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Abstract: The purpose of this thesis is to localize a human and recognize his/her activities 

in indoor environments using distributed motion sensors. We propose to use a test bed 

simulated as mock apartment for conducting our experiments. The two parts of the thesis 

are localization and activity recognition of the elderly person. We explain complete 

hardware and software setup used to provide these services. The hardware setup consists 

of two types of sensor end nodes and two sink nodes. The two types of end nodes are 

Passive Infrared sensor node and GridEye sensor node. Passive Infrared sensor nodes 

consist of Passive Infrared sensors for motion detection. GridEye sensor nodes consist of 

thermal array sensors. Data from these sensors are acquired using Arduino boards and 

transmitted using Xbee modules to the sink nodes. The sink nodes consist of receiver 

Xbee modules connected to a computer. The sensor nodes were strategically placed at 

different place inside the apartment. The thermal array sensor provides 64 pixel 

temperature values, while the PIR sensor provides binary information about motion in its 

field of view. Since the thermal array sensor provides more information, they were placed 

in large rooms such as living room and bed room. While PIR sensors were placed in 

kitchen and bathroom. Initially GridEye sensors are calibrated to obtain the 

transformation between pixel and real world coordinates. Data from these sensors were 

processed on computer and we were able to localize the human inside the apartment. We 

compared the location accuracy using ground truth data obtained from the OptiTrack 

system. GridEye sensors were also used for activity recognition. Basic human activities 

such as sitting, sleeping, standing and walking were recognized. We used Support Vector 

Machine (SVM) to recognize sitting and sleeping activities. Gait speed of human was 

used to recognize the standing and walking activities. Experiments were performed to 

obtain the accuracy of classification for these activities.  
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CHAPTER I 

 
 

1. INTRODUCTION 

Rapidly increasing population of elderly people gives us a lot of opportunities and challenges. 

This chapter explains the motivation behind our thesis research. This chapter also provides the 

overall approach of thesis and an overview of remaining chapters in this thesis.  

1.1 Motivation 

The world population is ageing rapidly. The elderly population had increased to almost 810 

million in 2012. And in 2050, the number of aged people (60 and above) is about to reach a 

staggering 2 billion. Between 2000 and 2050, proportion of the world's population over 60 years 

will double from about 11% to 22%. This is an increase from 605 million to 2 billion over the 

same period [1][2]. 

Elderly people are an important asset to society. The life experience and wisdom they have 

gained over the years make them a vital social resource. However, along with these benefits there 

are added challenges. Providing older people with “age-friendly” physical and social 

environments helps them live an independent fuller life and also improves the active 

participation, maximizing their contribution to the society [2]. 
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Figure 1.1 Graph of people aged 60 or above [2]. 

We live in a busy world. It‟s becoming hard for people to take care of elderly at home. It is 

difficult for people to monitor elderly by staying at home due to hectic work life. Elders have the 

option of going to adult day care, long term care, nursing homes, hospice care, and home care. 

Even though all these options support the health, nutritional, social support, and daily living 

needs of adults, the feeling of independence is lost. Elders would prefer to stay in the comfort of 

their home where they feel more confident than moving to any expensive adult care or healthcare 

facility. Hence if older adult is able to complete self-care activities on their own, encouraging 

them in their efforts in maintaining independence can provide them with a sense of 

accomplishment and ability to maintain independence longer [3]. The best way to support them is 

to provide a physical environment that promotes the development and use of innovative 

technologies that encourage active ageing [2]. Home automation that provides security, 

entertainment, and energy conservation and tailored to the elderly would be the perfect use of 

technology to achieve this. A smart home along with a domestic robot can be used to keep a 

caring eye on the elderly [4][5]. The main objective in order to accomplish any of these tasks 

would require us to localize the elderly first. Real-time indoor monitoring plays an important role 
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in living assistance, emergency detection, surveillance of target and many more location based 

services. These types of location based services are very helpful for elderly in their daily lives. 

GPS (Global Positioning System) plays an important role in localization. But since GPS signal 

weakens inside the building, it cannot be used for indoor environment [6]. We have to overcome 

this disability with alternate technology. Numerous terminal and non-terminal based approaches 

exist that are used to track the human indoor. Terminal based approaches include RFID tags to be 

carried along with the person to be tracked. Non – terminal based approach include use of ultra 

sound, Pyroelectric Infrared sensors, smart floors or cameras to track the human. There are some 

disadvantages associated with Terminal based approach: the subject has to carry the device with 

him/her all the time. This would be great discomfort to the user. Also if the device is not carried 

by them, then it is impossible to track using this method. Smart floor falls short in maintenance 

[7]. With non-terminal based method, various sensors are distributed within the home that helps 

in tracking human. Cameras are more accurate. But, certainly, cameras breach privacy and 

therefore are not preferred in day-to-day life. We could use distributed PIR sensors to locate the 

human but PIR sensors have their own advantages and disadvantages. PIR sensors have to be 

placed throughout the home and also a lot of these have to be used in order to have high degree of 

accuracy. In this thesis we are using a fusion of infrared array sensors and PIR sensors to locate 

the elderly. The infrared array sensors used in this thesis are developed using thermopile 

technology and is similar to an Infrared camera but of very low resolution. The resolution is good 

enough to locate a human but not high enough to detect the face of the person. Hence it is a 

perfect fit for an application such as indoor localization. These sensors along with PIR sensors in 

specific locations help in localizing the human. 

The infrared array sensor can also be used to detect the daily activities of the elderly at home. By 

training the system to detect these activities and can be used to analyze the pattern of living. All 

these data also give the elderly‟s children or relatives to keep a caring eye on them and their 
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activities and to check if they are safe. This system can also help detect fire and also intrusion 

alert when no one is at home. 

1.2 Contributions 

The overall thesis is divided into two parts. First is the localization of the elderly person and 

second is the activity recognition of the elderly person.  

Read PIR sensors Read GridEye sensors

Localize the human Training Phase Testing Phase

Classify the 

Activity

Activity Recognition

 

Figure 1.2 Overall approach 

The overall approach of this research is shown in Figure 1.2. There are two kinds of sensors used 

in this thesis. One is the PIR sensor which is a Passive Infrared Sensor. This is a binary sensor 

whose digital output is either one or zero. Whenever the sensor detects a motion it outputs a one 

and when there is no motion it outputs a zero. The other sensor is an infrared array sensor is an 

8x8 thermopile array sensor. This sensor gives temperature values of each of the 64 pixels. Both 

these sensors are strategically placed inside the apartment to locate the elderly. Due to the high 

accuracy of the IR array sensor, they are placed in larger living spaces such as living room, 

family rooms and bed rooms. While the binary PIR sensors are placed in smaller spaces such as 

kitchen and bathroom. In the first part of the thesis the combination of these two sensors is used 
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to localize the elderly. Data from multiple of these sensors is collected to a central processing 

station when the data is analyzed. The data acquisition is done by wireless Xbee devices. The 

sensors are connected to end nodes. Here raw data is collected from each of the sensor and then 

transmitted through the Xbee devices using Zigbee protocol.   

In the second part of the thesis we identify the activity of the elderly using data collected from the 

thermopile array sensor. Since the array sensor is more like a low resolution IR camera, the heat 

signature of each activity can be used to first train the system and then using this model we can 

identify the human activity. Here we use the SVM supervised learning model to identify the 

activity. Initially each of the activity that has to be identified is trained to the system with an 

appropriate label. Later the SVM classifies the real time data and identifies the activity according 

to the trained model.  

1.3 Thesis Overview 

A brief overview of various chapters in remainder of the thesis is as follows. 

Chapter II presents a review of literature work related to home automation, localization and 

activity recognition, respectively. 

Chapter III describes about sensors and sensor node used in our system. This includes an 

explanation about Passive Infrared sensor node and thermal array sensor node. The hardware and 

software description of each of these nodes is provided in this chapter. This chapter also describes 

the test bed used to conduct our experiments.  

Chapter IV explains the calibration process conducted to transform pixel coordinates to real 

world coordinates. 
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Chapter V provides a description of the human localization method. It also explains about 

Kalman filter used in this method. A brief explanation about the method used to measure 

accuracy is also provided.  

Chapter VI describes activity recognition algorithm used in this thesis.  

Chapter VII provides a description of various experiments performed and results obtained. 

Chapter VIII presents the conclusion of our experimental findings. Scope for future work is also 

provided in this chapter. 
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CHAPTER II 
 

 

2. RELATED WORK 

Increase in life expectancy and higher-quality lives are few factors that have led to increase in the 

population of elderly people in the world. This is a blessing because of the amount of experience 

and knowledge they bring to the society. But along with this they offer us lot of challenges to face 

in order to provide a more supportive environment for them. Due to these reasons, 

Gerontechnology is gaining importance in recent times.  

“Gerontechnology is the study of the interaction between technology and the unique challenges 

and needs of older people faced with limited physical or cognitive abilities.” [8]. 

A lot of research is going on in developing smart homes, social robots, assistive technology and 

telemedicine. A wide range of software, wearable devices and personal assistance devices are 

being developed to help assist the elderly [8]. 

This chapter explains research in the field of home automation, indoor localization and activity 

recognition. 
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2.1 Home Automation 

Aware Home Research Initiative (AHRI) at Georgia Institute of Technology has constructed a 

three-story, 5,040 square-feet house to address the social challenges faced by people at home. 

One of the major challenges researched is the design of smart home to help the elderly people. In 

this research facility, the location of human is identified using RF ID tags. Each person wears a 

passive RFID tag below the knee. Antennas in the form of floor mats are distributed throughout 

the house that can track the IDs on the person. 

This system provides room level occupancy accuracy. To improve accuracy and to recognize the 

human activity, a series of unobtrusive cameras are installed on the first floor of the Aware 

Home. By using location, gestures and interaction with other objects the behavior of the human is 

recognized. [9]. 

Gator Tech Smart House in The University of Florida has similar research to help the aged and 

disabled people. Gator Tech Smart House is fitted with various smart devices to help day to day 

activities of the occupant. Ultrasonic transceivers are placed in each room and the user has to 

wear a vest with an ultrasonic tag. The location of the resident is detected using triangulation. 

These help in detecting occupant‟s movements, location and orientation. Smart floors are used to 

track the location of occupants. They are also used to detect occupants fall. Smart cameras are 

used for video surveillance and motion detection. Smart phone operate as traditional telephone 

and is also used to operate various gadgets at home. Smart thermostats are used to personalize air 

conditioning and heat settings throughout house [10]. 

In [11], Mrazovac et al., developed software based home control system to automatically control 

the audio and video devices in Smart home. They use visual 3D camera, microphone and passive 

infrared sensors to detect and localize the human. These sensors sense the behavioral patterns of 

human. Based on these patterns various home appliances were controlled.  
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Extensive research for elder care is carried out at Center for Eldercare and Rehabilitation 

Technology (CERT) center at Missouri University [12]. Sensor networks have been installed in 

an apartment. Various sensors used include motion sensor, chair pads, stove sensor and bed 

sensor. Data collected from these devices is studies and intelligent algorithm extract patterns of 

activity to detect health change. Vision sensors, depth sensors, acoustic arrays and radar are used 

to detect human fall. Gait parameters were collected and analyzed to detect risk of fall. The 

sensor network also includes a passive hydraulic bed sensor. This sensor captures quantitative 

pulse and respiration rates. This information was used to detect illness well in advance.  

2.2 Indoor Localization 

In all the above home automation research the foremost important objective is to locate the 

human inside home. There are many techniques used to localize the resident. The three major 

techniques are Triangulation, Proximity and Scene analysis [13]. Since GPS does not work well 

in indoor locations, alternative techniques like Active Badge and Active Bat are used. Active 

Badge was developed at Olivetti Research Laboratory and it uses diffuse infrared technology. 

Each person has to carry a small infrared badge. The badge emits a unique signal every 15 

seconds or on demand which was collected by central server [14]. Active Bat developed by 

AT&T uses ultrasonic location system to locate the resident using the principle of trilateration. 

The Bat (Transmitter) emitted a short pulse of ultrasound signal to the receivers mounted at 

known points on the ceiling. Using the time of flight of the pulse, distance of the Bat from each 

receiver was calculated and the 3D position of the Bat was determined [15].  

Cricket is another example that uses the ultrasound technology to localize the human. Cricket 

indoor location system consists of location beacons and listeners. Beacons are transmitters that 

are attached to the ceiling of buildings and receivers called listeners are attached to devices that 
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require location information. Active beacons transmit location information and an ultrasonic 

pulse. The passive listener captures this information to calculate its distance from the beacon [16]. 

To locate human more accurately Easy Living uses two sets of stereo color cameras for tracking 

multiple humans [17]. Even though this method provides a practical person-tracking system, 

privacy of the person is lost.  

In [18], Yu et al., used multiple cameras and floor sensors to localize the human in a Smart home 

environment. The system consisted of three components such as Camera Localization, Sensory 

Floor Localization and Condensation Tracker. The presence of the person was detected by the 

sensory floor by measuring the pressure variation. The cameras detected the person by using 

background subtraction and human template matching. The localization by both the floor sensors 

and the cameras was done separately. The Condensation Tracker was used to improve accuracy 

of localization. The failure of some sensors was overcome by fusing the data from multiple 

sensors. 

Lately, Pyroelectric Infrared Sensors are being used to detect and localize human because of its 

simplicity. In [19], Hsiao et al., proposed a method to detect and localize the human inside home 

using pyroelectric infrared sensor networks. In this paper a combination of multiple PIR were 

installed on the ceiling. The procedure has initial offline training where a unique identifying set 

matched for each of the location regions is saved as a fingerprint. Using this fingerprint database 

as a lookup table, the identifying set from the online testing phase is mapped. By this method the 

target location is recognized. The room where the human needs to be detected was divided into a 

grid of 1m wide. The sensor was placed on the ceiling of the room and the identifying code at 

each grid point was determined and recorded into the database. Later during online testing phase 

when a human was at a particular grid point, he triggered an identifying code which when 

compared to the lookup table gave the location of human. 
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In [20], Lee et al., proposed a technique to track the path of the human movement indoor using 

the pyroelectric infrared sensor. An array of PIR sensors were placed in a room such that the 

sensing areas of two or more sensors overlap. The experiment was conducted on a test bed. A 

total of 12 sensors were placed such that maximum overlap of sensing area occurs and also such 

that all of the test bed was covered. A sensor placement was finally considered with 28 sensing 

areas covering the entire test bed. They have conducted several experiments to localize the human 

and track his trajectory. A location accuracy of 0.5m was achieved by the system. 

PIR sensors are simple binary sensors that have both an advantage and a disadvantage. The 

advantage of being binary is that less processing time is required. But the disadvantage is that 

very less information is received. When a person is still in the area of interest, then the sensor 

gives a false negative. Also in all these research on localization of the human, in order to have an 

accurate result many sensors had to be placed throughout the home in strategic places. Installing 

many sensors causes increase of purchase cost and maintenance cost.  

With the advancement in MEMS technology, many small format thermal infrared sensors are 

being developed. These sensors use the thermopile technology to generate digital temperature 

data from these thermopile outputs [21]. These sensors have advantage over binary PIR sensors 

and optical cameras. Despite providing more information than the binary sensors, they still do not 

breach the privacy of the person unlike the regular camera. Hence these sensors are great 

instruments to be used in home automation projects. 

Erickson et al., in [22] proposed a Thermal Occupancy Sensing System (TOSS) using a 

thermopile array sensor. The main objective of this system was to determine the occupancy of a 

particular zone within a building in order to provide it to a building‟s energy management system. 

The system consisted of a combination of a PIR sensor and a thermopile array sensor - GridEye. 

The PIR sensor detected occupancy, while the IR array sensor was used to detect number of 
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occupants. The system initially took a background reading when the room was not occupied. 

Using this background the subsequent reads were subtracted. By doing this they could get the 

active components where the temperature was more than a standard deviation over the mean. The 

Connected Components were used over these active components and a feature vector was created 

with the total number of active quadrants, total number of connected components and the largest 

component. This feature vector was later passed to K-Nearest Neighbors to determine the 

occupancy count. 

2.3 Activity Recognition 

Activity recognition plays an important role in assisting elderly people and monitoring human 

activities anomalies. Research papers related to activity recognition are presented below. 

Current research employ several approaches for activity recognition such as, wearable sensor 

based, vision sensor based, depth sensor based, distributed motion sensor based etc.  

Bao et al., [23] recognized activities of human using wearable sensors. They developed an 

algorithm to detect physical activities from data acquired from five biaxial accelerometers. These 

accelerometers were worn on different parts of the body. Accelerometer data was collected from 

various subjects performing different activities. Decision tree classifier classified the mean 

energy, frequency-domain entropy and correlation of acceleration data. Walking, sitting, standing 

still, watching TV and various other activities were recognized by analyzing the data collected 

from these sensors.  

In [24], Zang et al., used vision and depth based sensors for recognizing human activity. They 

proposed using four dimensional local spatio-temporal features for activity recognition. 4-

dimensional local spatio-temporal feature includes intensity and depth information collected from 

3D camera. Feature points were extracted by applying separate filters along the 3D spatial 

dimensions and 1D temporal dimension. Latent Dirichlet Allocation with Gibbs sampling was 
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used as the classifier to recognize human activities. Six types of human activities such as lifting, 

removing, pushing, waving, walking and signaling were recognized using the proposed method. 

Activity recognition explained in [23] requires the user to wear a device. While in [24], the 

privacy of the user is at risk. A system that overcomes these two issues was developed by Okada 

et al., in [25] 

In [25] Okada et al., used the thermopile array sensor to understand the daily activities of Visually 

Impaired Persons instead of using a convectional optical camera which would invade the privacy 

of the person. The system consisted of a Grid-Eye sensor connected to an Arduino Uno. The data 

read from the sensor was saved into a microSD card for further processing. The various behavior 

patterns were determined using the SVM. Initially the data from the sensor was saved to the 

microSD card. A video of the activity was also taken so that the activity could be labeled 

accordingly using the timestamps from both. Later by using trained SVM the activities of visually 

impaired person were determined. Since each activity produced different temperature 

distributions, various activities such as sitting on a chair, sitting on floor, standing were 

recognized.  

In [26], Gonzalez et al., proposed a system to recognize energy-related activities in offices using 

thermopile sensors. A GridEye sensor was placed in an office building pantry area to recognize 

the activities in that area. The sensor was used and each of the pixel temperature was compared to 

the ambient temperature to determine the occupancy of the pixel. The pixels were classified into 

stationary objects and dynamic objects. A set of 21 activities involving the interaction between 

these stationary and dynamic objects was scripted. Using the classifiers, the state and interaction 

classes were determined. SVM was used as the classifier and was trained using the dataset. Using 

this real life study, dataset was evaluated and classified.   
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In this work, both the PIR sensors and thermopile array sensors will be used to locate the human 

inside the home and thermopile array sensor was used to recognize the human‟s activity. The 

experiments were conducted in a mock apartment. 
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CHAPTER III 
 

 

3. SENSOR PLATFORM 

Passive Infrared sensors nodes and thermal array sensors nodes are used to localize the human 

and recognize activity of the human. This chapter provides a description of these sensor nodes. It 

also explains the test bed used in our experiments. 

3.1 Passive Infrared Sensor Node 

Passive Infrared sensors (PIR sensors) are sensors that detect the IR radiations emitted by the 

objects that generate heat. The sensor in the device is split into two parts such that they detect the 

change in the radiation caused by motion in its field of view. The changes in the amount of IR 

radiation on the element, changes the voltage generated. This is fed to an on-board amplifier that 

processes the signal and provides it to the output pin [27].  

The Figure 3.1 shows how the PIR sensor produces an output when it detects movement from 

objects radiating IR rays. When a human passes the field of view of the PIR sensor, the heat 

generated by the human body causes the PIR sensor to produce an output. The output is generated 

because of the change in the IR radiations received by the PIR sensor. This can be seen in Figure 

3.2. The PIR sensor is usually capped with a Fresnel lens. A Fresnel lens is a plano convex lens 

that is used to condense the outside light into the sensor.  
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Figure 3.1PIR sensor working [28]. 

 

 

Figure 3.2 Passive Infrared Motion sensor working [29]. 

The PIR sensor used in this project was Panasonic EKMC1601111. The device specifications are 

shown in Table 3.1. 
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Parameter Details 

Rated consumption current 170μA 

Rated operating voltage 3.0VDC – 6.0VDC 

Output current (When detecting) 100μA 

Output Voltage (When detecting) Vdd – 0.5VDC min 

Circuit Stability time 30s max 

Detection distance 5m 

Detection range (Horizontal x Vertical) 94° x 82° 

Detection zone 64 zones 

Table 3.1 Panasonic EKMC1601111 specification [30] 

 

 

Figure 3.3 Timing diagram of PIR sensor [30]. 

The timing chart for the sensor is shown in Figure 3.3. The sensor produces a digital high 

whenever a movement is detected. There is a stability time of 30sec when the sensor is powered 

up. The output of the sensor is not stable during this startup time.  
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3.1.1 Hardware Setup 

The PIR Sensor node consists of the following hardware parts. 

• Arduino Mega 2560 

• Panasonic PIR sensor 

• 10k ohm resistor 

• 2 LEDs 

• Xbee shield 

• Xbee module 

The Arduino Mega 2560 is the brain of the sensor node which is a microcontroller board based on 

the ATmega2560. It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 

16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB 

connection, a power jack, an ICSP header, and a reset button. An XBee shield along with an Xbee 

module is placed on the Arduino board. The Xbee module is used to transmit the sensor data 

wirelessly to the gateway node. 

The PIR sensor was built into a circuit board with a pull-down resistor to the output pin. This 

ensures that false positives are not encountered. 
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Figure 3.4 Circuit diagram of PIR sensor node 

Figure 3.4 is the circuit diagram of the PIR sensor board. The PIR sensor board consists of the 

PIR sensor, the pull down resistor and the pin outs VDD, OUT and GND to the Arduino Mega 

2560 board.  The Startup LED is turned on when the sensor node is powered up for the first time. 

The Motion detection LED is turned on wherever the sensor detects motion in its field of view. 

Since the sensor has a very large field of view, it is restricted by attaching a cylindrical structure 

around it. By doing this we could change the sensor area by increasing or decreasing the height of 

the cylinder. 

Figure 3.5 is the picture of PIR sensor node. The PIR circuit board is fixed to the Arduino board. 

The Xbee shield along with the Xbee module is fitted to the Arduino board. Two LEDs are used 

to indicate the sensor start up and motion detection. A cylindrical structure is fitted outside the 

PIR sensor to vary the field of view. 
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Figure 3.5 Picture of PIR sensor node 

 

3.1.2 Software 

The Arduino is programmed using Arduino IDE. The firmware on the Arduino reads the sensor 

and transmits it to the gateway node through the Xbee module. On startup all the I/O ports are 

initialized and the startup LED is turned on for 30 sec. During startup time the sensor is not read 

since the output is not stable. After the startup time the senor is read continuously. When the 

sensor detects motion, the sensor outputs a digital high and an encoded data is transmitted 

through the Xbee module. The encoded data contains the sensor ID and the status of the motion. 

When the motion stops, the sensor outputs a low and another encoded data is transmitted to 

gateway node. A person is considered to be in the sensor‟s field of view after the start of motion 

byte is transmitted and before the stop of motion byte is transmitted. The sensor outputs a high 

when an object enters its field of view. But the sensor outputs a high even when the object moves 
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out of the sensor area. This alternating signal can be considered as though the subject has moved 

out of the field of view and entered again. Hence a low pass filter is introduced in the firmware 

code so that these two signals can be considered as a single motion activity. Figure 3.6 is the 

flowchart of firmware downloaded into Arduino of PIR sensor node. 
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Initialize the system

Turn on the PIR sensor 

and wait till it initializes

Transmit Motion Start

Motion 

Detected?

Yes

Motion 

Stopped?

Wait for specified 

delay time

Has motion 

started again?

Transmit Motion 

stop

Yes

Yes

No

No

No

 

Figure 3.6 Flowchart of PIR sensor node firmware 
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3.2 Thermopile Array Sensor Node 

A thermopile is an electronic device that converts thermal energy into electrical energy. A 

thermopile consists of a number of thermocouple junction pairs connected electrically in either 

series or parallel. When one of the thermocouple junctions absorbs thermal radiation, its 

temperature increases. This junction is called an active junction. The temperature difference 

between the active junction and the reference junction kept at a fixed temperature produces an 

electromotive force. Seebeck effect is the principle that is responsible for the generation of 

voltage in a thermopile. According to the Seebeck effect the voltage produced is proportional to 

the temperature difference between the two junctions [31][32].  

We are using a MEMS based Panasonic Infrared array sensor Grid-EYE (AMG8831). Grid-EYE 

is a thermopile array sensor that features 64 thermopile elements in an 8x8 grid format. This 

sensor consists of a built-in thermistor and an integrated circuit is used to measure actual 

temperature. Each of the 64 thermopile elements has a 7.5° field of view and the sensor has a 60° 

viewing angle. Grid-EYE uses I2C communication interface [27].  

The specification of the sensor is given in Table 3.2.  

Item Ratings 

Applied Voltage 3.3V±0.3V 

Temperature range of measuring 

object 

0°C to 80°C +32°F to +176°F 

Temperature accuracy Typical ±2.5°C ±4.5°F 

Detection distance Max. 5m 16.404ft 

Viewing angle Typical 60° 

Setup time Typical 50ms (Time to enable communication after 
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setup) 

Typical 15s (Time to stabilize output after setup) 

Frame rate Typical 10 frames/sec 

Temperature output resolution 0.25°C 

Thermistor output resolution 0.0625°C 

Table 3.2 GridEye sensor specifications [33] 

3.2.1 Hardware Setup 

The Grid-EYE sensor node consists of the following hardware parts: 

• Grid-EYE sensor board 

• Arduino Mega 2560 

• Xbee shield 

• Xbee module 

GridEye sensor board consists of 4 wire connector Vdd, GND, SDA and SCL. The connections 

between the GridEye sensor board and the Arduino board are shown in the Figure 3.5. 
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Figure 3.7 GridEye sensor node circuit diagram 

The Arduino board also has an Xbee shield and an XBee module to transmit the data from the 

GridEye sensor to the gateway node. 

3.2.2 Software 

The Arduino board, to which the GridEye sensor was connected, was programmed using Arduino 

IDE. The firmware on the Arduino board reads the GridEye sensor data and transmits it to the 

gateway node through the Xbee module. The GridEye sensor is read using I2C protocol. The 

sensor provides 2 bytes for each of 64 pixels in the 8x8 grid. It also provides two byte thermistor 

value, which is the ambient temperature. After a frame is read from the GridEye sensor, it is 

transmitted to the gateway node serially using the Xbee module. 

Figure 3.6 is the flowchart of the firmware downloaded onto the Arduino of GridEye sensor node. 
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Figure 3.8 Flowchart of firmware on GridEye node 

In order to transmit the frame through the Xbee module, a packet was formed which was 

compliant with API mode. By using the Xbee module in API mode we have the advantage to 

separate the frames from multiple GridEye sensors at the gateway.  
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0x7E
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Checksum

 

Figure 3.9 Xbee API packet 

Field Name Field Value Description 

Delimiter 0x7E Start Delimiter 

Length 2 bytes Number of bytes between length and checksum fields. 

API 0x01 Tx16 Request 

Frame ID 0x00 No response is requested 

Destination 

Address 

2 bytes Destination 16-bit network address 

Options 0x00 Retry transmission if failed 

Data Variable Up to 100 bytes of payload. 

Checksum 1 byte 0xFF minus 8-bit sum of bytes between the length and 

checksum fields. 

Table 3.3 Xbee API packet description 

The API mode packet format is shown in Figure 3.7. The packet starts with a Start Delimiter. The 

Length, API identifier, Frame ID, Destination Address, Options follows the Start Delimiter. Data 

up to 100 bytes can be sent as payload. The Checksum is the last byte of the packet. The 

description of each field in the API packet is explained in Table 3.3. 

Since only 100 bytes of payload can be sent in one packet, two API packets for each frame of 

sensor were sent. Each pixel in the frame is of 2 bytes. The first 32 pixels of the frame were 

transmitted in the first API packet. The second API packet consisted of the remaining 32 pixels 
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and the thermistor temperature. The flowchart of the firmware on the Arduino board is shown in 

Figure 3.8. 
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Figure 3.10 Flowchart of Xbee API packet transmission 
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Figure 3.11 GridEye sensor node 

GridEye sensor node is shown in Figure 3.9. The sensor node is mounted on a support and 

focused on the test bed. 

 

.
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3.3 Test Bed Setup 

A Smart Home test bed was set up for the experiments. The dimensions of the test bed are 

16x22ft. It simulates a small one bedroom apartment. It includes a living room, a bedroom, a 

kitchen and a bathroom. Figure 3.10 shows a top view (left picture) and 3D view (right picture) of 

the mock apartment designed on the test bed. Autodesk Homestyler application was used to 

generate this figure [34]. 

 

Figure 3.12 Top view and 3D view of mock apartment 

The test bed also contains an indoor localization system. This system provides ground truth 

location values, which simulates an indoor GPS system. The system is manufactured by Natural 

Point Inc [35] which includes 12 V100:R2 cameras. These cameras are mounted around the test 

bed so that every part of the test bed is in focus by at least three cameras. In order to track  a 

human subject, special reflective markers are placed over the head. These special reflective 

markers are tracked by the Optitrack system which provides the position of the human. Using the 

position data trajectories, the human path could be determined. Figure 3.11 shows the test bed 

with the Optitrack system, PIR sensors and GridEye sensors. 
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Figure 3.13 Test bed with OptiTrack system and Infrared Sensors 

3.3.1 Sensor Placement 

The PIR and GridEye sensors are strategically placed at various locations. The GridEye sensors 

are placed in the living room and the bedroom. The PIR sensors are placed in the kitchen and the 

bathroom. Since the GridEye sensor can localize and recognize the human activity as well, they 

were placed in the living room and bedroom. It was more appropriate to use the PIR motion 

sensor in bathroom and kitchen where just localization is sufficient. Moreover the temperature 

emissions from equipment in kitchen like stove, conventional oven, microwave oven interfere 

with activity detection by the GridEye sensor. Hence just a PIR sensor was used to localize the 

human in the kitchen. Figure 3.11 shows the sensor placement around the test bed. 
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CHAPTER VI 
 

 

4. GRIDEYE SENSOR CALIBRATION 

Calibration is an important step in transformation of pixel coordinates to real world coordinate 

system. In this chapter we explain calibration of GridEye sensor used in our thesis  

The GridEye sensor is used to localize the human within its field of view. The human can be 

detected by the sensor as higher temperature object compared to the background. And using the 

localization algorithm, the human is localized in the pixel coordinates. But in order to transform 

the pixel coordinates to spatial coordinates, we have to calibrate the sensor. A camera is 

calibrated to remove distortion and to find the relation between the pixel units and real world 

units. Most of the traditional cameras are calibrated using the checkered board as the calibration 

target. Using calibrations one can estimate the intrinsic and/or extrinsic parameters. Intrinsic 

parameters are the internal characteristics of the camera such as focal length, skew and distortion. 

The extrinsic parameters are the position and orientation of the camera. In order to calibrate, a 

pattern such as the checkered board is printed and mounted on a flat surface. Many pictures of 

this calibration target are taken at different orientations and distances. Later using these pictures 

the calibration code is executed to find out the calibration results. The results are saved into a file 

[36][37]. All these procedures could be followed if the camera is a pin-hole camera, or a camera 

with high resolution.  
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The thermal array sensor that is used in this experiment is of very low resolution to carry out this 

procedure. Hence a manual calibration is required. Since we are using a thermal sensor, a heat 

source is used as the calibration target. 

Initially in our experiments to calibrate the sensor, several heat sources were tried. A regular 90W 

Incandescent light bulb produced enough heat to be differentiated from the background, but with 

distance it diminished drastically to be identified. A candle produces a lot of heat but the size of 

the candle was too small to be detected at larger distance. Also using a candle was unsafe and 

dangerous in a lab environment. Work lamps with halogen bulbs were also used for calibration. 

The 500W halogen bulb produces 20,000 lumen output and very high temperature that could be 

detected at great distances by the Grid Eye sensor. 

As the work lamps are turned ON the temperature of the lamp increases drastically. After 2-4 

minutes the lamps are turned off and are brought in the field of view of the sensor. An application 

that displays the real-time temperature of each pixel of the sensor is executed on the computer. 

The lamp was placed in the center of the selected pixel in real space. The positions were marked 

and later the ground truth values were determined using the Optitrack system. Using the pixel 

values and the positions in real world a relation between them was determined. Nine pixel and 

real world pairs were collected. Using these values two equations were formed; one equation for 

the x-axis and other for y-axis lines. Using these equations one could estimate the real world 

coordinates using the pixel values. A polynomial of degree „n‟ was created using the data pairs. 

The polynomial was determined in a least square sense. The coefficients of both the polynomials 

were saved. Later the real world coordinates was evaluated at the particular pixel value using 

these coefficients. But this method was not accurate enough when experiments were conducted. 

This was due to the fact that the heat source was placed on the ground during calibration. But the 

human subject produces heat at an elevated position from the ground. In order to compensate this, 

an offset was added to during the experiments. But after several experiment, this method 
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produced results that weren‟t good enough. It was difficult to formulate a relationship between 

the calibrated values and the human temperatures.  
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· Pixel location data
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OptiTrack

GridEye

Transformation
Surface 
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Figure 4.1 Flowchart of the GridEye sensor calibration 

Later the human subject was considered as the heat source for calibration. Figure 4.1 shows 

flowchart of the GridEye sensor calibration. The human subject stood in the field of view of the 

sensor at different points as shown in Figure 4.1. The sensor data was recorded at each of these 

points. The ground truth values at each position the human subject stood was recorded using the 

OptiTrack system. The sensor data was processed and a temperature image above a certain 

threshold was calculated. The centroid of hot pixels above the threshold was calculated and 

saved. Now a relationship between the sensor pixel values and the ground truth values was 

calculated. Initially the x-axis pixel values and x-axis ground truth values were related with a 

polynomial equation and y-axis pixel values and y-axis ground truth values were related with 

another polynomial equation. Even though this method of calibration produced good results, the 

output was skewed. This was because the field of view of the sensor is skewed when placed at an 

angle. In order to eliminate this, ground truth x-axis values were related to both x and y axis pixel 

values and similarly the y-axis ground truth values were related to both x and y axis pixel values. 

This method of calibration produces two surface equations. These equations were later used to 

transform the x and y axis pixel values to real world coordinates. 
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CHAPTER VII 
 

 

5. HUMAN LOCALIZATION 

Human localization plays an important role in locating the human and analyzing his/her behavior. 

This chapter explains the algorithm used in our research in localizing the human. PIR sensors and 

the GridEye sensors are used in locating the human. The data obtained from these sensors are 

processed using our algorithm to get the location of the human in real world coordinates.  

5.1 Overall Approach 

In this thesis we used GridEye and the PIR sensor to localize the human. The GridEye sensor 

provides sufficient data to localize the human in its field of view. Normal body temperature 

ranges from 97.8 degrees F (or Fahrenheit, equivalent to 36.5 degrees C, or Celsius) to 99 degrees 

F (37.2 degrees C) for a healthy adult [38]. The average room temperature ranges from 20 to 23.5 

°C (68.0 and 74.3 °F) with an average of 21 °C (70 °F) [39]. Clearly, there is difference in the 

temperature between the room and the normal human temperature. In order to easily identify the 

human‟s presence, we performed background subtraction. Initially when the system is activated, 

we assume that the room is unoccupied. During that time the GridEye captures the temperature 

data of the unoccupied room. Hence temperatures of all pixels were in and around the room 

temperature. Two to four seconds of unoccupied room was captured and mean of all frames in 

that time was calculated and saved. In order to detect a human, the real time frame was subtracted 

with the mean background frame. 
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This helped us to remove the stationary background and detect the foreground object. Since the 

object of interest was of higher temperature than the background temperature, the object of 

interest became more prominent after background subtraction. All the pixels of the background 

were close to zero after the background subtraction. There was normal distribution with the mean 

close to zero. And the values of objects of interest were outside that normal curve.  

Before the background subtraction all the images were first interpolated. The sensor data has a 

low resolution of just 8x8 pixels, this is very discrete to produce a smooth trajectory for the path 

travelled by the human. Interpolation helps us to produce a smooth trajectory. In our experiments 

Bicubic interpolation method was used for interpolation and the images were scaled by a factor of 

4. In this method, the output pixel value was a weighted average of pixels in the nearest 4-by-4 

neighborhood. 
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Figure 5.1 Flowchart for Background Subtraction 
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Initially, it is necessary that field of view of sensor was not occupied by human before the sensor 

was turned ON. The system recorded specified number of images for background subtraction. 

The images were interpolated and later the mean of all these images was calculated and saved as 

background image. This image was later used for background subtraction for determining the 

human location. Flowchart for background subtraction is shown in Figure 5.1. 
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Figure 5.2 Flowchart of image processing of Raw Sensor data 

After the background image is saved, the system starts reading the data to locate the human. 

Figure 5.2 explains the processing done on the raw data received from the GridEye sensor. The 

image was first interpolated. An original sensor image and interpolated image are shown in 

Figure 5.3. It can clearly be seen that the interpolated data is more continuous and easier to 

visualize the human‟s presence. The interpolated data was then subtracted by the background 
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image saved earlier. After background subtraction, the foreground human subject was clearly 

visible since the static background was removed. The image was then passed through a Gaussian 

filter. This helped us to remove any random noise in the image. Figure 5.4 shows the image after 

being passed through the Gaussian filter. After this a binary image called Threshold Image is 

created. This image contains active pixels only at positions with temperature values above a 

threshold value. The histogram in Figure 5.4 shows the pixel distribution. We can see that there is 

normal distribution about zero. This is usually the pixels of the background. These pixels can be 

ignored. The pixels of interest are of higher temperature. A specific threshold value is selected 

such that the foreground object is detected and yet all the other pixels belonging to the static 

background is removed. The figure shows the threshold image in 2D and 3D. In order to 

determine the location of the human, the centroid of the active pixels in the threshold binary 

image is calculated. The centroid gives the center of the heated object. This location in pixel 

coordinates was converted into real world coordinates by passing the pixels through the surface 

equations determined during the calibration process. The real world coordinates was then given as 

input to the Kalman filter to remove noise and get a smooth trajectory. 
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Figure 5.3 Original Image in 2D (Top Left), Original Image in 3D (Top Right), Interpolated 

Image (Bottom Left), Interpolated image after Background Subtraction (Bottom Right) 
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Figure 5.4 Image after passing through Gaussian filter (Top Left), Histogram of Gaussian Image 

(Top Right), Threshold Image in 3D (Bottom Left), Threshold Image in 2D (Bottom Right) 

5.2 Kalman Filter 

Kalman filter is an algorithm that is generally used to reduce noisy data and provide estimate of 

parameters of interest [40]. Kalman filter is used in many applications, including Global 

Positioning System receivers, tracking objects, phase-locked loops in radio equipment. They are 

also used in many computer vision applications. In our thesis work, we used Kalman filter to 

track the human subject and remove the noise in the system. We used the Kalman filter as 

suggested by Ramsey Faragher [40] and Dave [41]. 
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In our experiments we are tracking a human subject who could travel in two dimensions in real 

world. The human subject can travel in both X and Y directions. Hence we assume a standard 

model of motion in equations below. 

               
 

 
    (5.1) 

             (5.2) 

               
 

 
    (5.3) 

              (5.4) 

Where  

·    is velocity and   is acceleration and   is time elapsed between time epochs   and   

 . 

Equations 5.1 and 5.2 are in x direction and Equations 5.3 and 5.4 are in y direction. The Kalman 

filter assumes that the state of a system at time t evolved from the prior state at time t-1 according 

to the Equation 5.5, which is the state update equation. 

                 (5.5) 

Where 

·    is the current state vector containing the position and velocity for the system at time t. 

·   is the state transition matrix which applies the effect of each system state parameter at 

time t-1 on the system parameter at time t. 

·      is the prior state vector. 
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·   is the control input matrix which applies the effect of each control input parameter in 

the vector    on the state vector. 

·    is the vector containing control input acceleration.  

·    is the vector containing the process noise terms for each parameter in the state vector. 

The process noise is assumed to be normal distribution with mean zero and covariance 

given by covariance matrix   . 

The measurements of the system are given by the measurement update model Equation 5.6. 

            (5.6) 

Where  

·    is the vector of measurements 

·   is the transformations matrix that maps the state vector parameters into the 

measurement domain. 

·    is the vector containing the measurement noise terms for each observation in the 

measurement vector. The measurement noise is assumed to be zero mean Gaussian white 

noise with covariance   . 

The state vector    contains the position and velocity of the human in two directions X and Y 

given by Equation 5.7.  

    [

  

  

  ̇

  ̇

] (5.7) 

From equation 5.1, 5.2, 5.3 and 5.4 we can derive the linear equations as Equation 7.8. 
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So when we compare Equation 5.8 this with Equation 5.5 we have 
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 (5.9) 

In the measurement update model, we are measuring and recording only the position of the 

human, hence the transformation matrix   will be limited only to the x and y positions (Equation 

5.10). 

    *
    
    

+ (5.10) 

The standard Kalman filter equations for the prediction stage are given by Equations 5.11 and 

5.12 

   |         |        (5.11) 

   |       |    
      (5.12) 

Where    is the covariance matrix, and    is the process noise covariance matrix associated with 

noisy control inputs (Equation 5.13). 
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Where,    is process noise or variability in how fast the human is moving (standard deviation of 

acceleration). 

The measurement update equations are given by Equations 5.14 and 5.15 

   |    |             |   ) (5.14) 

   |    |         |    (5.15) 

Where 

       |    
     |    

     
   (5.16) 

Where  

  |  is the state vector following data fusion 

  |    is the state vector before data fusion, i.e., the prediction 

  |  is covariance matrix (confidence) following data fusion 

  |   is covariance matrix (confidence) before data fusion 

   is the measurement vector 

   is the Kalman gain 

   is the uncertainty matrix associated with a noisy set of measurements 

     [
  

  

   
 ] (5.17) 

Where   
 and   

  are variance in measurement in x and y directions respectively. 

These equations were used in removing the noise in the system and predicting the position of the 

human. 
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5.3 Location Accuracy Evaluation 

After using the Kalman filter, a trajectory of the path travelled by the human is obtained. In order 

to check the accuracy of trajectory of the system we used the OptiTrack system. It is an indoor 

localization system which can be treated like an indoor GPS. Special markers were placed on the 

human subject to be tracked by the OptiTrack system.  The position provided by the OptiTrack 

system was saved which was later used to plot the trajectory. To determine the location accuracy 

of GridEye sensor, the trajectories of the human path produced by GridEye sensor and OptiTrack 

system were compared. Each point of trajectory formed by GridEye sensor was compared with 

trajectory formed by OptiTrack system. Point to point distance calculated was the Euclidean 

distance between the points. In order to calculate the error between the two trajectories, the 

distance between each point in the trajectory of GridEye to the nearest point in the trajectory 

formed by the OptiTrack was calculated. In Figure 5.5 assume line P is trajectory obtained from 

the GridEye sensor and line Q is the trajectory obtained from the OptiTrack system. The points 

q1, q2, q3 and q4 on line Q are closest to the points p1, p2, p3 and p4 on line P respectively. The 

Euclidean distance between these points was calculated to determine the accuracy. 

p1
p2

p3

p4

q1
q2 q3

q4

P

Q
 

Figure 5.5 Distance between points on two lines. 

The two dimensional Euclidean distance between two points is given by Equation 5.18. 
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 (5.18) 

Where            and            are two points in Euclidean plane. 

 

Later the Root-Mean-Square (RMS) level of these distances is calculated. The root-mean-square 

level of a vector X is given by Equation 5.19 [42]. 

       √
 

 
∑ |  |

  
    (5.19) 

with the summation performed along the specified dimensions. 
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CHAPTER VIII 
 

 

6. ACTIVITY RECOGNITION 

Activity recognition plays an important role in assisting elderly, sick and disabled [36]. By 

recognizing the activities of elderly person, we can keep a track of their daily routine. In this 

chapter we explain the algorithm used in our experiments for activity recognition. In our 

experiments we recognize several basic activities such as sitting on dining chairs, sitting on 

couch, sleeping, walking and standing. We use the supervised learning SVM algorithm for 

activity recognition of sitting on dining chairs, sitting on couch and sleeping. 

6.1 Support Vector Machine 

SVM is a supervised learning model that is used for classification and regression analysis. SVM 

is highly used in pattern recognition and data classification [43]. SVM was proposed by Vladimir 

N. Vapnik and Corinna Cortes in 1995 [44]. SVM initially generates a model based on the 

training data given to it. Later the new data is classified based on the model generated earlier. 

SVM classifies the data by finding a hyper-plane that separates all the data points belonging to 

two classes. The hyper-plane selected is such that the margin between the two classes is the 

largest.  

Consider a data set    belonging to one of the two classes            as shown in Figure 6.1. 

Here we assume that data set is linearly separable by drawing a line on a graph. 
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Figure 6.1 Hyperplane through two linearly separable classes [45] 

In Figure 6.1 the hyperplane can be described by         where: 

·   is normal to the hyperplane 

· 
 

‖ ‖
is the perpendicular distance from the hyperplane to the origin. 

The variables   and   are selected such that data can be classified as  

           for        (6.1) 

           for        (6.2) 

The two planes    and    can be described as 

            for    (6.3) 

            for    (6.4) 
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The hyperplane‟s distance from    is    and distance from    is  . The distances   and 

  are equal and that distance is known as SVM‟s margin. We have to maximize the margin such 

that 

    
 

 
‖ ‖  such that                      (6.5) 

This optimization problem is solved using Lagrange multipliers. The formula is as below 

     
 

 
‖ ‖   ∑               ∑   

 
   

 
    (6.6) 

where   are Lagrange multipliers. 

The example explained is of two classes SVM that could be linearly separated. But in many 

cases nonlinear kernel functions are used to classify data in higher dimension. RBF (Radial Basis 

Function) or Gaussian is one of the most popular kernel functions. The formula for RBF is given 

in equation 6.7. 

             (
‖     ‖

 

   ) (6.7) 

In our thesis we used one class SVM to identify the specific activity. We used the RBF kernel 

function to map our data into higher dimensions. In one class SVM a boundary was formed with 

support vectors around the training data. Later when new data is given to the system, the system 

checks whether the new data falls within the boundary or outside.  

There are two main parameters that control the characteristics of the boundary. A variable 

gamma controls the shape of the boundary. Higher value of gamma creates more support vectors 

and forms a boundary closely around the data points. The variable ν sets upper bound on the 

fraction of outliers (training examples regarded out-of-class) and, it is a lower bound on the 

number of training examples used as Support Vector [46][47]. A small value of ν leads to fewer 

support vectors, and, hence a smooth, crude decision boundary. A large value of ν leads to more 
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support vectors, and therefore, a curvy, flexible decision boundary. The optimal value of ν should 

be large enough to capture the data complexity and small enough to avoid overtraining [48]. 

Initially during training phase, the training data was used to train SVM model. Later during 

testing phase, the testing data was classified according to the SVM model created earlier. When 

the testing data was classified, the SVM score was observed. The score gives the likelihood that 

an observation comes from that class. A value of -1 and 0 indicate that the observation does not 

belong to the class. A value of 1 indicates that the observation belongs to the trained class.  

In [25] Ryotaro Okada et al., provided raw data from the GridEye sensor to SVM as predictor 

data. This meant that the SVM had to operate on 64 dimensions for classification. In our 

experiments we provided processed data from the GridEye sensor as input to SVM. We provide 

five parameters as input as shown in Figure 6.2. The first two are the centroid of threshold image 

we created during localization process. This included the centroid location along x and y axis. 

The third parameter is area or number of active pixels in the threshold image. The fourth and fifth 

parameter are the mean and standard deviation of the temperature values of all the pixels in 

interpolated image that are active in the threshold image. Since we provided five data input, each 

of our observation was a point in 5 dimensional space. SVM was used to recognize the activity, 

hence the system was trained with correct activity data along with an appropriate label. The SVM 

produced a boundary around the training data. If the testing data was inside this boundary, then it 

was classified as the correct activity. 

Centroid

X-Coordinate

Number of Active 

Pixel in Threshold 

Image

Centroid

Y-Coordinate

Mean temperature 

value of active pixels 

in interpolated image

Standard Deviation 

of temperature values 

of active pixels in 

interpolated image

 

Figure 6.2 SVM vector input 
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Walking and standing activities were recognized using location data of human. Walking and 

standing were recognized using speed at which human travelled inside apartment. If human 

remains stationary and the motion was less than a threshold, the human is assumed to be 

stationary. If human was travelling at a speed above a threshold value, then the human was 

assumed to be walking.  
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CHAPTER IX 
 

 

7. EXPERIMENTS AND RESULTS 

In this chapter we discuss several experiments conducted to localize and recognize the activity of 

the human. We have used a test bed which simulates a mock apartment to conduct our 

experiments. Results obtained from these experiments are provided in this chapter.  

7.1 Data Acquisition 

We used the test bed as a small one bedroom apartment. An elderly person was simulated to stay 

in this mock apartment. Data was collected from GridEye and PIR sensors. These sensors were 

connected to Arduino with Xbee shield and Xbee modules. Two Xbee sink nodes were connected 

to the computer to record the data. One Xbee sink node for each type of sensor. Two GridEye 

sensors were used in this project. One GridEye sensor was placed such that its field of view 

covers living room. Another GridEye sensor was placed in the bed room. Also, one PIR sensor 

was placed in kitchen and another in bathroom. These sensors were placed at a standard ceiling 

height of 8 feet. Figure 7.1 shows the sensor placements around the test bed. 

Data from GridEye sensors was recorded at 10 frames per second. The PIR sensors transmitted 

wherever there was change of state. They transmitted data when motion was detected or when 

motion was stopped. To compare the accuracy of the system we used the OptiTrack system, 

which provides location data at a rate of 100 frames per second. 
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A human subject was asked to move around the mock apartment during the testing of the 

localization system. The human was asked to wear a cap with reflective markers on it to be 

detected by the OptiTrack system. GridEye sensor and PIR sensor detected the human due to heat 

produced by the human body. 

 

Figure 7.1 Test bed with PIR nodes, GridEye nodes and OptiTrack System and Sink node 

7.2 Background Subtraction and Threshold selection 

Background subtraction was performed on the GridEye sensor data to remove the static 

background and to highlight the foreground object of interest. After background subtraction, the 

image was passed through Gaussian filter to remove any random noise. A binary image was 

created with active pixels at places above a threshold value. To calculate the threshold value 

several experiments were conducted. Three minutes duration of frames were collected with the 

human subject walking around the field of view of the sensor and also without the human subject. 
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A histogram was plotted to check the density of pixels. The histogram of 1800 frames is shown in 

the Figure 7.2.  

 

Figure 7.2 Histogram plot of pixels after passing through Gaussian filter 

Most of the distribution pixels are static background. Pixels containing information about the 

human were present to the far right of the distribution. The mean and standard deviation was 

calculated and is shown in Table 7.1. 

μ = 0.2586  σ = 0.4136 

Normal Random Variable (x) Cumulative Probability P(X < x) 

μ + σ 0.6722 0.8412 

μ + 2σ 1.0858 0.9772 

μ + 3σ 1.4994 0.9987 

Table 7.1 Normal Distribution calculation for threshold value 
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It can be seen from Table 7.1, that a threshold value of 1.5 removes 99.87% of the static 

background. Threshold value of 1.4 and 1.6 was also tested. With threshold value set to 1.4, the 

random noise was picked up and false positives were produced. With threshold value set to 1.6, 

we failed to detect the human in the far corners of field of view of the sensor. Hence a threshold 

value of 1.5 was used throughout our testing. 

7.3 Calibration 

Calibration of GridEye sensor was a crucial part of our experiments. Calibration provides us the 

transformation from pixel coordinates to real world coordinate. Initially the calibration was 

performed using the work lights as heat source as explained in Chapter 4. Later the human subject 

himself was used for calibration. The human subject stood in various locations in the field of 

view of the sensor and centroid of active pixels in the binary threshold image was calculated. The 

real world coordinates of the position where the human stood was determined using the 

OptiTrack system. One to one mapping of X and Y coordinates in pixel and real world was not 

accurate. The transformed coordinates were skewed due to the fact that the GridEye sensor was 

placed at an angle to the ground. Later surface fit was calculated to map the two coordinates 

systems. The linear surface fit plot for X coordinates and Y coordinates in real world system is 

given in Figure 7.2 and Figure 7.3.  
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Figure 7.3 Surface fit for X coordinates in real world coordinate system 

 

Figure 7.4 Surface fit for Y coordinates in real world coordinate system 

To calculate the right type of surface fit that was most suitable for the transformation, several 

experiments were conducted. Similar to the calibration the human stood in the field of view of the 

sensor at 20 different positions. The real world coordinates was determined using OptiTrack 
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system. The centroid of the threshold image was calculated and fed to the transformation 

equations to find out the transformed real world coordinates. The Euclidean distance between the 

transformed values and the OptiTrack values was compared. Table 7.2 shows the error in 

transformation for different degrees in x & y of polynomial surface plot. 

Surface fit for X coordinate Surface fit for Y coordinate Error (in mm) 

Degree in x Degree in y Degree in x Degree in y Average Max Min 

1 1 1 1 382.9214 92.83739 415.65 

1 2 1 1 352.946 87.74366 386.3367 

2 1 1 1 346.0755 84.7957 383.1877 

2 2 1 1 345.8127 81.31632 382.8228 

1 1 1 2 245.3957 92.81563 269.97 

1 2 1 2 204.8934 40.6528 222.2048 

2 1 1 2 195.4909 62.36435 216.6835 

2 2 1 2 194.8841 58.67658 216.0375 

1 1 2 1 382.3458 91.57943 414.9881 

1 2 2 1 352.6305 91.08821 385.6246 

2 1 2 1 345.5437 83.41656 382.4697 

2 2 2 1 345.2517 79.87712 382.1041 

1 1 2 2 242.1444 93.53596 265.7649 

1 2 2 2 200.1867 96.0479 217.0763 

2 1 2 2 188.8998 37.71708 211.4211 

2 2 2 2 187.4593 17.91188 210.759 

Table 7.2 Error in distance for different degrees in x and y of polynomial surface plot 

We can observe from Table 7.2 that degree 2 in x and y for both the surface fits has the least 

average, minimum and maximum error distance. Hence degree 2 in x and y for both the surface 

plots was selected in all our experiments for transforming the pixel coordinates to real world 

coordinates. The transformation equations used to convert the pixel coordinates to real world 

coordinates is shown in Equation 7.1 and 7.2. 
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                                                    (7.1) 

Where, 

                                                                          

                                                     (7.2) 

Where, 

                                                                     

The localization accuracy of each GridEye sensor was calculated. Later the accuracy of GridEye 

sensor along with PIR sensor was also calculated. Experiment results are explained the section 

below. 

7.4 GridEye Sensor 1 Testing 

GridEye sensor placed in the living room was named as GridEye sensor 1. The GridEye sensor 1 

sensed an area close to 140 square feet. The measurement obtained with this sensor was 

compared with the data obtained from OptiTrack system. Figure 7.4 shows plot of path travelled 

by human as measured by GridEye sensor 1 and OptiTrack system. 
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Figure 7.5 Plot of path travelled by human as calculated by GridEye sensor 1 and OptiTrack 

system 

 

Error in measurement calculated using GridEye sensor 1 

Samples Average Error 

(in mm) 

RMS Error (in 

mm) 

Maximum 

Error (in mm) 

Minimum Error 

(in mm) 

10 144.11 

 

187.17 

 

453.53 

 

1.30 

 

Table 7.3 Error in measurements by GridEye sensor 1 

Error in measurements for 10 experiments conducted for GridEye sensor 1 is shown in Table 9.3. 

Error shown in Table 7.3 is the average, RMS, maximum and minimum Euclidean distance from 

each point in the measurements by GridEye sensor 1 with nearest OptiTrack measurements. 
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7.5 GridEye Sensor 2 testing 

GridEye sensor 2 was placed in the bedroom of the mock apartment. GridEye sensor 2 sensed an 

area close to 80 square feet. Measurements obtained from this sensor were compared with data 

obtained from OptiTrack system. Figure 7.5 shows plot of path travelled by human as measured 

by GridEye sensor 1 and OptiTrack system. 

 

Figure 7.6 Plot of path travelled by human as calculated by GridEye sensor 2 and OptiTrack 

system 

Error in measurement calculated using GridEye sensor 2 

Samples Average Error 

(in mm) 

RMS Error (in 

mm) 

Maximum 

Error (in mm) 

Minimum Error 

(in mm) 

10 144.11 

 

121.00 

 

376.58 

 

151.73 

 

Table 7.4 Error in measurements by GridEye sensor 2 

Table 7.4 shows error in measurements for 10 experiments conducted for GridEye sensor 2. Error 

shown in Table 7.4 is the average, RMS, maximum and minimum Euclidean distance from each 

point measured by GridEye sensor 1 with nearest OptiTrack measurements. 
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7.6 GridEye sensor 1 and sensor 2 testing 

Later data from both GridEye sensor 1 and 2 were combined. Both sensors do not overlap with 

each other. Also since we assume that only one human lives in the apartment, presence of human 

in the field of view of these two sensors is mutual exclusive. Human was assumed to be present in 

the field of view of sensor which had the biggest active pixel area in the binary threshold image. 

Together the two sensors sensed an area close to 215 square feet. Measurements obtained from 

both sensors were compared with data obtained from the OptiTrack system. Figure 7.6 shows the 

plot of a path travelled by human as measured by GridEye sensor 1 and sensor 2 and OptiTrack 

system. 

 

Figure 7.7 Plot of the path travelled by human as calculated by GridEye sensor 1 and sensor 2 and 

OptiTrack system 
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Error in measurement calculated using GridEye sensor 2 

Samples Average Error 

(in mm) 

RMS Error (in 

mm) 

Maximum 

Error (in mm) 

Minimum Error 

(in mm) 

10 125.50 162.91 580.19 1.17 

Table 7.5 Error in measurements by GridEye sensor 1 and sensor 2 

Table 7.5 shows the error in measurements for 10 experiments conducted for GridEye sensor 1 

and sensor 2. Error shown in Table 7.5 is the average, RMS, maximum and minimum Euclidean 

distance from each point measured by GridEye sensor 1 with nearest OptiTrack measurements. 

7.7 GridEye sensor 1 and sensor 2 with PIR sensor testing 

We tested combination of GridEye sensor 1 and sensor 2 with PIR sensor for localization. 

Combination of these sensors provided us localization of human throughout the mock apartment. 

When the PIR sensors were activated, human was assumed to be present in the room where the 

PIR sensor was mounted. The PIR sensors provided room level occupancy accuracy. The center 

of the PIR sensor was calculated and when the PIR sensor was activated, human was assumed to 

be present at center of PIR sensor. Accuracy of all these sensors combined was calculated similar 

the method used earlier. Figure 7.7 shows the plot of a path travelled by human as calculated by 

GridEye and PIR sensors and measured by OptiTrack. 
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Figure 7.8 Plot of path travelled by human as calculated by GridEye and PIR sensor and 

OptiTrack system 

Several experiments were conducted with the combination of these two sensors. Error in 

measurement calculated for 10 such experiments is tabulated in Table 7.6. 

Error in measurement calculated using GridEye sensor 1,2 and PIR sensor 

Samples Average Error 

(in mm) 

RMS Error (in 

mm) 

Maximum 

Error (in mm) 

Minimum Error 

(in mm) 

10 116.54 165.10 664.11 0.79 

Table 7.6 Error in measurements by GridEye sensor 1 and sensor 2 and PIR sensors 

From all experiments conducted we could estimate the position of human with an average 

accuracy of 116.54 mm.  
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7.8 Activity Recognition 

In our research we used GridEye sensor to recognize four human activities. The four activities are 

sitting, standing, walking and sleeping. The human is assumed to sit at three locations such as 

chair 1, chair 2 and couch and sleep on bed. We assume that the furniture (Couch, chair 1, chair 2 

and bed) are in fixed positions. Figure 7.8 shows the positions of furniture in the mock apartment. 

Standing and walking is recognized in the living room and the bed room. Recognition of these 

activities helps us to understand the daily routine of the person.  

Sitting and sleeping activity recognition was done using the one-class SVM model. We provided 

processed data from the GridEye sensor as input to SVM. We provide five parameters as input. 

The five parameters are the centroid (x and y coordinates), active pixel area in the threshold 

image, mean and standard deviation of the temperature values of all the pixels in interpolated 

image that are active in the threshold image. Since we are using one-class SVM, we trained the 

model using correct predictor data. Human was asked to perform these activities and these actions 

were recorded using the GridEye sensor. The five predictor parameters mentioned above were 

calculated for all frames recorded. After training the model testing data was classified using the 

trained SVM model. The model was tested for error in recognizing the activity. The accuracy of 

the model was calculated by testing for false negative and false positive.  
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Figure 7.9 Furniture placement in mock apartment 

In order to train the model to be as accurate as possible, ν parameter was varied and the false 

positive and false negatives was measured. Higher value of ν creates more support vectors which 

cover all the data complexities. Lower value of ν creates less support vectors which may not 

cover all the data points. Higher value of ν results in more false positives due to over training. 

Lower value of ν results in lower false positives but increases the false negatives. 

Tables 7.7 to Table 7.10 shows the accuracy calculated for sitting and sleeping activities for 

different ν value. 
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Activity = Sitting on couch 

Training data = 1500 frames (2.5 minutes) 

Normal data = 2500 frames (≈ 4 minutes) 

Anomalous data = 1750 frames (≈ 3 minutes) 

ν value Normal data Classification Anomalous data Average 

True Positive Percentage Accuracy True Negative Percentage Accuracy 

0.03 2484 99.36% 1648 94.17% 96.77% 

0.04 2484 99.36% 1618 92.46% 95.91% 

0.05 2485 99.40% 1611 92.06% 95.73% 

0.1 2486 99.44% 1592 90.97% 95.21% 

0.25 2485 99.40% 1575 90.00% 94.70% 

0.5 2485 99.40% 1562 89.26% 94.33% 

0.75 2486 99.44% 1529 87.37% 93.41% 

1 2486 99.44% 1527 87.26% 93.35% 

Table 7.7 Sitting on couch activity recognition accuracy 

 

 

Activity = Sitting on chair 1 

Training data = 1500 frames (2.5 minutes) 

Normal data = 2500 frames (≈ 4 minutes) 

Anomalous data = 1750 frames (≈ 3 minutes) 

ν value Normal data Classification Anomalous data Average 

True 

Positive 

Percentage 

Accuracy 

True 

Negative 

Percentage 

Accuracy 

0.03 2490 99.60% 2454 98.16% 98.88% 

0.04 2498 99.92% 2451 97.51% 98.72% 

0.05 2500 100.00% 2447 97.51% 98.76% 

0.1 2500 100.00% 2440 97.40% 98.70% 

0.25 2500 100.00% 2436 96.53% 98.27% 

0.5 2500 100.00% 2426 96.07% 98.03% 

0.75 2500 100.00% 2423 95.78% 97.89% 

1 2500 100.00% 2422 95.72% 97.86% 

Table 7.8 Sitting on chair 1 activity recognition accuracy 
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Activity = Sitting on chair 2 

Training data = 1500 frames (2.5 minutes) 

Normal data = 2500 frames (≈ 4 minutes) 

Anomalous data = 1750 frames (≈ 3 minutes) 

ν value Normal data Classification Anomalous data Average 

True 

Positive 

Percentage 

Accuracy 

True 

Negative 

Percentage 

Accuracy 

0.03 2431 97.24% 1750 100.00% 98.62% 

0.04 2495 99.80% 1750 100.00% 99.90% 

0.05 2496 99.84% 1750 100.00% 99.92% 

0.1 2497 99.88% 1750 100.00% 99.94% 

0.25 2500 100.00% 1750 100.00% 100.00% 

0.5 2500 100.00% 1750 100.00% 100.00% 

0.75 2500 100.00% 1748 99.89% 99.94% 

1 2500 100.00% 1748 99.89% 99.94% 

Table 7.9 Sitting on chair 2 activity recognition accuracy 

 

Activity = Sleeping on bed 

Training data = 1500 frames (2.5 minutes) 

Normal data = 2500 frames (≈ 4 minutes) 

Anomalous data = 2158 frames (≈ 3 minutes) 

ν value Normal data Classification Anomalous data Average 

True 

Positive 

Percentage 

Accuracy 

True 

Negative 

Percentage 

Accuracy 

0.03 2469 98.76% 1939 89.85% 94.31% 

0.04 2485 99.40% 1852 85.82% 92.61% 

0.05 2492 99.68% 1785 82.72% 91.20% 

0.1 2496 99.84% 1726 79.98% 89.91% 

0.25 2495 99.80% 1712 79.33% 89.57% 

0.5 2496 99.84% 1676 77.66% 88.75% 

0.75 2496 99.84% 1726 79.98% 89.91% 

1 2495 99.80% 2158 100.00% 99.90% 

Table 7.10 Sleeping on bed activity recognition accuracy 

In Tables 7.7 to 7.10, True positives were calculated by performing the action and measuring 

number of frames that were classified as the activity correctly. The true negatives were calculated 

by performing other activities and walking near the location of the furniture.  It can be observed 
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that as ν value decreases false positive also reduce. For higher value of ν false positives increase 

due to overtraining.  

The accuracy for sitting on chair 1 and sitting on chair 2 is high because these locations are closer 

to GridEye sensor and hence more information is received by the sensor. Comparatively sitting 

on couch and sleeping on bed are less accurate due to the fact that these positions are little far 

from sensor. Also false negatives were high in case of sleeping on bed since testing data included 

the person to sit on the bed. Few frames of sitting on bed were also classified falsely as sleeping 

on bed resulting in decrease of accuracy. 

To recognize walking and standing, the total distance travelled for half sec was calculated. 

Human was made to walk around at normal speed of 2 feet per second. This data was recorded. 

Also data of human standing was also collected. The mean speed of human walking was 

calculated as 1.78 feet per second. Table 7.11 gives the accuracy of walking activity recognition. 

A threshold was used to separate walking and standing. Number of frames recognized as walking 

for different speeds is tabulated in Table 7.11. Normal data includes human walking around the 

mock apartment. Anomalous data includes human standing in a location with very slight 

movements.  

Threshold 

value 

Normal data Classification 

(3135 frames) 

Anomalous data 

(4800 frames) 

 

 

Average Millimeter per 

second 

True 

Positive 

Percentage 

Accuracy 

False 

Positive 

Percentage 

Accuracy 

>200 2928 93.40% 519 89.19% 91.29% 

>240 2850 90.91% 293 93.90% 92.40% 

>280 2751 87.75% 169 96.48% 92.12% 

>320 2620 83.57% 108 97.75% 90.66% 

>360 2459 78.44% 65 98.65% 88.54% 

>400 2274 72.54% 49 98.98% 85.76% 

>440 2091 66.70% 35 99.27% 82.98% 

>480 1866 59.52% 28 99.42% 79.47% 

Table 7.11 Accuracy of Walking activity recognition 
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Human was made to stand still with very slight movements. The mean speed of motion when the 

human was standing with slight movements was measured as 0.4 feet per second. Table 7.12 

gives the accuracy of standing activity recognition.  Number of frames recognized as standing for 

different motion speeds is tabulated in Table 7.12. Normal data includes human standing in a 

location with very slight movements. Anomalous data includes human walking around the mock 

apartment. 

Threshold 

value 

Normal data Classification Anomalous data  

 

Average  True 

Positive 

Percentage 

Accuracy 

False 

positive 

Percentage 

Accuracy 

<240 4507 93.90% 285 90.91% 92.40% 

<220 4416 92.00% 245 92.19% 92.09% 

<200 4281 89.19% 207 93.40% 91.29% 

<180 4099 85.40% 173 94.48% 89.94% 

<160 3848 80.17% 136 95.66% 87.91% 

<140 3488 72.67% 91 97.10% 84.88% 

<120 3013 62.77% 63 97.99% 80.38% 

<100 2401 50.02% 41 98.69% 74.36% 

<80 1588 33.08% 28 99.11% 66.10% 

Table 7.12 Accuracy of Standing activity recognition 
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CHAPTER X 
 

 

8. CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

In this thesis we have implemented human indoor localization and activity recognition using 

distributed motion sensors. We have implemented complete hardware and software setup to 

achieve this goal. The hardware setup includes Passive Infrared sensor node, GridEye sensor 

node and sink nodes. The software setup includes Arduino firmware code running on Passive 

Infrared sensor node and GridEye sensor node. Matlab was used to read sensor data received 

from the sink node. Post processing of data for localization and activity recognition was also 

implemented using Matlab platform. The entire setup was placed on test bed that was simulated 

as a mock apartment.  

We have successfully implemented indoor human localization. Combination of GridEye and 

Passive Infrared Sensor provides human localization throughout the mock apartment. PIR sensors 

provide room level occupancy in kitchen and bathroom. GridEye sensors provide more accurate 

localization results in living room and bed room. We have implemented GridEye sensor 

calibration to transform the human‟s location in pixel coordinates to real world coordinates. 

Accuracy of localization was compared with ground truth values of the OptiTrack system. 

Average localization accuracy of less than 0.2 meters was obtained from experiments conducted 

on the test bed.  
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We have also implemented activity recognition using information obtained from the GridEye 

sensor. The SVM classifier is used to recognize sitting at dinning chair 1, sitting at dinning chair 

2, and sitting on couch and sleeping on bed. We trained the SVM classifier with training data and 

later tested the classifier with testing data. Accuracy of the trained SVM model was compared by 

testing number of frames correctly recognized and number of false positives produced. An 

average accuracy of around 90% was obtained from multiple experiments conducted. An average 

accuracy of 90% was obtained in detecting walking and standing activities 

Our thesis work provides a non-terminal based localization and activity recognition approach 

using distributed motion sensors. By implementing this type of sensor network, we have achieved 

high degree of accuracy without invading the privacy of human.  

8.2 Future work 

With the number of aged persons increasing drastically, Gerontechnology is gaining significance. 

Location information obtained from our setup could be used for various research activities 

involving home automation. 

Currently our setup can localize a single human. Multi object tracking algorithms like particle 

filters could be developed to detect multiple humans. Also even though the current localization is 

fairly accurate, improvements can be made to further increase the accuracy. Intelligent tracking 

algorithms could be used to remove noise and localize more accurately.  

We have implemented frame based activity recognition using SVM. Dynamic Bayesian Networks 

(DBNs) could be used for temporal pattern recognition. We could also experiment with different 

feature vectors that include temporal information to further increase the accuracy of detection. 

Abundant information obtained from these sensors could be used to study behavioral and living 

pattern of elderly persons. This helps us to provide location based services. Air conditioner, 
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heaters and lighting systems could be integrated to the system to operate based on the location 

and activity of human.  
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