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Abstract 

Proof is an essential skill in mathematics and a key component in mathematics 

education.  However, studies have shown that many students encounter various 

difficulties with proof at all levels.  Studies have also shown that proof is challenging 

not only for students to learn but also for instructors to teach.  Researchers in 

mathematics education have endeavored to provide an effective teaching method to 

help students with proof construction.  However, there seems to be no effective and 

decisive method that is widely accepted by the mathematics community.  The purposes 

of my dissertation were to reveal the sources of students’ difficulties and provide 

effective methods to help them overcome their difficulties.  In order to achieve these, I 

first created a model of the structure of proof construction.  The model provided a 

comprehensive view of proof construction, which could encompass the aspects, factors, 

patterns, and features involved in cognitive process in proof construction.  In light of 

the structure of proof construction, I examined students’ proofs from undergraduate 

Algebra, Analysis, and Topology courses.  The model of the structure of proof 

construction enabled me to identify, analyze, and explain their difficulties in an 

organized and systematic way.  The findings from the analysis of students’ proofs and 

the knowledge derived from the model of the structure of proof construction led me to 

produce an algorithm for proof construction that can be applicable to various proofs.  

The algorithm can serve as metacognitive knowledge for helping students, especially 

those who struggle with proof construction, to overcome their difficulties.  It is the 

aspiration of this study to contribute to the development of a teaching method to help 

students learn proofs effectively.   
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Chapter  1: Introduction 

1.1 Motivation of the Study 

Proof has been a central topic for discussion among researchers in mathematics 

education for some decades.  Based on the existing literature, it seems most researchers 

are in agreement that proof is one of the key components in mathematics education: 

“the essence of mathematics” (Baylis,1983); “the guts of mathematics” (Wu, 1996); 

“important at all grades and in all content domains” (Kilpatrick, Swafford & Findell, 

2001); “the fundamental tool for extending the field of mathematics” (Driscoll, 1983); 

“the heart of mathematical practice” (Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 

2002);  and “the basis of mathematical understanding” (Cirillo & Herbst, 2012).  Wu 

(1996) suggested that anyone who wanted to learn mathematics had to learn proofs.  

Hanna (2000) proclaimed “students cannot be said to have learned mathematics, or 

even about mathematics, unless they have learned what proof is” (p. 24).  

While proving is an essential skill in collegiate mathematics, studies have 

shown that students encounter various difficulties with proofs at all levels (Paola & 

Inglis, 2011; Pfeiffer, 2009; Stylianides, Stylianides, & Philippou, 2007; Harel & 

Sowder, 2007; Weber, 2006; Baker & Campbell, 2004; Epp, 2003; Weber, 2001; 

Dreyfus, 1999; Moore, 1994; Ruthven & Coe, 1994).  CadwalladerOlsker and Miller 

(2013) made a representative statement, saying “it was notoriously difficult for students 

to develop the ability to write and read proofs” (p. 379).  Mariotti (2006) reported 

proofs were so difficult that many teachers even gave up teaching proofs.  Hanna and 

Villiers (2007) claimed that the challenges that educators faced in teaching proof had 

increased as proof had been more valued in mathematics learning.  
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1.2 Significance of the Study  

Although students’ difficulties with proof construction have been well 

researched, the issue still seems to be wide open for further discussion and investigation.  

Dreyfus (2012) believes various questions regarding students’ cognitive difficulties 

with proof construction must be answered.  For example, “what is involved in cognitive 

processes in proof construction?”   Ayalon and Even (2008) claimed the need for 

establishing views and approaches to deductive reasoning.  CadwalladerOlsker, Miller, 

and Hartmann (2013) stressed the significance of elucidating what constituted a proof.  

Knuth (2002) emphasized the importance of clarifying the nature and components of 

proof.  It is also crucial to provide an effective method to help students with deductive 

reasoning.  Harel and Sowder (1998) urged the necessity of fostering students’ skills for 

logical deduction.  Weber and Alcock (2004) indicated the importance of practicing 

both syntactic and semantic approaches for deductive reasoning.   However, there 

seems to be little research that provided specific and practical knowledge to help 

students with proof construction based on logical deduction.  Harel and Sowder (2007) 

also raised a question of critical importance: “What instructional interventions can bring 

students to see an intellectual need to refine and alter their current proof schemes into 

deductive proof schemes?” (p. 47).   

Ball, Hoyles, Jahnke, and Movshoitz-Hadar (2002) exhorted the need of 

accumulating empirical studies on students’ difficulties with proofs in order to develop 

effective teaching strategies to teach proofs.  Brown, Bransford, Ferrara, and Campione 

(1983) suggested that highly developed metacognitive skills are one of the crucial 

factors for help students successfully solve problems.  Metacognitive knowledge means  
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the “knowledge of one’s knowledge, processes, and cognitive and affective states; and 

the ability to consciously and deliberately monitor and regulate one’s knowledge, 

processes and cognitive and affective states” (Papaleontiou-Louca, 2003, p.10-11).  The 

significance of this study is to fill the gaps among the research literature by providing a 

model of the structure of proof construction.  The aims of this study is to contribute to 

the body of innovative instructional methods to teach proofs by providing 

metacognitive knowledge that can help students with proof construction.     

1.3 Research Purposes and Questions 

 The aims of this study were to establish a model of the structure of proof 

construction, to identify students’ difficulties and clarify the sources of their difficulties, 

and to provide pedagogical suggestions to help students with proof construction.  This 

study attempted to meet the needs for providing a comprehensive view of proof, which 

revealed the components and nature of proof construction to students.  This study also 

attempted to fill the gaps caused by a deficiency of an effective method to help students 

with proof construction based on logical deduction.  In order to help students grasp a 

comprehensive view of proof construction and enhance their skills for logical deduction, 

the following research questions were  considered. 

Research Questions 

1. What is a suitable model for characterizing the structure of proof 

construction? 

2. What difficulties do students have with proof construction and what are the 

sources of their difficulties in light of the structure of proof construction? 

3. How useful is the model of the structure of proof construction? 
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4. What pedagogical suggestions can be drawn to help students with proof 

construction? 

1.4 Overview of the Study 

  This study examined students’ difficulties with proof construction in light of 

the structure of proof construction.  The structure of proof construction provides a 

comprehensive view of proof construction, which encompass the aspects, factors, 

patterns, and features that involve in cognitive process.  Chapter 2 examines the 

relevant literature regarding the theoretical perspectives on proof construction,  students’ 

difficulties with proof construction, and pedagogical approaches to help students with 

proof construction.  Chapter 3 presents how a model of the structure of proof 

construction was created, elaborates the model of the structure of proof  construction, 

offers the framework for analyzing students’ difficulties with proof construction, and 

discusses the reliability of the model while relating some other relevant theoretical 

frameworks for a support.  Chapter 4 describes the methodology that justified the 

method this study adopted and details the ways to collect and analyze students’ proofs.  

Chapter 5 presents various examples collected from students’ proofs to describe 

possible sources of students’ difficulties with proof construction and to analyze their 

proofs based on the analysis framework.  Chapter 6 highlights the findings from the 

analysis of students’ proofs while relating them to the literature and provides specific 

and practical suggestions to help students overcome their difficulties with proof 

construction.   
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter gives a comprehensive review on literature regarding the issues of 

proof construction while identifying the problems to be examined and the gaps to be 

filled.  This chapter consists of three parts: theoretical perspectives on proof 

construction; existing research on students’ difficulties with proof construction; and 

pedagogical approaches for helping students with proof construction.   

2.2 Theoretical Perspectives 

This section discusses the following three theoretical frameworks for proof 

construction: (1) proof schemes (Harel & Sowder, 1998); (2) syntactic and the semantic 

approaches (Weber & Alcock, 2004); and (3) the formal-rhetorical and problem-

centered parts (Selden & Selden, 2007).   

Harel and Sowder (1998) classified student proof schemes into three levels: 

external, empirical, and analytical.  In the external proof schemes, students convince 

themselves and others based on external sources such as (a) the ritual of the appearance 

of the argument (the ritual proof scheme); (b) the word of a textbook or a teacher (the 

authoritarian scheme); and (c) some symbolic manipulation without understanding the 

meaning of the symbol (the symbolic scheme).  The empirical proof schemes include 

verifying the validity of their reasoning by using some specific examples (the inductive 

scheme) or through their rudimentary mental images (the perceptual scheme).  The 

analytical proof schemes include validating through the use of logical deduction.  

Analytical proof schemes include considering the generality, setting a goal, and 

transforming images.  Several researchers suggested that students should grow out of 
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their external, empirical, and pictorial proof schemes, and acquire analytical proof 

scheme (Finlow-Bates, Lerman, & Morgan, 1993; Harel & Sowder, 1998; Recio & 

Godino, 2001; Zaslavsky & Shir, 2005; Stylianou, Chae, & Blanton, 2006).  Those 

studies revealed that students had difficulties with practicing analytical proof scheme.  

Instead, they tended to depend on diagrams, pictures, and specific examples for 

reasoning.   

Weber and Alcock (2004) presented a theoretical framework for the types of 

thinking process in proving.  They introduced two types of proof production: syntactic 

and semantic.  The former represents the proof production in which students derive 

valid inferences by manipulating definitions and symbols.  The latter represents the 

proof production in which students draws formal inferences while using instantiations 

of mathematical concepts.  More specifically, the semantic approach is the one in which 

students explore and figure out the way to reach the conclusion while understanding the 

situation, creating examples, applying relevant facts, and checking what they have done.  

Semantic approach may depend on mathematical contents while syntactic approach 

may not.  Weber and Alcock (2009) suggested that both syntactic and semantic 

approaches must concur for proof production based on deductive reasoning.       

Selden and Selden (2007) offered a model of the structure of a proof.  They 

claimed that a proof consisted of two parts: the formal-rhetorical part and problem-

centered part.  The formal-rhetorical part stands for the part of a proof that can be 

obtained by unpacking a concept into the definition.  The problem-centered part is the 

remaining part, which is the core of problem solving done through rigorous thoughts, a 

deep understanding, and intuition.  It seems the formal-rhetorical part corresponds to 
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the product obtained through a syntactic approach and the problem-centered part 

corresponds to the product obtained through a semantic approach.  They offered a proof 

framework as an instructional method to help students with proof construction.  

According to their method, students should first write a hypothesis, leave a blank space, 

put the conclusion at the end.  Next, they fill the earlier blank space by inserting the 

beginning and end of the unpacked conclusion.  Students write a proof from both ends 

toward the middle.  However, it is not completely clear how they should advance a 

reasoning process in the remaining part.  In addition, their method of leaving a blank 

space at the beginning of proof construction may not be perfectly practical.   

  The above frameworks were used for the following two reasons.  First, they 

helped to understand students’ approaches for proof construction and logical deduction, 

and the structure of a proof.  Second, they helped to identify the position of my study  

among various studies on proof construction.  More specifically, they made it clear that 

my study was centered at an exploration of metacognitive knowledge for the skills of 

logical deduction in proof construction.   The frameworks also provided the gaps to fill 

and the demands to meet.  The frameworks led my study to explore the skills for  

practicing analytical proof scheme, clarify the mechanism of syntactic approach and 

semantic approaches, and provide an effective method to write a proof from the top 

down.   

2.3 Students’ Difficulties with Proof Construction 

This section reviews the literature on students’ difficulties with proof 

construction in terms of four aspects: background knowledge, reasoning activity, 

mental attitudes, and affect and beliefs. The followings are the definition of each term. 
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 Background knowledge: the knowledge necessary for solving a given proof 

problem.  It includes concepts, definitions, notations, theorems, proposition, 

mathematical laws, and problem solving techniques.   

 Reasoning activity: cognitive actions or operations for advancing a reasoning 

process.   

 Mental attitudes: tenacity, persistence, flexibility, carefulness, and precision.   

 Affect and beliefs: emotions, feelings, self-confidence, beliefs, and perceptions 

toward mathematics, proofs, and logics.   

The above aspects seem to cover the categories that Schoenfeld (2010) included 

in his theoretical framework for problem-solving.  The following are the categories 

Schoenfeld included: (1) knowledge base (what students know); (2) problem-solving 

strategies (the tools or the techniques for solving problems); (3) self-regulation or 

monitoring (monitoring and assessing progress); (4) beliefs (one’s understanding, 

feelings, perceptions, decision).  (1) Background knowledge directly corresponds to 

knowledge base.  (2) Reasoning activity may correspond to problem-solving strategies 

because the reasoning activity can be all considered to be strategies and techniques for 

constructing a proving argument.  (3) Mental attitudes may correspond to self-

regulation or monitoring because the components of mental attitudes (tenacity, 

persistence, flexibility, carefulness, alertness, and precision) can be considered to be 

mind tools for self-regulation.  (4) Affect and beliefs may directly correspond to beliefs  

because both share the same components such as feelings and beliefs.   
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2.3.1 Background Knowledge   

In order to construct a successful proof, students need to be fully equipped with 

the knowledge around a given proof problem.  In particular,  their knowledge about the 

concepts involved in the proof is indispensable.  This section discusses the significance 

of students’ knowledge of concepts from the following three angles: mathematical 

language; definitions; and abstract thinking.   

Mathematical language   

As Tall (1991) pointed out, mathematical language is one of the difficulties that 

students face in starting to learn proofs.  Moore (1994) also provided students’ 

difficulties with mathematical language as one of the major sources of their difficulties 

with proof construction.  Mathematical language consists of mathematical terms, 

notations, and logical words.  For example, “continuous,” “differentiable,” and 

“homomorphism” are examples of mathematical terms.  “ KerR / ,” “ ][xZ ,” and 

“ )(GZ ” are examples of mathematical notations.  “If,” “then,” “for all,” and “there 

exists” are examples of logical words.  Students’ ability of using mathematical language 

around a concept depends on their levels of understanding of the concept.  Moore 

(1994) pointed out that students’ lack of understanding of concepts can hinder them 

from correctly using the language and notation.   

Definitions 

Definitions of mathematical concepts are central and fundamental mathematical 

language.  Students have two types of difficulties with definitions: not understanding 

the contents of definitions; being unable to use the definitions.  There are four factors 

that cause their difficulties: (a) the gap between students’ concept image and concept 
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definition; (b) the nature of definitions as stipulated language; (c) the difference 

between mathematical definition and everyday language; and (d) the learning way to 

approach definitions. 

Tall and Vinner (1981) introduced the notions of concept images and concept 

definition”   Concept image is the total of the mental pictures of concepts and related 

properties.  Concept definition is a formal definition of concept, which can be found in 

a textbook.  Alcock (2007) observed that students made extra assumptions that concepts 

did not include.  Their incomplete concept image led to their difficulties with using 

definitions to express their ideas.  Students need to take effort to narrow the gap 

between their concept image and concept definition.  It takes time for them to be 

“formally operable” so that they can use a definition or a theorem to create a formal 

argument (Bills & Tall, 1998).   

Edwards and Ward (2008) attributed a chief role of definitions to the creation of 

concepts.   They considered definitions as stipulated language, in which the meaning-

relation was explicitly and self-consciously set up.  When students deal with a 

definition, they face a difficulty of building up their thoughts on the concept.   

Zaslavsky & Shir (2005) suggested that students should know the role of definitions to 

overcome their difficulties with understanding definitions.   

The difference between mathematical definitions and everyday language also 

causes student’s difficulties with definitions (Edwards & Ward, 2004; Epp, 2003; 

Selden & Selden, 2007).  The definitions in everyday language are extracted from 

examples and evidence while the definitions in mathematical language are defined by 

stipulation (Edwards & Ward, 2004).  Some mathematical language are used in 
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everyday language but they have different meanings.  Frid (1994) and Cornu (1991) 

observed that students interpreted the language “limit” in terms of everyday meaning.  

Awareness of the distinction between mathematical language and everyday language 

helps students integrate new mathematical rules into their cognitive framework (Epp, 

2003).   

A mathematical definition has a logical structure.  Selden and Selden (2007) 

pointed out that every part of the mathematical definition contributes to supporting the 

structure.  For example, small parts of a definition such as “for any …” “for some …” 

play an important role in deciding the structure of the concept.  Mathematical 

definitions often involve a conditional statement in it.  For example, the definition of 

continuity of )(xf at ax   is that for every 0 , there exists a 0 such that if 

ax , then  )()( afxf .  Selden and Selden (2007) suggested that students 

should pay attention to all parts of a definition. 

The way to approach definitions influences one’s ability to understand 

definitions.  Students and mathematicians took different cognitive processes in 

comprehending definitions (Vinner, 1991).  Paramerswaran (2010) explored how 

mathematicians approached definitions.  They found three factors that helped 

mathematicians enhance their understanding of definitions: (1) examples; (2) 

reformulations of definitions with a related theorem; (3) resolutions to the conflicts 

evoked in facing an example that contradicts their concept image of the definition.  

Paramerswaran (2010) provided necessary stages in understanding definitions: (1) 

familiarizing oneself with the notation; (2) building a concept image; (3) acquiring 

examples; and (4) learning how to use a definition.   
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The definition of a concept plays a significant role in proof construction.  A 

proving argument is constructed based on the definition.  However, definitions can be 

difficult for students to understand and use due to their complex nature, which everyday 

language does not have.  Students need to know how to learn and apply definitions.  

The next section discusses abstract thinking, which plays an important role in 

connecting background knowledge and reasoning activity in proof construction.   

Abstract thinking   

Abstract thinking is the ability to generalize and synthesize objects into concepts 

through representations.  Dreyfus (2002) viewed abstraction as the most important 

processes to be developed in advanced mathematical thinking.  He claimed achieving 

the ability of abstraction may well be considered as the most important goal of 

advanced mathematics learning.  Frasier and Panasuk (2013) agreed that abstract 

thinking was central to conceptual understanding and was an essential part of 

mathematics learning.  In particular, they placed proofs as the typical instance of 

abstract thinking.   Dreyfus (2002) included generalizing and abstracting, synthesizing 

and abstracting, and representing and abstracting as basic component processes of 

abstract thinking.   

Generalizing and Abstracting.  Both generalizing and abstracting are the 

processes to construct a cognitive structure of a concept.  The ability to generalize and 

abstract is crucial for students’ formal thinking in proof construction.  Dreyfus (2002) 

defined generalizing to be a process of “deriving or inducing from particulars, to 

identify commonalities, to expand domains of validity (p. 35)” and defined abstracting 

to be a process of “building of mental structures from properties of and relationships 
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between mathematical objects (p. 37)”.  There is a concise distinction between them.  

The former involves an expansion of the individual’s knowledge structure while the 

latter involves a mental re-construction of the existing structure.  Tall (1991, p. 12) gave 

a clear illustration of the difference between them, using the following example: 

 For instance, we generalize the solution of linear equations in two and three 

dimensions to n-dimensions and we abstract from this context the notion of a 

vector space.  In doing so, two very different mental objects are produced:  The 

generalization nR and the abstraction, a vector space V over a field F.  The 

generalization nR simply extends the chain of ideas from 1R to 2R and from 2R

to 3R , and so on, which is described by applying the usual arithmetic processes 

to each coordinate.  The abstraction V is a very different mental object, which is 

defined by a list of axioms.  While the former simply involves an extension of 

familiar processes, the latter requires a massive mental reorganization.  

  Dreyfus (2002) considered generalizing, synthesizing, and representing as a 

prerequisite basis to abstracting: generalizing and synthesizing (p. 34).   Abstraction 

requires more cognitive load than generalizing and synthesizing because abstraction 

requires more attention to the structure of the properties and their relationships than the 

objects themselves.  For example, when his students tried to understand the concept of 

field, they focused on the relationships that existed between numbers rather than on the 

numbers themselves (Dreyfus, 2002).   

Synthesizing and Abstracting.  According to Dreyfus (2002), synthesizing is a 

process of “combining or composing parts in such a way that they form a whole or an 

entity (p. 35).”  It is a process of integrating separate facts into a complete picture, 
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which is not just a sum of parts but a structure of interrelated facts.  This can be applied 

to the following example.  Suppose that a student has the following mental 

representation for continuity: )(xf is continuous at cx   if and only if for every real 

number 0 , there exists a real number 0 such that if  cx , then

 )()( cfxf .  Then, suppose that the student learns another representation for 

continuity of a function at cx  :  a function YXxf :)( , where X  and Y are 

topological spaces, is continuous at cx   if and only if for every open neighborhood V

of )(cf , there exists an open neighborhood U of c such that VUf )( .  At first, those 

two concepts may exist independently of each other in the students’ mind, but later, the 

student may relate and connect each other to establish a stronger concept of continuity.  

Thus, integrating different mental presentations for the same concept into an 

interrelated structure can be considered as synthesizing.     

 Synthesizing is a crucial process to construct a more powerful mental 

representation for a concept, namely, to build a more solid understanding of the concept.  

The ability of synthesizing makes a difference in understanding a concept and solving a 

problem.   For example, in a mathematician’s mind, several mental representations for a 

concept may be strongly linked to form a broad and strong world for the concept.  Then, 

the mathematician can grasp one representation from several angles.  The 

representation is supported by other representations in the mind.  The ability of 

synthesizing allows the mathematician to make seemingly independent mental 

representations complementary.  Therefore, the ability of synthesizing increases the 

power of flexibility to switch representations, which makes it easier for the 

mathematician to deal with problems.  In addition, the mathematician can see the 
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mental world of the concept from a bird’s eye view, which makes it easier to make use 

of those representations according to the given situations.   

On one hand, students may have difficulties with abstract thinking because they 

may fail to synthesize mental representations for a concept.  Even if students have the 

same mental representations as mathematicians do, if they fail to synthesize them, they 

would grasp one representation by itself.  In addition, that would make it difficult for 

them to know where they stand in the world around the concept and to make good use 

of available representations in solving a given problem.   

Moreover, mathematicians find themselves in a world around a concept that 

they have formed through synthesizing some mental representations.  This may prove 

difficult when trying to communicate with students who has a narrower and 

unorganized world around the concept.  This may cause conflicts between instructors’ 

teaching and students’ learning.     

Representing and Abstracting.  A representation is a realization of a 

mathematical notion.  Representations take several forms: algebraic expressions, 

notations, graphs, figures, tables, matrices, arrow-diagrams, and words.  In addition, 

representations can become tools to solve problems and construct meanings (Davis & 

Maher, 1997, Radford, 2000, Sfard, 2000).  Dreyfus (2002) viewed representing and 

abstracting as complementary processes in opposite directions.  “A concept is often 

abstracted from several of its representations, on the other hand, representations are 

always representations of some more abstract concept (p. 38).”  Dreyfus (2002) further 

claimed that learning processes evolved in four stages: using a single representation, 

using more than one representation in parallel, making links between parallel 
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representations, and integrating representation and flexible switching between them.  

Once this process has been completed, one has formed an abstract notion of a concept.   

 Dreyfus (2002) classified representations into two kinds.  One is a symbolic 

representation and the other is a mental representation.  He made a distinction between 

them in the following way.  “A symbolic representation is externally written or spoken, 

usually with the aim of making communication about the concept easier.  A mental 

representation, on the other hand, refers to internal schemata or frames of reference 

which a person uses to interact with the external world” (p. 31).   

Symbolic representations play an important role in mathematical thinking and 

learning.  They make it easier and more convenient to express, convey, and understand 

mathematical ideas and arguments.  As Olson and Campbell (1994) described, their role 

is to make an individual’s implicit knowledge explicit in terms of symbols.  On the 

other hand, a mental representation is a mental picture that occurs in the mind when an 

individual thinks of a mathematical notion.  It involves his or her understanding of the 

notion.  Therefore, it happens that different individuals have different mental 

representations for the same notion in accordance with their understanding levels.   

Their concepts can be applied to the following example.  A symbolic 

representation of a limit concept of a function as x approaches a is )(lim xf
ax

.  However, 

students may have different mental representations for it.  Some may mistakenly 

assume that it is the same as )(af ; some may correctly relate it to the fact that it exists if 

and only if )(lim)(lim xfxf
axax  

 ; some may even recall that )(lim xf
ax

= L   if and only if 

for every real number 0 , there exists a real number 0 such that for all real 
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number x with   ax0 implies  Lxf )( .  Similarly, for the notion of 

continuity, some students may vaguely picture a mental image of some kind of smooth 

curve that contains neither a jump discontinuity nor a removable discontinuity; some 

may recall that )(xf  is continuous at ax  if and only if )()(lim afxf
ax




; some may 

conceive that )(xf is continuous if and only if for every sequence nx of points in the 

domain which converges to a , )()(lim afxf
ax




; and some may even think of the 

topological idea that a function YXxf :)( , where X  and Y are topological spaces, 

is continuous if and only if for every open set  YV  , the inverse image )(1 Vf 
is an 

open subset of X .   

Some form rich mental representations and others have limited mental 

representations for the same concept.  Such a difference can become a source of 

students’ difficulties with learning.  For example, students encounter difficulties with 

understanding their instructors because the students and their instructor have different 

mental representations for the same concept.  Dreyfus (2002, p.31) described this 

situation in the following way:  

 a student’s notion of a function may be limited to processes (of computation or 

mapping), whereas the teacher teaching indefinite integrals may think of the 

function in the integral as an object to be transformed.  Such discrepancies 

easily lead to situations where students are unable to understand teachers.  

Students’ mental representations evoked by a notion can be limited or even 

incorrect.  Then, they are unable to understand what their instructor means by it.  This 

issue occurs not only when students learn from their instructor or a textbook but also 
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when they solve problems.  With richer representations of a concept, students can have 

more strategies to tackle problems.  Kaput (1989) and Clements (1983) showed that the 

use of several representations was successful in helping students improve their 

understanding of a concept.  With poor mental representations, the types of problems 

that students can get access to are more limited.  Selden, Mason, and Selden (1989, pp. 

48-49) gave several non-routine problems to average Calculus students to see how well 

they performed.  The following was one of the problems: Decide if 02
11921 
x

xx  

has any roots between -1 and 0.  They observed that nine out of seventeen students were 

unable to solve the problem.  They were unable to think about the function

2
1

)( 1921 
x

xxxf  in a graphical sense, take the derivative of the function to 

check if it increased or decreased on the given interval, and use the limit concept to 

figure out the end behavior of the function as x approached 0.  Instead, they tried to 

manage the problem in a primitive way, plugging some numbers into x , using trial and 

error, or making a guess.  This was an example showing that students were unable to 

solve a problem successfully because their mental representations were limited.  More 

specifically, the given expression evoked those students just a symbolic representation, 

namely, a relatively complicated algebraic equation.  It did not occur to them that the 

given expression might be a graphical representation of a relation of the two functions, 

which were 2
1

)( 1921 
x

xxxf   and 0)( xg .  Their mental representations for the 

given expression were not broad enough to cover a graphical representation for it.  

However, it might not be enough for an individual to be equipped with rich 

representations in solving problems or in constructing proofs successfully.  The ability 
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to flexibly switch representations according to a situation would be also required.  

Representing can be considered to be one of the fundamental processes of abstract 

thinking taken not only in the construction of the knowledge of concepts but also in the 

reasoning activity of proof construction.   

Thus, generalizing, synthesizing, and representing are possible factors that can 

influence students’ use of their background knowledge in proof construction.  The next 

sections reviews the studies that can directly affect thinking actions in advancing a 

reasoning process in proof construction.   

2.3.2 Reasoning Activity   

The reasoning activity for proof construction is the scene in which students 

advance their reasoning processes for reaching the goal while using the premises and 

transforming representations.  Students transform objects by switching representations 

and construct an argument based on logical and deductive reasoning.    

Switching representations 

Rich mental representations help students tackle a problem by providing more 

information for dealing with it.  At the same time, having rich mental representations 

may cause a difficulty to students:  they may get confused in choosing the best 

representation from among several options.  It can happen that students choose a less 

effective representation and fail to solve a problem efficiently or successfully.   For 

example, suppose that students are given a function 1)( 2  xxxf and asked to 

obtain the derivative of the function at 1x by using the definition of derivative.  Some 

students may apply 
h

xfhxf
xf

h

)()(
lim)('

0





to evaluate 

h

fhf
f

h

)1()1(
lim)1('

0





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and others may apply 
ax

afxf
xf

ax 






)()(
lim)('  to evaluate

1

)1()(
lim)1('

1 




 x

fxf
f

x
 .  

Both methods work, but the latter turns out to be easier and faster.  This is just a small 

example, but in a more advanced mathematics, the situation can be more serious.  

Failing to adopting a more effective representation can lead the individual to a less 

effective problem solving strategy and may end up with confusing the individual.  Thus, 

students’ difficulties with problem solving can be partly due to the difficulty with 

deciding when to use which representation in accordance with a situation.  Dreyfus 

(2002) asserted “an individual needs to be able to flexibly switch from one 

representation to a more efficient one in problem solving” (p. 32).    

Logical and deductive reasoning 

Logical and deductive reasoning plays a central part of proof construction.  Epp 

(2003) stressed the need of providing a method to help students develop their formal 

reasoning skills.  Knapp (2005) pointed out that lack of awareness of the laws of logic 

and deductive reasoning was one of the causes of students’ difficulties with proof 

construction.  The laws of logic, including the laws of syllogism, form the system with 

which an argument can be validated.  Deductive reasoning is the process of reaching a 

conclusion by using the given premises, assumptions, previous statements, and relevant 

theorems and propositions.  If students fail to follow the laws of logic, their proofs will 

collapse.  For example, Weber (2002) observed that students were unable to make their 

proving arguments complete because they abused the laws of logic.  His students tried 

to prove a statement by finding a theorem that might support the statement and by 

proving the hypothesis of the theorem.      
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Stylianides and Stylianides (2007) conceptualized proof, focusing on deductive 

reasoning.  They considered as the components of proof the following three factors: (1) 

the set of accepted statements such as definitions, axioms, and theorems; (2) the modes 

of argumentation such as application of logical rules of inference; (3) and the modes of 

argument representation such as verbal, pictorial and algebraic representations.  In 

particular, they associated deductive reasoning with the modes of argumentation as 

logically necessary inferences while introducing the theory of Johnson-Laird’s and 

Bera’s (1984).  According to their theory, deductive reasoning contains the three stages 

in proof construction: (1) constructing a mental model to represent the structure of the 

premises of a given statement, (2) scanning the model to acquire informative inference, 

and (3) searching for alternative mental models such as counterexamples.   They 

considered as the main abilities for deductive reasoning the ability to build a model of 

the premise of a given statement as well as the linguistic competence to comprehend 

logical terms such as “and”, “or”, “not”, “if”, “none”, “some”, “all” in the premises.  In 

particular, working memory capacity was the key to successful deductive reasoning.  

They claimed that practice helped students enhance their working memory, which 

might lead to the improvement of the ability of deductive reasoning and proving.  They 

further suggested that practice might help students internalize the general logical 

structure of proof method such as proof by contradiction.  Practice and the knowledge 

of the structure of proof method can help students enhance their proving ability.  This 

study further aims to explore the knowledge of the general logical structure of proving 

itself beyond a proof method, investigating specifically what is involved in proof 

construction which may help students enhance their deductive reasoning.   
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 Alcock and Weber (2005) investigated how students validated an argument, 

using a proof from real analysis.  They found out that students were unable to validate a 

proof because they failed to infer and check warrants.  In this case, warrants means 

asserted preceding statements, accepted knowledge, or accepted assertions. They 

suggested that the importance of inferring and evaluating implicit warrants used in 

proofs should be emphasized in a classroom in order to help students develop their 

proving skills and understand new proofs.   

The start of a proof can be one of the key factors in the reasoning activity of 

proof construction.  It is a scene in which students make sure what they are asked to 

prove and what proving strategy they use before writing out a proof.  Baker and 

Campbell (2004) observed students failed to prove because they did not pay full 

attention to the given statement and did not think about the meaning of the statement.  

Selden and Selden (2003b) observed that students lacked their attention to global 

picture of an argument and focused on local issues in validating their arguments.      

The role of mathematical language is closely related to logical and deductive 

reasoning.  Selden and Selden (1995) discussed students’ difficulties with 

understanding of the logic for validation.  In particular, they noted students’ difficulties 

with “unpacking” informal statements into formal statements.  They used the term 

“unpacking” to mean changing an informal statement into a formal one so that it could 

involve those terms that played an important role in logic such as “if”, “for all”, and 

“then.”  They gave the following example of “unpacking.”  “A function is continuous 

whenever it is differentiable” is an informal statement.  Students need to “unpack” the 

statement into “For all functions f , if f  is differentiable, then f  is continuous.”  In 
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this example, the word “whenever” was considered to be an informal expression and 

the phrase “for all” was considered to be a formal expression.   

Ball, Hoyles, Jahnke, and Movshovitz-Hadar (2002) defined mathematical 

reasoning as a set of practices and norms that served as an instrument of inquiry and 

justification.  They found the reasoning of justification on (1) public knowledge 

evolving in mathematics community, including mathematical ideas, procedures, 

methods, concepts, axioms, and publicly accepted knowledge and (2) mathematical 

language, including symbols, notations, definitions, and representations, and rules of 

logic and syntax.  Those factors can be categorized in a different way.  For example, a 

distinction can be made between procedures and terms and between mathematical 

language and rules of logic.  Moreover, notations and definitions can be included in 

mathematical knowledge.  In this study, mathematical ideas, procedures, methods, and 

logic and syntax are considered to be “actions” or “operations” while concepts, axioms, 

symbols, definitions, and representations are considered to be “objects.”  

Students’ knowledge and their reasoning activities are not the only factors that 

are involved in their cognitive activities in proof construction.  The next section reviews 

the studies related to another aspect of students’ cognitive activities involved in proof 

construction.   

2.3.3 Mental Attitudes 

A proving activity involves not only a logical and reasoning mental-activity but 

also some psychological aspects.  Furinghetti and Morselli (2009) asserted  “purely 

cognitive behavior is extremely rare in performing mathematical activity.”  Lai (2011) 

included making inferences, using deductive reasoning, judging or evaluating, making 
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decisions, and solving problems in the component skills of critical thinking.  She 

included inquisitiveness, flexibility, a propensity to seek reason, and a desire to be well-

informed, in the cognitive dispositions required by critical thinking.  These cognitive 

dispositions can be applied to students’ proving activities.  In proof construction, 

inquisitiveness and a propensity to seek reason may motivate students to tackle a given 

problem persistently.  A desire to be well-informed may urge students to look for 

information widely to advance a reasoning process.  Beyer (1985) noted precision and 

flexibility as factors of helping students with their reasoning processes.  He considered 

a frame of mind and a number of specific mental operations to be two major dimensions 

of critical thinking.  He included in the frame of mind “an alertness to the need to 

evaluate information and a willingness to test opinions, and a desire to consider all 

view-points” (p. 131).  Baker and Campbell (2004) also pointed out the importance of 

students’ precision in dealing with objects.  They observed students had difficulties 

with correctly using mathematical language.  The mental dispositions such as 

persistency, tenacity, flexibility, carefulness, alertness, and precision can play an 

important role as a helm of using knowledge and practicing the operations to advance a 

reasoning process in proof construction.  While those mental attitudes influence 

students’ performances as necessary psychological traits for proof construction, there 

are psychological traits that can also affect their performances, but are not necessary for 

them to be equipped with.  The next section goes over the studies related to those traits.   

2.3.4 Affect and Beliefs 

Affect and beliefs such as emotions, feelings, moods, and beliefs toward logic, 

proofs, and mathematics are psychological traits that can influence students’ 
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performances on proof construction.  However, unlike the mental attitudes such as 

tenacity, persistency, flexibility, carefulness, alertness, and precision, affect and beliefs 

are not the psychological traits that students are required to hold for proof construction.  

Different individuals have different affect and beliefs.  Students’ states of affect and 

beliefs influence their performances on proof construction from inside individually.  

McLeod (1994) included emotions, attitudes, and beliefs in the affective domain.  

Furinghetti and Morselli (2009) asserted a psychological trait such as affect should be a 

crucial factors influencing mathematical activities.  It is easily conceivable that 

emotions that stem from fear, confidence, impatience, patience, anxiety, safeness, 

frustration, restlessness, and composure can influence a student’s proving performance.  

Individual beliefs can also influence students’ problem solving performances.   

Skemp (1979) positioned emotions to be an important and essential part in 

human cognitive activities.  Skemp introduced the concepts of goals and anti-goals.  He 

defined goals to be the ones that students want to accomplish while he referred to anti-

goals as the ones students may want to avoid.  He claimed that students had different 

emotions according to which type of goal they went through.  He associated goals with 

pleasure, confidence, frustration, un-pleasure, and antigoals with fear, security, anxiety, 

and relief.  He made a distinction between the emotions.  He indicated those emotions 

could influence students’ learning positively or negatively.  The same thing can be said 

to students’ proving activities.   

Goldin, Rosken, and Torner (2009) stressed that beliefs are important factors in 

teaching and learning of mathematics.  For example, a belief that a definition is a static 

description of a term might mislead students to ignore the logical structure of 
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definitions to help them advance a reasoning process in proof construction.  Moore 

(1994) indicated that students who believed that an explanation was enough for proving 

might lack a rigor based on rules of logic in constructing a proof.  In addition, beliefs 

and affect are not independent of each other but influence each other.  Goldin, Rosken, 

and Torner (2009) proclaimed beliefs and perceptions might influence students’ success 

in both learning and problem solving.  Their claims can be applied to proof construction.  

Affects and beliefs cannot be ignorable factors in proof construction.   

Students’ proof schemes can be interpreted as representative examples of their 

beliefs toward proofs.  As shown at the beginning of this  chapter, Harel and Sowder 

(1998) introduced three types of proof schemes: external conviction; empirical, and 

analytical.  Those proof schemes were further explored, developed, and refined by 

several researchers.  Finlow-Bates, Lerman, and Morgan (1993) observed students with 

different types of proof schemes.  The students with empirical proof schemes valued 

proofs that contained evidence.  The students with pictorial proof schemes valued 

proofs explained with diagrams or figures.  The students with analytical proof schemes 

valued deductive reasoning.  The students with empirical and pictorial proof schemes 

must know the limitations of proofs constructed with their proof schemes in validation 

and persuasion.   

Students’ proof schemes can influence their performances in constructing proofs.  

Zaslavsky and Shir (2005) found that external schemes and empirical schemes can be 

the sources of students’ difficulties with proving.  They found out some students 

assumed that definitions accounted for the conclusion of a given statement, which 

represented their external proof schemes, and that others depended on examples to 
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validate their arguments, which represented their empirical proof schemes.  Students’ 

external and empirical schemes hindered them from developing and practicing analytic 

schemes.  Recio and Godino (2001) ascribed a possible source of their empirical 

schemes to their prior knowledge of the way to draw a conclusion that they acquired 

through social sciences.      

Some researchers investigated the relationship between students’ proof schemes 

and their problem solving strategies.  For example, Stylianou, Chae, and Blanton (2006) 

explored the patterns of problem solving in proof construction in light of their proof 

schemes.  Using some problems for proof construction in elementary number theory, 

they observed the followings.  First, the students with external schemes used a 

definition of concept based on their incomplete concept images formed through what 

they saw in a textbook or on what they heard in a past classroom.  Concept image is a 

mental picture of a concept built in the process of their learning experiences (Tall & 

Vinner, 1981).   The students expected that a proof should follow from the definition 

without further exploration and discussion of it.  Second, the students with empirical 

schemes resorted to a convincing pattern through numerical examples for supporting 

their proof.  However, they rarely introduced definitions or symbolic representations of 

the problem.  Third, the students with analytical schemes showed the abilities to set a 

goal for their subsequent activities, symbolize the definition, explore the definition, 

gain further information, link the new information to the initial problem, and keep goals 

while monitoring their actions.   

The observations that Stylianou, Chae, and Blanton (2006) made indicated that 

students’ perspectives toward proof construction might be a crucial factor for successful 
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proof construction.  The external schemes may lead students to depend on their 

memorization for constructing and validating their arguments.  The empirical schemes 

may blind them from exploring a logical and deductive reasoning argument.  It seems 

imperative to provide practical knowledge for helping students grow out of their 

external and empirical proof schemes and develop and enforce analytical schemes.   

2.4 Comprehensive Views of Students’ Difficulties  

Selden and Selden (2003a) speculated that students’ difficulties with reasoning 

errors resulted partly from underlying misconceptions.  They described several factors 

as possible underlying misconceptions while showing examples mainly from 

introductory abstract algebra (2003a, p. 6-10).  

M1. They can use the conclusion for an argument that should be proved. 

M2. Anything that has a name always exists. 

M3. Different symbols always represent different things.   

M4. The converse is true. 

M5. The rules used for real numbers are always applicable. 

M6. Inequalities are conserved if the same operation is practiced to both sides. 

M7. A set can be interchangeable with an element. 

This study considers proof construction from four aspects: background 

knowledge, reasoning aspect, mental attitudes, and affect and beliefs. M1, M4, and M7 

can be categorized in the knowledge of proving techniques.  M6 can be categorized in 

the knowledge.  M2, M3, and M5 can be categorized in the mental attitude of 

carefulness in dealing with an object.  Their findings and the insights above might be 

useful in helping students with the same problems or similar problems in the same 

subjects.  On the other hand, their findings and insights might be limited to certain types 
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of problems in the same subject (introductory algebra).  They might not be considered 

to be generalized sources of students’ difficulties that can applicable to any problem 

from any subject.  In addition, more types of possible misconceptions may be detected 

with a further investigation into other problems from any subject.  It would be 

meaningful to investigate a method that can make it possible to categorize various 

sources of students difficulties with proof construction in an organized and systematic 

way which can be applicable to any problem from any mathematical subject.    

Weber (2006) classified the causes of students’ difficulties with proofs in three 

categories: (1) Students lack knowledge of mathematical proof; (2) Students 

misunderstand and misapply a concept or a theorem; and (3) Students do not know how 

to develop proving strategies.  Weber set the framework for modeling proof 

construction from mainly two angles: knowledge base and how to use the knowledge to 

advance a reasoning process.  (1) and (2) belong to the knowledge base and (3) belong 

to the use of knowledge.  Students struggle with how to apply their knowledge to their 

proof construction.  However, it seems little has been discussed about specifically what 

proving strategies are available for students.  It would be meaningful to provide a 

specific proving strategy. Gibson (1998) set a framework for examining students’ 

difficulties with proofs in terms of the following four factors: (1) the rules and nature of 

proof; (2) conceptual understanding; (3) proof techniques and strategies; and (4) 

cognitive load.  What seems to be scarce are concrete suggestions to help students 

overcome their difficulties in each aspect.  For example, (1) and (4) might be more 

specified in order to help students in a practical way.  It would be meaningful to 



30 
 

investigate exactly what the rules of proof exist, what nature of proof students should 

know, and what factors cause students cognitive heavy load.      

Moore (1994, p. 251- 252) provided the sources of students’ cognitive 

difficulties in a more specific way that can be applied to problems across mathematical 

subjects.  He gave the following seven major sources.   

D1. The students did not know the definitions, that is, they were unable to state 

the definitions.  

D2. The students had little intuitive understanding of the concepts. 

D3. The students’ concept images were inadequate for doing the proofs. 

D4. The students were unable, or unwilling, to generate and use their own 

examples. 

D5. The students did not know how to use definitions to obtain the overall 

structure of proofs.  

D6. The students were unable to understand and use mathematical language and 

notation. 

D7. The students did not know how to begin proofs. 

Moore further categorized the above into three types in terms of the following 

factors: (a) concept understanding; (b) mathematical language and notation; and (c) 

getting started on a proof.  He related D1, D2, D3, D4, and D5 to (a) concept 

understanding, D6 to (b) concept understanding, and D7 to (c) getting started on a proof.  

In addition, he pointed out that students’ perceptions of mathematics and proof might 

affect their proof-writing performances negatively: (i) view mathematics as 

computations and symbol manipulations; (ii) view proof as procedures; and (iii) view 

proof as explanation without rigor.    

The following are the correspondences between the factors in the above sources 

and the aspects from which this study views proof construction. 
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Affect and Beliefs: This aspect corresponds to students’ views of mathematics 

and poof that Moore mentioned. 

Background knowledge: This covers D1, D2, D3, and D6. D1 is about students’ 

lack of knowledge of the definitions of concepts.  D2 is about students’ problems with 

understanding concepts and theorems, which results in their lack of knowledge of those 

concepts and theorems. D3 is about students’ inabilities to express their concept images, 

which can be considered as their lack of knowledge.  D6 is about students’ lack of 

knowledge in notation and language.   

Reasoning activity: This covers D4, D5 and D7.  D4 is about students’ ability to 

generate an example, which involves exploring, which is an operation practiced in 

reasoning process.  D5 is about students’ inability to use the definition of a concept to 

advance their reasoning process.  D7 is about students’ inability to advance their 

reasoning process at the beginning stage of proof construction.   

Different researchers have examined the sources of students’ difficulties from 

different angles.  It seems most of the methods adopted in their studies were deriving 

their findings about students’ difficulties directly from students’ proofs.  There seems to 

be little research that first set a framework for modeling proof construction and then 

examined students’ proofs in light of the framework.   

2.5 Pedagogical Approaches 

Proof construction is difficult not only for students to learn but also for 

instructors to teach.  Several researchers attributed students’ inability to prove to the 

prior instruction they received.  Epp (2003) indicated the instruction with too much 

emphasis on general principles or concrete problem-solving strategies might impede 
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students from developing their logical, deductive, and formal reasoning-skill.  It is 

conceivable that if students are accustomed to mathematics learning which focuses on 

problem solving techniques, they might get disturbed when they face proofs for 

understanding and constructing.  According to Davis (1998, cited in Dreyfus, 2002, 

p.28): 

Most mathematics instruction, from elementary school through college courses, 

teaches what might be called rituals: ‘do this, then do this, then do this …’ and 

Teachers … will typically accept the correctly performed ritual as enough 

success for the time being.  

This approach might mislead students to form a wrong view that mathematics is 

learning ritual while impeding students from rigorous, deductive, logical, and formal 

thinking in proof construction.  Moreover, Knuth (2002) claimed secondary 

mathematics teachers’ perceptions towards proofs and their knowledge of proofs might 

affect their students’ proving skills.  Through interviewing 17 secondary mathematics 

teachers, Knuth observed that all of them accepted their students’ empirical arguments.  

This sort of approach might enhance students’ wrong perspectives on proof 

construction that showing some examples would be enough to prove a statement.  Harel 

and Sowder (1998) warned that if instructors guided their students to get accustomed to 

justifying a statement based on some examples, they might enhance their students’ 

empirical schemes and prevent their students from developing analytical proof scheme.  

As Dreyfus (2002) pointed out: 
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Students have been taught the products of the activity of scores of 

mathematicians in their final form, but they have not gained insight into the 

process that has led mathematicians to create these products (p.28). 

To enhance students’ conception of proof, Harel (2001) advocated the DNR 

system – a system of pedagogical principles consisting of Duality, Necessity, and 

Repeated-reasoning.  According to Harel (2000), the duality principle means that 

students’ ways of thinking and their ways of understanding have mutual influences on 

each other.  Students need help with the ways of thinking to enhance their ways of 

understanding and vice versa.  By “ways of understanding,” Harel referred to the ways 

of specific mathematical actions taken in interpreting concepts, solving problems, and 

justifying an argument.  By “ways of thinking,” he meant the ways that governed ways 

of understanding such as beliefs, perceptions, or views of mathematics, problem solving 

approaches, and proof schemes.  The necessity principle means that students understand 

a learning concept by having an intellectual need for the concept and by eliciting the 

concept from the solution to the problem involving the concept.  By “an intellectual 

need,”  Harel referred to a desire to search for a resolution to a problem that a student’s 

existing knowledge cannot cope with.  The repeated-reasoning principle means students 

must practice reasoning while applying the duality and the necessity principles so that 

they can make their ways of thinking and ways of understanding autonomous and 

spontaneous.  

Harel (2001) suggested that teachers should (1) “form instructional goals in 

terms of ways of thinking (p.6),” (2) “devise and use appropriate instructional activities 

through which students can build ways of understanding that can potentially lead the 
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construction of desirable ways of thinking (p. 6).”  Harel stressed teachers should pay 

attention to “how students should come to know facts and procedures and how they 

should practice those facts and procedures” rather than “whether they need to remember 

facts or master procedures (p. 9).”  Harel claimed the DNR-based instruction might help 

students develop their transformational proof schemes.  Transformational proof scheme 

is an analytic proof scheme which enables students to reach conclusions through logical 

deduction while generalizing an idea, applying mental operations that are goal oriented, 

and transforming images.                                                                                                                                                                                                                                                

Students’ ways of thinking can be fostered and enhanced through problem 

solving.  Smith (2006) hypothesized the problem-based structure of the courses may be 

more effective than the traditional lecture-based teaching in helping students improve 

their proving-strategies.  In her research project, she recruited six students from a 

problem-based number theory course and conducted a task-based interview session.  In 

the session, she had the student-participants prove some number theory statements. She 

observed that (1) the participants showed flexibility in shifting the four phases for 

proving processes: using initial strategies, constructing informal arguments, 

constructing a formal proof, and validating on the final argument, and (2) they showed 

a variety of proving strategies while the literature often discussed students’ static 

tendencies for proving. 

 Ball, Hoyles, Jahnke, and Movshovitz-Hadar (2002) noted more environmental 

factors for helping students more effectively learn proof construction.  They claimed 

that three areas must be considered with regard to the teaching of proof: (1) the role and 

the function of proof; (2) the gradual processes and complexities involved in proving; 
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and (3) effective teaching strategies.  Their research led to the following three domains 

of work as the factors for teachers to help their students learn mathematical reasoning: 

(1) selecting mathematical tasks; (2) making mathematical knowledge public and 

scaffolding the use of language and knowledge; (3) creating positive learning 

environment in a classroom.     

This study considers analytical proof scheme to be an ideal proof scheme 

students should develop.  Different researchers suggested different pedagogical 

approaches to help students with analytical proof scheme.  Most of them provided a 

teaching method but did not show specifically what should be taught.  There seems to 

be a need for the study that explores specific and practical knowledge that helps 

students advance a reasoning process based on logical deduction.    

2.6 Summary 

Different researchers have examined students’ difficulties with proving from 

different angles.  Much of the research illuminated a particular aspect of proof 

construction: mathematical language (Finlow-Bates, 1994; Thurston, 1994; Selden & 

Selden, 1995; Dreyfus, 1999); students’ understanding and usage of definitions (Tall, 

1991; Vinner 1991; Frid, 1994; Moore, 1994; Edward & Wards, 2004; Zaslavsky & 

Shir, 2005; Knapp, 2006; Alcock, 2007; Selden & Selden, 2007; Edward & Wards, 

2008; Paramerswaran, 2010); logic (Weber, 2002; Stylianides & Stylianides, 2007; 

Selden & Selden, 2009; Savic, 2011); informal representations (Weber & Alcock, 2004; 

Weber & Alcock, 2009; Lew, Mejia-Ramos, & Weber, 2013); and proving strategies 

(Weber, 2001).  Although some aspects of proof have been well-researched, there 

seems to be only a handful of studies that investigated various sources of student’s 
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difficulties from a comprehensive point of view (Moore, 1994; Gibson, 1998; Selden & 

Selden, 2003, Weber, 2006).  In addition, in my knowledge, few studies have discussed 

sources of students’ difficulties through various problems from multiple mathematical 

subjects.   

Logical deduction is a central aspect of proof construction.  Harel and Sowder 

(1998) stressed the necessity of fostering students’ skills for logical deduction.  With 

several studies related to proof schemes (Harel & Sowder, 2007; Stylianou, Chae,& 

Blanton, 2006; Zaslabsky & Shir, 2005; Weber & Alcock, 2004), many studies have not 

explored the knowledge for enhancing students’ skills for logical deduction.  Weber and 

Alcock (2004) indicated that both syntactic and semantic approaches must concur to 

construct a successful proof based on logical deduction.  Moreover, Ayalon and Even 

(2008) claimed that views and approaches to deductive reasoning should be given more 

attention.  There is a strong need and demand for providing an effective way to help 

students practice both syntactic and semantic approaches.     

CadwalladerOlsker, Miller, and Hartmann (2013) attributed a source of students’ 

difficulties with proving to the students’ incomplete understanding of what makes a 

mathematical proof.  Knuth (2002) suggested how to view the nature of proof and what 

constitutes proofs should be clarified.  It is important to describe a view of proof 

construction in the form of a model.  Kieran (1998) suggested both empirical and 

theoretical research should involve explicitly formulated models to describe observed 

phenomena.  Papaleontiou-Louca (2003) stressed the importance of providing 

metacognition (knowledge of one’s processes and cognitive states) by modeling task 

completion for students’ effective learning.  Selden and Selden (2007) created a proof 
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framework as an aid of constructing a proof, focusing on the way to produce the 

formal-rhetorical part.  However, their method may not be effective in helping students 

write a proof from the top down.  There seems to be room for exploring the way to help 

students write a proof from the top down.        

Considering the existing gaps in the literature, this study created a framework 

for modeling the structure of proof construction, which can (a) encompass the aspects, 

factors, patterns, and features involved in cognitive processes in proof construction 

across mathematical subjects, (b) explain sources of students’ difficulties with proving 

in a clear, organized, and systematic way from a comprehensive perspective, and (c) 

help students enhance their skills for logical deduction by providing metacognitive and 

methodological knowledge.  This study addresses the following research questions: (1) 

What is a suitable model for characterizing the structure of proof construction?  (2) 

What difficulties do students have with proof construction and what are the sources of 

their difficulties in light of the structure of proof construction?  (3) How useful is the 

model of the structure of proof construction?  (4) What pedagogical suggestions can be 

derived to help students with proof construction?   
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Chapter 3:  Theoretical Framework 

3.1 Introduction 

In order to examine students’ difficulties with proof construction, it was 

necessary and important to have a framework for analyzing students’ difficulties in an 

organized and systematic way.  Brown (1998) suggested that the results should be 

analyzed with theorization.  Kieran (1998) stressed the significance of involving a 

model for describing results in order to better understand the observed phenomena.  

CadwalladerOlsker, Miller, and Hartmann (2013) indicated students’ wrong 

perspectives on proofs may cause their difficulties with proof construction.  Knuth 

(2002) stressed the importance of clarifying the nature and components of proofs so that 

they might learn proof construction effectively.  In my knowledge, a suitable 

framework for examining students’ difficulties in light of the structure of proof 

construction was lacking in the literature.  Therefore, it was significant for this research 

to build a framework for providing a comprehensive view that can encompass the 

aspects, factors, patterns, and features of proof construction.   

The following theoretical perspectives led me to the creation of a model.  Harel 

and Sowder (1998) discussed three major types of proof schemes: external, empirical, 

and analytical.  Among the three types of proof schemes, this study considered 

analytical proof scheme to be the desired proof scheme that students should acquire and 

develop.  The framework was created so that it could agree with the characteristics of 

analytical proof scheme: setting a goal for subsequent activities; symbolizing definition; 

gaining new information; and linking new information to the initial problem.  Weber 

and Alcock (2004) discussed two major ways to realize analytical proof scheme: 
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syntactic and semantics approaches.  The framework was designed to be metacognitive 

knowledge for enabling students to practice syntactic and semantic approaches.  The 

exploration of a framework clarified types of cognitive actions contributing to syntactic 

and semantic approaches.      

In this chapter, I will present a model of the structure of proof construction and 

a framework for analyzing students’ proofs.  The analysis framework was built based 

on the model of the structure of proof construction.  I will describe the process of the 

creation of the model, detail the contents of the model, introduce types of proofs, and 

discuss inter-rater reliability for the model. 

3.2 Creation of a Model of the Structure of Proof Construction 

In order to create a model of the structure of proof construction, the think-aloud 

method was applied to the researcher’s cognitive processes in his proving activities.  

According to Charters (2003), think-aloud is “a research method, in which participants 

speak aloud any words in their mind as they complete a task (p. 68)”.  Think-aloud is 

considered to be a valid and effective research method to understand individual’s 

thinking process (Van Someren, Barnard, & Snadberg, 1994; Olson, Duffy, & Mack, 

1984).  This study aimed to examine students’ difficulties with proof construction 

across mathematical subjects.  I proved 40 theorems, propositions, and lemmas 

collected from a variety of mathematical subjects such as undergraduate Analysis, 

Algebra, and Topology, Discrete Mathematics, and Calculus.   

Through self-monitoring, I investigated and categorized possible aspects and 

factors that might be involved in cognitive processes in proof construction.  In 

particular, I noted the operations used to generate a new statement from the previous 
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statement in a proof.  Those operations were carefully observed, described, abstracted, 

and organized to model the structure of the reasoning activity.  This study will use the 

expression “the reasoning activity” to represent one’s cognitive actions for advancing a 

reasoning process in proof construction.  While going through 40 theorems and 

propositions, the model was adjusted and refined until it explained every operation used 

to generate a statement from the previous one for every step in each of those proofs.  As 

a result,  a framework for modeling the structure of the reasoning process was created.  

The model consisted of four types of operations for advancing a reasoning process 

(rephrasing an object, combining objects, creating a cue, and exploring and checking).  

Considering the importance of a start of proof construction, two stages were set in the 

framework (the opening stage and the body construction stage).  The reasoning activity 

focuses on how a reasoning process is advanced in proof construction.  The operations 

used in the reasoning activity were considered to be the tools for constructing a proof.  

Then, the contents or the material on which the operations work can be another 

important aspect that decides the degree of success in students’ performances on proof 

construction.  Those are the knowledge of concepts, definitions, notations, properties, 

facts, rules, and techniques.  This study uses the expression “the background knowledge” 

to represent the knowledge students are required to be equipped with in order to solve a 

given proving problem.   

In order to view proof construction in a comprehensive way, besides the aspects 

of the reasoning activity and the background knowledge, some psychological aspects 

were also considered.  Harel and Sowder (2007, p. 4) asserted “a single factor usually is 

not sufficient to account for students’ behaviors with proof.”  Furinghetti and Morselli 
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(2009) observed that mathematical thinking was not dominated by purely cognitive 

behavior but might be influenced by another factor such as affect.  In addition to the 

aspects of the reasoning activity and the background knowledge, the model was set to 

include two other psychological aspects: mental attitudes (tenacity, persistency, 

flexibility, carefulness, alertness, and precision); and affect and beliefs (emotions, self-

confidence, and beliefs toward logic, proofs, and mathematics).  The table 3.1 shows 

the aspects of proof construction. 

Table 3.1 

Aspects of Proof Construction 

Reasoning Activity (See Table 3.2.) 
Main Rephrasing an object 

Combining objects 

Creating a cue 
Supporting Checking and Exploring 

Background Knowledge 

 definitions, properties, theorems, propositions, mathematical laws, and 

problem solving techniques  

Mental Attitudes 

 Tenacity (persistency and patience) 

Flexibility 

Carefulness (alertness and precision) 

Affect and Beliefs 

 Affect (emotions, moods, feelings, self-confidence) 

 Beliefs (schemes, beliefs toward mathematics, proof, and logic) 

 

3.3 Model of the Structure of Proof Construction 

This section first introduces and defines terms used in the model of the structure 

of proof construction.  Then, it presents a model of the structure of the reasoning 

activity (Table 3.2) and a comprehensive view of proof construction in a 3D figure 

(Figure 3.1) with detailed explanation.   
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3.3. 1 Terms 

Mathematical language 

I referred to mathematical language that is fine-grained enough to help students 

make a clear distinction from everyday language, to advance a reasoning process 

rigorously, and convince others without leaving any ambiguity as mathematical 

language.  The definition of a concept is a representative mathematical language.  For 

example, the word “limit” in the statement “There is a speed limit”  is everyday 

language.  The statement “The limit of )(xf as x  approaches 1 is 2” may remind some 

students who have not learned Calculus of the everyday language “limit.” Although the 

“limit” in the statement is mathematical language, the difference between the everyday 

language and the mathematical language should not be clear to those students until they 

learn the definition of the mathematical concept “limit.” In constructing a proof, 

students are able to advance a reasoning process rigorously when they rephrase the 

statement “The limit of )(xf as x  approaches 1 is 2” with the mathematical language 

“For every 0 , there exists a 0 such that if  10 x , then  2)(xf .”   

For another example, the statement of “ YXxf :)( is continuous” is 

mathematical language.  However, it may be “coarse” for topology students to advance 

a reasoning argument in constructing a proof.  When they rephrase the statement by 

applying the definition, which is “for an open set V in Y, )(1 Vf 
is open in X,” they can 

make the given statement a “fine-grained” enough to further advance a reasoning 

process.  I called this type of rephrasing “translation of an object into mathematical 

language.”  Rephrasing a statement containing a mathematical concept by applying the 

definition of the concept is the most representative example of translation of an object 
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into mathematical language.   A statement gains a power that enables students to 

advance a reasoning process rigorously when it is translated into mathematical 

language.     

I made a distinction between translating an object into mathematical language 

and unpacking, which Selden and Selden (1995) introduced.  They gave the following 

example for “unpacking.”  “A function is continuous whenever it is differentiable” is 

unpacked into “For all functions f , if f  is differentiable, then f  is continuous.”  After 

“unpacking” the informal statement, the new statement still contains the words 

“differentiable” and “continuous.”  The unpacked statement “a function is continuous 

whenever it is differentiable” can be still “coarse.” It may not be “fine-grained” enough 

to advance a reasoning process rigorously because the mathematical terms 

“differentiable” and “continuous” still remain in the new statement.  In order to further 

advance a reasoning process, the term “continuous” may need to be translated into a 

“finer” object: )()(lim afxf
ax




 for all Xa .”  Similarly, the term “differentiable” 

may need to be translated into “
*

*

*

* )()(
lim

)()(
lim

** xx

xfxf

xx

xfxf

xxxx 







 

for all Xxx *,  

with 
*xx  .”   

The characteristic of the operation of translating an object into mathematical 

language is that the mathematical language contains variables.  Variables are crucial 

and indispensable elements of mathematical language.  Variables serve as fundamental 

elements for making a mathematical argument formal and rigorous.  In the above 

example that Selden and Selden gave, the new statement obtained by “unpacking” did 

not include any variables.  In my study, their translation is considered to be “rephrasing 
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an object through interpretation,”  but translation of an object into mathematical 

language is not just rephrasing an object.  The operation of translating an object into 

mathematical language infuses a motive power into the original object so that the new 

object may enable students to develop a further argument.   

There is another difference between ‘unpacking” and “translation of an object 

into mathematical language.”  A statement “a vector u and a vector v are orthogonal” 

can be translated into mathematical language “ u  0v .”  However, this translation 

may not be considered to be “unpacking” because the new object does not involve any 

logical terms.  For another example, students may be asked to find the dimensions of 

the rectangle with the area 15 
2cm  such that its length is 2 cm greater than its width.  

The sentence can be translated into the following mathematical language: “ 15lw ” 

and “ 2 wl .”  However, this may not be considered to be “unpacking” because they 

do not involve logical terms.  “Translating into mathematical language” includes 

“unpacking,” but not vice versa.  For these reasons, I will use the expression 

“translation of an object into mathematical language” throughout this study instead of 

using “unpacking.”  

There may be a confusion in the way that the operation is named “translating an 

object into mathematical language.”  For example, although the statement “a function 

YXf : is continuous” is mathematical language, it is not considered to be 

mathematical language because it may be still too coarse for students to further 

advance their reasoning arguments.  In order to avoid the confusion, this study uses 

italicized “mathematical language” to represent mathematical language that is “fine-

grained” enough to allow students to further develop their arguments.   
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Ignition phrases 

In my study, I called the phrase  “for every …,” “for any …,”  or “for all ….” an 

ignition phrase.   The phrase “if …”  can be an ignition phrase when it is rephrased with 

“for every …,” “for any …,”  or “for all ….” I also considered “for some …” to be an 

ignition phrase.   The phrase “There exists ….” can be an ignition phrase when it is 

rephrased with “for some ….”  Ignition phrases can be the marks from which students 

can derive and set a variable in the process of proof construction.  However, all ignition 

phrases are not useful in deriving and setting a variable.  I made a distinction between 

an ignition phrase and an ignition phrase.  I called the ignition phrase  from which a 

variable must be necessarily derived and set for advancing a reasoning process “an 

ignition phrase.”   In the above example “for an open set V in Y, if it is given in the 

conclusion of a given statement, )(1 Vf 
is open in X,” the phrase “for an open set V” is 

an ignition phrase if it is in the mathematical language for the conclusion of a given 

statement.  More specifically, if a topology students is asked to prove  “ YXxf :)( is 

continuous,” the student can start a proof by setting a variable “Suppose V is an open 

set in X.”   

3.3.2 Structure of Reasoning Activity 

 There are two stages in which the reasoning activity occurs: opening stage and 

body construction stage.  There are four types of operations that compose the reasoning 

activities: rephrasing an object; combining objects; creating a cue; and checking and 

exploring.   This section first describes the model of the structure of the reasoning 

activity (Table 3.2) and detail the stages and the operations.   
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Table 3.2  

Structure of the Reasoning Activity 

 
Reasoning 

Activity 

in Proof 

Construction 

  ACTIONS MAIN SUPPORTING 

Roles of the Actions Transforming objects Igniting processes Supporting  
a proving argument 

 

                 
STAGES 

  

          Operations 
  

Steps 

R 

Rephrasing 
Objects 

CO 

Combini
ng 

Objects 

C 

Creating a Cue 

Ch 

Checking 
(observe, 

review, 

reflect, 
test, adjust, 

modify, 

correct) 

Ex 

Exploring 
(search, 

try, 

illustrate, 
experi- 

mennt, 

intuit) 

R 

1 

R 

2 

R 

3 

CO(S,T)

R 

C 

1 

C 

2 

C 

3 

C

4 

C

5 

 
 

 

 

 

Opening 
Stage 

Z: Choose a major 
proving strategy. 

Decide which proving strategy to use, a direct proof, an 
indirect proof, or a mathematical induction.  

  

X:  Set a goal. Given  (Find the conclusion of the given statement)   

Y: Make the goal 

clearer. 

R1, R2, R3 (Translate the goal into mathematical 

language. For a contrapositive case, negate the given 

statement in mathematical language.) 

  

P:  Make sure of the   
hypotheses. 

Given  (Find all the hypotheses of the given statement 
and translate them into mathematical language if 

necessary.) 

  

S: Set a variable C1, C2, C3, C4, C5 or given  (S can be the same as P.) 

In most cases, this step corresponds to Step 1. 
  

 

 
Body 

Constructio

n 
Stage 

Step 1  

 

    

Step 2  

 

    

…      

Conclusion  
 

    

                                        
Actions 

Main Actions The operations applied to a step to generate the next step, whose outcome  must be explicitly 
expressed to convince others 

Supporting Actions The operations to produce side work, whose outcome does not necessarily have to appear in the proof 

to convince others 

   

Rephrasing an object 

R1 Rephrasing an object by translating a concept, a theorem, or a property of concept into mathematical language mainly 

through applying its definition. 

R2 Rephrasing an object through formal interpretation, informal interpretation, or common sense. 

R3 Rephrasing an object through algebraic manipulation or  calculation, including solving an equation. 

 

Combining objects 

CO(S, T)R Connect and combine different pieces of objects (S and T) to create a new object. This action is always 

accompanied by an operation of rephrasing. 

 

Creating a cue 

C1 Set a variable. 

C2 Recall prior knowledge, including a theorem, a proposition, a property of concept, or a mathematical law. 

C3 Set some cases. 

C4 Make a claim or a new object 

C5 Consider an object. 
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The opening stage. The opening stage is a preparation stage at which students 

decide a major proving strategy (a direct proof, or a proof by contrapositive, by 

contradiction, or by mathematical induction), make the goal of the proof clearer by 

translating the conclusion of a given statement, and set a starting variable by finding an 

ignition phrase.  Here are steps that students can take in the opening stage.  Students 

first decide whether to use a direct proof or an indirect proof, then note the conclusion 

of the given statement, translate it into mathematical language, find an ignition phrase 

contained in the mathematical language, derive a starting variable from the ignition 

phrase, set the starting variable to start the body construction stage.  If there is no 

ignition phrase in the mathematical language for the conclusion, students translate a 

hypothesis into mathematical language to derive a starting variable.  In some proofs, 

students do not need to derive a starting variable because it is already given in the 

problem.  Although the work in the opening stage is useful, the work does not 

necessarily have to be expressed to convince others.    

The body construction stage.  The body construction stage is the main part of 

a proof, in which students advance their reasoning process by making good use of the 

four operations (rephrasing an object, combining objects, creating a cue, and checking 

and exploring).      

Cognitive actions.  The first row in the top table shows there are two main 

actions to be taken in proof construction: (a) main actions and (b) supporting actions.  

The difference between them is the necessity of explicitly writing the work obtained 

through the actions in convincing others of the validity of the proving argument.  

Students’ work that is performed through the main actions must be explicitly written 
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out while students’ work done through the supporting actions do not so that students 

can convince others of the validity of their proving arguments.  The former actions are 

the tools directly used to generate a statement for a reasoning process while the latter 

actions are the tools used to explore and prepare for an idea or a thought to advance a 

reasoning process.  

The main actions have two roles.  One is transforming an object and the other is 

igniting a reasoning process.  Transforming an object means changing an expression. 

An object can be a word, a phrase, and a sentence.  “Igniting a process” means sparking 

a process or triggering an argument.  The main actions include three types of 

operations: rephrasing an object, combining objects, and creating a cue.  Rephrasing 

an object and combining objects play a role to transform an object.  Creating a cue 

plays a role to ignite a process.  Rephrasing an object has three types: by applying 

definitions, properties, and theorems; through interpretation; and through algebraic 

manipulation.  Creating a cue has 5 types: setting a variable; recalling and applying 

prior knowledge; setting some cases; making a claim or creating a new object; and 

considering an object. Those operations are direct cognitive actions taken to generate 

the next step from the previous step.  Among those the operations (rephrasing an 

object; combining objects; and creating a cue), rephrasing an object is considered to be 

the primary operation.  Combining objects is the next level of operation, which students 

can try when the operation of rephrasing an object does not work for advancing a 

reasoning process.  Creating a cue is the highest level of operation, which students can 

try when neither rephrasing an object nor combining objects work in advancing a 
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reasoning process.  In a sense, creating a cue can be considered as the most difficult 

operation of all those three operations.     

The supporting actions are the cognitive actions that support and work behind 

the main actions.  The supporting actions include checking and exploring.  For example, 

when students have impasses, they may check, adjust, modify, evaluate, and correct 

what they have done or explore a method to overcome the difficulty through using a 

diagram, creating an example, intuiting, or doing trial and error.  The word “supporting” 

does not mean “less important.”  The function of supporting actions is as important  as 

that of main actions.  In having others evaluate the proof, the work performed through 

main actions must be explicitly written out while the work performed through 

supporting actions does not necessarily have to be stated. 

Illustrations of the reasoning activity 

 In order to give concrete examples of the components of the reasoning activity,  

the analysis of a proof problem from Analysis is presented.   

Example (Analysis) 

 

 Prove that if 0)(' xf  for all x in an interval ),( ba , then )(xf is constant on

),( ba , using the Mean Value Theorem. 

 

In the opening stage, first decide which proving strategy to use.  In this case, 

choose a direct proof.  Then, note the conclusion of the given statement .  The goal of 

this proof is to show that )(xf is constant on ),( ba .  Then, translate the conclusion into 

mathematical language.  By doing that, students can make the goal of the proof clearer 

and can prepare for setting a starting variable.  The mathematical language for the 

conclusion “ )(xf is constant on ),( ba ” is “ for ),(, 21 baxx  ” by applying the definition 
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of a function being constant (R1).  Then, find an ignition phrase “for ),(, 21 baxx  ” to 

derive starting variables.  An ignition phrase is a phrase containing “for ~” or “if ~,” 

which plays an important role to help students find and set a variable.  Then, start the 

body construction stage with “Let 21 , xx  be arbitrary numbers found in ),( ba  with

21 xx  ” (C1).  Call this “object 1.”  An “object” means a statement or sentence for 

each step.  To advance a reasoning process, first apply rephrasing an object.  However, 

there is no way to rephrase it this time.  Then, try combining objects.  In order to 

combine objects, look for a given condition.  Since this problem requires the use of the 

Mean Value Theorem, recall the Mean Value Theorem and translate it into 

mathematical language “Suppose that a function )(xf  is continuous on ],[  and 

differentiable on ),(  .  Then, there must exist a value ),( c such that










)()(
)('

ff
cf ” (R1).  Call this “object 2.”  Then, combine the objects 1 and 2.  

To combine different objects, find a connection between them.  The object 1 states “Let 

),(, 21 baxx   with 21 xx  .”  The object 2 states “Suppose that a function )(xf  is 

continuous on ],[  and differentiable on ),(  .  Then, there must exist a value 

),( c such that









)()(
)('

ff
cf ”.  In order to apply the theorem to the given 

problem, look for the variables in the given problem that correspond to   and  in the 

theorem.  Then, let 1x and 2x (C1).  Then, check the validity of the claim by 

noting 0)(' xf on ),( ba (CE).  By combining the given condition “ 0)(' xf on ),( ba ” 

and the object1 “ ),(, 21 baxx  ,” obtain 0)(' xf on ],[ 21 xx  (CO).  Call this “object 4.”  
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Moreover, rephrase “ 0)(' xf on ],[ 21 xx ” with “ )(xf is differentiable on ],[ 21 xx ” 

through formal interpretation (R2).  Furthermore, by recalling the fact that 

differentiability guarantees continuity, apply that to “ )(xf is differentiable on ],[ 21 xx ” 

to draw “ )(xf  is continuous on ],[ 21 xx . (R2)”   Now, by the Mean Value Theorem, 

there exists a value ),( 21 xxc such that
12

12 )()(
)('

xx

xfxf
cf




 .  Call this “object 5.”  

Since rephrasing an object does not work on the object 5, try combining objects.  Look 

for the information still available to find  the hypothesis “ 0)(' xf for all x in an 

interval ),( ba .” Then, combine the object 5 and the hypothesis to obtain

12

12 )()(
)('0

xx

xfxf
cf




  (CO).  Since 21 xx  , which means 012  xx , multiply by 

12 xx  to both sides to obtain )()( 21 xfxf  for ),(, 21 baxx   through algebraic 

manipulation (R3).   

 The following table (Table 3.3) illustrates a possible proof for the above 

problem with each step being coded based on the framework table (See Table 3.2).   

Table 3.3 

Analysis Table Type A (Example 1) 

 The Opening Stage Operatio

ns 

X Show )(xf  is constant on ),( ba .  

Y Show that for every 1x , 2x  ),( ba with 21 xx  , )()( 21 xfxf   R1 

P1  )(' xf = 0 on (a, b). Given 

P2 The Mean Value Theorem says “Suppose )(xf is continuous on 

],[ qp and differentiable on ),( qp . Then, there exists a number 

),( qpc such that
pq

pfqf
cf






)()(
)(' .” 

R1 
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S Let 1x , 2x  ),( ba with 21 xx  . C1 

 The Body Construction Stage  

1 Let 1x , 2x  ),( ba with 21 xx  . C1 

2 Note )(xf is differentiable on ],[ 21 xx  because )(' xf = 0 on ),( ba  

and ),(],[ 21 baxx  . 

R2 

3 Recall the theorem that says that differentiability implies 

continuity. 

C2 

4 Then, )(xf is continuous on ],[ 21 xx . CO(2,3)R2 

5 Note )(xf is differentiable on ),( 21 xx .  R2 

6 
Then, there exists ),( 21 xxc such that

12

12 )()(
)('

xx

xfxf
cf




 . 

CO 

(P2, 4,5) 

R1 

7 
Then, 0

)()(
)('

12

12 





xx

xfxf
cf because )(' xf = 0 on (a, b) and

),(),( 21 baxxc  . 

CO 

(6, P1) 

R2 

8 Then, )()( 21 xfxf  because 21 xx  . R3 

9 Therefore, for every 1x , 2x  ),( ba with 21 xx  , )()( 21 xfxf  . CO(1.8)R2 

 

 

The letter X in the first column stands for the conclusion of the give statement.  

The letter Y stands for the mathematical language that students obtain by translating 

the conclusion of the given statement.  P1 and P2 stand for the given hypotheses.  The 

numbers in the first column show the order of the steps to be taken in advancing a 

reasoning process.  The order of the steps shown above does not have to be the only 

way for advancing a reasoning process for the proof.  The second column shows a 

statement for each step.  The third column shows the codes for the operations that are 

used to obtain the corresponding steps.   

3.3.3 Aspects of Proof Construction   

This study viewed proof construction from the following four aspects: 

reasoning activity; background knowledge; mental attitudes; and affect and emotions.  

The previous section detailed the structure of the reasoning activity.  This section 

details the other aspects.   
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The second aspect, background knowledge, means the knowledge necessary for 

solving a given proving problem.  It includes definitions, notations, properties, 

theorems, lemmas, propositions, and proving techniques.  If the operations in the 

reasoning activity are compared to the tools for constructing a mathematical argument, 

background knowledge can be compared to the material that is necessary for forming 

the contents of the argument.   

While the aspects of the reasoning activity and the background knowledge more 

directly involve proof construction,  students’ psychological aspects such as mental 

attitudes and affect and beliefs should not be ignored as major aspects of proof 

construction.  The mental attitudes are the traits that everyone is required to have for a 

proving activity while the affect and beliefs are the traits that depend on each individual.   

Mental attitudes include tenacity, flexibility, and carefulness.  Tenacity is the 

source for sustaining students’ cognitive activities during proof construction.  If 

students do not have enough tenacity while proving, their proofs end at that point.  In 

the model of the structure of proof construction (Figure 1), tenacity is considered as the 

primary factor for the mental attitudes because students cannot advance their reasoning 

process without tenacity.   

The second fundamental factor for the mental attitudes is flexibility.  Flexibility 

is required for students to have in addition to tenacity especially when they have 

impasses in a proving activity.   Here, “having impasses” means “getting stuck.”  For 

example, students may apply a property of a concept and find out that it does not help 

them.  Then, they need to be flexible enough to give up the property and to try another 

property of the concept.  For another example, they may try to advance a reasoning 
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process by rephrasing an object but find out it does not work.  Then, they need to be 

flexible enough to try combining objects or creating a cue.  For another example, 

students may first try a direct proof but find out it does not help them.  Then, they need 

to be flexible enough to try an indirect proof.  Thus, flexibility is an important mental 

attitude that enables students to overcome their impasses by changing their ideas and 

trying a new idea.  In the model of the structure of proof construction (Figure 1), 

flexibility is considered as the second primary factor for the mental attitudes because 

flexibility does not occur without tenacity in proof construction. 

Carefulness and alertness are considered as the third primary mental attitudes.  

They are psychological traits that enable students to be accurate, precise, and rigorous 

in dealing with objects in their reasoning process.  In this study, they are interpreted to 

stem from flexibility but not vice versa.  In order for students to avoid making an error, 

they need to be flexible and pliable enough to stop to think or to be alert to any 

variation in a given situation.  There may be more factors for the mental attitudes.  

However, in order to avoid making the model of the structure of proof construction 

complex, only those three factors (tenacity; flexibility; and carefulness and alertness) 

are considered as the major factors for the mental attitudes.    

Affect and beliefs are psychological traits that can affect students thinking 

activities in proving.  Affect means emotions, moods, and feelings, including easiness, 

willingness, calmness, anxiety, nervousness, and fear.  For example, students may face 

an event that may greatly affect their emotions in their everyday lives, which may lower 

their thinking abilities in proving.  In another example, students’ test-anxieties may 

obstacle their proving performances.  Beliefs include perceptions and views toward 
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sense-making, proofs, mathematics, and mathematical abilities.  For example, students 

may believe that learning mathematics is a matter of memorizing and applying 

definitions and formulas, that may obstruct their deductive and logical thinking.  For 

another example, students’ lack of self-confidence may discourage them to think in 

proving.  Although affect and beliefs influence students’ proving performances, it was 

not a major focus in this study for the following reasons.  First, the former three aspects 

(reasoning activity, background knowledge, mental attitude) are more general attributes 

that can be applied to all individuals who engage in proof construction while the fourth 

aspect (affect and beliefs) depends on each individual.  Also, while the first three 

aspects influence students’ proving activities more directly and more explicitly, the 

fourth aspect influence their proving activities more indirectly and more implicitly. 

Focusing on the first three aspects, a model of the structure of proof 

construction is created in the form of a 3D figure (Figure 3.1) as an aid to make it easier 

and simpler to grasp the view of the structure of proof construction that this study 

adopted.  The fourth aspect is not described in the figure, but one may imagine it exists 

as a sphere that envelops the whole cuboid.   
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                                                                                  Goal 

                        

                                    Indirect proof                                    Combine objects. 

                         Direct proof               

                                           Create a cue. 

                                    

                    Rephrase an object.            

                                         Start of proof          
                                         

                       Set a variable.                      

                                    Make the goal of the proof clearer. 

                   Note the conclusion.                                                          

  A given statement                preparation for proving                                  

  

    

  

                      

                       

                                   

    Tenacity                                Flexibility                           definitions, concepts,  

               Carefulness/Alertness                 properties, theorems 

       notations, techniques            

                                              

Figure 3.1.  3D Model of the Structure of Proof Construction. 

In the above cuboid, the length of the vertical line segments represents the degree of one’s mental 

attitudes necessary for solving a given proof problem.  The base area represents one’s amount of 

knowledge necessary for solving the proof.  The left front lateral side represents the opening stage and 

the right front lateral side represents the body construction stage.  The line on the both lateral sides 

represents the reasoning activity. 

 

[1] Mental Attitudes  
(1) Tenacity: willingness to persist in, the source of sustaining and continuing one’s thinking activity  

(2) Flexibility: willingness to change ideas not working and to try new or different methods 

(3) Carefulness /Alertness: willingness to be cautious, precise, accurate, and watchful  in dealing with 

objects 

 

[2] Background Knowledge 

The knowledge necessary to prove a given statement, such as definitions, notations, and properties of 

concepts, theorems, propositions, and proving techniques   

 

Opening Stage 

Mental 
Attitudes 

 

Reasoning Activity 

Background 
Knowledge 

Level of 
Mental 
Attitudes 
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3D model of proof construction.  In Figure 3.1, the lateral sides of the cuboid 

represent the stages in the reasoning activity.  There are mainly two major proving 

strategies: a direct proof and an indirect proof.  The reasoning activity by a direct proof 

is expressed with the line with arrows on the front two lateral sides facing to a reader.  

The reasoning activity by an indirect proof can be expressed with a line on the two back 

lateral sides that are not visible.  The front left lateral side of the cuboid shows the 

opening stage, in which students note the conclusion of the given statement, translate it 

into mathematical language to make the goal of the proof clearer, derive a starting 

variable from an ignition phrase contained in the mathematical language for the 

conclusion of the given statement, and set a starting variable to start a proving argument.  

“Set a goal” in the opening stage means that students make sure of the goal of the proof 

by noting the conclusion of the given statement.  “Set a direction” in the opening stage 

means that students translate the conclusion of the given statement into mathematical 

language so that they can make it easier and clearer to see the direction to reach the 

goal of the proof.  “Set a variable” in the opening stage means that students set a 

variable with which to develop a proving argument.     

The right side of the front lateral sides shows the body construction stage, at 

which students advance their reasoning process by rephrasing an object, creating cue, 

and combining objects.  A point on the line drawn on the two lateral sides shows where 

a student stands in the process of proof construction.  In reality, a student’s reasoning 

process may not be expressed with a straight line as it is seen in the 3D figure.  A line 

for representing a student’s reasoning process may be curved, winding, and fluctuated 

in moving from a statement to the next statement.  The straight line shown in the 3D 
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figure represents an ideal reasoning process.  Although the operations of exploring and 

checking are not the main focus in this study, those operations may be expressed with a 

curve penetrating the inside of the cuboid of the 3D figure.   

The base area represents the amount of the knowledge that students are required 

to have in order to prove the given proof problem.  The knowledge includes definitions, 

properties, notations, theorems, propositions, and proving techniques which are 

necessary for solving the given proof problem.  In the 3D figure, a student’s knowledge 

can be expressed with the area of a base quadrilateral determined by the starting point, a 

line segment along with the left front base line segment, which may be shorter than or 

equal to the left front line segment, and a line segment along with the back diagonal 

base line segment of the cuboid, which may be again shorter than or equal to the whole 

diagonal base line segment of the cuboid.   For example, suppose that a student has as 

much knowledge as is represented by the quadrilateral determined by the starting point, 

the point shared by the line segments on the two base line segments of the cuboid, 

which may be shorter or at most equal to the base line segments of the cuboid.  Then, 

the student’s proof stops at the point on “the reasoning process line” in the body 

construction stage, which is the intersection of the “reasoning process line” and the line 

segment drawn from the upper right corner of the quadrilateral whose area represents 

the amount of the students’ knowledge.  If the area of the quadrilateral that represents 

the amount of a student’s knowledge is smaller than the base area of the cuboid, the 

student cannot reach the goal of the proof.   

The vertical distance from the point on the “reasoning process line” seen in the 

two lateral sides, at which a student stands in the process of proving, to the base of the 
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3D figure represents the degree of a student’s mental attitudes such as tenacity, 

flexibility, and carefulness.  If the degree of a student’s mental attitudes is not enough 

for the level that is required by a given proof problem, the student cannot reach the goal.  

For example, suppose that a student’s argument stops at a point on “the reasoning 

process line” which is short of the goal.  Then, the degree of the mental attitudes that 

the student has is expressed with the distance from the point at which he stands and the 

intersection point of the base line segment and the vertical line segment drawn from the 

point at which he stands.  Thus, if the degree of a student’s mental attitude is shorter 

than the one expressed with the height of the 3D figure, the student cannot reach the 

goal of the proof.   

3.4 Frameworks for Analyzing Students’ Proofs 

 Based on the model of the structure of proof construction, two types of 

frameworks were created for analyzing students’ proofs.  One was created according to 

each proof students worked on.  It contained all the steps to be taken for the proof.  It 

also included what type of operation was applied to generate a statement from the 

previous statement for each step in a proof.  Each of the operations used in the proof 

was coded.  The purpose of this framework was to detect where students have 

difficulties or impasses and which operation they fail to apply.  I called this type of 

analysis framework Type A.  The framework Type A was created for each problem 

examined in this study.  Table 3.4 is an example of the analysis framework Type A.   

Example (Topology): 

 

Let YXq : be a quotient map and ZYf : be a map. 

            Suppose qf  is continuous.  Show ZYf : is continuous. 
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Table 3.4 

Analysis Table Type A (Example 2) 

Step Statement Operation Students 

A B 

                                                 Opening Stage 

X ZYf : is continuous. Given   

Y: OTC For any open set W in Z, )(1 Wf  is open in Y.  R1   

P1: hypothesis YXq : is a quotient map. Given   

P2: hypothesis qf  is continuous. Given   

S: OSV Let W be an open set in Z.  C1   

                                         Body Construction Stage 

1 Let W be an open set in Z. C1   

2 Consider )()( 1 Wqf  . C5   

3 Note )()( 1 Wqf  = ))(( 11 Wfq  . R1   

4 Since qf  is continuous ,  

))(( 11 Wfq   is open in X.  

CO(3,P2)R1   

5 Recall the property of a quotient map. C2   

6 Since q is a quotient map,  

)(1 Wf  must be open in Y. 

CO(4,5)R1   

7 Therefore, ZYf : is continuous. R1   

 

The other type of analysis framework (Table 3.5) was created based on the 

model of the structure of proof construction.  It was built in order to identify students’ 

difficulties and possible sources of their difficulties.  I called this framework Type B.  

Moore (1994) provided seven major sources of students’ cognitive difficulties with 

proof construction.  The framework Type B helps to compare the components of 

Moore’s model and the model created in this study for finding correspondences.  The 

possible sources listed in the framework Type B covers Moore’s seven sources from 

different angles.  The correspondences are shown on the fourth column of the table 

(Table 3.5).   The framework Type B was applicable to any proof while the framework 

Type A (Table 3.4) changes according to a proof that students worked on.    
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This analysis framework Type B was converted into a framework (Table 3.6) 

through negation of its components, which turned out to be a list of the types of abilities 

and proving skills that were necessary for students to construct a successful proof.  I 

called this framework Type C.  There is no substantial difference between the 

framework Type B (Table 3.5) and the framework Type C (Table 3.6), but the former 

informs more directly of the types of students’ difficulties and the sources of their 

difficulties while the latter informs more directly of the types of students’ abilities and 

skills necessary for proof construction.   

Table 3.5 

Analysis Framework Type B 

the Opening 
Stage 

OTC 
 

unable to pay attention to the conclusion of a given statement,  
unable to translate it into mathematical language correctly  

D7 

OSV unable to set a right starting variable  D7 

Knowledge KDF Do not know definitions D1,D3 

KPR Do not know properties, related theorems, and propositions D3 

KTC Do not know a proving technique   

KNT Do not know notations of a concept D6 

Mental 

Attitudes 

MT Lack of tenacity (give up thinking halfway through)  

MC Lack of carefulness, precision, or alertness (including cases of skipping steps) D5 

MF Lack of flexibility (stick to a wrong idea or an idea that does not work without trying a 
different way)   

 

Rephrasing  

an Object 

R1 

 

Unable to rephrase through applying  definitions, properties, and theorems D1 

D2 

R2 Unable to rephrase by formal or informal interpretation  

R3 Unable  to rephrase by algebraic manipulation or computation  

Combining 

Objects 

CO Unable  to connect and combine the objects 

Unable  to use all the given conditions 

 

Creating cue C1 Unable  to set a variable for cue for advancing a reasoning process   

C2 Unable  to recall definitions, properties, theorems, propositions, mathematical laws, 
proving techniques from their prior knowledge 

 

C3 Unable  to set some cases  

C4 Unable  to make a claim  

 C5 Unable to consider an object  

Supporting 

Actions 

CH Fail to check what has been done D4 

EX Unable  to explore an idea to advance a reasoning process, do experiment, create and use 

an example, or intuit an innovative idea 

 

Beliefs and 
Emotions 

B Fail to have a sound and appropriate beliefs toward logic, proof, and mathematics. D5 

E Get  emotional factors affect proving performances.  

 

Note. The framework for identifying possible sources of students’ difficulties with 

proof construction and for showing the correspondences of Moore’s seven sources of 

students’ difficulties, 1994, p. 251-252) 

Moore’s seven sources of students’ cognitive difficulties with proof construction are as 

follows. 
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D1. The students did not know the definitions, that is, they were unable to state the 

definitions.  

D2. The students had little intuitive understanding of the concepts. 

D3. The students’ concept images were inadequate for doing the proofs. 

D4. The students were unable, or unwilling, to generate and use their own examples. 

D5. The students did not know how to use definitions to obtain the overall structure of 

proofs.  

D6. The students were unable to understand and use mathematical language and 

notation. 

D7. The students did not know how to begin proofs. 

Table 3.6 

Analysis Framework Type C 

Manage the  

Opening 

Stage Well 

OTC note the conclusion of the given statement and translate it into 

mathematical language correctly  

OSV Set a right starting variable  

Have Solid 

Background  

Knowledge 

KDF Know definitions 

KPR Know properties and theorems 

KST Know proving or solving techniques  

KNT Know the notations 

Have Positive 

Mental 

Attitudes 

MT Have Tenacity  

MC Have Carefulness and Alertness 

MF Have Flexibility   

Rephrase an 

Object 

R1 Rephrase an object through applying definition of a concept 

R2 Rephrase an object through formal or informal interpretation 

R3 Rephrase an object through algebraic manipulation or computation 

Combine 

Objects 

CO Connect and combine objects 

Use all the given conditions 

Create a Cue C1 Set a variable  

C2 Recall definitions, properties, theorems, lemmas, techniques from 

their prior knowledge 

C3 Set some cases 

C4 Make a claim 

C5 Consider an object 

Practice 

Supporting 

Actions 

EX Explore an idea to advance a reasoning process, do experiment, 

create and use an example, intuit an innovative idea 

CH Check what has been done. 

 

Note. The framework for showing the abilities and skills necessary for proof 

construction. 
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3.5 Types of Proofs 

In the process of creation of the structure of proof construction, proofs were 

classified into three types according to the ways to manage the opening stages, more 

specifically, the ways to set a starting variable.  For the first type, students derive a 

starting variable from an ignition phrase in the mathematical language for the 

conclusion of the given statement.  For the second type, students derive a starting 

variable from an ignition phrase in the mathematical language for a hypothesis of the 

given statement.  A proof by contradiction belongs to this type.  A proof that requires 

students to construct an object seems to belong to this type.  The Tube Lemma was such 

an example, in which students are asked to construct an open set that satisfies certain 

conditions.  For the third type, students do not have to derive a starting variable and can 

directly work on the conclusion of the given statement.  Mathematical induction and 

proofs of trigonometric identities belong to this type.     

3.5.1 Examples of Types of Proofs 

In the following pages, some examples for each type of proofs are presented 

(Tables 3.7 - 3.13).  Those proofs were collected from a variety of  mathematical 

subjects: Algebra (Table 3.7), Analysis (Table 3.8, 12), Topology (3.9, 10, 11), Discrete 

Mathematics (Table 3.13).  The first three examples (Table 3.7, 8, 9) belong to the first 

type, in which students derive a starting variable from the conclusion. The next two 

examples (Table 3.10, 11) belong to the second type, in which students are required to 

derive a starting variable from the hypothesis.  The remaining two examples (Table 

3.12, 13) belong to the third type, in which students are not required to set a variable, 

and can start to directly work on the variables provided in the conclusion of the given 
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statement.  To show the types of proofs do not depend on mathematical subjects, some 

proofs from a variety of mathematical subjects are presented for each type of proof.   

 The table below (Table 3.7) is an example of the proofs belonging to the first 

type, in which students derive a starting variable from an ignition phrase in the 

mathematical language for the conclusion of the given statement.  The following is the 

question of the problem. 

Example (Algebra) 

 

Suppose that is cyclic.  Prove that G is abelian. 

Table 3.7 

Example of Type I (1) 

 Opening Stage Operation 

X Show G is abelian.   

Y Show that for any , .  R1 

P1 is cyclic. Given 

P2  for some . R1 

S Suppose . C1 

 Body Construction Stage  

1 Suppose .  C1 

2 Note that each of is in some coset. C2 

3 Then, and for some for some

 

CO(2, P2)R2 

4 Consider . C5 

5 Then,  CO(3,4)R3 

6 Therefore, for any , . R2 

7 Thus, G is abelian. R1 

 

The table below (Table 3.8) shows another representative example of Type I, 

which is from Analysis.  Students derive a starting variable from the ignition phrase in 

the mathematical language for the conclusion of the given statement.  The question is 

the following.   

)(/ GZG

Ghg , hggh 

)(/ GZG

)()(/ GxZGZG  Gx

Ghg ,

Ghg ,

Ghg ,

axg n bxh m )(, GZba 

Zmn ,

gh

hgabxxbaxabxbaxxgh nmnmmnmn  

Ghg , hggh 
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Example (Analysis) 

 

Suppose each of  and  is a convergent sequence such that 

  and .  Prove . 

Table 3.8 

Example of Type I (2) 

 Opening Stage  

X Prove . Given 

Y Show that for every , there exists an   

such that for every  , .  

R1 

P1  Given 

P2  Given 

S Suppose . C1 

 Body Construction Stage  

1 Suppose . C1 

2 Since , there exists an such that  

for every , . 

CO(P1,1)R1 

3 Since , there exists an such that for 

every , . 

CO(P2,1)R1 

4 Let . C1 

5 Consider . C5 

6 Note . R3 

7 Recall the triangle inequality. C2 

8 Then, . CO(6,7)R1 

9 Note that for every ,  . CO(1,2,3)R3 

10 Thus, for every , there exists an such that 

for every , . 

CO(8,9)R2 

11 Therefore, . R1 

 

ns nt

Lsn
n




lim Mtn
n




lim MLts nn
n




)(lim

MLts nn
n




)(lim

0  ZN

Nn   )()( MLts nn

Lsn
n




lim

Mtn
n




lim

0

0

Lsn
n




lim ZN1

1Nn 
2

)(


 Lsn

Mtn
n




lim ZN2

2Nn 
2

)(


 Ltn

 21,max NNN 

)()( MLts nn 

)()()()( MtLsMLts nnnn 

MtLsMtLs nnnn  )()(

Nn   MtLs nn

0  ZN

Nn   )()( MLts nn

MLts nn
n




)(lim



66 
 

 The next example (Table 3.9) is another example of Type I, which is from 

Topology.  In this case, students derive more than one variable from the ignition phrase 

in the mathematical language for the conclusion of the given statement.   

Example (Topology) 

 

Suppose  is continuous.  Then, prove that . 

Table 3.9 

Example of Type I (3) 

 Opening Stage  

X Prove .  

Y Show that if , then . R2 

Y' Show that if , then . R2 

Y'' Show that if , for any neighborhood of , 

. 

R1 

P f  is continuous. Given 

S Let  and let be a neighborhood of . C1 

 Body Construction Stage  

1 Let . C1 

2 Let be a neighborhood of . C1 

3 Since f is continuous, is an open neighborhood of x. CO(P,2)R

1 

4 Since , there exists an element z such that 

. 

CO(1,3)R

1 

5 Consider . C5 

6 Note, . CO(4,5)R

2 

7 Thus, if , there exists such that , 

that is, . 

CO(1, 

6)R2 

8 Therefore, . R1 

 

The great majority of proofs examined in this study belonged to Type I, in 

which students were required to set a starting variable from the conclusion of the given 

statement.  However, there were a few proofs in which students were required to derive 

YXf : )()( AfAf 

)()( AfAf 

)(Afy )(Afy

Ax )()( Afxf 

Ax U )(xf

 )(AfU

Ax U )(xf

Ax

U )(xf

)(1 Uf 

Ax

AUfz   )(1

)(zf

)()( AfUzf 

Ax Yz )()( AfUzf 

 )(AfU

)()( AfAf 
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a starting variable from a hypothesis of the given statement.  The followings (Tables 

3.10 and 3.11) are such examples (Type II).   

Example (Topology) 

 

Let X, Y be topological spaces, Y compact, , N an open set  

containing  in the product space  .   

Prove that there exists an open neighborhood of such that 

. 

 

Table 3.10 

Example of Type II (1)  

 Opening Stage  

X Show there exists an open neighborhood  of such that  

. 

 

Y Find an open neighborhood  of such that  . R2 

P1 N is an open set containing  in the product space   C4 

P2 Y is compact.  

 Body Construction Stage  

1 Since N is open in , for each , there exists 

a basis open set  containing . 

C1 

2 Then, is an open cover of . C4 

3 Since is homeomorphic to Y, is compact.  C4 

4 Then, there exists a finite open subcover 

 ,where and . 

C1 

5 Note that . . ,where . C1 

6 
Let , where W is an open neighborhood of , where 

. 

CO 

 

The following (Table 3.11) shows an example of the proof in which students are 

to derive multiple starting variable from a hypothesis of the given statement.    
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Example (Topology) 

 

Prove that if converges to  for every sequence   

that converges to , then  is continuous at ,  

where are metrics for X and Y respectively. 

 

Table 3.11 

Example of Type II (2) 

 Opening Stage  

Z Use an indirect proof by showing the contrapositive. 

Show that if is not continuous, then does not 

converge to  for some sequence  that converges to . 

 

X does not converge to  for some sequence  that 

converges to , 

R2 

Xʹ Construct a sequence that converges to but  does 

not converge to . 

R2 

Y Construct a sequence  that satisfies the following conditions: 

(1)  , for all n Z ,   ))(),(( 0xfxf n , (2) for any 

, there exists an such that for any  Zn ,

 ),( 0xxn . 

R1 

P Suppose  is not continuous at . Given 

S Let be fixed.  Suppose and . C1 

 Body Construction Stage  

1 Since  is not continuous at , there exists such that 

for any 0  ,   ))(),((),( 00 xfxfxx . 

C1 

2 
Claim that is a desired sequence. 

C4 

3 
Consider . 

C5 

4 
Let such that . 

C1 

5 Then, for any ,  . R2 

6 
Therefore, converges to . 

R1 

7 
Consider . 

C5 

8 Note does not converge to . CO(1,7)R2 
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9 Note the sequence converges to while 

does not converge to . 

R2 

 

There was another type of a proof, in which students did not have to derive a 

starting variable and were able to start a proving argument with directly working on the  

 conclusion of the given statement.  The followings (Table 3.12, 13) are such examples.   

Example (Analysis) 

Suppose where and are functions and 

  is continuous.  Prove that . 

 

Table 3.12 

Example of proof for Type III (1) 

 Opening  

X Show   

Y 
Consider , where  and 

   

R2 

P1 and are functions. Given 

P2 is continuous.  Given 

S Consider . Given 

 Body Construction Stage  

1 
Consider . 

C5 

2 Note 

 

R3 

3 Recall and apply the Fundamental Theorem of Calculus. C2 

4 Then,   CO(2,3)R1 

 

The problem in the next example (Table 3.13) is a mathematical induction.   A 

mathematical induction is another example showing that students start their proving 
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argument with directly working on the conclusion of the given statement.  The proofs 

for showing trigonometry identities also belong to this type.   

     Example (Discrete Mathematics) 

     Prove that for every positive integer n, show . 

Table 3.13 

Example of Type III (2) 

 Opening Stage  

X 
Show . 

 

Z Use mathematical induction.  Let P(n) be the given statement.  

X1 Show that P(1) holds.  

Y1 

(=S) Show that . 
R2 

 Body Construction Stage  

1 Note that the left hand side is 1.  R3 

2 
Note that the right hand side is 

6

}1)1(2){11(1 
 .   

R3 

3 
Note,1 = 

6

}1)1(2){11(1 
. 

CO(1,2)

R2 

 Opening Stage  

X2 Show that if P(k) holds, then P(k+1) holds.  

Y2 

(=S) Show that if holds, then  

. 

R2 

P 
Assume that . 

Given 

 Body Construction Stage  

1 Consider the left hand side of P(k+1).  C5 

2 Note the left hand side is . R3 

3 Note that 
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CO(P,2)

R3 

4 Note that 
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5 
 

R3 

6 
 

R3 

 

3.6 Reliability of the Model of the Structure of Proof Construction  

In order to get a sense for the reliability of the model, I had six mathematics 

professors to review the model of the structure of proof construction.  The meetings 

took place in each professor’s office.  I explained the model to them, using the proofs I 

made and the proofs I had them make.  They agreed that the model was applicable to 

those proofs.  Two professors gave me minor suggestions.  One professor suggested the 

researcher should avoid using the expression “linking information,” which led me to the 

use the expression “combining objects.”  Another professor expressed a minor 

preference of using the notation CO(A, B)R1 instead of using CO(AB)R1 to represent 

the operation of combining objects A and B.  The same professor also posed the 

question: Is this model applicable to non-proof regular problems?  This would be 

another research question to be examined for a future project.   

The model of the structure of the reasoning activity was compared with the 

standard theory for problem solving, which Newell and Simon (1958, 1976) presented.  

The theory provided four major characteristics pertinent to problem solving: (1) 

representation, interpretation, and manipulation of symbolic structures; (2) search 

through a set of available information; (3) selective search through heuristics; (4) 

reduction of the differences between current and desired states.  Rephrasing an object 

may play a major role of (1).  Combining objects and creating a cue can function as (2).  

Checking and exploring may correspond to (3).  The first three actions (rephrasing an 

object, combining objects, and creating a cue) can realize (4).   
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The model of the structure of proof construction was compared with the 

theoretical framework for understanding problem-solving success or failure, which 

Schoenfeld (2010) presented.   The followings are the categories he included in this 

theory.  

 Knowledge base (what students know) 

 Problem solving strategies (the tools or techniques students have for solving 

problems) 

 Monitoring and self-regulation  (the metacognition concerned with how well 

students manage the problem solving resources)  

 Beliefs (students’ sense of mathematics, of themselves, of the context and more, 

which shape what they perceive and what they choose to do. 

There seems to be a correspondence between the above categories and the 

aspects of proof construction presented in the model of the structure of proof 

construction (Figure 3.1).  The first category “knowledge base” corresponds to the 

background knowledge.  The second category “problem solving strategies” can 

correspond to the operations of the reasoning activity (rephrasing an object, combining 

objects, and creating a cue).  The third category “Monitoring and self-regulation” 

corresponds to the mental attitudes (tenacity, flexibility, and carefulness and alertness).  

Finally, the fourth category “Beliefs” corresponds to emotions and beliefs. The 

framework and the model for the structure of proof construction may play a role to help 

students solve proof problems.   

Flavell (1979) classified metacognitive knowledge into three types in terms of 

the following variables.    
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 Person variable: one’s knowledge about one’s learning abilities;  

 Task variable: one’s knowledge about the information available for proof 

construction;  

 Strategy variable: one’s knowledge about strategies.  

The model of the structure of proof construction may play a role in the 

metacognitive knowledge that is necessary for proof construction.  The aspect of affect 

and beliefs in the model can be considered to correspond to the person variable.  For 

example, one’s self-confidence is a person variable.  The aspect of the background 

knowledge in the model may correspond to the task variable.  For example, students’ 

background knowledge may be abundant or meager, and well or poorly organized. 

According to their knowledge, they recognize and decide the difficulty of a given proof 

problem and predict their success in solving the problem.  The aspect of the reasoning 

activity together with the mental attitudes may correspond to the strategy variable.  The 

model of the structure of proof construction may help students develop their 

metacognition that is useful for proof construction.   

Polya (1957) suggested a framework for problem-solving.  His framework 

consisted of four phases: orientation (understanding the problem), planning 

(developing a plan), executing (carrying out the plan), and checking (looking back).  

His orientation and planning correspond to the operations conducted in the opening 

stage,  including the step of making sure of the goal of the proof, which is often done 

by translating the conclusion of the given statement into mathematical language.  His 

“checking” corresponds exactly to exploring and checking in this study.  His “executing” 

corresponds to the reasoning activity.  This study detailed the thinking actions of his 
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“executing” and categorized them into rephrasing an object, combining objects, and 

creating a cue.  Carlson and Bloom (2005) further developed Polya’s problem-solving 

framework into a multidimensional framework for problem-solving.  In their 

framework, they included resources, affect, heuristics, and monitoring, still keeping the 

four phases that Polya’s framework included.  Their resources, affect, heuristics, and 

monitoring correspond to the background knowledge, affect and beliefs, the action of 

exploring and checking, and the mental attitudes in this study, respectively.  

3.7 Summary 

 Being led by frameworks of Harel & Sowder (1998), Weber & Alcock (2004), 

and Selden and Selden’s ( 2007), this study created a model of the structure of proof 

construction.  Through proving dozens of theorems and propositions from multiple 

mathematical subjects, a comprehensive view of proof construction was built in the 

form of a model.  The model clarified the aspects, factors, patterns, and features 

involved in cognitive process of proof construction.  In particular, the model elucidated 

the types of cognitive actions to realize each of syntactic and semantic approaches 

while providing the way to classify proofs into three types.  The model directly 

contributed to the creation of the frameworks for analyzing students’ proofs, which also 

served as a framework for describing the abilities and skills necessary for proof 

construction.  The model of the structure of proof construction earned an agreement 

from six mathematics professors as inter-rater reliability.  The analysis framework was 

created based on the model of the structure of proof construction is to explain and 

understand the sources of students’ difficulties with proof construction in a clear, 

organized, and systematic way.   
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Chapter 4: Methods 

4.1 Introduction 

One of the main purposes of this study is to identify the sources of students’ 

difficulties with proof construction.  I sought the research method that best fitted for 

detecting sources of students’ difficulties and deriving the patterns and features seen in 

their difficulties in a variety of types of proofs.  This chapter presents the description of 

the methods used in this study for collecting and analyzing the data.     

4.2. Methodology  

 I used document analysis for a research method for this study.  In this section, I 

am going to explain why I chose the research method. 

4.2.1 Document analysis 

Document analysis is a qualitative research method for delineating and 

interpreting phenomena through examining documents (Bowen, 2009).  Labuschagne 

(2003) claimed that document analysis was effective for organizing texts into themes, 

categories, and case examples.  Bowen (2005, 2009) also elucidated the roles of 

documents as follows: (a) providing research data; (b) allowing researchers to organize 

information, verify findings, and corroborate evidence; (c) helping researchers practice 

a thorough examination of the target phenomena; and (d) allowing researchers to take a 

variety of forms, including books, journals, newspapers, scripts, and public records.   

This study  aimed to investigate the sources of students’ difficulties with proof 

construction from multiple angles.  The target documents were students’ proofs from 

their exams and problem-solving sessions.  In order to generalize the patterns and 

features seen in the difficulties students had, it was necessary to collect as many 
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students’ proofs as possible from different individuals and from different mathematical 

subjects.  These proofs provided the data for this study.  Document analysis was 

effective in meeting the demands of this study in the following ways:  First, students’ 

proofs directly provided the data as reliable sources.  Students’ proofs also enabled the 

researcher to effectively practice a close investigation into and careful interpretation on 

the data.   In addition, students’ proofs were strong evidence to support the findings.  

Moreover, with the use of the analysis framework, students’ proofs helped the 

researcher organize the collected information into categories and to recognize patterns.   

4.2.2 Sampling Method 

For the sampling method, this study adopted criterion sampling.  According to 

Creswell (2007), criterion sampling is a sampling strategy in which researchers 

establish criteria for the source of data.  This study set the criteria for the participants to 

be those students enrolled in proof-based courses, more specifically, undergraduate 

Algebra, Analysis, and Topology, at a large comprehensive research university in the 

middle Southern United States in 2013.  There were some unique characteristics about 

those participants.  Since the chosen school was one of a few research schools in the 

state, students’ academic levels were expected to be relatively high among all the 

undergraduate students in the same state.  In addition, since the target courses were one 

of the highest undergraduate mathematics course usually taken by mathematics majors, 

the target participants’ mathematics abilities were expected to be relatively high among 

all the undergraduate students in the same university.  The difficulties they might 

encounter can be representative of those of most undergraduates, in particular, most 

mathematics majors in other universities.  For the same reason, the target participants 
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were also expected to have higher motivation and more positive learning attitudes 

toward mathematics.  Moreover, the target participants were expected to have already 

completed Calculus sequence and Discrete Mathematics as they were prerequisite 

courses.  Another characteristic of those participants was found in their courses.  All the 

three courses had relatively a small size of students ranging from 10 to 15.  Analysis 

and Algebra classes was a 50-minute class held three times a week while Topology 

class was a 75 minute class held twice a week.      

4.3 Participants 

The participants were those students who were enrolled in Introduction to 

Algebra I, Introduction to Algebra II, Introduction to Analysis I, or Introduction to 

Topology in 2013 Spring.   

Table 4.1 

Participants of  Algebra I Students 

Introduction to Algebra I Male Female Total 

In-class problem solving session 6 2 8 

Exams 10 3 13 

Individual problem solving session 1 0 1 

 

 Algebra I students had already taken Linear Algebra, Discrete Mathematics, and 

Calculus I, II, and III courses.  They had a class meeting twice a week and each class 

was 75 minutes long. 

Table 4.2. 

Participants of Algebra II Students 

Introduction to Algebra II Male Female Total 

In-class problem solving session 7 3 10 

Exams 7 3 10 

Individual problem solving session 3 1 4 
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 Algebra II students had already taken Algebra I in addition to Linear Algebra, 

Discrete Mathematics, Calclulus I, II, and III courses.  They had a class meeting three 

times a week and each class was 50 minutes long.  

Table 4.3 

Participants of  Analysis I Students 

Introduction to Analysis I Male Female Total 

Exams 6 1 7 

 

 Analysis I students had already taken Discrete Mathematics, and Calculus I, II, 

and III courses.  They had a class meeting twice a week, and each class was 75 minutes 

long. 

Table 4.4.   

Participants of Topology I Students 

Introduction to Topology I Male Female Total 

Exams 3 4 7 

Individual problem solving session 1 0 1 

 

 Topology I students had already taken Discrete Mathematics, and Calculus I, II, 

and III.  They had a class meeting twice a week.  Each class was 75 minutes long. 

4.4 Data Collection 

The data used for this study was a collection of students’ written proofs. There 

were three types of instruments for collecting students’ proofs: (1) in-class mid-term 

and final examination scripts; (2) in-class problem solving sessions; and (3) individual 

problem solving sessions. Under the permission of IRB (Institutional Review Board), I 

visited each target class to recruit participants for each research activity.  I obtained 
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consent forms from the students in each course, and upon their agreements, used their 

proofs as data for this research. 

4.4.1 Students’ in-class exams 

Students’ mid-term and final examination scripts were collected from 

undergraduate Algebra I and II, Analysis I, and Topology courses.  The examination 

questions were made by each instructor of those courses.  In sorting out the problems to 

be analyzed from among many problems in the exams, first, some problems were 

eliminated.  Those problems included the following types: (1) those problems that were  

irrelevant to proof construction; and (2) problems that asked for construction of a 

counter example.  Then, among the rest of the problems, the priority was given to those 

problems whose solutions the researcher was confident about.  The following table 

(Table 4.5) shows the number of the students whose examination scripts were collected 

as data for this study. 

Table 4.5. 

Population Sizes for Examination Scripts 

 Exam 2 Exam 3 Final 

Topology 7 7 7 

Algebra I 13 0 13 

Algebra II 10 0 0 

Analysis I 7 6 6 

 

4.4.2 In-class problem solving sessions 

An in-class problem solving session was conducted in each of Algebra I and II 

courses under permission of the instructor of each course.  The time length of the 

session was decided by the instructor of each course.  The researcher made a pool of 

problems to be given in the session in advance.  Then, the instructor of each course 
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chose the actual problems that were given to the students in the session.  The problems 

given to the students were all from the materials that the participant students had 

already learned in their classes (See Appendix).   

The problems were designed in the following way.  All the problems were for 

proof construction.  Three stages were set for each problem.  On the first page, students 

were  asked to solve the problem with no hints.  If they were not able to solve the 

problem, they were led to the next page, where the definitions of the concepts involved 

in the problem were provided.  If they were still not able to solve the problems, they 

were led to the next page for more hints.  Hints included properties of concepts and 

directions of the proof construction.  Students were asked not to use an eraser.  If they 

needed to erase what they wrote, they were asked to cross them out with a straight line.  

They were also required not to go back to a previous page once they moved to a new 

page.  These directions were written in the worksheets and given to the students orally 

as well. The following table shows the population of the students who participated in 

the in-class problems sessions as well as the length of each session. 

Table 4.6 

Population Sizes for In-Class Problem Solving Sessions 

Course Population of participants Time Length 

Algebra I 7 25 minutes 

Algebra II 8 50 minutes 

 

4.4.3 Individual problem solving sessions 

In total, nine students participated in individual problem solving sessions.  The 

problem-solving sessions took place in the researcher’s office.  Each participant came 

to the office in different times.  Each session was 50 minutes long.  The researcher 
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prepared a pool of problems for proof construction.  Before having the participants 

solve the problems, he researcher made sure if those problems were from the material 

they had already learned.  When they finished, I went through their work and asked 

questions if there was any.  The form of the problems used in the sessions were similar 

to the ones used in the in-class problem solving sessions.  Each problem had three 

stages.  In the first stage, they were asked to solve the problem with no hints.  If they 

needed help, they were led to the next page which provided definitions of concepts 

involved in the problem.  If they needed more help, they were led to the next page 

which provided more hints including a direction of proof construction as well as the 

definitions of the concepts.  Once they moved to a new page, they were not allowed to 

go back to a previous page.  They were also not allowed to use an eraser to erase what 

they had written and were required to cross out with a straight line what they wanted to 

erase.  The table below shows the courses the student participants were enrolled in.   

Table 4.7 

Population Sizes for Individual Problem Solving Sessions 

 Topology Algebra I Algebra II Analysis 

population 2 1 4 0 

 

4.5 Data Analysis 

For analyzing students’ proofs, two types of framework were created.  The first 

type of table (Table 3.3 and Table 3.4) was used for detecting students’ impasses and 

the operation they failed to apply.  This type of analysis table (Type A) was created for 

each problem the participants worked on.  Each analysis table showed step-by-step 

proof and the coded operation used to generate a corresponding statement for each step.  

The other type of framework (Table 3.5) was used for identifying the sources of 
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students’ difficulties.  It was created based on the framework for modeling the structure 

of proof construction.   

First, I de-identified participants’ names and gave a pseudonym to each student.  

Then, based on the analysis table Type A, the researcher examined each step of the 

proof that each student made.  Then, each of their mistakes and difficulties was 

analyzed from the three perspectives based on the framework Type B: the reasoning 

activity; background knowledge; and mental attitudes).  Concerning the last aspect 

“mental attitudes,” there was no way to measure the degrees of students’ mental 

attitudes.  Therefore, the decision of if a student’s difficulty or failure was due to his or 

her lack of tenacity, flexibility, carefulness and precision, was subjective and peripheral 

because it depended on the researcher’s interpretation to some extent.    

4.6 Summary 

 In conjunction with the use of the analysis frameworks, the document analysis 

was a suitable method for gathering and analyzing the data for this study.  This method 

allowed me to examine various difficulties that students confronted in the same proof 

problem.  In particular, with the analysis frameworks, document analysis allowed me to 

collect a sufficient number of students’ proofs to generalize the patterns and features of 

their difficulties with proof construction across mathematical subjects.  In total, the 

researcher analyzed 81 proofs which were collected from students’ examinations and 

in-class and individual problem solving sessions.  The next chapter presents the 

findings obtained through analyzing students’ proofs in light of the structure of proof 

construction.   
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Chapter 5:  Results 

5.1  Introduction 

 This chapter presents representative results from the analysis of students’ proofs.  

The poofs ranged over introductory Algebra, Analysis, and Topology.  The students’ 

proofs were analyzed based on the two types of frameworks as described in Chapter 3.  

This chapter first gives a few examples of how students’ proofs were analyzed with the 

use of the analysis frameworks.  Then, it presents representative results from the 

analysis of students’ proofs.   The results will be presented according to the aspects and 

factors of the structure of proof construction: the opening stage,  rephrasing an object, 

combining objects, creating a cue, background knowledge, and mental attitudes.     

5.2   Examples of Analysis Table (Type A) 

This section presents some examples that show how a student’s proof was 

analyzed based on the analysis table and framework.  In order to show as many factors 

for possible causes of students’ difficulties as possible, which are listed in the 

framework (Table 3.5), three students’ proofs are used.  These proofs were all on the 

same problem.  In each example, first, the problem is introduced.  Then, the analysis 

table Type A is presented to show every step of the proof, the coded operation used to 

generate each statement for each step, and the degree of student’s success in obtaining 

each statement.  Then, I will give a comprehensive analysis of the proof students made, 

using the analysis framework Type B (Table 3.5).   
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Analysis [9] (Final Exam) 

Rbaf ),(: has a global maximum at some ),( bax   and is differentiable 

at ),( bax  .  Prove that 0)(' xf .  Note that a function Rbaf ),(: is  

said to have a global maximum at ),( bax   if and only if  

For all ),( bax , ).()(  xfxf  

 

Table 5.1 

Example of Analysis Table (Type A) 

 Opening Stage Code U Z C 

X Show 0)(' xf  . Given    

Y 
Show 0

)()(
lim 








  xx

xfxf

xx
. 

R1    

Yʹ 
Show 








 
0

)()(
lim

* xx

xfxf

xx




 


 xx

xfxf

xx

)()(
lim

*
. 

R1 I I N 

P1 Rbaf ),(: has a global maximum at ),( bax  . Given    

P1' For all ),( bax , ).()(  xfxf  Given    

P2 Rbaf ),(: is differentiable at ),( bax  .   Given    

P2' 









  xx

xfxf

xx

)()(
lim

* 



 


 xx

xfxf

xx

)()(
lim

*
. 

R1 I   

 Body Construction Stage     

1 
Consider the right hand side limit





 


 xx

xfxf

xx

)()(
lim

*
. 

C5 N S N 

2 Since )()(  xfxf for all ),( bax  and 0 xx ,

0
)()(

lim 








 xx

xfxf

xx

. 

CO 

(1, P1') 

R2 

N I N 

3 
Consider the left hand side limit





 


 xx

xfxf

xx

)()(
lim

*
. 

C5 N S N 

4 Since )()(  xfxf for all ),( bax , and 0 xx

0
)()(
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_*









 xx

xfxf

xx

 . 

CO 

(3, P1') 

R2 

N I N 

5 Since Rbaf ),(: is differentiable at ),( bax  ,  




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
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xfxf
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
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





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CO 
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6 
Since




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


 xx

xfxf
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lim0 = 0
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




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0
)()(

lim 







  xx

xfxf

xx
. 

7 
Since 0

)()(
lim 








  xx

xfxf

xx
, 0)(' xf . 

R1 N N N 

 

 The letter “X” in the first column represents the conclusion or the goal of the 

given statement.  The letter “Y” represents the mathematical language that X is 

translated into.  As mentioned in Chapter 3, “translating of an object into mathematical 

language” means transforming an object into a mathematical expression “fine” enough 

to makes it possible for students to further advance a reasoning process.  The letter “P” 

in the first column represents the hypothesis, the assumption, or the condition in the 

given statement.  The letter “P '” represents the mathematical language into which “P” 

is translated.  The numbers in the first column represent the order of the steps to be 

taken for the proof.  The second column shows a specific statement necessary for the 

proof: the conclusion of the proof (X), a given condition or hypothesis (P), and a 

statement for each step of the proof.  The third column shows a code of the operations 

used to produce each statement in the proof.   The list of the codes of the operations for 

advancing a reasoning process was presented in Table 3.2.   

The letters U (Eugene), Z (Zachery), and C (Caleb) in the first row  represent 

the codes of the names of the students whose proofs were analyzed.  The letters “I”, 

“N”, and “S” stand for “Incomplete”, “Not successful”, and “Successful” respectively 

to describe the degree of success in their performance at each step in the proof.  Next, 

the examples of the analysis of each student’s proof based on the analysis framework 

Type B (Table 3.5) are given.  For each of wrong or incomplete statements, a possible 

cause is chosen from the framework Type B (Table 3.5).   
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Example 1 (Eugene) 

 

Figure 5.1. Eugene’s Proof. 

Eugene paid attention to the conclusion of the given statement and tried 

translating it into mathematical language.  However, his notations had a defect.  He had

cx

cfxf

xx 




)()(
lim

*
and 

cx

cfxf

xx 




)()(
lim

*
without specifying what c represented though 

the left hand limit was supposed to be




 


 xx

xfxf

xx

)()(
lim

*
and the right hand limit was 

supposed to be




 


 xx

xfxf

xx

)()(
lim

*
 (KNT).  KNT stands for “students’ mismanagement 

of a notation” (See Table 3.5).  He noted and translated the conclusion of the given 

statement “ 0)(' xf ” into mathematical language, but it was not perfect (OTC).  The 

code OTC stands for “the mismanagement of the opening stage by failing to translate 

the conclusion of the given statement into mathematical language” (See Table 3.5).  He 

should have had “ 







 
0

)()(
lim

* xx

xfxf

xx




 


 xx

xfxf

xx

)()(
lim

*
,” but missed “= 0 =” part 
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in his equation.  His was right in considering each side of the equality, in particular, the 

sign of each limit. However, he was not completely right in claiming that the right hand 

limit was positive and the left hand limit was negative (MC).   The code MC stands for 

“lack of carefulness or alertness” (Table 3.5).  He wanted to have 

0
)()(

lim 








 xx

xfxf

xx

and 0
)()(

lim
_*









 xx

xfxf

xx

.  He missed the equality “ = 0 ” for 

both sides mainly because he did not note and use the given information about the 

definition of a global maximum of a function (CO).   The code “CO” stands for 

“students’ failure to combine objects to create a new object” (See Table 3.5).  He 

missed the equality “ = 0 ” for both sides partly because he was not careful in making 

his claim that the left hand limit was negative and the right hand limit was positive 

(MC).  Thus, possible sources of his difficulties were that he missed translating the 

conclusion of the given statement completely (OTC) and that he missed combining an 

object and the given condition (CO), both of which might have involved lack of 

carefulness as well (MC).  

Example 2 (Zachery) 

 

Figure 5.2. Zachery’s Proof. 
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Zachery rightly considered the left and right hand limits while his notations for 

them were awkward (KNT).  He had
*

*

0

)()(
lim
* x

xfxxf

x




and 
*

*

0

)()(
lim
* x

xfxxf

x




though he needed to have
h

xfhxf

h

)()(
lim

**

0




 and
h

xfhxf

h

)()(
lim

**

0




, 

respectively.  The analysis of his proof follows based on the assumption that he meant 

to show 0)(' xf .  It was good that he considered the signs for the left and right limits.  

However, he was not careful enough in using the given condition that )()(  xfxf

(MC).  He applied )()(  xxfxf with 0x and )()(  xxfxf with 0x  to 

his argument instead of applying )()(  xxfxf and )()(  xxfxf , respectively.  

He had 0
)()(

lim
*

*

0*




 x

xfxxf

x
at the end, but lacked rigor in making the conclusion 

because 0
)()(
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*

*
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


 x

xfxxf

x
and 0

)()(
lim

*

*
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


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xfxxf

x
would not lead him to

0
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lim
*

*
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


 x

xfxxf

x
.  His lack of rigor might have resulted from the following 

facts.  He did not translate the conclusion of the given statement completely (OTC and 

R1).  He knew that he needed to show that 0
)()(

lim
*

*

0




 x

xfxxf

x
.  However, he did 

not thoroughly transform it into
*

*

0
*

*

0

)()(
lim0

)()(
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** x

xfxxf

x

xfxxf

xx





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(MC).   
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Example 3 (Caleb) 

 

Figure 5.3. Caleb’s Proof. 

 Caleb’s proof was almost complete.  He successfully translated the 

differentiability of a given function into mathematical language and came up with the 

idea of examining the left and right hand limits of the difference quotient.  He had

0
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
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xfkxf k

for 0k and 0
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
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xfkxf k
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right.  However, when he concluded 0)(' xf  based on his above observations, his 

argument was incomplete because it might happen 0)(' xf even when 

0
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


k

xfkxf k

for 0k and 0
)()( *




k

xfkxf k

for 0k (MC).  For 

example, when )(xf has a vertical asymptote at
*xx  , 0)(' xf even when 

0
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


k

xfkxf k

for 0k and 0
)()( *



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for 0k .  In particular, he 
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missed having
k
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k

xfkxf
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)()(
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)()(
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*

0

*

0


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
 

 (MC, OTC, and R1).  

The code R1 stands for rephrasing an object by applying definitions, properties, or 

theorems.  The above incompleteness of his argument resulted mainly from the 

following factors.  First, he lost his tenacity for completing examining

k

xfkxf

k

)()(
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*
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
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and
k

xfxxf

k

)()(
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*
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thoroughly (MT) while he came up with 

the idea of considering them at first.  Second, he missed using the given information 

about a global maximum of a function “ Rbaf ),(: is said to have a global maximum 

at ),( bax   if and only if for all ),( bax , )()(  xfxf ” (CO).  This might have 

helped him have 0
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k
.  Third, he did 

not thoroughly translate the conclusion of the given statement “ 0)(' xf ” into 

“
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” (OTC, R1), which might have 

helped him having 0
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and 0
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k
.  His 

proof might be considered as an example showing that the skill of combining objects 

and rephrasing an object can support his tenacity to continue his reasoning process.    

 The following section presents some examples for each of the possible sources 

of students’ difficulties.  Each example is presented in the following order:  

(i) A possible factor that can cause students’ difficulties 

(ii) the possible cause of the difficulty the student encountered;  
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(iii) the proof problem;  

(iv) the analysis table Type A;  

(v) a detailed analysis of the proof based on the analysis framework Type B; 

(vi) the whole or partial proof produced by the student;  

(vii) the analysis based on the analysis framework Type B (Table 3.5).   

5.3 Difficulties with Opening Stage 

 The opening stage is a crucial stage that can determine the degree of the success 

of one’s proof construction.  The opening stage plays mainly two important roles in 

proof construction: One is to make the goal of the proof clearer, which is achieved by 

noting the conclusion of the given statement and translating it into mathematical 

language.  The other role is to derive and set a variable as the start of a proof.  A 

starting variable is the key variable with which students open the body construction 

stage.  A starting variable is found in the ignition phrase contained in the mathematical 

language for the conclusion of the given statement.  For the type of proof in which 

students construct an object, they derive a starting variable from a hypothesis.    

There are model steps for students to take in the opening stage.  For example, 

students may (1) pay attention to the conclusion of the given statement, (2) translate it 

into mathematical language, (3) find a variable to be set as a start of a proving 

argument in the mathematical language, usually, for the conclusion of the given 

statement,  (4) set a starting variable for developing the body construction stage, (5) 

make sure of the hypotheses of the given statement, and (6) translate them into 

mathematical language if necessary.  The steps (1) and (2) are the operations for 

making the goal of the proof clear.  The steps (3) and (4) are the operations for setting a 
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starting variable.  Although it is minor, there is a type of proof in which students need 

to derive a starting variable from a hypothesis of the given statement.  In that case, the 

step (6) can be the operation for setting a starting variable.  For another minor type of 

proof, students do not have to derive a starting variable in the opening stage because a 

starting variable may be explicitly provided in the given proof problem, in particular, in 

the conclusion of the given statement.  The following examples show how greatly 

students’ managements of the opening stage can affect their whole proving arguments.   

Students’ difficulties with the opening stage are analyzed in the following two 

terms (Table 3.5): paying attention to the conclusion of the give statement and 

translating it into mathematical language (OTC) and deriving and setting a starting 

variable for the body construction stage (OSV).  “O” represents the opening stage.  “TC” 

stands for “translating the conclusion” of the given statement into mathematical 

language and “SV” stands for “setting a variable.”  

5.3.1 Translating a Conclusion into Mathematical Language  

It is important for students to make sure of the goal of a proof.  Awareness of 

the goal of a proof keeps them on the right track and helps them avoid going astray in 

their proof construction.  Students can make the goal of a proof clear by translating the 

conclusion of the given statement.  The following are representative proofs that show 

how crucial it is for students to translate the conclusion of the given statement into 

mathematical language.  I will give the following three examples showing students’ 

difficulties with translating the conclusion into mathematical language while showing 

how their difficulties affected their proofs: Frank lost the goal of the proof (Example 1); 
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Cade set a wrong direction of proof construction (Example 2); and Daniel failed to 

practice logical deduction and resorted to pictorial proof scheme (Example 3).   

Example 1: Frank (Algebra I) 

 Failing to clarify the goal of a given proof can lead students to wander vaguely 

and produce a confusion during their proof construction.  Frank’s proof is such an 

example.  His case shows that students may fail to make the destination of the proof 

clear for two reasons.  One is that students tend to start to work on a hypothesis of the 

given statement and to derive a starting variable from it.  The other is that they do not 

pay careful attention to the conclusion of the given statement.   

 Question [4] (In-class problem solving session) 

Suppose that )(/ GZG is cyclic.  Prove that G is abelian. 

Table 5.2 shows a possible proof for Questions [4] and shows the difficulties 

Frank had in the proof construction. 

Table 5.2 

Analysis (Type A) of Frank’s proof  

 Proof Code Frank  

X Show G is abelian. Given  

Y Show baab  for any Gba , . R1 N 

P )(/ GZG is cyclic. Given  

1 Let Gba , . C1 N 

2 Recall Gba , are in some cosets. C2 N 

3 Then, Zxa m and Zxb n for some Gx . CO(P, 2)R1 N 

4 Let 1zxa m and 2zxb n for some Zzz 21, . R1 N 

5 Then, bazzxzzxab mnnm  

1221 . R3 N 

 

 The conclusion of the given statement is “G is abelian.” The mathematical 

language for the conclusion is “ baab  for any Gba , .”  The phrase in the 
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mathematical language, “for any Gba , ,” is the ignition phrase.  Deriving starting 

variables from the ignition phrase, start a proof with “Suppose Gba , .”  This proof is 

the type of the proof of showing A = B.  A proving strategy for that type of proof is to 

work on either A or B to change it into B or A.  In this case, try to rephrase the left side 

of the equation “ ab ” until it changes into “ ba .”  To rephrase “ ab ,”the given 

hypothesis “ )(/ GZG is cyclic” can be considered.  Finding the connection between the 

starting variables “ ba, ” and the hypothesis “ )(/ GZG is cyclic” and recalling the 

property that an element of G belongs to some coset, Zxa m and Zxb n can be 

produced for some Gx .  Then, rephrasing ab with 21zzx nm
for some Zzz 21,  and 

using the property of the center of a group, bazzxzzxab mnnm  

1221 can be 

derived.  The following figure shows Frank’s proof (Figure 5.4).   

 

Figure. 5.4. Frank’s Proof. 

Frank first paid attention to the hypothesis of the given statement “ )(/ GZG is 

cyclic” instead of paying attention to the conclusion of the given statement (OTC).  

Then, he started his argument by deriving starting variables from the hypothesis instead 

of deriving a starting variable from the conclusion (OSV).  In expressing the elements 

of the coset G/(Z) as his starting variables, he mistakenly had )(,, ZGcGbGaG  , 
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which were supposed to be )(,, ZGcZbZaZ   (KNT, MC).  Then, he translated the 

hypothesis into mathematical language, meaning ZabZ m and ZacZ n .  While 

working on the hypothesis, his proof started to go astray, ending up with showing

cZbZbZcZ  , which he did not have to show because it was obvious that a cyclic 

group was abelian.  Finally, though he showed that “ )/(ZG is abelian,” he mistakenly 

concluded “ )/(ZG is cyclic,” which was a hypothesis already given at the beginning. 

  There were two main factors that might have caused his proving argument to 

be unsuccessful.  The first factor was that he was unable to pay attention to the 

conclusion of the given statement “G is abelian” (OTC).  This resulted in two problems.  

One problem was that since he was not attentive to the goal (MC), he did not realize his 

argument was going astray while showing “ )/(ZG is abelian” and that his argument 

went wrong while concluding “ )/(ZG is cyclic.” The other problem was that he was 

unable to derive right starting variables “ Gba , ” (OSV), which might have been 

obtained from an ignition phrase of the mathematical language for the conclusion of 

the given statement.  The second major factor was that he was, as many other students 

did, first focused on the hypothesis of the given statement “G/(Z) is cyclic,” derived his 

starting variables from the hypothesis, which did not help him reach the goal of the 

proof, and translated the hypothesis into mathematical language, which created a 

confusion in his argument.  The second factor resulted in diverting his attention from 

the conclusion of the given statement and leading him to miss the goal of the proof.  

Example 2: Cade (Algebra I) 

 This example showed that students’ failure to accurately translate the whole 

sentence of the conclusion into mathematical language might hinder them from  
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developing their proving arguments.    

Question [5] (In-class problem solving session) 

Suppose that the order of G is a prime number.  Prove that G is cyclic. 

Table 5.3 shows a possible proof for Question [5] and shows where Cade had a 

difficulty in the proof construction.   

Table 5.3 

Analysis (Type A) of Cade’s proof  

 Proof Code Cade 

X Show G is cyclic.   

Y Show  gG for some Gg  with 1g . R1 I 

P The order of G is a prime number. Given  

S Let Gg  with 1g . C1 N 

1 Let Gg  with 1g . C1 N 

2 Consider  g . C5 N 

3 Note  g is a subgroup of G.  C2 N 

4 Recall the Lagrange’s THM and apply it to  g . C2 N 

5 Then, by the Lagrange’s THM, pg ,1 . CO(3,4,P)R1 N 

6 Since 1 g , pg  . CO(1,5)R2 N 

7 Since pG  ,  gG . CO(6, P)R2 N 

 

The conclusion of the given statement is that “G is cyclic.”  The conclusion “G 

is cyclic” can be translated into mathematical language “  gG for some Gg  with

1g .”  The given proof is the type of the proof of showing A = B.  One can work on 

either A or B through rephrasing it until A becomes B or B becomes A.   In this 

problem, consider and work on  g .  Recalling Lagrange’s Theorem and combining 

it with the property that a cyclic group generated by an element in G is a subgroup of G, 

one may obtain pg ,1 .  Noting 1 g , one may decide pg  .  
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Combining the hypothesis  gG  and pg  , one may conclude  gG . The 

following is Cade’s proving strategy for the given problem (Figure 5.5). 

 

Figure 5.5. Cade’s Strategy. 

When Cade was asked to state his proving strategy, he successfully noted the 

conclusion of the given statement, which was “G is cyclic”.  However, he made his 

statement sound awkward when he put “I am going to show a cyclic group has order

1na …”  He probably meant to state “  aG , in which 1na  with n being the 

smallest positive integer,” but was unable to accurately rephrase the whole sentence of 

the conclusion of the given statement in mathematical language.  This may have 

affected his proof construction.  The following figure shows Cade’s proof  (Figure 5.6).   

 
 

Figure 5.6. Cade’s Proof. 

 

In addition, Cade was unable to develop his proving argument mainly because 

he did not translate the whole sentence of the conclusion of the given statement 

accurately.  Although he noted  the conclusion when he thought about the goal of the 

proof, he focused on only the predicate “cyclic” of the conclusion and missed 
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translating the subject part “G is.”  As a result, he provided the definition of a cyclic 

group and was not able to have “  gG for some Gg   with 1g ,” which might 

have hindered him from opening up his proving argument.  If he had “  gG for 

some Gg  with 1g ,” that might have led him to set a starting variable “< g >” for 

some Gg   with 1g ,” focus on “< g >”, recall the property of “< g >” being a 

subgroup of G, and come up with the idea of using Lagrange’s Theorem.   

Since he missed the starting variable “< g >” for some Gg   with 1g , he was 

unable to open up his argument.  Then, he depended on the hypothesis of the given 

statement “ pG  ” for starting the body construction stage.  However, that was not 

helpful, so he further attempted to apply a proving technique of creating a function, 

which was not helpful, either.  Finally, he gave up proving.  His example shows how 

crucial it is to rephrase the whole sentence of the conclusion of the given statement 

accurately.  His example also shows that once students miss setting a variable from the 

conclusion of the given statement, no matter what they may attempt, that would not 

help them advance their reasoning process.   

Example 3: Daniel (Analysis) 

Daniel’s case is another example showing how important it is for students to be 

able to translate the conclusion of the given statement into mathematical language so 

that they can develop a proving argument.   
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Question [9] (Final Exam) 

Rbaf ),(: has a global maximum at some ),( bax   and is differentiable at

),( bax  .  Prove that 0)(' xf .  Note that a function Rbaf ),(: is  

said to have a global maximum at ),( bax   if and only if for all ),( bax , 

).()(  xfxf  

 

Table 5.4 shows a possible proof for Question [9] and shows where Daniel had a 

difficulty in the proof construction.   

Table 5.4 

Analysis (Type A) of Daniel’s Proof 

Step Statement Code D 

X Show 0)(' xf    N 

Y 
Show 0

)()(
lim 








  xx

xfxf

xx
 

R1 N 

P1 Rbaf ),(: is said to have a global maximum 

at ),( bax   if and only if for all ),( bax ,

).()(  xfxf ),( bax  . 

Given  

P2 Rbaf ),(: is differentiable at ),( bax  .   Given  

1 Claim that  









 
0

)()(
lim

* xx

xfxf

xx




 


 xx

xfxf

xx

)()(
lim

*
. 

C1  

2 Consider the right hand side limit.  C1 N 

3 Note that since )()(  xfxf for all ),( bax , 

and 0 xx 0
)()(

lim 








 xx

xfxf

xx

. 

CO 

(A, P1) 

R2 

N 

4 Consider the left hand side limit. C1 N 

5 Note that since )()(  xfxf for all ),( bax , 

and 0 xx 0
)()(

lim 








 xx

xfxf

xx

  

CO 

(C, P1) 

R2 

N 

6 Since Rbaf ),(: is differentiable at

),( bax  , the right hand limit is the same as the 

left hand limit.  

R1 N 

7 
Therefore, since





 




 xx

xfxf

xx

)()(
lim0 =

CO 

(B, D) 

R2 

N 
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0
)()(

lim 








 xx

xfxf

xx

, 0
)()(

lim 







  xx

xfxf

xx
. 

8 
Since 0

)()(
lim 








  xx

xfxf

xx
, 0)(' xf . 

R1 N 

 

 The given proof problem is one of a few examples of the type of the proof in 

which students do not have to derive and set a starting variable at the beginning of the 

proof.  The conclusion of the given statement is “ 0)(' xf .”  The translation of the 

conclusion is “ 







 
0

)()(
lim

* xx

xfxf

xx




 


 xx

xfxf

xx

)()(
lim

*
.”  One of the way to prove 

this statement is to work on both




 


 xx

xfxf

xx

)()(
lim

*
and 





 


 xx

xfxf

xx

)()(
lim

*
 separately 

until both sides turn out to be the same statement.   Then, one may separately combine 

each of them and the given condition “ Rbaf ),(: has a global maximum at some

),( bax  ” to obtain 0
)()(

lim 








 xx

xfxf

xx

and 0
)()(

lim 








 xx

xfxf

xx

.  Using the 

other condition “ Rbaf ),(: is differentiable at ),( bax  ,” one may obtain 





 




 xx

xfxf

xx

)()(
lim0 = 0

)()(
lim 









 xx

xfxf

xx

.  Then, one may conclude









 
0

)()(
lim

* xx

xfxf

xx




 


 xx

xfxf

xx

)()(
lim

*
.  The following figure is Daniel’s proof 

(Figure 5.7). 
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Figure 5.7. Daniel’s Proof. 

 

Daniel’s proof was not successful because he was unable to construct a proving 

argument based on logical deduction.  Instead, he depended on a graphical explanation 

for his argument, which resulted in his lack of rigor.  He resorted to the fact that the 

tangent line at the maximum point had a slope of zero.  He did not realize what he used 

was the very thing that he was asked to prove.  He might have avoided the mistake by 

not only paying attention to the conclusion of the given statement but also translating it 

into mathematical language.  The goal of the proof was to show 0)(' xf .  He might 

have translated it into “




 


 xx

xfxf

xx

)()(
lim = 0 =





 


 xx

xfxf

xx

)()(
lim

*
,” which might have 

led him to consider




 


 xx

xfxf

xx

)()(
lim  and





 


 xx

xfxf

xx

)()(
lim

*
.  By considering them, he 

might have developed a proving argument based on logical deduction.   

 Thus, the above three examples show that noting the conclusion of the given 

statement, clarifying the goal of the proof, and translating it into mathematical language 

might help students to construct a more successful proving argument. 
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5.3.2 Setting a Variable  

Mathematical ideas or thoughts in a proving argument are often conveyed by 

way of a variable.  A variable is a key unit for advancing a reasoning process.  It is 

crucial for students to set a correct starting variable to construct a proving argument.   

In order to be successful in setting a right starting variable, there are three steps that 

students can take.  The first step is to note the conclusion of the given statement.  The 

second is to translate it into mathematical language accurately.  The third is to pay 

attention to an ignition phrase contained in the mathematical language and derive a 

starting variable from it.  A possible major obstacle that may hinder students from 

setting a right starting variable is that they are tempted to pay attention to a hypothesis 

of the given statement to derive a starting variable.    

There are mainly two ways for students to derive a starting variable in a proving 

argument.  One is to derive a variable from the conclusion of the given statement.  In 

particular, students often derive a starting variable from an ignition phrase contained in 

the mathematical language for the conclusion.  In most cases, an ignition phrase comes 

from a definition of concept contained in the mathematical language for the conclusion.  

The other way is to derive a starting variable from anything other than the conclusion of 

the given statement, including a hypothesis of the given statement, a claim that students 

make, or a property of concept or a theorem that students have to bring in.   In any case, 

deriving a right starting variable by noting an ignition phrase contained in the 

mathematical language for the conclusion of the given statement can be a key factor for 

constructing a successful proving argument.  However, it can be difficult for some 

students to set a starting variable correctly.  I will show five examples of students’ 
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difficulties with setting a variable while showing how their difficulties occurred and 

how their difficulties with setting a starting variable affected their proofs: Alex derived 

a starting variable from a hypothesis (Example 4); Quincy failed to note an ignition 

phrase (Example 5); Matthew missed deriving a variable from a hypothesis (Example 

6);  Natalie was unable to make a proving argument in mathematical language 

(Example 7); Anthony ruined his whole proving argument (Example 8).   

Example 4: Alex (Algebra I) 

Alex’s proof is a representative example showing that students’ failure to derive 

a right starting variable can spoil their whole proving arguments.  His case also shows 

students may fail to derive a right starting variable because they tend to start to work on 

a given condition or hypothesis instead of the conclusion of the given statement.   

Question [5] (In-class problem solving session) 

Suppose that the order of G is a prime number.  Prove that G is cyclic.  

 Table 5.5 shows a possible proof for Question [5] and shows where Alex had 

difficulties in the proof construction.   

Table 5.5 

Analysis (Type A) of Alex’s Proof 

 Proof Code Alex 

  X Show G is cyclic.   

X’ Show  gG for some Gg  with 1g . R1  

P pG  . Given  

1 Let Gg  with 1g . C1 N 

2 Consider  g . C5 N 

3 Recall that a cyclic group generated an 

element in G is a subgroup of G. 

C2 N 

4 Note  g is a subgroup of G. CO(2,3) N 

5 Recall the Lagrange’s Theorem. C2 N 

6 By the Lagrange’s THM, 1 g or p.  CO(4,5)R1 N 
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7 Since 1 g , pg   CO(1,6)R2 N 

8 Since pG  ,  gG  CO(P,7)R2 N 

 

 Question [5] can be proved in the following way.  The conclusion of the given 

statement is that “G is cyclic.”  The conclusion “G is cyclic” can be translated into 

mathematical language “  gG for some Gg  with 1g .”  The given proof is the 

type of the proof of showing A = B.  One can work on either A or B through rephrasing 

it until A becomes B or B becomes A.   In this problem, work on  g .  Recalling and 

combining Lagrange’s Theorem and the property that a cyclic group generated by an 

element in G is a subgroup of G, one may obtain pg ,1 .  Noting 1 g , 

decide pg  .  Combining the hypothesis  gG  and pg  , conclude 

 gG .  The following figure  shows Alex’s whole proof  (Figure 5.8). 

 

Figure 5.8. Alex’s Proof. 

 Alex started his proving argument with working on the hypothesis “the order of 

G is prime.”  He rephrased the given condition with “any element of G has order 1 or 

(some prime number) p”.  Then, he followed “it (an element of G with order p) is of the 

form of 
pa for some Ga ” without any explanation, which lacked rigor of logic.  

There were a few factors that might have caused his lack of rigor in the argument.  He 

was unable to consider a subgroup of G generated by an element g in G with  1g  and 

to use Lagrange’s Theorem.  In particular, he was not able to start his argument with 
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translating the conclusion of the given statement “G is cyclic” into “  gG for some

Gg  with 1g .”  If he had  gG with 1g , that might have led him to consider

 g , which could have led him to use Lagrange’s Theorem.   

Example 5: Quincy (Topology) 

Students’ success in managing the opening stage is an imperative factor for  

making their proving arguments successful.  In particular, being able to derive a right 

starting variable from an ignition phrase in the mathematical language for the 

conclusion of the given statement can be a major factor.  Quincy’s case is an example 

showing students’ mismanagement of deriving a starting variable may damage their 

whole proving arguments.   

    Question [7] (Exam II) 

    Let X be a Hausdorff space.  Let }:{ Znxn
be a sequence in X converging  

To a point 0x . Prove that the set ,...}2,1,0:{  nxK n  is compact. 

 

Table 5.6 shows a possible proof for Question [7] and shows where Quincy had 

a difficulty in the proof construction.   

Table 5.6 

Analysis (Type A) of Quincy’s Proof 

Object Proof Code Q 

X Show that ,...}2,1,0:{  nxK n is compact.   

Y Show that for any open cover of K, K has a finite 

open subcover. 

  

P }:{ Znxn
be a sequence in X converging to 0x . Given  

1 Let }{ XTUU   be an open cover of X. C1 S 

2 Construct an open cover of K by letting

}{ KUVV   . 

C1 N 

3 Since }{ XTUU   is an open cover of X, 

UU 
0

such that
00 Ux  . 

R1 S 
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4 Since nx converges to 0x , 
 ZN such that for all

Nn  ,
0

Uxn  . 

CO(P,3)R1 S 

5 Let KUV 
00 

, where VV 
0

. C1 N 

6 For each ix with Ni  , find an open set VV
ix  such 

that
ixi Vx  . 

C1 N 

7 Note that },,...,{
0121 VVVV

Nxxx 
is a desired finite open 

subcover of K. 

CO(5,6)R2 N 

 

One way to prove Question [7] is as follows.  The conclusion of the given 

statement is “ ,...}2,1,0:{  nxK n is compact.”  It can be translated into the 

mathematical language “For any open cover of K, K has a finite open subcover.”  By 

paying attention to the ignition phrase “For any open cover of K,” one may explore the 

way to construct an open cover of K.  Recalling the property of a subspace topology, 

one can set a starting variable by having “Let }{ XTUU   as an open cover of X”.  

Then, one may construct an open cover of K by having “ }{ KUVV   .”  To 

further advance a reasoning process, one may note and consider the given hypothesis 

“ }:{ Znxn
converges to a point 0x .”   Then, the given hypothesis can be translated 

into “For an open set KUV 
00 

in the open cover of K, in which
00 Ux  , 

 ZN

such that for all Nn  , 
0

Vxn  .  Finally, they may create a finite open subcover 

},,...,{
0121 VVVV

Nxxx 
by setting VV

ix  such that 
ixi Vx  for Nn  .  Quincy’s proof is 

shown in the following figure (Figure 5.9).   



107 
 

 

                          Figure 5.9. Quincy’s Proof. 

There were mainly two problems with his proving argument.  One was that he 

was unable to bring in the concept of a subspace topology and apply it to K.  He seemed 

to use an open cover of X as a substitute for an open cover of K.  He might have lacked 

the knowledge of a subspace topology.  Another was that he constructed a finite open 

subcover of K without specifying an open cover of K, from which a finite subcover was 

supposed to come.  He missed noting the ignition phrase “For every open cover of K” 

in the definition of compactness, which led him to fail to set an open cover of K.   

His case is also an example showing students’ knowledge of the definition of a 

concept does not necessarily mean they can make good use of it in their proving 

arguments.  When he was asked to define “compactness” in a problem given prior to 

the above proof problem on the same exam, he was able to answer the question 

correctly with some minor awkward expressions.  As the following figure (Figure 5.10) 

shows, he stated the definition of compactness as “For every open cover (of X, it) has a 

finite open subcover.”   
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Figure 5.10. Quincy’s Statement. 

However, in the given proof problem, he did not pay attention to the ignition 

phrase “For every open cover.”  As a result, he constructed a finite open subcover 

without setting an open cover of K from which the finite subcover could have been 

derived.  His case implies students should know the role of an ignition phrase and how 

to utilize it for advancing a reasoning process.   

Example 6: Matthew (Topology) 

There is a type of proof for which students have to derive a starting variable 

from a given condition or hypothesis of the given statement.  This type of proof was 

rare among the proofs examined in this study while the great majority of the proofs 

required students to derive a starring variable from the conclusion of the given 

statement.  Matthew’s case is an example showing students’ failure to set a starting 

variable from a hypothesis of the given statement can cause their proving arguments to 

be unsuccessful. 

Question [6] (Exam II) 

Let X, Y be topological spaces; Y be compact; Xx 0 ; and N be an open 

 set containing Yx }{ 0 in the product space YX  .  Prove there exists  

an open neighborhood XW  of 0x such that NYW  . 

 

Table 5.7 shows a possible proof for Question [6] and shows where Matthew 

had a difficulty in the proof construction.   
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Table 5.7 

Analysis (Type A) of Matthew’s Proof 

 Proof Code M 

X Construct an open neighborhood XW  of 0x such that

NYW  . 

  

P1 N is an open set containing Yx }{ 0 .   

P2 Y is compact.   

1 Since N is open in YX  , for each Yxyx  }{),( 00 , there 

exists a basis open set NVU yy  containing ),( 0 yx for 

each Yy where 
yU is open in X and 

yV is open in Y. 

C1 N 

2 Then, }}{{ 0 yVx  is an open cover of Yx }{ 0 . R2 N 

3 Note Yx }{ 0 is homeomorphic to Y. C2 S 

4 Then, Yx }{ 0 is compact. CO(P2,3)

R2 

N 

5 Then, there exists a finite open subcover 

}}}{}{{ 00 Yy TxVx
i

  , where },...,1{  Znni and

YV
iy

n

i


1

 . 

CO(2,4) 

R1 

N 

6 Note that }{}{ 0 ii yy VUYx  N . . , where

},...,1{  Znni . 

C1 N 

7 
Let i

n

i

UW
1

  , where W is an open neighborhood of 0x , 

where NYWYx }{ 0 . 

C1 N 

 

The following shows how to obtain the above proof for Question [6].  The 

conclusion of the given statement is “there exists an open neighborhood XW  of 0x

such that NYW  .”  Noting the given condition “N is an open set containing

Yx }{ 0 ”and recalling the property of an open set, one can set a starting variable 

NVU yy  as an open neighborhood of ),( 0 yx for each Yy .”  Further noting another 

given condition “Y is compact” and realizing Yx }{ 0 is homeomorphic to Y, one can 

construct an open cover of Yx }{ 0 by having { NVUVU yyyy  and Yy }.  Then, 
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since Yx }{ 0 is compact, there must exist a finite open subcover }}{}{{ 00 yy TxVx
i

 , 

in which },...,1{  Znni and YV
iy

n

i


1

 .  Then, one may construct i

n

i

UW
1

  so that 

NYWYx }{ 0 .  The following (Figure 11) shows Matthew’s proof.   

 

Figure 5.11. Matthew’s Proof. 

Matthew’s proof was not successful because he was unable to construct an 

open neighborhood XW  of 0x such that NYW  .  A direct cause of his failure 

may be that he was unable to set a starting variable NTTVU YXyy  of ),( 0 yx  

for each Yy .  In this proof problem, a starting variable can be derived from the 

hypothesis of the given statement “N is an open set containing Yx }{ 0 .” The 

hypothesis can be translated into “there exists an open neighborhood of ),( 0 yx  

contained in N for each Yy .”  Then, an open neighborhood of ),( 0 yx can be 

expressed with 
YXyy TTVU   as a starting variable.  Using this object, students may 

construct an open cover }}{{ 0 yVx  of Yx }{ 0 so that they can use another hypothesis 

“Y is compact.”  Thus, a reasoning process cannot be advanced without setting a 

starting variable. 

Example 7: Natalie (Topology) 
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Natalie’s proof is another representative example showing students’ failure to 

set a starting variable can hinder them advancing a reasoning process based on logical 

deduction. 

Question [3b] (Exam II)  

Let YXq : be a quotient map and ZYf : be a map.   

Suppose qf  is continuous.  Show ZYf : is continuous. 

 

 Table 5.8 shows a possible proof of the statement of Question [3b] and shows 

where Natalie had a difficulty in the proof construction.   

Table 5.8 

Analysis (Type A) of Natalie’s Proof  

Step Statement Operation N 

                                                 Opening Stage 

X ZYf : is continuous. Given  

Y: OTC For any open set W in Z, )(1 Wf  is open in Y.  R1 N 

P1: hypothesis YXq : is a quotient map. Given  

P2: hypothesis qf  is continuous. Given  

S: OSV Let W be an open set in Z.  C1  

                                         Body Construction Stage 

1 Let W be an open set in Z. C1 N 

2 Consider )()( 1 Wqf  . C5 N 

3 Note )()( 1 Wqf  = ))(( 11 Wfq  . R1 N 

4 Since qf  is continuous ,  

))(( 11 Wfq   is open in X.  

CO(3,P2)R1 N 

5 Recall the property of a quotient map. C2 N 

6 Since q is a quotient map,  

)(1 Wf  must be open in Y. 

CO(4,5)R1 N 

7 Therefore, ZYf : is continuous. R1 N 

 

 The above proof can be obtained in the following way.  The conclusion of the 

given statement is “ ZYf : is continuous.”   The translation of the conclusion into 

mathematical language is “For any open set W in Z , ))(( 1 Wf 
is open in Y.”  Noting 
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the ignition phrase “For an open set W in Z ,” one can set a starting variable by having 

“
ZTW  .”  Combining the other given condition “ YXq : is a quotient map” and the 

property of a quotient map “If ))(( 1 Hq
is open in Z for a quotient map ZYq : and 

for ZH  , then H is open in Y,” one may conclude YTWf  ))(( 1
.  The following 

figure shows Natalie’s proof (Figure 5.12).  

 

Figure 5.12. Natalie’s Proof. 

 

Natalie was unable to prove the statement partly because she was unable to set a 

starting variable properly.  She attempted to prove the given statement in two ways.  In 

her first attempt, she claimed qf  was homeomorhism for no reason.  Since she did not 

provide any supporting explanations for her claim, her argument was not valid.  In her 

second attempt, she tried the contrapositive.  She was right in negating the conclusion 

of the given statement when she had “There exists an open set V (in Y) such that 

)(( 1 Vf 
is not open.”  This implies that she did pay attention to the conclusion of the 

given statement and that she was capable of translating it into mathematical language 

by applying the definition of a continuous function.  However, she did not set a starting 

variable correctly.  If she had set a starting variable 
ZTW  by paying attention to the 

ignition phrase in the mathematical language for the conclusion of the given statement, 



113 
 

she might have been able to more rigorously advance a reasoning process with the 

given conditions.    

Example 8: Anthony (Algebra I)  

 Anthony’s case is a representative example showing that students’ setting a 

starting variable from a hypothesis of the given statement may damage their whole 

proving arguments.   

Question [4] (In-class problem solving session) 

 

Suppose that )(/ GZG is cyclic.  Prove that G is abelian.  

 

Table 5.9 shows a possible proof for Question [4] and shows where Carlos had 

difficulties in the proof construction.  

Table 5.9 

Analysis (Type A) of Anthony’s Proof 

Object Proof Code A 

X Show G is abelian.  S 

Y Show baab  for any Gba , . R1 S 

P )(/ GZG is cyclic. Given  

1 Let Gba , . C1 N 

2 Note Gba , are in some cosets.  C2 N 

3 Let Zxa m and Zxb n . CO(2,P)R1 N 

4 Let 1zxa m and 2zxb n for some Zzz 21, . R2 N 

5 Then, bazxzxab mnnm  

21 . R3 N 

 

 The following is one way to obtain the above proof.  The conclusion of the 

given statement is that “G is cyclic.”  The conclusion “G is cyclic” can be translated 

into mathematical language “  gG for some Gg  with 1g .”  The given proof is 

the type of the proof of showing A = B.  One can work on either A or B through 

rephrasing it until A becomes B or B becomes A.   In this problem, one may consider 
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and work on  g .  Recalling and combining Lagrange’s Theorem and the property 

that a cyclic group generated by an element in G is a subgroup of G, one may obtain

pg ,1 .  Noting 1 g , one may decide pg  .  Combining the 

hypothesis  gG  and pg  , one may conclude  gG .  The following 

figure (Figure 5.13) shows Anthony’s proof.   

 

Figure 5.13. Anthony’s Proof. 

Anthony started with working on the given hypothesis “G/Z(G) is cyclic.”  

While many other students struggled with expressing an element of the cyclic group of 

group {G/Z(G)}, he was one of a few students who successfully expressed it by

)(GZg k
 .  However, his proving arguments did not make sense partly because he was 

unable to set a right goal of the proof “ baab  for any Gba , ” and partly because he 

was unable to set right starting variables “ Gba , ” from the conclusion of the given 

statement.   

His case was a representative example showing that students were tempted to 

note the hypothesis to set a starting variable.  He started to work on the hypothesis 

“G/Z(G) is cyclic” to introduce the variables “z and k” to consider a generator of  

G/Z(G).  With his lack of the knowledge of the fact that every element in G belonged to 

some coset, his argument turned out to be incomplete.   
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5.4 Difficulties with Rephrasing an Object 

A proving process involves a sequence of transformations of statements.  

Rephrasing an object is a major operation for transforming statement in a proof.  

Rephrasing an object is done by applying a definition of concept, a property of concept, 

through formal or informal interpretation, and through algebraic computation.  Students’ 

failure to make good use of the rephrasing operation may greatly affect their proving 

arguments.  I will present six examples showing students’ difficulties with rephrasing 

an object while showing how their difficulties occurred and affected their proving 

arguments: Katherine  made a wrong start of a proof (Example 9); Natalie was unable 

to make a proving argument in mathematical language (Example 10); Bill was unable 

to interpret an object for rephrasing an object (Example 11); Eric failed to rephrase an 

object because of his lack of knowledge (Example 12); and Berkeley (Example 13) 

missed trying algebraic manipulation for rephrasing an object.   

Example 9: Katherine (Topology) 

Translating a concept into mathematical language is a crucial operation of 

rephrasing an object by applying the definition of the concept.  Katherine’s case is a 

representative example showing the importance of students’ being able to translate a 

given statement into mathematical language. 

Question [7] (Exam II) 

Let X be a Hausdorff space.  Let }:{ Znxn
be a sequence in X converging 

to a point 0x . Prove that the set ,...}2,1,0:{  nxK n is compact. 

 

Table 5.10 shows a possible proof for Question [7] and shows where Katherine 

had difficulties in the proof.   
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Table 5.10 

Analysis (Type A) of Katherine’s Proof 

 Proof Code K 

X Show that ,...}2,1,0:{  nxK n is compact.   

Y Show that for any open cover of K, K has a finite open 

subcover. 

  

P }:{ Znxn
be a sequence in X converging to 0x . Given  

1 Let }{ XTUU   be an open cover of X. C1 S 

2 Construct an open cover of K by letting

}{ KUVV   . 

C1 N 

3 Since }{ XTUU   is an open cover of X, UU 
0

such that
00 Ux  . 

R1 N 

4 Since nx converges to 0x ,  ZN such that for all

Nn  ,
0

Uxn  . 

CO(P,3)R1 N 

5 Let KUV 
00 

, where VV 
0

. C1 N 

6 For each ix with Ni  , find an open set VV
ix  such 

that
ixi Vx  . 

C1 N 

7 Note that },,...,{
0121 VVVV

Nxxx 
is a desired finite open 

subcover of K. 

CO(5,6)R2 N 

 

The conclusion of the given statement is “ ,...}2,1,0:{  nxK n is compact.”  It 

can be translated into the following mathematical language: “For any open cover of K, 

K has a finite open subcover.”  By paying attention to the ignition phrase “For any open 

cover of K,” one may explore the way to construct an open cover of K.  Recalling the 

property of a subspace topology, one can set a starting variable by having “Let 

}{ XTUU   as an open cover of X”.  Then, one may construct an open cover of K, 

providing “ }{ KUVV   .”  Noting the given hypothesis “ }:{ Znxn
converges 

to a point 0x ,” one may translate it into the following mathematical language: “For an 

open set KUV 
00 

in the open cover of K, in which
00 Ux  ,  ZN such that for 
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all Nn  , 
0

Vxn  .  Then, one can construct a finite open subcover },,...,{
0121 VVVV

Nxxx 

by setting VV
ix  such that 

ixi Vx  for Nn  .  The following (Figure 5.14) is 

Katherine’s proof.  

 

Figure 5.14.  Katherine’s Proof. 

Katherine seemingly made a good start when setting an open cover of X.  

However, it seems that she set the open cover not because she intended to use it to 

derive an open cover of K but because she tried to substitute the open cover of X itself 

for an open cover of K.  If she had noted the conclusion of the given statement “K is 

compact” and translated it into “For every open cover of K, there exists a finite open 

subcover of K,” she might have at least mentioned an open cover of K in her argument.  

Students’ inability to rephrase an object can result from their lack of knowledge of, 

especially, the definition of a concept.  However, Katherine knew the definition of 

compactness.  She correctly stated the definition of compactness in the problem given 

prior to the above proof problem in the same exam, as seen in the following figure 

(Figure 5.15).   

 

Figure 5.15. Katherine’s Statement. 
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Katherine’s example shows even when students know the definition of a 

concept, that does not necessarily mean they can apply it.  This problem may occur 

because they are not aware of the importance of precisely translating an object, 

especially a mathematical key concept such as “compact,” “differentiable,” or “abelian,” 

into mathematical language.  In particular, they may not be aware of the role of an 

ignition phrase playing in proof construction: an ignition phrase can provide a variable 

with which students can start, develop, and advance their reasoning process.  If 

Katherine had had the knowledge of the role of an ignition phrase, she might have 

noted the ignition phrase “for every open cover of K” to consider how to set an open 

cover of K as a starting variable.   

Katherine also did not try to translate the given hypothesis “ }:{ Znxn
is a 

sequence in X converging to 0x ” into mathematical language “  ZN such that for 

every Nn  ,
0

Uxn  ,” which might have hindered her from advancing her reasoning 

process.  What is crucial in translating a statement into mathematical language lies in 

understanding, remembering, and accurately expressing the definition of a concept 

involved in a statement.  She showed her mental image about a sequence converging to 

a point in mentioning “ }:
1

{}0{ Zn
n

 .”  However, she was unable to express the 

definition of a sequence converging to a point in a formal way.  Students’ inability to 

rephrase an object can be directly caused by their incomplete knowledge of a concept, 

in particular, the definition of the concept.  

Example 10: Natalie (Topology)  

 A formal proving argument can be realized by way of mathematical language. 
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Mathematical language makes a proving argument rigorous, logical, and convincing.  

The operation of rephrasing an object plays a central role to translate an object into 

mathematical language.  Natalie’s proof (Figure 5.16) is an example showing students’ 

inability to rephrase an object may produce a proving argument that lacks logic and 

rigor.  

Question [3.b] (Exam II) 

Let YXq : be a quotient map and ZYf : be a map.  Suppose qf  is 

continuous.  Show ZYf : is continuous. 

 

Table 5.11 shows a possible proof for Question [3.b] and where Natalie had a 

difficulty in the proof construction.   

Table 5.11 

Analysis (Type A) of Natalie’s Proof  

Step Statement Operation N 

                                                 Opening Stage 

X ZYf : is continuous. Given  

Y: OTC For any open set W in Z, )(1 Wf  is open in Y.  R1 S 

P1: hypothesis YXq : is a quotient map. Given  

P2: hypothesis qf  is continuous. Given  

S: OSV Let W be an open set in Z.  C1  

                                         Body Construction Stage 

1 Let W be an open set in Z. C1 S 

2 Consider )()( 1 Wqf  . C5 N 

3 Note )()( 1 Wqf  = ))(( 11 Wfq  . R1 N 

4 Since qf  is continuous ,  

))(( 11 Wfq   is open in X.  

CO(3,P2)R1 N 

5 Recall the property of a quotient map. C2 N 

6 Since q is a quotient map,  

)(1 Wf  must be open in Y. 

CO(4,5)R1 N 

7 Therefore, ZYf : is continuous. R1 N 

 

The conclusion of the given statement is “ ZYf : is continuous.”   The 

translation of the conclusion into mathematical language is “For any open set W in Z , 
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))(( 1 Wf 
is open in Y.”  Noting the ignition phrase “For an open set W in Z ,” one can 

set a starting variable by having “Let
ZTW  .”  Combining the other given condition 

“ YXq : is a quotient map” and the property of a quotient map, which says “If 

))(( 1 Hq
is open in Z for a quotient map ZYq : and for ZH  , then H is open in Y,” 

one may conclude YTWf  ))(( 1
.  The following (Figure 5.16) is Natalie’s proof.   

  

Figure 5.16. Natalie’s Proof. 

Natalie’s proof was not convincing because she did not advance her reasoning 

process in mathematical language.   She claimed “ qf  is homeomorphic” without 

showing the reason.  She concluded f was continuous but did not provide the reason.  

She resorted to the abuse of a property of homeomorphism to prove the given statement.   

She might have avoided her incomplete argument if she had translated “ qf  is 

continuous” into “ XTWfq  ))(( 11
” for

ZTW  .  As introduced in Chapter 3 , in this 

study, mathematical concepts, for example, “continuous” and “homeomorphic,” are 

mathematical language but not treated as mathematical language.  Mathematical 

language is a rigorous expression of a concept involving a variable, which empowers 
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students to advance a reasoning process logically.  Natalie was not able to rephrase 

“continuous” and “a quotient map ” by translating them into mathematical language, 

which hindered her from making a formal proving argument.    

Example 11: Bill (Algebra I)  

Bill’s proof is a representative case showing students’ failure to rephrase an 

object through interpretation can be a cause of hindering them from advancing their 

reasoning process.   

Question [5] (In-class problem solving session) 

Suppose that the order of G is a prime number.  Prove that G is cyclic.  

 Table 5.12 shows a possible proof for the given problem and where Bill had 

difficulties in the proof construction.   

Table 5.12 

Analysis (Type A) of Bill’s Proof 

Object Proof Code B 

X Show G is cyclic.   

Y Show  gG for some Gg  with 1g . R1  

1 Consider  gG for some Gg  with 1g . C1 N 

2 Note  g is a subgroup of G.  C2 N 

3 Recall the Lagrange’s THM. C2 N 

4 Then, by the Lagrange’s THM, pg ,1  CO(2,3)R1 N 

5 Since 1 g , pg   CO(1,4)R2 N 

6 Since pG  ,  gG  R1 N 

 

The following is an explanation of the above proof.  The conclusion of the given 

statement is that “G is cyclic.”  The conclusion “G is cyclic” can be translated into 

mathematical language “  gG for some Gg  with 1g .”  The given proof is the 

type of the proof of showing A = B.  One can work on either A or B through rephrasing 
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it until A becomes B or B becomes A.   In this problem, one may consider and work on 

 g for some Gg  with 1g .  Recalling Lagrange’s Theorem and combining it 

with the property that a cyclic group generated by an element in G is a subgroup of G, 

one may obtain pg ,1 .  Noting 1 g , one may decide pg  .  

Combining the hypothesis  gG  and pg  , one can conclude  gG . The 

following (Figure 5.17) shows Bill’s proof.  

 

Figure 5.17. Bill’s Proof. 

Bill noted that  g was a subgroup of G and tried applying the Lagrange’s 

Theorem.  His notation was wrong when he had G │ g .  He probably meant that g │

G  by that.  After that, he was unable to advance his reasoning process mainly because 

he was unable to interpret g │ G  as  g = 1 or p.  If he had obtained  g = 1 or p, 

he might have obtained  gpG with 1 g .     

Example 12: Anthony (Algebra I)  

Anthony’s case is another example of showing that students’ 

 failure to rephrase an object can cause their proving arguments to be unsuccessful.  In 

particular, his case is a representative example showing students’ lack of knowledge 

may affect their ability of rephrasing an object.   
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Question [6] (In-class problem solving session) 

Suppose that pqG   for some primes p and q.  Prove that G is either abelian  

Or }{)( eGZ  and qpGZ ,)(  . 

 

 The following (Table 5.13)  is a possible proof for the given proof problem and 

shows where Anthony had difficulties in the proof construction.   

Table 5.13 

Analysis (Type A) on Anthony’s Proof 

 Proof Code A 

X Show G is abelian or }{)( eGZ  and qpGZ ,)(  .    

Y Show GGZ )(  or 1Z and qpZ ,  R1 N 

P pqG   for some primes p and q. Given   

1 Consider )(GZ . C5 S 

2 Note that )(GZ is a subgroup of G. C2 S 

3 Recall the Lagrange’s THM. C2 S 

4 Then,  ,)( pqGZ  1, p, or q. CO(2,3)R

2 

N 

5 Case 1: Suppose pqGZ )( . C3 N 

6 Since ZpqG  , G = Z. CO(5,P)R

2 

N 

7 Since Z is abelian, G is abelian R2 N 

8 Case 2: Suppose 1)( GZ . C3 N 

9 Then, }{)( eGZ  . R2 N 

10 Case 3: For a contradiction, suppose pGZ )( . C3 N 

11 Consider the order of the quotient group ZG / .  C5 N 

12 Since pqG  and pGZ )( , qZG / . CO(P,11)

R2 

N 

13 Recall that if K is prime, K is cyclic. C2 N 

14 Therefore, )(/ GZG is cyclic. CO(12,13)

R1 

N 

15 Recall that if the order of the quotient group HK / is 

cyclic, then K is abelian. 

C2 N 

16 Therefore, G is abelian. CO(14,15)

R1 

N 
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17 Then, G = Z. R2 N 

18 Then, pZGpq  , which is a contradiction. CO(P,15)

R2 

N 

 

 The above proof cab be obtained in the following way.   The conclusion of the 

given statement is “G is either abelian or }{)( eGZ  and  qpGZ ,)(  .”  The 

translation of the conclusion into mathematical language can be “ )(GZG  ” or 

1)( GZ and qpGZ ,)(  . One may further rephrase “ )(GZG  ” with pqGZ )( .   

in terms of )(GZ .   Students may rephrase “G is either abelian or }{)( eGZ  ” with 

“ pqGZ )( ” or “ 1)( GZ .”  Noting the given condition “ pqG  ”and recalling the 

relationship between )(GZ and G , which is “Z(G) is a subgroup of G,” and 

Lagrange’s Theorem, one can set the following three cases: pqGZ )( ; 1)( GZ ; and

qpGZ ,)(  .  For the first case, one may notice GpqGZ )( and conclude that

ZG  , which means that G is abelian.  For the second case, one may note that 

}{)( eGZ  so that 1)( GZ .  For the third case, one may use a contradiction assuming

pGZ )( .  Considering the quotient group )(/ GZG and recalling the fact that if 

)(/ GZG  is a prime number, )(/ GZG is cyclic, one may realize that if )(/ GZG is 

cyclic.  Moreover, recalling the fact that if )(/ GZG is cyclic, G must be abelian, one 

may realize G = Z(G).  However, it is a contradiction because one would get

pGZGpq  )( .  The following (Figure 5.18) is Anthony’s proof .    
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Figure 5.18. Anthony’s Proof. 

Although Anthony had “ Z divides pqG  ,” he was unable to advance his 

reasoning process partly because he was unable to interpret the meaning of “ Z divide 

pqG  ” and translate it into “ qpZ ,,1 or pq .”  If Anthony had obtained 

“ qpZ ,,1 or pq ,” he might have considered those three cases in which ,pqZ  1, 

and p (or q).  Another difficulty he had was that he was unable to rephrase “G is abelian” 

with “G = Z(G).” rephrase His lack of knowledge of that “G is abelian” is equivalent to 

saying “G = Z(G)” might have directly hindered him from applying the operation of 

rephrasing an object.   

Example 13 Eric (Algebra II)  

Eric’s proof shows that students’ failure to rephrase an object though algebraic 

manipulation may cause them to have impasses.  In particular, his case showed that 

students’ failure to rephrase a whole sentence or a whole equation can be a factor of 

hindering them from advancing a reasoning process.  

Question [9] (4) (In-class problem solving session) 

Let R and S be rings.  Let SR : is a ring homomorphism.  

)(][:)(/: rrSKerR   is a well-defined ring homomorphism.   

Show )(][:)(/: rrSKerR   is injective.  
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 Table 5.14 shows a possible proof and where Eric had difficulties in the proof 

construction.   

Table 5.14 

Analysis (Type A) on Eric’s Proof 

 Proof Code E 

X Show )(][:)(/: rrSKerR   is injective. Given  

Y Show that if ])([])([ sr   , then ][][ sr  .   R1 S 

P1 )(][:)(/: rrSKerR   is a well-defined ring 

homomorphism.  

Given  

P2 SR : is a ring homomorphism. Given  

1 Suppose that ])([])([ sr   . C1 S 

 Then, )()( sr   . CO(1,P1)R1 I 

2 Then, )()()(0 srsrS   . CO(2,P2)R3 N 

3 Then, )(Kersr  .  R2 N 

4 Then, ksr  for some )(Kerk . R2 N 

5 Then, ][sksr  . R2 N 

6 Then, [r]=[s]. R2 N 

 Another Proof   

X Show
)(/0)(  KerRKer  .  S 

1 Consider )(/]{[)(  KerRrKer  , where

Sr 0])([  }. 

C1 N 

2 Since )(][:)(/: rrSKerR   ,

)(/]{[)(  KerRrKer  , where Sr 0)(  }. 

CO(1,P1)R1 N 

4 Then, )(/]{[)(  KerRrKer  , )(Kerr }. R1 N 

5 Then, )(/]{[)(  KerRrKer  , )(][ Kerr  . R1 N 

6  Therefore,
)(/0)(  KerRKer  . R1 N 

 

 The following explains how to obtain the above proof.  One of the ways to show 

the function )(][:)(/: rrSKerR   is injective is to show that if

])([])([ sr   , then ][][ sr  .  Then, paying attention to the ignition phrase 

“ ])([])([ sr   ,” one may start a proving argument with “Suppose that

])([])([ sr   .”  Noting the given condition “ )(][:)(/: rrSKerR   ,” one 
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can rephrase ])([])([ sr   with )()( sr    based on the way for SKerR )(/: 

to be defined.  One can further rephrase )()( sr   with )()()(0 srsrS   to 

obtain )(Kersr  , which can lead them to conclude that ][][ sr  .   

There is another way to prove the given proof problem.  There is a property of 

an injective homomorphism that SR : is an injective ring homomorphism if and 

only if
RKer 0)(  .  Therefore, in order to prove that )(][:)(/: rrSKerR   is 

injective, one can show
)(/0)(  KerRKer  .  Then, one may start with considering

)(Ker .  Applying the definition of )(Ker , one may translate it into 

)(/]{[)(  KerRrKer  , in which Sr 0])([  }.  Combining the given condition 

)(][:)(/: rrSKerR   , one can further rephrase it with

)(/]{[)(  KerRrKer  , in which Sr 0)(  }.  Furthermore, one can rephrase it with

)(/]{[)(  KerRrKer  , in which )(Kerr }.  Then, they can conclude that

)(]{[)(  KerrKer  }, namely, 
)(/0)(  KerRKer  .  The following figure shows 

Eric’s proof (Figure 5.19). 

 

Figure 5.19.  Eric’s Proof. 

Eric had a right proving strategy, trying to show that if ])([])([ ba   , then

][][ ba  .  Moreover, he was able to rephrase ])([a and ])([b with )(a and )(b , 

respectively.  However, he was unable to advance his reasoning process after that 
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mainly because he was unable to rephrase the whole equation ])([])([ ba   with 

)(a = )(b .  He missed the equal sign of the equation.  If he had carefully rephrased 

the whole equation ])([])([ ba   with )(a = )(b , he might have obtained 

)()()(0 babaS   and realized that
Kerba  .   

Example 14 Berkeley (Algebra II)  

 Berkeley’s case is another representative example showing that failing to 

rephrase an object through algebraic manipulation can harm their proving arguments.  

His case also showed that flexibility might be required in rephrasing an object.  

Question [9] (4) In-class problem solving session) 

Let R and S be rings.  Let SR : is a ring homomorphism.  

)(][:)(/: rrSKerR   is a well-defined ring homomorphism.   

Show )(][:)(/: rrSKerR   is injective.  

 

Table 5.15 shows a possible proof for the given proof problem and shows where 

Berkeley had difficulties in the proof construction.   

Table 5.15 

Analysis (Type A) of Berkeley’s Proof 

 Proof Code B 

X Show )(][:)(/: rrSKerR   is injective. Given  

Y Show that if ])([])([ sr   , then ][][ sr  .   R1 S 

P1 )(][:)(/: rrSKerR   is a well-defined ring 

homomorphism.  

Given  

P2 SR : is a ring homomorphism. Given  

1 Suppose that ])([])([ sr   . C1 S 

 Then, )()( sr   . CO(1,P1)R1 I 

2 Then, )()()(0 srsrS   . R3 N 

3 Then, )(Kersr  .  R2 N 

4 Then, ksr  for some )(Kerk . R2 N 

5 Then, ][sksr  . R2 N 
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6 Then, [r] = [s]. R2 N 

 Another Proof   

X Show
)(/0)(  KerRKer  .  S 

1 Consider )(/]{[)(  KerRrKer  , where Sr 0])([  }. C1 N 

2 Since )(][:)(/: rrSKerR   ,

)(/]{[)(  KerRrKer  , where Sr 0)(  }. 

CO(1,P1)R1 N 

4 Then, )(/]{[)(  KerRrKer  , )(Kerr }. R1 N 

5 Then, )(/]{[)(  KerRrKer  , )(][ Kerr   R1 N 

6  Therefore, 
)(/0)(  KerRKer  . R1 N 

 

 One of the ways to show the function )(][:)(/: rrSKerR   is 

injective is to show that if ])([])([ sr   , then ][][ sr  .  Then, paying attention to the 

ignition phrase “ ])([])([ sr   ,” one may start a proving argument with “Suppose 

that ])([])([ sr   .”  Noting the given condition “ )(][:)(/: rrSKerR   ,” 

one can rephrase ])([])([ sr   with )()( sr    based on the way for 

SKerR )(/:  to be defined.  One can further rephrase )()( sr   with 

)()()(0 srsrS   to obtain )(Kersr  , which can lead them to conclude 

that ][][ sr  .   

There is another way to prove the given proof problem.  There is a property of 

an injective homomorphism that SR : is an injective ring homomorphism if and 

only if
RKer 0)(  .  Therefore, in order to prove that )(][:)(/: rrSKerR   is 

injective, one can show
)(/0)(  KerRKer  .  Then, one may start with considering

)(Ker .  Applying the definition of )(Ker , one may translate it into 

)(/]{[)(  KerRrKer  , in which Sr 0])([  }.  Combining the given condition 

)(][:)(/: rrSKerR   , one can further rephrase it with

)(/]{[)(  KerRrKer  , in which Sr 0)(  }.  Furthermore, one can rephrase it with
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)(/]{[)(  KerRrKer  , in which )(Kerr }.  Then, they can conclude that

)(]{[)(  KerrKer  }, namely, 
)(/0)(  KerRKer  .  The following figure is 

Berkeley’s proof  (Figure 5.20). 

 

Figure 5.20. Berkeley’s Proof. 

Providing that if “ )()( sr   ,” then )()( sr   , Berkeley made a good start 

apart from a minor mistake on his notations.  He wanted to have ])([])([ sr    

instead of having “ )()( sr   .”  Judging from his statement 

“ )()(  KersKerr  ,” he seemed to intend to show that if ])([])([ sr   , then 

][][ sr  , which would be correct.  Moreover, assuming that he meant ])([])([ sr  

by )()( sr   , he successfully rephrased ])([])([ sr   with )()( sr    by using 

the given condition “ )(][:)(/: rrSKerR   .”  However, assuming that he 

meant ][][ sr  by )()(  KersKerr  , what he missed was that he was unable to 

show the process to obtain ][][ sr   from )()( sr   clearly.  He was required to have 

flexibility to rephrase )()( sr   with 0)()(  sr   through algebraic manipulation 

and to further rephrase 0)()(  sr  with )(Kersr  to derive ][][ sr  .       

5.5 Difficulties with Combining Objects 

 Combining objects is one of the main operations for advancing a reasoning 

process. An object can be a phrase, a term, part of a sentence, or a whole sentence.  
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There are several ways to combine objects.  One is to combine an object with a given 

condition or assumption.  Another is to combine the objects obtained in the process of 

advancing a reasoning process.  The other is to combine an object with a theorem, a 

lemma, a proposition, or a property of concept that they are required to recall in the 

process of reasoning.  Failing to combine objects can result in students’ having 

impasses during the process of proof construction and making their proofs incomplete. I 

will present three examples of students’ difficulties with combining objects while 

showing how their difficulties occurred and affected their proofs: Edward missed using 

a given hypothesis to make his proof incomplete (Example 15); Berkeley missed using 

part of given hypotheses (Example 16); and Dominique missed using all the given 

hypotheses (Example 17).   

Example 15 Edward (Topology)  

Edward’s proof was a representative example showing that students failed to 

make their proving arguments complete because they failed to combine objects.  

Among some possible causes of students’ failure to combine objects, the cause that was 

frequently seen was that they missed using a given condition or hypothesis.  His case 

was also such an example, too.    

Question [3.b] (Exam II) 

Let YXq : be a quotient map and ZYf : be a map.   

Suppose qf  is continuous.  Show ZYf : is continuous. 

 

Table 5.16 shows a possible proof for Question [3.b] and where Edward had 

difficulties in the proof construction.   
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Table 5.16 

Analysis Table (Type A) of Edward’s Proof 

Step Statement Operation E 

                                                 Opening Stage 

X ZYf : is continuous. Given  

Y: OTC For any open set W in Z, )(1 Wf  is open in Y.  R1 S 

P1: hypothesis YXq : is a quotient map. Given  

P2: hypothesis qf  is continuous. Given  

S: OSV Let W be an open set in Z.  C1  

                                         Body Construction Stage 

1 Let W be an open set in Z. C1 S 

2 Consider )()( 1 Wqf  . C5 S 

3 Note )()( 1 Wqf  = ))(( 11 Wfq  . R1 N 

4 Since qf  is continuous ,  

))(( 11 Wfq   is open in X.  

CO(3,P2)R1 N 

5 Recall the property of a quotient map. C2 N 

6 Since q is a quotient map,  

)(1 Wf  must be open in Y. 

CO(4,5)R1 N 

7 Therefore, ZYf : is continuous. R1 N 

 

The following shows a way to obtain the above proof.  The conclusion of the 

given statement is “ ZYf : is continuous.”   The translation of the conclusion into 

mathematical language is “For any open set W in Z , ))(( 1 Wf 
is open in Y.”  Noting 

the ignition phrase “For an open set W in Z ,” one can set a starting variable by having 

“
ZTW  .”  Combining the other given condition “ YXq : is a quotient map” and the 

property of a quotient map “If ))(( 1 Hq
is open in Z for a quotient map ZYq : and 

for ZH  , then H is open in Y,” one may conclude YTWf  ))(( 1
.  The following 

(Figure 5.21) is Edward’s proof.   
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Figure 5.21. Edward’s Proof. 

Edward was unable to complete the proof mainly because he missed using the 

given condition that YXq : was a quotient map.  He dealt with the opening stage 

successfully by setting an open set  ZTW   and by trying to show YTWf  )(1
.  He 

further successfully combined the starting variable ZTW  with the given condition 

“ qf  is continuous” to obtain XTWfq  ))(( 11
.  Then, the only thing that was left for 

him to show was YTWf  )(1
.  To show YTWf  )(1

, he had to combine 

XTWfq  ))(( 11
 and the other given condition “ YXq : is a quotient map,” which 

he missed.  It is important for students to make sure if they have used all the given 

conditions. 

Example 16 Berkeley (Algebra II)  

Berkeley’s case was another example showing that students’ failure to use a 

given condition can cause weak or incomplete proofs.  Her example also implied 

carefulness and flexibility were required in practicing the operation of combining 

objects.   
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Question [9] (3) (In-class problem solving session) 

Let R and S be rings.  Let SR : is a ring homomorphism.   

Consider a map )(][:)(/: rrSKerR   .   

Show )(][:)(/: rrSKerR   is a ring homomorphism.  

 

Table 5.17 shows a possible proof for the given proof problem and shows where 

Berkeley had difficulties in the proof construction.    

Table 5.17 

Analysis (Type A) of Berkeley’s Proof 

Object Proof Code B 

X Show )(][:)(/: rrSKerR   is a 

ring homomorphism. 

Given  

Y Show (i) ])[]([ sr  = ])([])([ sr   and  

(ii) ])][([ sr = ])([r ])([s . 

  

P1 )(][:)(/: rrSKerR   .   

P2 SR : is a ring homomorphism. Given  

 (i)   

1 Let )(/][],[ KRsr  . C1 S 

2 Consider ])[]([ sr  . C1 S 

3 Note that ])([])[]([ srsr   . R2 S 

4 Since )(][:)(/: rrSKerR   ,

)(])([ srsr   . 

CO(3,P1)R1 N 

5 Since SR : is a homomorphism, 

)()()( srsr   . 

CO(4, P2)R1 N 

6 Since )(][:)(/: rrSKerR   , 

])([])([)()( srsr   . 

CO(5,P1)R1 N 

7 Then, ])[]([ sr  = ])([])([ sr   . CO(2-6)R2 I 

 (ii)   

8 Consider ])][([ sr . C1 S 

9 Note ])][([ sr = ])([rs . R1 S 

10 Then, ])([rs = )(rs . CO(9,P1)R1 N 

11 Then, )(rs = )(r )(s . CO(10, P2)R1 N 

12 Since :)(/: SKerR  )(][ rr  ,

)(r )(s = ])([r ])([s . 

CO(11, P1)R1 N 

13 Therefore, ])][([ sr = ])([r ])([s . CO(8-12)R2 I 
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 The goal of the proof is “ )(][:)(/: rrSKerR   is a ring 

homomorphism.”  There are two things to show: (i) ])[]([ sr  = ])([ sr  ; (ii) 

])][([ sr = ])([r ])([s .  For (i), one can rephrase ])[]([ sr  with ])([ sr 

through algebraic manipulation.  Using the given condition 

“ )(][:)(/: rrSKerR   ,” one can rephrase ])([ sr  with )( sr  .  Using 

another given condition “ SR : is a ring homomorphism,” they can rephrase 

)( sr  with )()( sr   .  Using the given condition “ )(][:)(/: rrSKerR   ” 

again, one can derive that )()( sr   = ])([])([ sr   to conclude that) ])[]([ sr  =

])([])([ sr   . 

 Similarly, for (ii), one starts with considering ])][([ sr .  One can rephrase 

])][([ sr with ])([rs through algebraic manipulation.  Using the given condition 

“ )(][:)(/: rrSKerR   ,” one can further rephrase ])([rs  with )(rs .  Using 

the other condition “ SR : is a ring homomorphism,” one can rephrase )(rs with

)(r )(s .  Using the condition “ )(][:)(/: rrSKerR   ” again, one can 

derive )(r )(s = ])([r ])([s  to conclude that ])][([ sr = ])([r ])([s .  The 

following (Figure 5.22) is Berkeley’s proof.  

 

Figure 5.22. Berkeley’s Proof. 

Berkeley was unable to prove the given statement successfully mainly because 

he was unable to use the given condition that )(][:)(/: rrSKerR   , where 

SR : was a ring homomorphism.  He knew what he needed to show in order to 
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prove )(][:)(/: rrSKerR   was a ring homomorphism.  However, he was 

unable to show why ])([])([])([ srsr   .  In particular, he missed using a given 

condition “ )(][:)(/: rrSKerR   ” to rephrase ])([ sr  with )( sr  .  He 

needed to be careful enough to realize that ])([])([])([ srsr   was the very 

statement that he needed to prove and was not what he was able to obtain for free.  He 

also needed to have flexibility to combine ])([ sr  and the given condition SR :

and )(][:)(/: rrSKerR   so that he might rephrase ])([ sr  with

])([])([ sr   .   

Similarly, he was unable to show why ])([])([])([ srrs   .  He missed 

combining the object ])([rs  and the given condition “ )(][:)(/: rrSKerR   ”  

in order to rephrase ])([rs with )(rs .  When he had ])([])([])([ srrs   , he 

needed to be careful enough to question himself why the equality of the equation was 

able to hold and to look for another information that might lead him to 

])([])([])([ srrs   .  Having carefulness to check what has been done and having 

flexibility to make good use of all the given conditions might play an important role in 

combining objects.   

Example 17 Dominique (Algebra II) 

 Every single information given as a hypothesis or condition is important and 

necessary in constructing a proof.  Example 16 showed students’ failure to use part of 

the given conditions made their proving arguments weaker or incomplete.  Students’ 

missing using all the given conditions can lead to their complete failure to make a proof.  

Dominique’s proof is such an example.   
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Question [9] (3) (In-class problem solving session) 

Let R and S be rings.  Let SR : is a ring homomorphism.   

Consider a map )(][:)(/: rrSKerR   .  Show 

)(][:)(/: rrSKerR   is a ring homomorphism.  

 

Table 5.18 shows a possible proof for the given proof problem and shows where 

Louis had difficulties in the proof construction.    

Table 5.18 

Analysis (Type A) of Dominique’s Proof 

 

Object Proof Code D 

X Show )(][:)(/: rrSKerR   is a 

ring homomorphism. 

Given  

Y Show (i) ])[]([ sr  = ])([])([ sr   and  

(ii) ])][([ sr = ])([r ])([s  

  

P1 )(][:)(/: rrSKerR   .   

P2 SR : is a ring homomorphism. Given  

 (i)   

1 Let )(/][],[ KRsr   C1  

2 Consider , ])[]([ sr   C1  

3 Note that ])([])[]([ srsr   . R2  

4 Since )(][:)(/: rrSKerR   ,

)(])([ srsr   . 

CO(3,P1)R1  

5 Since SR : is a homomorphism, 

)()()( srsr   . 

CO(4, P2)R1  

6 Since )(][:)(/: rrSKerR   , 

])([])([)()( srsr   . 

CO(5,P1)R1  

7 Then, ])[]([ sr  = ])([])([ sr   . CO(2-6)R2  

 (ii)   

8 Consider ])][([ sr . C1  

9 Note ])][([ sr = ])([rs . R1  

10 Then, ])([rs = )(rs . CO(9,P1)R1  

11 Then, )(rs = )(r )(s . CO(10, P2)R1  

12 Since :)(/: SKerR  )(][ rr  , CO(11, P1)R1  
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)(r )(s = ])([r ])([s . 

13 Therefore, ])][([ sr = ])([r ])([s . CO(8-12)R2  

 

The goal of the proof is “ )(][:)(/: rrSKerR   is a ring 

homomorphism.”  There are two things to show: (i) ])[]([ sr  = ])([ sr  ; (ii) 

])][([ sr = ])([r ])([s .  For (i), one can rephrase ])[]([ sr  with ])([ sr 

through algebraic manipulation.  Using the given condition 

“ )(][:)(/: rrSKerR   ,” one can rephrase ])([ sr  with )( sr  .  Using 

another given condition “ SR : is a ring homomorphism,” they can rephrase 

)( sr  with )()( sr   .  Using the given condition “ )(][:)(/: rrSKerR   ” 

again, one can derive that )()( sr   = ])([])([ sr   to conclude that) ])[]([ sr  =

])([])([ sr   . 

Similarly, for (ii), one starts with considering ])][([ sr .  One can rephrase 

])][([ sr with ])([rs through algebraic manipulation.  Using the given condition 

“ )(][:)(/: rrSKerR   ,” one can further rephrase ])([rs  with )(rs .  Using 

the other condition “ SR : is a ring homomorphism,” one can rephrase )(rs with

)(r )(s .  Using the condition “ )(][:)(/: rrSKerR   ” again, one can 

derive )(r )(s = ])([r ])([s  to conclude that ])][([ sr = ])([r ])([s .  The 

following is Dominique’s proof (Figure 5.23). 

 

Figure 5.23. Dominique’s Proof. 
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Dominique knew exactly what he needed to show, but his proof was not 

successful partly because his notations were incorrect, partly because he lacked his 

alertness in advancing his reasoning process, and partly because he failed to combine 

objects, and.  He provided )( ba  though he was supposed to provide ])[]([ ba  .  

His use of incorrect notations may be attributed to his lack of carefulness in making 

sure of how the homomorphism SKerR )(/:  was defined.   Also, he was not 

alert enough to realize what he showed was exactly what he was asked to prove.  He 

needed to ask himself why he might say ])[]([ ba  = ])([])([ ba   .  However, the 

most crucial source of his incomplete argument might be that he was not able to note 

and utilize the given condition )(][:)(/: rrSKerR   when he was trying to 

change ])[]([ ba   into ])([])([ ba   .  By using the condition, he might have had  

]).([])([][][][])([])[]([ srsrsrsrsr     

5.6 Difficulties with Creating a Cue 

 Creating a cue is another major operation for advancing a reasoning process in 

proof construction.  There are four ways to create a cue: (1) to set a variable; (2) to 

recall a theorem, a lemma, a proposition, and a property of concept, and engage it in a 

proving argument; (3) to set some cases; (4) make a claim; (5) and consider an object.  

Creating a cue can be considered as the highest level of operation of  the three main 

operations (rephrasing an object, combining objects, and creating a cue) in terms of the 

difficulty.  While the operations of rephrasing an object and combining objects allow 

students to directly use the object that is already given or obtained, the operation of 

creating a cue requires students to come up with a new object without having them 

directly depend on the objects that have already existed.  The results also implied that 
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the factors of students’ background knowledge and their mental attitudes can be closely 

related to their use of the operation of creating a cue.  I will present three examples of 

students’ difficulties with creating a cue while showing how their difficulties occurred 

and affected their proofs: Eliot was unable to create a new object that helped him 

further advance a reasoning process (Example 18): Elgar failed to derive a right starting 

variable from a hypothesis of the given statement (Example 19); and Kyle failed to 

recall and apply prior knowledge (Example 20).  

Example 18 Eliot (Analysis)  

Eliot’s case is a representative example showing that students’ difficulty with 

creating a cue can cause students to produce an incomplete proof.  In particular, he had 

a difficulty to create a new function to be considered.  His case also implied flexibility 

might be an important factor that allowed students to create a cue.   

Question  [7] (Final Exam) 

 Let ]1,0[]1,0[: f be continuous.  Prove that there exists a number  

]1,0[x such that xxf )( .   

 

Table 5.19 shows a possible proof for Question [7] and where Eliot had a 

difficulty in the proof construction. 

Table 5.19 

Analysis (Type A) of Eliot’s Proof 

 Proof Code E 

X Prove that there exists a number ]1,0[x  such that 

xxf )( .   

  

P ]1,0[]1,0[: f is continuous. Given   

1 Define ]1,1[]1,0[: g by xxfxg  )()( . C1 S 

2 Consider xxfxg  )()( . C5 N 

3 Recall the Intermediate Value Theorem. C2 N 
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4 Since )1,1(0  , there exists )1,0(c such that 

0)()(  ccfcg . 

CO(2.3)R1 N 

5 Therefore, there exists )1,0(c such that ccf )( . R2 N 

 

 Considering using the Intermediate Value Theorem, one may create a 

continuous function ]1,1[]1,0[: g  by defining xxfxg  )()( .  Noting that 

]1,1[0  and applying the theorem to the function g(x), one may derive )1,0(c such 

that 0)()(  ccfcg .  Then, one can conclude there exists ]1,0[c such that ccf )( .  

The following (Figure 5.24) is Eliot’s proof.   

 

Figure 5.24. Eliot’s Proof. 

Eliot thought about applying Intermediate Value Theorem to the given function

]1,0[]1,0[: f .  Then, he set 0y which is between )0(f and )1(f .  Then, as he stated, 

there existed )1,0(0 x such that 00 )( yxf  .  However, he was unable to show 00 xy   

clearly.  One of the causes of his difficulties was that he was required to have flexibility 

to create and consider a new continuous function ]1,1[]1,0[: g by defining
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xxfxg  )()(  so that he might apply the theorem to the function.  If he had set 

]1,1[]1,0[: g by defining xxfxg  )()( , he might have derived )1,0(c such that 

0)()(  ccfcg  by applying the intermediate value theorem.   

Example 19 Elgar (Topology)  

 Setting a variable is one of the major types for creating a cue.  A variable is a 

key unit for advancing a reasoning process.  Without a variable, students cannot 

construct a rigorous proving argument.  In addition, students are often required to create 

a variable in their proofs.  It is crucial for them to be able to set a variable.  However, it 

can be difficult.  Elgar’s case is such a representative example.  

Question [6] (Exam II) 

Let X, Y be topological spaces; Y be compact; Xx 0 ; N be an open set 

containing Yx }{ 0 in the product space YX  .  Prove that there exists  

an open neighborhood XW  of 0x such that NYW  . 

 

 The following (Table 5.20) is a possible proof for the given problem and shows 

where Elgar had difficulties in the proof construction.   

Table 5.20 

Analysis (Type A) of Elgar’s Proof 

 Proof Code E 

X Construct an open neighborhood XW  of 0x such that 

NYW  . 

  

P1 N is an open set containing Yx }{ 0 .   

P2 Y is compact.   

1 Since N is open in YX  , for each Yxyx  }{),( 00 , 

there exists a basis open set NTTVU YXyy 

containing ),( 0 yx for each Yy . 

C1 N 

2 Then, }}{{ 0 yVx  is an open cover of Yx }{ 0 . R1 N 

3 Note Yx }{ 0 is homeomorphic to Y. C2 S 
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4 Then, Yx }{ 0 is compact. CO(P2,3)R2 S 

5 Then, there exists a finite open subcover 

}}}{}{{ 00 Yy TxVx
i

  , where },...,1{  Znni and 

YV
iy

n

i


1

 . 

CO(2,4) 

R1 

N 

6 Note that }{}{ 0 ii yy VUYx  N . . , where 

},...,1{  Znni . 

C1 N 

7 
Let i

n

i

UW
1

  , where W is an open neighborhood of 0x , 

where NYWYx }{ 0 . 

C1 N 

 

The conclusion of the given statement is “there exists an open neighborhood 

XW  of 0x such that NYW  .”  Noting the given condition “N is an open set 

containing Yx }{ 0 ”and recalling the property of an open set, one can set a starting 

variable NVU yy  as an open neighborhood of ),( 0 yx for each Yy .”  Noting 

another given condition “Y is compact” and realizing Yx }{ 0 is homeomorphic to Y, 

one can construct an open cover of Yx }{ 0 by having { NVUVU yyyy  and Yy }.  

Since Yx }{ 0 is compact, there must exist a finite open subcover }}{}{{ 00 yy TxVx
i

 , 

in which },...,1{  Znni and YV
iy

n

i


1

 .  Then, one may construct i

n

i

UW
1

  so that 

NYWYx }{ 0 .  The following (Figure 5.25) is Elgar’s proof.   

 

Figure 5.25. Elgar’s Proof. 
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 Elgar had some difficulties in his proof.  He stated that there existed Xxw 

such that }}{,}{{}{ 00 YxYxNYx w  , which was wrong because  

YxNYx  }{}{ 00 .  Also, he was not very careful about what he provided at the 

end of his proving argument.  He was supposed to provide an open neighborhood W of 

0x such that NYWYx }{ 0 , but what he provided was not an open 

neighborhood of 0x .  A more serious factor that made his proving argument 

unsuccessful might have lain in his difficulty with creating a variable for developing a 

proving argument.  Unlike most other proofs examined in this, this proof problem 

required students to derive a starting variable from not the conclusion but the 

hypothesis of the given statement.  Although Elgar noted the given hypothesis “N is an 

open set containing Yx }{ 0 in the product space YX  ” at the beginning, he was 

unable to set a variable from the hypothesis, which was a basis open set 

NTTVU YXyy  containing ),( 0 yx for each Yy .  A possible cause of his 

difficulty with creating the open basis might be that he might not have translated “N is 

an open set containing Yxyx  }{),( 00 ” into mathematical language “there exists a 

basis open set NTTVU YXyy  containing ),( 0 yx for each Yy .”  Students were 

required to derive “an open neighborhood 
YXyy TTVU   of each point

Yxyx  }{),( 00 ” by noting “ Yxyx  }{),( 00  for each Yy .”  If Elgar had 

NTTVU YXyy  , he might have thought of making an open cover of Yx }{ 0  so 

that he might have used the condition of Y being compact.    
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Example 20 Kyle (Analysis I)  

Recalling a relevant theorem, proposition, or property and bringing it in to a 

proving argument is one of the ways to advance a reasoning process in proof 

construction.  The theorem, proposition, or property brought in from outside can work 

as a cue that helps students to move on.   Students’ failure to create a cue through 

recalling and applying a theorem, proposition, or property can be a crucial factor for 

hindering them from advancing a reasoning process.   Kyle’s proof is such a 

representative example.   

In the majority of proofs analyzed in this study, a starting variable was drawn 

from the conclusion of the given statement.  However, there were a few proofs in which 

students had to derive a starting variable from a phrase or a statement other than the 

conclusion of the given statement.  For example, there was a type of proof in which 

students had to derive a starting variable from a given hypothesis of the given statement.  

There was also a type of proof in which students had derive a starting variable from a 

proposition or a theorem that students were required to recall at the beginning of the 

proof.  Kyle’s proof problem belonged to this type.  He had to derive a starting variable 

from a property he needed to recall.  Kyles’ proof showed, however, Although the 

operation can be imperative, that it might be difficult for students to hit on, recall, and 

choose a right one from their prior knowledge.   

Question [1] (Exam III) 

Let ba  is fixed.  Suppose that  0ng  is a sequence of Riemann integrable  

functions such that 0)(lim 
dxxg

b

a

n
n

.  Prove that if f is Riemann integrable 

on (a, b), then 0)()(lim 
dxxgxf

b

a

n
n

. 
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Table 5.21 shows a possible proof for Question [1] and shows where Kyle had 

difficulties in the proof construction. 

Table 5.21  

Analysis (Type A) of Kyle’s Proof 

 Proof Code K 

X 
Show 0)()(lim 

dxxgxf
b

a

n
n

. 
Given  

Y 
Show 0)()(lim 

dxxgxf
b

a

n
n

. 
C5 N 

P1 0ng is a sequence of Riemann integrable functions 

such that 0)(lim 
dxxg

b

a

n
n

. 

Given  

P2 )(xf  is Riemann integrable on (a, b). Given  

1 
Recall dxxhdxxh

t

s

t

s

  )()( . 
C2 N 

2 
Then, dxxgxfdxxgxf

b

a

n

b

a

n   )()()()( . 
CO(1,Y)R2 N 

3 Since  0)( xgn , 

dxxgxfdxxgxf n

b

a

b

a

n )()()()(   . 

CO(2, P1)R2 N 

4 Since f is Riemann integrable, f is bounded, namely, 

Mxf )( for some RM  . 

C2 I 

5 
Then,  dxxgMdxxgxf n

b

a

n

b

a

)()()(   . 
CO(3, 4)R2 I 

6 
Note dxxgMdxxgM

b

a

nn

b

a

)()(   . 
R3 N 

7 Therefore, we have now 

dxxgMdxxgxf
b

a

n

b

a

n )()()(0   . 

CO(2, 6)R2 N 

8 
Consider dxxgM

b

a

n )(  
C5 N 
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9 
Since 0)(lim 

dxxg
b

a

n
n

, 0)(lim 
dxxgM

b

a

n
n

. 
CO(P1, 8)R2 N 

10 
Therefore, 0)()(lim 

dxxgxf
b

a

n
n

as is desired. 
CO(7, 9)R2 N 

 

One of the ways to solve this problem is to bring in and apply the proposition 

that if 0lim 


n
n

A , then 0lim 


n
n

A .  The conclusion of the given problem “Show 

0)()(lim 
dxxgxf

b

a

n
n

” can be translated into “Show 0)()(lim 
dxxgxf

b

a

n
n

.”  

Recalling and applying “ dxxhdxxh
t

s

t

s

  )()( ”to  dxxgxf
b

a

n
n

)()(lim 
, one can 

obtain dxxgxfdxxgxf
b

a

n

b

a

n   )()()()( .   Then, noting the given condition 

“ 0)( xgn ,” one can obtain dxxgxfdxxgxf n

b

a

b

a

n )()()()(   .  Noting another given 

condition “ )(xf  is Riemann integrable” and recalling the property of a Riemann 

integrable function, which is “if )(xf  is Riemann integrable, )(xf  is bounded,” one 

can obtain “ dxxgMdxxgxf
b

a

n

b

a

n )()()(0   f for some RM  .”  By using the other 

condition “ 0)(lim 
dxxg

b

a

n
n

” and applying the squeeze theorem, one can conclude 

that 0)()(lim 
dxxgxf

b

a

n
n

.   The following (Figure 5.26) is Kyle’s proof. 
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Figure 5.26. Kyle’s Proof. 

One of the difficulties that Kyle had was that he was unable to think of using the 

proposition “ 0lim 


n
n

A , then 0lim 


n
n

A .”  If Kyle had considered 

dxxgxf
b

a

n
n

)()(lim 
, he could have advanced his reasoning process by coming up 

with the idea that dxxgxfdxxgxf
b

a

n

b

a

n   )()()()( .  Another difficulty that he had was 

that he was unable to recall the proposition “if )(xf  is Riemann integrable, )(xf  is 

bounded, namely, Mxf )( for some RM  .”  If he had known that, he could have 

considered 0)(lim)()(lim0   
dxxgMdxxgxf

b

a

n
n

b

a

n
n

 to conclude that

0)()(lim 
dxxgxf

b

a

n
n

.  This example also showed Kyle was required to have 

flexibility to recall and choose a necessary theorem, proposition, or property from their 

prior knowledge and apply it to a given proof problem. 
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5.7 Difficulties with Checking and Exploring 

 Although this study did not focus on the fourth operation of Checking and 

Exploring so much as others, it is a crucial, indispensable, and essential operation for 

making proving arguments successful.  For instance, it is important for students to 

check what they have done, adjust or correct their ideas, and make another attempt if 

necessary.  Practicing the operation of checking can be closely related to students’ 

mental attitudes, especially carefulness and alertness. Two examples will be presented 

to show students’ difficulties with checking and exploring: Curt failed to check what he 

came up with (Example 21); Ryan tried a property that was not helpful but did not 

check the effectiveness of the property (Example 22).   

Example 21 Curt (Algebra I)  

 Curt’s case is a representative example showing that students’ failure to check 

what they have done can cause them to produce unsuccessful proofs.   

Question [5] (In-class problem solving session) 

Suppose that the order of G is a prime number.  Prove that G is cyclic.  

Table 5.22 shows a possible proof for Question [5] and shows where Curt had 

difficulties in the proof construction.   

Table 5.22 

Analysis (Type A) of Curt’s Proof 

 Proof Code  

X Show G is cyclic.   

Y Show  gG for some Gg  with 1g . R1 I 

P The order of G is a prime number. Given  

S Let Gg  with 1g . C1 N 

1 Let Gg  with 1g . C1 N 

2 Consider  g . C5 N 
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3 Note  g is a subgroup of G.  C2 N 

4 Recall the Lagrange’s THM and apply it to 

 g . 

C2 N 

5 Then, by the Lagrange’s THM, pg ,1 . CO(3,4)R2 N 

6 Since 1 g , pg  . CO(1,5)R2 N 

7 Since pG  ,  gG . R1 N 

 

The conclusion of the given statement is “G is abelian.” The translation of it 

into mathematical language provides “ baab  for any Gba , .”  The phrase in the 

mathematical language, “for any Gba , ,” is the ignition phrase.  One can derive 

starting variables from the ignition phrase and provide “Suppose Gba , .”  This 

problem is the type of the proof of showing A = B.  One can work on either A or B until 

A changes into B or B changes into A while making good use of the given conditions.  

In this case, one can attempt to rephrase the left side of the equation “ ab ” until it 

changes into “ ba .”  To rephrase “ ab ,” one may consider the given hypothesis 

“ )(/ GZG is cyclic” and look for the connection between the starting variables “ ba, ” 

and the hypothesis “ )(/ GZG is cyclic.”  Recalling the property that an element of G 

belongs to some coset, one may produce Zxa m and Zxb n for some Gx .  Then, 

one can rephrase ab with 21zzx nm
for some Zzz 21,  .  Using the property of the center 

of a group, one may derive bazzxzzxab mnnm  

1221 .  The following are Curt’s 

proving strategy (Figure 5.27) and his proof (Figure 5.28). 

 

Figure 5.27. Curt’s Strategy. 
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 His statement for his proving strategy had two problems.  First, he had a 

difficulty with his notation.  He stated “I will show that  pgH .”   He probably 

meant  gH by  pgH .  He needed to be careful to realize that H =  pg = 

}{e , which would be a trivial case.  Another problem was that even when he showed 

 gH ,  that would not have led him to reach the conclusion “G is cyclic.”  

 

         Figure 5.28. Curt’s Proof. 

Curt further argued that since pH  divided G ,  pG  , which was false.  

He again needed carefulness to realize that G might be multiple of p.  Moreover, he 

ended up with pG  as his conclusion, which was not the goal of the proof he was 

supposed to show.  By making sure of the goal, he might have changed his proving 

arguments.   

Example 22 Ryan (Topology)  

 Rayan’s case was a representative example showing that students failed to make 

a successful proving argument because they tired applying their prior knowledge that 

was not necessary nor helpful for solving the given proof problems.      

Question [7] (Exam II) 

Let X be a Hausdorff space.  Let }:{ Znxn
be a sequence in X converging  

to a point 0x . Prove that the set ,...}2,1,0:{  nxK n is compact. 
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 Table 5.23 shows a possible proof for the given proof problem and shows where 

Ryan had difficulties in the proof construction.   

Table 5.23 

Analysis (Type A) of Ryan’s Proof 

Object Proof Code R 

X Show that ,...}2,1,0:{  nxK n is compact.   

Y Show that for any open cover of K, K has a finite 

open subcover. 

  

P }:{ Znxn
be a sequence in X converging to 0x . Given  

1 Let }{ XTUU   be an open cover of X. C1 N 

2 Construct an open cover of K by letting 

}{ KUVV   . 

C1 N 

3 Since }{ XTUU   is an open cover of X, 

UU 
0

such that 
00 Ux  . 

R1 N 

4 Since nx converges to 0x ,  ZN such that for all 

Nn  , 
0

Uxn  . 

CO(P,3)R

1 

N 

5 Let KUV 
00 

, where VV 
0

. C1 N 

6 For each ix with Ni  , find an open set VV
ix  such 

that 
ixi Vx  . 

C1 N 

7 Note that },,...,,{
0121 VVVV

Nxxx 
is a desired finite open 

subcover of K. 

CO(5,6)R

2 

N 

 

The conclusion of the given statement is “ ,...}2,1,0:{  nxK n is compact.”  It 

can be translated into the mathematical language “For any open cover of K, K has a 

finite open subcover.”  By paying attention to the ignition phrase “For any open cover 

of K,” one may explore the way to construct an open cover of K.  Recalling the property 

of a subspace topology, one can set a starting variable by having “Let }{ XTUU   as 

an open cover of X”.  Then, one may construct an open cover of K by having 

“ }{ KUVV   .”  To further advance a reasoning process, one may note and 
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consider the given hypothesis “ }:{ Znxn
converges to a point 0x .”   Then, the given 

hypothesis can be translated into “For an open set KUV 
00 

in the open cover of K, 

in which
00 Ux  ,  ZN such that for all Nn  , 

0
Vxn  .  Finally, they may create a 

finite open subcover },,...,{
0121 VVVV

Nxxx 
by setting VV

ix  such that 
ixi Vx  for Nn  .  

The following (Figure 5.29) is Ryan’s proof.  

 

Figure 5.29. Ryan’s Proof. 

Ryan’s proof was not successful partly because he used a property that was not 

helpful for solving the given proof problem.  He noted the hypothesis of the given 

statement “X is Hausdorff.”  It seems he got the concepts of a Hausdorff space and a 

disconnected space mixed.  He moved on his proving argument, using the concept of 

connectedness without realizing it was not helping him.  When he made a conclusion, 

he seemed not to realize that his proving argument was fruitful.  What he needed was  

his carefulness to realize the concept he applied was not helpful and his flexibility to try 

a different method by noting the other given condition “K is a convergent sequence.”  

The problem with their attempt was not the fact that they explored the solution by 

applying their prior knowledge but the fact that they did not realize that the object they 

used was not helpful and the fact that they did not question themselves of the 
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effectiveness of the object.  The operation of exploring and checking may be closely 

related to students’ mental attitudes such as flexibility, carefulness, and alertness. 

Other multiple factors might also have affected his proof.  He did not note and  

translate the conclusion of the given statement in order to make sure of the goal of the 

proof.  In addition, he started his argument with assuming that the given space was 

separable, which was not good because he was not supposed to define a given space to 

be some specific one at his discretion.  Moreover, it seems he got the concepts of a 

separable space and of a disconnected space mixed.  A separable space is a space that 

contains a countable dense subset.  Namely, a separable space must contain a sequence 

of elements of the space such that every open subset of the space contains at least one 

of the elements of the sequence.  Above all, he missed paying a close attention to the 

conclusion of the given statement and translating it into mathematical language to 

make sure of the goal and to derive  a starting variable, which resulted in an invalid 

proving argument.   

5.8 Lack of Background Knowledge  

 The background knowledge is the knowledge necessary for solving a given 

proof problem, including definitions, properties, notations, theorems, lemmas, 

propositions, mathematical laws, and proving techniques.  Students’ lack of background 

knowledge can directly affect and damage their proof construction.  Students’ lack of 

knowledge can impede, hinder, and disable them from practicing those operations such 

as rephrasing an object and creating a cue.  It is imperative for students have, recall, 

and apply the knowledge necessary for a given problem correctly so that they can make 

their proving arguments successful.  I will present 13 examples while showing what 
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type of knowledge they lacked and how their lack of knowledge affected their proofs: 

Billy mixed different concepts (Example 23); Savanna lacked elementary and basic 

knowledge of concepts (Example 24); Davis was unable to recall a relevant property 

correctly (Example 25); Carlos created a wrong notation (Example 26); Elias had an 

incomplete understanding of a concept (Example 27); Savanna lacked knowledge of the 

basics of concepts (Example 28); Donald did not know the definition of a concept 

(Example 29); Dayton created a wrong property of a concept (Example 30); Anthony 

did not know a proving strategy (Example 31); Zack did not know a relevant fact 

(Example 32); Carlos produced a wrong notation (Example 33); and Ben produced a 

wrong notation due to an incomplete understanding of concepts (Example 34).  

Example 23 Billy (Algebra II) 

 Billy’s case is another representative example showing that students’ lack of 

knowledge can directly damage their proving arguments.    

Question [9] (3) (In-class problem solving session) 

Let R and S be rings.  Let SR : is a s ring homomorphism.   

Consider a map )(][:)(/: rrSKerR   .   

Show )(][:)(/: rrSKerR   is a ring homomorphism.  

 

Table 5.24 shows a possible proof for the given proof problem and shows where 

Louis had difficulties in the proof construction.    

Table 5.24 

Analysis (Type A) of Billy’s Proof 

Object Proof Code L 

X Show )(][:)(/: rrSKerR   is a 

ring homomorphism. 

Given  

Y Show (i) ])[]([ sr  = ])([])([ sr   and   I 
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(ii) ])][([ sr = ])([r ])([s  

P1 )(][:)(/: rrSKerR   .   

P2 SR : is a ring homomorphism. Given  

 (i)   

1 Let )(/][],[ KRsr   C1 S 

2 Consider , ])[]([ sr   C1 S 

3 Note that ])([])[]([ srsr   . R2 S 

4 Since )(][:)(/: rrSKerR   ,

)(])([ srsr   . 

CO(3,P1)R1 S 

5 Since SR : is a homomorphism, 

)()()( srsr   . 

CO(4, P2)R1 S 

6 Since )(][:)(/: rrSKerR   , 

])([])([)()( srsr   . 

CO(5,P1)R1 I 

7 Then, ])[]([ sr  = ])([])([ sr   . CO(2-6)R2 I 

 (ii)   

8 Consider ])][([ sr . C1 N 

9 Note ])][([ sr = ])([rs . R1 N 

10 Then, ])([rs = )(rs . CO(9,P1)R1 N 

11 Then, )(rs = )(r )(s . CO(10, P2)R1 N 

12 Since :)(/: SKerR  )(][ rr  ,

)(r )(s = ])([r ])([s . 

CO(11, P1)R1 N 

13 Therefore, ])][([ sr = ])([r ])([s . CO(8-12)R2 N 

 

One of the ways to show the function )(][:)(/: rrSKerR   is 

injective is to show that if ])([])([ sr   , then ][][ sr  .  Then, paying attention to the 

ignition phrase “ ])([])([ sr   ,” one may start a proving argument with “Suppose 

that ])([])([ sr   .”  Noting the given condition “ )(][:)(/: rrSKerR   ,” 

one can rephrase ])([])([ sr   with )()( sr    based on the way for 

SKerR )(/:  to be defined.  One can further rephrase )()( sr   with 

)()()(0 srsrS   to obtain )(Kersr  , which can lead them to conclude 

that ][][ sr  .   
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There is another way to prove the given proof problem.  There is a property of 

an injective homomorphism that SR : is an injective ring homomorphism if and 

only if
RKer 0)(  .  Therefore, in order to prove that )(][:)(/: rrSKerR   is 

injective, one can show
)(/0)(  KerRKer  .  Then, one may start with considering

)(Ker .  Applying the definition of )(Ker , one may translate it into 

)(/]{[)(  KerRrKer  , in which Sr 0])([  }.  Combining the given condition 

)(][:)(/: rrSKerR   , one can further rephrase it with

)(/]{[)(  KerRrKer  , in which Sr 0)(  }.  Furthermore, one can rephrase it with

)(/]{[)(  KerRrKer  , in which )(Kerr }.  Then, they can conclude that

)(]{[)(  KerrKer  }, namely, 
)(/0)(  KerRKer  .  The following (Figure 5.30) is 

Billy’s proof.   

 

Figure 5.30. Billy’s Proof. 

Billy mistakenly got the concept of ideal involved as the second property of a 

ring homomorphism “ ])][([ sr = ])([r ])([s .”  He showed ])([])[( rara  

though he was supposed to show ])([])([])][([ srsr   .  His incomplete knowledge 

of the second property of a ring homomorphism directly damaged his proof.   

Example 24 Savanna (Algebra II)  

Savanna’s proof is a representative example showing that students’ lack of 

knowledge of definitions directly affects their proving arguments.    

 



158 
 

Question [9] (4) (In-class problem solving session) 

Let R and S be rings.  Let SR : is a ring homomorphism.  

)(][:)(/: rrSKerR   is a well-defined ring homomorphism.   

Show )(][:)(/: rrSKerR   is injective.  

 

 Table 5.25 shows a possible proof for Question [9] (4) and shows where 

Savanna had difficulties in the proof construction..   

Table 5.25 

Analysis (Type A) of Savanna’s Proof 

 Proof Code S 

X Show )(][:)(/: rrSKerR   is injective. Given  

Y Show that if ])([])([ sr   , then ][][ sr  .   R1 I 

P1 )(][:)(/: rrSKerR   is a well-defined ring 

homomorphism.  

Given  

P2 SR : is a ring homomorphism. Given  

1 Suppose that ])([])([ sr   . C1 N 

 Then, )()( sr   . CO(1,P1)R

1 

N 

2 Then, )()()(0 srsrS   . R3 N 

3 Then, )(Kersr  .  R2 N 

4 Then, ksr  for some )(Kerk . R2 N 

5 Then, ][sksr  . R2 N 

6 Then, [r]=[s]. R2 N 

 Another Proof   

X Show
)(/0)(  KerRKer  .  N 

1 Consider )(/]{[)(  KerRrKer  , where

Sr 0])([  }. 

C1 N 

2 Since )(][:)(/: rrSKerR   , 

)(/]{[)(  KerRrKer  , where Sr 0)(  }. 

CO(1,P1)R

1 

N 

4 Then, )(/]{[)(  KerRrKer  , )(Kerr }. R1 N 

5 Then, )(/]{[)(  KerRrKer  , )(][ Kerr   R1 N 

6  Therefore, 
)(/0)(  KerRKer  . R1 N 

 

The following is an explanation of the above proof.  One of the ways to show 

the function )(][:)(/: rrSKerR   is injective is to show that if
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])([])([ sr   , then ][][ sr  .  Then, paying attention to the ignition phrase 

“ ])([])([ sr   ,” one may start a proving argument with “Suppose that

])([])([ sr   .”  Noting the given condition “ )(][:)(/: rrSKerR   ,” one 

can rephrase ])([])([ sr   with )()( sr    based on the way for SKerR )(/: 

to be defined.  One can further rephrase )()( sr   with )()()(0 srsrS   to 

obtain )(Kersr  , which can lead them to conclude that ][][ sr  .   

There is another way to prove the given proof problem.  There is a property of 

an injective homomorphism that SR : is an injective ring homomorphism if and 

only if
RKer 0)(  .  Therefore, in order to prove that )(][:)(/: rrSKerR   is 

injective, one can show
)(/0)(  KerRKer  .  Then, one may start with considering

)(Ker .  Applying the definition of )(Ker , one may translate it into 

)(/]{[)(  KerRrKer  , in which Sr 0])([  }.  Combining the given condition 

)(][:)(/: rrSKerR   , one can further rephrase it with

)(/]{[)(  KerRrKer  , in which Sr 0)(  }.  Furthermore, one can rephrase it with

)(/]{[)(  KerRrKer  , in which )(Kerr }.  Then, they can conclude that

)(]{[)(  KerrKer  }, namely, 
)(/0)(  KerRKer  . The following (Figure 5.31) is 

Savanna’s proof.   

 

Figure 5.31. Savanna’s Proof. 
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 She was unable to prove the given proof problem and only showed her concept 

image about an injective function.  However, her concept image of an injective function 

was wrong.  Her statement “In order for a map to be injective, there must not be an 

element in )(/ KerR which is mapped to more than one element in S” was not the 

definition of an injective function but that of a function.  Since she did not know the 

definition of an injective function, there was no way for her to prove the given 

statement.  Savanna also gave an example showing that even those students who had 

already exposed themselves to some proof-based courses may forget a basic and 

elementary proving skill of proving, for example, that a map is injective.     

Example 25 Davis (Analysis)    

Question [2] (Exam II)  

Using the Inverse Function Theorem, show that , 

 for all . 

 

Table 5.26 shows a possible proof for Question [2] and shows where Davis had 

difficulties in the proof construction. 

Table 5.26 

Analysis (Type A) of Davis’s Proof 

 Proof Code D 

X 
Show that for all  

  

1 Consider the left hand side of the equation. C5  

2 Recall the Inverse Function Theorem, which is

, where . 

C2 N 

3 
Note   with . 

CO(1,2)R1 N 

21

1
arcsin

x
x

dx

d




)1,1(x

21

1
arcsin

x
x

dx

d


 )1,1(x

))((

1
)()(

1

1

xff
xf






 xyf )(

x
x

dx

d

arcsincos

1
arcsin  )

2
,

2
(arcsin


x
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4 
Recall that  2sin1cos   on )

2
,

2
(





 . 

C2 N 

5 Then, . CO(3, 4)R3 N 

6 
Note for . 

C2 N 

7 Then, . CO(5, 6)R3 N 

8 
Therefore,  

21

1
arcsin

x
x

dx

d


 . 

CO(3,4,7)R3 N 

 

The following is a possible way to prove the above problem.  One can first 

recall the Inverse Function Theorem “ ” as suggested in the 

question.  The denominator of the right hand side of the equation becomes )cos(arcsinx

for )
2

,
2

(arcsin


x .  Recalling   2sin1cos   for )
2

,
2

(





  and applying 

it to )cos(arcsinx , one can get for )cos(arcsinx with 

)
2

,
2

(arcsin


x .  Finally, students can conclude .  The 

following (Figure 5.32) is Davis’s proof.    

 

 

Figure 5.32. Davis’s Proof. 
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 Davis was able to come up with the idea of using the theorem for the derivative 

of an inverse function, but did not recall it correctly, which damaged his whole proving 

argument.  He applied  though he was supposed to apply

.   

Example 26 Carlos (Algebra I)  

Carlos’s case is another representative example showing that students’ lack of  

knowledge of a concept can cause of their producing of an unsuccessful proof.     

Question [4] (In-class problem solving session 

Suppose that )(/ GZG is cyclic.  Prove that G is abelian.  

 Table 5.27 shows a possible proof for the given proof problem and shows where 

Carlos had difficulties in the proof construction.  

Table 5.27 

Analysis (Type A) of Carlos’s Proof 

Object Proof Code C 

X Show G is abelian.  S 

Y Show baab  for any Gba , . R1 S 

P )(/ GZG is cyclic. Given  

1 Let Gba , . C1 N 

2 Note Gba , are in some cosets.  C2 N 

3 Let Zxa m and Zxb n . CO(2,P)R1 N 

4 Let 1zxa m and 2zxb n for some Zzz 21, . R2 N 

5 Then, bazxzxab mnnm  

21 . R3 N 

 

The conclusion of the given statement is “G is abelian.” The translation of it 

into mathematical language provides “ baab  for any Gba , .”  The phrase in the 

mathematical language, “for any Gba , ,” is the ignition phrase.  One can derive 

))((

1
)()( 1

xff
xf




))((

1
)()(

1

1

xff
xf







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starting variables from the ignition phrase and provide “Suppose Gba , .”  This proof 

is the type of the proof of showing A = B.  One can work on either A or B until A 

changes into B or B changes into A while making good use of the given conditions.  In 

this case, one can attempt to rephrase the left side of the equation “ ab ” until it changes 

into “ba .”  To rephrase “ ab ,” one may consider the given hypothesis “ )(/ GZG is 

cyclic” and look for the connection between the starting variables “ ba, ” and the 

hypothesis “ )(/ GZG is cyclic.”  Recalling the property that an element of G belongs to 

some coset, one may produce Zxa m and Zxb n for some Gx .  Then, one can 

rephrase ab with 21zzx nm
for some Zzz 21, .  Using the property of the center of a 

group, one may derive bazzxzzxab mnnm  

1221 .  The following (Figure 5.33) is 

Carlos’s proof.   

 

Figure 5.33. Carlos’s Proof. 

Carlos’s proof was not successful partly because he lacked the knowledge of the 

way to express a coset of Z(G) and of the relationship between an element of G and a 

coset of Z(G).  He provided  a to express )(/ GZG as a cyclic group though he was 

supposed to provide  ZxZG m)/(  for some Gx .  He lacked the knowledge of the 

notation for a coset of G/(Z).  The relationship between an element of G and a coset of 
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Z(G) was that an element of G belonged to some coset of Z(G).  If he had known the 

relationship, he might have rephrased 
11 zxg m and 22 zxg n for some )(, 21 GZzz  , 

which might have led him to obtain 12122121 ggzxzxzxzxgg mnnm  .   

Example 26 Elias (Topology)  

Elias’s case is another representative example showing students’ lack of solid 

understanding of a concept and a theorem can cause them to produce incomplete proofs.  

Question [7] (Exam II) 

Let X be a Hausdorff space.  Let }:{ Znxn
be a sequence in X  

converging to a point 0x . Prove that the set ,...}2,1,0:{  nxK n is compact. 

 

 Table 5.28 shows a possible proof for Question [7] and shows where Elias had 

difficulties in the proof construction.   

Table 5.28 

Analysis (Table A) of Elias’s Proof 

Object Proof Code E 

X Show that ,...}2,1,0:{  nxK n is compact.   

Y Show that for any open cover of K, K has a finite 

open subcover. 

  

P }:{ Znxn
be a sequence in X converging to 0x . Given  

1 Let }{ XTUU   be an open cover of X. C1 S 

2 Construct an open cover of K by letting 

}{ KUVV   . 

C1 N 

3 Since }{ XTUU   is an open cover of X, 

UU 
0

such that 
00 Ux  . 

R1 S 

4 Since nx converges to 0x ,  ZN such that for all 

Nn  , 
0

Uxn  . 

CO(P,3)R1 S 

5 Let KUV 
00  , where VV 

0
. C1 N 

6 For each ix with Ni  , find an open set VV
ix  such 

that 
ixi Vx  . 

C1 N 
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7 Note that },,...,{
0121 VVVV

Nxxx 
is a desired finite open 

subcover of K. 

CO(5,6)R2 N 

 

The conclusion of the given statement is “ ,...}2,1,0:{  nxK n is compact.”  It 

can be translated into the following mathematical language: “For any open cover of K, 

K has a finite open subcover.”  By paying attention to the ignition phrase “For any open 

cover of K,” one may explore the way to construct an open cover of K.  Recalling the 

property of a subspace topology, one can set a starting variable by having “Let 

}{ XTUU   as an open cover of X”.  Then, one may construct an open cover of K, 

providing “ }{ KUVV   .”  Noting the given hypothesis “ }:{ Znxn
converges 

to a point 0x ,” one may translate it into the following mathematical language: “For an 

open set KUV 
00 

in the open cover of K, in which
00 Ux  ,  ZN such that for 

all Nn  , 
0

Vxn  .  Then, one can construct a finite open subcover },,...,{
0121 VVVV

Nxxx 

by setting VV
ix  such that 

ixi Vx  for Nn  .  The following (Figure 5.34) is Elias’s 

proof.  

 

Figure 5.34. Elias’s Proof. 

Elias was unable to solve the problem partly because he was unable to construct 

an open finite subcover of K properly.  He did not understand the definition of 

compactness precisely.  As is shown in the following figure (Figure 5.35), he stated in a 
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previous problem “A space is compact if there exists a finite sub-covering.”  He missed 

including in it “For every open cover of X.”  His incomplete understanding of 

compactness might have led him to fail to set an open cover of K, from which a finite 

subcover might have been derived.   

 

Figure 5.35. Elias’s Statement. 

Example 28 Savanna (Algebra II)  

Students’ ignorance of definitions severely damages their proving arguments.  

Savanna’s case was such a representative example.   

Question [9] (3) (In-class problem solving session) 

Let R and S be rings.  Let SR : is a ring homomorphism.   

Consider a map )(][:)(/: rrSKerR   .   

Show )(][:)(/: rrSKerR   is a ring homomorphism.  

 

Table 5.29 shows a possible proof for the given proof problem and shows where 

Savanna had difficulties in the proof construction.    

Table 5.29 

Analysis (Type A) of Savanna’s Proof  

Object Proof Code S 

X Show )(][:)(/: rrSKerR   is a 

ring homomorphism. 

Given  

Y Show (i) ])[]([ sr  = ])([])([ sr   and  

(ii) ])][([ sr = ])([r ])([s  

  

P1 )(][:)(/: rrSKerR   .   
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P2 SR : is a ring homomorphism. Given  

 (i)   

1 Let )(/][],[ KRsr   C1 N 

2 Consider , ])[]([ sr   C1 N 

3 Note that ])([])[]([ srsr   . R2 N 

4 Since )(][:)(/: rrSKerR   ,

)(])([ srsr   . 

CO(3,P1)R1 N 

5 Since SR : is a homomorphism, 

)()()( srsr   . 

CO(4, P2)R1 N 

6 Since )(][:)(/: rrSKerR   , 

])([])([)()( srsr   . 

CO(5,P1)R1 N 

7 Then, ])[]([ sr  = ])([])([ sr   . CO(2-6)R2 N 

 (ii)   

8 Consider ])][([ sr . C1 N 

9 Note ])][([ sr = ])([rs . R1 N 

10 Then, ])([rs = )(rs . CO(9,P1)R1 N 

11 Then, )(rs = )(r )(s . CO(10, P2)R1 N 

12 Since :)(/: SKerR  )(][ rr  ,

)(r )(s = ])([r ])([s . 

CO(11, P1)R1 N 

13 Therefore, ])][([ sr = ])([r ])([s . CO(8-12)R2 N 

 

 The goal of the proof is “ )(][:)(/: rrSKerR   is a ring 

homomorphism.”  There are two things to show: (i) ])[]([ sr  = ])([ sr  ; (ii) 

])][([ sr = ])([r ])([s .  For (i), one can rephrase ])[]([ sr  with ])([ sr 

through algebraic manipulation.  Using the given condition 

“ )(][:)(/: rrSKerR   ,” one can rephrase ])([ sr  with )( sr  .  Using 

another given condition “ SR : is a ring homomorphism,” they can rephrase 

)( sr  with )()( sr   .  Using the given condition “ )(][:)(/: rrSKerR   ” 

again, one can derive that )()( sr   = ])([])([ sr   to conclude that) ])[]([ sr  =

. ])([])([ sr  
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Similarly, for (ii), one can start with considering .  One can rephrase 

with through algebraic manipulation.  Using the given condition 

“ ,” one can further rephrase  with .  Using 

the other condition “ is a ring homomorphism,” one can rephrase with

.  Using the condition “ ” again, one can 

derive =  to conclude that = .  The 

following is Savanna’s proof (Figure 5.36). 

 

Figure 5.36. Savanna’s Proof. 

Savanna was unable to prove the above statement mainly because she had not 

remembered the definition of a ring homomorphism correctly.  She mistakenly believed 

the definition of a ring homomorphism had to be a one to one and onto function.  In 

addition, she did not know how to show a function is one to one and onto.  She lacked 

the knowledge of the basics of some concepts.   

Example 29 Donald (Topology) 

 Donald’s case was another example showing students’ lack of knowledge gave a 

flaw to their proving arguments.   

Question [7] (Exam II) 

Let be a Hausdorff space.  Let be a sequence in X converging  

to a point . Prove that the set is compact. 

])][([ sr

])][([ sr ])([rs

)(][:)(/: rrSKerR   ])([rs )(rs

SR : )(rs

)(r )(s )(][:)(/: rrSKerR  

)(r )(s ])([r ])([s ])][([ sr ])([r ])([s

X }:{ Znxn

0x ,...}2,1,0:{  nxK n
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 Table 5.30 shows a possible proof for the given proof problem and shows where 

Matt had difficulties in the proof construction.   

Table 5.30 

Analysis (Type A) of Donald’s Proof 

Object Proof Code Q 

X Show that is compact.   

Y Show that for any open cover of K, K has a finite 

open subcover. 

  

P be a sequence in X converging to . Given  

1 Let be an open cover of X. C1 S 

2 Construct an open cover of K by letting 

. 

C1 N 

3 Since is an open cover of X, 

such that . 

R1 S 

4 Since converges to , such that for all 

, . 

CO(P,3)R1 S 

5 Let , where . C1 N 

6 For each with , find an open set such 

that . 

C1 N 

7 Note that is a desired finite open 

subcover of K. 

CO(5,6)R2 N 

 

The conclusion of the given statement is “ is compact.”  It 

can be translated into the mathematical language “For any open cover of K, K has a 

finite open subcover.”  By paying attention to the ignition phrase “For any open cover 

of K,” one may explore the way to construct an open cover of K.  Recalling the property 

of a subspace topology, one can set a starting variable by having “Let as 

an open cover of X”.  Then, one may construct an open cover of K by having 

“ .”  To further advance a reasoning process, one may note and 

,...}2,1,0:{  nxK n

}:{ Znxn 0x

}{ XTUU  

}{ KUVV  

}{ XTUU  

UU 
0 00 Ux 

nx 0x
 ZN

Nn 
0

Uxn 

KUV 
00  VV 

0

ix Ni  VV
ix 

ixi Vx 

},,...,{
0121 VVVV

Nxxx 

,...}2,1,0:{  nxK n

}{ XTUU  

}{ KUVV  
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consider the given hypothesis “ converges to a point .”   Then, the given 

hypothesis can be translated into “For an open set in the open cover of K, 

in which , such that for all , .  Finally, they may create a 

finite open subcover by setting such that for .  

The following (Figure 5.37) is Donald’s proof.  

 

Figure 5.37. Donald’s Proof. 

Donald’s proof was close to a completed proof, but it seems he did not know the 

concept of a subspace topology, which gave a flaw to his proof.  He set 

as an open cover for K and used it to derive a finite open subcover of K though he was 

supposed to have as an open cover for K.  It seems he assumed that 

an open covering for X might be used as an open cover for K.   

Example 30 Dayton (Algebra I)  

Dayton’s case is a representative example showing that students’ lack of 

knowledge hinders them from rephrasing an object, which causes their proofs to be 

unsuccessful.  

Question [4] (In-class problem solving session) 

Suppose that is cyclic.  Prove that G is abelian.  

}:{ Znxn 0x

KUV 
00 

00 Ux   ZN Nn 
0

Vxn 

},,...,{
0121 VVVV

Nxxx 
VV

ix 
ixi Vx  Nn 

}{ XTUU  

}{ KUVV  

)(/ GZG
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 Table 5.31 shows a possible proof for Question [4] and where Dayton had 

difficulties in the proof construction.  

Table 5.31 

Analysis (Type A) of Dayton’s Proof 

Object Proof Code A 

X Show G is abelian.  S 

Y Show for any . R1 S 

P is cyclic. Given  

1 Let . C1 N 

2 Note are in some cosets.  C2 N 

3 Let and . CO(2,P)R1 N 

4 Let and for some . R2 N 

5 Then, . R3 N 

 

 The conclusion of the given statement is “G is abelian.” The translation of it 

into mathematical language provides “ for any .”  The phrase in the 

mathematical language, “for any ,” is the ignition phrase.  One can derive 

starting variables from the ignition phrase and provide “Suppose .”  This proof 

is the type of the proof of showing A = B.  One can work on either A or B until A 

changes into B or B changes into A while making good use of the given conditions.  In 

this case, one can attempt to rephrase the left side of the equation “ ” until it changes 

into “ .”  To rephrase “ ,” one may consider the given hypothesis “ is 

cyclic” and look for the connection between the starting variables “ ” and the 

hypothesis “ is cyclic.”  Recalling the property that an element of G belongs to 

some coset, one may produce and for some .  Then, one can 

rephrase with for some  .  Using the property of the center of a 

baab  Gba ,

)(/ GZG

Gba ,

Gba ,

Zxa m Zxb n

1zxa m 2zxb n Zzz 21,

bazxzxab mnnm  

21

baab  Gba ,

Gba ,

Gba ,

ab

ba ab )(/ GZG

ba,

)(/ GZG

Zxa m Zxb n Gx

ab
21zzx nm

Zzz 21,
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group, one may derive .  The following (Figure 5.38) is 

Dayton’s proof. 

 

Figure 5.38. Dayton’s Proof. 

Dayton was unable to prove the given proof problem mainly because he had a 

wrong concept image of an abelian group.  He proclaimed “I do know all subgroups of 

an abelian group are cyclic,” which was wrong.  He might have been right if he had 

stated “all subgroups of an abelian group are normal,” though.  His wrong concept 

image hindered him from translating “G is abelian” into “ for any ,” and 

from advancing a reasoning process.  His proof was an example showing students’ lack 

of knowledge might directly affect their use of the operation of rephrasing an object, 

which produced an incomplete proof.  

Example 31 Anthony (Algebra I)  

 Anthony’s case is an example showing students’ lack of knowledge of a proving 

technique can cause them to get astray in advancing a reasoning process and to produce 

an incomplete proof.  In particular, Anthony’s proof was a representative example 

showing students’ difficulties with proving might be caused by their lack of the 

knowledge for dealing with the type of proof of showing A = B.   

Question [4] (In-class problem solving session) 

Suppose that is cyclic.  Prove that G is abelian.  

 Table 5.32 shows a possible proof for the given proof problem.  

bazzxzzxab mnnm  

1221

baab  Gba ,

)(/ GZG
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Table 5.32 

Analysis (Type A) of Anthony’s Proof 

Object Proof Code A 

X Show G is abelian.  S 

Y Show for any . R1 S 

P is cyclic. Given  

1 Let . C1 N 

2 Note are in some cosets.  C2 N 

3 Let and . CO(2,P)R1 N 

4 Let and for some . R2 N 

5 Then, . R3 N 

 

 The conclusion of the given statement is “G is abelian.” The translation of it 

into mathematical language provides “ for any .”  The phrase in the 

mathematical language, “for any ,” is the ignition phrase.  One can derive 

starting variables from the ignition phrase and provide “Suppose .”  This proof 

is the type of the proof of showing A = B.  One can work on either A or B until A 

changes into B or B changes into A while making good use of the given conditions.  In 

this case, one can attempt to rephrase the left side of the equation “ ” until it changes 

into “ .”  To rephrase “ ,” one may consider the given hypothesis “ is 

cyclic” and look for the connection between the starting variables “ ” and the 

hypothesis “ is cyclic.”  Recalling the property that an element of G belongs to 

some coset, one may produce and for some .  Then, one can 

rephrase with for some  .  Using the property of the center of a 

group, one may derive .  As is shown in the figure 

(Figure 5.39), Anthony was successful in making the goal of the proof clear to himself 

baab  Gba ,

)(/ GZG

Gba ,

Gba ,

Zxa m Zxb n

1zxa m 2zxb n Zzz 21,

bazxzxab mnnm  

21

baab  Gba ,

Gba ,

Gba ,

ab

ba ab )(/ GZG

ba,

)(/ GZG

Zxa m Zxb n Gx

ab
21zzx nm

Zzz 21,

bazzxzzxab mnnm  

1221
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by translating the conclusion of the given statement “G is abelian” into “ for any

.” 

 

Figure 5.39. Anthony’s Strategy. 

The following figures (Figure 5.39 and 5.40) is Anthony’s proof. 

 

Figure 5.40. Anthony’s Proof. 

Although Anthony successfully set starting variables by providing , his 

proving argument was not successful partly because he did not have a clear strategy for 

solving the given proof problem.  In particular, he was unable to apply the technique for 

solving the type of proof of showing A = B.  The goal of the proof was to show G was 

abelian.  Namely, he needed to show “for any , .”  This is the type of 

proof for showing A = B.  There were mainly two ways to deal with this type of proof.  

One is to work on either A or B and rephrase it until they get the other, which is B or A.  

Another way is to work on and rephrase each side separately until they can change the 

expressions of A and B into the same expression C.  It seems Anthony was unable to 

make the goal of the proof clear to himself.  As a result, he tried combining his starting 

variables with the given hypothesis “ is cyclic” to create and 

hggh 

Ghg ,

Ghg ,

Ghg , hggh 

Ghg , )(/ GZG )(GgZ
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, which caused his proving argument to be unsuccessful.  If Anthony had known 

the proving strategy for the type of proof of showing A = B, he might have worked on 

and rephrased it until he might obtain while recalling and using the fact that 

every element in G belonged to some coset.   

Example 32 Zach (Analysis I)   

Zach’s proof is a representative example showing that students’ lack of 

knowledge hinders them from advancing a reasoning process.  In particular, students’ 

lack of knowledge of a relevant fact such as a property, a theorem, and a mathematical 

law shuts down their proving process if a given proof problem requires them to use it. 

Question [1] (Exam III) 

Let is fixed.  Suppose that   is a sequence of Riemann integrable  

functions such that .  Prove that if f is Riemann integrable 

on (a, b), then . 

 

Table 5.33 shows a possible proof for Question [1] and shows where Zach had 

difficulties in the proof construction. 

Table 5.33 

Analysis (Type A) of Zach’s Proof 

 Proof Code Z 

X 
Show . 

Given  

Y 
Show . 

C5 S 

P1 is a sequence of Riemann integrable functions Given  

)(GhZ

gh hg

ba  0ng

0)(lim 
dxxg

b

a

n
n

0)()(lim 
dxxgxf

b

a

n
n

0)()(lim 
dxxgxf

b

a

n
n

0)()(lim 
dxxgxf

b

a

n
n

0ng
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such that . 

P2  is Riemann integrable on (a, b). Given  

1 
Consider . 

C5 S 

2 
Note that . 

C2 S 

3 
Then, . 

CO(1,2)R2 S 

4 
Recall . 

C2 N 

5 
Then, . 

CO(3,4)R2 N 

6 Since  , 

. 

CO(5, P1)R2 N 

7 Since f is Riemann integrable, f is bounded, namely, 

for some . 

R1 N 

8 Then, 

. 

CO(6,7)R2 N 

9 
Note  

CO(8, P1)R2 N 

10 
Then,  

CO(5,6,8,9) 

R2  

N 

11 Recall  that if , then .  C2 N 

12 
Since , 

.   

CO(10,11)R2  N 

 Alternative proof   

0)(lim 
dxxg

b

a

n
n

)(xf

dxxgxf
b

a

n
n

)()(lim 
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b

a

n )()( 
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n dxxgxf )()(
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b
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1 
Recall . 

C2 N 

2 
Then, . 

CO(1,Y)R2 N 

3 Since  , 

. 

CO(2, P1)R2 N 

4 Since f is Riemann integrable, f is bounded, namely, 

for some . 

C2 S 

5 
Then,  . 

CO(3, 4)R2 I 

6 
Note . 

R3 I 

7 Therefore, we have now 

. 

CO(2, 6)R2 S 

8 
Consider  

C5 S 

9 
Since , . 

CO(P1, 8)R2 S 

10 
Therefore, as is desired. 

CO(7, 9)R2 I 

 

One of the ways to solve this problem is to bring in and apply the proposition 

that if , then .  The conclusion of the given problem “Show 

” can be translated into “Show .”  

Recalling and applying “ ”to  , one can 

obtain .   Then, noting the given condition 

dxxhdxxh
t

s

t

s

  )()(

dxxgxfdxxgxf
b

a

n

b

a

n   )()()()(

0)( xgn

dxxgxfdxxgxf n

b

a

b

a

n )()()()(  

Mxf )( RM 

dxxgMdxxgxf n

b

a

n

b

a

)()()(  

dxxgMdxxgM
b

a

nn

b

a

)()(  

dxxgMdxxgxf
b

a

n

b

a

n )()()(0  

dxxgM
b

a

n )(

0)(lim 
dxxg

b

a

n
n

0)(lim 
dxxgM

b

a

n
n

0)()(lim 
dxxgxf

b

a

n
n

0lim 


n
n

A 0lim 


n
n

A

0)()(lim 
dxxgxf

b

a

n
n

0)()(lim 
dxxgxf

b

a

n
n

dxxhdxxh
t

s

t

s

  )()( dxxgxf
b

a

n
n

)()(lim 

dxxgxfdxxgxf
b

a

n

b

a

n   )()()()(



178 
 

“ ,” one can obtain .  Noting another given 

condition “  is Riemann integrable” and recalling the property of a Riemann 

integrable function, which is “if  is Riemann integrable,  is bounded,” one 

can obtain “ f for some .”  By using the other 

condition “ ” and applying the squeeze theorem, one can conclude 

that .   The following (Figure 5.41) is Zach’s proof.   

 

                           Figure 5.41. Zach’s Proof. 

This problem was so difficult that nobody was able to make a proper argument.  

Among them, Zach was the only student who was able to make his argument relatively 

good.  He was able to consider .  Unfortunately, he was unable to 

take the next step, which was that .  He was unable to 

0)( xgn dxxgxfdxxgxf n

b

a

b

a

n )()()()(  

)(xf

)(xf )(xf

dxxgMdxxgxf
b

a

n

b

a

n )()()(0   RM 

0)(lim 
dxxg

b

a

n
n

0)()(lim 
dxxgxf

b

a

n
n



b

a

n
n

dxxgxf )()(lim

dxxgxfdxxgxf
b

a

n

b

a

n   )()()()(



179 
 

recall the triangle inequality for integration and apply it to the object.  Since he was 

unable to consider , he was unable to have a chance to use the given two 

conditions “ ” and “  is Riemann integrable on (a, b).”   

Example 33 Carlos (Algebra I) 

 Students’ incomplete understanding and knowledge of concepts might be 

reflected in their notations of those concept. Their use of wrong notations can cause 

their proofs to be unsuccessful.  Carlos showed such an example.   

 Question [4] (In-class problem solving session) 

Suppose that is cyclic.  Prove that G is abelian. 

Table 5.34 shows a possible proof for Question [4] and shows where Carlos had 

a difficulty in the proof construction. 

Table 5.34 

Analysis (Type A) of Carlos’s Proof  

 Proof Code C  

X Show G is abelian. Given  

Y Show for any . R1 N 

P is cyclic. Given  

1 Let . C1 N 

2 Recall are in some cosets. C2 N 

3 Then, and for some . CO(P, 2)R1 N 

4 Let and for some . R1 N 

5 Then, . R3 N 

 

 The conclusion of the given statement is “G is abelian.” The translation of it 

into mathematical language provides “ for any .”  The phrase in the 

dxxgxf
b

a

n )()(

0)(lim 
dxxg

b

a

n
n

)(xf

)(/ GZG

baab  Gba ,

)(/ GZG

Gba ,

Gba ,

Zxa m Zxb n Gx

1zxa m 2zxb n Zzz 21,

bazzxzzxab mnnm  

1221

baab  Gba ,
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mathematical language, “for any ,” is the ignition phrase.  One can derive 

starting variables from the ignition phrase and provide “Suppose .”  This proof 

is the type of the proof of showing A = B.  One can work on either A or B until A 

changes into B or B changes into A while making good use of the given conditions.  In 

this case, one can attempt to rephrase the left side of the equation “ ” until it changes 

into “ .”  To rephrase “ ,” one may consider the given hypothesis “ is 

cyclic” and look for the connection between the starting variables “ ” and the 

hypothesis “ is cyclic.”  Recalling the property that an element of G belongs to 

some coset, one may produce and for some .  Then, one can 

rephrase with for some  .  Using the property of the center of a 

group, one may derive .  As is shown in the figure 

(Figure 5.39), Anthony was successful in making the goal of the proof clear to himself 

by translating the conclusion of the given statement “G is abelian” into “ for any

.”  The following (See Figure 5.42) is Carlos’s proof . 

 

Figure 5.42. Carlos’s Proof. 

 Carlos had a problem with his notation of a coset of Z(G).  It seems that he did 

not have a solid understanding of a coset of Z(G), which might have affected his 

notation.  In this problem, he might have thought that a coset was generated by an 
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element of G, which resulted in his having . The generator of a coset of 

Z(G) might have been expressed with for some , which was an 

equivalence class, and might have been expressed with .  Another 

problem with his argument was that his notation was inconsistent.  He had

but he concluded that G was abelian by showing , which 

implied that he meant that .  His inconsistency might have been avoided if he 

had made sure of the starting variable through translating the conclusion of the given 

statement into mathematical language so that he might have .  Another 

possible problem might be that he might not have known that an element of G belonged 

to some coset of Z(G).   

Example 34  Ben (Algebra II)  

Ben’s proof is an example showing that students’ lack of precision in notations 

can damage their proving arguments.   

Question [9] (3) (in-class problem solving session) 

Let R and S be rings.  Let is a ring homomorphism.  

 Consider a map .   

Show is a ring homomorphism.  

 

Table 5.35 shows a possible proof for Question [9] (3) and shows where Ben 

had difficulties in the proof construction.    

Table 5.35 

Analysis table (Type A) of Ben’s Proof  

Object Proof Code B 

X Show is a 

ring homomorphism. 

Given  

 aGZG )(/

)(][ GaZa  Ga

)(/ GZG  ][a

)(, 21 GZgg  1221 gggg 

Ggg 21,

Ggg 21,

SR :

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  
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Y Show (i) = and  

(ii) =  

  

P1 .   

P2 is a surjective ring 

homomorphism. 

Given  

 (i)   

1 Let  C1 N 

2 Consider ,  C1 N 

3 Note that . R2 I 

4 Since ,

. 

CO(3,P1)R1 S 

5 Since is a homomorphism, 

. 

CO(4, P2)R1 S 

6 Since , 

. 

CO(5,P1)R1 I 

7 Then, = . CO(2-6)R2 I 

 (ii)   

8 Consider . C1 I 

9 Note = . R1 N 

10 Then, = . CO(9,P1)R1 S 

11 Then, = . CO(10, P2)R1 S 

12 Since ,

= . 

CO(11, P1)R1 N 

13 Therefore, = . CO(8-12)R2 N 

 

The goal of the proof is “ is a ring 

homomorphism.”  There are two things to show: (i) = ; (ii) 

= .  For (i), one can rephrase with 

through algebraic manipulation.  Using the given condition 

“ ,” one can rephrase with .  Using 

another given condition “ is a ring homomorphism,” they can rephrase 

with .  Using the given condition “ ” 

])[]([ sr  ])([])([ sr  

])][([ sr ])([r ])([s

)(][:)(/: rrSKerR  

SR :

)(/][],[ KRsr 

])[]([ sr 

])([])[]([ srsr  

)(][:)(/: rrSKerR  

)(])([ srsr  

SR :

)()()( srsr  

)(][:)(/: rrSKerR  

])([])([)()( srsr  

])[]([ sr  ])([])([ sr  

])][([ sr

])][([ sr ])([rs

])([rs )(rs

)(rs )(r )(s

:)(/: SKerR  )(][ rr 

)(r )(s ])([r ])([s

])][([ sr ])([r ])([s

)(][:)(/: rrSKerR  

])[]([ sr  ])([ sr 

])][([ sr ])([r ])([s ])[]([ sr  ])([ sr 
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SR :

)( sr  )()( sr   )(][:)(/: rrSKerR  
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again, one can derive that = to conclude that) =

. 

Similarly, for (ii), one can start with considering .  One can rephrase 

with through algebraic manipulation.  Using the given condition 

“ ,” one can further rephrase  with .  Using 

the other condition “ is a ring homomorphism,” one can rephrase with

.  Using the condition “ ” again, one can 

derive =  to conclude that = .   

The following is Ben’s proof (Figure 5.43). 

 

Figure 5.43. Ben’s Proof. 

Ben’s proof was close to a successful proof.  However, there were some defects.  

First, his notations were not precise.  He had 

 though he wanted to have 

.  There was a clear 

difference in the meanings between and .  Because of the way was defined, 

Ben’s notations such as , , and did not make sense though he might 

have meant , , and by them.  Such a small element of 

)()( sr   ])([])([ sr   ])[]([ sr 
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mathematical language as a mathematical notation can play an important role and have 

a great power to covey mathematical thoughts in a reasoning process.  Moreover, 

students’ understanding of a concept may be reflected by their use of the notation of the 

concept.  Students’ incomplete understanding of a concept may lead to their wrong use 

of the notation, which can result in a weak or incomplete argument.     

5.9 Influence of Mental Attitudes 

 The mental attitudes include tenacity (persistence), flexibility, and carefulness 

and alertness (precision).  Tenacity is the most basic factor for the mental attitudes.  

Students are required to have tenacity or persistence to try to figure things out and move 

forward.  As soon as they stop thinking, their proofs will end at that point.  Flexibility is 

the second primary factor for the mental attitudes, which includes changing ideas if 

necessary, trying a different method, paying attention to a different object, and recalling 

and applying a new object.  Flexibility plays an important role when students have 

impasses. They may overcome their impasses through flexibility.  Carefulness and 

alertness are the third primary factors for the mental attitudes, which involves dealing 

with an object precisely and accurately, and checking what has been done.  Carefulness 

and alertness are important psychological traits for proof construction as a small 

careless mistake can ruin the whole proving argument.  

As there was no definite way to decide the degrees of students’ mental attitudes,   

the analysis involved the researcher’s subjective interpretation.  The results from the 

analysis of students’ proofs implied that the mental attitudes were not independent of 

but closely related to the other aspects, including the reasoning activity and the 

background knowledge. I will present 7 examples while showing how students’ mental 
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attitudes affected their proofs: Students’ lack of flexibility may affect their practice of 

rephrasing an object (Example 36); their lack of knowledge may affect their tenacity 

(Example 37); their lack of knowledge may affect their carefulness (Example 38); their 

lack of knowledge can influence their precision in the use of notations (Example 39); 

Tenacity and persistency can be factors for advancing a reasoning process  (Example 

41); and their lack of knowledge and precision or carefulness and ability to use the 

operation of rephrasing and combining objects may affect one another (Example 42).  

Example 36 Eric (Algebra II)  

Eric’s case is a representative example showing that students’ lack of flexibility, 

knowledge, and carefulness and alertness might be intertwined to produce an 

incomplete proof.   

Question [9] (4) (In-class problem solving session) 

Let R and S be rings.  Let is a ring homomorphism.  

is a well-defined ring homomorphism.  Show 

is injective.  

 

Table 5.36 shows a possible proof for Question [9] and Eric’s difficulties in the 

proof construction (Table 5.36).   

Table 5.36 

Analysis (Type A) of Eric’s Proof 

 Proof Code E 

X Show is injective. Given  

Y Show that if , then .   R1 S 

P1 is a well defined ring 

homomorphism.  

Given  

P2 is a surjective ring homomorphism. Given  

1 Suppose that . C1 S 

 Then, . CO(1,P1)R1 I 

SR :

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  

])([])([ sr   ][][ sr 

)(][:)(/: rrSKerR  

SR :

])([])([ sr  

)()( sr  



186 
 

2 Then, . R3 N 

3 Then, .  R2 N 

4 Then, for some . R2 N 

5 Then, . R2 N 

6 Then, [r] = [s]. R2 N 

 Another Proof   

X Show .  S 

1 Consider , where

}. 

C1 N 

2 Since , 

, where }. 

CO(1,P1)R1 N 

4 Then, , }. R1 N 

5 Then, ,  R1 N 

6  Therefore, . R1 N 

 

One of the ways to show the function is 

injective is to show that if , then .  Then, paying attention to the 

ignition phrase “ ,” one may start a proving argument with “Suppose 

that .”  Noting the given condition “ ,” 

one can rephrase with  based on the way for 

to be defined.  One can further rephrase with 

to obtain , which can lead them to conclude 

that .   

There is another way to prove the given proof problem.  There is a property of 

an injective homomorphism that is an injective ring homomorphism if and 

only if .  Therefore, in order to prove that is 

injective, one can show .  Then, one may start with considering

.  Applying the definition of , one may translate it into 

)()()(0 srsrS  

)(Kersr 

ksr  )(Kerk

][sksr 

)(/0)(  KerRKer 

)(/]{[)(  KerRrKer 

Sr 0])([ 

)(][:)(/: rrSKerR  

)(/]{[)(  KerRrKer  Sr 0)( 

)(/]{[)(  KerRrKer  )(Kerr

)(/]{[)(  KerRrKer  )(][ Kerr 

)(/0)(  KerRKer 

)(][:)(/: rrSKerR  

])([])([ sr   ][][ sr 

])([])([ sr  

])([])([ sr   )(][:)(/: rrSKerR  

])([])([ sr   )()( sr  

SKerR )(/:  )()( sr  

)()()(0 srsrS   )(Kersr 

][][ sr 

SR :
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, in which }.  Combining the given condition 

, one can further rephrase it with

, in which }.  Furthermore, one can rephrase it with

, in which }.  Then, they can conclude that

}, namely, .  The following (Figure 5.44) is 

Eric’s proof. 

 

Figure 5.44. Eric’s Proof. 

Eric was knowledgeable enough to come up with two methods to prove the 

given statement, both of which were right strategies.  He also showed flexibility to try 

the second strategy when he had an impasse in proving with the first strategy.  

Although he made his argument close to a complete proof, he was unable to do that.  He 

first tried to show that if , then .  He was able to rephrase 

and by using a given condition.  However, he was unable to 

advance his reasoning process after that, at which he lost his tenacity.  If he had had 

flexibility to rephrase with , he might have advanced his 

reasoning process to obtain .   

However, when he was not successful with his first strategy, he showed his 

flexibility to try another method to prove the given statement.  Although he had a right 

)(/]{[)(  KerRrKer  Sr 0])([ 

)(][:)(/: rrSKerR  

)(/]{[)(  KerRrKer  Sr 0)( 

)(/]{[)(  KerRrKer  )(Kerr

)(]{[)(  KerrKer  )(/0)(  KerRKer 

])([])([ sr   ][][ sr 

)(])([ rr   )(])([ ss  

])([])([ sr   )()( sr  

][][ sr 
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idea, he was unable to apply it to the given problem successfully partly because he 

missed carefulness in expressing his idea accurately.  He probably thought about 

showing so that he might show that 

was injective.  However, he missed precision in showing his strategy by 

is one to one.  It was not  but that he wanted to work on.  This 

carelessness might have led him to a confusion seen in his argument after that.  Then, 

he had to forcibly lead his reasoning to the conclusion that was injective.   The direct 

cause of his failure in his second attempt was that he missed working on .  If he 

had been careful enough to realize that he wanted to work on and rephrased it by 

applying the definition of kernel and combining it with the given hypothesis, he might 

have obtained .    

Example 37 Dustin (Algebra I)  

The model of the structure of proof construction included tenacity and 

persistence as the most basic psychological factors for the mental attitudes necessary in 

advancing a reasoning process in proof construction.  Students’ lack of tenacity and 

persistence ends their proving argument halfway through.  Students’ lack of tenacity 

and persistence might be enhanced by their lack of knowledge.  Donald’s proof was 

such an example. 

Question [6]  (In-class problem solving session) 

Suppose that  for some primes p and q.  Prove that G is  

either abelian or and . 

 

The following table is a possible proof for Question [6] and shows where Aaron 

had difficulties in the proof construction (Table 5.37).   

)(/0)(  KerRKer  )(][:)(/: rrSKerR  

  0)(Ker  



)(Ker

)(Ker

)(][ Kerr 

pqG 

}{)( eGZ  qpGZ ,)( 
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Table 5.37 

Analysis (Type A) of Dustin’s Proof 

 Proof Code A 

X Show G is abelian or and .    

Y Show  or and  R1 N 

P  for some primes p and q. Given   

1 Consider . C5 S 

2 Note that is a subgroup of G. C2 S 

3 Recall the Lagrange’s THM. C2 S 

4 Then,  1, p, or q. CO(2,3)R2 N 

5 Case 1: Suppose . C3 N 

6 Since , G = Z. CO(5,P)R2 N 

7 Since Z is abelian, G is abelian R2 N 

8 Case 2: Suppose . C3 N 

9 Then, . R2 N 

10 Case 3: For a contradiction, suppose . C3 N 

11 Consider the order of the quotient group .  C5 N 

12 Since  and , . CO(P,11)R2 N 

13 Recall that if is prime, K is cyclic. C2 N 

14 Therefore, is cyclic. CO(12,13)R1 N 

15 Recall that if the order of the quotient group

is cyclic, then K is abelian. 

C2 N 

16 Therefore, G is abelian. CO(14,15)R1 N 

17 Then, G = Z. R2 N 

18 Then, , which is a contradiction.  CO(P,15)R2 N 

 

The conclusion of the given statement is “G is either abelian or and

.”  The translation of the conclusion into mathematical language can be 

“ or and . “ ” can be rephrased with

.   Also, “G is either abelian or ” can be rephrased with 

}{)( eGZ  qpGZ ,)( 

GGZ )( 1Z qpZ ,

pqG 

)(GZ

)(GZ

,)( pqGZ 

pqGZ )(

ZpqG 

1)( GZ

}{)( eGZ 

pGZ )(

ZG /

pqG  pGZ )( qZG /

K

)(/ GZG

HK /

pZGpq 

}{)( eGZ 

qpGZ ,)( 

)(GZG  1)( GZ qpGZ ,)(  )(GZG 

pqGZ )( }{)( eGZ 



190 
 

“  or .”  Noting the given condition “ ” and recalling the 

relationship between and , which is “Z(G) is a subgroup of G,” and 

Lagrange’s Theorem, one can set the following three cases: ; ; and

.  For the first case, one may notice and conclude that

, which means that G is abelian.  For the second case, one may note that 

so that .  For the third case, one may use a contradiction assuming

.  Considering the quotient group and recalling the fact that if 

 is a prime number, is cyclic, one may realize that if is 

cyclic, G must be abelian and G = Z(G).  However, it is a contradiction because one 

would get .  The following figure shows Dustin’s proof (Figure 

5.45). 

 

Figure 5.45. Dustin’s Proof.  

Dustin had no idea how to prove the given problem.  After providing the above 

statement, he was given some questions as a guide.  However, as shown in the 

following figure (Figure 5. 45) he was not able to tell that Z(G) was a subgroup of G 

and that if G is abelian, .  This problem required students to consider the 

possible orders of Z(G) by realizing that Z(G) was a subgroup of G and by applying 

Lagrange’s theorem to Z(G), which might have led them to the three cases: 

pqGZ )( 1)( GZ pqG 

)(GZ G

pqGZ )( 1)( GZ

qpGZ ,)(  GpqGZ )(

ZG 

}{)( eGZ  1)( GZ

pGZ )( )(/ GZG

)(/ GZG )(/ GZG )(/ GZG

pGZGpq  )(

)(GZG 
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1, or p ( or q.)  Dustin’s lack of knowledge might have less motivated him 

to tackle the given problem.  The following (Figure 5.46) shows Dustin’s statements. 

 

Figure 5.46. Dustin’s Statement. 

Example 38 Caleb (Algebra I)  

Caleb’s proof was an example implying that students’ lack of carefulness and 

alertness might  give a flaw to their proving arguments and that students’ lack of 

knowledge and their lack of carefulness and alertness might be intertwined to influence 

their proving arguments.          

Question [5] (In-class problem solving session) 

Suppose that the order of is a prime number.  Prove that G is cyclic.  

 Table 5.38 shows a possible proof for Question [5] and shows where Caleb had 

difficulties in the proof construction.   

 

 

,)( pqGZ 

G
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Table 5.38 

Analysis (Type A) of Caleb’s Proof  

 Proof Code Caleb 

X Show G is cyclic.   

Y Show for some with . R1 I 

P The order of is a prime number. Given  

S Let with . C1 N 

1 Let with . C1 N 

2 Consider . C5 N 

3 Note is a subgroup of G.  C2 N 

4 Recall the Lagrange’s THM and apply it to . C2 N 

5 Then, by the Lagrange’s THM, . CO(3,4)R2 N 

6 Since , . CO(1,5)R2 N 

7 Since , . CO(P, 6)R2 N 

 

The conclusion of the given statement is that “G is cyclic.”  The conclusion “G 

is cyclic” can be translated into mathematical language “ for some with

.”  The given proof is the type of the proof of showing A = B.  One can work on 

either A or B through rephrasing it until A becomes B or B becomes A.   In this 

problem, one may consider and work on for some with .  Recalling 

Lagrange’s Theorem and combining it with the property that a cyclic group generated 

by an element in G is a subgroup of G, one may obtain .  Noting , 

one may decide .  Combining the hypothesis and , one 

can conclude .  The following figure (Figure 5.47) is Caleb’s proof.  

 gG Gg  1g

G

Gg  1g

Gg  1g

 g

 g

 g

pg ,1

1 g pg 

pG   gG

 gG Gg 

1g

 g Gg  1g

pg ,1 1 g

pg   gG pg 

 gG
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                         Figure 5.47. Caleb’s Proof. 

One of the problems Caleb made in his proof was that he started his argument 

with = .  One of the possible causes of the problem was that he was not 

careful enough to realize =   = .  He might have lacked the knowledge 

that turned out to be .  There is a possibility for both his lack of carefulness and 

lack of knowledge were intertwined to influence each other, which caused him to 

produce a non-useful statement.   Another problem was that it seemed he did not make 

the goal of the proof clear to himself.  As a result, he expressed his strategy, stating “I 

will show that = ,” and concluded his argument with “ .” Neither of 

them made sense.  He might have avoided those mistakes if he had paid close attention 

to the conclusion of the given statement “G is cyclic.”   

Example 38 Billy (Algebra II) 

 Billy’s case is another example showing that students’ lack of precision can get  

H  pg

 pg  e }{e

pg e

H  pg pG 
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a proving argument blemished.   His case is also representative example showing 

students’ lack of knowledge can damage their proving arguments.  

Question [9] (3) (In-class problem solving session) 

Let R and S be rings.  Let is a s ring homomorphism.   

Consider a map .   

Show is a ring homomorphism.  

 

Table 5.39 shows a possible proof for Question [9] (3) and shows where Billy 

had difficulties in the proof construction.    

Table 5.39 

Analysis (Type A) of Billy’s Proof 

Object Proof Code L 

X Show is a 

ring homomorphism. 

Given  

Y Show (i) = and  

(ii) =  

  

P1 .   

P2 is a ring homomorphism. Given  

 (i)   

1 Let  C1  

2 Consider ,  C1  

3 Note that . R2  

4 Since ,

. 

CO(3,P1)R1  

5 Since is a homomorphism, 

. 

CO(4, P2)R1  

6 Since , 

. 

CO(5,P1)R1  

7 Then, = . CO(2-6)R2  

 (ii)   

8 Consider . C1  

9 Note = . R1  

10 Then, = . CO(9,P1)R1  

SR :

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  

])[]([ sr  ])([])([ sr  

])][([ sr ])([r ])([s

)(][:)(/: rrSKerR  

SR :

)(/][],[ KRsr 

])[]([ sr 

])([])[]([ srsr  

)(][:)(/: rrSKerR  

)(])([ srsr  

SR :

)()()( srsr  

)(][:)(/: rrSKerR  

])([])([)()( srsr  

])[]([ sr  ])([])([ sr  

])][([ sr

])][([ sr ])([rs

])([rs )(rs
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11 Then, = . CO(10, P2)R1  

12 Since ,

= . 

CO(11, P1)R1  

13 Therefore, = . CO(8-12)R2  

 

The goal of the proof is “ is a ring 

homomorphism.”  There are two things to show: (i) = ; (ii) 

= .  For (i), one can rephrase with 

through algebraic manipulation.  Using the given condition 

“ ,” one can rephrase with .  Using 

another given condition “ is a ring homomorphism,” they can rephrase 

with .  Using the given condition “ ” 

again, one can derive that = to conclude that) =

. 

Similarly, for (ii), one can start with considering .  One can rephrase 

with through algebraic manipulation.  Using the given condition 

“ ,” one can further rephrase  with .  Using 

the other condition “ is a ring homomorphism,” one can rephrase with

.  Using the condition “ ” again, one can 

derive =  to conclude that = .  The 

following (Figure 5.48) is Billy’s proof.   

 

Figure 5.48. Billy’s Proof. 

)(rs )(r )(s

:)(/: SKerR  )(][ rr 

)(r )(s ])([r ])([s

])][([ sr ])([r ])([s

)(][:)(/: rrSKerR  

])[]([ sr  ])([ sr 

])][([ sr ])([r ])([s ])[]([ sr  ])([ sr 

)(][:)(/: rrSKerR   ])([ sr  )( sr 

SR :

)( sr  )()( sr   )(][:)(/: rrSKerR  

)()( sr   ])([])([ sr   ])[]([ sr 

])([])([ sr  

])][([ sr

])][([ sr ])([rs

)(][:)(/: rrSKerR   ])([rs )(rs

SR : )(rs

)(r )(s )(][:)(/: rrSKerR  

)(r )(s ])([r ])([s ])][([ sr ])([r ])([s
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Billy was close in showing the first property of a ring homomorphism 

“ = .”  His first attempt was right when he started with 

though he crossed it out later.  He was successful in rephrasing with 

and in using a given hypothesis to rephrase with .  However, 

he missed precision when he translated into .  He was supposed 

to translate into  by applying the given hypothesis

.   

Billy mistakenly got the concept of ideal involved as the second property of a 

ring homomorphism “ = .”  He showed 

instead of showing .  This resulted from his incomplete 

understanding of the property of a ring homomorphism.   

Example 40 Collin (Algebra II)  

 Collins’ case is an example showing that students’ lack of tenacity and their lack 

of knowledge might be intertwined to cause them to produce an incomplete proof. 

Question [9] (4) In-class problem solving session) 

Let R and S be rings.  Let is a surjective ring homomorphism.  

is a well defined ring homomorphism.  Show 

is injective.  

 

Table 5.40 shows a possible proof for Question [9] (4)and where Collin had 

difficulties in the proof construction.   

Table 5.40 

Analysis (Type A) of Collin’s Proof 

 Proof Code C 

X Show is injective. Given  

])[]([ sr  ])([])([ sr  

])[]([ sr  ][][ sr 

][ sr  ])([ sr  )( sr 

)()( sr   ])[]([ sr 

)()( sr   ])([])([ sr  

)(][:)(/: rrSKerR  

])][([ sr ])([r ])([s ])([])[( rara  

])([])([])][([ srsr  

SR :

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  
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Y Show that if , then .   R1 S 

P1 is a well defined ring 

homomorphism.  

Given  

P2 is a surjective ring homomorphism. Given  

1 Suppose that . C1 S 

 Then, . CO(1,P1)R1 I 

2 Then, . R3 N 

3 Then, .  R2 N 

4 Then, for some . R2 N 

5 Then, . R2 N 

6 Then, [r]=[s]. R2 N 

 Another Proof   

X Show .  N 

1 Consider , where

}. 

C1 N 

2 Since , 

, where }. 

CO(1,P1)R1 N 

4 Then, , }. R1 N 

5 Then, ,  R1 N 

6  Therefore, . R1 N 

 

One of the ways to show the function is 

injective is to show that if , then .  Then, paying attention to the 

ignition phrase “ ,” one may start a proving argument with “Suppose 

that .”  Noting the given condition “ ,” 

one can rephrase with  based on the way for 

to be defined.  One can further rephrase with 

to obtain , which can lead them to conclude 

that .   

There is another way to prove the given proof problem.  There is a property of 

an injective homomorphism that is an injective ring homomorphism if and 

])([])([ sr   ][][ sr 

)(][:)(/: rrSKerR  

SR :

])([])([ sr  

)()( sr  

)()()(0 srsrS  

)(Kersr 

ksr  )(Kerk

][sksr 

)(/0)(  KerRKer 

)(/]{[)(  KerRrKer 

Sr 0])([ 

)(][:)(/: rrSKerR  

)(/]{[)(  KerRrKer 
Sr 0)( 

)(/]{[)(  KerRrKer  )(Kerr

)(/]{[)(  KerRrKer  )(][ Kerr 

)(/0)(  KerRKer 

)(][:)(/: rrSKerR  

])([])([ sr   ][][ sr 

])([])([ sr  

])([])([ sr   )(][:)(/: rrSKerR  

])([])([ sr   )()( sr  

SKerR )(/:  )()( sr  

)()()(0 srsrS   )(Kersr 

][][ sr 

SR :
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only if .  Therefore, in order to prove that is 

injective, one can show .  Then, one may start with considering

.  Applying the definition of , one may translate it into 

, in which }.  Combining the given condition 

, one can further rephrase it with

, in which }.  Furthermore, one can rephrase it with

, in which }.  Then, they can conclude that

}, namely, .  The following (Figure 5.49) 

shows Collin’s proof.  

 

Figure 5.49. Collin’s Proof. 

Judging from his statement “ ,” Collin seemed to have a 

right proving strategy to show that a function was injective.  However, he was unable to 

apply it to  and to start with in order to 

show .  His tenacity to try to apply his knowledge to the conclusion of the given 

statement might not have been strong enough.  Also, he might have been confused by 

 because his understanding of a coset of might 

not have been strong enough.      

Example 40 Louis (Algebra II) 

Louise’s case is a representative example showing that multiple factors are 

intertwined together to cause students to produce incomplete proofs.  In his case, lack 

RKer 0)(  )(][:)(/: rrSKerR  

)(/0)(  KerRKer 

)(Ker )(Ker

)(/]{[)(  KerRrKer  Sr 0])([ 

)(][:)(/: rrSKerR  

)(/]{[)(  KerRrKer  Sr 0)( 

)(/]{[)(  KerRrKer  )(Kerr

)(]{[)(  KerrKer  )(/0)(  KerRKer 

srsr  )()( 

)(][:)(/: rrSKerR   ])([])([ sr  

][][ sr 

)(][:)(/: rrSKerR   )(Ker
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of precision, lack of knowledge, and failure to combine objects contributed to his 

incomplete reasoning process.    

Question [9] (3) (In-class problem solving session) 

Let R and S be rings.  Let is a ring homomorphism.   

Consider a map .   

Show is a ring homomorphism.  

 

Table 5.41 shows a possible proof for Question [9] (3) and shows where Louis 

had difficulties in the proof construction.    

Table 5.41 

Analysis (Type A) of Louis’s Proof 

Object Proof Code L 

X Show is a 

ring homomorphism. 

Given  

Y Show (i) = and  

(ii) =  

  

P1 .   

P2 is a surjective ring 

homomorphism. 

Given  

 (i)   

1 Let  C1 N 

2 Consider ,  C1 N 

3 Note that . R2 N 

4 Since ,

. 

CO(3,P1)R1 N 

5 Since is a homomorphism, 

. 

CO(4, P2)R1 N 

6 Since , 

. 

CO(5,P1)R1 N 

7 Then, = . CO(2-6)R2 N 

 (ii)   

8 Consider . C1 N 

9 Note = . R1 N 

10 Then, = . CO(9,P1)R1 N 

SR :

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  

)(][:)(/: rrSKerR  

])[]([ sr  ])([])([ sr  

])][([ sr ])([r ])([s

)(][:)(/: rrSKerR  

SR :

)(/][],[ KRsr 

])[]([ sr 

])([])[]([ srsr  

)(][:)(/: rrSKerR  

)(])([ srsr  

SR :

)()()( srsr  

)(][:)(/: rrSKerR  

])([])([)()( srsr  

])[]([ sr  ])([])([ sr  

])][([ sr

])][([ sr ])([rs

])([rs )(rs
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11 Then, = . CO(10, P2)R1 N 

12 Since ,

= . 

CO(11, P1)R1 N 

13 Therefore, = . CO(8-12)R2 N 

 

The goal of the proof is “ is a ring 

homomorphism.”  There are two things to show: (i) = ; (ii) 

= .  For (i), one can rephrase with 

through algebraic manipulation.  Using the given condition 

“ ,” one can rephrase with .  Using 

another given condition “ is a ring homomorphism,” they can rephrase 

with .  Using the given condition “ ” 

again, one can derive that = to conclude that) =

. 

Similarly, for (ii), one can start with considering .  One can rephrase 

with through algebraic manipulation.  Using the given condition 

“ ,” one can further rephrase  with .  Using 

the other condition “ is a ring homomorphism,” one can rephrase with

.  Using the condition “ ” again, one can 

derive =  to conclude that = .   

The following is Louis’s proof (Figure 5.50).  

 

Figure 5.50. Louis’s Proof. 

)(rs )(r )(s

:)(/: SKerR  )(][ rr 

)(r )(s ])([r ])([s

])][([ sr ])([r ])([s

)(][:)(/: rrSKerR  

])[]([ sr  ])([ sr 

])][([ sr ])([r ])([s ])[]([ sr  ])([ sr 

)(][:)(/: rrSKerR   ])([ sr  )( sr 

SR :

)( sr  )()( sr   )(][:)(/: rrSKerR  

)()( sr   ])([])([ sr   ])[]([ sr 

])([])([ sr  

])][([ sr

])][([ sr ])([rs

)(][:)(/: rrSKerR   ])([rs )(rs

SR : )(rs

)(r )(s )(][:)(/: rrSKerR  

)(r )(s ])([r ])([s ])][([ sr ])([r ])([s
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Louis made two mistakes in starting his proof with .  The first mistake 

was that he had instead of .  He might have avoided this mistake if he had been 

careful in making sure of the goal of the proof through the conclusion of the given 

statement “ is a ring homomorphism.”  Or, he wanted to 

be careful enough to realize that he made a domain error when he had .   

The second mistake was that he started with instead of  .  This 

mistake might have resulted from his incomplete understanding of the property of a 

homomorphism.  He wanted to start with “ ” and to rephrase it with 

“ .”   

Next, he rephrased with .  He probably meant an 

element of and by with and with 

respectively.  Assuming that he meant by , he was unable to apply 

the given hypothesis “ ” so that he might have rephrased  

with .  He might have avoided the mistake if he had been careful to 

notice that he should not have rephrased with because 

was an equivalence class while with and with 

were elements of  and .   

5.10 Influence of Affect and Beliefs 

The model of the structure of proof construction included psychological traits as 

the major factors that might influence students’ cognitive processes in proof 

construction.  The model categorized those traits into two aspects: mental attitudes and 

emotions and beliefs.  The former are the traits everyone is required to have while the 

])([ sr 

 

)(][:)(/: rrSKerR  

])([ sr 

][ sr  ][][ sr 

])[]([ sr 

])([ sr 

])([ sr  ))()(( bsar 

][r ][s )( ar  )(Kera )( bs  )(Kerb

])([ sr  ])([ sr 

)(][:)(/: rrSKerR  

])([ sr  )( sr 

][ sr  )()( bsar  ][ sr 

)( ar  )(Kera )( bs  )(Kerb

][r ][s
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latter varies according to individuals.  Affect included emotions, moods, feelings, and 

self-confidences.  Beliefs included one’s proof schemes, perceptions and perspectives 

on logic, proofs, and mathematics.  Affect and beliefs are not independent of but 

intertwined with the other aspects and factors of the structure of proof construction. For 

example, affect may directly influence mental attitudes.  Beliefs and background 

knowledge may be related to each other.  What students may believe can be the 

knowledge they may use in proof construction.  A distinction between them is that the 

beliefs is more like a cognitive environment while the background knowledge is 

specific elements used in the cognitive environment. The beliefs is one’s thinking habit 

or tendency while the background knowledge is more specific mathematical contents 

that are necessary for students to have to solve a given proof problem.  This study did 

not focus on affect and beliefs as much as the other aspects.  However, the analysis of 

students’ proofs encountered some cases in which their difficulties might be related to  

the aspects of beliefs.  I will present two examples that imply students’ beliefs in logic 

for advancing a reasoning process can affect their whole proving arguments.  

Example 41 Dillon (Algebra I) 

Dillon’s case is an example showing that student’s wrong beliefs toward their 

logic might cause them to produce unsuccessful proofs.   

Question [4] (In-class problem solving session) 

Suppose that is cyclic.  Prove that G is abelian.  

 

Table 5.42 shows a possible proof for Question [4] and where Dillon had 

difficulties in the proof construction.   

 

)(/ GZG
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Table 5.42 

Analysis (Type A) on Dillon’s Proof 

 Proof Code A 

X Show G is abelian. Given  

Y Show for any . R1 N 

P is cyclic. Given  

1 Let . C1 N 

2 Recall are in some cosets. C2 N 

3 Then, and for some . CO(P, 2)R1 N 

4 Let and for some . R1 N 

5 Then, . R3 N 

 

The conclusion of the given statement is “G is abelian.” The translation of it 

into mathematical language provides “ for any .”  The phrase in the 

mathematical language, “for any ,” is the ignition phrase.  One can derive 

starting variables from the ignition phrase and provide “Suppose .”  This proof 

is the type of the proof of showing A = B.  One can work on either A or B until A 

changes into B or B changes into A while making good use of the given conditions.  In 

this case, one can attempt to rephrase the left side of the equation “ ” until it changes 

into “ .”  To rephrase “ ,” one may consider the given hypothesis “ is 

cyclic” and look for the connection between the starting variables “ ” and the 

hypothesis “ is cyclic.”  Recalling the property that an element of G belongs to 

some coset, one may produce and for some .  Then, one can 

rephrase with for some  .  Using the property of the center of a 

group, one may derive .  The following (Figure 5.51) is 

Dillon’s proof. 

baab  Gba ,

)(/ GZG

Gba ,

Gba ,

Zxa m Zxb n Gx

1zxa m 2zxb n Zzz 21,

bazzxzzxab mnnm  

1221

baab  Gba ,

Gba ,

Gba ,

ab

ba ab )(/ GZG

ba,

)(/ GZG

Zxa m Zxb n Gx

ab
21zzx nm

Zzz 21,

bazzxzzxab mnnm  

1221
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Figure 5.51. Dillon’s Proof. 

Dillon was unable to prove the given statement partly because he applied a 

wrong reasoning logic.  He went  “Since all subgroups of an abelian group are cyclic, 

we have only to show that was a subgroup of G so that I might prove G is 

abelian.”  To make his logic simpler, “Suppose X is S and G is A, then X is C.  Suppose 

X is C.  In order to prove G is A, you have only to show X is S.”  Namely, he believed 

that the converse of a conditional statement was true, which was not always true.  He 

also made a wrong assumption that all subgroups of an abelian group are cyclic.  His 

wrong belief in his logic and incomplete understanding of a concept resulted in 

producing a barren argument.      

Example 42 Anthony (Algebra I) 

 Anthony’s proof is another example showing students’ wrong conception in 

logic can affect their proofs.    

Question [4] ( In-class problem solving session) 

Suppose that is cyclic.  Prove that G is abelian.  

 

Table 5.43 shows a possible proof for Question [4] and where Anthony had 

difficulties in the proof construction.    

Table 5.43 

Analysis (Type A) on Anthony’s Proof 

 Proof Code A 

X Show G is abelian. Given  

)(/ GZG

)(/ GZG
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Y Show for any . R1 N 

P is cyclic. Given  

1 Let . C1 N 

2 Recall are in some cosets. C2 N 

3 Then, and for some . CO(P, 2)R1 N 

4 Let and for some . R1 N 

5 Then, . R3 N 

 

The conclusion of the given statement is “G is abelian.” The translation of it 

into mathematical language provides “ for any .”  The phrase in the 

mathematical language, “for any ,” is the ignition phrase.  One can derive 

starting variables from the ignition phrase and provide “Suppose .”  This proof 

is the type of the proof of showing A = B.  One can work on either A or B until A 

changes into B or B changes into A while making good use of the given conditions.  In 

this case, one can attempt to rephrase the left side of the equation “ ” until it changes 

into “ .”  To rephrase “ ,” one may consider the given hypothesis “ is 

cyclic” and look for the connection between the starting variables “ ” and the 

hypothesis “ is cyclic.”  Recalling the property that an element of G belongs to 

some coset, one may produce and for some .  Then, one can 

rephrase with for some  .  Using the property of the center of a 

group, one may derive .  The following (Figure 5.52) is 

Anthony’s proof.   

 

Figure 5.52. Anthony’s Proof. 
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Anthony noted the conclusion of the given statement “G is abelian” and 

translated it into mathematical language “ .”  The problem of his argument was 

that he tried using the conclusion as a hypothesis.  He was not careful enough to realize 

that he was not allowed to use it as a condition with which to advance his reasoning 

process.  Anthony was unable to prove the statement mainly because he did not 

understand the logical argument to advance a reasoning process.  The greatest problem 

of his was that he tried to advance a reasoning process by assuming that the conclusion 

of the given statement that was to be proved.  His logical flaw might have been avoided 

if he had made it clear that for any was the goal.   

5.11  Summary 

 This chapter has detailed various types of students’ difficulties with proof 

construction.  Students’ proofs were systematically analyzed through the frameworks 

created based on the model of the structure of proof construction.  The results were 

presented in terms of each component of the structure of proof construction.  The 

analysis revealed that each of students’ difficulties, mistakes, and impasses were often 

caused by multiple factors being intertwined.  Although students’ difficulties seemed to 

occur in a complex way, the analysis based on the model of the structure of proof 

construction helped to make the mechanism of the occurrences of students’ difficulties 

clear.  The model let the analysis to sum up the sources of students’ difficulties in three 

types of sources:  students’ lack of knowledge; their lack of tenacity, persistence, 

flexibility, carefulness, alertness, and precision; and their lack of metacognitive 

knowledge for advancing a reasoning process.  Although students’ emotions, feelings, 

self-confidences, and beliefs were considered to influence their proving performances, 

hggh 

baab  Gba ,
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this study did not focus on those factors.  The next chapter will answer the research 

questions based on the results of the analysis of students’ proofs presented in this 

chapter, while referring back to the existing literature.       
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Chapter 6: Discussion 

6.1 Introduction 

In Chapter 5, I presented the results from the analysis of students’ proofs in light 

of the structure of proof construction.  This chapter is dedicated to addressing the 

research questions while highlighting the findings and referring to the supporting 

literature.  In this chapter, I will discuss the followings: (1) significance of the model of 

the structure of proof construction; (2) sources of students’ difficulties with proof 

construction, (3) specific pedagogical suggestions to help students with proof 

construction, and (4) usefulness of the model of the structure of proof construction.  I 

end this chapter with the limitations of this study and possible future research.    

6.2 Model of the Structure of Proof Construction  

Kieran (1998) reported the significance of models in research, stating “the 

current reporting of research suggests that both (empirical and theoretical researches) 

involve the description of observed phenomena by means of models (p. 213)”.  She also 

reported that research results were frequently described and explained in the form of 

explicitly formulated models.  Moreover, she claimed that results without explanatory 

models would not help us understand the observed phenomena.  Brown (1998) also 

indicated that results themselves would not be effective in understanding the 

phenomena and implied that results should be analyzed with theorization for a better 

understanding of the phenomena.  This study started with modeling the structure of 

proof construction for the purpose of analyzing, describing, explaining, and interpreting 

students’ difficulties with proof construction in a clear and organized way.   
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First, I clarify the significance of having created a model of the structure of 

proof construction.  Then, I will answer the first research question while referring to 

how the model was created.  Lastly, I mention the types of proofs that were obtained in 

the process of modeling the structure of proof construction.   

6.2.1. Significance of the model of proof construction 

Before examining students’ difficulties with proof construction, it had to be 

specified in what terms and from what angles their proofs should be analyzed.  These 

demands  motivated me to create a framework for analyzing students’ difficulties in a 

systematic and organized way.  In order to create such a framework, I explored a model 

of the structure of proof construction.  The structure of proof construction meant a 

comprehensive picture of proof construction that can describe and encompass the 

aspects, factors, patterns, and features seen in thinking processes in a proving activity.   

The motivation of creating a model of the structure of proof construction also 

arose from the major goals of this study.  This study aimed not only to clarify the 

sources of students’ difficulties but also to make practical suggestions to help students.  

In particular, I focused on exploring the patterns and features that might help them with 

a syntactic approach.     

Different researchers have studied students’ difficulties with proof construction 

from different angles.  Some of them focused on detecting students’ difficulties with 

proving on a particular subject.  For example, Selden and Selden (1995) pointed out 

students’ difficulties with translating informal language to formal language through a 

calculus proof.  Weber (2001) noted students’ lack of proving strategy through an 

abstract algebra proof.  Edward and Wards (2004) observed students’ misuse of 
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definitions through a real analysis proof.  Savic (2011) showed that logic rarely 

occurred in students’ proofs through the “chunk-by-chunk” analysis.  Other studies 

categorized students’ difficulties with proof construction.  For example, Moore (1994) 

examined students’ difficulties with proving and categorized them into seven types.  

Selden and Selden (2009) categorized students’ difficulties with proving into more 

types but from a different angle than Moore’s.  Other studies examined students’ proofs 

schemes.  Harel and Sowder (1998) examined students’ proofs in terms of external, 

empirical, and analytical proof schemes. Weber and Alcock (2004) studied students’ 

proofs in terms of semantic or syntactic proof schemes.  However, there seemed to be 

no studies that attempted to analyze students’ proofs in light of the structure of proof 

construction.  Selden and Selden (2007) offered a proof framework as a method to teach 

students, in which they suggested students should write a proof from the beginning and 

the end towards the middle.  There was room for exploring an effective method to help 

students to write a proof from the top down.   

The creation of a model of the structure of proof construction was important and 

necessary for the following reasons: (1) to clarify in what terms and from what angles 

to examine students’ difficulties with proof construction; (2) to analyze, understand, 

and explain their difficulties in a clear and organized way; (3) to help students grasp 

what proof construction was like and how they should advance a reasoning process; and 

(4) to shed light on students’ difficulties with proof construction from a new perspective, 

which past studies may not have.    

6.2.2 Model of the structure of proof construction 

The first research question this study raised was the following: 
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“What is a suitable model for characterizing the structure of proof construction?”   

This section answers the above research question, describes how the model was 

obtained, presents the model, and refers to the related literatures.  This study started 

with examining the researcher’s thinking processes in proof construction in order to 

explore what might be involved in cognitive processes in proof construction.  A think 

aloud method was adopted for the method to examine the researcher’s cognitive 

processes.  In order to explore and generalize the patterns and features seen in proof 

construction across multiple mathematical subjects, more than 40 proofs of theorems 

and propositions were analyzed, which were collected mainly from undergraduate 

Algebra, Analysis, and Topology.  A few proofs came from Calculus, Discrete 

Mathematics, and Linear Algebra, respectively.  The researcher solved those proofs, 

while carefully self-monitoring, observing, describing, organizing, and categorizing the 

factors involved in the researcher’s thinking processes.  In particular, the researcher 

focused on how each step can be obtained for successful proof construction.   The 

researcher explored what types of thinking actions or what types of operations might be 

applied to generate the next statement from a previous one.   

As a result, all the observed operations for advancing a reasoning process were 

categorized into four types: rephrasing an object; combining objects; creating a cue; 

and checking and exploring (Table 3.2).  In this study, an object was meant to represent 

a statement or part of a statement for each step in a proof.  The operations of rephrasing 

an object, combining objects, and creating a cue were considered as main thinking 

actions while checking and exploring were considered as supporting actions. The 

difference between the main actions and the supporting actions was that  in order to 



212 
 

convince others of the validity of a proof, the processes or the steps obtained through 

the former had to be explicitly expressed while the processes or the steps obtained 

through the latter did not necessarily have to be expressed explicitly.  For example, the 

operation of checking and exploring included observing, reviewing, reflecting, 

searching, intuiting, trying, illustrating, and experimenting. The processes taken 

through checking and exploring did not necessarily have to be explicitly expressed in 

order to convince others of the validity of their proofs.  Since different individuals 

check what they have done and explore the methods to figure things out in different 

ways, this study did not set a main focus on the operation of checking and exploring.  

Therefore, a possible structure for checking and exploring was not scrutinized.  The 

analysis through the think-aloud method also found two major roles in the main actions: 

transforming objects; and igniting processes. Rephrasing an object and combining 

objects were categorized into the operations for transforming objects.  Creating a cue 

was categorized into the operations for igniting a reasoning process.  Rephrasing an 

object was further categorized into the following three types. 

 R1: Rephrasing an object by applying definitions, properties, theorems, 

propositions, and negations 

 R2: Rephrasing an object through formal interpretations and informal 

interpretations such as common sense 

 R3: Rephrasing an object through algebraic manipulation such as calculation, 

computation, and solving equations 

Creating a cue was also further categorized into five types: 

 C1: Set a variable; 
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 C2: Recall prior knowledge such as relevant properties, theorems, propositions, 

and mathematical laws; 

 C3: Set some cases; 

 C4: Make a claim or set a new object; 

 C5: Consider an object. 

Moreover, the relationships among the operations were clarified.  The analysis 

revealed that there was an order of the operations that students should try in advancing 

a reasoning process.  Rephrasing an object is the primary and basic operation.  

Combining objects is the secondary operation that should be tried when the operation of 

rephrasing an object does not work.  Creating a cue is the final operation to be used.  

The operation of creating a cue can be considered as the highest level of operation in 

terms of difficulty because students have to generate a new object while they can 

depend on what they are given for the operations of rephrasing an object and 

combining objects.  Moreover, the analysis observed  that the operation of combining 

objects is accompanied by the operation of rephrasing an object.  That is, after students 

combine objects, they produce a new object through rephrasing an old object.  The 

operation of creating a cue (see C2 in Table 3.2 or 6.1) is accompanied by the 

operations of combining objects and rephrasing an object.  

In the process of exploring the features of the reasoning activity, noting the 

importance of how to get started on a proof  for successful proof construction, two 

major stages (the opening stage and the body construction stage) were set for proof 

construction: the opening stage and the body construction stage.  The opening stage is a 

crucial stage for students to make their proving arguments successful though the 
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amount of the contents contained in the opening stage may be much smaller than those 

contained in the body construction stage.  In the opening stage, students note the 

conclusion of the given statement, translate it into mathematical language, set a starting 

variable from the mathematical language, make sure of the given hypotheses, and 

translate those hypotheses into mathematical language, if necessary.  In the body 

construction stage, one advances a reasoning process by the four actions (rephrasing an 

object, combining objects, creating a cue, and checking and exploring).   

The significance of the opening stage cannot be overemphasized.  There are 

three important roles in the opening stage: making the goal of the proof clearer; setting 

a starting variable; and making sure of what conditions are available.  In particular, the 

first two roles are crucial.   Both roles are realized usually through translating the 

conclusion of the given statement into mathematical language.  Translation of the 

conclusion of the given statement into mathematical language not only makes the goal 

of the proof clearer but also makes the distance or the proving process to the goal 

shorter.  Translation of an object into mathematical language gives a motive power for 

students to develop a further reasoning argument in the body construction stage as well 

as in the opening stage. Newell and Simon (1972) presented the standard theory of 

problem solving, in which they viewed a problem solving process as a process of 

reducing the differences between the desired and current states by applying operators or 

creating sub-problems. Translation of an object into mathematical language can be 

considered to be a key factor for problem solving in proof construction.  Considering all 

the above features observed in the reasoning activity, the following framework (Table 

3.1) was created as a model of the structure of the reasoning activity.  
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The reasoning activity focused on students’ cognitive or thinking actions, in 

particular, their operations for advancing a reasoning process.  The operations can be 

compared to the “tools” used for proof construction.  Then, the “materials” students 

manipulate with those tools correspond to the elements of their background knowledge, 

including concepts, definitions, properties, notations, theorems, and propositions.  

Therefore, the background knowledge was considered to be another major factor for 

proof construction.  The reasoning activity and the background knowledge can be 

considered as main factors involved in cognitive processes in proof construction.  

However, in order to capture the aspects for proof construction comprehensively, 

this study further added two more aspects: the mental attitudes, and affect and beliefs.  

Schoenfeld (1983) pointed out that purely cognitive behavior was extremely rare.  He 

discussed a variety of factors that might shape pure cognition, including the 

environment, one’s affect, feeling, and perception of self and the environment.  The 

mental attitudes are the abilities related to self-regulation.  The mental attitudes 

included tenacity, existence, flexibility, carefulness, alertness, and precision.  Tenacity 

is one’s ability of persistence to try to continue to think, work on, and tackle a proof, 

and not to give up.  Once students lose their tenacity in proving, their proofs end at that 

point.  Flexibility is a mental attribute that allows students to discard the idea that does 

not work and to explore and try a new idea.  It is a motive power to help students 

overcome their impasses.  Carefulness and  alertness is a mental skill that allows 

students to deal with an object precisely and correctly.  There may be more factors for 

the mental attitudes necessary for proof construction, but this study set those three 

attributes as the main factors of the mental attitudes.  
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This study further considered affect and beliefs for the aspect of proof 

construction.  Affect and beliefs include one’s emotions, moods, feelings, beliefs, and 

self-confidence.  For example, students’ worries from everyday life, test anxieties, or 

low self-confidence in mathematics may influence their proving performances and any 

mathematics problem-solving.   Students’ beliefs may also affect their performances.  

For example, some students may believe that mathematics learning is a matter of 

memorization of the formulas and of application of those formulas to given problems.  

This belief may lead students to depend on their memorization instead of thinking 

deeply and critically by themselves.  Students’ proof scheme is another example of 

student’s beliefs.  Their beliefs that a statement can be proved by showing examples or 

diagrams may cause them to develop their empirical proof schemes.   

Considering all these, this study viewed proof construction as a process of 

advancing a reasoning process by way of mathematical language through the four main 

operations of rephrasing an object, combining objects, creating a cue, and checking 

and exploring while making applying their background knowledge and practicing their 

mental attitudes (tenacity, flexibility, and carefulness and alertness) under the influence 

of affect and beliefs.  Thus, the model of the structure of proof construction was created 

and described in a 3D model (Figure 3.1).  

I found out that the following literature was in agreement with the structure of 

proof construction.  For example, Funke (2010) provided four elements to describe a 

problem-solving situation: givens, goals, operators and barriers.  Givens is the 

knowledge that a students has about the problem.  The operators are the actions that a 

student applies to reach the goal of a given problem.  Barriers are the difficulties a 
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student has to overcome in the process of achieving the goal of the problem.  The 

background knowledge in the model of the structure of proof construction may 

correspond to Funke’s knowledge.  The operations in the model (rephrasing an object, 

combining objects, creating a cue, and exploring and checking) detail Funke’s 

operators and tools.  Various difficulties occurring each aspect of proof construction in 

the model (Figure 3.1) extend Funke’s barriers.  Funke pointed out that motivational 

and affective means as well as cognition can be factors to help students overcome their 

difficulties.  The aspects of the mental attitudes and affect and beliefs in the model 

(Figure 3.1) can be related to Funke’s motivational and affective means.   

Other researchers noted the affective aspect, including beliefs, feelings, and 

moods, as a significant factor, as well as the cognitive aspect, in mathematical thinking 

(Fringhetti and Morselli, 2004; Goldin, 2002; Leron and Hazzan, 1997; Schoenfeld, 

1983).  More specifically, Fringhetti and Morselli (2004) explored the way to integrate 

the cognitive and affective aspects through a student’s proof construction.  Golding 

(2002) even indicated that the affective aspect was central to cognition in mathematical 

activity.  Leron and Hazzan (1997) gave some specific mental forces as factors for the 

affective aspect which may influence mathematical thinking.  Those mental forces have 

some similarities with the factors in the structure of proof construction.  For example, 

students’ mental force to try to make things sense may be related to their mental 

attitude, in particular, tenacity.  Their mental force to stick to something familiar to 

them may be related to their flexibility as the counter-mental force.   

6.2.3 Types of proofs 

 Proofs were classified into three types according to the ways to set a starting  
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variable in the opening stage.  The first type of proofs had the opening stage in which 

students derived a starting variable from the conclusion of the given statement.  The 

second type of proofs had the opening stage in which students derived a starting 

variable from a hypothesis of the given statement.  The third type of proofs had the 

opening stage in which students did not have to derive a starting variable and had only 

to directly work on the conclusion of the given statement.  The majority of the proofs 

analyzed in this study belonged to the first type of proof.  The model of the structure of 

proof construction (Figure 3.1) was created based on the first type of proofs.  The 

proofs that required students to construct an object such as a sequence and an open set 

belonged to the second type.  The proofs asking students to prove A = B belonged to 

the third type.  This type included mathematical induction and proofs of trigonometric 

identities.  

6.3 Sources of Students’ Difficulties with Proof Construction 

This section highlights the findings obtained from the analysis of students’ 

proofs in light of the structure of proof construction while answering the second 

research question:  

“What difficulties do students have with proof construction and what are the 

sources of their difficulties in light of the structure of proof construction?”   

The components in the structure of proof construction are the main factors 

contributing to the sources of students’ difficulties with proof construction.  For 

example, students’ inabilities to apply the operations of rephrasing an object, 

combining objects, and creating a cue can be the direct sources of students’ difficulties 

with advancing a reasoning process.  Moreover, students’ difficulties with advancing a 
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reasoning process are directly caused by their lack of knowledge, tenacity, persistence, 

flexibility, carefulness, alertness, and precision.  The model of the structure of proof 

construction also suggests that students’ self-confidence and beliefs about logic and 

proof construction can affect their proving performances.  Finally, the analysis of 

students’ proofs also suggested that students’ lack of knowledge of metacognitive and 

methodological knowledge for advancing a reasoning process caused their difficulties.   

6.3.1 Opening Stage 

How to start a proving argument is a key factor for constructing a successful 

proof.  Moore (1994) observed, as one of the major sources of students’ difficulties 

with proof construction, that students did not know how to begin proofs.  He pointed 

out that many factors might affect their inability to start their proof construction, 

including their difficulties with language and notation, and with definitions.  This study 

scrutinized how students difficulties with opening proof construction occurred and 

explored how instructors would help students to start proof construction. 

Out of the 81 proofs that were analyzed, 59 proofs (73.4%) were incomplete.  

Out of those unsuccessful  proofs, 39 proofs (66.1%) had defects in their opening stages.  

Overall, almost 50% of the proofs analyzed for this study were unsuccessful because 

students may have mismanaged their opening stages.  The analysis of the data showed 

that about 67% of the unsuccessful proofs resulted from students’ mismanagement of 

the opening stage.  This showed how important it was for students to manage the 

opening stage successfully.  The degree of success in managing the opening stage may 

well decide the degree of success in proof construction.  The results also revealed two 

major roles of the opening stage: (a) having students make sure of the goal of the proof; 
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(b) having students set a starting variable with which to develop a reasoning process.   

The opening stage helps students to make sure of the goal and set a direction to 

reach the goal.  The results showed that students’ failure to have  the goal of a proof in 

mathematical language was a major source for the mismanagement of the opening 

stage.  Having a goal in mathematical language gives students a right direction.  The 

goal has a potential to lead students to advance their reasoning process and to get 

students back on the right track when they go astray or have impasses.  The goal of the 

proof comes from the conclusion of the given statement.  In most proofs used for this 

study, the conclusion of the given statement contains some concept such as abelian, 

compact, continuous, cyclic, homomorphism, or injective, etc.  When these concepts 

are translated into mathematical language, namely, their definitions, they acquire a 

power to drive students to advance their reasoning processes.   

The opening stage gets students to set a variable necessary to develop the body 

construction stage.  The great majority of the proofs used in this study required students 

to set a variable in the opening stages.  A proving argument is advanced by using 

variables.  A variable is a key element in making a rigorous, formal, and logical 

mathematical argument.  Students cannot convey their mathematical ideas rigorously, 

formally, and logically without using variables in their proving arguments.     

Then, a question arises: How do students set a variable correctly?  The great 

majority of the proofs used in this study showed that it was the mathematical language 

for the conclusion of the given statement that a starting variable were derived from.  In 

particular, in most cases, the starting variable was directly found in the ignition phrase 

such as “for…” or “if …,” which was contained in the definition of a concept involved 
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in the conclusion of the given statement.  Therefore, the key to setting a starting 

variable is to pay attention to the conclusion of the given statement, translate it into 

mathematical language while applying the definition of a concept involved in it, and 

find an ignition phrase, and derive a starting variable.   There were a few cases in which 

students had to derive a variable from the mathematical language for a hypothesis of 

the given statement.  However, those types of proofs were the type of proofs in which 

students were required to construct a certain object such as an open set.  In any case, the 

variable is found in the ignition phrase in the mathematical language.  

For example, Frank’s proof was a representative example of showing students’ 

mismanagement in the opening stage.  Frank (Figure 6.1) showed “ is cyclic” 

though he was asked to show “G is abelian.” If he had made sure of the goal of the 

proof by noting the conclusion of the given statement “G is abelian,” he may have at 

least avoid ending up with “ is cyclic” as his conclusion.  Also, he started his 

proving argument by setting variables  and , which were 

not correct notations.  It is most likely that he derived those variables from the given 

hypothesis  “ is cyclic,” which caused his proving argument to be unsuccessful.  

If he had derived a starting variable from the mathematical language for the conclusion 

of the given statement, he could have been able to avoid  the confusion that was found 

in his proving argument.  
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Figure 6.1. Frank’s Proof. 

In summary, the findings indicated that the students’ inability to get started on a 

proof might result from their lack of knowledge of the features of the opening stage, 

including the representative steps to take in the opening stage: paying attention to the 

conclusion of the given statement; translating it into mathematical language; deriving a 

starting variable from an ignition phrase in the mathematical language for the 

conclusion.   

6.3.2 Rephrasing an Object 

 Based on my framework, rephrasing an object is the primary operation for 

advancing a reasoning process among the three (rephrasing an object, combining 

objects, and creating a cue) in the sense that the operations of combining objects and 

creating a cue are often accompanied by the operation of rephrasing an object.  There 

are three types of the operation of rephrasing an object: (a) rephrasing an object by 

applying a definition, a theorem, or a property; (b) rephrasing an object through 

interpretation; and (c) rephrasing an object through algebraic manipulation.  This 

section highlights the sources of students’ difficulties with rephrasing an object based 

on the following findings. 
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First, students’ lack of knowledge of an object, including the definition of a 

concept and a property of concept, can be a central cause for malfunctioning the 

operation of rephrasing an object.  There are two cases for “students’ lack of 

knowledge of a definition or a property of concept.”  The first case is that students 

simply do not know or have forgotten what a definition or property of concept is.  Then, 

students cannot rephrase an object by applying the definition or a property of concept.  

The second case is that students have an incomplete or a weak understanding of a 

definition or a property of concept.  This can cause problems with their notations or 

expressions of mathematical terms, which affects their practice of the operation of 

rephrasing an object.   

For example, Billy (Figure 6.2) had an incomplete understanding of a property 

of a ring homomorphism, which misled him to rephrase the property of homomorphism 

in a wrong way and consequently resulted in an unsuccessful proof.   

 

Figure 6.2. Billy’s Proof. 

In another example, Elias (Figure 6.3) had an incomplete understanding of the 

concept of compactness.  He did not have the notion that a finite subcover of a space 

had to be derived from an open cover of the space and that he had to set an open cover 

of a space before talking about a finite open subcover of the space.  His incomplete 

understanding of the concept of compactness hindered him from translating the 

conclusion into mathematical language to set a right starting variable, an open cover of 

K in his case.   
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Figure 6.3. Elias’s Proof. 

Similarly, Savanna (Figure 6.4) was unsure about how to show a given 

homomorphism was one to one and onto.  Instructors cannot overemphasize the 

importance of students having a solid understanding of the basics of concepts, including 

the definitions, properties, and meanings, relevant theorems, and proving techniques.   

 

Figure 6.4. Savanna’s Proof. 

Another cause for students’ failure to rephrase an object may be that they have 

not fully acquired or established the skill of using mathematical language to advance 

their reasoning process.  They may not fully understand the usefulness, effectiveness, 

necessity, and importance of using mathematical language as the most fundamental 

element for constructing a proving argument.  Even when they know the definition of a 

concept, they are sometimes unable to apply it to an object.   

For example (Figure 6.5), Natalie knew the definition of a continuous function 

in a topological sense, but was unable to apply it to the composite function , in qf 
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which and , being continuous and to translate it into the 

mathematical language “ is open in .”  

 

Figure 6.5. Natalie’s Proof. 

In another example (Figure 6.6), when Savanna was asked to show a given 

homomorphism was injective, she illustrated what an injective map was but did not 

translate it into mathematical language “if , then ” or 

“ .”  It is crucial for students to be equipped with the skill necessary for 

translating a concept into mathematical language, especially, definitions of concepts, 

which are the most representative mathematical language.  A definition of concept is 

not just an explanation or a description of a concept but is a structure, which has a 

potential to motivate students to advance their reasoning process in proof construction.  

 

Figure 6.6. Savanna’s Proof. 

Some researchers noted the importance of advancing a proving process with 

mathematical language for constructing a proof.  For example, Selden and Selden 

(1995) observed students’ difficulties with “unpacking” informal statements into formal 
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statements.  In this study, their terms “unpacking” and “formal statement” are included 

in “translating an object into mathematical language” and “mathematical language,” 

respectively. Instructors can emphasize to their students that mathematical language 

has a motive power for advancing a reasoning process.  In particular, instructors must 

train students to get into the habit of converting a mathematical concept into 

mathematical language whenever they see a mathematical concept in a statement.   

   Third, students’ lack of flexibility can affect their skill of rephrasing an object.  

For example, as it was seen in Eric’s proof (Figure 6.7), although he realized that 

and  for , he was not flexible enough to 

convert into .  If he had flexibility enough to manipulate it 

into  by moving the term to the left hand side, he could have 

further converted it into to reach .   

 

Figure 6.7. Eric’s Proof. 

In summary, students’ inability to rephrase an object may be directly influenced 

by their lack of background knowledge, and directly or indirectly by their lack of 

flexibility, carefulness and alertness.  The findings also indicates students’ difficulties 

with rephrasing an object may result from their lack of awareness of the importance of 

mathematical language as a means of advancing a reasoning process.   
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6.3.3 Combining Objects 

 Combining objects is the second primary operation for advancing a reasoning 

process.  Based on the findings, this section discusses two possible sources of students’ 

difficulties with  combining objects based on the results of the analysis of students’ 

proofs.  One is that students miss using a hypothesis in a given statement.  The other is 

that students’ difficulties with finding a connection between the two objects that are 

supposed to be combined.  The latter source is directly related to their lack of 

knowledge. 

Students have impasses because they fail to use the operation of combining 

objects.  For example, although Berkeley (Figure 6. 8) knew what she needed to show 

to prove the given statement, which was “ , she was not able to 

show why the equality held.  This was because she missed noting and using the given 

condition  “ ” to apply it to .  If she had come up 

with the idea of combining and the given condition 

“ ,” she might have rephrased with to 

obtain .  The source of her failure to combine the 

objects can be considered to be her lack of carefulness and alertness.  She needed to be 

careful enough to realize she was not allowed to rephrase with for 

free.  She also needed to be careful to ask herself how she should transform 

into . 
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Figure 6.8. Berkeley’s Proof. 

 Similarly, Edward’s proof (Figure 6.9) was not successful because he missed 

using the given hypothesis “ is a quotient map.”  He had 

for and .  He needed to apply the property of a quotient map, which is 

“For , if for , then ” to conclude that  

.  Instead, he made a stretch to reach the conclusion out of

with and .  A possible source that hindered him from 

combining objects was that he might not be careful and alert enough to notice he was 

not allowed to move from to for free.  There were some 

factors that might have helped him apply combining objects.   

 

Figure 6.9. Edward’s Proof. 

Finally, the analysis of students’ proofs implied that students’ difficulty with 

combining objects might have resulted from their difficulties with finding a connection 

between the objects to be combined.  Neither Frank (Figure 6.10.) nor Carlos (Figure 

6.11) was able to combine the given condition “  is cyclic” with an element
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properly.   They had difficulties with combining the objects because they had to 

think about the relationship between an element  and a coset and to 

recall the fact that “every element belongs to some coset with .”  

They needed to ask themselves what would be a connection between an element

and a coset .  In addition, they needed to be equipped with the knowledge that 

“every element belongs to some coset with .”   

 

Figure 6.10. Frank’s Proof. 

 

Figure 6.11. Carlos’s Proof. 

For another example, Carlos (Figure 6.12) was unable to combine the object 

and the given condition “the order of G is a prime number.”  The difficulty with 

combining these two objects was that he had to seek the relationship between 

and G , to realize that is a subgroup of G, to recall Lagrange’s theorem, and to 
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apply it to G and .  The operation of combining objects that was required in the 

problem was difficult because it involved the operation of creating a cue (C2) by 

recalling and applying prior knowledge.  Students had to be equipped with the 

knowledge related to the concepts of the order of a group, including “Lagrange’s 

theorem.”  Students’ stronger background knowledge should help them operate 

combining objects more successfully.   

 

Figure 6.12.  Carlos’s Proof. 

Thus, the analysis of students’ proofs indicated  the following  in order for 

students to practice the operation of combining objects successfully.  First, students 

need to be careful and alert to make sure if they have used all the given conditions.  

Second, students need to be equipped with broad and strong knowledge so that they can 

recognize a connection between two objects to be combined.   

 

 g
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6.3.4 Creating a Cue 

 Creating a cue is the third primary operation for advancing a reasoning process.  

This operation can be considered among the three operations (rephrasing an object, 

combining objects, and creating a cue) as the most difficult.  The first two operations 

can depend on the objects that are explicitly given while creating a cue sometimes 

requires students to literally “create” a new object through their prior knowledge, 

intuition, an innovative idea.  The following are the highlights of the findings of 

students’ difficulties with creating a cue: (a) Students’ lack of knowledge of the 

opening stage may hinder them from creating a cue by setting a variable; (b) Students’ 

lack of flexibility, carefulness, and alertness may affect their use of creating a cue; and 

(c) Students’ lack of background knowledge may hinder them from applying the 

operation of creating a cue.  

Creating a cue by setting a variable is a crucial operation especially in the 

opening stage.  Many of the students were not able to set a right starting variable in the 

opening stage because they did not note and translate the conclusion of the given 

statement into mathematical language and also because they tended to note a 

hypothesis and tried deriving a starting variable from the hypothesis.  Cade (Figure 

6.13) and  Alex (Figure 6.14) showed representative examples of students’ difficulties 

with creating a cue by setting a right starting variable in the opening stage.  Both of 

them were unable to derive and set a starting variable by noting the conclusion 

“ is cyclic,” which resulted in their producing incomplete proofs.  The analysis of 

students’ proofs indicated that the knowledge of the opening stage, especially the model 

Gx

G
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steps that should be taken in the opening stage, might help them overcome their 

difficulties.   

 

Figure 6.13.  Cade’s Proof. 

 

Figure 6.14.  Alex’s Proof. 

Eliot (Figure 6.15) gave an example showing that flexibility was required for 

students to have in order to practice creating a cue smoothly.  He was unable to set a 

function in order to show that there existed

such that .  If he had had flexibility to r rephrase with 

, that might have helped him consider .   
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Figure 6.15.  Eliot’s Proof. 

Both Frank (Figure 6.16) and Carlos (Figure 6.17) gave examples of students’ 

lack of background knowledge, which had a negative impact on their use of creating a 

cue.  They needed to think about a possible relationship between an element  and 

a coset G/Z(G) and recall and use the property of coset “every element belongs to 

some coset with .” However, none of them were able to recall and apply 

the property so that they were able to express in terms of an element in some 

coset G/Z(G).  Students are required to have broader knowledge around a concept so 

that they can create a cue by recalling and applying prior knowledge.  

 

Figure 6.16. Frank’s Proof. 
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Figure 6.17. Carlos’s Proof. 

 Kyle (Figure 6.18) also showed an example showing students’ background 

knowledge played a great role in advancing a reasoning process by creating a cue.  He 

was unable to show because he was unable to recall and use 

.   

 

Figure 6.18.  Kyle’s Proof. 

Creating a cue can be difficult because students are required to create a new 

object without depending on the given objects unlike the other two operations 

(rephrasing an object and combining objects).  For example, students are required to 

recall a proposition, a theorem, a lemma, or a property of concept, choose a right one 
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among several choices, and apply it properly.  They are also required to have flexibility 

to come up with a new object that helps them further advance a reasoning process.  In 

addition, they are required to be able to set a right variable necessary for advancing a 

reasoning process.  The analysis of proofs indicated that the more knowledge and the 

more flexibility students had, the more smoothly they could advance a reasoning 

process by creating a cue.         

6.3.5 Background Knowledge 

Moore (1994) found the seven major sources of the students’ cognitive 

difficulties with proof construction.  Three of them are directly related to students’ lack 

of knowledge.  The following are three of the seven major sources. 

 D1: The students did not know the definitions. 

 D3: The students’ concept images were inadequate. 

 D6: The students were unable to understand language and notation. 

Proofs involve some concepts.  Then, without the knowledge of concepts 

including their definitions, meanings, and notations, students cannot make their proving 

arguments successful.  D1, D3, and D6 are the issues of students’ lack of knowledge of 

concepts.  This study put the above sources together into one category “students’ lack 

of  background knowledge.”  Students’ knowledge of theorems, propositions, 

corollaries, properties, mathematical laws, and proving techniques were also 

categorized as background knowledge.  This section consists of two parts.  The first part 

discusses how students’ lack of background knowledge affected their reasoning 

activities.  The second part highlights the issues of student’s use of definitions in proof 

construction.   
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Students’ lack of background knowledge.  First, this section discusses how 

students’ lack of background knowledge can influence the operations of the reasoning 

activity (rephrasing an object, combining objects, and creating a cue).  The analysis of 

students’ proofs strongly indicated that their lack of background knowledge was a 

crucial factor that hindered them from successfully advancing a reasoning process, 

directly affecting their practices of these three operations.  The following presents the 

highlights of how students’ lack of background knowledge hindered them from 

applying the operations of the reasoning activity (a) rephrasing an object and (b) 

creating a cue and combining objects.    

(a) Billy and Savanna provided proofs that illustrated students’ lack of 

knowledge of definitions, properties, and relevant theorems can affect their skills of 

rephrasing an object.  Billy (Figure 6.18.) was asked to prove that a given map was a 

ring homomorphism. He tried showing though it was not a property 

of a ring homomorphism.  He was unable to prove the given statement because he did 

not know the property of a homomorphism correctly.   

 

Figure 6.19. Billy’s Proof. 

Savanna (Figure 6.19)  thought that she needed to show that it was one to one 

and onto, which was an incorrect assumption.  In addition, she did not know how to 

prove that a given map was one to one and onto.  Her lack of knowledge of a ring 

homomorhpihsm directly caused her to fail to rephrase “a ring homomorphism” with

 and  . 
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Figure 6.20. Savanna’s Proof. 

(b) Students’ lack of background knowledge  of a property of concept can 

directly and indirectly hinder them from creating a cue and combining objects, which 

results in producing an incomplete proof.  For example, Carlos (Figure 6.20) seemed to 

have not known the property of a coset “every element belongs to some coset

with .”  His lack of the knowledge of the property made it impossible to 

recall and apply it to combine an element and a coset .  

 

Figure 6.21.  Carlos’s Proof. 

For another example, Caleb (Figure 6.21) seemed not to have known the 

relationship between and G , namely, the fact that was a subgroup of G . 

His lack of knowledge of this fact directly hindered him from creating a cue by 

recalling the fact and indirectly hindered him from combining the object and the 

given condition “the order of G is a prime number,” which might have led him to derive 

= 1 or p.  The analysis indicated students’ stronger background knowledge might 

help them operate creating a cue and combining objects more successfully.   
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Figure 6.22. Caleb’s Proof. 

Star and Rittle-Johnson (2008) introduced the concept of flexible knowledge as 

a key factor for problem solving.  They observed two key features of flexibility for 

problem solving: (a) the knowledge of what strategies were available for a given 

problem; (b) the knowledge of which of them were more effective.  In proof 

construction , students’ knowledge of properties of concept or theorems and 

propositions related to a concept  can be considered to be the first type of knowledge (a).  

Students’ ability to decide which property, theorem, or proposition to adopt from 

among several choices can be considered to be the second type of knowledge (b).  As 

Star and Rittle-Johnson indicated, students’ background knowledge and their flexibility 

are intertwined, which directly or indirectly influence their ability to apply the 

operations of rephrasing an object, combining objects, and creating a cue.  The more 

knowledge about concepts and the more problem solving experiences students have, the 

greater the degree of their flexibility for problem solving becomes.     

Definitions of concepts.  The issues of students’ use of definitions are crucial in 

proof construction because definitions are fundamental elements in the background 

knowledge for proof construction.  This subsection consists of two parts:  (a) The first 
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part discusses how students’ incomplete understanding of definitions can affect their 

proof construction.  (b) The second part discusses the roles that definitions play in 

constructing a proof.  

Students’ incomplete understanding of definitions.  Moore (1994) listed 

students’ inadequate concept images as one of the seven major sources of students’ 

difficulties with proving.  This study also observed cases that supported his 

observations.  Elias (Figure 6.22) provided the following as the definition of 

compactness: “a space is compact if there exists a finite subcovering.”  He missed the 

part “for any open cover of the space” in his statement.  His concept image did not have 

the structure in which a finite open subcovering could be derived from an arbitrary open 

cover for the space.”   

 

Figure 6.23. Elias’s Statement. 

His incomplete knowledge of compactness directly affected his proof (Figure 

6.23).  When he was asked to show that a given space was compact, he never set an 

open cover for the given space in his argument, which made it impossible for him to 

make his proving argument successful.   

 

Figure 6.24.  Elias’s Proof. 
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The definition of a mathematical concept is not just a static description or 

explanation of a technical word, but it is a logical structure that requires a rigorous 

understanding of the concept through abstract thinking.  A definition consists of some 

meaningful and indispensable units, each of which must be carefully understood and 

dealt with.  Students’ incomplete understanding of even small part of the units can 

produce a gap  between their “definition” derived from their mental picture of the 

concept (concept image) and  the actual definition of the concept (concept definition), 

which may become a source of an incomplete proving argument.  In the above example, 

Elias missed the small portion of the definition of compactness “for any open cover of 

K,” which resulted in his unsuccessful proving argument.  Thus, students’ incomplete 

concept images about definitions can directly affect their proofs.   

Role of definitions in proof construction.  Definitions of concept are 

considered to be most representative mathematical language in this study, which have a 

power to enable students to develop and advance a reasoning process.  Vinner (1991) 

claimed that one of the major roles of definitions was proving theorems.  Knapp (2006) 

proposed definitions played a role of giving a structure to proof and warranted to 

logical implications.  The analysis of students’ proofs clarified two main roles 

definitions of concepts played  in proof construction, especially, in the opening stages: 

making the direction and goal of the proof clear to them; and helping students set a 

starting variable through the ignition phrases.  In particular, definitions of concepts 

contained in the conclusion of the given statement can provide students with a key 

element “a variable” on which to convey mathematical thoughts, and keep and guide 

them on the right track to the goal.  Therefore, students’ lack of knowledge of a 
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definition or of ability of rephrasing a concept with its definition may spoil their 

proving arguments.  For example, Frank (Figure 6.24) was not successful in translating 

the conclusion of the given statement “(G is) abelian” into “for any , ” 

by applying the definition of abelian, which might have caused him to lose the direction 

to reach the goal of the proof.   

 

Figure 6.25. Frank’s Proof. 

The definition of a concept can provide students with a fundamental element “a 

variable,” which is indispensable for advancing a reasoning process through its ignition 

phrase.  The ignition phrase in the definition of a concept, which is usually found in the 

conclusion of the given statement, provides students with a great sign for setting a right 

variable.  Quincy (Example 5 ) was unable to make his proving argument successful 

because he was unable to derive a right starting variable “an open cover U of K”from 

the ignition phrase contained in the conclusion of the given statement “K is compact.” 

 

Figure 6.26. Quincy’s Proof. 

Gyx , yxxy 
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Edwards and Ward (2008) found the characteristic of definitions in the 

meanings that were explicitly set up.  This characteristic of definitions makes it difficult 

for students to apply a definition of concept in proof construction.  Students are 

required to set and use a variable in a proving argument so that they can make good use 

of a definition of concept.  Students’ knowledge of the role of an ignition phrase 

providing a clue for setting a variable may help them overcome their difficulty with 

starting a proving argument.  

Students’ knowledge of mathematical concepts is crucial.  Especially, their 

complete knowledge of the definitions of concepts is indispensable in proof 

construction.  A mathematical concept becomes more helpful and powerful when it is 

translated into mathematical language, namely when it is rephrased with its definition.  

The definition of a concept gives students a motive power to advance a reasoning 

process, while making the direction of an argument clear and providing necessary 

variables.  In particular, students’ knowledge of those roles that definitions play in the 

opening stage may help them  start their proof construction and advance their reasoning 

processes.     

6.3.6 Mental Attitudes 

Rigelman (2007) described key characteristics of effective problem solvers, 

which he called flexible and fluent thinkers, as follows: confidence in use of knowledge 

and processes; willingness to take on a challenge; perseverance in the quest to make 

sense of a situation and to solve a problem; and reflective thinking.  The aspects of the 

mental attitudes and affect and beliefs may include these characteristics.  For example, 

students’ confidence can be categorized into the aspect of emotions and beliefs.   
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Students’ willingness and perseverance may correspond to tenacity in the mental 

attitudes and also can  be related to affect and beliefs.  Students’ reflective thinking may 

be related to carefulness and alertness in the mental attitudes.   

The model of the structure of proof construction included four aspects for proof 

construction: the reasoning activity, the background knowledge, the mental attitudes, 

and affect and beliefs.  These aspects are not independent of one another and are 

intricately intertwined, influencing one another.  The model was designed to simplify a 

complex cognitive activity of proof construction.  The analysis of students’ proofs also 

indicated their difficulties with proof construction may be caused by multiple factors in 

the four aspects.   

For example, Berkeley’s proof (Figure 6.26) showed that students’ lack of 

carefulness and alertness might result in their failure to combine objects.  Berkeley 

should have been careful in advancing her reasoning process when she provided 

=  =  .  Her lack of 

carefulness seemed to result in her failure to combine the object and 

the given condition “ .”  

 

Figure 6.27. Berkeley’s Proof. 

For another example, Ryan (Figure 6.27) provided an example showing that 

students’ lack of flexibility may result in producing an unsuccessful proof.  The direct 

problem with his proof was that he did not use the given condition “K is a convergent 

sequence.”  Instead, he was trying to prove the given statement by applying the concept 
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of connectedness, which was irrelevant and not helpful for solving the given problem.  

His lack of  flexibility seems to have hindered him from realizing that what he was 

doing was not working and that he should look for information still available that could 

be used for advancing a reasoning process.   

 

Figure 6.28. Ryan’s Proof. 

Hardin (2002) introduced self-monitoring as one of the key skills that makes 

students’ problem-solving successful.  As she pointed out, problem-solving experts are 

more aware when they make errors and check their solutions.  In the model of proof 

construction, carefulness and alertness corresponds to self-monitoring.  Students’ 

awareness of the necessity of carefulness and alertness together with flexibility may 

help them advance their reasoning process more successfully.   

6.3.7 Checking and Exploring, and Affect and Beliefs 

Lastly, the analysis of students’ proofs encountered students’ difficulties that 

fall into the following two categories.  One was that students used a property that did 

not work.  The properties they used were not necessarily wrong, but those properties 

did not work for a given problem.  Student’s problems were not that they tried a 

property of a concept that turned out not to work, but that they did not realize the 

property did not help them advance a reasoning process and did not try a different 
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method.  They could have modified their ideas through exploring and checking.  The 

source of their difficulties can also be considered to be their lack of flexibility and 

carefulness.  In the other case, students used a logic that did not make sense.  This is 

rather a matter of language ability rather than mathematical ability.  This type of 

students’ difficulty was categorized as affect and beliefs.   

6.4 Usefulness of the Model of the Structure of Proof Construction 

 This section answers the last research question: “How useful is the model of the 

structure of proof construction?”  This section consists of three parts: (1) the usefulness 

in creating the framework for analyzing students’ proofs; (2) the usefulness of the 

framework for examining students’ difficulties; (3) a possible contribution to theoretical 

frameworks for proof construction   

The model of the structure of proof construction directly contributed to the 

creation of the framework for analyzing students’ proofs (Table 3.6).  Since the model 

viewed proof construction from the three aspects (the reasoning activity,  the 

background knowledge, the mental attitudes), it was natural to consider these aspects to 

be the categories in which students’ difficulties occurred.  The components of those 

three aspects became the factors that decided types of students’ difficulties.  The model 

of the structure of proof construction led to the creation of two types of analysis 

frameworks.  One is the comprehensive error list (Table 3.5) that can cover a variety of 

difficulties students encounter (Type B).  The other framework is created for each proof 

(Type A).  It shows every step for a model proof and the operation used to generate the 

step.  The model of the structure of proof construction also provided dual ways to 

examine students’ difficulties.  One was to examine students’ difficulties in terms of 
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each aspect (reasoning activity, background knowledge, and mental attitudes) 

separately and independently.  The model also suggested another perspective for 

examining students’ difficulties.  It was to define students’ difficulties to be those with 

the reasoning activity and to consider the other aspects (background knowledge and 

mental attitudes) to be the categories for the sources of their difficulties.  This 

perspective enabled me to explain students’ difficulties with the reasoning activities in 

terms of the other two aspects (background knowledge and mental attitudes).  Thus, the 

model of the structure of proof construction directly contributed to the creation of an 

analysis framework (Table 3.6) and provided the perspectives for examining students’ 

difficulties.   

Next, I will discuss the usefulness of the analysis framework in examining 

students’ proofs.  The analysis framework Type A (See Table 3.4 as an example) was 

useful in detecting where students had difficulties in their proofs and what operations 

they failed to use.  The analysis framework Type B (Table 3.5) was useful in deciding 

the source of each mistake, impasse, and difficulty students made.  The analysis 

framework Type C (Table 3.6) served as the list of the skills and abilities necessary for 

proof construction.  These frameworks enabled me to examine students’ difficulties in a 

clear and organized manner. 

This section ends with a possible contribution of the model to theoretical 

frameworks for proof construction.  The model of the structure of proof construction 

simplified and organized complex nature of logical deduction involved in proof 

construction.  The model also indicated that rephrasing an object and combining 

objects were the operations for syntactic approach and that creating a cue and checking 
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and exploring were the operations for semantic approach.  The model may contribute to 

the development of an effective method to help students practice syntactic and semantic 

approaches.   

Brown, Bransford, Ferrara, and Campione (1983) claimed that metacognitive 

skills are crucial factors for successful problem solving.  Papaleontiou-Louca (2003) 

suggested that teachers should demonstrate metacognition for modeling task completion 

so that their students can learn effectively.  She claimed “modeling offers the 

vocabulary that students need for thinking and talking about their own thinking (p. 23).” 

The model of the structure of proof construction may serve as metacognitive and 

methodological  knowledge for helping students advance a reasoning process and 

overcome their impasses and difficulties. 

Quesada, Kintsch, and Gomez (2005) claimed that the theories in the area of 

complex problem-solving had not been established due to the lack of good definitions 

and classifications of the tasks.  This study considers proof construction as a complex 

problem-solving task that requires complex cognitive actions.  The model (Figure 3.1) 

and the framework (Table 3.2) attempted to capture and simplify the whole structure of 

proof construction by exploring, defining, and organizing the aspects and the operations 

involved in advancing a reasoning process in a proving activity.  The model (Figure 

3.1) and the framework (Table 3.2) may contribute to developing a theoretical 

framework for proof construction.   

The model and the framework may account for various students’ difficulties 

with proving.  Not only that, but also those various examples of students’ difficulties 

seem to verify the aspects, the factors, the patterns, and the features involved in proof 
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construction.  Kieran (1998) claimed that there was no theoretical work without 

empirical research and vice versa, stating  “there is no escaping the fact that, in 

mathematics education, theory building and empirical studies form the vicious circle of 

research; each requires the other” (p. 223).  She implied that research results may refine 

and develop theoretical models and that research results with theoretical models may 

explain the phenomena better.  I hypothesize that the structure of proof construction 

(Table 3.2 and Figure 3.1) can contribute not only to the body of knowledge of proof 

construction but also to the body of knowledge of any mathematical problem-solving. 

6.5  Pedagogical Suggestions 

 This section answers the third research question of this study:  

“What pedagogical suggestions can be drawn to help students with proof construction”   

The answer to this research question consists of  two parts.  The first part 

presents suggestions for students.  The second part presents suggestions for instructors.   

6.5.1 Suggestions for students 

There are mainly two sources from which this study derives suggestions from: 

(a) the model of the structure of proof construction (Table 3.1, Table 3.2) (b) the 

findings obtained through the analysis of students’ proofs. 

Suggestions based on the model of the structure of proof construction.  The 

model of the structure of proof construction (Figure 3.1) was designed to introduce a 

comprehensive view of proof construction.  It suggests that proof construction can be 

viewed from the following four aspects: the background knowledge; the reasoning 

activity; the mental attitudes; and affect and beliefs.   
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First, the model suggests that students should be equipped with the knowledge 

necessary and sufficient for solving a given proof problem.  The knowledge includes 

definitions of concepts, the meaning of the definitions, properties of concepts, notations 

of concepts, theorems, propositions, mathematical laws, and proving techniques.  

Without complete knowledge, it is impossible for students to build a complete proving 

argument.  Therefore, it is recommended that students acquire and develop a strong 

system of knowledge around concepts.   

Second, the model of the structure of proof construction gives some guides on 

how they can advance a reasoning process.  There are four types of operations they can 

apply: rephrasing an object; combining objects; creating a cue; and checking and 

exploring.  In addition, there is an order of the operations to be tried.  Students first 

should try the operation of rephrasing an object. If it does not work, they can try the 

operation of combining objects, looking for a given condition.  If the operation of 

combining objects does not work, they can try the operation of creating a cue.  If the 

operation of creating a cue does not work, they can try the operation of checking and 

exploring.  The knowledge of these operations can  help students especially when they 

“get stuck” and cannot advance a reasoning process.   

The model of the structure of proof construction also suggests that students 

should be equipped with some psychological traits such as tenacity, flexibility, and 

carefulness and alertness as well as the knowledge of the operations for advancing a 

reasoning process and vast strong knowledge centered at mathematical key concepts.  

The model implies the following: (i) Proof construction requires students to have 

tenacity and persistence to keep on thinking and not to easily give up thinking; (ii) 
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Proof construction also requires students to be equipped with flexibility to change their 

methods, to give up an idea that is not working, and to try a new method; (iii) Proof 

construction requires students to be careful and alert in dealing with an object 

accurately, correctly, and precisely.   

Suggestions based on the findings of the analysis of students’ proofs.  The 

analysis of students’ proofs provided various results that would contribute to some 

specific and practical pedagogical suggestions.  The following are highlighted 

pedagogical suggestions derived from the analysis of students’ proofs. 

Opening stage.  Students tended to note a hypothesis of the given statement 

when they started their proving arguments.  They seemed to be tempted to derive a 

starting variable from the hypothesis instead of the conclusion of the given statement.  

When students try to set a starting variable, they should first note the conclusion of the 

given statement, translate it into mathematical language often by applying the definition 

of a concept involved in the conclusion, and try to derive and set a starting variable 

often by noting an ignition phrase.   

Combining objects.  Students had a difficulty with combining objects often 

because they were unable to find a connection between those objects.  When students 

apply the operation of combining objects, they should seek a relationship between the 

key objects contained in the statements to be combined.  They are often required to 

recall and apply prior knowledge that is relevant to the objects.  A broader knowledge 

around the concept involved in those objects would be necessary.  Students should be 

encouraged to widen their knowledge of concepts correctly, including their properties, 

related theorems, propositions, mathematical laws, and proving techniques.   



251 
 

Flexibility.  Students sometimes used a property of a concept or a theorem that 

did not help, believing it was working.  They should have flexibility to change their 

ideas to try a different theorem or a different property of the concept when they realized 

the first attempt does not work.  They also need to be careful and alert about what they 

are doing, asking themselves if their method was working.   

Given conditions.  The analysis saw multiple cases in which students failed to 

combine objects because they did not note and use all the given conditions.  They 

should be careful and alert in making sure to use all the given conditions to advance a 

reasoning process.   

Knowledge.  The analysis of students’ proofs found out that students’ lack of 

knowledge of a concept, including its definition, property, notation, and a related 

theorem, is fatal to proof construction, directly and indirectly affecting their use of the 

three operations for advancing a reasoning process (rephrasing an object, combining 

objects, and creating a cue).  For example, students’ lack of or their incomplete 

knowledge of a concept affected and ruined their reasoning process in multiple ways:  

creating a wrong notation that makes their arguments no sense; causing students to fail 

to rephrase an object correctly; making it difficult for students to combine two objects 

by missing the connection between them;  hindering students from recalling prior 

knowledge necessary to solve the given problem; and making students’ tenacity, 

flexibility, carefulness, and alertness weaker. It seems to be a matter of course to say 

that students should be encouraged to deepen and widen their knowledge of the facts 

around mathematical concepts, including their definitions, their meanings, their 

properties, their notations, and a related theorem.   However, the findings of this study 
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strongly suggests that instructors cannot put too much emphasis on the importance of 

students’ acquisition and construction of their knowledge around basic concepts.  The 

analysis of students’ proofs also found multiple cases in which students made their 

proving argument unsuccessful due to their lack of flexibility, carelessness and 

alertness.  These factors directly and indirectly affect students’ reasoning activity 

(rephrasing an object, combining objects, and creating a cue).  Students should be 

encouraged to keep in mind tenacity,  flexibility, carefulness, and alertness are also 

important factors for proof construction.    

Hardin (2002) discussed two types of knowledge: declarative knowledge and 

procedural knowledge.  She defined declarative knowledge as knowing of facts, 

theories, events, and objects, and procedural knowledge as knowing how to do 

something, which, for example, includes cognitive skills and strategies.   The 

background knowledge (See Figure 3.1), apart from the knowledge of proving 

techniques, helps students construct a proving argument as declarative knowledge.  On 

one hand, not only proving techniques but also the knowledge of the structure of proof 

construction itself (Table 3.1, Table 3.2, and Figure 3.1) might help them construct 

more successful proving arguments as the procedural knowledge. 

Although the aspect of affect and beliefs was not the main focus of this study, it 

is a crucial aspect for successful proof construction.  Bandura (1997) asserted the 

importance of students’ building self-efficacy for a successful learner. Pintrich (1999) 

and Zimmerman (2000) claimed that students’ self-efficacy may influence their 

attitudes and performances in mathematics.  Bandura (1997) suggested that students 

should have a mastery of experience to build their self-efficacy.  Students need to be 
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encouraged to build their mathematical knowledge through practicing proof 

construction.  The suggestions for students can be summarized in the following way. 

Opening Stage. 

 Translate the conclusion into mathematical language. 

o Make sure of the goal of the proof. 

o Find an ignition phrase if there is any.  

 Set a starting variable through an ignition phrase. 

Body Construction Stage. 

 First, try the operation of rephrasing an object.   

o Apply definitions or theorems. 

o Change the expression through interpretation. 

o Manipulate the object algebraically. 

 If it does not work, try the operation of combining objects. 

o Make sure to use all the given conditions or hypotheses. 

o Combine objects by way of a connection (a common factor). 

 If it does not work, try the operation of creating a cue.  

o Set a new variable. 

o Recall prior knowledge, including a theorem, a proposition, or a 

property. 

o Set some cases. 

o Make a claim. 

o Consider an object. 
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 Translate an object containing mathematical concept into mathematical 

language. 

 Be flexible. 

o Review what has been done. 

o Give up an idea that does not work and try a new idea. 

o Try a another property of a concept. 

o Use different operation for the reasoning activity. 

 Be careful and alert in dealing with an object. 

o Treat each object carefully. 

o Make sure if all the given conditions are used. 

 Be equipped with the knowledge of the basics of a concept. 

o Definitions 

o Notations 

o Properties 

o Relevant theorems 

6.5.2 Suggestions for instructors 

This section consists of two parts.  The first part discusses some suggestions on 

teaching proofs while referring to the relationship between this study and other studies.  

The second part provides suggestions that were directly derived from the findings of 

this study. 

Harel and Sowder (1998) placed analytical proof scheme as the highest level of 

proof scheme among the three (external, empirical, and analytical proof schemes).  

However, researchers have observed students’ difficulties with practicing analytical 
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proof scheme ( Ruthven & Coe, 1994; Selden & Selden, 1995).  Harel (2000) suggested 

that the knowledge of specific actions to be taken for solving problems might enhance 

students’ proof schemes.  To meet the demands, this study provided the model steps in 

the opening stage and the method for advance a reasoning process with the operations 

in the reasoning activity.  Instructors can use the knowledge of those to help their 

students develop their analytical proof schemes.                                                                                                                                                                                                                                                       

Also, Ball, Hoyles, Jahnke, and Movshovitz-Hadar (2002) suggested that 

instructors should consider the gradual processes and complexities involved in proving 

as a major factor for teaching proofs.  The model of the structure of proof construction 

clarified the complex nature of proof construction in terms of cognitive processes.  The 

model organized and simplified step-by-step thought processes necessary for 

constructing a complete proof as well as multi-dimensional aspects of proof 

construction.   

Next, this section provides some suggestions for teaching that were derived 

from the results of the analysis of students’ proofs.  There are mainly two sources from 

which this study derives suggestions for instructors: (1) the findings from the analysis 

of students’ proofs; (2) the model of the structure of proof construction.   

Suggestions based on the findings of the analysis.  There are three suggestions 

for instructors, which were derived from the analysis of students’ proofs.  First, 

instructors cannot emphasize too much to their students the importance of their building 

and widening the knowledge solidly and accurately.  Students forget, mix, and miss 

information even when it is elementary and basic. For example, Savanna (Example 27) 

did not know what a homomorphism meant.  She also did not know how to show that a 
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function was one to one and onto.  For another example, Carlos (Example 26) and 

Anthony (Example 31) did not understand the meaning and the notation of coset.  As 

Tall and Vinner (1981) indicated, instructors need to help their students decrease the 

gap between students’ concept images and the concept definitions.  Instructors may 

want to monitor their students’ knowledge and understanding levels, especially 

definitions, properties, and notations, through homework assignments, quizzes, and 

exams.  They may also want to review the basics of concepts which students have 

learned before according to their learning needs.  Repetition should help students 

narrow the gaps between their concept images and the concept definition.  Second, 

instructors should help their students organize their knowledge of concepts by 

reviewing all the properties of a concept at the end of the lesson for learning the 

concept.  A concept can  have  multiple properties.  Students may be confused with 

which property to use and what property is available for a specific type of problem.  

Students may choose a property that would not work for advancing a reasoning process.  

For example, Quincy (Example 5) and Elias (Example 27) applied a property of 

Hausdorff space, which was neither necessary nor helpful for solving a given proof 

problem.  It would be even effective if instructors tell in what situation a property of 

concept would work and in what situation another property of concept would work.  

Third, instructors can introduce or review proving techniques, including the one for the 

proof of showing A = B.  The results found multiple cases in which students did not 

know how to prove the type of proof showing A = B.  Instructors can suggest to their 

students that they should work on either A or B until they get B or A respectively or  

that they should work on both A and B separately until both become C.   
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Suggestions based on the model of the structure of proof construction.  The 

model of the structure of proof construction (Figure 3.1 and Table 3.2) may help 

instructors to guide their students.  Selden and Selden (2012) introduced “a proof 

framework” as an aiding tool of writing a proof.  In their “proof framework,” students 

start with the hypotheses, leave a blank space, write the conclusion at the end, and fill in 

the blank for the remaining work.  However, their methods may not help students write 

a proof from the top down.  The model of the structure of proof construction works to 

help students write a proof from the top down.  Through the model of the structure of 

proof construction (Tables 3.1 and 3.2, and Figure 3.1), instructors can help their 

students know what they need to be equipped with for proof construction and how to 

get started on a proof and how to advance a reasoning process in proof construction.   

The model of the structure of proof construction provides an algorithm for 

advancing a reasoning process for each type of proof.  This section introduces the 

algorithm and illustrates how the algorithm works.   

6.5.3 Algorithm for Proof Construction 

A: Opening Stage 

A0: Read the problem 

 If necessary, translate the whole problem into mathematical language. (A0.1) 

A1: Decide a major strategy. 

 Decide which proving strategy to use, a direct proof, by contrapositive, by 

contradiction, by counter example, or by mathematical induction.  (A1.1) 

 For a proof by contrapositive or contradiction, rephrase the problem.  (A1.2) 

 For Type III, skip to B0. (A1.3)  
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A2: Note the conclusion. 

 Do not be tempted to note a hypothesis. (A2.1) 

A3: Translate the conclusion into mathematical language. 

 Rephrase the whole conclusion through R1 (See Table 1). (A3.1) 

 Rephrase the conclusion more than once, if necessary. (A3.2) 

A4: Find an ignition phrase in the mathematical language for the conclusion. 

A5: Decide the type of the proof. 

 If A4 is a primary ignition phrase, the proof belongs to Type I. (A5.1) 

 If there is no ignition phrase, the proof belongs to Type II or Type III. (A5.2)   

 If there is no ignition phrase and the problem asks to prove A = B, it belongs to 

Type III. (A5.3) 

A6: Find a starting variable. 

 For Type I, derive a starting variable from the ignition phrase. (A6.1) 

 For Type II, note a hypothesis, translate it into mathematical language, and find 

an ignition phrase. (A6.2) 

 For Type III, start the body construction stage by trying one of the followings: 

Work on either A or B to change it into B or A, work on both to obtain A = C = 

B, or show BA  and AB  .  This can work for the proofs in Type I (b).  

(A6.3) 

TA: Supporting tips for the opening stage 

TA1 (Type I): A starting variable should be first found in a primary ignition phrase in 

the mathematical language for the conclusion.  However, if a variable in the primary 

ignition phrase is a trivial variable, it may not be a starting variable.  A variable from a 
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second primary ignition phrase in the mathematical language for the conclusion cannot 

be a starting variable.  If there is not ignition phrase in the conclusion, derive a starting 

variable from a hypothesis. 

TA2: (Type II) A starting variable can be derived from both a primary and a second 

primary ignition phrases in the mathematical language for a hypothesis.   

TA3: (Type I.b and Type III) Try one of the following methods. (i) Work on either A or 

B until you change it into B or A, (ii) Work on both A and B until you get A = C = B, 

or (iii) Show both A ⊂ B and B ⊂ A.  For A ≅ B, (iv) find an isomorphism between A 

and B.   

B: Body construction stage 

B0: State the hypothesis (hypotheses). 

B1: Set a starting variable.  

 For Type I, set a starting variable from the ignition phrase obtained in A4.1.  

 (B1.1) 

 For Type II, translate the hypothesis into mathematical language.  (B1.2) 

 For Type III, skip this step and start to work on part of the conclusion.  (B1.3) 

B2: Make sure of the new goal of the proof obtained in A3.  

B3: Try rephrasing an object, recalling the three sub-types (See Table 3). 

 Whenever seeing a sentence containing a mathematical concept, translate it into  

mathematical language, and make it as fine-grained as possible. (B3.1) 

B4: If it does not work, try combining objects. 

 Find a hypothesis and use it (B4.1). 
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 If there is more than one hypothesis, choose the one that has a connection with 

the object you would like to combine with.  (B4.2) 

 When the mathematical language for a hypothesis contains a controlling 

variable, use this operation (combining objects) to specify the controlling 

variable. 

B5: If it does not work, try creating a cue, recalling the five sub-types (See Table 1). 

B6: If it does not work, try exploring and checking. 

T: Supporting Tips.   

TB1: Whenever encountering a statement containing a mathematical concept, translate 

it into mathematical language and make it as fine-grained as possible.  

TB2: For Type II, when the mathematical language for a conclusion contains a trivial 

variable or when the mathematical language for a hypothesis contains a controlling 

variable, confine the variable to some specific object at a certain step.   

TB3: For type I(b) and Type III, try one of the followings. (i) work on either A or B 

until you change it into B or A, (ii) work on both A and B until you get A = C = B, or 

(iii) show both A ⊂ B and B ⊂ A.  For A ≅ B, (iv) find an isomorphism between A and 

B.  

The following examples show how the above algorithm helps students to 

construct a proof.  To make the algorithm more understandable, I will explain in the 

form of a dialogue between an instructor and students.  In the dialogue, I assume that 

the students are fully equipped with not only the knowledge of the above algorithm but 

also the knowledge necessary for solving the given problems.  
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6.5.4 Examples of the Use of Algorithm 

Example 1 (Type I).  “Suppose G/Z(G) is cyclic, where Z(G) is the center of G.  

Prove G is abelian. What should we do first?”  “Decide the major proving strategy 

(A1).”  “What strategy would you use?”  “A direct proof.”  “What is the next step?”  

“Note the conclusion (A2), translate it into mathematical language (A3), and find an 

ignition phrase (A4).”  “What is the conclusion?”  “G is abelian.”  “What is the 

mathematical language?”  “For any Gba , , baab  .” “What is the ignition phrase?”  

“For any Gba , .”  “What is the type of this proof?”  “Type I(b).”  “How did you 

figure that out?”  “The mathematical language for the conclusion contains a primary 

ignition phrase ‘for any Gba , ’ and the goal of the proof is to show A= B, where A = 

ab and B = ba.”  “Let’s begin the body construction stage.  After stating the hypothesis 

(B0) ‘Suppose )(/ GZG is cyclic, where Z(G) is the center of G,’ what would you do?”  

“Set a starting variable from the ignition phrase ‘for any Gba , ’ (B1.2).”  “How?”  

“(1) Let Gba , .”  “Then?”  “Work on the left hand side (2) ‘ ab ’until it changes into 

the right hand side ‘ ba ’ so that we can show ab = ba.”  “Then?”  “First, try rephrasing 

an object (B2)”  “Does that (B2) work for ‘ ab ’ or ‘a’ and ‘b’?”  “No.”  “What should 

we do?”  “Try B3 (combining objects).”  “How?”  “Note the hypothesis and use it.”  

“What is the hypothesis?”  “(3) G/Z(G) is cyclic.”  “Are we ready to combine the 

objects (2) ‘ ab ’ and (3) ‘G/Z(G) is cyclic’?”  “No.”  “Why not?”  “Because (3) ‘G/Z(G) 

is cyclic’ contains a mathematical concept ‘cyclic.’ “So?”  “Translate the object (3) 

‘G/Z(G) is cyclic’ into mathematical language. (T1)”  “What is the mathematical 

language?”  “(4) ‘A coset of Z(G) is generated by  xZ for some Gx .’”  “Now, are 

we ready to combine the objects (2) ‘ ab ’ (or ‘a’ and ‘b’) and (4) ‘a coset of Z(G) is 
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generated by  xZ ’?”  “Not really.”  “What can we do?”  “Since B3 (combining 

objects) does not work, try B4 (creating a cue).”  “There are five types of creating a 

cue (Table 2).  Which would you try?”  “C2 (recalling and applying prior knowledge).”  

“What relevant fact can we use to combine the objects (2) ‘ ab ’ and (4) ‘a coset of Z(G) 

is generated by  xZ for some Gx ’?”  “ (5) ‘Every element in a group belongs to 

some coset.’”  “Now, can we combine these three objects (2) ‘ ab ’, (4) ‘a coset of Z(G) 

is generated by  xZ ’, and (5) ‘every element belongs to some coset’?”  “Yes, we can 

combine them to obtain (5) Zxa m and Zxb n for some Gx  and for some 

Znm, .”  “Then?”  “Since we have finished applying B4 (creating a cue), we can 

resume with B2 (rephrasing an object).”  “Can we further rephrase the object (5) 

‘ Zxa m and Zxb n ’?”  “Yes. 1zxa m and 2zxb n for some Zzz 21, .”  “So?”  

“Using the commutative property of elements of the center Z of G, we obtain

bazxzxzzxzzxzxzxab mnmnnmnm  

12122121 .” 

Example 2 (Type I).   “Suppose that q: X → Y is a quotient map and that f : Y → 

Z is a map such that fq: X→Z is continuous.  Prove f : Y → Z is continuous.  Let’s start 

the opening stage.  What proving strategy would you use? (A1)”  “A direct proof.”  

“What is the next step?”  “Note the conclusion. (A2).”  “What is the conclusion?”  

“ ZYf : is continuous.”  “Next?”  “Translate it into mathematical language (A3).”  

“What is the mathematical language?”  “For any open set W in Z , ))(( 1 Wf 
is open in 

Y.”  “Then?”  “Find an ignition phrase. (A4)”  “What is the ignition phrase? (A3)”  

“‘For any open set W in Z .’”  “What is the starting variable? (A4)”  “An open set W in

Z .”  “Let’s start the body construction stage.  After writing the hypothesis, what would 
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you do?”  “Set a starting variable (B1).”  “So?”  “Start with ‘Let W be an open set in

Z ’”  “Then?”  “Make sure of the new goal.”  “What is that?”  “To show ))(( 1 Wf 
is 

open in Y.” “Next?”  “Start to apply the four types of operations while keeping the 

supporting Tips (T1 – T2) in mind.”  “We have gotten the object (1) an open set W in Z .  

What would you do?”  “Apply rephrasing an object to the objet (1) an open set W in Z. 

(B3)”  “ Does that work?”  “No.”  “Then, what would you do?”  “Try the second 

operation ‘combining objects.’”  “How would you do that?”  “Find a hypothesis and use 

it. (B4.1)”  “What is the hypothesis?”  “There are two.  (i) YXq : is a quotient map 

and (ii) ZXqf : is continuous.”  “Which hypothesis should we use?”  “Choose 

the one which has a connection with the object (1) ‘the open set W in Z.’ (B4.2)”  

Which hypothesis has a connection with the object (1) an open set W in Z?”  “The 

second hypothesis (ii) ZXqf : is continuous.”  “Why?”  “Because both involve 

the space Z.”  “Now are we ready to combine (1) ‘W is open in Z’ and (ii) 

‘ ZXqf : is continuous’?”  “No.”  “Why not?”  “Because the object (ii) 

‘ ZXqf : is continuous’ contains a mathematical concept ‘continuous.’”  “So?”  

“By T1, translate the object (ii) into mathematical language.”  “What is the 

mathematical language?”  “ (2) For any open set V in Z , )()( 1 Vqf   is open in X.”  

“What do you observe in the object?”  “The object (2) comes from the hypothesis of the 

given statement and the mathematical language for the statement contains a primary 

ignition phrase ‘for any open set in Z.’ So, By T2, we may want to specify the open set 

V in Z later.”  “Now, are we ready to combine the objects (1) W is open in Z and (2) for 

any open set V in Z , )()( 1 Vqf   is open in X?”  “Yes, we can confine V by replacing 
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V with W to obtain (3) )()( 1 Wqf   is open in X.”  “Then, what should we do?”  “Try 

rephrasing an object on the object (3) )()( 1 Wqf   is open in X (B3).”  “Does that 

work?” “Yes, the object (3) ‘ )()( 1 Wqf   is open in X’ can be rephrased with the 

object (4) ‘ ))(( 11 Wfq 
 is open in X.’”  “Can we further rephrase it?”  “No”  “Then?”  

“Try combining objects. (B4)”  “How?”  “Find a hypothesis and use it (B4.1).”  “Do we 

have one?”  “Yes, we have not used the first hypothesis (i) ‘ YXq : is a quotient 

map’ yet.”  “Can we combine the objects (4) ‘ ))(( 11 Wfq 
 is open in X’ and the 

hypothesis (i) ‘ YXq : is a quotient map’?”  “No.”  “Why not?”  “Because (i) 

‘ YXq : is a quotient map’ contains a mathematical concept ‘a quotient map.’  “So?”  

“Translate the hypothesis (i) into mathematical language. (T1)”  “What is the 

mathematical language?”  “ (5) ‘For any set H in Y that satisfies )(1 Hq
is open in Z for 

a quotient map ZYq : , H is open in Y.’”  “Now, are we ready to combine the objects 

(4) ‘ ))(( 11 Wfq 
 is open in X’ and (5) ‘For any set H in Y that satisfies )(1 Hq

is open 

in Z for a quotient map ZYq : , H is open in Y’”  “Yes, since )(1 Wf 
is a set in Y, 

we can specify the H by replacing H with W to obtain (6) ‘ )(1 Wf 
is open in Y.’”   

Example 3 (Type II).  “Suppose that a sequence }{ na is convergent.  Show }{ na

is bounded.”  “What major strategy would you use? (A1)”  “A direct proof.”  “How 

would you start the opening stage?”  “Note the conclusion (A2), translate it into 

mathematical language (A3), and find an ignition phrase (A4).”  “What is the 

conclusion?”  “ }{ na is bounded .”  “What is the mathematical language?”  “For every

Zn , Man  for some RM .”  “What is the ignition phrase?”  “None.”  “Are not 
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‘For every Zn ’ and ‘for some RM ’ ignition phrases?”  “ The phrase ‘For every

Zn ’ is not an ignition phrase because Zn is a trivial variable.  A primary 

ignition phrase that provides a trivial variable is not considered as an ignition phrase.  

The phrase ‘for some RM ” is not an ignition variable because a phrase ‘for some …” 

in the conclusion cannot be an ignition phrase.”  “Then, how would you set a starting 

variable?”  “Since there is no ignition phrase in the conclusion, this proof belongs to 

Type II.  So, after stating the hypothesis (B0), translate it into mathematical language. 

(B1.2)”      “What is the hypothesis?”  “ }{ na is convergent .”  “What is the 

mathematical language?”  “ Lan
n




lim for some RL .”  “Then, what would you do?”  

“We can further rephrase it.”  “How?”  “For every 0 ,  ZN such that for every

Nn  , Lan .”  “Next?”  “ Derive a starting variable (A5).”  “How would you do 

that?”  “Find an ignition phrase (A6.2)”  “What is an ignition phrase?”  “’For every

0 .”  “So?”  “We can set 0  as a starting variable.  However, since the variable is 

a controlling variable derived from a hypothesis, you might want to confine it to certain 

object by T2.”  “How would you do that?”  “Let 1 .”  “What have we gotten so far?”  

“(1)  ZN and RL  such that for every Nn  , 1 Lan .”  “How would you 

advance a reasoning process?”  “First, try B2 (rephrasing an object).”  “Does it work?”  

“Yes. (1) can be rephrased with (2) for every Nn  , 1 Lan .”  “Can B2 

(rephrasing an object) still work?”  “No.”  “Then?”  “Try B3 (combining objects).”  

“Would that work?”  “No, there is nothing to combine with the object (2) for every

Nn  , 1 Lan .”  “Then, what would you do?”  “Try B4 (creating a cue).”  “There 

are five types of creating a cue. (See Table 2).  Which type would you try?”  “Create a 
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new object (C4).”  “What would you create?”  “The M such that Man   for every

Zn .”  “How would you do that?”  “(3) Let M = max }1,,...,,{ 121  Laaa N .”  “Can 

you rephrase it? (B2)”  “No.”  “So?” “Combining the objects (2) and (3), conclude that 

for every Zn , Man  .”    

Example 4 (Type II).   “Suppose Za .  Prove 4 does not divide 32 a .”  

“What proving strategy would you use? (A1)”  “A proof by contradiction.”   “Then, 

what would you do?”  “Rephrase the problem. (A1.2)”  “What is the new statement?”  

“Suppose that 4  divides 32 a  for every Za ”    “What is next?”  “Make sure of an 

ignition phrase in the new statement and start the body construction stage by directly 

working on the new statement to lead it to a contradiction. (A1.2)”  “What is an ignition 

phrase?” “For every Za , which is a controlling variable.”   “What does that imply?”  

“Since Za is a controlling variable derived from the mathematical language for a 

hypothesis, it may happen that we may want to confine the variable to a certain object 

(T2).”  “Now, what would you do?”  “Since it contains a mathematical concept ‘divide,’ 

translate it into mathematical language (T1).”  “What is the mathematical language?”  

“(1) There exists Zn such that 34 2  an .”  “Next?”  “First, try B3 (rephrasing an 

object).”  “Can you do that?”  “Yes, rephrase the object (1) with, for example, (2)

na 43 2  , but I am not sure if that will work.”  “OK, then let’s keep it to see what 

will happen.  Then, what would you do?”  “Since B3 (rephrasing an object) does not 

work anymore, try B4 (combining objects).”  “Does that work?”  “No, there is nothing 

to combine with (2) na 43 2  .”  “Then, what would you do?”  “Try B5 (creating a 

cue).”    “There are five sub-types for creating a cue (See Table 2).  Which would you 
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try?”  “C3 (set some cases).” “How would you use that?”  “Set two cases, in which (i) 

Za is even and (ii) Za is odd.  As expected, confine Za to a certain object (T2).”  

“Next?”  “Consider the case (i).  Suppose (3) Za is even.”  “Then?”  “Since the 

statement contains a mathematical concept ‘even,’ translate it into mathematical 

language (T1).”  “How?”  “(4) Let ma 2  for some Zm .”   “Then?”  “First, try B3 

(rephrasing an object).”  “Does that work?”  “Not anymore.”  “So?”  “Try B4 

(combining objects).”  “How would you do that?”  “Combine the objects (2) na 43 2   

and (4) ma 2  to obtain )(44)2(3 22 nmnm  , where Znm 2
.”  “Then?”  

“Since 4 does not divide 3, which is a contradiction.”  “Next?”  “Work on the case (2) 

in a similar way.  By letting (5) ma 2 +1, combining the objects  (2) na 43 2   and 

(5) ma 2 +1, obtain )(44)12(3 22 nmmnm  , where Znmm 2
 (R1). It 

is a contradiction because 4 does not divide 3.   

Example 5 (Type III). “Suppose )(modnba  for Zba , and Nn .  Prove  

)(mod33 nba  .  What would you do first?”  “Decide a proving strategy.”  “What 

strategy would you use?”  “A direct proof.”  “Next?”  “Note the conclusion (A2) and 

translate it into mathematical language (A3).”  “What is the conclusion?”  

“ )(mod33 nba  .”  “What is the mathematical language?”  

“ ncbabababa  ))(( 2233 for some Zc .”  “Are we going to find an 

ignition phrase (A4)?”  “No.”  “Why not?”  “Because this proof belongs to Type III, so 

you don’t need to derive a starting variable. (B1.3)”  “Then, after stating the hypothesis, 

how would you start the body construction stage?” “Consider the left hand side (1) 

))(( 22 bababa   and work on it until it can be changed into nc . (A6.3)”  “Then, 
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what would you do?”  “First, try rephrasing an object (B2).”  “Does that work for (1) 

))(( 22 bababa  ?”  “No.”  “Then, what would you do?”  “Try combining objects. 

(B3) ”  “How would you do that?”  “Find a hypothesis and use it.”  “What is the 

hypothesis?”  “(2) )(modnba  for Zba , and Nn .”  “Can we combine (1) and (2)?”  

“No.”  “Why not?”  “Because (2) )(modnba  contains a mathematical concept ‘mod 

n.’”  “Then?”  “Translate (2) )(modnba  into mathematical language. (T1)”  “What is 

the mathematical language?”  “(3) ndba   for some Zd  .”  “Are we ready to 

combine (1) and (3)?”  “Yes, we can combine them to obtain (4) 

ncbabandbababa  )())(( 2222 , where Zbabac  22 .”   

Example 6 (Type III).  “Suppose Rbaf ),(: has a global maximum at some

),( bac and is differentiable at ),( bac .  Prove that 0)(' cf .  What proving 

strategy would you use? (A1)”  “A direct proof.”  “Then?”  “Note the conclusion. (A2).”  

“What is the conclusion?”  “ 0)(' cf .”  “Next?”  “Translate it into mathematical 

language (A3).”  “What is the mathematical language?”  “ 0
)()(

lim 




 cx

cfxf

cx
.”  

“What do you observe in the object?”  “This proof belongs to Type III.”  “Then, what 

would you do?”  “Work on the left hand side of the equation 
cx

cfxf

cx 





)()(
lim until we 

can change it into the right hand side, which is 0.”  “So?”  “(1) Consider 

cx

cfxf

cx 





)()(
lim .”  “Then?”  “Apply rephrasing an object to the object (1) 

cx

cfxf

cx 





)()(
lim . (B3)”  “Can you do that?”  “Yes, considering 

cx

cfxf

cx 





)()(
lim means 
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considering both (2)
cx

cfxf

cx 




)()(
lim and  (3) 

cx

cfxf

cx 




)()(
lim . So, work on each 

separately.”  “Next?”  “Apply rephrasing an object to the object (2) 
cx

cfxf

cx 




)()(
lim . 

(B3)”  “Does it work?”  “No.”  “Then?” “Try combining objects. (B4)”  “How?”  “Find 

a hypothesis and use it. (B4.1)”  “What hypothesis is available?”  “(4) Rbaf ),(: has 

a global maximum at some ),( bac .”  “How would you combine the objects (2) and 

(4)?”  “We are not ready to combine them.”  “Why not?”  “Because the object (4) 

Rbaf ),(: has a global maximum at some ),( bac  contains a mathematical concept 

‘a global maximum.’”  “So?”  “Translate it into mathematical language. (T1)” “What is 

the mathematical language?”  “(5) For all ),( bax , )()( cfxf  .”  “Now, can we 

combine the objects (2) 
cx

cfxf

cx 




)()(
lim and “(5) For all ),( bax , )()( cfxf  ?”  

“ Yes.  Since )()( cfxf  , 0)()(  cfxf .  Also, since
 cx , 0 cx . So, we can 

obtain the object (6) 0
)()(

lim 



 cx

cfxf

cx
.”  “Then?”  “Work on the object (3)

cx

cfxf

cx 




)()(
lim in a similar way to obtain (7) 0

)()(
lim 




 cx

cfxf

cx
.”  “Then?”  “Since 

we cannot rephrase each object anymore, we try combining objects. (B4).”  “How?”  

“Find a hypothesis and use it. (B4.1.)”  “Do we have one?”  “Yes, we have (8) 

Rbaf ),(:  is differentiable at ),( bac .”  “How would you combine them?”  “The 

object (8) Rbaf ),(:  is differentiable at ),( bac ” contains a mathematical concept, 

translate it into mathematical language (T1).”   “What is the mathematical language?”  

“(9)
cx

cfxf

cx

cfxf

cxcx 







 

)()(
lim

)()(
lim .”  “Are we ready to combine the objects (6) 
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0
)()(

lim 



 cx

cfxf

cx
, (7) 0

)()(
lim 




 cx

cfxf

cx
, and (9) 




 cx

cfxf

cx

)()(
lim

cx

cfxf

cx 




)()(
lim ?”  “Yes.”  “How?”  “ 0

)()(
lim

)()(
lim0 











  cx

cfxf

cx

cfxf

cxcx
.”  

“Then, what would you do?”  “Try rephrasing an object. (B3)” “Does it work?”  “Yes. 

cx

cfxf

cx

cfxf

cxcx 







 

)()(
lim0

)()(
lim .”  “So?”  “ 0

)()(
lim 





 cx

cfxf

cx
, which means 

0)(' cf .”    

In reality, students may not advance a reasoning process as smoothly as the 

above even if they are fully equipped with all the necessary knowledge for solving a 

given proof  problem and the full knowledge of both the algorithm and the model of the 

structure of proof construction.  Moreover, there must be proofs for which the algorithm 

does not work well.  I have shown above that the algorithm has the potential to serve as 

effective method to help students with proof construction, it still needs refining and 

improving.         

6.6 Conclusion 

Proof construction can be a difficult task especially for novice students.  

Students are often at a loss for how to start and advance a reasoning process in 

constructing a proof.  Struggling with advancing a reasoning process, they resort to 

external, empirical, or pictorial proof schemes for their proofs.  As Harel and Sowder 

(1998) suggested, I consider analytical proof scheme, which enables students to 

construct a proof based on logical deduction, to be an ideal proof scheme for students to 

practice.  Weber and Alcock (2004) indicated that both syntactic and semantic 

approaches must concur to construct a proof based on logical deduction.  However, 
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there seems to be little research that provided specific and practical pedagogical 

suggestions to help students with both approaches.  Focusing on the syntactic approach, 

Selden and Selden (2007) provided procedural knowledge to produce the formal-

rhetorical part.  However, their method may have a limitation in helping students write 

a proof from the top down.  By offering a model of the structure of proof construction, 

this study attempted to fill those gaps in the current literature.  The model can serve as 

an effective tool for realizing syntactic and semantic approaches to help students 

practice analytical proof scheme.    

There were four goals for this study to achieve: (1) to provide a model of the 

structure of proof construction; (2) to clarify the sources of students’ difficulties with 

proof construction; (3) to evaluate the usefulness of the model of the structure of proof 

construction; and (4) to provide practical pedagogical suggestions to help students with 

proof construction.   

6.6.1 Model of the structure of proof construction 

Through providing a model of the structure of proof construction, this study 

presented a comprehensive view of proof construction that can encompass the aspects, 

factors, patterns, and features involved in cognitive processes in proof construction.  

The model was created by viewing proof construction from four aspects (reasoning 

activity, background knowledge, mental attitudes, and affect and beliefs). The model 

suggested those aspects were intertwined to influence one another to affect students’ 

performances in proof construction.  Also, the model provided the factors that compose 

each aspect in an organized way while simplifying a complex nature of the cognitive 

processes involved in proof construction.  Moreover, the model clarified the features of 
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the factors, focusing on the operations used in the reasoning activity.  Furthermore, the 

model detected patterns that was used in advancing a reasoning process.  The model 

offered the order of the operations to be tried in advancing a reasoning process, types of 

proofs classified by the ways to derive a starting variable, the ways to manage variables.  

The model provided two stages (opening stage and body construction stage), clarifying 

the roles and features of each stage.  The model was found to be applied to proofs 

across a variety of mathematical subjects.  The knowledge of the structure of proof 

construction  can function as metacognitive and methodological knowledge for 

advancing a reasoning process.   

6.6.2 Sources of students’ difficulties with proof construction 

The analysis of students’ proofs found out that multiple factors were intertwined 

to affect their performances.  In light of the model of the structure of proof construction, 

students’ difficulties were identified to be those with practicing the operations in the 

reasoning activity and that the sources of their difficulties were ascribed to their lack of 

their background knowledge and mental attitudes. The greatest factor that affected 

students’ proofs were their lack of knowledge.  In particular, their lack of knowledge 

directly hindered them from rephrasing an object and creating a cue.  The analysis also 

strongly indicated that students’ lack of flexibility and carefulness contributed to their 

inabilities of practicing all the operations in the reasoning activity (rephrasing an object, 

combining objects, creating a cue, and checking and exploring).  The analysis also 

identified students’ difficulties with starting a proof.   Students had difficulties with 

noting the conclusion, translating the conclusion into mathematical language, and 
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preparing a starting variable.  The remarkable sources of their difficulties included their 

tendency to note a hypothesis and their lack of knowledge of definitions.   

6.6.3 Usefulness of the model of the structure of proof construction 

The model of the structure of proof construction was useful in the following 

ways.  First, the model made it easy to view and understand the complex cognitive 

processes involved in proof construction.  Next, the model directly contributed to the 

creation of a framework for analyzing students’ proofs.  The analysis framework helped 

to identify students’ difficulties and to explain the sources of their difficulties in a clear 

and organized way.  The model also contributed to clarification of the skills and 

abilities necessary for proof construction.  Moreover, the model produced algorithm for 

constructing a proof.        

6.6.4 Pedagogical suggestions 

Both the model of the structure of proof construction and the findings from the 

analysis of students’ proofs produced a variety of pedagogical suggestions.  Students 

should be encouraged to be equipped with strong understanding and knowledge, 

including definitions, notations, properties, theorems, relevant facts, and problem-

solving techniques.  They should be also encouraged to be aware that they must be 

persistent, patient, flexible, careful, and precise in proof construction.  Instructors may 

need to help students remind and organize their mathematical knowledge in class.  

However, the most significant suggestion was that the model of the structure of proof 

construction itself can serve as metacognitive knowledge to help students with proof 

construction.  The model can help students grasp a comprehensive view of proof 

construction and increase their accessibility to proof construction.  Above all, the model 
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gives students specific and practical methods for advancing a reasoning process in 

proof construction.  Finally, the establishment of the model and the analysis of students’ 

proofs culminated in producing the algorithm for proof construction.  I expect the 

algorithm to be an innovating method to help students with proof construction. 

6.7 Limitations 

 There are some limitations with this study.  The model of the structure of proof 

construction was created based on a limited number of  proofs.  In addition, the 

majority of the proofs examined were proofs collected from undergraduate mathematics 

courses.  In addition, the creation of the model did not include the proofs that asked to 

construct a counter example.  There is still room for improvement in the model of the 

structure of proof construction, including the types of proofs and the functions of 

variable, and above all, the algorithm for proof construction.  The algorithm is not an 

ultimate formula for solving any proof problem.  It must have weaknesses or defects in 

it.  In order to refine and improve the model of the structure of proof construction and 

the algorithm for proof construction, more proofs from a variety of mathematical 

subjects need to be examined. 

Another limitation was that the analysis of students’ proof s had to involve my 

subjective interpretation to some extent.  For example, there was no definite way to 

measure the degrees of tenacity, flexibility, and carefulness.  Students’ difficulties were 

analyzed from three perspectives: reasoning activity; background knowledge; and 

mental attitudes. It was unknown that exactly what factor caused their difficulties to 

what extent.  In addition, the analysis depended on only students’ written work.   
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The model of the structure of proof construction is just one of the ways to view 

proof construction.  It may work only for some students.  In addition, in order for them 

to master the knowledge of the structure of proof construction, they will need to be 

trained by an expert.  Instructors may teach the model in a workshop or in a class while, 

adjusting and modifying the model based on their insights.     

6.8 Future Research 

 I hypothesize that the model of the structure of proof construction can help 

students advance a reasoning process more successfully.  A possible future study would 

be to examine the effectiveness of the knowledge of the model of the structure of proof 

construction.  Another possible future research would be to improve the model of the 

structure of proof construction and to make a stronger algorithm for proof construction 

by examining more proofs from a wide range of mathematical subjects.   
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Appendix A 

Problem [4] from Algebra I for the in-class problem solving session 

 

Suppose that is cyclic.  Prove that G is abelian.  

 

1. First, state your problem solving strategy briefly.  What would you like to 

show?  How do you prove the statement? 

 

2. Prove the statement.  If you need hints, please go to the next page.  Once you 

move to the next page, please don’t come back of this page to fill in the blank 

below. 

 

3. Problem:  Suppose  is cyclic.  Prove that G is abelian.  

 

Use the following hints. 

(1)  Show for any , . 

(2) If is abelian, . 

(3) Every element in  belongs to some coset of . 

 

Problem [5] from Algebra I for the in-class problem solving session 

 

1. Suppose that the order of a group G is a prime number.  Prove that G is cyclic.  

a. First, state your problem solving strategy briefly.  What would you like 

to show?  How do you prove the statement? 

b. Prove the statement.  If you need hints, please go to the next page.  Once 

you move to the next page, please don’t come back to this page to fill in 

the blank below. 

 

2. Problem: Suppose that the order of a group G is a prime number.  Prove G is 

cyclic. Use the following hints (1) ~ (3). 

 

(1) Let .  Show .   

(2) is a subgroup of G for any . 

(3) Use Lagrange’s Theorem: Suppose that G is a finite group and H is a subgroup 

 of G. Then, the order of H divides the order of G.   

 

Problem [6] from Algebra I for the in-class problem solving session 

 

1. Suppose  for some primes p and q.  Prove, G is either abelian or

.  If you need hints, please move to the next page.  Once you move to 

the next page, please don’t come back to this page to fill in the following blank.  

 

GGZ /)(
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}{)( eGZ 
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2. Problem: Suppose  for some primes p and q.  Prove, G is either abelian 

or .  Use the following hints. 

 

(1) is a subgroup of G.  

(2) Use Lagrange’s Theorem:  Suppose that G is a finite group and H is a subgroup 

 of G. Then, the order of H divides the order of G.   

      (2) If the order of a group H is prime, H is cyclic.   

      (3) If is cyclic, K is abelian.   

      (4)  Show and never happens by contradiction. 

 

Problem [9]  from Algebra II for the in-class problem solving session 

 

1. Let R and S be rings.  Suppose is a ring homomorphism.  Assume  

    is a well-defined ring homomorphism.  Show  

     is a ring homomorphism.   

 

 2. Show  is injective.   
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