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ABSTRACT 
 

The objective of this research is to develop a comprehensive model 

identification approach for complex multi-modal systems based on spectral theory 

for nonreversible Markov process that entails (i) model reduction techniques for a 

nonreversible Markov chain, (ii) the identification of the modal dynamics, and (iii) 

modeling and identification of local dynamics. This dissertation addresses the 

theoretical approach, algorithmic development, computational efficiency and 

numerical examples of the developed techniques.  

The dissertation then presents a novel methodology for clustering wind 

turbines of a wind farm into different groups. The method includes creation of a 

Markov transition matrix given the power output of each turbine, spectral analysis 

of the transition matrix and identification approach of each group. An application 

of the method is provided based on real data of a wind farms consisting of 25 

turbines and 79 turbines, respectively. The application shows that those distinct 

wind farm groups with different dynamic output characteristics can be identified 

and the turbines in each group can also be determined. 
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1 INTRODUCTION 

1.1 Motivation 

Although computer and network technologies are increasingly becoming 

powerful, there are many problems in simulation and control of complex 

dynamical system, climate modeling, machine learning, bio-informatics, 

chemistry, etc., where the dimensions and time scales of interest remain entirely 

out of reach of current technologies capability, and will remain beyond the 

available capability in the foreseeable future. Consequently, in order to obtain 

models for analysis and decision there is a need for model identification and 

reduction/simplification. Many dynamic systems of interest exhibit multi-modal 

behavior and clustering in state space. The systems we study in this research are 

systems that are subject to uncertainty, either internal (e.g. parametric) or 

external (e.g. disturbance), that contributes to the modal behavior. For instance, 

the system may be subject to an external random driving force that drives it from 

a desired to an undesired mode of operation or be subject to an uncertain internal 

parameter that may cause structural change, such as bifurcation, from a desired 
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mode of operation to an undesired mode. Multi-modal behavior and clustering in 

a complex system is characterized by a time scale separation between the 

infrequent changes in mode and “normal” system dynamics. In addition to the 

time-scale separation, the modal behavior induces a spatial decomposition of the 

system dynamics as well. The identification process seeks to replace a complex 

system with modal dynamics and subsystems of substantially lower complexity 

that capture the essential or dominate characteristics of the input-output behavior 

of the system response. 

Complex engineered systems that comprise of many different components 

that are subject to performance and operational constraints often exhibit complex 

behavior that was not anticipated at design time. The root of this behavior is often 

due to complex dynamic interactions that are difficult predict and even harder to 

control. Frequently, one mode of behavior is the desired or normal or optimal one 

while the others represent either undesired or abnormal, or suboptimal or even 

failed operation. In order to develop a control strategy for maintaining the system 

in the desired or optimal mode, a model of the system behavior that is sufficiently 

complex to capture the multi-modal behavior but simple enough for control 

system design is required. 

Examples of systems that exhibit behavior of this sort arise in numerous 

applications [1]. For instance in power networks [2] [3], the system is subject to 
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constraints set by load limits on lines and exceeding these limits can cause a 

change in the network topology. Furthermore, nonlinear effect due to reactive 

loads can lead to bifurcations causing voltage collapse [79] [80]. Finally, loss of 

critical elements can cause loss of synchronization leading severe power flow 

instabilities [81]. Similar effects can be found in the dynamics of other networks, 

including communication networks [82] [83]. In many chemical processes 

individual system components (e.g. reactors) are subject to bifurcating from an 

efficient operation to an inefficient (i.e. non productive) state as a function of 

other system variables that often are subject to dynamic laws themselves. When 

the system is further integrated through physical feedback to increase efficiency 

(e.g. using waste heat to preheat supply streams) the overall dynamics become 

very complex and can exhibit unexpected transitions to undesired operating state 

[4]. Similar behavior has been observed in the thermodynamics of highly 

efficient, environmentally friendly heat pumps [5]. 

Most multi-modal systems are modeled as hybrid systems, i.e. their 

behavior is modeled by interacting continuous and discrete dynamics. Here 

continuous and discrete refers to the spatial components, i.e. the continuous 

dynamics take values in a continuous set while the discrete dynamics take values 

in a discrete (usually finite) set. Numerous papers on analysis and control of 

hybrid systems have been published and the understanding of the dynamics 
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behavior of such systems, including stability, is fairly well developed. Most, if 

not all, of the research on the control of hybrid systems relies on the assumption 

that there is available a model of the system. However, only in rare cases is it 

possible to obtain such models from first principles and, in fact, most systems 

that admit a hybrid systems formulation are an approximation of complex 

dynamical systems whose behavior has a separation into continuous and discrete 

components through spatial scale separation as well as time scale separation. For 

such systems modeling from first principles is next to impossible and control 

oriented system models must be based on experimental or large scale simulation 

data [6].  

Based on the data either from real system operation or large scale dynamic 

simulation models, we will develop a comprehensive identification strategy for 

modeling complex multi-modal systems as hybrid systems that entails (i) the 

identification of the modal dynamics (the number of modes, discrete sets); (ii) the 

partition of the system state space into components and identification of 

dynamics between components (dynamics in slow time scale); (iii) modeling and 

identification of local dynamics (dynamics in fast time scale). For part (i) and (ii) 

the identification has received considerable attention in the literature [7] [20] [21].  

Part (iii) includes conventional identification techniques and has been studied in 
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great detail for linear time invariant models as well as several nonlinear models 

[22] [60] [61] [72] [73] [74] [75].   

The amount of wind energy being harvest into electric power in the world 

is growing rapidly. With construction of more and more large-scale wind farms, 

the integration of such wind farms into the power grid is a challenge to the 

current power system of paramount importance. In that context, in order to study 

the impacts of wind farms on quality measures of electric power such as 

reliability assessment, system modeling, power output forecasting, etc., 

understanding the dynamics of the power output of a wind farm is important to 

the integration of large scale wind energy into the power system. In a large 

complex dynamic engineering system, such as a wind farm, clustering is an 

effective way to reduce the model complexity and improve the understanding of 

its local dynamics. Each cluster is a collection of wind turbines that behave 

similarly in terms of the dynamics of their power output. 

1.2 Current State of the Art in the Field 

In recent years, there has been considerable research for approximation of 

the essential behavior of complex deterministic and stochastic dynamical systems 

[8] [9] [10] [11] [12] [13]. The approach in all of these papers is based on an 

operator approach for modeling the overall dynamics and spectral theory of the 
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operator for characterizing certain features of the dynamics. In particular, 

eigenvalues of the operator which are on or close to the unit circle and their 

corresponding eigenfunctions play an important role. An efficient technique in 

the numerical approximation of complicated dynamical behavior has been 

proposed by Dellnitz and Junge [8] [9]. In their papers, the authors model a 

statistical description of the essential dynamical behavior by an underlying 

invariant measures (i.e. SRB measure). The main idea of the approximation is to 

define an operator (the Frobenius-Perron operator) on the space of probability 

measures whose fixed points are invariant measures, then to discretize this 

operator via a finite dimensional Galerkin projection and finally to solve an 

eigenvalue problem for the resulting matrix to obtain an approximation to the 

invariant measures. The eigenvectors of the resulting matrix corresponding to 

eigenvalues on (or close to) the unit circle can be used to identify (almost) 

invariant sets which are regions in state space where the system spends a long 

time before the dynamic system leads to different region and (almost) cyclic 

behavior, which are regions where the system dynamics permutes cyclically. 

Huisinga, utilizes the concept of metastability and develops theoretical 

justification for a algorithmic strategy for the identification of metastable subsets 

[10] [11]. In order to make the identification strategy numerically applicable, 

Huisinga extends deterministic transfer operators to stochastic transition 
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functions through a randomizing process and then decomposes the state space 

into metastable subsets and captures essential statistical behavior based on the 

eigenfunctions of the transition functions corresponding to eigenvalues close to 

one [10] [11]. They successfully demonstrate the algorithmic approach in the 

study of molecular dynamics and outline strategies for studying larger 

molecular systems. 

Coifman, Lafon and Nadler provide a framework based on diffusion 

processes for capturing the long time evolution characteristics of some complex 

dynamic system using data which is sampled from the system [12] [13]. Through 

a data driven construction of diffusion kernels they first construct a stochastic 

transition matrix defining a random walk. Then they construct a so called 

diffusion map that maps the original data points into a Euclidean space and obtain 

a new description of data sets based on spectrum of the Markov transition matrix. 

The diffusion map induces the so called diffusion distance to classify points in 

terms of their connectivity in the new Euclidean space and as a result classifies 

the system dynamics into clustering components [12] [13]. 

1.3 Contribution of the Dissertation 

Most of the above approaches rely on spectral properties of a reversible 

Markov process. Reversibility describes the property that the Markov process 
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and its time-reversed counterpart are statistically the same. For a reversible 

process the transfer operator or transition matrix is self-adjoint. However, most 

systems of interest in engineering applications are not reversible process and thus 

an extension of the above methods is needed. The framework examined in this 

research is for identifying a metastable partition in terms of the spectral analysis 

of a general non-reversible Markov processes using diffusion distance and sign 

structure concepts. Specifically, we assume that the transitive behavior between 

different metastable subsets is disturbance or noise induced and that the overall 

system can be modeled as a Markov process. We also define a multiplicative 

reversible Markov process for the nonreversible case which has same stationary 

distribution as the original process. Thus, the spectrum of the multiplicative 

reversibilization has a well defined relationship with that of the original process. 

We utilize this relationship to obtain a reduced order approximate operator for the 

original Markov process which is shown to be a good approximation theoretically. 

We also identify metastable components of the state space using diffusion 

distance method and/or sign structure method. Once metastable components have 

been identified, the original data in each metastable component can be used to 

estimate local dynamics in terms of subspace model and noise sequence 

estimation. 
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Finally, we propose a novel methodology to cluster wind turbines of a 

wind farm into different groups based on our preliminary research. We first build 

a weighted graph to represent the complex relationships between power outputs 

of wind turbines. The graph is used to construct a Markov Chain and estimate the 

likelihood of any two wind turbines belong to the same cluster.  We analyze the 

spectral properties of the Markov chain to identify the number of clusters. With 

the proposed method, the elements of each cluster can be identified in both 

diffusion distance method and sign structure method. Theoretical study and case 

studies show that the proposed methodology simplifies the model of the 

dynamics of power output of a wind farm without compromising the overall 

dynamic characteristics of the original system asymptotically. 

1.4 Organization of the Dissertation 

This dissertation is focused on developing a novel approach based on 

spectral theory for nonreversible Markov process (i.e. transfer operator 

formulation for system dynamics) for identification of modal transition dynamics 

and identification of local dynamics. The remainder of the dissertation is 

organized as follows: Chapter 2 introduces the fundamentals of multi-modal 

behavior and clustering which include problem formulation and overview of 

mathematical approach. Chapter 3 discusses some asymptotic properties of 
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probability distributions and convergence rates for both reversible and 

nonreversible process, develops spectral properties for nonreversible processes 

and presents the low dimensional approximations for general nonreversible 

Markov chains. Chapter 4 provides a comprehensive approach for identification 

of metastable components and local dynamics and presents some illustrative 

numerical examples. Chapter 5 proposes a novel method to clustering wind 

turbines of a wind farm into different groups and presents results of cluster 

analysis of large-scale wind farm located in northwest of Oklahoma. 
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2 FUNDAMENTALS OF MULTI-MODAL BEHAVIOR 

AND CLUSTERING 

2.1 Introduction 

As we stated earlier we assume that the system of interest has 

characteristic multi-modal behavior, i.e. the system spends considerable time in 

one region of state space before transitioning to another region where it again 

spends a long time before transitioning again. To model this behavior requires 

the identification of the following three system characteristics: (i) the domains 

or regions in state space where the system spends a long time between 

transitions, (ii) the dynamic laws that characterize the transitive behavior 

between the domains and (iii) the dynamics of the system inside each domain. 

The basis of the approach of the identification of the domain and the transitive 

or modal dynamics lie in the spectral theory of Markov operators. In particular, 

the transitive nature of the dynamics is characterized as metastable behavior and 

the metastability identified through the spectral properties of the operator. In 
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addition, we assume the local dynamic behavior is characterized by a single 

point attractor and can be approximated locally by a linear system. Subspace 

identification is a convenient identification technique which allows the 

estimation of state space equation directly from the given data, i.e. from the data 

of each domain or region. In this chapter, we present the model formulation as 

well as the basic theoretical foundations of the proposed approach.  

2.2 Problem Formulation 

Consider a discrete time dynamic system with state vector ( ),  x t t +∈Ζ . 

The system is subject to uncertainties, either external or internal. We assume that 

as function of the uncertainties, the system undergoes abrupt changes that result 

in dramatic changes in dynamic behavior. However, the frequency of the abrupt 

changes is relatively low compared to the normal system dynamics. We consider 

a discrete time dynamic system in a state space model for the system of the form 

 1 ( ) ( )k k k k kx A r x f r w+ = + +                   (2.1) 

where  n
kx ∈R  is the continuous state,  n

kw ∈R  is a noise input modeled as 

Gaussian white noise (0, ( ))kN R r  and kr , the modal variable, is a discrete 

valued variable taking values in a finite set { }1, , q… . The component ( )kf r  is 

mode dependent bias term. We also assume that the state space can be partitioned 

into a partition 1, , qA A…  (the iA ’s do not overlap and their union is all of nR ) 
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where the set iA  corresponds the discrete value kr i= . Given a collection of N  

measurements kx , we want to identify the number of subsystems q , the state 

space partitions 1, , qA A…  and the model parameters ( ),A i ( )f i and ( )R i . In 

this dissertation, we propose a two step process method for the identification of 

the system. The first step is based on discretization of the original process and 

modeling the process as a Markov chain on a finite dimensional state space 

1{ , , }.NX x x= …  Based on the resulting Markov chain, we identify the number 

q  of partition components, the partition components themselves and the modal 

dynamics between partition components. In the second step we map the original 

data onto the partition components and identify the local dynamic models using 

conventional subspace identification methods with noise estimation. 

2.3 Overview of Mathematical Approach 

In this section we give an overview of the mathematical methods that will 

be employed in the solution of the identification problem of complex dynamics. 

We start with a general formulation of the mathematical problem and then 

present the idea behind the proposed approach to the solution of the problem as 

well as some preliminary findings. For more details see, e.g., [9][11][14][15]. 
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2.3.1 Stochastic Transition Functions and the Perron-Frobenious 

Operator 

Consider a Markov chain 0 1( , , )ξ ξ …  defined on nR  with transition 

function ( , )p Aξ  defined for all nξ ∈R  and Borel sets A∈) , ) = ) ( nR ) i.e. 

( , )p Aξ  satisfies 

1) ( , )p A⋅  is measurable for each fixed set A∈), 

2) ( , )p ξ ⋅  is probability measure on ( nR , )) for each fixed nξ ∈R . 

Consider a time invariant discrete time stochastic dynamical system on 

nR  that can be represented by the Markov chain with transition function 

1( , ) Pr( | )k kp x A x A x x+= ∈ = . Let 4�  =4� ( )nR  be the space of all probability 

measures on nR  and assume that the initial state 0x  has distribution v∈4�. 

Then the distribution of 1x  is  

1( ) ( , ) ( ) ( )( )
n

v A p A v d Pv Aξ ξ= =∫
R

              (2.2) 

where :P  4� →4� is the Perron-Frobenius operator [32]. It follows that the 

distribution of nx  is ( ) ( )( )n
nv A P v A= . A measure μ  is called an invariant 

measure for the Markov chain if  

 ( ) ( , ) ( ) ( )( )
n

A p A d P Aμ ξ μ ξ μ= =∫
R

               (2.3) 

for all Borel sets A . We assume that μ  is a unique invariant probability 

measure for ( , )p x A , i.e. the Markov chain is assumed to be ergodic. 
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A transition function p  is called reversible w.r.t the invariant 

probability measure μ  if  

  ( , ) ( ) ( , ) ( )
A B

p B d p A dξ μ ξ ξ μ ξ=∫ ∫                   (2.4) 

The value  

1( , ) ( , ) ( )
( ) B

p B A p A d
B

ξ μ ξ
μ

= ∫                     (2.5) 

is the probability of transitioning from set B  into set A  in one step [14] [32]. 

Note that if ( ) 0Bμ = , we let ( , ) 0p B A = . A time reversed system can be 

defined by  

( ) ( , )( , )
( )

B p B Ap A B
A

μ
μ

=�                     (2.6) 

A stochastic transition function with invariant measure μ  is called 

uniformly ergodic [14], if there are constants 1r <  and 0K > , such that 

var
( , )n np Krξ μ⋅ − ≤  for 0,1,2,n = …  and all Xξ ∈  where 

var
⋅  is the 

variation norm as defined in [14]. 

2.3.2 Metastability 

Let A  and B  be measurable sets on nR , assume that the distribution 

of the initial state is the invariant measure μ  and let ( , )p B A  be the transition 

probability from B  to A  in one step. We note that ( , )p B A  characterizes the 
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dynamical fluctuations of the distribution the Markov chain within the invariant 

distribution μ . The flowing definition is from [10]. 

DEFINITION 2.1 A Borel set A  is said to be invariant if ( , ) 1p A A =  and 

metastable if ( , ) 1p A A ≈ . Therefore, a metastable set is almost invariant. 

We note that if set A  is invariant and if the system starts in A , it will 

stay in there forever. On the other hand if the initial state belongs to a metastable 

set then the system state will stay there for a long time but will eventually exit 

the set with positive probability. Consider a partition 1, , qA A…  of the state 

space nR , i.e.
1

q n
ii

A
=

= R∪  and 0i jA A =∩  unless i j= . We are interested in 

finding a partition such that 
1

( | ) ,q
i ii

p A A q
=

≈∑  i.e. a metastable partition. For 

such a partition, if it exits, we can approximate the slow time scale transitions of 

the Markov process between the metastable components with a finite dimension 

Markov chain defined on a state space S  of dimension q . The 

characterization of the metastable partition can be related to spectral properties 

of P  and the indicator (characteristic) functions of the metastable sets which 

may be identified with the eigenfunctions corresponding to the dominant (close 

to one) eigenvalues of P  [10] [16]. 
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2.3.3 Discretization of Transfer Operator 

We start with a Markov process with transition function ( , )p x A  on nR  

and assume that the process is defined on a compact subset X  of nR . Let v  

be a probability measure on X  and let 1, , NX X…  be a partition of X  (not 

necessary metastable). Let m  be the Lebegue measure on X and define a 

discrete measure on X  by 

1

( )( ) ( ) ( )
( )i

N
N i Xi

i

m dxv dx v X x
m X

χ
=

=∑                (2.7) 

where ( )
iX xχ  is the indicator function for .iX  We note that ( ) ( ),N j jv X v X=  

1, , .j N= …  Furthermore, for any Borel set A , 

1

1

( )( ) ( , ) ( )

( , ) ( )
( )

( )

( ) ( , )

i

N NX

N X
ii

i
N

i m ii

Pv A p x A v dx

p x A m dx
v X

m X

v X p X A

=

=

=

=

=

∫
∫

∑

∑

          (2.8) 

If we define , ( , )i j m i jp p X X=  then the matrix NP  with entries ,i jp  is a 

stochastic matrix and  1( )( ) ( ) where ( ( ) ( ))N j N N j N NPv X v P v v X v X= = " . Thus, 

the stochastic matrix (transition matrix) NP  is a discretization of the operator 

P  that agrees with P  on the discretization components. We remark that if X  

is not compact then the above construction still works provided we replace the 

Lebegue measure with a finite measure (e.g. probability measure). We also note 

that as N →∞   it can be shown that the “error” between the original and 

discretized operators converges to zero in an appropriate sense. Let the 
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sequence of data { , 0,1, }kx k = …  be obtained from a realization of the discrete 

time Markov process. For an event C , let #[ ]C  denote the number of times 

the event happened, then 

1#[  and ]( , )
#[ ]

k k

k

x A x Bp A B
x A

+∈ ∈
≈

∈
                     (2.9) 

where the right hand side converges to the left hand side under the appropriate 

conditions as the number of data points goes to infinity [14]. An N N×  matrix 

C  with entries ijc  that count the number of times there is a transition from 

element iX  to element jX , i.e. starting with 0ijc =  we increase ijc  by one if 

k ix X∈  and 1k jx X+ ∈  for some k  is defined. After we have run through all 

of the data we obtain a transition matrix NP�  by row normalization of C  as  

ij
ij ij

iji

c
c p

c
→ =

∑
�                              (2.10) 

We note that in large N  N NP P=�  and, with some abuse of notation, we use 

NP  in place of NP� . 

2.3.4 The Nyström Extension Method 

The Nyström extension method [23] [24] [25] is a technique for 

approximating an integral equation using a quadrature rule, i.e.  

1
( ) ( )

b n

k k
ka

h x dx w h x
=

≈ ∑∫                    (2.11) 
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The Nyström method can be used for finding numerical approximations to 

eigenfunction problems of the form 

( , ) ( ) ( )
b

a

P x y y dy xφ λφ=∫                   (2.12) 

Indeed, letting )(),()( yyxPyh φ=  in (2.11), we employ the simple quadrature 

rule by evaluating the equation at a set of evenly sampled points 1 2, , , nξ ξ ξ…  

on the interval [ ],  a b . The resulting equation of the eigenfunction problem 

becomes   

)(ˆ)(ˆ),(
1

xxP
n

ab n

k
kk φλξφξ∑

=

=
−              (2.13) 

Here )(ˆ xφ  is an approximation to the true )(xφ . Assume ),( yxP  has n  

eigenvalues 1 2, , , nλ λ λ…  and denote the corresponding eigenfuctions as 

1 2, , , nφ φ φ… . The approximation equation (2.13) yields 

)(ˆ)(ˆ),(
1

xxP
n

ab
i

n

k
ikik φλξφξ∑

=

=
−                 (2.14) 

Without loss of generality, let [ ],  a b  be [ ]0,  1 . Let P  be the nn×  

matrix with elements ( , )ij i jP P ξ ξ=   for nji …,1, = , n nU ×∈R  and Λ  be 

diagonal matrix with entries 1 2, , , nλ λ λ… . Consider the matrix eigenproblem 

PU U= Λ                          (2.15) 

Comparing (2.14) and (2.15), we arrive at the following, 
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,
ˆ ( ) ,i j j inUφ ξ =      i

i n
λλ =                  (2.16) 

Substituting these back into (2.13) gives the Nyström extension for the i th 

eigenfunction [23], 

,
1 1

1ˆ ˆ( ) ( , ) ( ) ( , )
n n

i k i k k k i
k ki i

nx P x P x U
n

φ ξ φ ξ ξ
λ λ= =

= =∑ ∑        (2.17) 

2.3.5 Subspace Identification 

Subspace identification is used to estimate linear stationary state space 

models from given input and output data. A general stochastic linear state space 

model can be written as 

1k k k k

k k k k

x Ax Bu e
y Cx Du f

+ = + +
= + +

� �
�

 

where n
kx ∈R� , m

ku ∈R , l
ky ∈R  are the system state, input and output, 

respectively, and n nA ×∈R , n mB ×∈R , l nC ×∈R  and l mD ×∈R are system 

matrices.  The inputs n
ke ∈R  and l

kf ∈R  are assumed to be zero mean 

Gaussian white noise processes with covariances and e fR R , respectively. 

Assuming that the ky  is an observed output define the one step ahead predictor 

for the state kx�  as | , 1k k px E x y p k⎡ ⎤= ≤ −⎣ ⎦� . Then it can be shown that kx  

satisfies the innovation equation [22], 

1k k k k

k k kl k

x Ax Bu Kw
y Cx Du w

+ = + +
= + +

                 (2.18) 
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The process k k kw y Cx= −  is the so-called innovation sequence that can be 

shown to be a zero mean Gaussian white noise with covariance 

( )T T
k k fE w w R CPC R= = +  where ( )( )Tk k k kP E x x x x⎡ ⎤= − −⎣ ⎦� � and n lK ×∈R  

is a Kalman filter gain [22]. The order n  is assumed known or estimated by 

methods proposed in [62] [63] [64] [65]. In order to get consistent estimation, 

we introduce the following basic assumptions for (2.18): (i) ( ,  )A C  is 

observable and ( ,  [   ])A B K  is controllable, (ii) the input u  and the innovation 

sequence w  are uncorrelated.  

If we have the measurements )(ky , ( ),u k 1,,1 −+= rNk …  available 

where r   denotes future horizon, we introduce the input matrix Y , output 

matrix U  and past data matrix Φ  as  

[ ])()2()1( NYYYY rrr …=                  (2.19) 

[ ])()2()1( NUUUU rrr …=                 (2.20) 

[ ])()2()1( Nsss ϕϕϕ …=Φ                  (2.21) 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+

+
=

)1(

)1(
)(

)(

rky

ky
ky

kYr #
                         (2.22) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+

+
=

)1(

)1(
)(

)(

rku

ku
ku

kUr #
                         (2.23) 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−

=

)(

)1(
)(

)1(

)(

2

1

sku

ku
sky

ky

ks

#

#

ϕ                           (2.24) 

1s  and 2s  represent the number of data prior to time k . For general case 

considered in [22], the overall estimation method can be outlined in four steps as 

follows:  

Step 1 From the input-output data, formulate G  matrix as  

TUY
N

G Φ=
~1                                 (2.25) 

where UUUUIU TT 1)(~ −−= . 

Step 2 Select weighting matrices )(1 rlrlW ×  which is invertible and 2W  

and perform singular value decomposition (SVD)  

        TVSUGWWG 11121
ˆ ≈=                              (2.26) 

where 1S  are first n  (system order) significant singular values. 1U  and 1V  are 

matrices of corresponding right and left eigenvectors. 

Step 3 Select a full rank matrix Z  and estimate the extended observability 

matrix 

ZUWOr 1
1

1
ˆ −=                             (2.27) 

In terms definition of observability matrix, A  and C  can be solved from rÔ . 

Step 4 Estimate B  and D  by solving least squares problem 
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        )()()()()()()( 11 kwkwAqICkDukBuAqICky +−++−= −−      (2.28)  

     The biggest challenge is to estimate the noise input kw . Given a set of data, 

the noise covariance matrix R  needs to be estimated as well. Lin, Qin and Ljung 

[21] show that consistency of (closed-loop) subspace identification methods can 

be achieved through innovation estimation to estimate the noise sequence. We 

summarize the noise estimation as follows. 

For simplicity, assume we have the N  measurements.  By choosing the 

future horizon 1=r  in (2.22), define output matrix Y  as  

[ ]1 1 1( 1) ( 2) ( )Y Y s Y s Y N= + + "               (2.29) 

Assuming the past horizon is s  which means there are s  data prior to time k , 

define matrix Z  as  

[ ](1) (2) ( )s s sZ Z Z Z s= "                 (2.30) 

where 

( )

( 1 )
( )

( )

( 1 )

s

y k

y N s k
Z k

u k

u N s k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − +

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − +⎣ ⎦

#

#

 

In our work, we consider systems without an input sequence )(ku . Therefore, a 

least squares estimate of the noise sequence is  

TT ZZZYZYE 1
1 )(ˆ −−=                      (2.31) 
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3 MODEL REDUCTION OF NONREVERSIBLE 

MARKOV CHAINS 

3.1 Introduction 

As we stated earlier, we assume that the system of interest has 

characteristic multi-modal behavior, i.e. the system trajectories cluster in several 

subsets of the state space. In the dissertation, we model the system behavior as a 

Markov process and consider the problem of finding a lower dimensional 

approximation of the Markov process first before we try to identify the clusters 

and the system local dynamics in each cluster. This type of a problem arises in 

many applications that all share the common characteristic that the sample 

trajectories of the Markov process cluster and the approximation problem is to 

find a representation of the clustering and an approximate operator that represents 

the system behavior on the corresponding lower dimensional space. The problem 

of finding an approximate operator is much simpler when the Markov chain is 

reversible and several solution approaches have been developed for this case [10] 
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[11] [12] [13]. Most of these approaches rely on spectral properties of Markov 

chains. In this chapter, we consider the general nonreversible case and develop a 

reduction techniques that parallels in some respects the methods developed in [12] 

for reversible case.    

3.2 Multiplicative Reversibilization 

Let X  be a finite set and consider a Markov chain { , 0,1, }kx k = …  on X  

with transition probabilities 1( , ) Pr( | )k kp x y x y x x+= = = .  Let P  be the 

N N×  transition matrix with entries ( , ) ( dim( ))p x y N X= . We assume that the 

Markov chain is aperiodic and irreducible, i.e. the chain is ergodic. Then there 

exists an unique invariant or stationary distribution π  such that 

lim ( , ) ( )n

n
p x y yπ

→∞
=                         (3.1) 

where ( , )np x y  is the ( , )x y  entry of nP . It is well known that the stationary 

distribution satisfies the identity Pπ π= , i.e. π  is the left eigenvector of 

P corresponding to the eigenvalue 1 [14]. The rate of convergence in (3.1) is of 

considerable interest. In particular, if the rate of convergence is very fast then the 

Markov chain may be approximated by its stationary distribution. For reversible 

Markov chains, i.e. chains that satisfy the detailed balance condition 

( ) ( , ) ( ) ( , )x p x y y p y xπ π=                    (3.2) 
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It can be shown that the rate of convergence in (3.1) is determined by 

1 1 1max( , )Nβ λ λ −= , where 1λ  is the second largest eigenvalue of P and 1Nλ −  

the smallest one [17] (recall that an ergodic reversible chain P  has all real 

eigenvalues belonging to the interval (-1, 1]) . In fact the rate of convergence in 

(3.1) behaves like n
1β . For nonreversible chains a similar result was proven by 

Fill [17]. 

Let ( ( , ))P p x y=� �  be the time reversal of P , i.e. 

( )( , ) ( , )
( )
yp x y p y x
x

π
π

=�                        (3.3) 

Then P�  is an ergodic Markov transition matrix that has the same unique 

stationary distribution π  as P . Define the multiplicative reversibilization 

( )M P  of P  by 

  ( )M P PP= �                              (3.4) 

It is easy to see that ( )M P  is a reversible transition matrix that also has 

the same stationary distribution π . Furthermore, the eigenvalues of ( )M P  are 

real and nonnegative, i.e. they belong to the interval [0, 1]. Indeed, let 

1( , , )ND diag π π= …  and define 1/ 2 1/ 2( )S M D MD−= . We note that ( )S M  and 

M  have the same eigenvalues, i.e. are algebraically isomorphic. Using the fact 

that 1 TP D P D−=�  we have ( ( )) ( )( ( ))TS M P S P S P=  is nonnegative and thus 

has nonnegative eigenvalues. 
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3.3 Asymptotic Properties 

Since ( )M P  is a transition matrix it follows that its maximum eigenvalue 

is 1.  Let 1(M)β  be the second largest eigenvalue of ( )M P . For probability 

vectors μ , π  define variation distance 

var

1max ( ) ( ) ( ) ( )
2A X x X

A A x xμ π μ π μ π
⊂ ∈

− = − = −∑        (3.5) 

and following [17] define the chi-square distance from stationarity at time n  as 

2
2 ( ( ) ( ))( )

( )
n

n
x X

x x
x

μπ πχ μ
π∈

−
= ∑                        (3.6) 

where ( )n xμπ  is the distribution of the chain at time n with initial distribution μ. 

The proof of the following result can be found in [17]. 

THEOREM 3.1 Let P  be an ergodic transition matrix on a finite state 

space X  and let π  be its stationary distribution. Then for any initial 

distribution μ  

2 2 2
1 0var

4 ( ) ( ( ) ) ( )n
n n Mμπ π χ μ β χ μ− ≤ ≤               (3.7) 

Now let μ  and v  be two initial distributions and n
μπ  and v

nπ  the 

corresponding distributions at time n . Then it is easy to see that 

2 2 2 2
1 0 0var

4 ( ( ) )( ( ) ( ))v n
n n M vμπ π β χ μ χ− ≤ +          (3.8)    

In particular, asymptotically the variation distance between the distributions 

corresponding to different initial distributions behaves like / 2
1( )nMβ . 
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3.4 Spectral Properties 

We now discuss the relationship between the spectrum of P  and the 

multiplicative reversibilization ( )M P . In particular, we note that in the previous 

results the asymptotic convergence of the distribution of the chain with transition 

probabilities P  is determined by an eigenvalue of the multiplicative 

reversibilization ( )M P  and thus the relationship between the spectra of the two 

processes is of interest. Let 0 1, , Nλ λ −…  be the eigenvalues of P  and 

0 1, , Nβ β −… be the eigenvalues of ( )M P  and assume that 

1,  0, , 1.i i i Nβ β +≥ = −…   

PROPOSITION 3.1 Assume that P  has a unique stationary distribution 

π  with 0,  0, , 1.i i Nπ > = −… Then there exist [ )0 1, , 0, 2Nθ θ π− ∈… such that 

= ,  0, , 1.ij
i i e i Nθλ β = −…  In particular, 2 ,  0, , 1.i i i Nβ λ= = −…  

Proof: We note the obvious fact that 0 0 1λ β= = . Recall that 

1/ 2 1/ 2 1/ 2 1/ 2( ) ( ) ( )( ( ))TM P D S M D D S P S P D− −= =  where 1/ 2 1/ 2( )S P D PD−=  is a 

square root of ( )S M . Note that ( )M P  and ( )S M  are algebraically 

isomorphic and P  and ( )S P  are algebraically isomorphic. Since ( )S M  is 

symmetric we can write ( ) TS M V V= Σ  where 0 1( , , )Ndiag β β −Σ = …  and V  

is orthogonal. Define TR V V= Σ� . Then R�  is a square root of ( )S M  and the 

eigenvalues of R�  are ,  0, , 1.i i Nβ = −…  Note that any other square root R  

of ( )S M  is related to R�  through R RU= �  where U  is a unitary matrix. Thus, 
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since 1/ 2 1/ 2( )S P D PD−=  is a square root of ( )S M  we know that there exists a 

unitary U�  such that 

1/ 2 1/ 2( ) TS P D PD RU V V U−= = = Σ� � �                (3.9) 

Let jwλ σ= +  be an eigenvalue of ( )S P RU= � �  (and P ). Then there exist an 

eigenvector v y jz= + corresponding to λ  such that ( )RUv S P v vλ= =� �  and 

therefore 

2 2( )H H H TRUv RUv v U R RUv vλ= =� � � � � � �               (3.10)    

Therefore, 2λ  is an eigenvalue of ( )TR R S M=� �  with eigenvector Uv� . Finally, 

since 0iβ >  we have i iλ β= and since ∈λ C there exists an angle iθ  such 

that = ,  0, , 1.ij
i i e i Nθλ β = −…                                     ■ 

This relationship between the spectrum of P  and the multiplicative 

reversibilization ( )M P  makes it possible to characterize the metastable 

partition by relating to spectral properties of ( )M P . The indicator (characteristic) 

functions of the metastable sets can be identified with eigenfunctions 

corresponding to the dominant (closet to one) eigenvalues of ( )M P  which 

correspond to eigenvalues of P  close to the unit circle. 

3.5 Diffusion Distance 

We are interested in obtaining a reduced order approximate model and the 

identification of metastable components for the Markov chain with transition 
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matrix P . We noted earlier that if the underlying process is ergodic and the 

second largest eigenvalue of ( )M P  is small then the convergence to π  is fast 

and the stationary distribution is a good low dimensional approximate model. 

However, if ( )M P  has several eigenvalues close to one then this convergence is 

not as fast. Let v  be the distribution of the initial state 0x  and v n
n vPπ =  be the 

distribution of the Markov chain at time n . We now consider the problem of 

finding an approximate operator v
anπ  for v

nπ  that is good for all initial 

distributions v  and for which the error v v
n anπ π−  converges to zero considerably 

faster than / 2
1 1( ) ( )n nM Pβ λ= . 

We begin by introducing some notation from [12]. Let μ  and σ  be two 

probability distribution vectors and define the distance between them by the 

weighted 2L  norm 

 2 2( ( ) ( )) ( )
w

x X
x x w xμ σ μ σ

∈

− = −∑                 (3.11) 

where ( ),  w x x X∈  are weights. Following [12] we select 1( )
( )

w x
xπ

=  to 

account for variations in the stationary distribution of states. If a state x  has a 

low stationary probability the corresponding weight is going to be large and 

therefore ( ),  ( )x xμ σ  have to be relatively close for 2

w
μ σ−  to be small. We 

note that for this selection of ( )w x , the weighted 2L  norm equals the 

chi-squared distance at time 0n = . As before let μ  and ν  be two initial 

distributions and n
μπ  and v

nπ  the corresponding distributions at time n . Then 



 31

the 2L  distance between n
μπ  and v

nπ , the diffusion distance in the terminology 

of [12] , is 

222 ( )( , )
( )

v
v n n

n n n w
x X

D v
x

μ
μ π πμ π π

π∈

−
= − = ∑                  (3.12) 

We note that by (3.8) the distance between n
μπ  and v

nπ  in (variation norm) 

decays at the rate of 1( )nMβ  and consequently (due to equivalence of norms on 

finite dimensional space) so does 2 ( , )nD vμ . The diffusion distance can be 

rewritten as 

22 1( , ) ( ) ( )v v v T
n n n n n n nw

D v Dμ μ μμ π π π π π π−= − = − −           (3.13) 

where, as before, D  is a diagonal matrix with the entries of π  on the diagonal. 

Using the relationship v n
n vPπ =  we get 

2 1 1( , ) ( ) ( ) ( ) ( ) ( ) ( )n n T T n T
nD v v P D P v v M P D vμ μ μ μ μ− −= − − = − −   (3.14) 

Define 1/ 2 1/ 2( )n
nQ D M P D−= , and note that 

1/ 2 1 1/ 2( ( )) ( ) ( ) ( ) 0n n n T n n T
nQ S M P D P D P D S P S P−= = = ≥    (3.15) 

Since 0nQ ≥ , it has positive real eigenvalues and a complete set of orthonormal 

eigenvectors. Furthermore since nQ  and ( )nM P  have the same eigenvalues 

and ( )nM P  is a transition matrix it follows that the eigenvalues of nQ  (and 

( )nM P ) satisfy 1 00 1n n
Nβ β−≤ ≤ ≤ =" .  Let 0 1, ,n n

Nv v −… be the eigenvectors of 

nQ . Then ( )nM P  has right and left eigenvectors 1/ 2n n
i iD vψ −=  and 

1/ 2 , 0, , 1n n
i iD v i Nϕ = = −… , respectively. We note that 0 [1 1]n Tψ = "  and 

0
n Tϕ π= . From the spectral decomposition of nQ  we get the decomposition 
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1 1
1/ 2 1/ 2 1/ 2 1/ 2

0 0

( ) ( ( ) ) ( )
N N

n n n n T n n n T
n k k k k k k

k k
M P D Q D D v v Dβ β ψ ϕ

− −
− −

= =

= = =∑ ∑  (3.16) 

Therefore, 

1
2 1

0

( , ) ( ) ( ) ( ) ( ) ( ) ( )
N

n T n n n T T
n k k k

k
D v v M P D v v vμ μ μ μ β ψ ϕ μ

−
−

=

= − − = − −∑  (3.17) 

Define a map 

0 0

1 1

:

n n

n

n n
N N

v
v

v

β ψ

β ψ− −

⎡ ⎤
⎢ ⎥

Ψ → ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#                        (3.18) 

i.e. : n n
nΨ →R R . Then it is easy to see that 22 ( , ) ( ) ( )n n nD v vμ μ= Ψ −Ψ  

where ⋅  is the Euclidean norm on nR .  The above construction of nΨ  and 

the representation of the diffusion distance as a Euclidean distance in the 

coordinates nΨ  parallels the corresponding construction for reversible 

processes in [12]. 

Let 1, , Nx x…  be the elements of X  and let the unit vectors 1, , Ne e…  of 

nR  denote the distributions concentrated at 1, , Nx x… . Then, the diffusion 

distance between ix  and jx  can be written as 

2 2

2

2

0 0 0

1 1 1

( , ) ( , )

                ( ) ( )

( ( ) ( ))
                

( ( ) ( ))

i j T T
n n i j

T T
n i n j

n n n

n n n
N N N

D x x D e e

e e

i j

i j

β ψ ψ

β ψ ψ− − −

=

= Ψ −Ψ

−
=

−

#

             (3.19) 

where i  denotes the ith  element of the right eigenvector nψ  of ( )nM P . 
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3.6 Lower Dimensional Approximate Model 

Let q N<  be the number of dominant eigenvalues of ( )nM P , i.e. we 

assume that 0 1, , qβ β −…  are of comparable size (close to one) and 1q qβ β −<< . 

Define the approximate symmetrized model as 

1

0
( ) ( )

q
n n n n T

a k k k
k

M P β ψ ϕ
−

=

=∑                        (3.20) 

Let 
1

0
( )

q
n n n T

an k k k
k

Q v vβ
−

=

=∑  and note that 
1

( )
N

n n n T
n an k k k

k q
Q Q v vβ

−

=

− =∑  and 

n
n an qQ Q β− = . Furthermore, it is easy to see that ( ) ( )n n

aM P M P−  is 

bounded above by n
qβ  as well. Since 0anQ ≥  there exists a matrix anS  such 

that T
an an anQ S S= . Define 1/ 2 1/ 2n

a anP D S D−= . We now discuss how to select the 

square root anS  so that the operator n
aP  is a good approximation of nP . In 

particular, we want to select the square root so that if q N=  then n n
aP P= , i.e. if  

there is no reduction in dimension we recover the original system. 

PROPOSITION 3.2 Let V be the matrix of orthonormal eigenvectors of 

nQ , let ( ,0)a qJ diag I= , where qI  is the q q× identity matrix, and define 

1/ 2 1/ 2T n
an aS VJ V D P D−= , then the approximate operator 

1/ 2 1/ 2 1/ 2 1/ 2T n n
an an a aP D S D D VJ V D P L P− −= = =          (3.21) 

has the property that n
anP P=  for q N= . Furthermore, aL  is a projection. 

Proof:  Recall that 1/ 2 1/ 2( )n
nM P D Q D−=  with 0nQ ≥ . Furthermore, 

since ( ( )) ( ) ( ) 0n n n T
nQ S M P S P S P= = ≥  we see that 1/ 2 1/ 2( )n nS P D P D−=  is 
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one of the square roots of nQ . Next note that we can write T
nQ V V= Σ  where 

0 1( , , )Ndiag β β −Σ = …  and V  is orthogonal. Define T
nS V V= Σ . Then any 

other square root of nQ  satisfies n nS S U=  where U  is a unitary matrix. 

Define 1/ 2 1/ 2n
nP D S D−= . We want to select the square root of nQ  so that 

n nP P= . Therefore, consider the equation 

1/ 2 1/ 2 1/ 2 1/ 2n
n nP D S D D S UD− −= =              (3.22) 

Assuming that nS  (i.e. ( )nM P ) is nonsingular we get 

1 1/ 2 1/ 2( ) T nU V V D P D− −= Σ                  (3.23) 

Now let q  be selected as above. Then we can write T
an aQ V V= Σ  and the 

corresponding square root is T
an aS V V= Σ . Consequently,  

1 1/ 2 1/ 2

1 1/ 2 1/ 2

1/ 2 1/ 2

     ( )

     ( )

     

an an

T T n
a

T n
a

T n
a

S S U

V V V V D P D

V V D P D

VJ V D P D

− −

− −

−

=

= Σ Σ

= Σ Σ

=

       (3.24) 

and the approximate operator 

1/ 2 1/ 2 1/ 2 1/ 2T n n
an an a aP D S D D VJ V D P L P− −= = =      (3.25) 

We note that for q N=  we have for n
anP P= . Furthermore, 

2 1/ 2 1/ 2 1/ 2 1/ 2T T
a a a aL D VJ V D D VJ V D L− −= = , and thus aL  is a projection.      ■ 

THEOREM 3.2 Consider the reduced system anP  and let v  be any initial 

distribution. Assume that P has a unique stationary distribution π  with 
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0,  0, , 1i i Nπ > = −… . Then the weighted distance between the distributions 

nvP  and anvP  with weights 1 , 0, , 1i
i

w i N
π

= = −…  satisfies 

n n
an q ww

vP vP vλ− ≤                          (3.26) 

where q  is the number of dominant eigenvalues of ( )nM P (and nP )  and qλ  

is the eigenvalue of P  such that  
2

= 
q

n n
qλ β  where 

q

nβ  is the 1q +  largest 

eigenvalue of ( )nM P  

Proof: 
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vD VV D v vD v

v

β β
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− − −= =

  (3.27) 

where Ψ  is the matrix of right eigenvectors of ( )nM P . Here we have used the 

fact that if λ  is an eigenvalue of P  then nλ  is an eigenvalue of nP .       ■ 

The above result shows in particular that approximate operator anP  

constructed above is a very good approximation of the original P  at time n  

provided q  is chosen so that qλ  is small. 
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PROPOSITION 3.3 Let ne∈ R  be the vector of all ones and π  be 

stationary distribution for P . The approximate matrix anP  satisfies anP e e=  

and anPπ π=  

Proof: First we note that ( )nM P is a stochastic matrix with stationary 

distributionπ . Therefore,  

1/ 2 1/ 2 1/ 2
0 1( ) , ,n

n N nM P D Q D Q Dπ π π π π−
−

⎡ ⎤= = =⎣ ⎦…         (3.28) 

and 

0 1 0 1, , , ,N n NQπ π π π− −
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦… …              (3.29) 

i.e. 0 0 1, ,T
Nv π π −

⎡ ⎤= ⎣ ⎦…  is left eigenvector of nQ  with eigenvalue 1. 

Furthermore, due to the symmetry of nQ  we note that 0v  is right eigenvector of 

nQ  as well. We also recall that anQ  may be written as T
an aQ V V= Σ  and note 

that 0v  is the first column of V . Recall that 1/ 2 1/ 2T n n
an a aP D VJ V D P L P−= =   

[ ]

1/ 2 1/ 2

1/ 2 1/ 2
0

1/ 2
0

       1, ,0

       
       

T n
an a

T T n T n
a

T n n

P D VJ V D P

v VJ V D P V D P

v D P P

π π

π
π

−=

= =

= =
=

"          (3.30) 

Also, 
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1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
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1/ 2 1/ 2
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      1, ,0
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■ 
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We note that by above proposition the approximate operator has the same 

stationary distribution as the original Markov chain, i.e. the limiting (stationary) 

behavior of the original process is retained in the model reduction process. We 

note also that in general the approximate operator is not Markov, i.e. the entries 

of anP  are not guaranteed to belong to [ ]0,  1 . Note however that rows of anP  

do sum to 1. 
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4 IDENTIFICATION OF METASTABLE COMPONENTS 

AND LOCAL DYNAMICS 

4.1 Introduction 

In Chapters 1 and 2, we stated that we need to identify three system 

characteristics when we model a complex dynamic system which has 

multi-modal behavior. These three system characteristics are: (i) the domains or 

regions in state space where the system spends a long time between transitions, 

(ii) the dynamic laws that characterize the transitive behavior between the 

domains and (iii) the dynamics of the system inside each domain. Most existing 

papers that address problems of this type model both local dynamics and the 

transitive behavior in a single identification step [66] [67] [68]. We note that the 

identification problem is further complicated if the local dynamics as well as the 

characteristic domains and the transitive law depend on a control input. In this 

dissertation we only consider autonomous case, i.e. without a control input. The 

real challenge in characterizing the system behavior is the identification of the 
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splitting of the underlying space into clustering domains and dynamic law for the 

transitive behavior between those domains. This problem has been studied in 

some considerable details in recent years for the case of linear or affine local 

dynamics and each domain being modeled as a polyhedral region or linear 

subspace [27] [28]. In this chapter, we will illustrate two methods for identifying 

metastable components based on the approximate operator which we discussed in 

Chapter 3. Then in a separate step, we identify the local dynamics for each 

metastable component. A couple of numerical examples will be presented for 

illustration and verification purpose. 

4.2 Identification of Metastable Components 

We next outline how to construct a metastable decomposition from anP  as 

well as the transition or modal dynamics between the metastable components. 

This provides the basis for the identification of the partition of the underlying 

space for hybrid system identification. We note that anP  given by (3.25) can be 

written as 

1/ 2 1/ 2n T n T n T n
an a a a q qP L P D VJ V D P J P P−= = = Ψ Φ = Ψ Φ       (4.1) 

where the matrices  and Ψ Φ  consist of the right and left eigenvectors of 

( )nM P  and ,  q qΨ Φ  consist of the first q  corresponding eigenvectors. For a 

given initial state v  the distribution at time n  is approximately anvP . 
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Obviously, ( )T
an anvP Range P∈  for all 0n > , so the distribution of the original 

system approximately belongs to the row space of anP . We note that row space is 

spanned by the column of qΦ . Therefore the evolution of the distribution of the 

approximate operator is determined by first q  left eigenvctors of ( )nM P . 

The matrix qΦ  can be used to identify the division of the original state 

space into the q  disjoint components 1, , qA A…  that the system dynamics 

cluster on, i.e. the metastable decomposition. Obviously, the transition matrix qP  

that describes the transition dynamics of the system between these components is 

( , ) Pr( | )q j iP i j A A= . The sets iA  are identified by examining the rows of the 

matrix qΦ  and grouping rows that have similar structure into q  equivalence 

classes. 

In the dissertation we will introduce two ways to identify sets iA . One way 

is to utilize the sign structure of rows of qΦ  to classify elements into 

equivalence classes. The other method to identify the set iA  is by utilizing the 

diffusion distance which is formulated in Chapter 3. 

4.2.1 Sign Structure Identification Method 

Recall that T n
an q qP P= Ψ Φ  where ,  q qΨ Φ  consist of the first q  right 

and left eigenvectors of ( )nM P . We also note 1/ 2
q qD VΦ = , where 

0 1[ ]q qV v v −= "  consists of the first q  orthogonal eigenvectors of nQ . From 
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[19], we know the collection of right eigenvectors Φ  can be applied to identify 

almost invariant aggregates in reversible nearly uncoupled Markov chains. We 

begin by assuming that M  is a transition matrix of an uncoupled Markov chain 

with q  disjoint clusters, i.e. M  has q  dominant eigenvalues which are all 

equal to one. By permutation, M  can be put into a block-diagonal form 

11

22

0 0
0 0

0
0 0 qq

M
M

M

M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # %
"

                     (4.2) 

where each block iiM  is assumed to be a reversible, aperiodic and irreducible 

stochastic matrix. Thus, for the eigenvalue  1iβ =  of block iiM , there is a 

corresponding right eigenvector T(1,...,1)  and stationary distribution (left 

eigenvector of iiM ) iπ  of the length dim( )iiM  . As is shown in [19], the 

eigenspace basis 1, ,{ }i i qϕ = …  corresponding to 1iβ =  can be written as a linear 

combination of characteristic functions 
iAχ of the sets iA  with coefficients 

ijα ∈R  such that 

1
,   1, ,

(0, ,0, ,0, ,0)

j

i

q

i ij A
j

T T
A i

i q

e

ϕ α χ

χ
=

= =

=

∑ …

… …
                     (4.3)  

Therefore, in terms of the stochastic matrix M , the left eigenvector 

corresponding each 1iβ =  is constant on the corresponding block iiM . In order 

to identify the clusters iA , define a map  

1( (( ) ), , (( ) ))i i q iX sign signϕ ϕ→ …             (4.4) 
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where iX  are Markov states. It turns out that each cluster is a collection of 

Markov states with common sign structure and different clusters exhibit different 

sign structure. Indeed the following is proved in [19]. 

PROPOSITION 4.1 Assume that eigenvalue 1β =  has multiplicity q , i.e., 

the Markov chain has q  invariant sets. Then (i) all states that belong to the 

same invariant sets has same sign structure and (ii) elements from different 

invariant sets exhibit different sign structure. 

Consider now the case when M  is not block diagonal but has 

off-diagonal elements that are “small”. In that case, the stochastic matrix 

becomes block-diagonally dominant rather than block-diagonal matrix. Matrix 

perturbation theory [26] states stability of the eigenvectors of a matrix is 

determined by the eigengap ( 1q qβ β− − ). That is, 1, , qϕ ϕ…  will be stable with 

respect to small changes in off diagonal elements of M  if the eigengap is large. 

Consequently clusters can be identified by exploiting the right eigenvectors in 

terms of their constant sign structure. However, in some cases, the constant 

pattern of eigenvectors’ sign structure becomes fluctuant due to the perturbations 

of the eigenvectors. The fluctuation may happen on some elements of the 

eigenvectors which are close to zero. In that case, the sign structure of some 

eigenvectors switches between positive and negative. Generally speaking, the 

pure sign identification of eigenvectors can’t reliably classify the states into 
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different clusters correctly and efficiently unless the stochastic matrix is block 

diagonal or block-diagonally dominant (small perturbation) and in the general 

case additional measures must be taken.  Referring to the algorithm proposed in 

[19], a simplified and effective algorithm presented as follows. 

Step 1 Rescale the eigenvectors. In order to make the positive and negative 

elements of all eigenvectors comparable at same size, we first split each 

eigenvector to positive part and negative part. For example, the i th eigenvector 

i i iϕ ϕ ϕ+ −= + , where max(0, )i iϕ ϕ+ =  and min(0, )i iϕ ϕ− = . Then we rescale the 

positive part divided by its maximum value and rescale the negative part by 

divided its maximum absolute value. That is i
i

i

ϕϕ
ϕ

+
+

+

∞

=   and i
i

i

ϕϕ
ϕ

−
−

−

∞

= .  

The rescaled matrix becomes 
+ −

Φ = Φ + Φ . 

Step 2 Find the q “most likely” different stable sign structure. Let ( )iSR j  

be the entry in i th row and j th column of  Φ  1, , ,  1, ,i n j q= =… … . Then sort 

( )iSR ⋅  descending for all rows based on max( ( ) )iSR j  for 1, ,j q= … . The sub 

algorithm for this step is in Table 4.1. Finally check the sign structure of SR  

found from the above algorithm. If the result has repeated sign structure, delete 

the repeated one(s) and run the algorithm until q  different stable sign structure 

are found denoted by 1, , qSS SS…  where iSS  are a given row of  Φ . 
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Step 3 Construct disjoint clusters 1, , qA A… . Each sign structure of  

1, , qSS SS…  represents a cluster. This step is to allocate all other ( )iSR ⋅  to the 

closest sign structure based on the below sub algorithm in Table 4.2. 

Table 4.1: Sub algorithm 1 of sign stucture method 

Set 0T − =  and 1T + =  to perform a bisection and 0m =  

While m q≠  

Set ( ) / 2T T T− += +  as threshold 

m = count ( min( ( ) )iSR T⋅ ≥ ) 

If  m q>  then 

    T T− =  
   Else 

      T T+ =  
    End 
End 

        

Table 4.2: Sub algorithm 2 of sign stucture method 

For 1i =  to n  

     For 1j =   to q  

Distance(i, j)= i j

j

SS

SS

ϕ −
 

     End 

Find minimum of Distance (i, j )  for 1j =  to q , and set the minimum index 

{1,..., }k q∈  assign iϕ  to cluster kA  

End 
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Summarizing, the sign structure identification method may assign 

elements even if which may have different pure signs into a cluster. On the other 

hand, it’s possible that some elements may not be allocated correctly if 

off-diagonal elements of the M  matrix are not “small” and spoil the sign 

structure.  

4.2.2 Diffusion Distance Identification Method 

Recall that in the approximate and reduced model, the diffusion distance of 

any two points ix  and jx  can be written as 

2

0 0 0
2

1 1 1

( ( ) ( ))
( , )

( ( ) ( ))

n n n

i j
q

n n n
q q q

i j
D x x

i j

β ψ ψ

β ψ ψ− − −

−
=

−

#                  (4.5) 

If 2 ( , )i j
qD x x  is smaller than some threshold ,δ then ix and jx are 

considered to belong to the same set. Note that the diffusion distance and sign 

structure are similar in that both defined proximity of points in terms of the 

closeness of the eigenvectors of ( )nM P . The main challenge for this 

identification method is how to select threshold δ  efficiently if the constructed 

matrix ( )nM P  is not block-diagonal form but block-diagonally dominant and 

the N N×  matrix 2 2
, 1, ,( ( , ))i j

q q i j ND D x x == …  has large dimension. This 

challenge actually becomes the question of how to cluster the elements of 2
qD  if 

the diffusion distance is calculated for all data point pairs. Past researches [69] 
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[70] [71] show that the K-nearest neighbor (KNN) is one of the most fundamental 

and simple clustering method when there is little or no prior knowledge about the 

distribution of the data. The principle difference between diffusion distance 

method and traditional KNN clustering is that diffusion distance method maps 

(diffusion map) the original data points into a Euclidean space and obtain a new 

description of data sets based on spectrum of the Markov transition matrix. Then 

diffusion distance method classifies points in terms of their connectivity in the 

new Euclidean space. The traditional KNN clustering method considers those 

points close or not in terms of the Euclidean distance or Hamming distance in 

original space. In addition, since we don’t have any prior training points, there is 

no any prior label for each metastable component. Thus we propose a modified 

KNN algorithm applied to diffusion distance method which is presented as 

follows. 

Step 1 Formulate diffusion distance matrix. In order to compare all the 

points, we first calculate diffusion distance for all two point pairs and formulate a 

diffusion distance matrix 2
qD D= , where ijD  represents 2 ( , )i j

qD x x . Then we 

set the diagonal entries iiD = ∞ .  

Step 2 Order and group diffusion distances. In this step we first create a 

matrix G , where / 2N NG R ×∈  (for simplicity assuming N  is even) and initially 
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set all entries to zero. The main idea of this method is to find the minimal 

diffusion distance, record the indices of the points and put the indices as a group  

Table 4.3: Sub algorithm of diffusion distance method 

For 1=k  to 1N −  

Find the minimal diffusion distance in ijD  and record indices as cr, . 

If 1==k  

      Create G  matrix with all zero entries, and assign cr,  to first row. 

    Else 

      If  cr,  does not belong a group in G   

Add r , c  to a new group in G  

      Else if r  doesn’t belong to a group but c  does 

        Add r  to the group c exists in 

      Else if c  doesn’t belong to a group but r  does 

        Add c  to the group r exists in 

      Else both cr, belong to a group in G  

       Add the group c  exists in to the group r  exists in 

      End 

   End 

  Set rcD and crD as infinity. 

End  
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in matrix G . Then next find the minimal diffusion distance, and assign the 

indices to one of the existing groups or a new group created in G .  The sub 

algorithm for this step is in Table 4.3. 

Step 3 Clustering Ordered diffusion distances into q  groups.  Since all 

the points are ordered based on the algorithm of the last step, we just need to find 

the q  maximal ones in terms of diffusion distance corresponding to the ordered 

points, of which the indices are the segment lines to clustering q  groups. 

4.2.3 Identification of Transition Dynamics 

Given the Markov state data in each metastable set which are identified in 

last subsection, we can identify the transition dynamics between the metastable 

sets. 

PROPOSITION 4.2 Given 1, , Nx x…  on X and a cluster iA , define the 

characteristic vector 

1( )

  
( )

i

i

i

A

A
N

A

x

e
x

χ

χ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

# where ( ) 1
i

j
A xχ =  for j

ix A∈  and 

( ) 0
i

j
A xχ =  otherwise. If we have q  disjoint clusters 1, , qA A… , formulate a 

matrix 
1

[ ]
qA AE e e= "  then the transition matrix characterizing the 

transition dynamics between 1, , qA A…  is qP  with entries 

1

1
1

( )( , )( , )
( )( , )

T n

q q T n
j

E P D E i jP i j
E P D E i j

−

−
=

=
∑

                    (4.6) 
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Proof: Referring to the definition of the (conditional) transition probability 

from cluster iA  to cluster jA , i.e. (2.5) and (2.8) with respect to the stationary 

distribution π  in [19], (4.6) is easily proved.                           ■ 

4.3 Nyström Extension Method 

The discretization of the transfer operator P  is subject to the curse of 

dimensionality, i.e. as the number of discrete components increases the 

dimension of discretized operator grows exponentially. In particular, if the 

process belongs to a n  dimensional space and is uniformly discretized to size 

m  then the number of discretization components, i.e. Markov states, is nN m=  

and NP  is an N N×  matrix. In addition, due to the characteristics of transfer 

operator formulation of system dynamics, the NP  matrix is highly sparse as well. 

In Chapter 3, we obtained the reduced order approximate model for the Markov 

chain with transition matrix P  using spectral decomposition methods. In order 

to alleviate the computation burden of eigenvalues and eigenvectors of such 

large-size and highly-sparse matrix, we present an approximation technique 

which is based on the Nyström extension method. In short the technique finds 

eigenvalues and eigenvectors of some small sub matrix of the sparse matrix and 

then approximates the eigenvectors of the original matrix employing Nyström 

extension. 
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Consider the matrix N NQ ×∈R , and let M  columns and M  rows be 

chosen (without replacement) in some manner. Then Q  can be partitioned as  

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

QQ
QQ

Q                             (4.7) 

Where 11
M MQ ×∈R  represents the subblock of matrix entries are corresponding 

to the selected columns and selected rows (maybe after reordering). 12Q  is 

matrix consisting of entries with a non-selected column label and selected row 

label and 21Q  consists of entries with a selected column label and non-selected 

row label, respectively. ( ) ( )
22

N M N MQ − × −∈R  is matrix consisting of the remaining 

entries.  

The Q  matrix in our case is symmetric and positive semidefinite, and 

11Q  is as well. Therefore, its singular value decomposition (SVD) may be 

written as TUUQ Σ=11 and we know that TQQ 2112 = .  From [29] [30], the 

Nyström extension of U gives the approximation of the eigenvectors of the full 

matrix Q  as  

⎥
⎦

⎤
⎢
⎣

⎡
Σ

=Σ⎥
⎦

⎤
⎢
⎣

⎡
= −

−
1

21

1

21

11

UQ
U

U
Q
Q

U                     (4.8) 

Then the approximation of  Q  may be written as  
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                     (4.9) 

More generally, if Q  is an arbitrary nm×  matrix, then TVUQ Σ=11  and the 

Nyström extension U  and V gives the following approximation for the left and 

right eigenvectors of SVD of the full matrix Q  as 

                         ⎥
⎦

⎤
⎢
⎣

⎡
Σ

= −1
21VQ
U

U , and  

                      ⎥
⎦
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= −1
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If 11Q  is nonsingular, then the equation becomes 

⎥
⎦

⎤
⎢
⎣

⎡
= −

12
1

112121

1211

QQQQ
QQ

Q                          (4.12) 

Thus, in the Nyström method the block 22Q  is approximated by 12
1

1121 QQQ −  and  

Q  is approximated by Q . The approximation quality can be quantified by the 

norm of Schur complement 12
1

112122 QQQQ −− .  

The principal question is how to choose the M  columns of interest. In 

[30], M columns of Q  matrix are uniformly picked as sampled columns. In [31] 
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[34] [35], the authors utilized the important sampling of columns and/or rows of 

the matrix with carefully chosen nonuniform probability distribution in order to 

obtain provable error bounds. Furthermore in [31] [34] [35], the discrete operator 

P  is obtained from data of a discrete time Markov process as in (2.9). This leads 

a stochastic matrix whose elements are not uniformly distributed nor are the 

columns uniformly distributed. Referring to the main approximation algorithm in 

[36], we propose a Nyström extension algorithm with nonuinformly picked 

columns and rows to approximate eigenvectors. 

Step 1 Formulate permutation matrix. As we stated in Chapter 2, in order 

to approximate transfer operator P  we first create an N N×  matrix C  with 

entries ijc  that count the number of times there is a transition from element iX  

to element jX , i.e. starting with ijc 0=  we increase ijc  by one if k ix X∈  and 

1k jx X+ ∈  for some k  is defined. In matrix C , the number of times a state in 

jX  is entered is defined by 
1

, 1, ,
N

ij
i

c j N
=

=∑ … . We select the M sampled 

columns as the rows that have maximal sum values in matrix C . This selection 

makes sure that elements of the dynamic systems that have high probability are 

selected. The sub algorithm for this step is in Table 4.4. 
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Table 4.4: Sub algorithm of Nyström extension method 

Create C  matrix and permutation matrix S  with zero entries 

Sort ( )Tsum C  descend and record indices in matrix I   

For 1=i  to N  

  1))(,( =iIiS  

End 

 

Step 2 Decompose Q  matrix.  Firstly Q  is permutated as TSQSQ =   

and then Q  is decomposed as form in (4.7). 

Step 3 Calculate eigenvalues and eigenvectors of  Q . LAPACK routine 

[37] is used to calculate the eigenvalues and eigenvectors of matrix 11Q . Then 

calculate U , V  according to (4.8).  

The amount of computation required for finding the eigenvectors of matrix 

Q  is )( 3NO . By applying Nyström extension method to find the approximate 

eigenvectors, the computational burden decreases to )( 2NMO  operations. 

4.4 Identification of Local Dynamics 

Once the metastable components iA  have been identified, the original 

data can be segmented and classified into each component. Using the data in each 

component, a model of the local dynamics can be constructed. We consider 
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models in a state space form and assume that the system can be represented in 

each clustering component by an affine model of the form  

1 ( ) ( )k k k k kx A r x f r w+ = + +              (4.13) 

This implies in particular that locally in each component the dynamics have a 

stable point attractor and in vicinity of that point the dynamics are approximately 

linear. We choose subspace identification methods (SIMs) to identify the system 

parameter matrix ( )A i , the bias term ( )f i  and the statistics of kw . The noise 

input sequence kw  is assumed to be a stationary, zero mean, white noise process 

with covariance ( ) ( )T
i i kE w w R r=  as we stated in Section 2.3.5. Under certain 

assumptions subspace identification introduced in Section 2.3.5 can successfully 

estimate the system order and parameter matrices. Furthermore, we use the 

identification method to get the noise sequence and then calculate covariance 

matrix R . We obtain a covariance matrix ( )kR r  for each clustering component 

and an overall resulting model of the form 

1 ( ) ( ) ( )k k k k k kx A r x f r R r e+ = + +      (4.17) 

where ke  is standard Gaussian white noise process (0, )N I . 

We remark that if the local dynamics in some component iA  do not have a 

point attractor, then the above approach doesn’t work and nonlinear identification 

techniques are required. 
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4.5 Numerical Examples 

4.5.1 Example 1 

Consider a Markov chain with 12N =  that is constructed as follows. Let 

12 12
1  P ×∈ R  be a block diagonal matrix with three blocks with positive entries, 

12 12
2P ×∈R  be a matrix with positive entries, ε  is a small parameter and 

define 1 2
ˆ (1 )P P Pε ε= − + . We select the entries 1P  and 2P  randomly from a 

uniform distribution on [ ]0,  1 . Define the normalized matrix with entries 

1

ˆ

ˆ
ij

ij N
ijj

p
p

p
=

=
∑

.  Then  P  is a transition matrix of a Markov chain. We assume 

that P  so chosen is a irreducible and aperiodic. For a particular choice of P  

with 0.01ε =  we obtain multiplicative reversibilization ( )M P  with 

eigenvlaues 

[1, 0.9391, 0.9141,0.2971,0.0895,0.0846,0.0475,0.0441,0.0376,0.0313,0.0008,0]

Clearly there is a big gap in the spectrum after the first three eigenvalues and thus 

we obtain 3q =  (as expected). Furthermore, 
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3

0.0955 0.0909 0.0203
0.0912 0.0876 0.0192
0.0703 0.0679 0.0148
0.1249 0.1194 0.0266
0.1289 0.1222 0.0275
0.0993 0.0625 0.1978
0.0502 0.0305 0.0967
0.0431 0.0251 0.0819
0.0458 0.0581 0.0421
0.0587 0.0689 0.0498
0.097

−
−
−
−
−

−
Φ =

−
−
− −
− −

1 0.1224 0.0886
0.0950 0.1204 0.0873

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

and 

3

1 0.9517 0.2128
1 0.9609 0.2111
1 0.9647 0.2111
1 0.9559 0.2133
1 0.9480 0.2133
1 0.6288 1.9907
1 0.6069 1.9236
1 0.5807 1.8974
1 1.2688 0.9193
1 1.1747 0.8490
1 1.2613 0.9125
1 1.2670 0.9185

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢
⎢ −
⎢

−⎢Ψ = ⎢ −
⎢

−⎢
⎢ − −⎢
⎢ − −
⎢ − −⎢
⎢ − −⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

First we apply sign structure method to classify different groups. From 3Φ , 

we note there are three different sign structure ([+ + -], [+ - +] and [+ - -]) thus we 

can group the states into three classes, i.e. 1-5, 6-8 and 9-12. 

For comparison we apply the diffusion distance method. We calculate 

diffusion distance matrix D  with entries 2
3 ( , )i jD x x  from 3Ψ  as  
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0 .0001 .0002 0 0 6.7846 6.4537 6.2759 5.0868 4.6165 5.0468 5.0785
.0001 0 0 0 0.0002 6.8050 6.4740 6.2958 5.1272 4.6551 5.0870 5.1189
.0002 0 0 0.0001 0.0003 6.8167 6.4854 6.3070 5.1435 4.6707 5.1033 5.1351

0 0 .0001 0 0.0001 6.7989 6.4678

D =

6.2897 5.1035 4.6326 5.0635 5.0952
0 .0002 .0003 0.0001 0 6.7755 6.4447 6.2670 5.0708 4.6013 5.0309 5.0626

6.7846 6.8050 6.8167 6.7989 6.7755 0 0.0046 0.0101 8.1257 7.6513 8.0804 8.1194
6.4537 6.4740 6.4854 6.4678 6.4447 0.0046 0 0.0013 7.7995 7.3298 7.7547 7.7933
6.2759 6.2958 6.3070 6.2897 6.2670 0.0101 0.0013 0 7.6974 7.2264 7.6525 7.6911
5.0868 5.1272 5.1435 5.1035 5.0708 8.1257 7.7995 7.6974 0 0.0128 0.0001 0
4.6165 4.6551 4.6707 4.6326 4.6013 7.6513 7.3298 7.2264 0.0128 0 0.0107 0.0124
5.0468 5.0870 5.1033 5.0635 5.0309 8.0804 7.7547 7.6525 0.0001 0.0107 0 0.0001
5.0785 5.1189 5.1351 5.0952 5.0626 8.1194 7.7933 7.6911 0 0.0124 0.0001 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Then we apply the K-nearest neighbor (KNN) algorithm proposed in Section 

4.2.2 to group the diffusion distance matrix. The formulated G  matrix evolves 

as  

9 12 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

#  

9 12 0 0 0 0 0 0 0 0 0 0
3 2 4 1 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

9 12 11 0 0 0 0 0 0 0 0 0
3 2 4 1 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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#  

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
6 7 8 9 12 11 10 3 2 4 1 5
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

So based on the forth row of matrix G  , the ordered diffusion distance is 

computed as 

[ ]67 78 89 912 1211 1110 103 32 24 41 15 56D D D D D D D D D D D D  

[ ]0.0046 0.0013 7.6974 0 0.0001 0.0107 4.6707 0 0 0 0 6.7755=  

It’s obviously the states group into three classes which are same the one obtained 

using the sign structure method. Also color map of the grouped diffusion distance 

matrix is shown in Fig.4-1. 

As expected, the resulting division of the state space into three subsets 

agrees with the dimensions of the diagonal blocks in 1P . Furthermore, the 

reduced system has transition matrix 

3

0.9623 0.0227 0.0150
0.0065 0.9847 0.0089
0.0124 0.0238 0.9639

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

We note that reduced transition matrix characterizes the transition between the 

three subsets of states defined by the equivalence structure. 
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Fig. 4-1 Color map of grouped diffusion distance matrix ( 0.01ε = ) 

If 0.1ε = , we obtain multiplicative reversibilization ( )M P  with 

eigenvlaues [1, 0.6052, 0.5090,0.1394,0.0923, ,0.005]… . Clearly there is also a 

big gap in the spectrum after the first three eigenvalues and thus we still obtain 

3q = . Transition matrix of the reduced system becomes 

3

0.8292 0.0745 0.0962
0.1171 0.7850 0.0978
0.0800 0.1158 0.8041

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Using sign structure method for 3Φ , we can still get three classes (1-5, 6-8 and 

9-12). For diffusion distance method, we get similar results as the sign structure 

method.  Color map of the grouped diffusion distance matrix is shown in Fig. 

4-2. 
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Fig. 4-2 Color map of grouped diffusion distance matrix ( 0.1ε = ) 

4.5.2 Example 2 

Consider a nonlinear discrete time stochastic dynamical system on 2R  

described by the equations  

( 1) ( ( )) ( )x t f x t w tε+ = +  

where 1 1

2 2

( ) ( )
( ) , ( )

( ) ( )
x t w t

x t w t
x t w t
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 is a sequence of  i.i.d standard Gaussian 

random variables and  

1 2
3

2 2 1 1

( )
( ( ))

x tx
f x

x t x x x
δ

δ α β
+⎡ ⎤

= ⎢ ⎥+ − + −⎣ ⎦
 

The coefficients are chosen to be 1α β= = , 0.2tδ =  and 0.1ε = . The system 

has three equilibrium points, an unstable one at the origin and stable equilibrium 
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at 0
T

β⎡ ⎤±⎣ ⎦ . The dynamics of the unperturbed nonlinear system is shown in 

Fig. 4-3 for two different initial conditions. A simulation of the stochastic system 

for a typical initial condition is shown in Fig. 4-4. A uniform grid of size is 

30 30×  placed over the image of the process and a 900  state Markov chain 

generated from the discretized process defined by the system dynamics. The 

reversibilization procedure is performed and the first few eigenvalues of ( )nM P  

found to be  

[ ]1.0 0.9934 0.9288 0.9240 0.9136 "   for 1n = . 

The first gap in the spectrum is found to be between the 2nd and 3rd 

eigenvalues (we note that as n  increases the first gap becomes more 

predominant). The model reduction procedure is performed for 2q =  and the 

resulting reduced 2 2×  transition matrix is  

2

0.9850 0.0150
0.0118 0.9882

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

The matrix 2Ψ  is examined and the equivalence structure shown in Fig. 4-5 

constructed by utilizing the diffusion distance method. In Fig. 4-5 we show the 

division of the image into the two metastable sets (shown in blue and red). Finally, 

in Fig. 4-6 we have overlaid the system trajectories from Fig. 4-4 onto the image 

Fig. 4-5. If we utilize the sign structure to identify the metastable components, we 

get similar decomposition as shown on Fig. 4-7 and Fig. 4-8. We remark that, as 

expected, the two metastable sets closely resemble the domains of attraction of 
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the original (unperturbed) dynamical system. In order to identify the local 

dynamics of each set, we classify the original data into segments belonging to the 

metastable components and utilize this data to identify local dynamic models of 

the form (4-12) on each component. A simulation of the resulting hybrid affine 

system is shown in Fig. 4-9 which is overaid on the original data.  

Finally we apply the Nyström extension algorithm proposed in Section 4.3 

to analyze and identify the system dynamics.  Fig. 4-10 shows the ordered 

numbers which are sum values of each column in matrix C . From the figure, we 

may choose first 10 or 100 sampled columns to approximate matrix Q .  For 

10=M  the reversibilization procedure is similarly performed and the first few 

eigenvalues of ( )nM P  which are same as those of 11Q  found to be  

[ ]1.0 0.9757 0.3312 0.3255 0.1741 "  

The first gap in the spectrum is between the 2nd and 3rd eigenvalues as expected. 

2Φ  and 2Ψ  are approximated by Nyström extension algorithm. The matrix 2Ψ  

is examined and the equivalence structure shown in Fig. 4-11 constructed by 

utilizing the diffusion distance method.  The model reduction procedure is 

performed for the two disjoint metastable sets and the resulting reduced 2 2×  

transition matrix is  

2

1 0
0 1

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 
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2P  shows there is no transition dynamics between the two attraction sets. Thus, a 

simulation of the resulting hybrid affine system for one initial condition will stay 

in one set forever which is show in Fig. 4-12. In particular, applying Nyström 

extension overestimates the diagonal entries of 2P  and using 10M =  is too 

coarse in capturing the transition dynamics. 

For 100=M  the reversibilization procedure is similarly performed and 

the first few eigenvalues of ( )nM P  which are same as those of 11Q  found to be  

[ ]1.0 0.9901 0.8342 0.8115 0.7308 "  

The first gap in the spectrum is between the 2nd and 3rd eigenvalues as expected.  

Fig.4-13 and Fig.4-14 show the similar shape of eignenvalue between original 

and approximate eigenvalues. 2Φ  and 2Ψ  are approximated by Nyström 

extension algorithm. The matrix 2Ψ  is examined and the equivalence structure 

shown in Fig. 4-15 constructed by utilizing the diffusion distance method.  The 

model reduction procedure is performed for the two metastable sets and the 

resulting reduced 2 2×  transition matrix is  

⎥
⎦

⎤
⎢
⎣

⎡
=

9918.00082.0
0096.09904.0

2P . 

A simulation of the resulting hybrid affine system is shown in Fig. 4-16 which is 

overaid on the original data. 

From above simulation results, choosing 10=M  or less in Nyström 

extension algorithm is enough to capture the two mestastable sets. We note 
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however that the Nyström extension results in transition dynamics have 

considerable large diagonal entries and thus there is some error in applying the 

Nyström extension to the identification of transitive probabilistics. Thus, in order 

to capture the transition dynamics, we have to choose M around 100. The norm 

values of Schur complement 12
1

112122 QQQQ −−  are calculated on condition of 

1=M  to 450=M , which are shown in Fig. 4-17. From Fig. 4-17, we note that 

choosing  M  around 100 is good approximation. 

 

Fig. 4-3 Unperturbed system 
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Fig. 4-4 Original trajectories 

 

Fig. 4-5 Identification of two invariant sets 
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Fig. 4-6 Invariant set grid overlaid with original trajectories 

 

Fig. 4-7 Identification of two invariant sets by sign structure 
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Fig. 4-8 Invariant set grid overlaid with original trajectories by sign structure 

 

Fig. 4-9 Estimated model trajectories overlaid with original trajectories 
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Fig. 4-10 Ordered sum value of each column 

 

Fig. 4-11 Identification of two invariant sets (M=10) 

 



 69

 

Fig. 4-12 Estimated model trajectories overlaid with original trajectories (M=10) 

 

Fig. 4-13 Eigenvalues of the original M(P) 
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Fig. 4-14 Eigenvalues of the approximate M(P) (M=100) 

 

Fig. 4-15 Identification of two invariant sets (M=100) 
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Fig. 4-16 Estimated model trajectories overlaid with original trajectories (M=100) 

 

Fig. 4-17 Norm of of Schur complement (M=1 to 450) 
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5 CLUSTER ANALYSIS OF WIND TURBINES OF 

LARGE WIND FARM 

5.1 Introduction 

The modern wind power industry has its origins in the 1980s, but in the last 

decade it has become the fastest growing energy industry in the world. In 2007, 

the global wind power industry installed over 20,000 MW of wind turbine 

capacity which was an increase of 31% compared to in 2006 [38]. The rapid 

growth was lead by the US, Europe and China. In the U.S., 5,244 MW of 

installed power was reported which made the overall wind power capacity grow 

by 45% in 2007 [38]. The American Wind Energy Association (AWEA) expects 

that 20% of the overall power production of the U.S. will be wind by 2030, with 

persistent aid of federal Production Tax Credit (PTC) and state renewable 

portfolio standards (RPS) [38]. This means that a large number of large-scale 

wind power farms will be built. 

The problem of how to model and control the power output of a wind farm 
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is becoming a pressing issue that challenges power system reliability. Past 

experience and lessons learned indicate that the variability of the power output of 

a wind farm could pose a substantial negative impact on the power system 

reliability, especially for a power system with high penetration of wind 

generation [39] [40] [41]. In order to address this issue, accurate forecast and 

control models of the power output of wind farm have to be developed. 

Dimensionality challenges the modeling of the total power output of all 

turbines of a large wind farm. In previous research, a number of wind turbine 

level models have been developed for controlling voltages, seeking maximum 

utilization of wind power based on single wind turbine model or model of a small 

number of turbines. For example, [42] presented some concepts of evaluation of 

the system’s reliability based on a simplified wind power generation model; [43] 

as well as many others presented controller design for single wind turbine.  

However, the control of the total output of all turbines of a wind farm hasn’t been 

explored. A modern wind farm usually consists of hundreds of wind turbines and 

each wind turbine is a nonlinear dynamic system. The behavior of the total power 

output of all wind turbines of an entire wind farm is not a simple aggregation of 

behaviors of individual turbines. The modeling is a real challenge because of 

dimension. For instance, it is practically impossible to control the output of wind 

farm by sending control signals to each turbine for the desired aggregate output of 
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wind farm [33] [84].  

One possible solution to this dimensionality issue is model reduction. 

Model reduction seeks to replace a large-scale system by one or several lower 

order systems that maintain the dominating characteristics of the input-out 

behavior of the overall system response [44] [45] [46]. Various model reduction 

methods have been developed and applied to complex engineering systems 

which exhibit complex behavior. For example, [47] used Krylov subspace 

methods to simplify the model of a power system; [5] represented the 

complicated thermodynamic behavior of heat pumps with a reduced model of 

two steady operation states. In biomolecular dynamics, clustering of different 

configurations has been suggested to be an effective method to shed light on the 

nature of bimolecular dynamic behavior and their influence in biochemical 

reactions [10]. 

It is of great interest to explore if cluster analysis can be used to reduce the 

dimension of a dynamic wind farm model. If the turbines can be clustered, then 

the entire wind farm can be represented by several representative turbine models 

that capture the dominant system characteristics, which significantly reduces the 

dimension of the system.  

This chapter presents a methodology of cluster analysis based on the 

theoretical research results presented in earlier chapters. We first assume the 
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power output of each wind turbine is a random process with Markovian 

characteristics, and the overall process of all turbines is then represented by a 

Markov transition matrix that is constructed from real data by building a graph 

with Gaussian weights. Then, spectral theory is applied to identify the number of 

clusters and we map the original wind turbines to the appropriate cluster using 

identification methods introduced in previous chapter. Then we present the 

results of clustering of 25 wind turbines located in three distinct locations of a 

wind farm based on the real power outputs for illustration and verification 

purpose of the proposed methodology. Finally, results of a comprehensive study 

of all turbines of the wind farm are also included. 

We remark that assuming that the output of a wind turbine is a random 

process is based on the random character of the power source of the turbine, i.e. 

the wind. 

5.2 Overview of Cluster Analysis 

Clustering a complex dynamic system is characterized by a time scale 

separation and a spatial decomposition of the system dynamics. Cluster analysis 

is one of the model reduction techniques used for identification of sub-group 

feature of system dynamics. That is, the system output is partitioned into different 

groups on the basis of the proximity of individual dynamics of each group. 
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Clustering methods [48] can be divided into two basic types: hierarchical 

clustering and partitional clustering. Hierarchical methods find successive 

clusters using previously established clusters. That is, the method either merges 

smaller clusters into larger ones, or splits larger clusters into smaller ones. 

Hierarchical clustering is based on a certain measure of distance, and selects 

linkage method to form clusters. The distance measures include Euclidean 

distance, Manhattan distance, Mahalanobis distance, Hamming distance, etc 

[86].  

Partitional method, on the other hand, intends to determine all the clusters 

at once. K-means clustering is one of the most commonly used methods in 

partitional clustering [85]. K-means clustering specifies the number of clusters 

in advance, then iterates groups observations based on nearest Euclidean 

distance to the mean of the cluster and calculates the K clusters until cluster 

means do not shift more than a given threshold value or the iteration limit is 

reached. However, two major drawbacks of K-means method are recognized by 

many recent studies such as [49] and [50]. First, the results could be very 

sensitive to choice of the number of clusters, which makes the method less 

stable: quite different kinds of clusters may emerge when K is changed; second, 

K-means method can’t find solutions when the clusters are non-linearly 

separated in output space. Spectral methods, a powerful way to separate 
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non-convex groups of data has recently emerged in different fields [74] [75] [76] 

[77] [78]. Here, we build weighted graphs to represent a notion of geometry 

based on the local similarity or proximity between the data points. This method 

has shown great promise on data clustering in several fields [76] [77] [78]. The 

proposed clustering method is carried out in several steps. First, we define a 

weighted graph to represent the similarity of data sets. The graph is then used to 

construct a Markov Chain. Then we analyze the spectral properties of the 

Markov chain to identify the number of clusters. Finally, the elements of each 

cluster can be identified by some measures in eigenspace basis. Several important 

concepts for the proposed method are introduced below. 

5.2.1 Construction of Markov Chain  

In the field of spectral clustering, Markov random walks on graphs have 

proven to be very useful for identification of relevant structure when the 

underlying clusters have nonlinear shapes, see [52] and [13]. 

Let a real-valued random process be defined by ( ),  {1, , }x t t T m∈ = …   

and assume it has a stationary distribution. Given a set of samples from such 

random process ( ),  ix t t T∈ , define a pairwise similarity matrix n nA ×∈R  by 

building a graph with Gaussian weights with entries 

22
2/ σji xx

ij eA −−=                       (5.1)  
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where σ  is width parameter which represents  the closeness of the data 

configuration [53]. Then A  is row normalized to produce a Markov transition 

matrix n nP ×∈R  with entries 

ij
ij

ijj

A
P

A
=
∑

                                (5.2) 

5.2.2 Diffusion Process 

Let mΩ⊂ R  be a compact connected set with smooth boundary ∂Ω . 

Assume that the samples ix  considered previously are i.i.d. random variables 

with common distribution with probability density ( )p x  defined on .Ω  For 

,x y∈Ω  define the transition probability density 

2

2

/ 2

/ 2
( , )

( )

x y

x y

eP x y
e p x dx

ε

ε ε

− −

− −
=
∫

                      (5.3) 

We note that ( , )P x yε is the continuous space analog of (5.2).  In particular, it is 

indicated in [12] that in the limit n →∞  the Markov chain with transition matrix 

(5.2) converges to the Markov process with transition density ( , )P x yε . 

Following [12] define the forward and backward operators fT  and bT as 

[ ]( ) ( , ) ( ) ( )

[ ]( ) ( , ) ( ) ( )

f

b

T x P x y y p y dy

T x P y x y p y dy

ε

ε

ϕ ϕ

ψ ψ
Ω

Ω

=

=

∫
∫

                   (5.4) 

We note that the forward operator fT  characterizes the propagation of the 

distribution of a discrete time Markov process on Ω  with transition function  
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( , , ) ( , ) ( )
A

P x A P x y p y dyεε = ∫                      (5.5)                     

i.e., if ϕ  is the probability density of the distribution of the process at time 0 

then [ ]( )fT xϕ   is the density at time ε . Similarly, [ ]( )bT xψ  is the expected 

value of ( )xεψ   given that 0x x= . We note that the eigenvalues and left and 

right eigenvectors of the transition matrix P given by (5.2) converge to the 

corresponding eigenvalues and eigenfunctions of the operators fT  and bT  [54].   

We next consider the limit as the time step ε  converges to zero, i.e. the 

continuous time limit. Thus, if we let ( , )p x t  be the density of the discrete time 

process at time t  and ( , ) [ ( , )]( )fp x t T p t xε+ = ⋅   be the distribution at time 

t ε+  then 

0 0

( , ) ( , ) ( , )lim lim ( , )fT Ip x t p x t p x t p x t
t ε ε

ε
ε ε→ →

−∂ + −
= =

∂
     (5.6) 

As is defined in [12], the generators of forward operator and backward operator 

for the continuous time process are, 

0
lim f

f

T I
H

ε ε→

−
=  and 

0
lim b

b
T IH

ε ε→

−
=               (5.7) 

We note that the eigenfunctions of  fT  and bT converge to those of fH  and 

bH , respectively. Therefore, provided n  is large enough, the structure and 

characteristics of eigenvalues and eigenvectors of the discrete Markov chain P  

are similar to those of eigenvalues and eigenvectors of fH  and bH . We note 

that the continuous time process with generator bH  is a diffusion process on Ω . 
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Furthermore, as is shown in [12], if we let ( )p x  be on the Boltzman form 

( ) / 2( ) U xp x e−=  then the backward operator becomes the Fokker-Planck operator 

for the diffusion process 

2x U w= −∇ +� �                       (5.8) 

where w  is a standard Brownian motion.  

To conclude, the probability density ( )p x  of the samples X  represents 

the inherent data structure and is the density for the stationary distribution of the 

diffusion process that is assumed to govern the dynamics of the underlying 

system. The data is generated by the diffusion process with forward and 

backward operators whose eigenfunctions are similar to the eigenvectors of the 

finite dimensional Markov chain generated by the data. Consequently, the 

structure and characteristics of eigenvalues and eigenvectors of discrete Markov 

chain P  capture the intrinsic properties of the sampled data set.  

5.2.3 Spectral Analysis 

The P  matrix is the object of interest for finding the clusters. Spectral 

analysis of the Markov transition matrix, namely analysis of eigenvalues and 

eigenvectors, is employed to find the geometric structure of the data. In order to 

apply spectral theory, we assume the Markov chain is aperiodic and irreducible, 

i.e. the chain is ergodic. Then there exists an unique stationary distribution π  
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whose definition and properties is introduced in Chapter 2.  Since the similarity 

matrix A  defined by a Gaussian weighted graph is symmetric, the Markov 

matrix P  is reversible.  

Let ,  i iλ ϕ  and iψ , 0, , 1i n= −… ,  denote the thi  eigenvalue, left 

eigenvector and right eigenvector of P , respectively. Since P  is the transition 

matrix of a reversible Markov chain all of its eigenvalues are real. If the 

eigenvalues are arranged in decreasing order:  

0 1 2 11 0i nλ λ λ λ λ −≥ ≥ ≥ ≥ ≥ ≥ ≥" "  

then the spectral decomposition of the Markov matrix P  may be written as 

1

0

n
T

k k k
k

P λ ψ ϕ
−

=

=∑                          (5.9) 

and a lower dimensional approximate model can be defined as 

1

0

q
T

a k k k
k

P λ ψ ϕ
−

=

=∑                         (5.10) 

where we have retained the first q  components of the spectral decomposition. 

There are two conditions that need to be satisfied to find good 

approximation aP .  If P  has q n<  dominant eigenvalues, i.e. we assume 

0 1, , qλ λ −…  are of comparable size (close to one) and 1q qλ λ −<< , then a good 

approximate model can be defined by the first q  eigenvalues and corresponding 

left and right eigenvectors. In this case there exist q  well-identifiable clusters 

characterized by the dominant eigenvectors. However, frequently P  has not 
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obvious dominant eigenvalues all close to one. In this case we look for a spectral 

gap in the eigenvalues, i.e. we look for the first value of q  such that eigenvalues 

starting from qλ  are small and of comparable same size and 

1 1q q i iλ λ λ λ− −− >> −  for all 1 1q i n+ ≤ ≤ − . Note that aP P−  is bounded 

above by qλ , i.e. if qλ  is small the approximate model is a good representation 

of the original P  [26]. 

5.3 Cluster Analysis of Wind Farm Power Output 

In this section we present a cluster analysis for wind farm power generation 

based on real data using the method introduced in the previous sections and 

chapters. 

5.3.1 The Data 

The data used in this study are from the Centennial Wind Farm which is 

one of largest wind farms in Oklahoma. The wind farm has an array of 80 GE 

1.5MW SLE turbines, each standing 262 feet tall at its hub and the overall height 

of the structure is 389 feet.  The turbines’ location in the wind farm is shown in 

Fig. 5-1. 
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Fig. 5-1 80 turbines’ site in the wind farm 

 
Fig. 5-2 A turbine’s power output and its difference of power output 
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Fig. 5-3 The locations of 25 wind turbines 

The turbines in the wind farm are equipped with Supervisory Control and Data 

Acquisition (SCADA) system. The raw data in each channel is generated as the 

mean value of 600 sampled data points in each 10 minutes interval. Thus the 

sampled data sequence can be treated as a random process. The time-series power 

output data used for the study is based on the observations between June 1st and 

August 31st in 2007. One of the turbines had system problems during the time of 

study so there are actually 79 turbines studied. Fig. 5-2 (a) shows the power 

output of a single turbine. 

For the cluster analysis of the wind turbines of the wind farm, we found 

that the difference of SCADA time-series data between two time intervals is a 

better representation of the dynamics of the turbine than the absolute output level. 

Such difference removes drift and reflects the inherent dynamics. The difference 

is defined as   
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( ) ( 1) ( )x t y t y t= + −                       (5.11) 

where ( )y t  is time series power output data of a wind turbine and )(tx  is the 

corresponding difference. We note that )(tx  is Markov process. Table 5.1 shows 

the original and difference time series data. Fig. 5-2 (b) shows the time-series of 

the difference for the turbine shown in Fig. 5-2 (a). 

The analysis of 25 turbines at three distinct locations of the wind farm is 

presented for illustration and verification purposes. The complete analysis of all 

wind turbines of the wind farms is presented afterwards. The locations of the 

wind turbines are shown in Fig. 5-3. 

Table 5.1: Original and difference series data 

Turbine 1 Turbine 2 .   .  . Turbine 25 Time 

series y(t) x(t) y(t) x(t) y(t) x(t) 

1 -3.7 0.46 33.81 -28.9 91.38 -52.2 

2 -3.24 0.39 4.847 1.473 39.17 17.69 

3 -2.85 6.382 56.86 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

10409 150.6 -53.3 1.552 -5.75 133.6 2.8 

10410 97.34  -4.20  

 

 

 

. 

. 

. 

136.4  
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5.3.2 Construction of Markov Chain 

In order to measure the likelihood of any two turbines having similar 

output dynamics, a similarity matrix and the corresponding Markov transition 

matrix needs to be constructed. The data of the difference is defined by (5.11), 

which can be seen as a set of random processes 1 25{ , , }X x x= … , where ix  is a 

discrete random process  for the i th turbine. The data corresponding to each 

time interval are listed in Table 5.1. The time-series data are used to construct the 

Markov matrix. In order to weigh each difference at same size and avoid 

choosing very big value of σ  in (5.1), the processes are rescaled by 

))(max(/ XabsXX = . Based on (5.1), the similarity matrix 25 25A ×∈R is 

calculated as 

1 0.3575 0.0591 0.058
0.3575 1 0.0587 0.0565

0.0591 0.0587 1 0.3775
0.058 0.0565 0.3775 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % # #
"
"

 

where we have chosen 18σ = . 

After normalization of A  as in (5.2), we can get Markov transition matrix 

25 25P ×∈R  and 

0.2657 0.0950 0.0157 0.0154
0.0864 0.2416 0.0142 0.0137

0.0159 0.0158 0.2684 0.1013
0.0162 0.0158 0.1054 0.2791

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % # #
"
"
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5.3.3 Spectral Analysis 

This subsection describes how to determine the number of disjoint wind turbines’ 

clusters. Based on the spectral analysis in the Section 5.2, the eigenvalues and 

eigenvectors of  P  contain the information about the characteristics of cluster 

partitions. LAPACK routine [37] is used to calculate the eigenvalues, 

eigenvectors of matrix P  and stationary distribution π . Sorting the eigenvalues 

of the Markov transition matrix P  in descending order, i.e. 1i iλ λ− ≥ , 

 0, , 24i = …  gives 

[ ]

[ ]
0 1 2 3 4 5 24

  1 0.5707 0.4767 0.3767 0.3439 0.3002 0.1344

λ λ λ λ λ λ λ λ=

=

"

"
 

We note that P  has not  ( 1)q q >  dominant eigenvalues which are close to one 

and 1q qλ λ −<< . However we note that the gap between the third and fourth 

eigenvalues is much larger than the gap between all higher indexed eigenvalues 

and thus we pick 3=q . Furthermore, aP P−   is small and changes only 

slightly for q  larger than 3. Therefore a good approximate model is obtained 

with  3=q , i.e. the twenty-five wind turbines can be grouped into 3 disjoint 

clusters based on similarity of their dynamics.  

5.3.4 Sign Structure Method 

Once the number of clusters is determined, we need to identify the wind 

turbines belonging to each cluster based on the sign structure identification 
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algorithm described in Section 4.2.1. The sign structure is characterized by the 

right eigenvectors of P . In this Example, the 3 most stable’s sign structure 

collection SS  after rescaling are {[1 -1 -0.856], [1 -0.742 1], [1 1 -0.1856]} 

which represent sign structure {[+ - -], [+ - +], [+ + -]} and the threshold T  is 

0.1125. Then three clusters can be identified effectively by assigning each wind 

turbines to “nearest” cluster. 

5.3.5 Diffusion Distance Method 

Once the number of clusters is determined, we need to identify the wind 

turbines belonging to each cluster based on the diffusion distance method 

described in Section 4.2.2 The defined diffusion distance is characterized by the 

eigenvalues and the corresponding right eigenvectors of P . 

The diffusion distance for any two wind turbines is calculated using (4.5). 

For example, the distance between turbine 1 and turbine 2 can be calculated as 

follows,  

22
1 2 1 2

2

0 0 0

1 1 1

2 2 2

2

( , ) ( ) ( )

( (1) (2))
( (1) (2))
( (1) (2))

0
0.009 0.0001 
0.0079

T TD x x e e

λ ψ ψ
λ ψ ψ
λ ψ ψ

= Ψ −Ψ

−
≈ −

−

= − =
−
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Similarly, the diffusion distance for other turbines can be calculated one by one. 

In this case, three clusters can be identified effectively if using the algorithm 

proposed in Section 4.2.2. 

5.3.6 Results and Discussion 

The proposed method has been applied to cluster analysis of wind turbines 

of the wind farm. The results are shown in Table 5.2, Table 5.3 and Table 5.4. In 

order to verify the effectiveness of the method, twenty-five turbines are randomly 

ordered when we construct the Markov matrix, and the result of clustering is 

shown in Table 5.3. Fig. 5-4 and Fig. 5-5 show the average power output of each 

turbine in each cluster as well as the standard deviations. The different level of 

the average and the deviation in each cluster shows the clustering analysis for 

wind turbines exactly captures the different characteristics of power output.  The 

result of cluster analysis of 79 turbines of entire wind farm is shown in Table 5.4.  

There are some unique features identified when the proposed method was 

implemented for cluster analysis of wind turbines in terms of real power output. 

First of all, since wind speed fluctuates sharply from minute to minute, the power 

output of wind turbines varies fast even in the average value of 10-mintues 

interval. Whether power output or difference of power output is applied, the data 

range is always [0, 1500] or [-1500, 1500], respectively. When we construct the 
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Markov matrix by building a graph with Gaussian weight, such large data values 

will make it difficult to select proper σ  to avoid a sparse P  matrix or 

reducible P  matrix. So in the implementation, we rescale the data into the range 

[-1, 1]. We note that from (5.1) this is equivalent to choosing a scaling value for 

σ . The other issue is how to efficiently and correctly assign wind turbines to 

each cluster. In order to avoid some wind turbines around the “separation line” 

between clusters which may not be correctly clustered, the algorithm proposed in 

Section 4.2.1 is recommended. 

In summary, a large scale wind farm is divided into different clusters by the 

method developed in Section 5.2. Each cluster is a collection of wind turbines 

which have similar power output dynamics. So the wind farm can be modeled by 

several typical turbines each of which represents a cluster. The turbines and the 

coordination between the turbines will play an important role in solving the 

problems addressed by current research [55] [56] [57] [58] [59]. Thus, the 

clustering of large wind farms will promote and improve integration of wind 

farms. 

 

 

 

 



 91

Table 5.2: Clustering results for 25 wind turbines 

Index of 25 wind turbines 1 2 3 … 24 25 

q  3 

Sorted eigenvalues 1 0.5707 0.4767 

 Cluster 1 Cluster 2 Cluster 3 

Index for each cluster 1-10 11-15 16-25 

 

Table 5.3: Clustering results for 25 wind turbines (2) 

Reindex of 25 wind 

turbines corresponding 

each one in Table I 

8 18 14 4 10 22 15 13 23  2 21 17  

9 19 12 16 6 20 3 24 5 25 7 1 11 

q  3 

Sorted eigenvalues 1,  0.5707, 0.4767 

 Cluster 1 Cluster 2 Cluster 3 

Index for each cluster 8 18 14 4 

10 22 15 

13 23 2  

21 17 9 19 12 16 6 20 3 24 5  

25 7 1 11 
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Table 5.4: Clustering results for 79 wind turbines 

Index of  79 wind 

turbines 

1 2 3 … 78 79 

q  2 

Sorted eigenvalues 1  0.1912 0.1244 

 Cluster 1 Cluster 2 Cluster 3 

Index for each 

cluster 

1 2 3 4 5 6 7 8 9 

10 20 21 22 23 24 

25 26 27 28 29 30 

31 32 48 49 50 51 

52 53 54 55 

11 12 13 14 15 

16 17 18 19 35 

36 37 38 39 40 

41 42 43 44 45 

46 47  

33 34 56 57 58 

59 60 61 62 63 

64 65 66 67 68 

69 70 71 72 73 

74 75 76 77 78 

79 

 

 

 



 93

0

500

1000

1500

1 60

A
v
e
r
a
g
e
 
P
o
w
e
r
 
O
u
t
p
u
t
 
o
f
 
E
a
c
h
 
W
i
n
d
 
T
u
r
b
i
n
e
 
(
K
w
)

Cluster 1

Cluster 2

Cluster 3

 

Fig. 5-4 Average power output of each turbine  
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Fig. 5-5 STD of power output of each turbine 
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6 CONCLUDING REMARKS AND FUTURE RESEARCH 

In this dissertation, we develop a comprehensive model identification 

approach for complex multi-modal system given data either from real system 

operation or large scale dynamic simulation models. The approach is based on a 

transfer operator approach for the description of the system dynamics and 

spectral theory for this operator for characterizing the system modal behavior. 

We don’t only address the theoretical aspects of the developed techniques but 

also algorithmic development, numerical implementations and case studies. 

The developed identification strategy entails (i) model reduction of 

nonreversible Markov chains and the identification of number of modes; (ii) the 

identification of the domains or regions in state space where the system spends 

a long time between transitions and the identification of dynamics that 

characterize the transitive behavior between components (dynamics in slow 

time scale); (iii) modeling and identification of local dynamics inside each 

domain (dynamics in fast time scale). In part (i), we formulate nonreversible 

Markov process for modeling the complex system dynamics, develop spectral 

properties for nonreversible processes and present the low dimensional 
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approximations for general nonreversible Markov chains. In part (ii), we 

propose diffusion distance method and sign structure method both of which are 

related to eigenfunctions of a multiplicative reversible Markov process to 

identify metastable components of the state space and transition dynamics 

between these metastable components. In order to alleviate the computation 

burden of eigenvalues and eigenvectors of the multiplicative reversible Markov 

chain which is subject to the exponential increase of dimensionality, we also 

present an approximation technique which is based on Nyström extension 

method. In part (iii), in each metastable component, we choose subspace 

identification methods (SIMs) with estimation of noise sequence to identify 

local system dynamics which have a stable point attractor and are 

approximately linear around the point. Furthermore, we illustrate the 

construction of the approximate and reduced systems, identification of 

multi-modal dynamics and computation of approximate eigenfunctions in a 

couple of numerical examples. 

We then develop a novel approach to address a pressing issues associated 

with penetrations of large scale wind farms. The method combines Markov 

chain techniques to reduce the complexity of power output dynamics of a large 

scale wind farm. The proposed method uses time-series power output of all 

turbines of the wind farm to construct a Markov matrix by building a graph with 
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Gaussian weights.  The number of clusters is identified by spectral properties 

of the Markov chain and wind turbines classified into different clusters by both 

diffusion distance method and sign structure method. The implementation of the 

approach in a large scale wind farm in Oklahoma is presented step by step. The 

results of clustering for both twenty-five and seventy-nine wind turbines 

demonstrate that the proposed method is very effective for clustering the 

different characteristics of power output in the wind farm. 

In this dissertation, we complete the theory for identification of 

metastable components and modal dynamics for nonreversible Markov chains 

and develop subspace type identification procedures for identification of local 

dynamics for systems that exhibit strong point attractor behavior in each 

component. In the future, the research will be extended to systems with noisy 

output measurements and control inputs. The future research will extend the 

theory developed for uncontrolled Markov processed to the case of controlled 

nonreversible Markov process. This will involve the identification of metastable 

components in the state-control space and the identification control dependent 

modal dynamics. Furthermore, the research will extend identification of local 

nonlinear dynamics (e.g. periodic or chaotic behavior) to both of the non 

controlled case and the controlled case in each component. 

In addition, we present a novel methodology for cluster analysis of wind 



 97

turbines in a wind farm based on its power output dynamics. In the next step, 

we will develop a wind turbine model with control input to represent each 

cluster and develop a control strategy for the whole wind farm. For example, if 

the control input is a function of the instantaneous wind speed, we may use an 

equivalent wind velocity in the cluster to drive the representative wind turbine 

model in some cluster. Then control strategy can be developed based on 

estimation of wind speed and coordination of each representative dynamic wind 

turbine model. In addition, the power prediction of a wind farm can be made 

more efficient and accurate by using artificial neural networks (ANN), mixture 

of experts (ME), or support vector machine (SVM), if those methods are 

applied to each cluster independently.         
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