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PREFACE

One of the most difficult problems facing the design
engineer is the determination of networks which will have given
response characteristics, In general, the determination of
these networks, known as the synthesis problem, is extremely
difficult; in fact all methods presently available are approxi-
mation methods. In this paper an entirely new approach for
solving this problem is developed whereby input and output time
functions are used to obtaln network characteristics. Knowing
this, a method is given whereby an appropriate network may be

cqnstructed.
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INTRODUCTION

This Thesis will be divided into three parts, which will be
explained here. In the first part, entitled "Networks From the
Zero and Pole Point of View" is discussed certain properties of
networks which have been extracted from the literature, and which
are helpful to an understanding of this paper. It is believed
that the method of presentation will give the engineer a clear
picture of the significance of the application of the pole and
zero theory as appllied to communication networks. There 1is also
presented a method for obtalning a duplicating or compensating
network when the phase and amplitude versus frequency character-
istics are known for a linear network whose component con-
struction is unknown.

The second portion of the Thesis entitled "A Method for
Solving the Synthesis Problem", deals with the Synthesis Problem.
The synthesis problem may be étated in the following manner.
Given a four terminal linear network whose internal construction
is unknown, and given the input and output time functions, to
construct a network which has the same characteristic as the
given network, By using the input and output time functions, a
technique is developed which allows for the construction of a
plot of the phase and amplitude characteristics of the unknown
network., The employment of the technique described in the first
part of the paper then makes it possible to duplicate or, in
some cases, compensate a given network. Several examples are

given which indicate the results to be expected from this method.



The solution to the synthesis problem as developed in this
paper is especlally applicable to the servo-mechanism control
problem., To discuss a simple example, assume a gas furnace is
given and 1t is desired to control its temperature. For a
temperature measuring devices thermocouples are used which
develop an output voltage which 1s a function of the temperature.
This voltage is to be fed to a system to control the gas valve,
which in turn controls the furnace temperature, One way to de-
rive an output time function for the thermocouples 1s to suddenly
inorease the gas pressure a known amount, This results in a unit
step funotion, and makes a recording of the thermocouple output
voltage against time. Using the teochnlques described in this
peper, & network ocan be found whiech has the same response, on a
voltage basis, to a unit step funetion. With this information
an eleoctrical control system ean be designed to obtain an optimum
eontrel of the furnace temperature, In other words, a logleal
system will be developed for determining e phase and amplitude
versus frequensy characteristie from an input and output time
funetien, I% is also shown how to use the information to obtain
ecorrection in a eontrel system.

Te expand the discussion further, using the teohniques
outlined, an eleotrical network equivalent ean be found for ANY
linear» system when its input and output time funotions are lmewn.
For example, the displacement time funetion of the outpubt of a
lever system for a given input displacement time funetion eould
be known. Letting voltage equal displacement, an electriocal
network can be found which will have an output voltage pro=



portional to input voltage, and these voltages would be directly
proportional to the displacements in the original system.
Therefore it 1s evident that the method is not limited to
electrical systems alone, although only electrical systems will
be discussed in the body of the paper.

The third part, entitled "Suggest Applications", in a dis-
cussion of the general developments applied to servomechanism
design. The development is in terms of poles and zeros, and
the method of attack proposed 1s different from that pursued in
current literature. One purpose of this paper is to show that
network concepts can be explained in terms of poles and 2zeros;
and an endeavor has been made to use only this concept in each
step of the discussion. It is hoped that this paper will result
in a more general use of the pole and zero network concept.

It is assumed that the reader is acquainted with Fourier

and LaPlacian Transformsl and their application to network

1 Cambell, G, A. and Foster, R. M., Fourier Integrals for
Practical Applications

Gardner, M, F, and Barnes, J. L., Transients in Linear

Systems

Goldman, Stanford, Transformation Calculus and Electrical
Transients

The above books will be referred to constantly throughout
this paper, and the following notation has been adopted. C&F
will refer to Campbell and Foster, G&B will refer to Gardner and
Barnes, and G to Goldman. If a number or a letter follows the
above symbols, this indicates the transform applicable in that
volume; if the symbol is followed by P. and a number, that is
the page number. Although Fourier and LaPlacian Transform
Tables are not always directly interchangeable (G P, 225), in
this paper none of the exceptional cases arise,



analysis, An acquaintance with the Theory of Functions of a
Complex Variable@ is helpfui in understﬂnding.the development of
the plotting techniques described in the first part of the paper.
Sufficlent information has been included, however, to allow a
complete understanding of the actual application of the develop-
ments., In the third part of the paper, this background is
sssumed in comnection with the discussion of the Hyquest Sta-

bllity Criterion.

Knopp, Konrad, ! ef Funetions, Vol. L.

Gullleman, E. A., The Mathewatlep of Civeull Analysls.
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NETWORKS FROM THE ZERO AND POLE POINT OF VIEW

In this part of the thesis certaln properties of Fourier
and LaPlacian Transforms and Functions of A Complex Varlable are
discussed which are useful for an understanding of the method to
be developed for duplicéting, or compensating, a given network
when its phase and amplltude versus frequency characteristics
are known. Those portions of the theory of interest to the
development have been extracted fromjthe literature. A different
point of view 1s used from that in present literature, and 1t is
hoped that this method willl give a clear plcture of the
theoretical concepts.

An analogy might be made at this point concerning a man
who walks into a flower shop, bo buy a bouquet, and finds
himself lost in the number and variety of flowers avallable;
vet he only needs a few for hils bouquet. An attempt will be
made to select the proper bouguet.

In the following discussion it will be agsumed that the
proper way to identify networks 1s by the location of their

a n

poles and zeros.l The meaning of the terms "pole™ and "zero"

1 Bode, Henrik W., Network Analysis and Feedback Amplifier
Design T = R R

Mulligan, Jr., H. H., "The Effect of Polar and Zero
Locations on the Transient Response of Linsar Dynamic Systems,”
Proceedlngs of the Institute of Radio Enginsers, AXXVII (May,
1949), 510. '

Valley, Jr., G E., and Wallman, Henry, Vacuum Tube
Amplifiers, Chapt, VIIT is egspecially good. '

G&B P. 152.



will become clear from the discussion. Later it will become
apparent that for all practical networks the network character-
igstics are completely identifled by the location of the corre-
sponding poles. The difficullty, as far as preéént literature
is concerned, is that an actual plcture of the situation is not
clearly presented. It is very well for the mathemafician to
develop the theory without diagréms and models, but the engineer
is often not able to visuallize just what 1s taking place. One
of the principle reasons for thig is that there 1s no method for
presenting a four dimensional system in a singls drawiﬁg? so the
mathematics are developed without showing pictorially what it
means in network theory.

In the literature of the Theory of Functlong of a Complex
Variable, the general method of plotting a function of four
variables 1s to make two-dimensional plots. Using the con-
ventional notatlon, thls method is developed in the following

The funetions z and w are then plotbed separately., If the
equation is expressed in polaﬁ goordinates, and two three-
dimensional plots are made, a geomebrical picture of a pole and

a zero 1s developed. That i1s if the equation is expressed as

F0)

W'—;_Iie']g

and R and ¢J® are plotted separately.



Before proceediﬁg further 1t willl be necessary to develop
a simplé Theorem which is of fundamental importance., Let it be
assumed that the voltage transfer transforms of a series of
networks are known. Isolate each network from the pre#ious one
by a vacuum tube, the vacuum tube being considered as infinite
input impedance, zero output ilmpedance, and is linear. Such a
tube is termed as a "perfect vacuum tube,”

Theorem: If thé voltage transfer trsnsforﬁs of a group of
networks are known, whsn the networks are connected in series,
and each network is isolated'by a perfect vacuum tube, the
transforms are multiplied together in the Complex S Plane,

To demonstrate this Theorem let the group of networks have
the voltage transfer transform Fi(s), Fo(s), «es Fpls). Det
the input voltage to the first network be E(s), and ths output .
voltage associated with each network be e1(s), €2(s), eecs.
en(s). Assume, for simplicity, that each isslatihgnvacuum tube
has a gain of M, which may be greater than, equal to, or less
than unity. For network 1 the output voltage will be

| e1(s) = Fi(s) E(s)

Connect the second netWork to fhis system through an isolating
vacuum tube, and the equation is

e2(s) = e1(s) M Fo(s}) = E(s) M Fl(s)‘Fg(s)
and in general: . ﬂ ﬁ o

en(s) = E(s)M~1F1(s)F1(s) o « o Fpls)
This completes the proof.

To ald this discussion, two networks have been selected

and each of these networks will be developed in the S Plane,



The same notation employed by Gardner and Barnes? will be used
throughout the discussion. Figure 1 shows two networks together
with their projections in the S Plane. A resistance and capaci-
tive network 1s driven by a constant voltage generator, and a |
resistance and inductive network is driven by a constant current
generator. The output voltage 1s measured as shown in the
diagrams. The diagram on the left represenfs the structures of
these networks in the S‘Plane¢ Théée Figures méy be considered
as cones centered at the points -R/L and.-l/RC.

‘Tﬁeée-cdnes are developed in the folloﬁiﬁg manner, Using
the pfeviously'mentioned concept,fneglecting the phase charac-
teristic for the present, there results the emplitude function:

w=g
For the RC network this will be

o oC :
=R = i
w .3 Ep&-f(m+ﬁ)ﬂﬁ
where oC = 1/RC. If the equation 1s expressed as a reciprocal
relationship, and both sides‘are squared, the result belng

o Wi (et

|
R o B

This 1s immediately recognized as the equation for a circular
éone. "It develops that if the cone is cut parallel to the S
Plane, the section is found to be a circle centered at © = oC,

'As the parameter E; is‘increaSed, the radius of the circle will

2 6&B, loc. elt.
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decrease.

The resistance and inductance network may be treated in a
similiar mahner, and it will be found that a circular cross
- section results when 1t 1s cut parallel to the S Plane.

In the RL network case, at the point S = -R/L, the ampli-
tﬁde is zero. In the thebry of functlons this ls known as g
zero. In the RC network case, at the point 8 = -1/RC, the
amplitude becomes infinite., In the function theory this is
knewn ag a pole. Both zerqs and poles are classifled as singu-
larities. As far as networks 1n the S Plane are concerned, to
determline zeros and poles, it 1s only necessary to examine the
equation to determine the values of 8 at whlich the equation
become zero or infinlte. In more complloated networks several
poles, or zeres, may exist at a slngle polnt. The number of
polos or zeres 1s equal te the onder of the pole, or zero,

Returning te Flgure 1, & eress=hatched area is shown in
each of the projeetlons 1n the 8§ Plane, Thls eress-hatehed are
1z a "eut" on the jw axls., Thils cubt represents the steady stat
amplitud@‘r@gp@ngg of the network. As the loeation of the pels
or zere lg varled, the eut 1ls made 1n a different place en the
cone, and the respeonse curve will change, Conslder the RC
networks This network 1s a high frequency out network. If the
capaclty 1s 1lnereased, leaving the resilistance unchanged, the
frequency for & glven attenuatien 18 lower., In the 8 Plane, -
thles moves the cone r@rward;‘the gldes becoming steepor when
the cut 1ls made on the Jw axis. In the RL network cass, ‘it 1s

seen that varying the Q of the eoll moves the cone back and

10

&

€]
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forth on the real axis. When a cut is made on the jm axis, it
is =seen that the response varies with the Q of the coil.

From the previous discussion one distinct advantage of
treating networks in terms of poles and zeros is apparent. If
networks are pilectured as shown in Figure 1, it is seen that
poles and zeros have a geometrical significance which bears a
direct relationship to their name. For a given type of network,
the cones will always have the same shape. This is the princi-
ple employed to find the steady~state response curves for
networks using an electrolytic tank.3

One other point is to be noted when dealing with networks
from the pole and zero point of viéw. Negative as well as
positive frequencies are involved, Negative frequencies are the
result of the mathematics and are not physically realizable.u
It should be pointed out, however, that all physical networks
projected onto the $ Plane have thelr frequency characteristics
projected as an image in the negative frequency region.

Networks involving resistance, inductance, and capacity may have

conjugate poles, one lying in the negative frequency region,

3 Huggins, W. J., "A Note on Frequency Transformations for
use with the Electrolytic Tank," Proceedings of the Institute
of Radio Engineers, XXXVI (March, 19L8), L21.

b In certain special cases negative frequencies are useful
from the computational standpoint, but this will not be dis-
cussed here,
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the image of the one in the positive frequency region. If the
cones for a network with conjugate poles are developed, it will
be found that they also have a clrcular cross-section parallel
to the S-~Plane. In this case, however, it will be found that
the center of each c¢ircle 1s different for each cut.

There are certaln other advantages of thinking of networks
in terms of poles and zeros, In the S-Plane, & has the di-
mensions of a resistance, and all pessive networks should have
poles in the =& reglon, This 1s what mathematlioclans call the
negative half-planes If a pole lles in the +& reglon, thg
positive half-plane, thils indlcates a power source, In a general
way, 1t can be stated that ampliflers should be desligned te have
thelr poles in the negative half=-plane, and osclllators with
their poles in the positive half—plgﬁe.s

In an earller part of thls paper 1t was mentloned that four
dimensiens were needed te fully represent netwerke, Altheugh
the leeatlon of the poles and geres eompletely define any
netwerk, they have a four dimenslenal representation. Ne
physleal methed 1s available te portray graphleally this infer=
matien, It hes been shewn hew te ebtaln the amplitude eharae~

5 In the ease of amplifiers this 15 a suffilelent but net
& Neecessary and Buffieient Oenditien, In the ease of eseil-
latere, thie 18 a neeecegary eondltien, but net a Neesssary and
siﬁ‘ficient Oendition, The amsbtual eondlitlens may be determined
from Nygquest's Btabllity Oriterien,

Valley and Wallman, les. git.
Bode, loc. git.
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teristic by taking a cut on the jo axis of the magnitude
function, The problem of phase relationships has not been con-
sidered.s It will be shown that it is possible to construct a
Flgure in the S-plane representing phase similar to that which
the representslamplitude. In the case of phase, however, the
Flgure is not solid like the cone, but has the shape of a warped
sheete This sheet can be moved back and forth in the same
manner as the cones, a cut on the jw axls determining the phase
for a glven network,

Consider the RC network of Figure l. The equation for the

phase of thls network In the complex S~Plane is

" R Ei
°=Tanl-m+s

This case 1s 1llustrated in Flgure 2, which shows a phase
sheet in the upper half-plane, 1ts image in the lower half-
plane not being shown for reasons of clarity. The cross-hatched
area represents a cut on the positive frequency axlis and is the
phase characterlistic for thls partlicular value of RC,

Conslder the two networks of Flgure 1 again. When the RC
network 1s connected to the output of the RL network through a
perfect vacuum tube, then by the theerm developed earller, the
two networks are multiplied together, The result will be a
constant 1f R/L and 1/R0O ave properly chesen, that is, compen=
satioen 1s obtained fer the RL network, Anether advantage of
uslng poles and geree te classlify a network i1s now apparent.

To compensate any network, where the equation of the network is

lmown, find another network whleh has the same number of zeros
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+JW0

FIGURE 2



15

as the network to compensated has poles, and these zeros the
same location as the poles. Moreover, this network must have
the same number of poles as the network to be compensated has
zeros, and these poles are to be located at the same points as
the zeros.

Actually this 1dea comes directly from the Theory of
Functions of a Complex Variable.6 There it 1s shown that any

rational complex fraction of the form

R(z) = ZHa}

where G(z) and F(z) are polynominals in 2z, that the function
R(z) is completely characterized by the location of isolated
poles., R(z) 1s assumed regular, which is always true of network
transfer functions,

It 1s also shown that if G(z) has a root of the form (z - a)
and F(z) has a root of the form (z « &), the number of these
isolated poles, as determined by the polynominal of F(z), is
reduced by ones This is called a "removable aingularity.”7
Full compensation 1s merely the creation of a sufficient number
of removable singularities to take care of every pole of F(z).
The actual application of this in practice will be discussed
more fully in the section entitled "Suggested Applications.”

6 For example, Osgood, Chepter VI, locs clt.

7 In other developments of Functions of a Complex Variable,
a removable singularity 1s called a doubtful points The term
removable sin%ularity apgears more apﬁropriate from the
engineering standpoint, inasmuch as it indicates what happens.
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The two networks of Figure 1 were not chosen at random,
but wére chosen to show particular points about compensation,
Assume a constant voltage generator feeds the RC network;
couple the output to the grid of a pentode considered as a
perfect constant current amplifier; if the pentode has the
proper value of R/L in 1ts output circuilt, then compensation 1is
obtained., Sometimes 1t is possible to find a constant current
network which has the proper compensation characteristics, but
not a voltage network having the desired characteristics, The
above technique indicates how to handle this situation, It is
also noted from the theorm on the addition of networks by means
of isolating vacuum tubes, that the galn of the tube does not
affect the compensation; it is only the location of the poles
and zeros, Gain merely enters as a factor which can be taken
care of by either positive or negative attenuation, depending
upon the final use of the output voltage, For this reason,
the gain term 1s sometimes referred to as sensitivity,

Although very simple networks were chosen for illustration,
these same ideas may be carried over to more complicated
networks., The above compensation theorm is general
regardless of the complexity of the network.

There is a method for using the above 1deas to either
dupliéate or compensate a given network when the amplitude and
phase versus frequency characteristics for a network are given.
Dr. R. G, Plety of Phillips Petroleum Company 1s responsible for
the basic ideas underlying this method.
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Consider the voltage transfer transform of a generalized

network. The equation is

T G+2) 11 (* + 2xs +a% +8°)
F(S) - s=| -.T”-"l J

r s
[TE+A) TT (S +Reeys + + 85)
= s_l

This equation may be reduced to the dimensionless form

in the following manner,

n m 2
(S BR(S‘ SIS )
F(s) = E M 7\5'-1-1) i CaE & 3}_\-1
i r \ S 2 2
§- 2 S 20‘253 oL
T AUl 8/ (B r S 5D

Figure 3 shows the results of this procedure in the case
of an elementary network., In this Figure are shown two three
dimensional drawings; one case with a pole on the negative real
axls, and one showing a single conjugate pole. The cut on the
jw axis 1is now dimensionless, and 1s shown by the cross~-hatched
area. The curve shown for the pole on the negative real axis
may be thought of as a serlies RC network connected to a constant
voltage source, with the output voltage taken across the con=-
&ensef. The créss-hatched area defines the amplitude for this
voltage. The cross-hatched area of the single conjugate pole
would represent the voltage across a parallel RLC network con-
nected to a constant current source.

Now conslder the voltage transfer transform of any ele-
mentary network, and express i1t in polar form, first making the

network dimensionless by use of the above technique, If the
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AMPLITUDE 70

One of conjugate poles |

lying in the negative

half-plane.
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9, IS
AMPLITUDE
<0
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I
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Figure 3
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natural logarithm of this equation is taken, there results
LogeF(s) = LogeR + j6

where

(real2 + imaginary?)l/2

0 = Tan~l imaginary
real

|=o
Nl

It is deslirable to express attenuation in decibels instead
of nepers. This may be accomplished by taking the logarithm of
the amplitude to the base 10, and multiplying the result by 10.

The equation for attenuation in decibels is,
F(s)gp = 10Log1o (real? + imaginary2)

Obviously a series of these terms can be added by the procedure
indicated in the previous theory to obtain a composite amplitude
function.

Figure l has been prepared to show certain basic networks,
together with the equations for constructing e series of ampli-
tude and phase curves, Although all of the networks consist
of resistive and capacitive elements, the procedure to be des-
cribed is not limited teo RC networks alone., Networks containing
conjugate poles may also be uéed for constructing these curves,
using the procedure outlined previously, These networks were
merely selected for demonstration purposes. Also shown in
Figure l. are certain possible compensating networks., What is

meant by "possible" will be explained at the end of this section.
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Figure 5 shows plots of?the amplitude functions for three
of these curves. The procedure for constructing these curves
is to let o€ = 1., A curve is then constructed of attenuation
versus ®, this curve being marked at the point w = 1. These
curves may be constructed of lucite or any other sultable
material, It i1s obvious that the curves must be designed for
the particular seml-log paper on which plots of network ampli-
tude functions are to be made.

The step by step procedure for using these network curves
1s given below:

l, Plot an attenuation versus é@- curve for the unknown
network which is to be duplicated., The éﬁ- ratio should be so
selected that the main points of interest are centered about
the point, % = 1,

2. B8Select one curve which approaches the one to be
duplicated, sliding it to the right and left untll the most
satisfactory location is obtained. Movement in the vertical
direction 1s permitted lnasmuch as duplicatlon 1s only to be
within some amplitude function. Note the actual attenuation
of the network curve at thls point, Add the values shown by
the attenuation curve to those obtained from the network attenu=
ation curve through these points. As a result one network of
this type will be used in the duplication prccess. It is neces-
sary to note the point where w = 1 of our network curve falls
on the ﬁ scale, The oC chosen for construction of the curve

to be duplicated is kmown, From this the & ratio can be
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determined for the duplicating network. Suppose the value,

oC = 100, has been selected for the network to be duplicated,
and it was found the reference point of a standard network curve
fell on the point é% = 1.2. This would mean that when this
network was constructed, the parameter of o must equal 1.2 x
100.

3. Continue in this manner, using different attenuation
curves in the manner indicated above, until the reconstructed
original curve is a straight line.

e If just the amplitude characteristic is desired, suf-
ficient information is available to construct a duplicating
network on an amplitude basis. If exact duplication is desired,
then phase curves must be used in conjJunction wilith the ampli-
tude curves. It 1s noted that these two curves cannot be used
independently of one another,

S5« A series of networks can be constructed, as found by
the above procedure, isolating each one from its predecessor by
a vacuum tube. The theorm shows that if the phase and ampli-
tude characteristic have been duplicated exactly, then within
the range of some amplitude function the equation of the
duplicating network must be ldentical with that for the original
network,

One thing should be pointed out at this time in regards to
the networks shown in Figure l,. The first two networks have
identlcal curvatures, and consequently only one curve is neces~-
sary for the two cases, Reversal of the one curve will result in

the curve for the opposite type network,
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There is an obvious point about networks which was hinted
when Figure 1 was discussed, and is also assoclated with the
terms for the possible compensating networks mentioned previous-
ly. Consider the two networks shown in Diagram A and B, the

output voltage transforms for which are given,

)

|1 .
||
C )
B S RO
@E(S) FE EO(S) Eo(s) e SFSQC_'*' 1__

lil

DIAGRAM A

R I L
~)E) LY Eqws) Eos) = EGLSR

i S +1

DiacrAM B
In these networks, if RC = L/R, it 1s seen that it is

impossible to differentiate one network from the other by means
of the output voltages. Although this 1s a simple example, it
shows that there is no uniqueness for networks; that ié, many
networks will have the same response characteristic, although

the actual elements and method of construction are different,

In complicated networks where economy of manufacture enters,

this property of networks is not just of academic interest.
Sometimes a little additional work will result in real economiles,
It was for this reason, also, that RC networks were chosen for
the demonstration networks. They are cheap and easily con-

structed,
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A METHOD FOR SOLVING THE SYNTHESIS PROBLEM

In this section a method for solving the synthesis problem
in networks is developed. Some computed examples using the
technique developed herein are also givene. The method by which
this result is to be accomplished is by the use of what might
be called a new type of operational algebra, due to Dr. R. G.
Piety of Phillips Petroleum Company. This operational method
was specifically developed to find auto-correlation and cr;ss-
correlation functions! in order to aid in the interpretation of
siesmograph records, This problem will not be discussed here,
although the concepts developed for its solution can be extended
to the network synthesis problem. The method will give the
phase and amplitude characteristic of any linear four-terminal
network when the input and output time functions are known,

As was pointed out in the introduction, the method will give
an anlog electrical network for any linear system when the input
and output time functions are known,

The synthesis problem is to find a network which will have
the same response as a given system when the input time function
and the output time function are known. For example, a sealed
four-terminal network might be given, and only its input and
output time functions known. It 1s desired to either duplicate,

or compensate, this network. If the phase and amplitude versus

1 James, Nichols, and Phillips, Theory of Servomechanisms.

Wiener, Norbert, Extrapolation, Interpolation and
Smoothing of Stationary Time Series.
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frequency characteristic can be determined from this information,
the methods described in the first part of this paper can be
used to duplicate, or compensate, the network. As was pointed
out, howev;r, the duplicate may not have the same arrangement

of components in 1ts construction.

For the type of systems to which it 1s applicable, the
method of synthesis discussed in this paper is straightforward.
Although a knowledge of the properties of Fourlier and LaPlacian
Transforms 1s necessary for a thorough understanding of the
technique, thls 1s not necessary, however, in order to be able
to use the technique. The method may be compared to the problem
of using log tables, as compared to understanding the theory
underlying their general development,

Several systems are available for describing the proper-
ties of a network, the most conventional one being to show the
relgfionship between phase and amplitude versus frequency.
Another method, not quite so well known, but of equal value, is
the concept of indicial admittance.2 Idiclal admittance is
defined as the time function of the current which enters an im-
pedance In response to a unit step function of voltage. It can

be shown that all the characterlstics of a network may be des~-

cribed in terms of indicial admittance, including the voltage

2 Karen and Biot; Mathematical Methods in Engineering.

Carson, J, R,, Electrical Circult Theory and Operational
Calculus, :

G Po 97.
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output across some impedance in the network due to a unit step
function of voltage inputs The indicial admittance concept 1s
used in this part of the paper. As used here it is the situation
existing when a unit step function of voltage 1s applied to two
terminals of a four terminal network, and the output voltage
measured against time.

The method of synthesis developed here is not limlted to
unit step function inputs, as will become clear from the follow-
ing development, This type of input was chosen as a convenient
means for showing the theory of development. In passing, it
might be mentioned that the only reason for introducing indicial
admittance here is that the previously cited references will
show that it is a unique method for defining a network. There
are other unique methods besides the two mentioned in the pre-
vious paragraph, for example, by the location of the poles and
zeros as shown in the first part of the paper. AmpLITUWLDE

The operational algebra for use

in solving the synthesis problem will d ] a ds
nwo be developed., Assume a time seriles, AT =3 AT =¥ AY
as shown at the right, starting at t = 0, T rero e Ty

Divide this time seriess into equal intervals TIME >
of time AT , designating the amplitude

at to as apg, at t1 as a1, « « « tn a8 an.

The time series can be described in the

following manner:

ap + a,]_t"""" + agt‘2 aY * oane ant“nAT
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where each of the terms has the followilng éignifica.nce:
AT 1s the interval between consecutive points in the time
serles
t=nAY  indicates a time to be associated with each ampli-
tude, delayed nAT units from the origin.
an is the amplitude of the time serlesat the time
t-ﬂ:ﬂ" R
Let an represent an amplitude associated with a unit
impullae3 oceuring at t*RAT , The basic property of a unit
impulse, assoclated with an amplitude function, which mékea it
useful in this method wlll become clear as the development
proceeds,
A method for representing a time serles of any complexity
at equally spaced discrete polnts 1s now available.h Let 1t be
further assumed that all algebralc operations of any power
uerios’apply to the above series; that ls, the commutative,
assoclative, and distributive laws hold, That such an assumption
1s proper will develop later,

3 G&B P.255.
C&F Po Te
G Po 100,

4 This method of representing a time serles has the Fourler
Transform an.e=JWhaTy ; : :

G&B P, 10,
C&F Po 207.
G Je
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There is a theorem which states®, "that any function of
time f(t) which contains no frequency cémponents greater than
Wo cps is uniquely determined by the values of f(t) at any set
of sampling points spaced 1/2W, second apart.” It is seen from
this theorem that the specified impulses can ﬁniquely determine
the time series within some upper frequency limit. In other
words, the time series is assumed to be made up of frequencies
with no component higher than 3 g7=e

Assume that the output time series from some four-terminal
network, due to a unit step function input, is known. The
expression for this time series in terms of the operational

algebra is

£(t) = = ap £B
where AT 1s chosen in a manner to be described later.
The conventional mathematical expression used in LaPlacian
and Fourier Network Transform Theory 1is:
(Network Transform)(Input Transform) = Output Transform

In this paper it is desired to obtain the network frequency

function, From the above relationship, the Fourier Transform is

5 0liver, Pierce and Shannon, "The Philosophy of PCM,"
Proceedings of the Institute of Radio Engineers, XXXVI
(November, 19487, 1130.

This theorem was developed much earlier, but apparently
these authors are not acquainted with this work.

Ferrar, W, L., "On the Cardinal Function Interpolation
Theory," Proceedings of the Royal Society of Edinburgh, L5
(192??, 269-282.
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Fourier Transform (Input Time Series)
It 1s desired to express the unknown network in terms of an
amplitude and phase versus frequency relationship. It will be
shown that the above expression does just this,
When the same AY is selected for the unit step f'unotion6
as for the network output time series, the unit step function in

terms of the operational algebra 1is
o0
plt) = . gemiY
: m
when this is divided into the output time series, the result is

the Fourier Transform of the above equation7 can be found in

tables, and the result is
flw)' = ZZ an-m exp-jd(n-m) m<n
_ h m

The above equation is immediately recognized as a Complex Fourier

Series, Expressed in a more familiar form, this equation is

6 The unit step function contains frequencies of all orders.
‘The output from any network whose input 1s a unit step function,
can be looked upon made up of those particuliar frequencies it
allows to pass, and the operatlions the network performs on these
frequencies.,

Goldman, Stanford, Frequency Analysis, Modulation, and
Noise, pe. l2h.

T G&B 10

C&F 207
G J
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flw)! = E% an-m((Cos © AT (n-m) - iSin wAT(n-m).))
n

This is a function made up of real and imaginary parts which
describes the network., It 1s also apparent that the operational
algebra is merely a symbolic notation which indicates the method
of operation. Thils algebra is handled in the same manner as any
power series; the symbolism adopted merely helps in establishing
a clear cut method of operation,

There is a point about the sampling theorm upon which the
entire developmént hinges. When.samples are taken by unit
impulses, it is mecessary to reconstruct the function, using

‘the same notation as Oliver et al,8 in the following:form:
r(t) = f(aﬁ' Sin 7 (2Wo t - n)
0) ﬁ(EWot-n)

This function may be expressed as a serles of functions of the

form §E£EQ§ centered at each sampling point., The tranaform of
this function 1s:9

8 Oliver, Plerce, and Bhannon, Oop. clt.
The above authors aaaign ne name to this function, but
Ferrar, op. ¢it, calls 1t a Cardinal Funetlon., Thils term will

be used henceforth 1n this paper to deseribe this function,
There 1s another article:

Hardy, G, J., "On An ﬁﬁgegral Equation," Progceedings
LQ_QE_GEB "Soc.,  (1909), =172,

Hardy calls this funotion an "M Function',
9 c&r 882,1
G&B 3,01
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4 -1
= Tan '5

A time series expressed in the above manner will have the Fouriler

Transform

-1
Flo) = T82= & ;? an exp-jon

When two time serles are divided, the inverse tangent functions
will cancel. This completes the proof of the procedure, It is
to be noted that thils proof fails unless the AT for the input
and output time functlions are identical.

There is a question about the accuracy of the method
developed in this paper, that is, over what frequency range is
the method accurate? The previously quoted Theorem of Oliver,
Pierce and Shannon indicates that the highest frequency present
in the Cardinal Function, call it f¢, is

In words, it is as i1f the output time function from the network
were passed through a perfect filter with a cut-off frequency
feo

There is a Theorem called the Paley-Wiener Criterion for
Realizable FilterslO which shows that a perfect filter is im-
possible to realize in practices In terms of physical networks,
evaluated by the foregoing technique, this means that as the
plotted frequency approaches f¢, the Complex Fourier Series

10 Valley and Wallman, pe. 721-727, loce cite
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Amplitude terms approach zero more rapidly than in the actual
network. To show this, when the Complex Fourier Series is

evaluated at £ = 1/2A7T , the equation is
an(Cos 2wfnAY - jSin 2nfnaY ) = % an(-1)2

If a sufficient number of terms are present in the above ex-
pression, it 1s a general property of Fourier Series that an =
an-le That i1s, alternate terms of the series tend to cancel
and the sum will be small. Reasoning physically from the above
discussion, it is seen that the highest frequency fh which can
plotted must satisfy the relationship

th< &=
In actual practice it has been found that the following relation-
ship 1s satlsfactory

ik
< 5xw

The above relatlonship was used in plotting all the examples in
this paper. In a sample computation, 1t is shown that the curves
of amplitude and phase versus frequency lose thelr smoothness
when this relationshlp 1s exceeded. It has been ascertained by
making a number of computations that thles relationship must hold.
No rigorous proof of this relationshlp has yet been found al~-
though i1t 1s noted that 10 ¥ 2v, It is an experimental value
found to hold in practice. Just how well this relationship holds
will be Indicated when the Theoretical versus Computed network

characteristics are discussed,
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From the previous discussion of the Complex Fourier Series
for finding the phase and amplitude versus frequency character-
istic of an unknown network, it is apparent that the smaller AY
is chosen, the closer will be the approximation in a given
frequency range. It 1s also observed that the work necessary to
obtain a solution will be in direct'proportion to the ratio of
chosen ATS.

There 1s a convenlent transform which will ald in all
calculations involving the actual determination of the phase and
amplitude characteristics from the Complex Fourler Series. This

transform 1s the scale change'transform;l

Fe(%) - mm;

The above tranaform states the relationship for a scale
changes The advantage of thls transform 1s in determining the
phase and amplitude versus frequency components from the Complex
Fourler Series, To find the phase and amplitude versus frequen=-
ey characteristic for the unkmown netwdrk, the Complex Fouriler
Series must be evaluated for specific frequencles., Using the
above transform, a table may be prepared with a fixed series of
relationships, and thils table used for all computations.

In all the illustrative computed examples, AT was made
equal to O.1 seconds by the application of the scale change

11l cxr 205
G&B 8
Gk
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transform. The following frequencieslwere chosen for compu-
tational purposes; 0.000, 0.139, 0.278, 0.418, 0.556, 04695,
0483, and 0.973 oycles per second. With the above frequencles,
nATwW will be 5° or some integer multiple thereof. It was for
this reason thls particular relationship was chosen, It 1s noted
that the highest frequency chosen, 0,973 cycles per second and
the time interval O,1 seconds, just satlsfy the stated relation-
ship between AY and fy.

A two place trigometric table was constructed using these
relationships to solve all the 1llustrative networks. A portion
of this table is shown in Figure 6 to indicate the method of
construction., It 1s not necessary, obviously, to use in the
relationships shown here., Other relationships can be used, It
should be noted, however, that the fact 5° is the basloc angle
makes the chart rather easy to prepare. In any event, 1t is
recommended that whatever basic angle 1s chosen, that 1t have an
integer relationship with 90°,

In the discusslon of actual network computations, a low
pass prototype "T" filter network is used as an illustration,
Although the Q of the inductance was only 25, it was necessary
to evaluate ;5 real and 15 imaginary terms for each frequency
amplitude relationshlp pletted, Where conjugate peles and low
damping are present in the network for whiech selutien is sought,
the aetual chart must have an even greater number of terms, The
table constructed for the computations of this paper had fifty
terms,

The results of some actual computations will now be given,
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0.139 SIN
cos
0.278 SIN
ofo}:]
0.418 SIN
cos
0,556 SIN
cos
0,695 SIN
cosS
0,83l SIN
cos
0,973 SIN
cos

0.1
-+087
1.000
=17
98
-.26
97
-3l
o9l
-ol}2
91
-+50
87
-e57
.82

042
-elT7
+98
-.3h
o9l
-+50
+87
-6l
77
=77
.6l
-487
50
-s9L
o3l

0,3
-.26
97
-+50
87
-e71
71
-.87
50
=497
e 26
-1,0
0,0
=97
026

Oult
-+3h
oL
-6l
o T7
-+87
50
-+98
017
-+98
-o17
-87
-+50
-6l
=TT

0,5
- 12
.91
- 77
6l
=97
.26
-+98
- 17
-.82
=457
=450
-.87
-,087
-1.00

-+50
-.87
0.0
=140
+50
-.87

-57
.82
.94
34

.50
-o87

.91
k2

SAMPLE OF CHART USED IN DETERMINING
FOURIER SERIES COEFFICIENTS

FIGURE 6

0.8

- .50
-3k
-9l
o3l
-9l
.87
-+50
.98
17
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0.9
- 71
o71
-1.0
0.0
-eT1
-7l
0.0
-1,0
o7l
- 71
1.0
0.0
71
o 71
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using the previousiy develop techniques, In Figure 7 is shown
four networks with the values of the components for which so-
lution was obtained. Obvlously other values could have been
selected for the components, but this would have made no dif-
ference because all have been computed using the scale change
Transform. Also shown 1s the equation giving thelr response to
ﬁ unit step function, U(t). The output equations were solved
by'the LaPlacian Transfdrm method, the particular transforms
applicable being indicated by the method adopted in this paper.

The method used to obtaln these solutiéns was to compute
the network response to the unit step function input, U(%t),
and then plot this result. The time series for the oufput time
function was taken from the plote The reason for doing the
computations in this manner, was that by plotting the output
time functian and then taking the values for computation from
the curve, the procedure would be similar to that in a practical
case. In a practical'case the output would be taken from an
oscilloscope or some similar device. This 1s also the reason
for only using two place trigometric tables for making compu-
tationss It was assumed that in a practical case no values
could be read better than two places,

Figures 8 to 11 show the response of the networks to a
unit step function, and also the theoretical amplitude and phase
versus frequency characteristic. The computed phase and ampli-
tude versus frequency characteristic, using the Complex Fourler
Series, 1s also shown. Network Number 1 is a high cut network,

and 1t has been plotted for two values of &Y. This shows
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that the smaller AY 1is chosen, the nearer to the theoretical
curves the computed curves approach. Of course, more terms are
necessary to compute the curve for the smaller ATY.

Network Number 2 was chosen because it has certaln unilque
features for a network having poles on the negative real axis.
It possess overshot when the unit step functlon is applied, and
the steady state response has a peak at 0,189 cycles per second
which is greater than the input voltage. It 1s noted that the
computatidns did not indicate this peak, although the phase
characteristic correspond falrly well.

Network Number 3 1s a band pass network, a typical network
in a resistance coupled vacuum tube amplifier, Its response to
a unit step functioh starts at zero and returns to zero. It was
chosen for this reason.

Network Number l. is a prototype "T" low pass filter. Its
characteristics were so chosen as to ald in determining the
theoretical response to a unit step function. Agaln this is of
no importance as far as using the computational technique 1is
concerned, because the scaling factor was used in determining
the characteristics. It is noted that the network possess conju-
gate complex poles, and hence "rings", as can be seen from the
response plote This practical network was chosen to indicate
that the methods of thls paper are not restricted to those cases
where poles are on the real axls,

The complete computation of Network Number 1 will now be
carried out for AT = ,05 to show how to use the previously

developed technique. This computation will be the only one
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completely carried through; however, all other computations were
made in the same manner.

In Figure 12 1s shown a method for carryling through the
divisiones Column 1 1s the time and Column 2 is the output
voltage assoclated with the time taken from the response curve.
Colum 3 1s the results of the division, and is obtained by
subtracting each term in Column 2 from the previous one. That
this 1s actually division can be readlly proven by the reader by
setting up the actual equations and dividing in the ordinary
menner.t2 This is merely a short cut method which saves paper
and time. The reason the method indicated here 1s practical 1s
that the amplitude of each unit impulse of the time series
representing the unit step function has the same value. Column
L. 1s the value of A7 used to make the computations with the aid
of the prepared table of trigometric functions., It is noted
that the scaling factor is two in this case, That 1s, after
computing a frequency component with the ald of the table, say
04139 eyecles per second, when the frequency 1s plotted, this
value must be multiplied by two. In this case 2 x 0,139 = 0,278
cycles per second,

In Figure 13 is shown the complete computations for the
terms of the Complex Fourler Series. Each term in the table has

been multipllied by 100, One additional frequency, l.ll cycles

12 In this example, all the Complex Fourler Series terms
are positive, however, in all the other exsmples, negative terms
appeared. Division is, never-the-less, carried out in a similar
mannere.



COMPLEX

TIME vorns T RIS AT
0400 0,00 10400 0.0
0,05 021 021 0.1
0.10 «39 .18 0,2
0.15 52 13 0.3
0420 63 A Oolt
0.25 o72 «09 0.5
0430 .78 .06 0,6
0435 .82 Ol 0.7
OJo +86 o0l 0.8
0ek5 «89 03 049
0450 092 «03 1,0
0455 o9l $02 1,1
0,60 95 .01 1,2
065 +96 .01 1.3
0470 097 01 1.l
0675 98 01 1.5
0480 +99 01 1.6
0.85 99 +00 1e7
0490 1,00 201 148
0.95 1,00 00 1.9

EIGURE 12
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per second, is included. This frequency does not satisfy the
relationship between fy and AT, It is included to indicate
what happens to the approximation when the relationship between
AN and fh is not maintained. It is seen that if this term
were plotted, the curves showing the relationship between phase
and amplitude versus frequency will no longer have a smooth
relationshipe.

It has possibly occurred to the reader that this develop-
ment of input functions in terms of the unit step function is
more involved than necessary. Why not use the unit impulse as
the input time series? The unit impulse has the Fourier Trans-
form of Unity,13 hencé the amplitudes of the output time series,
taken from the plot of the output time function, are the ampli-
tude terms of the Complex Fourier Series. This point will now
be discussed.

Assume the network voltage transfer transform is, as usual
in practice, a rational proper fraction. For simplicity, futher
assume that the network has only first order poles. Now a proper
rational fraction can be factored into a series of partial
fractlons., In network theory, the result of each factors re-
sponse to an input function can be summed to obtain the output

time function. These factors wlll have only three forms: 14

13 c&F L03.1
G&B 1.01
G 1

14 Barnard, S. and Child, J. J., Higher Algebra
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In words, any network, regardless of complexity, can be repre-
sented by three fundamental networks, if it is a rational proper
fraction and all poles are of the first order.l5 In the case
assumed, first order poles, only the above networks need be
discussed.

Now a unit impulse is approached in practice by a single
square wave 1f the width of the wave is small compared to the
shortest time constant of the circult, and further, this time
must be short compared to the recipricol of the frequency of the
highest mode. If the square wave satisfiles the above character-
istics, and has unit area, it may be considered a unit impulse,
Waidelich has prepared a table of LaPlaclan Transforms showing
network responses tb this type of input.16 A portion of this
table is shown in Figure 1l, giving the response characteristics
of the fundamental networks discussed above. The response to a

unit impulse is also shown in the table.

15 As a matter of interest, it can be shown that these are
the only networks necessary to duplicate another network, regard-
“less of complexity, if the above networks are allowed to occur n
times. Using adding circuits, and the Theorm developed in the
first section of this paper, it is seen that another method for
duplicating an unknown network is indicated. The first network
is recognized as a series RC network, the voltage taken across
the condenser; the other two networks are series RLC networks.
In the first equation, the voltage 1s taken across the condenser;
in the second case, across the resistance.

16 waidelich, D. L., "Response of Circuits to Steady-State
Pulges,“ Institute of Radio Engineers, XXXVII (December, 19.9),
139 'y
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Ernest Frankl? discusses the case of elementary network
response to a pulse of unit helght and varying widthe It is
shown that as the time of duration of the pulse decreases, the
amplitudé of the response decreases. This, of course, can be.
seen from the Transforms of Figure ll. The above case does not
approach the criterion of the unit impulse, as defined previous-
ly. If the stated conditions can be satisfled, the use of the
ﬁhit impulse in this method of analysis has the advantage de-
scribed previously in determining the coefficlents of the Complex
Fourier Serles.

The requirements on the approximation for a unit impulse
has certain definite limitations in actual practice, These
limitations can best be descrlibed by noting that as the width of
the pulse is decreased, the amplitude must increase. TFor short
time constant circults, or those having high frequency modes of
response, the voltage to be applled can exceed the rating of the
elements of the system, Of course a scaling factor can he used
in some cases, say using a tenth aﬁ@litudo unit impulse, The
requirement on the width of the puino 1s another disadvantage
when using this concept, in-as-much as 1t 1s assumed that the
characteristics of the network are unimown,

It is believed that in most practical applications the unit
step funotion, whlch was used for all sample calculations, 1ls
probably the most practiecal input to use. It 18 easy to generate,
and from an analytlcal standpoint, 1t has been developed to the

17 Frank, Ernest, Pulsed Linear Networks
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poinﬁ where 1ts characteristics for most systems iIs quite well

knowne
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SUGGESTED APPLICATIONS

The previously discussed syntheslis method 1s not so useful

in the applications shown; that 1s, 1f a network is given, a
phase amplitude characteristic is obtalnable dire&tly from the
network. The technique should be more useful in finding electri-
cal ngtwork equivalents for linear systems--that ia; electrical
analogs. One practical application where the previous develop-
ments should prove especially useful is in servomechanism design
where eleotrical control systems are used, In general, the
design englineer ls presented with the iyltem which has to be
controlled, For example, the alrplans, the ship, the rocket,
and so forth, have already been designed, end 1t is desired to
construct a servomeshanism control systems The methods developed
in this peper sheuld prove especially helpful in these situ=-
ations, Given a system, a test ecould be devised whieh would give
input and output time serles, and frem this infermation an
elestrical network analog of the system could be construoted,
The design of the control system can preoceed from this pointe
' Certaln parte of the previous developments will be dis-
oussed from this point of view, It 1s always easier to dilscuss
prineiples with an aectual example, so the furnace whiech was dis=-
cussed in the introduction will be used as an examples A sche=
metie diagram of this furnaee is shewn in Figuve 15,

'Inagine the fellewing situation. A gas furnace 1s given
and 1t 1s desired to maintain the temperature of the furnace at

some predetermined value, It will be assumed that the entire
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system is linear in the temperature range of operation. To
control the gas supply, a soloniod valve 1s used which is so
designed that it changes the gas supply proportional to the
current in the coil. Further, this current is supplied by a
pentode, a constant current device. The temperature of the oven
is measured by thermocouples, and the design is such that the
reference temperature produces zero volts in the output. To use
the procedufe of thia paper, apply a unit step function of
voltage to the grid of the pentode which against time, obtaining
an output time series, Using the synthesis techniques, curves
of ampl;tudo and phase versus frequency may be plotted. Using
the techniques described in the first part of this paper, an
approximate duplicating network may be found. Thq transform of
these networks are represented by Gz(s) and Gi1(s) in Figure 15,

For the present assume that the feedback system for the
amplifier 1s not connected iInto the system. If D(s) is the dis-
turbance transform, that is the variation in the gas supply from
that required to cause zero volts at the thermocouples, and d(s)
1s the variation transform of the system, that 1s, the error,

the equation for the system 18+

1 This equation 1s so well kmown 1t will not be derived here,
Consult any of the references given below,

James Nichols, Phillips, loc. git.

Hocoll, LeRoy A., Fundamental Theory of Servomechanisms

Brown, Gordon S,, and Campbell, Donald P., Principles of
Servomechanisms.
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D(s) G1(s)

S 1+ Glts)—Gg(s)‘G3lsi

Assume the amplifier is flat and has a gain M, the equation

becomes

a(s) = D(s) G']_(s)
1+ WG(s) Gols)

An examination of this equation shows that even in this simple
system the response will be quite complicated. The valve, Go(s),
has resistance, inductance, mass, damping, and negative com-
pliance. Nothing can be said about the furnace, Gj(s), although
it should have some fairly simple long time constant electrical
equivalent network. In any case it 1s apparent that no operations
can be performed on the numerator (the furnace was given to the
designer) and all operations must be performed on the denominator.
An examination of the equation for this systems indicates
that design characteristics might be best applied to the ampli-
fier G3(s). Assume that the amplifier is designed, as suggested
in the fifst part of this paper, so as to create removable singu-

larities in Gl(s) and Go(s)s. The equation now becomes

d(s) = D(s) Gi(s)
g 1.4 M-
It 1s seen from this equation that Gj(s) is never reduced
to zefo, it can only approach zero. It is also noted that the
same characteristic response for the gas furnace exists before

the control system was added, but reduced in amplitude. It is
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also seen that the characteristics of the furnace have been
greatly simplified by the creation of the removable singularities.

There are some limitations to the removable singularities
compensation technique. In practice this technique can not be
applied in as easy a manner as first appears. The reason is
obvious if it is noted that the transfer function of planer
networks are normally fational proper fractions, that is, there
are more poles and zeros. The reasons is obvious if it is
remembered that the determinent of the transfer function of a
network has a row and column missing in the numerator as compared
to the denominator.2 This does not mean, however, that nothing
has been accomplished by introducing these ideas; at least the
direction to pursue in making a design is clearly indicated.

In all the llterature of servomechanism design, stabllity
1s always stated in terms of the Nyquest Stabllity Criterion,
Certain observations will now be made concerning this criterion.3
It is desirable to discuss general design techniques in current
practice, and point out a different direction in view of the

developments of this paper.,

2 Another implication of this statement is that the best
that can be hoped for bg adding another mesh to an existing
network, 1s to substltute one pole for another, and further, only
the mutual elements between the added and existing mesh are
useful in creating thils removable singularity.

3 Jemes, Nichols, and Phillips, loc. glt.
Brown and Campbell, loc, cite

Bode, loc. clt.
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In Figure 15 i1s shown a portion of a Nyquest Diagram.

Assume the solid lines are for positive frequency and the dotted
lines are for negative frequency. The Number 1 is a hypothetical
case for a servomechanism., It is desired to increase the sta-
bility of this system, as in its present form it approaches the
point -1.0 too closely. The conventional method for doing this
is to add another network, or change the gain so as to shift

the curves in the arrow direction, giving curve Number 2, This
later curve is further away from the point -1.0, hence the system
is more stable,

It was shown in the last section that any network transfer
function can be broken down into the sum of three fundamental
types of networks. Using the principles enumerated in this
paper, it would appear better to examine this sum and ascertain
which pole is causing the difficulty, and create a removable
singularity by adding a proper zero for this particular pole,

Or it may be possible to create a removable singularity for this
pole, and add another pole which does not have the undesirable
properties of the removed pole.

In other words, the corrective network used should have at
least the same number of zeros as poles. In the creation of
removable singularities, it would be desirable to only add zeros,
but as was indicated previously, this can only be done in theory.
The best that can be expected is that a zZero and a pole will be
added in the same operation.

Two possible networks meeting the criterion mentioned above

are shown in Figure 16, Network Number 1 will cancel a conjugate
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pole if it is properly designed. Depending upon the selection
of R and Rl, the zero can be made conjugate, but the pole will
be of second order or two poles on the negative real axis. That
is, a damped pole may be substituted for an undamped (conjugate)
polee.

Network Number 2 will cancel a real pole and it is further
noted that it.causes a shorter time constant to be substituted
for the removed pole. That is, the pole is moved further back
on the negative real axis. In other words, the time response of
the system has been decreased.

Some additional remarks will now be made about the creation
of removable singularities. It 1s easier to take an actual
example to 1llustrate the following point, Assume that a given
network has the following voltage transfer transform:

Eofé) = BEi(s) (s + a)
(s + b)

where Ego 1s the output voltage and E4 is the input voltage. The

response of this.network to a unit step function input 185
Eo = %i (a = (a - b) exp -bt)
This network has a surge at t = 0, and it 1s desired to remove

this surge. One way to remove this surge is to add another

network, and a simple one to add would be a pole at s = -c., The

5 G&B 1.107.
G 2 & 10,
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equation becomes

E (s) = Bils) (s + a)
° (s-+-bj(s * ¢)

Let ¢ = na, and find the response of this network to a unit step

function.6 The output voltage is

- (a - b) exp =bt _ (1 - n) exp -nat
Yo = Ei[% S T RAnR e D) n(a - b)

It is observed that adding the other pole has complicated the

response of the system, but that by the proper choice of design
parameters, the surge can be reduced. If n = 1, that is, a = ¢,
which 1s the caée for a removable singularity, the response to a

unit step function is

Eo = %l (1 - exp-bt)

It is seen that in this case, the surge has been removed, and
the response has been simplified.

In the last term in equation above where n = 1, it is
observed that the contribution of this term is markedly reduced
in the case where the relationship a = ¢ is only approximate.

In practical systems, there are always tolerances, and the
characteristics of components are Influenced by such things as
humidity, temperature, pressure, and other 1mponderables. How-
ever, the above discussion indicates marked advantages are to be

gained by creating removable singularities, even if the relation-

6 B 1.109; G 1l.
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ship between the zero and pole are only approximate. Ordinarily
the éxisting literature indicates the addition of additional
networks to change response characteristics, but the creation

of an additional pole adds a term in the response of the system,
thus increasing the complexity of the response. Rather, do not
add any poles or zeros to a metwork to change its characteristic;
always add networks which will create removable singularities,

It can also be shown by carrying out computations in a
manner similar to that above, that conjugate poles and zeros
can be handled by a similar technique, and further, that if the
relationship between the pole and zero is not exact, definite
benefits are to be had in reducing the response of the conjugate
term.

In Figure 15 a feedback circult has been Indicated in con-
nection with the control amplifier., This circuit was introduced
to show certain points about control systemé, in view of the
general developments of this paper. In using a feedback circuit
in an amplifier where steady state conditibns prevail, it is
common practice to so construct the feedback circuit that it has
the same loss characteristic as the desired over all gain
characteristic.’! In terms of poles, this means that the feedback
circuit should have the same voltage transfer transform as that
which it is desired to correct. In considering transient
response, however, any poles added in the feedback circuit will

increase the complekity of the response because of the added

7 Terman, E. T., Radlo Engineer's Handbook, p. 395.
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poles. This can be demonstrated by elementary mathematics by
considering two cases of a feedbaqk amplifier; one with a pole

in the feedback circuit, and one without. All servomechanisms,
however, must control'tranéients; 1f steady state conditions
prevailed, there would be no need for a servomechanism. In other
words, in designing a feedback circuit for the amplifier of this
system, or any other system where the transient response is
important, the feedback system should not contain any singu-
larities.® The most benefit will be derived when the feedback

is real.

The effect of real feedback In any amplifier is to change
the location of all the poles. It is difficult to make any
general statements without considering actual circuits. Compu-
tations for actual circuits however shows that real feedback
results, in most cases, in an improvement in the reproduction
of transient response of the system.

Brown and Campbell9 analyze-the case where positive feed-
back 1s used to overcome certain undesirable characteristics in
a servomechanism. In their development it 1s shown that in
theory marked gains in response can be anticipated using positive
feedback. It is also shown, however, that the demands made on
circuit parameters are such that this type of feedback is not
practical.

The only point to note in the above discussion is that

8 James, Nichols, and Phillips, loc. clt., p. 63.

9 Brown and Campbell, loc. cit.



networks in the feedback loop of an amplifier will not create
removable singularities; but that in general real feedback will
improve the response of the system.

In this section it has been shown how to use all the
precepts of the paper in the discussion of a simple gas furnace
problems The concepts used in the discussion of the problem
were all from the zero and pole point of views It was shown
that this is sufficient to determine the characteristics of the
system. It was also shown that the creation of removable
singularities 1is the proper design procedure, and further, that
these removable siﬁgularities need not be perfect in order to

obtain an improvement in response characteristicse.
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CONCLUSIONS

In this thesis a new method for solving the Synthesis
Problem has been developed. Given an input and output time
function for any linear system, it 1s shown how to obtaln a
phase and amplitude versus frequency characteristic. This
identifies an electrical network. It is also shown how to ob-
tain a network which will approximate the unknown network by
means of elementary networks when the phﬁse and amplitude versus
frequency characteristic is known. When this network has been
found, in many practical cases, a network which will compensate
the unknown system is also known,

The work involved in obtaining these solutions is lengthy,
but the procedure is straightforward. The method has a firm
theoretical basis, hence some 1idea of the accuracy, or goodness
of the solution is known before computations are started.

Because it gives results in terms of electrical network
equivalents, the method is expecially applicable to problems
in servomechanism design. In this way the design of electrical
control systems proceeds in an orderly manner., It 1s also
indicated that such concepts as veloclty and acceleration control
functions are not necessary in a discussion of servomechanism
design. All developments in this paper are from the zero and
pole point of view, with a slightly different concept than that
given in current literature. It is also shown that zeros and
poles can be given a geometrical significance corresponding to

their mathematical name, It is further shown that zero and pole
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concepts are sufficient unto themselves for the identification
of network characteristics,

This paper 1s merely an introduction showing the power of
the Theory of Functions of a Complex Variable in solving network
problems, Many phases of continued development are pointed out.
To mention a few, the actual problem of changing the Nyquist
Stability Diagram by means.of removable singularities should be
developed to a point where graphical solutions are possible. It
was also poiﬁted out that only three fundamental networks were
needed to duplicate any networke. This indicates another method
for obtaining equivalent networks. The addition of circuits is
well known in the art, and it follows that the fundamental
networks would be used in the processe To obtalin equivalent
networks in this manner, response curves could be constructed,
of lucite say, and used in the same manner as was done in this
paper. However, direct ratios of input and output voltages
would be used instead of the logarithm of this ratio.

It was also pointed out in a footnote that with a given
network, addition of another mesh to the network to accomplish
compensation, can at best remove one pole from the system, and
substitute another pole, and further, only the mutual element
between these meshes would contribute to this relationshipe. The
actual conditions necessary to cause this substitution could be
worked out from determinant theory.

Recently it has been recognized that the computations and
the methods for synthesizing a network as developed in this paper,

can be markedly simplifieds. The point which was recognized is
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in relation to the representation of a network transfer function
by its Complex Fourier Series. It was shown in the second
section of this paper that the voltége transfer function could
be expressed as

F(w) = ap + % an(Cos n AT @ =38in NAY )

When this equation is carefully examined, it is evident
that if the real or imaginary components are known, the other
component is uniquely determined. In other words, it is only
necessary to use either the real or imaginary component alone to
express a networks voltage transfer characteristic.

Bode shows that for a minimum phase shift networkl that when
the attenuation characteristic is known, the phase characteristic
is unique. Stated in terms applicable to the developments of
this paper, if the real terms of a network transfer function are
known, then the Imaginary terms are uniquely determined.

The technique used in this paper for determining network
characteristics from input and output time series, envolved the
computation of the terms of a Complex Fourier Series. In the
examples of this paper, the Complex Fourler Series was evaluated
for both the real and imaginary terms., From the previous state-
ments it is apparent that it is in reality only necessary to

evaluate one series, say that for the real terms. This will cut

1 Bode, loc. cite

A minimum phase shift network is one whose poles are
all located in the left half-plane.



67

the computations necessary for determining the characteristics

of the unknown network in half. It is further evident that in

determining an equivalent network by means of dimensionless

network curves, that these curves need only be developed for

their real parte.
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