
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright materai had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographicalty in this copy. Higher quality 6* x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zseb Road. Ann Arbor, Ml 48106-1346 USA

800-521-0600

UMÏ

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

Q uality o f Service R ou ting O n W ide A rea N etw orks

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial Fulfillment of the requirement for the

degree of

D octor o f Philosophy

By

Young-Cheol Bang

Norman, Oklahoma

2000

UMI Number: 9972515

UMT
UMI Microfonn9972515

Copyright 2000 by Belt & Howell Information and beaming Company.
Alt rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor. Ml 46106-1346

© Copyright by Young-Cheol Bang 2000

Ail Rights Reserved

Q uality of Service R outing on W ide Area Networks

A DISSERTATION APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

BY

Sridhar Radhakrishnan, Chair

s-
S. Lakshmivarahan

Sudarshan K. Dhall

A. Das

M. J. Breen

Acknowledgments
First of all, I profoundly thank my father, Hong-Sik Bang, and mother, Il-Bong

Park, who have been a tower of strength all throughout my education. This work is

entirely dedicated to both of them.

I would like to express my sincere and heartfelt gratitude to Dr. Sridhar Rad­

hakrishnan for guiding my research efforts. He guided me on various ideas in graph

algorithms and computer networks. I am very grateful to him for his encouragement,

kindness, and support during my research work. I am also indebted to Dr N. S. Rao

for his technical support on my research.

I would also like to acknowledge Dr. S. Lakshmivarahan. Dr. S. Dhall. Dr.

A. Das, and Dr. M. Breen.the other members of the advisory committee for their

guidance and assistance. This acknowledgement is also extended to my friends .long-

Jun Sim, Jong-Hyun Kim, and Dr Man-Hoon Lee who had worked togather with

me.

Saving the best for the last, I would also like to express my deepest gratitude to

my family, my wife .JaeHee Hwang, my elder son SungJe Bang, and my younger son

Minje Bang for motivating me throughout my research.

IV

Contents

1 Introduction 1

L1 Introduction to Routing in Wide Area Networks.................................... I

1.2 The Transfer Modes .. 6

1.3 The Quickest P a th s ... 8

1.4 Multicast Routing.. 12

1.5 Topology M o d e ls .. 16

1.5.1 Waxman M o d e ls .. 17

1.5.2 Locality M o d e l .. 17

1.5.3 Transit-Stub M odel... 18

1.6 Organization of the d issertation.. 18

2 Quickest Paths Under Different Tiransfer M odes 21

2.1 Introduction.. 21

2.2 Computation of Quickest P a t h s ..24

2.3 Concluding R em ark s .. 29

3 On U pdating A lgorithm on Quickest P aths 30

3.1 Introduction..30

3.2 P re lim inaries .. 32

3.3 Path-Table Com putation.. 34

3.4 Update A lgorithm s... 37

3.4.1 Change Link B andw id th .. 37

3.4.2 Increasing Path B a n d w id th .. 40

3.5 Concluding R em arks.. 41

4 R eliability Problem on Quickest Paths 42

4.1 Introduction... 42

4.2 The AII-to-All Quickest Most Reliable Paths 45

4.3 The All To All Most Reliable Quickest P a th s .. 51

4.4 Concluding R em arks.. 55

5 On M ulticasting W ith M inim um End-to-End Delays 56

5.1 Introduction... 56

5.2 Paths and Multicast S w itches... 60

5.3 Construction of Multicast T re e s ... 63

5.3.1 Shortest Path Based Algorithms.. 64

5.3.2 Minimum Spanning Tree Based Algorithms................................. 75

5.4 Bandwidth Allocation for Hybrid Sw itches.............. 81

5.5 Sim ulation.. 82

5.5.1 Simulation R e s u lts ... 85

5.6 Concluding R em arks.. 98

6 On M ulticasting w ith M inim um Costs for th e Internet Topology 99

6.1 Introduction... 99

vi

6.2 A lgorithm ... 102

6.3 Sim ulation..108

6.3.1 Simulation R e s u lts ... 110

6.4 Concluding R em ark s...113

7 Conclusion. 114

vu

List of Figures

1.1 Arrival and departure timing diagrams at an intermediate node for various

modes.. 9

1.2 An example of the quickest path problem.. 10

1.3 Illustrative example of K^IB.. 15

1.4 Illustrative example of SPH. 16

1.5 Example of TVansit-Stub Model... 19

2.1 Example 2.1... 23

3.1 Line representation of the quickest paths... 31

3.2 Lower envelope of [Pi, P2 , P3 } contains only Pi and P>.......................... 33

3.3 The condition < cTĵ k is not satisfied in (a), and is satisfied in (b). 34

4.1 (a) Network G (b) Subnetwork after merging all the most reliable paths

horn a to every other node in G; Number in each link represents Tzt{e). . . 46

4.2 Subnetwork after merging all the most reliable paths for all pairs of nodes

in G; Number in each link represents 7r/(e)...46

5.1 Illustrative example.. 57

5.2 Migration of minimum end-to-end delay multicast-trees with Mode L . . . 58

viii

5.3 The original network and the number in the square brackets on each link

e is 200/S(e) -h D{e). The label {d, b) on each link represent the delay d

and bandwidth b of each link..61

5.4 The subnetwork formed by merging quickest paths shown in (a) and the

depth first search of the subnetwork is shown in (b). The source node is

node 1 and the destination nodes are the labels of shaded circles. The

end-to-end delay of the tree is shown in Table 5.2............................... 69

5.5 The multicast tree based on link delays is shown in (a) and widest-shortest

multicast tree in shown in (b). The source node is node 1 and the desti­

nation nodes are the labels of shaded circles. The end-to-end delays are

shown in Table 5.2.. 72

5.6 The multicast tree based on modified link weights is shown. The source

node is node 1 and the destination nodes are the labels of shaded circles.

The end-to-end delays are shown in Table 5.2... 74

5.7 The Best-First multicast tree based on quickest path is shown in (a) and

tree based on modified link weight is shown in (b), widest-shortest based

tree is shown in (c). The source node is node 1 and the destination nodes

are the labels of shaded circles. The end-to-end delay of the tree are shown

in Table 5.3..78

5.8 The multicast tree constructed by Grow-Tree algorithm is shown. The

source node is node I and the destination nodes are the labels of shaded

circles. The end-to-end delay of the above tree are shown in Table 5.3. . . 81

DC

5.9 The given multicast tree before bandwidth allocation is shown in (a), the

multicast tree after bandwidth allocation is shown in (b). The label on

each link represents the bandwidth of the link. The source node is node I

and the destination nodes are {di, d.2 , da} with shaded circles. The end-

to-end delay of the above tree taking into account bandwidth on links and

message size of 200 is 70.5 units of time for the hybrid switch before band­

width allocation. The end-to-end delay of the above tree after bandwidth

allocation is 52 for hybrid switch... 83

5.10 Store-and-Forward Switch with Network Based on Locality model.................87

5.11 Store-and-Forward Switch with Network based on Transit-Stub model.

The graphs in the first column contain all the heuristics, the second column

shows the differences in performances for low bandwidths greater than 50%

and the third column shows the relative performances for low bandwidths

greater than 85% .. 88

5.12 Pipeline Switch with Network Based on Locality m o d e l............................ 90

5.13 Pipeline Switch with Network Based on Transit-Stub Model The graphs

in the first column contain all the heuristics, the second column shows the

difiérences in performances for low bandwidths greater than 50% and the

third column shows the relative performances for low bandwidths greater

than 80% 91

5.14 Hybrid Switch with Network Based on Locality Model 93

5.15 Hybrid Switch, with Network Based on Ttansit-Stub Model The graphs in

the first column contain all the heuristics, the second column shows the

differences in performances for low bandwidths greater than 50% and the

third column shows the relative performances for low bandwidths greater

than 80% ... 94

5.16 Bandwidth Allocation with Hybrid Switch with Network Based on Locality

Model ... 96

5.17 Bandwidth Allocation with Hybrid Switch with Network Based on Transit-

Stub Graph The graphs in the first column contain all the heuristics, the

second column shows the differences in performances for low bandwidths

greater than 50% and the third column shows the relative performances

for low bandwidths greater than 89% 97

6.1 Given a network (a), a multicast tree based on KNIB is shown in (b), a

multicast tree based on TM is shown in (c), and a multicast tree based on

MSL is shown in (d), where a source is 0, and MC = {6, 7}...........................108

6.2 Subnetwork by merging all m in imum cost paths from source to each des­

tination is shown in (a) and tree derived from (a) is shown in (b)109

6.3 Normalized Surcharges versus the number of destinations for network with

117 nodes, 204 nodes, 315 nodes, 420 nodes, and 500 nodes, with respect

to MSL..112

XI

Abstract
Routing is the process of sending a message from a source node to the destination

node and the routing algorithm is a method to determine links that a message

should be transmitted in order to reach the destination. The routing algorithm can

be classified into the following three categories: unicast, multicast, and broadcast.

Unicast involves sending a message from a given source to a destination; multicasting

is a mechanism to send a message from a given source to a chosen set of destinations;

broadcasting is sending a message from a given source to all the nodes in the network.

Clearly, unicast and broadcast are special cases of multicast. The path selected by

a routing algorithm depends on the application’s Quality-of-Service (QoS) demands

such as, end-to-end delay time, cost, delay jitter, and other factors.

Moore [20] introduced the quickest path problem and it has been studied exten­

sively in recent times. The quickest path problem is to determine a routing path

to minimize end-to-end delay from the source to the destination node taking into

account message size, and propagation delay and bandwidth on the links of the

network. Thus the quickest path is a path with minimum end-to-end delay time

required to send <r units of message from a source node to the destination node.

The main theme of this dissertation is to investigate unicast and multicast routing

algorithms in wide area networks. Towards this end, first we present a unifying

quickest path algorithm for difierent message transfer modes at intermediate nodes.

The source to destination path varies with message sizes. Quickest path algorithms

build a table called the Path-Table that when searched with message size gives the

minimum end-to-end delay path for that message size. Our second result deals with

efficient construction of the Path-Table when a link or path bandwidth changes.

XU

where path bandwidth is defined as the minimum of the bandwidths on the links of

the path. Third, we present efficient algorithms for all-to-ail quickest path problems

in the presence of unreliable links in the network. By assigning probability of link

failure to each link we can cast two problems namely, quickest most reliable path

and most reliable quickest path.

Our fourth result deals with multicast routing in wide area networks. We have

developed several heuristics for the construction of a multicast tree that minimizes

end-to-end delay time taking into account message size, and propagation delay and

bandwidths on links. We consider different modes of message transfers at intermedi­

ate nodes and for each type of intermediate node architecture we present heuristics

for the multicast tree construction. The heuristics are simulated on large networks

that are generated using different network generation models including Waxman I

and II, Locality, and Transit-Stub. Our heuristics are shown to outperform existing

heuristics that are based on shortest path and minimum spanning tree for multicast

tree construction. Finally, we introduce a novel heuristic for the construction of

a multicast tree with minimum cost in Internet like topologies. Our algorithm on

directed asymmetric networks is shown to have a performance gain in terms of tree

costs over existing algorithms.

xm

Chapter 1

Introduction

1.1 Introduction to Routing in W ide Area N et­

works

Routing is the process of sending a message from a source node to the destination

node and the routing algorithm is a method to determine links that a message should

be transmitted in order to reach the destination. The path selected by a routing

algorithm depends on the application’s Quality-of-Service (QoS) demands such as,

end-to-end delay time, cost, delay jitter, and other factors. There are several key

characteristics [13j, that are considered by a routing algorithm.

• O p tim ality Optimality is the condition by which the routing algorithm is

capable of selecting the best route depending on the metrics and QoS.

• R obustness an d S tab ility Routing algorithms must be able to withstand

any unusual or unforeseen circumstances for which they must be robust and

highly stable. If not, it can lead to conditions such as hardware failures.

high load conditions and incorrect implementations. As routers are located

at network junction points, it should be make sure that they do not fail as

this may cause considerable problems. Routing algorithms that can withstand

the test of time and remain stable under a variety of network conditions are

considered to be the best.

• Convergence Convergence is the process in which all the routers agree on

the route to be followed which is the optimal route. It is a must that routing

algorithms converge rapidly as otherwise they can lead to routing loops or

network outages. When a network event goes down or becomes available, the

routers distribute the routing update messages as a result of which new optimal

routes are calculated which is agreed upon by all the routers.

• F lexibility Routing algorithms that are flexible adapt to a variety of network

circumstances very quickly and at the same time accurately. Thus, when a

network segment goes down, a flexible routing algorithm will quickly select

the next best path for all routes using the same segment.

• Sim plicity Routing algorithms designed should be as simple as possible for

ease of utilization. Routing algorithm is considered to be efficient if the soft­

ware and utilization overhead are minimal. Routing algorithm needs to be

highly efficient when run on a computer with limited physical resources.

The routing algorithms can be broadly classified into the following three cate­

gories: unicast, multicast, and broadcast routing algorithms. The unicast routing

algorithm is to find a path fi-om single source to single destination, and the broad­

cast routing algorithm is to construct a broadcast tree rooted at the source node

spanning all destinations (all other nodes in a network), where broadcasting is to

send the same message to all destinations. Multicast in a network is the process of

sending the same information from a source node to a set of destination nodes called

multicasting group. There are two types of multicast: one-to-many and many-to-

many. The typical algorithm for one-to-many multicast is to construct a spanning

tree rooted at the source covering all destinations. In the case of many-to-many

multicast, the following two alternative approaches are generally used [38]. One

approach called SouTce-specific multicast is to construct one-to-many multicast tree

for each source, and alternative method named Shared multicast is to construct only

one multicast tree, where traffic streams from multiple sources share the links of the

same tree.

In recent years, the emergence of cost effective audio and video hardwares and

high speed networks have introduced multimedia computer applications, such as

teleconference and remote education which require real-time transmission as a QoS.

So in new communication services involving multimedia applications, it is critical to

minimize the end-to-end delay for sending messages in real-time.

Consider a link, connecting a node s with another node t, having a bandwidth

B bps and a propagation delay D. Even though it is very short, there is always

finite time delay on the link to propagate message from one node to the other node,

which is known as the propagation time [21]. As explained in [21], if data propagates

tfurough medium without any resistance, the speed is 3 x 10® ms~^ which is the speed

of the light. If twisted-pair wire or coaxial cable is used, the speed is typically in

the region of 2 x 10** ms ̂ which is the speed of the electrical signal. Thus,

distance in meteru — — --
velocity of proyagation of medium used

For example, if 1000 bits of data is transferred from node a to node b via twisted-pair

wire or coaxial cable with transmission rate of 10 kbps, and distance between a and

b is 100 m, then

If s wants to send a packet with cr bits to t using this link, then it takes a jB seconds

for s to transmit the packet. It takes D seconds for the last bit of the packet to

arrive at t. Thus, the last bit of the packet reaches £ at time

r = 0 -/B 4- D ,

where T is the end-to-end delay from s to £ [42, 43). For this reason, routing

algorithms should take into account message size, propagation time, and bandwidth

on each link over the computer network. If a path with multiple links is used to

send a packet, then the end-to-end delay of the path is dependent on the transfer

mechanism used by intermediate switches along the path (details are presented in

section 2).

To transfer messages, there are two basic switching systems that are used: circuit

switching (pipeline) and packet switching (store-and-forward). When data is deliv­

ered via circuit switching, bit streams of data are transferred with fixed rate from

a source to a destination without buffering time. If data is routed over the packet

switched network, entire data is stored at every intermediate node before forwarding

to next node. The telephone networks belong to circuit switching, and the EP (In­

ternet Protocol) computer networks belong to store-and-forward. The end-to-end

delay of a path can be computed by the formula T = a /B + D ia the circuit switch­

ing. Since the circuit switching transfers the data along the route with fixed rate,

the minimum bandwidth of link along the path is selected as the path-bandwidth

B. In the case of packet switching, since incoming data is stored temporarily at

each node and then transmitted to outgoing link, transmission time a/B{e) at each

node V is required, where e is the outgoing link of v. Thus the path-bandwidth B

is ^ —-—t—, where P is the routing path and e is the link on P. The propagation
B (e)

delay D of the path, is computed by adding all propagation delays of links along

the path in both circuit switching and packet switching. Since path-bandwidth B

is computed in a different way for each switching system, transfer mechanism of the

switching system being used should be considered in order to find the optimal path.

With the advent of ATM (Asynchronous Transmission Mode) and active network

technologies, combinations of circuit switching and packet switching are presently

considered, and this is the motivation for the other modes having different transfer

mechanisms.

Before we introduce the message transfer modes, the terminologies used in this

dissertation is first introduced. We consider a network represented by a graph

G = {V,E) with n nodes and m edges or links. Each link e = {i,j) 6 E has a

bandwidth or capacity B{e) > 0 and a link — delay D{e) > 0, and we assume that

the source has adequate global information involving the topology of the network,

the characteristics of links such as delay and bandwidth, and all links in the net­

work are error-free. A message is sent as a continuous stream along the edge e at a

constant flow rate denoted by /e < B{e). A message of length a units can be sent

along the edge e at flow rate /e in cr//e + D{e). The flow rates can be different in

different edges, and the message can be delayed at the nodes.

Consider a simple pathPkom s = io to t = ik given by (i'o, n), (n, «2), - - -, (4 - i , W,

where {ij, ij+i) G E, for j = 0 ,1 , . . . , (Ar = 1), and all iq, ii, 'ijt are distinct. The delay

experienced by a message sent via P depends on the message forwarding mechanism

used by the intermediate nodes. For a node v on P , let Bin{v) and be the

bandwidths of incoming and outgoing edges, respectively, and fin{c) and fout{(})

be the flow rates of incoming and outgoing message. We consider the following five

modes. The timing diagrams of arrival and departure of a message at an intermediate

node V are shown for all modes in Figure 1.1. The delay of P is D{P) =

where Cj = (ij, ij+i). Let |P | denote the number of nodes of P.

The objective of our study is to develop unicast and one-to-many multicast rout­

ing algorithms with respect to optimality (the end-to-end delay, the minimum cost,

etc) taking into account message size, and propagation delay and bandwidth on each

link over the network.

1.2 The Transfer M odes

The various modes abstract different mechanisms used in the data networks. The

classical circuit switching involves no buffering, and the store-and-forward is the

other extreme wherein the message is buffered in its entirety at every intermediate

node. With the emergence of ATM (Asynchronous Transmission Mode) and active

network technologies, the transfer mechanisms take into account combinations of

these modes presently, which motivates the other modes. Transfer modes we consider

in our research as follow:

• I. Circuit Switching: In mode I, the message is sent at a constant rate from

s to d with no buffering at intermediate nodes. The bandwidth of type I of

P is B^{P) = The end-to-end delay in mode I of path

P in transmitting a message of size o is T^{P) = cr/B^{P) + D{P). Thus,

fe = B^{P) for all e on P , and fm{u) = fout{v) = B^{P) for all u on P except

the end nodes.

• n . Earliest Departure: A message received at an intermediate node v is

sent out at a rate equal to the minimum of the incoming rate and outgoing

bandwidth, i.e. fout(v) = mm{/in(y),Bout(y)}- If the outgoing bandwidth

is smaller than the incoming rate, then the message is suitably buffered and

sent at a lower rate without any delay. In mode Ila, the retransmission at a

lower bandwidth starts only after the entire message is received at u under

the condition fin{:v) > Bout{v); but, the retransmission at the incoming rate is

without any delay under the condition fin{u) < Bout{t}).

• III. Pull O utgoing Bandwidth: A message received at an intermediate

node V is retransmitted immediately at the outgoing rate if /j„(u) = Bin{v) >

Bout{v), and is buffered and suitably delayed to be sent at the rate of the

outgoing bandwidth otherwise, i.e. fout{v) = Bout{f̂)~ In this mode the how in

any edge is equal to its bandwidth, i.e. fe = B{e) for all e on P . Mode Ilia is

same as 111, except when the outgoing bandwidth is higher than incoming flow

rate, in which case the message is completely buffered at v before it is sent out

at the rate of Bouti'o).

• Store-Forw ard: A message sent along an edge {u, v) will be received in its

entirety at v before it is sent from v such, that /e = Be for all e on P. The

bandwidth of type IV of P is B^^(P) = t - /—;—- The end-to-end delay in
X^J=0 B(cj)

mode IV of path P in transmitting a message of size a is T^^{P) = a/B^^{P)-\-

D{P).

1.3 The Quickest Paths

Mode 1 has been studied under the title quickest path problem by Chen and Chin

[11], Rosen et al [37], Rao and Batsell [32, 34, 33], Bang et al [5], Hung and Chen

[9, 22], Martins and Santos [17]. The quickest path problem is to find a routing

path in a network G such that the end-to-end delay time required to send cr units

of message from a source to a destination is minimum. The quickest path problem

is very similar to the shortest path problem and can be computed by using the

shortest path algorithm; however, the quickest path problem does not have the

optimal-substructure property of shortest paths such that any subpath of a shortest

path is a shortest path [I]. Figure 1.2 shows such an example and how to compute

the quickest paths.

Let a and / be a source and a destination, respectively. Each link is associated

with two numbers; the first number is the link delay and the second number is the

link bandwidth. Let a = 100. Then the time required to be arrived at node /

from a through path {a,b,c,f) ,T {a,6,c,/), is 100/2 + 30 = 80. The time through

path (a ,6 ,e ,/) , r (a ,6 ,e , /) , is 100/4 + 35 = 60. T {a ,d ,e ,f) is 100/2 + 40 = 90,

T{a^g, e , /) is 100/4+40 = 65, and!T(a,^, h, f) is 100/4+50 = 75. Thus the quickest

8

VftxkK

in ^ "ou t

i n - "OUI

Modela

in ^ ®oui

in "o u t

M odem

“ in"^ ®out

ModelUa

Mode t v

Airivai Process

Departure Process

Figure 1.1: Arrival and departure timing diagrams at an intermediate node for various

modes.

(3). 10)

(15. 20)

(25. 5)

Figure 1.2: An example of the quickest path problem. .

path from a to / is the path (a ,6 ,e ,/) . Even though the quickest path from a to f

is the path (a,b,e) is not the quickest path from a to e, since T{a.b.e) =

100/5 + 30 = 50, T{a,d,e) = 100/2 + 35 = 85, and T{a,g,e) = 100/20 + 35 = 40.

Thus the quickest path from a to e is the path {a,g,e).

Assume that Bi < Bi < . . . < Br denote the distinct values of the bandwidth

B{e), e € E and Gg, represents the subnetwork where bandwidth of all links in

the subnetwork are greater than or equal to Bi with 1 < i < r. The following

observation was made in [32].

O bservation 1.3.1 Let V — denote the set of shortest path,

where Pg. is the shoriest path in Gg. with 1 < i < r. Then we have D(Pg,) <

D(P%) < < D (PgJ, and P (P g J < P (P g J < < P (P g J .

Consider two paths Pi and P2 . If P (P i) == D{Po) and P(P i) < then

a/B{P i) + D{Pi) < a/B{P 2) + This means that Pi is always slower than

P2 to send er units. Thus, by above observation [32], we can assume that D (P gJ <

D{Pb^) < . . . < D(Pg^) and P (P g J < B{PBf) < . . . < P(Pg,.) by removing the

equality. In addition, if D{Pi) > D{Pz) and P(P i) = P (P 2) then Pi cannot be the

10

quickest path, for any a units. Thus, the quickest path P to transmit a units is

nothing but the shortest path in Gb{p)- Observation in [32] and following theorem

in [37] lead to the eflScient quickest path algorithm.

Theorem. 1 Let P be a quickest path from s to t in G to send a units of data. Then

(1) P is a shortest path from s to t in Gb{P)̂

(2) Any subpath of P must itself be a shortest path in Gb{p)-

Thus, algorithm to compute the quickest path from s to £ is as follows;

Algorithm Single Pair Quickest Path [37]

INPUT : Network, Source s, Destination d, and Message Size a

OUTPUT : Quickest Path from s to d. 1. for i = 1, r do

2. compute a shortest path P, from s to £ in Gg(p.).

3. compute the path-delay D{Pj) and the path-bandwidth B{Pj) .

4. endfor

5. compute index k which minimizes [afB{Pi) + 0 (P i)|i = 1,2, — r}

6. return P* as the quickest path in G to send cr units of data.

7. end A lgorithm

When a shortest path P, is computed in step 2, any shortest path algorithm can

be used so that Dijkstra's shortest path algorithm can be adapted. Since Dijkstra's

algorithm results in one-to-all shortest paths, the time taken to compute one-to-all

quickest paths is the same as the time for single pair quickest path. Thus, in the

II

case of all-to-all quickest paths, it can be computed in 0 {nm^ + mn^logn) using

algorithm Single Pair Quickest Path. However, according to algorithms introduced

in [29, 10], the time complexity can be further reduced to 0{n^m).

1.4 M ulticast Routing

M ulticast in a network is the act of sending the same information from a source

node to a set of destination nodes called multicasting group. >iew communication

services involving multicast and multimedia applications (H igh-B andw idth appli­

cations) are becoming widespread. In applications such as the retrieval of medical

images from remote repositories, and remote teleoperated robots, it is critical to

minimize the end-to-end delays in transmitting messages. Furthermore, if a variety

of applications are supported over the same network, it is important to achieve min­

imum end-to-end delays for small messages such as robot control packets as well as

large messages such as image/video data. These applications also need very large

reserved bandwidth to satisfy their Quality-of-Service (QoS) requirements. In our

study of multicast problem, we consider limitations in network resources that make it

critical to design multicast routing paths using the resources such as optimal band­

width and the minimum end-to-end delays to transmit messages. To achieve the

minimum end-to-end delays, we consider a framework wherein bandwidth can be

reserved on the communication links, and, once reserved, is guaranteed for the re­

quired time period. At the additional cost of bandwidth reservation and guarantees,

our framework enables deterministic end-to-end delay guarantees. Such mechanisms

can be naturally supported in ATM networks [28| whereas in situations such as the

12

Internet, require additional mechanisms (for example, RSVP [51| and/or specific

queuing implementations at the routers [8]).

The general problem of multicasting is well-studied in the areas of computer

networks and algorithmic network theory. Depending on the specific cost or criterion,

the multicast problem can be of varying levels of complexity. The Steiner tree studied

extensively in network theory deals with minimizing the “cost” of a tree that connects

a source to a subset of nodes of a network [46, 23, 36, 39, 30). The Steiner tree has

a natural analog of the general multicast-tree in computer networks [24, 45, 26, 52].

The computation of Steiner tree is NP-complete, and an interesting polynomial-time

algorithm for a fixed parameter has been proposed in [31] (wherein an overview of

several other approximation algorithms are also provided); distributed algorithms

based on Steiner heuristics are provided in [6]. More generally, the minimization

problems where the cost is based on “entire subtrees”, such as the Steiner tree

problems, are computationally intractable [19]. On the other hand, the end-to-end

delay between s a given source and all d € MC, is significantly easier algorithmically,

where M C is the multicast group. Typically, the shortest path based algorithms are

used to generate the best paths with the minimum-end-to-end delay, and Dijkstra's

shortest path algorithm [1] is widely used. Using the shortest path based algorithms,

a multicast tree is constructed by merging optimal paths from the source to each of

the destinations. Such a tree can be constructed in polynomial time [15]. Also note

that our framework is different from the dynamic frameworks which utilize feedback

mechanisms [25, 12, 4] to provide only “soft” guarantees.

Following two algorithms called KMB [27] and SPH [31] are the most well known

heuristics based on Steiner tree and shortest paths.

13

Algorithm K^IB [27]

INPUT : An undirected graph G, source s, and multicast group M C

OUTPUT : A Steiner tree T ^ mb

1. Construct the complete undirected distance graph O' with s and MC,

where cost of each link (u, v) is equal to the cost of the minimum cost path

from u to V.

2 . Find the minimum spanning tree T ' from O'.

(If there are several minimal spanning tree, pick an arbitrary one.)

3. Construct Gsg by replacing each edge in T'

by one of its corresponding minimum cost paths in G.

4. Find the minimum spanning tree Tsg of Gsg-

(If there are several minimal spanning trees, pick an arbitrary one.)

5. Construct a Steiner tree 2Vws from Tsg by deleting edges in Tsg ̂ if necessary.

6. end Algorithm

As an example of KMB, consider Figure 1.3. Given a network G = [V,E) in

Figure I.3-(a), where V is the set of nodes and E is the set of edges, the number on

each edge represents a cost. Let the source and M C be 1 and {6 ,7,8}, respectively.

A complete graph G ' in Figure I.3-(b) is constructed by step I in algorithm KMB.

Figure 1.3-(c) shows the minimum spanning tree T' of G' by step 2. Gsg in Figure

1.3-(d) is constructed by replacing each edge in T' by its one of corresponding min­

imum cost paths in G. The minimal spanning tree Tsg of G sg is shown in Figure

14

(a) Graph

(p — -— o
4

cb— ®

(b) Com plete G raph (c) M inim um Spanning T ree

K

<d) Subgraph o f Graph

Figure 1.3: Illustrative example of KMB.

I.3-(e). After removing unnecessary edges in Tsg by step 5, the final Steiner tree

Tkmb is constructed and Figure 1.3-(f) shows Tkxib-

Algorithm SPH

INPUT : Any network G, source s, and multicast group MC

OUTPUT : A multicast tree Tsph

1. Find the single source shortest path tree T for G, rooted at s.

using Dijkstra's shortest path algorithm [I|.

2 . Delete unnecessary edges and nodes from T.

3. Return the multicast tree Tsph

4. end Algorithm

15

(a) Network (b) Shortest Path Tree (c) Multicast Tree

Figure 1.4: Illustrative example of SPH.

On the other hand, in Figure 1.4, (a) represents the given network. The shortest

path tree T for G is shown in (b). Since T contains unnecessary link (2 ,3) and node

3, Tsph can be constructed by removing the link (2,3) and the node 3.

The construction methods for the multicast trees can be summarized as follows:

In most cases, the Steiner tree based algorithms have been used to construct the

multicast tree with the minimum costs, and the shortest path based algorithms have

been used to construct the multicast tree with the minimum end-to-end delays.

1.5 Topology M odels

In the literature, many network models are introduced to represent actual networks.

Broadly, these network models include regular topologies such as trees, rings, and

stars. Well-known topologies such as the ARPAnet or NSFnet backbone, and ran­

domly generated topologies. Here, to implement the simulation, four different ran­

domly generated topology models to represent networks have been used. These four

models are called WaxmanI [45], WaxmanH [45], Locality [49], and Transit-Stub

16

[49]. Since WaxmanI and Waxmanll have almost similar characteristics, these two

models are explained together.

1.5.1 W axman M odels

To generate a network using WaxmanI method proposed by Waxman, n nodes are

randomly distributed in a plane which can represent the size of the area to be

simulated. Then links are placed with the probability

—f
P('u, v) =

, where L is the maximum possible distance between any two nodes in the network

and [{u, u) represents the Euclidean distance from u to v. The parameter a is selected

in the range (0, I), tj can be chosen in the range(0, 1|. Since an increase in value of

a and a large value of increases the number of links and the number of long links

in the network respectively, the varying parameter values should be appropriately

chosen to obtain the desired random networks.

The Waxmanll model can be obtained by replacing I by a random number in

the range (0 , L). Thus, the probability of an link between nodes, it and u. is given

by
~ran<£(0»̂)

P('u, v) = ae

1.5.2 Locality M odel

To obtain Locality model, discrete links are partitioned based on length. Then,

locality can be captured by relating the link probability to the distance between any

two nodes, i.e, we can obtain locality by assigning a different fixed probability for

17

each equivalence class of link lengths. Thus, for given set of nodes, links are placed

with the probabUity

P(n, v)

1.5.3 Transit-Stub M odel

a \£ d < r

d if d > r

This model proposed by [49] describes the current Internet very well. It first con­

structs a connected random network using any random network model and each node

in the random network generated represents an entire transit domain. To create the

backbone topology for every transit domain, each node, which represents an entire

transit domain, is replaced by a newly generated random network. For each node

in the backbone of its transit domain, a number of random networks, called stub

domains which are connected to that node, are generated. Then, additional links

are generated between any pair of nodes, where one is from a transit domain and

the other is from a stub domain, or both nodes are from two different stub domains.

Figure 1.5 shows the example of Transit-Stub model.

As shown in Figure 1.5, transit domain represents the backbone of the Internet

and each backbone node in a transit domain connects to a number of stub domains

through nodes, called gateway, in the stub domains.

1.6 Organization, of the dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we present an

unifying minimum end-to-end delay routing algorithm for different message trans­

fer modes which runs in 0 (rm -i- rnlogn), where r is the number of distinct link-

18

CD

Transit Domain

Stub Domain

Figure 1.5: Example of Transit-Stub Model.

bandwidth, and n and m are the number of nodes and links in the network, respec­

tively. Chapter 3 contains two newly developed algorithms. The first one is used for

constructing the path-table containing the minimum end-to-end delay path for any

particular message size, and the second one is to update the path-table when a link

or path bandwidth changes, where the path bandwidth is defined as the minimum

of the bandwidths on the links of the path. In chapter 4, we present efficient algo­

rithms for all-to-all quickest path problems in the presence of unreliable links in the

network. By assigning probability of link failure to each link we can cast two prob­

lems namely, quickest most reliable path and most reliable quickest path. Chapter

5 deals with multicast routing in wide area networks. We have developed several

heuristics to build a multicast tree that minimize end-to-end delay time taking into

account message size, and propagation delay and bandwidths on links. We consider

different modes of message transfers at intermediate nodes and for each type of inter­

19

mediate node architecture we present heuristics for the multicast tree construction.

The heuristics are simulated on large networks that are generated using different

network generation models including Waxman I and II, Locality, and Transit-Stub.

Our heuristics are shown to outperform existing heuristics that are based on shortest

path and minimum spanning tree for multicast tree construction. In chapter 6 , we

introduce a novel heuristic for the construction of a multicast tree with minimum

cost in Internet like topologies. Our algorithm on directed asymmetric networks is

shown to have a performance gain in terms of tree costs over existing algorithms.

Finally, conclusions are presented in chapter 7.

20

Chapter 2

Quickest Paths Under Different

Transfer Modes

2.1 Introduction

In this chapter we present an unifying algorithm to compute the end-to-end delay of

the quickest paths under different message transfer modes for given message size o.

As explained in chapter 1 , mode I corresponds to the classical circuit switching which

involves no buffering, and mode IV is the store-and-forward wherein the message

is buffered in its entirety at every intermediate node. In mode II the message is

circuit switched if there is sufficient outgoing bandwidth, and sent a reduced Bow

level otherwise. Such reduction of flow in circuit switching is sometimes difficult,

and the message may have to be received in full before the retransmission as in

mode Ha. In modes EH and IHa, the main focus is to avoid the fragmentation of

the bandwidth, and hence the entire bandwidth of each edge is utilized during the

21

message transmission along the edge.

A path of mode i is referred to as i-path, and a path with the least end-to-end

delay among ail i-paths is referred to as the i-quickest path, for i = I, II, Ila, Ilia,

IV. Let P* denote the i-quickest path in mode i for the message size cr,

A Il-path can be converted into I-path by utilizing the flow rate corresponding

to the edge with the minimum bandwidth. A I-path can be converted into Il-path

by suitably increasing the flow rate starting from s and repeatedly moving along P

until the next edge with a lower bandwidth is reached and then lowering the flow.

During these flow reductions, the end-to-end delays of the path P remain the same.

In general for any path P , we have the following inequalities on the end-to-end delays

of various modes:

T^(P) = T ‘^{P) < T ‘"{P) < T ^"“-{P) < T^^'iP)

and

T “ {P) < T , u (P) < T " ' (P)IVI

E xam ple 2.1 Consider the network in Figure 2.1-(a) which consists of two paths

Pi and P> from s to d. The end-to-end delays of paths under various modes are given

the following table.

Path Mode I Mode II Mode Ha Mode in Mode Ilia Mode rV

Pi f + 5 f + 5 4 7 5 + 5 f + 5 4 7 5 + 5 2 ^ + 5

P2 f + 6 f + 6 2§ f + 5 2 ^ 6 + 5 2 ^ 7 + 5 # + 5

For this case, we have

22

4.3

10. r 70.1

(a)

(b)

k) < d)

Figure 2.1: Example 2 .1 .

for P = Pi,Pz- In general, however, the end-to-end delays in modes Ila and

III (or Ilia) do not obey ordering as illustrated below. For the network in Figure

2.1-(b), we have r ” “(P) = o- + 3, T^"{P) = ^ + 3. and r ' ” “(P) = ^ + 3.

Hence, we have

r " “(P) < r '" (P) < T " '“(P).

For the network in Figure 2.3-(c), we have P^^“(P) = ^ + 3. T^^^(P) = y -t- 3.

and T^^^“(P) = ^ + 3. Hence, we have

T " ‘{P) < r " “(P) < r " " (P) .

For the network in Figure 2-3(d), we have r^^“(P) = î ô ^ + 2 , T^^^{P) = cr + 2,

and T^^^“(P) = <r -f- 2. Hence, we have

T " \ P) = r " ^ “(P) < r " “(P).

23

2.2 Com putation of Quickest Paths

We aow present an algorithm to compute the end-to-end delay of the Il-quickest

path for given message size a. The path P " itself can be constructed by suitably

maintaining the predecessor pointers as in the case of Dijkstra’s algorithm [16]. The

other quickest paths (except IV) can be computed using minor variations of this

algorithm. For initialization, consider distinct u, v € V. If (u, v) is an edge e then

define DE{u, v) = D{e), and if not DE{u,u) = oo. Similarly, if (u, u) is an edge

e then define BE{u,v) = B(e), and if not BE{;u,u) = 0. Let 6i,6o,...,6^ denote

the distinct values of the bandwidths 5(e), e € 5 . Each node v is represented by

an array TE[u][,\ such that TE[u\[b], for b = 6 1 , 6 2 , . . . , 6c, is the time at which the

trailing edge of the message reaches v at a flow rate 6 . Note that the flow rate at

nodes in between s and v must be at least 6 in this mode. Since the message is not

delayed at any intermediate node, the flow rate once reduced will stay at this value

or further reduced subsequently. As a result, if the message is received at a flow rate

of 6 at d, then T^^(P) = cr/ 6 + D[P).

Algorithm Quick-II(<r)

1. A 4— s

2. for each vertex u E V - s do

3. for 6 = 6 1 , 6 2 , . . . , 6 c do

4. TE[v][b] 0 0 ;

5. T5[u][5(s, u)] <— a/BE{s, v) ■+■ DE{s, v);

6 . CT[v\ = TE[v\[BE{s, u)];

24

7. BT[v\ = BE{s,v);

8 . while A ^ V do

9. choose a vertex v — A such that CT[d\ is minimum;

10. bj, <— BT[v\;

11. if CT[u\ > T E[uj[6] for all 6 = 6 i, 6 2 , . . . , i>c then add w to .4;

12. for each w € V — A d o

13. if 6 „ < S£'(t/, u;) th en

14. TE[w][b^] min{T£'[u;|[6„],T£'[t;)[6„] + DE{v. w) }

15. if TE[m][6 „] < CT[w\ th en

16. CT[w] <r- TE[uj\[b^];

17. BT[w\ <— 6„;

18. else

19. TE[w][B{v, u;)] <— {TE[tv\[B{v, w)\,TE[u][bv\ - <r/6„ + DE{v. iv)

+ <t / B { v , w) }

20. if 7’jB[u;][B£’(t;. u;)| < CT['u/} then

21. CT[iu] 4 - TE[m][BE{v, m)|;

22. BE[w\ ^ BE{v, w);

23. retum(m-in6{T£'[d][6}})

24. end A lgorithm

The outline of algorithm is as follows. The algorithm has at most (n — l)c

iterations, and in each iteration a node v with bandwidth 6 , for some bi = b, is

selected such that the path from s to u, denoted by has the least end-to-end

25

delay (line 9). Once v is selected, every vertex w Ç.V — A, \s examined to see if the

path P„ can be extended to w to result in a smaller end-to-end delay in lines 13-22.

In particular, if the bandwidth of [v,w) is higher than b, then flow rate of h is used

along {v, w) (line 14), and a lower flow rate olB{v, w) is used otherwise (line 19). In

either case the extension of the path from v to w can result in a flow into w that is

no more than 6 . Once the end-to-end delay of v is known for all 6 = 6 %,6? , . . . , be, it

is added to A and is not considered further (line II). For the sake of this algorithm,

the infinites are handled according to the following rules: 1 / 0 = oo,oo- | -oo=oo.

and oo < oo are true.

Theorem 2 Algorithm Quick-II computes the end-to-end delay of ll-ijwickest path

for transmitting a message of size a from s to every node in 0 {m~ + rnnlogn) time.

Proof: Let yiou; of a Il-path P at d be defined as / (P) = fin(d). Let .4& denote all

nodes that have been selected in line 9 with BT[v\ > b. We establish the correctness

by induction on the size of the set .4&. Specifically, for each v € .4&, we show that

TP[u|[6) is the shortest end-to-end delay from s to v among all paths with flow rate

of b at V. Moreover, for all u € V' — At,, TE[v\[b\ is the lowest end-to-end delay from

s to V with flow rate of 6 at u such that the path is wholly within At,, except for

V itself. The Il-path with the lowest end-to-end delay among such paths is chosen

in line 23. Then, the correctness of the algorithm follows by noting that Il-quickest

path must have a bandwidth equal to one of 6t's at v.

The claim is true for [Aal = 1 since the message is already at s, it takes 0 time

for the transmission. Among the paths with bandwidth b„, the edge (s,u) is the

quickest since any other path with the same bandwidth wül not have shorter delay.

26

Moreover, a path from s to v 6 — .4&, that is wholly contained in Ai, except for v,

is the single edge from s.

Assume that the hypothesis is true for the current set Ab, when v is chosen in line

9. Then we have TE[v][b.u] < T£J['u;][6i| for any w g V - Ab and any i = 1 ,2 , c.

Consider that TE[uj[6], corresponding to path is not the minimum end-to-end

delay. Then, there must be a Il-path P with f{P) = b with a smaller end-to-end

delay. Furthermore, P must contain a node not contained in Ab, and let w be the

first node on P from V — .4̂ while moving from s to v. Now let us split the path P

into the path from s to w, denoted by P„,, and the path from w to u. Since P is Il-

path, f{Pui) > f{P), and by the positiveness of link-delays we have D(P,„ < D{Py).

Then, we have

T"{P,,) = D (P J + o - / / (P J < D { P)+ a / f{ P y

Since P has shorter end-to-end delay than P„, we have D{P,u) +cr//(Pu,) < D(P) +

c r//(P). Thus we have T E [w ^ \ < TE[v\[b\ for some b' > b, which is contradiction.

This algorithm consist of at most c < m instances of the Dijkstra's each corre­

sponding to b = bi, b o , b e algorithm with interleaved steps. The time complexity

follows directly from that of Dijkstra's algorithm [16). □

The algorithm for mode Ila is obtained by replacing the line 19 of Quick-II by

the following line. 19. TE[w][B{v, w)\ <— min{T£'['u;|[6„ |,T £’[uI[6„| + D{u,m)};

Even though mode I and mode II use different transfer mechanisms, since both

modes use the pipeline scheme. Algorithm Quick-I can be obtained by using Quick-

II. Quick-I can be viewed as a variation of the algorithm of [37), which is based on c

instances of Dijkstra's algorithm, executed separately. Let G{b) = {V,E{b)) denote

the subnetwork where e G E{b) if and only if B{e) > 6 . Let a. s — d path in G{b)

27

denote the shortest delay path based only on the link-delays. The s — d path are

independently computed in each G{b) for each b = bx,b-i,. . . ,bc- Then I-quickest

path is selected to be the one with lowest-end-to-end delay among the c paths. The

algorithm Quick-I intermingles the path computations in G(6)’s by expanding a path

from V to w only if BE{v,w) > b.

The algorithm for mode III is obtained by replacing the lines 13 through 23 of

Quick-II by following lines.

13. if < BE{v, lu) th en

14. TE[w\[b„\ <— min{T£[ml[6„l,TE[i;][6„] + DE{v, w) }

15. else

16. TE[w][B{v, w)] ^ {TE[tü\[B{v, w)],TE[ü][by] - a/b^, -t- DE{u. w)

- f (t/ B { v , w)

17. ifTE[w\[BE{v, w)\< CT[w\ th en

18. CT[w\ 4- TE[w][BE{v, m) j;

19. BE[w\ <— BE{v,w);

20. retum(m'm6{TE[dl[6|})

The algorithm for mode Ella is obtained by replacing the line 14 of Quick-

Ill by the following line. 14. TE['tn][jB(n, to)} t— min{TE[u;][B(n, u;)|,TE['t;l[6„l -f

a/B{v ,w) + D{n,w)};

The correctness proof and the time complexity of the corresponding algorithms.

28

namely Quick-* for i = / , Ila , I I I , I l ia , can be established with minor modifications

to Theorem 2 .1 .

2.3 Concluding Remarks

We have presented five variations of the quickest path algorithms that reflect mech­

anisms such as circuit witching, Internet protocol and their combinations. We pre­

sented a basic algorithm variations of which compute the quickest paths in the first

four modes with the time complexity, 0 {m^ + mnlogn), and for the last mode.

Dijkstra's algorithm computes the quickest path, where the time complexity is

0 (m 4- nlogn).

Future research directions include the computation of path-tables for all modes.

For mode I, the path-table is of size 0{m) and can be easily computed [1 1 . 37, 32],

and such result can be very useful in the other modes. Another direction is the

computation of multiple paths in various modes (as in [34, 47| for mode I).

29

Chapter 3

On Updating Algorithm on

Quickest Paths

3.1 Introduction

The quickest path problem is to compute a path P with the minimum end-to-end

delay for a message of size a from source node s to destination node t. In this chapter

we consider the quickest path problem under the transfer mode I corresponding to

the circuit switching.

If the quickest paths are required for many values of cr, it is more efficient

to compute the path — table that specifies P / for each value of cr. To illustrate

this point, we consider a network which consists exactly three disjoint paths Pi,

Pï, and Pz from s to t, where D{Pi) < D(fz) < D{Pz) and -B(Pi) < B(Pz) <

B{Pz). Then the end-to-end delay is minimized by P-i when a lies in the intervals

“ path P. (a ,6 ,c , /) b

30

Path Dealy,

35

30

20 M essage S ize

Figure 3.1: Line representation of the quickest paths. .

the shortest path from a to / in Go and a path Po (a, 6 , e, /) is the shortest path

between a and / in G\ in Figure 1.2 (on page 10 in chapter 1). The delay profile of

Pi can be visualized as a line (see Figure 3.1), where slope is 1 /B (P J . For D{Pi) <

DiPo) and B{Pi) < BiP-i), lines are intersected a.tR = R [=

Thus, if O’ € (0, R[] then the minimum end-to-end delay is achieved by Pi. Otherwise

P-z is used to achieve the minimum end-to-end delay. Since R[= ‘ = 2 0 .

we may obtain following path table:

Message Size Path Path Delay Path Bandwidth

(0 , 2 0) (a, b, c, f) 30 2

[2 0 , oo) (a, b, e, f) 35 4

For any message size a, I-quickest path can be computed in 0 { n r 4- mnlogn)

time, and the path-table for mode I contains at most 0{m) intervals, each of which

corresponds to a single quickest path and no two intervals have the same path. Two

previous methods for computing the path-table for mode I are presented in [11, 32}

and both algorithms have the time complexity of O(m^).

Furthermore, since change of link bandwidths that make path bandwidths changed

31

cause the path-table to be updated, it is critical to develop an algorithm to update

the path-table.

In this chapter, we propose fast algorithms to update the path-table after a

change in link or path bandwidth. Existing algorithms for computing the path-

table or the quickest paths for aU ranges of the size a require two steps. First, let

Bo,..., Br be the number of distinct bandwidths with B\ < B2 < ... < Br m the

network and clearly r < m, where m is the number of links in the networks. The first

step constructs the shortest paths from source s to destination £ in each of the graphs

Gi, where G, is a graph constructed by removing links with bandwidth less than Bi,

1 < i < r. The best known algorithm for the first step requires 0 (rm + rn log n)

time [32). The second step is the computation of the path-table (presented in [32]),

and requires 0{rq) time, where q is the number of intervals of message sizes in the

path-table and q < m.

This chapter is organized as follows. Section 3.2 defines the terminologies used

in this chapter. In Section 3.3, we present an algorithm to perform the second step,

that is, to compute the path-table in 0(r) time. Section 3.4 discusses the dynamic

algorithms that recompute the path-table in 0 (r) time after a change in a link

bandwidth or a path bandwidth (which involves changing bandwidths on several

links in a path).

3.2 Preliminaries

Let = {Pi, P2 , . . . , Pr} be a set of paths such that Pj, 1 < i < r is the shortest

path from s to £ in the graph Gi defined earlier. Note that as mentioned earlier with

32

Figure 3.2: Lower envelope of {Pi, Po, Pz) contains only Pi and Po.

Bi < 8 2 < ... < Br we have D{Pi) < < . . . < D(P.) and P(Pi) < B{P>) <

. . . < B{Pr). We will denote B{Gi) to indicate the smallest link bandwidth in the

graph Gi and B{Gi) = Bi. To facilitate our following algorithms, we define P, € P .y

1 < i < r, to be redundant if it is not a quickest path for any a otherwise, it is called

non-redundant. Let be the set of non-redundant paths with P y 5 P n - For

PXr = {P[, P), . Pr}, Pi, I < i < r, is a quickest path for

a € (3.1)[P(Pi) - P(P._i) P(P+i) - P(P.)

with appropriate boundary intervals specified for i = I and i = r.

Consider a network with three disjoint paths Pi, P, and P3 with bandwidth and

delay pairs given by (b,d), (36/2,2d), and (46,3d), respectively. We have P,y =

{Pi,Pa, P3 }, but Pi is the quickest path for a € [0,86d/3], and P3 is the quickest

path for a > 86d/3 as illustrated in Figure 3.2. Using Po - although it is not a

quickest path for any a, and the expression Eq (3.1) evaluates to [36d, 126d/5| which

is not an interval.

A link e on a path P is said to be critical if B{P) = B{e) and it is uniquely

critical if there exists no other link e' on P with B{P) = B{e').

33

p .

p .

p

ijc

cr
jJc

P ,k

P
J

i J c

(b)
(a)

Figure 3.3: The coudition ai k̂ < is not satisfied in (a), and is satisfied in (b).

In the next section, we present an algorithm to compute the set of all non-

redundant paths V ’lf Ç V s in 0{r) time given V s, and also compute the path-table

with no additional time-complexity.

3.3 Path-Table Computation

For the path-table, the range of a is partitioned into at most m intervals, each

of which corresponds to a unique quickest path. It is known that no two distinct

intervals have the same quickest path (see [32] for details). We note that for every

P G V s the expression Eq (3.1) evaluates to a valid interval, but not necessarily for

P 6 Vs-

We are given V s = {PirP2 ,---,Pr}r r < rn. For simplicity, let A = D{Pi),

and Bi = B{Pi), and Ti(cr) = + A - For V s generated by algorithm of [32], we

have Di < D2 < . . . < Dr and < B2 < . . . < A . For distinct Pj G V s , let

a = cr,j denote the intersecting point satisfying the condition ^ 4- A = 4- Dj

or equivalently = ^ j ^ B j B i .

34

We first note that Pi and Pr are not redundant. For cr = 0, the bandwidth plays

no role, and the quickest path is the path with minimum total link-delay, namely

Pi. For large value of a (for example a = n^{Br + Dr)), the delay plays no role, and

the quickest path is Pr decided by the largest bandwidth alone [32]. Then we have

the following properties illustrated in Figure 3.3.

Lemma 3.3.1 For [Pn\ > 2, we have: (i) Pi is Tedundant if and only i f for Pj

and Pk such that j < i < k, we have Ti{crj^k) > = Tk{(Tj k̂)r nnd (ii) P̂ is

redundant if and only if ̂ for j < i < k.

Proof; Part (i); Consider the lower envelope of the lines corresponding to Pi,

P-i, Pr as shown in Figure 3.2. Since P is redundant, it lies above the lower

envelope, and thus any two adjacent lines of the envelope serve as Pj and Pk satisfying

Ti{cTĵ k) > 'Dj{(̂ j,k) = Tk{cj^k) as shown in Figure 3.3(b). On the other hand, if Pj

and Pk exist, it is easy to see that I}(o-) < Ti{a) for a € [0 . o-ĵ k] and Tk{cr) < T)(cr)

for cr 6 [cry,t,oo), which implies that P, is redundant.

Part(ii): P, is redundant if and only i(Ti{aj^k) > 7t(oj,t) by Part (i). This condition

is equivalent to D k ~ Di < {1 /Bi — ljBk)crj,k~ By substituting the expression cXĵ k =

^]-BiBjBi, this condition in turn is equivalent to < Oj,*. □

We now present our algorithm to compute from P/v, which utilizes a stack

S of entities of the form [cr,i,yj where cr is a suitable message size and i {j) is the

index of path p (P,).

algorithm COMPUTE-TABLE(Piv)

1 . initialize stack S; = 0 ; Push(5, [o-£,, 0 , 1]); Push(5, [cri,2 , 1,2]);

35

2. k = 3;

3. while k < r do

4. Top(5);

5. compute o",,*,

6 . while ((c7i,* < and # 0)) do

7. Pop(S); [cTj,i,jVil= Top(S); compute a ĵt;

8 . P u s h (S , j,k\); k = k + l ;

9. ctr = oo;

10. w hile not(Empty(5)) do

11- [o-£,,i,il= Top(S);

1 2 . make Pi quickest path entry for the interval [cr£,,£rR];

13. ctr = o-£,; Pop (S);

Our algorithm computes the path-table from left to right by identifying from

V n. Let = {Pi-, P2 'J . . . , Pq~} such that D{P') < D{P') < . . . < D{P*), and

P* is the quickest path for cr G [<T{i_i). î-,cri. (̂i+i).]. At the end of execution of Steps

1 -8 , we will show that stack S contains the entries [a^,q*\, [cT(ç_t)-,(ç — 1)*|, —

[ct2- , 2 *], [cri.,rj, listed top-to-bottom.

First note that every path is pushed onto the stack S exactly once (Step 1 , Step

8). The path Pi is removed from the stack in Step 7 only if cr,,* < crj,fc which means

that Pi is redundant (Lemm a 3.3.1, Part (ii)). Now consider Pi is a redundant

path and let Pj-,Pk' € PJ- such that j* and k* are the largest and smallest indices,

respectively, such that j* < i < k*. The entry j* is pushed onto stack and is never

36

removed from it, since Pj. is non-redundant. When A: = jfe* in the w hile loop of

Steps 3-8, the condition < aj.^k- is satisfied (since Pj is redundant). Hence, P,

will be removed from 5 if it is not removed earlier. Thus, only paths the remain on

S are the non-redundant. By noting that the entries on S are of the form

• • • i’l. (ï + 1)"|, . . .

the intervals are correctly associated with the quickest paths, since P,. will be entered

into path-table for the interval

For while loop of Steps 3-8, there are 0{r) iterations, with a single push oper­

ation and zero or more pop operations in each iteration. Since each path is pushed

onto stack exactly once and only the paths on the stack are poped, the total com­

plexity of this w hile loop is 0 (r) . The time complexity of while loop of Steps 10-13

is 0 (r) since complexity of each iteration is 0(1). Thus, the time complexity of

COMPUTE-TABLE is 0 (r) < 0(m).

3.4 U pdate Algorithms

In this section, we will present two algorithms to recompute the path-table after a

change in bandwidth of a link and path. Note that the latter might involve changing

the bandwidths of several links.

3.4.1 Change Link Bandw idth

Increasing the bandwidth of a single link can dramatically affect the precomputed

path-table. It may require recomputation of the shortest paths Piv- lu this sub-

37

section, we present algorithms that adjusts the shortest path distance in 0 {r) time

without having to recompute the shortest paths.

Consider that the bandwidth Bi on a link e is increased to Bi+A, for A > 0 . Now,

we have B{e) = B{Pi) = Bj and since G, contains all links e' with B(e') > B{e),

the shortest path Pi remains unchanged. But the graphs Gj such that B{Gi) <

B{Gj) < B{GBi+t\) might have to changed to include the new link e thus affecting

certain shortest paths.

For the algorithm INCREASE-LINK-BANDVVIDTH specified below, we apply

the forward Dijkstra's algorithm and the reverse Dijkstra’s algorithm. Let be

a spanning tree induced by the forward Dijkstra's algorithm with G b, , and be

induced by the reverse Dijkstra’s algorithm. The tree represents the shortest

paths from a given source to all other nodes and denotes the shortest paths

from all other nodes to a given destination node. Suppose a new link e = (u. v) is

added to the network. To find the new shortest distance from a source to a given

destination, we just need to compare d[s,t\ and d[s, uj 4- D{e) + d[v.t\ where d[s.t\

and d[s, a] is obtained from and d[v, t\ is obtained from

It should be noted that the time to construct the reverse shortest path tree is

same as the time for forward shortest path tree [1 |. Hence the trees and for

all graphs Gi with 1 < i < r can be constructed in 0{rm + rTi logn) time [32] as the

first step in the algorithm. The computation of the new shortest distance given the

forward and. reverse trees after addition of an edge takes only 0(1) for each graph

Gi.

Given the following algorithm recomputes the path-table after the bandwidth

Bi on a link e = {u, v) is increased to Bi + A.

38

algorithm INCREASE-LINK-BANDWIDTH(Bi + A, u, ü)

Comment: Compute path-table after increasing link bandwidth

1. k = i;

2. w hile {Bk[s, < Bj + A) do

3- if (d[s, u] + B('U, v) + d[v, (]) < d[s, t\

4. with c/[s, u| from and d[v, from

5. th e n d[s, = d[s, u) + D{u, u) 4- d[u, ij;

6. Bfc[s, t] = min {Bk[s, uj, Bfc[a, u], Bk[v, fj}

7. else k = k + i

S. = V lf/{P B \ B k < B < B , + A if any}

9. COMPUTE-TABLE

T heorem 3 The time taken by the algorithm INCREASE-LINK-BANDWIDTH is

0 (r).

□.

Let Bi be the original bandwidth on a link e in the input network that was

increased to B* + A. The decrease operation on the same link e by an amount r is

same as the increase operation on the link e by an amount A — r . Let G® represent

the network with B(e) set to 1. Let the V}(and 7̂ /yf(e) be computed on G and

respectively. The increase operation is performed on the paths V ^. The paths

V'fiie) are used to perform the decrease operation and this is done by increasing the

39

bandwidth, on the link e by B(e) — r — 1, where r is the amount of decrease. In

order to perform the decrease operation on an arbitrary link in the graph, we need

to compute the two sets of paths discussed above for every link and this will increase

the time-complexity of the preprocessing step (step I) by 0{m) in magnitude. After

the preprocessing step increase and decrease operations can be completed in 0{r)

time.

3.4.2 Increasing Path Bandw idth

Consider the case in which the bandwidth of the quickest path Qi is to be increased

from B{Qi) to B{Qi) + A. This operation could involve increasing bandwidths on

links in the path Qi by varying amounts. Performing such an increase could require

recomputation of the path table. Let = {Pi, P),...,P̂ y} be the set of non-

redundant paths with B{P{) < B(P,) < ... < P(Py). Increasing the path bandwidth

of Pi from B{Pi) to B{Pi) + A does not affect the non-redundant paths P i ,.... Pi_i,

since the graphs Gi,...,C?i_i already contain the links whose bandwidths are to be

increased. Similarly, the paths whose bandwidths are greater than B(Pi) -b A are

also not effected since their corresponding graphs anyway do not contain the links

whose bandwidths are to be increased. We have to concern ourselves only with

graphs with bandwidths on links greater than or equal to B(Ps) and less than or

equal to P(Pi) + A.

The paths on graphs with bandwidth B such that P(Pj) < B < B{Pi) 4- A are

redundant and can be removed from to determine the new path-table. The reason

behind this is as follows. Consider two paths Pj and Pj such that D (PJ < D{Pj)

and B(Pf) + A > B {P j) . Now the path Pj is redundant by definition.

40

We can also increase the bandwidth of a deleted path, if we keep track of the

deleted paths at every stage of deletion. For example, let = {At A t At A t A}-

If we increase B (A) to B{Pz), A and A will become redundant. Later, if we increase

B{Po) to make A non-redundant, we have to increase B (A) to some bandwidth such

that the intersection point by Lemma 3.1. This implies that to make A

non-redundant B (A) we have A A > This gives rise to the fact

that B{P>) > - The decrease operation on path bandwidth

can be performed very similar to the approach used for decrease of link bandwidth.

Since the number of deleted paths is no more than 0 (r) , the time it takes to

recompute that path table after an increase in path bandwidth is 0{r).

3.5 Concluding Remarks

We introduced efficient algorithms to construct and update the path-table. The

path-table that maps all intervals for a to the corresponding quickest paths can be

computed in 0{m~ + mnlogn) time with n number of nodes and m number of links.

Any change in the bandwidth of a single link or the path bandwidth can dramatically

affect the computed path-table and may require to recompute the shortest path Av-

Algorithms we proposed run in linear-time to construct and update the path-table.

41

Chapter 4

Reliability Problem on Quickest

Paths

4.1 Introduction

The reliability problem of the quickest path deals with the transmission of a message

of size cr from a source to a destination with both the minimum end-to-end delay

and the reliability of the path over a network with bandwidth, delay, and probability

of fault free on the links.

We consider a computer network represented by a graph G = (K.4.) with n

nodes and m arcs or links. Each link I = {i,j) G A has a bandwidth B{1) > 0, delay

D{1) > 0, and probability of fault free 0 < ir{l) < 1. The link delay includes the

preparation and propagation time of the link. By pipelining, a message of a units

can be sent along the link I in <rfB{l) 4- D{1) time. As in [48], we assume that only

links are subject to failure but not nodes.

42

Consider a simp/e Tpath Ffrom Iq to ik given by (io, n), (it, ia), - - -, (û - i , 4), where

E A, for y = 1), and all io ,ii ,. . . ,4 are distinct. Subsequently,

a simple path is referred to simply as a path. The delay of this path P , denoted
fc—I

by D[P], is given by D{lj), where Ij = (ij.ij+ J . The bandwidth of this path,
j=0

k—l
denoded by B(P), is given by minP(lj). The reliability of this path, denoted by

k—L
R(P), is n and the end-to-end delay of the path P in transm itting a

j = 0

message of size a is er/B{P) + D[P\.

Following definitions are given by Xue[48].

D efin ition 4.1.1 The path P from a source to a destination is called a most reliable

path i f R{P) is the maximum among all paths P from a source to a destintion.

D éfinition 4.1.2 The path P is called a quickest most reliable path if P is the

quickest path to transmit a units among all most reliable paths from a source to a

destination.

D efinition 4.1.3 The path P is called a most reliable (piickest path if P is the

most reliable path to transmit a units among all quickest paths from a source to a

destination.

In the field of the computer network, the end-to-end delay time of the routing

path is very critical in wide area network. One of the well-known routing algorithm

to support this Quality-of-Servie is the quickest path algorithm. However, since

communation links may fail to transmit a message during the routing in the real

network, its reliability is also very critical to guarantee to send a message from a

source to a destination. The quickest path problem was first introduced by Moore

43

[30] and formulated by Chen and Chin [1 1]. Due to its importance in the computer

network, the problem received more attention in the area of operations research and

was extensively studied by Rosen et al. [37], Rao and Batsell [32], D.T. Lee [29], and

Bang et a i [5]. Despite of the importance of the reliability on routing, only end-to-

end delay is exhaustively studied. Recently, the reliability problem of the quickest

path was first introduced by Xue [48] and two 0 {rm + rn logn) time algorithms were

suggested to compute the quickest most reliable path and the most reliable quickest

path from a source to a destination when a message size a is given.

As indicated in [48], it is very straightforward to compute one-to-all most reli­

able quickest paths and quickest most reliable paths, and easy to see that all-to-all

quickest most reliable paths and most reliable quickest paths can be computed in

0{rnm-brn~\ogn) time by applying algorithms by Xue [48], where n is the number

of nodes, m is the number of links, and r is the number of distinct bandwidth in a

network. Also, as will be shown in section 2, direct applying any all-to-all quickest

path algorithm and Most Reliable Path Network (will be defined in next section)

to compute all-to-aU the quickest most reliable paths and the most reliable quickest

paths may lead to incorrect results. Thus, as one can expect, it requires special cares

to reduce the time complexity to 0{n^m) and to achieve correct results.

In this chapter, we show that both all-to-all the quickest most reliable paths and

the most reliable quickest paths can be computed in 0{ri^m) time.

The rest of the chapter is organized as follows. In section 4.2, we present details

of algorithm to compute the quickest most reliable paths for ail pairs of nodes in a

given network. We discuss the algorithm for computing the most reliable quickest

paths for all pairs of nodes in a given network in section 4.3.

44

4.2 The All-to-AU Quickest M ost R eliable Paths

Most Reliable Path Network(MRPN), originally called Shortest Path Network(SPN)

[48], is a directed and acycUc subnetwork of G such that any path from source s to

any node t in MRPN is the most reliable path, and it contains all the most reliable

paths from s to any t. Since the most reliable path P is a path such that R{P)

is maximum among all paths from s to f, P can be found using a shortest path

algorithm with new weight irf such that 7T/(1) = log(l/7r(l)). According to definition

[48], the quickest most reliable path, P is a path that is quickest among all P 6 {Pj P

is a most reliable path from s to t } . However, the number of most reliable paths may

be exponential so that MRPN should be constructed to facilitate our work. Once

MRPN is constructed by merging all the most reliable paths from s to every other

node t, any quickest most reliable path from s to t can be computed by selecting a

quickest path from s to t in MRPN.

In the case of one-to-all quickest most reliable paths by Xue [48], as explained,

merging all the most reliable paths from s to any t creates the directed and acyclic

subnetwork MRPN, and any path from s in MRPN is the most reliable path. Figure

I-(b) illustrates one-to-all MRPN by merging all the most reliable paths from a to

other nodes, and shows the property such that any path from a is the most reliable

path. However, since merging all the most reliable paths for all pairs of nodes in

a network G can create some unexpected paths which are not most reliable, this

property does not hold in all-to-all most reliable paths, . In Figure 2, a path P(o, 6)

is the most reliable path from a to b and a path P (6 , c) is the most reliable path

from 6 to c, but P(a, 6 , c) is not the most reliable path.

45

(b)

Figure 4.1: (a) Network G (b) Subnetwork after merging all the most reliable paths from

a to every other node in G; Number in each link represents 7r/(e).

OJ

Figure 4.2: Subnetwork after merging all the most reliable paths for all pairs of nodes in

G; Number in each link represents irf(e).

46

To solve the problem caused by unexpected paths, we may apply Dijkstra's

shortest path algorithm to every node i e V as a. source. Predecessor indices called

pred[iyj\ are maintained in n x n two dimensional matrix pred, where each ele­

ment pred[i,j] is a list. Each index k in pred[i,j| represents the last node k prior

to node j in the shortest path P from i to j . Thus, if we backtrack along P

with pred[i,j], all the actual shortest path can be found. For example, suppose

Pi = (%o,4) (zI, (2)('2 ,4) (4 , f5) and P2 = (io, ii)(ii,i2)(^2 , '3)(i3,i4)(i4, is) are two

most reliable paths from io to ig. Then p'red[2o, ig| —)• 2 4 , pred[io, 2 4] —> i , —>• 2 3 ,

pred['2o, 23] -)■ 29, pred[ioy to] —>■ 21, pred['2o, 21] 2q, and pred['2o, 2oI Null. Thus, if

we backtrack from pre£Z[2o, 2g] -> 24 , we can obtain both Pi and P>.

By implementing Dijkstra’s shortest path, we can compute only one most reliable

path from s to any particular t E V. For this reason, we need to modify Dijkstra’s

shortest path algorithm to compute all the most reliable paths from .s to any t. To

do this, let (&[2 ,y) = ^ 7r/(/j), where Ij = Let T [i , j \ be minimum among
j = 0

all ‘h['2, j]- We first compute r[i, j] for all pairs of nodes (2, j) with 2 6 V and j E V.

As shown in algorithm below, whenever we find ‘&[2,i] such that ‘h[z, jj = r['2.j] , new

predecessor of node j is added to the list of pred[i,j\. Since at least one of the most

reliable paths from s to any £ passes through a link {pred[s,j\ ta il.j), we may

construct a MRPN based on a root s by merging links {pred[syj\ —)■ ta il.j) with

j e v .

After all MRPNs based on each source 2 E V are constructed, links on each

MRPN are labeled with a pair of nodes (a source, a destination) such that the link

with (s, £) is on one of the most reliable paths from s to £. This labeling process can

be easily done by backtracking each path from every £ E V to s. To label, each link

47

{i,j) oa G keeps n x n matrix called Labelij. If a link {i,j) is oa the most reliable

path from s to then Labelij[s,t] is marked. By doing so, we may distinguish each

link used by different most reliabi paths. Since there are at most n nodes in each

MRPN, it takes 0{nm) to label all links in each MRPN. Thus, the time-complexity

of this process for ail MRPN is 0{n^m).

To compute all-to-all quickest the most reliable paths, we merge all links in every

MRPN to construct aU-to-all MRPN, and apply all-to-all quickest path algorithm

(AQP) [29] on all-to-all MRPN. As shown in Figure 2, since it may create unexpected

paths to merge all the most reliable paths for all pairs of nodes (i,j) with i € V' and

j € V, all-to-all MRPN does not hold the property such that any path in MRPN

is the most reliable path. Thus, the quickest path computed by AQP may not be

the most reliable path. For this reason, we need to modify AQP as follows; In AQP

[29], if D[u, i] 4- D {i,j) + D\j, v] < D[u., v\ then the quickest path from a to u is

updated with the path-bandwidth which is mm{B{u, i), B{i,j),andB{j, v)}.

Although this updated path is the quickest path, it cannot be guaranteed that

it is the most reliable path. However, if every link selected for a quickest path

from s to £ is from links which are used for the most reliable path, then it is the

quickest the most reliable path. This implies that if the quickest path P,t is updated

only when the link (i,j) is used for the most reliable path from s to £, we can

compute the quickest the most reliable path without having problem caused by

unexpected paths in all-to-all MRPN. If the above step in AQP is changed into if

{D\uyi\ 4 - D {i,j) 4 - D \j,v\ < D[u,n]) and {Labeiij[a,v\ is marked) th en update the

quickest path, then we can find all-to-aU quickest the most reliable paths correctly.

The algorithm to compute all-to-all MRPN is as follows;

48

Algorithm COMPUTE ALL-TO-ALL Quickest The Most Reliable Paths

Comment : Suppose r[w, u] for ail pairs of nodes {u,v) with u Ç.V and v E V are

precomputed.

Input : Network G

Output : AII-to-AU Most Reliable Path Network

1. u] = oo for all pairs of nodes (u, u) with u € V and v € V.

2. for s = 1 to n do

3. s| = 0

4. pred[s, u] = NULL for all u € V

5. Q<r- V[G]

6. w hile Q ^ IT do

7. u f - a node with minimum of uj from Q

8. for each vertex v € Adj[u\ do

9. if ‘5[s, u] < u] -f- 7p[n, uj then

10. uj = <5[s, u| + 7t'['U, ü]

11. if uj = r[s. v\ then

12. pred[s, v] —)• node = u

13. endif

14. end if

15. endfor

16. endw hile

IZ.endfor

49

18. for s = 1 to n do

19. for £ = I to n do

20. backtrack every path from t to s.

21. if a link (i , j) is on a path from s to £ then

22. mark Labelij [s, £].

23. endif

24. endfor

25. endfor

26. for u = 1 to n do

27. for ü = 1 to n do

28. while pred[u. uj ^ NULL do

29. add lind {pred[u, cj —)■ tail, v) to AMRPN

30. endwhile

31. endfor

32. endfor

33. execute the modified AQP

34. End o f COM PUTE ALL-TO-ALL Quickest The M ost Reliable Paths

Theorem 4 The all-to-all quickest most Tellable paths to transm it a message can be

computed in 0 {n ^m) fo r all range o f messige size cr.

50

p roo f Clearly, Step 1 takes O(n^) time. From step2 to stepl7, all the quickest

paths for all pairs of nodes in G are computed. Since Dijkstra's shortest path

algorithm is invoked n times, it takes 0{nm 4- nnlogn) time. For labeling from

step 18 to step 25, each path is backtracked n} times. Since each path may have

at most n — 1 links, it takes 0{n) time to backtrack any path. Thus, the time

complexity for labeling of links is O(n^). To compute all-to-all quickest the most

reliable paths, we apply modified AQP. The step 9 in modified AQP takes 0(1) time

with the label of each link, the time complexity of the modified AQP is 0{n~m).

Therefore, algorithm, COMPUTE ALL-TO-ALL Quickest The Most Reliable Paths,

takes 0{n-m) running time □

4.3 The A ll To All M ost Reliable Quickest Paths

Assume that Bi < B-y < . . . < denote the distinct ^'alues of the bandwidth

B(Z), I € .4 and represents the subnetwork where bandwidth of all links in the

subnetwork are greater than or equal to Bi with 1 < i < r.

Since the most reliable quickest path from s to (is a path P such that R[P) is

maximum, where P € {P | P is the quickest path from s to £ to transmit a units},

we have to find all the quickest path from s to £ with a given message of cr units. To

develop an efficient algorithm to compute the most reliable quickest path, following

observation in [32] leads to our efficient algorithm.

O bservation 4.3.1 Let V = [Pbi,P b^, . ..rP eA denote the set of shortest path,

where Pb ̂ is the shortest path in with 1 < 1 < r. Then we have D[PgJ <

D[Pb]̂ < . .< D[Pg,I, and S (F g J < B (P gJ < . . . < S (P g J .

51

Consider two path Pi and P2 . If D[Fi] = and B{Pi) < then a j

-B(Pi) + P[PiI < afBiP-i) + D[P^. This means that Pi is always slower than P,

to sent a units. Thus, by above observation [32], we can assume that D[PgJ <

D[Pb,] < . . . < D[PbJ[and B{Pbi) < B{PBn) < . . . < P(Pg^) by removing the

equality. In addition, if P[Pi] > D[P2\ and P(Pi) = 8 (^3) then Pi never becomes

the quickest path for any a units. Thus, the quickest path P to transmit a units is

nothing but the shortest path in Gb{P)-

To derive the most reliable quickest paths, we need to compute the quickest

paths for all pairs of nodes in G with any value of message size a. In addition,

we need to maintain following information by implementing AQP. Let c) be

the propagation time of the quickest path from u to v with the path bandwidth

5 . For each pairs of node (u, u), we define dg,[u, t/] with By < Bo < ..■ < Bk and

dg, < dgg < . . . < dg^. Let B^v = {B i, Bo, . . . , P t } be a set of path bandwidths for

quickest paths from u to v, where any bandwidth P, is used for a particular value of

(T with 1 < i < k. Let rg[u, u] = Y. >r/(e), where Pg[u, «;] be the quickest path

from u to V computed by AQP. We define Pl[u, u] which is a set of links used by an

actual shortest path from u to v. By adding additional data structures to AQP, it

can be easily done to maintain above information.

The algorithm COMPUTE-ALL-TO-ALL-MOST-RELLABLE-QUICKEST-P.ATH

is as follows;

Algorithm COMPUTE-ALL-TO-ALL-MOST-RELIABLE-QUICKEST-PATH

Assumption! : D[u, is the delay time for a path from u to u.

Assumption2 : D{u,v) is the delay time of a link (u, u).

52

Assumptions : The stack arclist is sorted by non-increasing order with link-bandwidth.

Assumption4 : Top (arclist) is the link with highest link-bandwdith in current stack.

Assumptions : Pi[u, u| is initially empty.

Input : Network G

Output : All-to-All Most reliable quickest path with respect to any vaule of g

1. Compute all to all quickest paths by implementing the modified AQP with extra

data structures

2. w hile arclist ^ 0 do

3. (i, j) = pop(arclist)

4. for each pairs of nodes {u, v) do

5. if D[u, i] + D {i,j) + D[j, t/j < D[a, u| then

6. D[u, ü| = D[u. i| 4- D{i,j) 4- D[j, uj

7. end if

8. ‘&[u, u| = ‘h['U, i| 4- 7T/(i, j) 4- £/]

9. if B {i,j) € and D[u, i\ 4- D {i,j) 4- D[j, v\ = uj then

10. if üj < r['u, u] then

11. Pi[u, = Pf[u, i\ 4- {i,j) + Pf[j, uj

12. r[u, v\ = ^[u, u}

13. replace u] by P/[u, n]

14. end if

15. end if

16. if B{tap{arclist)) < B {i,j) then

17. P/[u,v\ = PB[iji[u,v\

53

18. end if

19. endfor

20. endwhile

21. COM PU TE-ALL-TO-ALL-M OST-RELIA BLE-QU ICKEST-PATH

Correctness of algorithm as follows; In steps 5, 6, and 7. the delay of path from

u to V is updated if needed. Since the quickest path with path bandwidth B is

the shorest path in Gb, dB(y)[u, is the shortest delay for a path from u to u in

Gg(ij). Thus, the most reliable quickest path from u to u with path bandwidth B

is the most reliable path among all shortest paths from u to v in Gg. Step 9 checks

if new computed path is the quickest path, and step 10 checks if new computed

path is more reliable than the precomputed quickest path. If so, the quickest path

is replaced by new computed path in step 11 ,step 12, and step 13. We can easily

see that each Pi\u, v\ computed in step 11 maintains the most reliable path among

all shortest paths from u to u in each subnetwork Gg,, with Bi € Buv through

the algorithm. Since links in arclist are sorted in non-increasing order with link-

bandwidth, subnetwork Gg ̂ is considered in order of Bi = B r ,B r - i , , . . .B i with

Br > Br-i > . . . > 5 i. Since the quickest path is replaced whenever the more

reliabe quickest path is found, all quickest paths after the algorithm is completed

are the most reliable quickest paths.

T heorem 5 All-to-all most reliable quickest paths can be computed in 0{iPm) time,

p ro o f Obviously, each step which is nested in step 4 takes 0(1). It seems to take

54

more than 0(1) time to implement step 9. However, by indexing path-bandwidths

B[u,v] 6 Buv, the step 9 can be computed in 0(1) time, either. Thus, it takes 0{nr)

time to implement step 4 with its nested steps. Since while loop in step 2 is invoked

for no more than m times and the time complexity of step 1 is 0(n~m), the total

time complexity of algorithm is O(n^m). □

4.4 C oncluding Remarks

We studied the reliability problem of the quickest paths. The reliability problem of

the quickest paths deals with the transmission of a message of size a from a source to

a destination with both the minimum end-to-end delay and the reliability of the path

over a network with bandwidth, delay, and probability of fault free on the links. For

any value of message size cr, we proposed 0{n~m) time algorithms for all-to-all the

quickest most reliable paths and the most reliable quickest paths, where n and m are

the number of nodes and the number of edges or links in the network, respectively.

55

Chapter 5

On M ulticasting W ith Minimum

End-to-End Delays

5.1 Introduction

The minimum delay multicast problem that deals with the special case when |A/C\ =

1 was first formulated and solved with a time complexity 0{m n logn + m") by Chen

and Chin [11], in the area of operations research (also see [37, 32, 5|). This is called

quickest path problem using circuit switch (Mode I). The multicast algorithms avail­

able in the computer networks literature solve our problem only in two important

cases corresponding to the extreme values of message size r:

(a) When r is significantly small compared to the bandwidth of any link, the

end-to-end delay is entirely controlled by the link-delays, and the Dijkstra's

shortest path algorithm based only on link-delays [18, 7| minimizes the end-

to-end delay.

56

Figure 5.1: Illustrative example.

(b) If r is sufficiently large, the end-to-end delay is entirely controlled by the

bandwidth, and thus a shortest-widest path [44, 3] yields the minimum end-

to-end delay. Recall that a shortest-widest path [44] is the shortest among all

paths from s to d with the largest bandwidth.

For a general value of r both bandwidth and delay constraints are active, and hence

neither of the above algorithms is adequate as we will demonstrate using the following

example network.

Consider the network shown in Figure 5.1, where the Link delay and the band­

width for each link are represented by the same number. Thus, in an overall sense,

paths with higher delays also have higher bandwidths. Consider that .s = 5 and

M C = {1,2,3,4}. As r is varied from 10 to 10®, the corresponding multicast-trees

with minimum end-to-end delays corresponding to Mode I migrate from low band­

width to higher bandwidth paths as shown in Figure 5.2. For small message sizes, for

example r = 10, the multicast-tree consists of exclusively shortest delay paths based

only on link-delays. For example, the shortest delay path from 5 to 2 is 5 —3 —4 —2

57

(b> r»iu.niK)

Figure 5.2: Migration of minimum end-to-end delay multicast-trees with Mode I.

with a delay of 65 and bandwidth of 15 (Figure 5.2(a)). As r is increase to large

values, for example r = 100,000, the multicast-tree consists of shortest-widest paths

only; the shortest-widest path from 5 to 2 is 5 — 2 with a delay of 1000 and band­

width of 1000 (Figure 5.2(c)). In between the two extreme values of r, note that

multicast-tree takes two different forms for r = 10,000 and r = 20,000. Thus, this

example illustrates that the message sizes can significantly effect the profile of the

multicast-trees.

We are given the computer network G = {V. E), and the delays D{e) and band­

widths B(e), for all e 6 E. The task is to compute a multicast tree such that the

end-to-end delay time of the tree is minimized for each value of r, where the end-to-

end delay time of a tree is the maximum end-to-end delay time among all end-to-end

delay time from s t o d E M C. The network under consideration in this paper can be

modified to have advantage of the existing algorithms for multicasting by assigning

58

a weight of rfB{e) + D{e) to each link in the network. But as we will show in the

section 5 of this paper, such algorithms perform very poorly for various message

sizes r and networks with bandwidth and delay-time associated with each link.

In this chapter, we have investigated for the first time the performance of vari­

ous heuristic algorithms for multicast tree construction taking into account several

multicast switch architectures. These multicasting switch architectures include the

store-and-forward switch - wherein the entire packet is stored in the switch before it

is sent on the outgoing link, the pipeline switch - wherein the incoming bit stream

is relayed to an outgoing link by using pipelining techniques, and the hybrid switch

- which behaves like a store-and-forward switch if the incoming link bandwidth is

greater than the outgoing link bandwidth, otherwise it behaves like a pipeline switch.

In section 2, we will discuss these switch architectures in detail. Indeed, the pipeline

switch is more powerful in comparison with the other switches. Guo and Chang [20)

present an excellent survey on multicast switches.

Our contributions in this research are summarized in the following:

• We have evaluated existing heuristics and new proposed heuristics to compute

a multicast tree that takes into account message size, and delay time and

bandwidth of each link.

• We have investigated various multicast tree construction heuristics that takes

into account different path finding algorithms that includes quickest path,

widest-shortest path, and shortest path.

• We have evaluated our proposed heuristics to take into account three multicast

switch architectures that span the breadth of all multicast switch architectures.

59

• We have performed extensive simulation studies taking into account various

network generation models to evaluate the proposed multicast heuristics. The

network models that we have considered include Waxman I [45], Waxman II

[45], Locality [49], and Transit-Stub networks [49]. Note that as indicated in

[49], the Transit-Stub network closely reflect the current Internet topology. We

believe that our simulation for evaluating multicasting heuristics is the first of

a kind that involves several network generation models.

• Our simulation also takes into account the distributions of message sizes and

bandwidths on links.

This chapter is organized as follows. In section 5.2, we present details of various

multicast switch architectures we have considered. Several heuristic algorithms for

computing the multicast tree and its minimum end-to-end delay for the different

switch architectures are also presented in section 5.3. In section 5.4, we present a

novel algorithm to allocate bandwidth on links in such a way that the minimum

end-to-end delay can be achieved for the case of hybrid switches. In section 5.5, we

discuss the various networks models we have used in our simulations and interpret

the results of our extensive simulation. Summary and further research are presented

in section 5.6.

5.2 Paths and M ulticast Switches

We have considered three path finding algorithms that are used to construct the

multicast trees. The first of these is the quickest path algorithm which is executed

on the original network for a given message size r. The second algorithm is the

60

Figure 5.3: The original network and the number in the square brackets on each link e is

200/.B(e) + D{e). The label [d, b) on each link represent the delay d and bandwidth 6 of

each link.

shortest path algorithm that constructs the path on the network with the weight

tv{e) of every link e set to r/B{e) + D{e). The third path finding algorithm is the

widest-shortest path algorithm that works on the original network and is independent

of the message size r. The shortest path algorithm can be easily modified to obtain

the widest path (the path with the largest bandwidth) among all shortest paths

between a pair of nodes. Consider the network in Figure 5.3 the numbers in the

square brackets are obtained by assigning a weight w{e) = r/B{e) -I- D{e) with

r = 200 for every link in the network.

Once a path is constructed using any of the path finding algorithms the end-to-

end delay is dependent not only on the bandwidths and link delays on the links of the

path, but also on the switch architecture at the nodes in the path. For this purpose,

we consider three different multicast switch architectures. A pipeline switch sends

61

the bits from the incoming link to the appropriate outgoing links without buffering.

The end-to-end delay of a path P from source a to a destination d in transmitting a

message of size r is r/B{P) + D{P) using the pipeline switches at nodes of the path.

The store-and-forward switch is the most simplest of all switches. Every incoming

packet is stored in the buffer before it is sent out on all the appropriate outgoing

links. The end-to-end delay for a path P consisting of store-and-forward switches

is 2Zg(f/P(e) + D{e)), where e is a link on the path P. In the case of the hybrid

switch, if the incoming link bandwidth is larger than the bandwidths of outgoing

links then the switch behave like a store-and-forward switch, otherwise it works like

a pipeline switch. The end-to-end delay for a path P which contains hybrid switches

is r/B {P) 4- D{P) + T, where T = Eg r/P (e (i, j)), where e is a link in the path P

connecting node i and node j and the incoming bandwidth to node i is greater than

the outgoing bandwidth to node j from node i.

The following table gives the end-to-end delay from node I to node 13 in the

network in Figure 5.3 using three path algorithms.

Algorithm and Path
Multicast Switch Architecture

Pipeline Store-and-Forward Hybrid

Quickest Path

1—9—10—7-13
61.6 118.9 81.6

Shortest Path

1-9-12-14-13 73 102.3 73

Widest-Shortest Path

1—2—4—7—13
116 302.7 116

Table 5.1: This table displays the end-to-end delay from node I to node 13 and the path in

62

the network given in Figure 5.3 for a message size of r = 200 for various switch architectures

and path algorithms.

From the above table it is clear that the given pipeline switches the quickest path

algorithm outperforms all the others in terms of end-to-end delay. The shortest path

on the link modified network (using the weight given in square brackets in Figure 5.3)

is clearly the best choice for the case of store-and-forward switches. For a network

with hybrid switches the quickest path algorithm is the best choice for the path

finding algorithm. It will be established in Section 5.4 that a weaker switch such as

the hybrid switch can match the performance of the pipeline switch if bandwidths

of the links on the quickest paths can be lowered suitably.

5.3 C onstruction of M ulticast Trees

Algorithms for the construction of multicast trees follow two types: shortest path

and Steiner tree based. The shortest path based algorithms try to minimize the

end-to-end delay. If the objective is to build a multicast tree for a given source to a

set of destinations taking into account only link delays then a pruned single source

shortest path tree would suffice. Such a tree can be constructed in polynomial time

[15]. The Steiner tree construction problem is intractable since it tries to construct

a tree for a given set of nodes (source and destinations) such that the sum of the

costs associated with the links are a minimum [19). Heuristics for steiner tree based

algorithms use minimum spanning tree algorithms due to Kruskal’s [15) and Prim's

[15]. Salama [38] presents an excellent survey of various multicasting problems and

algorithms.

63

In this section, we present two sets of algorithms; one for shortest path based

and the other one based on minimum spanning tree construction (steiner heuristics).

Our construction algorithms will be independent of the switching architecture but

win be dependent on the message size r.

5.3.1 Shortest Path Based Algorithms

Shortest path based heuristics work by merging optimal paths from each of the

destinations to source. The network induced by merging these paths will form a

tree if the criteria for optimal path selection is based on delay or cost. In this

subsection, we present three a lg o r ith m s that choose path based on different criteria

and mechanisms to handle the subnetwork formed by paths that are merged.

The merging quickest path algorithm determines the quickest path from the source

to each of the destinations and the quickest paths induce a subnetwork. This sub­

network need not be a tree as illustrated in Figure 5.4. A depth first search tree

starting from the source on this subnetwork is performed to obtain a multicast tree.

Such a tree need not be optimal for pipeline switches and finding the optimal tree

appears to be computationally intractable.

The second algorithm called widest-shortest path determines the widest-shortest

path from the source to each of the destinations and merges these paths to form the

multicasting tree. From Table 5.1 we can conclude that the widest-shortest path

algorithm is not optimal for store-and-forward switches.

The third algorithm is based on shortest path with link weights (see Figure 5.3)

and we can use Dijkstra^s algorithm [15} to construct the tree. The tree that results

after merging shortest paths is an optimal tree assuming the switches are store-and-

64

forwaxd switches.

Merging Quickest Path

We now present the algorithm Min-Path of [37] originally proposed to compute a

minimum end-to-end delay paths from s to all d 6 V, for any given value of r.

Let Bi, B-i,. . . y Be denote the distinct values of the bandwidths B(e), e Ç. E. Let

G(6) = {V, E{b)) denote the subnetwork where e € E{b) if and only if B{e) > b. Let

a s — d path in G{b) denote the shortest delay path based only on the link-delays.

The algorithm of [37] is as follows:

algorithm Min-Path(r)

1. for j = 1 ,2 , . . . , c, and d G M C compute s — d path P f in G{Bj):

2. for each d G M C

3. compute index dk which minimizes [rlB {P f) + D {Pf)\j = 1.2.........c};

4. return Pj^:

Step 1 of this algorithm is executed by c invocations of the Dijkstra's shortest

path algorithm with a total time complexity 0(cm-i-CTi logn) using Fibonacci heaps

[15]. The cost of steps 2-4 is 0{bc), where only pointers to the paths are returned in

line 4. Then, the multicast-tree composed of the constituent paths , P |^,. . . , P^

can be obtained in 0{m + bn) time as follows: construct a network = {V,EP)

such that e G E P if and only if e is contained in one of the constituent paths, and

obtain a depth-first tree rooted at s. Let us define the bandwidth of a subtree of

65

multicast-tree to be that of a constituent path with the largest bandwidth from the

root of the subtree to one its nodes from MC. At each node v of the multicast-

tree the link-disjoint subtrees rooted at v and their bandwidths can be computed in

0{n + m) time.

For messages of different sizes, this algorithm may have to be executed repeatedly

since the multicast tree might be different. By precomputing the multicast-table as

described in Section 5.4, the multicast tree can be obtained with significantly lower

on-line computational cost.

The algorithm for the computation of multicast-table for the algorithm called

Merging-Quickest-Path is obtained by adapting the algorithm of [32], which was

designed to compute a path-table, i.e. for the special case \MC\ = I. The outline of

our algorithm is as follows:

algorithm Compute-Multicast-Table

1. for each d 6 M C do

2. Compute-Path-Table(d, r^) ;

3. combine path-tables to form multicast-table:

For each destination d 6 MC, we compute the path-table using the algorithm

Compute-Path-Table in line 2, and merge the path-tables to obtain the multicast-

table in line 3. The merging of the path-tables is performed by first sorting and

merging the lists of values of r that denote the end points of the intervals of the

individual path-tables. Then, for each interval in the merged list, corresponding

66

paths from individual path-tables are retrieved. Each path-table has no more than

m entries [32] and thus the multicast-table has no more than bm entries. Once

the constituent paths of each interval of r in the merged list are computed, the

corresponding multicast-trees can be computed using the technique described in

Section 5.2.

For completeness, we now briefly explain the algorithm Compute-Path-Table of

[32] used in step 2 above. At any invocation of the algorithm Compute-Path-Table,

paths Pi and P r are known to achieve the minimum end-to-end delays for the

message sizes and r«, respectively. The algorithm tests if Pi and P r achieve

the minimum end-to-end delay for the entire interval [ri,rft\ by first computing

the message size ri corresponding to their intersection (line I). Then a path P[

with the minimum end-to-end delay for the message size is computed (line 2).

If P[can be replaced by one of Pi or P r under the condition [D{P[) = D{Pi)

and B{Pi) = B{Pi)\ or [B{P[) = B{P[i) and B{Pt) = B (Pr)|, then Pi and Pr

are entered into the path-table for this interval (line 4). If not, the algorithm is

recursively called for each of new intervals [r^, r^] and [rf,rRj in lines 6 and 7.

respectively. Initially, Pi = P “ is a shortest delay path, P r = P^ is a shortest-

widest path, r°i = 0, and , where = maxD(e), B|^^^ is the
" m a x " m a x e ^ E

bandwidth of the shortest-widest path, and B^ax is the bandwidth of the shortest-

widest path in the network obtained by removing aU links with bandwidth at

least

algorithm Compute-Paths(d, Pi, t i , P r , t r)

1. compute intersection size r^;

67

2. Pi 4— minimum end-to-end delay s — d path for message size r/;

3. i f [D{Pr) = D (Pt) and B(Pi) = B{Pl)] or [B{Pi) = B(Fr) and B{P[) = 5 (P r)]

th e n

4. Path[r£,, rf] 4 - P^; Path[r/,rR] 4- Pr;

5. else

6. Compute-TabIe(P£,,r£,,P/,r/);

7. Compute-TabIe(P/, ri, Pr, t r) ;

We now estimate the complexity of the algorithm Compute-Multicast-Table. The

complexity of computation of path-tables is 0{cqb + cmb -t- cônlogn), where q is

an upperbound on the number of entries of the path-table for any d E MC [32].

The merging of the path-tables can be achieved in 0(&mlogm) using available list

merging techniques. Thus the total time complexity is 0{cqb 4- cmb + cbn log a 4-

6-/71 logm) which is upperbounded by 0{m^n 4- mn~ logn).

M erging W idest-Shortest Paths (W SP)

Widest-Shortest Path is the shortest delay path from s to d with the largest band­

width among all shortest path from s to d. The path can be found using labeling

Dijkstra’s shortest path algorithm where weights of link are the delay time and

bandwidth on the link.

The basic idea of WSP is first to compute one to all widest-shortest path tree

rooted at s using labeling Dijkstra’s shortest path algorithm. Once the widest-

shortest path tree is constructed, it is pruned to remove leaf nodes of degree 1 until

68

fis]

d)

Figure 5.4: The subnetwork formed by merging quickest paths shown in (a) and the

depth first search of the subnetwork is shown in (b). The source node is node 1 and the

destination nodes are the labels of shaded circles. The end-to-end delay of the tree is

shown in Table 5.2.

69

either a destination node or source node is reached. The widest-shortest path based

algorithm to compute the multicast tree work is as follows:

Assume that Q is the priority queue with Fibonacci heap and d[v\ denotes the

shortest distance &om source s to any node v. The algorithm also maintains a

set S that contains vertices whose final shortest path from s have already been

determined. To determine the widest-shortest path, we define an array B to store

the path bandwidth from the source to each node v € V. B[v\ denotes the path

bandwidth from s to d. Each element of tree[u| represents the parent of node v in

the widest-shortest path tree. The minimum key in the algorithm is the minimum

of d[n| for all u € Q-

algorithm Merging-Widest-Shortest-Path

1. d[v\ = oo and treefu] 4— NIL for each node v € V

2. d[s] <— 0

3. S 4 - 0

5. for Q 7^ 0 do

6. u t— a node with minimum key from Q

7. 5 S U {u}

8. for each vertKc v E Adj\v\ do

9. if d[uj > d[ul + £>(u, v) th e a

10- d\v\ 4- d\u\ -i- D{a, v)

I I . B[v\ 4- min(B[uj, B\u, u{)

12- tree[u| 4— u

70

13. if (d[ul = d\u\ + D{u, v)) and

14. B\v\ < min(B[n],5[a, u]) th en

15. tree['ü] <— u

16. prune the tree

Since we need to find the widest-shortest paths from s to each destination d 6

MC, path bandwidth should be maintained to compare with that of new found

shortest-path with the same cost. Step 11 of this algorithm is to maintain the path

bandwidth of shortest path found so far. In step 14, if new shortest path with the

same cost has a higher path bandwidth, then tree is updated so that the tree always

keeps the widest-shortest path in the tree. In step 16, we perform a backtracking

operation starting from each destination d 6 M C and remove nodes that are not in

the paths from each destination d 6 MC to the source (root) of the tree.

The time complexity of step 16 is no more than 0{n) where q = |iV/C|, and step

1-15 runs in 0{m -I-nlogn) using Fibonacci heap. Thus, total time complexity of

this algorithm runs in 0{qn+m+nlogn). In Figure 5.5-(a) the pruned single source

shortest path tree based on just link delays is given and Figure 5.5-(b) presents the

pruned widest-shortest multicasting tree.

71

Figure 5.5: The multicast tree based on link delays is shown in (a) and widest-shortest

multicast tree in shown in (b). The source node is node I and the destination nodes are

the labels of shaded circles. The end-to-end delays are shown in Table 5.2.

M erging Shortest-Path W ith Modified LINK Weight (MLW)

Given a message with size of r and a network G = {V. E) where each e € £' is

associated with D(e) and B{e), we define new link weight u;(e) as a weight of an

link where w{e) = r/B{e) -t-D(e). For the network in Figure 5.3, the w{e) for every

link e is given in square brackets. The algorithm MLW uses tu{e) to determine the

single source shortest path tree and after pruning this tree will be the multicasting

tree. The minimum key represents the minimum of w{v) for all v € Q.

The basic step of the algorithm can be represented as follows:

algorithm Merging-Modified-Link-Weight

1. = oo and tree[u| NIL for each node v e V

2- £ü[s] 4- 0

3. S 4 - 0

72

4. Q f - y

5. for Q 0 do

6. u <— a node with minimiini key Erom Q

7. S i— S Li {n}

8. for each vertex v € Adj[u] do

9. if u;(y) > w{u) + r/B{u, v) + D{u, v) th en

10. tu(v) <— w(u) + r/B{u, v) + D{u, v)

12. tree[ü| <— u

13. prune the tree

This algorithm has the same time-complexity as the Merging-Widest-Shortest

Path algorithm.

73

Figure 5.6: The multicast tree based ou modified link weights is shown. The source node

is node I and the destination nodes are the labels of shaded circles. The end-to-end delays

are shown in Table 5.2.

Comment on Shortest Path Ttee Based Algorithms

Our results for the end-to-end delay of the multicast tree is consistent with the

results for one-to-one path end-to-end delay presented in Table 5.1.

Algorithm and Tree
Multicast Switch Architecture

Pipeline S tore-and-Forward Hybrid

Merging Quickest Path 125 275 265

Merging Modified Link Weight 142 253 228.7

Merging Widest-Shortest Path 202 305 302

Table 5.2: This table displays the end-to-end delay of each of the multicast tree that

results firom the algorithms based on shortest path computation. The message size chosen

is 200, source node is I and destination nodes are {7,8,14,15,16}.

74

5.3.2 M inim um Spanning Tree Based Algorithms

In this subsection, we present two minimum steiner tree based algorithms. Heuristics

based on minimum steiner tree have been developed for minimizing the sum of the

cost of links that form the tree [38]. The algorithms that we present use the steiner

based heuristics to minimize the end-to-end delay of multicast trees.

The Best-First Algorithm which is based on Prim’s minimum spanning tree al­

gorithm starts with a multicast tree that contains the source node only. Then it

adds each destination d 6 MC, one at a time, to the existing multicast tree via

the least cost path to any node which is already in the tree. The TM-Heuristic [41]

is a Best-First algorithm where the least cost path is constructed based on a cost

associated with the links. We propose three least cost path selection criteria which

includes quickest path, widest-shortest path, and shortest path based on modified

link weight as part of our Best-First algorithm. As observed earlier, if the path

selection is based on quickest paths, then the resulting subnetwork need not be a

tree and we need perform a depth first search to obtain a multicast tree.

The Grow-Tree Algorithm is based on both Kruskal’s and Prim’s minimum span­

ning tree algorithm. Note that Rayward-Smith [35] presents a Kruskal’s algorithm

based heuristic to construct the minimum spanning tree that takes into account costs

associated with links. Grow-Tree algorithm also starts with the multicast tree with

a given source node only. However, unlike the Best-First algorithm, it adds an link

(u,v) but not a path to the existing multicast tree with u 6 V and v ^ V , where

V' is the set of nodes in a current multicast tree. Let P{x ~ y) be a path, from

node X to node y in a multicast tree. To add an link (u, v) to the existing tree with

a € V' and v ^ V', the end-to-end delay time of path P (s ~ u, v) is computed for all

75

neighbors v of node u. If the end-to-end delay time of a path P{s ~ u, u) including

the link (u, v) is the minimum among all such paths, then the link {u, u) is added to

the multicast tree. In the following subsections we will present the Best-First and

Grow-Tree algorithms in detail.

Best-First Algorithm

In the case of quickest path based algorithm, Best-First algorithm may construct

the subnetwork which is not the tree as in the case of merging quickest path ap­

proach. First step is to implement the Best-First algorithm, and the second step is

to construct the depth-first tree from the subnetwork obtained by the first step.

Let Best-First-Subnet be a subnetwork of the given network G with G = {V.E),

and initially, it contains the source node only. Let Time(u. d) denote a end-to-end

delay time from node v to d. We will assume that the variable min-Time in the

algorithm Best-First below is initially set to infinity.

The algorithm Best-First is presented below:

algorithm Best-First

1. while M C 0 do

2. min-Time = oo

3. for each node v € Best-First-Subnet do

4. for each destination d € M C do

5. if Time(u, d) < min-Time th en

6. min-Time <— Time(u, d)

7. selected-Node v

76

8- selected-Destination <— d

9. add the path Grom u to d to Best-First-Subnet

10. M C = M C - {d}

11. Compute Depth-First tree with Best-First-subnet if based on the quickest path

12. Otherwise, skip step 10.

13. retum(tree)

To execute the step 4, we need to compute the end-to-end delay time Time(t/, d).

If Best-First algorithm is based on the quickest path, Time(c, d) is the end-to-end

delay time of the quickest path from v to d. In the case of the widest-shortest path

based multicast tree, Time(t/, d) is the end-to-end delay time of the widest-shortest

path from u to d. Similarly, Time(u, d) is the shortest path based on modified link

weight for Link Weight based multicast tree construction.

The cost of While loop in step 1 is 0{\MC\), and step 2 is executed for current

number of nodes in Best-First-subnet. To compute the Time(u, d) in step 4, it takes

0{cm 4- cnlog n) for the quickest path, and 0{m -f- a logn) for both the widest-

shortest and the shortest path with modified link weight. Since the computation of

Time(r, d) is expensive, we need the preprocessing step to compute quickest paths,

widest-shortest path, and shortest path with modified link weight for P{vM) for all

pairs of nodes, v and d, where v E V and d E MC. Then any Time(u, d) can be

computed in 0(1) time. Thus, with the preprocessing step, total time complexity

to build multicast tree is 0{\MC\nf\MC\') where n' is the current number of nodes

in Best-First-Subnet and \MC\' is the current number of destinations in MC.

Figure 5.7: The Best-First multicast tree based on quickest path is shown in (a) and tree

based on modified link weight is shown in (b), widest-shortest based tree is shown in (c).

The source node is node 1 and the destination nodes are the labels of shaded circles. The

end-to-end delay of the tree are shown in Table 5.3.

Grow-TVee Algorithm W ith The Quickest Paths

Suppose Grow-Tree is based on the widest-shortest paths or the shortest path with

a weight w{e) of an link e Ç. E with w{e) = rjB[e) + D{e). Since any subpath

of a shortest path is also the shortest path, the path P{s ~ u, u) with minimum

end-to-end delay time by adding an link (u, n) to the existing multicast tree results

in nothing but the shortest path from s to v where P{s ~ u) is the shortest path

from s to ti. This implies that Grow-Tree based on the widest-shortest paths and the

shortest path with w{e) = r/B{e) 4- D{e) results in the same multicast tree based

on WSP and MLW respectively. Thus, we consider Grow-Tree based on the quickest

path only.

Let Grow-Tree denote the multicast tree obtained by algorithm Grow-Tree. In

the algorithm, the end-to-end delay time of path P (s ~ u, v) obtained by adding an

78

link (u,v) to the path P(s,u) is defined as Time(s ~ u, v). Then, algorithm works

as follows:

algorithm Grow-Tree

1. while there exist unMarked dç. MC do

2. min-Time = oo

3. for each node u € Grow-Tree do

4. for each unMarked v E adj[u] do

5. if Time(.s ~ u, v) < min-Time th en

6. min-Time <— Time(s ~ u, n)

7. seiected-Link e(u, u)

8. add the selected-Link (u, v) to the Grow-Tree

9. mark node v

10. retum(Grow-Tree)

To develop this heuristic algorithm, we considered the following property such

that any subpath of the quickest path may not be the quickest path. Suppose that

an link (u, u) has already been added to the existing multicast tree. Later, an link

e{m, v) is tested, and Time(s ~ w, v) is less than Time(s ~ u, v) where a node v is

not a destination. Although a path P{s ~ w, v) is quicker than a path P (s ~ u, u)

to send the message from s to u, this does not implies that the path from s to

d via P (s ~ w, v) is quicker than the path via P (s ~ u, v). For this reason, the

end-to-end delay time from s to d via path P (s ~ u/, v) may be inefficient. Thus,

79

in this heuristic algorithm, once an link (n,u), called selected-link, is added to the

existing multicast tree, a node v is marked and not tested anymore and return a tree

correctly.

Step 2 of Grow-Tree algorithm runs for the number of nodes in the current Grow-

Tree, and neighbors which are not marked and adjacent to each node from step 2

is tested in step 3. Thus, these two steps take 0{m') with m' < m where m is

the number of links in network. In the case of step 1, it is terminated when all

d € M C are marked. Since one node is marked for each step 2, it takes at most

0{n) time for all d € M C to be marked. For the step 4, if we keep track of the

delay and bandwidth of the path, whenever tree is updated, it takes only 0(1) time

to compute the Time(s ~ u, u). To keep track of the delay and bandwidth of the

path updated, 0(1) time is needed so that it is required only 0(1) time to execute

the step 4. Therefore, the total time complexity of this algorithm is (rtm') without

any preprocessing step.

Algorithm and Tree
Multicast Switch Architecture

Pipeline Store-and-Forward Hybrid

Grow-Tree with quickest paths 104 370.7 170.7

Best-First with quickest paths 142 253 228.7

Best-First with shortest paths 142 253 228.7

Best-First with widest shortest paths 210 643.3 310

Table 5.3: This table displays the end-to-end delay of each of the multicast tree that results

Grom the algorithms based on spanning tree computation. The message size chosen is 200,

source node is 1 and destination nodes are {7,8,14,15,16}.

80

Figure 5.8: The multicast tree constructed by Grow-T5:ee algorithm is shown. The source

node is node I and the destination nodes are the labels of shaded circles. The end-to-end

delay of the above tree are shown in Thble 5.3.

5.4 Bandwidth Allocation for Hybrid Switches

As indicated earlier, an hybrid switch buffers the complete packet from a link l{ before

transmitting to the appropriate outgoing link Ij if B{li) > B{lj). This buffers causes

an extra delay. In the following example, we will indicate that by appropriately

reducing the bandwidth on the links the end-to-end delays can be improved in the

case of hybrid switches.

Consider the multicast tree shown by Figure 5.9. Let s be the source node for

the multicast tree with three destinations di, d%, and Let Pj be the path from

s to di for 1 < i < 3. Let the delay D (the propagation delay) for the paths be

such that D{Pi) = 5, D(F^) = 10, and D{Pz) = 50. The label associated with

each link in Figure 5.9 represents the bandwidth of the link. Let r = 60 be the

size of the message to be multicasted. In Figure 5.9-(a) the multicast tree with the

81

initiai bandwidth is shown and Figure 5.9-(b) shows the multicast tree with reduced

bandwidths on some of the links. The minimum end-to-end delays for the trees in

Figure 5.9-(a) and Figure 5.9-(b) are 70.5 and 52, respectively.

Our algorithm to determine the bandwidth on each link that minimizes the end-

to-end delay works as follows. For each outgoing link e(s, v) from s choose as candi­

date bandwidths the set of all bandwidths on links in the subtree rooted at v that are

greater than or equal to B{s, v). For the link e{s,a) in Figure 5.9 (a) the candidates

are 2,3,4,5,30, and 35. Now, the link e(s,a) is assigned a candidate bandwidth

and the end-to-end delay for the tree is calculated using the calculations of hybrid

switches described previously. The candidate bandwidth that results in minimum

end-to-end delay is assigned to the link e(s, a). The operation is performed for each

of the outgoing links from s. The algorithm is executed now at node a, the child of

s and the process is repeated until all links in the tree have been assigned the new

bandwidth.

5.5 Simulation

We compared the performances of various algorithms under different switching ar­

chitectures using extensive simulations. Our simulations were constructed using C

programs written for the LINUX environment. We used four network generations

models to generate our initial network and these include the Waxman I [45], Wax­

man II [45], Locality [49], and Transit-Stub models [49]. In our simulation, plane

with size 1000 km x 1000 km are used for Waxman I, Waxman II, and Locality.

For transit-stub mode, size of plane is 1000 km x 1000 km, size of each transit do-

82

Figure 5.9: The given multicast tree before bandwidth allocation is shown in (a), the

multicast tree after bandwidth allocation is shown in (b). The label on each link represents

the bandwidth of the link. The source node is node 1 and the destination nodes are {di,

dg, d]} with shaded circles. The end-to-end delay of the above tree taking into account

bandwidth on links and message size of 200 is 70.5 units of time for the hybrid switch

before bandwidth allocation. The end-to-end delay of the above tree after bandwidth

allocation is 52 for hybrid switch.

83

main is 150 km x 150 km, and size of each sub domain is 50 km x 50 km. The

random networks generated using the models are connected with each node having

an average degree in the range [4,7). We choose networks with number of nodes

equal to 20, 40, 60, 80, and 100. Without loss generality, a source and a set of

destinations are uniformly selected for each multicast session. The number of des­

tinations that were selected were 10%, 20%, 30%, 40%, 50%, and 60% of the total

number of nodes in a network. For each network that was generated, there are two

different weights on each link were assigned: link delay and bandwidth. The link

bandwidths are partitioned into two classes, low-bandwidth and high-bandwidth.

Links with bandwidths in the range [32Kbit/sec, i,ô44Mb-it/sec\ and in the range

[6.312MMt/sec, sec] are classified as low and high, respectively. The link

bandwidths are assigned in such way that 10/high bandwidth and 20/90/In the case

of delay-time, distance is first uniformly distributed on each link with unit km. this

distance is converted to delay-time using the formula

^ _ distance
velocity of propagation of an electrical signal

, where Tp represents the delay(propagation)-time of an link. For example, if an

assigned distance is 10 km, then Tp = = 5 x lO'^s.

The overall simulation experiment is organized as in the following algorithm for

each model of network generation.

algorithm Simulation

1. for each size N (the number of nodes) in the set {20, 40, 60, 80,100} do

2. for 2 = 1 to 30 do

84

3. Generate a network G with iV number of nodes

4- Randomly assign link delays to the network G

5. for J = I to 9 do [Choose % of Low bandwidth

6. Assign j X 10/of the links with high bandwidth

7. for A: = 1 to 6 do [Choose % of destinations

9. for 1 = 1 to 30 do [Choose destinations

10. Randomly choose source s and k x 10% of

destinations

11. Run all the heuristics for various message sizes

(in bytes) r={32, 256, 1024, 2048. 5120, 10240, 20480.

51200, 61400, 65535} and accumulate statistics.

5.5.1 Sim ulation Results

In this subsection, we will present the results of our simulation. Our extensive

simulations indicate that the relative performances of various heuristics remained

the same for all different sizes of networks and destinations. We will present the

results for a network with 100 nodes and 20 destinations. The message sizes that

were chosen for this presentation were 256 bytes, 1024 bytes and 65535 bytes (the

maximum size of an IP packet). We will present our results only for Locality and

transit-stub models of network generation since locality, WaxmanI and Waxmanll

models showed very similar performance characteristics.

85

Store-and-Forward Sw itches

Since the Dijkstra’s shortest path is the optimal algorithm, the Modified Link Weight

(MLW) heuristic should perform the best and the simulation results as indicated in

Figure 5.10 and Figure 5.11 attests to this fact. Grow Tree heuristic based on

Quickest Paths (GTQP) performs admirably well even in the case of store-and-

forward switches. The heuristics based on widest shortest path (WSP and BFWS)

performs poorly compared with quickest path based algorithms. In the presence of

a network containing many links with low bandwidths and taking into consideration

large message size the performance of all the heuristics except based on widest

shortest paths is very similar. In the transit-stub model of network generation the

relative performances of various heuristics remain the same, but the differences are

verv small.

86

Siurc->tuiii-Pi«wanl Switch
■ H b* I • UeWMy. Sia» - * 1 Niwâw M< D

Stucc-anK R xw anl Switch (a)

I 0.06

f 0.05

0.03

0.02

001
NO too4 0

0.25

f 0.15

a I

40

Sbive-umWRirwant Switch

125

!
f
Î TS

1

3» JO KMMl

Figure 5.10: Store-and-Forwaxd Switch with Network Based ou Locality model

87

îi

1

1i
!1

■te— *ml. Switeft Ih## wW" fi *w*ü

tZ3

î
1

i
i5

1
J

i
1

1
J

1
i

Figure 5.11: Store-and-Forwaxd Switch with Network based on 'Bransit-Stub model. The

graphs in the first column contain all the heuristics, the second column shows the difier-

ences in performances for low bandwidths greater than 50% and the third column shows

the relative performances for low bandwidths greater than 85%

88

P ip elin e Switches

The Grow Tree heuristic based on quickest path is the best heuristic for all networks

and messages sizes except for very large message size in which case the merging

quickest path heuristics performs the best. The differences in performances can be

clearly seen in the case of small message sized for the locality model (Figure 5.12).

These differences fade away for all messages sizes in the case of transit-stub model.

This is because of the bottleneck on the links in the transit domain. In Figure 5.13

we show the graphs for the transit-stub model. The graphs in the second and third

column are presented to indicate the relative performance of the algorithms in case

of network with many links containing low bandwidths.

89

npeliaeSwitdi PtiKliiieSwiiclKal

aius

lUG
tU)l3, IQQ 40

PtpeUwSwndi
M». MnMV»w»*a>m. «

if1
]

npeUne Switch
«Mm ■

PtpclinrSmicft
iin. mmm«» «

too50 ««.I *Kli2 WJX9.7 *».» *9.9 90

Figure 5.12: Pipeline Switch with Network Based on Locality model

90

PlfHUMSWUEh Switdi Plp«UarSmicli

I

Plpstew .flMlEftlhl ftpgtmimiOKi:) MpmUm# SwubAttl)

U tis

i
f
I
X

pïïZS
r«

Figure 5.13: Pipeline Switch, with Network Based on Ttansit-Stub Model The graphs

in the first column contain all the heuristics, the second column shows the differences

in performances for low bandwidths greater than 50% and the third column shows the

relative performances for low bandwidths greater than 80%

91

H ybrid Sw itches

The hybrid switches behave like store and forward switches in some cases and on the

average heuristics based on modified link weight perform admirably well in the case

of hybrid switches. The grow tree heuristic’s performance matches very closely with

that of Modified link Weight. In comparison with the store-and-forward switches, the

hybrid switches have obvious lower end-to-end delays but the relative performances

of various heuristics appear to be the same. The graphs based on locality models

are shown in Figure 5.14. The grow tree heuristic based on quickest path (GTQP)

is slightly better than the one based on modified link weight for the case of transit-

stub models (see Figure 5.15). Interestingly, the Merging Quickest Path (MQP) is

the worst heuristic among all the heuristics that takes into account bandwidth and

message size into account in the transit-stub model.

92

HybnaSwild» Hybnit Switch (a)

11(12

(Lin 4U 100

0.2

î
I .u

1

Hybna Switch
• t . Mmm» «#» mWW M

Î
I
!

i

KO

HybmO Switch Kylmt Swiich

I
J

7050 m 100AO

vm

Figure 5.14: Hybrid Switcb with Network Based on Locality Model

93

KytairfSwitEft

Îi

i

H ytm U Sm iclK b» HytWHlSwilcJlCt:) H yhnU (tl)

Ij
i
i

j l l l M

Ii

!
iI]
i

Figure 5.15: Hybrid Switch with. Network Based on Tkansit-Stub Model The graphs

in the first column contain all the heuristics, the second column shows the diSerences

in performances for low bandwidths greater than 50% and the third column shows the

relative performances for low bandwidths greater than 80%

94

Bandwidth A llocation for Hybrid Switches

As indicated earlier, the end-to-end delays can be improved in the case of hybrid

switches if the bandwidths on the links can be appropriately reduced. The graphs in

Figures 5.14, 5.15, 5.16, and 5.17 indicate this. The grow-tree heuristic performs the

best in these cases and the merging quickest path heuristic outperforms all others

when message size is large and the network contains many links with low bandwidths.

These results are the same for both the locality and transit-stub model of network

generation.

95

Bantlwulih Altocaitt» witb Hybna S«*ttch
wmmlk W -r ikMwi 111M m«»W OM0

Baodwultb AUucuton wuli Hytirut Smccb

Ü.M5

>MI2

iUO

p .0 7 5

BapihwiUtb AilucaUMD wttà Hybntf Swudt

J
3
1
J
]

no

BoodwiOUk AUwaUMk wtift HybnU Switch BaoüWHhb AllustUDci wub Hybnd Switch
w « aw. Mill ,# «WWW» wo

iJ
Ii
2

50 70AO NO SO 1C»

V)

IS

17

u

*7to t» n»

Figure 5.16: Bandwidth Allocation with Hybrid Switch with Network Based on Locality

Model

96

Bandwidtil AOocaom wdb HyteelSwieti Banüw A h AUacaOua wuft Hybrki 5«ncik BamhntlUi AlfacanuB w uh HyNid Switük

‘0.ÜI3

BMdWKttb Aikxaoun wua Hyhnd SmtElt BMlwalUt AUManoB wub H yM XwiKA BmalwiUtt AUtxaiiua wtUi Hytm t

*» I 2 S

\» ïZ*

BanlmtlU» AUucaOun wutt Hyfind Amtell BwiwiUUi Aiàxaou# w«b. Hybrid Sw ell Buodmdlli A lkKitM i wuH Hyhnd HwKii

11]
1 t u 13

Figure 5.17: Bandwidth Allocation with Hybrid Switch with Network Based on Transit-

Stub Graph The graphs in the Srst column contain all the heuristics, the second column

shows the differences in performances for low bandwidths greater than 50% and the third

column shows the relative performances for low bandwidths greater than 89%

97

5.6 Concluding Remarks

We considered the transmission of a message of size a from a source to a set of desti­

nations with minimum end-to-end delays over a computer network where bandwidth

can be reserved and guaranteed on the links. Various heuristics were proposed and

evaluated extensively on networks generated by different graph generation models.

Impact of bandwidth and message sizes were studied for several network sizes. It

is indicated that the Grow-TVee heuristic performs admirably well in all different

switching architectures. Clearly, the heuristic of choice depends on the switching

architecture, message sizes, and percentage of low bandwidths.

98

Chapter 6

On M ulticasting with Minimum

Costs for the Internet Topology

6.1 Introduction

We consider a computer network represented by a graph G = {V.E) with n nodes

and m arcs or links, where V and E are a set of nodes and a set of arcs (links),

respectively. Each link e{i,j) € E is associated with cost C(e) > 0. Consider a

simple path P form i'o to given by {io, k), (h , !^), - - - r {h -i, it), where {ij, ij+i) € E,

for J = 0 ,1 , . . . , — 1), and all io, «i, - - -, it are distinct. Subsequently, a simple path
t-i

is referred to simply as a path. The path-cost of P is given by C{P) = XI C(cj),
j=0

where ej = {ij,ij+i). The tree-cost of tree T is given by C(T) = H C(e), for all

e 6 T. The objective is to minimize the C(T) under networks with, asymmetric

links.

In previous research, most of the multicast problems to minimize the cost of mul­

99

ticast tree only considered undirected graph as the underlying network. However,

it is revealed that link utilization of link e(n, u) is different from that of link e(u, u) in

real network environment, especially in WANs [14), thus we cannot consider those

algorithms as efficient methods when applied to asymmetric networks.

On the other hand, to evaluate the performance of the multicast tree, network

models constructed by random graph generators are used and the choice of random

network model is very important. Since different network topology may produce

different results (sometimes even significantly different), after simulating the same

algorithm, the random network model which almost reflects the current Internet

topology should be used to get accurate result. Currently, network model gener­

ated by the random graph generator designed by Waxman [45] is being used most

frequently for simulation, but unfortunately this model, called WaxmanI. does not

reflect the real current Internet. Several new random network models have been

introduced in [49], and new models called Locality, N-Level Hierarchy, and Transit-

Stub are more similar to the current Internet topology rather th an WaxmanI. Among

these models, Transit-Stub almost reflects the current real Internet topology [49].

As indicated in [49], the routing characteristics of the Transit-Stub model follows

that a shortest path wül traverse Transit domain (s) if and only if the two endpoints

are in different domains. This means that costs of links passing through Transit

domain(s) to go to destinations are cheap which means those links have relatively

large bandwidths. Also, in real Internet, when a message is multicasted, it passes

through backbones if destinations are in different domains. Thus, paths to different

destinations are likely to share a lot of same links. Using these characteristics, we

may think that it is likely efficient to construct a multicast tree with minimum costs

100

using shortest (minimum cost) paths.

The algorithm (TM) due to Takahashi and Matsuyama [41] is a shortest-path-

based algorithm and was further studied and generalized by Ramanathan [31]. The

algorithm (KA/IB) by Kou, Markowsky, and Berman [27] is a minimum spanning

tree based algorithm. Ramanathan [31], in his comparison between parameterized

TM and KMB, has shown that TM outperforms KMB in terms of the cost of the

tree constructed. Moreover, unlike the KMB algorithm, TM works on asymmetric

directed networks. Our proposed algorithm like the TM is a shortest path based

multicast tree construction algorithm. We show in this chapter that our algorithm

produces multicast trees with lower tree costs in comparison with the TM algorithm

for Internet like networks.

Our algorithm consists of the following two summarized steps which we will

elaborate in the next section.

1. Using the cost C(e) associated with each link e, determine all the minimum

cost paths (will be referred as also the shortest path) from s to each di € D in

the given network. Each minimum cost path from s to dj € D forms a directed

path. Merge all the minimum cost paths from s to each of the di's to form a

directed acyclic graph G'. Note that each link in G' is a link in the original

network and has the same associated cost.

2. Find a multicast tree given s and M C = [di.dz, on the directed acyclic

graph G'.

We win show in the next section that using a simple modification to the Dijkstra^s

shortest path algorithm we can indeed construct G'. In order to find the multicast

tree on the graph G' we propose a new heuristic called the most shared link (MSL)

101

and show by empirical evaluation that our algorithm is superior to both TM and

KMB for networks that follow the Internet topology. Given a directed acyclic graph,

no polynomial algorithm for finding the multicast tree with minimum cost is known

to exist [46].

Our contribution in this research is three-fold. First, we propose a new heuristic

for multicast tree construction in directed asymmetric networks. Second, the sizes

of input random networks are large and they reflect the Internet topology. We

use the Transit-Stub network generation model proposed by [49]. Third, we have

compared our heuristic with the two well-known heuristics, the TM and KMB and

determined that the cost of the tree constructed by our algorithm is smaller than

those constructed by TM and KMB. The time-complexity of our algorithm is the

same as that of the TM algorithm.

The rest of this chapter is organized as follows. In section 6.2, we present details

of our algorithm. We discuss the network model and the results of our simulation

in section 6.3. Conclusions are presented in section 6.4.

6.2 Algorithm

We will first present the modified Dijkstra's shortest path algorithm to compute the

network G' discussed in the introduction.

Let us define the predecessor data structure as an array Pred\j\ for j E V, where

each element of the array points to a linked list. If Pred\j\ p q, then there

are two paths firom s to j with one of them passing through the link (p ,j) and the

other through the link (g, j) . Thus the data structure Pred can store all shortest

102

paths for every pair of nodes (s, d), where s is the source and d is a member of the

multicast group (MC). The following algorithm is a modification of the Dijkstra's

algorithm that is used to determine Pred.

Algorithm Compute_Pred {s G V)

Comment 1 ; Assume that the minimum costs for all (s, i) with i G V is precomputed.

Comment2 : Let minimum cost for any {s, i) be min{i).

Begin

1. cost[u] = oo for each node u G V

2. cost[s[= 0

3. Pred[s][i] = NULL for i G V

4. S 4— (t)

3. Q f - V[G\

6. while Q ^ 0 do

7. u <— a. node with minimum of cost[u] from Q

8. S = S + {u}

9. for each vertex v G .Adj[u\ do

10. if cost['£/] > cost[u| + C{u,v) th en

II- cost[uI = cost[-u] + C(u, u)

12. if cost[u| = min[v\ th en

13. Pred[v] —>• node = u

14- en d if

15. end if

16- endfor

103

IT.endwhile

E nd Compute_Pred

The time-complexity of the above algorithm is 0 (m 4- niogn) using Fibonacci

heaps implementation of the Dijkstra’s algorithm [1]. Using the Pred information

we can construct the network G' in time 0{m). Note that O' is a directed acyclic

network.

In order to determine the multicast tree on G' using our most shared links ap­

proach, we have to first label the arcs in G'. An arc (u, u) in G' has a set of labels.

Lu„. A node label (or identifier) d Ç. M C is in if and only if there is path from

node u to d using the arc (u, ü). That is, the label on an arc indicates the set of

destinations that can be reached by using that arc. The label for each arc in G' can

be determined by backtracking from each d to s after temporarily reversing the arcs

in G' in 0(m) time. Next we need the following definition.

D efinition 6.2.1 I f Ç L^w then an arc (u, v) is redundant, otherwise non-

redundant.

The heuristic to determine the multicast tree T from G' consists of the following

steps. Note that we use a clever implementation of the following steps to reduce the

time complexity of the algorithm.

1. Perform a breadth first search starting from the node s (the root of tree T).

2. For each node u encountered during the breadth first search perform the fol­

lowing two steps.

104

a. Remove arcs (u, v) that are redundant.

b. Modify the labels of non-redundant arcs as follows: Let L' =

with < \Luw\ and v < w. Assume that L' L^v and L' 7 ̂Luw Now

label \ L .

3. Prune the breadth first search tree to remove arcs that do not reach any d €

MC. This can be accomplished by performing a depth first search.

Steps 1 and 2 are implemented using clever data structuring in the following

algorithm.

Algorithm RRL(G', MC)

Input : G' the acyclic directed network and MC the multicast group with D = \MC\.

Output : The multicast tree T

comment 1 : Let CV be a current Boolean vector of size D.

comment 2: Let F P be a Boolean vector of size D for each node in O'.

comment 3: Let A be a Boolean vector of size D for each arc in O'.

comment 4: Let N{u, u) be the number of destinations that can be reached

by using the arc (u, v). Note that iV(u, u) < D.

comment 5: Let L^v be the label on arc

co m m e n t 6: Q = 0 initially.

B egin

1. Assign Luv for each {u, v) in G' by backtracking from each d G MC.

2. for Î = 1 to D do

3. t— false

105

4. <— true

5- endfor

6. Q <— Q Li {s}-

7. w hile Q not empty do

8. remove p from Q

9. for each arc {p, v) do

10. for i = I to D do

11. ^ false

12. endfor

13. for each x € Lj^ do

14. .4pu[zj t - true

15. end for

16. Apu 4— FPp A Apo

17. end for

18. compute iV(p, v) based on true value in Ap„

19. sort the arcs (p, v) based on N{p, v) in descending order

using the bucket sort. Let (p, ui), (p, V o),..., (p, Vk) be the sorted arcs.

20. C V i— Apô

21. for i = 2 to do

22. for J = 1 to D do

23. if Apâ \j\ = true th e n

24. if CV\ji\ = = false th e n

25. CV[/| <— true

26. else

106

27. <- false

28. N{p, Vi) <- N{p, Vi) - 1

29. endelse

30. end if

31. endfor

32. endfor

33. remove all arcs {p, %) with N{p, Vi) = 0

34. place all neighbor Vi of p with N{p, Uj) > 0 in Q

35.

36. endw hile

E nd RRL

The time-complexity of the algorithm RRL is evaluated as follows. Step I can

be completed in 0{n + m) time using depth first search. Steps 2-5 take 0{D) time

which is at most 0 (n). The while statement in step 7 is executed at most 0{ri)

time. Steps 9-17 is executed at most 0{m x D) during the entire execution of the

algorithm. Steps 18-19 can be completed in 0{m x D) during the breadth first

search as we visit nodes level by level. Steps 21-32 can be executed in 0{m x D)

during the entire execution of the algorithm. Hence the total time complexity of the

above algorithm is 0{m x D). The total time complexity of our entire algorithm

including the construction of G' is 0 (m x £) 4- nlogn). The time complexity of

KIVIB is G(n^ x D) [27] and TM has a time-complexity of 0 { m x D + n logn) using

Fibonacci implementation of the Dijkstra's shortest path algorithm [41].

Figure 6.1-(a) shows a directed asymmetric network. Assuming that the source

107

I
/

Figure 6.1: Given a network (a), a multicast tree based on K&/IB is shown in (b), a

multicast tree based on TM is shown in (c), and a multicast tree based on MSL is shown

in (d), where a source is 0, and MC = {6, 7}.

node is labeled 0 and the MC = {6,7}, the trees constructed by algorithms KMB.

TM, and omr algorithm are shown in Figures 6.1-(b),(c), and (d). respectively. The

cost of the trees generated by KMB, TM and our algorithm are 6, 6, and 4. re­

spectively. The subnetwork G' for the network in Figure 6.1-(a) with s = 0 and

M C — {6,7} is shown in Figure 6.2-(a). The text on each arc is the arc label.

Figure 6.2-(b) is the multicast tree T for G'.

6.3 Simulation

To compare performances of algorithms introduced, we used extensive simulations.

We implemented the algorithms in language C under the Linux environment. As

mentioned earlier we used the Transit-Stub model proposed by Zegura et. al [49] to

generate our random networks. We set the size of plane, each transit domain, and

each stub domain to 1000 km x 1000 km, 150 km x 150 km, and 50 Arm x 50 km,

108

(Il (b)

Figure 6.2: Subnetwork by merging all minimum cost paths from source to each destina­

tion is shown in (a) and tree derived from (a) is shown in (b) .

respectively.

Note that the Waxman model [45] is a popular graph generation model, but

generates graphs that do not reflect the Internet topology [49].

The weights on the arc represent the cost of using the arc. In the Transit-Stub

model, the cost of the arcs in the backbone network is less compared with other

arcs in the network. Semantically, it is advisable to use the backbone to route

traffic between inter-domain nodes since the backbone has a higher bandwidth in

comparison with other arcs.

We considered networks with number of nodes equal to 117, 204, 315, 420, and

500. We generated 30 different networks for each size given above. The random

networks used in our experiments are directed and connected, where each node in

graphs has the average degree 4. Without loses of generality, a source and a set

of destinations are uniformly selected for each multicast session. The number of

destinations chosen by our simulation was in range firom 10-300 depending upon the

109

size of the graph.

The overall simulation experiment is organized as in the following algorithm.

Algorithm Simulation

1. for i = 1 to 30 do

2. Generate a network G with iV number of nodes using the Transit-Stub model.

3. Randomly assign cost to arcs to the network G

4. for fe = 1 to 6 do '.Choose number of destinations

5. for / = 1 to 30 do (Choose destinations

6. Randomly choose a source s and x number of destinations

based on size N

7. Run TM, KMB, and MSL heuristics and evaluate

the cost of the tree constructed

8. endfor

9. endfor

10. endfor

6.3.1 Simulation R esults

In this subsection, we will present the results of our simulation. To evaluate perfor­

mances of MSL, we compare with previous heuristics KMB [27} and TM [41]. Since

algorithm proposed in [31] has the best performance when it is equivalent to TM, we

omit the algorithm proposed in [31] in our evaluation. Our simulation indicate that

110

the relative performances of two heuristics K^IB [27} and TM [41] remained almost

same for all different sizes of the multicast group. However, the simulation revealed

that the performance of our algorithm MSL is relatively better than those of both

K^IB and TM. We will present results for networks with 117 nodes, 204 nodes, 315

nodes, 420 nodes, and 500 nodes.

Since it is impractical to find the optimal solution for large graphs, we used the

normalized surcharge Sa of algorithm [31] with respect to MSL defined as follows:

C{Th) - C{Tmsl) , \

In the above equation C{Ta) is the cost of tree based on algorithm H and C{T\[sl)

is the cost of tree based on algorithm MSL.

To depict relative performances by plots, 5a is multiplied by 100 to express as a

percentage.

I l l

Tnuuic-Siob Onph wiiti 117 omtes (b> TraBUt-'Snib Graph wuh 2M ooiks

I
^O1

N unteru r Dwitnatnip»

15

Q-Q K M B
0 - 0 TM

1.5 O
o1

121)

Number nt Dounautxu

(c) Ttansit-Srub Graph with 315 muks1

i) lUU0 MJ 150

5hunber ur Deatioatiun»

(d) Traniit-Slub Graph with 430 nmk% le) Tramit^Üiuh Graph with)m umtc»

.1

J

I

0
200 300too

o
I

1) 11»
Number oC Desttiuitofl» Number Ilf Desttoattuns

Figure 6.3: Normalized Surcharges versus the number of destinations for network with

117 nodes, 204 nodes, 315 nodes, 420 nodes, and 500 nodes, with respect to MSL .

112

As indicated in Figure 6.3, it can be easily noticed the MSL always outperforms

KMB. Notice that the relative performance of MSL is highest when the number of

destinations are about 20% of number of nodes, and it becomes decreasing after

then.

6.4 Concluding Remarks

We considered the transmission of a message from a source to a set of destinations

with minimum cost over a computer network. We presented a simple algorithm that

specifies a multicast tree with minimum cost. We also presented simulation results

to illustrate the relative performances of algorithms. One interesting result from

simulation is that if adequate global information is known at the source and the

network topology which is very close to the real Internet topology, the algorithm

MSL we proposed outperforms KMB and TM which are most straightforward and

efficient among algorithms known so far.

113

Chapter 7

Conclusion

lu this dissertation, we have investigated various unicast and multicast routing al­

gorithms in wide are networks.

In chapter 2, we presented five variations of the quickest path problem reflecting

mechanisms such as circuit switchingdatemet protocol and their combinations. We

presented an unifying algorithm to compute the quickest paths in the first four

modes, and for the last mode, Dijkstra’s algorithm is adapted for computing the

quickest path. It would be interesting to study for the computation of multiple

paths for various modes.

In chapter 3, we developed efficient algorithms to construct and update the path-

table that maps ail intervals for a to the corresponding quickest paths. We showed

that the path-table can be built and updated in linear time. Future research direction

is the computation of path-tables for all other modes.

In chapter 4, we studied the reliability problem of the quickest paths. For any

value of message size a, we showed that all-to-all the quickest most reliable paths

and the most reliable quickest paths can be computed in 0{v?m) time where n and

114

m are the number of nodes and the number of edges or links in the network.

In chapter 5, various heuristics for constructing multicast trees with the mini­

mum end-to-end delay were proposed. Using various random network models, these

heuristics were evaluated extensively. Impact of bandwidth and message sizes were

studied for various network sizes. Our simulation showed that the Grow-Tree heuris­

tic we proposed outperforms in all different switching architectures and the heuristic

of choice depends on the switching architecture, message sizes, and percentage of

low bandwidths

Finally, in chapter 6, we have introduced a simple algorithm that specifies a mul­

ticast tree with the minimum-cost over a computer network. Our simulation results

showed that if adequate global information is known at the source and the network

topology which is very close to the real Internet topology, the relative performance

of the algorithm MSL we proposed is better than performances of KMB and TM

which are most straightforward and efficient among algorithms known so far.

We studied intensively to develop new multicast tree heuristics for minimizing

both end-to-end delay and cost, and introduced various already existing heuristics

for each QoS. In addition to these heuristcs, many other heuristics were introduced

for multicast routing with delay-bounded minimum cost which is the combination

of minimum end-to-end delay and the cost [52, 26, 2, 40]. Future research direction

for multicast routing will be on developing new novel heuristic for delay-bounded

minimum cost.

115

Bibliography

[1] Ravindra K. Ajuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

[2] Tawfig Alrabiah and Taieb F. Znati. Low-cost, bounded-deiay multicast routing
for qos-based networks. In ICCCP1998, 1998.

[3] P. Aukia. Quality of service based routing, 1996. Internet draft.

[4] S. Bahk and W. El-Zarki. Dynamic multi-path routing and how it compares
with other dynamic routing algorithms for high speed wide area networks. In
Proa, of ACM SIGCOM, 1992.

[5] Young-Cheol Bang, S. Radhakrishnan, Nageswara S. V. Rao. and Stephen G.
Batsell. On update algorithms for quickest paths. Technical report. University
of Oklahoma, 1999.

[6] F. Bauer and A. Varma. Distributed algorithms for multicast path setup in
data networks. lEEE/ACM Transations on Networking, 4(2).T81-191. 1996.

[7] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, 1992.

[8] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet archi­
tecture, 1994. IETF RFC 1633.

[9] Gen-Huey Chen and Yung-Chen Hung. Algorithms for the constrained quickest
path problem and the enumeration of quickest paths. Computers Operations
Research, 21(2):113-118, 1992.

[10} Gen-Huey Chen and Yung-Chen Hung. On the quickest path problem. Infor­
mation Processing Letters, 46(3):125-128,1993.

[11} Y. L. Chen and Y. H. Chin. The quickest path problem. Computers and
Operations Research, 17(2):153-161, 1990.

[12} H. Chu and K. Nahstedt. Dynamic multi-path communication for video traffic.
In Proc. o f ffawian Int. Conf. on Systems Sci., 1997.

116

[13] Cisco. Routing basics,
h ttp :// www.cisco.com/univercd/cc/td/doc/cisintwk/ito-doc/routing.htm.

[14] K. Clafi^, P. Francis, and H. Braun. Traffic characteristics of the t l ns&et
backbone. In Proceedings of IEEE INFOCOM 93, 1993.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
McGraw-Hill Book Co., New York, 1990.

[16] T.H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
McGraw-Hill, 1990.

[17] Ernesto de Queiros Vieira Martins and Jose Luis Esteves dos Santos. .A.n algo­
rithm for the quickest path problem. Operations Research Letters, 20:195-198,
1997.

[18] J. J. Garcia-Luna-Aceves and S. Murthy. A path-finding algorithm for loop-free
routing. lEEE/ACM Transactions on Networking, 5(1):148-160, 1997.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability: .4 Guide to the
Theory of NP-Completeness. VV. H. Freeman and Co.. San Francisco. 1979.

[20] Ming-Huang Guo and Ruay-Shiung Chang. Multicast atm switches: Survey
and performance evaluation. ACM sigcomm, 28:98-131, 1998.

[21] Fred Halsall. Data Communications, Computer Networks and Open Systems.
Addison-Wesley, 1996.

[22] Yung-Chen Hung and Gen-Huey Chen. Distributed algorithms for the quickest
path problem. Parallel Computing, 18:823-834, 1992.

[23] F. K. Hwang and D. Richards. Steiner tree probkems. Networks. 22:55-89,
1992.

[24] B. K. Kadaba and J. M. Jaffe. Routing to multiple destinations in computer
networks. IEEE Transactions on Communications, COM-31(3):343-351, 1983.

[25] H. KanaJda, P. P. Mishra, and A. R. Reibman. An adaptive congestion con­
trol scheme for real time packet video transport. IEEE/ACM Transactions on
Networking, 3(6):671-682, 1995.

[26] V. P. Kompella, J. C. Pasquale, and G. C. Polyzoa. Multicast routing for multi-
media communications. lEEE/ACM Transations on Networking, l(3):286-292,
1993.

[27] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees. Acta
Informatica, 15:151-145, 1981.

117

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito-doc/routing.htm

[28] O. Kyas. ATM Networks. International Thomson Computer Press, 1997. Second
Edition.

[29] D.T. Lee and E. Papadopoulou. The all-pairs quickest path problem. Informa­
tion Processing Letters, 45(5):261-267, 1993.

[30] J. F. MoUenauer. On the fastest routes for convoy-type traffic in flovvrate-
constrained networks. Transportation Science, 10:113-124, 1976.

[31] S. Ramanathan. Multicast tree generation in networks with asymétrie links.
lEEE/ACM Transations on Networking, 4(4):558-568, 1996.

[32] N. S. V. Rao and S. G. Batsell. Algorithm for minimum end-to-end delay paths.
IEEE Communications Letters, 1(5):152-154, 1997.

[33] N. S. V. Rao and S. G. Batsell. On routing algorithms with end-to-end delay
guarantees. In IC3N: International Conference on Computer Communications
and Networks, pages 162-167. 1998.

[34] N. S. V. Rao and S. G. Batsell. QoS routing via multiple paths using bandwidth
reservation. In IEEE INFOCOM98: The Conference on Computer Communi­
cations, volume 1, pages 11-18. 1998.

[35] V. Rayward-Smith. The computation of nearly minimal steiner trees in graphs.
International Journal of Mathematical Education in Science and Technology,
14(l):15-23, 1983.

[36] V.J. Rayward-Smith and A. Clare. On finding steiner vertices. Networks.
16:283-294, 1986.

[37] J. B. Rosen, S. Z. Sun, and G. L. Xue. Algorithms for the quickest path problem
and the enumeration of quickest paths. Computers and Operations Research,
18(6):579-584, 1991.

[38] Hussein Farouk Salama. Multicast Routing For Real-Time Communication On
High-Speed Networks. PhD thesis. North Carolina State University, 1996.

[39] M. L. Shore, L. R. Foulds, and P. B. Gibbons. An algorithm for the steiner
problem in graphs. Networks, 12:323-333, 1982.

[40] R. Sriram, G. Manimaran, and C. Siva Ram Murthy. Algorithms for delay-
constrained low-cost tree construction. Computer Communications, 21:1693-
1706, 1998.

[41] H. Takahashi and A. Matsuyama. An approximate solution for the steiner
problem in graphs. Mathematica Japonica, 24(6):573-577, 1980.

118

[42] Jean Wakand. COMMUNICATION NETWORKS. McGraw-Hill, 1998.

[43] Jean Walrand and Pravin Varaiya. HIGH-PERFORMANCE COMMUNICA­
TION NETWORKS. Morgan Kaufmann, 1996.

[44] Z. Wang and J. Crowcroft. QOS routing for supporting resource reservation.
IEEE Journal on Selected Areas in Communications^ 14(7):1228-I234, 1996.

[45] B. M. Waxman. Routing of multipoint connections. IEEE Journal on Selected
Areas in Communications, 6(9), 1988.

[46] P. Winter. Steiner problem in networks. Networks, 17:129-167,1987.

[47] G. Xue, S. Sun, and J. B. Rosen. Fast data transmission and maximal dynamic
flow. Information Processing Letters, 66, 1998.

[48] Guoliang Xue. End-to-end data paths: Quickest or most reliable? /EEE
communication letters, 2(6):156-158, 1998.

[49] Ellen W. Zegura, Kenneth L. Calvert, and Michael J. Donahoo. A quantitative
comparison of graph-based models for internet topology. IEEE/ACM Transac­
tions on networking, 5(6), 1997.

[50] A. Z. Zelikovsky. A 11/6-approximation algorithm for the network steiner prob­
lem. Algorithmica, 9:463-470, 1993.

[51] L. Zhang, S. E. Deering, D. Estrin, S. Shankar, and D. Zappala. RSVP: A
new resource reservation protocol communications network. Technical Report
95-607, ISI, LFniveristy of Southern California, 1995.

[52] Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves. A source-based algorithm for
delay constrained minimum-cost multicasting. In Proceedings of INFOCOM,
pages 377-385, 1995.

119

