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Abstract

Proof is an essential skill in mathematics and a key component in mathematics
education. However, studies have shown that many students encounter various
difficulties with proof at all levels. Studies have also shown that proof is challenging
not only for students to learn but also for instructors to teach. Researchers in
mathematics education have endeavored to provide an effective teaching method to
help students with proof construction. However, there seems to be no effective and
decisive method that is widely accepted by the mathematics community. The purposes
of my dissertation were to reveal the sources of students’ difficulties and provide
effective methods to help them overcome their difficulties. In order to achieve these, |
first created a model of the structure of proof construction. The model provided a
comprehensive view of proof construction, which could encompass the aspects, factors,
patterns, and features involved in cognitive process in proof construction. In light of
the structure of proof construction, | examined students’ proofs from undergraduate
Algebra, Analysis, and Topology courses. The model of the structure of proof
construction enabled me to identify, analyze, and explain their difficulties in an
organized and systematic way. The findings from the analysis of students’ proofs and
the knowledge derived from the model of the structure of proof construction led me to
produce an algorithm for proof construction that can be applicable to various proofs.
The algorithm can serve as metacognitive knowledge for helping students, especially
those who struggle with proof construction, to overcome their difficulties. It is the
aspiration of this study to contribute to the development of a teaching method to help

students learn proofs effectively.
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Chapter 1: Introduction

1.1  Motivation of the Study

Proof has been a central topic for discussion among researchers in mathematics
education for some decades. Based on the existing literature, it seems most researchers
are in agreement that proof is one of the key components in mathematics education:
“the essence of mathematics” (Baylis,1983); “the guts of mathematics” (Wu, 1996);
“important at all grades and in all content domains” (Kilpatrick, Swafford & Findell,
2001); “the fundamental tool for extending the field of mathematics” (Driscoll, 1983);
“the heart of mathematical practice” (Ball, Hoyles, Jahnke, & Movshovitz-Hadar,
2002); and “the basis of mathematical understanding” (Cirillo & Herbst, 2012). Wu
(1996) suggested that anyone who wanted to learn mathematics had to learn proofs.
Hanna (2000) proclaimed “students cannot be said to have learned mathematics, or
even about mathematics, unless they have learned what proof is” (p. 24).

While proving is an essential skill in collegiate mathematics, studies have
shown that students encounter various difficulties with proofs at all levels (Paola &
Inglis, 2011; Pfeiffer, 2009; Stylianides, Stylianides, & Philippou, 2007; Harel &
Sowder, 2007; Weber, 2006; Baker & Campbell, 2004; Epp, 2003; Weber, 2001;
Dreyfus, 1999; Moore, 1994; Ruthven & Coe, 1994). CadwalladerOlsker and Miller
(2013) made a representative statement, saying “it was notoriously difficult for students
to develop the ability to write and read proofs” (p. 379). Mariotti (2006) reported
proofs were so difficult that many teachers even gave up teaching proofs. Hanna and
Villiers (2007) claimed that the challenges that educators faced in teaching proof had

increased as proof had been more valued in mathematics learning.



1.2 Significance of the Study

Although students’ difficulties with proof construction have been well
researched, the issue still seems to be wide open for further discussion and investigation.
Dreyfus (2012) believes various questions regarding students’ cognitive difficulties
with proof construction must be answered. For example, “what is involved in cognitive
processes in proof construction?”” Ayalon and Even (2008) claimed the need for
establishing views and approaches to deductive reasoning. CadwalladerOlsker, Miller,
and Hartmann (2013) stressed the significance of elucidating what constituted a proof.
Knuth (2002) emphasized the importance of clarifying the nature and components of
proof. Itis also crucial to provide an effective method to help students with deductive
reasoning. Harel and Sowder (1998) urged the necessity of fostering students’ skills for
logical deduction. Weber and Alcock (2004) indicated the importance of practicing
both syntactic and semantic approaches for deductive reasoning. However, there
seems to be little research that provided specific and practical knowledge to help
students with proof construction based on logical deduction. Harel and Sowder (2007)
also raised a question of critical importance: “What instructional interventions can bring
students to see an intellectual need to refine and alter their current proof schemes into
deductive proof schemes?” (p. 47).

Ball, Hoyles, Jahnke, and Movshoitz-Hadar (2002) exhorted the need of
accumulating empirical studies on students’ difficulties with proofs in order to develop
effective teaching strategies to teach proofs. Brown, Bransford, Ferrara, and Campione
(1983) suggested that highly developed metacognitive skills are one of the crucial

factors for help students successfully solve problems. Metacognitive knowledge means



the “knowledge of one’s knowledge, processes, and cognitive and affective states; and
the ability to consciously and deliberately monitor and regulate one’s knowledge,
processes and cognitive and affective states” (Papaleontiou-Louca, 2003, p.10-11). The
significance of this study is to fill the gaps among the research literature by providing a
model of the structure of proof construction. The aims of this study is to contribute to
the body of innovative instructional methods to teach proofs by providing
metacognitive knowledge that can help students with proof construction.
1.3 Research Purposes and Questions

The aims of this study were to establish a model of the structure of proof
construction, to identify students’ difficulties and clarify the sources of their difficulties,
and to provide pedagogical suggestions to help students with proof construction. This
study attempted to meet the needs for providing a comprehensive view of proof, which
revealed the components and nature of proof construction to students. This study also
attempted to fill the gaps caused by a deficiency of an effective method to help students
with proof construction based on logical deduction. In order to help students grasp a
comprehensive view of proof construction and enhance their skills for logical deduction,
the following research questions were considered.
Research Questions

1. What is a suitable model for characterizing the structure of proof

construction?

2. What difficulties do students have with proof construction and what are the

sources of their difficulties in light of the structure of proof construction?

3. How useful is the model of the structure of proof construction?



4. What pedagogical suggestions can be drawn to help students with proof

construction?
1.4 Overview of the Study

This study examined students’ difficulties with proof construction in light of
the structure of proof construction. The structure of proof construction provides a
comprehensive view of proof construction, which encompass the aspects, factors,
patterns, and features that involve in cognitive process. Chapter 2 examines the
relevant literature regarding the theoretical perspectives on proof construction, students’
difficulties with proof construction, and pedagogical approaches to help students with
proof construction. Chapter 3 presents how a model of the structure of proof
construction was created, elaborates the model of the structure of proof construction,
offers the framework for analyzing students’ difficulties with proof construction, and
discusses the reliability of the model while relating some other relevant theoretical
frameworks for a support. Chapter 4 describes the methodology that justified the
method this study adopted and details the ways to collect and analyze students’ proofs.
Chapter 5 presents various examples collected from students’ proofs to describe
possible sources of students’ difficulties with proof construction and to analyze their
proofs based on the analysis framework. Chapter 6 highlights the findings from the
analysis of students’ proofs while relating them to the literature and provides specific
and practical suggestions to help students overcome their difficulties with proof

construction.



Chapter 2: Literature Review

2.1 Introduction

This chapter gives a comprehensive review on literature regarding the issues of
proof construction while identifying the problems to be examined and the gaps to be
filled. This chapter consists of three parts: theoretical perspectives on proof
construction; existing research on students’ difficulties with proof construction; and
pedagogical approaches for helping students with proof construction.

2.2  Theoretical Perspectives

This section discusses the following three theoretical frameworks for proof
construction: (1) proof schemes (Harel & Sowder, 1998); (2) syntactic and the semantic
approaches (Weber & Alcock, 2004); and (3) the formal-rhetorical and problem-
centered parts (Selden & Selden, 2007).

Harel and Sowder (1998) classified student proof schemes into three levels:
external, empirical, and analytical. In the external proof schemes, students convince
themselves and others based on external sources such as (a) the ritual of the appearance
of the argument (the ritual proof scheme); (b) the word of a textbook or a teacher (the
authoritarian scheme); and (c) some symbolic manipulation without understanding the
meaning of the symbol (the symbolic scheme). The empirical proof schemes include
verifying the validity of their reasoning by using some specific examples (the inductive
scheme) or through their rudimentary mental images (the perceptual scheme). The
analytical proof schemes include validating through the use of logical deduction.
Analytical proof schemes include considering the generality, setting a goal, and

transforming images. Several researchers suggested that students should grow out of



their external, empirical, and pictorial proof schemes, and acquire analytical proof
scheme (Finlow-Bates, Lerman, & Morgan, 1993; Harel & Sowder, 1998; Recio &
Godino, 2001; Zaslavsky & Shir, 2005; Stylianou, Chae, & Blanton, 2006). Those
studies revealed that students had difficulties with practicing analytical proof scheme.
Instead, they tended to depend on diagrams, pictures, and specific examples for
reasoning.

Weber and Alcock (2004) presented a theoretical framework for the types of
thinking process in proving. They introduced two types of proof production: syntactic
and semantic. The former represents the proof production in which students derive
valid inferences by manipulating definitions and symbols. The latter represents the
proof production in which students draws formal inferences while using instantiations
of mathematical concepts. More specifically, the semantic approach is the one in which
students explore and figure out the way to reach the conclusion while understanding the
situation, creating examples, applying relevant facts, and checking what they have done.
Semantic approach may depend on mathematical contents while syntactic approach
may not. Weber and Alcock (2009) suggested that both syntactic and semantic
approaches must concur for proof production based on deductive reasoning.

Selden and Selden (2007) offered a model of the structure of a proof. They
claimed that a proof consisted of two parts: the formal-rhetorical part and problem-
centered part. The formal-rhetorical part stands for the part of a proof that can be
obtained by unpacking a concept into the definition. The problem-centered part is the
remaining part, which is the core of problem solving done through rigorous thoughts, a

deep understanding, and intuition. It seems the formal-rhetorical part corresponds to



the product obtained through a syntactic approach and the problem-centered part
corresponds to the product obtained through a semantic approach. They offered a proof
framework as an instructional method to help students with proof construction.
According to their method, students should first write a hypothesis, leave a blank space,
put the conclusion at the end. Next, they fill the earlier blank space by inserting the
beginning and end of the unpacked conclusion. Students write a proof from both ends
toward the middle. However, it is not completely clear how they should advance a
reasoning process in the remaining part. In addition, their method of leaving a blank
space at the beginning of proof construction may not be perfectly practical.

The above frameworks were used for the following two reasons. First, they
helped to understand students’ approaches for proof construction and logical deduction,
and the structure of a proof. Second, they helped to identify the position of my study
among various studies on proof construction. More specifically, they made it clear that
my study was centered at an exploration of metacognitive knowledge for the skills of
logical deduction in proof construction. The frameworks also provided the gaps to fill
and the demands to meet. The frameworks led my study to explore the skills for
practicing analytical proof scheme, clarify the mechanism of syntactic approach and
semantic approaches, and provide an effective method to write a proof from the top
down.

2.3  Students’ Difficulties with Proof Construction

This section reviews the literature on students’ difficulties with proof

construction in terms of four aspects: background knowledge, reasoning activity,

mental attitudes, and affect and beliefs. The followings are the definition of each term.



e Background knowledge: the knowledge necessary for solving a given proof
problem. It includes concepts, definitions, notations, theorems, proposition,
mathematical laws, and problem solving techniques.

e Reasoning activity: cognitive actions or operations for advancing a reasoning
process.

e Mental attitudes: tenacity, persistence, flexibility, carefulness, and precision.

o Affect and beliefs: emotions, feelings, self-confidence, beliefs, and perceptions
toward mathematics, proofs, and logics.

The above aspects seem to cover the categories that Schoenfeld (2010) included
in his theoretical framework for problem-solving. The following are the categories
Schoenfeld included: (1) knowledge base (what students know); (2) problem-solving
strategies (the tools or the techniques for solving problems); (3) self-regulation or
monitoring (monitoring and assessing progress); (4) beliefs (one’s understanding,
feelings, perceptions, decision). (1) Background knowledge directly corresponds to
knowledge base. (2) Reasoning activity may correspond to problem-solving strategies
because the reasoning activity can be all considered to be strategies and techniques for
constructing a proving argument. (3) Mental attitudes may correspond to self-
regulation or monitoring because the components of mental attitudes (tenacity,
persistence, flexibility, carefulness, alertness, and precision) can be considered to be
mind tools for self-regulation. (4) Affect and beliefs may directly correspond to beliefs

because both share the same components such as feelings and beliefs.



2.3.1 Background Knowledge

In order to construct a successful proof, students need to be fully equipped with
the knowledge around a given proof problem. In particular, their knowledge about the
concepts involved in the proof is indispensable. This section discusses the significance
of students’ knowledge of concepts from the following three angles: mathematical
language; definitions; and abstract thinking.
Mathematical language

As Tall (1991) pointed out, mathematical language is one of the difficulties that
students face in starting to learn proofs. Moore (1994) also provided students’
difficulties with mathematical language as one of the major sources of their difficulties
with proof construction. Mathematical language consists of mathematical terms,
notations, and logical words. For example, “continuous,” “differentiable,” and

“homomorphism” are examples of mathematical terms. “R/Kerg,” <Z[x],” and

“Z(G)” are examples of mathematical notations. “If,” “then,” “for all,” and “there

exists” are examples of logical words. Students’ ability of using mathematical language
around a concept depends on their levels of understanding of the concept. Moore
(1994) pointed out that students’ lack of understanding of concepts can hinder them
from correctly using the language and notation.
Definitions

Definitions of mathematical concepts are central and fundamental mathematical
language. Students have two types of difficulties with definitions: not understanding
the contents of definitions; being unable to use the definitions. There are four factors

that cause their difficulties: (a) the gap between students’ concept image and concept



definition; (b) the nature of definitions as stipulated language; (c) the difference
between mathematical definition and everyday language; and (d) the learning way to
approach definitions.

Tall and Vinner (1981) introduced the notions of concept images and concept
definition” Concept image is the total of the mental pictures of concepts and related
properties. Concept definition is a formal definition of concept, which can be found in
a textbook. Alcock (2007) observed that students made extra assumptions that concepts
did not include. Their incomplete concept image led to their difficulties with using
definitions to express their ideas. Students need to take effort to narrow the gap
between their concept image and concept definition. It takes time for them to be
“formally operable” so that they can use a definition or a theorem to create a formal
argument (Bills & Tall, 1998).

Edwards and Ward (2008) attributed a chief role of definitions to the creation of
concepts. They considered definitions as stipulated language, in which the meaning-
relation was explicitly and self-consciously set up. When students deal with a
definition, they face a difficulty of building up their thoughts on the concept.
Zaslavsky & Shir (2005) suggested that students should know the role of definitions to
overcome their difficulties with understanding definitions.

The difference between mathematical definitions and everyday language also
causes student’s difficulties with definitions (Edwards & Ward, 2004; Epp, 2003;
Selden & Selden, 2007). The definitions in everyday language are extracted from
examples and evidence while the definitions in mathematical language are defined by

stipulation (Edwards & Ward, 2004). Some mathematical language are used in
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everyday language but they have different meanings. Frid (1994) and Cornu (1991)
observed that students interpreted the language “limit” in terms of everyday meaning.
Awareness of the distinction between mathematical language and everyday language
helps students integrate new mathematical rules into their cognitive framework (Epp,
2003).

A mathematical definition has a logical structure. Selden and Selden (2007)
pointed out that every part of the mathematical definition contributes to supporting the
structure. For example, small parts of a definition such as “for any ...” “for some ...”
play an important role in deciding the structure of the concept. Mathematical
definitions often involve a conditional statement in it. For example, the definition of

continuity of f(X)atx=a is that for every ¢ >0, there exists a & >0such that if
x—a|< &, then|f (x)— f (a)| <& . Selden and Selden (2007) suggested that students

should pay attention to all parts of a definition.

The way to approach definitions influences one’s ability to understand
definitions. Students and mathematicians took different cognitive processes in
comprehending definitions (Vinner, 1991). Paramerswaran (2010) explored how
mathematicians approached definitions. They found three factors that helped
mathematicians enhance their understanding of definitions: (1) examples; (2)
reformulations of definitions with a related theorem; (3) resolutions to the conflicts
evoked in facing an example that contradicts their concept image of the definition.
Paramerswaran (2010) provided necessary stages in understanding definitions: (1)
familiarizing oneself with the notation; (2) building a concept image; (3) acquiring

examples; and (4) learning how to use a definition.
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The definition of a concept plays a significant role in proof construction. A
proving argument is constructed based on the definition. However, definitions can be
difficult for students to understand and use due to their complex nature, which everyday
language does not have. Students need to know how to learn and apply definitions.
The next section discusses abstract thinking, which plays an important role in
connecting background knowledge and reasoning activity in proof construction.
Abstract thinking

Abstract thinking is the ability to generalize and synthesize objects into concepts
through representations. Dreyfus (2002) viewed abstraction as the most important
processes to be developed in advanced mathematical thinking. He claimed achieving
the ability of abstraction may well be considered as the most important goal of
advanced mathematics learning. Frasier and Panasuk (2013) agreed that abstract
thinking was central to conceptual understanding and was an essential part of
mathematics learning. In particular, they placed proofs as the typical instance of
abstract thinking. Dreyfus (2002) included generalizing and abstracting, synthesizing
and abstracting, and representing and abstracting as basic component processes of
abstract thinking.

Generalizing and Abstracting. Both generalizing and abstracting are the
processes to construct a cognitive structure of a concept. The ability to generalize and
abstract is crucial for students’ formal thinking in proof construction. Dreyfus (2002)
defined generalizing to be a process of “deriving or inducing from particulars, to
identify commonalities, to expand domains of validity (p. 35)”” and defined abstracting

to be a process of “building of mental structures from properties of and relationships
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between mathematical objects (p. 37)”. There is a concise distinction between them.
The former involves an expansion of the individual’s knowledge structure while the
latter involves a mental re-construction of the existing structure. Tall (1991, p. 12) gave
a clear illustration of the difference between them, using the following example:

For instance, we generalize the solution of linear equations in two and three

dimensions to n-dimensions and we abstract from this context the notion of a

vector space. In doing so, two very different mental objects are produced: The

generalization R"and the abstraction, a vector space V over a field F. The

generalization R" simply extends the chain of ideas from R'to R*and from R?

to R?, and so on, which is described by applying the usual arithmetic processes

to each coordinate. The abstraction V is a very different mental object, which is
defined by a list of axioms. While the former simply involves an extension of
familiar processes, the latter requires a massive mental reorganization.

Dreyfus (2002) considered generalizing, synthesizing, and representing as a
prerequisite basis to abstracting: generalizing and synthesizing (p. 34). Abstraction
requires more cognitive load than generalizing and synthesizing because abstraction
requires more attention to the structure of the properties and their relationships than the
objects themselves. For example, when his students tried to understand the concept of
field, they focused on the relationships that existed between numbers rather than on the
numbers themselves (Dreyfus, 2002).

Synthesizing and Abstracting. According to Dreyfus (2002), synthesizing is a
process of “‘combining or composing parts in such a way that they form a whole or an

entity (p. 35).” Itis a process of integrating separate facts into a complete picture,
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which is not just a sum of parts but a structure of interrelated facts. This can be applied
to the following example. Suppose that a student has the following mental

representation for continuity: f (X) is continuous atx=c if and only if for every real

number ¢ > 0, there exists a real number & > 0such that if|x - c| <, then

|f x)—f (c)| < ¢&. Then, suppose that the student learns another representation for

continuity of a function atx=c: a function f(x): X —Y , where X and Y are

topological spaces, is continuous at X =c if and only if for every open neighborhood V
of f(c), there exists an open neighborhood U of csuch that f (U) cV . At first, those
two concepts may exist independently of each other in the students’ mind, but later, the
student may relate and connect each other to establish a stronger concept of continuity.
Thus, integrating different mental presentations for the same concept into an
interrelated structure can be considered as synthesizing.

Synthesizing is a crucial process to construct a more powerful mental
representation for a concept, namely, to build a more solid understanding of the concept.
The ability of synthesizing makes a difference in understanding a concept and solving a
problem. For example, in a mathematician’s mind, several mental representations for a
concept may be strongly linked to form a broad and strong world for the concept. Then,
the mathematician can grasp one representation from several angles. The
representation is supported by other representations in the mind. The ability of
synthesizing allows the mathematician to make seemingly independent mental
representations complementary. Therefore, the ability of synthesizing increases the
power of flexibility to switch representations, which makes it easier for the
mathematician to deal with problems. In addition, the mathematician can see the
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mental world of the concept from a bird’s eye view, which makes it easier to make use
of those representations according to the given situations.

On one hand, students may have difficulties with abstract thinking because they
may fail to synthesize mental representations for a concept. Even if students have the
same mental representations as mathematicians do, if they fail to synthesize them, they
would grasp one representation by itself. In addition, that would make it difficult for
them to know where they stand in the world around the concept and to make good use
of available representations in solving a given problem.

Moreover, mathematicians find themselves in a world around a concept that
they have formed through synthesizing some mental representations. This may prove
difficult when trying to communicate with students who has a narrower and
unorganized world around the concept. This may cause conflicts between instructors’
teaching and students’ learning.

Representing and Abstracting. A representation is a realization of a
mathematical notion. Representations take several forms: algebraic expressions,
notations, graphs, figures, tables, matrices, arrow-diagrams, and words. In addition,
representations can become tools to solve problems and construct meanings (Davis &
Maher, 1997, Radford, 2000, Sfard, 2000). Dreyfus (2002) viewed representing and
abstracting as complementary processes in opposite directions. “A concept is often
abstracted from several of its representations, on the other hand, representations are
always representations of some more abstract concept (p. 38).” Dreyfus (2002) further
claimed that learning processes evolved in four stages: using a single representation,

using more than one representation in parallel, making links between parallel
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representations, and integrating representation and flexible switching between them.
Once this process has been completed, one has formed an abstract notion of a concept.

Dreyfus (2002) classified representations into two kinds. One is a symbolic
representation and the other is a mental representation. He made a distinction between
them in the following way. “A symbolic representation is externally written or spoken,
usually with the aim of making communication about the concept easier. A mental
representation, on the other hand, refers to internal schemata or frames of reference
which a person uses to interact with the external world” (p. 31).

Symbolic representations play an important role in mathematical thinking and
learning. They make it easier and more convenient to express, convey, and understand
mathematical ideas and arguments. As Olson and Campbell (1994) described, their role
IS to make an individual’s implicit knowledge explicit in terms of symbols. On the
other hand, a mental representation is a mental picture that occurs in the mind when an
individual thinks of a mathematical notion. It involves his or her understanding of the
notion. Therefore, it happens that different individuals have different mental
representations for the same notion in accordance with their understanding levels.

Their concepts can be applied to the following example. A symbolic

representation of a limit concept of a function as x approaches a islim f (x) . However,
X—a

students may have different mental representations for it. Some may mistakenly

assume that it is the same as f (a) ; some may correctly relate it to the fact that it exists if
and only if lim f(x) = lim f(X); some may even recall that lim f(x)=L if and only if
X—a~ x—a* X—a

for every real number ¢ > 0, there exists a real number 6 > Osuch that for all real
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number x with 0<x—a<¢&implies|f(x)—L|<e. Similarly, for the notion of

continuity, some students may vaguely picture a mental image of some kind of smooth
curve that contains neither a jump discontinuity nor a removable discontinuity; some

may recall that f (x) is continuous at x =aif and only iflim f (x) = f (a) ; some may

conceive that f (x)is continuous if and only if for every sequence X, of points in the

domain which converges to a, lim f (x) = f (a); and some may even think of the

topological idea that a function f(x): X —Y , where X and Y are topological spaces,

is continuous if and only if for every open set V Y, the inverse image f*(V)isan

open subset of X .

Some form rich mental representations and others have limited mental
representations for the same concept. Such a difference can become a source of
students’ difficulties with learning. For example, students encounter difficulties with
understanding their instructors because the students and their instructor have different
mental representations for the same concept. Dreyfus (2002, p.31) described this
situation in the following way:

a student’s notion of a function may be limited to processes (of computation or
mapping), whereas the teacher teaching indefinite integrals may think of the
function in the integral as an object to be transformed. Such discrepancies
easily lead to situations where students are unable to understand teachers.

Students’ mental representations evoked by a notion can be limited or even
incorrect. Then, they are unable to understand what their instructor means by it. This

issue occurs not only when students learn from their instructor or a textbook but also
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when they solve problems. With richer representations of a concept, students can have
more strategies to tackle problems. Kaput (1989) and Clements (1983) showed that the
use of several representations was successful in helping students improve their
understanding of a concept. With poor mental representations, the types of problems
that students can get access to are more limited. Selden, Mason, and Selden (1989, pp.

48-49) gave several non-routine problems to average Calculus students to see how well

they performed. The following was one of the problems: Decide if x** + x*° —%+ 2=0

has any roots between -1 and 0. They observed that nine out of seventeen students were

unable to solve the problem. They were unable to think about the function
1 . : . .

f(x) = x* +x" —=+2 in a graphical sense, take the derivative of the function to
X

check if it increased or decreased on the given interval, and use the limit concept to
figure out the end behavior of the function as x approached 0. Instead, they tried to
manage the problem in a primitive way, plugging some numbers into X , using trial and
error, or making a guess. This was an example showing that students were unable to
solve a problem successfully because their mental representations were limited. More
specifically, the given expression evoked those students just a symbolic representation,
namely, a relatively complicated algebraic equation. It did not occur to them that the

given expression might be a graphical representation of a relation of the two functions,
. 1 . .
which were f (x) = x** + x" — o 2 and g(x) =0. Their mental representations for the

given expression were not broad enough to cover a graphical representation for it.
However, it might not be enough for an individual to be equipped with rich

representations in solving problems or in constructing proofs successfully. The ability
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to flexibly switch representations according to a situation would be also required.
Representing can be considered to be one of the fundamental processes of abstract
thinking taken not only in the construction of the knowledge of concepts but also in the
reasoning activity of proof construction.

Thus, generalizing, synthesizing, and representing are possible factors that can
influence students’ use of their background knowledge in proof construction. The next
sections reviews the studies that can directly affect thinking actions in advancing a
reasoning process in proof construction.

2.3.2 Reasoning Activity

The reasoning activity for proof construction is the scene in which students
advance their reasoning processes for reaching the goal while using the premises and
transforming representations. Students transform objects by switching representations
and construct an argument based on logical and deductive reasoning.

Switching representations

Rich mental representations help students tackle a problem by providing more
information for dealing with it. At the same time, having rich mental representations
may cause a difficulty to students: they may get confused in choosing the best
representation from among several options. It can happen that students choose a less

effective representation and fail to solve a problem efficiently or successfully. For
example, suppose that students are given a function f (X) = x* —x+1and asked to

obtain the derivative of the function at x =1by using the definition of derivative. Some

f(x+h)— f(x) f(L+h) - f Q)
h h

students may apply f'(x) = Ihlm0 to evaluate f'(}) = Ihm?)
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f(x)-f(D)

to evaluate f'(2) = lim —————= .

f()-f(a)
X—a -t x—1

and others may apply f'(x)=Iim

Both methods work, but the latter turns out to be easier and faster. This is just a small
example, but in a more advanced mathematics, the situation can be more serious.
Failing to adopting a more effective representation can lead the individual to a less
effective problem solving strategy and may end up with confusing the individual. Thus,
students’ difficulties with problem solving can be partly due to the difficulty with
deciding when to use which representation in accordance with a situation. Dreyfus
(2002) asserted “an individual needs to be able to flexibly switch from one
representation to a more efficient one in problem solving” (p. 32).
Logical and deductive reasoning

Logical and deductive reasoning plays a central part of proof construction. Epp
(2003) stressed the need of providing a method to help students develop their formal
reasoning skills. Knapp (2005) pointed out that lack of awareness of the laws of logic
and deductive reasoning was one of the causes of students’ difficulties with proof
construction. The laws of logic, including the laws of syllogism, form the system with
which an argument can be validated. Deductive reasoning is the process of reaching a
conclusion by using the given premises, assumptions, previous statements, and relevant
theorems and propositions. |If students fail to follow the laws of logic, their proofs will
collapse. For example, Weber (2002) observed that students were unable to make their
proving arguments complete because they abused the laws of logic. His students tried
to prove a statement by finding a theorem that might support the statement and by

proving the hypothesis of the theorem.
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Stylianides and Stylianides (2007) conceptualized proof, focusing on deductive
reasoning. They considered as the components of proof the following three factors: (1)
the set of accepted statements such as definitions, axioms, and theorems; (2) the modes
of argumentation such as application of logical rules of inference; (3) and the modes of
argument representation such as verbal, pictorial and algebraic representations. In
particular, they associated deductive reasoning with the modes of argumentation as
logically necessary inferences while introducing the theory of Johnson-Laird’s and
Bera’s (1984). According to their theory, deductive reasoning contains the three stages
in proof construction: (1) constructing a mental model to represent the structure of the
premises of a given statement, (2) scanning the model to acquire informative inference,
and (3) searching for alternative mental models such as counterexamples. They
considered as the main abilities for deductive reasoning the ability to build a model of
the premise of a given statement as well as the linguistic competence to comprehend

99 ¢ Y19

logical terms such as “and”, “or”, “not”,
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if”, “none”, “some”, “all” in the premises. In
particular, working memory capacity was the key to successful deductive reasoning.
They claimed that practice helped students enhance their working memory, which
might lead to the improvement of the ability of deductive reasoning and proving. They
further suggested that practice might help students internalize the general logical
structure of proof method such as proof by contradiction. Practice and the knowledge
of the structure of proof method can help students enhance their proving ability. This
study further aims to explore the knowledge of the general logical structure of proving
itself beyond a proof method, investigating specifically what is involved in proof

construction which may help students enhance their deductive reasoning.
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Alcock and Weber (2005) investigated how students validated an argument,
using a proof from real analysis. They found out that students were unable to validate a
proof because they failed to infer and check warrants. In this case, warrants means
asserted preceding statements, accepted knowledge, or accepted assertions. They
suggested that the importance of inferring and evaluating implicit warrants used in
proofs should be emphasized in a classroom in order to help students develop their
proving skills and understand new proofs.

The start of a proof can be one of the key factors in the reasoning activity of
proof construction. It is a scene in which students make sure what they are asked to
prove and what proving strategy they use before writing out a proof. Baker and
Campbell (2004) observed students failed to prove because they did not pay full
attention to the given statement and did not think about the meaning of the statement.
Selden and Selden (2003b) observed that students lacked their attention to global
picture of an argument and focused on local issues in validating their arguments.

The role of mathematical language is closely related to logical and deductive
reasoning. Selden and Selden (1995) discussed students’ difficulties with
understanding of the logic for validation. In particular, they noted students’ difficulties
with “unpacking” informal statements into formal statements. They used the term
“unpacking” to mean changing an informal statement into a formal one so that it could
involve those terms that played an important role in logic such as “if”, “for all”, and
“then.” They gave the following example of “unpacking.” “A function is continuous

whenever it is differentiable” is an informal statement. Students need to “unpack” the

statement into “For all functions f , if f is differentiable, then f is continuous.” In
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this example, the word “whenever” was considered to be an informal expression and
the phrase “for all” was considered to be a formal expression.

Ball, Hoyles, Jahnke, and Movshovitz-Hadar (2002) defined mathematical
reasoning as a set of practices and norms that served as an instrument of inquiry and
justification. They found the reasoning of justification on (1) public knowledge
evolving in mathematics community, including mathematical ideas, procedures,
methods, concepts, axioms, and publicly accepted knowledge and (2) mathematical
language, including symbols, notations, definitions, and representations, and rules of
logic and syntax. Those factors can be categorized in a different way. For example, a
distinction can be made between procedures and terms and between mathematical
language and rules of logic. Moreover, notations and definitions can be included in
mathematical knowledge. In this study, mathematical ideas, procedures, methods, and
logic and syntax are considered to be “actions” or “operations” while concepts, axioms,
symbols, definitions, and representations are considered to be “objects.”

Students’ knowledge and their reasoning activities are not the only factors that
are involved in their cognitive activities in proof construction. The next section reviews
the studies related to another aspect of students’ cognitive activities involved in proof
construction.

2.3.3 Mental Attitudes

A proving activity involves not only a logical and reasoning mental-activity but
also some psychological aspects. Furinghetti and Morselli (2009) asserted “purely
cognitive behavior is extremely rare in performing mathematical activity.” Lai (2011)

included making inferences, using deductive reasoning, judging or evaluating, making
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decisions, and solving problems in the component skills of critical thinking. She
included inquisitiveness, flexibility, a propensity to seek reason, and a desire to be well-
informed, in the cognitive dispositions required by critical thinking. These cognitive
dispositions can be applied to students’ proving activities. In proof construction,
inquisitiveness and a propensity to seek reason may motivate students to tackle a given
problem persistently. A desire to be well-informed may urge students to look for
information widely to advance a reasoning process. Beyer (1985) noted precision and
flexibility as factors of helping students with their reasoning processes. He considered
a frame of mind and a number of specific mental operations to be two major dimensions
of critical thinking. He included in the frame of mind “an alertness to the need to
evaluate information and a willingness to test opinions, and a desire to consider all
view-points” (p. 131). Baker and Campbell (2004) also pointed out the importance of
students’ precision in dealing with objects. They observed students had difficulties
with correctly using mathematical language. The mental dispositions such as
persistency, tenacity, flexibility, carefulness, alertness, and precision can play an
important role as a helm of using knowledge and practicing the operations to advance a
reasoning process in proof construction. While those mental attitudes influence
students’ performances as necessary psychological traits for proof construction, there
are psychological traits that can also affect their performances, but are not necessary for
them to be equipped with. The next section goes over the studies related to those traits.
2.3.4 Affect and Beliefs

Affect and beliefs such as emotions, feelings, moods, and beliefs toward logic,

proofs, and mathematics are psychological traits that can influence students’
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performances on proof construction. However, unlike the mental attitudes such as
tenacity, persistency, flexibility, carefulness, alertness, and precision, affect and beliefs
are not the psychological traits that students are required to hold for proof construction.
Different individuals have different affect and beliefs. Students’ states of affect and
beliefs influence their performances on proof construction from inside individually.
McLeod (1994) included emotions, attitudes, and beliefs in the affective domain.
Furinghetti and Morselli (2009) asserted a psychological trait such as affect should be a
crucial factors influencing mathematical activities. It is easily conceivable that
emotions that stem from fear, confidence, impatience, patience, anxiety, safeness,
frustration, restlessness, and composure can influence a student’s proving performance.
Individual beliefs can also influence students’ problem solving performances.

Skemp (1979) positioned emotions to be an important and essential part in
human cognitive activities. Skemp introduced the concepts of goals and anti-goals. He
defined goals to be the ones that students want to accomplish while he referred to anti-
goals as the ones students may want to avoid. He claimed that students had different
emotions according to which type of goal they went through. He associated goals with
pleasure, confidence, frustration, un-pleasure, and antigoals with fear, security, anxiety,
and relief. He made a distinction between the emotions. He indicated those emotions
could influence students’ learning positively or negatively. The same thing can be said
to students’ proving activities.

Goldin, Rosken, and Torner (2009) stressed that beliefs are important factors in
teaching and learning of mathematics. For example, a belief that a definition is a static

description of a term might mislead students to ignore the logical structure of
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definitions to help them advance a reasoning process in proof construction. Moore
(1994) indicated that students who believed that an explanation was enough for proving
might lack a rigor based on rules of logic in constructing a proof. In addition, beliefs
and affect are not independent of each other but influence each other. Goldin, Rosken,
and Torner (2009) proclaimed beliefs and perceptions might influence students’ success
in both learning and problem solving. Their claims can be applied to proof construction.
Affects and beliefs cannot be ignorable factors in proof construction.

Students’ proof schemes can be interpreted as representative examples of their
beliefs toward proofs. As shown at the beginning of this chapter, Harel and Sowder
(1998) introduced three types of proof schemes: external conviction; empirical, and
analytical. Those proof schemes were further explored, developed, and refined by
several researchers. Finlow-Bates, Lerman, and Morgan (1993) observed students with
different types of proof schemes. The students with empirical proof schemes valued
proofs that contained evidence. The students with pictorial proof schemes valued
proofs explained with diagrams or figures. The students with analytical proof schemes
valued deductive reasoning. The students with empirical and pictorial proof schemes
must know the limitations of proofs constructed with their proof schemes in validation
and persuasion.

Students’ proof schemes can influence their performances in constructing proofs.
Zaslavsky and Shir (2005) found that external schemes and empirical schemes can be
the sources of students’ difficulties with proving. They found out some students
assumed that definitions accounted for the conclusion of a given statement, which

represented their external proof schemes, and that others depended on examples to

26



validate their arguments, which represented their empirical proof schemes. Students’
external and empirical schemes hindered them from developing and practicing analytic
schemes. Recio and Godino (2001) ascribed a possible source of their empirical
schemes to their prior knowledge of the way to draw a conclusion that they acquired
through social sciences.

Some researchers investigated the relationship between students’ proof schemes
and their problem solving strategies. For example, Stylianou, Chae, and Blanton (2006)
explored the patterns of problem solving in proof construction in light of their proof
schemes. Using some problems for proof construction in elementary number theory,
they observed the followings. First, the students with external schemes used a
definition of concept based on their incomplete concept images formed through what
they saw in a textbook or on what they heard in a past classroom. Concept image is a
mental picture of a concept built in the process of their learning experiences (Tall &
Vinner, 1981). The students expected that a proof should follow from the definition
without further exploration and discussion of it. Second, the students with empirical
schemes resorted to a convincing pattern through numerical examples for supporting
their proof. However, they rarely introduced definitions or symbolic representations of
the problem. Third, the students with analytical schemes showed the abilities to set a
goal for their subsequent activities, symbolize the definition, explore the definition,
gain further information, link the new information to the initial problem, and keep goals
while monitoring their actions.

The observations that Stylianou, Chae, and Blanton (2006) made indicated that

students’ perspectives toward proof construction might be a crucial factor for successful
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proof construction. The external schemes may lead students to depend on their
memorization for constructing and validating their arguments. The empirical schemes
may blind them from exploring a logical and deductive reasoning argument. It seems
imperative to provide practical knowledge for helping students grow out of their
external and empirical proof schemes and develop and enforce analytical schemes.
2.4 Comprehensive Views of Students’ Difficulties

Selden and Selden (2003a) speculated that students’ difficulties with reasoning
errors resulted partly from underlying misconceptions. They described several factors
as possible underlying misconceptions while showing examples mainly from
introductory abstract algebra (2003a, p. 6-10).

M1. They can use the conclusion for an argument that should be proved.

M2. Anything that has a name always exists.

M3. Different symbols always represent different things.

M4. The converse is true.

M5. The rules used for real numbers are always applicable.

M®6. Inequalities are conserved if the same operation is practiced to both sides.
M?7. A set can be interchangeable with an element.

This study considers proof construction from four aspects: background
knowledge, reasoning aspect, mental attitudes, and affect and beliefs. M1, M4, and M7
can be categorized in the knowledge of proving techniques. M6 can be categorized in
the knowledge. M2, M3, and M5 can be categorized in the mental attitude of
carefulness in dealing with an object. Their findings and the insights above might be
useful in helping students with the same problems or similar problems in the same

subjects. On the other hand, their findings and insights might be limited to certain types
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of problems in the same subject (introductory algebra). They might not be considered
to be generalized sources of students’ difficulties that can applicable to any problem
from any subject. In addition, more types of possible misconceptions may be detected
with a further investigation into other problems from any subject. It would be
meaningful to investigate a method that can make it possible to categorize various
sources of students difficulties with proof construction in an organized and systematic
way which can be applicable to any problem from any mathematical subject.

Weber (2006) classified the causes of students’ difficulties with proofs in three
categories: (1) Students lack knowledge of mathematical proof; (2) Students
misunderstand and misapply a concept or a theorem; and (3) Students do not know how
to develop proving strategies. Weber set the framework for modeling proof
construction from mainly two angles: knowledge base and how to use the knowledge to
advance a reasoning process. (1) and (2) belong to the knowledge base and (3) belong
to the use of knowledge. Students struggle with how to apply their knowledge to their
proof construction. However, it seems little has been discussed about specifically what
proving strategies are available for students. It would be meaningful to provide a
specific proving strategy. Gibson (1998) set a framework for examining students’
difficulties with proofs in terms of the following four factors: (1) the rules and nature of
proof; (2) conceptual understanding; (3) proof techniques and strategies; and (4)
cognitive load. What seems to be scarce are concrete suggestions to help students
overcome their difficulties in each aspect. For example, (1) and (4) might be more

specified in order to help students in a practical way. It would be meaningful to
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investigate exactly what the rules of proof exist, what nature of proof students should
know, and what factors cause students cognitive heavy load.

Moore (1994, p. 251- 252) provided the sources of students’ cognitive
difficulties in a more specific way that can be applied to problems across mathematical
subjects. He gave the following seven major sources.

D1. The students did not know the definitions, that is, they were unable to state
the definitions.

D2. The students had little intuitive understanding of the concepts.
D3. The students’ concept images were inadequate for doing the proofs.

D4. The students were unable, or unwilling, to generate and use their own
examples.

D5. The students did not know how to use definitions to obtain the overall
structure of proofs.

D6. The students were unable to understand and use mathematical language and
notation.

D7. The students did not know how to begin proofs.

Moore further categorized the above into three types in terms of the following
factors: (a) concept understanding; (b) mathematical language and notation; and (c)
getting started on a proof. He related D1, D2, D3, D4, and D5 to (a) concept
understanding, D6 to (b) concept understanding, and D7 to (c) getting started on a proof.
In addition, he pointed out that students’ perceptions of mathematics and proof might
affect their proof-writing performances negatively: (i) view mathematics as
computations and symbol manipulations; (ii) view proof as procedures; and (iii) view
proof as explanation without rigor.

The following are the correspondences between the factors in the above sources

and the aspects from which this study views proof construction.
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Affect and Beliefs: This aspect corresponds to students’ views of mathematics
and poof that Moore mentioned.

Background knowledge: This covers D1, D2, D3, and D6. D1 is about students’
lack of knowledge of the definitions of concepts. D2 is about students’ problems with
understanding concepts and theorems, which results in their lack of knowledge of those
concepts and theorems. D3 is about students’ inabilities to express their concept images,
which can be considered as their lack of knowledge. D6 is about students’ lack of
knowledge in notation and language.

Reasoning activity: This covers D4, D5 and D7. D4 is about students’ ability to
generate an example, which involves exploring, which is an operation practiced in
reasoning process. D5 is about students’ inability to use the definition of a concept to
advance their reasoning process. D7 is about students’ inability to advance their
reasoning process at the beginning stage of proof construction.

Different researchers have examined the sources of students’ difficulties from
different angles. It seems most of the methods adopted in their studies were deriving
their findings about students’ difficulties directly from students’ proofs. There seems to
be little research that first set a framework for modeling proof construction and then
examined students’ proofs in light of the framework.

2.5  Pedagogical Approaches

Proof construction is difficult not only for students to learn but also for
instructors to teach. Several researchers attributed students’ inability to prove to the
prior instruction they received. Epp (2003) indicated the instruction with too much

emphasis on general principles or concrete problem-solving strategies might impede
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students from developing their logical, deductive, and formal reasoning-skill. It is
conceivable that if students are accustomed to mathematics learning which focuses on
problem solving techniques, they might get disturbed when they face proofs for
understanding and constructing. According to Davis (1998, cited in Dreyfus, 2002,
p.28):

Most mathematics instruction, from elementary school through college courses,

teaches what might be called rituals: ‘do this, then do this, then do this ...” and

Teachers ... will typically accept the correctly performed ritual as enough

success for the time being.

This approach might mislead students to form a wrong view that mathematics is
learning ritual while impeding students from rigorous, deductive, logical, and formal
thinking in proof construction. Moreover, Knuth (2002) claimed secondary
mathematics teachers’ perceptions towards proofs and their knowledge of proofs might
affect their students’ proving skills. Through interviewing 17 secondary mathematics
teachers, Knuth observed that all of them accepted their students’ empirical arguments.
This sort of approach might enhance students’ wrong perspectives on proof
construction that showing some examples would be enough to prove a statement. Harel
and Sowder (1998) warned that if instructors guided their students to get accustomed to
justifying a statement based on some examples, they might enhance their students’
empirical schemes and prevent their students from developing analytical proof scheme.

As Dreyfus (2002) pointed out:
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Students have been taught the products of the activity of scores of
mathematicians in their final form, but they have not gained insight into the
process that has led mathematicians to create these products (p.28).

To enhance students’ conception of proof, Harel (2001) advocated the DNR
system — a system of pedagogical principles consisting of Duality, Necessity, and
Repeated-reasoning. According to Harel (2000), the duality principle means that
students’ ways of thinking and their ways of understanding have mutual influences on
each other. Students need help with the ways of thinking to enhance their ways of
understanding and vice versa. By “ways of understanding,” Harel referred to the ways
of specific mathematical actions taken in interpreting concepts, solving problems, and
justifying an argument. By “ways of thinking,” he meant the ways that governed ways
of understanding such as beliefs, perceptions, or views of mathematics, problem solving
approaches, and proof schemes. The necessity principle means that students understand
a learning concept by having an intellectual need for the concept and by eliciting the
concept from the solution to the problem involving the concept. By “an intellectual
need,” Harel referred to a desire to search for a resolution to a problem that a student’s
existing knowledge cannot cope with. The repeated-reasoning principle means students
must practice reasoning while applying the duality and the necessity principles so that
they can make their ways of thinking and ways of understanding autonomous and
spontaneous.

Harel (2001) suggested that teachers should (1) “form instructional goals in
terms of ways of thinking (p.6),” (2) “devise and use appropriate instructional activities

through which students can build ways of understanding that can potentially lead the
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construction of desirable ways of thinking (p. 6).” Harel stressed teachers should pay
attention to “how students should come to know facts and procedures and how they
should practice those facts and procedures” rather than “whether they need to remember
facts or master procedures (p. 9).” Harel claimed the DNR-based instruction might help
students develop their transformational proof schemes. Transformational proof scheme
Is an analytic proof scheme which enables students to reach conclusions through logical
deduction while generalizing an idea, applying mental operations that are goal oriented,
and transforming images.

Students’ ways of thinking can be fostered and enhanced through problem
solving. Smith (2006) hypothesized the problem-based structure of the courses may be
more effective than the traditional lecture-based teaching in helping students improve
their proving-strategies. In her research project, she recruited six students from a
problem-based number theory course and conducted a task-based interview session. In
the session, she had the student-participants prove some number theory statements. She
observed that (1) the participants showed flexibility in shifting the four phases for
proving processes: using initial strategies, constructing informal arguments,
constructing a formal proof, and validating on the final argument, and (2) they showed
a variety of proving strategies while the literature often discussed students’ static
tendencies for proving.

Ball, Hoyles, Jahnke, and Movshovitz-Hadar (2002) noted more environmental
factors for helping students more effectively learn proof construction. They claimed
that three areas must be considered with regard to the teaching of proof: (1) the role and

the function of proof; (2) the gradual processes and complexities involved in proving;

34



and (3) effective teaching strategies. Their research led to the following three domains
of work as the factors for teachers to help their students learn mathematical reasoning:
(1) selecting mathematical tasks; (2) making mathematical knowledge public and
scaffolding the use of language and knowledge; (3) creating positive learning
environment in a classroom.

This study considers analytical proof scheme to be an ideal proof scheme
students should develop. Different researchers suggested different pedagogical
approaches to help students with analytical proof scheme. Most of them provided a
teaching method but did not show specifically what should be taught. There seems to
be a need for the study that explores specific and practical knowledge that helps
students advance a reasoning process based on logical deduction.

2.6 Summary

Different researchers have examined students’ difficulties with proving from
different angles. Much of the research illuminated a particular aspect of proof
construction: mathematical language (Finlow-Bates, 1994; Thurston, 1994; Selden &
Selden, 1995; Dreyfus, 1999); students’ understanding and usage of definitions (Tall,
1991; Vinner 1991; Frid, 1994; Moore, 1994; Edward & Wards, 2004; Zaslavsky &
Shir, 2005; Knapp, 2006; Alcock, 2007; Selden & Selden, 2007; Edward & Wards,
2008; Paramerswaran, 2010); logic (Weber, 2002; Stylianides & Stylianides, 2007;
Selden & Selden, 2009; Savic, 2011); informal representations (Weber & Alcock, 2004;
Weber & Alcock, 2009; Lew, Mejia-Ramos, & Weber, 2013); and proving strategies
(Weber, 2001). Although some aspects of proof have been well-researched, there

seems to be only a handful of studies that investigated various sources of student’s
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difficulties from a comprehensive point of view (Moore, 1994; Gibson, 1998; Selden &
Selden, 2003, Weber, 2006). In addition, in my knowledge, few studies have discussed
sources of students’ difficulties through various problems from multiple mathematical
subjects.

Logical deduction is a central aspect of proof construction. Harel and Sowder
(1998) stressed the necessity of fostering students’ skills for logical deduction. With
several studies related to proof schemes (Harel & Sowder, 2007; Stylianou, Chae,&
Blanton, 2006; Zaslabsky & Shir, 2005; Weber & Alcock, 2004), many studies have not
explored the knowledge for enhancing students’ skills for logical deduction. Weber and
Alcock (2004) indicated that both syntactic and semantic approaches must concur to
construct a successful proof based on logical deduction. Moreover, Ayalon and Even
(2008) claimed that views and approaches to deductive reasoning should be given more
attention. There is a strong need and demand for providing an effective way to help
students practice both syntactic and semantic approaches.

CadwalladerOlsker, Miller, and Hartmann (2013) attributed a source of students’
difficulties with proving to the students’ incomplete understanding of what makes a
mathematical proof. Knuth (2002) suggested how to view the nature of proof and what
constitutes proofs should be clarified. It is important to describe a view of proof
construction in the form of a model. Kieran (1998) suggested both empirical and
theoretical research should involve explicitly formulated models to describe observed
phenomena. Papaleontiou-Louca (2003) stressed the importance of providing
metacognition (knowledge of one’s processes and cognitive states) by modeling task

completion for students’ effective learning. Selden and Selden (2007) created a proof
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framework as an aid of constructing a proof, focusing on the way to produce the
formal-rhetorical part. However, their method may not be effective in helping students
write a proof from the top down. There seems to be room for exploring the way to help
students write a proof from the top down.

Considering the existing gaps in the literature, this study created a framework
for modeling the structure of proof construction, which can (a) encompass the aspects,
factors, patterns, and features involved in cognitive processes in proof construction
across mathematical subjects, (b) explain sources of students’ difficulties with proving
in a clear, organized, and systematic way from a comprehensive perspective, and (c)
help students enhance their skills for logical deduction by providing metacognitive and
methodological knowledge. This study addresses the following research questions: (1)
What is a suitable model for characterizing the structure of proof construction? (2)
What difficulties do students have with proof construction and what are the sources of
their difficulties in light of the structure of proof construction? (3) How useful is the
model of the structure of proof construction? (4) What pedagogical suggestions can be

derived to help students with proof construction?
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Chapter 3: Theoretical Framework

3.1 Introduction

In order to examine students’ difficulties with proof construction, it was
necessary and important to have a framework for analyzing students’ difficulties in an
organized and systematic way. Brown (1998) suggested that the results should be
analyzed with theorization. Kieran (1998) stressed the significance of involving a
model for describing results in order to better understand the observed phenomena.
CadwalladerOlsker, Miller, and Hartmann (2013) indicated students’ wrong
perspectives on proofs may cause their difficulties with proof construction. Knuth
(2002) stressed the importance of clarifying the nature and components of proofs so that
they might learn proof construction effectively. In my knowledge, a suitable
framework for examining students’ difficulties in light of the structure of proof
construction was lacking in the literature. Therefore, it was significant for this research
to build a framework for providing a comprehensive view that can encompass the
aspects, factors, patterns, and features of proof construction.

The following theoretical perspectives led me to the creation of a model. Harel
and Sowder (1998) discussed three major types of proof schemes: external, empirical,
and analytical. Among the three types of proof schemes, this study considered
analytical proof scheme to be the desired proof scheme that students should acquire and
develop. The framework was created so that it could agree with the characteristics of
analytical proof scheme: setting a goal for subsequent activities; symbolizing definition;
gaining new information; and linking new information to the initial problem. Weber

and Alcock (2004) discussed two major ways to realize analytical proof scheme:
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syntactic and semantics approaches. The framework was designed to be metacognitive
knowledge for enabling students to practice syntactic and semantic approaches. The
exploration of a framework clarified types of cognitive actions contributing to syntactic
and semantic approaches.

In this chapter, I will present a model of the structure of proof construction and
a framework for analyzing students’ proofs. The analysis framework was built based
on the model of the structure of proof construction. | will describe the process of the
creation of the model, detail the contents of the model, introduce types of proofs, and
discuss inter-rater reliability for the model.
3.2 Creation of a Model of the Structure of Proof Construction

In order to create a model of the structure of proof construction, the think-aloud
method was applied to the researcher’s cognitive processes in his proving activities.
According to Charters (2003), think-aloud is “a research method, in which participants
speak aloud any words in their mind as they complete a task (p. 68)”. Think-aloud is
considered to be a valid and effective research method to understand individual’s
thinking process (Van Someren, Barnard, & Snadberg, 1994; Olson, Duffy, & Mack,
1984). This study aimed to examine students’ difficulties with proof construction
across mathematical subjects. | proved 40 theorems, propositions, and lemmas
collected from a variety of mathematical subjects such as undergraduate Analysis,
Algebra, and Topology, Discrete Mathematics, and Calculus.

Through self-monitoring, | investigated and categorized possible aspects and
factors that might be involved in cognitive processes in proof construction. In

particular, I noted the operations used to generate a new statement from the previous

39



statement in a proof. Those operations were carefully observed, described, abstracted,
and organized to model the structure of the reasoning activity. This study will use the
expression “the reasoning activity” to represent one’s cognitive actions for advancing a
reasoning process in proof construction. While going through 40 theorems and
propositions, the model was adjusted and refined until it explained every operation used
to generate a statement from the previous one for every step in each of those proofs. As
a result, a framework for modeling the structure of the reasoning process was created.
The model consisted of four types of operations for advancing a reasoning process
(rephrasing an object, combining objects, creating a cue, and exploring and checking).
Considering the importance of a start of proof construction, two stages were set in the
framework (the opening stage and the body construction stage). The reasoning activity
focuses on how a reasoning process is advanced in proof construction. The operations
used in the reasoning activity were considered to be the tools for constructing a proof.
Then, the contents or the material on which the operations work can be another
important aspect that decides the degree of success in students’ performances on proof
construction. Those are the knowledge of concepts, definitions, notations, properties,
facts, rules, and techniques. This study uses the expression “the background knowledge”
to represent the knowledge students are required to be equipped with in order to solve a
given proving problem.

In order to view proof construction in a comprehensive way, besides the aspects
of the reasoning activity and the background knowledge, some psychological aspects
were also considered. Harel and Sowder (2007, p. 4) asserted “a single factor usually is

not sufficient to account for students’ behaviors with proof.” Furinghetti and Morselli
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(2009) observed that mathematical thinking was not dominated by purely cognitive
behavior but might be influenced by another factor such as affect. In addition to the
aspects of the reasoning activity and the background knowledge, the model was set to
include two other psychological aspects: mental attitudes (tenacity, persistency,
flexibility, carefulness, alertness, and precision); and affect and beliefs (emotions, self-
confidence, and beliefs toward logic, proofs, and mathematics). The table 3.1 shows
the aspects of proof construction.

Table 3.1

Aspects of Proof Construction

Reasoning Activity (See Table 3.2.)

Main Rephrasing an object

Combining objects

Creating a cue

Supporting | Checking and Exploring

Background Knowledge

definitions, properties, theorems, propositions, mathematical laws, and
problem solving techniques

Mental Attitudes

Tenacity (persistency and patience)

Flexibility

Carefulness (alertness and precision)

Affect and Beliefs

Affect (emotions, moods, feelings, self-confidence)

Beliefs (schemes, beliefs toward mathematics, proof, and logic)

3.3 Model of the Structure of Proof Construction

This section first introduces and defines terms used in the model of the structure
of proof construction. Then, it presents a model of the structure of the reasoning
activity (Table 3.2) and a comprehensive view of proof construction in a 3D figure

(Figure 3.1) with detailed explanation.
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3.3.1 Terms
Mathematical language

I referred to mathematical language that is fine-grained enough to help students
make a clear distinction from everyday language, to advance a reasoning process
rigorously, and convince others without leaving any ambiguity as mathematical
language. The definition of a concept is a representative mathematical language. For
example, the word “limit” in the statement “There is a speed limit” is everyday

language. The statement “The limit of f(x)as x approaches 1 is 2” may remind some

students who have not learned Calculus of the everyday language “limit.” Although the
“limit” in the statement is mathematical language, the difference between the everyday
language and the mathematical language should not be clear to those students until they
learn the definition of the mathematical concept “limit.” In constructing a proof,
students are able to advance a reasoning process rigorously when they rephrase the

statement “The limit of f(x)as x approaches 1 is 2” with the mathematical language
“For every ¢ >0, there exists a & > Osuch that if 0 <|x—1 <&, then |f(x)-2|<e&.”

For another example, the statement of « f (X) : X — Y is continuous” is
mathematical language. However, it may be “coarse” for topology students to advance
a reasoning argument in constructing a proof. When they rephrase the statement by
applying the definition, which is “for an open set Vin Y, f*(V)is open in X,” they can
make the given statement a “fine-grained” enough to further advance a reasoning
process. | called this type of rephrasing “translation of an object into mathematical
language.” Rephrasing a statement containing a mathematical concept by applying the

definition of the concept is the most representative example of translation of an object
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into mathematical language. A statement gains a power that enables students to
advance a reasoning process rigorously when it is translated into mathematical
language.

I made a distinction between translating an object into mathematical language
and unpacking, which Selden and Selden (1995) introduced. They gave the following
example for “unpacking.” “A function is continuous whenever it is differentiable” is

unpacked into “For all functions f , if f is differentiable, then f is continuous.” After

“unpacking” the informal statement, the new statement still contains the words
“differentiable” and “continuous.” The unpacked statement “a function is continuous
whenever it is differentiable” can be still “coarse.” It may not be “fine-grained” enough
to advance a reasoning process rigorously because the mathematical terms
“differentiable” and “continuous” still remain in the new statement. In order to further
advance a reasoning process, the term “continuous” may need to be translated into a
“finer” object: IX|Lna f(x)= f(a) forallae X .” Similarly, the term “differentiable”
may need to be translated into “ lim M = lim M forall x,x" e X
x>x" X=X x>x" X=X
with x = X .”

The characteristic of the operation of translating an object into mathematical
language is that the mathematical language contains variables. Variables are crucial
and indispensable elements of mathematical language. Variables serve as fundamental
elements for making a mathematical argument formal and rigorous. In the above
example that Selden and Selden gave, the new statement obtained by “unpacking” did

not include any variables. In my study, their translation is considered to be “rephrasing
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an object through interpretation,” but translation of an object into mathematical
language is not just rephrasing an object. The operation of translating an object into
mathematical language infuses a motive power into the original object so that the new
object may enable students to develop a further argument.

There is another difference between ‘unpacking” and “translation of an object
into mathematical language.” A statement “a vector u and a vector v are orthogonal”
can be translated into mathematical language “u - v=0.” However, this translation
may not be considered to be “unpacking” because the new object does not involve any

logical terms. For another example, students may be asked to find the dimensions of

the rectangle with the area 15 cm? such that its length is 2 cm greater than its width.
The sentence can be translated into the following mathematical language: “lw =15
and “1 =w+2.” However, this may not be considered to be “unpacking” because they
do not involve logical terms. “Translating into mathematical language” includes
“unpacking,” but not vice versa. For these reasons, I will use the expression
“translation of an object into mathematical language” throughout this study instead of
using “unpacking.”

There may be a confusion in the way that the operation is named “translating an
object into mathematical language.” For example, although the statement ““a function
f : X > Y is continuous” is mathematical language, it is not considered to be
mathematical language because it may be still too coarse for students to further
advance their reasoning arguments. In order to avoid the confusion, this study uses
italicized “mathematical language” to represent mathematical language that is “fine-

grained” enough to allow students to further develop their arguments.
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Ignition phrases

In my study, | called the phrase “for every ...,” “forany ...,” or “forall ....” an
ignition phrase. The phrase “if ...” can be an ignition phrase when it is rephrased with
“forevery ...,” “forany ...,” or “for all ....” I also considered “for some ...” to be an
ignition phrase. The phrase “There exists ....” can be an ignition phrase when it is
rephrased with “for some ....” Ignition phrases can be the marks from which students
can derive and set a variable in the process of proof construction. However, all ignition
phrases are not useful in deriving and setting a variable. | made a distinction between
an ignition phrase and an ignition phrase. | called the ignition phrase from which a
variable must be necessarily derived and set for advancing a reasoning process “an
ignition phrase.” In the above example “for an open set Vin Y, if it is given in the
conclusion of a given statement, f (V) is open in X,” the phrase “for an open set VV is
an ignition phrase if it is in the mathematical language for the conclusion of a given
statement. More specifically, if a topology students is asked to prove “ f(X): X > Y is
continuous,” the student can start a proof by setting a variable “Suppose V is an open
setin X.”
3.3.2 Structure of Reasoning Activity

There are two stages in which the reasoning activity occurs: opening stage and
body construction stage. There are four types of operations that compose the reasoning
activities: rephrasing an object; combining objects; creating a cue; and checking and
exploring. This section first describes the model of the structure of the reasoning

activity (Table 3.2) and detail the stages and the operations.
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Table 3.2

Structure of the Reasoning Activity

Reasoning ACTIONS [— MAIN SUPPORTING
Activity
in Proof Roles of the Actions Transforming objects Igniting processes Supporting
Construction —> a proving argument
R co C Ch Ex
Operations Rephrasing Combini Creating a Cue Checking Exploring
STAGES Objects ng (observe, (search,
Steps Objects review, try,
l l TR RSN [ TS S O[T i, | e
123 R 1| 2|3 |4]s » adust pert-
modify, mennt,
correct) intuit)

Z: Choose a major
proving strategy.

Decide which proving strategy to use, a direct proof, an
indirect proof, or a mathematical induction.

X: Set a goal.

Given (Find the conclusion of the given statement)

Y: Make the goal

R1, R2, R3 (Translate the goal into mathematical

Opening clearer. language. For a contrapositive case, negate the given
Stage statement in mathematical language.)
P: Make sure of the Given (Find all the hypotheses of the given statement
hypotheses. and translate them into mathematical language if
necessary.)
S: Set a variable C1, C2, C3, C4, C5 or given (S can be the same as P.)
In most cases, this step corresponds to Step 1.
Step 1 N oo
1 1 1 1 1 1
Body : : : : ! !
Constructio | SteP 2 Lo A
1 1 1 1 1 1
n t t T T T T
Stage L Lo
Conclusion R A
1 1 1 1 1 1
1 1 1 1 1 1
Actions
Main Actions The operations applied to a step to generate the next step, whose outcome must be explicitly
expressed to convince others
Supporting Actions The operations to produce side work, whose outcome does not necessarily have to appear in the proof
to convince others
Rephrasing an object
R1 Rephrasing an object by translating a concept, a theorem, or a property of concept into mathematical language mainly

through applying its definition.

R2 Rephrasing an object through formal interpretation, informal interpretation, or common sense.
R3 Rephrasing an object through algebraic manipulation or calculation, including solving an equation.
Combining objects
CO(S, TR Connect and combine different pieces of objects (S and T) to create a new object. This action is always
accompanied by an operation of rephrasing.
Creating a cue
C1 | Seta variable.
C2 | Recall prior knowledge, including a theorem, a proposition, a property of concept, or a mathematical law.
C3 | Set some cases.
C4 | Make a claim or a new object
C5 | Consider an object.
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The opening stage. The opening stage is a preparation stage at which students
decide a major proving strategy (a direct proof, or a proof by contrapositive, by
contradiction, or by mathematical induction), make the goal of the proof clearer by
translating the conclusion of a given statement, and set a starting variable by finding an
ignition phrase. Here are steps that students can take in the opening stage. Students
first decide whether to use a direct proof or an indirect proof, then note the conclusion
of the given statement, translate it into mathematical language, find an ignition phrase
contained in the mathematical language, derive a starting variable from the ignition
phrase, set the starting variable to start the body construction stage. If there is no
ignition phrase in the mathematical language for the conclusion, students translate a
hypothesis into mathematical language to derive a starting variable. In some proofs,
students do not need to derive a starting variable because it is already given in the
problem. Although the work in the opening stage is useful, the work does not
necessarily have to be expressed to convince others.

The body construction stage. The body construction stage is the main part of
a proof, in which students advance their reasoning process by making good use of the
four operations (rephrasing an object, combining objects, creating a cue, and checking
and exploring).

Cognitive actions. The first row in the top table shows there are two main
actions to be taken in proof construction: (a) main actions and (b) supporting actions.
The difference between them is the necessity of explicitly writing the work obtained
through the actions in convincing others of the validity of the proving argument.

Students’ work that is performed through the main actions must be explicitly written
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out while students” work done through the supporting actions do not so that students
can convince others of the validity of their proving arguments. The former actions are
the tools directly used to generate a statement for a reasoning process while the latter
actions are the tools used to explore and prepare for an idea or a thought to advance a
reasoning process.

The main actions have two roles. One is transforming an object and the other is
igniting a reasoning process. Transforming an object means changing an expression.
An object can be a word, a phrase, and a sentence. “Igniting a process” means sparking
a process or triggering an argument. The main actions include three types of
operations: rephrasing an object, combining objects, and creating a cue. Rephrasing
an object and combining objects play a role to transform an object. Creating a cue
plays a role to ignite a process. Rephrasing an object has three types: by applying
definitions, properties, and theorems; through interpretation; and through algebraic
manipulation. Creating a cue has 5 types: setting a variable; recalling and applying
prior knowledge; setting some cases; making a claim or creating a new object; and
considering an object. Those operations are direct cognitive actions taken to generate
the next step from the previous step. Among those the operations (rephrasing an
object; combining objects; and creating a cue), rephrasing an object is considered to be
the primary operation. Combining objects is the next level of operation, which students
can try when the operation of rephrasing an object does not work for advancing a
reasoning process. Creating a cue is the highest level of operation, which students can

try when neither rephrasing an object nor combining objects work in advancing a
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reasoning process. In a sense, creating a cue can be considered as the most difficult
operation of all those three operations.

The supporting actions are the cognitive actions that support and work behind
the main actions. The supporting actions include checking and exploring. For example,
when students have impasses, they may check, adjust, modify, evaluate, and correct
what they have done or explore a method to overcome the difficulty through using a
diagram, creating an example, intuiting, or doing trial and error. The word “supporting”
does not mean “less important.” The function of supporting actions is as important as
that of main actions. In having others evaluate the proof, the work performed through
main actions must be explicitly written out while the work performed through
supporting actions does not necessarily have to be stated.

Illustrations of the reasoning activity
In order to give concrete examples of the components of the reasoning activity,

the analysis of a proof problem from Analysis is presented.

Example (Analysis)

Prove that if f'(X)=0 for all xin aninterval (a,b), then f(X)is constant on
(a,b), using the Mean Value Theorem.

In the opening stage, first decide which proving strategy to use. In this case,

choose a direct proof. Then, note the conclusion of the given statement . The goal of
this proof is to show that f (x) is constant on(a,b) . Then, translate the conclusion into

mathematical language. By doing that, students can make the goal of the proof clearer

and can prepare for setting a starting variable. The mathematical language for the

conclusion « f(x) is constant on (&, b)  is « for X;, X, € (a,b) ” by applying the definition
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of a function being constant (R1). Then, find an ignition phrase “for X;, X, € (a,b) ” to

derive starting variables. An ignition phrase is a phrase containing “for ~” or “if ~,”

which plays an important role to help students find and set a variable. Then, start the
body construction stage with “Let X, X, be arbitrary numbers found in (a,b) with

X; <X,” (C1). Call this “object 1.” An “object” means a statement or sentence for

each step. To advance a reasoning process, first apply rephrasing an object. However,
there is no way to rephrase it this time. Then, try combining objects. In order to
combine objects, look for a given condition. Since this problem requires the use of the

Mean Value Theorem, recall the Mean Value Theorem and translate it into

mathematical language “Suppose that a function f(X) is continuous on [, #]and

differentiable on (a, ) . Then, there must exist a value C € (&, ) such that

f'(c)= A -1a). (R1). Call this “object 2.” Then, combine the objects 1 and 2.

To combine different objects, find a connection between them. The object 1 states “Let
X, X, € (a,b) with X, <X,.” The object 2 states “Suppose that a function f(X) is

continuous on [, B]and differentiable on (&, 5) . Then, there must exist a value

Cc € (a, f)suchthat f'(c) = A -1 ”. In order to apply the theorem to the given

problem, look for the variables in the given problem that correspond to « and £ in the
theorem. Then, let o =X, and S =X,(C1). Then, check the validity of the claim by
noting f'(x) =00n(a,b) (CE). By combining the given condition “ f'(x) =0on(a,b) ”

and the objectl “ X, X, € (a,b) ,” obtain f'(x) =0o0n[x,,X,] (CO). Call this “object 4.”
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Moreover, rephrase “ f'(x) =0on[X,, X,]” with « f(x) is differentiable on[X,, X,]”
through formal interpretation (R2). Furthermore, by recalling the fact that
differentiability guarantees continuity, apply that to « f (X) is differentiable on[x,, X,]”

to draw * f(X) is continuous on[x;, X,]. (R2)” Now, by the Mean Value Theorem,

there exists a value C € (X, X,) such that f'(c) = M. Call this “object 5.”
Xo =%

Since rephrasing an object does not work on the object 5, try combining objects. Look

for the information still available to find the hypothesis « f'(x) =0for all X in an

interval (&,b) .” Then, combine the object 5 and the hypothesis to obtain

0=f'(c) =w (CO). Since X; <X,, which means X, —X, #0, multiply by
2 1

X, — X, to both sides to obtain f(x,)= f(x,)for X,,X, €(a,b) through algebraic
manipulation (R3).

The following table (Table 3.3) illustrates a possible proof for the above
problem with each step being coded based on the framework table (See Table 3.2).

Table 3.3

Analysis Table Type A (Example 1)

The Opening Stage Operatio
ns
X | Show f(X) is constant on(a,b).
Y | Show that for every X, X, € (&,b)with x, <x,, f(x)=f(X,) R1
P1 f'(x)=0on (a, b). Given
P2 | The Mean Value Theorem says “Suppose f(X)is continuous on R1

[p,q]and differentiable on (P, q) . Then, there exists a number

¢ € (p,q)such that f'(c) :w
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S | Let X, X, € (a,b)withx, <X, . c1
The Body Construction Stage
Let X,, X, € (a,b)withX, <X, . ¢l
2 | Note f(x)is differentiable on [x,, x,] because f'(x)=0on (a,b) R2
and [x, X,] < (a,b).
3 | Recall the theorem that says that differentiability implies C2
continuity.
4 | Then, f(x)is continuous on[x,, X,]. CO(23)R2
Note f(X)is differentiable on (x,,X,). R2
6 _ co
Then, there exists C € (X, X,) such that f'(c) = T06)=104) : (P2, 4,5)
X2 =% R1
7 f(x,)-f , co
Then, f'(c)= T%)=1(x) =0because f'(X)=0o0n (a b) and (6, P1)
Xo =% R2
ce(x,X,)c(ab).
Then, f(x)= f(X,)because X, #X,. R3
Therefore, for every X, X, € (@,b)withx, <X,, f(x)="f(x,). |COLBR2

The letter X in the first column stands for the conclusion of the give statement.
The letter Y stands for the mathematical language that students obtain by translating
the conclusion of the given statement. P1 and P2 stand for the given hypotheses. The
numbers in the first column show the order of the steps to be taken in advancing a
reasoning process. The order of the steps shown above does not have to be the only
way for advancing a reasoning process for the proof. The second column shows a
statement for each step. The third column shows the codes for the operations that are
used to obtain the corresponding steps.
3.3.3 Aspects of Proof Construction

This study viewed proof construction from the following four aspects:
reasoning activity; background knowledge; mental attitudes; and affect and emotions.
The previous section detailed the structure of the reasoning activity. This section
details the other aspects.
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The second aspect, background knowledge, means the knowledge necessary for
solving a given proving problem. It includes definitions, notations, properties,
theorems, lemmas, propositions, and proving techniques. If the operations in the
reasoning activity are compared to the tools for constructing a mathematical argument,
background knowledge can be compared to the material that is necessary for forming
the contents of the argument.

While the aspects of the reasoning activity and the background knowledge more
directly involve proof construction, students’ psychological aspects such as mental
attitudes and affect and beliefs should not be ignored as major aspects of proof
construction. The mental attitudes are the traits that everyone is required to have for a
proving activity while the affect and beliefs are the traits that depend on each individual.

Mental attitudes include tenacity, flexibility, and carefulness. Tenacity is the
source for sustaining students’ cognitive activities during proof construction. If
students do not have enough tenacity while proving, their proofs end at that point. In
the model of the structure of proof construction (Figure 1), tenacity is considered as the
primary factor for the mental attitudes because students cannot advance their reasoning
process without tenacity.

The second fundamental factor for the mental attitudes is flexibility. Flexibility
is required for students to have in addition to tenacity especially when they have
impasses in a proving activity. Here, “having impasses” means “getting stuck.” For
example, students may apply a property of a concept and find out that it does not help
them. Then, they need to be flexible enough to give up the property and to try another

property of the concept. For another example, they may try to advance a reasoning
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process by rephrasing an object but find out it does not work. Then, they need to be
flexible enough to try combining objects or creating a cue. For another example,
students may first try a direct proof but find out it does not help them. Then, they need
to be flexible enough to try an indirect proof. Thus, flexibility is an important mental
attitude that enables students to overcome their impasses by changing their ideas and
trying a new idea. In the model of the structure of proof construction (Figure 1),
flexibility is considered as the second primary factor for the mental attitudes because
flexibility does not occur without tenacity in proof construction.

Carefulness and alertness are considered as the third primary mental attitudes.
They are psychological traits that enable students to be accurate, precise, and rigorous
in dealing with objects in their reasoning process. In this study, they are interpreted to
stem from flexibility but not vice versa. In order for students to avoid making an error,
they need to be flexible and pliable enough to stop to think or to be alert to any
variation in a given situation. There may be more factors for the mental attitudes.
However, in order to avoid making the model of the structure of proof construction
complex, only those three factors (tenacity; flexibility; and carefulness and alertness)
are considered as the major factors for the mental attitudes.

Affect and beliefs are psychological traits that can affect students thinking
activities in proving. Affect means emotions, moods, and feelings, including easiness,
willingness, calmness, anxiety, nervousness, and fear. For example, students may face
an event that may greatly affect their emotions in their everyday lives, which may lower
their thinking abilities in proving. In another example, students’ test-anxieties may

obstacle their proving performances. Beliefs include perceptions and views toward
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sense-making, proofs, mathematics, and mathematical abilities. For example, students
may believe that learning mathematics is a matter of memorizing and applying
definitions and formulas, that may obstruct their deductive and logical thinking. For
another example, students’ lack of self-confidence may discourage them to think in
proving. Although affect and beliefs influence students’ proving performances, it was
not a major focus in this study for the following reasons. First, the former three aspects
(reasoning activity, background knowledge, mental attitude) are more general attributes
that can be applied to all individuals who engage in proof construction while the fourth
aspect (affect and beliefs) depends on each individual. Also, while the first three
aspects influence students’ proving activities more directly and more explicitly, the
fourth aspect influence their proving activities more indirectly and more implicitly.
Focusing on the first three aspects, a model of the structure of proof
construction is created in the form of a 3D figure (Figure 3.1) as an aid to make it easier
and simpler to grasp the view of the structure of proof construction that this study
adopted. The fourth aspect is not described in the figure, but one may imagine it exists

as a sphere that envelops the whole cuboid.
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Figure 3.1. 3D Model of the Structure of Proof Construction.

In the above cuboid, the length of the vertical line segments represents the degree of one’s mental
attitudes necessary for solving a given proof problem. The base area represents one’s amount of
knowledge necessary for solving the proof. The left front lateral side represents the opening stage and
the right front lateral side represents the body construction stage. The line on the both lateral sides
represents the reasoning activity.

[1] Mental Attitudes

(1) Tenacity: willingness to persist in, the source of sustaining and continuing one’s thinking activity
(2) Flexibility: willingness to change ideas not working and to try new or different methods

(3) Carefulness /Alertness: willingness to be cautious, precise, accurate, and watchful in dealing with

objects
[2] Background Knowledge

The knowledge necessary to prove a given statement, such as definitions, notations, and properties of
concepts, theorems, propositions, and proving techniques
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3D model of proof construction. In Figure 3.1, the lateral sides of the cuboid
represent the stages in the reasoning activity. There are mainly two major proving
strategies: a direct proof and an indirect proof. The reasoning activity by a direct proof
Is expressed with the line with arrows on the front two lateral sides facing to a reader.
The reasoning activity by an indirect proof can be expressed with a line on the two back
lateral sides that are not visible. The front left lateral side of the cuboid shows the
opening stage, in which students note the conclusion of the given statement, translate it
into mathematical language to make the goal of the proof clearer, derive a starting
variable from an ignition phrase contained in the mathematical language for the
conclusion of the given statement, and set a starting variable to start a proving argument.
“Set a goal” in the opening stage means that students make sure of the goal of the proof
by noting the conclusion of the given statement. “Set a direction” in the opening stage
means that students translate the conclusion of the given statement into mathematical
language so that they can make it easier and clearer to see the direction to reach the
goal of the proof. “Set a variable” in the opening stage means that students set a
variable with which to develop a proving argument.

The right side of the front lateral sides shows the body construction stage, at
which students advance their reasoning process by rephrasing an object, creating cue,
and combining objects. A point on the line drawn on the two lateral sides shows where
a student stands in the process of proof construction. In reality, a student’s reasoning
process may not be expressed with a straight line as it is seen in the 3D figure. A line
for representing a student’s reasoning process may be curved, winding, and fluctuated

in moving from a statement to the next statement. The straight line shown in the 3D
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figure represents an ideal reasoning process. Although the operations of exploring and
checking are not the main focus in this study, those operations may be expressed with a
curve penetrating the inside of the cuboid of the 3D figure.

The base area represents the amount of the knowledge that students are required
to have in order to prove the given proof problem. The knowledge includes definitions,
properties, notations, theorems, propositions, and proving techniques which are
necessary for solving the given proof problem. In the 3D figure, a student’s knowledge
can be expressed with the area of a base quadrilateral determined by the starting point, a
line segment along with the left front base line segment, which may be shorter than or
equal to the left front line segment, and a line segment along with the back diagonal
base line segment of the cuboid, which may be again shorter than or equal to the whole
diagonal base line segment of the cuboid. For example, suppose that a student has as
much knowledge as is represented by the quadrilateral determined by the starting point,
the point shared by the line segments on the two base line segments of the cuboid,
which may be shorter or at most equal to the base line segments of the cuboid. Then,
the student’s proof stops at the point on “the reasoning process line” in the body
construction stage, which is the intersection of the “reasoning process line” and the line
segment drawn from the upper right corner of the quadrilateral whose area represents
the amount of the students’ knowledge. If the area of the quadrilateral that represents
the amount of a student’s knowledge is smaller than the base area of the cuboid, the
student cannot reach the goal of the proof.

The vertical distance from the point on the “reasoning process line” seen in the

two lateral sides, at which a student stands in the process of proving, to the base of the
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3D figure represents the degree of a student’s mental attitudes such as tenacity,
flexibility, and carefulness. If the degree of a student’s mental attitudes is not enough
for the level that is required by a given proof problem, the student cannot reach the goal.
For example, suppose that a student’s argument stops at a point on “the reasoning
process line” which is short of the goal. Then, the degree of the mental attitudes that
the student has is expressed with the distance from the point at which he stands and the
intersection point of the base line segment and the vertical line segment drawn from the
point at which he stands. Thus, if the degree of a student’s mental attitude is shorter
than the one expressed with the height of the 3D figure, the student cannot reach the
goal of the proof.
3.4  Frameworks for Analyzing Students’ Proofs

Based on the model of the structure of proof construction, two types of
frameworks were created for analyzing students’ proofs. One was created according to
each proof students worked on. It contained all the steps to be taken for the proof. It
also included what type of operation was applied to generate a statement from the
previous statement for each step in a proof. Each of the operations used in the proof
was coded. The purpose of this framework was to detect where students have
difficulties or impasses and which operation they fail to apply. | called this type of
analysis framework Type A. The framework Type A was created for each problem

examined in this study. Table 3.4 is an example of the analysis framework Type A.

Example (Topology):

Let g: X =Y be aquotientmap and f :Y — Z be a map.
Suppose f o(qis continuous. Show f :Y — Z is continuous.
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Table 3.4

Analysis Table Type A (Example 2)

Step Statement Operation Students
A| B
Opening Stage
X f :Y — Z is continuous. Given
Y:0TC For any open set W in Z, f (W) isopenin. R1
P1: hypothesis | g: X — Y is a quotient map. Given
P2: hypothesis fo q is continuous. Given
S: OSV Let W be an open set in Z. C1
Body Construction Stage
1 Let W be an open set in Z. C1
2 Consider (f o) (W) . C5
3 Note (f o) '(W)=q(f "(W)). R1
4 Since f o is continuous , CO(3,P2)R1
q ™ (f (W)) is open in X.
Recall the property of a quotient map. Cc2
Since qis a quotient map, CO(4,5)R1
f (W) must be openin Y.
7 Therefore, f :Y — Z is continuous. R1

The other type of analysis framework (Table 3.5) was created based on the

model of the structure of proof construction. It was built in order to identify students’

difficulties and possible sources of their difficulties. I called this framework Type B.

Moore (1994) provided seven major sources of students’ cognitive difficulties with

proof construction. The framework Type B helps to compare the components of

Moore’s model and the model created in this study for finding correspondences. The

possible sources listed in the framework Type B covers Moore’s seven sources from

different angles. The correspondences are shown on the fourth column of the table

(Table 3.5). The framework Type B was applicable to any proof while the framework

Type A (Table 3.4) changes according to a proof that students worked on.
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This analysis framework Type B was converted into a framework (Table 3.6)
through negation of its components, which turned out to be a list of the types of abilities
and proving skills that were necessary for students to construct a successful proof. 1
called this framework Type C. There is no substantial difference between the
framework Type B (Table 3.5) and the framework Type C (Table 3.6), but the former
informs more directly of the types of students’ difficulties and the sources of their
difficulties while the latter informs more directly of the types of students’ abilities and
skills necessary for proof construction.

Table 3.5

Analysis Framework Type B

the Opening OoTC unable to pay attention to the conclusion of a given statement, D7
Stage unable to translate it into mathematical language correctly
osv unable to set a right starting variable D7
Knowledge KDF Do not know definitions D1,D3
KPR Do not know properties, related theorems, and propositions D3
KTC Do not know a proving technique
KNT Do not know notations of a concept D6
Mental MT Lack of tenacity (give up thinking halfway through)
Attitudes MC Lack of carefulness, precision, or alertness (including cases of skipping steps) D5
MF Lack of flexibility (stick to a wrong idea or an idea that does not work without trying a
different way)
Rephrasing R1 Unable to rephrase through applying definitions, properties, and theorems D1
an Object D2
R2 Unable to rephrase by formal or informal interpretation
R3 Unable to rephrase by algebraic manipulation or computation
Combining (6{0) Unable to connect and combine the objects
Objects Unable to use all the given conditions
Creating cue C1 Unable to set a variable for cue for advancing a reasoning process
Cc2 Unable to recall definitions, properties, theorems, propositions, mathematical laws,
proving techniques from their prior knowledge
C3 Unable to set some cases
C4 Unable to make a claim
C5 Unable to consider an object
Supporting CH Fail to check what has been done D4
Actions EX Unable to explore an idea to advance a reasoning process, do experiment, create and use
an example, or intuit an innovative idea
Beliefs and B Fail to have a sound and appropriate beliefs toward logic, proof, and mathematics. D5
Emotions E Get emotional factors affect proving performances.

Note. The framework for identifying possible sources of students’ difficulties with
proof construction and for showing the correspondences of Moore’s seven sources of
students’ difficulties, 1994, p. 251-252)

Moore’s seven sources of students’ cognitive difficulties with proof construction are as
follows.
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D1. The students did not know the definitions, that is, they were unable to state the

definitions.

D2. The students had little intuitive understanding of the concepts.

D3. The students’ concept images were inadequate for doing the proofs.

D4. The students were unable, or unwilling, to generate and use their own examples.

D5. The students did not know how to use definitions to obtain the overall structure of

proofs.

D6. The students were unable to understand and use mathematical language and

notation.

D7. The students did not know how to begin proofs.

Table 3.6

Analysis Framework Type C

Manage the OTC | note the conclusion of the given statement and translate it into
Opening mathematical language correctly
Stage Well OSV | Set aright starting variable
Have Solid KDF | Know definitions
Background KPR | Know properties and theorems
Knowledge KST | Know proving or solving techniques
KNT | Know the notations
Have Positive MT | Have Tenacity
Mental MC | Have Carefulness and Alertness
Attitudes MF | Have Flexibility
Rephrase an R1 | Rephrase an object through applying definition of a concept
Object R2 | Rephrase an object through formal or informal interpretation
R3 | Rephrase an object through algebraic manipulation or computation
Combine CO | Connect and combine objects
Objects Use all the given conditions
Create a Cue C1l | Setavariable
C2 | Recall definitions, properties, theorems, lemmas, techniques from
their prior knowledge
C3 | Set some cases
C4 | Make aclaim
C5 | Consider an object
Practice EX | Explore an idea to advance a reasoning process, do experiment,
Supporting create and use an example, intuit an innovative idea
Actions CH | Check what has been done.

Note. The framework for showing the abilities and skills necessary for proof

construction.
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3.5  Types of Proofs

In the process of creation of the structure of proof construction, proofs were
classified into three types according to the ways to manage the opening stages, more
specifically, the ways to set a starting variable. For the first type, students derive a
starting variable from an ignition phrase in the mathematical language for the
conclusion of the given statement. For the second type, students derive a starting
variable from an ignition phrase in the mathematical language for a hypothesis of the
given statement. A proof by contradiction belongs to this type. A proof that requires
students to construct an object seems to belong to this type. The Tube Lemma was such
an example, in which students are asked to construct an open set that satisfies certain
conditions. For the third type, students do not have to derive a starting variable and can
directly work on the conclusion of the given statement. Mathematical induction and
proofs of trigonometric identities belong to this type.
3.5.1 Examples of Types of Proofs

In the following pages, some examples for each type of proofs are presented
(Tables 3.7 - 3.13). Those proofs were collected from a variety of mathematical
subjects: Algebra (Table 3.7), Analysis (Table 3.8, 12), Topology (3.9, 10, 11), Discrete
Mathematics (Table 3.13). The first three examples (Table 3.7, 8, 9) belong to the first
type, in which students derive a starting variable from the conclusion. The next two
examples (Table 3.10, 11) belong to the second type, in which students are required to
derive a starting variable from the hypothesis. The remaining two examples (Table
3.12, 13) belong to the third type, in which students are not required to set a variable,

and can start to directly work on the variables provided in the conclusion of the given
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statement. To show the types of proofs do not depend on mathematical subjects, some

proofs from a variety of mathematical subjects are presented for each type of proof.

The table below (Table 3.7) is an example of the proofs belonging to the first

type, in which students derive a starting variable from an ignition phrase in the

mathematical language for the conclusion of the given statement. The following is the

question of the problem.

Example (Algebra)

Suppose that G/Z(G)is cyclic. Prove that G is abelian.

Table 3.7

Example of Type I (1)

Opening Stage Operation
X | Show G is abelian.
Y | Show that foranyg,heG,gh=hg. R1
P1| G/Z(G)is cyclic. Given
P2 | G/Z(G)=(xZ(G)) for some xeG . R1
S | Suppose g,heG. C1

Body Construction Stage
1 | Suppose g,heG. C1l
2 | Note that each of g,h € G is in some coset. C2
3 | Then, g=x"aand h=x"b for some a,b e Z(G) for some CO(2, P2)R2
nmeZ

4 | Consider gh. C5
5 | Then, gh=x"ax"b = x"""ab = x""ba = x"bx"a = hg CO(B,4)R3
6 | Therefore, foranyg,heG,gh=hg. R2
7 | Thus, G is abelian. R1

The table below (Table 3.8) shows another representative example of Type I,

which is from Analysis. Students derive a starting variable from the ignition phrase in

the mathematical language for the conclusion of the given statement. The question is

the following.
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Example (Analysis)

Suppose each of s, and t, is a convergent sequence such that
lims, =L and limt, =M. Provelim(s, +t,)=L+M.

n—oo N—oo

Table 3.8

Example of Type I (2)

Opening Stage

X | Provelim(s, +t,)=L+M . Given

Y | Show that for every & >0 , there existsan N € Z* R1
such that for every =N, |(s, +t,)—(L+ M)/ <&.

PL | lims, =L Given

P2 | limt, =M Given

S | Supposes >0, C1

Body Construction Stage

1 | Supposee >0, C1

2 | Since lims, =L, there exists an N, € Z"such that CO(P1,1)R1
foreveryn> N, |(s, - L) < g

3 | Since limt, =M, there exists an N,  Z"such that for CO(P2,1)R1

&

every n>N,, |, - L)|<§ .

4 | Let N =max{N,,N,}. C1

5 | Consider|(s, +t,)—(L+M)|. C5

6 Note|(sn+tn)—(L+ M)|=|(Sn—L)+(tn—M)|. R3

7 | Recall the triangle inequality. C2

8 | Then,|(s, — L) +(t, —M)|<]s, —L| +]t, — M. CO(6,7)R1

9 | Note that foreveryn >N, [s, —L|+[t, —M|<e¢. CO(1,2,3)R3

10 | Thus, for every e > 0, there exists an N e Z*such that CO(8,9)R2
forevery N2 N, |(s, +t,)—(L+M)|<e.

11 | Therefore, lim(s, +t,)=L+M . R1
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The next example (Table 3.9) is another example of Type I, which is from
Topology. In this case, students derive more than one variable from the ignition phrase

in the mathematical language for the conclusion of the given statement.

Example (Topology)

Suppose f : X —Y is continuous. Then, prove that f(A) < f(A).

Table 3.9

Example of Type | (3)

Opening Stage

X | Prove f(A)c f(A).

Y | Show that if y e f(A), then y e f(A). R2

Y' | Showthat if x € A, then f(x) e f(A). R2

Y" | Show that if x e A, for any neighborhood U of f(x), R1
Unf(A)#g.

P | f is continuous. Given

S | Let x e A and let U be a neighborhood of f (x) . C1

Body Construction Stage

1 |Let xeA. C1

2 | Let U be a neighborhood of f(x). Cl

3 | Since fis continuous, f *(U)is an open neighborhood of x. SO(P,Z)R

4 | Since x e A, there exists an element z such that CO(1,3)R
ze f1U)NA. !

5 | Consider f(z). C5

6 | Note, f(z)eU n f(A). CO@B)R

2

7 | Thus, if x e A, there exists z Y such that f (z) eU n f(A), CO(1,
thatis, U A f(A) # ¢ . 6)R2

8 | Therefore, f(A) = f(A). R1

The great majority of proofs examined in this study belonged to Type I, in
which students were required to set a starting variable from the conclusion of the given

statement. However, there were a few proofs in which students were required to derive
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a starting variable from a hypothesis of the given statement. The followings (Tables

3.10 and 3.11) are such examples (Type II).

Example (Topology)

Let X, Y be topological spaces, Y compact, x, € X , N an open set
containing {X,}xY in the product space X xY .

Prove that there exists an open neighborhood W < X of x,such that
WxY cN.

Table 3.10

Example of Type Il (1)

Opening Stage
X | Show there exists an open neighborhood W < X of x,such that

WxY cN.
Y | Find an open neighborhood W < X of x,such that WxY < N . R2
P1 | Nisan open set containing {x,}xY in the product space X xY C4

P2 | Y is compact.

Body Construction Stage
1 | Since Nisopenin X xY  foreach (X,,Y) e{X,}xY , there exists Cl
a basis open set U, xV, €T, xT, < N, containing (X, y) .

Then, {{x,}xV, e{x, xT, }is an open cover of {x,}xY . C4
Since {x,}xY is homeomorphic to Y, {x,}xY is compact. C4
4 | Then, there exists a finite open subcover C1

{{x}xV, e{x,}xT,}} where i e{L,...,njn €Z"}and leyi =Y.

5 | Note that {x,}xY ={U, xV,}=N.. where ie{l...nnez'}. | Cl
CO

Let W = rnWUi , where W is an open neighborhood of X, , where
i=1

{X,}xY cWxY cN.

The following (Table 3.11) shows an example of the proof in which students are

to derive multiple starting variable from a hypothesis of the given statement.
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Example (Topology)

Prove that if f (x,)convergesto f(x,) for every sequence X,
that converges to X, , then f : (X, 1) — (Y, p) is continuous at X, ,
where A, p are metrics for X and Y respectively.

Table 3.11

Example of Type 1l (2)

Opening Stage

Z | Use an indirect proof by showing the contrapositive.
Show that if f () is not continuous, then f(x,)does not

converge to f(x,) for some sequence X, that converges to X, .

X | f(x,)does not converge to f(x,) for some sequence x, that R2
converges to X,

X" | Construct a sequence X, that converges to x, but f(x,) does R2
not converge to f(x,).
Y | Construct a sequence X, that satisfies the following conditions: R1

(1) 3&>0, forallnezZ™, p(f(x,), f(X,))>¢, (2) forany
x>0, there exists an N € Z *such that forany n>Z",

X, X)) <K .

P | Suppose f(x) is not continuous at X, . Given

S | Let € >0 be fixed. Suppose 6 >0and x >0. C1

Body Construction Stage

1 | Since f(x) is not continuous at X, , there exists & > 0 such that C1
forany x>0, A(X,X,) <= p(f(x), f(X,))=¢.

2 C4
Claim that {x__. |/1(xn ,Xg) < %}is a desired sequence.

3 C5
Consider {X,|A(X,,X,) < %}.

4 C1
Let N € Z"such that % <K.
Then, forany N> N, A(x,%,) <. R2

R1

Therefore, {xn|ﬂ,(xn,x0) < %}converges to X, .

7 C5
Consider {f (x,)|A(X,,%,) < %}.

8 | Note {f (x,)}does not converge to f(x,). CO(1,7)R2
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9 | Note the sequence {X,,X,,X,,... jconverges to x, while f(x,) R2
does not converge to f(x,).

There was another type of a proof, in which students did not have to derive a
starting variable and were able to start a proving argument with directly working on the

conclusion of the given statement. The followings (Table 3.12, 13) are such examples.

Example (Analysis)
b(x)

Suppose f(x)= Ig(t)dtwhere a(x) and b(x) are C'functions and
a(x)

g(t) is continuous. Prove that f'(x) =b'(x)g(b(x))—a'(x)g(a(x)).

Table 3.12

Example of proof for Type 111 (1)

Opening

X | Show f'(x) =b'(x)g(b(x)) —a'(x)g(a(x))
Y 0 R2

Consider f'(x) =m'(x) +k'(x), where m(x) = [g(t)dt and

a(x)
b(x)
k()= [g(t)at
0
P1 | a(x)and b(x)are C*functions. Given
P2 | g(t)is continuous. Given
S | Consider f'(x). Given
Body Construction Stage

1 d d " C5

Consider— f(x) =— _[g(t)dt .

dx dX .0y

2 | Note R3

d d 0 b(x) d b(x) a(x)

—f(X)=— t)dt t)dt |=— t)dt — t)dt

L f00=1 a(jx)go + !g() dx“g() !g() }
3 | Recall and apply the Fundamental Theorem of Calculus. C2
4 | Then, f'(x)=g((b(x)b'(x)—g(a(x))a'(x) CO(2,3)R1

The problem in the next example (Table 3.13) is a mathematical induction. A

mathematical induction is another example showing that students start their proving
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argument with directly working on the conclusion of the given statement. The proofs

for showing trigonometry identities also belong to this type.

Example (Discrete Mathematics)

L n+1)(2n+1
Prove that for every positive integer n, show 1> +2° +...+n’ = n(n+1)(2n+1) _

6
Table 3.13
Example of Type 111 (2)
Opening Stage
X Showl® +2% +...+n? :n(n+1)6(2n+1)l
Z | Use mathematical induction. Let P(n) be the given statement.
X1 | Show that P(1) holds.
Y1 R2
(_S) Show that12 = 1(1+ 1){2(1) +1} .
- 6
Body Construction Stage
1 | Note that the left hand side is 1. R3
2 Note that the right hand side is = 1d+ 1){62(1) Al 1}. R3
3 Note.1 = 11+ D{2(2) +1}. CO(1,2)
6 R2
Opening Stage
X2 | Show that if P(k) holds, then P(k+1) holds.
Y2 R2
(=5) | Show that if 12407 14 k2 = KK +1)éZk +) holds, then
PP +2° +..+k? +(k+1)?* = (k+ D)k + 2)6{2(k LDRE! 3
g Assume that1® + 2% +...+k* = k(k +1)é2k 1) . Given
Body Construction Stage
1 | Consider the left hand side of P(k+1). C5
Note the left hand side is1? + 2% +...+ k? + (k +1)°. R3
Note that CO(P,2)
12+22+...+k2+(k+1)2:k(k+1§2k+1)+(k+l)2. R3
4 Note that R3
2
k(k +1)6(2k +1) +(k+1)? = (k+1)(2k 46-k + 6k +6) _
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5 | _(k+)(@K*+7k+6) _ (k+1)@2k+3)(k+2) _ R3
6 6
6 | _ (k+D{(k+)+DH2(k D)+ 3 R3
6

3.6  Reliability of the Model of the Structure of Proof Construction

In order to get a sense for the reliability of the model, I had six mathematics
professors to review the model of the structure of proof construction. The meetings
took place in each professor’s office. | explained the model to them, using the proofs |
made and the proofs | had them make. They agreed that the model was applicable to
those proofs. Two professors gave me minor suggestions. One professor suggested the
researcher should avoid using the expression “linking information,” which led me to the
use the expression “combining objects.” Another professor expressed a minor
preference of using the notation CO(A, B)R1 instead of using CO(AB)RL1 to represent
the operation of combining objects A and B. The same professor also posed the
question: Is this model applicable to non-proof regular problems? This would be
another research question to be examined for a future project.

The model of the structure of the reasoning activity was compared with the
standard theory for problem solving, which Newell and Simon (1958, 1976) presented.
The theory provided four major characteristics pertinent to problem solving: (1)
representation, interpretation, and manipulation of symbolic structures; (2) search
through a set of available information; (3) selective search through heuristics; (4)
reduction of the differences between current and desired states. Rephrasing an object
may play a major role of (1). Combining objects and creating a cue can function as (2).
Checking and exploring may correspond to (3). The first three actions (rephrasing an

object, combining objects, and creating a cue) can realize (4).
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The model of the structure of proof construction was compared with the
theoretical framework for understanding problem-solving success or failure, which
Schoenfeld (2010) presented. The followings are the categories he included in this
theory.

e Knowledge base (what students know)

e Problem solving strategies (the tools or techniques students have for solving
problems)

e Monitoring and self-regulation (the metacognition concerned with how well
students manage the problem solving resources)

e Beliefs (students’ sense of mathematics, of themselves, of the context and more,
which shape what they perceive and what they choose to do.

There seems to be a correspondence between the above categories and the
aspects of proof construction presented in the model of the structure of proof
construction (Figure 3.1). The first category “knowledge base” corresponds to the
background knowledge. The second category “problem solving strategies” can
correspond to the operations of the reasoning activity (rephrasing an object, combining
objects, and creating a cue). The third category “Monitoring and self-regulation”
corresponds to the mental attitudes (tenacity, flexibility, and carefulness and alertness).
Finally, the fourth category “Beliefs” corresponds to emotions and beliefs. The
framework and the model for the structure of proof construction may play a role to help
students solve proof problems.

Flavell (1979) classified metacognitive knowledge into three types in terms of

the following variables.
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e Person variable: one’s knowledge about one’s learning abilities;

e Task variable: one’s knowledge about the information available for proof
construction;

e Strategy variable: one’s knowledge about strategies.

The model of the structure of proof construction may play a role in the
metacognitive knowledge that is necessary for proof construction. The aspect of affect
and beliefs in the model can be considered to correspond to the person variable. For
example, one’s self-confidence is a person variable. The aspect of the background
knowledge in the model may correspond to the task variable. For example, students’
background knowledge may be abundant or meager, and well or poorly organized.
According to their knowledge, they recognize and decide the difficulty of a given proof
problem and predict their success in solving the problem. The aspect of the reasoning
activity together with the mental attitudes may correspond to the strategy variable. The
model of the structure of proof construction may help students develop their
metacognition that is useful for proof construction.

Polya (1957) suggested a framework for problem-solving. His framework
consisted of four phases: orientation (understanding the problem), planning
(developing a plan), executing (carrying out the plan), and checking (looking back).
His orientation and planning correspond to the operations conducted in the opening
stage, including the step of making sure of the goal of the proof, which is often done
by translating the conclusion of the given statement into mathematical language. His
“checking” corresponds exactly to exploring and checking in this study. His “executing”

corresponds to the reasoning activity. This study detailed the thinking actions of his
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“executing” and categorized them into rephrasing an object, combining objects, and
creating a cue. Carlson and Bloom (2005) further developed Polya’s problem-solving
framework into a multidimensional framework for problem-solving. In their
framework, they included resources, affect, heuristics, and monitoring, still keeping the
four phases that Polya’s framework included. Their resources, affect, heuristics, and
monitoring correspond to the background knowledge, affect and beliefs, the action of
exploring and checking, and the mental attitudes in this study, respectively.
3.7 Summary

Being led by frameworks of Harel & Sowder (1998), Weber & Alcock (2004),
and Selden and Selden’s ( 2007), this study created a model of the structure of proof
construction. Through proving dozens of theorems and propositions from multiple
mathematical subjects, a comprehensive view of proof construction was built in the
form of a model. The model clarified the aspects, factors, patterns, and features
involved in cognitive process of proof construction. In particular, the model elucidated
the types of cognitive actions to realize each of syntactic and semantic approaches
while providing the way to classify proofs into three types. The model directly
contributed to the creation of the frameworks for analyzing students’ proofs, which also
served as a framework for describing the abilities and skills necessary for proof
construction. The model of the structure of proof construction earned an agreement
from six mathematics professors as inter-rater reliability. The analysis framework was
created based on the model of the structure of proof construction is to explain and
understand the sources of students’ difficulties with proof construction in a clear,

organized, and systematic way.
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Chapter 4: Methods

4.1 Introduction

One of the main purposes of this study is to identify the sources of students’
difficulties with proof construction. | sought the research method that best fitted for
detecting sources of students’ difficulties and deriving the patterns and features seen in
their difficulties in a variety of types of proofs. This chapter presents the description of
the methods used in this study for collecting and analyzing the data.
4.2.  Methodology

| used document analysis for a research method for this study. In this section, |
am going to explain why I chose the research method.
4.2.1 Document analysis

Document analysis is a qualitative research method for delineating and
interpreting phenomena through examining documents (Bowen, 2009). Labuschagne
(2003) claimed that document analysis was effective for organizing texts into themes,
categories, and case examples. Bowen (2005, 2009) also elucidated the roles of
documents as follows: (a) providing research data; (b) allowing researchers to organize
information, verify findings, and corroborate evidence; (c) helping researchers practice
a thorough examination of the target phenomena; and (d) allowing researchers to take a
variety of forms, including books, journals, newspapers, scripts, and public records.

This study aimed to investigate the sources of students’ difficulties with proof
construction from multiple angles. The target documents were students’ proofs from
their exams and problem-solving sessions. In order to generalize the patterns and

features seen in the difficulties students had, it was necessary to collect as many
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students’ proofs as possible from different individuals and from different mathematical
subjects. These proofs provided the data for this study. Document analysis was
effective in meeting the demands of this study in the following ways: First, students’
proofs directly provided the data as reliable sources. Students’ proofs also enabled the
researcher to effectively practice a close investigation into and careful interpretation on
the data. In addition, students’ proofs were strong evidence to support the findings.
Moreover, with the use of the analysis framework, students’ proofs helped the
researcher organize the collected information into categories and to recognize patterns.
4.2.2 Sampling Method

For the sampling method, this study adopted criterion sampling. According to
Creswell (2007), criterion sampling is a sampling strategy in which researchers
establish criteria for the source of data. This study set the criteria for the participants to
be those students enrolled in proof-based courses, more specifically, undergraduate
Algebra, Analysis, and Topology, at a large comprehensive research university in the
middle Southern United States in 2013. There were some unique characteristics about
those participants. Since the chosen school was one of a few research schools in the
state, students’ academic levels were expected to be relatively high among all the
undergraduate students in the same state. In addition, since the target courses were one
of the highest undergraduate mathematics course usually taken by mathematics majors,
the target participants’ mathematics abilities were expected to be relatively high among
all the undergraduate students in the same university. The difficulties they might
encounter can be representative of those of most undergraduates, in particular, most

mathematics majors in other universities. For the same reason, the target participants
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were also expected to have higher motivation and more positive learning attitudes
toward mathematics. Moreover, the target participants were expected to have already
completed Calculus sequence and Discrete Mathematics as they were prerequisite
courses. Another characteristic of those participants was found in their courses. All the
three courses had relatively a small size of students ranging from 10 to 15. Analysis
and Algebra classes was a 50-minute class held three times a week while Topology
class was a 75 minute class held twice a week.
4.3  Participants

The participants were those students who were enrolled in Introduction to
Algebra I, Introduction to Algebra I1, Introduction to Analysis I, or Introduction to
Topology in 2013 Spring.
Table 4.1

Participants of Algebra | Students

Introduction to Algebra | Male Female Total
In-class problem solving session 6 2 8
Exams 10 3 13
Individual problem solving session 1 0 1

Algebra | students had already taken Linear Algebra, Discrete Mathematics, and
Calculus I, 11, and 111 courses. They had a class meeting twice a week and each class
was 75 minutes long.

Table 4.2.

Participants of Algebra Il Students

Introduction to Algebra Il Male Female Total
In-class problem solving session 7 3 10
Exams 7 3 10
Individual problem solving session 3 1 4
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Algebra Il students had already taken Algebra | in addition to Linear Algebra,
Discrete Mathematics, Calclulus I, Il, and 111 courses. They had a class meeting three
times a week and each class was 50 minutes long.

Table 4.3

Participants of Analysis | Students

Introduction to Analysis | Male Female Total
Exams 6 1 7

Analysis | students had already taken Discrete Mathematics, and Calculus I, II,
and 111 courses. They had a class meeting twice a week, and each class was 75 minutes
long.

Table 4.4.

Participants of Topology | Students

Introduction to Topology | Male Female Total
Exams 3 4 7
Individual problem solving session 1 0 1

Topology I students had already taken Discrete Mathematics, and Calculus I, 11,
and I1l. They had a class meeting twice a week. Each class was 75 minutes long.
4.4  Data Collection

The data used for this study was a collection of students’ written proofs. There
were three types of instruments for collecting students’ proofs: (1) in-class mid-term
and final examination scripts; (2) in-class problem solving sessions; and (3) individual
problem solving sessions. Under the permission of IRB (Institutional Review Board), |

visited each target class to recruit participants for each research activity. | obtained
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consent forms from the students in each course, and upon their agreements, used their
proofs as data for this research.
4.4.1 Students’ in-class exams

Students’ mid-term and final examination scripts were collected from
undergraduate Algebra I and 11, Analysis I, and Topology courses. The examination
questions were made by each instructor of those courses. In sorting out the problems to
be analyzed from among many problems in the exams, first, some problems were
eliminated. Those problems included the following types: (1) those problems that were
irrelevant to proof construction; and (2) problems that asked for construction of a
counter example. Then, among the rest of the problems, the priority was given to those
problems whose solutions the researcher was confident about. The following table
(Table 4.5) shows the number of the students whose examination scripts were collected
as data for this study.
Table 4.5.

Population Sizes for Examination Scripts

Exam 2 Exam 3 Final
Topology 7 7 7
Algebra | 13 0 13
Algebra Il 10 0 0
Analysis | 7 6 6

4.4.2 In-class problem solving sessions

An in-class problem solving session was conducted in each of Algebra I and 11
courses under permission of the instructor of each course. The time length of the
session was decided by the instructor of each course. The researcher made a pool of

problems to be given in the session in advance. Then, the instructor of each course
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chose the actual problems that were given to the students in the session. The problems
given to the students were all from the materials that the participant students had
already learned in their classes (See Appendix).

The problems were designed in the following way. All the problems were for
proof construction. Three stages were set for each problem. On the first page, students
were asked to solve the problem with no hints. If they were not able to solve the
problem, they were led to the next page, where the definitions of the concepts involved
in the problem were provided. If they were still not able to solve the problems, they
were led to the next page for more hints. Hints included properties of concepts and
directions of the proof construction. Students were asked not to use an eraser. If they
needed to erase what they wrote, they were asked to cross them out with a straight line.
They were also required not to go back to a previous page once they moved to a new
page. These directions were written in the worksheets and given to the students orally
as well. The following table shows the population of the students who participated in
the in-class problems sessions as well as the length of each session.

Table 4.6

Population Sizes for In-Class Problem Solving Sessions

Course Population of participants Time Length
Algebra | 7 25 minutes
Algebra 1l 8 50 minutes

4.4.3 Individual problem solving sessions
In total, nine students participated in individual problem solving sessions. The
problem-solving sessions took place in the researcher’s office. Each participant came

to the office in different times. Each session was 50 minutes long. The researcher
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prepared a pool of problems for proof construction. Before having the participants
solve the problems, he researcher made sure if those problems were from the material
they had already learned. When they finished, | went through their work and asked
questions if there was any. The form of the problems used in the sessions were similar
to the ones used in the in-class problem solving sessions. Each problem had three
stages. In the first stage, they were asked to solve the problem with no hints. If they
needed help, they were led to the next page which provided definitions of concepts
involved in the problem. If they needed more help, they were led to the next page
which provided more hints including a direction of proof construction as well as the
definitions of the concepts. Once they moved to a new page, they were not allowed to
go back to a previous page. They were also not allowed to use an eraser to erase what
they had written and were required to cross out with a straight line what they wanted to
erase. The table below shows the courses the student participants were enrolled in.
Table 4.7

Population Sizes for Individual Problem Solving Sessions

Topology Algebra | Algebra Il Analysis
population 2 1 4 0

45  Data Analysis

For analyzing students’ proofs, two types of framework were created. The first
type of table (Table 3.3 and Table 3.4) was used for detecting students’ impasses and
the operation they failed to apply. This type of analysis table (Type A) was created for
each problem the participants worked on. Each analysis table showed step-by-step
proof and the coded operation used to generate a corresponding statement for each step.

The other type of framework (Table 3.5) was used for identifying the sources of

81



students’ difficulties. It was created based on the framework for modeling the structure
of proof construction.

First, | de-identified participants’ names and gave a pseudonym to each student.
Then, based on the analysis table Type A, the researcher examined each step of the
proof that each student made. Then, each of their mistakes and difficulties was
analyzed from the three perspectives based on the framework Type B: the reasoning
activity; background knowledge; and mental attitudes). Concerning the last aspect
“mental attitudes,” there was no way to measure the degrees of students’ mental
attitudes. Therefore, the decision of if a student’s difficulty or failure was due to his or
her lack of tenacity, flexibility, carefulness and precision, was subjective and peripheral
because it depended on the researcher’s interpretation to some extent.
4.6 Summary

In conjunction with the use of the analysis frameworks, the document analysis
was a suitable method for gathering and analyzing the data for this study. This method
allowed me to examine various difficulties that students confronted in the same proof
problem. In particular, with the analysis frameworks, document analysis allowed me to
collect a sufficient number of students’ proofs to generalize the patterns and features of
their difficulties with proof construction across mathematical subjects. In total, the
researcher analyzed 81 proofs which were collected from students’ examinations and
in-class and individual problem solving sessions. The next chapter presents the
findings obtained through analyzing students’ proofs in light of the structure of proof

construction.
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Chapter 5: Results

51 Introduction

This chapter presents representative results from the analysis of students’ proofs.
The poofs ranged over introductory Algebra, Analysis, and Topology. The students’
proofs were analyzed based on the two types of frameworks as described in Chapter 3.
This chapter first gives a few examples of how students’ proofs were analyzed with the
use of the analysis frameworks. Then, it presents representative results from the
analysis of students’ proofs. The results will be presented according to the aspects and
factors of the structure of proof construction: the opening stage, rephrasing an object,
combining objects, creating a cue, background knowledge, and mental attitudes.

5.2  Examples of Analysis Table (Type A)

This section presents some examples that show how a student’s proof was
analyzed based on the analysis table and framework. In order to show as many factors
for possible causes of students’ difficulties as possible, which are listed in the
framework (Table 3.5), three students’ proofs are used. These proofs were all on the
same problem. In each example, first, the problem is introduced. Then, the analysis
table Type A is presented to show every step of the proof, the coded operation used to
generate each statement for each step, and the degree of student’s success in obtaining
each statement. Then, | will give a comprehensive analysis of the proof students made,

using the analysis framework Type B (Table 3.5).
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Analysis [9] (Final Exam)

f :(a,b) > R has a global maximum at some X" € (a,b) and is differentiable
atx” e (a,b). Prove that f (x") =0. Note that a function f :(a,b) > Ris
said to have a global maximum at X" € (a, b) if and only if
Forallx € (a,b), f(x)< f(x).

Table 5.1

Example of Analysis Table (Type A)

Opening Stage Code |U|Z|C
X | Show f (x*)=0. Given
Y — (X" R1
show fim + =10 _g.
x—>x" X—X
Y’ _ * _ * R1 | | N
X—X X —X x—Xx * X —X -
P1 | f:(ab) > Rhasaglobal maximum atx" e (a,b). Given
P1' | Forallxe(a,b), f(x)< f(x). Given
P2 | f:(a,b) > Ris differentiable atx"  (a, b). Given
p2' _ * . * R1 |
im f(x) f*(x ) _ im f(x) f*(x )_
X=X X —X X—X ' X —X
Body Construction Stage
1 - * C5 N|S|N
Consider the right hand side limit lim M
X—X X—X
2 | since f(x)< f(x")forallxe(a,b) andx—x">0, (1031-) N[ T[N
_ * i 2
jim T =T) o R
XX X—X
3 —f(x C5 N|S|N
Consider the left hand side limit lim M
XX X—X
4 |'since f(x)< f(x")forallxe(a,b),andx—x" <0 (3031-) N[ T[N
_ * i 2
jim 1= 50 ;
X=X~ X—X
5 | Since f:(a,b) > Risdifferentiable at x* € (a,b), (P§24) N|[N|N
0< lim JX=T0D) _ iy TOO=TE) R2
x—>x*" X—X xox X—X
6 - * — * R2 N|IN|[N
Since0 < lim Lf*(x): lim Lf*(x)so,
x—x*" X—X x—x" X=X
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jim + =T _ g
X—>x" X —X
7 — * , R1 N|N|N
Since lim M:O, f (x’)=0.
X—X"* X—X

The letter “X” in the first column represents the conclusion or the goal of the
given statement. The letter “Y” represents the mathematical language that X is
translated into. As mentioned in Chapter 3, “translating of an object into mathematical
language” means transforming an object into a mathematical expression “fine”” enough
to makes it possible for students to further advance a reasoning process. The letter “P”
in the first column represents the hypothesis, the assumption, or the condition in the
given statement. The letter “P " represents the mathematical language into which “P”
is translated. The numbers in the first column represent the order of the steps to be
taken for the proof. The second column shows a specific statement necessary for the
proof: the conclusion of the proof (X), a given condition or hypothesis (P), and a
statement for each step of the proof. The third column shows a code of the operations
used to produce each statement in the proof. The list of the codes of the operations for
advancing a reasoning process was presented in Table 3.2.

The letters U (Eugene), Z (Zachery), and C (Caleb) in the first row represent
the codes of the names of the students whose proofs were analyzed. The letters “17,
“N”, and “S” stand for “Incomplete”, “Not successful”, and “Successful” respectively
to describe the degree of success in their performance at each step in the proof. Next,
the examples of the analysis of each student’s proof based on the analysis framework
Type B (Table 3.5) are given. For each of wrong or incomplete statements, a possible

cause is chosen from the framework Type B (Table 3.5).
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Example 1 (Eugene)

Y, /fﬂw() 6)“)7%/#
-#to {8 [ F)- ,C(g)

“X" ”/ My A-C

fvrm«xmm X
o Must &\ngxrffﬁ_ - I'Vln,;{— Lo

st net, e LK) %0 Fwsill gt be Jecrasiy

v Atretsing th’L{f ,.,,..//UL o fﬁmﬂﬁrf fﬁm’w
b q [‘Vj"" Pt ~q P,ﬁrf §fa/[ [ nol < o e

} (LZ&/ ke precizel \

Figure 5.1. Eugene’s Proof.
Eugene paid attention to the conclusion of the given statement and tried

translating it into mathematical language. However, his notations had a defect. He had

. f(x)-f(c . f(x)-f(c
lim ( ) © and lim %C()Without specifying what c represented though

XX —C XX "

the left hand limit was supposed to be lim - 1)

~——=and the right hand limit was
XX~ X—X

supposed to be lim M (KNT). KNT stands for “students’ mismanagement

XX X— )(
of a notation” (See Table 3.5). He noted and translated the conclusion of the given
statement « f'(x*) = 0” into mathematical language, but it was not perfect (OTC). The

code OTC stands for “the mismanagement of the opening stage by failing to translate

the conclusion of the given statement into mathematical language” (See Table 3.5). He

should have had “ lim M =0= lim M ” but missed “= 0 =" part
X=X~ X —X x—x"* X—X"
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in his equation. His was right in considering each side of the equality, in particular, the
sign of each limit. However, he was not completely right in claiming that the right hand
limit was positive and the left hand limit was negative (MC). The code MC stands for

“lack of carefulness or alertness” (Table 3.5). He wanted to have

iim T =TCD gang fim TH=TE)
xox* X—X X=X X—X

> 0. He missed the equality “ =0 " for
both sides mainly because he did not note and use the given information about the
definition of a global maximum of a function (CO). The code “CQO” stands for
“students’ failure to combine objects to create a new object” (See Table 3.5). He
missed the equality “ =0 ” for both sides partly because he was not careful in making
his claim that the left hand limit was negative and the right hand limit was positive
(MC). Thus, possible sources of his difficulties were that he missed translating the
conclusion of the given statement completely (OTC) and that he missed combining an
object and the given condition (CO), both of which might have involved lack of

carefulness as well (MC).

Example 2 (Zachery)
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Figure 5.2. Zachery’s Proof.

87



Zachery rightly considered the left and right hand limits while his notations for

f(x+x)=f(x) f(x+x)—f(x)

them were awkward (KNT). He had [irrcl) and I*irrg
x -0 X X —0" X
though he needed to have lim f(x Hz_ 1) ang im f(x +hr)]— f(x) |

respectively. The analysis of his proof follows based on the assumption that he meant

to show f (x) =0. It was good that he considered the signs for the left and right limits.
However, he was not careful enough in using the given condition that f(x) < f(x")
(MC). He applied f(x) < f(x+x")with x" >0and f(x) > f (x+x")with X" <0 to

his argument instead of applying f(x) < f(x+x")and f(x) > f(x+X"), respectively.

f(x+x)-f(x)

He had Ijm0 = Oat the end, but lacked rigor in making the conclusion
X — X

because lim Flx+x 2_ T _gand lim fx+x 2_ ) - owould not lead him to
X —0% X X =0~ X

im f(x+ x*z - f(x)

X —0" X

=0. His lack of rigor might have resulted from the following
facts. He did not translate the conclusion of the given statement completely (OTC and

R1). He knew that he needed to show that Iirrg fx+x 2_ ()
X—> X

=0. However, he did

not thoroughly transform it into Ijrrg Fx+x 2_ LG Ijrrg Fx+x 2_ 1)
X =0~ X X —0* X

(MC).
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Example 3 (Caleb)
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Figure 5.3. Caleb’s Proof.
Caleb’s proof was almost complete. He successfully translated the
differentiability of a given function into mathematical language and came up with the
idea of examining the left and right hand limits of the difference quotient. He had

f(X"+Kk)—
k

f(X"+k) = f(x5)

k
f(x7) > Qfor k <0Oand

< 0fork >0, which were

right. However, when he concluded f'(x*) = 0 based on his above observations, his
argument was incomplete because it might happen f (x*) =0 even when

f(X"+Kk)—
k

k * —
fx )>Ofor k <0Oand F(x_+k)

k
T _otor k >0 (MC). For

example, when f(X) has a vertical asymptote atx = X", f'(x*) #0even when

f(X"+k)—
k

k k
f(x7) > 0for k <0Oand Fx )<0fork > 0. In particular, he

f(X"+k) -
k

89



missed having lim P k) =T _ g jim

—0~ k k—0"

fx+x)=f() e, oTc, and R1).

The code R1 stands for rephrasing an object by applying definitions, properties, or
theorems. The above incompleteness of his argument resulted mainly from the

following factors. First, he lost his tenacity for completing examining

thoroughly (MT) while he came up with

i FOCH =00 f(x+x*k)—f(x)

k—0~ k k—0"
the idea of considering them at first. Second, he missed using the given information

about a global maximum of a function « f : (a,b) = R is said to have a global maximum

atX" e (a,b) if and only if for all X € (&,b), f (x) < f(x")” (CO). This might have

k) - f(Xk)<Ofork>O
: <

k * —
fx )ZOfor k <Oand fx +k£

helped him have

> 0and lim

k—0*

<0. Third, he did

F(X"+K)— f(x¥) f(X"+K) = f(x¥)
k k

and therefore, lim
k—0~

not thoroughly translate the conclusion of the given statement « f (X*) = 0" into

“ fim f(x +kk)_f(x):O:klirE\ Fx+x)= 1)~ o1, R1), which might have
-0~ —0"

* . K * _ k
helped him having lim F(x +k|z f(x )ZOandeirg Fx +k|2 T <0, His

proof might be considered as an example showing that the skill of combining objects
and rephrasing an object can support his tenacity to continue his reasoning process.
The following section presents some examples for each of the possible sources
of students’ difficulties. Each example is presented in the following order:
(1) A possible factor that can cause students’ difficulties

(i) the possible cause of the difficulty the student encountered;
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(iii)  the proof problem;
(iv)  the analysis table Type A;
(v) a detailed analysis of the proof based on the analysis framework Type B;
(vi)  the whole or partial proof produced by the student;
(vii)  the analysis based on the analysis framework Type B (Table 3.5).
5.3  Difficulties with Opening Stage

The opening stage is a crucial stage that can determine the degree of the success
of one’s proof construction. The opening stage plays mainly two important roles in
proof construction: One is to make the goal of the proof clearer, which is achieved by
noting the conclusion of the given statement and translating it into mathematical
language. The other role is to derive and set a variable as the start of a proof. A
starting variable is the key variable with which students open the body construction
stage. A starting variable is found in the ignition phrase contained in the mathematical
language for the conclusion of the given statement. For the type of proof in which
students construct an object, they derive a starting variable from a hypothesis.

There are model steps for students to take in the opening stage. For example,
students may (1) pay attention to the conclusion of the given statement, (2) translate it
into mathematical language, (3) find a variable to be set as a start of a proving
argument in the mathematical language, usually, for the conclusion of the given
statement, (4) set a starting variable for developing the body construction stage, (5)
make sure of the hypotheses of the given statement, and (6) translate them into
mathematical language if necessary. The steps (1) and (2) are the operations for

making the goal of the proof clear. The steps (3) and (4) are the operations for setting a
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starting variable. Although it is minor, there is a type of proof in which students need
to derive a starting variable from a hypothesis of the given statement. In that case, the
step (6) can be the operation for setting a starting variable. For another minor type of
proof, students do not have to derive a starting variable in the opening stage because a
starting variable may be explicitly provided in the given proof problem, in particular, in
the conclusion of the given statement. The following examples show how greatly
students’ managements of the opening stage can affect their whole proving arguments.

Students’ difficulties with the opening stage are analyzed in the following two
terms (Table 3.5): paying attention to the conclusion of the give statement and
translating it into mathematical language (OTC) and deriving and setting a starting
variable for the body construction stage (OSV). “O” represents the opening stage. “TC”
stands for “translating the conclusion” of the given statement into mathematical
language and “SV” stands for “setting a variable.”
5.3.1 Translating a Conclusion into Mathematical Language

It is important for students to make sure of the goal of a proof. Awareness of
the goal of a proof keeps them on the right track and helps them avoid going astray in
their proof construction. Students can make the goal of a proof clear by translating the
conclusion of the given statement. The following are representative proofs that show
how crucial it is for students to translate the conclusion of the given statement into
mathematical language. | will give the following three examples showing students’
difficulties with translating the conclusion into mathematical language while showing

how their difficulties affected their proofs: Frank lost the goal of the proof (Example 1);
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Cade set a wrong direction of proof construction (Example 2); and Daniel failed to
practice logical deduction and resorted to pictorial proof scheme (Example 3).
Example 1: Frank (Algebra I)

Failing to clarify the goal of a given proof can lead students to wander vaguely
and produce a confusion during their proof construction. Frank’s proof is such an
example. His case shows that students may fail to make the destination of the proof
clear for two reasons. One is that students tend to start to work on a hypothesis of the
given statement and to derive a starting variable from it. The other is that they do not

pay careful attention to the conclusion of the given statement.

Question [4] (In-class problem solving session)

Suppose that G/ Z(G) is cyclic. Prove that G is abelian.

Table 5.2 shows a possible proof for Questions [4] and shows the difficulties
Frank had in the proof construction.
Table 5.2

Analysis (Type A) of Frank’s proof

Proof Code Frank

X Show G is abelian. Given

Y | Show ab=baforanya,beG. R1 N
P G/Z(G)is cyclic. Given

1 |LetabeG. Cl N
2 | Recalla,b e G are in some cosets. C2 N
3 | Then, ae x"Z andb € X"Z for some x € G . CO(P,2)R1 | N
4 | Let a=x"zand b=x"z,for somez,z,€Z. R1 N
5 | Then,ab=x""z,z, =x""z,z, =ba. R3 N

The conclusion of the given statement is “G is abelian.” The mathematical

language for the conclusion is “ab = bafor anya,b € G.” The phrase in the
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mathematical language, “for anya,b € G ,” is the ignition phrase. Deriving starting

variables from the ignition phrase, start a proof with “Suppose a,b € G .” This proof is
the type of the proof of showing A = B. A proving strategy for that type of proof is to
work on either A or B to change it into B or A. In this case, try to rephrase the left side
of the equation “ab” until it changes into “ba.” To rephrase “ab,”the given

hypothesis “G / Z(G) is cyclic” can be considered. Finding the connection between the

starting variables “a,b” and the hypothesis “G / Z(G) is cyclic” and recalling the

property that an element of G belongs to some coset, a € X"Z andb € X"Z can be

m+n

produced for some x € G. Then, rephrasing ab with X" z,z,for some z;,z, € Z and

n+m

using the property of the center of a group, ab=x""z,z, =x""z,z, =bacan be

derived. The following figure shows Frank’s proof (Figure 5.4).
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Figure. 5.4. Frank’s Proof.
Frank first paid attention to the hypothesis of the given statement “G / Z(G) is

cyclic” instead of paying attention to the conclusion of the given statement (OTC).
Then, he started his argument by deriving starting variables from the hypothesis instead
of deriving a starting variable from the conclusion (OSV). In expressing the elements

of the coset G/(Z) as his starting variables, he mistakenly had aG,bG,cG € G(Z),
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which were supposed to be aZ,bZ,cZ e G(Z) (KNT, MC). Then, he translated the

hypothesis into mathematical language, meaning bZ =a"Z andcZ =a"Z . While
working on the hypothesis, his proof started to go astray, ending up with showing
bZcZ = cZbZ , which he did not have to show because it was obvious that a cyclic

group was abelian. Finally, though he showed that “G/(Z) s abelian,” he mistakenly
concluded “G/(Z) s cyclic,” which was a hypothesis already given at the beginning.

There were two main factors that might have caused his proving argument to
be unsuccessful. The first factor was that he was unable to pay attention to the
conclusion of the given statement “G is abelian” (OTC). This resulted in two problems.
One problem was that since he was not attentive to the goal (MC), he did not realize his

argument was going astray while showing “G/(Z) s abelian” and that his argument
went wrong while concluding “G/(Z) s cyclic.” The other problem was that he was

unable to derive right starting variables “a,b € G (OSV), which might have been

obtained from an ignition phrase of the mathematical language for the conclusion of
the given statement. The second major factor was that he was, as many other students
did, first focused on the hypothesis of the given statement “G/(Z) is cyclic,” derived his
starting variables from the hypothesis, which did not help him reach the goal of the
proof, and translated the hypothesis into mathematical language, which created a
confusion in his argument. The second factor resulted in diverting his attention from
the conclusion of the given statement and leading him to miss the goal of the proof.
Example 2: Cade (Algebral)

This example showed that students’ failure to accurately translate the whole

sentence of the conclusion into mathematical language might hinder them from
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developing their proving arguments.

Question [5] (In-class problem solving session)

Suppose that the order of G is a prime number. Prove that G is cyclic.

Table 5.3 shows a possible proof for Question [5] and shows where Cade had a
difficulty in the proof construction.
Table 5.3

Analysis (Type A) of Cade s proof

Proof Code Cade

X | Show G is cyclic.

Y | Show G =< g >for some g € Gwithg #1. R1 I
P | The order of G is a prime number. Given

S | Let g e Gwithg #1. C1 N
1 |Let geGwithg=1. C1 N
2 | Consider<g >. C5 N
3 | Note < g >is a subgroup of G. C2 N
4 | Recall the Lagrange’s THM and apply it to< g > . C2 N
5 | Then, by the Lagrange’s THM, |< g >/ =1, p. CO(3,4,P)R1 N
6 |Since|l<g>{=1,]<g>=p. CO(1,5)R2 N
7 | Since|G|=p,G=<g>. CO(6, P)R2 N

The conclusion of the given statement is that “G is cyclic.” The conclusion “G
is cyclic” can be translated into mathematical language “G =< g >for some ¢ € G with
g #1.” The given proof is the type of the proof of showing A = B. One can work on

either A or B through rephrasing it until A becomes B or B becomes A. In this

problem, consider and work on < g >. Recalling Lagrange’s Theorem and combining
it with the property that a cyclic group generated by an element in G is a subgroup of G,

one may obtain|< g > =1 p. Noting|< g > #1, one may decide|< g > = p.
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Combining the hypothesisG =< g > and |< g > = p, one may conclude G =< g >. The

following is Cade’s proving strategy for the given problem (Figure 5.5).
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Figure 5.5. Cade’s Strategy.
When Cade was asked to state his proving strategy, he successfully noted the
conclusion of the given statement, which was “G is cyclic”. However, he made his

statement sound awkward when he put “I am going to show a cyclic group has order

a" =1...” He probably meant to state “G =< a >, in which a" =1 with n being the
smallest positive integer,” but was unable to accurately rephrase the whole sentence of
the conclusion of the given statement in mathematical language. This may have

affected his proof construction. The following figure shows Cade’s proof (Figure 5.6).
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Figure 5.6. Cade’s Proof.
In addition, Cade was unable to develop his proving argument mainly because
he did not translate the whole sentence of the conclusion of the given statement
accurately. Although he noted the conclusion when he thought about the goal of the

proof, he focused on only the predicate “cyclic” of the conclusion and missed
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translating the subject part “G is.” As a result, he provided the definition of a cyclic
group and was not able to have “G =< g >for some g € G withg #1,” which might
have hindered him from opening up his proving argument. If he had “G =< g > for
some g € Gwithg #1,” that might have led him to set a starting variable “< g > for
some g € G withg #1,” focus on “< g >, recall the property of “< g >" being a
subgroup of G, and come up with the idea of using Lagrange’s Theorem.

Since he missed the starting variable “< g > for some g € G withg #1, he was

unable to open up his argument. Then, he depended on the hypothesis of the given

statement *

G| = p” for starting the body construction stage. However, that was not

helpful, so he further attempted to apply a proving technique of creating a function,
which was not helpful, either. Finally, he gave up proving. His example shows how
crucial it is to rephrase the whole sentence of the conclusion of the given statement
accurately. His example also shows that once students miss setting a variable from the
conclusion of the given statement, no matter what they may attempt, that would not
help them advance their reasoning process.
Example 3: Daniel (Analysis)

Daniel’s case is another example showing how important it is for students to be
able to translate the conclusion of the given statement into mathematical language so

that they can develop a proving argument.
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Question [9] (Final Exam)

f :(a,b) > R has a global maximum at some X" € (a,b) and is differentiable at
X" e (a,b). Prove that f (x") =0. Note that a function f :(a,b) > Ris

said to have a global maximum at X" € (a,b) if and only if for all x € (a,b),

f(x) < f(x).

Table 5.4 shows a possible proof for Question [9] and shows where Daniel had a
difficulty in the proof construction.

Table 5.4

Analysis (Type A) of Daniel ’s Proof

Step Statement Code D
X Show f (x") =0 N
Y _ * R1 N

show lim T =T _g
X—>X" X—X
P1 f :(a,b) > Ris said to have a global maximum Given
at X" e (a,b) ifand only if for all x € (a,b),
f(x)< f(x). x"e(ab).
P2 f :(a,b) > Ris differentiable atx" € (a,b) . Given
1 Claim that C1
jim FOO=T0) g FOO=F06).
X—X X —X X=X * X —X
Consider the right hand side limit. C1 N
Note that since f(x) < f(x")forallx € (a,b), CcO N
andX—-Xx" >0 lim —~2—=2<0. R2
xox* X—X
4 Consider the left hand side limit. C1 N
5 | Note that since f(x) < f(x")forall xe(a,b), CO N
and Xx=X" <0 lim —~——~2>0 R2
X—>x*" X—X
6 Since f:(a,b) - Ris differentiable at R1 N
X" € (a,b), the right hand limit is the same as the
left hand limit.
7 — * CcO N
Therefore, since0 < lim Lf*(x)z (B, D)
XX X—X F’QZ
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jm £00=10) o F-10)
x—x* X—X" x—>x" X—X

Since lim =0,f (x)=0.

X—>x"

8 ()= F(X) : R1 N
X

The given proof problem is one of a few examples of the type of the proof in

which students do not have to derive and set a starting variable at the beginning of the

proof. The conclusion of the given statement is “ f (x") =0.” The translation of the

conclusion is ““ lim M =0= lim M One of the way to prove
X=X X —X* XHX* X=X
this statement is to work on both lim M and lim M separately
X=X~ X —X XX X—X

until both sides turn out to be the same statement. Then, one may separately combine

each of them and the given condition « f : (a,b) — R has a global maximum at some

X" € (a,b)” to obtain lim_ M <0and lim

x—x* X—X xox*"

Lf*(x) >0. Using the
X — X

other condition « f : (a,b) — Riis differentiable at X" € (a,b),” one may obtain

00— () _ o F09=F(X)

0< lim - —=<0. Then, one may conclude
x—x* X—X XX X—X
lim M =0= lim M The following figure is Daniel’s proof
X=X X —X" X%X + X=X
(Figure 5.7).
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Figure 5.7. Daniel’s Proof.

Daniel’s proof was not successful because he was unable to construct a proving
argument based on logical deduction. Instead, he depended on a graphical explanation
for his argument, which resulted in his lack of rigor. He resorted to the fact that the
tangent line at the maximum point had a slope of zero. He did not realize what he used
was the very thing that he was asked to prove. He might have avoided the mistake by

not only paying attention to the conclusion of the given statement but also translating it

into mathematical language. The goal of the proof was to show f'(x*) =0. He might

)= F () g FOO-F(X) .

have translated it into « lim_ ,” which might have

XX X—X XX X—Xx"

led him to consider Iim+M and lim . By considering them, he

f(x)—f(x)
x—x" X—X XX X—X"
might have developed a proving argument based on logical deduction.
Thus, the above three examples show that noting the conclusion of the given

statement, clarifying the goal of the proof, and translating it into mathematical language

might help students to construct a more successful proving argument.
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5.3.2 Setting a Variable

Mathematical ideas or thoughts in a proving argument are often conveyed by
way of a variable. A variable is a key unit for advancing a reasoning process. It is
crucial for students to set a correct starting variable to construct a proving argument.

In order to be successful in setting a right starting variable, there are three steps that
students can take. The first step is to note the conclusion of the given statement. The
second is to translate it into mathematical language accurately. The third is to pay
attention to an ignition phrase contained in the mathematical language and derive a
starting variable from it. A possible major obstacle that may hinder students from
setting a right starting variable is that they are tempted to pay attention to a hypothesis
of the given statement to derive a starting variable.

There are mainly two ways for students to derive a starting variable in a proving
argument. One is to derive a variable from the conclusion of the given statement. In
particular, students often derive a starting variable from an ignition phrase contained in
the mathematical language for the conclusion. In most cases, an ignition phrase comes
from a definition of concept contained in the mathematical language for the conclusion.
The other way is to derive a starting variable from anything other than the conclusion of
the given statement, including a hypothesis of the given statement, a claim that students
make, or a property of concept or a theorem that students have to bring in. In any case,
deriving a right starting variable by noting an ignition phrase contained in the
mathematical language for the conclusion of the given statement can be a key factor for
constructing a successful proving argument. However, it can be difficult for some

students to set a starting variable correctly. | will show five examples of students’
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difficulties with setting a variable while showing how their difficulties occurred and
how their difficulties with setting a starting variable affected their proofs: Alex derived
a starting variable from a hypothesis (Example 4); Quincy failed to note an ignition
phrase (Example 5); Matthew missed deriving a variable from a hypothesis (Example
6); Natalie was unable to make a proving argument in mathematical language
(Example 7); Anthony ruined his whole proving argument (Example 8).
Example 4: Alex (Algebral)

Alex’s proof is a representative example showing that students’ failure to derive
a right starting variable can spoil their whole proving arguments. His case also shows
students may fail to derive a right starting variable because they tend to start to work on

a given condition or hypothesis instead of the conclusion of the given statement.

Question [5] (In-class problem solving session)

Suppose that the order of G is a prime number. Prove that G is cyclic.

Table 5.5 shows a possible proof for Question [5] and shows where Alex had
difficulties in the proof construction.

Table 5.5

Analysis (Type A) of Alex’s Proof

Proof Code Alex

X | Show G is cyclic.
X’ | Show G =< g >forsomed € Gwithg #1. R1
P |G =p. Given
1 |Let geGwithg=1. C1 N
2 | Consider<g >. C5 N
3 | Recall that a cyclic group generated an C2 N

element in G is a subgroup of G.
4 | Note < g >is a subgroup of G. C0O(2,3) N
5 | Recall the Lagrange’s Theorem. C2 N
6 | By the Lagrange’s THM, |< g >/ =10r p. CO(4,5)R1 N
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7 |Since |<g>#1,|<g>=p CO(1,6)R2 N
8 |Since |G|=p, G=<g> CO(P,7)R2 N

Question [5] can be proved in the following way. The conclusion of the given
statement is that “G is cyclic.” The conclusion “G is cyclic” can be translated into
mathematical language “G =< g >for some g € Gwithg #1.” The given proof is the
type of the proof of showing A = B. One can work on either A or B through rephrasing

it until A becomes B or B becomes A. In this problem, work on < g >. Recalling and
combining Lagrange’s Theorem and the property that a cyclic group generated by an

element in G is a subgroup of G, one may obtain|< g > =1, p. Noting|< g > =1,
decide|< g >/ = p. Combining the hypothesisG =< g > and |< g > = p, conclude

G =< g >. The following figure shows Alex’s whole proof (Figure 5.8).
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Figure 5.8. Alex’s Proof.

Alex started his proving argument with working on the hypothesis “the order of
G is prime.” He rephrased the given condition with “any element of G has order 1 or
(some prime number) p”. Then, he followed “it (an element of G with order p) is of the
form of a’for some a € G ” without any explanation, which lacked rigor of logic.
There were a few factors that might have caused his lack of rigor in the argument. He
was unable to consider a subgroup of G generated by an element g in G with g #1 and
to use Lagrange’s Theorem. In particular, he was not able to start his argument with
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translating the conclusion of the given statement “G is cyclic” into “G =< g > for some
g € Gwithg #1.” If he had G =< g >withg #1, that might have led him to consider
< g >, which could have led him to use Lagrange’s Theorem.

Example 5: Quincy (Topology)

Students’ success in managing the opening stage is an imperative factor for
making their proving arguments successful. In particular, being able to derive a right
starting variable from an ignition phrase in the mathematical language for the
conclusion of the given statement can be a major factor. Quincy’s case is an example
showing students’ mismanagement of deriving a starting variable may damage their

whole proving arguments.

Question [7] (Exam II)

Let X be a Hausdorff space. Let {x, :n e Z*}be asequence in X converging
To a pointX,. Prove that the set K ={x,:n=012,...} is compact.

Table 5.6 shows a possible proof for Question [7] and shows where Quincy had
a difficulty in the proof construction.
Table 5.6

Analysis (Type A) of Quincy’s Proof

Object Proof Code Q
X Show that K ={x. :n=02,2,...}is compact.

Y Show that for any open cover of K, K has a finite
open subcover.

P {x. :ne Z*}be asequence in X converging to X, . Given
Let U ={U_ €T, }be an open cover of X. Cl

2 Construct an open cover of K by letting C1 N
V ={V, =U, "K}.

3 Since U ={U_ €T, }is an open cover of X, R1 S

v, eU such that x, e U, -
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4| since x,converges tox,, IN € Z* such that for all COP3)RL | S
nN>N,x, e U,

Letv, =U, nK,wherev, eV. C1 N
For each x withi < N , find an open set v, eV such Cl N
thatx, eV, .

7 Note that {v, .V, ...V, .V, }isadesired finite open | CO(5,6)R2 | N
subcover of K.

One way to prove Question [7] is as follows. The conclusion of the given

statement is “ K ={X, :n=012,...}is compact.” It can be translated into the

mathematical language “For any open cover of K, K has a finite open subcover.” By
paying attention to the ignition phrase “For any open cover of K,” one may explore the

way to construct an open cover of K. Recalling the property of a subspace topology,

one can set a starting variable by having “Let U ={U_, €T, }as an open cover of X”.

Then, one may construct an open cover of K by having “V ={V, =U_ " K}.” To

further advance a reasoning process, one may note and consider the given hypothesis

“{x,:n e Z*}converges to a pointx,.” Then, the given hypothesis can be translated
into “For an open set V, =U, ~K in the open cover of K, in whichx, €U, , IN € Z*
such that foralln > N, x, €V, . Finally, they may create a finite open subcover
VoV, oV, LV, Foy setting Vv, eV such that x; €V, for n< N . Quincy’s proof is

shown in the following figure (Figure 5.9).
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Figure 5.9. Quincy’s Proof.

There were mainly two problems with his proving argument. One was that he
was unable to bring in the concept of a subspace topology and apply it to K. He seemed
to use an open cover of X as a substitute for an open cover of K. He might have lacked
the knowledge of a subspace topology. Another was that he constructed a finite open
subcover of K without specifying an open cover of K, from which a finite subcover was
supposed to come. He missed noting the ignition phrase “For every open cover of K”
in the definition of compactness, which led him to fail to set an open cover of K.

His case is also an example showing students’ knowledge of the definition of a
concept does not necessarily mean they can make good use of it in their proving
arguments. When he was asked to define “‘compactness” in a problem given prior to
the above proof problem on the same exam, he was able to answer the question
correctly with some minor awkward expressions. As the following figure (Figure 5.10)
shows, he stated the definition of compactness as “For every open cover (of X, it) has a

finite open subcover.”
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Figure 5.10. Quincy’s Statement.

However, in the given proof problem, he did not pay attention to the ignition
phrase “For every open cover.” As a result, he constructed a finite open subcover
without setting an open cover of K from which the finite subcover could have been
derived. His case implies students should know the role of an ignition phrase and how
to utilize it for advancing a reasoning process.

Example 6: Matthew (Topology)

There is a type of proof for which students have to derive a starting variable
from a given condition or hypothesis of the given statement. This type of proof was
rare among the proofs examined in this study while the great majority of the proofs
required students to derive a starring variable from the conclusion of the given
statement. Matthew’s case is an example showing students’ failure to set a starting
variable from a hypothesis of the given statement can cause their proving arguments to

be unsuccessful.

Question [6] (Exam II)

Let X, Y be topological spaces; Y be compact; X, € X ; and N be an open
set containing {X,}xY in the product space X xY . Prove there exists
an open neighborhood W < X of X,such thatW xY < N.

Table 5.7 shows a possible proof for Question [6] and shows where Matthew

had a difficulty in the proof construction.
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Table 5.7

Analysis (Type A) of Matthew ’s Proof

Proof Code M
X | Construct an open neighborhood W < X of x,such that
WxY < N.

P1 | N is an open set containing{x,}xY .

P2 | Y is compact.

1 | Since NisopeninX xY , foreach(x,,y) e{X,}xY , there Cl N
exists a basis open set U, xV, < N containing (X,, y) for

each Y €Y where U, isopenin Xand Vv, isopeninY.

2| Then, {{x,}xV,}is an open cover of {X,}xY . R2
3 | Note {x,}xY is homeomorphic to Y. C2 S
4 | Then, {X,}xY is compact. CO(P2,3)
R2
5 | Then, there exists a finite open subcover CO(2,4) N
{{xIxV, e{x}xT,}},where i e{l,....nn ez }and R1
uv, =Y.
i=1 7'
6 | Note that{x,}xY <{U, xV,}< N.., where C1 N
i e{l,...,n|n eZ"}.
7 Cl N

LetW = (n]Ui , where W is an open neighborhood of X,
i=1
where{X,}xY cWxY < N.

The following shows how to obtain the above proof for Question [6]. The

conclusion of the given statement is “there exists an open neighborhood W < X of X,

such thatW xY < N .” Noting the given condition “N is an open set containing

{X,}xY 7and recalling the property of an open set, one can set a starting variable
U, xV, = N as an open neighborhood of (X, y) for each y € Y .” Further noting another
given condition “Y is compact” and realizing{X, }xY is homeomorphic to Y, one can

construct an open cover of{X,}xY by having {U, =V, | U xV, c NandyeY }. Then,
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since {X,}xY is compact, there must exist a finite open subcover {{X,}xV, e{X}xT},

inwhichi e{l,...,njn eZ*}and LnJVy_ =Y . Then, one may construct W = (n]Ui so that
i=1 7!

i=1

{X,}xY cW xY < N. The following (Figure 11) shows Matthew’s proof.
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Figure 5.11. Matthew’s Proof.

Matthew’s proof was not successful because he was unable to construct an

open neighborhood W < X of X, such thatW xY < N . A direct cause of his failure
may be that he was unable to set a starting variable U, xV, e T, xT, < N of (X,,Y)
foreachy €Y . In this proof problem, a starting variable can be derived from the
hypothesis of the given statement “N is an open set containing {x,}xY .” The
hypothesis can be translated into “there exists an open neighborhood of (X,, y)
contained in N for each y e Y . Then, an open neighborhood of (x,, y)can be
expressed with U <V, eT, xT, as astarting variable. Using this object, students may
construct an open cover {{x,}xV,}of {X,}xY so that they can use another hypothesis

“Y is compact.” Thus, a reasoning process cannot be advanced without setting a
starting variable.

Example 7: Natalie (Topology)
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Natalie’s proof is another representative example showing students’ failure to
set a starting variable can hinder them advancing a reasoning process based on logical

deduction.

Question [3b] (Exam II)

Let g: X — Y beaquotientmapand f :Y — Z be a map.
Suppose f oqis continuous. Show f :Y — Z is continuous.

Table 5.8 shows a possible proof of the statement of Question [3b] and shows
where Natalie had a difficulty in the proof construction.
Table 5.8

Analysis (Type A) of Natalie 's Proof

Step | Statement | Operation N
Opening Stage
X f :Y — Z is continuous. Given
Y:OTC For any openset W in Z, f*(W)isopeninY. R1 N
P1: hypothesis | g: X — Y is a quotient map. Given
P2: hypothesis | f o q is continuous. Given
S: OSV Let W be an open setin Z. C1
Body Construction Stage
1 Let W be an open setin Z. C1 N
2 Consider (f o gq) (W) . C5 N
3 Note (f o@)"(W)=q'(f *(W)). R1 N
4 Since f o q is continuous , CO(3,P2)R1 N
g (f*(W)) isopeninX.
5 Recall the property of a quotient map. Cc2 N
Since qis a quotient map, CO(4,5)R1 N
f ~*(W) must be openin Y.
7 Therefore, f :Y — Z is continuous. R1 N

The above proof can be obtained in the following way. The conclusion of the

given statement is “ f : Y — Z is continuous.” The translation of the conclusion into

mathematical language is “For any open set W inz , (f (W))is open in Y.” Noting
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the ignition phrase “For an open set W inZ ,” one can set a starting variable by having

“W eT,.” Combining the other given condition “q: X — Y is a quotient map” and the
property of a quotient map “If (q~*(H)) s open in Z for a quotient mapq:Y — Z and

forH <z, then H is open in Y,” one may conclude (f *(W)) eT,. The following

figure shows Natalie’s proof (Figure 5.12).
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Figure 5.12. Natalie’s Proof.

Natalie was unable to prove the statement partly because she was unable to set a
starting variable properly. She attempted to prove the given statement in two ways. In
her first attempt, she claimed f o g was homeomorhism for no reason. Since she did not
provide any supporting explanations for her claim, her argument was not valid. In her
second attempt, she tried the contrapositive. She was right in negating the conclusion
of the given statement when she had “There exists an open set V (in Y) such that
(f (V) is not open.” This implies that she did pay attention to the conclusion of the
given statement and that she was capable of translating it into mathematical language
by applying the definition of a continuous function. However, she did not set a starting
variable correctly. If she had set a starting variable W < T, by paying attention to the

ignition phrase in the mathematical language for the conclusion of the given statement,
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she might have been able to more rigorously advance a reasoning process with the
given conditions.
Example 8: Anthony (Algebra I)

Anthony’s case is a representative example showing that students’ setting a
starting variable from a hypothesis of the given statement may damage their whole

proving arguments.

Question [4] (In-class problem solving session)

Suppose that G/ Z(G) is cyclic. Prove that G is abelian.

Table 5.9 shows a possible proof for Question [4] and shows where Carlos had
difficulties in the proof construction.

Table 5.9

Analysis (Type A) of Anthony’s Proof

Object Proof Code A
X Show G is abelian. S
Y Show ab=baforanya,beG. R1 S
P G/Z(G)is cyclic. Given
1 Leta,beG. Cl N
2 Note a,b e G are in some cosets. C2 N
3 Let ac x"Z andbe x"Z. CO(2,PR1 | N
4 Let a=x"zand b=x"z,for somez,z,cZ. R2 N
5 Then, ab=x""z, = x""z, =ba. R3 N

The following is one way to obtain the above proof. The conclusion of the
given statement is that “G is cyclic.” The conclusion “G is cyclic” can be translated
into mathematical language “G =< g >for some g € Gwithg =1.” The given proof is
the type of the proof of showing A = B. One can work on either A or B through

rephrasing it until A becomes B or B becomes A. In this problem, one may consider
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and work on < g >. Recalling and combining Lagrange’s Theorem and the property
that a cyclic group generated by an element in G is a subgroup of G, one may obtain
|<g>=1 p. Noting|< g >| 1, one may decide|< g >| = p. Combining the
hypothesisG =< g > and |< g > = p, one may conclude G =< g >. The following

figure (Figure 5.13) shows Anthony’s proof.
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Figure 5.13. Anthony’s Proof.
Anthony started with working on the given hypothesis “G/Z(G) is cyclic.”
While many other students struggled with expressing an element of the cyclic group of
group {G/Z(G)}, he was one of a few students who successfully expressed it by
9“Z(G) . However, his proving arguments did not make sense partly because he was

unable to set a right goal of the proof «“ab =bafor anya,b € G and partly because he

was unable to set right starting variables “a,b € G ” from the conclusion of the given
statement.

His case was a representative example showing that students were tempted to
note the hypothesis to set a starting variable. He started to work on the hypothesis
“GIZ(G) is cyclic” to introduce the variables “z and k™ to consider a generator of
G/Z(G). With his lack of the knowledge of the fact that every element in G belonged to

some coset, his argument turned out to be incomplete.
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5.4 Difficulties with Rephrasing an Object

A proving process involves a sequence of transformations of statements.
Rephrasing an object is a major operation for transforming statement in a proof.
Rephrasing an object is done by applying a definition of concept, a property of concept,
through formal or informal interpretation, and through algebraic computation. Students’
failure to make good use of the rephrasing operation may greatly affect their proving
arguments. | will present six examples showing students’ difficulties with rephrasing
an object while showing how their difficulties occurred and affected their proving
arguments: Katherine made a wrong start of a proof (Example 9); Natalie was unable
to make a proving argument in mathematical language (Example 10); Bill was unable
to interpret an object for rephrasing an object (Example 11); Eric failed to rephrase an
object because of his lack of knowledge (Example 12); and Berkeley (Example 13)
missed trying algebraic manipulation for rephrasing an object.
Example 9: Katherine (Topology)

Translating a concept into mathematical language is a crucial operation of
rephrasing an object by applying the definition of the concept. Katherine’s case is a
representative example showing the importance of students’ being able to translate a

given statement into mathematical language.

Question [7] (Exam II)

Let X be a Hausdorff space. Let {x,:n e Z*}be asequence in X converging
to a pointx,. Prove that the set K ={x, :n=0.12,...}is compact.

Table 5.10 shows a possible proof for Question [7] and shows where Katherine

had difficulties in the proof.
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Table 5.10

Analysis (Type A) of Katherine’s Proof

subcover of K.

Proof Code

X | Show that K ={x, :n=012,...}is compact.

Y Show that for any open cover of K, K has a finite open
subcover.

P | {x, :n e Z*}be asequence in X converging toX,. Given

1 |LetU={U, €T, }beanopen cover of X. Cl

2 Construct an open cover of K by letting C1
V={V,=U,nK}.

3 |since U={U, €T,}is an open cover of X, 3U, U R1
such thatx, eU,, .

4 | Since x,converges toX,, 3N e Z*such that for all CO(P,3)R1
n=N,x e U,
Letv, =U, nK,wherev, eV. C1
For each x; withi < N, find an open set v, eV such Cl
thatx, eV, .

7 Note that {v, .V, ...V, .V, }isadesired finite open CO(5,6)R2

can be translated into the following mathematical language: “For any open cover of K,
K has a finite open subcover.” By paying attention to the ignition phrase “For any open

cover of K,” one may explore the way to construct an open cover of K. Recalling the

The conclusion of the given statement is “ K ={x, :n=0.12,...}is compact.” It

property of a subspace topology, one can set a starting variable by having “Let

U ={U_ €T, }as an open cover of X”. Then, one may construct an open cover of K,
providing “V ={V_ =U_, " K}.” Noting the given hypothesis “{x, : n € Z*}converges
to a pointX,;,” one may translate it into the following mathematical language: “For an

openset vV, =U, nKinthe open cover of K, in whichx, eU, , 3N e Z"such that for
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alln> N, x, €V, . Then, one can construct a finite open subcover {V, ,V, ,..V, .V, }

by setting V, eV such that x; €V, for n<N. The following (Figure 5.14) is

Katherine’s proof.
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Figure 5.14. Katherine’s Proof.

Katherine seemingly made a good start when setting an open cover of X.
However, it seems that she set the open cover not because she intended to use it to
derive an open cover of K but because she tried to substitute the open cover of X itself
for an open cover of K. If she had noted the conclusion of the given statement “K is
compact” and translated it into “For every open cover of K, there exists a finite open
subcover of K,” she might have at least mentioned an open cover of K in her argument.
Students’ inability to rephrase an object can result from their lack of knowledge of,
especially, the definition of a concept. However, Katherine knew the definition of
compactness. She correctly stated the definition of compactness in the problem given
prior to the above proof problem in the same exam, as seen in the following figure

(Figure 5.15).
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Figure 5.15. Katherine’s Statement.
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Katherine’s example shows even when students know the definition of a
concept, that does not necessarily mean they can apply it. This problem may occur
because they are not aware of the importance of precisely translating an object,
especially a mathematical key concept such as “compact,” “differentiable,” or “abelian,”
into mathematical language. In particular, they may not be aware of the role of an
ignition phrase playing in proof construction: an ignition phrase can provide a variable
with which students can start, develop, and advance their reasoning process. If
Katherine had had the knowledge of the role of an ignition phrase, she might have
noted the ignition phrase “for every open cover of K” to consider how to set an open
cover of K as a starting variable.

Katherine also did not try to translate the given hypothesis “{x. :neZ*}isa
sequence in X converging to x,” into mathematical language “3N € Z" such that for
everyn= N, x, U, ,” which might have hindered her from advancing her reasoning

process. What is crucial in translating a statement into mathematical language lies in
understanding, remembering, and accurately expressing the definition of a concept

involved in a statement. She showed her mental image about a sequence converging to
. . 1,
a point in mentioning “{O}U{H ‘neZ}.” However, she was unable to express the

definition of a sequence converging to a point in a formal way. Students’ inability to
rephrase an object can be directly caused by their incomplete knowledge of a concept,
in particular, the definition of the concept.

Example 10: Natalie (Topology)

A formal proving argument can be realized by way of mathematical language.
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Mathematical language makes a proving argument rigorous, logical, and convincing.
The operation of rephrasing an object plays a central role to translate an object into
mathematical language. Natalie’s proof (Figure 5.16) is an example showing students’
inability to rephrase an object may produce a proving argument that lacks logic and
rigor.

Question [3.b] (Exam 1)

Let g: X —> Y beaquotientmapand f :Y — Z be amap. Suppose f oqis
continuous. Show f :Y — Z is continuous.

Table 5.11 shows a possible proof for Question [3.b] and where Natalie had a
difficulty in the proof construction.

Table 5.11

Analysis (Type A) of Natalie 's Proof

Step | Statement | Operation | N
Opening Stage
X f :Y — Z is continuous. Given
Y:O0TC For any openset W in Z, f*(W)isopeninY. R1 S
P1: hypothesis | ¢ : X — Y is a quotient map. Given
P2: hypothesis | f o Q is continuous. Given
S: OSV Let W be an open set in Z. Cl
Body Construction Stage
1 Let W be an open setin Z. C1 S
2 Consider (f o )™ (W). C5 N
3 Note (f oq)”(W)=q'(f *(W)). R1 N
4 Since f o q is continuous , CO(3,P2)R1 N
q *(f *(W)) isopeninX.
5 Recall the property of a quotient map. Cc2 N
Since qis a quotient map, CO(4,5)R1 N
f (W) must be openin Y.
7 Therefore, f :Y — Z is continuous. R1 N

The conclusion of the given statement is “ f : Y — Z is continuous.” The

translation of the conclusion into mathematical language is “For any open set W inz ,
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(f (W))is open in Y.” Noting the ignition phrase “For an open set W inZ ,” one can
set a starting variable by having “Letw T, .” Combining the other given condition

“q: X —Yisaquotient map” and the property of a quotient map, which says “If
(97" (H))is open in Z for a quotient mapq:Y — Z and forH =z , then H is open in Y,”

one may conclude (f *(W)) €T, . The following (Figure 5.16) is Natalie’s proof.
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Figure 5.16. Natalie’s Proof.
Natalie’s proof was not convincing because she did not advance her reasoning

process in mathematical language. She claimed “ f o g is homeomorphic” without
showing the reason. She concluded f was continuous but did not provide the reason.
She resorted to the abuse of a property of homeomorphism to prove the given statement.
She might have avoided her incomplete argument if she had translated “ f o q is
continuous” into “q~*(f *(W)) e T, ” forw eT, . As introduced in Chapter 3 , in this

study, mathematical concepts, for example, “continuous” and “homeomorphic,” are
mathematical language but not treated as mathematical language. Mathematical

language is a rigorous expression of a concept involving a variable, which empowers
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students to advance a reasoning process logically. Natalie was not able to rephrase
“continuous” and “a quotient map ” by translating them into mathematical language,
which hindered her from making a formal proving argument.
Example 11: Bill (Algebra I)

Bill’s proof is a representative case showing students’ failure to rephrase an
object through interpretation can be a cause of hindering them from advancing their

reasoning process.

Question [5] (In-class problem solving session)

Suppose that the order of G is a prime number. Prove that G is cyclic.

Table 5.12 shows a possible proof for the given problem and where Bill had
difficulties in the proof construction.

Table 5.12

Analysis (Type A) of Bill 's Proof

Object | Proof Code B
X Show G is cyclic.
Y Show G =< g >forsome g e Gwithg =1. R1
1 Consider G =< g >for someg e Gwithg #1. C1 N
2 Note < g >is a subgroup of G. C2 N
3 Recall the Lagrange’s THM. C2 N
4 Then, by the Lagrange’s THM, |< g >/=1, p CO(2,3)R1 N
S Since [<g>#1,|<g>=p CO(1,4)R2 | N
6 Since |G|=p, G=<g> R1 N

The following is an explanation of the above proof. The conclusion of the given
statement is that “G is cyclic.” The conclusion “G is cyclic” can be translated into

mathematical language “G =< g >for some g € Gwithg #1.” The given proof is the

type of the proof of showing A = B. One can work on either A or B through rephrasing
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it until A becomes B or B becomes A. In this problem, one may consider and work on

< g >forsome g e Gwithg #1. Recalling Lagrange’s Theorem and combining it
with the property that a cyclic group generated by an element in G is a subgroup of G,
one may obtain|< g >/ =1, p. Noting|< g >/ =1, one may decide|< g > =p.
Combining the hypothesisG =< g > and |< g >/ = p, one can conclude G =< g >. The

following (Figure 5.17) shows Bill’s proof.

He
gd ¢ 6 :\f&@g(;

fn [ol el (6l= g = Jeaols ke

"P{ le.

Figure 5.17. Bill’s Proof.

Bill noted that < g >was a subgroup of G and tried applying the Lagrange’s

Theorem. His notation was wrong when he had |G| | |g|. He probably meant that|g| |
|G| by that. After that, he was unable to advance his reasoning process mainly because

he was unable to interpret|q| | |G| as |< g >/=1 or p. If he had obtained |< g >|=1orp,
he might have obtained |G| = p =< g >with|< g >| =1.

Example 12: Anthony (Algebra )

Anthony’s case is another example of showing that students’
failure to rephrase an object can cause their proving arguments to be unsuccessful. In
particular, his case is a representative example showing students’ lack of knowledge

may affect their ability of rephrasing an object.
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Question [6] (In-class problem solving session)

Suppose that |G| = pq for some primes p and g. Prove that G is either abelian

Or Z(G) ={e}and|z(G)| = p,q.

shows where Anthony had difficulties in the proof construction.

The following (Table 5.13) is a possible proof for the given proof problem and

Table 5.13

Analysis (Type A) on Anthony’s Proof

Proof Code A
X | Show G is abelian or Z(G) ={e}and|Z(G)| = p,q.
Y | Show Z(G)=G or|Z|=1and |Z| = p,q R1 N
P |G| = pq for some primes p and g. Given
1 Consider Z(G). C5 S
2 Note that Z(G)is a subgroup of G. C2 S
3 Recall the Lagrange’s THM. C2 S
4 | Then, |Z(G)=pa,1, p, org. CO(§,3)R N
5 | Case 1: Suppose|Z(G) = pq. C3 N
6 | Since [G|=pg=[z|,G=Z COGP)R | N
2
Since Z is abelian, G is abelian R2 N
Case 2: Suppose|Z(G)|=1. C3 N
9 Then, Z(G) ={e}. R2 N
10 | case 3: For a contradiction, suppose|Z(G)| = p. C3 N
11 | Consider the order of the quotient group|G/Z|. C5 N
121 since |G| = pgand|Z(G)| = p,|G/Z|=q. COI(?Péll) N
13 | Recall that if |K] is prime, K is cyclic. C2 N
14 | Therefore, G/Z(G) is cyclic. CO(12,13) | N
R1
15 | Recall that if the order of the quotient group|K / H|is C2 N
cyclic, then K is abelian.
16 | Therefore, G is abelian. CO(14,15) | N
R1
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17 | Then, G =Z. R2 N

18 | Then, pg=|G| =|Z| = p, which is a contradiction. CO(P,15) N
R2

The above proof cab be obtained in the following way. The conclusion of the
given statement is “G is either abelian or Z(G) ={e}and |Z(G)/# p,q.” The
translation of the conclusion into mathematical language can be “G =Z(G)” or
|Z(G)|=1and |Z(G)| # p,q. One may further rephrase “G = Z(G) ” with |Z(G)| = pqg.

in terms of|Z(G)|. Students may rephrase “G is either abelian or Z(G) = {e} " with

(13

Z(G)|=pqg” or

Z(G)|=1.” Noting the given condition *

G| = pq~and recalling the
relationship between |z (G)|and|G|, which is “Z(G) is a subgroup of G,” and
Lagrange’s Theorem, one can set the following three cases: |Z(G)| = pq; |Z(G)|=1; and
|Z(G)| = p.q. For the first case, one may notice |Z(G)| = pg=|G|and conclude that

G =Z, which means that G is abelian. For the second case, one may note that

Z(G) ={e}so that|Z(G)| =1. For the third case, one may use a contradiction assuming
|Z(G)|=p. Considering the quotient group G/Z (G) and recalling the fact that if
|G/Z(G)| is a prime number, G/Z(G) is cyclic, one may realize that if G/Z(G) is
cyclic. Moreover, recalling the fact that if G/Z(G) is cyclic, G must be abelian, one

may realize G = Z(G). However, it is a contradiction because one would get

pq=|G|=|Z(G)|= p. The following (Figure 5.18) is Anthony’s proof .
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Figure 5.18. Anthony’s Proof.

Although Anthony had “

Z|divides|G| = pq,” he was unable to advance his

reasoning process partly because he was unable to interpret the meaning of

Z|divide

|G| = pg” and translate it into “

Z|=1,p,qo0r pg.” If Anthony had obtained

(13

Z|=1,p,qor pqg,” he might have considered those three cases in which |Z| = pq, 1,

and p (or g). Another difficulty he had was that he was unable to rephrase “G is abelian”
with “G = Z(G).” rephrase His lack of knowledge of that “G is abelian” is equivalent to
saying “G = Z(G)” might have directly hindered him from applying the operation of
rephrasing an object.
Example 13 Eric (Algebra I1)

Eric’s proof shows that students’ failure to rephrase an object though algebraic
manipulation may cause them to have impasses. In particular, his case showed that
students’ failure to rephrase a whole sentence or a whole equation can be a factor of

hindering them from advancing a reasoning process.

Question [9] (4) (In-class problem solving session)

Let R and S berings. Let ¢: R — S is a ring homomorphism.
v R/ Ker(g) > S :[r] — #(r) is a well-defined ring homomorphism.
Show w : R/ Ker(¢) — S :[r] > ¢(r)is injective.
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Table 5.14 shows a possible proof and where Eric had difficulties in the proof
construction.
Table 5.14

Analysis (Type A) on Eric’s Proof

Proof Code E
X Show  : R/ Ker(¢) — S :[r] — #(r)is injective. Given
Y | Show that ify ([r]) =w([s]), then[r]=[s]. R1 S
P1 w R/ Ker(¢) > S :[r] > ¢(r)is a well-defined ring Given
homomorphism.
P2 ¢ R — S is a ring homomorphism. Given
1 Suppose thaty ([r]) =w([s]) . C1 S
Then, ¢(r) =¢(s) . CO(1,P1R1 | I
2 | Then,04 = @(r) —@(s) = B(r —s). CO(2P2)R3 | N
3 Then,r —s e Ker(¢) . R2 N
4 Then, r =s+k for somek € Ker(¢). R2 N
5 Then,r=s+k €[s]. R2 N
6 Then, [r]=[s]. R2 N
Another Proof
X | Show Ker(y) = O er(s) - S
1 Consider Ker(y) ={[r] € R/ Ker(¢) , where C1 N
w([r]) =05}
2 Sincey : R/ Ker(g) > S:[r] > #(r), CO(1,P1)R1 | N
Ker(y) ={[r] € R/ Ker(¢), where ¢(r) =0, }.
4 Then, Ker(y) ={[r] € R/ Ker(g),r € Ker(g) }. R1 N
5 Then, Ker(yw) ={[r] € R/ Ker(¢),[r] = Ker(¢) . R1 N
6 | Therefore, Ker () = Oger () - R1 N

The following explains how to obtain the above proof. One of the ways to show

the function w : R/ Ker(¢) — S :[r] — ¢#(r) is injective is to show that if
w([r]) =w([s]), then[r]=[s]. Then, paying attention to the ignition phrase
“w([r]) =w([s]),” one may start a proving argument with “Suppose that

w([r]) =w([s]).” Noting the given condition “y : R/ Ker(¢) — S :[r] — #(r),” one
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can rephrase w([r]) = w([s]) with ¢(r) = ¢(s) based on the way for  : R/ Ker(¢) - S
to be defined. One can further rephrase ¢(r) = ¢(s) with O; = @(r) —¢(S) = ¢(r —s) to
obtainr —s e Ker(¢) , which can lead them to conclude that[r] =[s].

There is another way to prove the given proof problem. There is a property of

an injective homomorphism that ¢ : R — S is an injective ring homomorphism if and
only if Ker(¢) =0,. Therefore, in order to prove thaty : R/ Ker(g) — S :[r] — ¢(r) is
injective, one can show Ker(y) = 0g .,y - Th€N, ONe may start with considering
Ker(w) . Applying the definition of Ker(y) , one may translate it into

Ker(y) ={[r] € R/ Ker(¢), in whichy([r]) =0s}. Combining the given condition

v R/ Ker(¢) — S :[r] — ¢(r), one can further rephrase it with

Ker(y) ={[r] € R/ Ker(¢), in which@(r) =04 }. Furthermore, one can rephrase it with
Ker(y) ={[r] € R/Ker(¢), in whichr € Ker(¢) }. Then, they can conclude that
Ker(y) ={[r]= Ker(¢) }, namely, Ker(y)=0g (- 1he following figure shows

Eric’s proof (Figure 5.19).
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Figure 5.19. Eric’s Proof.
Eric had a right proving strategy, trying to show that ify([a]) = w([b]) , then
[a]=[b]. Moreover, he was able to rephrase w([a]) and w ([b]) with ¢(a) and ¢(b),

respectively. However, he was unable to advance his reasoning process after that
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mainly because he was unable to rephrase the whole equation y ([a]) =y ([b]) with
#(a) =¢p(b). He missed the equal sign of the equation. If he had carefully rephrased
the whole equation y ([a]) = w([b]) with ¢(a) =¢(b), he might have obtained

05 =¢(a) —#(b) = #(a—b) and realized thata —b < Ker,.

Example 14 Berkeley (Algebra 11)
Berkeley’s case is another representative example showing that failing to
rephrase an object through algebraic manipulation can harm their proving arguments.

His case also showed that flexibility might be required in rephrasing an object.

Question [9] (4) In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a ring homomorphism.
v R/ Ker(g) — S :[r] > ¢(r)is a well-defined ring homomorphism.
Show y : R/ Ker(¢) — S :[r] — ¢(r)is injective.

Table 5.15 shows a possible proof for the given proof problem and shows where
Berkeley had difficulties in the proof construction.
Table 5.15

Analysis (Type A) of Berkeley s Proof

Proof Code B
X | Show y : R/ Ker(¢) — S :[r] = ¢(r) is injective. Given
Y | Show that ify([r]) =w([s]), then[r]=[s]. R1 S
Pl | w:R/Ker(¢) > S:[r] - #(r)is a well-defined ring Given
homomorphism.
P2 | ¢:R — Sisaring homomorphism. Given
1 | Suppose thaty ([r]) =w([s]). C1 S
Then, ¢(r) = ¢(s) . CO(1,P1R1 I
2 | Then, 05 =¢(r) — §(s) = 4(r —s). R3 N
3 | Then,r—s e Ker(¢) . R2 N
4 | Then, r =s+k for somek € Ker(¢) . R2 N
5 | Then,r=s+k e[s]. R2 N
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6 | Then, [r] =s]. R2 N
Another Proof

X | Show Ker(y) = Oger ) - S
Consider Ker(w) ={[r] € R/ Ker(¢) , wherew([r]) =0, }. C1l N

2 | Sincey :R/Ker(g) > S :[r] — ¢(r), CO(1,P1)R1 N
Ker(y) ={[r] € R/ Ker(¢), where ¢(r) =0, }.

4 | Then,Ker(y) ={[r]e R/Ker(¢), r € Ker(¢) }. R1 N

5 | Then, Ker(y) ={[r] € R/ Ker(g), [r] = Ker(¢) R1 N

6 | Therefore, Ker(w) =0g/yer(y - R1 N

One of the ways to show the function y : R/ Ker(¢) — S :[r] — #(r) is
injective is to show that ifw ([r]) =w([s]), then[r]=[s]. Then, paying attention to the
ignition phrase “w ([r]) = w([s]),” one may start a proving argument with “Suppose
thaty ([r]) =w([s]).” Noting the given condition “y : R/ Ker(¢) — S :[r] — ¢(r),”
one can rephrase w ([r]) = w([s]) with ¢(r) = ¢(s) based on the way for
v R/ Ker(¢) — Sto be defined. One can further rephrase ¢(r) = ¢(s) with
0; =@(r)—¢(s) = ¢(r —s) to obtainr —s € Ker(g) , which can lead them to conclude
that[r] =[s].

There is another way to prove the given proof problem. There is a property of

an injective homomorphism that ¢ : R — S is an injective ring homomorphism if and
only if Ker(¢) =0,. Therefore, in order to prove thaty : R/ Ker(¢) — S :[r] — ¢(r) is
injective, one can show Ker () = 0g,r(sy - ThEN, ONE May start with considering
Ker(w) . Applying the definition of Ker(y) , one may translate it into

Ker(y) ={[r] € R/ Ker(¢), in whichy([r]) =0s}. Combining the given condition

v R/ Ker(g) — S :[r] — ¢(r), one can further rephrase it with

Ker(y) ={[r] € R/ Ker(¢), in which@(r) =04 }. Furthermore, one can rephrase it with
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Ker(y) ={[r] € R/ Ker(¢), in whichr € Ker(¢) }. Then, they can conclude that
Ker(y) ={[r]=Ker(¢) }, namely, Ker(y) =0g, (- The following figure is

Berkeley’s proof (Figure 5.20).

o
|
o
=
=
—

Figure 5.20. Berkeley’s Proof.

Providing that if “w(r) =w(s),” then #(r) = ¢(s), Berkeley made a good start
apart from a minor mistake on his notations. He wanted to have yw ([r]) =w([s])
instead of having “w (r) =w(s).” Judging from his statement
“r + Ker(¢) = s+ Ker(¢) ,” he seemed to intend to show that if w([r]) =w([s]), then
[r]1=[s], which would be correct. Moreover, assuming that he meanty ([r]) =w ([s])
byw (r) =w(s), he successfully rephrased w ([r]) = w ([s]) with ¢(r) = #(s) by using
the given condition “y : R/ Ker(¢) — S :[r] = ¢(r).” However, assuming that he
meant [r] =[s]by r + Ker(g) = s + Ker(¢) , what he missed was that he was unable to
show the process to obtain [r] =[s] from ¢(r) = #(s) clearly. He was required to have
flexibility to rephrase ¢(r) = ¢(s) with ¢(r) —#(s) =0 through algebraic manipulation
and to further rephrase ¢(r) —¢(s) = 0with r —s e Ker(¢) to derive [r]=[s].

5.5 Difficulties with Combining Objects
Combining objects is one of the main operations for advancing a reasoning

process. An object can be a phrase, a term, part of a sentence, or a whole sentence.
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There are several ways to combine objects. One is to combine an object with a given
condition or assumption. Another is to combine the objects obtained in the process of
advancing a reasoning process. The other is to combine an object with a theorem, a
lemma, a proposition, or a property of concept that they are required to recall in the
process of reasoning. Failing to combine objects can result in students’ having
impasses during the process of proof construction and making their proofs incomplete. 1
will present three examples of students’ difficulties with combining objects while
showing how their difficulties occurred and affected their proofs: Edward missed using
a given hypothesis to make his proof incomplete (Example 15); Berkeley missed using
part of given hypotheses (Example 16); and Dominique missed using all the given
hypotheses (Example 17).

Example 15 Edward (Topology)

Edward’s proof was a representative example showing that students failed to
make their proving arguments complete because they failed to combine objects.
Among some possible causes of students’ failure to combine objects, the cause that was
frequently seen was that they missed using a given condition or hypothesis. His case

was also such an example, too.

Question [3.b] (Exam 1)

Let g: X — Y beaquotientmapand f :Y — Z be a map.
Suppose f oqis continuous. Show f :Y — Z is continuous.

Table 5.16 shows a possible proof for Question [3.b] and where Edward had

difficulties in the proof construction.
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Table 5.16

Analysis Table (Type A) of Edward s Proof

Step \ Statement Operation E
Opening Stage
X f :Y — Z is continuous. Given
Y:O0TC For any open set W in Z, f*(W)isopeninY. R1 S
P1: hypothesis | ¢ : X — Y is a quotient map. Given
P2: hypothesis | f o q is continuous. Given
S: OSV Let W be an open set in Z. C1
Body Construction Stage
1 Let W be an open setin Z. C1 S
2 Consider (f o)™ (W). C5 S
3 Note (f o@)'(W)=q'(f *(W)). R1 N
4 Since f o q is continuous , CO(3,P2)R1 N
g *(f *(W)) isopeninX.
5 Recall the property of a quotient map. Cc2 N
6 Since q is a quotient map, CO(4,5)R1 N
f (W) must be openin Y.
7 Therefore, f :Y — Z is continuous. R1 N

The following shows a way to obtain the above proof. The conclusion of the

given statement is ““ f : Y — Z is continuous.” The translation of the conclusion into

mathematical language is “For any open set W inz , (f ™ (W))is open in Y.” Noting

the ignition phrase “For an open set W in Z ,” one can set a starting variable by having

“W eT,.” Combining the other given condition “q: X — Y is a quotient map” and the

property of a quotient map “If (q~*(H)) s open in Z for a quotient mapq:Y — Z and

forH =z, then H is open in Y,” one may conclude (f *(W)) T, . The following

(Figure 5.21) is Edward’s proof.
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Figure 5.21. Edward’s Proof.
Edward was unable to complete the proof mainly because he missed using the

given condition that g : X — Y was a quotient map. He dealt with the opening stage
successfully by setting an open set W €T, and by trying to show f *(W) €T, . He
further successfully combined the starting variable W €T, with the given condition

“f o( is continuous” to obtaing*(f *(W)) T, . Then, the only thing that was left for
him to show was f *(W) €T, . To show f (W) eT,, he had to combine

g (f *(W)) eT, and the other given condition “q: X — Y is a quotient map,” which

he missed. It is important for students to make sure if they have used all the given
conditions.
Example 16 Berkeley (Algebra I1)

Berkeley’s case was another example showing that students’ failure to use a
given condition can cause weak or incomplete proofs. Her example also implied
carefulness and flexibility were required in practicing the operation of combining

objects.
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Question [9] (3) (In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a ring homomorphism.
Consider amap y : R/ Ker(¢) »> S :[r] - ¢(r).
Show y : R/ Ker(¢) — S :[r] = ¢(r) is a ring homomorphism.

Table 5.17 shows a possible proof for the given proof problem and shows where

Berkeley had difficulties in the proof construction.

Table 5.17

Analysis (Type A) of Berkeley’s Proof

Object Proof Code B
X Show w :R/Ker(¢) > S:[r] > ¢(r)isa Given
ring homomorphism.
Y | Show (i) w([r]+[s]) =y ([r]) +w([s]) and
(i) w ([rlisD) =w ([r]) w(Ls]) -
P1 v R/ Ker(p) > S:[r] - ¢(r).
P2 ¢: R — Sis a ring homomorphism. Given
i
1 Let[r],[s]e R/ K(¢§? C1l S
2 Consider yw([r]+[s]). C1 S
3 Note that w([r]+[s]) =w([r +5]). R2 S
4 Sincey : R/ Ker(¢) > S:[r] > ¢(r), CO(3,P1)R1 N
w([r+s)) =¢(r+s).
5 Since ¢: R — S is a homomorphism, CO(4, P2)R1 N
P(r+5) =¢(r) + 4(s) .
6 Since w : R/ Ker(¢) > S :[r] - ¢(r), CO(5,P1)R1 N
p(r)+¢(s) =w([r]) +y ([s]).
7| Then, w([r]1+[s) =y ([rD +w(sD. CO(2-6)R2 l
ii
8 Considerw ([r][s]) . = C1 S
9 Note w([r][s]) =w([rs]). R1 S
10 Then, y([rs]) =¢(rs). CO(9,P1)R1 N
11 Then, ¢(rs)=¢(r) ¢(s) . CO(10,P2)R1 | N
12 Since w : R/ Ker(g) — S:[r] - 4(r), CO(11,P1)R1 | N
g(r) #(s) =y ([r]) w([s]) .
13 Therefore, w([r1[s]) =w ([r]) w([s]) . CO(8-12)R2 I
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The goal of the proof is “w : R/ Ker(¢) — S :[r] = ¢(r)isaring
homomorphism.” There are two things to show: (i) w([r]+[s])=w([r +s]); (ii)
w([r1[sD =y ([r]) w([sD) . For (i), one can rephrase w ([r]+[s])with y([r + s])

through algebraic manipulation. Using the given condition

“w:R/IKer(¢) > S:[r]— ¢(r),” one can rephrase y ([r +s]) withg(r +s). Using
another given condition “¢: R — S is a ring homomorphism,” they can rephrase

o(r +s)withg(r) +¢(s) . Using the given condition “y : R/ Ker(¢) — S :[r] > ¢(r)”
again, one can derive that ¢(r) + #(s) =y ([r]) + w([s]) to conclude that) w([r]+[s]) =
w([rD) +w([sD.

Similarly, for (ii), one starts with consideringw ([r][s]) . One can rephrase
w([r][s]) with w([rs]) through algebraic manipulation. Using the given condition
“w:RIKer(¢) > S:[r] — 4(r),” one can further rephrase y ([rs]) withg(rs). Using
the other condition “¢: R — S is a ring homomorphism,” one can rephrase ¢(rs) with
#(r) ¢(s). Using the condition “y : R/ Ker(¢) — S :[r] — ¢(r) " again, one can
derive ¢(r) ¢(s) =y ([r]) v ([s]) to conclude that y ([r][s]) =w ([r]) w([s]). The

following (Figure 5.22) is Berkeley’s proof.
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Figure 5.22. Berkeley’s Proof.
Berkeley was unable to prove the given statement successfully mainly because

he was unable to use the given condition thaty : R/ Ker(¢) — S :[r] — ¢(r), where
¢: R — S was a ring homomorphism. He knew what he needed to show in order to
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prove v : R/ Ker(¢) — S :[r] = #(r) was a ring homomorphism. However, he was
unable to show whyw ([r +s]) =w([r]) +w([s]). In particular, he missed using a given
condition “y : R/ Ker(g) — S :[r] — #(r) ” to rephrase y ([r +s]) withg(r +s). He
needed to be careful enough to realize that w ([r + s]) = w([r]) + w([s]) was the very
statement that he needed to prove and was not what he was able to obtain for free. He
also needed to have flexibility to combine w ([r + s]) and the given condition ¢: R — S
and y : R/ Ker(¢) — S :[r] — ¢(r) so that he might rephrase w ([r + s]) with

w([r]) +w([s]).

Similarly, he was unable to show why w ([rs]) =w ([rDw([s]) . He missed
combining the object y([rs]) and the given condition “y : R/ Ker(¢) — S:[r]— ¢(r)”
in order to rephrase w ([rs]) with ¢(rs). When he had w([rs]) =w ([rDw([s]) , he
needed to be careful enough to question himself why the equality of the equation was
able to hold and to look for another information that might lead him to
w([rs]) =w([rDw([s]) . Having carefulness to check what has been done and having
flexibility to make good use of all the given conditions might play an important role in
combining objects.

Example 17 Dominique (Algebra 11)

Every single information given as a hypothesis or condition is important and
necessary in constructing a proof. Example 16 showed students’ failure to use part of
the given conditions made their proving arguments weaker or incomplete. Students’
missing using all the given conditions can lead to their complete failure to make a proof.

Dominique’s proof is such an example.
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Question [9] (3) (In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a ring homomorphism.
Consider amap y : R/ Ker(¢) —> S :[r] > ¢(r). Show
v R/ Ker(g) — S :[r] — #(r)is a ring homomorphism.

Table 5.18 shows a possible proof for the given proof problem and shows where

Louis had difficulties in the proof construction.

Table 5.18

Analysis (Type A) of Dominique ’s Proof

Object Proof Code
X Show w : R/ Ker(¢) > S :[r] - ¢(r)isa Given
ring homomorphism.
Y | Show (i) w([r]+[sD)=w([r]) +w([s])and
(i) ([rlls]) =w ([r]) w(LsD)
P1 v R/ Ker(p) > S:[r] - ¢(r).
P2 ¢ R — S is aring homomorphism. Given
i
1 Let [r],[s]e R/ K(¢§)) Cl
2 Consider , w([r]+[s]) C1l
3 Note that w ([r]+[s]) =w([r+5s]). R2
4 Since y: R/ Ker(g) —» S :[r] — ¢(r), CO(3,P1)R1
w([r+s) =¢(r+s).
5 Since ¢: R — S is a homomorphism, CO(4, P2)R1
P(r+5) =¢(r) +4(s) .
6 Since w : R/ Ker(¢) — S :[r] = ¢(r), CO(5,P1)R1
¢(r)+4(s) =y ([r]) +w([s]).
7 | Then, w([r]+[sD) =y (r])+w(sD. CO(2-6)R2
ii
8 Considery ([r][s]) - w C1
9 Note w([r][s]) =w([rs]). R1
10 Then, w([rs])=¢(rs). CO(9,P1)R1
11 Then, @(rs)=¢(r) ¢(s) . CO(10, P2)R1
12 Since w : R/ Ker(g) > S:[r] - ¢(r), CO(11, P1)R1
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#(r) ¢(s) =y ([r]) w([s]) .

13 Therefore, w([r][s) =w ([r]) w([s]). CO(8-12)R2

The goal of the proof is “w : R/ Ker(¢) — S :[r] > ¢(r)isaring
homomorphism.” There are two things to show: (i) w([r]+[s])=w([r +s]); (i)
w([rlls]) =w ([r]) w(Is]) . For (i), one can rephrase y ([r]+[s])with y([r +s])
through algebraic manipulation. Using the given condition
“w:R/IKer(¢) > S:[r] — ¢(r),” one can rephrase y ([r +s]) withg(r +s). Using
another given condition “¢: R — S is a ring homomorphism,” they can rephrase
o(r +s)withg(r) +¢(s) . Using the given condition “y : R/ Ker(¢) — S :[r] > ¢(r)”
again, one can derive that ¢(r)+ #(s) =y ([r]) +w([s]) to conclude that) w ([r]+[s]) =
w([rD) +w([sD-

Similarly, for (ii), one starts with consideringy ([r][s]) . One can rephrase
w([r][s]) with w([rs]) through algebraic manipulation. Using the given condition
“w:R/IKer(g¢) > S:[r]— #(r),” one can further rephrase w ([rs]) withg(rs). Using
the other condition “¢: R — S is a ring homomorphism,” one can rephrase ¢(rs) with
#(r) ¢(s). Using the condition “y : R/ Ker(¢) — S :[r] — ¢(r)” again, one can
derive ¢(r) ¢(s) =y ([r]) v ([s]) to conclude that v ([r][s]) =y ([r]) w([s]). The

following is Dominique’s proof (Figure 5.23).

Figure 5.23. Dominique’s Proof.
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Dominique knew exactly what he needed to show, but his proof was not
successful partly because his notations were incorrect, partly because he lacked his
alertness in advancing his reasoning process, and partly because he failed to combine

objects, and. He provided w (a + b) though he was supposed to provide y ([a]+[b]).

His use of incorrect notations may be attributed to his lack of carefulness in making

sure of how the homomorphism y : R/ Ker(¢) — S was defined. Also, he was not

alert enough to realize what he showed was exactly what he was asked to prove. He

needed to ask himself why he might say v ([a]+[b]) = w([a]) + w([b]). However, the

most crucial source of his incomplete argument might be that he was not able to note

and utilize the given condition y : R/ Ker(¢) — S :[r] — #(r) when he was trying to

change w([a] +[b]) intow([a]) +w([b]). By using the condition, he might have had

w([r1+[sD) =y ([r +s]) = 4lr +s] = dlr1+dls] =y ([r]) + w([s]).
5.6  Difficulties with Creating a Cue

Creating a cue is another major operation for advancing a reasoning process in
proof construction. There are four ways to create a cue: (1) to set a variable; (2) to
recall a theorem, a lemma, a proposition, and a property of concept, and engage it in a
proving argument; (3) to set some cases; (4) make a claim; (5) and consider an object.
Creating a cue can be considered as the highest level of operation of the three main
operations (rephrasing an object, combining objects, and creating a cue) in terms of the
difficulty. While the operations of rephrasing an object and combining objects allow
students to directly use the object that is already given or obtained, the operation of
creating a cue requires students to come up with a new object without having them

directly depend on the objects that have already existed. The results also implied that
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the factors of students’ background knowledge and their mental attitudes can be closely
related to their use of the operation of creating a cue. | will present three examples of
students’ difficulties with creating a cue while showing how their difficulties occurred
and affected their proofs: Eliot was unable to create a new object that helped him
further advance a reasoning process (Example 18): Elgar failed to derive a right starting
variable from a hypothesis of the given statement (Example 19); and Kyle failed to
recall and apply prior knowledge (Example 20).
Example 18 Eliot (Analysis)

Eliot’s case is a representative example showing that students’ difficulty with
creating a cue can cause students to produce an incomplete proof. In particular, he had
a difficulty to create a new function to be considered. His case also implied flexibility

might be an important factor that allowed students to create a cue.

Question [7] (Final Exam)

Let f :[0,1] — [0,1]be continuous. Prove that there exists a number
x €[0,]] such that f(x)=x.

Table 5.19 shows a possible proof for Question [7] and where Eliot had a
difficulty in the proof construction.
Table 5.19

Analysis (Type A) of Eliot’s Proof

Proof Code E
X | Prove that there exists a number x €[0,1] such that
f(x)=x.
P | f:[01] —[0,]is continuous. Given
1 | Define g:[0,1]] »>[-1L1]byg(x)= f(x)—x. C1 S
2 | Considerg(x) = f(x)—x. C5 N
3 | Recall the Intermediate Value Theorem. C2 N
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4 | Since0 e (-11), there exists ¢ e (0,1) such that CO(2.3)R1 N
g(c)=f(c)-c=0.
5 | Therefore, there exists c € (0,1) such that f (c)=c. R2 N

Considering using the Intermediate Value Theorem, one may create a
continuous function g : [0,1] — [-11] by defining g(x) = f (x) — x. Noting that
0 e[-1,1] and applying the theorem to the function g(x), one may derive c € (0,1) such
thatg(c) = f(c)—c=0. Then, one can conclude there exists ¢ €[0,1]such that f (c) =c.

The following (Figure 5.24) is Eliot’s proof.
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Figure 5.24. Eliot’s Proof.

Eliot thought about applying Intermediate VValue Theorem to the given function

f :[01] - [01]. Then, he set y,which is between f (0)and f (1). Then, as he stated,
there existed X, € (0,1) such that f (x,) =y,. However, he was unable to show y, = X,

clearly. One of the causes of his difficulties was that he was required to have flexibility

to create and consider a new continuous function g :[0,1] — [-11] by defining
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g(x) = f (x)—x so that he might apply the theorem to the function. If he had set

g :[0,1] — [-11] by defining g(x) = f (x) — x, he might have derived c € (0,1) such that
g(c) = f(c)—c =0 by applying the intermediate value theorem.

Example 19 Elgar (Topology)

Setting a variable is one of the major types for creating a cue. A variable is a
key unit for advancing a reasoning process. Without a variable, students cannot
construct a rigorous proving argument. In addition, students are often required to create
a variable in their proofs. It is crucial for them to be able to set a variable. However, it

can be difficult. Elgar’s case is such a representative example.

Question [6] (Exam II)

Let X, Y be topological spaces; Y be compact; X, € X ; N be an open set
containing {X,}xY in the product space X xY . Prove that there exists
an open neighborhood W < X of X,suchthat W xY < N .

The following (Table 5.20) is a possible proof for the given problem and shows
where Elgar had difficulties in the proof construction.
Table 5.20

Analysis (Type A) of Elgar s Proof

Proof Code E
X | Construct an open neighborhood W < X of x,such that
WxY cN.

P1 | N is an open set containing {X,}xY .

P2 | Y is compact.

1 | Since Nisopenin X xY , foreach (X,,Yy) e{x,}xY, Cl N
there exists a basis open set U, xV, e T, xT, <N

containing (X,, y) foreachy eY .
2| Then, {{x,}xV,}is an open cover of {x,}xY . R1
3 | Note {x,}xY is homeomorphic to Y. C2 S
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4 | Then, {X,}xY is compact. CO(P2,3)R2 |S

5 | Then, there exists a finite open subcover CO(2,4)
{{x.}xV, e{x,}xT,}},where i e{L...,njn eZ*}and R1

ov, =Y.
i=1 7

6 | Note that {x,}xY <{U, xV,}<N.., where C1 N
i e{l,...,n|n eZ"}.

n . . 1 N
Let W =NU,, where W is an open neighborhood of X,, ¢
i=1

where {X,}xY cWxY < N.

The conclusion of the given statement is “there exists an open neighborhood

W < Xof X,suchthatW xY < N .” Noting the given condition “N is an open set
containing{x,}xY “and recalling the property of an open set, one can set a starting
variable U, xV, < N as an open neighborhood of (x,, y) for eachy e Y . Noting
another given condition “Y is compact” and realizing{x,}xY is homeomorphic to Y,

one can construct an open cover of{X,}xY by having {u, xV,| U ,xV, c NandyeY }.

Since {X,}xY is compact, there must exist a finite open subcover{{x,}xV, e{x}xT},

n n
inwhichiefl,...,nNnez*}and UV, =Y . Then, one may construct W = U so that
i=1 !

i=1

{X.}xY cW xY < N. The following (Figure 5.25) is Elgar’s proof.
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Figure 5.25. Elgar’s Proof.
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Elgar had some difficulties in his proof. He stated that there existed X, € X
such that {X,}xY NN ={{x, }xY {x,}*xY}, which was wrong because
{X <Y NN ={x,}xY . Also, he was not very careful about what he provided at the
end of his proving argument. He was supposed to provide an open neighborhood W of
X, such that {x,}xY cW xY < N, but what he provided was not an open
neighborhood of X,. A more serious factor that made his proving argument

unsuccessful might have lain in his difficulty with creating a variable for developing a
proving argument. Unlike most other proofs examined in this, this proof problem
required students to derive a starting variable from not the conclusion but the

hypothesis of the given statement. Although Elgar noted the given hypothesis “N is an
open set containing {X,}xY in the product space X xY > at the beginning, he was
unable to set a variable from the hypothesis, which was a basis open set

U, xV, eT, xT, < N containing (X,,y) foreachy eY . A possible cause of his

difficulty with creating the open basis might be that he might not have translated “N is

an open set containing (X,, Y) €{X,}xY > into mathematical language “there exists a
basis open set U, xV, eT, xT, < N containing (X, y) foreachy e Y .” Students were
required to derive “an open neighborhood U <V, T, xT, of each point

(X5, Y) €{X,}xY ” by noting “(X,, y) e{X,}xY foreachyeY .” If Elgar had

U, xV, eT, xT, = N, he might have thought of making an open cover of{X,}xY so

that he might have used the condition of Y being compact.
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Example 20 Kyle (Analysis I)

Recalling a relevant theorem, proposition, or property and bringing it in to a
proving argument is one of the ways to advance a reasoning process in proof
construction. The theorem, proposition, or property brought in from outside can work
as a cue that helps students to move on. Students’ failure to create a cue through
recalling and applying a theorem, proposition, or property can be a crucial factor for
hindering them from advancing a reasoning process. Kyle’s proof is such a
representative example.

In the majority of proofs analyzed in this study, a starting variable was drawn
from the conclusion of the given statement. However, there were a few proofs in which
students had to derive a starting variable from a phrase or a statement other than the
conclusion of the given statement. For example, there was a type of proof in which
students had to derive a starting variable from a given hypothesis of the given statement.
There was also a type of proof in which students had derive a starting variable from a
proposition or a theorem that students were required to recall at the beginning of the
proof. Kyle’s proof problem belonged to this type. He had to derive a starting variable
from a property he needed to recall. Kyles’ proof showed, however, Although the
operation can be imperative, that it might be difficult for students to hit on, recall, and

choose a right one from their prior knowledge.

Question [1] (Exam I11)
Let a <bis fixed. Suppose that g, >0 is a sequence of Riemann integrable

b
functions such that lim Ign(x)dx: 0. Prove that if f is Riemann integrable

b
on (a, b), then lim [ 099, ()dx=0.
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Table 5.21 shows a possible proof for Question [1] and shows where Kyle had
difficulties in the proof construction.
Table 5.21

Analysis (Type A) of Kyle s Proof

Proof Code K

X b Given
Show lim j f (x)g, (X)dx=0.

Y b C5 N
Show lim| jf(x)gn(x)dx |=0.

P1 | g, >0is a sequence of Riemann integrable functions Given

b

such that lim [ g, (x)dx=0.

P2 | f(x) is Riemann integrable on (a, b). Given

1 t t C2 N
Recall ([ h(x)dx < [|h()[dx.

2 b b CO(L,Y)R2 | N
Then, |[ f(x)gn(x)dx4 <[] (g, (fdx.

3 | Since g,(x)>0, CO(2,P1)R2 | N
b b
[ 009, 09l = [| f (9fg, (x)dx.

4 | Since f is Riemann integrable, f is bounded, namely, C2 I
|f (x)| <M for someM eR.

5 b b CO@B,HR2 | |
Then, j | (¥)|g, (x)dx < j Mg, (X)dx.

6 b b R3 N
Note _[Mgn(x)dx= Mjgn(x)dx.

7 | Therefore, we have now CO(2, 6)R2 N

b b

o<|f f(x)gn(x)dx‘ <M{g,()dx.

8 b C5 N
Consider M j g, (x)dx
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9 b R CO(PL,8)R2 | N
Since lim J.gn(x)dx:o, lim M [ g, (x)dx=0.

10 b CO(7,9R2 | N
Therefore, lim| jf(x)gn(x)dx | =0as is desired.

One of the ways to solve this problem is to bring in and apply the proposition

that if IIjim|Aj| =0, thenlim A, =0. The conclusion of the given problem “Show

b b
lim [  (x)g,, (x)dx = 07 can be translated into “Show lim| [ f (x)g, (x)dx [=0.”

t b
Recalling and applying “ s.[|h(x)|dx”to !im| jf(x)gn(x)dx |, one can

j.h(x)dx

obtain

b b
J' f(x)g, (x)dx‘ < ﬂ f (x)g, (x)ldx. Then, noting the given condition

b b
“g,(x)>0,” one can obtain j| f(x)g, ()ldx = _ﬂ f (X)|g, (x)dx. Noting another given

condition “ f (x) is Riemann integrable” and recalling the property of a Riemann

integrable function, which is “if f(x) is Riemann integrable, f (x) is bounded,” one

can obtain “0 <

b b

J' f(x)gn(x)dx‘ < Mj'gn(x)dxf for some M < R.” By using the other
b

condition “lim .[gn (x)dx =0 and applying the squeeze theorem, one can conclude

b
that lim| _[ f(x)g,(x)dx |=0. The following (Figure 5.26) is Kyle’s proof.
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Figure 5.26. Kyle’s Proof.

One of the difficulties that Kyle had was that he was unable to think of using the

proposition r|1im|A1| =0, thenlim A, =0.” If Kyle had considered

b
Iim| _f f(x)g, (x)dx | he could have advanced his reasoning process by coming up

with the idea that

b b
I f(x)g, (x)dx‘ < J'| f (x)g, (x)dx. Another difficulty that he had was

that he was unable to recall the proposition “if f(x) is Riemann integrable, f(x) is

bounded, namely, |f (x)| < M for someM e R.” If he had known that, he could have

considered 0 < lim
N—o0|

b b
[RECOLS (x)dx‘ <lim M [ g, (x)dx =0 to conclude that

b
Iim| J‘ f(x)g, (x)dx | =0. This example also showed Kyle was required to have

flexibility to recall and choose a necessary theorem, proposition, or property from their

prior knowledge and apply it to a given proof problem.
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5.7  Difficulties with Checking and Exploring

Although this study did not focus on the fourth operation of Checking and
Exploring so much as others, it is a crucial, indispensable, and essential operation for
making proving arguments successful. For instance, it is important for students to
check what they have done, adjust or correct their ideas, and make another attempt if
necessary. Practicing the operation of checking can be closely related to students’
mental attitudes, especially carefulness and alertness. Two examples will be presented
to show students’ difficulties with checking and exploring: Curt failed to check what he
came up with (Example 21); Ryan tried a property that was not helpful but did not
check the effectiveness of the property (Example 22).
Example 21 Curt (Algebral)

Curt’s case is a representative example showing that students’ failure to check

what they have done can cause them to produce unsuccessful proofs.

Question [5] (In-class problem solving session)

Suppose that the order of G is a prime number. Prove that G is cyclic.

Table 5.22 shows a possible proof for Question [5] and shows where Curt had
difficulties in the proof construction.
Table 5.22

Analysis (Type A) of Curt’s Proof

Proof Code
X Show G is cyclic.
Y Show G =< g >forsome g e Gwithg =1. R1 I
P The order of G is a prime number. Given
S Let g eGwithg #1. C1 N
1 Let g e Gwithg =#1. C1 N
2 Consider < g >. C5 N
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Note < g >is a subgroup of G. Cc2 N

4 Recall the Lagrange’s THM and apply it to C2 N
<g>.

5 Then, by the Lagrange’s THM, |< g > =1, p. CO(3,4)R2

6 Since|< g > =1, |<g>[=p. CO(1,5)R2
Since|G|=p, G=<g>. R1 N

The conclusion of the given statement is “G is abelian.” The translation of it
into mathematical language provides “ab =bafor anya,b € G.” The phrase in the
mathematical language, “for any a,b € G,” is the ignition phrase. One can derive
starting variables from the ignition phrase and provide “Supposea,b € G.” This
problem is the type of the proof of showing A = B. One can work on either A or B until
A changes into B or B changes into A while making good use of the given conditions.
In this case, one can attempt to rephrase the left side of the equation “ab” until it
changes into “ba.” To rephrase “ab,” one may consider the given hypothesis
“G/Z(G)is cyclic” and look for the connection between the starting variables “a,b”

and the hypothesis “G/ Z(G) is cyclic.” Recalling the property that an element of G

belongs to some coset, one may produce a € x"Z andb € x"Z for some x € G. Then,

m+n

one can rephrase abwith x™"z,z,for somez, z,  Z . Using the property of the center

m+n

of a group, one may deriveab=x""z,z, =x""z,z, =ba. The following are Curt’s

proving strategy (Figure 5.27) and his proof (Figure 5.28).
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Figure 5.27. Curt’s Strategy.
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His statement for his proving strategy had two problems. First, he had a
difficulty with his notation. He stated “I will show that H =< g” >.” He probably
meant H =< g >byH =<g” >. He needed to be careful to realize that H=<g" >=
{e}, which would be a trivial case. Another problem was that even when he showed

H =< g >, that would not have led him to reach the conclusion “G is cyclic.”
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Figure 5.28. Curt’s Proof.

Curt further argued that since |H|= pdivided |G|, |G|= p, which was false.
He again needed carefulness to realize that |G| might be multiple of p. Moreover, he
ended up with |G| = p as his conclusion, which was not the goal of the proof he was

supposed to show. By making sure of the goal, he might have changed his proving
arguments.

Example 22 Ryan (Topology)

Rayan’s case was a representative example showing that students failed to make
a successful proving argument because they tired applying their prior knowledge that

was not necessary nor helpful for solving the given proof problems.

Question [7] (Exam I1)

Let X be a Hausdorff space. Let {x.:n e Z*}be asequence in X converging
to a pointX,. Prove that the set K ={x, :n=012,...}is compact.
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Table 5.23 shows a possible proof for the given proof problem and shows where
Ryan had difficulties in the proof construction.
Table 5.23

Analysis (Type A) of Ryan’s Proof

Object Proof Code R

X Show that K ={x,:n=0.12,...}is compact.

Y Show that for any open cover of K, K has a finite
open subcover.

P {x. :ne Z*}be asequence in X converging to X, . Given
Let U ={U_ €T, }be an open cover of X. Cl

2 Construct an open cover of K by letting C1
V =4V, =U, ~K}.

3 Since U ={U,, €T, }is an open cover of X, R1 N
Ju, eU such that x, e U, -

4 Since x converges toX,, 3N e Z*such that for all CO(P3R | N
n>N, x e U, 1
Letv, =U, nK,whereVv, eV. C1 N
For each xwithi < N , find an open set V, eV such Cl N
that x, eV, .

7 Note that {v, .V, ...V, ..V, }is adesired finite open | CO(56)R | N
subcover of K. 2

The conclusion of the given statement is “ K ={x, :n=0,12,...}is compact.” It

can be translated into the mathematical language “For any open cover of K, K has a
finite open subcover.” By paying attention to the ignition phrase “For any open cover

of K,” one may explore the way to construct an open cover of K. Recalling the property

of a subspace topology, one can set a starting variable by having “Let U ={U_ €T, }as

an open cover of X”. Then, one may construct an open cover of K by having

“V ={V, =U_NK}.” To further advance a reasoning process, one may note and
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consider the given hypothesis “{x, : n € Z*}converges to a pointx,.” Then, the given

hypothesis can be translated into “For an open set vV, =U, K in the open cover of K,
in whichx, €U, , 3N e Z"such that foralln> N, x, €V, . Finally, they may create a
finite open subcover {V, ,V, ...V, ,V, }bysetting vV, eV such that x eV, for n<N.

The following (Figure 5.29) is Ryan’s proof.
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Figure 5.29. Ryan’s Proof.

Ryan’s proof was not successful partly because he used a property that was not
helpful for solving the given proof problem. He noted the hypothesis of the given
statement “X is Hausdorff.” It seems he got the concepts of a Hausdorff space and a
disconnected space mixed. He moved on his proving argument, using the concept of
connectedness without realizing it was not helping him. When he made a conclusion,
he seemed not to realize that his proving argument was fruitful. What he needed was
his carefulness to realize the concept he applied was not helpful and his flexibility to try
a different method by noting the other given condition “K is a convergent sequence.”
The problem with their attempt was not the fact that they explored the solution by
applying their prior knowledge but the fact that they did not realize that the object they

used was not helpful and the fact that they did not question themselves of the
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effectiveness of the object. The operation of exploring and checking may be closely
related to students’ mental attitudes such as flexibility, carefulness, and alertness.

Other multiple factors might also have affected his proof. He did not note and
translate the conclusion of the given statement in order to make sure of the goal of the
proof. In addition, he started his argument with assuming that the given space was
separable, which was not good because he was not supposed to define a given space to
be some specific one at his discretion. Moreover, it seems he got the concepts of a
separable space and of a disconnected space mixed. A separable space is a space that
contains a countable dense subset. Namely, a separable space must contain a sequence
of elements of the space such that every open subset of the space contains at least one
of the elements of the sequence. Above all, he missed paying a close attention to the
conclusion of the given statement and translating it into mathematical language to
make sure of the goal and to derive a starting variable, which resulted in an invalid
proving argument.
5.8  Lack of Background Knowledge

The background knowledge is the knowledge necessary for solving a given
proof problem, including definitions, properties, notations, theorems, lemmas,
propositions, mathematical laws, and proving techniques. Students’ lack of background
knowledge can directly affect and damage their proof construction. Students’ lack of
knowledge can impede, hinder, and disable them from practicing those operations such
as rephrasing an object and creating a cue. It is imperative for students have, recall,
and apply the knowledge necessary for a given problem correctly so that they can make

their proving arguments successful. 1 will present 13 examples while showing what
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type of knowledge they lacked and how their lack of knowledge affected their proofs:
Billy mixed different concepts (Example 23); Savanna lacked elementary and basic
knowledge of concepts (Example 24); Davis was unable to recall a relevant property
correctly (Example 25); Carlos created a wrong notation (Example 26); Elias had an
incomplete understanding of a concept (Example 27); Savanna lacked knowledge of the
basics of concepts (Example 28); Donald did not know the definition of a concept
(Example 29); Dayton created a wrong property of a concept (Example 30); Anthony
did not know a proving strategy (Example 31); Zack did not know a relevant fact
(Example 32); Carlos produced a wrong notation (Example 33); and Ben produced a
wrong notation due to an incomplete understanding of concepts (Example 34).
Example 23 Billy (Algebra 11)

Billy’s case is another representative example showing that students’ lack of

knowledge can directly damage their proving arguments.

Question [9] (3) (In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a s ring homomorphism.
Consider amap y : R/ Ker(¢) »> S :[r] - ¢(r).
Show y : R/ Ker(¢) — S :[r] = ¢(r)is a ring homomorphism.

Table 5.24 shows a possible proof for the given proof problem and shows where
Louis had difficulties in the proof construction.
Table 5.24

Analysis (Type A) of Billy’s Proof

Object Proof Code L

X Show w : R/ Ker(¢) > S :[r] > ¢(r)isa Given
ring homomorphism.
Y | Show (i) w([r]+[s) =y ([r]) +w([s]) and |
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(i) ([rllsD) =w Ar]) w(IsD
P1 v RIKer(g) > S:[r] > #(r).
P2 ¢: R — Sis a ring homomorphism. Given
i
1 Let [r],[s]e R/ K(gg)) Cl S
2 Consider , w([r]+[s]) C1 S
3 Note that w([r]+[s]) =w([r+5s]). R2 S
4 Since w : R/ Ker(¢) > S :[r] - ¢(r), CO(3,P1)R1 S
w([r+s]) =¢(r+s).
5 Since ¢: R — S is a homomorphism, CO(4, P2)R1 S
P(r+s) =p(r) + 4(s).
6 Since w : R/ Ker(¢) > S :[r] - ¢(r), CO(5,P1)R1 I
p(r)+¢(s) =w([r]) +y([s]).
7 | Then, y([r1+[sD=w([r]) +w([s]). CO(2-6)R2 l
ii
8 Considery ([r][s]) - w C1 N
9 Note w ([r][s]) =w([rs]). R1 N
10 Then, y([rs]) =¢(rs). CO(9,P1)R1 N
11 Then, ¢(rs)=¢(r) ¢(s) . CO(10,P2)R1 | N
12 Since w : R/ Ker(g) > S:[r] - ¢(r), CO(11,P1)R1| N
P(r) ¢(s) =y ([r]) w(Ls]) -
13 Therefore, w([r1[s]) =w ([r]) w([s]) . CO(8-12)R2 N

injective is to show that ifw ([r]) =w([s]), then[r]=[s]. Then, paying attention to the
ignition phrase “w ([r]) = w([s]),” one may start a proving argument with “Suppose
thaty ([r]) =w([s]).” Noting the given condition “y : R/ Ker(¢) — S :[r] — 4(1),”
one can rephrase w([r]) =w([s]) with #(r) =¢(s) based on the way for

v R/ Ker(¢) — Sto be defined. One can further rephrase ¢(r) = ¢(s) with

0; =@(r)—@(S) = (r —s) to obtainr —s € Ker(g) , which can lead them to conclude

that[r]=[s].
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There is another way to prove the given proof problem. There is a property of

an injective homomorphism that ¢ : R — S is an injective ring homomorphism if and
only if Ker(¢) =0,. Therefore, in order to prove thaty : R/ Ker(g) — S :[r] — ¢(r) is
injective, one can show Ker(y) = 0g .,y - TheN, ONe may start with considering
Ker(y). Applying the definition of Ker () , one may translate it into

Ker(y) ={[r] € R/ Ker(¢), in whichy([r]) =0s}. Combining the given condition

v R/ Ker(g) — S :[r] — ¢(r), one can further rephrase it with

Ker(y) ={[r] € R/ Ker(¢), in which@(r) =04 }. Furthermore, one can rephrase it with
Ker(y) ={[r] € R/Ker(¢), in whichr € Ker(¢) }. Then, they can conclude that

Ker(y) ={[r]= Ker(¢) }, namely, Ker(y)=0g (- 1Ne following (Figure 5.30) is

Billy’s proof.

Figure 5.30. Billy’s Proof.
Billy mistakenly got the concept of ideal involved as the second property of a
ring homomorphism “w ([r][s]) =w ([r]) w([s]) .” He showed w(a[r]) =aw([r])
though he was supposed to showw ([r][s]) = w([rDw([s]) . His incomplete knowledge

of the second property of a ring homomorphism directly damaged his proof.

Example 24 Savanna (Algebra I1)
Savanna’s proof is a representative example showing that students’ lack of

knowledge of definitions directly affects their proving arguments.
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Question [9] (4) (In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a ring homomorphism.
v R/ Ker(g) = S :[r] > ¢(r)is a well-defined ring homomorphism.
Show y : R/ Ker(¢) — S :[r] — ¢(r)is injective.

Table 5.25 shows a possible proof for Question [9] (4) and shows where
Savanna had difficulties in the proof construction..
Table 5.25

Analysis (Type A) of Savanna’s Proof

Proof Code S
X Show w : R/ Ker(g¢) — S :[r] — #(r)is injective. Given
Y | Show that if w([r]) =w([s]), then [r]=[s]. R1 I
P1 w R/ Ker(¢) > S :[r] > ¢(r)is a well-defined ring Given
homomorphism.
P2 ¢ R — S is a ring homomorphism. Given
1 Suppose that w([r]) =w([s]) . C1 N
Then, ¢(r) =¢(s) . CO(L,P1)R | N
1
2 | Then, Og =¢(r)—¢(s) =@(r—s). R3 N
3 Then, r—s e Ker(g) . R2 N
4 Then, r =s+Kk for some k € Ker(¢). R2 N
5 Then, r=s+k e[s]. R2 N
6 Then, [r]=[s]. R2 N
Another Proof
X | Show Ker(w) = 0, yers) - N
1 Consider Ker(y) ={[r] € R/ Ker(¢) , where C1 N
w([r]) =05}
2 Since w : R/ Ker(¢) —» S :[r] — ¢(r), CO(L,P1)R | N
Ker(y) ={[r] € R/ Ker(¢), where ¢(r) =0, }. 1
4 Then, Ker(w) ={[r] € R/Ker(g), r € Ker(¢) }. R1 N
5 Then, Ker(yw) ={[r] € R/ Ker(¢), [r] = Ker(g) R1 N
6 Therefore, Ker(y) =0g)wer(s) - R1 N

The following is an explanation of the above proof. One of the ways to show

the function w : R/ Ker(¢) — S :[r] — #(r) is injective is to show that if
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w([r]) =w([s]), then[r]=[s]. Then, paying attention to the ignition phrase

“w([r]) =w([s]),” one may start a proving argument with “Suppose that

w([r]) =w([s]).” Noting the given condition “y : R/ Ker(¢) — S :[r] — #(r),” one
can rephrase w([r]) = w([s]) with ¢(r) = ¢(s) based on the way for w : R/ Ker(¢) - S
to be defined. One can further rephrase ¢(r) = ¢(s) with O; = @(r) —¢(S) = ¢(r —s) to
obtainr —s e Ker(¢) , which can lead them to conclude that[r] =[s].

There is another way to prove the given proof problem. There is a property of

an injective homomorphism that ¢ : R — S is an injective ring homomorphism if and
only if Ker(¢) =0,. Therefore, in order to prove thaty : R/ Ker(¢) — S :[r] — ¢(r) is
injective, one can show Ker(y) = 0g .., - Th€N, 0ne may start with considering
Ker(w) . Applying the definition of Ker(y) , one may translate it into

Ker(y) ={[r] € R/ Ker(¢), in whichy([r]) =0s}. Combining the given condition

v R/ Ker(¢) — S :[r] — ¢(r), one can further rephrase it with

Ker(y) ={[r] € R/ Ker(¢), in which@(r) =04 }. Furthermore, one can rephrase it with
Ker(y) ={[r] € R/Ker(¢), in whichr € Ker(¢) }. Then, they can conclude that
Ker(y) ={[r]= Ker(¢) }, namely, Ker(y)=0g, (- The following (Figure 5.31) is

Savanna’s proof.

Figure 5.31. Savanna’s Proof.

159



She was unable to prove the given proof problem and only showed her concept
image about an injective function. However, her concept image of an injective function
was wrong. Her statement “In order for a map to be injective, there must not be an

element in R/ Ker(¢) which is mapped to more than one element in S” was not the

definition of an injective function but that of a function. Since she did not know the
definition of an injective function, there was no way for her to prove the given
statement. Savanna also gave an example showing that even those students who had
already exposed themselves to some proof-based courses may forget a basic and
elementary proving skill of proving, for example, that a map is injective.

Example 25 Davis (Analysis)

Question [2] (Exam II)

. . d .
Using the Inverse Function Theorem, show that &arcsm X = )
1-x

for all xe (-11).

Table 5.26 shows a possible proof for Question [2] and shows where Davis had
difficulties in the proof construction.
Table 5.26

Analysis (Type A) of Davis’s Proof

Proof Code D

% Show that iarcsinx— ! forall x e (-11)

dx V1-x° ’
1 | Consider the left hand side of the equation. C5
2 | Recall the Inverse Function Theorem, which is C2 N
1
f 1Y (x)=—————— where f(y)=x.
(fF7)'(x) 70 100) (y)
3 | Note Sarcsinx=—* with arcsinx e (-5, %y, | COL2ARL N
dx cosarcsin x 2 2
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4 Recall thatcosg = /1—sin’ ¢ on g e (%%) ' C2 N
5 | Then, cosarcsin x = \/1—sin2 (arcsinx) . COB,4R3 | N
0 Note sin(arcsin x) = x for arcsinx e (%,%) , C2 N
7| Then, \/1—sin2(arcsin x) =1-x2 . CO(5, 6)R3

8 Therefore, %arcsinx = 1ix2 , CO(3,4,7)R3

The following is a possible way to prove the above problem. One can first

recall the Inverse Function Theorem «(f )'(x) = ” as suggested in the

_
f(f 7 (x)

question. The denominator of the right hand side of the equation becomes cos(arcsinx)

for arcsinx e (%,%) . Recalling cosp =+/1-sin®¢ for ¢ € (%,%) and applying

it to cos(arcsinx), one can get \/1—sin2(arcsin X) = J1-x2 for cos(arcsinx) with

. The

) - . d )
arcsinx e (7,—) . Finally, students can conclude —arcsin x =

1
2 dx 1/:|__)(2

following (Figure 5.32) is Davis’s proof.

T |
W)=
-( ( é‘“ - 4\1 1\ 2l f/’j i ("C'S%J‘ )

(osh) = VI~ sin)

WEsind) LA sA) = Fsiny

o
o N =
// N SN flr"\\‘ Arh ¢ *

;
/s
-

oy .
4 ((\()) - f,(m)] - \ﬁ:ﬁ)

Figure 5.32. Davis’s Proof.

161



Davis was able to come up with the idea of using the theorem for the derivative

of an inverse function, but did not recall it correctly, which damaged his whole proving

argument. He applied (f )'(x) = though he was supposed to apply

1
F'(f(x))

1
f YY) = ——.
R f(f7(x)

Example 26 Carlos (Algebra I)

Carlos’s case is another representative example showing that students’ lack of

knowledge of a concept can cause of their producing of an unsuccessful proof.

Question [4] (In-class problem solving session

Suppose that G/ Z(G) is cyclic. Prove that G is abelian.

Table 5.27 shows a possible proof for the given proof problem and shows where
Carlos had difficulties in the proof construction.

Table 5.27

Analysis (Type A) of Carlos’s Proof

Object Proof Code C
X Show G is abelian. S
Y Show ab=baforanya,beG. R1 S
P G/Z(G)is cyclic. Given
1 Leta,beG. C1 N
2 Note a,b e G are in some cosets. C2 N
3 Let ae x"Z andbe x"Z. CO(2,PR1 | N
4 Let a=x"zand b=x"z,for somez,z,cZ. R2 N
5 Then, ab=x""z, = x""z, =ba. R3 N

The conclusion of the given statement is “G is abelian.” The translation of it

into mathematical language provides “ab = bafor anya,b € G.” The phrase in the

mathematical language, “for anya,b € G,” is the ignition phrase. One can derive
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starting variables from the ignition phrase and provide “Supposea,b € G.” This proof
is the type of the proof of showing A = B. One can work on either A or B until A

changes into B or B changes into A while making good use of the given conditions. In
this case, one can attempt to rephrase the left side of the equation “ab until it changes

into “ba.” To rephrase “ab,” one may consider the given hypothesis “G / Z(G) is
cyclic” and look for the connection between the starting variables “a,b” and the
hypothesis “ G/ Z(G) is cyclic.” Recalling the property that an element of G belongs to

some coset, one may produce a € X"Z andb € x"Z for some x € G. Then, one can

m+n

rephrase abwith x™"z,z,for some z,,z, € Z . Using the property of the center of a

m+n

group, one may deriveab=x""z,z, =x""z,z, =ba. The following (Figure 5.33) is

Carlos’s proof.

ek a 0" ad g oS B g4 e 2(s)
v v N
¥ and r,s€ Z B
| —{{Aﬁf\ 9{(}21 Q_r—as _ ar‘L.S: QSri": asq_'_: :lﬂ
| i} o /206)=KaT then
e s ahe\iun - ]

Figure 5.33. Carlos’s Proof.
Carlos’s proof was not successful partly because he lacked the knowledge of the
way to express a coset of Z(G) and of the relationship between an element of G and a

coset of Z(G). He provided <a>to express G/ Z(G) as a cyclic group though he was

supposed to provide G/(Z) =< x"Z > for some x € G. He lacked the knowledge of the

notation for a coset of G/(Z). The relationship between an element of G and a coset of
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Z(G) was that an element of G belonged to some coset of Z(G). If he had known the
relationship, he might have rephrased g, = x™z,and g, =x"z,for some z,,z, € Z(G),
which might have led him to obtain 9,9, =Xx"2,x"z, =X"2,x"z, =0,0;.

Example 26 Elias (Topology)

Elias’s case is another representative example showing students’ lack of solid

understanding of a concept and a theorem can cause them to produce incomplete proofs.

Question [7] (Exam II)

Let X be a Hausdorff space. Let {x, :n e Z*}be a sequence in X
converging to a point,. Prove that the set K ={x, :n=012,...}is compact.

Table 5.28 shows a possible proof for Question [7] and shows where Elias had
difficulties in the proof construction.
Table 5.28

Analysis (Table A) of Elias’s Proof

Object Proof Code E

X Show that K ={x,:n=0.12,...}is compact.

Y Show that for any open cover of K, K has a finite
open subcover.

P {x, :n e Z*}be asequence in X converging to X, . Given
Let U ={U_ €T, }be an open cover of X. Cl

2 Construct an open cover of K by letting C1 N
V={V, =U,"K}.

3 Since U ={U,, €T, }is an open cover of X, R1 S
Ju, eUsuchthat x, U, .

4 Since x converges to%,, 3N e Z*such that for all CO(P3RL | S
n=N, x, e U, -
Letv, =U, nK,whereV, eV. C1 N
For each x,withi < N, find an open set V, eV such Cl N
that x; eV, .
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7 Note that L\ VA VA ,V%}is a desired finite open | CO(5,6)R2 N
subcover of K.

The conclusion of the given statement is “ K ={x, :n=012,...}is compact.” It

can be translated into the following mathematical language: “For any open cover of K,
K has a finite open subcover.” By paying attention to the ignition phrase “For any open
cover of K,” one may explore the way to construct an open cover of K. Recalling the

property of a subspace topology, one can set a starting variable by having “Let

U ={U, €T, }as an open cover of X”. Then, one may construct an open cover of K,
providing “V ={V_ =U, " K}.” Noting the given hypothesis “{x, : n € Z*}converges
to a pointX,,” one may translate it into the following mathematical language: “For an
opensetV, =U, nKinthe open cover of K, in whichx, €U, , 3N e Z"such that for
alln> N, x; eV, . Then, one can construct a finite open subcover {V, ,V, ,..V, .V, }
by setting V, eV such that x; €V, for n<N. The following (Figure 5.34) is Elias’s

proof.

Lt % ¢y d

X Jew - BEV M€K Vae 2 gy L e beconsy
"o hewsdor £L 4nd  each  elomeny et X 35 Gopmable 1b x oL Ofg.
o S \ ’ N II ) ’

O eqth Xfa e K 1S 1h 4 J-\-ﬂ»@'mnf sué sprer oL X ¢ Ming e

o
NG B l

o: 3 Lz{j}(h? 002 s covered Ly ype i leto |
NS Ae ce ‘i}(.,§ (s v

g ‘r,'q-“.[f’ 5“‘? tobg.«'n}, <o i:’(h? f\S ContPres.

Figure 5.34. Elias’s Proof.
Elias was unable to solve the problem partly because he was unable to construct
an open finite subcover of K properly. He did not understand the definition of
compactness precisely. As is shown in the following figure (Figure 5.35), he stated in a
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previous problem “A space is compact if there exists a finite sub-covering.” He missed
including in it “For every open cover of X.” His incomplete understanding of
compactness might have led him to fail to set an open cover of K, from which a finite

subcover might have been derived.

2C. compact

A gpece TS compacd L

Yhere ey che e Lo
sub cauerc\n?/l .

\.-F

Figure 5.35. Elias’s Statement.
Example 28 Savanna (Algebra I1)
Students’ ignorance of definitions severely damages their proving arguments.

Savanna’s case was such a representative example.

Question [9] (3) (In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a ring homomorphism.
Consider amap y : R/ Ker(¢) - S:[r] - ¢(r).
Show y : R/ Ker(¢) — S :[r] = ¢(r) is a ring homomorphism.

Table 5.29 shows a possible proof for the given proof problem and shows where
Savanna had difficulties in the proof construction.
Table 5.29

Analysis (Type A) of Savanna’s Proof

Object Proof Code S

X Show y: R/ Ker(¢) > S:[r] > ¢(r)isa Given
ring homomorphism.

Y | Show (i) w([r]+[sD)=w([r]) +w([s])and
(i) w ([r1ls]) =w ([r]) w(IsD)

P1 v R/Ker(g) > S:[r] - ¢(r).
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P2 ¢ R — Sis a ring homomorphism. Given
i
1 Let [r],[s]e R/ K(¢§)) Cl N
2 Consider , w([r]+[s]) C1 N
3 Note that w([r]+[s]) =w([r+5s]). R2 N
4 Since w : R/ Ker(¢) > S :[r] - ¢(r), CO(3,P1)R1 N
w([r+sl)=¢(r+s).
5 Since ¢: R — S is a homomorphism, CO(4, P2)R1 N
P(r+5s) =¢(r) +¢(s) .
6 Since y : R/ Ker(g) > S :[r] — ¢(r), CO(5,P1)R1 N
¢(r)+4(s) =y ([r]) +w([s]) .
7| Then, w([r]1+[s) =y ([rD) +w(sD. CO(2-6)R2 N
ii
8 Considerz//([r][s]).( : C1l N
9 | Note y([r][s]) =w([rs]). R1 N
10 Then, w([rs])=¢(rs). CO(9,P1)R1 N
11 Then, ¢(rs)=¢(r) #(s) . CO(10,P2)R1 | N
12 Since w : R/ Ker(g) > S:[r] - ¢(r), CO(11,P1)R1 | N
$(r) () =y ([r]) w([s]) -
13 Therefore, w([r1[s]) =w ([r]) w([s]) . CO(8-12)R2 N

homomorphism.” There are two things to show: (i) w([r]+[s])=w([r +s]); (ii)

y([r]s) =y ([r]) w([s]) . For (i), one can rephrase y ([r]+[s])with y ([r +s])

The goal of the proof is “w : R/ Ker(¢) — S :[r] = ¢(r)isaring

through algebraic manipulation. Using the given condition

“w:RIKer(¢) > S:[r]— ¢(r),” one can rephrase y ([r +s]) withg(r +s). Using
another given condition “¢: R — S is a ring homomorphism,” they can rephrase
o(r +s)withg(r) + ¢(s) . Using the given condition “y : R/ Ker(¢) > S :[r] = ¢(r)”

again, one can derive that ¢(r) + ¢(s) =w ([r]) + w([s]) to conclude that) w([r]+[s])=

y([r]) +w([sD) .
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Similarly, for (ii), one can start with consideringy ([r][s]) . One can rephrase
w([r][s]) with w([rs]) through algebraic manipulation. Using the given condition
“w:RIKer(¢) > S:[r]— ¢(r),” one can further rephrase w ([rs]) withg(rs). Using
the other condition “¢: R — S is a ring homomorphism,” one can rephrase ¢(rs) with
#(r) ¢(s). Using the condition “y : R/ Ker(¢) — S :[r] — ¢(r) ” again, one can
derive ¢(r) ¢(s) =y ([r]) v ([s]) to conclude that v ([r][s]) =w ([r]) w([s]). The

following is Savanna’s proof (Figure 5.36).

(3)Show i : R/ Ker(@) — S :[r] > ¢(r)is a ring homomorphism. If you have forgotten how to show

that a map is a ring homomorphism, feel free to ask the researcher.

Figure 5.36. Savanna’s Proof.

Savanna was unable to prove the above statement mainly because she had not
remembered the definition of a ring homomorphism correctly. She mistakenly believed
the definition of a ring homomorphism had to be a one to one and onto function. In
addition, she did not know how to show a function is one to one and onto. She lacked
the knowledge of the basics of some concepts.

Example 29 Donald (Topology)
Donald’s case was another example showing students’ lack of knowledge gave a

flaw to their proving arguments.

Question [7] (Exam I1)

Let X be a Hausdorff space. Let {x,:n e Z"}be a sequence in X converging
to a pointX,. Prove that the set K ={x, :n=0.12,...}is compact.
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Table 5.30 shows a possible proof for the given proof problem and shows where

Matt had difficulties in the proof construction.

Table 5.30

Analysis (Type A) of Donald’s Proof

Object Proof Code

X Show that K ={x, :n=0.12,...}is compact.

Y Show that for any open cover of K, K has a finite
open subcover.

P {Xx, :n e Z"}be asequence in X converging to X,. Given
Let U ={U, €T, }be an open cover of X. Cl

2 Construct an open cover of K by letting C1
V={V,=U,K}.

3 Since U ={U_ €T, }is an open cover of X, R1
Ju, eUsuchthat x, €U, .

4 Since X converges toX,, IN e Z*such that for all CO(P,3)R1
n=N, x, eU, .
LetV, =U, nK,whereV, eV. C1 N
For each X withi < N, find an open set V, €V such Cl N
that x €V, .

7 Note that {V, ,V, ...V, ..V, }isadesired finite open | CO(5,6)R2 | N
subcover of K.

The conclusion of the given statement is “K ={x, :n=0.12,...}is compact.” It

can be translated into the mathematical language “For any open cover of K, K has a
finite open subcover.” By paying attention to the ignition phrase “For any open cover

of K,” one may explore the way to construct an open cover of K. Recalling the property
of a subspace topology, one can set a starting variable by having “Let U ={U_ €T, }as
an open cover of X”. Then, one may construct an open cover of K by having

“V ={V, =U_ "K}.” To further advance a reasoning process, one may note and
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consider the given hypothesis “{x, : n € Z"}converges to a pointx,.” Then, the given

hypothesis can be translated into “For an open set vV, =U_, K in the open cover of K,
inwhichX, €U, , 3N e Z"such that foralln > N, x, €V, . Finally, they may create a
finite open subcover {V, ,V, ..V, ,V, }by setting V, eV suchthat X, €V, for n<N.

The following (Figure 5.37) is Donald’s proof.

Y.{‘ampaw‘e} -Vowaﬂ wuumc‘r'z,.t"ﬁ) U, )u&.;)( E-;,aﬁ‘ L, 1) has o sk Subove ot .
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Figure 5.37. Donald’s Proof.

Donald’s proof was close to a completed proof, but it seems he did not know the
concept of a subspace topology, which gave a flaw to his proof. Heset U ={U_ €T, }
as an open cover for K and used it to derive a finite open subcover of K though he was
supposed to have V ={V_ =U_ " K}as an open cover for K. It seems he assumed that
an open covering for X might be used as an open cover for K.

Example 30 Dayton (Algebra I)
Dayton’s case is a representative example showing that students’ lack of

knowledge hinders them from rephrasing an object, which causes their proofs to be

unsuccessful.

Question [4] (In-class problem solving session)

Suppose that G/ Z(G) is cyclic. Prove that G is abelian.
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Table 5.31 shows a possible proof for Question [4] and where Dayton had
difficulties in the proof construction.

Table 5.31

Analysis (Type A) of Dayton s Proof

Object Proof Code A
X Show G is abelian. S
Y Show ab=baforanya,beG. R1 S
P G/Z(G)is cyclic. Given
1 Leta,beG. C1 N
2 Note a,b e G are in some cosets. C2 N
3 Let ae x"Z andbe x"Z. CO@2P)R1 | N
4 Let a= X"z and b= X"z, for somez,z,eZ . R2 N
5 Then, ab=x""z, = x""z, =ba. R3 N

The conclusion of the given statement is “G is abelian.” The translation of it
into mathematical language provides “ab =bafor anya,b € G.” The phrase in the
mathematical language, “for anya,b € G,” is the ignition phrase. One can derive
starting variables from the ignition phrase and provide “Supposea,b € G.” This proof
is the type of the proof of showing A = B. One can work on either A or B until A
changes into B or B changes into A while making good use of the given conditions. In
this case, one can attempt to rephrase the left side of the equation “ab” until it changes
into “ba.” To rephrase “ab,” one may consider the given hypothesis “G/ Z(G) is
cyclic” and look for the connection between the starting variables “a,b ” and the

hypothesis “G / Z(G) is cyclic.” Recalling the property that an element of G belongs to

some coset, one may produce a € x"Z andb € x"Z for some X € G. Then, one can

m+n

rephraseabwith x™"z,z,for somez, z, € Z . Using the property of the center of a
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m+n

group, one may deriveab=x""z,z, =x""z,z, =ba. The following (Figure 5.38) is

Dayton’s proof.

/

Figure 5.38. Dayton’s Proof.

Dayton was unable to prove the given proof problem mainly because he had a
wrong concept image of an abelian group. He proclaimed ““I do know all subgroups of
an abelian group are cyclic,” which was wrong. He might have been right if he had
stated “all subgroups of an abelian group are normal,” though. His wrong concept

image hindered him from translating “G is abelian” into “ab =bafor anya,b € G,” and

from advancing a reasoning process. His proof was an example showing students’ lack
of knowledge might directly affect their use of the operation of rephrasing an object,
which produced an incomplete proof.

Example 31 Anthony (Algebral)

Anthony’s case is an example showing students’ lack of knowledge of a proving
technique can cause them to get astray in advancing a reasoning process and to produce
an incomplete proof. In particular, Anthony’s proof was a representative example
showing students’ difficulties with proving might be caused by their lack of the

knowledge for dealing with the type of proof of showing A = B.

Question [4] (In-class problem solving session)

Suppose that G/ Z(G) is cyclic. Prove that G is abelian.

Table 5.32 shows a possible proof for the given proof problem.
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Table 5.32

Analysis (Type A) of Anthony’s Proof

Object Proof Code A
X Show G is abelian. S
Y Show ab=baforanya,beG. R1 S
P G/Z(G)is cyclic. Given
1 Leta,beG. C1 N
2 Note a,b e G are in some cosets. C2 N
3 Let aex"Z andbe x"Z. CO(2,P)R1 | N
4 Let a= X"z and b= X"z, for somez,z,cZ . R2 N
5 Then, ab=x""z, = x""z, =ba. R3 N

The conclusion of the given statement is “G is abelian.” The translation of it
into mathematical language provides “ab =bafor anya,b € G.” The phrase in the
mathematical language, “for anya,b € G,” is the ignition phrase. One can derive
starting variables from the ignition phrase and provide “Supposea,b € G.” This proof
is the type of the proof of showing A = B. One can work on either A or B until A
changes into B or B changes into A while making good use of the given conditions. In
this case, one can attempt to rephrase the left side of the equation “ab” until it changes
into “ba.” To rephrase “ab,” one may consider the given hypothesis “G / Z(G) is
cyclic” and look for the connection between the starting variables “a,b ” and the

hypothesis “G / Z(G) is cyclic.” Recalling the property that an element of G belongs to

some coset, one may produce a € x"Z andb € x"Z for some X € G. Then, one can

m+n

rephraseabwith x™"zz,for some z, z, € Z . Using the property of the center of a

m+n

group, one may deriveab=x""z,z, =x""z,z, =ba. As is shown in the figure

(Figure 5.39), Anthony was successful in making the goal of the proof clear to himself
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by translating the conclusion of the given statement “G is abelian” into ““ gh = hg for any

g,heG.”

Figure 5.39. Anthony’s Strategy.

The following figures (Figure 5.39 and 5.40) is Anthony’s proof.

| Sy ghel kot s
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y 2e-2le) = \Lz'k'j'n al ;k 7 24 'lLﬁf":('t,]
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Figure 5.40. Anthony’s Proof.

Although Anthony successfully set starting variables by providing g,h € G, his

proving argument was not successful partly because he did not have a clear strategy for
solving the given proof problem. In particular, he was unable to apply the technique for
solving the type of proof of showing A = B. The goal of the proof was to show G was

abelian. Namely, he needed to show “for any g,h € G,gh =hg.” This is the type of

proof for showing A = B. There were mainly two ways to deal with this type of proof.
One is to work on either A or B and rephrase it until they get the other, which is B or A.
Another way is to work on and rephrase each side separately until they can change the
expressions of A and B into the same expression C. It seems Anthony was unable to
make the goal of the proof clear to himself. As a result, he tried combining his starting

variables g, h e G with the given hypothesis “G/ Z(G) is cyclic” to create gZ(G) and
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hZ(G) , which caused his proving argument to be unsuccessful. If Anthony had known
the proving strategy for the type of proof of showing A = B, he might have worked on
ghand rephrased it until he might obtain hg while recalling and using the fact that
every element in G belonged to some coset.
Example 32 Zach (Analysis I)

Zach’s proof is a representative example showing that students’ lack of
knowledge hinders them from advancing a reasoning process. In particular, students’
lack of knowledge of a relevant fact such as a property, a theorem, and a mathematical

law shuts down their proving process if a given proof problem requires them to use it.

Question [1] (Exam I11)

Let a<Dbis fixed. Suppose that g, >0 is a sequence of Riemann integrable

b
functions such that lim Ign(x)dx =0. Prove that if f is Riemann integrable
nN—o0
a

b
on (a, b), then lim [ f (x)g, (x)dx=0.

Table 5.33 shows a possible proof for Question [1] and shows where Zach had
difficulties in the proof construction.
Table 5.33

Analysis (Type A) of Zach’s Proof

Proof Code z
X b Given
show lim [ f (x)g, (x)dx =0.
Y T C5 S
Show lim| .[ f(x)g,(x)dx |=0.
P1 | g, >0is a sequence of Riemann integrable functions Given
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b
such that lim [ g, (x)dx=0.

P2 | f(x) is Riemann integrable on (a, b). Given

1 b C5
Consider lim jf(x)gn(x)dx.

2 b b C2
Note thatj f(x)g,(x)dx < J' f (x)gn(x)dx4 :

3 b b CO(1,2)R2
Then, Ilmjf(x)gn(x)dx < lim j f(x)g,(x)dx .

4 t t C2
Recall Ih(x)dx £I|h(x)|dx.

5 b b CO(3,4)R2
Then, lim|[ f (x)g,(x)dx < lim [|f (x)g, (X)fdx.

6 | Since g,(x)>0, CO(5, P1)R2

b b

lim j | (x)g, (X)|dx = lim j | f ()|, (x)dx.

7 | Since f is Riemann integrable, f is bounded, namely, R1
|f(x)| <M for someM e R.

8 | Then, CO(6,7)R2

b b b

lim [ f (]9, (x)dx < lim Mg, (x)dx=lim M [ g, (s)dx

9 ok CO(8, P1)R2
Note lim MIgn(x)dx =0

10 B CO(5,6,8,9)
Then, lim| If(x)gn(x)dx |=0 R2

11 | Recall that if lim|A|=0, thenlim A =0. C2

12 CO(10,11)R2

b
Since lim| If(x)gn(x)dx |=0,

!}mj. f(x)g,(x)dx=0.

Alternative proof
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a

1 t t C2
Recall Ih(x)dx £I|h(x)|dx.

2 5 s CO(L,Y)R2
Then, |[ f (x)g, (x)dx‘ < [|f (g, (x)ldx.

3 | Since g,(x)>0, CO(2, P1)R2

[ 009, (0ldx = | £ (x)lg, ()dx.

a

4 | Since f is Riemann integrable, f is bounded, namely, C2
| (x)| <M forsomeM eR.

b
Therefore, Iim| J.
nN—o0 2

5 b b CO(3, 4)R2
Then, j | (X)|g, (x)dx < j Mg, (X)dx.

6 b b R3
Note [Mg, (x)dx=M [ g, (x)dx.

7 | Therefore, we have now CO(2, 6)R2

b b

o<|f f(x)gn(x)dx4 <M[g,(¥)dx.

8 b C5
Consider Mjgn(x)dx

9 b R CO(P1, 8)R2
Since lim .[gn(x)dx:o, rI]|m Mjgn(x)dx:o.

10 CO(7, 9)R2

f(x)g,(x)dx | =0as is desired.

One of the ways to solve this problem is to bring in and apply the proposition

that if rI]im|An| =0, thenlim A, =0. The conclusion of the given problem “Show

b b
lim j f (x)g, (x)dx= 0" can be translated into “Show lim| j f(x)g,(x)dx |=0.”

Recalling and applying “

obtain

jh(x)dx‘ < j|h(x)|dx”to !\m| _T f (x)g,(x)dx |, one can

b b
[ (99, (x)dx‘ < [|f(x)g,(x)dx. Then, noting the given condition
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b b
“g,(x)=0,” one can obtain I| f(x)g,(x)dx = .ﬂ f (x)|g, (x)dx . Noting another given

a

condition “ f (x) is Riemann integrable” and recalling the property of a Riemann

integrable function, which is “if f(x) is Riemann integrable, f (x) is bounded,” one

can obtain “0 <

b b

J' f(x)g, (x)dx‘ < Mjgn(x)dxf for some M e R.” By using the other
b

condition “lim fgn (x)dx =0 and applying the squeeze theorem, one can conclude

b
that lim| I f(x)g,(x)dx |=0. The following (Figure 5.41) is Zach’s proof.

%”’“00 g ?rg, (*\%["\é%ﬁ’;)j?“(\dp(/){lx l!&gjg/[/[g[{h

M B }%ﬁ(m) 0,
%mﬂj:oos #\(xi%[,(\,,ulO W‘MM%M

"l gy
e oy Al som Pty

Figure 5.41. Zach’s Proof.
This problem was so difficult that nobody was able to make a proper argument.

Among them, Zach was the only student who was able to make his argument relatively

b
good. He was able to consider lim
n—o

><4 . Unfortunately, he was unable to

take the next step, which was that

[ 099, (x)dx

b
<[] (x)g,(¥)fdx. He was unable to
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recall the triangle inequality for integration and apply it to the object. Since he was

b
unable to consider I| f (x)gn(x)|dx, he was unable to have a chance to use the given two

a

b
conditions “lim '[gn(x)dx =0”and “ f (x) is Riemann integrable on (a, b).”

Example 33 Carlos (Algebra I)

Students’ incomplete understanding and knowledge of concepts might be

reflected in their notations of those concept. Their use of wrong notations can cause

their proofs to be unsuccessful. Carlos showed such an example.

Question [4] (In-class problem solving session)

Suppose that G/ Z(G) is cyclic. Prove that G is abelian.

Table 5.34 shows a possible proof for Question [4] and shows where Carlos had

a difficulty in the proof construction.
Table 5.34

Analysis (Type A) of Carlos’s Proof

m+n
Then, ab=x""z,z, =x""z,z, =ba.

Proof Code C
X Show G is abelian. Given
Y Show ab=baforanya,beG. R1 N
P G/Z(G)is cyclic. Given
1 Leta,beG. C1 N
2 Recalla,b € G are in some cosets. C2 N
3 | Then, ae x"Z andb € x"Z for some X€G. CO(P,2R1 | N
4 | Let a=x"zand b=x"z,for somez,z, e Z. R1 N
5 n+m R3 N

The conclusion of the given statement is “G is abelian.” The translation of it

into mathematical language provides “ab =bafor anya,b € G.” The phrase in the
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mathematical language, “for anya,b € G,” is the ignition phrase. One can derive
starting variables from the ignition phrase and provide “Supposea,b € G.” This proof
is the type of the proof of showing A = B. One can work on either A or B until A
changes into B or B changes into A while making good use of the given conditions. In
this case, one can attempt to rephrase the left side of the equation “ab until it changes
into ““ba.” To rephrase “ab,” one may consider the given hypothesis “G/ Z(G) is
cyclic” and look for the connection between the starting variables “a,b ” and the

hypothesis “G / Z(G) is cyclic.” Recalling the property that an element of G belongs to

some coset, one may produce a e x"Z andb € x"Z for some X € G . Then, one can

m+n

rephrase abwith x™"z,z,for some z,,z, € Z . Using the property of the center of a

m+n

group, one may deriveab=x""z,z, =x""z,z, =ba. As is shown in the figure

(Figure 5.39), Anthony was successful in making the goal of the proof clear to himself
by translating the conclusion of the given statement “G is abelian” into “ gh = hg for any

g,heG.” The following (See Figure 5.42) is Carlos’s proof .

| Let E}‘i - at* sl %, > gf {.\”f—i‘\aﬁ‘—‘é‘ﬁxe Z(KrJ

¥ and r,S€ Z

S ~+S Str S

_-M\ {;},?2——gj_ra = 4 = o :_a_q:;lg.,
i o /206)=<aT7 then
L. s abelian

Figure 5.42. Carlos’s Proof.
Carlos had a problem with his notation of a coset of Z(G). It seems that he did
not have a solid understanding of a coset of Z(G), which might have affected his

notation. In this problem, he might have thought that a coset was generated by an
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element of G, which resulted in his having G/Z(G) =< a >. The generator of a coset of
Z(G) might have been expressed with [a] = aZ(G) for some a € G, which was an
equivalence class, and G/ Z(G) might have been expressed with <[a] >. Another
problem with his argument was that his notation was inconsistent. He had

9,,9, € Z(G) but he concluded that G was abelian by showing g,g, = 9,9, , which
implied that he meant that g,, g, € G. His inconsistency might have been avoided if he
had made sure of the starting variable through translating the conclusion of the given
statement into mathematical language so that he might have g,,g, € G . Another

possible problem might be that he might not have known that an element of G belonged
to some coset of Z(G).
Example 34 Ben (Algebra II)

Ben’s proof is an example showing that students’ lack of precision in notations

can damage their proving arguments.

Question [9] (3) (in-class problem solving session)

Let R and S be rings. Let ¢: R — S is a ring homomorphism.
Consider amap y : R/ Ker(¢) —> S :[r] - 4(r).
Show y : R/ Ker(¢) —> S :[r] = ¢(r) is a ring homomorphism.

Table 5.35 shows a possible proof for Question [9] (3) and shows where Ben
had difficulties in the proof construction.
Table 5.35

Analysis table (Type A) of Ben'’s Proof

Object Proof Code B
X Show w :R/Ker(¢) > S:[r] > ¢(r)isa Given
ring homomorphism.
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Y | Show (i) w([r]+[sD)=w([r]) +v([s]) and
i)y ([r1ls]) =y ([r]) w([s])
P1 v RIKer(¢) > S:[r] > ¢(r).
P2 ¢ R — S is asurjective ring Given
homomorphism.
(i)
1 Let [r],[s]€ R/ K(®) Cl N
2 Consider , w([r]+[s]) C1l N
3 Note that w ([r]+[s]) =w([r +5]) . R2 I
4 Since v : R/ Ker(g) —> S :[r] — #(r), CO(3,P1)R1 S
y([r+s]) =¢(r+s).
5 Since ¢: R — S is a homomorphism, CO(4, P2)R1 S
P(r+5) =¢(r) +4(s) .
6 Since v : R/ Ker(g) —> S :[r] — ¢(r), CO(5,P1)R1 I
¢(r)+4(s) =y ([r]) +w([s]).
7 | Then, w([r]+[sD)=w([r]) +y(s]) - CO(2-6)R2 |
i
8 Considerw ([r][s]) .( : C1 I
9 Note w ([r][s]) =w([rs]). R1 N
10 Then, y([rs]) =¢4(rs). CO(9,P1)R1 S
11 Then, ¢(rs)=¢(r) ¢(s) . CO(10,P2)R1 | S
12 Since R/ Ker(¢) > S: [r] > ¢(r), CO(11,P1)R1 | N
¢(r) #(s) =y ([r]) w([s]) .
13 Therefore, w([r]1[s]) =w ([r]) w([s]) . CO(8-12)R2 N

homomorphism.” There are two things to show: (i) w([r]+[s])=w ([r +5s]); (ii)

y([r]lsD) =y ([r]) w([s]) . For (i), one can rephrase y ([r]+[s]) with y([r +s])

The goal of the proof is “y : R/ Ker(¢) — S :[r] —> ¢(r) isaring

through algebraic manipulation. Using the given condition

“w:R/IKer(g¢) > S:[r]— #(r),” one can rephrase y ([r +s]) withg(r +s). Using
another given condition “¢: R — S is a ring homomorphism,” they can rephrase

o(r +s)withg(r) + ¢(s) . Using the given condition “y : R/ Ker(¢) —> S :[r] > ¢(r)”

182




again, one can derive that ¢(r) +#(s) =w ([r]) + w([s]) to conclude that) w([r]+[s]) =
w([rD) +w([sD)

Similarly, for (ii), one can start with consideringy ([r][s]) . One can rephrase
w([r][s]) with w([rs]) through algebraic manipulation. Using the given condition
“w:RIKer(¢) > S:[r]— #(r),” one can further rephrase w ([rs]) withg(rs). Using
the other condition “¢: R — S is a ring homomorphism,” one can rephrase ¢(rs) with
#(r) ¢(s). Using the condition “y : R/ Ker(¢) — S :[r] — ¢(r) ” again, one can
derive ¢(r) ¢(s) =y ([r]) v ([s]) to conclude that v ([r][s]) = ([r]) v ([sD.

The following is Ben’s proof (Figure 5.43).

Figure 5.43. Ben’s Proof.
Ben’s proof was close to a successful proof. However, there were some defects.

First, his notations were not precise. He had

w(r+s)=¢(r+s)=¢(r)+¢(s) =w(r)+w(s) though he wanted to have

w([r]+[s]) =w([r +s]) = g(r +s) = §(r) + #(s) =y ([r]) +w([s]) . There was a clear
difference in the meanings between [r]and I'. Because of the way y was defined,
Ben’s notations such as yw(r +s), w(r), and y(s) did not make sense though he might

have meant w ([r +s]), w([r]), and w([s]) by them. Such a small element of
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mathematical language as a mathematical notation can play an important role and have
a great power to covey mathematical thoughts in a reasoning process. Moreover,
students’ understanding of a concept may be reflected by their use of the notation of the
concept. Students’ incomplete understanding of a concept may lead to their wrong use
of the notation, which can result in a weak or incomplete argument.

5.9 Influence of Mental Attitudes

The mental attitudes include tenacity (persistence), flexibility, and carefulness
and alertness (precision). Tenacity is the most basic factor for the mental attitudes.
Students are required to have tenacity or persistence to try to figure things out and move
forward. As soon as they stop thinking, their proofs will end at that point. Flexibility is
the second primary factor for the mental attitudes, which includes changing ideas if
necessary, trying a different method, paying attention to a different object, and recalling
and applying a new object. Flexibility plays an important role when students have
impasses. They may overcome their impasses through flexibility. Carefulness and
alertness are the third primary factors for the mental attitudes, which involves dealing
with an object precisely and accurately, and checking what has been done. Carefulness
and alertness are important psychological traits for proof construction as a small
careless mistake can ruin the whole proving argument.

As there was no definite way to decide the degrees of students’ mental attitudes,
the analysis involved the researcher’s subjective interpretation. The results from the
analysis of students’ proofs implied that the mental attitudes were not independent of
but closely related to the other aspects, including the reasoning activity and the

background knowledge. | will present 7 examples while showing how students’ mental
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attitudes affected their proofs: Students’ lack of flexibility may affect their practice of
rephrasing an object (Example 36); their lack of knowledge may affect their tenacity
(Example 37); their lack of knowledge may affect their carefulness (Example 38); their
lack of knowledge can influence their precision in the use of notations (Example 39);
Tenacity and persistency can be factors for advancing a reasoning process (Example
41); and their lack of knowledge and precision or carefulness and ability to use the
operation of rephrasing and combining objects may affect one another (Example 42).
Example 36 Eric (Algebra II)

Eric’s case is a representative example showing that students’ lack of flexibility,
knowledge, and carefulness and alertness might be intertwined to produce an

incomplete proof.

Question [9] (4) (In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a ring homomorphism.
w R/ Ker(¢) > S :[r] = ¢(r)is a well-defined ring homomorphism. Show
w R/ Ker(¢) > S :[r] > ¢(r)is injective.

Table 5.36 shows a possible proof for Question [9] and Eric’s difficulties in the
proof construction (Table 5.36).
Table 5.36

Analysis (Type A) of Eric’s Proof

Proof Code E
X | Show y : R/ Ker(¢) — S :[r] — #(r) is injective. Given
Y | Show that if w([r]) =w([s]), then [r]=[s]. R1 S
Pl | w:R/Ker(g) > S:[r] — ¢(r)is a well defined ring Given
homomorphism.
P2 | ¢:R — Sis asurjective ring homomorphism. Given
1 | Suppose that w([r]) =w([s]) . C1 S
Then, ¢(r) =¢(s) . CO(1,P1R1 I
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2 [ Then, 0y =4(r)—4(s) = ¢(r —s). R3 N

3 | Then, r—s e Ker(g). R2 N

4 | Then, r =s+K for some k € Ker(g) . R2 N

5 | Then, r=s+kel[s]. R2 N

6 | Then, [r] =s]. R2 N

Another Proof

X | Show Ker(¥) = O0g/er(y) - S

1 | Consider Ker(y) ={[r] € R/Ker(¢), where C1 N
w([r]) =0},

2 | Since w:R/Ker(g) > S :[r] > ¢(r), CO(1,P1)R1 N
Ker(y) ={[r] € R/ Ker(¢), where ¢(r) =0y }.

4 | Then, Ker(y) ={[r]e R/Ker(¢), r € Ker(¢) }. R1 N

5 | Then, Ker(y) ={[r] € R/ Ker(¢), [r] = Ker(¢) R1 N

6 | Therefore, Ker(y) =0g)wer(y) - R1 N

One of the ways to show the function v : R/ Ker(¢) — S :[r] — #(r) is
injective is to show that ifw ([r]) =w([s]) , then[r]=[s]. Then, paying attention to the
ignition phrase “w ([r]) =w([s]) ,” one may start a proving argument with “Suppose
thaty ([r]) =w([s]) .” Noting the given condition “y : R/ Ker(¢) »> S :[r] > ¢(r),”
one can rephrase y ([r]) =w([s]) with ¢(r) = #(s) based on the way for
w R/ Ker(¢) — S to be defined. One can further rephrase ¢(r) = ¢(s) with
05 =¢(r)—¢(s) = g(r —s) to obtainr —s e Ker(¢) , which can lead them to conclude
that[r]=[s].

There is another way to prove the given proof problem. There is a property of
an injective homomorphism that ¢ : R — S is an injective ring homomorphism if and
only if Ker(¢) =0,. Therefore, in order to prove thaty : R/ Ker(¢) — S :[r] = ¢(r)is

injective, one can show Ker () = O,y - Then, one may start with considering

Ker(w) . Applying the definition of Ker (i) , one may translate it into
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Ker(y) ={[r] € R/Ker(¢), in whichy/([r]) =0s}. Combining the given condition

w R/ Ker(¢) > S :[r] > ¢(r), one can further rephrase it with

Ker(y) ={[r] € R/Ker(¢), in which¢(r) =0 }. Furthermore, one can rephrase it with
Ker(y) ={[r] € R/ Ker(¢), in whichr € Ker(¢) }. Then, they can conclude that
Ker(w) ={[r]= Ker(¢) }, namely, Ker()=0g, ;- The following (Figure 5.44) is

Eric’s proof.
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Figure 5.44. Eric’s Proof.

Eric was knowledgeable enough to come up with two methods to prove the
given statement, both of which were right strategies. He also showed flexibility to try
the second strategy when he had an impasse in proving with the first strategy.

Although he made his argument close to a complete proof, he was unable to do that. He
first tried to show that ify ([r]) = w([s]), then[r] =[s]. He was able to rephrase

w([r]) =¢(r)andw ([s]) = #(s) by using a given condition. However, he was unable to
advance his reasoning process after that, at which he lost his tenacity. If he had had
flexibility to rephrase y ([r]) = w([s]) with@(r) = #(s) , he might have advanced his
reasoning process to obtain [r] =[s].

However, when he was not successful with his first strategy, he showed his

flexibility to try another method to prove the given statement. Although he had a right
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idea, he was unable to apply it to the given problem successfully partly because he
missed carefulness in expressing his idea accurately. He probably thought about

showing Ker(y) = Og, e, SO that he might show that y : R/ Ker(¢) — S :[r] — ¢(r)

was injective. However, he missed precision in showing his strategy by

Ker(¢) =0= ¢is one to one. It was notg but y that he wanted to work on. This

carelessness might have led him to a confusion seen in his argument after that. Then,

he had to forcibly lead his reasoning to the conclusion that y was injective. The direct
cause of his failure in his second attempt was that he missed working onKer(y) . If he
had been careful enough to realize that he wanted to work on Ker(y) and rephrased it by

applying the definition of kernel and combining it with the given hypothesis, he might
have obtained[r] = Ker ().
Example 37 Dustin (Algebra I)

The model of the structure of proof construction included tenacity and
persistence as the most basic psychological factors for the mental attitudes necessary in
advancing a reasoning process in proof construction. Students’ lack of tenacity and
persistence ends their proving argument halfway through. Students’ lack of tenacity
and persistence might be enhanced by their lack of knowledge. Donald’s proof was

such an example.

Question [6] (In-class problem solving session)

Suppose that |G| = pq for some primes p and g. Prove that G is
either abelian or Z(G) ={e}and |Z(G)| = p,q..

The following table is a possible proof for Question [6] and shows where Aaron

had difficulties in the proof construction (Table 5.37).
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Table 5.37

Analysis (Type A) of Dustin’s Proof

Proof Code A
X | Show G is abelian or Z(G) ={e}and|Z(G)| = p.q.
Y | Show Z(G)=G or|Z|=1and |Z|# p,q R1 N
P | |G| = pq for some primes p and q. Given
1 | Consider Z(G). C5 S
2 | Note that Z(G) is a subgroup of G. C2 S
3 | Recall the Lagrange’s THM. C2 S
4 | Then, |Z(G)|=pa,1, p, or q. CO(2,3)R2 N
S | Case 1: Suppose |Z(G) = pq. C3 N
6 |Since |G|=pq=|Z|,G=Z. CO(5,P)R2 N
7 | Since Z is abelian, G is abelian R2 N
8 | case 2: Suppose |Z(G)|=1. C3 N
9 | Then, Z(G) ={e}. R2 N
10 | case 3: For a contradiction, suppose |Z(G)| =p. C3 N
11 | Consider the order of the quotient group |G/Z|. C5 N
121 Since |G|=pgand |Z(G)| =P, [G/Z|=q. CO(P11)R2 | N
13 | Recall that if |K|is prime, K is cyclic. C2 N
14 | Therefore, G/Z(G) is cyclic. CO(12,13)R1 N
15 | Recall that if the order of the quotient group |K / H| C2 N

is cyclic, then K is abelian.

16 | Therefore, G is abelian. CO(14,15)R1 N
17 | Then,G=Z. R2 N
18 | Then, pq=|G| =|Z| = p, which is a contradiction. CO(P,15)R2 N

The conclusion of the given statement is “G is either abelian or Z(G) ={e} and

|Z(G)| # p,q.” The translation of the conclusion into mathematical language can be
“G=Z2(G)or |Z(G)|=1and |Z(G)| = p,q - “G = Z(G) ” can be rephrased with

|Z(G)| = pq. Also, “G is either abelian or Z(G) ={e} ” can be rephrased with
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13

G| = pq” and recalling the

Z(G)|= pq or|Z(G)|=1.” Noting the given condition “
relationship between |Z (G)|and|G|, which is “Z(G) is a subgroup of G,” and

Lagrange’s Theorem, one can set the following three cases:|Z(G)| = pq; [Z(G)|=1; and
|Z(G)|=p,q. For the first case, one may notice |Z(G)| = pq=|G| and conclude that

G =7, which means that G is abelian. For the second case, one may note that

Z(G) ={e} so that|Z(G)|=1. For the third case, one may use a contradiction assuming
|Z(G)|=p. Considering the quotient group G /Z(G) and recalling the fact that if
|G/Z(G)| is a prime number, G/Z(G) is cyclic, one may realize that if G/Z(G) is

cyclic, G must be abelian and G = Z(G). However, it is a contradiction because one

would get pq=|G|=|Z(G)|= p . The following figure shows Dustin’s proof (Figure

5.45).

Figure 5.45. Dustin’s Proof.

Dustin had no idea how to prove the given problem. After providing the above
statement, he was given some questions as a guide. However, as shown in the
following figure (Figure 5. 45) he was not able to tell that Z(G) was a subgroup of G
and that if G is abelian, G =Z(G). This problem required students to consider the
possible orders of Z(G) by realizing that Z(G) was a subgroup of G and by applying

Lagrange’s theorem to Z(G), which might have led them to the three cases:
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|Z(G)| =PQ,1, orp (orqg.) Dustin’s lack of knowledge might have less motivated him

to tackle the given problem. The following (Figure 5.46) shows Dustin’s statements.

3. True or False

Z((7)is a subgroup of G

4. If a group H is prime, what kind of group is H?

5. If K/Z(K) is cyclic, what kind of group is K ?

6. If G is abelian, what is the relationship between Z(G)and G ?

Figure 5.46. Dustin’s Statement.
Example 38 Caleb (Algebra l)
Caleb’s proof was an example implying that students’ lack of carefulness and
alertness might give a flaw to their proving arguments and that students’ lack of

knowledge and their lack of carefulness and alertness might be intertwined to influence

their proving arguments.

Question [5] (In-class problem solving session)

Suppose that the order of G is a prime number. Prove that G is cyclic.

Table 5.38 shows a possible proof for Question [5] and shows where Caleb had

difficulties in the proof construction.
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Table 5.38

Analysis (Type A) of Caleb’s Proof

Proof Code Caleb

X | Show G is cyclic.

Y | Show G =< g >forsome g e Gwithg =1. R1 I
P | The order of G is a prime number. Given

S |Let geGwithg=1. C1 N
1 |Let geGwithg=1. C1l N
2 | Consider <g>. C5 N
3 | Note < g >is a subgroup of G. C2 N
4 | Recall the Lagrange’s THM and apply itto < g >. C2 N
5 | Then, by the Lagrange’s THM, |< g > =1, p. CO(3,4)R2 N
6 |Sincel<g>#1,|<g>=p. CO(1,5)R2 N
7 | Since|G|=p, G=<g>. CO(P, 6)R2 N

The conclusion of the given statement is that “G is cyclic.” The conclusion “G

is cyclic” can be translated into mathematical language “G =< g >for some g € G with

g #1.” The given proof is the type of the proof of showing A = B. One can work on

either A or B through rephrasing it until A becomes B or B becomes A. In this

problem, one may consider and work on < g > for some g € Gwithg #1. Recalling

Lagrange’s Theorem and combining it with the property that a cyclic group generated

by an element in G is a subgroup of G, one may obtain|< g > =1, p. Noting|<g > =1,

one may decide|< g >/ = p . Combining the hypothesisG =< g >and|< g >|= p, one

can conclude G =< g >. The following figure (Figure 5.47) is Caleb’s proof.
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First, state your proof solving strategy for this problem briefly, How would you show G is cyclic?
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Figure 5.47. Caleb’s Proof.

One of the problems Caleb made in his proof was that he started his argument
with H =< g® >. One of the possible causes of the problem was that he was not
careful enough to realize < g? >= <e> = {e}. He might have lacked the knowledge
that g P turned out to be € . There is a possibility for both his lack of carefulness and
lack of knowledge were intertwined to influence each other, which caused him to
produce a non-useful statement. Another problem was that it seemed he did not make
the goal of the proof clear to himself. As a result, he expressed his strategy, stating “I

will show that H = < gP >,” and concluded his argument with “

G| = p.” Neither of

them made sense. He might have avoided those mistakes if he had paid close attention
to the conclusion of the given statement “G is cyclic.”
Example 38 Billy (Algebra I1)

Billy’s case is another example showing that students’ lack of precision can get
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a proving argument blemished. His case is also representative example showing

students’ lack of knowledge can damage their proving arguments.

Question [9] (3) (In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a s ring homomorphism.
Consider amap y : R/ Ker(¢) > S :[r] - ¢(r).
Show w : R/ Ker(¢) — S :[r] - ¢(r) is a ring homomorphism.

Table 5.39 shows a possible proof for Question [9] (3) and shows where Billy
had difficulties in the proof construction.
Table 5.39

Analysis (Type A) of Billy’s Proof

Object Proof Code L

X Show v :R/Ker(g) > S:[r] - ¢(r)isa Given
ring homomorphism.

Y | Show (i) w([r]+[sD)=w([r]) +v([s]) and
(i) w ([r1isD) =y ([r]) w(IsD

P1 v RIKer(¢) > S:[r] - ¢(r).

P2 ¢ R — S is a ring homomorphism. Given

i

1 Let [r],[s]e R/ K(¢§)) C1

2 Consider , w([r]+[s]) C1l

3 Note that w([r]+[s]) =w([r +5]) . R2

4 Since w : R/ Ker(¢) > S :[r] - ¢(r), CO(3,P1)R1
y([r+s]) =¢(r+s).

5 Since ¢: R — S is a homomorphism, CO(4, P2)R1
P(r+s) =g(r) +4(s).

6 Since v : R/ Ker(g) —> S :[r] — ¢(r), CO(5,P1)R1
g(r)+¢(s) =w ([r]) +y ([s]).

7 | Then, w([rl+[sD) =y (r]) +y(s]) . CO(2-6)R2

ii

8 Consideryw ([r][s]) - w C1l

9 Note w ([r][s]) =w([rs]). R1

10 Then, w([rs])=¢(rs). CO(9,P1)R1
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11 Then, ¢(rs)=¢(r) ¢(s) . CO(10, P2)R1

12 Since w: R/ Ker(¢) > S:[r] > ¢(r), CO(11,P1)R1
¢(r) #(s) =y ([r]) w([s]) .

13 Therefore, w([r1[s]) =w ([r]) w([s]) . CO(8-12)R2

The goal of the proof is “w : R/ Ker(¢) — S :[r] = ¢(r) isaring
homomorphism.” There are two things to show: (i) w([r]+[s])=w([r +5s]); (ii)
w([rlls]) =w([r]) w([s]) . For (i), one can rephrase y ([r]+[s])with y([r +s])

through algebraic manipulation. Using the given condition

“w:R/IKer(¢) > S:[r]— #(r),” one can rephrase y ([r +s]) withg(r +s). Using
another given condition “¢: R — S is a ring homomorphism,” they can rephrase

o(r +s)withg(r) + ¢(s) . Using the given condition “y : R/ Ker(¢) —> S :[r] > ¢(r)”
again, one can derive that ¢(r) +#(s) =w ([r]) + w([s]) to conclude that) w ([r]+[s]) =
w([rD) +w([s]) .

Similarly, for (ii), one can start with consideringy ([r][s]) . One can rephrase
w([r][s]) with w([rs]) through algebraic manipulation. Using the given condition
“w:RIKer(g¢) > S:[r]— #(r),” one can further rephrase w ([rs]) withg(rs). Using
the other condition “¢: R — S is a ring homomorphism,” one can rephrase ¢(rs) with
#(r) ¢(s). Using the condition “y : R/ Ker(¢) — S :[r] = ¢(r) ” again, one can
derive ¢(r) ¢(s) =y ([r]) w([s]) to conclude that v ([r][s]) =w([r]) w([s]). The

following (Figure 5.48) is Billy’s proof.

Figure 5.48. Billy’s Proof.
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Billy was close in showing the first property of a ring homomorphism
“wr]+[sD=w(r])+w([s]) .” His first attempt was right when he started with
w ([r]+[s]) though he crossed it out later. He was successful in rephrasing [r]+[s] with
[r +s]and in using a given hypothesis to rephrase w ([r + s]) with¢(r +s) . However,
he missed precision when he translated ¢(r) + ¢(s) into w([r]+[s]) . He was supposed
to translate @(r) +¢(s) into w([r]) +w([s]) by applying the given hypothesis
v R/Ker(¢) > S:[r] - ¢(r).

Billy mistakenly got the concept of ideal involved as the second property of a
ring homomorphism “w ([r][s]) =w ([r]) w([s]).” He showed w(a[r]) =aw([r])
instead of showing w([r][s]) = w([rDw([s]). This resulted from his incomplete

understanding of the property of a ring homomorphism.
Example 40 Collin (Algebra II)
Collins’ case is an example showing that students’ lack of tenacity and their lack

of knowledge might be intertwined to cause them to produce an incomplete proof.

Question [9] (4) In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a surjective ring homomorphism.
w R/ Ker(¢) > S :[r] > #(r) is a well defined ring homomorphism. Show
w R/ Ker(¢) > S :[r] — #(r) is injective.

Table 5.40 shows a possible proof for Question [9] (4)and where Collin had
difficulties in the proof construction.
Table 5.40

Analysis (Type A) of Collin’s Proof

Proof Code C
X | Show y :R/Ker(¢) — S :[r] - ¢(r) is injective. Given
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Y | Show that if w([r]) =w([s]), then [r]=]s]. R1 S

P1 | w:R/Ker(¢) —> S :[r]— #(r)is a well defined ring Given
homomorphism.

P2 | ¢:R — Sisa surjective ring homomorphism. Given

1 | Suppose that w([r]) =w([s]). C1 S
Then, ¢(r) = ¢(s). CO(LP1)RL | 1

2| Then, Og = ¢(r)—§(s) = #(r —5). R3 N

3 | Then, r—se Ker(g). R2 N

4 | Then, r =s+k for some k € Ker(¢). R2 N

5 | Then, r=s+kel[s]. R2 N

6 | Then, [r]=[s]. R2 N

Another Proof

X | Show Ker(¥) = Ogwer(y) - N

1 | Consider Ker(y) ={[r] € R/ Ker(¢), where C1 N
w([r) =0, }.

2 | Since v :R/Ker(g) > S:[r]— ¢(r), CO(1,P1R1 N
Ker(w) ={[r] € R/Ker(¢), where ¢(r) =0, }.

4 | Then, Ker(y) ={[r] € R/Ker(g), r € Ker(¢) }. R1 N

5 | Then, Ker(y) ={[r] € R/Ker(¢), [r] = Ker(¢) R1 N

6 | Therefore, Ker(w) =0, yery) - R1 N

One of the ways to show the function v : R/ Ker(¢) — S :[r] — #(r) is
injective is to show that ifw ([r]) = w([s]) , then[r]=[s]. Then, paying attention to the
ignition phrase “y ([r]) =w([s]) ,” one may start a proving argument with “Suppose
thaty ([r]) =w([s]) .” Noting the given condition “y : R/ Ker(¢) —> S :[r] = ¢(r),”
one can rephrase y ([r]) =w([s]) with ¢(r) = #(s) based on the way for
w R/ Ker(¢) — S to be defined. One can further rephrase ¢(r) = ¢(s) with
0s =¢(r)—¢(s) = g(r —s) to obtainr —s e Ker(¢) , which can lead them to conclude
that[r]=[s].

There is another way to prove the given proof problem. There is a property of
an injective homomorphism that ¢ : R — S is an injective ring homomorphism if and
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only if Ker(g¢) =0,. Therefore, in order to prove thaty : R/ Ker(¢) — S :[r] — ¢(r) is
injective, one can show Ker () = 0g, e () - 1heN, ONE may start with considering
Ker(w) . Applying the definition of Ker (i) , one may translate it into

Ker(y) ={[r] € R/Ker(g), in whichy([r]) =0s}. Combining the given condition

w R/ Ker(¢) = S :[r] = ¢(r), one can further rephrase it with

Ker(y) ={[r] € R/Ker(g), in whichg(r) =0 }. Furthermore, one can rephrase it with
Ker(y) ={[r] € R/ Ker(¢), in whichr € Ker(¢) }. Then, they can conclude that
Ker(w) ={[r] = Ker(¢) }, namely, Ker(y)=0g, - The following (Figure 5.49)

shows Collin’s proof.

Figure 5.49. Collin’s Proof.

Judging from his statement “@(r) = ¢(s) = r =s,” Collin seemed to have a
right proving strategy to show that a function was injective. However, he was unable to
apply itto w : R/ Ker(¢) > S :[r] > ¢(r) and to start with w([r]) =w([s]) in order to
show[r]=[s]. His tenacity to try to apply his knowledge to the conclusion of the given
statement might not have been strong enough. Also, he might have been confused by
w R/ Ker(g) > S :[r] = ¢(r) because his understanding of a coset of Ker(g) might
not have been strong enough.

Example 40 Louis (Algebra I1)

Louise’s case is a representative example showing that multiple factors are

intertwined together to cause students to produce incomplete proofs. In his case, lack
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of precision, lack of knowledge, and failure to combine objects contributed to his

incomplete reasoning process.

Question [9] (3) (In-class problem solving session)

Let R and S be rings. Let ¢: R — S is a ring homomorphism.
Consider amap y : R/ Ker(¢) > S :[r] - ¢(r).
Show y : R/ Ker(¢) — S :[r] = ¢(r) is a ring homomorphism.

Table 5.41 shows a possible proof for Question [9] (3) and shows where Louis
had difficulties in the proof construction.
Table 5.41

Analysis (Type A) of Louis’s Proof

Object Proof Code L
X Show v :R/Ker(g) > S:[r] - ¢(r)isa Given
ring homomorphism.
Y | Show (i) w([r]+[sD)=w([r]) +v([s]) and
(i) w ([r1isD) =y ([r]) w(IsD
P1 v RIKer(¢) > S:[r] - ¢(r).
P2 ¢ R — S is asurjective ring Given
homomorphism.
(i)
1 Let [r],[s]€ R/ K(®) C1l N
2 Consider , w([r]+[s]) C1l N
3 Note that w([r]+[s]) =w([r+5]) . R2 N
4 Since v : R/ Ker(g) —> S :[r] — #(r), CO(3,P1)R1 N
y([r+s) =¢(r+s).
5 Since ¢: R — S is a homomorphism, CO(4, P2)R1 N
P(r +5) =¢(r) +4(s) .
6 Since y : R/ Ker(g) —> S :[r] — #(r), CO(5,P1)R1 N
¢(r)+4(s) =y ([r]) +w([s]).
7 | Then, y([r]+[sD)=w([r])+w(s]) . CO(2-6)R2 N
ii
8 Considerw ([r][s]) . = C1 N
9 Note w([r][s]) =w([rs]). R1 N
10 Then, w([rs])=¢(rs). CO(9,P1)R1 N
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11 Then, @(rs)=¢(r) ¢(s) . CO(10,P2)R1 | N

12 Since w: R/ Ker(¢) > S:[r] > ¢(r), CO(11,P1)R1| N
¢(r) #(s) =y ([r]) w([s]) .

13 Therefore, w([r1[s]) =w ([r]) w([s]) . CO(8-12)R2 N

The goal of the proof is “w : R/ Ker(¢) — S :[r] = ¢(r) isaring
homomorphism.” There are two things to show: (i) w([r]+[s])=w([r +5s]); (ii)
w([rlls]) =w([r]) w([s]) . For (i), one can rephrase y ([r]+[s])with y([r +s])

through algebraic manipulation. Using the given condition

“w:R/IKer(¢) > S:[r]— #(r),” one can rephrase y ([r +s]) withg(r +s). Using
another given condition “¢: R — S is a ring homomorphism,” they can rephrase

o(r +s)withg(r) + ¢(s) . Using the given condition “y : R/ Ker(¢) —> S :[r] > ¢(r)”
again, one can derive that ¢(r) +#(s) =w ([r]) + w([s]) to conclude that) w ([r]+[s]) =
w([rD) +w([s]) .

Similarly, for (ii), one can start with consideringy ([r][s]) . One can rephrase
w([r][s]) with w([rs]) through algebraic manipulation. Using the given condition
“w:RIKer(g¢) > S:[r]— #(r),” one can further rephrase w ([rs]) withg(rs). Using
the other condition “¢: R — S is a ring homomorphism,” one can rephrase ¢(rs) with
#(r) ¢(s). Using the condition “y : R/ Ker(¢) — S :[r] = ¢(r) ” again, one can
derive ¢(r) ¢(s) =y ([r]) v ([s]) to conclude that v ([r][s]) = ([r]) w([sD.

The following is Louis’s proof (Figure 5.50).

e s Al f .
Ii""dl'u ?"I. I o

Figure 5.50. Louis’s Proof.
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Louis made two mistakes in starting his proof with ¢([r +s]) . The first mistake
was that he had ¢ instead of . He might have avoided this mistake if he had been

careful in making sure of the goal of the proof through the conclusion of the given

statement “y : R/ Ker(¢) — S :[r] — ¢#(r) is a ring homomorphism.” Or, he wanted to
be careful enough to realize that he made a domain error when he had ¢([r + s]) .
The second mistake was that he started with [r + s] instead of [r]+[s]. This

mistake might have resulted from his incomplete understanding of the property of a

homomorphism. He wanted to start with “w ([r]+[s]) > and to rephrase it with
“w(r+s]).”

Next, he rephrased @([r +s]) with #((r +a) + (s+b)) . He probably meant an
element of [r]and [s]by (r +a) with a € Ker(¢)and (s +b)with b € Ker(¢)
respectively. Assuming that he meant yw ([r + s]) by #([r + s]) , he was unable to apply
the given hypothesis “w : R/ Ker(¢) — S :[r] > #(r) ” so that he might have rephrased
w([r +s]) with ¢(r +s). He might have avoided the mistake if he had been careful to
notice that he should not have rephrased [r + s]with (r +a) + (s +b) because [r + s]
was an equivalence class while (r +a) with a € Ker(¢)and (s +b)with b € Ker(¢)
were elements of [r] and [s].

5.10 Influence of Affect and Beliefs

The model of the structure of proof construction included psychological traits as
the major factors that might influence students’ cognitive processes in proof
construction. The model categorized those traits into two aspects: mental attitudes and

emotions and beliefs. The former are the traits everyone is required to have while the
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latter varies according to individuals. Affect included emotions, moods, feelings, and
self-confidences. Beliefs included one’s proof schemes, perceptions and perspectives
on logic, proofs, and mathematics. Affect and beliefs are not independent of but
intertwined with the other aspects and factors of the structure of proof construction. For
example, affect may directly influence mental attitudes. Beliefs and background
knowledge may be related to each other. What students may believe can be the
knowledge they may use in proof construction. A distinction between them is that the
beliefs is more like a cognitive environment while the background knowledge is
specific elements used in the cognitive environment. The beliefs is one’s thinking habit
or tendency while the background knowledge is more specific mathematical contents
that are necessary for students to have to solve a given proof problem. This study did
not focus on affect and beliefs as much as the other aspects. However, the analysis of
students’ proofs encountered some cases in which their difficulties might be related to
the aspects of beliefs. | will present two examples that imply students’ beliefs in logic
for advancing a reasoning process can affect their whole proving arguments.
Example 41 Dillon (Algebral)

Dillon’s case is an example showing that student’s wrong beliefs toward their

logic might cause them to produce unsuccessful proofs.

Question [4] (In-class problem solving session)

Suppose that G/ Z(G) is cyclic. Prove that G is abelian.

Table 5.42 shows a possible proof for Question [4] and where Dillon had

difficulties in the proof construction.
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Table 5.42

Analysis (Type A) on Dillon’s Proof

Proof Code A
X Show G is abelian. Given
Y Show ab=baforanya,beG. R1 N
P G/Z(G)is cyclic. Given
1 Leta,beG. C1 N
2 Recalla,b € G are in some cosets. C2 N
3 | Then, ae x™Z andb e x"Z for some X G. CO(P,2)R1 | N
4 | Let a=x"zand b=x"z,for somez,z, e Z . R1 N
5 | Then, ab=x""z,z, =x""z,z, =ba. R3 N

The conclusion of the given statement is “G is abelian.” The translation of it
into mathematical language provides “ab =bafor anya,b € G.” The phrase in the
mathematical language, “for anya,b € G,” is the ignition phrase. One can derive
starting variables from the ignition phrase and provide “Supposea,b € G.” This proof
is the type of the proof of showing A = B. One can work on either A or B until A
changes into B or B changes into A while making good use of the given conditions. In
this case, one can attempt to rephrase the left side of the equation “ab until it changes
into ““ba.” To rephrase “ab,” one may consider the given hypothesis “G/ Z(G) is
cyclic” and look for the connection between the starting variables “a,b” and the

hypothesis “G / Z(G) is cyclic.” Recalling the property that an element of G belongs to

some coset, one may produce a € x"Z andb € x"Z for some X € G . Then, one can

m+n

rephrase abwith x™"z,z,for some z,,z, € Z . Using the property of the center of a

m+n

group, one may deriveab=x""z,z, =x""z,z, =ba. The following (Figure 5.51) is

Dillon’s proof.
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Figure 5.51. Dillon’s Proof.

Dillon was unable to prove the given statement partly because he applied a
wrong reasoning logic. He went “Since all subgroups of an abelian group are cyclic,
we have only to show that G/ Z(G) was a subgroup of G so that I might prove G is
abelian.” To make his logic simpler, “Suppose X is S and G is A, then X is C. Suppose
X is C. In order to prove G is A, you have only to show X is S.” Namely, he believed
that the converse of a conditional statement was true, which was not always true. He
also made a wrong assumption that all subgroups of an abelian group are cyclic. His
wrong belief in his logic and incomplete understanding of a concept resulted in
producing a barren argument.

Example 42 Anthony (Algebra I)
Anthony’s proof is another example showing students’ wrong conception in

logic can affect their proofs.

Question [4] ( In-class problem solving session)

Suppose that G/ Z(G) is cyclic. Prove that G is abelian.

Table 5.43 shows a possible proof for Question [4] and where Anthony had
difficulties in the proof construction.
Table 5.43

Analysis (Type A) on Anthony’s Proof

Proof Code A
X Show G is abelian. Given
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Y Show ab=baforanya,beG. R1 N
P G/Z(G)is cyclic. Given

1 Leta,beG. Cl N
2 Recall a,b € G are in some cosets. C2 N
3 | Then, aex"Z andb e x"Z for some X €G.. CO(P,2)R1 | N
4 | Let a=x"zand b=x"z,for somez,z, e Z . R1 N
5 | Then, ab=x""zz, =x""z,z, =ba. R3 N

The conclusion of the given statement is “G is abelian.” The translation of it
into mathematical language provides “ab =bafor anya,b € G.” The phrase in the
mathematical language, “for anya,b € G,” is the ignition phrase. One can derive
starting variables from the ignition phrase and provide “Supposea,b € G.” This proof
is the type of the proof of showing A = B. One can work on either A or B until A
changes into B or B changes into A while making good use of the given conditions. In
this case, one can attempt to rephrase the left side of the equation “ab until it changes
into ““ba.” To rephrase “ab,” one may consider the given hypothesis “G/ Z(G) is
cyclic” and look for the connection between the starting variables “a, b and the

hypothesis “G / Z(G) is cyclic.” Recalling the property that an element of G belongs to
some coset, one may produce a € x"Z andb € x"Z for some X € G. Then, one can

rephraseabwith x™"zz,for somez,z, € Z . Using the property of the center of a

m+n

group, one may deriveab =x""z,z, =x""z,z, =ba. The following (Figure 5.52) is

Anthony’s proof.

A (},"\‘\ EG aud ‘.VL& g W= ¢ ho

Y Ik 2 {
Jt"—(.,(_)\) =~ ) FE & ( j&-’ Ay [ & C_) ) Z2d=3. 72 = Z2=£ 2
\ i v R 3R i o

Figure 5.52. Anthony’s Proof.
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Anthony noted the conclusion of the given statement “G is abelian” and

translated it into mathematical language “gh=hg.” The problem of his argument was

that he tried using the conclusion as a hypothesis. He was not careful enough to realize
that he was not allowed to use it as a condition with which to advance his reasoning
process. Anthony was unable to prove the statement mainly because he did not
understand the logical argument to advance a reasoning process. The greatest problem
of his was that he tried to advance a reasoning process by assuming that the conclusion
of the given statement that was to be proved. His logical flaw might have been avoided

if he had made it clear that ab = ba for anya,b € G was the goal.

5.11 Summary

This chapter has detailed various types of students’ difficulties with proof
construction. Students’ proofs were systematically analyzed through the frameworks
created based on the model of the structure of proof construction. The results were
presented in terms of each component of the structure of proof construction. The
analysis revealed that each of students’ difficulties, mistakes, and impasses were often
caused by multiple factors being intertwined. Although students’ difficulties seemed to
occur in a complex way, the analysis based on the model of the structure of proof
construction helped to make the mechanism of the occurrences of students’ difficulties
clear. The model let the analysis to sum up the sources of students’ difficulties in three
types of sources: students’ lack of knowledge; their lack of tenacity, persistence,
flexibility, carefulness, alertness, and precision; and their lack of metacognitive
knowledge for advancing a reasoning process. Although students’ emotions, feelings,

self-confidences, and beliefs were considered to influence their proving performances,
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this study did not focus on those factors. The next chapter will answer the research
questions based on the results of the analysis of students’ proofs presented in this

chapter, while referring back to the existing literature.
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Chapter 6: Discussion

6.1 Introduction

In Chapter 5, | presented the results from the analysis of students’ proofs in light
of the structure of proof construction. This chapter is dedicated to addressing the
research questions while highlighting the findings and referring to the supporting
literature. In this chapter, I will discuss the followings: (1) significance of the model of
the structure of proof construction; (2) sources of students’ difficulties with proof
construction, (3) specific pedagogical suggestions to help students with proof
construction, and (4) usefulness of the model of the structure of proof construction. 1
end this chapter with the limitations of this study and possible future research.
6.2  Model of the Structure of Proof Construction

Kieran (1998) reported the significance of models in research, stating “the
current reporting of research suggests that both (empirical and theoretical researches)
involve the description of observed phenomena by means of models (p. 213)”. She also
reported that research results were frequently described and explained in the form of
explicitly formulated models. Moreover, she claimed that results without explanatory
models would not help us understand the observed phenomena. Brown (1998) also
indicated that results themselves would not be effective in understanding the
phenomena and implied that results should be analyzed with theorization for a better
understanding of the phenomena. This study started with modeling the structure of
proof construction for the purpose of analyzing, describing, explaining, and interpreting

students’ difficulties with proof construction in a clear and organized way.
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First, I clarify the significance of having created a model of the structure of
proof construction. Then, | will answer the first research question while referring to
how the model was created. Lastly, | mention the types of proofs that were obtained in
the process of modeling the structure of proof construction.

6.2.1. Significance of the model of proof construction

Before examining students’ difficulties with proof construction, it had to be
specified in what terms and from what angles their proofs should be analyzed. These
demands motivated me to create a framework for analyzing students’ difficulties in a
systematic and organized way. In order to create such a framework, I explored a model
of the structure of proof construction. The structure of proof construction meant a
comprehensive picture of proof construction that can describe and encompass the
aspects, factors, patterns, and features seen in thinking processes in a proving activity.

The motivation of creating a model of the structure of proof construction also
arose from the major goals of this study. This study aimed not only to clarify the
sources of students’ difficulties but also to make practical suggestions to help students.
In particular, I focused on exploring the patterns and features that might help them with
a syntactic approach.

Different researchers have studied students’ difficulties with proof construction
from different angles. Some of them focused on detecting students’ difficulties with
proving on a particular subject. For example, Selden and Selden (1995) pointed out
students’ difficulties with translating informal language to formal language through a
calculus proof. Weber (2001) noted students’ lack of proving strategy through an

abstract algebra proof. Edward and Wards (2004) observed students’ misuse of
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definitions through a real analysis proof. Savic (2011) showed that logic rarely
occurred in students’ proofs through the “chunk-by-chunk’ analysis. Other studies
categorized students’ difficulties with proof construction. For example, Moore (1994)
examined students’ difficulties with proving and categorized them into seven types.
Selden and Selden (2009) categorized students’ difficulties with proving into more
types but from a different angle than Moore’s. Other studies examined students’ proofs
schemes. Harel and Sowder (1998) examined students’ proofs in terms of external,
empirical, and analytical proof schemes. Weber and Alcock (2004) studied students’
proofs in terms of semantic or syntactic proof schemes. However, there seemed to be
no studies that attempted to analyze students’ proofs in light of the structure of proof
construction. Selden and Selden (2007) offered a proof framework as a method to teach
students, in which they suggested students should write a proof from the beginning and
the end towards the middle. There was room for exploring an effective method to help
students to write a proof from the top down.

The creation of a model of the structure of proof construction was important and
necessary for the following reasons: (1) to clarify in what terms and from what angles
to examine students’ difficulties with proof construction; (2) to analyze, understand,
and explain their difficulties in a clear and organized way; (3) to help students grasp
what proof construction was like and how they should advance a reasoning process; and
(4) to shed light on students’ difficulties with proof construction from a new perspective,
which past studies may not have.

6.2.2 Model of the structure of proof construction

The first research question this study raised was the following:
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“What is a suitable model for characterizing the structure of proof construction?”

This section answers the above research question, describes how the model was
obtained, presents the model, and refers to the related literatures. This study started
with examining the researcher’s thinking processes in proof construction in order to
explore what might be involved in cognitive processes in proof construction. A think
aloud method was adopted for the method to examine the researcher’s cognitive
processes. In order to explore and generalize the patterns and features seen in proof
construction across multiple mathematical subjects, more than 40 proofs of theorems
and propositions were analyzed, which were collected mainly from undergraduate
Algebra, Analysis, and Topology. A few proofs came from Calculus, Discrete
Mathematics, and Linear Algebra, respectively. The researcher solved those proofs,
while carefully self-monitoring, observing, describing, organizing, and categorizing the
factors involved in the researcher’s thinking processes. In particular, the researcher
focused on how each step can be obtained for successful proof construction. The
researcher explored what types of thinking actions or what types of operations might be
applied to generate the next statement from a previous one.

As a result, all the observed operations for advancing a reasoning process were
categorized into four types: rephrasing an object; combining objects; creating a cue;
and checking and exploring (Table 3.2). In this study, an object was meant to represent
a statement or part of a statement for each step in a proof. The operations of rephrasing
an object, combining objects, and creating a cue were considered as main thinking
actions while checking and exploring were considered as supporting actions. The

difference between the main actions and the supporting actions was that in order to
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convince others of the validity of a proof, the processes or the steps obtained through
the former had to be explicitly expressed while the processes or the steps obtained
through the latter did not necessarily have to be expressed explicitly. For example, the
operation of checking and exploring included observing, reviewing, reflecting,
searching, intuiting, trying, illustrating, and experimenting. The processes taken
through checking and exploring did not necessarily have to be explicitly expressed in
order to convince others of the validity of their proofs. Since different individuals
check what they have done and explore the methods to figure things out in different
ways, this study did not set a main focus on the operation of checking and exploring.
Therefore, a possible structure for checking and exploring was not scrutinized. The
analysis through the think-aloud method also found two major roles in the main actions:
transforming objects; and igniting processes. Rephrasing an object and combining
objects were categorized into the operations for transforming objects. Creating a cue
was categorized into the operations for igniting a reasoning process. Rephrasing an
object was further categorized into the following three types.
e R1: Rephrasing an object by applying definitions, properties, theorems,
propositions, and negations
e R2: Rephrasing an object through formal interpretations and informal
interpretations such as common sense
e R3: Rephrasing an object through algebraic manipulation such as calculation,
computation, and solving equations
Creating a cue was also further categorized into five types:

e C1: Seta variable;
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e C2: Recall prior knowledge such as relevant properties, theorems, propositions,
and mathematical laws;

e (C3: Set some cases;

e C4: Make a claim or set a new object;

e (C5: Consider an object.

Moreover, the relationships among the operations were clarified. The analysis
revealed that there was an order of the operations that students should try in advancing
a reasoning process. Rephrasing an object is the primary and basic operation.
Combining objects is the secondary operation that should be tried when the operation of
rephrasing an object does not work. Creating a cue is the final operation to be used.
The operation of creating a cue can be considered as the highest level of operation in
terms of difficulty because students have to generate a new object while they can
depend on what they are given for the operations of rephrasing an object and
combining objects. Moreover, the analysis observed that the operation of combining
objects is accompanied by the operation of rephrasing an object. That is, after students
combine objects, they produce a new object through rephrasing an old object. The
operation of creating a cue (see C2 in Table 3.2 or 6.1) is accompanied by the
operations of combining objects and rephrasing an object.

In the process of exploring the features of the reasoning activity, noting the
importance of how to get started on a proof for successful proof construction, two
major stages (the opening stage and the body construction stage) were set for proof
construction: the opening stage and the body construction stage. The opening stage is a

crucial stage for students to make their proving arguments successful though the

213



amount of the contents contained in the opening stage may be much smaller than those
contained in the body construction stage. In the opening stage, students note the
conclusion of the given statement, translate it into mathematical language, set a starting
variable from the mathematical language, make sure of the given hypotheses, and
translate those hypotheses into mathematical language, if necessary. In the body
construction stage, one advances a reasoning process by the four actions (rephrasing an
object, combining objects, creating a cue, and checking and exploring).

The significance of the opening stage cannot be overemphasized. There are
three important roles in the opening stage: making the goal of the proof clearer; setting
a starting variable; and making sure of what conditions are available. In particular, the
first two roles are crucial. Both roles are realized usually through translating the
conclusion of the given statement into mathematical language. Translation of the
conclusion of the given statement into mathematical language not only makes the goal
of the proof clearer but also makes the distance or the proving process to the goal
shorter. Translation of an object into mathematical language gives a motive power for
students to develop a further reasoning argument in the body construction stage as well
as in the opening stage. Newell and Simon (1972) presented the standard theory of
problem solving, in which they viewed a problem solving process as a process of
reducing the differences between the desired and current states by applying operators or
creating sub-problems. Translation of an object into mathematical language can be
considered to be a key factor for problem solving in proof construction. Considering all
the above features observed in the reasoning activity, the following framework (Table

3.1) was created as a model of the structure of the reasoning activity.
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The reasoning activity focused on students’ cognitive or thinking actions, in
particular, their operations for advancing a reasoning process. The operations can be
compared to the “tools” used for proof construction. Then, the “materials” students
manipulate with those tools correspond to the elements of their background knowledge,
including concepts, definitions, properties, notations, theorems, and propositions.
Therefore, the background knowledge was considered to be another major factor for
proof construction. The reasoning activity and the background knowledge can be
considered as main factors involved in cognitive processes in proof construction.

However, in order to capture the aspects for proof construction comprehensively,
this study further added two more aspects: the mental attitudes, and affect and beliefs.
Schoenfeld (1983) pointed out that purely cognitive behavior was extremely rare. He
discussed a variety of factors that might shape pure cognition, including the
environment, one’s affect, feeling, and perception of self and the environment. The
mental attitudes are the abilities related to self-regulation. The mental attitudes
included tenacity, existence, flexibility, carefulness, alertness, and precision. Tenacity
Is one’s ability of persistence to try to continue to think, work on, and tackle a proof,
and not to give up. Once students lose their tenacity in proving, their proofs end at that
point. Flexibility is a mental attribute that allows students to discard the idea that does
not work and to explore and try a new idea. It is a motive power to help students
overcome their impasses. Carefulness and alertness is a mental skill that allows
students to deal with an object precisely and correctly. There may be more factors for
the mental attitudes necessary for proof construction, but this study set those three

attributes as the main factors of the mental attitudes.
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This study further considered affect and beliefs for the aspect of proof
construction. Affect and beliefs include one’s emotions, moods, feelings, beliefs, and
self-confidence. For example, students’ worries from everyday life, test anxieties, or
low self-confidence in mathematics may influence their proving performances and any
mathematics problem-solving. Students’ beliefs may also affect their performances.
For example, some students may believe that mathematics learning is a matter of
memorization of the formulas and of application of those formulas to given problems.
This belief may lead students to depend on their memorization instead of thinking
deeply and critically by themselves. Students’ proof scheme is another example of
student’s beliefs. Their beliefs that a statement can be proved by showing examples or
diagrams may cause them to develop their empirical proof schemes.

Considering all these, this study viewed proof construction as a process of
advancing a reasoning process by way of mathematical language through the four main
operations of rephrasing an object, combining objects, creating a cue, and checking
and exploring while making applying their background knowledge and practicing their
mental attitudes (tenacity, flexibility, and carefulness and alertness) under the influence
of affect and beliefs. Thus, the model of the structure of proof construction was created
and described in a 3D model (Figure 3.1).

| found out that the following literature was in agreement with the structure of
proof construction. For example, Funke (2010) provided four elements to describe a
problem-solving situation: givens, goals, operators and barriers. Givens is the
knowledge that a students has about the problem. The operators are the actions that a

student applies to reach the goal of a given problem. Barriers are the difficulties a
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student has to overcome in the process of achieving the goal of the problem. The
background knowledge in the model of the structure of proof construction may
correspond to Funke’s knowledge. The operations in the model (rephrasing an object,
combining objects, creating a cue, and exploring and checking) detail Funke’s
operators and tools. Various difficulties occurring each aspect of proof construction in
the model (Figure 3.1) extend Funke’s barriers. Funke pointed out that motivational
and affective means as well as cognition can be factors to help students overcome their
difficulties. The aspects of the mental attitudes and affect and beliefs in the model
(Figure 3.1) can be related to Funke’s motivational and affective means.

Other researchers noted the affective aspect, including beliefs, feelings, and
moods, as a significant factor, as well as the cognitive aspect, in mathematical thinking
(Fringhetti and Morselli, 2004; Goldin, 2002; Leron and Hazzan, 1997; Schoenfeld,
1983). More specifically, Fringhetti and Morselli (2004) explored the way to integrate
the cognitive and affective aspects through a student’s proof construction. Golding
(2002) even indicated that the affective aspect was central to cognition in mathematical
activity. Leron and Hazzan (1997) gave some specific mental forces as factors for the
affective aspect which may influence mathematical thinking. Those mental forces have
some similarities with the factors in the structure of proof construction. For example,
students’ mental force to try to make things sense may be related to their mental
attitude, in particular, tenacity. Their mental force to stick to something familiar to
them may be related to their flexibility as the counter-mental force.

6.2.3 Types of proofs

Proofs were classified into three types according to the ways to set a starting
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variable in the opening stage. The first type of proofs had the opening stage in which
students derived a starting variable from the conclusion of the given statement. The
second type of proofs had the opening stage in which students derived a starting
variable from a hypothesis of the given statement. The third type of proofs had the
opening stage in which students did not have to derive a starting variable and had only
to directly work on the conclusion of the given statement. The majority of the proofs
analyzed in this study belonged to the first type of proof. The model of the structure of
proof construction (Figure 3.1) was created based on the first type of proofs. The
proofs that required students to construct an object such as a sequence and an open set
belonged to the second type. The proofs asking students to prove A = B belonged to
the third type. This type included mathematical induction and proofs of trigonometric
identities.

6.3  Sources of Students’ Difficulties with Proof Construction

This section highlights the findings obtained from the analysis of students’
proofs in light of the structure of proof construction while answering the second
research question:

“What difficulties do students have with proof construction and what are the

sources of their difficulties in light of the structure of proof construction?”

The components in the structure of proof construction are the main factors
contributing to the sources of students’ difficulties with proof construction. For
example, students’ inabilities to apply the operations of rephrasing an object,
combining objects, and creating a cue can be the direct sources of students’ difficulties

with advancing a reasoning process. Moreover, students’ difficulties with advancing a
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reasoning process are directly caused by their lack of knowledge, tenacity, persistence,
flexibility, carefulness, alertness, and precision. The model of the structure of proof
construction also suggests that students’ self-confidence and beliefs about logic and
proof construction can affect their proving performances. Finally, the analysis of
students’ proofs also suggested that students’ lack of knowledge of metacognitive and
methodological knowledge for advancing a reasoning process caused their difficulties.
6.3.1 Opening Stage

How to start a proving argument is a key factor for constructing a successful
proof. Moore (1994) observed, as one of the major sources of students’ difficulties
with proof construction, that students did not know how to begin proofs. He pointed
out that many factors might affect their inability to start their proof construction,
including their difficulties with language and notation, and with definitions. This study
scrutinized how students difficulties with opening proof construction occurred and
explored how instructors would help students to start proof construction.

Out of the 81 proofs that were analyzed, 59 proofs (73.4%) were incomplete.
Out of those unsuccessful proofs, 39 proofs (66.1%) had defects in their opening stages.
Overall, almost 50% of the proofs analyzed for this study were unsuccessful because
students may have mismanaged their opening stages. The analysis of the data showed
that about 67% of the unsuccessful proofs resulted from students’ mismanagement of
the opening stage. This showed how important it was for students to manage the
opening stage successfully. The degree of success in managing the opening stage may
well decide the degree of success in proof construction. The results also revealed two

major roles of the opening stage: (a) having students make sure of the goal of the proof;
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(b) having students set a starting variable with which to develop a reasoning process.

The opening stage helps students to make sure of the goal and set a direction to
reach the goal. The results showed that students’ failure to have the goal of a proof in
mathematical language was a major source for the mismanagement of the opening
stage. Having a goal in mathematical language gives students a right direction. The
goal has a potential to lead students to advance their reasoning process and to get
students back on the right track when they go astray or have impasses. The goal of the
proof comes from the conclusion of the given statement. In most proofs used for this
study, the conclusion of the given statement contains some concept such as abelian,
compact, continuous, cyclic, homomorphism, or injective, etc. When these concepts
are translated into mathematical language, namely, their definitions, they acquire a
power to drive students to advance their reasoning processes.

The opening stage gets students to set a variable necessary to develop the body
construction stage. The great majority of the proofs used in this study required students
to set a variable in the opening stages. A proving argument is advanced by using
variables. A variable is a key element in making a rigorous, formal, and logical
mathematical argument. Students cannot convey their mathematical ideas rigorously,
formally, and logically without using variables in their proving arguments.

Then, a question arises: How do students set a variable correctly? The great
majority of the proofs used in this study showed that it was the mathematical language
for the conclusion of the given statement that a starting variable were derived from. In
particular, in most cases, the starting variable was directly found in the ignition phrase

such as “for...” or “if ...,” which was contained in the definition of a concept involved
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in the conclusion of the given statement. Therefore, the key to setting a starting
variable is to pay attention to the conclusion of the given statement, translate it into
mathematical language while applying the definition of a concept involved in it, and
find an ignition phrase, and derive a starting variable. There were a few cases in which
students had to derive a variable from the mathematical language for a hypothesis of
the given statement. However, those types of proofs were the type of proofs in which
students were required to construct a certain object such as an open set. In any case, the
variable is found in the ignition phrase in the mathematical language.

For example, Frank’s proof was a representative example of showing students’

mismanagement in the opening stage. Frank (Figure 6.1) showed “G/(Z) is cyclic”
though he was asked to show “G is abelian.” If he had made sure of the goal of the
proof by noting the conclusion of the given statement “G is abelian,” he may have at
least avoid ending up with “G/(Z)is cyclic” as his conclusion. Also, he started his
proving argument by setting variablesaG e G/Z(G) and bG e G/Z(G) , which were
not correct notations. It is most likely that he derived those variables from the given
hypothesis “G/(Z) is cyclic,” which caused his proving argument to be unsuccessful.
If he had derived a starting variable from the mathematical language for the conclusion
of the given statement, he could have been able to avoid the confusion that was found

in his proving argument.
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Figure 6.1. Frank’s Proof.

In summary, the findings indicated that the students’ inability to get started on a
proof might result from their lack of knowledge of the features of the opening stage,
including the representative steps to take in the opening stage: paying attention to the
conclusion of the given statement; translating it into mathematical language; deriving a
starting variable from an ignition phrase in the mathematical language for the
conclusion.

6.3.2 Rephrasing an Object

Based on my framework, rephrasing an object is the primary operation for
advancing a reasoning process among the three (rephrasing an object, combining
objects, and creating a cue) in the sense that the operations of combining objects and
creating a cue are often accompanied by the operation of rephrasing an object. There
are three types of the operation of rephrasing an object: (a) rephrasing an object by
applying a definition, a theorem, or a property; (b) rephrasing an object through
interpretation; and (c) rephrasing an object through algebraic manipulation. This
section highlights the sources of students’ difficulties with rephrasing an object based

on the following findings.
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First, students’ lack of knowledge of an object, including the definition of a
concept and a property of concept, can be a central cause for malfunctioning the
operation of rephrasing an object. There are two cases for “students’ lack of
knowledge of a definition or a property of concept.” The first case is that students
simply do not know or have forgotten what a definition or property of concept is. Then,
students cannot rephrase an object by applying the definition or a property of concept.
The second case is that students have an incomplete or a weak understanding of a
definition or a property of concept. This can cause problems with their notations or
expressions of mathematical terms, which affects their practice of the operation of
rephrasing an object.

For example, Billy (Figure 6.2) had an incomplete understanding of a property
of a ring homomorphism, which misled him to rephrase the property of homomorphism

in a wrong way and consequently resulted in an unsuccessful proof.
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Figure 6.2. Billy’s Proof.

In another example, Elias (Figure 6.3) had an incomplete understanding of the
concept of compactness. He did not have the notion that a finite subcover of a space
had to be derived from an open cover of the space and that he had to set an open cover
of a space before talking about a finite open subcover of the space. His incomplete
understanding of the concept of compactness hindered him from translating the
conclusion into mathematical language to set a right starting variable, an open cover of

K in his case.
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Figure 6.3. Elias’s Proof.
Similarly, Savanna (Figure 6.4) was unsure about how to show a given
homomorphism was one to one and onto. Instructors cannot overemphasize the
importance of students having a solid understanding of the basics of concepts, including

the definitions, properties, and meanings, relevant theorems, and proving techniques.

(3)Show i : R/ Ker(@) — S :[r]+> ¢(r)is a ring homomorphism. If you have forgotten how to show

that a map is a ring homomorphism, feel free to ask the researcher.

Figure 6.4. Savanna’s Proof.

Another cause for students’ failure to rephrase an object may be that they have
not fully acquired or established the skill of using mathematical language to advance
their reasoning process. They may not fully understand the usefulness, effectiveness,
necessity, and importance of using mathematical language as the most fundamental
element for constructing a proving argument. Even when they know the definition of a
concept, they are sometimes unable to apply it to an object.

For example (Figure 6.5), Natalie knew the definition of a continuous function

in a topological sense, but was unable to apply it to the composite function f o q, in
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which f:Y —>Zand q: X =Y, being continuous and to translate it into the

mathematical language “(f o g) (W) is openin x .”
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Figure 6.5. Natalie’s Proof.

In another example (Figure 6.6), when Savanna was asked to show a given
homomorphism was injective, she illustrated what an injective map was but did not
translate it into mathematical language “ifyw ([r]) = w([s]) , then [r]#[s]” or
“Ker(w)=0." Itis crucial for students to be equipped with the skill necessary for
translating a concept into mathematical language, especially, definitions of concepts,
which are the most representative mathematical language. A definition of concept is
not just an explanation or a description of a concept but is a structure, which has a

potential to motivate students to advance their reasoning process in proof construction.

(3)Show i : R/ Ker(¢) — S :[r] > ¢(r)is a ring homomorphism. If you have forgotten how to show

that a map is a ring homomorphism, feel free to ask the researcher.

Figure 6.6. Savanna’s Proof.
Some researchers noted the importance of advancing a proving process with
mathematical language for constructing a proof. For example, Selden and Selden

(1995) observed students’ difficulties with “unpacking” informal statements into formal
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statements. In this study, their terms “unpacking” and “formal statement” are included
in “translating an object into mathematical language” and “mathematical language,”
respectively. Instructors can emphasize to their students that mathematical language
has a motive power for advancing a reasoning process. In particular, instructors must
train students to get into the habit of converting a mathematical concept into
mathematical language whenever they see a mathematical concept in a statement.
Third, students’ lack of flexibility can affect their skill of rephrasing an object.
For example, as it was seen in Eric’s proof (Figure 6.7), although he realized that
w([r]) =¢(r)and w([s]) = ¢(s) forw([r]) =y ([s]), he was not flexible enough to
convert w([r]) =w([s]) into ¢(r) =@(s). If he had flexibility enough to manipulate it

into #(r) — &(s) =0 by moving the term #(s) =0 to the left hand side, he could have

further converted it into ¢(r —s) =0to reach r —s € Ker(¢) .
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Figure 6.7. Eric’s Proof.

In summary, students’ inability to rephrase an object may be directly influenced
by their lack of background knowledge, and directly or indirectly by their lack of
flexibility, carefulness and alertness. The findings also indicates students’ difficulties
with rephrasing an object may result from their lack of awareness of the importance of

mathematical language as a means of advancing a reasoning process.
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6.3.3 Combining Objects

Combining objects is the second primary operation for advancing a reasoning
process. Based on the findings, this section discusses two possible sources of students’
difficulties with combining objects based on the results of the analysis of students’
proofs. One is that students miss using a hypothesis in a given statement. The other is
that students’ difficulties with finding a connection between the two objects that are
supposed to be combined. The latter source is directly related to their lack of
knowledge.

Students have impasses because they fail to use the operation of combining
objects. For example, although Berkeley (Figure 6. 8) knew what she needed to show
to prove the given statement, which was “w ([r][s]) = w ([r])w ([s]) , she was not able to
show why the equality held. This was because she missed noting and using the given

condition “y :R/Ker(¢) = S :[r] = #(r) ” to apply it to w([rs]) . If she had come up
with the idea of combining w ([rs]) and the given condition

“w:R/IKer(¢) > S :[r] > ¢(r) ,” she might have rephrased y ([rs]) with ¢(rs) to
obtain @(rs) = @(r)¢(s) =w ([rDw([s]) . The source of her failure to combine the

objects can be considered to be her lack of carefulness and alertness. She needed to be

careful enough to realize she was not allowed to rephrase w ([rs]) with w([r])w ([s]) for

free. She also needed to be careful to ask herself how she should transform w ([rs])

into w([rDw([s]) .
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Figure 6.8. Berkeley’s Proof.

Similarly, Edward’s proof (Figure 6.9) was not successful because he missed
using the given hypothesis “q: X —Y is a quotient map.” He had g~ (f *(W))=U
for U eT, and W €T, . He needed to apply the property of a quotient map, which is
“For q: X - VY ,if g7 (W)=U €T, for WY ,then W €T, ” to conclude that
W €T, . Instead, he made a stretch to reach the conclusion W T, out of
q™(f *(W))=U with U eT, and W €T, . A possible source that hindered him from
combining objects was that he might not be careful and alert enough to notice he was
not allowed to move from g (f *(W))=U to W T, for free. There were some

factors that might have helped him apply combining objects.
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Figure 6.9. Edward’s Proof.
Finally, the analysis of students’ proofs implied that students’ difficulty with
combining objects might have resulted from their difficulties with finding a connection
between the objects to be combined. Neither Frank (Figure 6.10.) nor Carlos (Figure

6.11) was able to combine the given condition “G/Z(G) is cyclic” with an element
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g € G properly. They had difficulties with combining the objects because they had to
think about the relationship between an element g € G and a cosetG/Z(G) and to
recall the fact that “every element g € G belongs to some coset XZ(G) with xeG .”
They needed to ask themselves what would be a connection between an elementg € G
and a coset G/Z(G) . In addition, they needed to be equipped with the knowledge that

“every element g € G belongs to some coset XZ(G) with xe G .»
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Figure 6.10. Frank’s Proof.
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Figure 6.11. Carlos’s Proof.
For another example, Carlos (Figure 6.12) was unable to combine the object

< g >and the given condition “the order of G is a prime number.” The difficulty with
combining these two objects was that he had to seek the relationship between < g >

and G, to realize that < g > is a subgroup of G, to recall Lagrange’s theorem, and to
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apply itto G and < g >. The operation of combining objects that was required in the

problem was difficult because it involved the operation of creating a cue (C2) by
recalling and applying prior knowledge. Students had to be equipped with the
knowledge related to the concepts of the order of a group, including “Lagrange’s
theorem.” Students’ stronger background knowledge should help them operate

combining objects more successfully.

First, state your proof solving strategy for this problem briefly. How would you show G is cyclic?
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Figure 6.12. Carlos’s Proof.

Thus, the analysis of students’ proofs indicated the following in order for
students to practice the operation of combining objects successfully. First, students
need to be careful and alert to make sure if they have used all the given conditions.
Second, students need to be equipped with broad and strong knowledge so that they can

recognize a connection between two objects to be combined.
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6.3.4 Creating a Cue

Creating a cue is the third primary operation for advancing a reasoning process.
This operation can be considered among the three operations (rephrasing an object,
combining objects, and creating a cue) as the most difficult. The first two operations
can depend on the objects that are explicitly given while creating a cue sometimes
requires students to literally “create” a new object through their prior knowledge,
intuition, an innovative idea. The following are the highlights of the findings of
students’ difficulties with creating a cue: (a) Students’ lack of knowledge of the
opening stage may hinder them from creating a cue by setting a variable; (b) Students’
lack of flexibility, carefulness, and alertness may affect their use of creating a cue; and
(c) Students’ lack of background knowledge may hinder them from applying the
operation of creating a cue.

Creating a cue by setting a variable is a crucial operation especially in the
opening stage. Many of the students were not able to set a right starting variable in the
opening stage because they did not note and translate the conclusion of the given
statement into mathematical language and also because they tended to note a
hypothesis and tried deriving a starting variable from the hypothesis. Cade (Figure
6.13) and Alex (Figure 6.14) showed representative examples of students’ difficulties
with creating a cue by setting a right starting variable in the opening stage. Both of
them were unable to derive and set a starting variable X € G by noting the conclusion
“G is cyclic,” which resulted in their producing incomplete proofs. The analysis of

students’ proofs indicated that the knowledge of the opening stage, especially the model
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steps that should be taken in the opening stage, might help them overcome their

difficulties.
- lel P
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Figure 6.13. Cade’s Proof.
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Figure 6.14. Alex’s Proof.

Eliot (Figure 6.15) gave an example showing that flexibility was required for

students to have in order to practice creating a cue smoothly. He was unable to set a

function g :[0,1] —[-11]: x — f(X) — Xin order to show that there existed x, € (0,1)

such that f(x,)=Y,-

If he had had flexibility to r rephrase f (x) = x with

f (x) —x=0, that might have helped him consider g:[01] —[-11]:x— f(X) —x.
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Figure 6.15. Eliot’s Proof.

Both Frank (Figure 6.16) and Carlos (Figure 6.17) gave examples of students’

lack of background knowledge, which had a negative impact on their use of creating a

cue. They needed to think about a possible relationship between an element g € G and

a coset G/Z(G) and recall and use the property of coset “every element g € G belongs to

some coset XZ(G) with x € G However, none of them were able to recall and apply

the property so that they were able to express g € G in terms of an element in some

coset G/Z(G). Students are required to have broader knowledge around a concept so

that they can create a cue by recalling and applying prior knowledge.
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Figure 6.16. Frank’s Proof.
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Figure 6.17. Carlos’s Proof.
Kyle (Figure 6.18) also showed an example showing students’ background

knowledge played a great role in advancing a reasoning process by creating a cue. He

b
was unable to show lim f f ()9, (x)dx =0 because he was unable to recall and use
n—o
a

b

lim| [ 109, (x)dx [=0.
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Figure 6.18. Kyle’s Proof.
Creating a cue can be difficult because students are required to create a new
object without depending on the given objects unlike the other two operations
(rephrasing an object and combining objects). For example, students are required to

recall a proposition, a theorem, a lemma, or a property of concept, choose a right one
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among several choices, and apply it properly. They are also required to have flexibility
to come up with a new object that helps them further advance a reasoning process. In
addition, they are required to be able to set a right variable necessary for advancing a
reasoning process. The analysis of proofs indicated that the more knowledge and the
more flexibility students had, the more smoothly they could advance a reasoning
process by creating a cue.
6.3.5 Background Knowledge
Moore (1994) found the seven major sources of the students’ cognitive

difficulties with proof construction. Three of them are directly related to students’ lack
of knowledge. The following are three of the seven major sources.

e D1: The students did not know the definitions.

e Da3: The students’ concept images were inadequate.

e DG6: The students were unable to understand language and notation.

Proofs involve some concepts. Then, without the knowledge of concepts

including their definitions, meanings, and notations, students cannot make their proving
arguments successful. D1, D3, and D6 are the issues of students’ lack of knowledge of
concepts. This study put the above sources together into one category “students’ lack
of background knowledge.” Students’ knowledge of theorems, propositions,
corollaries, properties, mathematical laws, and proving techniques were also
categorized as background knowledge. This section consists of two parts. The first part
discusses how students’ lack of background knowledge affected their reasoning
activities. The second part highlights the issues of student’s use of definitions in proof

construction.
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Students’ lack of background knowledge. First, this section discusses how
students’ lack of background knowledge can influence the operations of the reasoning
activity (rephrasing an object, combining objects, and creating a cue). The analysis of
students’ proofs strongly indicated that their lack of background knowledge was a
crucial factor that hindered them from successfully advancing a reasoning process,
directly affecting their practices of these three operations. The following presents the
highlights of how students’ lack of background knowledge hindered them from
applying the operations of the reasoning activity (a) rephrasing an object and (b)
creating a cue and combining objects.

(a) Billy and Savanna provided proofs that illustrated students’ lack of
knowledge of definitions, properties, and relevant theorems can affect their skills of
rephrasing an object. Billy (Figure 6.18.) was asked to prove that a given map was a
ring homomorphism. He tried showing w(a[r]) = aw ([r]) though it was not a property
of a ring homomorphism. He was unable to prove the given statement because he did

not know the property of a homomorphism correctly.

|
!}

Figure 6.19. Billy’s Proof.
Savanna (Figure 6.19) thought that she needed to show that it was one to one
and onto, which was an incorrect assumption. In addition, she did not know how to
prove that a given map was one to one and onto. Her lack of knowledge of a ring

homomorhpihsm directly caused her to fail to rephrase “a ring homomorphism” with

y([r]1+[s) =y ([rD) +w([sD) and w([rIls]) =y ([rDw([sD .

236




(3)Show i : R/ Ker(@) —> S :[r] = ¢(r)is a ring homomorphism. If you have forgotten how to show

that a map is a ring homomorphism, feel free to ask the researcher.

Figure 6.20. Savanna’s Proof.
(b) Students’ lack of background knowledge of a property of concept can
directly and indirectly hinder them from creating a cue and combining objects, which
results in producing an incomplete proof. For example, Carlos (Figure 6.20) seemed to

have not known the property of a coset “every element g € G belongs to some coset
XZ(G) with x € G . His lack of the knowledge of the property made it impossible to

recall and apply it to combine an element g € G and a coset G/ Z(G) .
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Figure 6.21. Carlos’s Proof.
For another example, Caleb (Figure 6.21) seemed not to have known the

relationship between < g >and G, namely, the fact that < g > was a subgroup of G .

His lack of knowledge of this fact directly hindered him from creating a cue by

recalling the fact and indirectly hindered him from combining the object < g > and the
given condition “the order of G is a prime number,” which might have led him to derive

<g>=1orp. The analysis indicated students’ stronger background knowledge might
help them operate creating a cue and combining objects more successfully.
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First, state your proof solving strategy for this problem briefly. How would you show G is cyclic?
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Figure 6.22. Caleb’s Proof.
Star and Rittle-Johnson (2008) introduced the concept of flexible knowledge as
a key factor for problem solving. They observed two key features of flexibility for
problem solving: (a) the knowledge of what strategies were available for a given
problem; (b) the knowledge of which of them were more effective. In proof
construction , students’ knowledge of properties of concept or theorems and
propositions related to a concept can be considered to be the first type of knowledge (a).
Students’ ability to decide which property, theorem, or proposition to adopt from
among several choices can be considered to be the second type of knowledge (b). As
Star and Rittle-Johnson indicated, students’ background knowledge and their flexibility
are intertwined, which directly or indirectly influence their ability to apply the
operations of rephrasing an object, combining objects, and creating a cue. The more
knowledge about concepts and the more problem solving experiences students have, the
greater the degree of their flexibility for problem solving becomes.
Definitions of concepts. The issues of students’ use of definitions are crucial in
proof construction because definitions are fundamental elements in the background

knowledge for proof construction. This subsection consists of two parts: (a) The first
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part discusses how students’ incomplete understanding of definitions can affect their
proof construction. (b) The second part discusses the roles that definitions play in
constructing a proof.

Students’ incomplete understanding of definitions. Moore (1994) listed
students’ inadequate concept images as one of the seven major sources of students’
difficulties with proving. This study also observed cases that supported his
observations. Elias (Figure 6.22) provided the following as the definition of
compactness: “a space is compact if there exists a finite subcovering.” He missed the
part “for any open cover of the space” in his statement. His concept image did not have
the structure in which a finite open subcovering could be derived from an arbitrary open

cover for the space.”
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Figure 6.23. Elias’s Statement.
His incomplete knowledge of compactness directly affected his proof (Figure
6.23). When he was asked to show that a given space was compact, he never set an
open cover for the given space in his argument, which made it impossible for him to

make his proving argument successful.
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Figure 6.24. Elias’s Proof.
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The definition of a mathematical concept is not just a static description or
explanation of a technical word, but it is a logical structure that requires a rigorous
understanding of the concept through abstract thinking. A definition consists of some
meaningful and indispensable units, each of which must be carefully understood and
dealt with. Students’ incomplete understanding of even small part of the units can
produce a gap between their “definition” derived from their mental picture of the
concept (concept image) and the actual definition of the concept (concept definition),
which may become a source of an incomplete proving argument. In the above example,
Elias missed the small portion of the definition of compactness “for any open cover of
K,” which resulted in his unsuccessful proving argument. Thus, students’ incomplete
concept images about definitions can directly affect their proofs.

Role of definitions in proof construction. Definitions of concept are
considered to be most representative mathematical language in this study, which have a
power to enable students to develop and advance a reasoning process. Vinner (1991)
claimed that one of the major roles of definitions was proving theorems. Knapp (2006)
proposed definitions played a role of giving a structure to proof and warranted to
logical implications. The analysis of students’ proofs clarified two main roles
definitions of concepts played in proof construction, especially, in the opening stages:
making the direction and goal of the proof clear to them; and helping students set a
starting variable through the ignition phrases. In particular, definitions of concepts
contained in the conclusion of the given statement can provide students with a key
element “a variable” on which to convey mathematical thoughts, and keep and guide

them on the right track to the goal. Therefore, students’ lack of knowledge of a
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definition or of ability of rephrasing a concept with its definition may spoil their
proving arguments. For example, Frank (Figure 6.24) was not successful in translating
the conclusion of the given statement ““(G is) abelian” into “for any X,y e G, Xy = yX”

by applying the definition of abelian, which might have caused him to lose the direction

to reach the goal of the proof.
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Figure 6.25. Frank’s Proof.

The definition of a concept can provide students with a fundamental element “a
variable,” which is indispensable for advancing a reasoning process through its ignition
phrase. The ignition phrase in the definition of a concept, which is usually found in the
conclusion of the given statement, provides students with a great sign for setting a right
variable. Quincy (Example 5) was unable to make his proving argument successful
because he was unable to derive a right starting variable “an open cover U of K”from

the ignition phrase contained in the conclusion of the given statement “K is compact.”

-
Swee $H4 Gverjes & Xe VUL.-arou > X, BNEN
2 YeeU., nzN

Swmee X i< m\‘\ﬂ\(lsdor(—c Lpoce

=3 U, W, U cpen in S cuc h thet
0 W =¢ and A€, e, - Ay ly
2 Q s = Kk ancl
{Ul, W, A, U414 s fin e open Cont

¥ s Compact

va

Figure 6.26. Quincy’s Proof.
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Edwards and Ward (2008) found the characteristic of definitions in the
meanings that were explicitly set up. This characteristic of definitions makes it difficult
for students to apply a definition of concept in proof construction. Students are
required to set and use a variable in a proving argument so that they can make good use
of a definition of concept. Students’ knowledge of the role of an ignition phrase
providing a clue for setting a variable may help them overcome their difficulty with
starting a proving argument.

Students’ knowledge of mathematical concepts is crucial. Especially, their
complete knowledge of the definitions of concepts is indispensable in proof
construction. A mathematical concept becomes more helpful and powerful when it is
translated into mathematical language, namely when it is rephrased with its definition.
The definition of a concept gives students a motive power to advance a reasoning
process, while making the direction of an argument clear and providing necessary
variables. In particular, students’ knowledge of those roles that definitions play in the
opening stage may help them start their proof construction and advance their reasoning
processes.

6.3.6 Mental Attitudes

Rigelman (2007) described key characteristics of effective problem solvers,
which he called flexible and fluent thinkers, as follows: confidence in use of knowledge
and processes; willingness to take on a challenge; perseverance in the quest to make
sense of a situation and to solve a problem; and reflective thinking. The aspects of the
mental attitudes and affect and beliefs may include these characteristics. For example,

students’ confidence can be categorized into the aspect of emotions and beliefs.
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Students’ willingness and perseverance may correspond to tenacity in the mental
attitudes and also can be related to affect and beliefs. Students’ reflective thinking may
be related to carefulness and alertness in the mental attitudes.

The model of the structure of proof construction included four aspects for proof
construction: the reasoning activity, the background knowledge, the mental attitudes,
and affect and beliefs. These aspects are not independent of one another and are
intricately intertwined, influencing one another. The model was designed to simplify a
complex cognitive activity of proof construction. The analysis of students’ proofs also
indicated their difficulties with proof construction may be caused by multiple factors in
the four aspects.

For example, Berkeley’s proof (Figure 6.26) showed that students’ lack of
carefulness and alertness might result in their failure to combine objects. Berkeley
should have been careful in advancing her reasoning process when she provided

w(r+Kerg+s+Kerg)= w(r+s+Kerg) = w(r+Kerg)+wy(s+Kerg). Her lack of
carefulness seemed to result in her failure to combine the object w(r +s + Kerg) and

the given condition “y : R/ Ker(¢) = S:[r] = ¢(r) .»

Figure 6.27. Berkeley’s Proof.
For another example, Ryan (Figure 6.27) provided an example showing that
students’ lack of flexibility may result in producing an unsuccessful proof. The direct
problem with his proof was that he did not use the given condition “K is a convergent

sequence.” Instead, he was trying to prove the given statement by applying the concept
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of connectedness, which was irrelevant and not helpful for solving the given problem.
His lack of flexibility seems to have hindered him from realizing that what he was
doing was not working and that he should look for information still available that could

be used for advancing a reasoning process.
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Figure 6.28. Ryan’s Proof.

Hardin (2002) introduced self-monitoring as one of the key skills that makes
students’ problem-solving successful. As she pointed out, problem-solving experts are
more aware when they make errors and check their solutions. In the model of proof
construction, carefulness and alertness corresponds to self-monitoring. Students’
awareness of the necessity of carefulness and alertness together with flexibility may
help them advance their reasoning process more successfully.

6.3.7 Checking and Exploring, and Affect and Beliefs

Lastly, the analysis of students’ proofs encountered students’ difficulties that
fall into the following two categories. One was that students used a property that did
not work. The properties they used were not necessarily wrong, but those properties
did not work for a given problem. Student’s problems were not that they tried a
property of a concept that turned out not to work, but that they did not realize the

property did not help them advance a reasoning process and did not try a different
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method. They could have modified their ideas through exploring and checking. The
source of their difficulties can also be considered to be their lack of flexibility and
carefulness. In the other case, students used a logic that did not make sense. This is
rather a matter of language ability rather than mathematical ability. This type of
students’ difficulty was categorized as affect and beliefs.
6.4  Usefulness of the Model of the Structure of Proof Construction

This section answers the last research question: “How useful is the model of the
structure of proof construction?”” This section consists of three parts: (1) the usefulness
in creating the framework for analyzing students’ proofs; (2) the usefulness of the
framework for examining students’ difficulties; (3) a possible contribution to theoretical
frameworks for proof construction

The model of the structure of proof construction directly contributed to the
creation of the framework for analyzing students’ proofs (Table 3.6). Since the model
viewed proof construction from the three aspects (the reasoning activity, the
background knowledge, the mental attitudes), it was natural to consider these aspects to
be the categories in which students’ difficulties occurred. The components of those
three aspects became the factors that decided types of students’ difficulties. The model
of the structure of proof construction led to the creation of two types of analysis
frameworks. One is the comprehensive error list (Table 3.5) that can cover a variety of
difficulties students encounter (Type B). The other framework is created for each proof
(Type A). It shows every step for a model proof and the operation used to generate the
step. The model of the structure of proof construction also provided dual ways to

examine students’ difficulties. One was to examine students’ difficulties in terms of
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each aspect (reasoning activity, background knowledge, and mental attitudes)
separately and independently. The model also suggested another perspective for
examining students’ difficulties. It was to define students’ difficulties to be those with
the reasoning activity and to consider the other aspects (background knowledge and
mental attitudes) to be the categories for the sources of their difficulties. This
perspective enabled me to explain students’ difficulties with the reasoning activities in
terms of the other two aspects (background knowledge and mental attitudes). Thus, the
model of the structure of proof construction directly contributed to the creation of an
analysis framework (Table 3.6) and provided the perspectives for examining students’
difficulties.

Next, | will discuss the usefulness of the analysis framework in examining
students’ proofs. The analysis framework Type A (See Table 3.4 as an example) was
useful in detecting where students had difficulties in their proofs and what operations
they failed to use. The analysis framework Type B (Table 3.5) was useful in deciding
the source of each mistake, impasse, and difficulty students made. The analysis
framework Type C (Table 3.6) served as the list of the skills and abilities necessary for
proof construction. These frameworks enabled me to examine students’ difficulties in a
clear and organized manner.

This section ends with a possible contribution of the model to theoretical
frameworks for proof construction. The model of the structure of proof construction
simplified and organized complex nature of logical deduction involved in proof
construction. The model also indicated that rephrasing an object and combining

objects were the operations for syntactic approach and that creating a cue and checking
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and exploring were the operations for semantic approach. The model may contribute to
the development of an effective method to help students practice syntactic and semantic
approaches.

Brown, Bransford, Ferrara, and Campione (1983) claimed that metacognitive
skills are crucial factors for successful problem solving. Papaleontiou-Louca (2003)
suggested that teachers should demonstrate metacognition for modeling task completion
so that their students can learn effectively. She claimed “modeling offers the
vocabulary that students need for thinking and talking about their own thinking (p. 23).”
The model of the structure of proof construction may serve as metacognitive and
methodological knowledge for helping students advance a reasoning process and
overcome their impasses and difficulties.

Quesada, Kintsch, and Gomez (2005) claimed that the theories in the area of
complex problem-solving had not been established due to the lack of good definitions
and classifications of the tasks. This study considers proof construction as a complex
problem-solving task that requires complex cognitive actions. The model (Figure 3.1)
and the framework (Table 3.2) attempted to capture and simplify the whole structure of
proof construction by exploring, defining, and organizing the aspects and the operations
involved in advancing a reasoning process in a proving activity. The model (Figure
3.1) and the framework (Table 3.2) may contribute to developing a theoretical
framework for proof construction.

The model and the framework may account for various students’ difficulties
with proving. Not only that, but also those various examples of students’ difficulties

seem to verify the aspects, the factors, the patterns, and the features involved in proof
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construction. Kieran (1998) claimed that there was no theoretical work without
empirical research and vice versa, stating “there is no escaping the fact that, in
mathematics education, theory building and empirical studies form the vicious circle of
research; each requires the other” (p. 223). She implied that research results may refine
and develop theoretical models and that research results with theoretical models may
explain the phenomena better. | hypothesize that the structure of proof construction
(Table 3.2 and Figure 3.1) can contribute not only to the body of knowledge of proof
construction but also to the body of knowledge of any mathematical problem-solving.
6.5  Pedagogical Suggestions

This section answers the third research question of this study:

“What pedagogical suggestions can be drawn to help students with proof construction”
The answer to this research question consists of two parts. The first part
presents suggestions for students. The second part presents suggestions for instructors.

6.5.1 Suggestions for students

There are mainly two sources from which this study derives suggestions from:
(@) the model of the structure of proof construction (Table 3.1, Table 3.2) (b) the
findings obtained through the analysis of students’ proofs.

Suggestions based on the model of the structure of proof construction. The
model of the structure of proof construction (Figure 3.1) was designed to introduce a
comprehensive view of proof construction. It suggests that proof construction can be
viewed from the following four aspects: the background knowledge; the reasoning

activity; the mental attitudes; and affect and beliefs.

248



First, the model suggests that students should be equipped with the knowledge
necessary and sufficient for solving a given proof problem. The knowledge includes
definitions of concepts, the meaning of the definitions, properties of concepts, notations
of concepts, theorems, propositions, mathematical laws, and proving techniques.
Without complete knowledge, it is impossible for students to build a complete proving
argument. Therefore, it is recommended that students acquire and develop a strong
system of knowledge around concepts.

Second, the model of the structure of proof construction gives some guides on
how they can advance a reasoning process. There are four types of operations they can
apply: rephrasing an object; combining objects; creating a cue; and checking and
exploring. In addition, there is an order of the operations to be tried. Students first
should try the operation of rephrasing an object. If it does not work, they can try the
operation of combining objects, looking for a given condition. If the operation of
combining objects does not work, they can try the operation of creating a cue. If the
operation of creating a cue does not work, they can try the operation of checking and
exploring. The knowledge of these operations can help students especially when they
“get stuck” and cannot advance a reasoning process.

The model of the structure of proof construction also suggests that students
should be equipped with some psychological traits such as tenacity, flexibility, and
carefulness and alertness as well as the knowledge of the operations for advancing a
reasoning process and vast strong knowledge centered at mathematical key concepts.
The model implies the following: (i) Proof construction requires students to have

tenacity and persistence to keep on thinking and not to easily give up thinking; (ii)
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Proof construction also requires students to be equipped with flexibility to change their
methods, to give up an idea that is not working, and to try a new method; (iii) Proof
construction requires students to be careful and alert in dealing with an object
accurately, correctly, and precisely.

Suggestions based on the findings of the analysis of students’ proofs. The
analysis of students’ proofs provided various results that would contribute to some
specific and practical pedagogical suggestions. The following are highlighted
pedagogical suggestions derived from the analysis of students’ proofs.

Opening stage. Students tended to note a hypothesis of the given statement
when they started their proving arguments. They seemed to be tempted to derive a
starting variable from the hypothesis instead of the conclusion of the given statement.
When students try to set a starting variable, they should first note the conclusion of the
given statement, translate it into mathematical language often by applying the definition
of a concept involved in the conclusion, and try to derive and set a starting variable
often by noting an ignition phrase.

Combining objects. Students had a difficulty with combining objects often
because they were unable to find a connection between those objects. When students
apply the operation of combining objects, they should seek a relationship between the
key objects contained in the statements to be combined. They are often required to
recall and apply prior knowledge that is relevant to the objects. A broader knowledge
around the concept involved in those objects would be necessary. Students should be
encouraged to widen their knowledge of concepts correctly, including their properties,

related theorems, propositions, mathematical laws, and proving techniques.
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Flexibility. Students sometimes used a property of a concept or a theorem that
did not help, believing it was working. They should have flexibility to change their
ideas to try a different theorem or a different property of the concept when they realized
the first attempt does not work. They also need to be careful and alert about what they
are doing, asking themselves if their method was working.

Given conditions. The analysis saw multiple cases in which students failed to
combine objects because they did not note and use all the given conditions. They
should be careful and alert in making sure to use all the given conditions to advance a
reasoning process.

Knowledge. The analysis of students’ proofs found out that students’ lack of
knowledge of a concept, including its definition, property, notation, and a related
theorem, is fatal to proof construction, directly and indirectly affecting their use of the
three operations for advancing a reasoning process (rephrasing an object, combining
objects, and creating a cue). For example, students’ lack of or their incomplete
knowledge of a concept affected and ruined their reasoning process in multiple ways:
creating a wrong notation that makes their arguments no sense; causing students to fail
to rephrase an object correctly; making it difficult for students to combine two objects
by missing the connection between them; hindering students from recalling prior
knowledge necessary to solve the given problem; and making students’ tenacity,
flexibility, carefulness, and alertness weaker. It seems to be a matter of course to say
that students should be encouraged to deepen and widen their knowledge of the facts
around mathematical concepts, including their definitions, their meanings, their

properties, their notations, and a related theorem. However, the findings of this study
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strongly suggests that instructors cannot put too much emphasis on the importance of
students’ acquisition and construction of their knowledge around basic concepts. The
analysis of students’ proofs also found multiple cases in which students made their
proving argument unsuccessful due to their lack of flexibility, carelessness and
alertness. These factors directly and indirectly affect students’ reasoning activity
(rephrasing an object, combining objects, and creating a cue). Students should be
encouraged to keep in mind tenacity, flexibility, carefulness, and alertness are also
important factors for proof construction.

Hardin (2002) discussed two types of knowledge: declarative knowledge and
procedural knowledge. She defined declarative knowledge as knowing of facts,
theories, events, and objects, and procedural knowledge as knowing how to do
something, which, for example, includes cognitive skills and strategies. The
background knowledge (See Figure 3.1), apart from the knowledge of proving
techniques, helps students construct a proving argument as declarative knowledge. On
one hand, not only proving techniques but also the knowledge of the structure of proof
construction itself (Table 3.1, Table 3.2, and Figure 3.1) might help them construct
more successful proving arguments as the procedural knowledge.

Although the aspect of affect and beliefs was not the main focus of this study, it
is a crucial aspect for successful proof construction. Bandura (1997) asserted the
importance of students’ building self-efficacy for a successful learner. Pintrich (1999)
and Zimmerman (2000) claimed that students’ self-efficacy may influence their
attitudes and performances in mathematics. Bandura (1997) suggested that students

should have a mastery of experience to build their self-efficacy. Students need to be
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encouraged to build their mathematical knowledge through practicing proof
construction. The suggestions for students can be summarized in the following way.
Opening Stage.
e Translate the conclusion into mathematical language.
o Make sure of the goal of the proof.
o Find an ignition phrase if there is any.
e Set a starting variable through an ignition phrase.
Body Construction Stage.
e First, try the operation of rephrasing an object.
o Apply definitions or theorems.
o Change the expression through interpretation.
o Manipulate the object algebraically.
e |f it does not work, try the operation of combining objects.
o Make sure to use all the given conditions or hypotheses.
o Combine objects by way of a connection (a common factor).
e If it does not work, try the operation of creating a cue.
o Seta new variable.
o Recall prior knowledge, including a theorem, a proposition, or a
property.
o Set some cases.
o Make aclaim.

o Consider an object.
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e Translate an object containing mathematical concept into mathematical
language.
e Be flexible.
o Review what has been done.
o Give up an idea that does not work and try a new idea.
o Try aanother property of a concept.
o Use different operation for the reasoning activity.
e Be careful and alert in dealing with an object.
o Treat each object carefully.
o Make sure if all the given conditions are used.
e Be equipped with the knowledge of the basics of a concept.
o Definitions
o Notations
o Properties
o Relevant theorems
6.5.2 Suggestions for instructors
This section consists of two parts. The first part discusses some suggestions on
teaching proofs while referring to the relationship between this study and other studies.
The second part provides suggestions that were directly derived from the findings of
this study.
Harel and Sowder (1998) placed analytical proof scheme as the highest level of
proof scheme among the three (external, empirical, and analytical proof schemes).

However, researchers have observed students’ difficulties with practicing analytical
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proof scheme ( Ruthven & Coe, 1994; Selden & Selden, 1995). Harel (2000) suggested
that the knowledge of specific actions to be taken for solving problems might enhance
students’ proof schemes. To meet the demands, this study provided the model steps in
the opening stage and the method for advance a reasoning process with the operations
in the reasoning activity. Instructors can use the knowledge of those to help their
students develop their analytical proof schemes.

Also, Ball, Hoyles, Jahnke, and Movshovitz-Hadar (2002) suggested that
instructors should consider the gradual processes and complexities involved in proving
as a major factor for teaching proofs. The model of the structure of proof construction
clarified the complex nature of proof construction in terms of cognitive processes. The
model organized and simplified step-by-step thought processes necessary for
constructing a complete proof as well as multi-dimensional aspects of proof
construction.

Next, this section provides some suggestions for teaching that were derived
from the results of the analysis of students’ proofs. There are mainly two sources from
which this study derives suggestions for instructors: (1) the findings from the analysis
of students’ proofs; (2) the model of the structure of proof construction.

Suggestions based on the findings of the analysis. There are three suggestions
for instructors, which were derived from the analysis of students’ proofs. First,
instructors cannot emphasize too much to their students the importance of their building
and widening the knowledge solidly and accurately. Students forget, mix, and miss
information even when it is elementary and basic. For example, Savanna (Example 27)

did not know what a homomorphism meant. She also did not know how to show that a
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function was one to one and onto. For another example, Carlos (Example 26) and
Anthony (Example 31) did not understand the meaning and the notation of coset. As
Tall and Vinner (1981) indicated, instructors need to help their students decrease the
gap between students’ concept images and the concept definitions. Instructors may
want to monitor their students’ knowledge and understanding levels, especially
definitions, properties, and notations, through homework assignments, quizzes, and
exams. They may also want to review the basics of concepts which students have
learned before according to their learning needs. Repetition should help students
narrow the gaps between their concept images and the concept definition. Second,
instructors should help their students organize their knowledge of concepts by
reviewing all the properties of a concept at the end of the lesson for learning the
concept. A concept can have multiple properties. Students may be confused with
which property to use and what property is available for a specific type of problem.
Students may choose a property that would not work for advancing a reasoning process.
For example, Quincy (Example 5) and Elias (Example 27) applied a property of
Hausdorff space, which was neither necessary nor helpful for solving a given proof
problem. It would be even effective if instructors tell in what situation a property of
concept would work and in what situation another property of concept would work.
Third, instructors can introduce or review proving techniques, including the one for the
proof of showing A = B. The results found multiple cases in which students did not
know how to prove the type of proof showing A = B. Instructors can suggest to their
students that they should work on either A or B until they get B or A respectively or

that they should work on both A and B separately until both become C.
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Suggestions based on the model of the structure of proof construction. The
model of the structure of proof construction (Figure 3.1 and Table 3.2) may help
instructors to guide their students. Selden and Selden (2012) introduced “a proof
framework” as an aiding tool of writing a proof. In their “proof framework,” students
start with the hypotheses, leave a blank space, write the conclusion at the end, and fill in
the blank for the remaining work. However, their methods may not help students write
a proof from the top down. The model of the structure of proof construction works to
help students write a proof from the top down. Through the model of the structure of
proof construction (Tables 3.1 and 3.2, and Figure 3.1), instructors can help their
students know what they need to be equipped with for proof construction and how to
get started on a proof and how to advance a reasoning process in proof construction.

The model of the structure of proof construction provides an algorithm for
advancing a reasoning process for each type of proof. This section introduces the
algorithm and illustrates how the algorithm works.

6.5.3 Algorithm for Proof Construction
A: Opening Stage
AO0: Read the problem
e If necessary, translate the whole problem into mathematical language. (A0.1)
Al: Decide a major strategy.
o Decide which proving strategy to use, a direct proof, by contrapositive, by
contradiction, by counter example, or by mathematical induction. (Al.1)
e For a proof by contrapositive or contradiction, rephrase the problem. (Al.2)

e For Type I, skip to BO. (Al1.3)
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A2: Note the conclusion.
e Do not be tempted to note a hypothesis. (A2.1)
A3: Translate the conclusion into mathematical language.
¢ Rephrase the whole conclusion through R1 (See Table 1). (A3.1)
e Rephrase the conclusion more than once, if necessary. (A3.2)
A4: Find an ignition phrase in the mathematical language for the conclusion.
Ab5: Decide the type of the proof.
e If A4 isa primary ignition phrase, the proof belongs to Type I. (A5.1)
e If there is no ignition phrase, the proof belongs to Type 11 or Type Ill. (A5.2)
e If there is no ignition phrase and the problem asks to prove A = B, it belongs to
Type I11. (A5.3)
AG6: Find a starting variable.
e For Type |, derive a starting variable from the ignition phrase. (A6.1)
e For Type II, note a hypothesis, translate it into mathematical language, and find
an ignition phrase. (A6.2)
e For Type Ill, start the body construction stage by trying one of the followings:
Work on either A or B to change it into B or A, work on both to obtain A=C =
B, or show A= B and B < A. This can work for the proofs in Type I (b).
(A6.3)
TA: Supporting tips for the opening stage
TAL (Type I): A starting variable should be first found in a primary ignition phrase in
the mathematical language for the conclusion. However, if a variable in the primary

ignition phrase is a trivial variable, it may not be a starting variable. A variable from a
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second primary ignition phrase in the mathematical language for the conclusion cannot
be a starting variable. If there is not ignition phrase in the conclusion, derive a starting
variable from a hypothesis.
TAZ2: (Type Il) A starting variable can be derived from both a primary and a second
primary ignition phrases in the mathematical language for a hypothesis.
TA3: (Type I.b and Type I1I) Try one of the following methods. (i) Work on either A or
B until you change it into B or A, (ii) Work on both A and B until you get A = C = B,
or (iii) Show both A c Band B c A. For A = B, (iv) find an isomorphism between A
and B.
B: Body construction stage
BO: State the hypothesis (hypotheses).
B1: Set a starting variable.

e For Type |, set a starting variable from the ignition phrase obtained in A4.1.

(B1.1)

e For Type I, translate the hypothesis into mathematical language. (B1.2)

e For Type Ill, skip this step and start to work on part of the conclusion. (B1.3)
B2: Make sure of the new goal of the proof obtained in A3.
B3: Try rephrasing an object, recalling the three sub-types (See Table 3).

e Whenever seeing a sentence containing a mathematical concept, translate it into

mathematical language, and make it as fine-grained as possible. (B3.1)

B4: If it does not work, try combining objects.

e Find a hypothesis and use it (B4.1).
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e If there is more than one hypothesis, choose the one that has a connection with
the object you would like to combine with. (B4.2)
¢ When the mathematical language for a hypothesis contains a controlling
variable, use this operation (combining objects) to specify the controlling
variable.
B5: If it does not work, try creating a cue, recalling the five sub-types (See Table 1).
B6: If it does not work, try exploring and checking.
T: Supporting Tips.
TB1: Whenever encountering a statement containing a mathematical concept, translate
it into mathematical language and make it as fine-grained as possible.
TB2: For Type I1, when the mathematical language for a conclusion contains a trivial
variable or when the mathematical language for a hypothesis contains a controlling
variable, confine the variable to some specific object at a certain step.
TB3: For type I(b) and Type IlI, try one of the followings. (i) work on either A or B
until you change it into B or A, (ii) work on both A and B until you get A=C =B, or
(iii) show both A € B and B c A. For A = B, (iv) find an isomorphism between A and
B.

The following examples show how the above algorithm helps students to
construct a proof. To make the algorithm more understandable, I will explain in the
form of a dialogue between an instructor and students. In the dialogue, I assume that
the students are fully equipped with not only the knowledge of the above algorithm but

also the knowledge necessary for solving the given problems.
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6.5.4 Examples of the Use of Algorithm

Example 1 (Type 1). “Suppose G/Z(G) is cyclic, where Z(G) is the center of G.
Prove G is abelian. What should we do first?” “Decide the major proving strategy
(Al).” “What strategy would you use?” “A direct proof.” “What is the next step?”
“Note the conclusion (A2), translate it into mathematical language (A3), and find an
ignition phrase (A4).” “What is the conclusion?” “G is abelian.” “What is the
mathematical language?” “For anya,b € G, ab=ba.” “What is the ignition phrase?”
“Foranya,b e G.” “What is the type of this proof?” “Type I(b).” “How did you
figure that out?” “The mathematical language for the conclusion contains a primary
ignition phrase “for anya,b € G’ and the goal of the proof is to show A= B, where A =
ab and B =ba.” “Let’s begin the body construction stage. After stating the hypothesis
(BO) ‘Suppose G/ Z(G)is cyclic, where Z(G) is the center of G,” what would you do?”
“Set a starting variable from the ignition phrase ‘forany a,b € G’ (B1.2).” “How?”
“(1) Let a,b € G.” “Then?” “Work on the left hand side (2) ¢ ab until it changes into
the right hand side ‘ba’ so that we can show ab = ba.” “Then?” “First, try rephrasing
an object (B2)” “Does that (B2) work for ab’ or ‘a’ and ‘b’?” “No.” “What should
we do?” “Try B3 (combining objects).” “How?” “Note the hypothesis and use it.”
“What is the hypothesis?” “(3) G/Z(G) is cyclic.” “Are we ready to combine the
objects (2) <ab’ and (3) ‘G/Z(G) is cyclic’?” “No.” “Why not?” “Because (3) ‘G/Z(G)
is cyclic’ contains a mathematical concept ‘cyclic.” “So?” “Translate the object (3)
‘G/Z(G) is cyclic’ into mathematical language. (T1)” “What is the mathematical
language?” “(4) ‘A coset of Z(G) is generated by < xZ >for somex e G .”” “Now, are

we ready to combine the objects (2) <ab’ (or ‘a’ and ‘b’) and (4) ‘a coset of Z(G) is
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generated by < xZ >’?” “Not really.” “What can we do?” “Since B3 (combining
objects) does not work, try B4 (creating a cue).” “There are five types of creating a
cue (Table 2). Which would you try?” “C2 (recalling and applying prior knowledge).”
“What relevant fact can we use to combine the objects (2) ‘ab’ and (4) ‘a coset of Z(G)
is generated by < xZ >for some x € G *?” “ (5) ‘Every element in a group belongs to
some coset.”” “Now, can we combine these three objects (2) <ab’, (4) ‘a coset of Z(G)
is generated by < xZ >, and (5) ‘every element belongs to some coset’?” “Yes, we can
combine them to obtain (5)a e x"Z andb € x"Z for some x € G and for some
m,neZ*.” “Then?” “Since we have finished applying B4 (creating a cue), we can
resume with B2 (rephrasing an object).” “Can we further rephrase the object (5)
‘aex"Zandb e x"Z’?” “Yes. a=X"zand b=x"z,forsomez,z, €Z.” “So0?”

“Using the commutative property of elements of the center Z of G, we obtain

m+n n+m

ab=x"z,x"z, =x""z,z, =x""2,2, =X"2,X"z, =ba.”

Example 2 (Type 1). “Suppose that g: X — Y is a quotient map and thatf: Y —
Z is a map such that fog: X—Z is continuous. Prove f:Y — Zis continuous. Let’s start
the opening stage. What proving strategy would you use? (A1)” “A direct proof.”
“What is the next step?” “Note the conclusion. (A2).” “What is the conclusion?”

“f .Y — Ziscontinuous.” “Next?” “Translate it into mathematical language (A3).”

“What is the mathematical language?” “For any open set W inZ , (f (W))is open in
Y.” “Then?” “Find an ignition phrase. (A4)” “What is the ignition phrase? (A3)”
“‘For any open set WinZ .”” “What is the starting variable? (A4)” “An open set W in

Z .” “Let’s start the body construction stage. After writing the hypothesis, what would
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you do?” “Set a starting variable (B1).” “So?” “Start with ‘Let W be an open set in

Z > “Then?” “Make sure of the new goal.” “What is that?”” “To show (f *(W))is
open in Y.” “Next?” “Start to apply the four types of operations while keeping the
supporting Tips (T1—T2) in mind.” “We have gotten the object (1) an open set Win Z .
What would you do?” “Apply rephrasing an object to the objet (1) an open set W in Z.
(B3)” “ Does that work?” “No.” “Then, what would you do?” “Try the second
operation ‘combining objects.”” “How would you do that?” “Find a hypothesis and use
it. (B4.1)” “What is the hypothesis?” “There are two. (i) g: X — Y is a quotient map
and (ii) f oq: X — Z is continuous.” “Which hypothesis should we use?” “Choose
the one which has a connection with the object (1) ‘the open set W in Z.” (B4.2)”

Which hypothesis has a connection with the object (1) an open set W in Z?” “The
second hypothesis (ii) f oq: X — Z is continuous.” “Why?” “Because both involve
the space Z.” “Now are we ready to combine (1) ‘W is open in Z’ and (ii)

“foqg: X — Ziscontinuous’?” “No.” “Why not?” “Because the object (ii)

‘f oqg: X — Zis continuous’ contains a mathematical concept ‘continuous.’” “S0?”
“By T1, translate the object (ii) into mathematical language.” “What is the
mathematical language?” « (2) For any openset V inZ , (f cq)™(V) is open in X.”

“What do you observe in the object?” “The object (2) comes from the hypothesis of the
given statement and the mathematical language for the statement contains a primary
ignition phrase “for any open set in Z.” So, By T2, we may want to specify the open set

Vin Z later.” “Now, are we ready to combine the objects (1) W is open in Z and (2) for

anyopenset V inZ, (f o)™ (V) is open in X?” “Yes, we can confine V by replacing
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V with W to obtain (3) (f o)™ (W) isopen in X.” “Then, what should we do?” “Try
rephrasing an object on the object (3) (f o)™ (W) is open in X (B3).” “Does that
work?” “Yes, the object (3) < (f o) ™(W) is open in X’ can be rephrased with the

object (4) <q~*(f (W)) is open in X.”> “Can we further rephrase it?” “No” “Then?”
“Try combining objects. (B4)” “How?” “Find a hypothesis and use it (B4.1).” “Do we
have one?” “Yes, we have not used the first hypothesis (i) ‘q: X — Y is a quotient
map’ yet.” “Can we combine the objects (4) ‘g *(f (W)) is open in X’ and the
hypothesis (i) ‘q: X — Y is a quotient map’?” “No.” “Why not?” “Because (i)

‘q: X —Yisaquotient map’ contains a mathematical concept ‘a quotient map.” “So?”
“Translate the hypothesis (i) into mathematical language. (T1)” “What is the
mathematical language?” “ (5) ‘For any set H in Y that satisfies*(H) is open in Z for

aquotient mapq:Y — Z,HisopeninY.”” “Now, are we ready to combine the objects
(@) g (f (W)) isopen in X> and (5) ‘For any set H in Y that satisfiesq ™ (H) is open
in Z for a quotient mapq:Y — Z , His open in Y>” “Yes, since f (W)isasetinY,
we can specify the H by replacing H with W to obtain (6) < f ™ (W)is open in Y.>”
Example 3 (Type I1). “Suppose that a sequence{a, }is convergent. Show {a_ }

is bounded.” “What major strategy would you use? (Al1)” “A direct proof.” “How
would you start the opening stage?” “Note the conclusion (A2), translate it into
mathematical language (A3), and find an ignition phrase (A4).” “What is the

conclusion?” “{a }is bounded .” “What is the mathematical language?” “For every

nez",la,|<M forsomeM eR.” “What is the ignition phrase?” “None.” “Are not
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‘For everyne Z*’ and ‘for some M e R’ ignition phrases?” “ The phrase ‘For every
neZ*’isnotan ignition phrase because ne Z " is a trivial variable. A primary
ignition phrase that provides a trivial variable is not considered as an ignition phrase.
The phrase ‘for some M € R” is not an ignition variable because a phrase ‘for some ...”
in the conclusion cannot be an ignition phrase.” “Then, how would you set a starting
variable?” “Since there is no ignition phrase in the conclusion, this proof belongs to
Type Il. So, after stating the hypothesis (B0), translate it into mathematical language.

(B1.2)”  “What is the hypothesis?” “{a,}is convergent.” “What is the

mathematical language?” “lim a, = Lfor some LeR.” “Then, what would you do?”

N—o0

“We can further rephrase it.” “How?” “For every¢ >0, 3N e Z " such that for every
n>N, |an - L| <g.” “Next?” “ Derive a starting variable (A5).” “How would you do
that?” “Find an ignition phrase (A6.2)” “What is an ignition phrase?” “’For every
£>0.” “S0?” “We can set £ >0 as a starting variable. However, since the variable is

a controlling variable derived from a hypothesis, you might want to confine it to certain

object by T2.” “How would you do that?” “Lete =1.” “What have we gotten so far?”
“(1) 3N eZ*and L eR such that foreveryn> N, |a, —L| <1.” “How would you

advance a reasoning process?” “First, try B2 (rephrasing an object).” “Does it work?”

“Yes. (1) can be rephrased with (2) for everyn> N, |a,| <|L|+1.” “Can B2

(rephrasing an object) still work?” “No.” “Then?” “Try B3 (combining objects).”

“Would that work?” “No, there is nothing to combine with the object (2) for every
n>N, [a,|<|L[+1.” “Then, what would you do?” “Try B4 (creating a cue).” “There

are five types of creating a cue. (See Table 2). Which type would you try?” “Create a
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new object (C4).” “What would you create?” “The M such that |an| <M for every

nez*.” “How would you do that?” “(3) Let M = max{a,|,[a,|,....}ay_s}:|L| +1.” “Can
you rephrase it? (B2)” “No.” “So?” “Combining the objects (2) and (3), conclude that

foreverynez*, |a,|<M.”

Example 4 (Type I1). “Suppose a< Z. Prove 4does not dividea® —3.”
“What proving strategy would you use? (Al1)” “A proof by contradiction.” “Then,
what would you do?” “Rephrase the problem. (A1.2)” “What is the new statement?”
“Suppose that 4 divides a® —3 foreveryaeZ” “What is next?” “Make sure of an
ignition phrase in the new statement and start the body construction stage by directly
working on the new statement to lead it to a contradiction. (A1.2)” “What is an ignition
phrase?” “For everya e Z , which is a controlling variable.” “What does that imply?”
“Sincea € Z is a controlling variable derived from the mathematical language for a
hypothesis, it may happen that we may want to confine the variable to a certain object
(T2).” “Now, what would you do?” “Since it contains a mathematical concept ‘divide,’
translate it into mathematical language (T1).” “What is the mathematical language?”
“(1) There exists ne Z such that4n=a” —3.” “Next?” “First, try B3 (rephrasing an
object).” “Can you do that?” “Yes, rephrase the object (1) with, for example, (2)
3=a’—4n, but | am not sure if that will work.” “OK, then let’s keep it to see what
will happen. Then, what would you do?” “Since B3 (rephrasing an object) does not
work anymore, try B4 (combining objects).” “Does that work?”” “No, there is nothing
to combine with (2) 3=a* —4n.” “Then, what would you do?” “Try B5 (creating a

cue).” “There are five sub-types for creating a cue (See Table 2). Which would you
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try?” “C3 (set some cases).” “How would you use that?” “Set two cases, in which (i)
aeZisevenand (ii) aeZisodd. Asexpected, confine a e Z to a certain object (T2).”
“Next?” “Consider the case (i). Suppose (3) a€Ziseven.” “Then?” “Since the
statement contains a mathematical concept ‘even,’ translate it into mathematical
language (T1).” “How?” “(4) Let a=2m forsome meZ.” “Then?” “First, try B3
(rephrasing an object).” “Does that work?” “Not anymore.” “So0?” “Try B4
(combining objects).” “How would you do that?” “Combine the objects (2)3=a* —4n
and (4)a=2m to obtain 3= (2m)*—4n=4(m*-n), where m*—neZ.” “Then?”
“Since 4 does not divide 3, which is a contradiction.” “Next?” “Work on the case (2)
in a similar way. By letting (5) a = 2m+1, combining the objects (2)3=a®—4n and
(5)a=2m+1, obtain 3=(2m+1)°—4n =4(m*+m-n), where m>*+m-ne Z (R1). It
is a contradiction because 4 does not divide 3.

Example 5 (Type I11). “Suppose a=b(modn)fora,beZ and neN. Prove

a® =b*(modn). What would you do first?” “Decide a proving strategy.” “What
strategy would you use?” “A direct proof.” “Next?” “Note the conclusion (A2) and
translate it into mathematical language (A3).” “What is the conclusion?”

“a®=b%*(modn).” “What is the mathematical language?”

3

(13

a®-b® =(a—b)(a® +ab+b?*) =ncfor some ceZ.” “Are we going to find an

ignition phrase (A4)?” “No.” “Why not?” “Because this proof belongs to Type Ill, so
you don’t need to derive a starting variable. (B1.3)” “Then, after stating the hypothesis,

how would you start the body construction stage?” “Consider the left hand side (1)

(a—b)(a® +ab+b?) and work on it until it can be changed intonc. (A6.3)” “Then,
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what would you do?” “First, try rephrasing an object (B2).” “Does that work for (1)
(a—b)(@*+ab+b*)?” “No.” “Then, what would you do?” “Try combining objects.

(B3) ” “How would you do that?” “Find a hypothesis and use it.” “What is the

hypothesis?” “(2) a=b(modn)fora,beZ and neN.” “Can we combine (1) and (2)?”
“No.” “Why not?” “Because (2) a=b(modn)contains a mathematical concept ‘mod
n.”” “Then?” “Translate (2) a =b(modn)into mathematical language. (T1)” “What is

the mathematical language?” “(3)a—b=nd for somed € Z.” “Are we ready to

combine (1) and (3)?” “Yes, we can combine them to obtain (4)
(a—b)(@*+ab+b?)=nd(a® +ab+b®) =nc, where c=a*+ab+b*eZ.”
Example 6 (Type 111). “Suppose f :(a,b) — Rhas a global maximum at some
c € (a,b)and is differentiable at ¢ € (a,b). Prove that f (c)=0. What proving
strategy would you use? (Al)” “A direct proof.” “Then?” “Note the conclusion. (A2).”

“What is the conclusion?” « f (c)=0.” “Next?” “Translate it into mathematical

language (A3).” “What is the mathematical language?” “lim ——————= f(x) f(©) =0.

X—C —C

“What do you observe in the object?” “This proof belongs to Type I11.” “Then, what

would you do?” “Work on the left hand side of the equation lim f (X))( g(c)

until we

can change it into the right hand side, which is 0.” “So0?” “(1) Consider

i 100=1©)

- ” “Then?” “Apply rephrasing an object to the object (1)

lim M (B3)” “Can you do that?” “Yes, considering lim w means

X—C X — C X—>C
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considering both (2) lim Mand (3) lim 9=

X—C~ —C x—c* X—C

. So, work on each

separately.” “Next?” “Apply rephrasing an object to the object (2) Iim f(x) f(C)

(B3)” “Does it work?” “No.” “Then?” “Try combining objects. (B4)” “How?” “Find
a hypothesis and use it. (B4.1)” “What hypothesis is available?” “(4) f :(a,b) > Rhas
a global maximum at some ¢ € (a,b).” “How would you combine the objects (2) and
(4)?” “We are not ready to combine them.” “Why not?” “Because the object (4)

f :(a,b) > Rhas a global maximum at someC € (a,b) contains a mathematical concept

‘a global maximum.”” “So?” “Translate it into mathematical language. (T1)” “What is

the mathematical language?” “(5) For all xe(a,b), f(x)< f(c).” “Now, can we

combine the objects (2) IimﬁMand “(5) Forall xe(a,b), f(x)<f(c)?”

“Yes. Since f(x)< f(c), f(xX)—f(c)<0. Also, sincex—>c , Xx—c<0. So, we can

obtain the object (6) IimﬁM >0.” “Then?” “Work on the object (3)

lim f(x))(—c ©); in a similar way to obtain (7) lim w <0.” “Then?” “Since

we cannot rephrase each object anymore, we try combining objects. (B4).” “How?”

“Find a hypothesis and use it. (B4.1.)” “Do we have one?” “Yes, we have (8)

f:(a,b) = R is differentiable at ¢ (a,b).” “How would you combine them?” “The

object (8) f :(a,b) > R is differentiable at € € (a,b)” contains a mathematical concept,

translate it into mathematical language (T1).” “What is the mathematical language?”

@l 01O 10019

” “Are we ready to combine the objects (6)
X—C~ X — x—c* X—C
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iim FX=1©) 5 57y lim %so,and (©) lim 1 =1©) _

X—¢~ X—C x—c* X—C~ X—C

x—c* X—C X—C~ X—C x—c* X—C

“Then, what would you do?” “Try rephrasing an object. (B3)” “Does it work?” “Yes.

F0O=F©) _y_ pm F00= ) w g gy FO=F(©)

lim =0, which means
X—>C" X—C x—c* X—C X—C X—C
f(c)=0.

In reality, students may not advance a reasoning process as smoothly as the
above even if they are fully equipped with all the necessary knowledge for solving a
given proof problem and the full knowledge of both the algorithm and the model of the
structure of proof construction. Moreover, there must be proofs for which the algorithm
does not work well. 1 have shown above that the algorithm has the potential to serve as
effective method to help students with proof construction, it still needs refining and
improving.
6.6  Conclusion

Proof construction can be a difficult task especially for novice students.
Students are often at a loss for how to start and advance a reasoning process in
constructing a proof. Struggling with advancing a reasoning process, they resort to
external, empirical, or pictorial proof schemes for their proofs. As Harel and Sowder
(1998) suggested, | consider analytical proof scheme, which enables students to
construct a proof based on logical deduction, to be an ideal proof scheme for students to
practice. Weber and Alcock (2004) indicated that both syntactic and semantic

approaches must concur to construct a proof based on logical deduction. However,
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there seems to be little research that provided specific and practical pedagogical
suggestions to help students with both approaches. Focusing on the syntactic approach,
Selden and Selden (2007) provided procedural knowledge to produce the formal-
rhetorical part. However, their method may have a limitation in helping students write
a proof from the top down. By offering a model of the structure of proof construction,
this study attempted to fill those gaps in the current literature. The model can serve as
an effective tool for realizing syntactic and semantic approaches to help students
practice analytical proof scheme.

There were four goals for this study to achieve: (1) to provide a model of the
structure of proof construction; (2) to clarify the sources of students’ difficulties with
proof construction; (3) to evaluate the usefulness of the model of the structure of proof
construction; and (4) to provide practical pedagogical suggestions to help students with
proof construction.

6.6.1 Model of the structure of proof construction

Through providing a model of the structure of proof construction, this study
presented a comprehensive view of proof construction that can encompass the aspects,
factors, patterns, and features involved in cognitive processes in proof construction.
The model was created by viewing proof construction from four aspects (reasoning
activity, background knowledge, mental attitudes, and affect and beliefs). The model
suggested those aspects were intertwined to influence one another to affect students’
performances in proof construction. Also, the model provided the factors that compose
each aspect in an organized way while simplifying a complex nature of the cognitive

processes involved in proof construction. Moreover, the model clarified the features of
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the factors, focusing on the operations used in the reasoning activity. Furthermore, the
model detected patterns that was used in advancing a reasoning process. The model
offered the order of the operations to be tried in advancing a reasoning process, types of
proofs classified by the ways to derive a starting variable, the ways to manage variables.
The model provided two stages (opening stage and body construction stage), clarifying
the roles and features of each stage. The model was found to be applied to proofs
across a variety of mathematical subjects. The knowledge of the structure of proof
construction can function as metacognitive and methodological knowledge for
advancing a reasoning process.
6.6.2 Sources of students’ difficulties with proof construction

The analysis of students’ proofs found out that multiple factors were intertwined
to affect their performances. In light of the model of the structure of proof construction,
students’ difficulties were identified to be those with practicing the operations in the
reasoning activity and that the sources of their difficulties were ascribed to their lack of
their background knowledge and mental attitudes. The greatest factor that affected
students’ proofs were their lack of knowledge. In particular, their lack of knowledge
directly hindered them from rephrasing an object and creating a cue. The analysis also
strongly indicated that students’ lack of flexibility and carefulness contributed to their
inabilities of practicing all the operations in the reasoning activity (rephrasing an object,
combining objects, creating a cue, and checking and exploring). The analysis also
identified students’ difficulties with starting a proof. Students had difficulties with

noting the conclusion, translating the conclusion into mathematical language, and
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preparing a starting variable. The remarkable sources of their difficulties included their
tendency to note a hypothesis and their lack of knowledge of definitions.
6.6.3 Usefulness of the model of the structure of proof construction

The model of the structure of proof construction was useful in the following
ways. First, the model made it easy to view and understand the complex cognitive
processes involved in proof construction. Next, the model directly contributed to the
creation of a framework for analyzing students’ proofs. The analysis framework helped
to identify students’ difficulties and to explain the sources of their difficulties in a clear
and organized way. The model also contributed to clarification of the skills and
abilities necessary for proof construction. Moreover, the model produced algorithm for
constructing a proof.
6.6.4 Pedagogical suggestions

Both the model of the structure of proof construction and the findings from the
analysis of students’ proofs produced a variety of pedagogical suggestions. Students
should be encouraged to be equipped with strong understanding and knowledge,
including definitions, notations, properties, theorems, relevant facts, and problem-
solving techniques. They should be also encouraged to be aware that they must be
persistent, patient, flexible, careful, and precise in proof construction. Instructors may
need to help students remind and organize their mathematical knowledge in class.
However, the most significant suggestion was that the model of the structure of proof
construction itself can serve as metacognitive knowledge to help students with proof
construction. The model can help students grasp a comprehensive view of proof

construction and increase their accessibility to proof construction. Above all, the model
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gives students specific and practical methods for advancing a reasoning process in
proof construction. Finally, the establishment of the model and the analysis of students’
proofs culminated in producing the algorithm for proof construction. | expect the
algorithm to be an innovating method to help students with proof construction.

6.7  Limitations

There are some limitations with this study. The model of the structure of proof
construction was created based on a limited number of proofs. In addition, the
majority of the proofs examined were proofs collected from undergraduate mathematics
courses. In addition, the creation of the model did not include the proofs that asked to
construct a counter example. There is still room for improvement in the model of the
structure of proof construction, including the types of proofs and the functions of
variable, and above all, the algorithm for proof construction. The algorithm is not an
ultimate formula for solving any proof problem. It must have weaknesses or defects in
it. In order to refine and improve the model of the structure of proof construction and
the algorithm for proof construction, more proofs from a variety of mathematical
subjects need to be examined.

Another limitation was that the analysis of students’ proof s had to involve my
subjective interpretation to some extent. For example, there was no definite way to
measure the degrees of tenacity, flexibility, and carefulness. Students’ difficulties were
analyzed from three perspectives: reasoning activity; background knowledge; and
mental attitudes. It was unknown that exactly what factor caused their difficulties to

what extent. In addition, the analysis depended on only students’ written work.
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The model of the structure of proof construction is just one of the ways to view
proof construction. It may work only for some students. In addition, in order for them
to master the knowledge of the structure of proof construction, they will need to be
trained by an expert. Instructors may teach the model in a workshop or in a class while,
adjusting and modifying the model based on their insights.

6.8  Future Research

I hypothesize that the model of the structure of proof construction can help
students advance a reasoning process more successfully. A possible future study would
be to examine the effectiveness of the knowledge of the model of the structure of proof
construction. Another possible future research would be to improve the model of the
structure of proof construction and to make a stronger algorithm for proof construction

by examining more proofs from a wide range of mathematical subjects.
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Appendix A

Problem [4] from Algebra | for the in-class problem solving session

Suppose that Z(G)/Gis cyclic. Prove that G is abelian.

1. First, state your problem solving strategy briefly. What would you like to
show? How do you prove the statement?

2. Prove the statement. If you need hints, please go to the next page. Once you
move to the next page, please don’t come back of this page to fill in the blank
below.

3. Problem: Suppose Z(G)/G is cyclic. Prove that G is abelian.

Use the following hints.

(1) Show foranyg,heG, gh=hg.

(2) If G=2Z(G) is abelian, G =Z(G) .

(3) Every element in G belongs to some coset of H .

Problem [5] from Algebra I for the in-class problem solving session

1. Suppose that the order of a group G is a prime number. Prove that G is cyclic.
a. First, state your problem solving strategy briefly. What would you like
to show? How do you prove the statement?
b. Prove the statement. If you need hints, please go to the next page. Once
you move to the next page, please don’t come back to this page to fill in
the blank below.

2. Problem: Suppose that the order of a group G is a prime number. Prove G is
cyclic. Use the following hints (1) ~ (3).

(1) Let ge G. ShowG =<g >.
(2) <g >is asubgroup of G foranyg € G.

(3) Use Lagrange’s Theorem: Suppose that G is a finite group and H is a subgroup
of G. Then, the order of H divides the order of G.

Problem [6] from Algebra I for the in-class problem solving session

1. Suppose |G| = pqg for some primes p and g. Prove, G is either abelian or

Z(G) ={e}. If you need hints, please move to the next page. Once you move to
the next page, please don’t come back to this page to fill in the following blank.
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2. Problem: Suppose |G| = PQ for some primes p and g. Prove, G is either abelian
orZ(G) ={e}. Use the following hints.

(1) Z(G) is a subgroup of G.

(2) Use Lagrange’s Theorem: Suppose that G is a finite group and H is a subgroup
of G. Then, the order of H divides the order of G.

(2) If the order of a group H is prime, H is cyclic.

(3) If K/ Z(K) is cyclic, K is abelian.
(4) Show |Z(G)| = pand |Z(G)|=q never happens by contradiction.

Problem [9] from Algebra Il for the in-class problem solving session

1. Let R and S be rings. Suppose ¢: R — S is a ring homomorphism. Assume
v :RIKer(g) - S:[r]— 4(r) is a well-defined ring homomorphism. Show
v RIKer(¢) > S is aring homomorphism.

2. Show v R/Ker(¢) > S is injective.
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