6.02 1.80 0.15
 363.15 3.6 1.28   307.85 5.87 1.77 
 363.15 4 1.39   307.85 6.17 1.82 
2-Butoxy ethanol 278.15 2.77 1.02   318.05 5.68 1.74 0.1
 298.15 2.83 1.04   318.05 5.58 1.72 
 318.15 2.83 1.04   318.05 5.78 1.75 
 338.15 2.86 1.05   328.45 5.3 1.67 0.02
 358.15 2.72 1.00   328.45 5.28 1.66 
 383.15 2.72 1.00   328.45 5.32 1.67 
 383.15 2.61 0.96   329.25 4.06 1.40 
Glycerol 330.85 0.648 -0.43   329.25 4.92 1.59 
 333.15 0.78 -0.25   373.15 3.6 1.28 
 338.15 0.805 -0.22  2-Butanone 323.15 7.3 1.99 
 339.75 0.667 -0.40   333.15 7.2 1.97 
 343.15 0.836 -0.18   343.15 6.4 1.86 0.2
 348.15 0.866 -0.14   343.15 6.2 1.82 
 349.95 0.676 -0.39   343.15 6.6 1.89 
 353.15 0.899 -0.11   343.15 7 1.95 
 358.15 0.931 -0.07   347.15 7.32 1.99 
 359.25 0.685 -0.38   353.15 6.9 1.93 
 363.15 0.966 -0.03  2,4-Pentanedione 354.15 4.6 1.53 
 364.05 0.696 -0.36   363.15 3.36 1.21 
 373.15 1.06 0.06   373.15 1.89 0.64 
Glycerol 378.15 1.1 0.10  Cyclohexanone 363.15 9.03 2.20 
 383.15 1.14 0.13       
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ

 Acids   313.15 11.88 2.47 
Acetic Acid  352.39 2.320.84   318.55 10.8 2.38 0.9
 371.27 2.170.77   318.55 9.9 2.29 
 383.6 2.130.76   318.55 11.7 2.46 
 391.22 2.10.74   323.15 10.7 2.37 
 Aldehydes   328.15 8.58 2.15 
Acrolein 365.15 13.22.58   328.45 10.1 2.31 0.1
Furfural 339.15 7.612.03   328.45 10 2.30 
 Ethers   328.45 10.2 2.32 
Tetrahydrofuran 308.35 11.12.41 0.6  333.15 10.4 2.34 
 308.35 10.52.35   338.35 9.7 2.27 0.2
 308.35 11.72.46   338.35 9.5 2.25 
 317.65 10.42.34 0.1  338.35 9.9 2.29 
 317.65 10.32.33   349.45 8.98 2.19 0.05
 317.65 10.52.35   349.45 8.93 2.19 
 328.05 9.82.28 0.3  349.45 9.03 2.20 
 328.05 9.52.25   353.15 9.23 2.22 
 328.05 10.12.31   373.15 8.32 2.12 
 338.05 9.42.24 0.1 Butyl Acetate 317.8 11.29 2.42 
 338.05 9.32.23  Phosphoric acid, Butyl Esters 298.15 0.16 -1.83 
 338.05 9.52.25   318.15 0.2 -1.61 
 343.15 7.772.05   333.15 0.22 -1.51 
Tetraethylene Glycol-dimethyl ether 303.15 1.8480.61   353.15 0.26 -1.35 
 323.15 1.6860.52  Phosphoric Acid,Dibutyl-Ester 298.15 1.31 0.27 
 343.15 1.5620.45   318.15 1.32 0.28 
Tripropylene Glycol-dimethyl ether 303.15 4.1921.43   333.15 1.38 0.32 
 323.15 3.8571.35   353.15 1.42 0.35 
 343.15 3.0311.11  Phosphoric Acid, Tributyl-Ester 298.15 2.34 0.85 
Triethylene Glycol-dibutyl ether 303.15 3.9641.38   318.15 2.28 0.82 
 323.15 3.5881.28   323.65 1.8 0.59 
 343.15 3.161.15   329.95 1.9 0.64 
diethylene glycol-dibutyl ether 303.15 5.4281.69   333.15 2.3 0.83 
 323.15 4.8471.58   363.15 2.34 0.85 
 343.15 4.3031.46   373.15 2.4 0.88 

Tripropylene Glycol-dibutyl ether 303.15 6.7051.90  
Phosphoric Acid,Methyl-
Diphenyl Ester 298.15 4.77 1.56 

 323.15 5.5521.71   318.15 4.39 1.48 
 343.15 4.4551.49   333.15 4.2 1.44 
 Esters   353.15 4.04 1.40 

Methyl Acetate 323.15 9.212.22  
Phosphoric Acid, Tri-(2-
Butoxyethyl) Ester 298.15 1.31 0.27 

Ethyl Acetate 288.15 18.12.90 0.17  318.15 1.37 0.31 
 288.15 17.932.89   333.15 1.43 0.36 
 288.15 18.272.91  Phthalic Acid, Dinonyl Ester 359.15 9.7 2.27 
 309.45 12.22.50 0.1  Compounds with Nitrogen
 309.45 12.12.49  Nitromethane 314.25 13.3 2.59 0.2
 309.45 12.32.51   314.25 13.1 2.57 
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Solute T/K Exp γ ln γ Error γ  Solute T/K Exp γ ln γ Error γ

Nitromethane 314.25 13.5 2.60   353.65 1.08 0.08 
 322.45 11.8 2.47 0.5  362.95 0.99 -0.01 0.05
 322.45 11.3 2.42   362.95 0.94 -0.06 
 322.45 12.3 2.51   362.95 1.04 0.04 
 323.15 11.8 2.47   367.65 1.02 0.02 0.03
 323.15 11.8 2.47   367.65 0.99 -0.01 
 323.15 11.8 2.47   367.65 1.05 0.05 
 333.05 11.8 2.47 0.8  382.95 1.33 0.29 0.07
 333.05 11 2.40   382.95 1.26 0.23 
 333.05 12.6 2.53   382.95 1.4 0.34 
 343.35 8.6 2.15 0.4  397.75 1.22 0.20 0.15
 343.35 8.2 2.10   397.75 1.07 0.07 
 343.35 9 2.20   397.75 1.37 0.31 
 353.65 8.7 2.16 0.8 Piperidine 343.15 3 1.10 
 353.65 7.9 2.07   363.15 3.23 1.17 
 353.65 9.5 2.25   373.15 3.61 1.28 
Acetonitrile 364.15 4.18 1.43  Pyridine 343.15 2.87 1.05 
Acrylonitrile 352.15 7.39 2.00   363.15 2.8 1.03 
Diisopropylamine 293.15 33.24 3.50   373.15 2.8 1.03 
3-Methylpyridine 343.15 3 1.10  Aniline 323.15 2.55 0.94 
Dimethylformamide 353.65 0.96 -0.04 0.12  373.15 5.81 1.76 
 353.65 0.84 -0.17       
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Appendix H. Type I Analysis 

This appendix contains results from the Type I analyses, which are comprised of a 

general summary, a table of the optimum descriptor set used for each case study, plots 

showing data outliers, determination plots for optimum number of parameters, and plots 

of the calculated values of the infinite-dilution activity coefficients. 

 

Table H-1.  Summary of Type I Results 

 CS1-A CS1-B CS2 CS3 CS4 CS5 
Type I       
     Descriptors 10 10 12 10 10 12 
     R^2 0.971 0.947 0.970 0.934 0.942 0.932 
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Table H-2.  Optimum Descriptors Used in the Type I Analyses 

Type I Descriptors 
CS1-A CS1-B CS2 CS3 CS4 CS5 

HA dependent 
HDSA-2/TMSA 
[Zefirov's PC] 

Kier shape index 
(order 1) 

Max e-e 
repulsion for a O 
atom 

Number of O  
atoms 

Vib heat capacity 
(300K)   

Kier shape index 
(order 1) 

Max net atomic 
charge 

Min partial 
charge for a O  
atom [Zefirov's 
PC] 

count of H-
acceptor sites 
[Zefirov's PC] 

TMSA Total 
molecular 
surface area 
[Zefirov's PC] 

Max partial 
charge for a N  
atom [Zefirov's 
PC] 

Max SIGMA-PI 
bond order 

temperature temperature Moment of 
inertia A index index2 index2 

1X GAMMA 
polarizability 
(DIP) 

min(#HA, #HD) 
[Quantum-
Chemical PC] 

Max net atomic 
charge for a N 
atom 

temperature temperature temperature 

WNSA-1 
Weighted PNSA 
(PNSA1*TMSA/1
000) [Zefirov's 
PC] 

Min atomic 
orbital electronic 
population 

FHBSA 
Fractional HBSA 
(HBSA/TMSA) 
[Quantum-
Chemical PC] 

Max net atomic 
charge for a N 
atom 

Min partial 
charge for a O  
atom [Zefirov's 
PC] 

count of H-
donors sites 
[Quantum-
Chemical PC] 

Max partial 
charge for a N  
atom [Zefirov's 
PC] 

Molecular 
volume / XYZ 
Box 

FNSA-1 
Fractional PNSA 
(PNSA-1/TMSA) 
[Quantum-
Chemical PC] 

RNCG Relative 
negative charge 
(QMNEG/QTMIN
US) [Zefirov's 
PC] 

HASA-2 
[Zefirov's PC] 

Min (>0.1) bond 
order of a C 
atom 

Number of O  
atoms 

Min n-n 
repulsion for a 
N-O bond 

DPSA-1 
Difference in 
CPSAs (PPSA1-
PNSA1) 
[Zefirov's PC] 

Min atomic state 
energy for a C 
atom 

PPSA-2 Total 
charge weighted 
PPSA [Zefirov's 
PC] 

WNSA-2 
Weighted PNSA 
(PNSA2*TMSA/1
000) [Quantum-
Chemical PC] 

WPSA-2 
Weighted PPSA 
(PPSA2*TMSA/1
000) [Quantum-
Chemical PC] 

Min atomic state 
energy for a C 
atom 

PPSA-3 Atomic 
charge weighted 
PPSA [Zefirov's 
PC] 

count of H-
donors sites 
[Quantum-
Chemical PC] 

ZX Shadow / ZX 
Rectangle 

Max partial 
charge for a N  
atom [Zefirov's 
PC] 

Number of 
double bonds 

Min nucleoph. 
react. index for a 
N atom 

Min (>0.1) bond 
order of a O 
atom 

LUMO+1 energy
Min e-n 
attraction for a 
C-H bond 

Min n-n 
repulsion for a 
C-O bond 

Min (>0.1) bond 
order of a O 
atom 

PPSA-1 Partial 
positive surface 
area [Quantum-
Chemical PC] 

Max partial 
charge for a N  
atom [Zefirov's 
PC] 

RNCG Relative 
negative charge 
(QMNEG/QTMIN
US) [Quantum-
Chemical PC] 

Min electroph. 
react. index for a 
N atom 

WNSA-2 
Weighted PNSA 
(PNSA2*TMSA/1
000) [Zefirov's 
PC] 

  
Min resonance 
energy for a N-O 
bond 

  
HA dependent 
HDSA-1 
[Zefirov's PC] 

  
Min e-e 
repulsion for a H 
atom 

  Number of O  
atoms 
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Figure H-1.  Infinite-Dilution Activity Coefficients of CS1-A with Outliers 
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Figure H-2.  R2 Plot for Number of Parameters Determination (CS1-A Case Study) 
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Figure H-3.  Infinite-Dilution Activity Coefficients of CS1-A Case Study (Type I) 
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Figure H-4.  Infinite-Dilution Activity Coefficients of CS1-B with Outliers 
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Figure H-5.  R2 Plot for Number of Parameters Determination (CS1-B Case Study) 
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Figure H-6.  Infinite-Dilution Activity Coefficients of CS1-B Case Study (Type I) 
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Figure H-7.  Infinite-Dilution Activity Coefficients of CS2 with Outliers 
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Figure H-8.  R2 Plot for Number of Parameters Determination (CS2Case Study) 
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Figure H-9.  Infinite-Dilution Activity Coefficients of CS2Case Study (Type I) 
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Figure H-10.  Infinite-Dilution Activity Coefficients of CS3 with Outliers 
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Figure H-11.  R2 Plot for Number of Parameters Determination (CS3 Case Study) 
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Figure H-12.  Infinite-Dilution Activity Coefficients of CS3 Case Study (Type I) 
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Figure H-13.  Infinite-Dilution Activity Coefficients of CS4 with Outliers 
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Figure H-14.  R2 Plot for Number of Parameters Determination (CS4 Case Study) 
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Figure H-15.  Infinite-Dilution Activity Coefficients of CS4 Case Study (Type I) 
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Figure H-16.  Infinite-Dilution Activity Coefficients of CS5 with Outliers 
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Figure H-17.  R2 Plot for Number of Parameters Determination (CS5 Case Study) 
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Appendix I. Type II Analysis 

This appendix contains results from the Type II analyses, which are comprised of 

a general summary, a table of the optimum descriptor set used for each case study, 

determination plots for optimum number of parameters, and plots of both the calculated 

values of the infinite-dilution activity coefficients and the difference between the 

experimental and calculated values. 

 

Table I-1.  Summary of Type II Results 

 CS1 CS2 CS3 CS4 CS5 
TYPE II 
Descriptors 6 5 3 3 3 
R^2 0.955 0.903 0.956 0.960 0.893 
 Results in γ∞ 
 %AAD RMSE %AAD RMSE %AAD RMSE %AAD RMSE %AAD RMSE

Training 
Set 22.2 1.04 170.5 0.78 34.1 0.89 31.1 0.55 43.6 0.94

Prediction 
Set 21.2 0.98 116.0 0.95 17.4 0.68 21.3 0.54 41.9 1.08

Cross 
Validation 

Set 
17.4 0.87 112.0 0.93 19.1 0.78 20.6 0.61 36.1 1.34

 



    276

Table I-2.  Optimum Descriptors Used in the Type II Analyses 
Type II Descriptors 

CS1 CS2 CS3 CS4 CS5 

TMSA Total 
molecular surface 
area [Zefirov's PC] 

Min e-n attraction 
for a O atom 

Min n-n repulsion for 
a C-O bond 

Max SIGMA-PI 
bond order 

Kier&Hall index 
(order 0) 

exch. eng. + e-e 
rep. for a C-O 
bond 

DPSA-3 Difference
in CPSAs (PPSA3-
PNSA3) [Zefirov's 
PC] 

Complementary 
Information content 

Tot molecular 1-
center E-N 
attraction 

Max SIGMA-PI 
bond order 

logP 
HACA-1 
[Quantum-
Chemical PC] 

FGorg (functional 
group) 

FG (functional 
group) 

FG (functional 
group) 

Max n-n repulsion 
for a C-H bond 

Tot heat capacity 
(300K) / # of 
atoms 

   

MP (melting point) Polarity parameter 
(Qmax-Qmin)    

Relative number of 
O  atoms     
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Figure I-1.  R2 Plot for Number of Parameters Determination (CS1 Case Study) 

Experimental ln γ∞

-5.00 0.00 5.00 10.00 15.00 20.00 25.00

C
al

cu
la

te
d 

ln
 γ

∞

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

Training set
Prediction set
Cross validation set 

 

Figure I-2.  Infinite-Dilution Activity Coefficients of CS1 Case Study (Type II) 
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Figure I-3.  Difference Plot of CS1 Case Study (Type II) 
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Figure I-4.  R2 Plot for Number of Parameters Determination (CS2 Case Study) 
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Figure I-5.  Infinite-Dilution Activity Coefficients of CS2 Case Study (Type II) 
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Figure I-6.  Difference Plot of CS2 Case Study (Type II) 
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Figure I-7.  R2 Plot for Number of Parameters Determination (CS3 Case Study) 
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Figure I-8.  Infinite-Dilution Activity Coefficients of CS3 Case Study (Type II) 
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Figure I-9.  Difference Plot of CS3 Case Study (Type II) 
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Figure I-10.  R2 Plot for Number of Parameters Determination (CS4 Case Study) 
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Figure I-11.  Infinite-Dilution Activity Coefficients of CS4 Case Study (Type II) 
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Figure I-12.  Difference Plot of CS4 Case Study (Type II) 
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Figure I-13.  R2 Plot for Number of Parameters Determination (CS5 Case Study) 
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Figure I-14.  Infinite-Dilution Activity Coefficients of CS5 Case Study (Type II) 
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Figure I-15.  Difference Plot of CS5 Case Study (Type II)
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Appendix J. Type III Analysis 

This appendix contains results from the Type III analyses, which are comprised of 

a general summary, a table of the final descriptor set used for each case study, contour 

plots used to determine the cessation point of training, and plots of both the calculated 

values of the infinite-dilution activity coefficients and the difference between the 

experimental and calculated values. 

 

Table J-1.  Summary of Type III Results 

 CS1 CS2 CS3 CS4 CS5 
TYPE III 
R^2 0.991 0.965 0.992 0.984 0.949 
 Results in γ∞ 
 %AAD RMSE %AAD RMSE %AAD RMSE %AAD RMSE %AAD RMSE

Training 
Set 30.2 0.45 28.6 0.35 30.4 0.39 23.3 0.39 52.8 0.65

Prediction 
Set 119.1 0.94 33.4 0.72 35.1 0.52 48.3 0.51 42.8 1.06

Cross 
Validation 

Set 
71.0 0.82 37.1 0.88 31.7 0.57 33.1 0.44 44.2 1.29

 Results in ln γ∞ 
 %AAD %AAD %AAD %AAD %AAD 

Training 
Set 7.6 28.5 13.4 14.1 34.3 

Prediction 
Set 16.4 25.9 12.9 19.5 24.8 

Cross 
Validation 

Set 
13.8 36.6 12.4 17.6 34.1 
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Table J-2.  Descriptors Used in the Type III Analyses 

Type III Descriptors 
CS1 CS2 CS3 CS4 CS5 

FNSA-3 Fractional 
PNSA (PNSA-3/TMSA) 
[Quantum-Chemical 
PC] 

Average 
Complementary 
Information content 
(order 0) 

HA dependent HDCA-
2/SQRT (TMSA) 
[Quantum-Chemical 
PC] 

DPSA-3 Difference in 
CPSAs (PPSA3-
PNSA3) [Quantum-
Chemical PC] 

HA dependent HDCA-
2/TMSA [Quantum-
Chemical PC] 

FG13 BP FGorg BP Number of O  atoms 

exch. eng. + e-e rep. 
for a C-O bond  

DPSA-3 Difference in 
CPSAs (PPSA3-
PNSA3) [Zefirov's PC]

FG21 
count of H-donors sites 
[Quantum-Chemical 
PC] 

HA dependent HDSA-1 
[Zefirov's PC] 

FG17 FG17 FG24 FG FG 

BP Final heat of formation 
/ # of atoms (Gravitational Index)0.33 Average Information 

content (order 0) 
1X GAMMA 
polarizability (DIP) 

HA dependent HDCA-
2/TMSA [Zefirov's PC] 

HA dependent HDCA-
1/TMSA [Zefirov's PC]

HA dependent HDCA-
1 [Quantum-Chemical 
PC] 

FG14 Gravitation index (all 
bonds) 

HACA-2/TMSA 
[Zefirov's PC] 

HACA-1 [Quantum-
Chemical PC] 

Complementary 
Information content 
(order 0) 

FG32 
Topographic electronic 
index (all bonds) 
[Zefirov's PC] 

Min partial charge for a 
C  atom [Zefirov's PC] 

PPSA-3 Atomic charge 
weighted PPSA 
[Quantum-Chemical 
PC] 

WNSA-1 Weighted 
PNSA 
(PNSA1*TMSA/1000    
) [Quan. Chem. PC] 

FPSA-3 Fractional 
PPSA (PPSA-3/TMSA) 
[Zefirov's PC] 

WNSA-1 Weighted 
PNSA 
(PNSA1*TMSA/1000) 
[Quan. Chem. PC] 

Max n-n repulsion for a 
C-H bond 

HACA-2/TMSA 
[Zefirov's PC] 

Kier&Hall index (order 
1) 

Tot molecular 1-center 
E-N attraction 

Max resonance energy 
for a C-O bond 

Min atomic state 
energy for a C atom logP LUMO energy HACA-2 [Zefirov's PC] Max SIGMA-PI bond 

order 
Min e-e repulsion for a 
O atom 

Max resonance energy 
for a C-Cl bond LUMO+1 energy HACA-2/TMSA 

[Zefirov's PC] 
Max total interaction 
for a C-Cl bond 

Min nucleoph. react. 
index for a F atom 

Min e-n attraction for a 
O atom 

Max total interaction 
for a H-O bond 

Max SIGMA-PI bond 
order 

Min nucleoph. react. 
index for a Cl atom 

logP Min net atomic charge 
for a O atom Min net atomic charge Internal entropy (300K) Min total interaction for 

a C-C bond 
Min resonance energy 
for a Br-C bond 

Min partial charge for a 
O  atom [Zefirov's PC]

Min n-n repulsion for a 
C-O bond 

Kier&Hall index (order 
2) 

min(#HA, #HD) 
[Zefirov's PC] 

MP Polarity parameter 
(Qmax-Qmin) 

No. of occupied 
electronic levels logP Kier&Hall index (order 

0) 

Randic index (order 1) HACA-2/SQRT(TMSA) 
[Zefirov's PC] Randic index (order 0) LUMO+1 energy 

HA dependent HDCA-
1 [Quantum-Chemical 
PC] 

PNSA-1 Partial 
negative surface area 
[Zefirov's PC] 

RNCS Relative neg. 
charged SA 
(SAMNEG*RNCG) 
[Quan.-Chem. PC] 

TMSA Total molecular 
surface area [Zefirov's 
PC] 

Image of the Onsager-
Kirkwood solvation 
energy  

RPCG Relative 
positive charge 
(QMPOS/QTPLUS) 
[Zefirov's PC] 

Relative number of O  
atoms 

Topographic electronic 
index (all bonds) 
[Zefirov's PC] 

Tot molecular 2-center 
resonance energy Molecular volume Tot hybridization comp. 

of the molecular dipole

Vib enthalpy (300K) Tot heat capacity 
(300K) / # of atoms 

Vib heat capacity 
(300K) Tot entropy (300K) HACA-2/TMSA 

[Zefirov's PC] 

TMSA Total molecular 
surface area [Zefirov's 
PC] 

Translational entropy 
(300K) / # of atoms 

Kier&Hall index (order 
0) 

HA dependent HDCA-
2 [Quantum-Chemical 
PC] 

WNSA-3 Weighted 
PNSA 
(PNSA3*TMSA/1000) 
[Zefirov's PC] 
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Figure J-1.  Contour Plot of Cross Validation RMSE of CS1 Case Study 
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Figure J-2.  Infinite-Dilution Activity Coefficients of CS1 Case Study (Type III) 



    288

Experimental ln γ∞

-5.00 0.00 5.00 10.00 15.00 20.00 25.00

D
iff

er
en

ce

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

Training set
Prediction set
Cross validation set

 

Figure J-3.  Difference Plot of CS1 Case Study (Type III) 
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Figure J-4.  Contour Plot of Cross Validation RMSE of CS2 Case Study 
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Figure J-5.  Infinite-Dilution Activity Coefficients of CS2Case Study (Type III) 
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Figure J-6.  Difference Plot of CS2Case Study (Type III) 
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Figure J-7.  Contour Plot of Cross Validation RMSE of CS3 Case Study 
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Figure J-8.  Infinite-Dilution Activity Coefficients of CS3 Case Study (Type III) 
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Figure J-9.  Difference Plot of CS3 Case Study (Type III) 
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Figure J-10.  Contour Plot of Cross Validation RMSE of CS4 Case Study 
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Figure J-11.  Infinite-Dilution Activity Coefficients of CS4 Case Study (Type III) 
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Figure J-12.  Difference Plot of CS4 Case Study (Type III) 



    293

1.34 1.34
1.34 1.34

1.341.34
1.341.34

1.33

1.32

1.33

1.33 1.32

1.331.331.33

1.33

1.33

1.33 1.33 1.33

1.33
1.33

1.33

1.34

1.35

1.33
1.33 1.33

1.35

1.35

1.35

1.32

1.34

1.34

1.36

1.36

1.35
1.36

1.31

1.32

1.34

1.37

1.35

1.33

1.38

1.33

1.35

1.36

1.34

1.36

1.34

1.331.341.35

1.37

1.36

Training Cycles

5000 10000 15000 20000 25000 30000 35000 40000

R
ep

lic
at

io
n

1

2

3

4

5

6

7

8

9

10

 

Figure J-13.  Contour Plot of Cross Validation RMSE of CS5 Case Study 
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Figure J-14.  Infinite-Dilution Activity Coefficients of CS5 Case Study (Type III) 
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Figure J-15.  Difference Plot of CS5 Case Study (Type III) 
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Figure J-16.  Contour Plot of C12 from Bader-Gasem EOS Case Study 
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Figure J-17.  C12 Parameter from Bader-Gasem EOS Case Study 



    296

Experimental C12

-10.00 -5.00 0.00 5.00

D
iff

er
en

ce

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

Training set
Prediction set
Cross validation set

 

Figure J-18.  Difference Plot of C12 from Bader-Gasem EOS Case Study 
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Figure J-19.  Contour Plot of D12 from Bader-Gasem EOS Case Study 
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Figure J-20.  D12 Parameter from Bader-Gasem EOS Case Study 
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Figure J-21.  Difference Plot of D12 from Bader-Gasem EOS Case Study 
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Figure J-22.  Infinite-Dilution Activity Coefficients of Bader-Gasem EOS Case Study 
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Figure J-23.  Difference Plot of Bader-Gasem EOS Case Study
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Scope and Method of Study:  The experimental objectives of this work were to (a) 
evaluate existing mutual hydrocarbon-water liquid-liquid equilibrium (LLE) data, and (b) 
develop an experimental apparatus capable of measuring accurately the hydrocarbon-
water (LLE) mutual solubilities.  The hydrocarbon-water systems studied included 
benzene-water, toluene-water, and 3-methylpentane water.  The modeling efforts in this 
study focused on developing quantitative structure-property relationship (QSPR) models 
for the prediction of infinite-dilution activity coefficient values ( i

∞γ ) of hydrocarbon-
water systems. Specifically, case studies were constructed to investigate the efficacy of 
(a) QSPR models using multiple linear regression analyses and non-linear neural 
networks; and (b) theory-based QSPR model, where the Bader-Gasem activity coefficient 
model derived from a modified Peng-Robinson equation of state (EOS) is used to model 
the phase behavior, and QSPR neural networks are used to generalize the EOS binary 
interaction parameters. The database used in the modeling efforts consisted of 1400 
infinite-dilution activity coefficients at temperatures ranging from 283 K to 373 K. 

Findings and Conclusions:  A continuous flow apparatus was utilized to measure the LLE 
mutual solubilities at temperatures ranging from ambient to 500 K, which is near the 
three-phase critical end point of the benzene-water and toluene-water systems.  The well-
documented benzene-water system was used to validate the reliability of the sampling 
and analytical techniques employed.  Generally, adequate agreement was observed for 
the benzene-water, toluene-water, and 3-methylpentane-water systems with literature 
data.  An error propagation analysis for the three systems indicated maximum expected 
uncertainties of 4% and 8% in the water phase and organic phase solubility 
measurements, respectively. In general, the use of non-linear QSPR models developed in 
this work were satisfactory and compared favorably to the majority of predictive models 
found in literature; however, these model did not account for temperature dependence.  
The Bader-Gasem activity coefficient model fitted with QSPR generalized binary 
interactions was capable of providing accurate predictions for the infinite-dilution activity 
coefficients of hydrocarbons in water. Careful validation of the model predictions over 
the full temperature range of the data considered yielded absolute average deviations of 
3.4% in ln i

∞γ  and 15% in i
∞γ , which is about twice the estimated experimental uncertainty. 

This study provides valuable LLE mutual solubility data and further demonstrates the 
effectiveness of theory-framed QSPR modeling of thermophysical properties. 
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