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ABSTRACT 

A web line may have multiple locations where feedback systems are used to control 
web and roller speeds, and web tension. The Euclid Web Line (EWL) in the Web 
Handling Research Center at Oklahoma State University is such a line. The EWL has 
four sections – unwind, S-wrap, process, and rewind section. The S-wrap establishes the 
web speed.  There are five speed controllers and two tension controllers.  For the studies 
reported in this paper, all controllers are assumed to be Proportional (P) + Integral (I)  
controllers.  A systematic method for finding the controller gains is the primary objective 
of this paper.  The method involves first simplifying the model for each section using a 
Routh Approximation, and then determining the controller gains based on selected 
performance criteria.  Experimental studies on the Euclid line with the determined gains 
are presented. 

NOMENCLATURE 

𝐴𝐴 - Cross-sectional area of the web (width×thickness) 
𝐵𝐵𝑓𝑓𝑓𝑓  - Bearing friction  
𝐶𝐶𝑝𝑝𝑓𝑓 - Dancer torsional damping constant 
𝐶𝐶𝑚𝑚𝑓𝑓 - Motor damping  
𝐸𝐸  - Young’s Modulus 
𝑓𝑓𝑞𝑞𝑓𝑓 - Dancer input torque 
𝐺𝐺𝑅𝑅𝑓𝑓 - Gear Ratio between motor and shaft in contact with the web 

(number of shaft rotations per motor rotation) 
𝐽𝐽𝑚𝑚𝑓𝑓  - Motor Inertia 
𝐽𝐽𝑓𝑓 - Combined inertia of the wound web, shaft, and the motor inertia 

reflected through the gear ratio 
𝐽𝐽𝑝𝑝𝑓𝑓 - Dancer arm inertia 
𝐽𝐽𝑠𝑠𝑓𝑓 - Inertia of the shaft the web is wound on 
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𝐾𝐾𝑖𝑖𝑠𝑠 - Integral gain for speed loop 
𝐾𝐾𝑖𝑖𝑖𝑖  - Integral gain for tension loop 
𝐾𝐾𝑚𝑚𝑓𝑓 - Motor constant (torque per amp supplied current) 
𝐾𝐾𝑝𝑝𝑓𝑓  - Dancer torsional spring constant 
𝐾𝐾𝑝𝑝𝑠𝑠 - Proportional gain for speed loop 
𝐾𝐾𝑝𝑝𝑖𝑖 - Proportional gain for tension loop 
𝑘𝑘𝑟𝑟 - Real root multiplier in third-order characteristic equations where 

they are defined as a real root and a second-order dynamic system 
𝐿𝐿𝑎𝑎𝑟𝑟𝑚𝑚 - Dancer arm length 
𝐿𝐿𝑓𝑓 - Free span length 
𝑙𝑙𝑐𝑐𝑐𝑐 - Dancer center of gravity location from pivot 
𝑀𝑀𝑑𝑑  - The set of denominator polynomial coefficients produced by the 

Routh Approximation method  
𝑀𝑀𝑓𝑓 - The set of numerator polynomial coefficients produced by the 

Routh Approximation method 
𝑚𝑚𝑝𝑝  - Dancer pendulum mass 
𝑛𝑛 - Index number 
𝑅𝑅𝑓𝑓 - Roller or roll radius 
𝑠𝑠 - Laplace operator 
𝑇𝑇𝑓𝑓(𝑠𝑠) - Web span tension in the Laplace domain 
𝑡𝑡𝑓𝑓 - Tension in the web span 
𝑡𝑡𝑟𝑟 - Rise time of a second-order dynamic system 
𝑈𝑈𝑓𝑓(𝑠𝑠) - Current Input to the motor in the Laplace domain 
𝑢𝑢𝑓𝑓 - Current Input to the motor 
𝑉𝑉𝑓𝑓(𝑠𝑠) - Roller speeds in Laplace domain 
𝑉𝑉𝑓𝑓,0 - Roller steady-state speeds 
𝑣𝑣𝑓𝑓 - Roller speeds 
𝛤𝛤(𝑠𝑠) - Dancer position in Laplace domain 
𝛾𝛾 - Dancer position 
𝜁𝜁 - Damping ratio of a second-order dynamic system 
𝜔𝜔𝑓𝑓 - Motor rotation rate 
𝜔𝜔𝑓𝑓𝑎𝑎𝑖𝑖 - Natural frequency of a second-order dynamic system 
Ω(s) - Motor rotation rate in Laplace domain 

INTRODUCTION 

Feedback systems are used in web lines to accurately control motor speeds and 
tensions.  If these systems are not properly designed or tuned, and not independent, 
tension may not be controlled adequately [1].  The results may be web breakage, web 
slackness, overstretching, wrinkling, printing errors, lamination curling, loss of traction, 
sluggish operation, and web tension fluctuations and instabilities.  Accuracy of tension 
control in a coating line is one example of a particularly serious case.  Accurate tension 
control without tension fluctuations is often essential to evenness and quality of coating.  
Properly designed feedback systems may also be essential to running a line faster when 
profitability demands the use of thinner and thinner web materials and running different 
materials through the same line.  Proper design of the feedback systems often starts with 
good modeling and simulation before “flying” the system.  But solutions to two major 
problems must be addressed:  (i)  how to select the gains for each independent control 
system and (ii) what performance criteria should be used to guide the selection of gains.  
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This paper proposes a systematic method for selection of the gains, and a pairing with 
performance criteria that are easy to use.   

Tension control has been the subject of many papers over the years.  Only a few 
early papers are cited here, and these have been cited in most papers that have followed.    
Campbell developed a dynamic model for tension in a web assuming small strains and 
Hooke’s Law, and discussed several methods of tension control when a web is 
transported [2].    King modeled a small portion of a newspaper press (roller, web span, 
nip) assuming a linear elastic web, and demonstrated that an unbalance in the roller 
results in oscillations of tension in the web span, the magnitude being dependent on the 
web speed [3].  Grenfell modeled a simple nipped roller- web span-nipped roller system 
and showed the effects of disturbances in the roller speeds on the tension in the web [4].   
Brandenburg developed dynamic models that take into account spatial variations of 
parameters to analyze web lines where print registration is critical [5].  Shelton developed 
models for use in web tension control, and compared two methods of tension control - 
torque control and velocity control of a roller or rewinding roll of material [6].  Shin 
developed the concept of “primitive elements” in a web line, and used them to model web 
lines [7]. 

Reid and Shin considered the rewind of a web line where the motor drives the plant 
directly, and demonstrated that a web line that uses variable gain PID controller may 
have superior performance to a line with fixed gain controllers when there are significant 
time varying parameters [8].  A simplified model of the hypothetical system is a third 
order linear differential equation, which makes it straight forward to estimate gains based 
on a performance factor involving natural frequency and damping ratio.    

Few of these papers focus on methods to determine controller gains, specifically.  In 
general, there are two types of control systems used in most web lines - Speed Control 
and Tension Control.  In the Euclid Web Line (schematic in Figure 1), the S-wrap rolls 
and the pull roll are under pure speed control, while the controllers for the unwind and 
rewind rolls use both speed control and tension control.  Figure 2 shows a speed-based 
web tension control system with load cell feedback that can be used at either or both the 
unwind and rewind.  An inner loop provides velocity control of the unwind roll (or 
rewind roll), and an outer tension loop that provides a correction to the speed reference 
[9].  Figure 3 shows a speed-based web tension control system with dancer position 
feedback instead of load cell feedback [9], that can be used at either or both the unwind 
and rewind.  One configuration of the Euclid Line uses a speed-based tension control 
with load cell feedback at both the unwind and rewind.  Another configuration uses a 
speed-based web tension control system with dancer position feedback at the unwind, and 
a speed-based system with load-cell feedback at the rewind.   

 

Figure 1 – The Euclid Web Line with rollers and spans numbered.  The load cell 
locations are indicated with orange circles. 
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Figure 2 – Speed based web tension control system using load cell feedback 

 

Figure 3 – Speed based web tension control system using dancer position feedback 

The design of a control system for a web line involves determining the control 
structure and the corresponding parameters.  This paper assumes that a Proportional + 
Integral controller structure is used for all five speed loops and for the tension loops at the 
unwind and rewind.  The next step in design is determining the proportional and integral 
gains for each controller.  A systematic method for determining the gains in the seven 
controllers is the focus of this paper.   

Model Order Reduction 
Hutton demonstrated a Routh Approximation (RA) method for approximating a third 

order or higher transfer function with a lower order transfer function that retains the same 
initial response and stability of the original transfer function in [10] and [11].  Figure 4 
shows the Bode plot of a dynamic system with a third-order transfer function and its 
second-order approximation using this method.  The Routh Array was originally 
described in [12], but is now in many textbooks, e.g. [13].   

Performance Goals 
Parameters of a second-order response that are immediately apparent to the user are 

damping ratio, 𝜁𝜁, and rise time, 𝑡𝑡𝑟𝑟.  The damping ratio defines if a perturbed system does 
not oscillate (𝜁𝜁 ≥ 1.0) or oscillates (0 =  𝜁𝜁 < 1.0) and how quickly the oscillation dies 
out.  Rise time is defined as the amount of time required for the output of the system to 
rise from 0% to 100% of its final value  (Palm also notes that some writers define rise 
time as the time for the step response to go from 10% to 90% of the final value) [14].  For 
values of 𝜁𝜁 such that 0.1 ≤ 𝜁𝜁 ≤ 0.9, the natural frequency of a second order system is 
related to rise time by  
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 𝜔𝜔𝑓𝑓𝑎𝑎𝑖𝑖 =
𝜋𝜋−tan−1�

�1−𝜁𝜁2

𝜁𝜁 �

𝑖𝑖𝑟𝑟�1−𝜁𝜁2
 {1} 

where 𝜔𝜔𝑓𝑓𝑎𝑎𝑖𝑖 is the natural frequency of the system in rad/sec, and 𝑡𝑡𝑟𝑟 is the rise time in 
seconds.  For values of 𝜁𝜁 > 0.9, the inverse tangent becomes asymptotic. 

 

Figure 4 – Bode plot of an example third-order transfer function (blue) and its second-
order approximation (red dashed) obtained using the RA method.  The approximate 

transfer function tracks the third-order one well up to about 4 rad/s. 

SYSTEM MODELING 

The motor is modeled as a first-order linear differential equation with constant 
parameters as shown in Eqn. {2}.   

 𝐽𝐽𝑓𝑓ω̇n = −�𝐵𝐵𝑓𝑓𝑓𝑓 + 𝐶𝐶𝑚𝑚𝑓𝑓�𝜔𝜔 + 𝐾𝐾𝑚𝑚𝑓𝑓𝑢𝑢𝑓𝑓 + 𝑅𝑅𝑛𝑛𝑇𝑇𝑓𝑓 𝐺𝐺𝑅𝑅𝑓𝑓⁄    {2} 

The Laplace transform of {2} leads to a the open loop transfer function from current 
input, 𝑢𝑢𝑓𝑓, to motor speed, 𝜔𝜔𝑓𝑓, given in Eqn. {3}. 

 𝐺𝐺1(𝑠𝑠) = 𝛺𝛺𝑛𝑛(𝑠𝑠)
𝑈𝑈𝑛𝑛(𝑠𝑠)

= 𝐾𝐾𝑚𝑚𝑛𝑛 𝐽𝐽𝑛𝑛�

𝑠𝑠+�𝐵𝐵𝑓𝑓𝑛𝑛+𝐶𝐶𝑚𝑚𝑛𝑛� 𝐽𝐽𝑛𝑛�
 {3}  

A physical model of the free span of the web is shown in Figure 5.  It is assumed that 
the web is linear-elastic, has a constant cross sectional area, undergoes small strains, and 
does not slip on the idle rollers.  With these assumptions from [15], the following 
nonlinear differential equation results from a combination of the law of conservation of 
mass for the control volume and the application of Hooke’s Law 

 𝐿𝐿𝑓𝑓
𝑑𝑑𝑇𝑇𝑛𝑛
𝑑𝑑𝑖𝑖

= 𝐸𝐸𝐴𝐴(𝑣𝑣𝑓𝑓+1 − 𝑣𝑣𝑓𝑓) + (𝑣𝑣𝑓𝑓𝑡𝑡𝑓𝑓−1 − 𝑣𝑣𝑓𝑓+1𝑡𝑡𝑓𝑓) {4} 

where 𝑡𝑡𝑓𝑓 is the tension in the span of interest, 𝑣𝑣𝑓𝑓 is the roller speed of the roller at the 
entering end of the span, 𝑣𝑣𝑓𝑓+1 is the speed at the outgoing end of the span, and 𝑡𝑡𝑓𝑓−1 is the 
tension in the previous span.  Equation {4} is nonlinear because of the multiplication of 
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roller speed and span tension. This equation can be linearized if it is assumed that all 
variables (𝑡𝑡𝑓𝑓 and 𝑣𝑣𝑓𝑓) undergo small changes about initial steady-state values.  The result 
is 
 

 

Figure 5 – The free span is the material between the points of contact with the end rollers 
that experiences tension and velocity. 

 𝐿𝐿𝑓𝑓
𝑑𝑑𝑖𝑖𝑛𝑛
𝑑𝑑𝑖𝑖

= 𝐸𝐸𝐴𝐴(𝑣𝑣𝑓𝑓+1 − 𝑣𝑣𝑓𝑓) + �𝑉𝑉𝑓𝑓,0𝑡𝑡𝑓𝑓−1 − 𝑉𝑉𝑓𝑓+1,0𝑡𝑡𝑓𝑓� {5} 

where 𝑉𝑉𝑓𝑓,0 and 𝑉𝑉𝑓𝑓+1,0 are the steady-state velocity of the web at the incoming and 
outgoing rollers.  Equation {5} may be used to demonstrate behavior of the span tension 
in the steady-state operation (i.e., (𝑑𝑑𝑇𝑇𝑓𝑓 𝑑𝑑𝑡𝑡⁄ ) = 0).  The tension in a span is dependent on 
the difference in the velocities at the ends of the web, and that tension is transferred from 
an upstream span to a downstream span.  

The Laplace transform of Eqn. {5}, leads to the open loop transfer function relating 
the web velocity at the incoming roller to web span tension given in Equation {6}.  The 
negative sign is for the situation where the driven roll is upstream of span 𝑛𝑛.  

 
𝑇𝑇𝑛𝑛(𝑠𝑠)
𝑉𝑉𝑛𝑛(𝑠𝑠) = (−𝐸𝐸𝐸𝐸 𝐿𝐿𝑛𝑛⁄ )

𝑠𝑠+�𝑉𝑉𝑛𝑛+1,0 𝐿𝐿𝑛𝑛⁄ �
 {6} 

The dancer (see Figure 6} is modeled with summation of moments about the dancer 
pivot with the dancer angle, 𝛾𝛾, increasing away from the spans.  The differential equation 
is  

 𝑑𝑑�̇�𝛾
𝑑𝑑𝑖𝑖

= 𝑓𝑓𝑞𝑞𝑛𝑛
𝐽𝐽𝑝𝑝𝑛𝑛

− 𝑇𝑇𝑓𝑓
(𝐿𝐿𝑎𝑎𝑟𝑟𝑎𝑎−𝑅𝑅𝑛𝑛)

𝐽𝐽𝑝𝑝𝑛𝑛
− 𝑇𝑇𝑓𝑓−1

(𝐿𝐿𝑎𝑎𝑟𝑟𝑎𝑎+𝑅𝑅𝑛𝑛)
𝐽𝐽𝑝𝑝𝑛𝑛

− 𝐶𝐶𝑝𝑝𝑛𝑛
𝐽𝐽𝑝𝑝𝑛𝑛

�̇�𝛾 − 𝐾𝐾𝑝𝑝𝑛𝑛
𝐽𝐽𝑝𝑝𝑛𝑛

𝛾𝛾 + 𝑚𝑚𝑝𝑝𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐
𝐽𝐽𝑝𝑝𝑛𝑛

sin𝛾𝛾 {7} 

where 𝐾𝐾𝑝𝑝𝑓𝑓 is the spring constant of the dancer and 𝐶𝐶𝑝𝑝𝑓𝑓 is the damping in the pivot of the 
dancer arm and torque application system, 𝑚𝑚𝑝𝑝 is the mass of the pendulum dancer, 𝑙𝑙𝑐𝑐𝑐𝑐 is 
the distance from the pivot to the center of gravity, and 𝑔𝑔 is the gravitational constant. 
This equation can be linearized if it is assumed that the input torque (𝑓𝑓𝑞𝑞𝑓𝑓), outgoing span 
tension (𝑇𝑇𝑓𝑓), and the initial conditions for the dancer position are all zero, and that the 
small angle approximation applies (sin 𝛾𝛾 ≈ 𝛾𝛾).  With these assumptions, the Laplace 
Transform of the linearized version of Eqn. {7} leads to an open loop transfer function 
relating the tension in the incoming span (𝑇𝑇𝑓𝑓−1(𝑠𝑠)) to the dancer position (𝛤𝛤(𝑠𝑠)). 

 
𝛤𝛤(𝑠𝑠)

𝑇𝑇𝑛𝑛−1(𝑠𝑠)
=

(𝐿𝐿𝑎𝑎𝑟𝑟𝑎𝑎+𝑅𝑅𝑛𝑛) 𝐽𝐽𝑝𝑝𝑛𝑛⁄

�𝑠𝑠2+�𝐶𝐶𝑝𝑝𝑛𝑛 𝐽𝐽𝑝𝑝𝑛𝑛⁄ �𝑠𝑠+�𝐾𝐾𝑝𝑝𝑛𝑛+𝑚𝑚𝑝𝑝𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐 𝐽𝐽𝑝𝑝𝑛𝑛⁄ ��
 {8} 

𝑡𝑡𝑓𝑓−1 
𝑡𝑡𝑓𝑓 𝑡𝑡𝑓𝑓+1 

𝑣𝑣𝑓𝑓 𝑣𝑣𝑓𝑓+1 
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Eqn. {8} includes the restorative moment due to gravity (𝑚𝑚𝑝𝑝𝑔𝑔𝑙𝑙𝑐𝑐𝑐𝑐 sin 𝛾𝛾) which ensures 
that the dancer system is not a pure integrator if there is no damping or spring constant 
assumed in the system.   

GAIN CALCULATION METHOD 

This method assumes that the S-wrap and pull roll motors are under pure speed 
control, and that the unwind and rewind rolls are under speed-based tension control.  
Since there is a speed control loop in both cases, the proportional and integral gains for 
all five speed loops are found first.  Then the gains for the tension loops are found.  
 

 

Figure 6 – A physical model of dancer subsystem showing variables and physical 
parameters 

Speed Control 
There are five speed control systems in the Euclid Web line.  Equation {3} can be 

used as the open loop transfer function for each speed control system.  A PI velocity 
controller is placed in series with transfer function in Eqn. {3}, and the loop is closed.  
The output speed of the motor is compared with the speed reference.  The block diagram 
in Figure 7 shows the speed loop where the speed feedback is the motor shaft speed. 

 

Figure 7 – The closed-loop block diagram from the speed reference to the motor speed 
with PI control. 
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The closed loop transfer function relating the motor speed reference to the motor 
speed is  

 Ω𝑛𝑛(𝑠𝑠)
Ω𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠) =

𝐾𝐾𝑎𝑎𝑛𝑛/𝐽𝐽𝑛𝑛 �𝐾𝐾𝑝𝑝𝑝𝑝𝑠𝑠+𝐾𝐾𝑖𝑖𝑝𝑝�

𝑠𝑠2+�
𝐵𝐵𝑟𝑟𝑛𝑛+𝐶𝐶𝑎𝑎𝑛𝑛

𝐽𝐽𝑛𝑛
+𝐾𝐾𝑎𝑎𝑛𝑛

𝐽𝐽𝑛𝑛
𝐾𝐾𝑝𝑝𝑝𝑝�𝑠𝑠+

𝐾𝐾𝑎𝑎𝑛𝑛
𝐽𝐽𝑛𝑛

𝐾𝐾𝑖𝑖𝑝𝑝
 {9a} 

Or in terms of a natural frequency and damping ratio 

 
Ω𝑛𝑛(𝑠𝑠)
Ω𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠) = 𝐾𝐾𝑎𝑎𝑛𝑛/𝐽𝐽𝑛𝑛 �𝐾𝐾𝑝𝑝𝑝𝑝𝑠𝑠+𝐾𝐾𝑖𝑖𝑝𝑝�

𝑠𝑠2+2ζω𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠+ωnat
2  {9b} 

Equation {9a} defines a second order linear system. The gains are displayed in the closed 
loop transfer function.  The motor can be driven to a specific speed with the desired 
performance through the selection of a damping ratio, 𝜁𝜁, and a rise time, 𝑡𝑡𝑟𝑟.  Equation 
{1} can be used to calculate the natural frequency.  The PI controller gains for each speed 
control may be calculated from equations that result from comparing the characteristic 
equations (from {9a} and {9b}).     

 𝐾𝐾𝑖𝑖𝑠𝑠 = 𝐽𝐽𝑛𝑛𝜔𝜔𝑛𝑛𝑎𝑎𝑛𝑛
2

𝐾𝐾𝑎𝑎𝑛𝑛
  {10} 

 𝐾𝐾𝑝𝑝𝑠𝑠 = �2𝜁𝜁𝜔𝜔𝑓𝑓𝑎𝑎𝑖𝑖 −
𝐵𝐵𝑟𝑟𝑛𝑛+𝐶𝐶𝑎𝑎𝑛𝑛

𝐽𝐽𝑛𝑛
� 𝐽𝐽𝑛𝑛
𝐾𝐾𝑎𝑎𝑛𝑛

  {11} 

where 𝐾𝐾𝑖𝑖𝑠𝑠 is the integral gain and 𝐾𝐾𝑝𝑝𝑠𝑠 is the proportional gain for the speed control 
system.  The gains for each of the five speed control systems can be found from these 
equations with the associated parameters inserted. 

Tension or Position Control 
Figure 2 shows tension control with load cell feedback, and Figure 3 shows tension 

control with dancer position feedback.    There are two sets of Proportional and Integral 
gains in each system.  Determination of the PI gains for the tension loop is difficult 
because the open loop system from reference speed to span tension is at least third order, 
if not higher.   And after a PI controller is added, the closed loop system relating motor 
speed to the speed reference is fourth order, if not higher.     

In either case, the speed loop needs to be closed first, and then the closed loop 
transfer function relating the reference velocity of the motor to its output velocity 
determined.  The transfer function is Eqn. {9} or    

 𝐺𝐺𝑠𝑠(𝑠𝑠) = 𝑅𝑅𝑛𝑛Ω𝑛𝑛(𝑠𝑠)
RnΩ𝑟𝑟𝑟𝑟𝑓𝑓(𝑠𝑠)

= 𝑉𝑉𝑛𝑛(𝑠𝑠)
𝑉𝑉𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠)

=
�
𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝+𝐾𝐾𝑖𝑖𝑝𝑝

𝑝𝑝 �G1(𝑠𝑠)

1+�
𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝+𝐾𝐾𝑖𝑖𝑝𝑝

𝑝𝑝 �G1(𝑠𝑠)
   {12} 

𝐺𝐺1(𝑠𝑠) refers to Eqn. {3}, the open loop transfer function relating motor input current 
to motor speed.  𝐺𝐺𝑠𝑠(𝑠𝑠) is the closed loop transfer function relating motor speed to motor 
speed reference.   

When load cell feedback is used to adjust the speed reference of the motor, the 
transfer function for the open loop plant is the combination of Eqn. {12} and the transfer 
function relating incoming roller velocity to span tension, Eqn. {6}, if the load cell is the 
first idle roller in the web line after the unwinding motor.  Figure 8 shows the open-loop 
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block diagram from reference speed to span tension.  The “conv.” block is a conversion 
factor made up of the gear ratio and the unwind roll radius to convert from motor angular 
speed to web linear speed.  The open-loop transfer function shown in Figure 8 is third-
order if there is only one span between the unwind roll and the load cell.  While that is 
the ideal case, sometimes more spans are required due to space constraints in the layout 
of the line.  If that happens, the order of the system increases by 2 with each additional 
idler and span.   

 

Figure 8 – The open-loop block diagram from reference speed to span tension.  The 
"conv." block converts the motor speed to web speed.  The open-loop transfer function in 

the third block is given in Eqn. {6} in terms of parameters . 

The best case is that the open loop transfer function in Figure 8 is third order, but this 
is not the case for the unwind section of the Euclid Web Line.   The minimum order 
would be 5th order, but it is more than that if all the idle rollers and spans between the 
unwind roll and the load cell.   But, the high order system can be reduced by assuming 
that the dissipative nature of the idlers can be ignored, and by treating all the spans from 
the unwind to the load cell as one span with a length equal to the sum of the lengths of all 
the spans.  Combining the spans into one reduces the order of the model to third order for 
the open-loop load cell control.  The transfer function shown in Figure 8 is called 𝐺𝐺2(𝑠𝑠) 
once it is simplified.  The transfer function has the form shown in Eqn. {13}. 

 𝐺𝐺2(𝑠𝑠) = 𝑏𝑏1𝑠𝑠𝑎𝑎+⋯+𝑏𝑏𝑎𝑎+1
𝑠𝑠𝑛𝑛+𝑎𝑎1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎_𝑓𝑓

    {13} 

When dancer position feedback is used to adjust the reference speed, the block 
diagram of the open-loop system is shown in Figure 9 where all the parts just discussed 
for load cell feedback exist, but one more transfer function is added.  Equation. {8} is the 
transfer function relating incoming span tension to dancer position.  If the dancer roller is 
the first roller the web encounters after being unwound, the combined open-loop transfer 
function is fifth-order.  If the dancer is not the first idler the web encounters, then the 
order of the system is increased by two.  Ignoring the dissipative effects of the additional 
idlers and summing the length of the spans together into one span will reduce the order 
back to fifth order.  The combined transfer function shown in Figure 9 can be simplified 
and put in the form of Eqn. {13}. 

 

Figure 9 – The open-loop block diagram from reference speed to dancer position.  This 
whole transfer function is 𝐺𝐺2(𝑠𝑠). 
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Approximating the Transfer Function 
The Routh Approximation (RA) method is now used to reduce the characteristic 

polynomial (𝐺𝐺2(𝑠𝑠)) from third-order in the case of load cell feedback or fifth-order for 
dancer position feedback to second-order (𝐺𝐺�2(𝑠𝑠)) as shown in Figure 10. With the open 
loop approximated as 𝐺𝐺�2(𝑠𝑠), the gains for the PI controller in the closed loop system 
(Eqn. {15}) can be found by assuming a real pole exists and simultaneously solving a 
system of equations (Eqns. {17} and {18}).  The closed loop system block diagram is 
shown in Figure 11. 

The RA method will take in the open-loop tension transfer function, 𝐺𝐺2(𝑠𝑠), of the 
modeled system as a numerator vector of coefficients, [𝑏𝑏1 𝑏𝑏2 … 𝑏𝑏𝑚𝑚+1] and a denominator 
vector of coefficients, [1 𝑎𝑎1 … 𝑎𝑎𝑓𝑓] (see Eqn. {13}).  The RA method output is a set of two 
vectors, 𝑀𝑀𝑓𝑓 and 𝑀𝑀𝑑𝑑, which make up the approximated transfer function 𝐺𝐺�2(𝑠𝑠).  The form 
for a second order approximation is 

 𝐺𝐺2�(𝑠𝑠) = 𝑀𝑀𝑛𝑛(2)𝑠𝑠+𝑀𝑀𝑛𝑛(3)
𝑠𝑠2+𝑀𝑀𝑑𝑑(2)𝑠𝑠+𝑀𝑀𝑑𝑑(3)

  {14} 

which is then included in the closed loop transfer function with the PI controller, 𝐺𝐺3(𝑠𝑠), 

  

Figure 10 – For Dancer position feedback, the Routh Approximation method reduces the 
open-loop transfer function 𝐺𝐺2(𝑠𝑠) to 𝐺𝐺�2(𝑠𝑠). 

 𝐺𝐺3(𝑠𝑠) =
�
𝐾𝐾𝑝𝑝𝑛𝑛𝑝𝑝+𝐾𝐾𝑖𝑖𝑛𝑛

𝑝𝑝 �𝐺𝐺2�(𝑠𝑠)

1+�
𝐾𝐾𝑝𝑝𝑛𝑛𝑝𝑝+𝐾𝐾𝑖𝑖𝑛𝑛

𝑝𝑝 �𝐺𝐺2�(𝑠𝑠)
  {15} 

and compared with the desired characteristic polynomial, 𝐺𝐺3𝑑𝑑(𝑠𝑠), below. 

 𝐺𝐺3𝑑𝑑(𝑠𝑠) = �𝐾𝐾𝑝𝑝𝑛𝑛𝑠𝑠+𝐾𝐾𝑖𝑖𝑛𝑛�(𝑀𝑀𝑛𝑛(2)𝑠𝑠+𝑀𝑀𝑛𝑛(3))
(𝑠𝑠+𝑘𝑘𝑟𝑟𝜁𝜁𝜔𝜔𝑛𝑛𝑎𝑎𝑛𝑛)�𝑠𝑠2+2𝜁𝜁𝜔𝜔𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠+𝜔𝜔𝑛𝑛𝑎𝑎𝑛𝑛

2 �
  {16} 

 

Figure 11 – The closed-loop block diagram for tension or position control incorporating 
the approximated transfer function from the RA method. 

Once Eqn. {15} is simplified, its coefficients may be equated to those of the desired 
transfer function in Eqn. {16} which yields the following set of simultaneous equations 
({17} and {18}). 
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 𝑘𝑘𝑟𝑟𝜔𝜔𝑓𝑓𝑎𝑎𝑖𝑖𝜁𝜁 − 𝐾𝐾𝑝𝑝𝑖𝑖𝑀𝑀𝑓𝑓(2) = −2𝜁𝜁𝜔𝜔𝑓𝑓𝑎𝑎𝑖𝑖 + 𝑀𝑀𝑑𝑑(2)  {17} 

 𝑘𝑘𝑟𝑟 �2𝜁𝜁2𝜔𝜔𝑓𝑓𝑎𝑎𝑖𝑖
3 − 𝑀𝑀𝑛𝑛(2)

𝑀𝑀𝑛𝑛(3)
𝜁𝜁𝜔𝜔𝑓𝑓𝑎𝑎𝑖𝑖

3 � − 𝐾𝐾𝑝𝑝𝑖𝑖𝑀𝑀𝑓𝑓(3) = −𝜔𝜔𝑓𝑓𝑎𝑎𝑖𝑖 + 𝑀𝑀𝑑𝑑(3)  {18} 

After solving the above set of equations for 𝑘𝑘𝑟𝑟 and 𝐾𝐾𝑝𝑝𝑖𝑖, the integral gain is found by 

 𝐾𝐾𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑟𝑟𝜔𝜔𝑛𝑛𝑎𝑎𝑛𝑛
3 𝜁𝜁

𝑀𝑀𝑛𝑛(3)
.  {19} 

If 𝑘𝑘𝑟𝑟 is large enough, the effect of the associated pole is small compared to that for 
the two complex roots [13].   But in the case of applying the method to the Euclid Line, 
the magnitude of 𝑘𝑘𝑟𝑟  has generally been small and the effect is not small.  The numerator 
constant, 𝑀𝑀𝑓𝑓(3), from the approximated transfer function, 𝐺𝐺2�(𝑠𝑠), is in the denominator of 
Eqn. {19} which means that large magnitudes in the numerator will force small integral 
gains which can be problematic. 

SYSTEMATIC METHOD FOR DETERMINING CONTROLLER GAINS 

First, determine the physical parameters of the web line by calculation or 
measurement.  These include the motor inertia, the motor damping, the motor constant, 
the roller inertias, the gear ratio between each motor and the spindle that contacts the 
web, roller bearing friction values, roller radii, span length between rollers, Young’s 
modulus for the web, cross-sectional area of the web.  If there is a dancer, determine the 
type of dancer, arm length (if it is a pendulum style), the dancer’s mass and inertia, and 
applied torque (pendulum) or force (translational).  Determine the steady-state operating 
web speed for the line.   

Divide the web line into control sections, the number of which may be different than 
the number of motors in the web line.  These sections should break at driven rollers and 
can be either speed controlled or speed-based tension controlled.  For each section, 
develop a model for the motor speed loop, and if a tension feedback loop or position 
feedback loop exists, develop a model that relates the motor speed to the tension 
(measured by a load cell) or dancer position.   

Select a rise time, 𝑡𝑡𝑟𝑟, and damping ratio, 𝜁𝜁, for each motor and tension or position 
control loop.  These can be the same throughout or specific to each loop and each motor.   

Once the models for the motor speed loops are created for each control section in the 
web line, use Eqns. {10} and {11} to determine the related gains.  Then create the closed-
loop transfer function for the speed loop, 𝐺𝐺1(𝑠𝑠), and place it in series with the transfer 
function for the span tension (Eqn. {6}) or dancer position (Eqn. {8}) making 𝐺𝐺2(𝑠𝑠).  
Combine and simplify the transfer functions.  Then reduce the order of the transfer 
function using the Routh Approximation Method making 𝐺𝐺2�(𝑠𝑠).  Once the reduced order 
transfer function is known, Eqns. {17} and {18} can be simultaneously solved, and 
substituted into Eqn. {19} to determine the tension or position control loop gains.   

The next step is to apply the gains to the web line.  Caution should be taken in this 
step.  Once the gains are applied, enable the line and then apply tension only.  Watch the 
tension feedback and observe that the tension behaves as expected.  If the tension display 
or dancer position oscillates, the tension loop or position loop gains need to be increased.  
The gains found by this method are found using several assumptions including linear 
materials and that the idle rollers can be ignored.  Therefore, consider the calculated gains 
to be a starting point in tuning the speed-based tension controllers in the line.   Once the 
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tension display is stable, try a ramp up to about 20% of the operating speed.  Watch the 
web spans to see if they vibrate or go slack.  Watch the tension display.  These will 
inform the decision to leave the gains as they are or to adjust them more.   

THE SYSTEMATIC METHOD APPLIED TO THE EUCLID WEB LINE 

The Euclid Web Line at Oklahoma State University’s Web Handling Research 
Center was used to evaluate the systematic method.  The physical parameters collected 
from the line are tabulated in Tables 3 through 6 in the Appendix.  Figure 1 shows the 
Euclid Web Line control sections.  The unwind section is the unwind roll on the left up to 
the S-wrap Lead (roll 10), the S-wrap section is between rolls 10 and 11, the process 
section is from the S-wrap Follow (roll 11) to the pull roll (roll 17), and the rewind 
section is from the pull roll to the rewind roll on the far right.  The unwind and rewind 
sections have an outer-loop feedback while the S-wrap and process sections are under 
pure speed control.   

Following the process laid out in the previous section, a model for each control 
section needs to be created.  Equation{3} is the speed control model for each of the five 
motors.  Multiplying both sides of Eqn. {3} by 𝑅𝑅𝑓𝑓𝐺𝐺𝑅𝑅𝑓𝑓 will convert the equation to 
tangential speed of the roll instead of angular velocity of the motor.  A rise time of 0.3 
seconds and a damping ratio of 0.9 were selected for the example in this paper.  The same 
rise time and damping ratio are used for each controller in the web line. Using Eqn. {1}, 
the natural frequency of the control loop is 20.6 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠⁄ .  The inertia, 𝐽𝐽1, is calculated by 
reflecting the motor inertia, 𝐽𝐽𝑚𝑚1, through the gear ratio, 𝐺𝐺𝑅𝑅1, to the shaft where the web is 
and adding it to the shaft and wound web inertia, 𝐽𝐽𝑠𝑠1.  Eqns. {10} and {11} are used after 
selecting a rise time and damping ratio to calculate the proportional and integral gains for 
the speed loops which are shown in Table 1.   

The unwind section has 3 different feedback devices: a dancer, a load cell at roller 3, 
or a load cell at roller 9.  The rewind section has a load cell at roller 19.  The process for 
creating the model of the unwind section with dancer position feedback follows.  Convert 
the motor model (Eqn. {3}) and the speed control into a transfer function using Eqn. {12} 
(𝐺𝐺𝑠𝑠(𝑠𝑠)) with the unwind parameters.  Then 𝐺𝐺𝑠𝑠(𝑠𝑠) is simplified.  Form 𝐺𝐺2(𝑠𝑠) by  placing 
𝐺𝐺𝑠𝑠(𝑠𝑠) in series with two more transfer functions which are Eqn. {6} (the incoming roller 
speed to span tension model) and Eqn. {8} (the incoming span tension to dancer 
displacement model) (see Figure 9).  The lumped span model is assumed so the span 
length, 𝐿𝐿𝑓𝑓, in Eqn. {6} is 𝐿𝐿𝑓𝑓 = 𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3 or 5.079𝑓𝑓𝑡𝑡.  Transfer functions in series 
multiply.  Eqn. {12} is multiplied by Eqn. {6} and Eqn. {8}.  Once 𝐺𝐺2(𝑠𝑠) simplified, the 
coefficients are processed by the Routh Approximation Method and the proportional and 
integral gains are calculated by solving Eqns. {17}, {18}, and Eqn. {19}.  Repeat this 
process with the rewind section where a load cell is used.  Form 𝐺𝐺2(𝑠𝑠)  with Eqn. {6} in 
series with Eqn. {12} for the rewind.  Table 2 shows the proportional and integral gains 
for the unwind and rewind sections determined following this method using a damping 
ratio of 0.9 and a rise time of 0.3 seconds. 
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Motor & Type of control Kp Ki
Unwind Speed 2.7928 16.1576
S-Wrap Lead Speed 5.5421 32.0624
S-Wrap Follow Speed 5.5421 32.0624
Pull Roll Speed 5.9853 34.6265
Rewind Speed 3.91 22.697  

Table 1 – Motor speed gains found using the process with a damping ratio of 0.9 and a 
rise time of 0.3 seconds. 

Section & Type Kp Ki
Unwind Position 1.0694 0.6054
Rewind Tension 0.3475 0.0003101  

Table 2 – Position and tension control gains for the unwind and rewind sections. 

EXPERIMENTAL STUDY 

The Euclid Web Line was exercised after applying the gains calculated in the 
previous section.  The gains calculated using the method in the previous section are 
expecting feedback errors in base units.  This implies that the speed loop gains expect 
speed errors in ft/s.  The tension loop gains expect errors in pounds. The dancer position 
gains are calculated for errors in radians.  If those units are not the units used in the web 
line control and feedback system, the gains must be converted into the correct units.  The 
Euclid Web Line used RPM for the speed loops, percent of maximum load in the tension 
loop, and degrees in the dancer position loop.   

The Euclid Web line was exercised through a 400 FPM start up procedure following 
an industrial S-curve reference twice using the 0.3 second rise time and 0.9 damping 
ration.  The load cell at roller #3 was used for feedback in the unwind section.  The 
rewind section only had load cell feedback.  Figure 12 shows the speed tracking 
performance on the left and the tension tracking performance on the right.  The 
proportional gain in the tension loop for the unwind was increased by 10 to obtain better 
performance.  The rewind section proportional gain was also increased by 10 fold to 
obtain better reference tracking, but little change in performance was noted.   
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Figure 12 – The left plot shows speed tracking performance of the unwind and s-wrap 
(above), and the pull roll and rewind motors (below) during a 400 FPM start up following 
an industrial S-curve with 𝜁𝜁 = 0.9 and 𝑡𝑡𝑟𝑟 = 0.3 seconds.  Load cell #3 was the feedback 
device for the unwind section. The proportional gain for the unwind tension was increase 

10 fold to obtain better performance.  The 𝐾𝐾𝑝𝑝𝑖𝑖 gains for the rewind section were also 
increased by 10 fold but the performance is similar during most of the operation. Only 

during the first few seconds are the two records different.  

The unwind section of the Euclid Web Line was switched to dancer position 
feedback and the 400 FPM start up procedure using an industrial S-curve was 
accomplished.  Figure 13 shows the speed tracking performance for the unwind and 
rewind sections on the left, and the figure shows the rewind tension and dancer position 
on the right.  The dancer position had a larger magnitude of oscillation before multiplying 
the proportional gain by 10.  There was no change in the rewind tension performance 
because the proportional gain was increased 10 fold in both cases.   
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Figure 13 – The Euclid line with dancer feedback control of the unwind section goes 
through a 400 FPM start up procedure following an industrial S-curve reference.  The 
rewind gains were unchanged between runs and similar performance was recorded for 

both runs. The unwind proportional gain for the dancer position was increased 10 fold to 
obtain better position tracking.   

CONCLUSION 

This paper has presented a systematic method for determining the controller gains 
for a web handling line.  The gains are found under the assumptions of linear models, 
linearly elastic web materials, idle rollers may be neglected, and that second order model 
approximations will work in place of higher-order models.  Gains were calculated for the 
Euclid Web line following the method in this paper.  Seven sets of PI gains were 
determined.  Experimental studies on the Euclid Web Line with the calculated gains were 
found to be good for the speed loops, but were not successful for the tension loops.   
Successful performance could be obtained if the proportional gains in the tension loops 
was increased.  Even though the gains determined may not be unique and fully optimal, 
they provide a good starting point for tuning a line after it is built or after a major change 
is made in the line.   
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APPENDIX 

Parameter Value Units
Motor Inertia 4.786E-02 slug-ft2

Gear Ratio 2.635E-01 shaft rotations per motor 
rotation

Shaft inertia 3.680E-01 slug-ft2

Roller inertia 4.635E-03 slug-ft2

Inertia of wound web 
(14in dia.)

5.300E-02 slug-ft2

Bearing Friction 6.073E-04 lbf-ft-s
Motor Damping 0.000E+00 lbf-ft-s
Motor Constant 1.274E+01 lbf-ft/A

Roller radius 1.250E-01 ft
Young's modulus  

(Tyvek)
6.667E+06 lbf/ft2

Web cross-sectional area 2.262E-04 ft2

Span Length 5.079E+00 ft
Steady-state speed 6.667E+00 ft/s
Dancer Arm Length 1.327E+00 ft

Dancer Inertia 2.090E-01 slug-ft2

Dancer applied torque 1.845E+01 lbf-ft  

Table 3 – Physical parameters used in the example for the unwind section 

Parameter Value Units
Motor Inertia 4.072E-02 slug-ft2

Gear Ratio 7.168E-02 shaft rotations per motor 
rotation

Shaft inertia 1.315E+00 slug-ft2

Bearing Friction 6.073E-04 lbf-ft-s
Motor Damping 0.000E+00 lbf-ft-s
Motor Constant 6.249E+01 lbf-ft/A

Roller radius 5.000E-01 ft  

Table 4 – Physical parameters for the S-Wrap. 
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Parameter Value Units
Motor Inertia 4.072E-02 slug-ft2

Gear Ratio 7.766E-02 shaft rotations per motor 
rotation

Shaft inertia 4.686E-01 slug-ft2

Bearing Friction 6.073E-04 lbf-ft-s
Motor Damping 0.000E+00 lbf-ft-s
Motor Constant 3.090E+01 lbf-ft/A

Roller radius 2.500E-01 ft  

Table 5 – Physical parameters for the Pull Roll 

Parameter Value Units
Motor Inertia 4.786E-02 slug-ft2

Gear Ratio 2.635E-01 shaft rotations per motor 
rotation

Shaft inertia 3.680E-01 slug-ft2

Inertia of wound web (14in 
dia.)

3.900E-02 slug-ft2

Bearing Friction 6.073E-04 lbf-ft-s
Motor Damping 0.000E+00 lbf-ft-s
Motor Constant 1.274E+01 lbf-ft/A

Roller radius 1.250E-01 ft
Young's modulus  (Tyvek) 6.667E+06 lbf/ft2

Web cross-sectional area 2.262E-04 ft2

Span Length 1.141E+01 ft
Steady-state speed 6.667E+00 ft/s  

Table 6 – Physical parameters for the rewind 
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