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CHAPTER I 

INTRODUCTION 

In the past decade parallel computers have become more important and popular 

because of the need to process huge and complicated scientific computations. Therefore, 

parallel programming is gaining the same popularity and importance. Many parallel 

programming languages are proposed and implemented which are designed to support 

software development in a parallel environment. Consequently, parallel algorithm 

development has emerged as an important area of research. Attention is also focused on 

the development oftools and environment for the development of parallel programs. 

This thesis focuses on the design and implementation of a development tool for 

par~llel algorithms written using the Linda TM approach1. This tool is referred by the name 

11 Linda Tool 11 in this thesis. It is implemented on IB~ personal computers with 

Microsoft® Windows TM_ Tools related to the Linda model of parallelism have been 

developed on other systems also. But, to my knowledge this work is the first one on 

personal computer environment. The design of Linda Tool includes several subsystems. 

These include an abstract machine, a debugger and a user interface. 

1 Linda is a registered trademark of Scientific Computing Associates. 
IBM is a registered trademark of International Business Machines Corporation. 
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. 
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This tool is designed to help the user understand the algorithm behavior in parallel 

processing environment and assist in the design of correct algorithms. "Linda Tool" may 

be used as a teaching tool to allow experimentation. It can help the students understand 

the concepts of parallel and concurrent processing in general, and the Linda approach in 

particular. 

This thesis contains seven chapters including this. The second chapter reviews 

some of the work related to the thesis. It covers the following areas: parallel languages, 

simulation of parallel machines, and debugging tools. The third chapter presents the 

high-level design and the instruction set architecture of the abstract machine to be 

simulated. Chapters four and five, describe the design and implementation of the system 

including the simulator and the debugger. Chapter four covers the simulator design and 

implementation for the processors and tuple space. Chapter five covers the debugger 

design and implementation including the programming ofWindows interface. The sixth 

chapter describes the system from the user point of view. It includes the description of 

the main and sub menus and the child windows. The last chapter provides suggestions for 

future improvement of the system and conclusion. 



CHAPTER II 

LITERATURE REVIEW 

In this chapter the work related to this project are reviewed. The areas reviewed 

are broadly classified as parallel languages, simulation and debugging tools. 

Parallel Languages 

In parallel computing we need computers that have more than one processor to 

do the computations in parallel. Parallel computers may do parallel computation in 

different ways. Some can execute the same instruction on different data at the same 

time. For this purpose, sophisticated compilers may be used to make sequential 

programs run on paral1el computer. However, the power of compilers is limited, and 

programming the solutions of difficult problems on the parallel machines reuires 

parallel programming languages. Willie Schatz [Wil89] calls it a good news that several 

parallel machines are being developed and at least a few programs, mainly applications, 

have been converted to run on these machines. Mani and Kesselman [KMa91] predict 

that in the future, because of the continuos advance in VLSI, parallel software and 

communication technology, it will be less difficult to develop efficient parallel program. 

3 



Many parallel programming languages have been developed by researchers, 

some of which are extensions of sequential languages such as C and Pascal with parallel 

or concurrent statements. There are others built to be parallel languages such as Ada. 

The CSP programming notation ( 1987) provides a theoretical model for parallel 

programs. CSP has influenced the development of several programming languages such 

as Occam which is a derivative of CSP. Occam is a parallel programming language 

associated mainly with transputer and contains a small number of mechanisms: 

assignment, input and output. Unlike Occam, SR (Late 1970s) contains a large variety 

of mechanisms. SR can be used to implement algorithms for both distributed and shared 

memory computations. Lo and others [VLo90] described LaRCS, a language that 

enables users who program parallel algorithms to specify information about static and 

dynamic communication behavior of the algorithm. Information provided by the user is 

used in mapping parallel computations to processors. 

A radically different approach to parallel programming is proposed by 

Gelemter in Linda [Nic89]. Linda is not a programming language rather it is an 

approach for para11e] programming. According to Sudhir and others [Suh86] Linda 

operators when added to any language turns that language into a parallel programming 

language. Linda centers on a special memory model called the tuple space 11TS", the unit 

of storage is called a tuple rather than a byte or bit or a full word. The units of this 

memory are accessed by logical names and not by addresses. A logical name is any 

combination of tuple values. The tuple space consists of two types of tuples. Gregory 

Andrews [Ger91] describes the two types as passive data tuples and active process 

tuples. Process tuples are routines executed asynchronously. The active tuple is 
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generated by the operator eva/ which creates a process tuple. The following example 

shows the usage of the eval operator : 

Consider the statement 

eval("tag11,expr1,expr2, .... ,exprn) 

In the above statement, "tag" is a string of characters and each expression can be 

either a statement or a function. The result of the evaluation of the functions will 

become later a passive data tuple and stays in the tuple space until a process removes it 

using the get operation. The other operations are related to data tuples only. They are2 : 

1. readt : This operation reads a tuple from the tuple space, and the tuple is not 

removed from the tuple space. If the matching tuple is not in the tuple space the process 

execution is suspended until a matching tuple become available in TS. 

2. put : This operation places a new tuple in the tuple space, TS may contain 

more than one tuple with the same contents. 

3. get : This operation removes a tuple from TS. If no matching tuple is found 

the execution of the process is suspended until the tuple become available in TS. 

Figure 1 illustrates the three operation and the following are examples of the 

usage of these operations: 

readt("tag" ,ltem1 ,Item2, •• ,Itern,J 

'In this thesis, put( .. ) is used instead of out{ .. ), gel{ .. } instead of in( .. ) and rearll( .. ) instead of read( .. ). 



Furthermore, the tuples in Linda can not be updated [Sud86] but they may be 

removed, updated and then returned toTS. This makes it possible for many processes to 

access TS simultaneously. 

("sum",5) ("sum",5) 

put("sum",S) get("sum,Jnteger) readt("mm",lnteger) 

Figure I. The Three Operations put, get and readt. 

Simulation ofParallel Machine 

Simulators are used to predict the behavior of systems (machines) in order to 

save time when designing implementation and to aid in experimentation. Even though 

simulation alone can not guarantee the success of the design [Mar86], a simulator can be 

used to understand the behavior of a system, and to provide some details of weakness 

and strength of the system [John91, VBar90]. 
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One good example for use of simulation is the Chief project [John91] which 

provides a powerful environment to study parallel systems. Chief provides an integrated 

set of tools used to create, run, debug and analyze simulations of parallel computer 

systems. The system has a powerful graphical user interface based on X 11 window 

system. The system has two inputs: the benchmark programs and an architecture 

specifications. The simulation components are designed using high level language. 

CARL [Carl90] is a Computer Architecture Research Language used to describe the 

simulation models of computer architecture in the Chief project. Another example of 

simulation is the distributed parallel simulation of Hopfield's Neural Network. Barbosa 

and Lima [VBar90] provide a design and implementation of one class of neural 

networks introduced by Hopfield. In their paper [VBar90] they describe how to perform 

the simulation of Hopfield's networks in a generic distributed system for parallel 

processing and how they implemented the simulation in Occam. Finn and others 

[AMF91] presented a methodology for modeling and simulation of a multiprocessor 

architecture. The goal of simulation is to predict early the multiprocessor performance 

to be used by hardware and software developers. The simulation was based on 

commercial and custom programs. A custom simulator called TIME_EST was written 

and used to predict the actual execution time. They used also, a custom program for 

analysis namely PARAMETERS and STALL . The multiprocessor performance was 

evaluated using modeling and simulation in (ADAS) an Architectme Design and 

Assessment System. 

Fredrik Dahlgren [Fre91 ], explored a simulation model that suppmis a very 

accurate modeling of multiprocessors with a hierarchical, packet switched 

7 



interconnection network and private cache. In his report he presented the design and 

implementation of an MIMD program driven simulator that executes real code. The 

modeling of the multiprocessor can be very accurate because every action in the 

processors is simulated, and therefor the architecture dependency problems does not 

exists. 

An efficient method for simulating instruction sets was described in [Chi91]. 

The method aimed to reduce execution time for instruction set simulators. The method 

uses compilation approach to map the assembly language of the simulated architecture 

to the real hardware. This method uses the C in-line macro. Each instruction, to be 

simulated, is written as a macro and the assembly language is coded as C functions. 

The paper [Chi91] induded a solution for the branching problem that will arise when 

using the compilation approach. 

Monitoring and Debugging Tools 

"Debugging is said to be the latest established area in software development" 

says Keijiro and others [Keij91], that's why most software houses attach a debugger to 

its compilers. Debugging of sequential programs is based on inserting break points and 

test the data until the erroneous instruction is found, also it is based on the centralization 

of control [FB83]. According to Araki and others [Keij91} the most primitive way to 

debug programs is to insert debugging statements to print the value of data and what 

statement was executed. On the other hand, the debugging of parallel programs is more 

difficult because it is difficult to repeat the execution that outputs an error [Keij91]. 
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Also when a debugger is active it may affect the timing of the processors. With the new 

development in graphical user interface, debuggers need to be implemented using these 

user interface to be easy to learn and remember. Bovey [JDB87], describes the ups 

source level debugger which use the graphical interface. The debugger was implemented 

to debug the C and Fortran source code. Bovey also, gives an overview of some design 

decisions for a debugger in general and graphical interface as well. 

Griffin and others [Jam88] have described a debugger for parallel processes 

called mtdbx . The debugging system mtdbx is based on the Sun Microsystems, Inc. 

debugger dbx!dbxtool. It is a source level debugger for C, Fortran, Pascal and Modula 2. 

Because the system was developed for multiprocessing research at Los Alamos National 

Laboratory (LANL), in which scientific code are Fortran based, the debugger was used 

to debug FORTRAN codes on a Sun workstation using a parailel processing simulator, a 

window and mouse based debugging tool, and real time display routines. The window 

based system has a master control window that runs the users main program, a window 

for .each active process and a window for task state display, to allow studying the 

behavior of parallel processes. 

VIFOR (Visual Interactive FORtran) [Vac90] is another Fortran based tool. This 

tool displays the Fortran program in two forms: source code and graphical 

representation. In the graphical form the program is represented as graph of icons and 

lines connecting the icons. The graph has two columns one for data icons and the other 

for main program, subroutines and functions icons. The connecting lines and arrows 

represents the relations. The data model used in VIFOR is very simple, it has four data 

classes and three relations. The two main classes are: modules and declarations. The 
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declarations are divided into subclasses: processes and commons (global data). The three 

relations are: belong to, call and reference. 

Another tool is CBUG [Jas85], a C source level debugger designed to debug 

concurrent processes that uses UNIX system calls fork(), exit() and wait() for 

concurrent execution. CBUG provides a number of the basic debugging tools such as: 

single stepping, breakpoints, snapshots and execution tracing. The experimental version 

of CBUG was implemented using debugging hooks in the source code. The source code 

is compiled with the debugger. The CBUG tool uses a windows friendly user interface 

to make the interface easy to understand and memorize. 

Durra [Denn89] is a language to describe the tasks to be initiated and executed as 

concurrent processes for constructing a distributed application running on networks of 

heterogeneous processors. The Durra application debugger I monitor is used to find bugs 

in Durra applications, tune performance and control the execution of the application. 

Durra debugger I monitor had two levels of debugging: the application level and the 

source level. The application level provides the abstracted Durra view, in which the tasks 

are treated as black boxes connected together. In the source code level, the Durra 

monitor I debugger will not debug the source code of different languages on 

heterogeneous processors, but it will allow the user to use the existing language source 

level debuggers. 

A debugger for MuTEAM Was discussed in [FB83]. MuTEAM is a concurrent 

language based on CSP. The debugger has two distinct tools: one is a sequential 

debugger to find the errors in sequential functions and the second is to compare the 

behavior of the program with a given description ofthe program behavior. In the 



sequential debugger, the user may define the value of the messages received by the 

debugged process. 
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Some of programming tools are not only used for debugging and monitoring, but 

also for teaching and demonstration purposes. Vestal is an instructional tool that provides 

a graphical animation of concurrent programs written in Ada. Vestal (Visual educational 

system for tasking in Ada language) has two dimensional color animation used for 

teaching Ada concurrency. The system is based on graphical workstation supporting 

windows interface. The Ada tasks and other concurrency elements are represented using 

graphical symbols. A good feature is the use of colors, each task has a color and all 

symbols related to the task have the same color. One drawback is that the preprocessing 

ofthe source program to be animated is done by hand, also some of the Ada concepts 

does not have an adequate graphical representation. 

The work presented in this theses has been influenced by ideas found in the 

literature described in this chapter. Insted of following one scheme or another, new ideas 

have been developed and implemented. 



CHAPTER Ill 

THE ABSTRACT MACIDNE 

This chapter is devoted to the description of the abstract machine. The first 

section describes the high-level design of the abstract machine, and the second section 

describes the instruction set architecture of the abstract machine and the interpretation 

scheme. 

The Design of The Abstract Machine 

Parallel algorithms based on the Linda model need to satisfy specific 

requirements. Some of the requirements are: a multiprocessor parallel system to 

efficiently run parallel algorithms, an associated abstract memory to represent the tuple 

space and a kernel to control and handle the access of tuple space. The abstract machine 

is designed to satisfy these requirements. The machine model consists of a set of 

independent identical processors and a tuple space. The model is a multiprocessor 

architecture in which each processor has its own memory where the instructions and data 

are stored. The processor architecture is based on Von Neumann model and the 

organization of a processor is shown in Figure 2. The processor has a control and 

computing unit that includes three special purpose registers: namely instruction pointer, 

12 
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jump flag and busy flag. The instruction pointer (IP) contains the address of the 

instruction to be executed. The jump flag (JF) contains the result of compare instruction 

that determines the action of jump instruction. The busy flag indicates whether the 

processor is loaded and running or not. Each processor also has an Input/Output channel 

to accept the user's input and to produce output to the user. The instructions for a 

processor operates on data stored in the processor memory or operates on tuples located 

in TS. The conceptual structure of the abstract machine is shown in Figure 3. 

Control and 
Computing 
Unit 

Input/Output 

Figure 2. The Processor Structure. 

Instruction 
Segment 

Data 
Segment 



Control 
& 

Memory 

Control 
& 

Memory 

Control 
& 

Memory 

Control 
& 

Memory 

Figure 3. The Architecture of The Abstract Machine. 

The Instruction Set and Interpretation of Algorithms 

The design of the machine model uses a small set of instructions. An algorithm 

contains sets of sequences of instructions. The sequences can be executed one at a time 

or in parallel, but the instructions within a sequence are executed one at a time. Each 

14 
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instruction will go through three phases in its execution cycle: fetch, decode and then 

execute. In the fetch phase the instruction pointed to by (IP) is fetched from the memory. 

The operator part of the instruction is decoded, then in the execution phase the ~ 

referenced memory or tuple is located to perform memory or tuple space update. The 

(IP) is updated in the execution phase depending 'on: the executed instruction. In Figure 

4, the three execution phases are shown. The instruction set of the abstract machine, as 

defined in this project, is shown in Table 1, Table 2, Table 3, and Table 4. The instruction 

format in Figure 5, shows the general format where each instruction consists of: op-code 

and two operands. An operand can be a memory reference, a pointer to tuple, a jump 

address or a pointer to a subroutine to execute. 

Figure 4. The Three Phases oflnstruction Cycle. 



op-code first operand second operand 

Figure 5. General Instruction F annat. 

TABLE 1 

THE INPUT/OUTPUT INSTRUCTIONS 

Instruction Op-Code Syntax Function 

RDI 14 

WRO 15 

RDI A,O 

WRO A,O 

Read input into memory location 

pointed by first operand. The second 

operand is always zero. 

Write output from the memory 

location pointed by the first operand. 

The second operand is always zero. 

16 
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TABLE2 

ARITHMETIC INSTRUCTIONS 

Instruction Op-Code Syntax Function 

ADD 1 ADD A,B Add the contents of two memory 

locations pointed by A and B, and 

place the result in the memory 

location pointed by A. 

SUB 2 SUB A,B Subtract the contents of the memory 

location pointed by second operand 

from the contents of memory location 

pointed by the first operand and the 

result is placed in memory location 

pointed by A. 

MUL 3 MUL A,B Multiply the contents of the two 

memory locations pointed by A and B 

and place the result in the memory 

location pointed by A. 

DIV 4 DIVA, B Divide the content of memory 

location pointed by the first operand 

by the none zero contents of memory 

location pointed by the second 

operand and result placed in memory 

location pointed by the first operand. 
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TABLE 3 

THE CONTROL INSTRUCTIONS 

Instruction Op-Code Syntax Function 

HLT 0 HLT 0,0 Halt the execution. The halt 

instruction should be the last 

instruction in instruction sequence. 

JMP 5 JMP A,O Jump unconditionally to the address 

specified in first operand, second 

operand is always zero. 

JMZ 6 JMZ A,O Jump to the address specified in first 

operand if the jump flag is zero. 

JGT 7 JGT A,O Jump to the address specified in first 

operand if the jump flag is greater 

than zero. 

JLS 8 JLS A,O Jump to the address specified in first 

operand if the jump flag is less than 

zero. 

CMP 9 CMP A, B Compare the two operands and sets 

the jump flag accordingly. The jump 

flag value is zero if the two operands 

are equal, less than zero if the first 

operand is less than the second 

operand, and greater than zero if the 

first operand is greater than the 

second operand. 



TABLE 3 (Continued) 

Instruction Op-Code Syntax Function 

END 

RET 

Instruction 

PUT 

GET 

RDT 

EVL 

16 

17 

END A,O End of the evaluated subroutine, 

remove the active tuple in first 

operand from TS. 

RET A, B End the evaluated subroutine, remove 

the active tuple pointed to by first 

operand A from TS, and add new 

data tuple pointed by the second 

operand B toTS. 

TABLE4 

THE TUPLE SPACE OPERATION INSTRUCTIONS 

Op-Code Syntax Function 

10 PUT A,O Put the tuple pointed to by the first 

operand A into TS. 

11 GET A,O Get the tuple pointed to by the first 

operand A from TS. 

12 RDT A,O Read the tuple pointed to by the first 

operand A from TS. 

13 EVL A,O Evaluate the function pointed by the 

first operand A, and add an active 

tuple into TS. 

19 
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The instruction set is divided into four categories: Input/Output instructions, 

Arithmetic instructions, Control instructions and TS operations. The Input/Output 

instructions are RDI and WRO. The arithmetic instructions include ADD, SUB, MUL 

and DIV. The control instructions include ID..,T, JMP, JGT, JLS, CMP, END and RET. 

The TS operations include PUT, GET, RDT and EVL. The meanings of the instructions 

are listed under the column "Function". The processors use the TS as a way for 

communication and synchronization. There is no direct link between the processors. One 

processor is loaded with the main function which will cause other processors to be loaded 

in case of instruction EVL. Once a processor is loaded it continues running independently 

unless it executes a TS instruction. 



CHAPTER IV 

THE SYSTEM DESIGN AND IMPLEMENTATION 

In this chapter and the following one the design and implementation of the system 

is described. This chapter contains the simulator design and implementation. The first 

section is an overview of the global design and describes some design issues of the 

system. The second section contain an implementation description ofthe simulator. The 

implementation of the user interface and the simulator and windows interfacing are 

described in the following chapter. 

The Simulator Design 

In this project several decisions were made to satisfy the following design 

objectives: 

• Keep the conceptual view of system components ( tuple space, processor). 

• Allow the user to see the information and data associated with different elements as 

needed. 

• Allow the user to control the starting and stopping the algorithm execution at any 

time. 

The remainder of this section is a global overview followed by a brief discussion 

of the design issue. 
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The overall design of the system in Figure 6, illustrates the major components of 

the system and the relation between these components. The components are divided into: 

Control elements and Data sets, and the relations are: direct control, indirect control and 

data flow. The three major control elements are: Debug window, Simulator kernel and 

Processor. The user has the control of the debug window; therefore he/she has the 

control over all the system. The major data sets are: Tuple space, Tuple table, Symbol 

table and Source code. The rest ofthis section describes the major components and the 

relations linking these components. 

Direct Control 
InDirect Control ·> 
Data Flow )> 

Figure 6. Global View of The System Design. 
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The Relations 

Three types of relations are difined: direct control, indirect control and data 

flow. If A has a direct control over B, then A can directly call B as function. If A has 

indirect control over B, then A can not call B as a function but it will activate B using a 

message send from A to B ( more detail regarding this issue presented in the next 

chapter). If A can access the information and data in B, then there is data flow from B 

to A. 

The Control Elements 

A control element is the component that does some computation and activates 

other control elements. Debug window is responsible for user interface and information 

display, therefore, it is the only one accepting interactive input from the user. The debug 

window has access to the tuple space to view its contents and to the symbol table to 

display the symbolic names of data. 

Simulator kernel does most of the actions that are part of the system 

initialization, thus it reads the source code to initialize the system buffers. Simulator 

kernel also initializes the symbol table with the symbolic names of the data to be used 

by the debug window and initializes the tuple table with the format of tuples to be used 

later by the processor. Simulator kernel need to have some control on the debug window 

to update information displayed to the user, since debug window is only controlled by 

the user an indirect control is used in this case. 
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Processor's main task is executing the code, thus it has access to tuple space to 

place and remove tuples. Processor has access to tuple table to get the format of tuples 

to be placed in tuple space or the format of tuple to be read or removed. After execution 

the user interface need to be updated, indirect control is used to control the debug 

window. 

The Data Sets 

A data set is the component which does not involve any computation and does 

not have control over other components, rather it contains information or data. Tuple 

space is the most important data set in the system. The information it contains are 

tuples, and they are stored in a way to allow the access of normal tuple operations (put, 

get, readt and eval) and the peeking of information by the debug window using 

friendship. 

Tuple table is used to keep the format of the tuple to be placed in or removed 

from tuple space. When Processor executes a tuple space instruction the instruction 

contains a pointer to the format of the tuple. As in Figure 7, the format includes: tag, 

number of elements in tuple, type of tuple and pointer to tuple elements. Symbol table 

contain: the symbolic representation, the scope and the type of the data. The format of 

symbol table is shown in Figure 8. 

Debug window accesses the symbol table to display the symbolic names of data. 

The data values are internal to the processor and it has a pointer to its symbol table 

entry. Source code is accessed by the simulator kernel only and contains the users 
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algorithm with extra information including the contents of symbol table and tuple table. 

The format of source code file is presented in appendix A. 

The format of tbe data tuple ("tagl ",4,7): 

tag 

"tagl" 

number 
of elements 

2 

active 
flag 

0 

pointer to 
elmements 

Figure 7. The Tuple Format. 

The Simulator Implementation 

= 

The simulator for the abstract machine described in the previous chapter is 

implemented using C++. This language was chosen for its support of object oriented 

programming and for its efficiency. Moreover, it supports the programming of 

Microsoft Windows using Borland C++ compiler and its Object Windows Library. 
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4 
5 

Symbolic 
name . 

"ADD" 
"SUM" 
"Value" 

Scope Type 

3 p 
3 v 
10 v 

Figure 8. Symbol Table Format. 

The implemented simulator consists of three major parts that mutually interact: 
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the processor, the tuple space and the simulator kernel. Each of these parts is defined as 

a user defined object type (or class in C++ terminology). A class has data members to 

represent the types and function members to implement operations on the data members. 

The simulator components are objects defined from the classes. The following sections 

describe the three main classes: Processor, Tuple Space and Simulator kernel. 

The Processor Simulation 

For the sake of implementation simplicity, the current implementation of the 

simulator assumes a four processor machine. As outlined in the previous chapter, each 

processor has a memory, an instruction pointer, a jump flag, and a busy flag. The busy 

flag is used by the simulator kernel only and does not affect the execution sequence. On 

the other hand, TS is not part of the processor. The TS can be accessed only by the 

designated set of operations. Figure 9, shows the processor class definition. 



class Processor { 
II process name 
II output string 

char procnarne[STR_LENGTH]; 
char output[STR_LENGTH]; 
Inst Imemory[IM_SIZE]; II instruction segment 

II data segment int Dmemory[DM_SIZE); 
int symptr[DM_SIZE]; 
int ip; II 
int jf; II 
int busy; II 

public 

II pointer to symbol table 
instruction pointer 
jump flag 
busy flag 

Processor(); If constructor 
void reset(HWND*); 
void load(Inst inst, int loc, HWND*); 
void exec(int,HWND*); 
void loadd(int n, int p, HWND*); II load data 
void use(); 
void free(); 
int used(); 
friend TS; 
friend TMyWindow; 
friend TProcWindow; 
friend TOutWindow; 
friend TDataWindow; 
} i 

Figure 9. The Processor Class. 

The memory is divided into two segments~ one segment !memory holds the 

instructions and the other segment Dmemoryt holds the data. For each element in 

Dmemory: there is a pointer to the symbolic name of that element in the symbol table. 

The symbolic name of data element is used for debugging purposes only. Program is 

stored in Jme.n'iOTJ/ in the form of instmctions. Each instruction Inst, as shown in Figure 

1 0~ has three parts: op-code and two operands. The instructions in the memory are 

executed one at a time in each execution cyde where the ip points to the instruction to 

be executed. After the execution of an instruction ip is set to point to the next 
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instruction, if the instruction is a jump instruction the ip is updated depending on the 

jump flag. The jump flagjfis affected only by the compare instruction. 

class Inst { 
int 
int 
int 

public: 
void 
void 
void 
friend 
friend 
friend 

} ; 

ope; 
opl; 
op2; 

II op-code 
II first operand 
II second operand 

readopc(); 
readopl (); 
readop2(); 
Processor; 
TMyWindow; 
TProcWindow; 

Figure 10. The Instruction Class. 

The busy flag busy is set initially to "unused" for all processors. It is set to 

"busy" for a processor when it is loaded. The execution of the HLT, END or RET 

instruction sets the busy flag to "unused". The EVL instruction loads an "unused" 

processor and marks it as "used". The remaining of this section is devoted to a detailed 

description of the processor class. The data members of the Processor class are listed in 

Table 5. The following is an explanation of the member functions of class Processor: 

+ Processor(): constructor of the Processor class, it initializes busy flag to -1. 
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• reset(HWND*): reset the processor, instruction pointer ip is set to 0 and jump flag 

jjis set to 0. The reset function works only if the busy flag is 1, otherwise the 



function MessageBox(HWND*, LPSTR, LPSTR, WORD) is called to notify the 

user the type of the error. 
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• exec(int, HWND*): this function does three tasks, namely fetch, decode and 

execute. The instruction pointed to by ip is fetched from memory, decoded and 

then executed depending on the op-code value Jnst.opc of the instruction. If the 

instruction to be executed need data operands, the data are fetched from data 

segment. Ifthe instruction being executed is a tuple space instruction, the tuple 

frame is fetched from the tuple table and then the operation is performed. The 

compare instruction updates the jump flag jf and the jump instructions will update 

the instruction pointer ip depending on the contents of the jump flagjf The 

exec(int, HWND*) function may call functions from other friend classes or other 

related set of functions. lfthe instruction is a tuple space operation the following 

functions may be called: TS::get(int), TS::put(tuple), TS::readt(int) or 

TS: :fetch( tuple). In case of error an error message will be given to the user, for this 

purpose the function MessageBox(HWND*, LPSTR, LPSTR, WORD) is called to 

display the error message on the main window. The functions find_func(HWND*, 

char*) is called to return the index of the process in process table pt. At the end of 

the exec(int, HWND*) function a message is send to the main window to update 

the active windows in this application by calling SendMessage(H\VND*, WORD, 

WORD, DWORD). 

• loadd(int n, int p, HWND*): load the n data elements in the data segment of 

processor p and load the pointers to symbols into symptr table. If this function is 



called and the busy flag is -1, error message is displayed by calling the function 

MessageBox(HWND*, LPSTR, LPSTR, WORD). 

• use(): mark the processor used by setting the busy flag busy to 1. 

• free(): mark the processor not used by setting the busy flag busy to -1. 

• used(): return the status of the busy flag busy. 

TABLE 5 

THE DATA MEMBERS OF PROCESSOR CLASS 

Data member Type Function 

ip int instruction pointer 

jf int jump flag 

busy int busy flag 

!memory Inst[] instruction segment 

Dmemory int[J data segment 

symptr int[] pointer to symbol 

procname char* process name 

output char* output 
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The TS Class 

The TS is not part of any of the processors but it is part of the abstract machine. 

Keeping the TS separate from processors gives more generality to the abstract machine 

since the tuple space can be implemented in a shared memory or distributed memory 

parallel multiprocessor system. The tuple space is accessed using tuple space 

instructions. Whenever a PUT or EVL instruction is executed a tuple is placed into TS, 

and a tuple is removed only after execution of GET instruction. Figure 11, shows the 

specifications of the tuple space class. The tuples in tuple space class is a list of tuple type 

holding the tuples. The tuple type has a tag to identify the tuple, a pointer elm to the list 

of tuple elements, a flag active to indicate whether the tuple is active or not and a 

counter num to hold the number of tuple elements in the tuple. Each tuple element has 

three parts: one part (v) is to hold the element value, another part (type) is to indicate 

whether this element is a number , a variable or input variable and the third part is a 

pqinter (next) to the next element. 

The TS class contains the data members shown in Table 6 that represent the 

tuple space TS, and the member functions to access the TS. In addition to functions that 

represent Linda operations (PUT,GET and RDT) there are two functions, one to 

initialize the tuple space and the other to fetch a tuple from the tuple space. The 

following is an explanation of the member functions of TS class: 

<S> init(): initialize TS by setting the tsptr to 0. 

• put( tuple t): add the tuple t to the tuple space TS. 

• fetch( tuple t): return a pointer to the tuple t. 



• get(int i): return the tuple pointed to by ito the caller. 

• readt(int i): return a copy of the tuple pointed to by i. A new tuple structure is 

returned. 

struct element{ 
char type; 
int v; 

II type of element 
II value of element 

element *next; II pointer to next element 
} ; 

struct tuple { 
char tag [ str-length] ; II string tag 
element *elm; II pointer to elements 
char active; II active flag 
int num; II number of elements 

} i 

class TS { 
tuple 
int 

tuples[num_tuples]; 
tsptr; 

} ; 

public: 
void in it ( J ; 
void put(tuple t); 
tuple get(int i) ; 
tuple readt(int i) ; 
int fetch(tuple t); 
friend TTSWindow; 
friend TTSDialog; 

Figure 11. The TS Class. 

in tuple 

32 



TABLE 6 

DATA MEMBERS OF TS CLASS 

Data member 

tuples 

tsptr 

The Simulator Class 

Type 

tuple[] 

int 

Description 

the tuple space. 

pointer to tuple space. 
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The simulator class is the kernel of the simulation model. The components of the 

simulator class does not belong either to the Processor class or to the TS class. The data 

members of the simulator class are listed in Table 7, and Figure 12 shows the 

specifications of the simulator class. The description of member functions defined in 

this class follows: 

·• in it( char*, HWND*): open the input file and initialize buffers and tables from 

input file. This function calls the following functions: 

1) TS::init() to initialize the tuple space TS. 

2) read_tuple_table(int, HWND*) to read the tuple frames into the tuple table. 

3) Processor::use() to mark processor 0 used. 

4) Processor::reset() to reset processor 0. 

5) Processor::loadd(int, int, HWND*) to load the data. 

6) Processor::load(Inst, int, HWND*) to load the instructions. 
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7) In case of error call MessageBox(HWND*, LPSTR, LPSTR, int) to notify the 

user. At the end of the function Simulator::init(), ca11 SendMessage(HWND*, 

WORD, WORD, DWORD) to send a message to the main window to rewrite the 

simulator's active windows. 

+ step(HWND*): This function executes one step of each busy processor by calling 

the function Processor::exec(int,HWND*). If Processor 0 is "unused" call 

MessageBox(HWND*, LPSTR, LPSTR, WORD) to notify the user. At the 

beginning of the function step(HWND*) call SendMessage(HWND*, WORD, 

WORD, DWORD), to send a message to the main window to rewrite the 

simulator's active windows. 

+ go(HWND*): This function caUs SendMessage(HWND*, WORD, WORD, 

DWORD) at the beginning to send a message to the main window to rewrite the 

simulator's active windows, then it calls Processor::exec(int,HWND*) to execute 

the whole algorithm until the end. 

TABLE? 

DATA MEMBERS OF SIMULATOR CLASS 

Data member 

ptptr 

buffptr 

Type 

int 

int 

Description 

process table pointer 

buffer pointer 

int private use 



TABLE 7 (Continued) 

Data member Type Description 

J int private use 

clength int code length 

dlength int data length 

stlength int symbol table length 

ttlength int tuple table length 

class Simulator { 

} i 

int ptptr; 
int buffptr; 
int i,j, 

clength, 
dlength, 
stlength, 
ttlength; 

II process table pointer 
II input buffer pointer 
II private use 
II code length 
II data length 
II symbol table length 
II tuple table length 

public : 
void 
void 
void 

init(char fname, HWND*J; 
step (HWND*); 
go (HWND*); 

Figure 12. The Simulator Class. 

This chapter outlined the design issues of the system and the simulator design 

and implementation including the three major classes Processor, TS and Simulator. The 

next chapter will spot the light on the design and implementation of debugging windows 

and the interface between the simulator and the windows. 
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CHAPTER V 

WINDOWS INTERFACE 

This simulator project is implemented as a Microsoft Windows application and 

has been given the name "Linda Too1 11 • A Windows application uses an application 

window for input and output. The Windows application creates and manages the 

application window. The application should use the Windows functions to implement the 

interface with Windows. Because Windows applications are message driven, the 

application should take care ofWindows messages. Figure 13 illustrate the difference 

between message driven windows programming and sequential programming. The 

following sections focus on programming for Windows, the object library used, the 

window and dialog classes defined in this project and the linkage between the simulator 

and the windowing interface. 

Windows Programming 

As mentioned in the previous section, programming Windows application is 

different from sequential procedural programming. The application should take care of 

the user actions that comes to the application as messages from Windows system. As an 

example, the click ofthe left mouse button creates at least two messages one is 
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WM_LBUTTONDOWN when the left button is pressed and the other is 

WM_LBUTTONUP when the mouse left button is released. The messages are assigned 

symbolic names to simplify their use. 

SEQUENTIAL 
PROGRAMMING 

GET .. ,_.. 

NEXT 
MESSAGE 

MESSAGE DRIVEN 
PROGRAMMING 

,!iil~~-~~l!i/~ll: 

~i;BII~I~~~~;, 

:l.li~ii~ei~i~~: 

Figure 13. Sequential and Message Driven Programming. 

The windows application also should use the same user interface objects 

provided by Windows. These objects include: icons, windows, menus, dialog boxes, 

cursors, carets etc. The user will use these objects to interact with the application. The 

windows application creates and controls user interface objects by calling windows 

library routines and handling the messages associated with the interface. 
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Output in windows application is not character oriented, but it is graphics 

oriented. The lines, ellipses, rectangles and text are all displayed in graphical format. The 

Windows Graphics Device Interface (GDI) is deigned for device independent graphics, 

and the windows application uses GDI and it does not need special device drivers to 

work with different type of devices. Windows application can use for its output any 

device that has a Windows driver. 

In this work Borland C++ and Application frame work are used to program 

windows application using the object oriented methodology. Object oriented 

programming makes the application more modular and easy to maintain. The header file 

windaws.h should be included in the application source code to access windows run time 

library and to use Windows data types. Some of the important data types are shown in 

Figure 14. Object Windows Library (OWL) is an object oriented library that makes object 

oriented windows programming easier. The next section focuses on OWL and its use in 

this project. 

Windows type 
BYTE 
DWORD 
HANDLE 
HDC 
HWND 
LPSTR 
WORD 

c type 
unsigned char 
unsigned long 
unsigned int 
unsigned int 
unsigned int 
char far * 
unsigned int 

Figure 14. Some Windows Data Types. 



Programming Using OWL 

Borland's OWL is an object oriented windows library that contains various 

windows interface objects. All windows interface objects in this work are derived from 

the predefined OWL objects. Using derived objects makes the programming task easier 

and the program more modular. Moreover, the OWL provides a mechanism to respond 

to the incoming windows messages using a dynamic dispatch virtual table. It 

transparently maps the incoming messages to responses. The programmer defines 

member functions associated with a window message to respond to that message. More 

information can be found in Object Windows for C++ User's Guide [OWL91] and 

Borland Languages Open Architecture Hand Book [OAH91]. The OWL classes used in 

this application are outlined below: 
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• T Application class: every Windows application developed using OWL must define 

an application class. T Application class initializes and creates the main window in 

the application. 

• TWindow class: it is derived from TWindowsObject class. The TWindow class 

handles some of the tasks that every Windows application must do including: 

sizing, painting, moving, etc. The main window is derived from this class as well as 

other child windows. 

• TDialog class: this is the parent class of the dialogs in windows application. The 

dialogs in an application can be predefined as: TFileDialog, TinputDialog, etc. or 

can be a custom dialog. The programmer defines the control objects and member 

functions of custom dialog. 
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• TFileDialog class: this special dialog class is derived from.TDialog. The 

TFileDialog prompts the user to input a file name to be opened. Besides the input 

line for file name TFileDialog box contains two list boxes one for file names and the 

second for directories, one button OK and one button CANCEL. 

• TinputDialog class: this class is derived from TDialog anq accepts single input line. 

There are two push buttons in this dialog box namely, OK and CANCEL. 

Classes and Functions Used in Linda Tool Application 

The Linda Tool application has its own window and dialog classes derived from 

OWL classes outlined in the previous section. The Linda Tool application used both the 

OWL functions and the Windows functions. The following are the classes defined in 

Linda Tool: 

1) TMyApp Class: This is the application class which handles the main window 

initialization and creation, it also queries the system for messages. The TMyApp class is 

derived from T Application class as shown in Figure 15, and has one function that 

redefines ]rutMain Window(). 
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Figure 15. Hierarchy of Application Class. 

2) TMyWindow Class: As shown in Figure 16, TMyWindow is derived from 

TWindow and uses the data members of TWindow class. It also has other data members 

as flags and pointers to the different child windows and dialogs created by TMyWindow, 

these data members are listed in Table 8. Besides TWindow member functions the 

following functions are the major functions newly defined in TMyWindow, and some of 

them override TWindow functions: 

• GetWindowClass(WNDCLASS&): This function calls the 

TWindow::GetWindowClass(WNDCLASS&) function to get the window class. It 

also sets the background brush to NULL _BRUSH and loads the icon of the 

application.CanClose(): This function is called when the user wants to close the 

window. The function will check ifthere is an open file. If so it prompts the user 

with a message box asking either to close the file and exit or return to the 
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application, Depending on the user choice the function CanCloseQ will return a 

11 true" value to allow closing the window or "false" to prevent closing the window. 

• Fopen(RTMessage): This function is called when the user chooses Open from the 

File menu. It displays a TFileDailog, then it calls the function 

simulator: :init(LPSTR HWND*) to open the file and initialize the system. 

• Fclose(RTMessage): Closes the current open file. If no file is open display an error 

message. 

• Habout(RTMessage): Displays a custom dialog containing information about the 

application. 

• Fexit(RTMessage): Exits the system by calling the function CloseWindowQ. 

• Showp(int, RTMessage): Creates a child window, and calls Display(HDC, int) to 

display the processor information. 

• Showts(RTMessage): Creates the tuple space child window. 

• Getlnput(RTMessage): Displays TinputDialog to get input from the user. This 

function is a response to SM _ Getlnput sent by the simulator while executing the 

RDI instruction. 

• Rewrite(RTMessage): This function a response to SM_Rewrite message, and it will 

update the windows contents. The SM_Rewirte is send from other functions when 

the contents of displayed window need updating. 

• Dstep(RTMessage): This function will respond to the user choice of"Single step" 

from main menu, and it calls the function simulator: :step(HWND*). 



43 

• Dgo(RTMessage):This function responds to the user choice of "Go11 from "Debug" 

sub menu, and it calls the function simulator: :go(HWND*). 

• Danimate(RTMessage): This function responds to the user choice of 11 Animate" 

from "Debug" sub menu, and it calls the system timer function to cause 

WM_TIMER message sent to the window after each delay time period, and sets 

the Animate flag to 1. 

• GetDelay(RTMessage): Displays TlnputDialog to read the delay time. If the delay 

time is outside the defined ranges, it is set to default 1 second. 

• DAnimatestep(): This function will respond to WM_TIMER sent by the Windows 

system timer. If the Animate flag is 1, it executes one step by calling the function 

simulator::step(HWND*). At the end of algorithm it will cancel the timer and no 

more WM TIMER is sent. 

Data member 

PWindow[] 

PWindow_ts 

TABLE 8 

DATAMEMBERSOFNUUN~OW 

Type Usage 

PTProcWindow Array of pointers to Processor 

windows. 

PTTSWindow Pointer to tuple space window. 

PWindow_out PTOutWindow Pointer to output window. 



TOutWindow '---i[ TTSWindow J 
TDataWindow TMyWindow TProcWindow 

Figure 16. Hierarchy ofWindow Classes. 

3) TDataWindow Class: This class is derived from TWindow as shown in Figure 

16. Data window is a child window of processor window and displays the contents of 

data segment of the parent processor. TData Window class has the following two 

functions: 

• Paint(HDC, PAINTSTRUCT&): Repaints the window contents in response to 

WM PAINT. 

• Display(HDC, int): Displays the data segment of the parent processor. 
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4) TSWindow Class: The window associated to this class is used to display the 

tuple space using graphical representation. It is derived from TWindow class as shown in 

Figure 16, and has the following functions: 



• CanCloseO: This function overrides the TWindow CanClose() function, it marks 

the window to be closed as hidden and then allows closing of the window. 

• Paint(HDC, PAINTSTRUCT&): This function responds to WM_PAINT. It calls 

GDI functions to repaint the tuple space window. 

• ShTuple(RTMessage): Creates a TTSDialog to display the tuples in textual form. 

This function respond to WM_LBUTTONUP. 
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• Rewrite(RTMessage): This function updates the tuple space window. It respond to 

SM Rewrite. 

5) TProcWindow Class: This window displays the processor information and 

creates a data window when the user presses the left mouse button. When it is released 

the data window is closed. TProcWindow class is derived from Twindow class as shown 

in Figure 16, and has the following functions: 

• Paint(HDC, PAINTSTRUCT&): Repaints the window contents in response to the 

message WM _PAINT. 

• Display(HDC, int): This function displays the current status of the processor. 

• WMLButtonDown(RTMessage): Creates a data window in response to the 

message generated by pressing the left button in the processor window. 

• WMLButtonUp(RTMessage): Closes data window in response to the message 

WM LBUTTONUP (releasing the left button in the processor window). 

6) TOutWindow Class: This window displays the output from the processors and 

Figure 16 shows how it is derived from TWindow class, it has the following functions: 



• CanClose(): This function overrides the TWindow CanClose() function, and allow 

closing of the window after marking it as hidden. 
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• Paint(HDC, PAINTSTRUCT&): Repaints the contents ofthe output window. This 

function is called when the output window or part of it is erased. 

• Rewrite(RTMessage): Updates the contents of the output window. 

7) TTSDialog Class: This dialog has two push buttons 11 0K" and "NeXt". It 

displays the tuples in text format. TTSDialog is derived from TDialog as shown in Figure 

17, and has the fo1lowing functions: 

• Paint(HDC, PAINTSTRUCT&): Repaint the dialog contents. 

• TSOK(RTMessage): Closes the dialog in response to pushing the OK button. 

• TSNext(RTMessage): Shows next tuple in the tuple space. 

8) TAboutDialog Class: As shown in Figure 17, this class is derived from 

TDialog, and has one function AboutOk(RTMessage) to close the dialog box when the 

user pushes the OK button. This dialog displays information about the application. 



Figure 17. Hierarchy ofDialog Classes. 

The Interface with Simulator 

The simulator needs to interact with the windows because the windows level is 

closer to the user than the simulator level. The interaction is either control transfer or 

data access. The control is transferred in two ways: 

1) The windows call the simulator functions initO, stepO and go(). This is called 

direct control. 

2) The simulator sends messages to the windows to activate a certain function 

mainly to update the output of the windows. 

Figure 18, illustrates the Simulator-Windows interaction. The simulator can not 

call the Windows functions directly because Windows is message driven. So it send a 

message to the Windows. The Windows will call the function that will respond to the 
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message. On the other hand, some windows need to display information and data of the 

simulator components so it should have one way access to the related classes in the 

simulator. These classes are Inst, Processor, and TS. The access is gained by using the 

friend relation in the definition of the simulator classes. The one way access is to read the 

information only with out updating. 

' Send Messages I . .. 
~ 

Call 

Simulator 
~ WHndows 

Data ... 
" 
\. 

Figure 18. Simulator-Windows Interaction. 

In this chapter, the Windows interface is described. A list of classes and methods 

and their functionality has been described. the user interface is described in the next 

chapter. 



CHAPTER VI 

THE USER INTERFACE 

The simulation system uses the Microsoft Windows graphical user interface. The 

user can easily learn how to use the system using mouse point and click. The simulation 

system is given the name Linda Tool. This chapter describes the main elements of 

Windows, the Linda Tool main window components and other child windows. 

Microsoft Windows Elements 

This section give a brief introduction to Microsoft Windows. Figure 19 illustrates 

the elements of Windows. Each window has the following elements: Window title where 

the name of the window appears, control menu box on the upper left comer of the 

window, the minimize button and the maximize button in the upper right corner of the 

window, the main menu bar under the title, the vertical and horizontal scroll bars on left 

and bottom ofwindow and the work space in the middle of the window. The window has 

also, a border which shows the boundary of the window. The user can change the size 

and position of the window using the mouse. For more information about Windows the 

reader is referred to Windows users guide [MVIU92]. 
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Figure 19. Elements ofWindows. 

liTII 
~ 
Main 

Main and Child Windows Components 

The main window of Linda Tool has a similar lay out as the one described in the 

abc>Ve section. As shown in Figure 20, the main menu bar has five components: File, 

Single step, Debug, Show I hide and Help. The title bar displays the application name 

"Linda Tool" with the name of the current open file. Figure 21 shows examples of the 
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child windows, the tuple space window and processor(O). Besides the application dialogs 

that are used to prompt the user for input or output, the application has six child 

windows to provide the user with information on the current state of the algorithm and 

the processors. The user can show or hide any child window using the Show I Hide 

option from main menu. 
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file liingle step .Qebug Sho~ I Hide Help 

Figure 20. The Application Main Window. 

The main menu bar in Figure 22, bas five menu items: File, Single step, Debug, 

ShtM' /Hi;..-¥! and Help. Figure 21~ shows an example of the Debug sub menu. The 

The File menu item bas a rub menu with three items: Open, Close and Exit. The 

Open and Close lh-e dife'.illy rekrted to file access. The Exit is related to tile only if file is 

..,.... 1 • -" ., • !>.. t open. r ne tl1ree :~otems are uescrm:eG ue•ow: 

* OpeR Selecting the Open item generates an open file dialog. The open file dialog 

pwvides the user ~'ith ~~st of directories on the system and another list of files on 
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the current directory. The user selects the desired file by double clicking on the file 

name or one click and push the OK button. When the file is opened the simulator is 

initialized with the file contents and the name of the file appears in the title bar to 

indicate that it is the current fiJe. If the user opened another file the old file is closed 

and the newly opened file become the current file. 

• Close: The Close menu item, closes the current file if any. The name of the current 

file is removed from the title bar. If there is no open file to close the system notify 

the user with a message. 

• Exit: The Exit menu item will close the application and check if an open file exist 

the system notify the user and ask if he/she wants to close the current file. If the 

user selects 11 Yes 11 both the file and th~ application will be closed, and if 11No" is 
i 

selected the system returns back to the main window. 

INSTRUCTION: 
[ADD v4. v3} 

MEMORY: 
v4=( 0] v3=[ 0) 

SYSTEM: 
IP=[ 6) JF=[ OJ Bf=[ 1] 

Figure 21. Linda Tool with Child Windows. 
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The "Single Step" Menu Item 

The Single step option has no sub menu, therefore it works as a push button. 

Selecting "Single step 11 will execute the current instruction on aH the busy processors and 

update the child windows. The "Single step" is not part of the debug sub menu to make it 

easier for the user to single step the algorithm, the user can do one selection "Single step" 

instead of two: "Debug" and then "Single step". If the user tried to step after the end of 

the algorithm, an error message will be displayed. 

~ 
The main 
menu bar. 

~ LINDA Tool ~rM! 
File Single step Debug Show/ Hide Help 

Figure 22. The Main Menu Bar. 



The "Debug" Menu Item 

The Debug menu item has a sub menu containing: Set delay, Animate and Go. 

The "Set delay" does not run the algorithm, but the options "Animate" and "Go" will 

execute the algorithm. The function of each of the items is stated below: 
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• Set delay: Select the "Set delay 11 menu item to set a new delay time for algorithm 

animation. The input time is the time between to steps in seconds. The default time 

is one second and the user can change this time by entering new time in the 

"Animate delay time" dialog box. If the new time is less than zero or greater than 

ten seconds the time is set automatically to one second. 

• Animate: Selecting "Animate'' will run the algorithm with delay time between two 

consecutive steps. The delay time is set in the "Set delay" option. If the user selects 

"Animate" while it is running in animate mode, the animate mode is turned off and 

the user can continue running the algorithm again using "Single step'\ "Animate" or 

• Go: Selecting the 11Go" option will run the algorithm without any interruption. If 

the algorithm ends and the user tries to select "Go" again an error message is 

displayed. The delay time does not affect the "Go" option. 

The "Show I Hide" Menu Item 

The Show I Hide menu item is used to toggle the display of the child windows. It 

has a sub menu with six items. The first four to show or hide the processors window, and 



the other two to show or rude the tuple space and output. Selecting a menu item will 

display or close the appropriate window. 
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• Tuple space: Selecting tills item wiii toggle the Tuple space window. The Tuple 

space window represent the tuples in graprucal mode. An ellipse represent a data 

tuple and a round rectangle represents an active tuple. To show the tuples in text 

format click the left mouse button in the TS window, a dialog will appear with two 

buttons Next and OK. Push 11Next 11 to view the tuples in tuple space one by one. 

The text color indicates the type of the tuple, black text for data tuples and red text 

for active tuples. Push the 110K'' button to close the dialog. 

• Output: The 11 0utput" option toggles the output window On or Off. The output 

generated by the instruction WRO for each processor is displayed in a separate line 

in the output window. The output consists of the symbolic name of the data item 

and the value of that item. 

• Processor: Selecting this option will show or rude the processor window. Each 

processor has menu item indicating the process number (0, 1,2 or 3). The 

information in the processor window include: the current instruction, the contents 

of data memory which will be affected by the instruction, and the processor flags. 

Pressing the left mouse button while in processor window will show the "data 

window" that displays the data symbols and values for the processor. 
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The "Help" Menu Item 

The help sub menu contain two items: About and How to. The "About" option 

displays the information about "Linda Tool" including the version number. The about 

dialog has one push button "OK" to close this dialog. Selecting the "How to" option will 

open the "How to" help window to provide the user with help on using the system. The 

user can select a topic and then push the "How to" button to get help on the selected 

topic. The ''Cancel" button will close the help window. 

The user interface described in this chapter is window based and the user who has 

experience with other windows applications should find it easy to use the system. 

However, users who have no experience with windows can refer to the "Microsoft 

Windows user's guide" [MWU92]. 



CHAPTER VII 

FUTURE WORK 

The study of parallel computing can be broadly divided into two fields: the study 

of parallel hardware and the study of parallel software. The work presented in this theses 

is focused on parallel software. The implemented tool is reasonably adequate for 

monitoring and debugging parallel Linda algorithms; however, it might need some 

improvements. 

The current implementation of the system requires the use of algorithms written in 

a special format (presented in Appendix A) using the defined instruction set in chapter 3. 

A possible improvement can be achieved using algorithms written in high level 

algorithmic language. X-Linda is a proposed high level algorithmic language described in 

appendices B and C can be used for writing parallel algorithms based on Linda approach. 

The use of this a language requires a translator to translate algorithms from X-Linda to 

the format presented in appendix A The user interface should be modified to accompany 

the use of high level language. One of these changes requieres adding a new window for 

high level language representation. Also the translator can be included as part of this tooL 

Another improvement is to use trace files to keep a record of the steps in a 

debugging session. The trace file should contain information that can be used for 

algorithm analysis. Trace file may contain one line for each simulator step showing the 
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instruction executed by each processor and the contents of related memory locations or 

tuples. 

58 

The current parallel machine simulator is implemented on a sequential machine, 

thus, the simulated processors are not running actually in parallel. At each simulator step 

each processor will execute one instruction in the following sequence: Processor 0, 

Processor 1, Processor 2 and Processor 3. This sequence is always fixed, making the 

algorithm behavior stable each time it runs on the simulator. A possible enhancement is 

allowing the user to change the sequence at the beginning of the debugging session. 

Furthermore, a random number may be used to change the sequence of processors at 

each simulator step. The current implementation ofthe system is not concerned with 

performance issues. Extension of the simulator to provide estimated performance analysis 

of algorithms is also considered a future work. 



CHAPTER VIII 

CONCLUSION 

This thesis is concerned with software parallelism and tools. In this work, a tool, 

called "Linda Tool", was designed and implemented on a Personal Computer 

environment to assist debugging parallel algorithms based on Linda. Linda Tool is useful 

to persons who develop parallel programs in languages based on the Linda model. It 

supports algorithm development at a level different from, and independent of 

programming languages. This tool assists the developers of Linda programs in detecting 

and locating algorithmic errors in early stages of algorithm development before creating 

programs in the target language to run it on a computer system. 

Linda Tool accepts an algorithm as input. The tool runs the algorithm on a 

simulated parallel machine. The developer can view the algorithm behavior by examining 

current tuple space contents and the current status of each processor. Since the 

communication and synchronization among processes in Linda are done via the tuple 

space, the user can locate the causes of unexpected behavior ( such as indefinite 

postponement or deadlock ) or unexpected results of the algorithm by examining the 

contents of the tuple space. The user can also examine the contents of variables as 

instructions are executed in each process to help decide if the process is running in a 

correct manner. The tool facilitates the user to view which processes are running in 
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parallel at any particular time. The user will be able to use the information provided by 

the system to locate errors in the algorithm or modify the algorithm to give better 

structure. It should be mentioned that one of the motivations for designing such a tool is 

to serve as an instructional tool. 

The current implementation of the tool includes a simulator for parallel machines 

with four processors. The implementation environment is Borland C++ and applications 

framework. The limitation on number of processors was imposed by the current 

environment in which the simulator is implemented. However, because the system is 

modular it can be modified to simulate more than four processors depending on the 

limitation ofthe target computer. The Linda Tool software may be modified to work on 

other computer systems that support a graphical user interface. The time and effort 

required to implement such a system depends on many factors, one ofwhich is the 

availability of a system with a user interface similar to Microsoft Windows. The software 

will be available from the Computer Science Department at Oklahoma State University. 
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The Input File Fonnat 

The source code input contains a header, symbol table, tuple table, main function 

and other functions. The header consists of a string ,.LINDA" followed by the symbol 

table size and the tuple table size. Also, each function must have a header which contains 

the name of the function followed by the code segment size and data segment size. The 

header of the function is followed by the code of the function (code segment) followed by 

the data used in the function. Each line of the data segment have the initial value for the 

data element and a pointer to the symbolic name in the symbol table. Figure 23 shows an 

example ofthe fonnat. 



1-------• Source code header LINDA B 4 .... 

main 0 p 

mulret 0 p 

A 

B 

0 v 

0 v L---------. Symbol Table 

c 0 v 

D 0 v 

num1 1 v 

num2 1 

tag 0 1 0 2 0 3 -1 

tag 

mulret 

result 

main 

10 0 0 

12 1 0 

2 

6 

1 2 2 2 3 -1 

0 1 -1 -1 

0 1 -1 -1 

·-------Tuple tabe 

Header of main function 

13 2 0 1--------.. Code of main function 
11 1 0 

11 3 0 

0 0 0 

0 

mulret 6 2 

14 0 0 

14 1 0 

1----~•• Header of function "mulret" 

3 o 1 r------• Code of function "mulret" 
15 0 0 

15 1 0 

17 2 3 

~ ~~-------------•• Data of function "mulret" 

Figure 23. An Example of Input Source Code. 
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The Syntax Description of X-Linda 

The following is the syntax description of the Algorithmic language X-Linda. 

Note: 

[] Means optional. 

Means or. 

<> Means defined as LHS. 

. . Means range. 

FunctionDeclaration::=<FunctionHeading>{<FunctionBody>} 

FunctionHeading::=function<FunctionNarne><DataDeclaration> 

FunctionBody::=<StatementSequence> 

FunctionName::=<Id> 

DataDeclaration::=<DataNarne><DataType>[;<DataDeclaration>] 

DataName: : =<Id> 

DataType: :=<Node>! arc 

Node::=nodel {<DataDeclaration>} 

StaternentSequence: :=<Statement>[;<StatementSequence>] 

Statement::=<IfStatement>l 

<I/OStaternent>l 

<AssignmentStatement>l 

<WhileStatement>l 

<Forstaternent>l 

<ParallelControlStatement>l 
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{<StatementSequence>} 

IfStatement: :=if<Expression>then<Statement> 

[else<Statement>] 

I/OStatement: :=read(<IdList>) lwrite(<IdList>) 

AssignmentStatement::=<Id>'='<Expression> 

Whilestatement::=while<Expression><Statement> 

ForStatement::=for<Id>'='<Integer>to<Integer><Statement> 

ParallelControlStatement::=get(<Tuple>) I 

put (<Tuple>) I 

readt(<Tuple>) I 

eval(<Tuple>) 

Expression: :=<Id>[<Operator><Id>] I 

<Id><Operator><Expression>l 

(<Expression>) 

Id::=<Letter><Alphanumeric>I<Letter> 

Alphanumeric: :=<Letter><Alphanumeric>l 

<Digit><Alphanumeric>l 

<Letter> I 

<Digit> 

Letter: :='A' .. 'Z'I'a' .. 'z' 

Digit: :='0' .. '9' 

IdList::=<Id>[,<IdList>] 

Tuple::=<Operand>[,<Operand>] 

Operand: :=<Id>I<Number>I<Expression> 

Number: :=<Integer>I<Real> 

Integer::=<Digit>I<Digit><Integer> 

Real::=<Digit>(<Integer>] '. 1 [<Integer>) 

[E('+'I'-']<Integer>) 

Operator::='>' I '<'I '>='I '<='I '='I '<>'I 

'*'I I I I I '+'I 
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The Algorithmic Language X-Linda 

X-Linda is an algorithmic language designed to develop algorithms for parallel 

programs. As mentioned earlier, the model for parallelism adapted for this language is 

Linda. The following is a description ofX-Linda: 

Function 
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A program in X-Linda is a collection offunctions capable of running in parallel or 

sequential according to the application. A function is parallel if it can run simultaneously 

with other functions. The following is a template of a function: 

function f 

( Declarations ) 

{ 

( Statements ) 

} 
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The Parallel Operations 

The parallel control is performed using the tuples. A process can put, get or read 

a tuple. The first operation is "put" an example of usage is shown below: 

1. put(''tag",Iteml,ltem2, .. ,ltemN) 

This operation inserts the tuple containing the specified tag and items 

Item l...ItemN in the tuple space (TS). The "tag" is a string to distinguish between 

tuples, and the data items are values. 

2. get("tag",Iteml,?Item2, .. ,ItemN) 

The get operation gets a tuple from the tuple space (TS) by matching the "tag". 

The tuple is read and removed from the tuple space. 

3. readt(''tag" ,Item 1, ?Item2, .. ,ItemN) 

The readt operation reads a tuple from (TS) by matching the "tag", but the tuple 

is not removed from the tuple space. 

For both get and readt the prefix 11 ?" before the item name as in "?Item2" 

indicates that the numeric value of this item is input from the tuple space, otherwise it is 

used to match the tuple. 

4. evaJetag",expl,exp2, .. ,expN) 

This operation create a new process tuple. The "tag" is the same as before but the 

expression "expi" can be a function to be executed. When the execution of eva] ends the 

tuple becomes a data tuple and remain in the TS until a process get it. The operation eval 

is useful in creating processes that run in parallel. 



Declarations 

The language X-linda has only two types of data: 1) node which can hold a 

numeric value, or can be a structure of nodes and arcs, and 2) an arc which is pointer to 

a node. The following is an example of a linked list declaration : 

node1 { 

info node; 

next arc -> node 1 ; 

} 

Control Statements 

X-Linda has four types of control statements "sequence", "for", "while" and ''if'. 

The "for" statement is used for a fixed number of iterations. For example, the statement 

"read(n)" will be executed 10 times : 

for I= 1 to 10 read(n) 

The "while" statement is used for looping until a condition is satisfied. The 

condition is expressed as an expression. The while loop continues until the value of the 

expression is zero. The following while statement continues looping until the value of A 

is greater than value of B : 
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while A <=B { 

A=A+l; 

write( A) 

} 
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The "if' statement is used to make a decision which statement to execute. The "if' 

statement can be used with or without the "else" option. The following is an example of 

an "if'' statement with the "else" : 

if A > B then A = A - 1 

else A= A+ 2 

L'O Statement 

Two operations are used to read input and write output to the user. In the 

following statements a value for the variable A is read and then the same value is output 

to the user: 

read(A); 

write(A); 
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