
A DEVELOPMENT ENVIRONMENT FOR

PARALLEL ALGORITHMS

BASED ON LINDA

By

MOHAMMED A. AL-ABDULKAREEM

Bachelor of Science in Computer Science

King Saud University

Riyadh, Saudi Arabia

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1993

OKLAHOMA STATE UNIVERSITY

A DEVELOPI\.ffiNT ENVIRONMENT FOR

PARALLEL ALGORITHMS

BASED ON LINDA

Thesis Approved:

Thesis Advisor

t31~,c~G

Dean of the Graduate College

11

ACKNOWLEDGMENT

I wish to express sincere appreciation to Dr. K. M. George, my advisor for his

scientific guidance and continuos encouragement throughout my graduate program. I

thank Dr. B. Mayfiled and Dr. K. A Teague for serving on my graduate committee and

for their scientific guidance. My thanks also go to Dr. Miller for his help and suggestions.

I am also thankful to my respected parents and all my family members for their

love and support. A special thank goes to my wife, Muna, for her encouragement and

sacrifices.

Ill

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

II. LITERATURE REVIEW

Parallel languages

Simulation ofParallel Machine

Monitoring and debugging Tools

III. THE ABSTRACT MACHINE

The Design of The Abstract Machine

The Instruction Set and Interpretation of Algorithms

IV. THE SYSTEM DESIGN AND IMPLEMENTATION

The Simulator Design .. .

The Relations

The Control Elements

The Data Sets

The Simulator Implementation

The Processor Simulation

The TS Class

The Simulator Class

V. WINDOWS INTERFACE

Windows Programming .. .

Programming Using OWL

Classes and Functions Used in Linda Tool Application

The Interface with Simulator

IV

Page

3

3

6

8

12

12

14

21

21

23

23

24

25

26

31

33

36

36

39

40

48

Chapter Page

VI. THE USER INTERFACE 49

Microsoft Windows Elements . 49

Main and Child Windows Components . 50

The "File" Menu Item . 51

The "Single Stepn Menu Item . 53

The "Debug" Menu Item . 54

The "Show I Hide" Menu Item . 54

The "Help" Menu Item . 56

VII. FUTURE WORK . 57

VIII. CONCLUSION . 59

REFERENCES . 61

APPENDIXES

APPENDIX A - THE INPUT FILE FORMAT 65

APPENDIXB - SYNTAX DESCRIPTION OF X-LINDA 68

APPENDIX C - THE ALGORITHMIC LANGUAGE
X-LINDA . 71

v

LIST OF TABLES

Table Page

1. The Input/Output Instructions . 16

2. Arithmetic Instructions . 17

3. The Control Instructions . 18

4. The Tuple Space Operation Instructions 19

5. The Data Members ofProcessor Class . 30

6. Data Members efTS Class... 33

7. Data Members of Simulator Class . 34

8. Data Members of Main Window 43

VI

LIST OF FIGURES

Figure Page

1. The Three Operations put, get and readt 6

2. The Processor Structure . 13

3. The Architecture of The Abstract Machine . 14

4. The Three Phases of Instruction Cycle............................. 15

5. General Instruction Format 16

6. Global View of The System Design 22

7. The Tuple Format 25

8. Symbol Table Format 26

9. The Processor Class . 27

10. The Instruction Class 28

11. The TS Class 32

12. The Simulator Class 35

13. Sequential and Message Driven Programming . 3 7

14. Some Windows Data Types

15. Hierarchy of Application Class

V11

38

41

Figure Page

16. Hierarchy ofWindow Classes 44

17. Hierarchy ofDialog Classes . 47

18. Simulator-Windows Interaction . 48

19. Elements ofWindows.. 50

20. The Application Main Window..................................... 51

21. Linda Tool with Child Windows 52

22. The Main Menu Bar 53

23. An Example oflnput Source Code 67

Vtii

CHAPTER I

INTRODUCTION

In the past decade parallel computers have become more important and popular

because of the need to process huge and complicated scientific computations. Therefore,

parallel programming is gaining the same popularity and importance. Many parallel

programming languages are proposed and implemented which are designed to support

software development in a parallel environment. Consequently, parallel algorithm

development has emerged as an important area of research. Attention is also focused on

the development oftools and environment for the development of parallel programs.

This thesis focuses on the design and implementation of a development tool for

par~llel algorithms written using the Linda TM approach1. This tool is referred by the name

11 Linda Tool 11 in this thesis. It is implemented on IB~ personal computers with

Microsoft® Windows TM_ Tools related to the Linda model of parallelism have been

developed on other systems also. But, to my knowledge this work is the first one on

personal computer environment. The design of Linda Tool includes several subsystems.

These include an abstract machine, a debugger and a user interface.

1 Linda is a registered trademark of Scientific Computing Associates.
IBM is a registered trademark of International Business Machines Corporation.
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

1

2

This tool is designed to help the user understand the algorithm behavior in parallel

processing environment and assist in the design of correct algorithms. "Linda Tool" may

be used as a teaching tool to allow experimentation. It can help the students understand

the concepts of parallel and concurrent processing in general, and the Linda approach in

particular.

This thesis contains seven chapters including this. The second chapter reviews

some of the work related to the thesis. It covers the following areas: parallel languages,

simulation of parallel machines, and debugging tools. The third chapter presents the

high-level design and the instruction set architecture of the abstract machine to be

simulated. Chapters four and five, describe the design and implementation of the system

including the simulator and the debugger. Chapter four covers the simulator design and

implementation for the processors and tuple space. Chapter five covers the debugger

design and implementation including the programming ofWindows interface. The sixth

chapter describes the system from the user point of view. It includes the description of

the main and sub menus and the child windows. The last chapter provides suggestions for

future improvement of the system and conclusion.

CHAPTER II

LITERATURE REVIEW

In this chapter the work related to this project are reviewed. The areas reviewed

are broadly classified as parallel languages, simulation and debugging tools.

Parallel Languages

In parallel computing we need computers that have more than one processor to

do the computations in parallel. Parallel computers may do parallel computation in

different ways. Some can execute the same instruction on different data at the same

time. For this purpose, sophisticated compilers may be used to make sequential

programs run on paral1el computer. However, the power of compilers is limited, and

programming the solutions of difficult problems on the parallel machines reuires

parallel programming languages. Willie Schatz [Wil89] calls it a good news that several

parallel machines are being developed and at least a few programs, mainly applications,

have been converted to run on these machines. Mani and Kesselman [KMa91] predict

that in the future, because of the continuos advance in VLSI, parallel software and

communication technology, it will be less difficult to develop efficient parallel program.

3

Many parallel programming languages have been developed by researchers,

some of which are extensions of sequential languages such as C and Pascal with parallel

or concurrent statements. There are others built to be parallel languages such as Ada.

The CSP programming notation (1987) provides a theoretical model for parallel

programs. CSP has influenced the development of several programming languages such

as Occam which is a derivative of CSP. Occam is a parallel programming language

associated mainly with transputer and contains a small number of mechanisms:

assignment, input and output. Unlike Occam, SR (Late 1970s) contains a large variety

of mechanisms. SR can be used to implement algorithms for both distributed and shared

memory computations. Lo and others [VLo90] described LaRCS, a language that

enables users who program parallel algorithms to specify information about static and

dynamic communication behavior of the algorithm. Information provided by the user is

used in mapping parallel computations to processors.

A radically different approach to parallel programming is proposed by

Gelemter in Linda [Nic89]. Linda is not a programming language rather it is an

approach for para11e] programming. According to Sudhir and others [Suh86] Linda

operators when added to any language turns that language into a parallel programming

language. Linda centers on a special memory model called the tuple space 11TS", the unit

of storage is called a tuple rather than a byte or bit or a full word. The units of this

memory are accessed by logical names and not by addresses. A logical name is any

combination of tuple values. The tuple space consists of two types of tuples. Gregory

Andrews [Ger91] describes the two types as passive data tuples and active process

tuples. Process tuples are routines executed asynchronously. The active tuple is

4

5

generated by the operator eva/ which creates a process tuple. The following example

shows the usage of the eval operator :

Consider the statement

eval("tag11,expr1,expr2, ,exprn)

In the above statement, "tag" is a string of characters and each expression can be

either a statement or a function. The result of the evaluation of the functions will

become later a passive data tuple and stays in the tuple space until a process removes it

using the get operation. The other operations are related to data tuples only. They are2 :

1. readt : This operation reads a tuple from the tuple space, and the tuple is not

removed from the tuple space. If the matching tuple is not in the tuple space the process

execution is suspended until a matching tuple become available in TS.

2. put : This operation places a new tuple in the tuple space, TS may contain

more than one tuple with the same contents.

3. get : This operation removes a tuple from TS. If no matching tuple is found

the execution of the process is suspended until the tuple become available in TS.

Figure 1 illustrates the three operation and the following are examples of the

usage of these operations:

readt("tag" ,ltem1 ,Item2, •• ,Itern,J

'In this thesis, put(..) is used instead of out{ ..), gel{ .. } instead of in(..) and rearll(..) instead of read(..).

Furthermore, the tuples in Linda can not be updated [Sud86] but they may be

removed, updated and then returned toTS. This makes it possible for many processes to

access TS simultaneously.

("sum",5) ("sum",5)

put("sum",S) get("sum,Jnteger) readt("mm",lnteger)

Figure I. The Three Operations put, get and readt.

Simulation ofParallel Machine

Simulators are used to predict the behavior of systems (machines) in order to

save time when designing implementation and to aid in experimentation. Even though

simulation alone can not guarantee the success of the design [Mar86], a simulator can be

used to understand the behavior of a system, and to provide some details of weakness

and strength of the system [John91, VBar90].

6

One good example for use of simulation is the Chief project [John91] which

provides a powerful environment to study parallel systems. Chief provides an integrated

set of tools used to create, run, debug and analyze simulations of parallel computer

systems. The system has a powerful graphical user interface based on X 11 window

system. The system has two inputs: the benchmark programs and an architecture

specifications. The simulation components are designed using high level language.

CARL [Carl90] is a Computer Architecture Research Language used to describe the

simulation models of computer architecture in the Chief project. Another example of

simulation is the distributed parallel simulation of Hopfield's Neural Network. Barbosa

and Lima [VBar90] provide a design and implementation of one class of neural

networks introduced by Hopfield. In their paper [VBar90] they describe how to perform

the simulation of Hopfield's networks in a generic distributed system for parallel

processing and how they implemented the simulation in Occam. Finn and others

[AMF91] presented a methodology for modeling and simulation of a multiprocessor

architecture. The goal of simulation is to predict early the multiprocessor performance

to be used by hardware and software developers. The simulation was based on

commercial and custom programs. A custom simulator called TIME_EST was written

and used to predict the actual execution time. They used also, a custom program for

analysis namely PARAMETERS and STALL . The multiprocessor performance was

evaluated using modeling and simulation in (ADAS) an Architectme Design and

Assessment System.

Fredrik Dahlgren [Fre91], explored a simulation model that suppmis a very

accurate modeling of multiprocessors with a hierarchical, packet switched

7

interconnection network and private cache. In his report he presented the design and

implementation of an MIMD program driven simulator that executes real code. The

modeling of the multiprocessor can be very accurate because every action in the

processors is simulated, and therefor the architecture dependency problems does not

exists.

An efficient method for simulating instruction sets was described in [Chi91].

The method aimed to reduce execution time for instruction set simulators. The method

uses compilation approach to map the assembly language of the simulated architecture

to the real hardware. This method uses the C in-line macro. Each instruction, to be

simulated, is written as a macro and the assembly language is coded as C functions.

The paper [Chi91] induded a solution for the branching problem that will arise when

using the compilation approach.

Monitoring and Debugging Tools

"Debugging is said to be the latest established area in software development"

says Keijiro and others [Keij91], that's why most software houses attach a debugger to

its compilers. Debugging of sequential programs is based on inserting break points and

test the data until the erroneous instruction is found, also it is based on the centralization

of control [FB83]. According to Araki and others [Keij91} the most primitive way to

debug programs is to insert debugging statements to print the value of data and what

statement was executed. On the other hand, the debugging of parallel programs is more

difficult because it is difficult to repeat the execution that outputs an error [Keij91].

8

9

Also when a debugger is active it may affect the timing of the processors. With the new

development in graphical user interface, debuggers need to be implemented using these

user interface to be easy to learn and remember. Bovey [JDB87], describes the ups

source level debugger which use the graphical interface. The debugger was implemented

to debug the C and Fortran source code. Bovey also, gives an overview of some design

decisions for a debugger in general and graphical interface as well.

Griffin and others [Jam88] have described a debugger for parallel processes

called mtdbx . The debugging system mtdbx is based on the Sun Microsystems, Inc.

debugger dbx!dbxtool. It is a source level debugger for C, Fortran, Pascal and Modula 2.

Because the system was developed for multiprocessing research at Los Alamos National

Laboratory (LANL), in which scientific code are Fortran based, the debugger was used

to debug FORTRAN codes on a Sun workstation using a parailel processing simulator, a

window and mouse based debugging tool, and real time display routines. The window

based system has a master control window that runs the users main program, a window

for .each active process and a window for task state display, to allow studying the

behavior of parallel processes.

VIFOR (Visual Interactive FORtran) [Vac90] is another Fortran based tool. This

tool displays the Fortran program in two forms: source code and graphical

representation. In the graphical form the program is represented as graph of icons and

lines connecting the icons. The graph has two columns one for data icons and the other

for main program, subroutines and functions icons. The connecting lines and arrows

represents the relations. The data model used in VIFOR is very simple, it has four data

classes and three relations. The two main classes are: modules and declarations. The

10

declarations are divided into subclasses: processes and commons (global data). The three

relations are: belong to, call and reference.

Another tool is CBUG [Jas85], a C source level debugger designed to debug

concurrent processes that uses UNIX system calls fork(), exit() and wait() for

concurrent execution. CBUG provides a number of the basic debugging tools such as:

single stepping, breakpoints, snapshots and execution tracing. The experimental version

of CBUG was implemented using debugging hooks in the source code. The source code

is compiled with the debugger. The CBUG tool uses a windows friendly user interface

to make the interface easy to understand and memorize.

Durra [Denn89] is a language to describe the tasks to be initiated and executed as

concurrent processes for constructing a distributed application running on networks of

heterogeneous processors. The Durra application debugger I monitor is used to find bugs

in Durra applications, tune performance and control the execution of the application.

Durra debugger I monitor had two levels of debugging: the application level and the

source level. The application level provides the abstracted Durra view, in which the tasks

are treated as black boxes connected together. In the source code level, the Durra

monitor I debugger will not debug the source code of different languages on

heterogeneous processors, but it will allow the user to use the existing language source

level debuggers.

A debugger for MuTEAM Was discussed in [FB83]. MuTEAM is a concurrent

language based on CSP. The debugger has two distinct tools: one is a sequential

debugger to find the errors in sequential functions and the second is to compare the

behavior of the program with a given description ofthe program behavior. In the

sequential debugger, the user may define the value of the messages received by the

debugged process.

11

Some of programming tools are not only used for debugging and monitoring, but

also for teaching and demonstration purposes. Vestal is an instructional tool that provides

a graphical animation of concurrent programs written in Ada. Vestal (Visual educational

system for tasking in Ada language) has two dimensional color animation used for

teaching Ada concurrency. The system is based on graphical workstation supporting

windows interface. The Ada tasks and other concurrency elements are represented using

graphical symbols. A good feature is the use of colors, each task has a color and all

symbols related to the task have the same color. One drawback is that the preprocessing

ofthe source program to be animated is done by hand, also some of the Ada concepts

does not have an adequate graphical representation.

The work presented in this theses has been influenced by ideas found in the

literature described in this chapter. Insted of following one scheme or another, new ideas

have been developed and implemented.

CHAPTER Ill

THE ABSTRACT MACIDNE

This chapter is devoted to the description of the abstract machine. The first

section describes the high-level design of the abstract machine, and the second section

describes the instruction set architecture of the abstract machine and the interpretation

scheme.

The Design of The Abstract Machine

Parallel algorithms based on the Linda model need to satisfy specific

requirements. Some of the requirements are: a multiprocessor parallel system to

efficiently run parallel algorithms, an associated abstract memory to represent the tuple

space and a kernel to control and handle the access of tuple space. The abstract machine

is designed to satisfy these requirements. The machine model consists of a set of

independent identical processors and a tuple space. The model is a multiprocessor

architecture in which each processor has its own memory where the instructions and data

are stored. The processor architecture is based on Von Neumann model and the

organization of a processor is shown in Figure 2. The processor has a control and

computing unit that includes three special purpose registers: namely instruction pointer,

12

13

jump flag and busy flag. The instruction pointer (IP) contains the address of the

instruction to be executed. The jump flag (JF) contains the result of compare instruction

that determines the action of jump instruction. The busy flag indicates whether the

processor is loaded and running or not. Each processor also has an Input/Output channel

to accept the user's input and to produce output to the user. The instructions for a

processor operates on data stored in the processor memory or operates on tuples located

in TS. The conceptual structure of the abstract machine is shown in Figure 3.

Control and
Computing
Unit

Input/Output

Figure 2. The Processor Structure.

Instruction
Segment

Data
Segment

Control
&

Memory

Control
&

Memory

Control
&

Memory

Control
&

Memory

Figure 3. The Architecture of The Abstract Machine.

The Instruction Set and Interpretation of Algorithms

The design of the machine model uses a small set of instructions. An algorithm

contains sets of sequences of instructions. The sequences can be executed one at a time

or in parallel, but the instructions within a sequence are executed one at a time. Each

14

15

instruction will go through three phases in its execution cycle: fetch, decode and then

execute. In the fetch phase the instruction pointed to by (IP) is fetched from the memory.

The operator part of the instruction is decoded, then in the execution phase the ~

referenced memory or tuple is located to perform memory or tuple space update. The

(IP) is updated in the execution phase depending 'on: the executed instruction. In Figure

4, the three execution phases are shown. The instruction set of the abstract machine, as

defined in this project, is shown in Table 1, Table 2, Table 3, and Table 4. The instruction

format in Figure 5, shows the general format where each instruction consists of: op-code

and two operands. An operand can be a memory reference, a pointer to tuple, a jump

address or a pointer to a subroutine to execute.

Figure 4. The Three Phases oflnstruction Cycle.

op-code first operand second operand

Figure 5. General Instruction F annat.

TABLE 1

THE INPUT/OUTPUT INSTRUCTIONS

Instruction Op-Code Syntax Function

RDI 14

WRO 15

RDI A,O

WRO A,O

Read input into memory location

pointed by first operand. The second

operand is always zero.

Write output from the memory

location pointed by the first operand.

The second operand is always zero.

16

17

TABLE2

ARITHMETIC INSTRUCTIONS

Instruction Op-Code Syntax Function

ADD 1 ADD A,B Add the contents of two memory

locations pointed by A and B, and

place the result in the memory

location pointed by A.

SUB 2 SUB A,B Subtract the contents of the memory

location pointed by second operand

from the contents of memory location

pointed by the first operand and the

result is placed in memory location

pointed by A.

MUL 3 MUL A,B Multiply the contents of the two

memory locations pointed by A and B

and place the result in the memory

location pointed by A.

DIV 4 DIVA, B Divide the content of memory

location pointed by the first operand

by the none zero contents of memory

location pointed by the second

operand and result placed in memory

location pointed by the first operand.

18

TABLE 3

THE CONTROL INSTRUCTIONS

Instruction Op-Code Syntax Function

HLT 0 HLT 0,0 Halt the execution. The halt

instruction should be the last

instruction in instruction sequence.

JMP 5 JMP A,O Jump unconditionally to the address

specified in first operand, second

operand is always zero.

JMZ 6 JMZ A,O Jump to the address specified in first

operand if the jump flag is zero.

JGT 7 JGT A,O Jump to the address specified in first

operand if the jump flag is greater

than zero.

JLS 8 JLS A,O Jump to the address specified in first

operand if the jump flag is less than

zero.

CMP 9 CMP A, B Compare the two operands and sets

the jump flag accordingly. The jump

flag value is zero if the two operands

are equal, less than zero if the first

operand is less than the second

operand, and greater than zero if the

first operand is greater than the

second operand.

TABLE 3 (Continued)

Instruction Op-Code Syntax Function

END

RET

Instruction

PUT

GET

RDT

EVL

16

17

END A,O End of the evaluated subroutine,

remove the active tuple in first

operand from TS.

RET A, B End the evaluated subroutine, remove

the active tuple pointed to by first

operand A from TS, and add new

data tuple pointed by the second

operand B toTS.

TABLE4

THE TUPLE SPACE OPERATION INSTRUCTIONS

Op-Code Syntax Function

10 PUT A,O Put the tuple pointed to by the first

operand A into TS.

11 GET A,O Get the tuple pointed to by the first

operand A from TS.

12 RDT A,O Read the tuple pointed to by the first

operand A from TS.

13 EVL A,O Evaluate the function pointed by the

first operand A, and add an active

tuple into TS.

19

20

The instruction set is divided into four categories: Input/Output instructions,

Arithmetic instructions, Control instructions and TS operations. The Input/Output

instructions are RDI and WRO. The arithmetic instructions include ADD, SUB, MUL

and DIV. The control instructions include ID..,T, JMP, JGT, JLS, CMP, END and RET.

The TS operations include PUT, GET, RDT and EVL. The meanings of the instructions

are listed under the column "Function". The processors use the TS as a way for

communication and synchronization. There is no direct link between the processors. One

processor is loaded with the main function which will cause other processors to be loaded

in case of instruction EVL. Once a processor is loaded it continues running independently

unless it executes a TS instruction.

CHAPTER IV

THE SYSTEM DESIGN AND IMPLEMENTATION

In this chapter and the following one the design and implementation of the system

is described. This chapter contains the simulator design and implementation. The first

section is an overview of the global design and describes some design issues of the

system. The second section contain an implementation description ofthe simulator. The

implementation of the user interface and the simulator and windows interfacing are

described in the following chapter.

The Simulator Design

In this project several decisions were made to satisfy the following design

objectives:

• Keep the conceptual view of system components (tuple space, processor).

• Allow the user to see the information and data associated with different elements as

needed.

• Allow the user to control the starting and stopping the algorithm execution at any

time.

The remainder of this section is a global overview followed by a brief discussion

of the design issue.

21

22

The overall design of the system in Figure 6, illustrates the major components of

the system and the relation between these components. The components are divided into:

Control elements and Data sets, and the relations are: direct control, indirect control and

data flow. The three major control elements are: Debug window, Simulator kernel and

Processor. The user has the control of the debug window; therefore he/she has the

control over all the system. The major data sets are: Tuple space, Tuple table, Symbol

table and Source code. The rest ofthis section describes the major components and the

relations linking these components.

Direct Control
InDirect Control ·>
Data Flow)>

Figure 6. Global View of The System Design.

23

The Relations

Three types of relations are difined: direct control, indirect control and data

flow. If A has a direct control over B, then A can directly call B as function. If A has

indirect control over B, then A can not call B as a function but it will activate B using a

message send from A to B (more detail regarding this issue presented in the next

chapter). If A can access the information and data in B, then there is data flow from B

to A.

The Control Elements

A control element is the component that does some computation and activates

other control elements. Debug window is responsible for user interface and information

display, therefore, it is the only one accepting interactive input from the user. The debug

window has access to the tuple space to view its contents and to the symbol table to

display the symbolic names of data.

Simulator kernel does most of the actions that are part of the system

initialization, thus it reads the source code to initialize the system buffers. Simulator

kernel also initializes the symbol table with the symbolic names of the data to be used

by the debug window and initializes the tuple table with the format of tuples to be used

later by the processor. Simulator kernel need to have some control on the debug window

to update information displayed to the user, since debug window is only controlled by

the user an indirect control is used in this case.

24

Processor's main task is executing the code, thus it has access to tuple space to

place and remove tuples. Processor has access to tuple table to get the format of tuples

to be placed in tuple space or the format of tuple to be read or removed. After execution

the user interface need to be updated, indirect control is used to control the debug

window.

The Data Sets

A data set is the component which does not involve any computation and does

not have control over other components, rather it contains information or data. Tuple

space is the most important data set in the system. The information it contains are

tuples, and they are stored in a way to allow the access of normal tuple operations (put,

get, readt and eval) and the peeking of information by the debug window using

friendship.

Tuple table is used to keep the format of the tuple to be placed in or removed

from tuple space. When Processor executes a tuple space instruction the instruction

contains a pointer to the format of the tuple. As in Figure 7, the format includes: tag,

number of elements in tuple, type of tuple and pointer to tuple elements. Symbol table

contain: the symbolic representation, the scope and the type of the data. The format of

symbol table is shown in Figure 8.

Debug window accesses the symbol table to display the symbolic names of data.

The data values are internal to the processor and it has a pointer to its symbol table

entry. Source code is accessed by the simulator kernel only and contains the users

25

algorithm with extra information including the contents of symbol table and tuple table.

The format of source code file is presented in appendix A.

The format of tbe data tuple ("tagl ",4,7):

tag

"tagl"

number
of elements

2

active
flag

0

pointer to
elmements

Figure 7. The Tuple Format.

The Simulator Implementation

=

The simulator for the abstract machine described in the previous chapter is

implemented using C++. This language was chosen for its support of object oriented

programming and for its efficiency. Moreover, it supports the programming of

Microsoft Windows using Borland C++ compiler and its Object Windows Library.

3

4
5

Symbolic
name .

"ADD"
"SUM"
"Value"

Scope Type

3 p
3 v
10 v

Figure 8. Symbol Table Format.

The implemented simulator consists of three major parts that mutually interact:

26

the processor, the tuple space and the simulator kernel. Each of these parts is defined as

a user defined object type (or class in C++ terminology). A class has data members to

represent the types and function members to implement operations on the data members.

The simulator components are objects defined from the classes. The following sections

describe the three main classes: Processor, Tuple Space and Simulator kernel.

The Processor Simulation

For the sake of implementation simplicity, the current implementation of the

simulator assumes a four processor machine. As outlined in the previous chapter, each

processor has a memory, an instruction pointer, a jump flag, and a busy flag. The busy

flag is used by the simulator kernel only and does not affect the execution sequence. On

the other hand, TS is not part of the processor. The TS can be accessed only by the

designated set of operations. Figure 9, shows the processor class definition.

class Processor {
II process name
II output string

char procnarne[STR_LENGTH];
char output[STR_LENGTH];
Inst Imemory[IM_SIZE]; II instruction segment

II data segment int Dmemory[DM_SIZE);
int symptr[DM_SIZE];
int ip; II
int jf; II
int busy; II

public

II pointer to symbol table
instruction pointer
jump flag
busy flag

Processor(); If constructor
void reset(HWND*);
void load(Inst inst, int loc, HWND*);
void exec(int,HWND*);
void loadd(int n, int p, HWND*); II load data
void use();
void free();
int used();
friend TS;
friend TMyWindow;
friend TProcWindow;
friend TOutWindow;
friend TDataWindow;
} i

Figure 9. The Processor Class.

The memory is divided into two segments~ one segment !memory holds the

instructions and the other segment Dmemoryt holds the data. For each element in

Dmemory: there is a pointer to the symbolic name of that element in the symbol table.

The symbolic name of data element is used for debugging purposes only. Program is

stored in Jme.n'iOTJ/ in the form of instmctions. Each instruction Inst, as shown in Figure

1 0~ has three parts: op-code and two operands. The instructions in the memory are

executed one at a time in each execution cyde where the ip points to the instruction to

be executed. After the execution of an instruction ip is set to point to the next

27

instruction, if the instruction is a jump instruction the ip is updated depending on the

jump flag. The jump flagjfis affected only by the compare instruction.

class Inst {
int
int
int

public:
void
void
void
friend
friend
friend

} ;

ope;
opl;
op2;

II op-code
II first operand
II second operand

readopc();
readopl ();
readop2();
Processor;
TMyWindow;
TProcWindow;

Figure 10. The Instruction Class.

The busy flag busy is set initially to "unused" for all processors. It is set to

"busy" for a processor when it is loaded. The execution of the HLT, END or RET

instruction sets the busy flag to "unused". The EVL instruction loads an "unused"

processor and marks it as "used". The remaining of this section is devoted to a detailed

description of the processor class. The data members of the Processor class are listed in

Table 5. The following is an explanation of the member functions of class Processor:

+ Processor(): constructor of the Processor class, it initializes busy flag to -1.

28

• reset(HWND*): reset the processor, instruction pointer ip is set to 0 and jump flag

jjis set to 0. The reset function works only if the busy flag is 1, otherwise the

function MessageBox(HWND*, LPSTR, LPSTR, WORD) is called to notify the

user the type of the error.

29

• exec(int, HWND*): this function does three tasks, namely fetch, decode and

execute. The instruction pointed to by ip is fetched from memory, decoded and

then executed depending on the op-code value Jnst.opc of the instruction. If the

instruction to be executed need data operands, the data are fetched from data

segment. Ifthe instruction being executed is a tuple space instruction, the tuple

frame is fetched from the tuple table and then the operation is performed. The

compare instruction updates the jump flag jf and the jump instructions will update

the instruction pointer ip depending on the contents of the jump flagjf The

exec(int, HWND*) function may call functions from other friend classes or other

related set of functions. lfthe instruction is a tuple space operation the following

functions may be called: TS::get(int), TS::put(tuple), TS::readt(int) or

TS: :fetch(tuple). In case of error an error message will be given to the user, for this

purpose the function MessageBox(HWND*, LPSTR, LPSTR, WORD) is called to

display the error message on the main window. The functions find_func(HWND*,

char*) is called to return the index of the process in process table pt. At the end of

the exec(int, HWND*) function a message is send to the main window to update

the active windows in this application by calling SendMessage(H\VND*, WORD,

WORD, DWORD).

• loadd(int n, int p, HWND*): load the n data elements in the data segment of

processor p and load the pointers to symbols into symptr table. If this function is

called and the busy flag is -1, error message is displayed by calling the function

MessageBox(HWND*, LPSTR, LPSTR, WORD).

• use(): mark the processor used by setting the busy flag busy to 1.

• free(): mark the processor not used by setting the busy flag busy to -1.

• used(): return the status of the busy flag busy.

TABLE 5

THE DATA MEMBERS OF PROCESSOR CLASS

Data member Type Function

ip int instruction pointer

jf int jump flag

busy int busy flag

!memory Inst[] instruction segment

Dmemory int[J data segment

symptr int[] pointer to symbol

procname char* process name

output char* output

30

31

The TS Class

The TS is not part of any of the processors but it is part of the abstract machine.

Keeping the TS separate from processors gives more generality to the abstract machine

since the tuple space can be implemented in a shared memory or distributed memory

parallel multiprocessor system. The tuple space is accessed using tuple space

instructions. Whenever a PUT or EVL instruction is executed a tuple is placed into TS,

and a tuple is removed only after execution of GET instruction. Figure 11, shows the

specifications of the tuple space class. The tuples in tuple space class is a list of tuple type

holding the tuples. The tuple type has a tag to identify the tuple, a pointer elm to the list

of tuple elements, a flag active to indicate whether the tuple is active or not and a

counter num to hold the number of tuple elements in the tuple. Each tuple element has

three parts: one part (v) is to hold the element value, another part (type) is to indicate

whether this element is a number , a variable or input variable and the third part is a

pqinter (next) to the next element.

The TS class contains the data members shown in Table 6 that represent the

tuple space TS, and the member functions to access the TS. In addition to functions that

represent Linda operations (PUT,GET and RDT) there are two functions, one to

initialize the tuple space and the other to fetch a tuple from the tuple space. The

following is an explanation of the member functions of TS class:

<S> init(): initialize TS by setting the tsptr to 0.

• put(tuple t): add the tuple t to the tuple space TS.

• fetch(tuple t): return a pointer to the tuple t.

• get(int i): return the tuple pointed to by ito the caller.

• readt(int i): return a copy of the tuple pointed to by i. A new tuple structure is

returned.

struct element{
char type;
int v;

II type of element
II value of element

element *next; II pointer to next element
} ;

struct tuple {
char tag [str-length] ; II string tag
element *elm; II pointer to elements
char active; II active flag
int num; II number of elements

} i

class TS {
tuple
int

tuples[num_tuples];
tsptr;

} ;

public:
void in it (J ;
void put(tuple t);
tuple get(int i) ;
tuple readt(int i) ;
int fetch(tuple t);
friend TTSWindow;
friend TTSDialog;

Figure 11. The TS Class.

in tuple

32

TABLE 6

DATA MEMBERS OF TS CLASS

Data member

tuples

tsptr

The Simulator Class

Type

tuple[]

int

Description

the tuple space.

pointer to tuple space.

33

The simulator class is the kernel of the simulation model. The components of the

simulator class does not belong either to the Processor class or to the TS class. The data

members of the simulator class are listed in Table 7, and Figure 12 shows the

specifications of the simulator class. The description of member functions defined in

this class follows:

·• in it(char*, HWND*): open the input file and initialize buffers and tables from

input file. This function calls the following functions:

1) TS::init() to initialize the tuple space TS.

2) read_tuple_table(int, HWND*) to read the tuple frames into the tuple table.

3) Processor::use() to mark processor 0 used.

4) Processor::reset() to reset processor 0.

5) Processor::loadd(int, int, HWND*) to load the data.

6) Processor::load(Inst, int, HWND*) to load the instructions.

34

7) In case of error call MessageBox(HWND*, LPSTR, LPSTR, int) to notify the

user. At the end of the function Simulator::init(), ca11 SendMessage(HWND*,

WORD, WORD, DWORD) to send a message to the main window to rewrite the

simulator's active windows.

+ step(HWND*): This function executes one step of each busy processor by calling

the function Processor::exec(int,HWND*). If Processor 0 is "unused" call

MessageBox(HWND*, LPSTR, LPSTR, WORD) to notify the user. At the

beginning of the function step(HWND*) call SendMessage(HWND*, WORD,

WORD, DWORD), to send a message to the main window to rewrite the

simulator's active windows.

+ go(HWND*): This function caUs SendMessage(HWND*, WORD, WORD,

DWORD) at the beginning to send a message to the main window to rewrite the

simulator's active windows, then it calls Processor::exec(int,HWND*) to execute

the whole algorithm until the end.

TABLE?

DATA MEMBERS OF SIMULATOR CLASS

Data member

ptptr

buffptr

Type

int

int

Description

process table pointer

buffer pointer

int private use

TABLE 7 (Continued)

Data member Type Description

J int private use

clength int code length

dlength int data length

stlength int symbol table length

ttlength int tuple table length

class Simulator {

} i

int ptptr;
int buffptr;
int i,j,

clength,
dlength,
stlength,
ttlength;

II process table pointer
II input buffer pointer
II private use
II code length
II data length
II symbol table length
II tuple table length

public :
void
void
void

init(char fname, HWND*J;
step (HWND*);
go (HWND*);

Figure 12. The Simulator Class.

This chapter outlined the design issues of the system and the simulator design

and implementation including the three major classes Processor, TS and Simulator. The

next chapter will spot the light on the design and implementation of debugging windows

and the interface between the simulator and the windows.

35

CHAPTER V

WINDOWS INTERFACE

This simulator project is implemented as a Microsoft Windows application and

has been given the name "Linda Too1 11 • A Windows application uses an application

window for input and output. The Windows application creates and manages the

application window. The application should use the Windows functions to implement the

interface with Windows. Because Windows applications are message driven, the

application should take care ofWindows messages. Figure 13 illustrate the difference

between message driven windows programming and sequential programming. The

following sections focus on programming for Windows, the object library used, the

window and dialog classes defined in this project and the linkage between the simulator

and the windowing interface.

Windows Programming

As mentioned in the previous section, programming Windows application is

different from sequential procedural programming. The application should take care of

the user actions that comes to the application as messages from Windows system. As an

example, the click ofthe left mouse button creates at least two messages one is

36

WM_LBUTTONDOWN when the left button is pressed and the other is

WM_LBUTTONUP when the mouse left button is released. The messages are assigned

symbolic names to simplify their use.

SEQUENTIAL
PROGRAMMING

GET .. ,_..

NEXT
MESSAGE

MESSAGE DRIVEN
PROGRAMMING

,!iil~~-~~l!i/~ll:

~i;BII~I~~~~;,

:l.li~ii~ei~i~~:

Figure 13. Sequential and Message Driven Programming.

The windows application also should use the same user interface objects

provided by Windows. These objects include: icons, windows, menus, dialog boxes,

cursors, carets etc. The user will use these objects to interact with the application. The

windows application creates and controls user interface objects by calling windows

library routines and handling the messages associated with the interface.

37

38

Output in windows application is not character oriented, but it is graphics

oriented. The lines, ellipses, rectangles and text are all displayed in graphical format. The

Windows Graphics Device Interface (GDI) is deigned for device independent graphics,

and the windows application uses GDI and it does not need special device drivers to

work with different type of devices. Windows application can use for its output any

device that has a Windows driver.

In this work Borland C++ and Application frame work are used to program

windows application using the object oriented methodology. Object oriented

programming makes the application more modular and easy to maintain. The header file

windaws.h should be included in the application source code to access windows run time

library and to use Windows data types. Some of the important data types are shown in

Figure 14. Object Windows Library (OWL) is an object oriented library that makes object

oriented windows programming easier. The next section focuses on OWL and its use in

this project.

Windows type
BYTE
DWORD
HANDLE
HDC
HWND
LPSTR
WORD

c type
unsigned char
unsigned long
unsigned int
unsigned int
unsigned int
char far *
unsigned int

Figure 14. Some Windows Data Types.

Programming Using OWL

Borland's OWL is an object oriented windows library that contains various

windows interface objects. All windows interface objects in this work are derived from

the predefined OWL objects. Using derived objects makes the programming task easier

and the program more modular. Moreover, the OWL provides a mechanism to respond

to the incoming windows messages using a dynamic dispatch virtual table. It

transparently maps the incoming messages to responses. The programmer defines

member functions associated with a window message to respond to that message. More

information can be found in Object Windows for C++ User's Guide [OWL91] and

Borland Languages Open Architecture Hand Book [OAH91]. The OWL classes used in

this application are outlined below:

39

• T Application class: every Windows application developed using OWL must define

an application class. T Application class initializes and creates the main window in

the application.

• TWindow class: it is derived from TWindowsObject class. The TWindow class

handles some of the tasks that every Windows application must do including:

sizing, painting, moving, etc. The main window is derived from this class as well as

other child windows.

• TDialog class: this is the parent class of the dialogs in windows application. The

dialogs in an application can be predefined as: TFileDialog, TinputDialog, etc. or

can be a custom dialog. The programmer defines the control objects and member

functions of custom dialog.

40

• TFileDialog class: this special dialog class is derived from.TDialog. The

TFileDialog prompts the user to input a file name to be opened. Besides the input

line for file name TFileDialog box contains two list boxes one for file names and the

second for directories, one button OK and one button CANCEL.

• TinputDialog class: this class is derived from TDialog anq accepts single input line.

There are two push buttons in this dialog box namely, OK and CANCEL.

Classes and Functions Used in Linda Tool Application

The Linda Tool application has its own window and dialog classes derived from

OWL classes outlined in the previous section. The Linda Tool application used both the

OWL functions and the Windows functions. The following are the classes defined in

Linda Tool:

1) TMyApp Class: This is the application class which handles the main window

initialization and creation, it also queries the system for messages. The TMyApp class is

derived from T Application class as shown in Figure 15, and has one function that

redefines]rutMain Window().

41

Figure 15. Hierarchy of Application Class.

2) TMyWindow Class: As shown in Figure 16, TMyWindow is derived from

TWindow and uses the data members of TWindow class. It also has other data members

as flags and pointers to the different child windows and dialogs created by TMyWindow,

these data members are listed in Table 8. Besides TWindow member functions the

following functions are the major functions newly defined in TMyWindow, and some of

them override TWindow functions:

• GetWindowClass(WNDCLASS&): This function calls the

TWindow::GetWindowClass(WNDCLASS&) function to get the window class. It

also sets the background brush to NULL _BRUSH and loads the icon of the

application.CanClose(): This function is called when the user wants to close the

window. The function will check ifthere is an open file. If so it prompts the user

with a message box asking either to close the file and exit or return to the

42

application, Depending on the user choice the function CanCloseQ will return a

11 true" value to allow closing the window or "false" to prevent closing the window.

• Fopen(RTMessage): This function is called when the user chooses Open from the

File menu. It displays a TFileDailog, then it calls the function

simulator: :init(LPSTR HWND*) to open the file and initialize the system.

• Fclose(RTMessage): Closes the current open file. If no file is open display an error

message.

• Habout(RTMessage): Displays a custom dialog containing information about the

application.

• Fexit(RTMessage): Exits the system by calling the function CloseWindowQ.

• Showp(int, RTMessage): Creates a child window, and calls Display(HDC, int) to

display the processor information.

• Showts(RTMessage): Creates the tuple space child window.

• Getlnput(RTMessage): Displays TinputDialog to get input from the user. This

function is a response to SM _ Getlnput sent by the simulator while executing the

RDI instruction.

• Rewrite(RTMessage): This function a response to SM_Rewrite message, and it will

update the windows contents. The SM_Rewirte is send from other functions when

the contents of displayed window need updating.

• Dstep(RTMessage): This function will respond to the user choice of"Single step"

from main menu, and it calls the function simulator: :step(HWND*).

43

• Dgo(RTMessage):This function responds to the user choice of "Go11 from "Debug"

sub menu, and it calls the function simulator: :go(HWND*).

• Danimate(RTMessage): This function responds to the user choice of 11 Animate"

from "Debug" sub menu, and it calls the system timer function to cause

WM_TIMER message sent to the window after each delay time period, and sets

the Animate flag to 1.

• GetDelay(RTMessage): Displays TlnputDialog to read the delay time. If the delay

time is outside the defined ranges, it is set to default 1 second.

• DAnimatestep(): This function will respond to WM_TIMER sent by the Windows

system timer. If the Animate flag is 1, it executes one step by calling the function

simulator::step(HWND*). At the end of algorithm it will cancel the timer and no

more WM TIMER is sent.

Data member

PWindow[]

PWindow_ts

TABLE 8

DATAMEMBERSOFNUUN~OW

Type Usage

PTProcWindow Array of pointers to Processor

windows.

PTTSWindow Pointer to tuple space window.

PWindow_out PTOutWindow Pointer to output window.

TOutWindow '---i[TTSWindow J
TDataWindow TMyWindow TProcWindow

Figure 16. Hierarchy ofWindow Classes.

3) TDataWindow Class: This class is derived from TWindow as shown in Figure

16. Data window is a child window of processor window and displays the contents of

data segment of the parent processor. TData Window class has the following two

functions:

• Paint(HDC, PAINTSTRUCT&): Repaints the window contents in response to

WM PAINT.

• Display(HDC, int): Displays the data segment of the parent processor.

44

4) TSWindow Class: The window associated to this class is used to display the

tuple space using graphical representation. It is derived from TWindow class as shown in

Figure 16, and has the following functions:

• CanCloseO: This function overrides the TWindow CanClose() function, it marks

the window to be closed as hidden and then allows closing of the window.

• Paint(HDC, PAINTSTRUCT&): This function responds to WM_PAINT. It calls

GDI functions to repaint the tuple space window.

• ShTuple(RTMessage): Creates a TTSDialog to display the tuples in textual form.

This function respond to WM_LBUTTONUP.

45

• Rewrite(RTMessage): This function updates the tuple space window. It respond to

SM Rewrite.

5) TProcWindow Class: This window displays the processor information and

creates a data window when the user presses the left mouse button. When it is released

the data window is closed. TProcWindow class is derived from Twindow class as shown

in Figure 16, and has the following functions:

• Paint(HDC, PAINTSTRUCT&): Repaints the window contents in response to the

message WM _PAINT.

• Display(HDC, int): This function displays the current status of the processor.

• WMLButtonDown(RTMessage): Creates a data window in response to the

message generated by pressing the left button in the processor window.

• WMLButtonUp(RTMessage): Closes data window in response to the message

WM LBUTTONUP (releasing the left button in the processor window).

6) TOutWindow Class: This window displays the output from the processors and

Figure 16 shows how it is derived from TWindow class, it has the following functions:

• CanClose(): This function overrides the TWindow CanClose() function, and allow

closing of the window after marking it as hidden.

46

• Paint(HDC, PAINTSTRUCT&): Repaints the contents ofthe output window. This

function is called when the output window or part of it is erased.

• Rewrite(RTMessage): Updates the contents of the output window.

7) TTSDialog Class: This dialog has two push buttons 11 0K" and "NeXt". It

displays the tuples in text format. TTSDialog is derived from TDialog as shown in Figure

17, and has the fo1lowing functions:

• Paint(HDC, PAINTSTRUCT&): Repaint the dialog contents.

• TSOK(RTMessage): Closes the dialog in response to pushing the OK button.

• TSNext(RTMessage): Shows next tuple in the tuple space.

8) TAboutDialog Class: As shown in Figure 17, this class is derived from

TDialog, and has one function AboutOk(RTMessage) to close the dialog box when the

user pushes the OK button. This dialog displays information about the application.

Figure 17. Hierarchy ofDialog Classes.

The Interface with Simulator

The simulator needs to interact with the windows because the windows level is

closer to the user than the simulator level. The interaction is either control transfer or

data access. The control is transferred in two ways:

1) The windows call the simulator functions initO, stepO and go(). This is called

direct control.

2) The simulator sends messages to the windows to activate a certain function

mainly to update the output of the windows.

Figure 18, illustrates the Simulator-Windows interaction. The simulator can not

call the Windows functions directly because Windows is message driven. So it send a

message to the Windows. The Windows will call the function that will respond to the

47

48

message. On the other hand, some windows need to display information and data of the

simulator components so it should have one way access to the related classes in the

simulator. These classes are Inst, Processor, and TS. The access is gained by using the

friend relation in the definition of the simulator classes. The one way access is to read the

information only with out updating.

' Send Messages I . ..
~

Call

Simulator
~ WHndows

Data ...
"
\.

Figure 18. Simulator-Windows Interaction.

In this chapter, the Windows interface is described. A list of classes and methods

and their functionality has been described. the user interface is described in the next

chapter.

CHAPTER VI

THE USER INTERFACE

The simulation system uses the Microsoft Windows graphical user interface. The

user can easily learn how to use the system using mouse point and click. The simulation

system is given the name Linda Tool. This chapter describes the main elements of

Windows, the Linda Tool main window components and other child windows.

Microsoft Windows Elements

This section give a brief introduction to Microsoft Windows. Figure 19 illustrates

the elements of Windows. Each window has the following elements: Window title where

the name of the window appears, control menu box on the upper left comer of the

window, the minimize button and the maximize button in the upper right corner of the

window, the main menu bar under the title, the vertical and horizontal scroll bars on left

and bottom ofwindow and the work space in the middle of the window. The window has

also, a border which shows the boundary of the window. The user can change the size

and position of the window using the mouse. For more information about Windows the

reader is referred to Windows users guide [MVIU92].

49

m rmJ
BOfland C++ Bml~nd C++

3.0 3.1

rmJ m
\ifindows NonWindows
Appic~tions Applic00ons

IH&i
la.Ul
StMUP

lm'l
!lUI

Accenoriet

Figure 19. Elements ofWindows.

liTII
~
Main

Main and Child Windows Components

The main window of Linda Tool has a similar lay out as the one described in the

abc>Ve section. As shown in Figure 20, the main menu bar has five components: File,

Single step, Debug, Show I hide and Help. The title bar displays the application name

"Linda Tool" with the name of the current open file. Figure 21 shows examples of the

50

child windows, the tuple space window and processor(O). Besides the application dialogs

that are used to prompt the user for input or output, the application has six child

windows to provide the user with information on the current state of the algorithm and

the processors. The user can show or hide any child window using the Show I Hide

option from main menu.

51

file liingle step .Qebug Sho~ I Hide Help

Figure 20. The Application Main Window.

The main menu bar in Figure 22, bas five menu items: File, Single step, Debug,

ShtM' /Hi;..-¥! and Help. Figure 21~ shows an example of the Debug sub menu. The

The File menu item bas a rub menu with three items: Open, Close and Exit. The

Open and Close lh-e dife'.illy rekrted to file access. The Exit is related to tile only if file is

..,.... 1 • -" ., • !>.. t open. r ne tl1ree :~otems are uescrm:eG ue•ow:

* OpeR Selecting the Open item generates an open file dialog. The open file dialog

pwvides the user ~'ith ~~st of directories on the system and another list of files on

52

the current directory. The user selects the desired file by double clicking on the file

name or one click and push the OK button. When the file is opened the simulator is

initialized with the file contents and the name of the file appears in the title bar to

indicate that it is the current fiJe. If the user opened another file the old file is closed

and the newly opened file become the current file.

• Close: The Close menu item, closes the current file if any. The name of the current

file is removed from the title bar. If there is no open file to close the system notify

the user with a message.

• Exit: The Exit menu item will close the application and check if an open file exist

the system notify the user and ask if he/she wants to close the current file. If the

user selects 11 Yes 11 both the file and th~ application will be closed, and if 11No" is
i

selected the system returns back to the main window.

INSTRUCTION:
[ADD v4. v3}

MEMORY:
v4=(0] v3=[0)

SYSTEM:
IP=[6) JF=[OJ Bf=[1]

Figure 21. Linda Tool with Child Windows.

53

The "Single Step" Menu Item

The Single step option has no sub menu, therefore it works as a push button.

Selecting "Single step 11 will execute the current instruction on aH the busy processors and

update the child windows. The "Single step" is not part of the debug sub menu to make it

easier for the user to single step the algorithm, the user can do one selection "Single step"

instead of two: "Debug" and then "Single step". If the user tried to step after the end of

the algorithm, an error message will be displayed.

~
The main
menu bar.

~ LINDA Tool ~rM!
File Single step Debug Show/ Hide Help

Figure 22. The Main Menu Bar.

The "Debug" Menu Item

The Debug menu item has a sub menu containing: Set delay, Animate and Go.

The "Set delay" does not run the algorithm, but the options "Animate" and "Go" will

execute the algorithm. The function of each of the items is stated below:

54

• Set delay: Select the "Set delay 11 menu item to set a new delay time for algorithm

animation. The input time is the time between to steps in seconds. The default time

is one second and the user can change this time by entering new time in the

"Animate delay time" dialog box. If the new time is less than zero or greater than

ten seconds the time is set automatically to one second.

• Animate: Selecting "Animate'' will run the algorithm with delay time between two

consecutive steps. The delay time is set in the "Set delay" option. If the user selects

"Animate" while it is running in animate mode, the animate mode is turned off and

the user can continue running the algorithm again using "Single step'\ "Animate" or

• Go: Selecting the 11Go" option will run the algorithm without any interruption. If

the algorithm ends and the user tries to select "Go" again an error message is

displayed. The delay time does not affect the "Go" option.

The "Show I Hide" Menu Item

The Show I Hide menu item is used to toggle the display of the child windows. It

has a sub menu with six items. The first four to show or hide the processors window, and

the other two to show or rude the tuple space and output. Selecting a menu item will

display or close the appropriate window.

55

• Tuple space: Selecting tills item wiii toggle the Tuple space window. The Tuple

space window represent the tuples in graprucal mode. An ellipse represent a data

tuple and a round rectangle represents an active tuple. To show the tuples in text

format click the left mouse button in the TS window, a dialog will appear with two

buttons Next and OK. Push 11Next 11 to view the tuples in tuple space one by one.

The text color indicates the type of the tuple, black text for data tuples and red text

for active tuples. Push the 110K'' button to close the dialog.

• Output: The 11 0utput" option toggles the output window On or Off. The output

generated by the instruction WRO for each processor is displayed in a separate line

in the output window. The output consists of the symbolic name of the data item

and the value of that item.

• Processor: Selecting this option will show or rude the processor window. Each

processor has menu item indicating the process number (0, 1,2 or 3). The

information in the processor window include: the current instruction, the contents

of data memory which will be affected by the instruction, and the processor flags.

Pressing the left mouse button while in processor window will show the "data

window" that displays the data symbols and values for the processor.

56

The "Help" Menu Item

The help sub menu contain two items: About and How to. The "About" option

displays the information about "Linda Tool" including the version number. The about

dialog has one push button "OK" to close this dialog. Selecting the "How to" option will

open the "How to" help window to provide the user with help on using the system. The

user can select a topic and then push the "How to" button to get help on the selected

topic. The ''Cancel" button will close the help window.

The user interface described in this chapter is window based and the user who has

experience with other windows applications should find it easy to use the system.

However, users who have no experience with windows can refer to the "Microsoft

Windows user's guide" [MWU92].

CHAPTER VII

FUTURE WORK

The study of parallel computing can be broadly divided into two fields: the study

of parallel hardware and the study of parallel software. The work presented in this theses

is focused on parallel software. The implemented tool is reasonably adequate for

monitoring and debugging parallel Linda algorithms; however, it might need some

improvements.

The current implementation of the system requires the use of algorithms written in

a special format (presented in Appendix A) using the defined instruction set in chapter 3.

A possible improvement can be achieved using algorithms written in high level

algorithmic language. X-Linda is a proposed high level algorithmic language described in

appendices B and C can be used for writing parallel algorithms based on Linda approach.

The use of this a language requires a translator to translate algorithms from X-Linda to

the format presented in appendix A The user interface should be modified to accompany

the use of high level language. One of these changes requieres adding a new window for

high level language representation. Also the translator can be included as part of this tooL

Another improvement is to use trace files to keep a record of the steps in a

debugging session. The trace file should contain information that can be used for

algorithm analysis. Trace file may contain one line for each simulator step showing the

57

instruction executed by each processor and the contents of related memory locations or

tuples.

58

The current parallel machine simulator is implemented on a sequential machine,

thus, the simulated processors are not running actually in parallel. At each simulator step

each processor will execute one instruction in the following sequence: Processor 0,

Processor 1, Processor 2 and Processor 3. This sequence is always fixed, making the

algorithm behavior stable each time it runs on the simulator. A possible enhancement is

allowing the user to change the sequence at the beginning of the debugging session.

Furthermore, a random number may be used to change the sequence of processors at

each simulator step. The current implementation ofthe system is not concerned with

performance issues. Extension of the simulator to provide estimated performance analysis

of algorithms is also considered a future work.

CHAPTER VIII

CONCLUSION

This thesis is concerned with software parallelism and tools. In this work, a tool,

called "Linda Tool", was designed and implemented on a Personal Computer

environment to assist debugging parallel algorithms based on Linda. Linda Tool is useful

to persons who develop parallel programs in languages based on the Linda model. It

supports algorithm development at a level different from, and independent of

programming languages. This tool assists the developers of Linda programs in detecting

and locating algorithmic errors in early stages of algorithm development before creating

programs in the target language to run it on a computer system.

Linda Tool accepts an algorithm as input. The tool runs the algorithm on a

simulated parallel machine. The developer can view the algorithm behavior by examining

current tuple space contents and the current status of each processor. Since the

communication and synchronization among processes in Linda are done via the tuple

space, the user can locate the causes of unexpected behavior (such as indefinite

postponement or deadlock) or unexpected results of the algorithm by examining the

contents of the tuple space. The user can also examine the contents of variables as

instructions are executed in each process to help decide if the process is running in a

correct manner. The tool facilitates the user to view which processes are running in

59

60

parallel at any particular time. The user will be able to use the information provided by

the system to locate errors in the algorithm or modify the algorithm to give better

structure. It should be mentioned that one of the motivations for designing such a tool is

to serve as an instructional tool.

The current implementation of the tool includes a simulator for parallel machines

with four processors. The implementation environment is Borland C++ and applications

framework. The limitation on number of processors was imposed by the current

environment in which the simulator is implemented. However, because the system is

modular it can be modified to simulate more than four processors depending on the

limitation ofthe target computer. The Linda Tool software may be modified to work on

other computer systems that support a graphical user interface. The time and effort

required to implement such a system depends on many factors, one ofwhich is the

availability of a system with a user interface similar to Microsoft Windows. The software

will be available from the Computer Science Department at Oklahoma State University.

[Al189]

[AMF91]

[BPW92]

[Car190]

[CC90]

[Chi91]

[Dav87]

[Dav90]

[Denn89]

[DWA92]

[FB83]

REFERENCES

Allen Ambler and Margret Burnet, Influence of visual technology on the
evolution of language environments, Computer (October 1989), pp.9-22.

A.M. Finn, M. F. Griffin, and W. C. McClurg, Modeling and simulation
of an i860-based multiprocessor, Proceedings of the 24th annual
simulation symposium, (April 1991), pp.91-97.

Peter Norton and Paul Yao, Borland C-H- Programming for Windows,
(1992).

Carl J. Beckmann, CARL: An Architecture Simulation Language,
Research report, University of Illinois, (December 1990).

C. C. Chariton, P. H. Leng, and D. M. Wilkinson, Program monitoring
and analysis: software structures and architectural support, Software
Practice and experience, (September 1990), pp.859-867.

Christopher Mi11s, Stanley C. Ahlat and Jim Fowler, Compiled Instruction
Set Simulation, Software Practice and experience, (August 1991),
pp.877-889.

David Gelemter, Programming for advanced computing, Scientific
America,(October 1987), pp.301-308.

David L. Eldredge, John D. McGegor, and Marguerite K. Summers,
Applying the object-oriented paradigm to discrete event simulation using
the C++ language, Simulation, (February 1990), pp.83-91.

Dennis L. Doubleday, The Durra Application Debugger I Monitor,
Technical report, Carnegie Mellon University, (September 1989).

James McCord, Developing Windows Applications with Borland C++ 3,
(1992).

F. Baiardi, N. DeFrancesco, E. Matteoli, S. Stefanini, and G. Vaglini,
Development of a debugger for a concurrent language, Proceedings of the
ACM, (August 1983), pp98-106.

61

[Fre91]

[Ger91]

[Jam88]

[Jas85]

[JDB87]

[John91]

[Keij91]

[KMa91]

[Law91]

[Mar86]

[MWU92]

[Nic89]

[OAH91]

[OWL91]

[Suh86]

[Vac90]

Fredrik Dahlgren, A program-driven simulation model of an MIMD
multiprocessor, Proceedings of the 24th annual simulation symposium,
(April 1991), pp.40-49.

62

Gregory Andrews, Concurrent programming, The Benjamin/Cummings,
California, (1991).

James H. Giffin, Hrvey J. Wasserman and Lauren P. McGarvan, A
Debugger for Parallel Processes, Software Practice and experience,
(December 1988), pp.ll79-1190.

Jason Gait, A debugger for concurrent programs, Software Practice and
experience, (June 1985), pp.539-554.

J.D. Bovey, A Debugger for Graphical Workstation, Software Practice
and experience, (September 1987), pp.647-662.

John Bruner, Hoichi Cheong, Alexander Veidenbaum, and Pen-Chung
Yew, CHIEF: parallel simulation environment for parallel systems,
Report No. 1050 center of supercomputing research and development,
University oflllinois, (April 1991).

Keijiro Araki, Zengo Furukawa, and Jingde Cheng, A general framework
for debugging, IEEE software (May 1991), pp.14-20.

K. Mani and C. Kesselman, Parallel programming in 200 1, IEEE
Software, (November 1991), pp.11-20.

Lawrence A Crowl, Architectural adaptability in parallel programming,
Ph.D. thesis University ofRochester, (May 1991).

Margaret St. Pierre, A simulation environment for schema, M.Sc. Thesis
MIT (1986).

Microsoft Corporation, Microsoft Windows User's Guide, (1992).

Nicholas Carriero and David Gelernter, Linda in context,
Communications ofthe ACM 32, 4(April1989), pp.444-458.

Borland International, Borland Languages Open Architecture Handbook,
(1991).

Borland international, Object Windows For C++ User's Guide, (1991).

Suhdhir Ahuja, Nicholas Carriero, and David Gelernter, Linda and
friends, Computer (August 1986), pp.26-34.

Vaclv Rajlich and Wafa Khorshid, VIFOR: A Tool for software
maintenance, Software Practice and experience, (January 1990), pp.67-77.

[VBar90]

[VLo90]

[Wi189]

[Yi91]

'
V. Barbosa and P. Lima, On the distributed parallel simulation of
Hopfiled's Neural Network, Software Practice and experience, (October
1990), pp.967-983.

V. Lo, S. Rajopadhy, M. Mohammed, S. Gupta, and B. Nitzberg,
LaRCS: A language for describing parallel computation for purpose of
mapping, University of Oregon, (1990).

Willie Schatz, Programming is the problem, Datamation (May 1, 1989),
pp.57-61.

63

Yi Zheng and Jim Hague, DMT-a Demonstration Tool, Software Practice
and experience, (September 1991), pp.949-961.

APPENDIXES

64

APPENDIX A

THE INPUT FILE FORMAT

65

66

The Input File Fonnat

The source code input contains a header, symbol table, tuple table, main function

and other functions. The header consists of a string ,.LINDA" followed by the symbol

table size and the tuple table size. Also, each function must have a header which contains

the name of the function followed by the code segment size and data segment size. The

header of the function is followed by the code of the function (code segment) followed by

the data used in the function. Each line of the data segment have the initial value for the

data element and a pointer to the symbolic name in the symbol table. Figure 23 shows an

example ofthe fonnat.

1-------• Source code header LINDA B 4

main 0 p

mulret 0 p

A

B

0 v

0 v L---------. Symbol Table

c 0 v

D 0 v

num1 1 v

num2 1

tag 0 1 0 2 0 3 -1

tag

mulret

result

main

10 0 0

12 1 0

2

6

1 2 2 2 3 -1

0 1 -1 -1

0 1 -1 -1

·-------Tuple tabe

Header of main function

13 2 0 1--------.. Code of main function
11 1 0

11 3 0

0 0 0

0

mulret 6 2

14 0 0

14 1 0

1----~•• Header of function "mulret"

3 o 1 r------• Code of function "mulret"
15 0 0

15 1 0

17 2 3

~ ~~-------------•• Data of function "mulret"

Figure 23. An Example of Input Source Code.

67

APPENDIXB

SYNTAX DESCRIPTION OF X-LINDA

68

The Syntax Description of X-Linda

The following is the syntax description of the Algorithmic language X-Linda.

Note:

[] Means optional.

Means or.

<> Means defined as LHS.

. . Means range.

FunctionDeclaration::=<FunctionHeading>{<FunctionBody>}

FunctionHeading::=function<FunctionNarne><DataDeclaration>

FunctionBody::=<StatementSequence>

FunctionName::=<Id>

DataDeclaration::=<DataNarne><DataType>[;<DataDeclaration>]

DataName: : =<Id>

DataType: :=<Node>! arc

Node::=nodel {<DataDeclaration>}

StaternentSequence: :=<Statement>[;<StatementSequence>]

Statement::=<IfStatement>l

<I/OStaternent>l

<AssignmentStatement>l

<WhileStatement>l

<Forstaternent>l

<ParallelControlStatement>l

69

{<StatementSequence>}

IfStatement: :=if<Expression>then<Statement>

[else<Statement>]

I/OStatement: :=read(<IdList>) lwrite(<IdList>)

AssignmentStatement::=<Id>'='<Expression>

Whilestatement::=while<Expression><Statement>

ForStatement::=for<Id>'='<Integer>to<Integer><Statement>

ParallelControlStatement::=get(<Tuple>) I

put (<Tuple>) I

readt(<Tuple>) I

eval(<Tuple>)

Expression: :=<Id>[<Operator><Id>] I

<Id><Operator><Expression>l

(<Expression>)

Id::=<Letter><Alphanumeric>I<Letter>

Alphanumeric: :=<Letter><Alphanumeric>l

<Digit><Alphanumeric>l

<Letter> I

<Digit>

Letter: :='A' .. 'Z'I'a' .. 'z'

Digit: :='0' .. '9'

IdList::=<Id>[,<IdList>]

Tuple::=<Operand>[,<Operand>]

Operand: :=<Id>I<Number>I<Expression>

Number: :=<Integer>I<Real>

Integer::=<Digit>I<Digit><Integer>

Real::=<Digit>(<Integer>] '. 1 [<Integer>)

[E('+'I'-']<Integer>)

Operator::='>' I '<'I '>='I '<='I '='I '<>'I

'*'I I I I I '+'I

70

APPENDIX C

THE ALGORITHMIC LANGUAGE X-LINDA

71

The Algorithmic Language X-Linda

X-Linda is an algorithmic language designed to develop algorithms for parallel

programs. As mentioned earlier, the model for parallelism adapted for this language is

Linda. The following is a description ofX-Linda:

Function

72

A program in X-Linda is a collection offunctions capable of running in parallel or

sequential according to the application. A function is parallel if it can run simultaneously

with other functions. The following is a template of a function:

function f

(Declarations)

{

(Statements)

}

73

The Parallel Operations

The parallel control is performed using the tuples. A process can put, get or read

a tuple. The first operation is "put" an example of usage is shown below:

1. put(''tag",Iteml,ltem2, .. ,ltemN)

This operation inserts the tuple containing the specified tag and items

Item l...ItemN in the tuple space (TS). The "tag" is a string to distinguish between

tuples, and the data items are values.

2. get("tag",Iteml,?Item2, .. ,ItemN)

The get operation gets a tuple from the tuple space (TS) by matching the "tag".

The tuple is read and removed from the tuple space.

3. readt(''tag" ,Item 1, ?Item2, .. ,ItemN)

The readt operation reads a tuple from (TS) by matching the "tag", but the tuple

is not removed from the tuple space.

For both get and readt the prefix 11 ?" before the item name as in "?Item2"

indicates that the numeric value of this item is input from the tuple space, otherwise it is

used to match the tuple.

4. evaJetag",expl,exp2, .. ,expN)

This operation create a new process tuple. The "tag" is the same as before but the

expression "expi" can be a function to be executed. When the execution of eva] ends the

tuple becomes a data tuple and remain in the TS until a process get it. The operation eval

is useful in creating processes that run in parallel.

Declarations

The language X-linda has only two types of data: 1) node which can hold a

numeric value, or can be a structure of nodes and arcs, and 2) an arc which is pointer to

a node. The following is an example of a linked list declaration :

node1 {

info node;

next arc -> node 1 ;

}

Control Statements

X-Linda has four types of control statements "sequence", "for", "while" and ''if'.

The "for" statement is used for a fixed number of iterations. For example, the statement

"read(n)" will be executed 10 times :

for I= 1 to 10 read(n)

The "while" statement is used for looping until a condition is satisfied. The

condition is expressed as an expression. The while loop continues until the value of the

expression is zero. The following while statement continues looping until the value of A

is greater than value of B :

74

while A <=B {

A=A+l;

write(A)

}

75

The "if' statement is used to make a decision which statement to execute. The "if'

statement can be used with or without the "else" option. The following is an example of

an "if'' statement with the "else" :

if A > B then A = A - 1

else A= A+ 2

L'O Statement

Two operations are used to read input and write output to the user. In the

following statements a value for the variable A is read and then the same value is output

to the user:

read(A);

write(A);

/

VITA,.··

Mohammed Al-abdulkareem

Candidate for the Degree of

Master of Science

Thesis: A DEVELOP:MENT ENVIRON:MENT FOR PARALLEL
ALGORITHMS BASED ON LINDA

Major Field: Computer Science

Biographical:

Personal Data: Born in Riyadh, Saudi Arabia, November 6, 1964, the son
of Abdulrahman and Aisha Al-abdulkareem.

Education: Received Bachelor of Science Degree in Computer Science
from King Saud University, Riyadh, Saudi Arabia, 1988; completed
the requirements for the Master of Science degree at Oklahoma State
University in May 1993.

Professional experience: Teaching assistant, Department of Computer
Science, King Saud University, July, 1988, to December 1989. A
member of Saudi Computer Society and a student member of ACM.

	Thesis-1993-A316d_Page_01
	Thesis-1993-A316d_Page_02
	Thesis-1993-A316d_Page_03
	Thesis-1993-A316d_Page_04
	Thesis-1993-A316d_Page_05
	Thesis-1993-A316d_Page_06
	Thesis-1993-A316d_Page_07
	Thesis-1993-A316d_Page_08
	Thesis-1993-A316d_Page_09
	Thesis-1993-A316d_Page_10
	Thesis-1993-A316d_Page_11
	Thesis-1993-A316d_Page_12
	Thesis-1993-A316d_Page_13
	Thesis-1993-A316d_Page_14
	Thesis-1993-A316d_Page_15
	Thesis-1993-A316d_Page_16
	Thesis-1993-A316d_Page_17
	Thesis-1993-A316d_Page_18
	Thesis-1993-A316d_Page_19
	Thesis-1993-A316d_Page_20
	Thesis-1993-A316d_Page_21
	Thesis-1993-A316d_Page_22
	Thesis-1993-A316d_Page_23
	Thesis-1993-A316d_Page_24
	Thesis-1993-A316d_Page_25
	Thesis-1993-A316d_Page_26
	Thesis-1993-A316d_Page_27
	Thesis-1993-A316d_Page_28
	Thesis-1993-A316d_Page_29
	Thesis-1993-A316d_Page_30
	Thesis-1993-A316d_Page_31
	Thesis-1993-A316d_Page_32
	Thesis-1993-A316d_Page_33
	Thesis-1993-A316d_Page_34
	Thesis-1993-A316d_Page_35
	Thesis-1993-A316d_Page_36
	Thesis-1993-A316d_Page_37
	Thesis-1993-A316d_Page_38
	Thesis-1993-A316d_Page_39
	Thesis-1993-A316d_Page_40
	Thesis-1993-A316d_Page_41
	Thesis-1993-A316d_Page_42
	Thesis-1993-A316d_Page_43
	Thesis-1993-A316d_Page_44
	Thesis-1993-A316d_Page_45
	Thesis-1993-A316d_Page_46
	Thesis-1993-A316d_Page_47
	Thesis-1993-A316d_Page_48
	Thesis-1993-A316d_Page_49
	Thesis-1993-A316d_Page_50
	Thesis-1993-A316d_Page_51
	Thesis-1993-A316d_Page_52
	Thesis-1993-A316d_Page_53
	Thesis-1993-A316d_Page_54
	Thesis-1993-A316d_Page_55
	Thesis-1993-A316d_Page_56
	Thesis-1993-A316d_Page_57
	Thesis-1993-A316d_Page_58
	Thesis-1993-A316d_Page_59
	Thesis-1993-A316d_Page_60
	Thesis-1993-A316d_Page_61
	Thesis-1993-A316d_Page_62
	Thesis-1993-A316d_Page_63
	Thesis-1993-A316d_Page_64
	Thesis-1993-A316d_Page_65
	Thesis-1993-A316d_Page_66
	Thesis-1993-A316d_Page_67
	Thesis-1993-A316d_Page_68
	Thesis-1993-A316d_Page_69
	Thesis-1993-A316d_Page_70
	Thesis-1993-A316d_Page_71
	Thesis-1993-A316d_Page_72
	Thesis-1993-A316d_Page_73
	Thesis-1993-A316d_Page_74
	Thesis-1993-A316d_Page_75
	Thesis-1993-A316d_Page_76
	Thesis-1993-A316d_Page_77
	Thesis-1993-A316d_Page_78
	Thesis-1993-A316d_Page_79
	Thesis-1993-A316d_Page_80
	Thesis-1993-A316d_Page_81
	Thesis-1993-A316d_Page_82
	Thesis-1993-A316d_Page_83
	Thesis-1993-A316d_Page_84

