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Abstract 
 

Weather forecasting is full of uncertainty, and as in domains such as air traffic 

control or medical decision making, decision support systems can affect a forecaster’s 

ability to make accurate and timely judgments.  Well-designed decision aids can help 

forecasters build situation awareness (SA), a construct regarded as a component of 

decision making.  SA involves the ability to perceive elements within a system, 

comprehend their significance, and project their meaning into the future in order to 

make a decision.  However, how SA is affected by uncertainty within a system has 

received little attention.  This tension between managing uncertainty, situation 

assessment, and the impact that technology has on the two, is the focus of this 

dissertation. 

To address this tension, this dissertation is centered on the evaluation of a set of 

coupled models that integrate rainfall observations and hydrologic simulations, coined 

“the FLASH system” (Flooded Locations and Simulated Hydrographs project).  

Prediction of flash flooding is unique from forecasting other weather-related threats due 

to its multi-disciplinary nature.  In the United States, some weather forecasters have 

limited hydrologic forecasting experience.  Unlike FLASH, current flash flood 

forecasting tools are based upon rainfall rates, and with the recent expansion into 

coupled rainfall and hydrologic models, forecasters have to learn quickly how to 

incorporate these new data sources into their work.  New models may help forecasters 

to increase their prediction skill, but no matter how far the technology advances, 

forecasters must be able to accept and integrate the new tools into their work in order to 

gain any benefit.  A focus on human factors principles in the design stage can help to 
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ensure that by the time the product is transitioned into operational use, the decision 

support system addresses users’ needs while minimizing task time, workload, and 

attention constraints. 

This dissertation discusses three qualitative and quantitative studies designed to 

explore the relationship between flash flood forecasting, decision aid design, and SA.  

The first study assessed the effects of visual data aggregation methods on perception 

and comprehension of a flash flood threat.  Next, a mixed methods approach described 

how forecasters acquire SA and mitigate situational uncertainty during real-time 

forecasting operations.  Lastly, the third study used eye tracking assessment to identify 

the effects of an automated forecasting decision support tool on SA and information 

scanning behavior.  Findings revealed that uncertainty management in forecasting 

involves individual, team, and organizational processes.  We make several 

recommendations for future decision support systems to promote SA and performance 

in the weather forecasting domain.  



	1 

Chapter 1: Introduction 

On the morning of 10 June 2014, a major flash flood swept through Prince 

George’s County, Maryland.  With little warning, local residents found themselves 

amidst house flooding while drivers became stranded in their vehicles.  Emergency 

management services reported eleven incidents including high water rescues from 

vehicles and evacuations of stranded homeowners from flooded buildings (National 

Climatic Data Center, 2014).  The Washington Post reported that at least twenty-four 

rescues occurred and that some local residents evacuated to an emergency shelter in a 

local school (Bui, 2014). 

While the local National Weather Service (NWS) Weather Forecast Office 

(WFO) had issued a flash flood warning at 9:28 AM EDT (National Weather Service, 

2014a), some residents were not able to take necessary precautions in advance of the 

flooding (Halverson, 2014).  In the warning text issued at 9:28 AM, the Sterling WFO 

wrote: “At 9:24 AM EDT… National Weather Service Doppler radar indicated very 

heavy rain capable of producing flash flooding.  Additional rainfall amounts of 1 to 2 

inches can be expected” (National Weather Service, 2014a).  However, according to 

local media, the reality was that the area received up to five inches of rain in just two 

hours (Halverson, 2014).  The Baltimore Sun reported that the rainfall stopped around 

11:00 AM EDT, allowing the floodwaters to recede (Rector, 2014).  Despite the issued 

warning, some considered this to be a “missed” event due to the short lead time given to 

locals (Halverson, 2014). 

Could anything have provided more lead time to those affected by this event?  

Although forecasters had relevant training as well as access to computational models 
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and observational tools, the unfolding rainfall event showed minimal chance of 

producing flash floods (Halverson, 2014).  In this case, Halverson (2014) posited that 

false expectations were in part due to a lack of high-resolution gridded flash flooding 

and rainfall prediction models and few observational data sets.  In order to assist users 

in drawing connections between conceptual models and environmental dynamics, some 

researchers have called for the development of analysis tools, referred to in the current 

work as forecasting decision support systems (Stuart et al., 2006; Trafton & Hoffman, 

2007). 

Decision support systems are information technology products that aid users in 

making efficient and effective decisions (Shim et al., 2002).  Advances to forecasting 

decision support systems may improve outcomes if systems complement the way in 

which forecasters create, update, and implement their mental models (Trafton & 

Hoffman, 2007).   One promising line of research involves the development of decision 

support tools that automate parts of the situation assessment process.  Automation is 

frequently used to reduce workload and time pressures, allowing the operator to allocate 

his or her attention to other aspects of the work (Röttger, Bali, & Manzey, 2009).  

Furthermore, decision support systems are viewed as a low level of automation, in 

which the system provides guidance to a user who is in control of the decision and 

resulting action (Endsley & Kiris, 1995).  In the weather forecasting domain, an 

appropriate level of decision support may promote situation awareness development, 

which could help to reduce missed weather events. 

Situation awareness (SA) is regarded as an integral component of the decision 

making process involved in professional forecasting (Quoetone, Andra, Bunting, & 
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Jones, 2001).  Although sometimes referred to as “situational awareness” in operational 

settings (Byrne, 2015), here, we will adopt the term most frequently used in theoretical 

research (“situation awareness”) as supported by Endsley’s 1995 Model of SA 

(Endsley, 1995c).   

SA is a measurable construct and reflects an individual’s degree of knowledge 

regarding the state of their environment (Endsley, 1995a, 1995c).  In one of the most 

widely-accepted models of SA, Endsley (1995c) defined SA as a construct with three 

levels.  Level 1 SA comprises an individual’s perception of the environment, while 

Level 2 SA involves comprehension, or turning the perceived information into meaning.  

Level 3 SA (projection) centers around an individual’s ability to project the current state 

of the environment correctly into a likely future state. SA is not a static construct, but 

updates over time as decision makers gain experience with similar situations.  

Additional mechanisms such as information processing, memory, goals, preconceptions, 

background training, and system design also contribute to building and maintaining 

high levels of SA.  In the current work, we follow the precedent set by Endsley (1995c, 

2015b) and distinguish the measurable product (situation awareness; SA), from the 

process in which SA is developed and maintained (situation assessment). 

Grounded in the field of human factors, this work explores the role of decision 

support system design on the situation assessment process in the weather forecasting 

domain.  Throughout this dissertation, we investigate SA in weather forecasting from a 

qualitative and a quantitative standpoint; in doing so, we are able to identify behavioral 

patterns that facilitate accurate situation assessment while also developing 

recommendations for decision support system design.  Although some studies have 
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described the situation assessment process for experts in fields like air traffic control 

(Dao et al., 2009; Moore & Gugerty, 2010; van de Merwe, Oprins, Eriksson, & van der 

Plaat, 2012) and driving (Endsley & Kiris, 1995; Moore, 2009), a smaller number have 

provided empirical support for the situation assessment process in weather forecasting 

(Bowden & Heinselman, 2016; Jones, Quoetone, Ferree, Magsig, & Bunting, 2003; 

Quoetone et al., 2001).  Understanding how forecasters develop SA will lead to 

improvements in forecast lead time and accuracy if we can find new ways to convey 

information to forecasters, particularly in heavy-workload, time-sensitive forecast 

situations. 

In addition to extending theoretical accounts of SA to the weather forecasting 

domain, this work is motivated by the impending transition of the Flooded Locations 

and Simulated Hydrographs (FLASH) project from research to operational application 

(Gourley et al., 2016).  FLASH is a suite of real-time tools that use rainfall observations 

to force hydrologic models to predict flash floods.  Two examples of the types of 

forecast guidance products included in the FLASH project are shown in Figure 1.  

Potential users include forecasters at both the national and regional scales in the United 

States, including, but not limited to, National Weather Service Weather Forecast Offices   

 

 
Figure 1. Two members of the FLASH product suite, the QPE-to-FFG Ratio 

(Quantitative Precipitation Estimate to Flash Flood Guidance) dynamic visualization 
(on left) and the QPE Return Period dynamic visualization (on right) 
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(WFOs), River Forecast Centers (RFCs), and national centers.  Both at the national and 

regional scale, FLASH is designed to assist national forecasters in identifying areas of 

dynamic flood risk.  National forecasters would then work with local forecasters to 

predict specific threats.  When fully transitioned to operations, professional NWS 

forecasters at offices across the United States will be able to access the decision support 

tools and use them for situation assessment and judgment justification.  

Situation Awareness and Decision Making 

Situation awareness is considered to be a prerequisite for decision making, but 

as of yet, the human factors community has not agreed upon a single, unifying 

definition.  Smith and Hancock (1995) defined SA as “adaptive, externally directed 

consciousness,” developed through intentional, analytical behavior at an individual 

level.  Likewise, Sarter and Woods (1991) framed SA as the “accessibility of a 

comprehensive and coherent situation representation which is continuously being 

updated.”  Alternatively, Endsley (1995c) referred to SA as “the perception of elements 

in the environment within a volume of time and space, the comprehension of their 

meaning, and the projection of their status in the near future.”  The current work draws 

on Endsley’s (1995c) definition and model due to its widespread acceptance within the 

weather forecasting operational domain (Jones et al., 2003; Quoetone et al., 2001). 

While Endsley’s 1995 Model of SA has received a large degree of attention 

within the literature, several competing models have attempted to address its perceived 

limitations.  The 1995 Model focused on individual cognition, but as many work 

environments involve interaction among actors, the Team SA framework was 

developed to describe information transfers and performance in such situations (Endsley 
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& Jones, 2001; Salas, Prince, Baker, & Shrestha, 1995).  Sensemaking theories, such as 

the Data/Frame Theory, share some similarities with the 1995 Model of SA (Endsley, 

2015b), but they also provide insight into the manner in which decision makers assign 

meaning and draw conclusions from information (Klein, 2015b).  Conversely, the Joint 

Cognitive Systems (JCS) perspective has envisioned SA as an emergent property within 

complex systems (Stanton et al., 2006).  Although the current work examines SA at the 

level of the individual decision maker, weather forecasting occurs within a 

sociotechnical system, and as such, alternative perspectives on SA may provide 

additional insight. 

In addition to the weather forecasting domain, SA has been studied in contexts 

ranging from aviation and air traffic control (Dao et al., 2009; Moore & Gugerty, 2010; 

van de Merwe, Oprins, et al., 2012), medicine (Levin et al., 2012), driving (Endsley & 

Kiris, 1995; Ma & Kaber, 2005; Moore, 2009), and nuclear power management (Burns 

et al., 2008).  SA has received traction in many operational communities, and is 

regarded as a means to assess and improve task performance (Jones, 2015).  Various 

assessment techniques frame SA as a measurable construct, and they include, but are 

not limited to probe-based accuracy and response time measures (Endsley, 1995a; Loft, 

Morrell, & Huf, 2013), self-report measures (Taylor, 1990), physiological measures 

(Catherwood et al., 2014; Moore & Gugerty, 2010), and qualitative assessments 

(Hoffman & Coffey, 2004; Klein, 2015a). 

Problem Statement 

Endsley and Hoffman (2002) state that maintaining SA is one of the most 

important components of decision making in the weather forecasting domain.  Without 
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an accurate situational model, forecast accuracy and timeliness can suffer, leading to 

possible negative societal impacts (Quoetone et al., 2001).  Endsley’s (1995c) model 

provides a theoretical foundation for understanding SA, and has been widely applied as 

an explanatory device in the weather forecasting domain (Bowden & Heinselman, 2016; 

Endsley & Hoffman, 2002; Quoetone et al., 2001; Trafton & Hoffman, 2007).  What is 

less understood, however, is how situational uncertainty affects SA. 

Previous research has indicated that a gap exists in the knowledge related to the 

relationship between SA, decision support system design, and weather forecasting.  

Minotra and Burns (2015) recommended further study of SA within uncertain and 

dynamic sociotechnical systems, and we propose that the weather forecasting 

environment is an ideal example of this.  Given that uncertainty proliferates within the 

weather forecasting system, the question then arises of how to accommodate decision 

makers in ways that promote accurate SA and decision selection.  Findings from 

multiple domains suggest that decision support systems may promote the development 

of accurate SA, thereby improving operators’ abilities to make informed decisions.  In 

weather prediction tasks, forecasters operate on what is sometimes termed “the 

forecasting funnel,” meaning the time-uncertainty continuum (in plain language, the 

further away in time a forecaster is from a weather event, the more uncertainty there is 

inherent in what will actually happen).  This tension between managing uncertainty, 

building situation awareness, and the impact that decision support technology has on the 

two, is the topic of this research.  
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Significance 

In the United States’ weather and climate prediction system, accurate and timely 

weather prediction requires effective interactions among a number of stakeholders.  

Forecasters are often responsible to emergency management personnel, broadcast media 

partners, and members of the general public.  A loss of SA in the forecasting stage may 

translate into negative effects as information is transmitted to decision makers at various 

levels.  Indeed, between the years of 1934 and 1999, flash floods occurred at least once 

per year across the United States causing property and crop damages with an increasing 

trend (Pielke, Downton, & Barnard Miller, 2002).  Flash floods also threaten human 

life, with several recent events including the 2013 Boulder, Colorado flash flooding 

(National Weather Service, 2014b) and 2013 Oklahoma City, Oklahoma flash flooding 

(National Weather Service, 2014c).  By examining SA in tasks involving decision 

making under uncertainty, we will be able to explore the role of uncertainty in the 

situation assessment process.  In doing so, we will also be able to develop guidelines for 

the user-centered design of forecasting decision support systems. 

User-centered design of forecast decision support systems may improve forecast 

accuracy and lead time (Bowden, Heinselman, Kingfield, & Thomas, 2015) and reduce 

forecaster workload (Karstens et al., 2015).  In a survey of professional forecasters, 

media personnel, and emergency managers, Morss, Demuth, Bostrom, Lazo, and Lazrus 

(2015) found that situation awareness (or lack of it) could be transferred among 

decision makers through risk communications.  In the context of the development of the 

FLASH system, this work contributes to an understanding of behavioral aspects of the 

flash flood forecasting process.  Applying this new knowledge to practice may increase 
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the likelihood that forecasters will be able to use the guidance products effectively 

during situation assessment to build their own SA, develop their long-term mental 

models, and execute timely decisions. 

Research Questions 

This dissertation focuses on resolving four interrelated research questions with 

the shared goal of contributing knowledge related to SA, decision support technology, 

and flash flood forecasting.  Three studies, discussed in the following chapters, 

employed quantitative and qualitative research methods in order to address these 

questions.  Each research question addresses a unique aspect of situation awareness in 

weather forecasting, and are presented below: 

• How does data aggregation in a FLASH visualization affect user performance in 

terms of signal detection, task completion time, and congruence in decisions for 

a flash flood prediction task? (RQ1) 

• How do forecasters build and maintain situation awareness while working under 

the constraints imposed by uncertainty leading up to a flash flooding event? 

(RQ2) 

• Which tools did forecasters use, in combination and individually, to build 

situation awareness?  How did their SA requirements change at different points 

along the forecasting compound warning decision process and at different 

environmental activity levels? (RQ3) 

• How is SA influenced by recommender automation at different processing levels 

during a weather forecasting task? (RQ4.1) To what degree are eye tracking 

measures (total fixation duration, mean fixation time percentage, time to first 
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fixation, and mean number of fixations) able to predict situation awareness? 

(RQ4.2) 

Hypotheses 

The first research question examined the effects of data aggregation algorithms 

on signal detection within one of the FLASH guidance products.  For the particular 

decision support visualization, the original design employed a data aggregation 

technique in order to present a large dataset on a human-interpretable map.  With an eye 

towards understanding how data aggregation affected Level 1 SA (perception) and 

Level 2 SA (comprehension), we questioned how choice of data aggregation technique 

would affect performance in terms of signal detection, response time, and likelihood of 

correctly identifying a threat within the visualization.  Based on previous research 

related to focal attention and visualization design (Pirolli and Card, 1999; Hoffman, 

Detweiler, Conway, and Lipton, 1993), we hypothesized that the type of data 

aggregation technique would affect signal detection with the particular FLASH 

visualization. 

The second and third research questions sought to investigate behavioral 

patterns among forecasters during situation assessment.  A focus group methodology 

was used to explore the relationship between situation assessment and uncertainty 

management (RQ2); as this was an exploratory, qualitative study, we did not express 

any testable hypotheses.  Conversely, a time- and frequency-based analysis of forecaster 

behavior related to forecast guidance usage addressed the third research question.  Here, 

we hypothesized that information-seeking behavior during situation assessment would 
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differ across forecast timeframes (watch phase versus warning phase) and across 

environmental activity levels. 

Whereas the first three research questions primarily addressed Level 1 and Level 

2 SA, the final research question investigated the effects of decision support automation 

across all three levels of SA.  In other domains, high levels of automation have often 

been associated with low levels of SA (Kaber & Endsley, 1997).  Likewise, we 

hypothesized that the forecasting decision support automation would lead to lower 

levels of SA.  Additionally, this work assessed the ability of eye tracking measures to 

predict an individual’s amount of SA.  Several studies have suggested that eye tracking 

can accurately predict SA in air traffic control tasks (Moore & Gugerty, 2010; van de 

Merwe, van Dijk, & Zon, 2012), but to our knowledge, the current work is the first 

attempt to validate eye tracking as a predictive measure in the field of weather 

forecasting.  Based on previous studies, we hypothesized that eye tracking measures 

would predict SA. 

Scope 

 The current work is bounded by several delimitations.  While many decision 

support systems are used throughout the weather and climate domain, this work limits 

itself to the human-centered design and evaluation of the Flood Locations and 

Simulated Hydrographs (FLASH) suite of guidance products.  Although end users could 

come from a variety of populations, the FLASH products are primarily intended for use 

by NWS forecasters; as such, this research is focused on human behavior at the level of 

the individual forecaster.  However, we posit that findings would be generalizable to 

decision makers in environments which involve integration of information sources.  
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Finally, each study concentrates on situation awareness specifically in flash flooding 

situations.  To some degree, hydrologic forecasting requires some different forms of 

expertise than other types of weather forecasting, but general behaviors are understood 

to be similar.  Developing systems that support SA development would not only benefit 

forecasters issuing flash flood watch and warning products, but findings could also be 

implemented in systems that present information related to other weather threats. 

Summary 

  Situation awareness is a critical component in dynamic decision making 

processes (Endsley, 1995c).  In the weather domain, loss of SA among forecasters can 

contribute to increased workload as well as reduced lead time and spatial accuracy in 

emergencies (Quoetone et al., 2001).  However, from a theoretical perspective, SA in 

weather forecasting is not fully understood; indeed, previous research has identified a 

gap in the knowledge related to SA development under uncertainty (Minotra & Burns, 

2015).  Previous studies have found that technology can provide support for situation 

assessment and mental model building (Andra, Quoetone, & Bunting, 2002; Endsley & 

Kiris, 1995; Kaber & Endsley, 1997; Trafton & Hoffman, 2007).  The current work 

explores the interactions between decision support tools and SA in the weather 

forecasting domain.  As such, we aim to contribute both practical recommendations for 

weather forecasting decision support systems as well as a theoretical account of the 

effects of decision support on SA in uncertain, dynamic decision making tasks. 

This dissertation begins with a literature review over situation awareness theory, 

SA assessment methods, and weather forecast decision making.  The chapters following 

the literature review describe three interrelated studies and are written as standalone 
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research topics to be submitted as individual scholarly publications.  Using qualitative 

and quantitative research methods, the studies examine interactions among weather 

forecasting, situation awareness, and decision making under uncertainty.  In Chapter 3, 

we investigate the relationship between data aggregation in a static flash flood 

prediction visualization and signal detection.  Based on the results, we present evidence-

based recommendations for future visualizations using data aggregation.  At the time of 

this work, the material presented in Chapter 3 was in submission as a standalone journal 

article.  Chapter 4 contains a discussion regarding a mixed methods analysis of 

forecasters information-seeking behaviors during the watch and warning decision 

making process.  This analysis not only resulted in new insight related to situation 

assessment under uncertainty, but it also revealed information about specific 

information requirements for building SA in flash flood forecasting.  Following this 

section, Chapter 5 presents results from an experiment that assessed the effects of a type 

of decision support automation on forecaster SA levels in a flash flood forecasting task.  

In addition, in Chapter 5, we discuss the adequacy of eye tracking as a predictive 

measure of SA in weather prediction tasks.  This work concludes with a general 

discussion in Chapter 6, which ties current findings to existing literature. 
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Chapter 2: Literature Review 

On a daily basis, weather forecasters apply meteorological expertise and 

analytical ability to evaluate threats to life and property.  Current understanding 

suggests that forecasters extract and integrate information from a variety of decision 

aids in order to build situation awareness and reach a decision about the environmental 

risks (Trafton et al., 2000).  However, forecasters regularly face challenges related to 

interpreting and using complex data (Doswell, 2004; Pagano et al., 2014), using 

automated decision support effectively (Karstens et al., 2015; Pagano et al., 2014), and 

maintaining situation awareness (Hoffman & Coffey, 2004; Trafton & Hoffman, 2007). 

Situation awareness (SA) has many definitions, but it is widely regarded as a 

prerequisite to successful decision making (Adams, Tenney, & Pew, 1995; Durso & 

Gronlund, 1999; Endsley, 1995c, 2015b; Hoffman, 2015; Wickens, 2015).  As an 

operational concept, situation awareness (SA) has utility for communicating a critical 

aspect of the weather forecasters’ decision processes (Jones, 2015).  From a theoretical 

perspective, although research has considered the development and evaluation of 

situation awareness (SA) models for more than twenty years, the role of imperfect 

information and uncertainty in the situation assessment process remains largely 

unexplored.  Overcoming this limited knowledge will be of utmost importance in order 

to provide forecasters with decision support systems that promote human-system 

integration as well as SA development.  This chapter explores existing literature related 

to situation awareness, weather forecasting, and decision support technology in complex 

sociotechnical systems. 
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The following discussion begins by defining SA as framed by several models of 

situation awareness and sensemaking.  In addition, the discussion will address research 

methods commonly used to assess SA in operational and experimental contexts.  The 

discussion will also review findings regarding their methodological strengths and 

weaknesses.  After establishing the state-of-the-research in terms of SA, components of 

the weather forecasting sociotechnical system will be examined with an emphasis on the 

role of the human forecaster.  Finally, outcomes from human factors, meteorological, 

and decision making research will be synthesized in order to inform user-centered 

designs for future weather forecasting decision support systems. 

Theoretical Models of Situation Awareness and Decision Making 

 Perhaps due to its longstanding presence in decision making research, SA has a 

number of definitions within several explanatory models.  SA has been framed as a 

process and product of dynamic cognition in relation to individuals (Chiappe, Strybel, 

& Vu, 2012; Endsley, 1995c; Smith & Hancock, 1995), groups of individuals (Chiappe, 

Rorie, Morgan, & Vu, 2012; Salas, Prince, Baker, & Shrestha, 1995), and 

sociotechnical systems (Stanton et al., 2006).  SA has also been closely linked to 

aspects of attention, memory, and judgment, including sensation, cue detection, 

monitoring, and comprehension (Hoffman, 2015).  For an excellent review of SA 

theories, refer to Salmon et al. (2008).  With several differences in theoretical 

underpinnings, various models of SA provide unique perspectives into decision making 

and human performance in complex systems.   
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Situation Awareness Theories 

  Sarter and Woods (1991) define awareness in terms of “the accessibility of a 

comprehensive and coherent situation representation which is continuously being 

updated in accordance with the results of recurrent situation assessments.”  This early 

definition of awareness sets the stage for later theories of SA, such as Endsley’s (1995c) 

Model of SA.  Smith and Hancock (1995) took a slightly different perspective, defining 

SA as “adaptive, externally directed consciousness,” which emphasized the view that 

SA and behavior are driven by ecological factors.  Furthermore, Smith and Hancock 

(1995) caution against models that frame SA as a component of working memory or a 

type of mental model, arguing in favor of a well-structured and empirically supported 

definition of SA. 

 Several explanations of SA center around Neisser’s (1976) perceptual-action 

cycle.  The perceptual-action cycle frames cognition and perception as a process in 

which objects, information, schema, and human behavior are interrelated.  Citing the 

perceptual cycle model, Adams et al. (1995) hypothesize that SA is also a function of 

perception, memory, and human performance.  Similarly, Smith and Hancock (1995) 

discussed SA as a construct that aligns with Neisser’s (1976) perceptual-action cycle, 

and that SA is equally as important to decision making as attention and workload.   

Endsley’s 1995 Model of SA.  Perhaps one of the most widely cited models of 

SA, the Endsley 1995 model describes SA at an individual-level, introducing three 

components of cognition that relate to SA in decision making (Endsley, 1995c, 2000, 

2015b; Salmon et al., 2008).  Endsley (1988a, 1988b, 1995a, 1995c, 1997, 2000) 

defines SA as “the perception of elements in the environment within a volume of time 



	17 

and space, the comprehension of their meaning, and the projection of their status in the 

near future.”  Although the Endsley 1995 model has received criticism for failing to 

distinguish between SA as a product and SA as a process (Baxter & Bass, 1998; 

Chiappe, Strybel, et al., 2012; Salmon et al., 2008; Stanton et al., 2006), Endsley’s 

(1995c) early work emphasized that the model described both in tandem.  In situation 

awareness—the product component—SA is described as a measure of knowledge, and 

is furthermore “only that portion pertaining to the state of a dynamic environment.”  

Thus, an individual may hold additional knowledge within memory, but if it is 

irrelevant to the task at hand, it does not count as SA.  The process component, situation 

assessment, incorporates the processes involved in acquiring and updating SA (Endsley, 

1995c).  Additionally, SA is viewed as distinct from decision making processes and 

action choice processes; each occur at different points along the decision making 

timeline and are governed by different cognitive structures (Endsley, 1995c, 2015b; 

Wickens, 2015).  For the purposes of the present discussion, the term “SA” will be used 

to refer to both product and process, and when meaningful, will indicate if process or 

product is more relevant. 

In the Endsley 1995 model, presented in Figure 2, the decision making process 

is cyclical and dynamic, with SA undergoing updates as an environment changes over 

time (Endsley, 1995c, 2015b).  Endsley has proposed that SA is comprised of three 

distinct levels: perception, comprehension, and projection.  In order to acquire and 

maintain SA, a decision maker must perceive individual environmental elements, which 

he or she must then compile in order to make sense of the whole picture.  If the decision 

maker is able to perceive and comprehend the meaning of the current state of the 
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system, he or she must then be able to envision the future system state based on the 

current state.  When navigated successfully, the decision maker should have a high level 

of SA. 

SA is but one of many factors that drive human decision making.  As such, it is 

still possible for a decision maker to choose poorly or execute a decision incorrectly.  

While SA influences decision making, SA itself is influenced by individual factors 

including the operator’s goals, expectations, training, and experience; system factors 

such as system design, workload, task complexity, automation; and individual cognitive 

factors such as long term memory, attention, and additional information processing 

structures (Adams et al., 1995; Endsley, 1995c).  An operator’s ability to acquire SA 

	

Figure 2. The 1995 Model of SA, proposed by Endsley (1995c) 
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can be limited by working memory capacity, attentional capacity, and presence of 

suitable mental models (Endsley, 1995c, 1997). 

Despite its comprehensive approach to SA in decision-making, the Endsley 

1995 model has received criticism on numerous fronts.  In a recent set of articles, 

Endsley (2015a, 2015b) attempted to rectify several of the most common critiques.  

Perhaps most prominent is the argument that Endsley’s model fails to account for the 

environment in which an individual operates, and that the model takes a Cartesian, “in-

the-head” view of SA (Chiappe, Strybel, et al., 2012; Chiappe, Strybel, & Vu, 2015; 

Salmon et al., 2008; Stanton, Salmon, Walker, & Jenkins, 2009; Stanton et al., 2006).  

In a more extreme position, van Winsen and Dekker (2015) question whether it is 

meaningful and even possible to study SA at an individual level, and instead support a 

joint cognitive systems approach as an alternative to individual and team SA.  Dekker, 

Hummerdal, and Smith (2010) argue that the Endsley 1995 model studies cognition 

independently from the environment, neglecting ecology in which the individual 

operates—essentially, focusing on the awareness, regardless of the situation. 

The “in-the-head” criticism can be traced to the debate between triadic and 

dyadic perspectives within cognitive science (Flach, 2015).  With roots in information 

processing studies, dyadic perspectives seek to understand how internal processes relate 

to external outcomes (such as how memory affects decision making).  Conversely, 

triadic perspectives frame research questions in terms of the relationship between 

internal processes, agent characteristics, and ecological properties.  For a more complete 

discussion on the history of this philosophical debate, refer to Flach (2015).  Endsley 
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(2015b) refutes that the 1995 model takes a Cartesian, dyadic perspective, pointing to 

the inclusion of task and individual factors in the decision making model. 

For all its criticism, the Endsley 1995 model was one of the first to frame SA in 

the context of attention and its relation to perceptual learning of dynamic information 

(Hoffman, 2015).  The model has been generalized to a diverse set of domains, and 

although it is sometimes construed as a dyadic, information processing based model, it 

is precisely this generalizability that lends itself to use as an explanatory framework for 

both dyadic and triadic perspectives (Flach, 2015). 

Team SA.  Many work-related tasks and environments involve interaction 

between multiple individuals.  In light of this, interest in group decision-making and SA 

has grown considerably over the years.  As with individual-centered models of SA, a 

collection of theories of team SA exist. Endsley (1995c, 2015b) defines team SA as “the 

degree to which every team member possesses the SA needed for his or her job.”  In 

this explanation, team members operate as individuals while in coordination with each 

other.  The unit of analysis is still the individual, and team SA in effect represents the 

degree of overlap between each team member in terms of SA. Team SA can exist in 

dynamic environments wherein individuals’ goals may adapt to the needs of the team, 

thus leading to changes in the extent of overlapping SA requirements (Salas et al., 

1995).  Alternatively, Dekker (2000) defines crew situation awareness as “the extent of 

convergence between multiple crew members’ continuously evolving assessments of 

the state and future direction of a process.”  As with individual human error, some 

explanations of team SA processes have attributed team errors to the failure of a team as 

a cohesive entity to maintain SA within individual members (Endsley, 1995c; Kaber & 
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Endsley, 1998).  A breakdown in team SA occurs when even a single team member 

lacks the amount of SA required to fulfill their role within the team.   

Models of team SA that focus on interactions between individuals tend to 

represent the concept by integrating models of individual SA, team characteristics, and 

teamwork processes (Endsley, 1995c; Endsley & Jones, 2001; Salas, Fiore, & Letsky, 

2013; Salas et al., 1995).  With the Endsley 1995 model as a foundation, Salas et al. 

(1995) proposed that team SA was a function of individual SA and communication 

within the team.  Shown in Figure 3, Salas’s (1995) model points out the links between 

individual characteristics and information processing mechanisms and teamwork 

processes.  In addition, Salas et al. (1995) emphasized the importance of understanding 

team SA in the context of overlapping knowledge as opposed to the study of multiple 

individuals’ SA levels.  

 

Figure 3. Model of team SA, as shown in Salas et al. (1995) 
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While definitions of team SA are often tied to the Endsley 1995 model or other 

individual-focused definitions of SA, additional research has examined mechanisms and 

processes that facilitate multi-actor decision making.  In addition to individual-level 

situation assessment processes, Salas et al. (1995) suggested that team SA is developed 

over time through processes involving information gathering, leadership, and fluid 

communication between team members. Endsley and Jones (2001) expanded upon this 

framework, introducing a model that explains the team situation assessment process in 

terms of SA requirements, information processing mechanisms at the team level, 

communication devices, and workflow processes.  Discussions of team SA 

requirements have aligned with the three levels contained in Endsley’s 1995 Model of 

SA.  When translated into teamwork, SA involves tasks related to perception of relevant 

information, comprehension of one’s own goals as well as those of other team 

members, and the projection of team members’ behaviors (Endsley, 2015b).  While 

many researchers have emphasized the importance of communication to the 

development of team SA, the relationship between team SA and other measures of 

teamwork, including team attitudes and behaviors have received less focus (Salmon et 

al., 2008). 

An extension of team SA is the concept of shared SA, which refers to the degree 

that information is shared based on goals shared between team members (Dekker, 2000; 

Endsley, 2015b; Endsley & Jones, 2013; Salas et al., 2013; Salas et al., 1995).  

Although scholars occasionally interchange the terms, the role of goals distinguishes the 

concepts of team SA from shared SA; in team SA, SA is measured as the level of SA 

possessed by individuals with differing SA requirements within the team, but in shared 
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SA, it is conceptualized as the overall amount of SA shared by individuals with similar 

SA requirements within the team (Kaber & Endsley, 1998; Salas et al., 2013).  Endsley 

and Jones (2001) define shared SA as “the degree to which team members have the 

same SA on shared SA requirements.”  In an ideal scenario, team members with shared 

goals each possess the same required knowledge to support their tasks, facilitating a 

coordinated effort.  When team members with similar SA requirements have unequal 

levels of awareness, teams can become uncoordinated, leading to performance 

decrements (Kaber & Endsley, 1998).  However, shared SA has come under fire in the 

literature for lacking clarity and for its irrelevance to teams within complex systems 

(Salmon, Stanton, Walker, Jenkins, & Rafferty, 2010; Stanton et al., 2006). 

Some criticism of the individual-level models of team SA originates from 

literature on distributed cognition approaches to SA (Chiappe, Rorie, et al., 2012; 

Salmon et al., 2008; Salmon et al., 2010; Stanton et al., 2006).  Salmon et al. (2010) 

claim that current definitions of shared SA are murky at best, and question whether it 

refers to team members each possessing exact replicas of SA, or simply possessing 

relevant portions of the total situational picture.  The debate between individual-level 

and systems-level SA scholars may require further discussions in order to arrive at a 

common ground.  Discussions predating the systems-level SA approaches establish that 

operators can share SA even when individual SA is not identical.  Endsley and Jones 

(2001) state that “the mental models of two team members do not need to be identical, 

as each member has different functions, nor is it likely they will be” and that effective 

teamwork can occur as long as “they have enough commonalty to allow comprehension 

and projection regarding actions that affect each other’s tasks.” 
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In further evidence of Endsley (2015b), Bolstad, Riley, Jones, and Endsley 

(2002) discuss a case in which two military officers had different end goals, and each 

comprehended the same Level 1 SA elements differently.  Yet, despite the differences 

between the two operators, they shared Level 3 SA requirements; both used their 

different views of the same situation to project a shared situational outcome (Bolstad et 

al., 2002; Endsley, 2015b). 

Mutual SA, a potential remedy to this debate, has received some support in the 

literature, and is a concept that describes when multiple operators are aware of each 

other’s SA (Chiappe, Rorie, et al., 2012; Shu & Furuta, 2005); put simply, each knows 

what they individually know and they both know that the other knows, too.  

Nevertheless, there are several aspects of team SA that remain yet undiscovered.  

In particular, how team SA changes over long periods of time is not well understood, 

especially when teams are engaged in projection activities (Salas et al., 2013).  

Furthermore, while several studies have determined that shared displays and shared 

mental models improve team SA and team performance (Endsley, 2015b; Endsley & 

Jones, 2001), some scholars have called for the need to address issues related to how 

perception and comprehension affect projection of the future (Wickens, 2015). 

Distributed Situation Awareness.  Grounded in the field of distributed 

cognition (Artman, 2000), schema theory (Bartlett, 1932), genotype/phenotype schema, 

and Neisser’s (1976) perceptual cycle model of cognition, the theory of Distributed 

Situation Awareness (DSA) describes team SA from a systems-level perspective 

(Salmon et al., 2008; Salmon et al., 2010; Stanton, Salmon, Walker, & Jenkins, 2008; 

Stanton et al., 2006).  DSA originated from the supposition that teamwork involved 
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different cognitive processes than individual properties.  Thus, an alternative but 

complementary model was needed to describe SA in complex sociotechnical systems 

(Stanton et al., 2006).  Prior SA theories represented team SA as a state of knowledge 

within the heads of individual team members, but Stanton et al. (2006) developed a 

model of SA based on propositional networks of distributed knowledge. 

DSA describes awareness as an emergent property from complex systems in 

which human and non-human actors interact (Salmon et al., 2008; Stanton et al., 2006).  

In DSA, ownership of SA moves away from the limited domain of individual operators 

and into the broader realm of the system in which many operators exist. 

In order to understand the differences between team SA and DSA, it is important 

to acknowledge several underlying assumptions of DSA.  From its inception, DSA was 

intended as an alternative approach to team SA, which was seen as too restrictive in its 

focus on individual cognitive mechanisms (Salmon et al., 2010; Stanton et al., 2006).  

Stanton et al. (2006) developed DSA as a means to explain the development of SA in 

dynamic, sociotechnical systems in which humans and technology both possess forms 

of SA.  The construct of SA in distributed systems was redefined as “activated 

knowledge for a specific task within a system” (Salmon et al., 2008; Stanton et al., 

2006).  However, this is not to negate the utility of individual SA models.  Individual 

SA theories of SA development, such as the Endsley 1995 model, may in fact occur 

during an individual actor’s performance; however, the DSA concept seeks to 

understand SA in terms of linkages between actors and the non-human elements within 

the system. 
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DSA centers upon a set of theoretical propositions; namely, that SA can be held 

both by human and non-human system members, that several agents may have different 

interpretations of the same situation, and that communication activities are key to 

acquiring SA within the system (Stanton et al., 2006).  As shown in Figure 4, Salmon et 

al. (2008) represent the emergent SA with the largest circle, showing information 

transactions between human and nonhuman actors with arrows.  As depicted in their 

model, while individuals may indeed possess SA, they argue that the most meaningful 

SA occurs when knowledge is activated in dynamic complex networks. 	 In line with 

                        
 

Figure 4. Example of the Distributed Situation Awareness (DSA) model, adapted 
from Salmon et al. (2008) 
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concepts such as shared SA, DSA supports the notion that system agents may have 

overlapping SA when their goals have similar SA requirements, and that system actors 

with varying levels of individual SA may counterbalance the DSA of the entire system 

(Stanton et al., 2006).   

However, according to the DSA perspective, shared SA and DSA do not refer to 

the same concept.  According to Stanton et al. (2006), although they may measure the 

same SA at times, shared SA refers to instances in which system agents share both goals 

and SA requirements, and in DSA, agents have different but compatible purposes and 

SA requirements.  Salmon et al. (2010) questioned the meaning of shared SA as 

proposed by Kaber and Endsley (1998).  Specifically, they refer to uncertainty 

regarding whether the concept refers to individual agents “sharing” in the sense that 

each agent has identical SA, or in the sense that each agent holds a unique but relevant 

piece of the whole picture (Salmon et al., 2010).  Instead of a shared approach, Salmon 

et al. (2010) suggest using transactive SA and compatible SA constructs for 

understanding a system’s DSA.  Whereas transactive SA refers to the process in which 

system actors exchange information, compatible SA refers to the phenomenon in which 

system agents hold distinct components of system awareness based on differing 

information sources, yet are compatible due to overlapping operator goals. The 

existence of compatible SA is what unites members of distributed systems (Salmon et 

al., 2010; Stanton et al., 2009; Stanton et al., 2006). 

	 DSA has received several criticisms from proponents of individual-level SA.  

The concept of SA as an emergent property has been met with skepticism.  In a review 

of the DSA model, Endsley (2015b) voices the concern that the DSA perspective 
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overlooks valid and time-honored definitions of what SA is, and confuses SA with the 

nonhuman entities that may be used to gain it.  However, this critique is countered by 

the supposition that in complex systems, SA represents activated knowledge and is an 

emergent property that cannot be reduced to the individual level (Salmon et al., 2010; 

Stanton et al., 2006).  While DSA supporters argue that SA is primarily meaningful 

when knowledge transactions occur, they also suggest that human operators have 

drastically different backgrounds, and thus cannot create the same situation model even 

after encountering the same information (Salmon et al., 2010).  However, this view has 

met with some discomfort, even from supporters of distributed cognition approaches to 

SA.  Chiappe, Rorie, et al. (2012) state that this view opposes current understandings of 

human perspective-taking and ability to share one’s intentions.  Such debates show that 

though distributed approaches to SA are fairly recent developments, a sharp divide 

between the individual-level and systems-level perspectives has already appeared.  Both 

concepts may have utility, but in future research, it will be necessary to distinguish 

which applications and goals are more appropriately modeled at each level. 

Situated Situation Awareness.  The Situated approach to situation awareness, 

proposed by Chiappe, Strybel, et al. (2012), is a relative newcomer to the SA debate.  

As with DSA, Situated SA is based on a distributed cognition perspective, but instead 

identifies the individual as the appropriate unit of analysis (Chiappe, Strybel, et al., 

2012).  Citing memory constraints and criticisms of the Endsley 1995 model, 

particularly the perceived Cartesian “in-the-head” approach and the product versus 

process debate, Chiappe, Strybel, et al. (2012) justify an alternative explanation of 

individual SA.  The situated approach utilizes the three levels of SA included in the 
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Endsley 1995 model, but introduces the idea that the most efficient processing strategy 

involves using the environment as its own representation, instead of storing all relevant 

information in internal models as suggested by Endsley (Chiappe, Strybel, et al., 2012; 

Chiappe et al., 2015).  In the situated approach, SA is not maintained entirely by 

internal cognitive processes but by off-loading SA into props within the environment; 

props could include checklists, mnemonic devices, automated reminders, or any number 

of memory aids.  Thus, the boundaries defining SA expand from an individual alone 

into the inclusion of ecological entities that an individual encounters while acquiring 

SA.  Further work extends the framework of individual distributed cognition into team 

settings (Chiappe, Rorie, et al., 2012). 

Early studies of SA have suggested that working memory capacity limits the 

amount of relevant information that can be used in situation assessment, but that long-

term memory structures aid SA through mechanisms such as mental models and 

schemata (Adams et al., 1995; Endsley, 1995c). Chiappe, Strybel, et al. (2012) believe 

that phenomena like change blindness and perception failures indicate that focus on 

internal representations is overemphasized in current understandings of SA.  Chiappe, 

Strybel, et al. (2012) view SA as a synthesis of two explanatory models of sensemaking: 

the Construction-Integration Theory (CI) of sensemaking (Durso, Rawson, & Girotto, 

2007; Kintsch, 1988) and Relevance Theory (Wilson & Sperber, 2002).  Based on 

premises from these theories, Chiappe, Strybel, et al. (2012) posit that factors, including 

ease of encoding, frequency of information use, ease of access, and individual factors 

such as expertise and working memory capacity affect whether SA is stored as an 

internal or external representation. 
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Proponents of the Situated SA model argue that SA is distributed, or off-loaded, 

into structures in the environment in order to reduce load upon working memory; 

however, this premise has received sharp criticism from others in the field.  Endsley 

(2015b) rejects the notion that long-term memory plays a minimal role in SA, 

emphasizing that a distributed cognition approach is not appropriate for an individual 

processing situation.  In the words of Endsley (2015b): “Information that exists in the 

environment… but of which the operator is not aware… does not constitute SA.  It is by 

definition information of which he or she is not aware.” 

Although partially disputing this assessment, Chiappe, Strybel, et al. (2012) 

acknowledge that off-loading may not always be the most effective strategy, stating 

that, “individuals must incorporate external representations into their operations in a 

way that increases the likelihood of successful performance.”  Chiappe et al. (2015) 

emphasize activated knowledge as being key to understanding the situated approach.  

Indeed, knowledge that an operator is not aware of may not be SA, but situated SA is 

instead created when the right information is activated at the right time.  In other words, 

knowledge may be present within props, but such knowledge does not translate into SA 

until it is activated by the operator (Chiappe et al., 2015). 

The central premise to the situated approach—that SA cannot be contained 

entirely within working memory—is actually expressed as a condition in the Endsley 

1995 model of SA (Endsley, 1995c, 2015a, 2015b).  Endsley (2015a) offers the 

commentary that the situated approach is based on a set of studies that use novice 

operators as participants, yet several studies have shown that experts are able to use 

mental models and schema more effectively than novices.  Despite framing itself as an 
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alternative to “in-the-head” views of SA, the situated approach is not as opposed to 

more traditional models of SA as how the concept has been theorized (Endsley, 2015a).  

Acknowledging that working memory and relevance limit storage capacity, Endsley 

(2015a) questions how best to identify the quantity and content of information, as well 

as the moments in time in which knowledge activation must occur for representations to 

be used for awareness.   

Sensemaking 

 While the concept of sensemaking has many similarities to situation awareness, 

it offers a unique perspective on decision making processes.  Sensemaking has been 

present in the literature since at least the mid-twentieth century, but Weick (1995) 

brought renewed attention to it within organizational contexts (Klein, Phillips, Rall, & 

Peluso, 2007).  At individual and team levels of decision making, sensemaking models 

have been applied to domains including fire ground command (Klein, 1993; Klein, 

Calderwood, & Clinton-Cirocco, 1986), military command and control (Jensen, 2009; 

Klein, 1989), weather forecasting (Pliske, Crandall, & Klein, 2004), air traffic control 

(Malakis & Kontogiannis, 2013), and intelligence analysis (Pirolli & Card, 2005).  As a 

field of study, sensemaking is often associated with naturalistic decision making 

methods (Klein, 2008, 2015a). 

 Klein et al. (2007) define sensemaking as “the deliberate effort to understand 

events,” and is often associated with an initial condition of surprise; that is, a subject 

will engage in sensemaking purposefully when a situation does not match his or her 

expectations (Klein et al., 2007; Weick, 1995).  Klein, Moon, and Hoffman (2006a) 

report that sensemaking integrates several cognitive processes, including curiosity, 
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comprehension, mental model creating, and SA.  In addition, several models represent 

sensemaking as a function of problem detection and identification (Klein, Moon, & 

Hoffman, 2006b).    

Although it contains elements of many recognized aspects of cognition, 

sensemaking has the greatest intersection with mental model construction (Klein et al., 

2006a).  Klein and colleagues (Klein, 1999, 2008; Klein et al., 2006a, 2006b; Klein et 

al., 2007) represent the concept as an iterative process in which decision makers attempt 

to comprehend stimuli and events in order to identify an appropriate action to take.  

That this perspective has similarities to several definitions of situation awareness has 

not escaped scholars.  Klein et al. (2006a) recognized the commonalities between 

sensemaking and SA, but stated, “in contrast [to Endsley’s SA product], sensemaking is 

about the process of achieving these kinds of outcomes, the strategies, and the barriers 

encountered.”  

While this perspective falls prey to the SA product versus process debate, 

sensemaking may then be likened to situation assessment.  Nevertheless, there are 

several distinctions that make it a unique and valuable concept for understanding 

decision making.  Sensemaking is often represented as a retrospectively-driven process 

in which a decision maker makes sense of the present based on past events (Weick, 

Sutcliffe, & Obstfeld, 2005).  Although sensemaking involves retrospective analysis in 

large part, it also has a forward-looking component, similar to Level 3 SA, in which the 

ultimate goal is to determine an appropriate action in the context of the situation (Weick 

et al., 2005).  However, unlike comprehensive models of SA, sensemaking theories tend 

to be constrained to the activities involved in problem detection and comprehension. 
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The following discussion will present two explanations of sensemaking.  While 

other theories exist, this section focuses on those theories put forth by scholars who 

have connected the concepts of sensemaking and decision making to situation 

awareness.  

 Recognition-Primed Decision Model.  The Recognition-Primed Decision 

(RPD) model, proposed by Klein et al. (1986), provided groundwork for several 

theories of decision making, including the Endsley 1995 model of SA (Endsley, 1995c).  

Klein (1993) recognized that in some decision scenarios, decision makers experience 

significant limitations in terms of time and resources.  Analytical decision making, in 

which a decision maker evaluates several alternatives, often requires enough time to 

compare and contrast the options; in time-constrained situations, this may be a luxury 

that one does not have.  The RPD model takes an adaptive approach, asserting that 

experience and iterative evaluation play a role in finding a workable solution.  Similar 

to the decision feedback loop contained in the Endsley 1995 model of SA, the RPD 

model explains aspects of situation assessment; however, it excludes cognitive 

processes involved in comparison of alternative choices (Klein, 1993).  This 

recognitional model addresses rapidly made, expertise-driven decisions; additionally, it 

provides a framework for understanding what has been known as intuitive decision 

making (Klein, 1989, 2015a). 

According to the RPD model, shown in Figure 5, sensemaking in such situations 

involves two processes, situation assessment and action assessment (Klein, 1999).  

When a decision maker is initially subjected to a situation, they may find it familiar and 

typical, or in the case when sensemaking is needed, they may find something atypical 
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and surprising (Klein, 1993).  In order to identify solutions to an unfamiliar or 

unexpected situation quickly, decision makers imagine potential actions based upon 

their goals, expectancies, situational cues, and past experience.  Then, potential actions 

are subjected in order of occurrence to rapid analysis.  Cognitive processes like mental 

simulations internalize and thus speed up the decision making process.  Once the first 

workable action—the satisficing solution—is found, the decision maker can implement 

it.  Thus, the solution either resolves the situation, or the decision maker receives 

feedback and can reassess the situation.  Pattern recognition and experience plays a 

critical role in recognition-primed decision making (Klein, 1989). 

	
Figure 5.  Recognition-Primed Decision (RPD) model 
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 The focus on satisficing solutions is one of several characteristics that 

distinguish the RPD model from models of SA.  Instead of choosing the best decision, 

Klein (1989) suggests that in some scenarios, it may be more efficient for a decision 

maker to choose the first functional solution.  Klein (1993) found that when decision 

makers lacked relevant experience, they rarely had the mental models required for 

conducting mental simulations of potential solutions.  Indeed, novice decision makers 

lacked the mental models required to generate action choices rapidly or accurately, a 

finding which was later supported by Endsley (1995c).  This recognitional approach 

provides a framework for understanding decision making by experts under great time 

pressure and great uncertainty (Klein, 1993).   

 Data/Frame Theory of Sensemaking.  After establishing the RPD model, 

Klein and colleagues (Klein et al., 2006b; Klein et al., 2007) sought to understand 

deliberate sensemaking processes, encapsulating their findings in the Data/Frame 

Theory of sensemaking.  Like the RPD model, the Data/Frame Theory presents a 

focused view of intentional and conscious sensemaking; it goes beyond previous 

frameworks in its attempt to explain how people construct and interpret data.  Existing 

models of sensemaking and SA, including the Endsley 1995 model, placed great 

importance on the role of data; however, as models focused on data processing, the data 

itself had rarely been studied closely.  Klein et al. (2007) argued that prior efforts to 

explain sensemaking and situation awareness had neglected to define how data is 

identified, and set forth the Data/Frame Theory to explain processes involved in data 

construction and interpretation.  The Data/Frame Theory presents sensemaking as a  
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“closed-loop sequence between mental model formulation (backwards) and mental 

stimulation (forwards)” (Klein et al., 2006b). 

 Central to the Data/Frame Theory are the concepts of data and frames.  

According to Klein et al. (2007), a frame is “an explanatory structure that defines 

entities by describing their relationship to other entities” and which provides a 

“structure for accounting for the data and guiding the search for more data.”  Frames 

can be likened to Neisser’s (1976) schema concept, a cognitive construct involving 

attention, memory, and experience in order to direct information management.  While 

frames can take a variety of forms, mental models are perhaps the closest to being the 

primary variety (Klein et al., 2006b).  Klein et al. (2007) distinguish between two types 

of frames that play different roles in sensemaking: “just-in-time” frames and 

“comprehensive” frames.  With “just-in-time” frames, interpretation of data is based on 

basic, assumed knowledge of the data elements.  “Comprehensive” frames are those in 

which data are interpreted based on knowledge of complete relationships between data 

elements.  In weather forecasting, a “just-in-time” frame could be likened to a member 

of the public looking at a radar image and recognizing that the representation indicated 

severe weather.  In the same situation, a “comprehensive” frame would be one held by a 

professional forecaster, whose mental models of the weather would contain knowledge 

about atmospheric and environmental relationships that could promote further severe 

weather. 

 Compared to the environmental elements perceived in Level 1 SA (Endsley, 

1995c), Klein et al. (2007) proposed that “data” is a relative concept.  In the Data/Frame 

Theory, data are abstractions of elements in the environment.  In this definition, in order 
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to be understood, one must not only consider the actual state of the environment, but 

also perceptive and abstractive cognitive processes that shape what becomes data (Klein 

et al., 2007).  This alternative perspective, based on doubt in the information-processing 

models, supports the idea that stimuli and events are rarely perceived without 

introducing individual bias. 

The Data/Frame Theory and the Endsley 1995 model of SA address related but 

distinct concepts.  Whereas Endsley’s (1995c) framework uses cognitive structures to 

explain how individuals perceive and make use of information, Klein et al. (2007) 

commits to a model in which frames are used to synthesize data and draw meaning from 

them.  While both explanations contain a forward-looking component, there are several 

critical differences involved in their structures and applications. 

Sensemaking involves two concurrent processes in which frames define what 

data are, and conversely, data determine the construction and selection of frames (Klein, 

2015b).  Shown in Figure 6, the Data/Frame Theory posits that sensemaking consists of 

a series of cyclical processes.  Initially, when a decision maker is exposed to a situation 

in which they must make sense of some information, her existing frames (such as 

mental models) will determine which informational elements are relevant to the 

situation at hand—these become the initial data set.  Concurrently, the perceived data 

will also be used to determine which frame is most appropriate.  Identifying a frame is 

followed by a series of synthesizing processes, in which the decision maker elaborates, 

preserves, questions, and reframes data.  In some situations, data may be incomplete, 

leading to gaps in the decision maker’s knowledge.  In the elaboration cycle, the 
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decision maker seeks out additional data or removes irrelevant data in line with the 

frame(s) in use.  The decision maker may also question the frame in use if anomalies in 

the data are found, or if data is of poor quality; this may be due to an imperfect frame 

choice.  If, in fact, the frame choice was adequate, but for some reason the decision 

maker senses inconsistencies between it and the data, she may seek to preserve the 

frame by engaging in further elaboration.  This activity may uncover additional relevant 

data that can then be used to update the frame in use.  Conversely, it may be more 

appropriate to reframe the data completely if the original frame is a poor fit for the data 

after a close analysis (Klein et al., 2006b; Klein et al., 2007). 

 

Figure 6. Data/Frame Theory of Sensemaking, adapted from Klein et al. (2006) 
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As with the RPD model and the Endsley 1995 model of SA, the Data/Frame 

Theory posits that expertise plays a large role in the sensemaking process.  Klein et al. 

(2007) argue that expert and novice decision makers use essentially identical procedures 

when engaged in sensemaking, but disparities in performance are due to differences in 

expertise.  After many experiences working through the Data/Frame cycles, experts 

build up extensive collections of frames, whereas novices have relatively few frames in 

their repertoire.  Over time, novices develop their frames, adding to their quantity and 

quality, and in addition, reframing when necessary.  The Data/Frame Theory has 

received criticism for failing to explain how cognitive processes and structures integrate 

to form, develop, and use frames.  Frames have proven to be a contentious idea, and 

even the proposing authors acknowledge limitations in knowledge about this construct 

(Chiappe, Strybel, et al., 2012; Klein et al., 2006b).  The usefulness of the Data/Frame 

concept has also come under fire in the SA literature.  Proponents of the Situated SA 

approach argue that the Data/Frame Theory has little utility for explaining SA due to its 

failure to separate long-term knowledge from short-term, situation-centered knowledge 

(Chiappe, Strybel, et al., 2012).  In addition, Endsley (2015b) has argued that it is 

inappropriate to focus so deeply on recognitional approaches to sensemaking, and has 

gone so far as to suggest that the Data/Frame Theory has few explanatory advantages 

over the Endsley 1995 model of SA.  While this opinion may overlook several benefits 

of the Data/Frame Theory, it is true that the framework neglects to identify the 

processes involved in recognizing when a situation merits analytical or recognitional 

decision making approaches. 
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In response to Endsley’s (2015b) critique, Klein (2015b) responds that the 

Data/Frame Theory was never intended to be a comprehensive model.  Its focus is on 

deliberate sensemaking in uncertain situations, and it represents a closer look at data 

construction than what the Endsley 1995 model provides (Klein, 2015b).  Where 

Endsley (2015b) states that the Endsley 1995 model and Data/Frame model each 

address problem detection, Klein (2015b) argues that the Data/Frame model adds value 

by incorporating reframing processes.  Where Endsley (2015b) argues that the 

Data/Frame model and Endsley 1995 model each describe data gathering and 

interpretation, Klein (2015b) responds that the Endsley 1995 model deals with data 

gathering and synthesis, but not construction, which is the purview of the Data/Frame 

model.  Clearly, both models offer insight into the decision making process, despite 

contention produced in scholarly debate. 

Summary of the Models 

The aforementioned models of SA and sensemaking provide a framework for 

understanding SA and decision making across multiple levels of analysis.  Sensemaking 

theories and SA models complement each other in several ways. Sensemaking explicitly 

addresses understanding of situations in which uncertainty exists; indeed, one would 

rarely need to engage in sensemaking if there wasn’t uncertainty.  Few SA models 

address how uncertainty management fits into the decision making process, or how its 

existence affects situation assessment.  In this way, sensemaking offers much to 

understanding the concept of SA. 

 Not all scholars fully accept the significance of SA as a factor in decision 

making and human performance.  Dekker and Hollnagel (2004) refer to current 
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explanations of SA as “folk models,” in which phenomena are essentially not 

measurable and therefore explained through substitution and overgeneralization.  

Instead, they call for an increased focus on explaining human decision making in terms 

of performance, as in their view, the joint cognitive system is much more meaningful 

than the study of human cognition separated from its ecological situation (Dekker & 

Hollnagel, 2004; van Winsen & Dekker, 2015). 

Several questions emerge from a synthesis of the SA and sensemaking literature.  

Crosscutting the different perspectives on units of analysis for SA is the representation 

of SA as functional understanding of a situation that results in action choice and 

performance (Chiappe, Rorie, et al., 2012; Endsley, 1995c; Klein, 1989).  There may be 

utility in viewing SA at multiple levels of analysis, and further discussions would be 

necessary to establish appropriate frameworks for discussing SA in individual cognition 

as well as across sociotechnical systems.  At the individual level of analysis, knowledge 

related to SA and human performance is lacking; for example, although a number of 

assessment techniques for SA exist, it is still unclear how to distinguish between 

inaccurate and incomplete SA (Baxter & Bass, 1998).  Likewise, it is important to 

question how an individual’s SA accuracy affects decision making and performance, 

which should shed light on the relationship between SA and situational uncertainty 

(Minotra & Burns, 2015). 

Assessment of Situation Awareness 

 Over time, a variety of methods and tools for assessing situation awareness have 

emerged from the research community.  The following section presents an overview of 

some of the most commonly used approaches in the literature. 
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Probe-based Techniques 

Probe-based techniques are perhaps one of the most commonly used methods to 

assess SA.  Several probe-based methods have been discussed in the literature, each one 

in turn addressing a different facet of SA.  Probes, designed based on expert knowledge 

of the human subjects’ workflow, assess SA in terms of absolute accuracy; either 

subjects demonstrate SA, or they do not.  Probe-based techniques have been criticized 

for assuming a situational ground truth, against arguments that this may not be true for 

all scenarios. 

Endsley (1988b) proposed the Situation Awareness Global Assessment 

Technique (SAGAT).  SAGAT has been validated in a variety of domains, including 

airfield combat (Endsley, 1988b, 1995a; Endsley, Selcon, Hardiman, & Croft, 1998a), 

air traffic control (Jones & Endsley, 2004), emergency medicine (Levin et al., 2012), 

and driving performance (Ma & Kaber, 2005).  SAGAT is a technique in which a 

subject is asked questions (also known as probes) while undergoing a simulated 

scenario; this is sometimes referred to as an on-line method.  At randomized intervals 

throughout the simulation, the scenario is paused and all relevant displays are 

temporarily cleared; at this point, the probes are presented.  Once all the probes are 

answered, the scenario is started from the pause point and runs until the next set of 

probes are due to begin.  When the entire simulation is complete, a composite score of 

performance is calculated from a comparison of responses to the ground truth in the 

scenario.  SAGAT responses can also be categorized into sub-scores associated with 

components of SA (Endsley, 1988b, 1995a). 
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Similarly, the Situation Present Assessment Method (SPAM) is an alternative 

technique that adopts a real-time approach to assessing SA (Chiappe et al., 2015; Durso 

et al., 1995).  Like SAGAT, SPAM presents queries to participants in a simulated 

scenario and evaluates response accuracy against a ground truth.  SPAM is 

distinguished from SAGAT, though, in its application of the probes and the inclusion of 

response time as a valid predictor of SA (Dao et al., 2009; Durso et al., 1995; Loft, 

Morrell, & Huf, 2013).  Instead of freezing the simulation, the SPAM procedure 

presents probes without pausing the workflow.  In principle, this allows subjects to 

access information as and when it is queried, demonstrating SA when the subject is 

aware where information is stored in the environment.  SPAM’s probe technique makes 

it an accessible assessment tool for proponents of the situated approach to SA.  By 

allowing subjects to access the information components, it inherently assumes that SA 

is not just what can be contained within the head, but that which can be stored using 

environmental and task-related cues (Chiappe, Strybel, et al., 2012).   

Comparisons of SAGAT and SPAM have produced evidence both for and 

against real-time and freeze-time probing techniques.  In a study of chess players, Durso 

et al. (1995) evaluated the efficacy of SAGAT and SPAM in predicting players’ SA 

levels; they found that while both methods were viable measures for SA, response 

accuracy was a significant predictor for SAGAT, but not for SPAM.  Conversely, 

response time was a significant predictor for SPAM, but less so for SAGAT (Durso et 

al., 1995).  However, in a similar comparison of real-time and SAGAT probes, Jones 

and Endsley (2004) found a correlation between accuracy-based probes and response 

time-based probes, albeit a weak one.  Furthermore, Jones and Endsley (2004) also 
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identified a weak correlation between workload measurements and the real-time probes, 

which indicates that further work is needed in order to identify performance effects 

from probe-based techniques. 

In line with this finding, some practitioners have expressed concern that SAGAT 

is that memory limitations may diminish SAGAT’s ability to measure SA.  It has been 

argued that by freezing the scenario, probes measure recall instead of overall SA (Dao 

et al., 2009).  However, referencing a study by Endsley (1994), Durso and Gronlund 

(1999) state that no significant difference was found in SAGAT scores measured at 20 

seconds and 6 minutes after freezing the scenario.  This finding suggests that concerns 

regarding memory limitations may be overstated, but it also assumes that memory does 

not decay significantly after 20 seconds (Durso & Gronlund, 1999).   

Dao et al. (2009) attempted to overcome limitations of SAGAT and SPAM by 

combining aspects of both techniques into one method.  In the combined probe method, 

participants were given access to the displays while answering the probes, but after the 

simulation had ended, so as to not affect mental workload (Dao et al., 2009).  This 

approach, along with other real-time probe-based techniques, provides a view of at least 

a portion of SA (Adams et al., 1995).  However, this view is partial at best; probes only 

reflect the components of SA that they directly query, and thus, reflect SA in the form 

of performance, and only indirectly represent the underlying cognitive processes.  In 

addition, conclusions from on-line probes are difficult to generalize past the scenario for 

which they were designed, and further problems can occur when simulated scenarios 

are not realistic (Adams et al., 1995).  This can be overcome by designing scenarios 

around real situations, such as historic events from the real world (Adams et al., 1995). 
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Rating Approaches 

 Similar to probe-based techniques, ratings-based approaches for assessing SA 

can be designed in more than one form.  Most often, SA is assessed through subjective 

rating methods, such as the Situation Awareness Rating Technique (SART), or through 

observer rating methods.  

The SART is an easy-to-use method that presents a questionnaire of subjective 

items to subjects at the end of a simulation in order to assess their own level of SA 

(Taylor (1990) as cited in Selcon, Taylor, and Koritsas (1991)).  SART consists of a 

series of questions that assess ten components of a subject’s SA; the questionnaire can 

be administered either at the completion of the simulation, or intermittently during 

pauses in the simulation, as done with SAGAT (Endsley, Selcon, Hardiman, & Croft, 

1998b; Selcon et al., 1991).  While completing the questionnaire, subjects rate each 

item on a seven-point scale (Selcon et al., 1991).  Components of SA considered in the 

SART are related to perceptions related to cognitive demand, availability of attentional 

resources, and the subject’s understanding of the present situation.  While requiring 

much less subject matter expertise than probe-based methods, some studies have shown 

that the SART is sensitive to background experience and task difficulty (Selcon et al., 

1991).  From the ten components included in the SART questionnaire, a total score can 

be calculated which is designed to reflect a subject’s overall SA. 

An alternative type of rating measure has subject matter experts observe and rate 

operators’ SA.  SA is assessed against a set of behaviors that are associated with high 

and low levels of SA, often developed from a grounded knowledge of workflow and 

task demands.  In the Situational Awareness Linked Indicators Adapted to Novel Tasks 
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(SALIENT) method, observers watch operators perform their tasks while recording 

relevant operator behaviors using the checklist (Muniz, Stout, Bowers, & Salas, 1998).  

The SALIENT method was developed as a means to assess team interactions and SA, 

and so the checklist focuses not only on individual actions, but also interpersonal 

interactions and information handoffs (Muniz et al., 1998).  However, as with operator-

generated rating techniques like SART, observer ratings have received criticism of their 

subjective nature.  Self-guided ratings have been viewed as unreliable and even 

inappropriate.  Indeed, the issue of how much trust should be placed in a subjective 

score of SA has been raised, calling into question the degree that an individual can truly 

be aware of his or her own knowledge (Salmon et al., 2010).  An individual may believe 

that they have a high level of SA, but as Endsley (1995a) points out, many significant 

safety failures have occurred even when operators believe they are behaving 

appropriately.  Likewise, observer rating methods are subject to the same critiques. 

Methodological validation studies consistently show that other assessment 

techniques perform more reliably than SART (Loft et al., 2013).  Problems related to 

predictive power and timing bias may affect outcomes.  Endsley (1995a) cites poor 

correlation between SART and SA performance measures, having previously suggested 

that a positive or negative situational outcome could bias a subjective rating if presented 

at the end of a scenario (Endsley, 1988b).  In relation to probe-based techniques, Loft et 

al. (2013) also found that SPAM exhibited stronger predictive power than SART in 

relation to performance in a submarine track management task.  Finally, Salmon et al. 

(2009) identified a significant correlation between SAGAT scores and operator 

performance, but failed to find a correlation between SART and performance. 
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Observational Approaches 

 While many quantitative methods for assessing SA exist, alternative 

perspectives on SA can be produced using qualitative approaches.  A deeper 

understanding of SA can be gained through a variety of observational methods such as 

cognitive work analysis, naturalistic decision making (NDM) research (Klein, 2008), 

the critical decision method, and propositional network modeling (Salmon et al., 2010), 

among others. 

 In order to address perceived shortcomings of laboratory-based evaluations of 

decision making, the NDM perspective emerged as an alternative assessment method in 

the field of SA (Klein, 2008).  The NDM framework assesses situation awareness as a 

component of a decision making process situated within a specific ecology; thus, this 

approach shifts assessment out of the laboratory and into the environment in which 

decisions are made (Klein, 2008).  The naturalistic approach has been closely linked to 

the RPD model and theories of sensemaking, providing critical structure for 

understanding these phenomena in a qualitative manner (Klein, 2008).  Often 

employing interview-based approaches, NDM studies have uncovered a wealth of 

information undiscoverable through more empirical methods; NDM-based literature has 

explored decision decision-making in contexts including, but not limited to, weather 

forecasting (Pliske et al., 2004; Smallman & Hegarty, 2007), fireground command 

(Klein et al., 1986; Klein, Calderwood, & MacGregor, 1989), and military command 

(Klein et al., 1989).  

 The NDM framework has spawned a variety of techniques for eliciting 

knowledge regarding decision making from people engaged in the environment in 
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question.  Semi-structured interviews, such as the critical incident technique, are often 

used to conduct a post-event analysis with key decision makers (Klein et al., 1989; 

Randel, Pugh, & Reed, 1996).  While some studies analyze decisions following a real-

world event, such as a building fire (Klein et al., 1986), others employ a hybrid 

approach that blends laboratory-based controlled scenarios with post-event interviews 

(Randel et al., 1996; Smallman & Hegarty, 2007).  Studying electronic warfare 

technicians in the United States Navy, Randel et al. (1996) used the critical incident 

technique to elicit information about the decision making processes that participants 

used during the critical incident, defined as an event in which a successful outcome in 

the simulation is dependent upon the participant’s behavior during the event.  

Interviews assessed decision making and situation awareness through structured queries 

related to one or more of the critical incidents, an unstructured discussion of the entire 

simulation, a discussion of the simulation’s timeline, and an identification of key 

decision points and factors affecting the participant’s decision (Randel et al., 1996).  

The critical decision method is a derivation of Flanagan’s (1954) critical incident 

technique, and it focuses the interviews on decisions made during the scenarios as 

opposed to controlled incidents (Hoffman, Crandall, & Shadbolt, 1998). 

 Work analysis is a widely used method that facilitates the evaluation and 

modeling of complex sociotechnical systems.  The cognitive work analysis (CWA) 

approach, discussed extensively by Vicente (1999), allows designers to identify 

environmental and cognitive constraints that influence work demands on system 

resources.  Not only has CWA been used extensively for system modeling, but it has 

also lent itself well to understanding SA and decision making in complex systems 
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(Minotra & Burns, 2015).  The procedure often targets multiple aspects of the work 

environment, using methods such as analyses of the work domain, decision ladders, 

cognitive strategies, organizational and social transactions, and worker cognitive 

competencies (McIlroy & Stanton, 2011; Read, Salmon, Lenné, & Stanton, 2014; 

Vicente, 1999).  In combination, outcomes from these analytical components create a 

map detailing relationships between system entities and resources as well as 

requirements for successful decision-making and performance. 

Observational methods have long been used to shed light on decision-making 

processes within individuals and teams.  Recent applications of qualitative methods 

include modeling and assessing complex sociotechnical systems.  In relation to the DSA 

model, propositional network modeling uses verbal protocol analysis, hierarchical task 

analysis, and the critical decision method to develop a representation of information 

transactions between agents within the system (Salmon et al., 2010; Stanton et al., 

2006).  However, due to its qualitative nature, propositional network modeling is 

limited in its ability to assess the quality and quantity of operator and overall system 

SA; such assessments must be based on subjective measures based on observer 

judgments (Salmon et al., 2010).  The propositional network modeling technique is part 

of the broader Event Analysis of Systemic Teamwork (EAST), another methodology 

based on the NDM framework, which has been used to identify SA requirements in 

distributed sociotechnical systems in many contexts (Stanton, Salmon, & Walker, 2015; 

Walker et al., 2006). 

Although NDM methods have the potential to provide insight into decision-

making, several limitations exist to their effectiveness.  First, although they elicit rich 
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sets of knowledge related to operator behavior and task demands, models developed 

through such means are often very context-specific and thus difficult to generalize to 

broader applications.  Second, testing and validating models is also a challenge.  

Finally, from a data collection standpoint, the relationship between SA and decision 

processes is still not well understood, and a failure to account for this could affect NDM 

findings.  Indeed, while SA affects decision outcomes, it has also been suggested that 

SA also affects selection of decision-making strategies (Endsley, 1997; Minotra & 

Burns, 2015).  A deeper understanding into the mechanisms associated with SA and 

decision-making is needed in order to advance the NDM methods as SA assessment 

measures.   

Physiological Indices 

 While several probe- and rating-based approaches have been correlated to SA 

performance, these methods have only been shown to be effective in controlled 

laboratory environments (Moore & Gugerty, 2010).  In order to overcome the 

limitations associated with direct and indirect measures, physiological measures have 

been identified as potential predictors of SA.  Several physiological measures have been 

evaluated in relation to their ability to predict SA, including eye movements and 

electrical brain activity. 

 As a measurement method, eye movement analysis has had a surprisingly long 

association with SA, being both lauded and criticized for the information it has the 

potential to provide.  Tracking eye movements may provide a more direct way than 

probe-based methods for evaluating perceptual processing when developing SA (Adams 

et al., 1995).  Although early attempts to link SA to eye movements failed to identify 
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differences in levels of SA (Durso et al., 1995), recent efforts to gauge the effectiveness 

of the method have produced more positive results (Moore & Gugerty, 2010; Yu, 

Wang, Li, & Braithwaite, 2014).  In a study of air traffic controllers, Moore and 

Gugerty (2010) found that the number of eye fixations was a significant predictor of SA 

in terms of probe response accuracy; the number of fixations was inversely related to 

the number of errors that a participant made when answering probes. 

In a flight simulator-based study of pilots using a head-up display (HUD), Yu et 

al. (2014) measured the number and duration of eye fixations and compared them 

against self-reported perceived workload and subjective measures of perception and SA.  

In their procedure, SA was determined in an observer rating approach.  During the 

simulation, the experimenters would randomly switch on a warning light; if the pilots 

reacted correctly, the experimenters recorded the participant as having “high SA” and if 

an incorrect or no response was taken, the experimenters recorded the participant as 

having “low SA” (Yu et al., 2014).  While Yu et al. (2014) found a correlation between 

mental workload and SA, the appropriateness of a binary measure of SA should be 

called into question.  Yu et al. (2014) state, “Pilots who were able to identify the 

activated warning light have better SA performance and show significantly lower 

workload.”  This association has been supported by other studies, but a binary, 

observer-based judgment of SA seems to be more an artifact of the experimental design 

than a true measure of SA. 

Electroencephalography (EEG), a measure of electrical brain activity, has also 

been evaluated as a measurement technique for SA.  EEG has been used to measure SA 

with some success, but concerns have been raised that while EEG may provide insight 
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into brain activity during situation assessment, the technique, still does not provide a 

measure of information contained in memory, information completeness, or 

comprehension level; this critique also holds for any measure of SA based on 

performance (Endsley, 1995a).  Nevertheless, recent applications of EEG measures for 

SA support explanations of top-down processes involved in SA.  In a series of two 

visual-based perception studies, Catherwood et al. (2014) used EEG to evaluate brain 

activity during loss of SA in situations with high levels of uncertainty.  Using a 

combination of EEG to measure brain activity and a signal detection-based approach to 

assess loss of SA, brain imagery revealed several high-order areas of the brain 

associated with SA.  Most notably, the orbitofrontal cortex, an area associated with 

cognition under uncertainty and stimulus-response contingencies, was activated during 

loss of SA during experimental tasks (Catherwood et al., 2014).  These findings suggest 

that top-down processes such as memory and mental models can be assessed 

objectively, despite suggestions otherwise (Dekker & Hollnagel, 2004). 

Although physiological measures have shown promise in relation to SA 

assessment, it is important to consider attentional limitations that may not be captured 

by such measures.  For example, eye tracking may not be able to capture loss of SA due 

to the change blindness, a phenomenon in which eyes fixate upon a stimulus, but the 

information is not encoded (Chiappe, Strybel, et al., 2012; Endsley, 1995a; Moore & 

Gugerty, 2010).  However, as Durso and Gronlund (1999) suggest that limitations in the 

coverage of physiological-based measures may be overcome if used in conjunction with 

additional SA measures. 
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Summary of the Assessment Methods 

Situation awareness can be evaluated with a number of different methods, 

including performance-based measures, subjective rating approaches, observational 

methods, and physiological assessments.  Performance-based measures show great 

promise as predictors of SA; however, Durso and Gronlund (1999) caution that one 

cannot assess SA by only looking at performance, but there is precedent for using it as 

an implicit measure of SA.  Physiological indices and performance-based measures do 

not always correlate well to SA (Salmon et al., 2010).  Furthermore, questions of 

methodological validity as well as ability to generate repeatable and meaningful 

outcomes have been raised with respect to probe-based techniques and NDM (Dekker, 

2000).  Each approach has strengths and weaknesses; a combination of methodological 

approaches has been advocated as a way to balance these trade-offs (Dekker, 2000).  

Existing SA assessment methods explain portions of the phenomena; it is possible that a 

more comprehensive model of SA in relation to its underlying mechanisms and 

influencing factors may be gained through methodological triangulation.  In order to get 

the broadest picture of this complex construct, future research should work to assess SA 

from multiple perspectives, balancing information gained through observational 

research with findings from performance-based measures, physiological measures, and 

subjective approaches. 

Decision Making in Weather Forecasting 

 Situation awareness (SA) has gained traction in operational environments, in 

part due to its ability to facilitate communication between disciplines, to translate 

cognitive theory into design deliverables, and to develop training systems (Byrne, 2015; 
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Jones, 2015).  The weather forecasting community often speaks about decision-making 

in terms of SA, and studies of forecaster SA and sensemaking have revealed much 

about forecast decision processes (Bowden, Heinselman, Kingfield, & Thomas, 2015; 

Hoffman & Coffey, 2004; Klein et al., 2006b).  In studying sociotechnical systems such 

as the weather forecasting domain, greater understanding of human decision making, 

mental models, and SA can allow system developers to match technology to the needs 

of the users (Endsley, 2001).  In this way, the study of SA can do much to inform the 

field of weather forecasting and decision support design. 

In order to take advantage of an enhanced understanding of SA and its 

underlying mechanisms, one needs to recognize the complexities in the weather 

forecasting domain; as a sociotechnical system, the forecasting domain consists of 

human and technological agents.  At an individual level, forecasting interweaves 

cognition, interpersonal communication, and technology use.  At the systems level, 

forecasters interact with emergency management personnel, broadcast media, and 

members of the general public, amongst other system actors.  Outside of operational 

forecasting responsibilities, forecasters may also interact with researchers and 

environmental modelers.  The weather domain is truly a system of systems.  While it is 

possible to look at situation awareness at multiple levels within the system, the 

following discussion presents a view of information requirements for situation 

awareness at level of the individual forecaster and the interactions involved between 

human and technical system elements.      
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Weather Forecasting from a Human Perspective 

Although details may vary between regional NWS Weather Forecast Offices 

(WFOs), the forecasting process generally remains constant across the United States.  

This also may hold true at the international level; comparing the work behaviors of 

weather forecasters in the United States and Australia, Kirschenbaum (2004) observed 

very similar decision making processes in the forecasters, despite each location using 

different types of decision aids and technology.  For a thorough discussion on the daily 

workings in a WFO, refer to Daipha (2010) who discusses observational fieldwork 

conducted over the course of nearly two years.  Summarizing Daipha (2010), operating 

in shifts, forecasters work individually and in small groups to maintain situation 

awareness over environmental states.  Forecasters receive information primarily via 

computer monitors placed on personal workstations.  In the words of Doswell (2004), 

the influx of information sources available through these modern workstations is like 

“trying to drink from a fire hose” and that excessive amounts of data can lead to 

information overload. 

Several scholars have described the flow of information through the forecast 

decision making process.  Weather forecasting involves a large amount of visual 

processing and information synthesis; these are necessary to gain awareness and make 

sense of unfolding environmental patterns (Daipha, 2010).  A number of observational 

studies have described forecaster information-seeking behavior and integrative 

reasoning during simulated forecasting activities (Barthold et al., 2015; Heideman, 

Stewart, Moninger, & Reagan-Cirincione, 1993; Karstens et al., 2015; Morss & Ralph, 

2007).  Morss and Ralph (2007) found that forecasting ability involved synchronization 
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of a variety of information sources, including computational model outputs, real-time 

environmental observations, individual background knowledge related to geography 

and weather patterns, end user needs, and feedback from previous forecasts and other 

forecasters. 

A forecaster’s ultimate goal is to maintain awareness over an environmental 

situation in order to predict weather threats in a timely and accurate manner.  In addition 

to timeliness and spatial accuracy, forecasters have cited low forecast bias and 

consistency between forecast products as desirable aspects of forecasts (Morss & Ralph, 

2007).  The NWS definition of a “good” forecast is based on verification statistics, 

including probability of detection and false alarm ratio (Bowden et al., 2015).  Under 

the current paradigm, if a weather event is forecast but not observed, the forecast is 

categorized as a false alarm; however, current observation methods may not be able to 

detect every weather event, leading to false negatives in verification.  Recent calls for a 

renewed look at forecast verification methods have attracted attention, particularly in 

light of improved understanding of the forecast decision making process (Bowden et al., 

2015). An alternative view of forecast goodness holds that a forecast is “good” if it 

closely matches the forecasters’ knowledge and experience, the observed environmental 

state prior to and during the forecast period, and if a forecast end user gains benefit 

from the knowledge conveyed in the forecast (Murphy, 1993).   

 Individual Factors.  Weather forecasting is an inherently human-centered 

activity.  Individual characteristics play a large role in the processes involved in and 

outcomes from forecasting.  Highly skilled forecasters possess a number of technical 

abilities and personal characteristics.  Forecasters should be adaptable to new 
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technologies, be able to translate knowledge into actionable information, be able to 

synthesize numerous information sources, have strong interpersonal skills, and possess 

knowledge of end user requirements (LaDue, 2011; Stuart et al., 2006).  Forecasting 

ability is also affected by background knowledge, including local geographic and 

climatological knowledge, and prior experiences with the weather phenomenon in 

question (Morss & Ralph, 2007). 

In terms of background experience, professional forecasters typically hold a 

Bachelor’s degree or higher (Daipha, 2010); however, LaDue (2011) found that few 

forecasters learn their trade in formal educational settings.  Using a grounded theory 

approach, LaDue (2011) hypothesized that instead of through formal instruction, 

forecasters learn their skills in interactive environments in which other forecasters 

essentially mentor less experienced forecasters.  Interviews revealed that strong social 

relationships, regular exposure to weather phenomena, and maintaining a professional 

identity played a large role in development of forecasting expertise.   

Expertise is a key factor that affects decision-making, and technology usage has 

been suggested as a means to distinguish between non-experts and experts.  Using the 

Critical Decision Method, Pliske et al. (2004) interviewed professional forecasters, 

finding that non-experts often based decisions solely on numerical models and a set of 

assessment procedures.  Conversely, experts took a more adaptive approach and were 

more able to integrate personal background knowledge with the model predictions, 

which may indicate more accurate mental models, a better use of forecaster mental 

models, or perhaps both.  Trafton (2004) defined mental models as a dynamic collection 

of visual and textual information that allows the subject to draw inferences about spatial 
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and qualitative relationships.  Mental models may affect the way in which a forecaster 

understands the environmental situation.  Forecasting errors may occur when a 

mismatch exists between what the forecaster perceives in the environment and what 

their mental model would lead them to expect to perceive. 

Mental model formation may be affected by visual memory and spatial 

cognition, two factors that have been associated with effective performance in weather 

forecasting (Pliske et al., 2004; Smallman & Hegarty, 2007; Trickett & Trafton, 2006).  

Visual memory and spatial cognition may affect pattern recognition ability.  Daipha 

(2010) suggests that a good visual memory may improve forecast timeliness and spatial 

accuracy, citing a forecaster’s comment that displaying several visualizations on the 

workstation monitor made the information difficult to distinguish and interpret.  The 

importance of spatial cognition is further supported by Smallman and Hegarty (2007), 

who identified differences between expert and non-expert forecasters in terms of spatial 

ability.  Forecasters created information displays that they then used to create a forecast 

for a local airfield.  Measures of spatial ability, forecasting background, and feedback 

on information displays were also taken.  From these findings, Smallman and Hegarty 

(2007) identified an inverse relationship between expertise and complexity of the 

forecaster-generated information displays.  The authors posit that this could be due to 

novice forecasters expecting to need more context to the situation, whereas experts 

exhibited stronger performance due to more developed mental models. 

Finally, while spatial cognition and forecasting experience are instrumental in 

the forecasting process, it is important to note that forecasters often require specialized 

expertise.  Forecasters have different SA requirements for different types of weather 
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phenomena.  While pattern recognition is an important skill for forecasters, 

environmental events exhibit different behaviors, and forecasters sometimes train to 

specialize in forecasting events, such as flooding (Daipha, 2010).  A forecaster 

responsible for flash flood forecasting in the northeastern United States will be trained 

to recognize a different set of environmental behaviors than the patterns a fire weather 

forecaster in the southwestern United States would evaluate.  Thus, in order to discuss 

decision-making in weather forecasting, it is highly relevant to discuss the context in 

which the forecaster is situated.  

Environmental Information.  Forecasters access a substantial collection of 

computational models for environmental prediction, which not only provide direct 

estimates of environmental variables, but also indirect information.  When evaluating 

model predictions, forecasters assess model accuracy and bias, which can result in 

different information sources being preferred across different geographic locations and 

under certain environmental conditions (Morss & Ralph, 2007).  Individual 

meteorological and environmental phenomena have corresponding numerical prediction 

models, though some models can be useful for gaining SA in more than one type of 

weather event.  Meteorological ensemble frameworks, a type of model that generates 

multiple outputs based on permutations of the input variables, time-lagging predictions, 

or contrasting independent modeling systems, have been the focus of much research in 

recent years, and have been shown to improve forecaster confidence in operations 

(Evans, Van Dyke, & Lericos, 2014).  Information needs and tool use may also differ 

depending on forecast timeframe.  Morss and Ralph (2007) observed that forecasters 

reviewed environmental observations and personal experience more often in forecasts 
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of events occurring in fewer than six hours, but used computational models more often 

when forecasting events twelve hours to one day in advance. 

In flash flood forecasting, prediction methods are often based on rainfall 

estimates and basin scale.  With development beginning in the 1970s, one of the first 

models for flash flood prediction is flash flood guidance (FFG), a tool based on the 

amount of rainfall needed to produce flash flooding over a specified land area and 

timespan (Clark, Gourley, Flamig, Hong, & Clark, 2014).  For a more detailed 

discussion of the history and development of FFG, see Clark et al. (2014).  Due to its 

longstanding use within the National Weather Service, forecasters are accustomed to 

using FFG, which may affect willingness to adopt more modern methods of flash flood 

prediction. 

 Recent efforts to leverage modern data collection technology and crowdsourcing 

techniques have produced several alternative datasets that have shown early success in 

terms of forecaster use.  Gourley et al. (2013) created a database of flash flood 

measurements and impacts in an attempt to use the dataset to expand knowledge on 

societal impacts of flash flooding.  The database is comprised of three datasets: an 

archive of U.S. Geological Survey (USGS) stream gauge measurements across the 

United States, a record of verified NWS Local Storm Reports (LSRs) related to flash 

flooding events between 2006 and 2011 and their locations, and finally, a set of flash 

flood reports collected from members of the U.S. public through the Severe Hazards 

Analysis and Verification Experiment (SHAVE) between 2008 and 2010 (Gourley et 

al., 2013).  In an extension of this work, Barthold et al. (2015) developed an additional 

dataset for hydrologic event verification; this set merged NWS LSRs, USGS stream 
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gauge measurements across the United States, and reports of flash flooding collected 

through a citizen science crowdsourcing mobile application.  Together, these datasets 

are some of the earliest attempts to develop verification and feedback methods for 

hydrometeorological forecasting (Barthold et al., 2015). 

Forecasting Decisions and Feedback.  After integrating background 

knowledge, expertise, meteorological and environmental information sources, and 

historical datasets, forecasters may then be able to predict a future state of the 

environment; this may be realized in the issuance of a forecast product, such as a watch 

or a warning.  Bowden et al. (2015) proposed that this is a compound warning decision 

process, which involves a cycle of threat detection, threat identification, and 

reidentification.  Throughout this process, forecasters update threat predictions as the 

situation changes over time and space.  This framework conceptually aligns with 

Endsley’s (1995c) Model of SA; errors may occur in detection, influencing 

identification, or even if a forecaster correctly detects patterns associated with severe 

weather, an insufficient mental model could lead to a misidentification of the threat. 

Following issuance of a forecast product, local forecast offices might be able to 

assess whether or not the predicted event actually occurred, which can then be reported 

in a collection of verification statistics.  Verification datasets can help forecasters to 

manage uncertainty in the decision making process by providing feedback about the 

adequacy of past forecasts.  Morss and Ralph (2007) found that discussions with end 

users, including emergency managers, provided valuable information to forecasters, in 

turn helping them to modify future forecasts to suit user needs and improve forecast 

accuracy.  Similarly, in a survey of NWS forecast offices, Novak, Bright, and Brennan 
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(2008) found that end users frequently request information related to forecast 

uncertainty and forecaster confidence; as the forecasting field moves towards a more 

probabilistic paradigm, communication between actors in the weather domain and 

comprehensive verification datasets may facilitate situation assessment and awareness. 

In a study where participants issued wind speed and visibility forecasts, forecast 

skill improved not only with a higher experience level, but also as feedback on 

performance increased (Murphy & Daan, 1984).  Likewise, Morss and Ralph (2007) 

observed that end user feedback affected future products issued by forecasters, and 

information about forecast quality and value was the most influential, which 

corresponds to the proposition that feedback is a prerequisite for SA (Sarter & Woods, 

1991).  It is possible that this feedback loop serves to update forecaster dynamic mental 

models, as suggested by Trafton (2004). 

Situation Awareness in Weather Forecasting 

  Understanding the weather forecasting decision making process is necessary in 

order to improve information display technology and decision aids, which in turn 

should improve forecasting outcomes.  A robust integration of human agents into the 

forecasting system should lead to more timely and accurate forecasts as well as lower 

workloads placed on forecasters themselves.  As an aspect of decision making, much of 

the existing literature that intersects SA and weather has been situated within the 

domains of air traffic control (Moore & Gugerty, 2010) and pilot awareness 

(Bustamante, Fallon, Bliss, Bailey, & Anderson, 2005).  A deeper study of SA in the 

context of weather forecasting can have real and meaningful implications for the design 

of future forecasting systems and technology. 
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Imagine a scenario in which a forecaster’s goal is to monitor information 

sources from a geographic region in order to predict flash flooding.  From the 

perspective of Endsley’s (1995c) Model of SA, in the perception stage (Level 1), the 

forecaster must recognize elements in the forecast environment that are relevant to his 

or her goals.  In the case of flash flood forecasting, elements could include model 

forecasts of anomalous conditions, reports of flooding from verifiable sources, 

developing weather systems in the surrounding area, environmental conditions 

conducive to flash flooding, or geographic features specific to an area, such as burn 

scars.  Once key elements are perceived, the forecaster may be able comprehend a 

deeper meaning from the elements in combination (Level 2); the forecaster may 

recognize that heavy rainfall over a burn scar is a risk factor for flash flooding.  The 

projection component of SA occurs when the forecaster is able to extend the current 

state of the environment to a potential future state (Level 3).  In this example, the 

perception of elements and the comprehension that the trend is associated with high risk 

could lead the forecaster to identify a future timeframe for flash flooding to begin.  

Extending past the situation assessment process and into the decision and performance 

stage may include the forecaster choosing to issue a flash flood warning to alert local 

officials and residents of the impending threat. 

Much of the weather forecasting within the United States National Weather 

Service requires interaction between several levels of the weather enterprise, and thus 

could also be studied with a team SA framework.  In a scenario involving a developing 

severe weather threat, forecasters not only work cooperatively, but they often work in 

tandem with emergency management and public agencies to maintain SA throughout 
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the system.  Despite disagreement between proponents of individual and team versus 

systems-level (Stanton et al., 2006) and Situated SA (Chiappe, Rorie, et al., 2012; 

Chiappe, Strybel, et al., 2012) frameworks, analyzing SA at multiple levels within the 

weather enterprise may generate meaningful information that could improve 

understanding of SA in weather decision-making.  Each of the four SA theories 

employs a variety of assessment methods and each evaluates SA at different units of 

analysis. 

Few studies have empirically assessed the SA of weather forecasters, but several 

have addressed the overall forecast decision-making process.  The sensemaking 

perspective has gained traction in the research community, having been used to explain 

the information comparison, integration, and problem detection activities used in 

weather prediction (Klein, Pliske, Crandall, & Woods, 2005; Pliske et al., 2004).  Using 

Comparative Cognitive Task Analysis (C2TA), Kirschenbaum (2004) found that 

professional forecasters regularly engage in activities related to extraction of 

information, comparison of information sources, and comparison of the perceived 

environment to mental models. 

Interestingly, studies of weather forecasters have revealed behaviors that throw 

the widespread acceptance of previous assumptions of expert sensemaking into 

question.  Sensemaking theories often accept that information seekers are swayed by a 

confirmation bias, but observational research has found that professional forecasters 

often try to disprove their initial assumptions (Hoffman, Trafton, and Roebber (2006), 

cited in Klein et al. (2006b)).  Forecasters have been observed seeking information in a 
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goal-directed manner, which may be one means of obtaining actionable information 

from large quantities of complex datasets and displays (Trafton et al., 2000). 

In a field work study to assess how forecasters build mental models, Hoffman 

and Coffey (2004) found that forecasters use a recognition-primed decision-making 

strategy.  Given the importance of pattern recognition in forecaster training, this is a 

logical finding.  In the resulting model of forecaster sensemaking, situation assessment 

is affected by mental model strength as well as pattern recognition, and in turn, it affects 

the way in which the forecaster interprets the data at hand (Hoffman & Coffey, 2004). 

Design for SA in Weather Forecasting Decision Support Systems 

 Human factors research has produced a number of design guidelines to improve 

user performance and human-systems integration.  Furthermore, assessment of SA often 

provides system developers with insight into the design of work systems to match users’ 

decision-making processes (Jones, 2015).  Critics of highly automated systems have 

warned that without integrating knowledge of cognition into the designs of forecasting 

technology, the human component of forecasting will be lost to the detriment of society 

(Murphy, 1993).  Within the last decade, studies in graph comprehension and 

information visualization have produced new knowledge that can be applied to the user-

centered design of forecasting decision-aiding technology (Hegarty, Smallman, & Stull, 

2012; Trafton & Hoffman, 2007; Trickett & Trafton, 2006). 

With respect to designing for SA in sociotechnical systems, Endsley (2001) has 

provided the Situation Awareness-Oriented Design (SAOD) cycle.  This three-pronged 

approach involves an initial evaluation of SA requirements, followed by an iterative 

process of system design and evaluation. The SA requirements analysis, often 
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conducted as a cognitive task analysis, serves to identify key operator goals and the 

information needed to accomplish them.  In the next stage, SA-oriented design, design 

guidelines and SA requirement information are used to develop systems from a user-

centered perspective.  SA-oriented design is a process in which design guidelines are 

centered on supporting user cognition, SA, and goal accomplishment.  After an initial 

design has been developed, evaluation occurs in the third stage.  Any of the assessment 

methods discussed in the previous section can be used to evaluate the adequacy of the 

second-stage design; however, Endsley (2001) recommends the use of SAGAT as it 

provides a quantitative estimate of SA that conceptually links SA to decision choice. 

Design Challenges.  The complexities of many sociotechnical systems demand 

a unique approach in order to accommodate the diverse goals and requirements of 

system actors.  Scholars like Endsley (2001), Hoffman and Coffey (2004), and Trafton 

and Hoffman (2007) have advocated addressing complex system design in terms of 

challenges as opposed to design-by-rule.  Challenges purposefully avoid reliance on 

rules.  For example, a design guideline might state that meteorological decision aids 

designers should consider that “pastels might work well in certain applications for both 

backgrounds and target symbols” (Hoffman, Detweiler, Conway, & Lipton, 1993).  

When designing a system with many users and many goals, a challenge might instead 

be phrased as, “Support for parallel processing, such as multi-modal displays should be 

provided in data rich environments” (Endsley, 2001).  This transition towards a 

systems-perspective promotes technology that is adaptable to users; adaptability is 

critical in systems where users may have conflicting goals and need to use the same 

decision aids for a number of purposes.  
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In this way, design for SA in complex systems becomes less about successful 

task completion and more about adequate information transfer and integration (which 

should theoretically lead to successful task completion).  Principles discussed in the 

literature that are relevant to decision aid design are numerous, and include the 

following: 

• The Sacagawea Principle:  “Human-centered computational tools need to 

support active organization of information, active search for information, active 

exploration of information, reflection on the meaning of information, and 

evaluation and choice among action sequence.” (Endsley & Hoffman, 2002) 

• The Lewis and Clark Principle: “The human user of the guidance needs to be 

shown the guidance in a way that is organized in terms of their major goals.  

Information needed for each particular way should be shown in a meaningful 

form, and show allow the human to directly comprehend the major decisions 

associated with each goal.” (Endsley & Hoffman, 2002) 

• “Direct presentation of higher level SA needs (comprehension and projection) 

is recommended, rather than supplying only low level data that operators must 

integrate and interpret manually.” (Endsley, 2001) 

• “Support for global SA is critical, providing an overview of the situation across 

the operator’s goals at all times… and enabling efficient and timely goal 

switching and projection.” (Endsley, 2001) 

In practice, principles such as these may manifest themselves in different ways in 

different sociotechnical systems.  In the weather forecasting domain, consideration of 

the Sacagawea Principle would promote the development of goal-centric displays and 
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interfaces that facilitate easy exploration of the data.  Similarly, the Lewis and Clark 

Principle encourages design through focusing on users’ cognitive processes.  

Challenges support user-centered design when incorporated into early design stages.  

Considering SA during the design stage ensures that the resulting support systems align 

with users expectations, as well as those of the system developers’ (Endsley & 

Hoffman, 2002). 

Mental Models, SA, and Decision Support Design.  Addressing these 

challenges may be difficult due to the information-dense nature of many meteorological 

datasets; however, research into the role of mental models, sensemaking, and workload 

on SA and decision making help to shed light on ways to accomplish these goals 

(Trafton & Hoffman, 2007).  Extensive work into understanding mental models has 

revealed that forecasters create and apply mental models when trying to comprehend the 

weather and project potential threats in the future (Pliske et al., 2004; Smallman & 

Hegarty, 2007; Trafton, 2004; Trafton et al., 2000).  The need for weather forecast 

decision aids that support SA and decision making is well-recognized.  Trafton and 

Hoffman (2007) call for “innovation and revolutionary redesign, especially in the 

creation of systems that support the forecaster in creating a graphical depiction of their 

own mental model.”   

A central question in decision support design is how to create visual displays 

that convey highly detailed data to users in a way that allows them to make inferences 

and make sense of the situation (Trafton & Hoffman, 2007).  While much 

meteorological data is quantitative, Trafton et al. (2000) observed that forecasters 

primarily communicated their understanding of the data in qualitative means.  
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Questioning how expert forecasters comprehend and understand meteorological 

visualizations, Trafton et al. (2000) found that forecasters went through a process 

involving situational initialization, mental model building, and verification and altering 

of the original mental model.  During initialization, forecasters primarily gathered 

information from discrete visualizations; the authors believed this revealed that 

forecasters were situating themselves with respect to the environmental context.  

Establishing the context did not involve a high degree of information integration and 

comparison; in fact, comparison characterized the mental model building phase.  While 

building their qualitative mental models, forecasters assessed data displayed in a variety 

of meteorological visualizations, often comparing between datasets in a goal-oriented 

manner.   

Comparison among information sources in order to extract information is a core 

activity that forecasters engage in while developing an awareness of the situation; this 

behavior is governed primarily by a forecaster’s goals (Kirschenbaum, 2004; Trafton et 

al., 2000).  In practice, this suggests that forecasters might benefit from decision aids 

that facilitate comparison and making inferences from the data (Trafton, 2004).  Trafton 

et al. (2000) recommend that meteorological decision support systems are developed to 

enable comparison and integration through means such as data overlays or multi-panel 

displays.  Additionally, Kirschenbaum (2004) found that forecasters using dual-monitor 

displays made more comparisons between visualizations than forecasters using a single-

monitor workstation; while both groups used comparison activities to make sense of the 

situation, it is possible that single-monitor workstations increased the time required to 

understand the data, resulting in fewer total comparisons.  
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Minimizing Decision Bias Through Design.  Facilitating data comparison is 

important in decision support design not only because of its frequency in the mental 

model building phase, but also because of its role in allowing forecasters to validate and 

change their mental models (Kirschenbaum, 2004).  Whereas the initialization phase 

may create an anchor for the qualitative mental model, comparisons are then used to 

assess the level of fit between the anchor and additional data sources (Trafton et al., 

2000).  This complements the anchoring-and-adjustment model of belief updating, first 

proposed by Hogarth and Einhorn (1992).  The anchoring-and-adjustment model posits 

that over time, an individual first develops a belief about a situation based on initial 

exposure to information.  Through exposure to new data, this initial anchor may be 

adjusted or confirmed through a variety of processing mechanisms (Hogarth & Einhorn, 

1992).  Wickens et al. (2008) suggest that attentional capacity plays a large role in 

belief updating and situation assessment; when a user is able to devote adequate 

attention to data, he or she may be able to achieve a higher level of SA.  In terms of 

meteorological decision support design, this implies that systems that direct attention to 

important components of the data may allow forecasters to develop high SA. 

While this behavior is a critical part of the situation assessment process, 

heuristics such as anchoring and representativeness may bias a forecaster’s judgment 

(Doswell, 2004).  Representativeness refers to the level of similarity between two 

situations, whereas anchoring refers to the action of locking into a base state of 

knowledge (Tversky & Kahneman, 1974).  In weather forecasting, representativeness 

bias displays itself when a forecaster misidentifies a weather event based on a perceived 

similarity between the event in question and a prototypical event (Doswell, 2004).  
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Particularly in situations with great uncertainty, anchoring bias may diminish a 

forecaster’s ability to develop and maintain SA if an appropriate update to SA has not 

occurred (Nadav-Greenberg, Joslyn, & Taing, 2008).   

Fortunately, certain design characteristics of visualizations may reduce the 

effects of these decision biases.  Nadav-Greenberg et al. (2008) evaluated professional 

forecaster performance when using three types of uncertainty visualizations to 

determine wind speed forecasts: a box plot chart, a margin-of-error chart, and upper 

bound visualization.  While a box plot chart was the most readable of the three—

subjects were able to interpret the range of possible wind speeds quickly—a margin-of-

error chart provided the most effective in situation assessment of uncertainty.  

Furthermore, Nadav-Greenberg et al. (2008) found that as forecasters became more 

aware of the uncertainty in the data, the lower their confidence was in their forecasts.  

This finding has implications for the design of decision aids that support the situation 

assessment cycle in uncertain situations such as weather forecasting.  Interpretation of 

meteorological data and uncertainty information can also be conveyed by incorporating 

knowledge from the vast collection of color scale research (Hoffman et al., 1993).  

Appropriate color usage in meteorological visualizations can support decision making 

by drawing the user’s attention to critical areas of the data and may improve task 

completion time (Trafton & Hoffman, 2007). 

Based on the findings of Stewart, Heideman, Moninger, and Reagan-Cirincione 

(1992), it can be argued that weather forecasting decision support systems should 

adequately balance information quality with quantity.  In a series of studies to assess the 

effects of information quality and quantity on forecast skill, forecasters produced short-
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term severe weather forecasts while exposed to a variety of information conditions.  

Stewart et al. (1992) found that as information quantity increased, disagreement 

between forecasters also occurred more frequently.  In addition, forecast accuracy 

improved as the quality of the provided information improved, though accuracy did not 

significantly improve as quantity increased.  This was especially observed in scenarios 

where the provided data contained great uncertainty, and in combination with the 

findings of Nadav-Greenberg et al. (2008) supports the notion of designing decision 

support that incorporates uncertainty estimates. 

Automated Decision Support for Forecasting.  Trafton (2004) argues that 

meteorological visualizations should focus on qualitative aspects of the data, opposed to 

only displaying quantitative information, in order to facilitate mental model building 

and decision making.  Likewise, Hoffman and Coffey (2004) suggest that decision 

support design should be concerned with assisting forecasters with “generating, 

manipulating, and verifying a graphical 4-D representation of their mental models of 

atmospheric dynamics.”  Automation has shown promise as a means to accomplish this, 

and can potentially be used to facilitate SA development (Dao et al., 2009), workload 

reduction (Karstens et al., 2015), and comparison between data sources (Trafton et al., 

2000). 

In the weather forecasting domain, automation could assist forecasters in 

verifying and updating their SA by presenting users with pre-selected collections of 

visualizations (Trafton et al., 2000).  Hypothetically, this may reduce workload and lead 

time as it would lessen the effort and time required in order to select and display 

visualizations.  Decision support systems could be automated to display different 
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visualizations at the most relevant points in the forecast process (Trafton et al., 2000).  

It is well established that forecasters consult different types of visualizations at different 

points along the forecast timeline (Morss & Ralph, 2007; Trafton et al., 2000), so an 

automated display mechanism could be an effective means of streamlining the situation 

assessment process.  

Empirical evidence exists in support of using animation to expedite situation 

assessment in novice forecasters.  Lowe (2004) found that among novice users of 

meteorological visualizations, animating changes in the geospatial data over time did 

not result in improved comparisons or forecasting performance.  Thus, it is 

recommended that in order to improve novice user performance, dynamic visualizations 

ought to contain supplemental information to guide users to areas most relevant to the 

user’s goals (Lowe, 2004, 2008).  Although these findings were observed in novice 

meteorologists, such supplements could perhaps aid expert forecasters building mental 

models when unfamiliar situations are encountered.   

 In the context of river flood forecasting, Pagano et al. (2014) points out that 

although some scholars advocate fully automated decision support systems, keeping the 

operator in-the-loop with interactive automations adds value to forecasts.  Recent 

developments in meteorological decision aiding automation have had generally positive 

outcomes. A particular type of automated guide, the recommender, synthesizes 

information from multiple sources and generates a suggestion to the user regarding 

locations at risk for a particular type of environmental threat.  Although their purpose is 

to reduce forecaster workload while increasing lead time and forecast accuracy, 

Karstens et al. (2015) failed to find a significant difference in forecast creation time 
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based on presence and absence of a recommender for severe hail.  However, 

recommenders may have a greater effect on SA.  In an evaluation of an automated 

decision aid for air traffic management, Dao et al. (2009) found that level of automation 

produced a significant effect on SA as measured by response time.  Subjects performed 

a conflict resolution task with varying levels of interaction with the decision support 

automation.  Subjects exhibited higher SA when under the interactive decision support 

condition than when under the fully automated condition, in which decisions had to 

align with the automated recommendation.  This aligns with Endsley and Kiris (1995), 

who also found that decision makers experienced diminished SA and performance after 

exposure to a fully automated decision task.  However, an appropriate balance between 

human analysis and automation use may lead to improved SA. 

Summary of the Weather Forecasting Literature 

 Despite incorporating many technological systems for data analysis, forecasting 

is an inherently human activity.  As a complex sociotechnical system, the weather 

forecasting domain involves a vast number of information transfers between human 

operators and non-human information sources, such as visualizations representing 

numerical weather prediction models and environmental observations. Recommenders 

and other automated decision support systems have the potential to revolutionize the 

situation assessment process, while understanding forecaster mental model development 

reveals connections between cognition and decision support technology.  Furthermore, 

designing systems to support SA and decision making should lead to improved forecast 

accuracy and lead time while reducing forecaster workload.  Though many advances 

have been made to decision support systems for weather forecasting, there remain many 
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questions related to the relationship between human cognition, SA, and human-system 

integration. 

 In the broader picture of SA and decision making, a number of gaps exist in 

knowledge related to the role of cognitive processes, uncertainty, and human 

performance in weather forecasting emerge.  Although models of sensemaking like the 

Data/Frame Theory in part explain aspects of uncertainty management in decision 

making (Klein et al., 2007), the widely-accepted models of individual SA fail to explain 

the role of imperfect information in situation assessment.  According to the Endsley 

1995 Model of SA, errors occur due to misperception, incorrect mental model choice, 

working memory limitations, and attentional capacity limitations (Endsley, 1995c).  

However, these types of errors assume that the subject has a low level of SA, and does 

not explore errors that occur when a subject is highly aware but immersed in an 

uncertain situation.  This scenario may occur in weather forecasting when there is high 

uncertainty involved in predicting environmental conditions.  Weather forecasters often 

consult specialized guidance products aimed at developing their awareness of 

uncertainty within relevant data sources, and such information can even assist with the 

forecast verification process, a critical component of situation assessment (Novak et al., 

2008). 

 Doswell (2004) calls for increased collaboration between decision-making 

scholars and weather forecasting scholars; such interdisciplinary work is necessary to 

synthesize methods and theories from multiple fields with the ultimate goal of creating 

a forecasting system that complements human decision making processes.  Theories of 

SA and sensemaking processes may illuminate less understood areas of cognition in 
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weather forecasting, such as how weather forecasters use mental models to manage 

uncertainty at different points along the forecast timeline (Pliske et al., 2004).  

Furthermore, human factors research can be used to explore the relationship between 

complex visualization design and expert decision making under uncertainty.  The 

weather forecasting domain offers a unique application for exploring the role of 

uncertainty in situation assessment, and such research has great potential to result in real 

and meaningful societal impacts. 
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Chapter 3: The Effect of Display Design on Situation Awareness in Flash Flood 
Detection 

 
Submitted to the International Journal of Human-Computer Studies (Under Review) 

Introduction 

In the field of weather forecasting, computational modelers are under pressure to 

provide actionable information to forecast consumers at increasingly local levels, 

pushing gridded forecasting systems to hyper-resolution scales (Wood, et al., 2011; 

Beven, Cloke, Pappenberger, Lamb, & Hunter, 2015).  Although the capability to 

predict weather phenomena at small scales continues to develop, operational technology 

often limits display capacity.  Tools such as large high-resolution displays have been 

shown to overcome the data abstraction limits while enabling users to engage in 

exploratory data analysis (Lehmann, Schumann, Staadt, & Tominski, 2011); however, 

current operational forecasting displays are based on the multi-screen desktop setup, 

and meteorological visualization environments are constrained to comparatively low 

resolution displays. 

One such set of gridded forecasting product is the Flooded Locations and 

Simulated Hydrographs (FLASH) project for flash flooding prediction.  In July 2013, 

the Hydrometeorological Testbed at the Weather Prediction Center (HMT-WPC) hosted 

the first Flash Flooding and Intense Rainfall (FFaIR) experiment (Barthold et al., 2015).  

The purpose of the experiment was to evaluate the utility of a set of experimental 

forecast models, including the FLASH Return Period visualization, on a sample of 

professional forecasters and weather researchers.  Over the three-week period, 

forecasters assessed operational and experimental computational models to create 

probabilistic forecasts of heavy rainfall and flash flooding events in the United States.  
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As part of the experiment, the researchers observed forecaster behavior when creating 

the forecasts and identified patterns of information processing.  Through daily 

observations of three independently acting forecasters, the researchers observed that the 

design of the information display affected how well forecasters were able to interpret 

the data modeled in FLASH. 

Of particular interest was a forecaster belief that the sampling and aggregation 

methods employed in the FLASH Return Period visualization led to an increased 

number of false alarm forecasts.  The underlying grid for all FLASH visualizations 

covers a spatial extent of the continental United States at a horizontal resolution of 1 

km.  In the Return Period visualization, the experimental model calculates a measure of 

flash flood risk, the return period1, for every cell within the grid; this calculation is 

based on a hydrologic model.  However, when fully zoomed out to show the map of the 

entire continental United States, desktop-based display systems are not able to display 

each individual grid cell.  This issue was overcome by developing an aggregation 

algorithm to sample the maximum grid cell value out of a collection of at least 112 grid 

cells contained within one pixel, and the map of all the maximum values displays at the 

national level.  In practice, this means that while the true predicted return period values 

are displayed when a viewer zooms in to a local level, the national view displays an 

adjusted value of the data by displaying the maximum value.  An example of this 

phenomenon is shown in Figure 7.  At the national level, this resulted in an occlusion 

effect, where lower return period values were occluded by the maximum values. 

																																																								
1 A return period is a measure of likelihood of some event occurring.  In hydrologic 
terms, a return period is the average length of time for a certain threshold of flooding to 
be reached (Mays, 2010). 
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 In terms of cognition and geospatial data, the field of cartographic 

communication has done much to inform the field of meteorological visualization	and 

decision-making.   Cartographic researchers have long studied issues related to 

visualizing spatial data, and have addressed such issues in terms of design and user-

centered evaluation (Dobson, 1979; Hegarty, Smallman, & Stull, 2012; Montello & 

Freundschuh, 2005).  One challenge encountered in designing geospatial visualizations 

is that of reducing selection occlusion (Shrestha, Zhu, & Miller, 2014).  In designing 

visualizations that include data aggregates, Elmqvist and Fekete (2010) recommend 

following the principles of visual summary and awareness of fidelity.  The principle of 

visual summary states that the visual properties of the data aggregate should be 

representative of the individual data point members; however, certain aggregation 

methods can lead to loss of fidelity and misinterpretations of the visualization.  

Elmqvist and Fekete (2010) point to inadequacies involved in using average-based 

aggregation methods, due to the loss of knowledge about the variance within the 

aggregate; to overcome issues related to fidelity, they recommend the use of interactive 

visualization overviews.  The concept of overview in information visualization has been 

  

Figure 7. National view component of a stimulus sequence in the maximum 
sampling algorithm condition (on left) and the corresponding local view, selected 

within the white box (on right) 



	80 

discussed extensively in the literature, with a now well-known keystone in 

Shneiderman’s (1996)  Visual Information Seeking Mantra: “overview first, zoom and 

filter, then details on demand.”  Hornbæk and Hertzum (2011) pose two alternate views 

on the meaning of “overview” based on a comprehensive literature review. 

The core contribution from this research relates to understanding the relationship 

between visual data aggregation and weather forecasters’ situation awareness.  As 

defined by Endsley (1995c), situation awareness is the ability to perceive elements 

within a system, comprehend their significance, and project their meaning into the 

future in order to make a decision.  In theory, strong SA should translate into the ability 

to make informed decisions (Adams, Tenney, & Pew, 1995).  However, acquisition of 

SA is not discrete, but develops over time as decision-makers gain experience with and 

exposure to their operating environment (Endsley, 2015b).  Underlying the concept of 

SA are a variety of personal factors and cognitive mechanisms, including, but not 

limited to, visual information processing, cue detection, working memory, goals, 

preconceptions, background training, and system design (Endsley, 1995c, 2015; 

Hoffman, 2015). 

The Research Question 

Forecaster comments from FFaIR led the researchers to hypothesize that a 

display algorithm that takes the average of sampled grid cells (henceforth called the 

average-based display) would produce different task performance than the maximum-

based display.  Using an empirical approach, the present study identified differences in 

terms of error rate and task completion time when comparing two different display 
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algorithms on the national-scale maps.  The research question addressed in the 

following chapter is: 

RQ1:  How does data aggregation in a FLASH visualization affect user performance in 

terms of signal detection, task completion time, and congruence in decisions for a flash 

flood prediction task? 

Hypotheses 

It was hypothesized that the aggregation method would affect false alarm rates 

(i.e. the event was forecast but not observed) and hit rates (i.e. the event was correctly 

forecast and observed).  In terms of task completion time, it was hypothesized that the 

aggregation method would also affect the time it took participants to evaluate the 

displays.  It was thought that due to the color scheme and the larger area of represented 

regions, the design of the maximum-based display would draw attention to events more 

rapidly than the average-based display would.  Formally, the hypotheses made in the 

following chapter are: 

H1.1:  Hit Rate (HR) and False Alarm Rate (FAR) 

 H0 : HRavg = HRmax,          FARavg = FARmax 

 H1:  HRavg ≠ HRmax,               FARavg ≠ FARmax 

H1.2:  Task Completion Time (t) 

H0: tavg = tmax   H1: tavg ≠ tmax 

H1.3: Congruence between views (C) 

H0: Cavg = Cmax  H1: Cavg ≠ Cmax 
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Method 

Experimental Design 

As a between-subjects independent variable, the display algorithm differed 

across two levels—participants viewed either the maximum-based display or the 

average-based display.  Though property damage was used as a measure of severity to 

select the images, it was not an independent variable itself—within the study 

framework, participants had to detect which images represented severe events.  

Likewise, while participants viewed images at the two spatial scales, the local images 

were identical no matter which display algorithm each participant viewed at the national 

level.  The purpose of viewing identical local images was to identify whether or not 

there was any bias in detection based on which level of national image a participant 

viewed first. 

Using a Signal Detection Theory framework, error rates were calculated from 

the response data from the detection task (McNicol, 2005).  In traditional explanations 

of error rate analysis in weather forecasting, signal detection metrics are based on 

comparisons between the predictions and the actual outcomes.  For example, a hit 

would occur when a flash flood was forecast and then actually occurred.  A false alarm 

refers to an event in which a flash flood was forecast but then did not occur.  Translated 

into the present study’s framework and shown in Table 1, in which all stimuli visualized 

Table 1. Interpretation of error rates in the property damage detection task 

  Reports of Property Damage 

  High Value Low Value 

Forecast of 

Property Damage 

High Value Hit False Alarm 

Low Value Miss Correct Rejection 
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flash floods that received reports, the explanations of error rates is instead based on 

correct identification of property damage level for NWS-verified flash floods. 

Materials and Equipment  

A set of 40 image sequences was created by taking screen captures of FLASH.  

Each sequence consisted of one image of FLASH at a national, full-view level, and a 

second image of the same date and time, but zoomed in to a local level covering several 

counties.  It is important to note that while participants in the two display groups viewed 

different representations of the weather event at the national scale, the local images that 

participants viewed were identical between groups.  An example of an image sequence 

using both display conditions is shown in Figure 8. 

The dates and times were selected based on flash flooding events that were 

reported between April and July 2013 in the National Climatic Data Center Storm 

 

Figure 8. Examples of image sequences in both aggregation conditions, with the 
corresponding local-level image 
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Events Database (National Climatic Data Center, 2014).  When selecting the events 

from the database, the researcher categorized events into “severe” (high value) and “not 

severe” (low value) flash flooding.  Unlike tornado events and the Fujita scale, there is 

not yet a standardized scale for flash flooding severity, so the research team defined 

severe flash flooding to be those that caused $500,000 or more of property and crop 

damage (n = 20, µ = $9.86M; σ = $22.33M).  Events that were placed in the “not 

severe” category had less than $500,000 of property and crop damage (n = 20, µ = 

$38.75K; σ = $84.59K).  This distinction was explained to participants prior to 

beginning the study. 

It is important to note that all stimuli contained models of rainfall events that 

were associated with NWS-verified reports of flash flooding. Although selecting stimuli 

based on presence and absence of flash flooding was considered, this design was 

determined to be too subjective.  Particularly in rural, unpopulated regions, lack of an 

NWS-verified flash flooding report is not evidence that a flood did not occur; if it is 

deemed unlikely that any people or property were affected, a report is not always made 

to an official record.  Thus, the scope of this research extends only to events connected 

to NWS reports. 

Images were randomly presented to participants using PsychoPy, an open-source 

software that allows researchers to present stimuli and collect response data from 

participants (Peirce, 2007).  Each evaluation was conducted on an Asus A53U laptop 

with a 15-inch screen; each image was displayed at a size of 869x680 pixels. 
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Participants 

The sample consisted of 30 participants recruited from the student and post-

doctoral population at the University of Oklahoma.  Participants were required to either 

be pursuing a degree in meteorology or atmospheric science or to already possess one. 

This expectation ensured that they had adequate experience with reading weather 

prediction visualizations.  However, participants had little experience working with the 

FLASH system.  In terms of gender and age, the participant pool included 19 males and 

11 females between the ages of 21-41 years old, with a mean age of 25.0 years and 

median age of 23 years.  Participants were randomly assigned to one of the between-

subjects display conditions (the maximum-based algorithm or the average-based 

algorithm).  	

Procedure 

Initially, participants were informed about the study’s purpose and tasks. After 

completing an informed consent form, participants received an excerpt from the FLASH 

training manual that explained how to read and interpret the FLASH display with 

pictorial examples.  During the instruction stage, participants were given the 

opportunity to ask questions about FLASH, how to interpret the display, and what the 

study would involve. 

Once participants stated that they felt comfortable with the FLASH interface, 

they answered a series of demographic questions (age, gender, and academic 

classification).  Following this, participants viewed the image pairs presented in a 

randomized order.  In terms of signal detection theory, the goal was to detect a high 

threat level (the signal) from the noise (a low threat level).  In each sequence, the first 
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image showed an event in FLASH on the national-level.  Participants were asked, 

“Based on the information that is modeled in this image, would you expect for this 

event to produce flash flooding with severe levels of property damage? (>$500,000).”  

Participants reviewed the image, and then pressed “y” for yes or “n” for no after making 

their decision.  The following image always represented the same weather event, but 

visualized at the local scale.  The participants answered the same question about 

severity based on the new presentation.  The forty image pairs were presented in a 

randomized order.  When participants finished with the final pair, they were debriefed. 

Results 

Error Rates 

After collecting the participants’ responses, the error rates in terms of the Signal 

Detection Theory framework were calculated for the severity judgment associated with 

the average-based and maximum-based display styles and for the national and local 

images (McNicol, 2005).  The data were compared using t-tests.  A summary of the 

results is shown in Table 2.  The results show that there is a significant difference 

between the display methods.  The maximum display produced a higher hit rate than the 

average display (p < 0.0001), but the average display minimized false alarms (p < 

0.0001). 

A similar analysis of participant judgments was done for the local-level images. 

Though all subjects saw the same images in this category, responses were compared 

between the maximum-based and the average-based participant groups in order to 

ensure parity. As expected, a t-test found no significant difference between how 

participants in either test group when judging the local-level images.  Still, as shown in 
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Table 3, participants did not make perfect judgments, which may in part be due to lack 

of participant experience with flash flood forecasting. 

Bias and Sensitivity 

A sensitivity index (d’) was calculated for both the average-based display and 

the maximum-based display.  The d’ scores for the average-based display and 

maximum-based display were 1.00 and 0.93, respectively.  This indicates that there is 

little difference between the discriminability of a severe flood signal between the two 

display types.  In addition, a significant difference was found in the biases associated 

with the two display algorithms (p < 0.001): for the maximum-based display algorithm, 

a liberal bias of -0.74 was found, and a conservative bias of 0.24 was found for the 

average-based display algorithm.  This can be interpreted to mean that participants in 

the maximum-based display condition were more likely to say that any stimulus 

contained a significant flood, while the participants in the average-based display 

condition were more likely to say the opposite. 

	

Table 2. Comparison of average-based and maximum-based display types in terms 
error rates 

  Hit Rate False Alarm 
Rate Sensitivity (d' ) Bias 

Average 
Algorithm 0.57 0.25 0.93 0.24 

Maximum 
Algorithm 0.85 0.50 1.00 -0.74 

p-value <0.0001 <0.0001   
 

Table 3.   Error rates for viewing the local-level events (n = 30) 

 Hit Rate False Alarm Rate 
Local 0.50 0.24 
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Task Completion Time  

Task time was recorded from the time the national display was shown to the 

participant until they made a severity judgment on the national image.  A summary of 

results is shown in Table 4.  Though the original hypothesis was that aggregation 

method would affect response times, no significant differences were found between the 

two.  A further analysis of task completion time for the time taken during hits, misses, 

false alarms, and correct rejections also failed to find any statistically significant 

differences (hit: p = 0.58; miss: p = 0.81; correct rejection: p = 0.12; false alarm: p = 

0.57).  

Effect of Display Design on Congruent Decisions 

 Congruent decisions, or those in which the response for the national image was 

identical to the response for the corresponding local image, were measured between 

display conditions.  Congruent decisions were deemed either congruent-correct (a 

“yes/yes” response to an image sequence that represented a significant flood or a  

“no/no” response to an sequence that represented an insignificant flood), congruent-

incorrect (a “no/no” response to a sequence that represented a significant flood or a 

 

Table 4. Average time (in seconds) taken to produce a hit, miss, correct rejection, or 
false alarm, analyzed with a t-test. 

 Hit Miss Correct 
Rejection 

False 
Alarm 

Average 
Algorithm 4.02 4.49 4.34 4.12 

Maximum 
Algorithm 4.63 5.23 5.81 5.45 

p-value 0.58 0.81 0.12 0.57 
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“yes/yes” response to an image sequence that represented an insignificant flood), or 

incongruent (a “yes/no” or “no/yes” response, which by definition was always partially 

correct).  Counts of congruent and incongruent decisions by display condition are 

shown in Tables 5 and 6. 

 A Chi-squared test of decision counts against display condition revealed a 

significant difference between the maximum sampling display algorithm and the 

average sampling display algorithm for judgment congruence; however, these 

differences were observed when assessing judgment congruence in relation to threat 

level.  When judging images representing low property damage event, participants in 

Table 5. Counts of congruent and incongruent decisions by display condition for 
high-level threats 

 High Property Damage (Threat Level)  

 Hit/Hit Miss/Miss Hit/Miss or 
Miss/Hit Row Totals 

Max. Display 148 (52.0%) 40 (14.0%) 97 (34.0%) 285 
(100.0%) 

Avg. Display 99 (33.0%) 84 (28.0%) 117 (39.0%) 300 
(100.0%) 

p-value < 0.0001  

  

Table 6.  Counts of congruent and incongruent decisions by display condition for 
low-level threats 

 
 Low Property Damage (Threat Level)  

 Hit/Hit Miss/Miss Hit/Miss or 
Miss/Hit Row Totals 

Max. Display 139 (46.3%) 66 (22.0%) 95 (31.7%) 300 
(100.0%) 

Avg. Display 204 (68.0%) 48 (16.0%) 48 (16.0%) 300 
(100.0%) 

p-value < 0.0001  
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the average display condition produced more congruent judgments (hits on both images 

within a given image sequence) than participants in the maximum display condition, χ2 

(2, N = 600) = 31.16, p < 0.0001.  Conversely, when judging an image representing a 

high property damage event, participants in the maximum-based display condition 

produced more congruent hits and fewer congruent misses than those in the average-

based display condition, χ2 (2, N = 585) = 36.15, p < 0.0001. 

 A closer look at the data indicates that the threat level factor may have also 

affected congruent choices.  As shown in Table 7, regardless of the display condition, 

participants made significantly more correct congruent hit judgments when viewing low 

property damage events and were more likely to congruently miss an event that was a 

high threat level, χ2 (2, N = 1185) = 29.98, p < 0.0001.     

The Relationship Between Event Size and Response 

As the findings from the aforementioned analyses suggest that display condition 

and threat level did impact decision accuracy, a random-intercept logistic regression 

was selected to estimate the likelihood of producing a correct response given certain 

conditions.  Due to the binary nature of the responses (0 = incorrect, 1 = correct), a 

logistic regression was chosen as the appropriate method to determine the relationship 

Table 7. Counts of congruent choices by threat level, independent of display type 

 Hit/Hit Miss/Miss Hit/Miss or 
Miss/Hit Row Totals 

High Threat Level 247 (42.2%) 214 (36.6%) 124 (21.2%) 585 
(100.0%) 

Low Threat Level 343 (57.2%) 143 (23.8%) 114 (19.0%) 600 
(100.0%) 

p-value < 0.0001  
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between event size and response.  The random-intercept logistic regression accounts for 

interdependencies among repeated observations within subjects and adds a subject-

specific random intercept to the regression equation (Rabe-Hesketh & Skrondal, 2008).  

Using this type of regression, we were able to draw conclusions about odds ratios 

adjusted for individual differences; these are sometimes called subject-specific 

probabilities.  The resulting logistic regression equation is shown in Equation 1. 

 

Initially, the model included two main effects, display type (d) and threat level 

(t).  However, prior work has suggested that task-irrelevant features on geospatial 

displays may negatively impact task performance (Hegarty et al., 2012).  Although 

participants were instructed to judge only the area within the white selection box on 

each stimulus, many of the stimuli contained visually distracting imagery of flood 

predictions outside the box.  Thus, after the data collection phase, each stimulus 

received a code to designate the amount of visual distraction as determined by 

geographic scale of the area mapped with return period values; the new explanatory 

variable, size (s), was created with two levels: small and large.  An example of a small-

scale stimulus and a large-scale stimulus are shown in Figures 9 and 10, respectively.   

Interestingly, the random-intercept logistic regression produced an estimated variance 

between subjects of zero (ψ ≈ 0), which led the random-intercept model’s explanatory 

variable coefficients to converge with those of the ordinary logistic regression model.  

 

𝑙𝑜𝑔𝑖𝑡!𝑝(𝑥)! = log!
𝑝(𝑥)

1 − 𝑝(𝑥)!

= 1.87 − 4.51𝑥!"#$ − 1.93𝑥!!!"#$ − 1.23𝑥!"#$%&'
+ 5.33𝑥!"#$𝑥!!!"#$ + 2.86𝑥!"#$𝑥!"#$%&'
+ 2.48𝑥!!!"#$𝑥!"#$%&' − 3.15𝑥!"#$𝑥!!!"#$𝑥!"#$%&'  

    (1) 
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Figure 9. National-scale stimulus where size = small, threat level = insignificant (< 
$500,000) 

	

	
	

Figure 10. National-scale stimulus where size = large, threat level = significant (> 
$500,000) 
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A comparison of the ordinary logistic regression and random-intercept logistic 

regression is presented in Appendix A.  

In logistic regression, the odds ratio for each term reflects the ratio of the odds 

between giving a correct response at the x=1 level and the x=0 level.  For example, the 

odds ratio for the size variable is 0.011 (with a 95% confidence interval of 0.003 – 

0.032); this is interpreted to mean that the odds of a participant giving a correct 

response to a stimulus the contained a large-scale event were 0.0110 times the odds of 

giving a correct response when viewing a stimulus that contained a small-scale event.  

In reverse, the odds of participant being correct when viewing a small-scale event were 

approximately 90.909 times the odds of correctly judging a large-scale image.  

Likewise, the odds of a participant correctly judging a stimulus image that contained a 

significant threat of property damage were 0.145 times the odds of correctly judging an 

image with insignificant levels of property damage (with a 95% confidence interval of 

0.089 – 0.230).  Finally, the odds of a participant correctly judging a stimulus when 

visualized with the maximum-based display algorithm were 0.293 times the odds of 

correctly judging a stimulus displayed with the average-based algorithm.  All two-way 

and the three-way interaction between explanatory variables were significant, and the 

associated odds ratios are shown in Appendix A. 

The Likelihood Ratio Test was used to evaluate model fit between the full and 

the intercept-only model (𝐻!: 𝛽!,!"## !"#$% = 𝛽!,!"#$%"# !"#$% ), which produced a 

significant p-value (p < 0.0001).  Thus, the full model was selected as the model with 

better fit to the data.  Further analyses which compared the full model to single-term 

models had statistically significant p-values from the Likelihood Ratio Tests, so the 
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single term models were deemed to be too simplistic to adequately characterize the 

relationship.  

The Hosmer-Lemeshow test was used to assess the model’s goodness of fit.  The 

Hosmer-Lemeshow test is a significance test, similar to the Chi-Square test, and 

compares the variance of the specified model to the variance of the null model.  Some 

limitations to consider involve sample size: the larger the sample size, the poorer the 

test’s performance.  Another limitation is common to other significance-based goodness 

of fit tests: it only indicates whether or not the model fits better than the null model, and 

includes no indicator of how well it fits the data.  In the present study’s case, the 

Hosmer-Lemeshow test’s p-value was approximately 1, which fails to reject the null 

hypothesis.  This indicates that full model and the null model have equal variances, and 

that the full model adequately fit the dataset.  However, we must consult alternative 

measures to determine the level of fit, as the test does not reveal the degree of the 

model’s fit. 

For a logistic regression, two variations of Pseudo R2 terms are used to assess a 

model’s goodness of fit.  The first category of Pseudo R2 assesses model fit in terms of 

a specified model’s improvement over a null model; this is similar to the approach taken 

by the Hosmer-Lemeshow test.  The Cox and Snell Pseudo R2 as well as Nagelkerke’s 

Pseudo R2 take this approach, using null and specified model log likelihood values to 

calculate Pseudo R2.  Nagelkerke’s Pseudo R2 tends to be more intuitive to interpret 

than Cox and Snell’s value; the Nagelkerke Pseudo R2 value is essentially a 

standardized version of Cox and Snell’s value and is measured between 0 and 1 (unlike 
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Cox and Snell).  In terms of the full model in this test, Nagelkerke’s Pseudo R2 value 

was 0.275. 

The second type of Pseudo R2 estimate interprets R2 as a metric to explain 

variance within a model using residuals to measure variability.  Examples of Pseudo R2s 

that take this approach include McFadden’s Pseudo R2, Effron’s Pseudo R2, and 

McKelvey and Zavoina’s Pseudo R2.   In terms of McFadden’s Pseudo R2, a value 

between 0.20-0.40 is considered to fit the model exceptionally well (Louviere, Hensher, 

& Swait, 2000). 

In the context of the present tests, McFadden’s Pseudo R2 was 0.173.  While the 

Pseudo R2 values indicate that the specified model is only a moderate improvement 

over the null model, the Hosmer-Lemeshow test affirms that the model fits the data set.  

However, while the sample is not extraordinarily large (n=1185), the Hosmer-

Lemeshow test is sensitive to large sample sizes, so it is possible that the sample size 

has affected the outcome of the test. 

Discussion 

 The results show that choice of display method did influence probability of 

detection and false alarm rate.  Furthermore, the hypothesis that the aggregation method 

would affect the hit rates and false alarm rates was supported.  However, no difference 

in task time was found between display methods.  The logistic regression analysis 

revealed that while the display condition did affect the likelihood of a correct response, 

the predictors of threat level and visual size, as well as all interactions, were also 

significant explanatory variables for judgments of the national-level stimuli.  When 

evaluating the likelihood of producing a correct response on the local-level stimuli, the 
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logistic regression analysis also showed that correctness on a national-level stimulus 

was a significant predictor on producing a correct response for the corresponding local-

level stimulus.  Likewise, this relationship was explored in the congruent-choice 

analysis, which indicated that threat level and display condition were likely to affect 

congruence in decision-making between the national- and local-level stimuli. 

Data Aggregation in Visual Decision Aids 

The analysis of congruent-correct and incongruent decisions for threat level and 

display condition showed that the average-based sampling display algorithm was a poor 

aggregation technique: when visualizing a significant threat, the average-based display 

led to a divergence in judgments between the national- and local-scale stimuli.  The 

average-based display was only connected to a significant increase in congruent 

decisions when the stimulus contained an insignificant threat.  This may be due in part 

to latent participant factors such as poor understanding of the return period metric.  It is 

also possible that when a threat is minimal, the variability among data points is smaller 

than the variability among grid cell values for a significant threat; thus the value 

produced by the average-based algorithm to represent the data aggregate at the national 

level more closely represented the individual members within the collection.  While it is 

debatable whether or not a correct congruent response is more desirable than an 

incorrect congruent response, the results show that the display condition did affect 

fidelity.  

When speaking of visualization that incorporates data aggregation, Elmqvist and 

Fekete (2010) recommend that designers keep the principles of visual summary and 

fidelity in mind; visualizations of aggregated data ought to represent the underlying 
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individual data points accurately and consistently.  The present study’s findings suggest 

that the average sampling display algorithm led to participants making significantly 

more congruent decisions than the maximum sampling display algorithm.  This would 

indicate that the average sampling display algorithm provided a stronger representation 

between the aggregated, national view and the individual data points visualized in the 

local view.  However, several visualization studies have discussed the poor ability of an 

average-based aggregation method to satisfy the fidelity principle.  Elmqvist and Fekete 

(2010) point to a caution given by Andrienko and Andrienko (2006); they warn against 

using average-based aggregation methods due to the nature of averages flattening out 

variation.  In the words of Andrienko and Andrienko (2006): “the mean weight of a fruit 

in a basket filled with apricots and one watermelon is also not a very useful aggregate 

characteristic.”  

A visual inspection of the stimuli shed light upon the connection between design 

and individual task performance.  Unsurprisingly, an examination of the maps that were 

most often identified correctly and incorrectly showed that participants tended to 

correctly identify maps that represented the extremes of the stimuli (either huge swaths 

of floods or none at all) but had more difficulty when the maps were somewhere in the 

middle.  Misidentification of stimuli was observed in both display conditions when the 

stimuli sets had striking differences in visual representation between the national and 

local levels.  For example, one stimulus contained an event that looked like a very small 

storm when visualized with the national-level average-based algorithm, but actually had 

a very severe gradient after zooming closer—an indicator of flash flooding that 
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participants were trained to seek.  Participants often judged the national image to be 

insignificant, but changed their minds after viewing the local level. 

A closer evaluation of congruent decisions by display type and threat level 

supports recommendations by Andrienko and Andrienko (2006) and Elmqvist and 

Fekete (2010).  From a design perspective, decisions that are congruent between levels 

of geographic scale (national versus local) are highly desirable.  The researcher 

hypothesizes that congruence indicates an adequate level of fidelity in the aggregated 

data visualization.  While it is debatable whether or not a correct congruent response is 

more desirable than an incorrect congruent response, the results show that the display 

condition did affect fidelity.  The analysis of congruent-correct and incongruent 

decisions for threat level and display condition showed that the average sampling 

display algorithm was indeed not the ideal aggregation technique: when visualizing a 

significant threat, the average-based display led to a divergence in judgments between 

the national- and local-scale stimuli.  The average-based display was only connected to 

a significant increase in congruent decisions when the stimulus contained an 

insignificant threat.  This may be due in part to latent participant factors such as poor 

understanding of the return period metric.  It is also possible that when a threat is 

minimal, the variability in the individual data points is smaller than the variability 

amongst grid cell values for a significant threat, and thus the value produced by the 

average-based algorithm to represent the data aggregate at the national level more 

closely represents the individual members within the collection. 
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Signal Detection and Weather Forecast Decision Making 

 In the experimental task, participants viewed a series of stimuli and were asked 

to determine whether or not each displayed a significant flood threat.  Although framed 

with Signal Detection Theory, the task involved a combination of detection and 

identification activities.  These are fast processes, as evidenced by the task time results, 

and they are governed by cognitive structures such as long term memory, working 

memory, schema, mental models, attention, feature identification, and monitoring, 

among others (Adams et al., 1995; Endsley, 1995c, 2015; Hoffman, 2015; Wickens, 

2015).  Detection, a function of factors including but not limited to top-down processes, 

expectations, and background knowledge, can be mapped to Level 1 of Endsley’s 1995 

Model of SA, perception.  Identification involves taking a detected item and evaluating 

its fit into a categorical grouping, and it is also affected by experience and top-down 

processes (Endsley, 1995c; Wickens & Carswell, 1997).  Identification can be mapped 

to Level 2 of Endsley’s 1995 Model of SA, comprehension.  The third level of 

Endsley’s 1995 Model of SA, projection, was determined to be outside the scope of the 

present study’s goals; however, future work could extend the present study’s method 

from a detection and identification task to a projection task in which participants would 

have to choose whether or not a flash flood warning would be appropriate. 

Detection and Comprehension of Flash Flood Threats.  The study’s primary 

aim was to compare two data aggregation-based display methods and evaluate their 

effects on novice participants’ forecasting speed and accuracy for a flash flood 

prediction task; a broader goal was to relate FLASH display design to forecasters’ SA, 

at least in terms of detection and comprehension of signals in the visualization.  In a 
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weather forecasting-specific model reminiscent of Endsley’s 1995 Model of SA, 

Bowden, Heinselman, Kingfield, and Thomas (2015) proposed a model of the 

compound warning decision process.  The three-stage cyclical process involves an 

initial detection phase, followed by an identification phase, and completed by a 

reidentification phase.  In a study of the effects of variable update frequency from 

phased-array radar data, forecasters’ probability of detection (measured in terms of hits, 

false alarms, and misses during a simulated forecasting task) for severe hail and wind 

threats differed between the detection and identification phases of the compound 

warning decision process.  Additionally, case studies of professional forecasters have 

also shown that the warning decision process is affected by forecaster experience and 

task-relevant knowledge, risk tolerance, perceptions and beliefs about environmental 

states, confidence, software issues, and spatial ability (Heinselman, LaDue, & Lazrus, 

2012; Smallman & Hegarty, 2007).  In combination with the error rate results of the 

present study, this indicates that in addition to display design and information 

bandwidth, SA in weather forecasting is governed by a variety of cognitive, individual, 

and technical factors. 

 The detection and identification tasks in the present study can be categorized 

within the family of cognitive integration processes.  Studies of graph comprehension 

distinguish specific information extraction, or processes in which a user has a goal to 

search and find some specific attribute in a visualization, from information integration, 

processes in which a user may combine multiple attributes from a visualization in order 

to comprehend broader meanings such as trends in the data (Ratwani, Trafton, & 

Boehm-Davis, 2008).  Due to the map-based format of many decision aids used in 
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weather forecasting, information integration is a fundamental activity for a forecaster to 

be able to develop SA.  Using the FLASH return period maps as an example, examining 

the return period value assigned to a single grid cell provides much less meaning than 

evaluating the overall trends and gradients over broader geographic scales.  Some 

models of information integration for graph comprehension are represented as an 

iterative process consisting of pattern recognition and interpretation, in which features 

are detected and, ideally, understood; as graph complexity increases, more iterations of 

the integration process are required (Ratwani et al., 2008).  Out of a vast collection of 

design recommendations for visual displays, several guidelines and challenges exist that 

may improve weather forecasting displays including improving visual discriminability 

(Dobson, 1979; Wickens & Carswell, 1997), highlighting meaningful information 

clusters to facilitate integration (Ratwani et al., 2008), and structuring the information 

landscape in a way that assists the user to achieve their goals in a hierarchical needs-

based order (Hoffman & Woods, 2005; Trafton & Hoffman, 2007).  However, while a 

user-centered display design can often help to overcome performance issues, 

performance may still suffer when users of complex displays lack appropriate 

background knowledge and skill (Hegarty, 2011; Shah & Freedman, 2011).  While 

participants in the present study were not expert forecasters, their background in 

atmospheric and environmental science positioned them as novice system users.  It is 

likely that a future study extending this work to expert forecasters would reveal 

different patterns of threat detection.  

Spatial Visualizations and Response Time.  In practice, the FLASH tools 

update dynamically, but in the experimental context, participants viewed static 



	102 

representations of the return period model at a single timestamp.  Task times were lower 

than anticipated, however, this may be explained by the static nature of the stimuli in 

addition to experience level of the participants.  Studies of cartographic interpretation 

have indicated that a user’s background experience can affect response time during map 

comprehension tasks (Ooms, De Maeyer, & Fack, 2013; Ooms, De Maeyer, Fack, Van 

Assche, & Witlox, 2012).  In an eye-tracking analysis of map-based visual search tasks, 

novice map users spent more time searching for specific features than expert users 

(Ooms et al., 2012).  When map complexity was increased to include color coding and 

topographical detail, color codes for certain geographic features tended to attract 

attention away from more relevant map elements (Ooms et al., 2013).  While weather 

forecasting typically requires more integrative processing than specific information 

extractions, it is possible that these findings could be extended to the present work.  In 

the present study, participants were novices in terms of exposure to the FLASH 

visualization, but the requirement to be a current student or graduate of a meteorology 

program ensured that each participant had at least one year of exposure to weather and 

environmental concepts. 

 “Crying Wolf” in Weather Forecasting.  Although the FLASH tools are 

intended for use by a population of professional forecasters and not members of the 

general public, display methods that influence false alarm rate may lead to unnecessary 

warnings and the “cry-wolf” effect.  In the weather domain, the cry-wolf effect refers to 

the phenomenon wherein consumers of a weather warning fail to respond adequately 

after a series of false alarms, decreasing their likelihood of responding appropriately to 

a future true threat (LeClerc & Joslyn, 2015).  In response to the concern that certain 
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display algorithms may increase the false alarm rate, one must remember that selecting 

an appropriate response criterion is a function of signal probability and the costs of 

correct and incorrect responses (Wickens & Carswell, 1997).  Thus, it is important to 

consider the cost/benefit relationship associated with response accuracy in weather 

forecasting.  In weather forecasting, response criterions for warning on a severe threat 

are not only shaped by individual information processing of uncertain information, but 

also by governmental policy.  As discussed by Doswell (2004), from a policy 

perspective, false alarms are often preferred over misses, which are traditionally held in 

unfavorable regard.  Whereas false alarms incur costs from allocating emergency 

response resources and may also add to a cry-wolf effect in the long run, total failure to 

predict a true severe weather threat can lead to significant damage and even human 

fatalities when protective actions are not taken.  Though the present study focused on a 

dichotomous choice (significant versus insignificant flooding as reflected through 

property damage), an extension of the work could include probabilistic forecasting.  If a 

shift in response criterion is not a viable policy option, empirical evidence is available 

that suggests probabilistic risk estimates attached to severe weather warnings may 

reduce the cry-wolf effect (LeClerc & Joslyn, 2015). 

Limitations 

 Several factors limit the impact of this study’s results.  As evidenced by the 

possible design biases, participant judgments may have been mislead by map 

appearances.  Like many weather forecasting decision aids, FLASH is a simulation 

model and not a mapping of verified observations.  However, in each experimental 

stimulus, we showed participants FLASH maps where flooding was confirmed after the 
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fact and then asked participants to judge whether or not they would have expected high-

impact flash flooding.  Therefore, participant judgments can only be accurate as the 

modeling.  While we attempted to filter out FLASH models of flooding events that did 

not appear to be accurate representations, as with any simulation model, a degree of 

error between the model and reality is to be expected. 

 In addition to modeling errors, some participants had difficulty gauging flash 

flooding severity.  Participants were instructed to produce a yes or no judgment on 

whether or not they believed each of the displayed models could contain a severe flash 

flood.  The definition of severe flash flooding as corresponding to greater than $500,000 

worth of property damage was chosen arbitrarily in lieu of any other metric.  A 

limitation of using property damage as a measure of severity was that it was difficult to 

estimate without a general knowledge about geographic features; for example, when 

unfamiliar with a certain region of the United States, participants occasionally asked 

whether or not there were any sizeable cities located nearby.  Although we encouraged 

participants to use any background knowledge they might have had of weather 

forecasting, we also pushed them to make a decision ultimately based on how the 

FLASH stimuli appeared.  In this regard, we tested the capability of the visualization to 

convey threat information and essentially tried to minimize the need for extensive 

meteorological or geographic knowledge.  It is still possible that considering property 

damage level increased mental workload in some participants, but it is not apparent 

from the time-based results; however, while response time does sometimes reveal issues 

with mental workload, this is not necessarily always the case.  It is also possible that 



	105 

participants evaluated the stimuli based on a surrogate criterion as opposed to property 

damage. 

 Finally, in the experimental design, a sample size issue may limit the 

generalizability of the logistic regression.  In the original design, the variable of 

geographic scale was not included, but was assigned after the error rate analysis.  Thus, 

sample sizes were uneven between the levels of the geographic scale. 

Summary 

The results of this study show that there is a significant difference between 

display styles in terms of error rates, but not in terms of task completion time. Though 

the original hypothesis was that the average display would cause participants to review 

the image for a longer period of time, this in fact was not observed. When examining 

the images that participants commonly had trouble judging correctly, common causes of 

confusion occurred for events that had particularly different visual representations 

between the national and local level. For example, one event looked like a very small 

storm when visualized with the national-level average-based algorithm, but appeared to 

be very severe when zoomed closer. Participants often judged the national image to be 

insignificant, but changed their minds after viewing the local level. 

Design recommendations based on these results for future weather information 

displays must rely on the risk management values of the system designers. While the 

maximum display style maximized hits, it also produced many more false alarms than 

the average display. In weather forecasting, excess numbers of false alarms can 

consume valuable time that forecasters could be using to analyze true threats. However, 
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while the average display style produced fewer false alarms, participants were much 

more likely to miss an event; this could also result in critical consequences. 

In the case of a flash flooding prediction system such as FLASH, the 

recommendation from these results would be to use the maximum display algorithm. 

Flash flooding is by nature a rapidly occurring event that can have life-threatening 

consequences if not predicted with enough lead time. For such a system, having a 

design that promotes more hits, even at the expense of producing false alarms, would 

ensure that forecasters’ attentions would be drawn to severe events in a timely manner. 

A future study based on Naturalistic Decision Making framework (Klein, 2008) 

would provide knowledge on how display design using data aggregation affects the 

acquisition of situation awareness in real-time.  Whereas the present study focused on 

perception and comprehension, a real-time evaluation of the display methods could help 

to identify connections between display design and a forecaster’s ability to develop SA 

in a dynamic manner.  Additionally, future work could address limitations of the present 

study.  While participants all had some background in meteorology and forecasting, few 

had specifically studied flash flood forecasting.  A similar study to the present work, but 

run with a sample of professional flood forecasters may supplement the present study 

by identifying the effects of expertise on signal detection. 
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Chapter 4: A Mixed Methods Approach To Understanding Situation Awareness and 
Uncertainty in Weather Forecasting 

 
Introduction 

In order to predict environmental threats, forecasters synthesize massive 

amounts of data to evaluate trends over space and time (Daipha, 2015).  During this 

process, challenges arise from uncertainties in meteorological states (initial conditions), 

imperfect computational models, and individual factors (Doswell, 2004).  Lipshitz and 

Strauss (1997) conceptualize uncertainty in decision making as “a sense of doubt that 

blocks or delays action.”  They also distinguish uncertain issues (“outcomes, situations, 

and alternatives”) from sources of uncertainty (“incomplete information, inadequate 

understanding, and undifferentiated alternatives”).  These classifications describe 

weather forecasting issues, where forecasters can misinterpret or even fail to recognize 

uncertainty in forecasting contexts.  These assessment errors may lead to improper or 

inadequate use of information sources, which in turn could impact the accuracy and 

timeliness of a weather forecast.  Such forecasting challenges may even have a negative 

effect on the quality of communications to forecast end users (Doswell, 2004; Novak, 

Bright, & Brennan, 2008).   

Through surveys, National Weather Service (NWS) forecasters have indicated 

that receiving guidance about levels and sources of uncertainty not only adds value to 

forecast communications, but may also complement the situation assessment process 

(Novak et al., 2008).  Indeed, some studies have shown that the presentation style of 

uncertainty information can affect a user’s comprehension and performance level in a 

weather prediction task (Nadav-Greenberg, Joslyn, & Taing, 2008).  At the decision 

choice stage, failure to comprehend situation-based uncertainties can lead to negative 
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outcomes, such as forecaster hedging, defined by Murphy (1978) as “the difference 

between a forecaster’s judgment and his forecast.”  It is possible that forecast guidance 

promoting decision making under uncertainty might reduce risk while increasing 

forecast accuracy or timeliness. 

The current work explored the situation assessment process under uncertainty in 

weather forecasting.  Prior explanations of situation assessment under uncertainty 

provide limited evidence to support application to complex decision making tasks such 

as weather forecasting.  However, uncertainty management and SA have also been 

considered a form of macrocognition, a science that considers certain cognitive 

processes from a naturalistic decision making perspective (Klein et al., 2003; Trafton & 

Hoffman, 2007).  Sensemaking, situation awareness, uncertainty management, problem 

detection, and naturalistic decision making have all been classified as forms of 

macrocognition (Klein et al., 2003).  These approaches have led to new theories of 

uncertainty management, but NDM proponents suggest that empirical studies can 

further advance decision making research (Lipshitz, Klein, Orasanu, & Salas, 2001).  In 

line with these macrocognitive approaches, the present study described situation 

assessment under uncertainty in terms of management techniques and information 

seeking behavior during forecasting activities.  

The following chapter discusses the two-stage, mixed methods analysis of 

forecaster decision making and uncertainty management practices.  Following a 

presentation of background studies, an explanation is given of the context in which the 

two studies occurred.  The first study presents findings from a quantitative analysis of 

information seeking behavior during real-time forecasting exercises.  The second 



	109 

section discusses findings from focus groups in which forecasters discussed individual 

strategies for managing uncertainty.  Additionally, focus groups produced findings with 

regard to the utility of a set of proposed attributes for communicating forecast 

uncertainty.  The chapter concludes with a general discussion of practical and 

theoretical implications as well as with recommendations for future research. 

Uncertainty and SA in Weather Forecasting 

 Within the literature, several explanations of decision making under uncertainty 

can be found.  Endsley’s 1995 Model of SA included uncertainty management only in 

the contexts of mental model building and individual confidence (Endsley, 1995c). 

Endsley’s (1995c) model frames situation awareness (SA) as a function of cognitive 

processes that include attention, perception, working memory, long term memory, 

automaticity, and goals.  In relation to long term memory, Endsley (1995c) argues that 

uncertainty plays an important role in situation assessment and decision making.  At the 

individual level, Endsley (1995c) states that uncertainty may be a source of stress, 

which can produce a negative effect on SA.  However, these arguments were made in 

relation to an individual’s confidence level.  In weather forecasting, while confidence is 

a large part of the decision process, it is not the only component. 

Endsley and Jones (2001) found that mental models allow decision makers to 

synthesize and make use of data sources.  Despite contrary claims presented within the 

literature (Endsley, 2015b), we concur with Klein’s (2015) assessment that the 

Data/Frame theory of sensemaking complements accounts of SA.  Whereas Endsley’s 

1995 Model of SA incorporated situational uncertainty to a small degree, 

macrocognitive sensemaking studies have illuminated specific components of coping 
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with uncertainty (Klein, Moon, & Hoffman, 2006).  Endsley (2015a) identified the need 

for a better understanding of uncertainty management and SA, suggesting that 

macrocognitive approaches may improve knowledge about the relationship between SA 

and uncertainty in complex decision scenarios. 

 Due to the dynamic, uncertain conditions found in many complex sociotechnical 

systems, Minotra and Burns (2015) have called for research into uncertainty 

management tactics in such decision making settings. Naturalistic decision making 

studies may shed some light upon specific coping tactics; Lipshitz and Strauss (1997) 

identified heuristics used by decision makers in a military defense decision making 

study.  Previous accounts of uncertainty management supported a set of techniques 

referred to as the R.Q.P. heuristic: in this position, decision makers cope with 

uncertainty through reduction, quantification of remaining uncertainty, and making 

decisions based upon the remainder.  Lipshitz and Strauss (1997) found that decision 

makers concurrently engaged in situation assessment and evaluation of alternatives, 

adapt strategies dynamically to suit the situation.  Further study challenged the 

generalizability of the R.Q.P. heuristic to multiple domains, which led Lipshitz and 

Strauss (1997) to propose a tactical framework for uncertainty management based on 

behavioral research; they identify reduction, acknowledgement, and suppression as 

primary uncertainty management methods in decision making.  From their findings, 

Lipshitz and Strauss (1997) illustrated the R.A.W.F.S. heuristic, in which decision 

makers manage uncertainty through reduction techniques, assumption-based reasoning, 

weighing pros and cons of alternate choices, forestalling the decision, and suppressing 

uncertainty.  These methods may also apply to decisions made in non-military contexts, 
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and the authors recommended additional research into how tactics change across 

domains (Lipshitz & Strauss, 1997). 

Several scholars have examined uncertainty management and decision making 

in weather forecasting (Daipha, 2010, 2015; Doswell, 2004; Novak et al., 2008; 

Stewart, Heideman, Moninger, & Reagan-Cirincione, 1992).  Bowden, Heinselman, 

Kingfield, and Thomas (2015) framed the portion of forecasting that precedes a warning 

as the compound warning decision process, which consists of threat detection, threat 

identification, and reidentification as the situation dynamically changes.  In practice, 

forecasting is a goal-directed process (Trafton et al., 2000), and comparison between 

data sources plays a large role in situation assessment (Kirschenbaum, 2004).  Doswell 

(2004) suggested that forecast decisions are based on logical analysis and more flexible 

intuitive processes; in this account, these two processes are used to perceive and 

comprehend uncertainty.  Likewise, in a comprehensive analysis of five years of 

observations in a National Weather Service Weather Forecasting Office, Daipha (2015) 

framed this sensemaking process with a “collage” metaphor, referring to the process of 

integrating numerous information sources and extracting a greater meaning.  In terms of 

weather forecasting, Daipha (2010, 2015) posited that a collage represented “a process 

of assembling, appropriating, superimposing, juxtaposing, and blurring disparate pieces 

of information.”  Daipha’s (2015) account aligns with Doswell’s (2004) discussion of 

logical versus intuitive forecast decision making.  It is clear that coping with uncertainty 

during weather forecasting involves a number of cognitive processes, and it also skirts 

the line between art and science. 
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In reference to forecasters’ interpretations of weather visualizations, Trafton and 

Hoffman (2007) suggest that weather forecasters maintain an action cue, employ 

recognition-primed decision making, and engage in iterative mental model building.  In 

their macrocognitive model of forecast decision making, SA complements mental 

model building, and both are products of the sensemaking cycle.  Nevertheless, an 

understanding of how uncertainty propagates over time through the weather decision 

making system is still lacking.  Forecasters not only incorporate uncertainty information 

into their mental models when assessing an evolving weather situation, but they also use 

their mental models to convey risk to consumers such as emergency management 

(Morss, Demuth, Bostrom, Lazo, & Lazrus, 2015).  Decision support systems may 

assist weather forecasters with comprehending and using uncertainty information 

effectively, as well as in terms of communicating environmental threats effectively.   

In order to convey uncertainty in the data, decision support systems must not 

only leverage visualization and interface design, but system designers must also ensure 

that such tools are capable of presenting the correct information to users at the moments 

it is needed.  Trafton and Hoffman (2007) echo this sentiment and suggest incorporating 

automation to display visualizations at relevant moments along the forecasting timeline.  

One component of developing user-centered decision support systems involves 

identification of situation awareness requirements.  SA requirements refer to 

information attributes and sources that are necessary for a user to accomplish his or her 

goals; identifying SA requirements allows system designers to satisfy user needs in 

order to facilitate perception, comprehension, projection, and finally decision selection; 

(Endsley, 1994).  SA requirements are dynamic and can be ascertained through a 
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variety of methods, including Cognitive Task Analysis (Endsley, 2001), goal-directed 

task analysis (Endsley, 1994; Endsley & Hoffman, 2002), Cognitive Decision Method 

(Hoffman, Crandall, & Shadbolt, 1998; Klein, Calderwood, & MacGregor, 1989), and 

Cognitive Work Analysis (McIlroy & Stanton, 2011). 

SA requirements analysis and SA measurement can provide actionable feedback 

in the initial phases of system design (Endsley, 1995a; Endsley & Hoffman, 2002).  

Such methods may have utility for the design of weather forecasting decision support 

systems.  The situation awareness-oriented design (SAOD) process incorporates 

findings from SA requirements analysis with interface and system design guidelines, 

followed by an evaluation/redesign cycle (Endsley & Hoffman, 2002).  A deeper 

understanding of SA requirements for flash flood forecasting, as well as the cognitive 

processes involved with situation assessment under uncertainty, will add value to 

decision support systems and guidance products used during the forecast decision 

process. 

Jones, Quoetone, Ferree, Magsig, and Bunting (2003) investigated mental 

simulation and pattern matching during flash flood forecast decision making.  Their 

analysis revealed that forecasters used different information sources to guide their threat 

level assessments at different points in time; this difference was attributed to participant 

experience level, regional knowledge, and mental model and schema availability (Jones 

et al., 2003).  Jones et al. (2003) found that forecasters based flash flood threat 

assessments on variables including reflectivity, rainfall rates, rainfall totals, storm 

motion speed, hail contamination, and storm spotter observations.  However, in the 

thirteen years since their study appeared, advances have been made in flash flood 
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prediction and modeling, introducing forecasters to previously-unfamiliar ways of 

predicting this phenomenon.  Although we do not debate that mental simulation and 

pattern recognition are still effective situation assessment mechanisms, we hypothesize 

that SA requirements may have adapted with the increasing availability of hydrologic-

based flash flood forecasting decision support. 

The Research Questions 

 Forecasters make sense of environmental situations by using computer-based 

decision support tools (also referred to as forecast guidance products) to compare 

between data sets continuously (Daipha, 2010; Kirschenbaum, 2004).  Qualitative 

studies have established that forecasters’ SA requirements vary throughout the forecast 

decision making timeline (Jones et al., 2003; Morss & Ralph, 2007).  However, the 

practical implications regarding information use during flash flood forecasting are less 

understood; the same is true with respect to how SA requirements are affected by 

situational uncertainty.  In the present study, we build upon Jones et al. (2003) and 

Lipshitz and Strauss (1997), using a mixed methods framework to assess SA 

requirements and cognitive processes in light of recent technological forecasting 

decision support tools.  The first aim of this research was to explore the role of 

uncertainty in the weather forecasting decision making process (RQ2).  

RQ2:  How do forecasters build and maintain situation awareness while 

working under the constraints imposed by uncertainty leading up to a flash 

flooding event? 

 In addition to aforementioned research question, we also explored the forecast 

decision making process including several proposed means of communicating forecast 
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uncertainty.  We aimed to develop a better understanding of the relationship between 

situation assessment and decision making under uncertainty by evaluating changes to 

SA requirements over time (RQ3).  In this study, we assumed that the use of a forecast 

guidance product corresponded to an individual information requirement.  This 

assumption was based on observations of forecasters using certain decision aids to gain 

particular types of information, as well as the knowledge that forecast information 

seeking is goal-directed (Hoffman & Coffey, 2004).  Furthermore, we evaluated SA 

requirements not only at different time scales, but also at different levels of 

environmental activity; we anticipated that the amount of meteorological phenomena 

occurring on any given day would impact a forecaster’s use of decision aids. 

RQ3:  Which tools do forecasters use, in combination and individually, to build 

situation awareness?  How do their SA requirements change at different points 

along the forecasting compound warning decision process and at different 

environmental activity levels? 

Hypotheses 

  In relation to the aforementioned research questions, we expected to identify 

differences in SA requirements over varying time and environmental activity scales. 

Morss and Ralph (2007) observed forecast guidance use changing over time, and 

likewise, we hypothesized that flash flood forecasters would use different decision 

support tools at different times throughout the forecast decision making timeline.  In an 

extension of this, we also hypothesized that SA requirements, as represented by the 

amount of time spent and frequency of decision aid use, would differ based on the 

environmental activity level.  Finally, we predicted that the sensemaking process would 
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not only involve a large degree of comparison, but it would also be a function of 

interpersonal communication, trust in decision aids, and personal background 

experience.  The focus group study was exploratory in nature, so no testable hypotheses 

were developed.  We expected that focus group discussions would produce insight into 

the comparative sensemaking processes forecasters use to assess an uncertain situation. 

The Hazardous Weather Testbed Hydrology Experiment 2014 

For decades, the testbed research framework has provided insight into forecaster 

decision making as well as forecast guidance efficacy (Clark et al., 2011; Heideman, 

Stewart, Moninger, & Reagan-Cirincione, 1993; Murphy & Daan, 1984).  The method 

traditionally brings participants together to spend periods of time using forecast 

decision aids in mock-operational settings.  A testbed’s purpose is often to test new 

technological developments (Barthold et al., 2015; Clark et al., 2011), but some have 

the additional goal of addressing the role of technology and design in the decision 

making process (Heinselman, LaDue, & Lazrus, 2012; Karstens et al., 2015; Murphy & 

Daan, 1984).  Testbed research has produced knowledge that encourages a research to 

operations (R2O) framework for technology development (Clark et al., 2011). 

Motivated by its own impending transition from research to operations, a test of 

the FLASH system was conducted in July 2014.  The Hazardous Weather Testbed 

Hydrology Experiment (HWT-Hydro) sought to evaluate a suite of hydrologic flash 

flood forecasting models while gathering knowledge about forecaster decision making 

processes.  Using the suite of 30+ products, collectively known as MRMS-FLASH tools 

(Multi-Radar/Multi-Sensor, and Flooded Locations and Simulated Hydrographs, 

respectively), forecasters issued experimental watch and warning polygons throughout 
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each of the four weeks during the experiment.  In addition, HWT-Hydro occurred in 

coordination another experiment hosted by the Weather Prediction Center, the second 

Flash Flooding and Intense Rainfall Experiment (FFaIR; Barthold et al. (2015)). 

HWT-Hydro occurred in four weekly cycles.  Forecasters participated in 

weeklong shifts, and in each shift, a unique set of participants took part in the study.  

Upon arrival, participants received training on the use of the AWIPS-II weather 

forecasting display platform and the MRMS-FLASH tools, as well as an explanation of 

the general purpose of the experiment and research methods used throughout the week.  

The majority of the week was spent in real-time experimental forecasting operations.  

Each participant worked at an individual workstation, but usually partnered with a 

participant at a workstation near them in order to forecast over a shared geographic 

region.  Due to the nature of the evaluation, participants were encouraged to rely 

primarily on the experimental tools, but they were allowed to consult external guidance 

tools online if the tools were not available on the testbed workstations.  During the 

experimental operations, forecasters issued experimental watches and warnings across 

the continental United States.  Participants in the WPC’s FFaIR experiment provided a 

weather briefing to the HWT-Hydro forecasters in the form of a webinar at the 

beginning of each day. 

Evaluation was addressed in a two-fold approach: (1) tool performance and 

forecast adequacy as well as (2) aspects of the forecaster decision making process.  

Tools and forecasts were evaluated in a subjective manner.  Each day, participants 

completed a survey in which they evaluated flash flood events from the prior day’s 

forecasts.  The survey assessed how well the experimental tools predicted the actual 
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threat, as represented by flash flood reports and other observations.  The survey also 

analyzed experimental watch and warning spatial coverage, accuracy, and lead time in 

comparison to operational watches and warnings. 

Participants also took part in a human factors-based, mixed methods analysis of 

warning decision making behavior.  During forecasting operations, participants used 

desktop recording software to audio- and video-record their forecasting activities; the 

recordings were used for a time-based analysis of tool usage during the watch/warning 

issuance timeline.  At the end of each week, participants took part in a focus group in 

which they gave feedback on the tools, discussed challenges in flash flood forecasting, 

and provided information about how experimental uncertainty attributes allowed them 

to communicate threat levels in their forecasts. 

Study I: Quantitative Analysis Of Information Seeking Behavior 

Method 

Participants.  Fifteen professional forecasters employed by the National 

Weather Service (NWS) participated in the 2014 Hazardous Weather Testbed 

Hydrology (HWT-Hydro) experiment.  Out of the fifteen participants, eleven were male 

and four were female.  While this is not as gender-balanced as might be desired, it may 

reflect the larger weather forecasting community, a field not known for its gender 

diversity (Daipha, 2010).  Forecasters were from locations around the United States and 

worked for either a Weather Forecast Office (WFO; n=13) or a River Forecast Center 

(RFC; n=2). 

Participants were selected one of two ways.  In the first case, several participants 

were selected based on recommendations by supervisors within their home office.  
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However, most participants were selected through an application process and were 

selected based on background knowledge and interest in hydrology.  As part of the 

application, potential participants wrote a short essay explaining their motivation for 

wishing to participate and their relevant qualifications.  From those applications, the 

majority of the testbed participant pool was sampled based on their statements of 

interest and qualifications, such as professional role and education.  Although not 

always listed in the essays, nine of the fifteen participants listed their professional role.  

Six participants were professional hydrologists, three held positions with the title of 

meteorologist, and the remaining six participants did not list their current job title. 

Equipment, Materials, and Environment.  The study took place in a 

controlled-access room located in the National Weather Center in Norman, Oklahoma.  

The testbed environment consisted of multiple dual-monitor computer workstations that 

were set up within the room.  Each computer ran on a LINUX operating system and 

contained the Advanced Weather Interactive Processing System II (AWIPS-II) weather 

forecasting software in the Computer-Aided Visualization Environment (CAVE).  Each 

computer also had the desktop recording software, RecordMyDesktop.gtk, installed 

upon it to facilitate data collection.  Within AWIPS-II, forecasters had access to many 

forecast guidance products that served as decision aids.  Though one of the testbed’s 

purposes was to evaluate the performance of experimental guidance products, 

forecasters also had access to a nearly full set of operationally available products.  A list 

of experimental products available in AWIPS-II during the HWT-Hydro testbed is 

shown in Table 8, and a full list of experimental and operational products used in the 

testbed can be found in Appendix B. 
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Procedure.  At the beginning of each day during the experiment, forecasters 

began by reviewing the weather conditions to establish situation awareness. Forecasters 

first received instructions to identify regions of the contiguous United States that may 

have had a threat level equal to a watch; severe weather watches are generally 

associated with long-term time frames, whereas severe weather warnings are short-term 

predictions that refer to impending threats.  After issuing any watches, forecasters were 

then instructed to narrow their focus within a prescribed region to issue warnings, if 

necessary.  For four to five hours a day, Monday through Thursday, forecasters used a 

set of operationally available forecasting tools along with the set of experimental tools 

to guide their decisions (in-development and therefore not available in operational NWS 

offices).  Forecasters accessed operational tools in a number of ways, ranging from 

Table 8. Experimental (in development) flash flood decision support products 

Decision Support Family Decision Tool 
 

Experimental Models CREST Maximum Return Period 
HRRR-Forced CREST 
CREST Soil Moisture 
CREST Streamflow 
SAC-SMA Soil Moisture 
SAC-SMA Streamflow 

Precipitable Water (PW) Precipitable Water Analysis (RAOBs) 
Precipitable Water Percentile 
(RAOBs) 
Precipitable Water Analysis (RAP) 
Precipitable Water Percentile (RAP) 

Quantitative Precipitation Estimate (QPE) 
& Quantitative Precipitation Forecast (QPF) 

MRMS QPE 
MRMS QPF 

Flash Flood Guidance Ratio (FFG) QPE to Flash Flood Guidance Ratio 
QPF to Flash Flood Guidance Ratio 

Average Recurrence Interval (ARI) Precipitation Return Period (QPE) 
Precipitation Return Period (QPF) 
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within the AWIPS-II platform to internet browsers.  During all forecasting activities, 

participants’ actions were recorded using the recordMyDesktop screen recording 

software.  The software recorded forecaster interactions with the decision aids 

throughout the forecasting timeline; an example of a screen capture is shown in Figure 

11. 

The desktop recording software captured data related to decision aid use during 

situation assessment and decision making.  Recordings totaled 186 hours and 36 

minutes, but not all videos were of sufficient visual quality to distinguish participant 

interactions.  Recording quality was poor at times, so blurred or choppy recordings were 

removed from the sampling population.  Samples were taken from within thirty minutes 

to an hour prior to a participant issuing a watch or a warning.  Sampling intervals within 

each recording varied on a case-by-case basis; this was because the sample start points 

were chosen to occur either at the beginning of a recording (only for those sampled 

 

Figure 11. Example of an AWIPS-II workstation display with multiple decision 
aiding visualizations present 
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during the watch phase) or at a breakpoint in the decision process.  Breakpoints were 

identified as either (1) the start of a new string of interactions following a prolonged 

break, or (2) the start of a new watch or warning product issuance following a prior 

product issuance.  From the recordings that were of a sufficient quality, the sample 

consisted of 12 hours, 17 minutes, and 31 seconds (7% of the total recording duration).    

Separate analyses were conducted to assess SA requirements over time (watch issuance 

phase versus warning issuance phase) and environmental activity level. 

Results and Analysis 

Environmental activity level was based on flash flood, flood, and heavy rain 

local storm reports (LSRs) published in the Storm Events Database (National Climatic 

Data Center, 2014).  Due to the situated nature of weather forecasting, using three types 

of weather events to represent environmental activity level was determined to be more  

appropriate than only looking at the number of flash flood reports.  While the 

participants were only tasked with issuing forecast products for flash floods, floods and 

heavy rain can occur concurrently with flash flooding.  Thus, a portion of the 

forecasting task would have involved detecting meteorological and hydrological 

patterns associated with flash flooding amidst heavy rainfall events.  From the Storm 

Events Database, the number of water-related LSRs was calculated for each day in the 

experimental period.  Percentiles were calculated from the LSRs, allowing for a three-

level environmental activity scale (see Figure 12).  Based on the July 2014 LSRs, the 

boundary between low and moderate activity was assigned to the 40th percentile, while 

the boundary between moderate and high activity was assigned to the 90th percentile. 



	123 

 

It is important to note that the scale measures environmental activity relative to 

the forecasts only in July 2014.  Meteorological activity fluctuates in frequency and 

severity throughout the year and by geographic location, so what would be considered a 

“high activity day” in January is not the same as a “high activity day” in August.  

Likewise, what forecasters in Houston, Texas would view as a “busy” day is likely not 

the same as what a forecaster in Akron, Ohio would consider one to be.  Due to the 

nature of meteorological phenomena, environmental activity level was not a 

controllable factor, as one can see in Figure 12.  However, this was addressed through 

balanced sampling methods when selecting segments from the screen recordings. 

  The recordings produced several conclusions related to SA requirements during 

the watch and warning issuance timeframes through an analysis of the time and 

frequency of forecast guidance usage.  During the analysis, the video samples were 

Figure 12. Number of Local Storm Reports (LSRs) for floods, flash floods, and 
heavy rain across the continental United States during the forecast period in July 

2014.  Gaps in the data show the days that experimental forecasting did not occur. 
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transcribed, which involved watching the samples and recording the start time and end 

time associated with each tool’s use.  For example, in Figure 11, the participant had just 

chosen to display the FLASH Surface HRRR-Forced CREST model.  In the 

transcription process, the product’s name and the timestamp at which it was first 

displayed (t = 1:30:47) was transcribed.  Then, when the participant chose to remove the 

FLASH Surface HRRR-Forced CREST model from the central panel, the timestamp at 

which the removal occurred was transcribed.  Should the same product have been 

displayed a second time later during the forecasting process, a new entry with start and 

end time would have been recorded.  An example of one of the video transcripts is 

included in Appendix C. 

Watch Issuance.  In the videos sampled during the watch issuance forecasting 

activities, participants used a mean of 20.1 forecast guidance products (σ = 9.4).  As 

shown in Table 9, ten samples were taken from the population of recordings.  These 

samples represent 6 hours, 5 minutes, and 43 seconds worth of data. 

  In order to assess “big-picture” SA requirements, a measure of cumulative time 

was determined for each guidance type; for a full list of individual products and their 

respective guidance type.  While analyzing forecaster behavior with regard to tool 

usage, several things become apparent. Figure 14 represents the cumulative time the 

participants spent using groups of forecast guidance products.  For example, the “radar” 

category is the sum of the times spent by all participants using both available radar tools 

(the FLASH Surface MRMS Seamless Hybrid-Scan Reflectivity as well as the FLASH 

Surface MRMS Quality-Controlled Composite Reflectivity).  As a result, this leads to 
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the measure reflecting the total time that all products within each guidance family were 

on the screen in any combination. 

In Figure 13, one can see the cumulative time that each guidance product was 

visible on a participant’s screen.  Although the sample contained just over six hours 

worth of forecasting, the combined screen time of products in the “FFA/FFW/LSRs” 

category was more than eight hours; this indicates that the products in the 

“FFA/FFW/LSRs” category were used for extended, overlapping periods of time, and 

so when taken in combination, the total time exceeds the sample time.  Looking at 

Figure 14, the total screen time given to products in the “FFA/FFW/LSRs” category 

grossly outweighed any of the other guidance product categories.  However, it is 

important to note that the “FFA/FFW/LSRs” products were not predictive tools; they 

instead provided general SA in terms of existing flash flood warnings, both 

operationally and as issued by other study participants.  These tools were often overlaid 

on top of prediction models and radar imagery. 

Apart from the “FFA/FFW/LSRs” products, radar imagery, hydrologic data (in 

the experimental models), and flash flood guidance (FFG)-based models ranked in the 

top three most-used guidance tools.  In terms of SA requirements for watch-phase 

decision making, the data show that participants placed heavy focus on these decision 

Table 9. Number and duration of sampled desktop recordings for flash flood watch 
forecasts 

 
 n Duration (min.) 

Low 3 97.53 
Moderate 3 150.78 
High 4 117.40 
Total 10 365.72 
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aids.  The radar products and FFG-based models may have received a larger amount of 

screen time due to their prominence in operational forecasting; traditional methods of 

flash flood forecasting encourage forecasters to assess radar products for heavy rainfall 

signatures, and FFG-based decision aids have been used across the NWS for several 

decades.  Thus, it is not entirely surprising that study participants relied heavily on 

familiar tools that they trusted.  Nevertheless, the experimental hydrologic models—

forecast guidance that participants did not have prior experience using—received a 

relatively large amount of screen time compared to the other guidance categories.  

While it is possible that this measure was affected by HWT goals (to evaluate 

experimental guidance products), we believe that the effect was not significant.  

Accordingly, other experimental products, such as the average recurrence interval 

models (ARI) or quantitative precipitation forecasts (QPF), did not receive the same 

	
Figure 13. Cumulative time spent using forecast guidance products available in 

AWIPS-II (for issuing watches)	
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amount of attention.  Instead, we conclude that the experimental hydrologic models 

provided new and useful information in the watch decision making process. 

The data also confirmed that during watch-phase decision making, SA 

requirements differed as environmental activity level changed.  Figure 14 represents the 

proportion of time participants spent using forecast guidance products relative to 

environmental activity level.  Although the x-axis is ordered in line with the temporal 

order in Figure 13, time has been normalized in Figure 14 in order to reflect differences 

between environmental activity levels.  As a result, several variances appear in forecast 

guidance usage.  During moderately active days, participants spent more time 

evaluating experimental models, FFG ratio guidance products, and ensemble models 

than they did during high or low activity days.  With respect to usage of experimental 

models, it is hypothesized that this is due to a more balanced workload during 

	

	
Figure 14. Proportion of time spent using forecast guidance products relative to 

environmental activity level 
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moderately busy days than during either high or low activity days.  During highly active 

days, participants had many claims upon their attention, and so they may have relied 

more on familiar guidance products in order to reduce workload and stress.  However, it 

is less clear why experimental models received less usage during low activity days.  It is 

possible that the lower screen time was due to lack of modeling; by definition, little 

environmental activity occurred on “low activity” days, and as such, the hydrologic 

models would have been less likely to predict events.  This may explain the spike in 

usage for observations on low-activity days; although observations did not receive as 

much screen time as the experimental models, participants may have found observation 

maps more informative than blank-map models.  Interestingly, we see that during the 

sample, participants only used customized geographic overlays (such as adding river 

maps to the background display) during the moderate activity level days.  However, in 

Figure 13 one can see that the geographic overlays had the lowest cumulative time, and 

as the data came from only one participant in the sample, it is hypothesized that using 

geographic overlays is a personal choice that can be attributed to individual differences. 

 Conversely, usage of several products declined during moderately active days 

with respect to their application during high- and low-activity days.  Precipitable water 

(PW) products, quantitative precipitation estimate (QPE), and quantitative precipitation 

forecast (QPF) products received much less screen time during average days than 

during the extremes.  However, the nature of these products and the watch forecasting 

process may shed some light on these differences. 

Watches and warnings differ in timeframe.  A watch refers to a general threat 

that may or may not occur usually 6 to 24+ hours past the point of issuance, whereas a 
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warning refers to a specific threat that is likely to occur within 6 hours or less of the 

point of issuance.   PW is a measure of the mass of water held within a column of the 

atmosphere (American Meteorological Society, 2015), and it is based on atmospheric 

soundings (rawinsonde observations; RAOBs) and the Rapid Refresh (RAP) numerical 

forecast model.  It is updated on an hourly basis, and as such, gives short-term 

atmospheric information to users.  During the watch issuance timeframe, forecasters are 

trained to assess whether atmospheric and environmental conditions are consistent with 

specific threats.  As such, SA requirements for a watch will include information about 

such conditions; in terms of decision aids, this translates into guidance products that 

provide users with data about ground-based observations and atmospheric conditions, 

such as the PW-based decision aids. 

In addition to interactions with forecast guidance products, the recordings 

revealed that participants engaged in several other types of activity during the forecast 

process.  A large portion of time was spent transitioning between display screens, 

setting up new layouts, and reviewing geographic locations on blank maps.  The total 

time spent doing these types of activities was 57 minutes.  Participants were able to 

view operationally issued watches and warnings in the AWIPS-II display; this 

capability not only allowed participants to display the watch and warning polygons 

alongside the other visualizations, but it also gave them access to official operational 

text products.  The text products contained professional discussions regarding 

justifications for the forecast, and it is possible that this information was beneficial to 

testbed participants in that it contributed to their situation assessment process.  However 
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in the sampled videos, the total time spent reading these discussions was just over two 

minutes (t = 2.47 minutes). 

Warning Issuance.  As with the watch phase analysis, approximately six hours 

of screen recordings were sampled across 8 videos within the total data set, as shown in 

Table 10.  Likewise, samples were selected from the subgroups of environmental 

activity level.  Participants consulted slightly more unique forecast guidance products in 

minutes leading up to issuing a warning than prior to issuing a watch (µ = 25.8 guidance 

products per day, σ = 6.3).  As hypothesized, SA requirements in the warning decision 

making process differed from those required for watch decision making.  Figure 15 

presents the temporal analysis results from the recordings sampled.	 

Similar to the watch decision making process, the “FFA/FFW/LSRs” overlays 

were used frequently in combination with each other and with other products, as 

indicated by the cumulative time metric exceeding the total duration of the sample.  The 

large amount of screen time given to the “FFA/FFW/LSRs” category in both watches 

and warnings suggests that the overlays assisted participants in maintaining SA in terms 

of existing operational and experimental forecast issuances.  Apart from the forecast 

overlays, FFG-based guidance products, radar imagery, and QPE-based products 

received the greatest amount of screen time.  FFG products’ high amount of screen time 

Table 10. Number and duration of sampled desktop recordings for flash flood 
warning forecasts 

 n Duration (min.) 
Low 2 116.52 
Moderate 3 124.33 
High 3 130.95 
Total 8 371.80 
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is not unexpected; although several of the FFG-based tools were experimental (the FFG 

ratio guidance products), participants were experienced users of operational FFG   

decision aids.  Thus, familiarity with traditional FFG decision aids may have led 

participants to put greater trust in the testbed’s experimental FFG products.  When used 

in combination with unfamiliar decision aids, participants may have used the FFG-

based products to manage individual uncertainty with regard to the bias and prediction 

outputs of the other experimental models.  

As shown in Figure 16, the relationship between decision aid usage during the 

watch and warning phases did differ.  The forecast guidance categories are ordered from 

greatest to least cumulative screen time, as was previously shown in Figure 15.  Several 

types of guidance were used somewhat equally between watch and warning analysis, 

namely the radar imagery, and the experimental hydrologic models.  However, there 

	

Figure 15. Cumulative time spent using forecast guidance products available in 
AWIPS-II (for issuing warnings) 
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were some observable differences in usage between the two phases along the decision 

timeline.  For some products, usage decreased as the decision lead-time decreased.   

While QPF decision aids were one of the less-viewed categories during the 

watch timeframe, their perceived utility further decreased in the warning timeframe.  

Whether this was due to a lack of adequate training on QPF interpretation or a different 

reason would require further investigation.  In addition, precipitable water (PW) 

guidance products decreased in the warning phase, becoming the category with the least 

screen time prior to warning issuance.  PW is modeled over large spatial scales, and 

outputs change slowly over time; these qualities give PW-based decision aids greater 

utility during the watch timeframe, where watch forecasts are also issued over larger 

temporal and spatial scales than warning forecasts.  This is also a likely explanation for 

the proportional difference in the screen time given to ensembles; ensemble models are 

	

Figure 16. Cumulative time spent using forecast guidance products during watch 
and warning phases, with "FFA/FFW/LSRs" category removed to reveal differences 

in the lower end of the spectrum 
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visualized as “spaghetti plots,” or mappings of overlapping lines that represent 

atmospheric pressure levels.  Like PW, pressure is an atmospheric condition that 

informs decisions about big-picture risk for meteorological phenomena, and less about 

discrete environmental threats.	

 Conversely, guidance products based on ARI and QPE contributed to warning 

decisions, which is indicated by a greater proportion of screen time during the warning 

phase than in the watch phase.  While they received more screen time in the warning 

phase, however, they were still some of the less-used products overall.  It is logical to 

assume that QPE and ARI information satisfied requirements for building SA.  ARI 

products provide users with information about frequency of floods with a specified size.  

The proportional increase in ARI guidance usage for warning decisions indicates that 

knowledge about risk level is a component of good SA for flash flood warning 

forecasts.  While this would likely be useful for forecasters to know when predicting 

flash floods in the long term, the modeling involved in predicting ARI limits the ability 

to provide such information to forecasters; rainfall estimates are one of the inputs into 

the ARI model, so the ARI products are only able to provide measures of risk after rain 

has already begun.  During the watch phase, the decision making timeframe occurs too 

far in advance of rainfall to create outputs in the ARI guidance; this also is the case for 

QPE outputs, and likely accounts for their low usage during the watch timeframe. 

While QPE received more screen time during the warning timeframe, the 

reverse was true for the quantitative precipitation forecast (QPF) guidance products.   

Indeed, as shown in Figure 16, the actual time that participants used QPE products was 

much greater than that spent with QPF products.  However, proportionally, the screen 
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time given to QPF products indicates that they had more utility as a decision aid in the 

watch timeframe.  This is supported by the guidance product’s design; within HWT-

Hydro, the QPF products provided estimates of precipitation amounts based on QPE, 

and were projected as 15-hour outlooks.  This long-term outlook made QPF a better fit 

for guiding risk assessment in the long-term. 

 In line with the watch phase analysis, forecast guidance usage in the warning 

phase also changed with environmental activity.  In Figure 17, one can see that FFG-

based decision aids received more screen time during low activity days than in either 

the moderately or highly active days.  Likewise, while geographic overlays and 

ensemble products did not receive a majority of the screen time, when they were used, 

they were most often used on low activity days.  This may be due to effects of 

participant boredom.  During less active forecasting periods, participants would have 

	

Figure 17. Proportion of time spent using forecast guidance products during warning 
issuance relative to environmental activity level	
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had fewer threats to monitor, and would in turn have more time become familiar with 

local terrain and geographic features, such as burn scars, that would increase the risk of 

flash flooding within their forecast domain.  Interestingly, the experimental hydrologic 

models received the most screen time on highly active forecasting days.  This may 

suggest that hydrologic data was an important part of the situation assessment process; 

it is possible that they provided a way to distinguish significant threats from noise. 

 Time-Frequency Analysis of Experimental Decision Support.  In addition to 

a temporal analysis of forecast guidance usage, frequency of use was recorded and 

analyzed.  Frequency was measured by counting the number of times a participant 

added a specific decision aid to his or her AWIPS-II display.  An example of product 

frequency can be found in the data transcript (Appendix C).  In order to assess the 

relationship among the experimental decision aids, situation assessment, and the 

forecasting timeline, a time-frequency analysis was conducted; the results are shown in 

Figure 18, where cumulative time (y-axis) is presented as a ratio of screen time to total 

sample time, and frequency (x-axis) is presented as the percentage of product-specific 

interactions to total interactions. 

In line with the temporal analysis, the FFG-based guidance products not only 

received the greatest screen time, but they were also the most frequently selected.  It is 

important to note that a high frequency does not guarantee a high rate of use; 

throughout the testbed, participants were regularly observed engaging in rapid 

comparison activities.  These rapid comparisons involved switching between views, 

toggling between one product and another (or several).  In the frequency analysis, a 

high frequency value more often than not indicates that the product in question was 
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regularly used as a comparative tool alongside others.  Therefore, one could conclude 

that while PW and FFG-based products had roughly equivalent screen time during the 

watch phase, the FFG-based products were used as comparative decision aids more 

often than PW products. 

In the warning phase, the QPE- and ARI-based products had similar frequencies 

of use, but received different amounts of screen time.  This may suggest a difference in 

usability.  QPE products were selected just as frequently as ARI products, but the 

greater screen time indicates that participants either found certain products to be more 

useful or that they required more time to incorporate the information into their situation 

assessment and sensemaking process.  

 

Figure 18. Time-frequency analysis of experimental guidance product usage during 
watch and warning issuance	
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Discussion of Study I 

The time-frequency analysis indicates that guidance usage was dependent upon 

the forecast lead-time and environmental activity level, confirming the original 

hypotheses.  During the long-term watch issuance timeframe, we see several differences 

between activity level and reliance. In a review of the amount of time spent viewing 

each decision aid, we see that the forecasters spent the most time looking at non-

experimental tools.  However, if one disregards the prevalent use of FFA/FFW/LSR 

overlays and the radar imagery, the data suggest that hydrologic models and 

experimental products were used more frequently than operational products.  Indeed, on 

moderate activity days, forecasters spent nearly an hour more with non-experimental 

tools visualized in their displays. 

A different behavioral pattern emerged during the warning timeframe.  Out of 

the experimental decision aids, participants relied on tools they were more familiar 

with, such as FFG ratio maps, QPE products, and ARI outputs.  Likewise, in terms of 

operational decision aids, participants spent more time viewing observation reports 

during the short-term warning phase than in the watch phase, which is consistent with 

the view that flash flood observations contribute to situation awareness.  On the days 

with moderate environmental activity, participants spent about half as much time using 

operational tools as they did during either high or low environmental activity days.  

This is not surprising from a tool development perspective, as the experimental tools 

were designed to aid in the short term forecasting stage. 

The findings confirm those of Morss and Ralph (2007), who also observed that 

forecasters accessed different guidance tools throughout the forecast timeline.  In 
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addition, the present study’s findings strongly suggest that guidance usage also differs 

depending on day-to-day activity level.  From a decision making perspective, guidance 

usage over time is a useful, albeit nontraditional, identifier of SA requirements.  

Differences in usage frequency and screen time reflect changing user needs with regard 

to information sources necessary to predict flash flooding.  However, a high amount of 

screen time does not necessarily translate to more importance as an SA requirement; a 

prime example of this is the relatively low amount of time given to geographic overlays 

compared to other decision aids.  Morss and Ralph (2007) discussed the importance of 

local knowledge when producing weather forecasts, yet in the present study, the 

geographic overlays received the most use during low activity forecasting days.  While 

still an SA requirement for busier forecasting periods, we hypothesize that participants 

prepared during low activity days, consulting geographic and topographic information 

sources to build their local knowledge in advance of the highly active periods.  In this 

way, forecasters shifted some of the workload out of the busier shifts and used 

downtime to build up memory stores for when they were needed.  

One must consider several things that limit our conclusions and generalize the 

data.  In spite of or perhaps because of the training given at the beginning of each week 

during HWT-Hydro, some of the forecast guidance tool usage patterns may have been 

biased.  On the one hand, it was hypothesized that experimental model usage may have 

been higher than it would have otherwise been due to the participants’ awareness of the 

testbed’s goals (to evaluate experimental products).  However, after the temporal 

evaluation, it is clear that while experimental decision aids were used widely, not all 

were given equal screen time; indeed, traditional sources, such as radar imagery, were 
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still used more widely than any of the hydrologic experimental models, ARI guidance, 

or QPF guidance.  On the other hand, though, a reverse explanation may also be 

possible.  Although participants received training about each experimental product prior 

to the first forecasting session, it is possible that participants were still uncertain 

regarding appropriate usage of the experimental tools.  If this were the case, potentially 

inadequate training may have led to the lesser screen time given to products like QPF- 

and PW-based decision aids. 

Study II: Forecasters’ Management of Uncertainty and the Forecast Decision 

Making Process in HWT-Hydro 2014 

The qualitative component of the mixed methods study sought to identify 

processes involved with maintaining situation awareness under uncertainty during flash 

flood forecasting (RQ2).  A focus group was used to collect open-ended responses 

regarding participants’ uncertainty management techniques, forecast guidance usage, 

and feedback on a set of experimental risk communication methods for flash flood 

forecasting.  The following section presents a discussion of the method, followed by 

findings from the focus group discussions. 

Method 

Participants.  Fifteen participants took part in the focus groups during HWT-

Hydro 2014; these were the same participants that took part in Study I.  Participants 

were all National Weather Service forecasters, with either primary job roles in 

hydrologic or meteorological forecasting.  They primarily worked at Weather Forecast 

Offices (n = 13), though a few were based out of River Forecast Centers (n = 2).  
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Forecasters were selected from offices and centers around the continental United States, 

so a wide variety of geographic regions were represented in the sample. 

Each focus group consisted of three to four individuals.  Although the 

recommended minimum number of participants per group is six due to concerns of 

reduced conversation (Caplan, 1990), discussions lasted about one hour and responses 

flowed naturally.  In terms of background, participants’ forecasting backgrounds 

qualified them to discuss the group themes related to coping with uncertainty.  While 

the groups were homogenous in terms of forecasting qualifications, participants 

represented Weather Forecast Offices and River Forecast Centers across the continental 

United States.  Differences between office cultures, regional forecasting policies, and 

responsibilities within the National Weather Service were all anticipated.  These 

differences stimulated discussion and participant interaction during the group meetings. 

Focus Group Design.  Focus groups are often used in human factors research 

because of their ability to provide highly detailed, qualitative data about a central 

theme.  In a focus group, individuals explore perspectives on an idea or product, guided 

through the discussion by a moderator.  Moderators must have subject matter 

experience and the ability to facilitate discussions while minimizing experimenter bias 

(Caplan, 1990).  The focus group methodology is particularly suited to capture 

information about participant beliefs and attitudes through analysis of individual 

responses and group interactions (Freeman, 2006).  Philosophical perspectives differ in 

the importance of group homogeneity and the importance of interpersonal interactions 

during discussions.  As discussed by Freeman (2006),  the contextual constructionist 

perspective cautions against homogenous groups due to the assumption that group 
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member similarities constrains discussions (Kitzinger (1994) as cited in Freeman 

(2006)).  Conversely, the realist perspective recommends group homogeneity, in that 

within-group similarities allow for intra-group comparisons and in turn, promotes 

external validity (Kreuger and Casey (1994) as cited in Freeman (2006)).  Both 

perspectives recognize the face validity of interaction analysis; interaction promotes 

discussion in the realist philosophy and is the source of meaning from the 

constructionist perspective (Belzile & Öberg, 2012; Freeman, 2006) 

 From a practice-oriented perspective, focus group design can impact the validity 

of the results.  Specifically, personal attributes of the moderator can affect discussion 

outcomes in terms of how group members perceive and relate to the discussion leader 

(Belzile & Öberg, 2012).  For ergonomics-related focus groups, Caplan (1990) 

recommends that moderators have a background relevant to the focus group’s subject 

matter, facilitation experience, and neutrality about the topic to minimize bias.  

In the present study, three different individuals moderated the focus groups: 

moderator M1 facilitated discussions with group 1 and 4, moderator M2 facilitated 

discussions with group 2, and moderator M3 facilitated discussions with group 3.  All 

moderators were graduate students in their mid-twenties, but M1 was female while M2 

and M3 were male.  The majority of the group participants were male, so theoretically 

some gender bias to the responses may have existed; however, this was not observed 

and any potential effects were subtle. 

Focus groups met at the end of each week during the testbed study.  During the 

discussions, participants and the moderator sat around an oval conference table to 

encourage interaction between members.  The focus group addressed a range of topics 
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related to the general forecasting process as well as the participants’ views on 

uncertainty, probability, and confidence in flash flood forecasting.  The questions of 

interest to the present study were those that sought to elicit feedback on the role of the 

uncertainty attributes in communicating threat information to end users.  During the 

group discussions, the questions were posed as: 

• General forecasting background and experience (2 questions) 

• Decision making under uncertainty (5 questions) 

• Using impact characterizations in forecasting communications (5 questions) 

A full list of focus group questions can be found in Appendix C.  Questions were 

designed to elicit open-ended responses and follow-up questions or comments by 

participants were encouraged to stimulate discussion.  In addition, questions were 

piloted with a test group of subject matter experts prior to the formal group meetings.  

The general forecasting background questions were designed to engage and introduce 

participants to the discussion topic.  Nine of the questions related to decision making 

and the impact characterizations were designed to explore the central theme of coping 

with and communicating uncertainty.  At the conclusion of each group, the final query 

acted as an exit question to capture anything that may have been missed in earlier 

discussions. 

Thematic Analysis Protocol.  Focus group discussions were audio-recorded 

and then transcribed.  The transcripts were then analyzed using thematic analysis.  

Thematic analysis, a form of qualitative content analysis (QCA), is a flexible, 

systematic methodology used for capturing themes and patterns within a qualitative 

dataset (Schreier, 2012).  Themes represent elements of the central organizing concept 
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for the analysis, and are often identified as prevalent patterns of responses (Braun & 

Clarke, 2006).  Themes are derived from categories of codes, defined by Saldana (2015) 

as “a short word or phrase that symbolically assigns a summative, salient, essence-

capturing, and/or evocative attribute for a portion of language-based or visual data.”  In 

practice, codes are words or statements that briefly paraphrase ideas, emotions, or 

behaviors expressed in the data.  In thematic analysis and other QCA methods, analysis 

is an iterative process involving an initial coding stage, code refinement, refinement of 

codes into themes, and structural verification (Braun, Clarke, & Terry, 2014).  The 

present study draws upon the methodological framework outlined by Braun and Clarke 

(2006), who present a highly detailed guide to conducting a thematic analysis.  A 

summary of the steps involved in this type of research is presented in Table 11. 

In thematic analysis, the researcher takes an active role in identifying and 

interpreting meaning in the information; as such, it is important to acknowledge the 

research epistemology prior to and during analysis as it impacts the types of conclusions 

that can be drawn (Braun & Clarke, 2006).  In the present study, the author identified 

with the realist perspective and employed a theoretical and semantic analytical 

approach.  In a semantic approach, the researcher summarizes themes, interpreting 

patterns and identifying relationships between themes, particularly in relation to 

existing theoretical frameworks relevant to the research question; in this approach, 

meaning is drawn strictly from the researcher’s interpretation of participant responses 

(Braun & Clarke, 2006).  The semantic approach contrasts to the alternative latent-level 
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thematic approach, in which the researcher attempts to interpret the underlying 

motivations for participants’ use of particular semantics. 

Complementing the semantic approach, the author also assumed a theoretical 

approach to coding.  The theoretical approach, which is grounded in an existing 

theoretical framework, allows the researcher to explore the data through a predefined 

lens.  This produces highly detailed findings related to the core research question 

(Braun & Clarke, 2006).  The theoretical approach facilitated a top-down analysis of 

how forecasters cope with uncertainty, driven by the tactical framework discussed by 

Lipshitz and Strauss (1997) and by the macrocognitive model of forecast decision 

making presented by Trafton and Hoffman (2007). 

Findings from the Thematic Analysis 

 In thematic analysis, themes are often associated with measures of prevalence, 

which can be assessed in terms of a theme’s presence across the entire dataset, presence 

in individual sources within the dataset, or as a reference frequency measure, which 

captures the number of times a topic was mentioned in the course of the dataset (Braun 

Table 11. Steps for conducting a thematic analysis, summarized from Braun and 
Clarke (2006) 

Phase Activities 

(1) Familiarization Transcribe and review data (transcripts, media, etc.) 
(2) Initial Coding Identify codes and patterns in the data 

(3) Search for Themes Collapse codes into themes, create initial thematic 
hierarchy 

(4) Review Themes Test thematic hierarchy, review and refine themes 
to create thematic map 

(5) Define Themes Finalize inclusion rules for themes, select 
representative names for each theme 

(6) Report Illustrate thematic structure with examples from the 
data that relate to research question 
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& Clarke, 2006).  In the present study, the researcher analyzed the data both in terms of 

presence of themes by focus group and in terms of thematic frequency.  The frequency 

measures, similar to those used in other QCA methods, allowed the researcher to draw 

conclusions related to the relative importance of themes.  However, Braun and Clarke 

(2006) express the concern that frequency measures can be difficult to apply due to 

issues created by the size of units of analysis.  For this reason, the analysis also 

discusses themes with a presence/absence variable between focus groups. 

General Forecasting Background.  Several questions probed participants 

about their individual experience with flash flood forecasting.  These questions were 

designed to elicit information regarding how participants operationally use forecasting 

decision aids in the warning decision making process.  Discussions not only revealed 

general situation assessment procedures, but they also reflected participant perceptions 

of the importance of the role of the forecaster in the weather domain.  In one particular 

focus group, this theme of forecaster self-image emerged particularly strongly: 

participants agreed that as forecasters, their roles involved acting as a “weather 

authority” and as “communicators.”  These viewpoints demonstrate the importance of 

not only having meteorological knowledge and the ability to create a forecast, but also 

the value in being able to provide information to forecast end users.  As one participant 

noted, the forecaster’s role increasingly overlaps with the role of a decision support 

service.  

Decision Making Under Uncertainty.  After using the background experience 

questions to establish an environment conducive to holding open discussion, the 

conversation turned towards more specific aspects of the warning decision making 
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process.  Participants discussed their own methods for making sense of forecast 

information, and they were encouraged to give specific examples from the testbed and 

from their home offices.  Analysis of the discussions produced a number of themes 

relating to situation assessment and action choice during the watch and warning 

decision making process. 

Establishing the Big Picture.  At the beginning of any forecasting shift, 

participants agreed that the decision space was often a “blank slate.”  The decision 

making process begins by attempting to establish the big picture in relation to the 

environmental and atmospheric states.  In order to transition from a blank slate to 

understanding the big picture, forecasters assess environmental parameters between and 

within information sources.  Preferred information sources differed from forecaster to 

forecaster, but several guidance products that were frequently mentioned for flash flood 

forecasting were radar imagery, precipitable water (PW) estimates, vapor imagery, and 

atmospheric soundings.  Such sources provided a coarse level of detail, but they also 

allowed the forecaster to form a baseline for flash flood risk assessment. 

Participants pointed out the importance of maintaining an awareness of the big 

picture throughout the entire forecast decision making process.  Although participants 

did not use such wording, this baseline understanding may in fact relate to situation 

awareness.  One participant spoke of the importance of maintaining awareness of the 

environmental baseline conditions, stating that in the testbed, he “always felt like [he] 

had enough time to pull back and look at the big picture.”  Using a cyclical process, this 

forecaster used his SA of baseline conditions to develop SA more focused on specific 

flash flood threats.   
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Focusing Attention.  The second stage of forecast decision making involved 

source comparison and parameter assessment to focus attention on specific threats. 

Similar to the “big picture” stage, SA was built through assessment of environmental 

parameters.  However, when discussing this stage, participants largely agreed that 

assessment occurred in two contexts.  In the first context, assessment occurred within 

individual guidance product; forecasters sought specific guidance products and 

evaluated predictions in terms of thresholds (e.g. flash flooding may occur when the 

QPE exceeds a certain amount in a certain location), societal conditions (e.g. local 

infrastructure or vulnerable populations), and model bias estimates. 

The second context was more comparative in nature.  Participants discussed 

building SA by comparing between guidance products; it is possible that this process 

served to refine the forecasters’ mental models.  One participant stated that she “would 

look at the flash flood guidance and kind of switch between [that and rainfall return 

periods], but a lot of times they were both showing about the same story, and the 

rainfall return periods were better at providing an estimate of magnitude and scope.”  If 

the within-product assessment could be likened to Endsley’s Level 1 SA (perception), 

between-product assessments could be seen as similar to Level 2 SA (comprehension). 

While parameter assessment was one of the most frequently discussed elements 

of developing SA, group participants also acknowledged the role of interpersonal 

communication in the situation assessment process.  Particularly during the testbed, 

participants relied heavily on the briefings from the associated testbed to direct their 

attention to certain regions across the country.  Operationally, forecasters are 

accustomed to seeking advice from colleagues; during the focus groups, one participant 
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gave the example that, “there’s always going to be different opinions… on model 

solutions, so there’s…. there’s a lot of discussion that happens to get to [an 

agreement].”  In addition, negotiation and discussions between offices may occur in 

order to issue a forecast product over a large geographic region.  Discussions revealed 

that such processes allowed forecasters to identify patterns over time and space, which 

in turn created the confidence needed to proceed to the action stage. 

Action Selection.  In the final decision making stage, forecasters activate the 

knowledge developed in the earlier stages as part of the action selection process.  This 

stage involved a number of interrelated processes.  After assessing the situation and 

identifying a specific threat, there are often two alternative decision making outcomes.  

In the active approach, the forecaster may determine that the threat is significant, and as 

such, they may decide to issue a product, such as a watch or a warning for a particular 

threat type.  In the second type of approach, the forecaster may determine that the threat 

is not significant at that point in time, and the action would be to wait for more 

information or to turn his attention elsewhere. 

 Focus group participants discussed the importance of threshold-based 

assessment, or as those in the human factors profession might refer to it, recognition-

primed decision making.  Recognition-primed decisions are those decisions made in 

response to uncertain and often short time-frame situations, and decision makers select 

the first functional decision, even if it is not the optimal solution (Klein, 1989).  

Hoffman and Coffey (2004) had found that pattern recognition and mental modeling 

were deeply ingrained into the weather forecast process.  Likewise, focus group 

participants frequently mentioned pattern recognition and threshold detection during 
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situation assessment.  Thresholds were often discussed in terms of time (e.g. deciding 

whether a flash flood would occur within six hours of the present time or not) or in 

terms of modeled parameters (e.g. detecting if the flash flood guidance exceeded the 

amount needed for flash flooding in a specific region).  However, some participants 

recognized problems with basing forecasts solely on threshold detection.  While basing 

decisions on recommended thresholds led to a sense of certainty, such decisions could 

lead to tradeoffs with respect to forecast verification scores, which may affect mental 

models used in future forecasts. 

 Uncertainty management also influenced the action selection stage.  Here, 

themes related to background experience and training and risk tolerance.  Risk 

tolerance refers to the degree of risk that a decision maker is willing to accept, and has 

been discussed as a major factor in decision making in the literature.  Participants 

shared examples of times when their or a colleague’s forecasting practices changed as a 

result of a previous negative outcome.  False alarms (issuing a forecast for a weather 

event that fails to materialize) and misses (failing to issue a forecast for a weather event 

that does materialize) were described as influential events that sometimes led to 

readjustment of risk tolerance.  One participant discussed the case of a coworker who 

had been “burned” by a missed event, and afterwards issued warnings more liberally in 

order to minimize the odds of missing another event.  Situations like this appeared to 

develop forecasters’ mental models, cultivating the information source held within 

background experience and training. 

When speaking about making judgments about the need for a warning, focus 

group participants discussed the connection between their background knowledge and 
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their ability to recognize patterns and detect environmental anomalies.  Experience was 

discussed in terms of experiential learning as well as professional training.  Comments 

related to training focused on formal education, often aimed at developing forecasting 

skill through practice and putting institutional policy into practice.  Comments related to 

background experience were similar, but instead referred to knowledge developed at an 

individual level; an example of this was local knowledge built up over a period of time 

at a specific forecast office.  Underlying the experience discussion was the concept of 

technology transfer—the handoff of technology from a developer to an end user.  

Participants revealed that their acceptance of new information sources (e.g. new 

decision support tools or models) not only influenced how they arrived at a decision, 

but their action choice, as well.  Discussions suggested that tool acceptance in HWT-

Hydro, specifically, may have been a function of product skill, user calibration, and 

availability of instruction.   

Sources of Uncertainty and Challenges in the Testbed.  Several sources of 

uncertainty posed challenges to testbed participants.  The analysis revealed four primary 

challenges affecting decision making in the testbed: differences in participant 

background, a lack of information, geographic scale complications, and workstation 

setup issues.  Much discussion centered on differences between forecasting policies that 

differ between offices around the country.  In one situation during HWT-Hydro, a 

testbed participant issued a flash flood warning for a particular region, but the local 

WFO did not issue the same type of warning.  The following day, reports of water over 

roads and other flooding-related outcomes were received.  The participant felt justified 

in her original forecast and attributed the difference to variations in office policies: “I 
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have seen where it comes back to the definition of a flash flood… at my office, we have 

our set definitions… we try to quantify it in terms of depth of water, moving water… In 

my mind, flash flood is different to what [the local office was] thinking a flash flood is.” 

 Forecasters also identified uncertainty associated with information sources, 

reflecting issues with technology comprehension.  Specifically, forecasters were 

challenged on three fronts: they lacked several traditional decision support tools, they 

lacked relevant local knowledge for much of the United States, and despite training, the 

participants were largely novice users of the experimental guidance products.  Due to 

technical limitations imposed by the required systems for displaying the experimental 

guidance products, testbed workstations were unable to provide several types of 

commonly used information sources.  Participants were able to access some of these 

sources through an internet browser, but this limited direct comparison of data types.  In 

addition to this, participants did not have pre-existing mental models related to the 

experimental guidance tools, so it took time each week for many of the participants to 

become accustomed to using the model outputs as decision support in real-time 

forecasts. 

 Lack of local knowledge was a particularly difficult challenge for many 

participants, and was perhaps the leading factor associated with increased uncertainty.  

In the words of one participant, this situation “reinforced to me what local knowledge of 

your forecaster does for you… [we] bounced around different parts of the country, and 

the way things respond, changed quite a bit.  So, the local knowledge is key.”  

Participants attempted to improve local knowledge when possible, often by reviewing 

maps and by searching for images of the local terrain on the internet.  However, this 
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was only nominally able to resolve uncertainty.  A similar challenge related to the 

expansive geographic scales of forecasts and resulted from the experimental design.  

Not only were participants asked to forecast over unfamiliar regions, but also the size of 

the geographic domain was much larger than the typical areal extent that a WFO 

forecaster would have responsibility over.  This was a challenge both from a workload 

perspective and from a situation assessment perspective. 

 The final type of challenge related to workstation customization.  Although 

participants were able to set up their workstations and displays according to their 

preferences, one participant stated, “I felt like I was borrowing someone else’s tools,” a 

sentiment that was echoed by others.  While this may have not been a direct source of 

uncertainty, rapidly adjusting to a new display set up likely did not help to facilitate the 

uncertainty management process.  

Coping Tactics.  Several of the focus group questions probed participants for 

individual and group experiences related to coping with uncertainty.  Confirming 

Lipshitz and Strauss’s (1997) R.A.W.F.S. heuristic, focus group members largely 

agreed with regard to management tactics.  The R.A.W.F.S. heuristic presumes that 

situation assessment is an adaptive, iterative process involving recognition-priming, 

assumption-based reasoning, and action choice evaluation.  During the focus groups, 

conversations revealed that when faced with uncertainty, forecasters did attempt to use 

reduction methods to diminish its effects.  Reduction techniques were the most 

frequently cited coping tactic, as shown in Figure 19.  Participants also identified 

techniques that acknowledged uncertainty when further reduction was not possible; 

these techniques were often policy-oriented from an office- or NWS-wide context.  
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Finally, suppression was discussed as a technique that was typically undesirable.  Many 

of the identified tactics aligned with those discussed by Lipshitz and Strauss (1997) but 

with several differences that reveal management practices specific to the flash flood 

forecasting domain. 

Reducing Uncertainty.  In a forecasting session, uncertainty can arise from 

insufficient information.  In each of the four focus groups, participants discussed 

multiple reduction tactics in the situation assessment process (60.2% of coded 

uncertainty management comments).  Forecasters primarily cited reducing uncertainty 

through information-seeking activities (35.2% of all reduction-oriented comments).  In 

flash flood watch and warning decisions, forecasters stated that they sought two types of 

data in particular: information that reduced uncertainty about the environmental state 

and information that reduced uncertainty about interpreting guidance tools.  Lack of 

	

Figure 19. Count per code per week demonstrating tactics for coping with 
uncertainty during HWT-Hydro, shown in the R.A.W.F.S. framework proposed by 

Lipshitz and Strauss (1997) 
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information, one of the greatest sources of uncertainty, was often exacerbated by lack of 

local knowledge.  As one participant in the first focus group explained:  

“That was what I struggled most with… especially out west, just my 

unfamiliarity, as in, where’s this water going to go?  I looked at the, called [the 

town] up on Google Earth, zoomed in… this kind of looks like it could be, oh, 

you know, affected by this flooding up on the hilltop there, and most of the time 

it turned out we were wrong.” 

As evidenced by this forecaster’s experience, reducing uncertainty by seeking 

additional information did not always result in a successful forecast.  However, focus 

group participants cited a number of information sources that helped to reduce 

uncertainty by filling in pieces of the puzzle.  Apart from geographic and topographic 

data, participants actively sought information about model bias adjustments 

(mathematical corrections to align simulated predictions with real-world observations), 

environmental observations (e.g. rain gauge measures and warm cloud depths), and 

temporal measures (e.g. mean storm motion), among others.  In addition, many of the 

experimental tools introduced uncertainty into the decision process, and during the 

testbed, forecasters found themselves seeking information about the new decision aids.  

Furthermore, information was acquired through communication with other forecasters 

in the testbed as well as in briefings given by participants in a separate testbed, a 

behavior also discussed by Morss and Ralph (2007).  Each day, HWT-Hydro 

participants would participate in a conference call with the other testbed participants, 

and the discussions would help to identify areas of concern for flash flooding across the 

country. 
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While actively searching for new information to construct and update mental 

models during situation assessment, forecasters also attempted to use their mental 

models to simulate possible outcomes, referred to as assumption-based reasoning by 

Lipshitz and Strauss (1997).  One forecaster illustrated this tactic in a story from a 

testbed forecasting session, in which he issued an experimental warning for flash floods 

in his hometown which failed to verify.  He had a mental model in place that included 

detailed local knowledge.  He had been exceptionally confident while creating the 

forecast.  When asked about his high level of confidence, he replied: 

“Well, the weather didn’t do what I thought it was going to!  No, I was looking 

at a downstream precipitation with the return periods on in an area and it was 

going to reach a flash flood guidance, which in my mind was lower than what 

the [River Forecast Center] had, and, uh, apparently, well, it caught the south 

side of town, but it didn’t cause a problem.  But, if it would have continued 

along the path it had been before it died out… it hit the county border and 

diminished as it got into the town… or otherwise I think it would have worked 

out fine.” 

Despite knowledge of the local region and mental models refined through years of 

experience, unverified forecasts do occur.  Although this introduces questions related to 

forecast “goodness,” it also exemplifies the assumption-based reasoning tactics for 

uncertainty reduction. 

Lastly, focus groups touched on two of Lipshitz and Strauss’s (1997) remaining 

reduction tactics: waiting (9.86% of reduction comments) and following norms of 

practice (11.3% of reduction comments).  Although not mentioned as frequently as 
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practices related to information acquisition or assumption-based reasoning, it appeared 

that several participants relied on operational standards of practice to guide decisions.  

This is not at all surprising; in operational settings, forecasters operate under strict 

directives on how and why weather products may be issued.  Participants referenced 

organizational policies issued by the NWS, and they also mentioned office-to-office 

policies that affect their decision processes.  In one instance, a participant stated that if 

they ever saw a flash flood guidance ratio reach 150%, they would immediately put out 

a flash flood warning, even if other information sources disagreed.  In the case where 

the other reduction tactics were not sufficient to improve an individual’s confidence 

past the threshold for action, several participants stated that they would wait for the 

situation to unfold further. 

Acknowledging Uncertainty.  In the taxonomy presented by Lipshitz and Strauss 

(1997), decision makers use acknowledgement tactics to cope with uncertainty when 

reduction is not possible.  Out of all focus group comments coded into uncertainty 

management categories, 30.5% captured behaviors or beliefs related to 

acknowledgement tactics.  Acknowledgement codes captured tactics that were typically 

organizational-level and policy-oriented, occurring outside the immediate forecasting 

timeframe.  These tactics often complemented reduction tactics that were often used by 

individuals in the timeframe immediately surrounding the weather event in question.  

During the thematic analysis, coded comments aligned with tactics observed by Lipshitz 

and Strauss (1997): preemption (36.1% of acknowledgement-oriented comments), 

improving readiness (47.2% of all acknowledgement-oriented comments), preparing 
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contingencies (8.33% of all acknowledgement-oriented comments), and consideration 

of action pros and cons (8.33% of all acknowledgement-oriented comments). 

In the weather enterprise, preemptive action and improving readiness to negative 

outcomes initially appear similar, but the focus group discussions revealed several 

distinctions.  Preempting uncertainty was defined in terms of preparing responses to 

anticipated events, whereas improving readiness was inherently associated with 

unanticipated events.  Improving readiness, which Lipshitz and Strauss (1997) define as 

developing “a general capability to respond to unanticipated negative developments,” 

was interpreted to refer to development of organizational policies to support uncertainty 

management and minimize negative outcomes.  Elements of readiness included regular 

forecaster training, allowing individuals to customize workstations, development of new 

decision support tools to overcome regional uncertainties, and setting policies in place 

to minimize risk. 

Participants discussed several degrees of preemption, ranging from testbed-

specific behaviors and operational practices at the individual and organizational levels.  

Only able to partially reduce uncertainty associated with unfamiliar guidance product 

interpretation, several forecasters recognized that they adjusted their warning thresholds 

to reduce missing flash flood events.  In the words of one participant, “I lowered my 

threshold.  So, I was issuing more products than I normally would back home.”  When 

asked about uncertain situations in an operational setting, discussions revealed the 

influence of socio-geographic factors on forecasting thresholds.  Despite the 

overarching mission to forecast weather regardless of location or anticipated impact, 
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infrastructure and sociological factors appeared to affect some decisions.  Summarized 

well by one participant: 

“As that level of severity increases, especially over an area where you know is, 

is a wilderness area, you kind of hit that threshold and say, “boom, I’m [going 

to] issue at this point.”  Whereas, like, that threshold is [going to] be a lot lower 

over a metropolitan area.  You’re [going to] be jumping on it right away.  There 

are a lot of other factors that are going into effect.” 

In this example of preemption, the forecaster adjusted her threshold to cope with the 

situational uncertainty.  While anticipating some type of negative outcome, the 

forecaster still recognized uncertainty surrounding the level of environmental response.  

This type of response was similar to policy-centered discussions; one participant 

discussed a forecasting policy unique to her home office that differed philosophically to 

other forecast offices.  According to the forecaster, her home office was not willing to 

accept uncertainties associated with local infrastructure, such as clogged drainage 

systems causing localized flooding.  Her office had developed a policy to issue a 

specialized statement to advise residents to expect heavy rainfall and localized ground-

based effects, but avoided issuing location-specific warnings about flooding.  This 

policy, leading to forecasts based heavily on rainfall observations, removed some 

situational uncertainty while providing the public with actionable information. 

Suppressing Uncertainty.  Although mentioned infrequently during focus group 

discussions, suppression did surface as a management tactic (9.32% of all uncertainty 

management comments).  Suppression tactics are characterized as activities that involve 

denial or unfounded rationalization in order to overcome stalled decision making 
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(Lipshitz & Strauss, 1997).  It is not uncommon to hear forecasters discussing decisions 

based upon “intuition.”  While challenging, distinguishing unfounded “intuition” from 

assumption-based mental simulations has implications on understanding uncertainty 

management; the distinction may lie in whether or not a forecaster possesses an 

adequate mental model for the situation at hand.  Three participants relayed stories 

about intuition-based forecasts made during the testbed.  In each case, it was understood 

that the uncertainty associated with the experimental guidance products and unfamiliar 

geographic domains overwhelmed the forecasters, leading them to base decisions on an 

insufficient level of situation awareness. 

Likewise, some participants acknowledged ignoring situational uncertainty on 

occasion.  Ignoring uncertainty was discussed particularly in the context of testbed 

forecasting activities.  When uncertainty was high, especially when it arose from lack of 

local knowledge, some participants built confidence from insufficient situational 

assessments.  While these decisions were partially informed, such comments revealed 

the occasional instance of acting with certainty without seeking additional data.  In one 

such case, one forecaster stated that they weren’t familiar with weather patterns in the 

eastern United States, so when they were asked to forecast there during HWT-Hydro, 

she used QPE guidance “as sort of gospel truth.”  Similarly, several participants 

acknowledged that gambles have a role in uncertainty management.  A different 

forecaster, citing geographic unfamiliarity, stated that when decision aids presented 

guidance values near a threshold, he “tended to side with the lower [values].  Just 

‘cause.”  Without being able to find information to reduce uncertainty and support a 
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deeper analysis of guidance products, forecasters risk increasing negative outcomes, 

such as misses and false alarm forecasts. 

Impact Characterizations in Forecasting Communications.  During the 

testbed, participants were instructed to include a new type of uncertainty estimate in 

their experimental forecasts.  With each experimental watch and warning, participants 

assigned a probability of a particular magnitude to their forecasts.  One aim of these 

impact characterizations was to communicate uncertainty to forecast end users.  In 

addition to exploring tactics for managing uncertainty, several focus group questions 

probed participants for feedback on positive and negative aspects of shifting towards 

such a paradigm. 

Findings on Magnitude Attributes.  Several themes emerged from the focus 

group responses regarding the inclusion of a magnitude estimate.  Overall, the 

experimental requirement to include a magnitude estimate was seen as a positive 

addition to forecast products.  Participants generally expressed a desire to have the 

ability to issue products with standardized text reflecting threat level in their operational 

office settings. 

Some forecasters discussed their wishes to be able to communicate their mental 

model to forecast end users.  Including an impact-based uncertainty statement was 

viewed as a means to such an end.  In regard to including the magnitude and uncertainty 

attributes in the experimental products, one forecaster stated: 

“We kind of do that in our head.  I think that’s very valuable information 

for the public, and having this nuisance or major, we’re in effect giving 

them that information that they would have never gotten before.” 
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Participants also identified the need for data-driven decision support systems in 

operational environments.  Including a magnitude estimate in a watch or warning was 

seen as a value-adding attribute that would help to provide actionable information that 

would help consumers like emergency managers to make informed decisions.  In the 

words of one participant:  

“It gives you the ability to quantify the anecdotal information.  If we’re 

doing a decision support service brief to emergency managers, you 

know, on that phone call, we’ll say… ‘this will be a widespread, minor 

flood event, or… it’s not going to happen everywhere, but if it does, it’s 

going to be really bad.’” 

While participants generally adopted a positive affect towards the magnitude 

uncertainty attributes, they did have some concerns about their design.  Themes related 

to professional interpretation challenges, concern for members of the general public, 

and training issues emerged from the discussions.  Some participants expressed concern 

that members of the public would have trouble interpreting both the probabilistic and 

magnitude components of the threat attributes.  Furthermore, participants repeatedly 

commented that they would expect to see disagreement at a professional level regarding 

interpretation of a nuisance versus a major flood.  The categorization was seen as 

subjective.  A commonly heard comment was that what may seem like a nuisance flood 

from a forecasting perspective may feel like a major impact to an individual affected by 

it.  As put by one forecaster, 

“If I get a foot of water in my basement and I’m the only one in 500 

miles that did… that’s a nuisance, but to me that’s major.” 
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Additional concerns tended to revolve around the lack of background experience in 

issuing magnitude uncertainty attributes.  Although some participants stated that they 

regularly considered threat levels and uncertainty when issuing forecasts, comments 

from other participants revealed that issuing the experimental attributes created a 

substantial challenge for some.  This may be due to a lack of probabilistic flash flood 

forecasting in operations and only a short training session on issuing products with the 

experimental attributes prior to the testbed. 

Findings on Probabilistic Information.  When asked specifically about the role 

of probabilities and factors that influence them in flash flood forecasting, positive-affect 

themes included mental model building, decision support services, and improved 

forecaster behavior.  Almost as a whole, participants commented that they often 

considered probabilistic information during operational forecasting.  While flash flood 

forecasting is not currently issued probabilistically, some participants suggested that 

they regularly consider the probability of a threat when before deciding to issue a watch 

or warning.  This is in line with the National Weather Service’s Directive 10-922, which 

creates thresholds for uncertainty that a forecaster must reach before issuing a watch or 

warning (National Weather Service, 2011).  The Directive, which requires that there 

must be a 50-80% chance of flash flooding before issuing a flash flood watch, among 

other requirements before issuing a flash flood warning, may have led to some bias in 

the experimental watch and warning products.  When asked to give an example of how 

a forecaster considered probabilistic information in forecasting, one participant 

responded: 
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“In issuing a product, [I] will always consider probabilities, because 

innately in the directive… you must have an eighty percent confidence 

for something in a warning, or a fifty percent confidence in it happening 

for a watch.  So that’s something you’re always considering.” 

Another recurring theme focused on how the experimental threat attributes 

assisted the participants in making fewer hedged forecasts.  Hedging, defined by 

Murphy (1978) as a forecast in which there is a “difference between a forecaster’s 

judgment and his forecast.”  Some HWT-Hydro participants felt that by being forced to 

consider the uncertainty and assign a magnitude uncertainty attribute to each watch and 

warning, their ability to hedge was reduced; generally, this was a desirable outcome. 

Study II Discussion and Recommendations 

The testbed study was the first to incorporate uncertainty attributes into the 

forecast decision making process. While requiring further research to determine 

appropriately designed experimental threat attributes, they show promise in their ability 

to communicate forecaster SA to end users.  When asked whether or not the magnitude 

and probabilistic categories were appropriate, participants felt that the probabilistic 

levels were fine for their current forecasting skill level when using the experimental 

FLASH tools, but it could be useful to have a scale with smaller intervals for 

operational forecasting.  To address this concern, future iterations of the hydrology 

testbed experiment will allow forecasters to select probabilities at thresholds spaced one 

percentage point apart. 

From an evaluation standpoint, it was very difficult to separate probability from 

magnitude in the discussion.  Both were so closely linked that it was difficult to get a 
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clear picture of how probability and magnitude were chosen separately.  In addition, 

probability thresholds for major and nuisance flooding changed based on environment 

and socio-geographic constructs.  Participants discussed differences in probabilistic 

thresholds that they needed to reach in order to issue warnings over rural and urban 

areas. 

Based on responses from the focus groups, three recommendations were 

developed for the future of flash flood forecasting and decision making research.  With 

regard to the development of impact- and uncertainty-based forecast products, 

participants expressed the need for consistent, actionable terminology, and a 

standardized scale for flood threat level.  Participants pointed out that terminology often 

varies when forecasting for river floods, areal floods, and flash floods.  Although the 

HWT-Hydro focused entirely on flash floods, the participants generally worked in 

professional roles that required them to issue warnings for other types of flood threats as 

well.  A unified flood forecasting system requires consistent terminology to facilitate 

communication between actors in the weather response system. 

Testbed participants also indicated that the term “nuisance flooding” was 

difficult to define from a scientific and a social perspective.  There is a great need for 

future research to address best practices with regard to what type and quantity of 

information should be shared with different types of forecast consumers.  For example, 

an emergency manager may be able to make a more informed decision after receiving a 

magnitude uncertainty attribute issued alongside a warning polygon, but an individual 

in a different role may interpret this type of information differently.  



	165 

Although some forecasters stated that they do discuss potential impacts with 

forecast end users, there is currently no standardized method of communicating such 

risks to forecast end users.  Initiatives such as Impact-Based Warnings (IBW) have 

experimented with the design of text-based forecast products that contain information 

related to potential impacts.  An evaluation of IBWs for tornado threats revealed that up 

to a certain threshold, including possible impacts in the text product increased the 

likelihood that an individual would take protective action (Ripberger, Silva, Jenkins-

Smith, & James, 2014).  Furthermore, following a severe thunderstorm in Abilene, 

Texas in which an IBW was issued operationally, Guerrero, Myers, Lyons, Dunn, and 

Johnson (2015) found that the additional impacts-oriented text gave members of the 

public actionable information that lessened confusion and clarified the level of risk. 

Lastly, future work is needed to develop a scale for flash flood forecasting 

impacts.  Unlike the Enhanced Fujita Scale for tornado threats, there is no scale 

available for use by National Weather Service forecasters for communicating flash 

flood threat level.  The nuisance and major flood categorizations used in the magnitude 

attributes in HWT-Hydro attempted to provide a basic structure for flood threat.  

However, additional research into scientifically and socially appropriate threat levels 

would be of great benefit to the forecasting community and society at large. 

General Discussion 

 The purpose of this study was twofold.  First, we aimed to identify SA 

requirements for flash flood forecasting and their evolution over temporal and 

environmental activity scales.  Second, we used the mixed methods approach to explore 

situation assessment during flash flood forecasting.  In the first study, we used a 
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quantitative approach to assess SA requirements for flash flood warning decisions.  In 

the second study, we employed a qualitative, focus group approach in order to 

categorize tactics regularly used for managing uncertainty.  Originally, we hypothesized 

that SA requirements would differ between the watch and warning issuance timeframes, 

as measured by the time and frequency of guidance usage.  We also expected to observe 

differences in SA requirements between forecast periods with varying levels of 

environmental activity.  In relation to understanding uncertainty management in 

situation assessment, we hypothesized that tactics used by forecasters would align with 

the R.A.W.F.S. heuristic described by Lipshitz and Strauss (1997). 

The mixed methods approach may have been a novel approach to these research 

questions, but comparing between the two datasets allowed us to make new inferences 

about the relationship among uncertainty, situation assessment, and decision making in 

weather forecasting.  Alone, the focus groups and thematic analysis add to existing 

knowledge about decision making, situation assessment, and uncertainty management.  

In combination with the quantitative SA requirements analysis, though, the qualitative 

data is enhanced with empirical evidence.  Viewed together, we are able to draw 

conclusions about the role of technology in uncertainty management and situation 

assessment. 

Situation Assessment in Weather Forecasting 

 Situation assessment in weather forecasting is a dynamic process that is 

influenced by individual, organizational, and technological factors.  The thematic 

analysis grounded the SA requirements analysis by contextualizing situation assessment 

in the broader scope of the entire forecast decision making process.  Focus group 
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participants described weather prediction as a process in which forecasters attempt to 

understand the environmental situation by assessing information sources, initially in 

order to understand the broad context and then through focused attention on at-risk 

geographic areas.  These activities can be viewed as part of the situation assessment 

process that precedes the action selection and implementation process.  Action selection 

and situation assessment shared several aspects in common; both processes involved 

recognition-primed decision making and were influenced by individual factors such as 

background experience and risk tolerance. 

 This description of the forecast decision making process aligned with accounts 

found elsewhere in the literature.  Although not framed in terms of situation awareness, 

Morss and Ralph (2007) presented a procedural model of forecaster decision making 

and suggested that forecasters assimilate information gained from individual 

knowledge, model guidance, observational data, and interpersonal communication as 

inputs into the forecast decision.  Similarly, Doswell (2004) framed forecasting as a 

cycle of diagnosis and prognosis.  In relation to Endsley’s (1995c) model of situation 

awareness, diagnosis may be equivalent to Level 1 (perception) and Level 2 

(comprehension) SA, while prognosis may be similar to Level 3 SA (projection).  From 

a macrocognitive perspective, Trafton and Hoffman (2007) suggested that forecasting 

begins with an action queue, using iterative situation assessment and recognition-

primed decision making to build mental models and situation awareness, culminating in 

action selection. 

The thematic analysis findings not only corresponded with these representations, 

but they also provided evidence that bridged procedural and macrocognitive models of 
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weather forecasting.  In addition to gathering qualitative descriptions of the forecasting 

process, one of the study’s main contributions was the identification of situation 

awareness requirements for dynamic comprehension and projection of flash flooding 

situations.  During the testbed, we observed that forecasters relied on different guidance 

products between watch and warning issuance stages, which confirmed the timeframe 

hypothesis.  More surprisingly, the observations confirmed differences in SA 

requirements as environmental activity level increased.  This deferral of situation 

assessment from high-activity days to low-activity days suggests that SA requirements 

may be satisfied over a long-term forecasting period, such as several days or even 

weeks. 

Testbed participants did not possess local knowledge for all the geographic 

locations they issued forecasts over during the study, and the time study results 

indicated that they consulted more products related to understanding geography and 

initial conditions on low-activity days.  It is possible that SA requirements, such as 

information on local geography, can be deferred to low-activity days.  Going forward, 

this may inform the design of additional forecast decision making studies that are 

involved in studying guidance usage. 

Uncertainty Management Techniques 

Despite being a useful construct in many domains, some accounts of situation 

awareness and situation assessment are limited when they are applied to complex 

decision making domains that involve uncertainty (Minotra & Burns, 2015).  In the 

weather forecasting domain, understanding forecaster techniques for coping with 

uncertainty may have theoretical implications for understanding SA, and practical 
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implications in terms of decision support development.  In the present study, we sought 

to identify how forecasters cope with uncertainty in situation assessment, and in turn, 

how such uncertainty affected the whole decision making process.  

Doswell (2004) suggests that forecasters incorporate uncertainty into decision 

making by combining progressive, intentional, and logical analysis with the reverse: 

intuition.  While this framework captures the broader essence of forecast decision 

making, the mixed methods study provided insight into the factors and processes at 

work within Doswell’s (2004) two modes.  In the thematic analysis, we examined the 

focus group discussions through the theoretical lens provided by the R.A.W.F.S. 

heuristic (Lipshitz & Strauss, 1997).  The thematic analysis revealed that forecast 

decision making to be a function of several factors, and that forecasters manage 

situational uncertainty through a number of individual and organizational management 

tactics.  Forecasters discussed employing reduction tactics on an individual and group 

basis, as well as suppression methods, though to a lesser degree.  Organizational policy 

and best practices provided context for individual-level forecasting decisions, and focus 

group participants often framed these policies in a way that aligned with Lipshitz and 

Strauss’s (1997) definition of uncertainty acknowledgement. 

Although Lipshitz and Strauss (1997) originally discussed the R.A.W.F.S. 

heuristic as it related to militaristic decision making, we suggest that the heuristic may 

be generalizable to the complex domain of weather forecasting.  Here, we found that 

forecasters regularly discussed using reduction tactics, including goal-directed 

information collection, decisions based on organizational norms, soliciting guidance 

from colleagues and technology, and forestalling when necessary.  Interestingly, several 
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reduction-oriented tactics align with behaviors observed in naturalistic decision making 

studies of weather forecasters (Kirschenbaum, 2004; Trafton, 2004; Trafton & 

Hoffman, 2007).  In Lipshitz and Strauss’s (1997) tactical framework, assumption-

based reasoning refers to uncertainty reduction via use of a mental model based on 

constrained beliefs and evidence related to the situation.  Following the testbed, focus 

group participants were aware of practicing such behavior while forecasting. 

Several mechanisms and factors may relate to forecaster cognition and 

uncertainty management.  Assumption-based reasoning is linked to the creation and 

implementation of a mental model.  Trafton (2004) suggested that weather forecasters 

develop qualitative mental models that permit the forecaster to draw inferences 

dynamically about the environment.  In the present study, the quantitative results 

reflected the differences in information sources needed to build SA and a mental model 

of the situation.  Trafton and Hoffman (2007) found that forecasters develop their 

mental models by using spatial transformations to synthesize spatial-temporal 

information into a refined understanding of the situation; working with forecasters, they 

identified that the most frequent type of spatial transformation was comparison between 

information sources.  One of the emergent themes from the thematic analysis focused 

on the centrality of comparison in understanding the broader situation and specific 

threats.   

It is also been suggested that expertise plays a large role in uncertainty 

management.  In a study of military tactical commanders, St John, Callan, Proctor, and 

Holste (2000) varied situational uncertainty and found that inexperienced participants 

employed a “wait-and-see” tactic more often than experienced participants.  While 
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focus group discussions did reflect that forestalling a decision was an accepted tactic for 

forecasters, it was less frequently mentioned that other tactics.  Participants in the 

present study were balanced in terms of expertise, but naturalistic decision making 

accounts may provide insight into situation assessment through explanations of 

recognition-primed decision making.  In its basic form, pattern recognition and 

recognition-primed decisions are closely aligned, but as situational uncertainty 

increases, decision makers must rely upon mental models and mental simulations.  

Expertise governs a decision maker’s ability to perform successfully in these activities 

(Lipshitz et al., 2001).  Participants in the present study possessed relatively equal levels 

of forecasting experience and exposure to the experimental decision aids, which may 

explain infrequent references to forestalling tactics. 

Theoretical Contributions to Understanding Uncertainty and SA 

 The mixed methods study produced several findings that extend Endsley’s 

(1995c) Model of SA to decision making under uncertainty.  Some findings directly 

align with several components of the model, whereas other findings provide insight into 

less-explained aspects of situation assessment. 

The focus group discussions reflected the influences of background experience, 

system design, and risk tolerance on forecasting.  Endsley (1995c) proposed that SA 

consists of three levels (perception, comprehension, and projection) and that SA is 

influenced by task/system factors (e.g. interface design, stress, workload, and 

automation) and individual factors (e.g. goals and preconceptions, expertise, and long 

term memory).  Forecasters described their assessment and prediction process in 

alignment with the three levels of SA.  Perception occurred as forecasters sought 
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information and consulted guidance products, while comparing between and within 

guidance products developed comprehension.  Confidence in projections increased as 

situational uncertainty decreased. 

Endsley (1995c) framed SA as an in-the-head model of the current situation, 

which when compared to a global mental model, can facilitate recognition-primed 

decision making.  Endsley (1995c) also suggested that, over time, operators build and 

refine new mental models as SA is developed in new contexts, and that decision makers 

actively partake in goal-directed information assessment.  During the experimental 

watch and warning issuance activity, forecaster behavior not only reflected SA 

requirements, but also provided additional evidence to support the role of goals in SA.  

Operator goals, such as “determine if risk is high enough for a warning,” are part of top-

down processing, in which goals and preconceptions direct the forecaster’s attention 

when searching for information to reduce uncertainty and build SA.  Bottom-up 

processing was also discussed in the focus groups; as forecasters detected anomalies in 

the environmental activity, such observations would in turn guide information seeking.  

The quantitative results also support this; guidance products were often used in 

comparison activities, one of the most common spatial transformations (Kirschenbaum, 

2004; Trafton & Hoffman, 2007).  For example, a forecaster may have observed that the 

QPE-to-FFG ratio levels exceeded 150% in a certain region, which then prompted them 

to assess other guidance products over that same region.   

 While many of the present study’s findings concurred with existing theory, they 

also extend current explanations of SA and the forecasting process under uncertainty.  

In the original model, Endsley (1995c) conceptually acknowledged that uncertainty 
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affected decision maker confidence, which in turn could affect decision outcomes.  

Based on the mixed methods findings, we suggest that forecasters cope with uncertainty 

through reduction, acknowledgement, and suppression techniques, as framed in the 

R.A.W.F.S. heuristic by Lipshitz and Strauss (1997).  When time permitted, forecasters 

actively sought additional information to reduce their uncertainty.  Furthermore, 

discussions revealed that organizational policies were often in place within operational 

offices to reduce the effects of potentially negative outcomes related to decisions made 

under uncertainty.  However, when uncertainty existed even after reduction and 

acknowledgement, discussions revealed that suppression did occur.  Such tactics 

allowed forecasters to build a dynamic situational model that accounted for potential 

alternative scenarios as well as the most likely outcome.  Indeed, forecasters appeared 

to be most concerned with the effects of uncertainty on their projections (Level 3 SA) 

and their ability to comprehend the environmental and atmospheric situation (Level 2 

SA).   

Limitations 

This work resulted in several insights into SA and decision making under 

uncertainty in flash flood forecasting.  Nevertheless, a number of limitations exist that 

must be considered when drawing conclusions from the data.  The focus group sample 

size was smaller than has been recommended in the literature (Caplan, 1990), with only 

four participants at most per group.  One of the main concerns with a small sample is 

group proclivity towards a single, dominant opinion, leading to difficulties in 

stimulating new discussion.  As it were, conversational themes identified in the thematic 
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analysis aligned with theoretical accounts of uncertainty management and forecast 

decision making, so we believe that the sample size was sufficient. 

In a departure from other studies related to SA and decision making, we did not 

look at each participant’s level of SA, but instead at their information requirements on 

the assumption that they were building SA.  While we did not assess decision making 

using traditional Naturalistic Decision Making methods, we were concerned with 

observing forecasters “in situ” and understanding forecaster behavior in their own 

words.  In Study I, we assumed that the presence of a guidance product on the computer 

screen equated to it being used by the forecaster.  This assumption meant that guidance 

products were recorded even if the forecaster did not consciously extract information 

from them.  However, we hypothesized that a tool’s presence in the periphery may have 

subtly affected judgment.  While the method did not produce the same degree of 

accuracy as a method like eye tracking would have, this was tempered by measuring the 

time each participant spent viewing each of the products.  

More critically, the Study I analysis was limited in that the several of the 

sampled videos had visual quality issues.  In the majority of the screen recordings taken 

by participants working at the dual-monitor workstations, the software only produced 

interpretable recordings of one of the two monitors.  As a result, although participants 

viewed guidance products on both monitors, we intentionally sampled recordings in 

which information was not only legible, but in which most of the interaction occurred on 

the visible portion of the screen.  A similar issue that we were not able to work around 

was that participants regularly brought in tablet computers and personal laptops, which 

they used to consult unofficial forecasting guidance products over the internet. 
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Summary 

The primary goal of this study was to explore the relationship among situation 

assessment, uncertainty management, and decision support tool usage in weather 

forecasting.  Through the mixed methods analysis, we were able to provide examples of 

certain links between theoretical accounts of SA and of uncertainty management.  The 

quantitative results supported the hypothesis that SA requirements differ for decisions 

in the watch and warning timeframes as well as at increasing levels of environmental 

activity.  Adding to previous explanations of forecast guidance usage in flash flood 

forecasting, the present findings indicate that hydrology-based guidance products may 

provide information, that when used in combination with other decision support tools, 

can improve forecaster SA.  Focus group discussions with professional forecasters 

revealed that uncertainty management techniques identified by NDM studies in other 

domains are also practiced in weather forecasting. 

Uncertainty management and risk reduction in the weather domain has 

previously been attributed to emergency managers’ actions (Morss et al. 2015).  This 

study demonstrates that risk reduction is part of the weather forecaster’s purview as 

well.  It is evident that uncertainty management is an integral part of situation 

assessment, and that comprehension of uncertainty in the forecast process can improve 

overall SA.  In order to further assess the relationship between forecast uncertainty and 

SA, future work should assess SA levels of forecasters while using guidance products.  

Understanding the effects of uncertainty on SA and forecast decision outcomes will not 

only illuminate how uncertainty propagates throughout the weather enterprise, but it 
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will also contribute increased knowledge into SA development among individuals in 

complex systems. 
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Chapter 5: Automation and Situation Awareness in Flash Flood Forecasting 

Introduction 

During weather prediction activities, forecasters actively seek information 

through top-down and bottom-up processes in order to establish situation awareness 

(SA) (Hoffman & Coffey, 2004; Trafton & Hoffman, 2007).  As decision support tools 

become more complex, it will be important to consider their ability to combat 

information overload while improving forecast lead-time and decision making.  Recent 

efforts have studied algorithms to automate part of the forecasting process; some 

researchers have proposed the development of weather forecasting recommender 

systems, a guidance product that would create an initial threat polygon based on 

predictions from a collection of weather prediction models (Karstens et al., 2015). 

Until recently, recommender systems have had relatively little attention in 

weather prediction.  However, they have had more traction in commercial domains, 

such as e-commerce and tourism (Braunhofer, Elahi, Ricci, & Schievenin, 2013; Burke, 

2002).  In these settings, recommender systems use prediction algorithms to classify 

items then “recommend” them to potential consumers.  These algorithms can be based 

on attributes including user demographics, preferences, or through collaborative 

filtering between the system and the user (Burke, 2002).  Recommender systems reduce 

a large amount of data based on user preferences or contextual information, which may 

help to improve information overload during the decision making process.  In weather 

forecasting recommender systems, the intention is that the system would essentially 

automate the situation assessment process.  The model-based algorithm would automate 

a “first pass” through situation assessment.  Like recommender systems in commercial 
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applications, forecast recommenders are intended to reduce forecaster workload while 

improving lead time and situation awareness (Karstens et al., 2015).  Although Karstens 

et al. (2015) found that early designs of severe hail recommenders did not significantly 

reduce the amount of time it took to issue a warning, it was hypothesized that 

recommenders played a role in the decision making process. 

Previous research has found that an appropriate level of automation for the 

context in question may improve operator workload, confidence, SA, and performance 

(Endsley & Kiris, 1995; Parasuraman & Riley, 1997; Parasuraman & Wickens, 2008; 

Wickens, 2008).  However, some studies have shown that a high degree of automation 

can lead to out-of-the-loop decision making, which can reduce an operator’s situation 

awareness (Dao et al., 2009; Endsley & Kiris, 1995).  Out-of-the-loop situations occur 

when an operator is removed from the decision process and must rely on external actors 

to make decisions, which can lead to decrements in overall awareness as well as task 

performance (Endsley & Kiris, 1995; Kaber & Endsley, 1997).  Furthermore, 

Parasuraman and Riley (1997) cautioned against improper use of automation, citing 

instances in which performance suffered from overuse, underuse, or inappropriate use 

of automated systems.  

The previous chapters of this dissertation have established that developing 

situation awareness can be affected by display attributes and uncertainty ingrained in 

decision support systems.  In the present chapter, we extend our understanding of SA in 

weather forecasting further by exploring the relationship between automated decision 

aids and SA.  The recommender algorithm design for weather forecasting was outside 

the scope of this study; instead, we focused on understanding how their presence acted 
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as a mechanism for directing forecaster attention during weather prediction tasks.  In the 

following chapter, we discuss the results from an experiment that assessed the effects of 

recommender use on forecaster SA in a flash flood prediction task. 

The Research Questions 

 Automation in the workplace affects task performance and decision-making 

within a variety of domains (Dao et al., 2009; Endsley & Kiris, 1995).  Recommender 

systems, a newcomer in the weather forecasting domain, may have potential to reduce 

time-consuming situation assessment activities within the forecasting process.  While 

some evidence exists to suggest that early versions of recommender systems may not 

significantly reduce forecaster workload, we hypothesized that recommenders would 

affect situation assessment and forecasters’ levels of SA during a flash flood forecasting 

task.  In line with this hypothesis, the primary objective of this research was to explore 

the relationship between recommender usage and SA (RQ3.1). 

RQ3.1:  How is SA influenced by recommender automation at different 

processing levels during a weather forecasting task? 

 In order to assess SA during recommender use, we employed an eye tracking 

system to capture data related to participants’ information-seeking behaviors.  To date, 

the literature contains only a small number of studies that intersect eye tracking, 

weather forecasting, and situation awareness.  As such, the secondary research aim was 

to evaluate the relationship between eye tracking measures and SA.  In what we believe 

is the first reported case study that employed eye tracking to assess a weather forecaster, 

Bowden, Heinselman, and Kang (2016) established that eye tracking provided insight 

into the forecast decision process.  Eye tracking has only recently been identified as a 
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feasible method for SA assessment; existing work suggests a positive relationship 

between eye tracking measures, SA, and decision making (Moore & Gugerty, 2010; 

Sturre, Chiappe, Vu, & Strybel, 2015; van de Merwe, van Dijk, & Zon, 2012; Yu, 

Wang, Li, & Braithwaite, 2014).  In a study of air traffic controllers, Moore and 

Gugerty (2010) found that participants with high levels of SA fixated on relevant areas 

of the information display more frequently than their counterparts with lower SA.  

Likewise, we aim to assess the predictive power of eye tracking measures in relation to 

SA in flash flood forecasting (RQ3.2). 

RQ3.2:  To what degree are eye tracking measures (total fixation duration, 

mean fixation time percentage, time to first fixation, and mean number of 

fixations) able to predict situation awareness? 

Hypotheses 

 The present study assessed situation awareness along five metrics: response 

accuracy to an SA questionnaire, evaluation time (the amount of time spent reviewing 

the display), mean count of eye fixations, total fixation duration per area of interest 

(AOI) within the display, and percentage of total fixation duration per AOI.  We 

evaluated participants’ SA based on responses to probes; from these, we determined 

participants’ SA scores at Endsley’s (1995c) three theoretical levels and as a composite 

score based on the mean of the sublevel scores.  This resulted in four scores: SALevel 1, 

SALevel 2, SALevel 3, and SAcomp.  Based on findings from Moore and Gugerty (2010), we 

hypothesized that decision support automation would affect the dependent variables, as 

listed: 
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H3.1: Situation Awareness Score (SA) 

H0: SAavailable = SAunavailable   H1:  SAavailable ≠ SAunavailable  

H3.2:  Mean task duration (t) 

H0: tavailable = tunavailable    H1: tavailable < tunavailable 

H3.3: Mean number of eye fixations (n) 

H0: navailable = nunavailable   H1: navailable > nunavailable 

H3.4: Total fixation duration by AOI (Fd) 

H0: Fd , available = Fd , unavailable  H1: Fd , available ≠ Fd , unavailable 

We expected to identify a difference between automation conditions in probe 

accuracy.  In line with findings by Endsley and Kiris (1995), it is hypothesized that 

Level 2 SA (comprehension) will be most affected by automation level.  As one 

premise was that recommenders would guide forecaster attention to areas of high risk, 

we also hypothesized that recommenders would lead to higher scores on the Level 3 SA 

(projection) probes in the scenarios where recommenders were available. 

In terms of task duration, we hypothesized that the availability of recommenders 

would lead to a reduction over the condition where recommenders were not available; 

this was expected partially because recommenders are designed to reduce lead-time.  

Karstens et al. (2015) found no significant difference between warning issuance times 

based on recommender presence and absence; however, they based their evaluation on 

polygon creation time, whereas the present study evaluated situation assessment.  The 

present study was concerned only with situation awareness, and so removed the aspect 

of action performance from the experimental equation.  Although current evidence does 

not support the suggestion that recommenders may reduce issuance time, in the present 
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study, it was expected that presence of the recommender polygons would lead to 

forecasters spending less time engaging in situation assessment. 

In terms of eye tracking metrics, we hypothesized that automation level would 

affect the number of eye fixations as well as total fixation duration within the display 

panel containing the recommenders.  While lower task durations were anticipated in the 

recommender-available condition, a higher number of eye fixations were expected in 

the recommender-available condition.  This expectation was due to the recommenders 

providing additional visual stimuli and thus attracting participant attention.  

Additionally, we hypothesized that the greatest number of eye fixations and fixation 

durations would occur in the quadrant of the four-panel information display that 

contained the recommender polygons.  We also assessed first fixation time within an 

AOI and scanning patterns across the display, but lack hypotheses due the descriptive 

nature of the parameters. 

Method 

Participants 

 The sample consisted of eighteen professional forecasters recruited from 

Weather Forecast Offices, River Forecaster Centers, and other National Weather 

Service Centers in the central United States.  Participants had to be 18 years or older as 

well as currently employed by the National Weather Service (NWS).  Furthermore, 

participants must either have held a professional forecasting role at the time of the study 

or prior to it.  Due to the nature of the decision aids, it was preferable, though not 

necessary, for forecasters to work primarily in hydrologic forecasting. 
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Participants represented a diverse set of roles within the National Weather 

Service.  Of the eighteen participants, eleven held roles as active forecasters (six in 

general forecasting and five specifically in hydrological forecasting).  The remaining 

seven participants held current roles as forecasting and research support staff, but had 

held a forecasting position within the NWS prior to the experiment.  Participants had a 

mean of 19.3 years of professional weather forecasting experience (σ = 7.95).  Some 

participants had less experience related to hydrologic forecasting (µ = 14.6 years, σ = 

7.25); however, all but one participant had responsibility for hydrologic forecasts at 

some point throughout their careers.  Finally, participants brought a range of geographic 

knowledge to the experiment; Figure 20 presents the spread of forecaster experience 

across the United States.  Several participants had previously worked in each of the 

 
Figure 20. Map representation of the number of participants with professional 

forecasting experience per River Forecast Center region in the continental United 
States	
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forecast areas selected in the scenarios and so may have had a more detailed mental 

model of the region than other participants.  

Scenario Selection 

The method employed a set of scenarios displayed with and without 

recommenders.  A set of three scenarios were selected from flash floods reported in the 

NOAA Storm Data publication and from cases that occurred during the 2015 

Hydrometeorological Testbed Experiment.  Only flash floods that occurred in May - 

July 2015 were selected.  The following three cases were selected: 

A. 31 May 2015 21:30 UTC – 1 June 2015 01:30 UTC; New Jersey 

B. 12 July 2015 06:00 UTC – 10:00 UTC; Central and Southern Indiana  

C. 14 July 2015 19:00 UTC – 23:00 UTC; West Virginia and Ohio Valley 

Each scenario consisted of a four-hour timespan in which flooding ramped up 

and persisted through the end.  Timeframes were chosen to coincide with the valid 

times of operational flash flood warnings issued by local Weather Forecast Offices.  In 

addition to an operational warning present, historical reports from United States 

Geological Survey (USGS) stream gages were assessed during the scenario timeframes.  

Selecting scenarios that overlapped with gages that reached flood stage provided a more 

objective way to verify existence of a flash flood than selecting timeframes based on 

NWS verified storm reports alone.  Furthermore, while it was required for at least one 

stream gage to reach flood stage in a scenario, not all gages in the region did; this 

allowed for an evaluation of inaccurate risk assessment. 

Scenarios were divided into two-hour halves, shown in 15-minute time steps, 

with the exception of the radar, which updated every 2 minutes.  Recommender 
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presence was assigned randomly to each trial; half of each scenario was visualized with 

recommenders and the other half without.  The guidance products, shown in Figure 21 

and described in Table 12, were presented by running the Advanced Weather 

Interactive Processing System II (AWIPS-II), a computer visualization display 

platform, through a virtual network in order to display it on the eye tracker’s monitor.  

Participants were not permitted to change the arrangement of the decision aids, the type 

of decision aids, or the color palettes of the decision aids.  However, they were allowed 

to zoom and pan across the visualizations. 

Recommender Development 

Eventually, recommenders will be created through an algorithm that combines 

outputs of multiple tools; however, at the time of this study, such strides had not been 

made for flash flood recommenders.  In order to test the effects of a recommender, then, 

a preliminary version of a recommender was created.  The recommender algorithm in 

 
Figure 21. Example of the AWIPS-II four panel interface visualizing Scenario 3 
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the present study is based on a threshold metric: a user can select a forecasting decision 

aid as well as a numerical threshold based on the values the selected aid can predict.  

For this study, the QPE-to-FFG Ratio guidance product provided the underlying model 

because it was the most traditional tool for flash flood prediction used in the 

experiment.  A threshold of 100% was selected, and the algorithm was then applied to 

the forecasting visualization.  Represented on the map as white polygons, the 

recommenders were created by drawing contours around all regions contained within an 

area of at least 10 square kilometers of grid cells modeled at or above the threshold 

value. 

Figure 22 shows an example of the recommenders created for the second 

scenario.  During the experimental trials, the recommenders were always visualized in 

the same quadrant of the AWIPS-II display as the CREST unit streamflow 

Table 12. Description of guidance products used in the present study 

Decision Aid (Abbreviation) Units Description 
CREST Unit Streamflow (USF) m3s-1km-2 Simulated surface water flows 

normalized by drainage area, 
selected from a span of 0.5 – 6 
hours after the valid time 

Precipitation Return Period (RP) Years Generates a return period based 
on precipitation rate and 
historical return periods. Higher 
return periods correspond to 
higher likelihood of flooding. 

QPE-to-FFG Ratio (FFG) N/A Calculates ratio by comparing 
Flash Flood Guidance grid 
values against MRMS radar 
precipitation rates.  Bankfull 
conditions may exist when the 
ratio exceeds 1.0. 

MRMS Composite Reflectivity 
(MRMS) 

dBZ Mosaic of reflectivity values 
measured by MRMS radars 
across the CONUS. 
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visualization.  This placement allowed for a more meaningful usage of the threshold-

contouring recommender; placing the QPE-to-FFG Ratio recommender over its own 

base product would have merely resulted in a highlighting the regions already 

represented as “at-risk” by the color scale.  Transposing the QPE-to-FFG recommenders 

into the CREST unit streamflow map theoretically would allow participants to assess 

the overlap in risk between the two decision aids. 

Data Collection Systems 

The present study used a Tobii TX300 eye tracking system to collect the 

physiological data.  In addition to eye tracking methods, a set of probes assessed 

situation awareness across the three theoretical levels.  A presentation technique, 

modeled after that used by Dao et al. (2009), was chosen for the present study.  Pointing 

to the limitations of SAGAT in terms of working memory capacity and SPAM in terms 

of recall versus true SA, Dao et al. (2009) presented three probes between short 

 

Figure 22. Recommenders in the Indiana scenario 
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simulations; the present work extended this technique to the weather forecasting 

domain.  Probes assessed SA in alignment with the theoretical definitions proposed in 

the Endsley 1995 Model of SA, which frames SA in terms of perception, 

comprehension, and projection of environmental status into the future.  In line with this 

framework, probes assessed participant awareness of information in the past (the 

information contained within the first 1.5 hours worth of data scans), the present (the 

final frame of data scans), and the future (expectations of flooding in the following two 

hours).  A complete list of the probes and a copy of the scoring guide can be found in 

Appendix E. 

Experimental Design 

 The study used a single-factor, within-subjects design that assessed the effects of 

automation use on situation awareness in flash flood forecasting.  All participants 

received exposure to both of the treatment conditions.  Scenarios were presented in a 

semi-random order, with probe order and automation condition also randomly 

presented.  Automation was present in two levels (availability or unavailability of 

recommenders).  Dependent variables were captured during the procedure: eye fixation 

count, total fixation duration, percentage of fixation duration within an AOI, SA score, 

and task duration.  

Procedure 

 Upon arrival, participants received an explanation of the study’s goals and 

activities.  Participants read through a brief training guide on the forecasting tools, and 

were given an opportunity to ask questions. Following the training, participants 

received the prompt that they had just begun their shift and a significant rainfall event 
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was underway.  A hypothetical colleague needed them to review the prior two hours of 

model data and radar scans in order to identify areas of highest flash flooding risk.  

Participants prefaced each scenario by reading a short briefing on the status of the 

environment leading up to the two-hour span contained in the scenario.  Briefings were 

selected from operationally issued heavy rainfall watches, flash flood 

watches/warnings, and mesoscale discussions produced by the Storm Prediction Center.  

An example briefing can be found in Appendix F.  

Following the briefing, participants took part in the randomly presented 

scenarios.  During each trial, participants viewed the AWIPS-II four-panel display 

showing each of the different weather forecasting decision aids.  In the recommenders 

unavailable condition, the decision aids appeared with no alterations, but in the 

recommenders available condition, the recommenders were shown as white polygons 

overlaid on the upper-left quadrant of the display.  Although participants could view the 

recommenders in the recommenders available condition, they were not constantly on 

the screen; due to technical constraints, the recommenders only appeared during the 

timestamp that they referenced.  Thus, even in the available condition, participants were 

not always able to see the recommenders.  The two experimental conditions were 

distinguished from each other in that in one, participants could choose to use the 

recommenders, whereas in the other, they were not given the option.  Participants were 

allowed up to seven minutes to assess the state of the environment. 

 During each scenario, the Tobii TX300 eye tracker captured eye fixations and 

fixation times.  In between each scenario, participants answered six probes, classified 

into one of the three SA processing levels (perception, comprehension, and projection).  
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Following the first set of probes, participants viewed the second half of the scenario 

with the reverse automation condition and the same instructions.  At the end of the 

second half, participants answered another six probes.  This process repeated for each of 

the three scenarios.  Following the data collection, participants completed a background 

experience questionnaire and were debriefed.  The experiment took 1 to 1.5 hours to 

complete. 

Results and Analysis 

 At the end of each of the six scenarios, participants completed a six-item 

questionnaire that followed the modified SAGAT protocol; display screens were frozen 

and made blank while participants attempted to answer questions related to perception, 

comprehension, and projection based on the information they had seen.  For each 

participant and simulation, we calculated an accuracy-based score for SA at Level 1, 

Level 2, Level 3, and as a mean composite of overall SA.  In addition to SA scores, we 

also measured the task duration, or amount of time a participant spent completing each 

scenario.  The eye tracking measures also produced a wealth of data, and provided 

insight into participants’ behavior related to information scanning patterns. 

The composite scores satisfied the assumptions of normality (W = 0.9759, p = 

0.05406) and constant variance (Fligner-Killeen χ2 = 0.2208, p = 0.6384).  However, 

while the individual SA level scores satisfied the constant variance assumption (Fligner-

Killeen χ2
Level 1 = 1.0599, pLevel 1 = 0.3032; χ2

Level 2 = 0.3781, pLevel 2 = 0.5386; χ2
Level 3 = 

0.0116, pLevel 3 = 0.9142), none of the level scores satisfied normality (WLevel 1 = 0.8797, 

pLevel 1 < 0.001; WLevel 2 = 0.9715, pLevel 2 = 0.02426; WLevel 3 = 0.9449, pLevel 3 < 0.001). 
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 In the recommenders-unavailable (control) condition, participants had a mean 

composite SA score of 33.59%, whereas participants had a mean composite score of 

32.81% in the recommenders-available condition.  Figures 23 and 24 present the 

distribution of SA scores (mean, Level 1, Level 2, and Level 3) between SA levels and 

automation condition, respectively.  With a further reduced sample to ensure a balanced 

dataset (n = 12), a paired two-tailed t-test failed to identify a significant difference in 

composite score performance between the recommender-present (µ = 0.32, σ = 0.09) 

and recommender-absent condition (µ = 0.31, σ = 0.11),  t(11) = 0.22, p = 0.83.  While 

the composite (mean) SA score measure was normally distributed, the individual level 

scores were not.  Accordingly, the Wilcoxon Rank-Sum test did not find any significant 

differences in performance between recommender conditions in the Level 1 score (W = 

1381.5, p = 0.8498), Level 2 score (W = 1441.6, p = 0.5621), or Level 3 score (W = 

1357.5, p = 0.9741).  This suggests that recommender condition neither significantly 

affected a forecaster’s overall nor sublevel SA. 

 

 

 

Figure 23. Boxplots showing the distribution of SA scores across performance levels 
and between automation levels 
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Task Duration 

 To address the task duration hypothesis, which posited that task duration in the 

experimental condition would differ from that of the control condition, we compared 

the mean task durations using a paired two-tailed t-test for samples with equal 	

variances.  Task duration was measured from the moment that a participant first viewed 

a scenario until the point when he or she stopped the eye tracker recording.  The 

normality assumption was confirmed with the Shapiro-Wilk test (W = 0.9785, p = 

0.1048), and the equal variance assumption was confirmed with Levene’s test (F = 

0.1920, p = 0.6622).  In Figure 25, the boxplot compares the mean task duration 

between the scenarios where participants could access recommenders and scenarios 

where participants could not. 

	

Figure 24.  Mean SA score by level and condition, with standard error bars 
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 Participants spent slightly less than one minute longer evaluating the display 

when recommenders were available (µ = 4.563 minutes, σ = 1.33 minutes) than when 

evaluating the same displays without having access to recommenders (µ = 3.757 

minutes, σ = 1.71 minutes).  A paired t-test revealed a statistically significant difference 

between conditions, t(16) = 4.04, p < 0.001.  This suggests that the presence of the 

recommenders on the display was related to an increase in task duration.   

Eye Tracking Metrics 

 The eye tracking dependent variables (total fixation duration, time to first 

fixation, and number of fixations) were dependent upon assignment of Areas of Interest 

(AOIs), or geometric regions surrounding display components that the researcher is 

interested in evaluating.  Using the eye tracking analysis software, Tobii Pro Studio, we 

created four AOIs, shown in Figure 26.  We assessed dependent variables in relation to 

the core AOIs (MRMS, RP, FFG, and USF). 

 

Figure 25. Task duration comparison between experimental conditions 
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Total Fixation Duration.  The total fixation duration measures the amount of 

time a participant fixated within an AOI over the entire recording period.  In this 

analysis, this measure includes zero values if the participant did not fixate within an 

AOI.  The full dataset satisfied the equal variance assumption (F = 0.5161, p = 0.8222), 

but it did not satisfy the normality assumption (W = 0.9270, p < 0.001).  Outliers 

beyond 3σ were removed from the full dataset and the tests were run again.  The new 

distribution still failed the Shapiro-Wilk normality test, but maintained equal variance.  

Thus, differences in total fixation duration were assessed using high breakdown and 

high efficiency robust linear regression and a Robust Wald test. 

Although standard linear regressions frequently use the ordinary least squares 

(OLS) method for estimating effects, robust linear regression parameters can be based 

on several different estimation algorithms.  Here, we chose MM-estimation with the 

bisquare weighting function; this technique uses iteratively reweighted least squares 

 

Figure 26. AOI assignment used during the analysis 
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(IRLS) to assign weights to the residuals, is appropriate for nonparametric data, and is 

also robust against outliers. 

After fitting the robust linear regression, shown Table 13, a Wald test based on 

the robust linear regression coefficients identified a significant main effect of the AOI 

variable (Wald = 21.72, p < 0.001).  The main effect of recommender presence was not 

significant (Wald = 0.5154, p = 0.4728) and the interaction between the AOI and 

recommender condition was not significant (Wald = 0.4175, p = 0.5182).  In Figure 27, 

one can see that the mean total fixation duration within the MRMS AOI (the radar data) 

was greater than fixation duration in any of the other AOIs. 

Percentage of Total Fixation Duration.  Total fixation duration measured total 

time spent within an AOI; however, as task duration differed among participants, an 

alternative measure was needed to normalize fixation patterns.  Moore and Gugerty 

(2010) found that taking the percentage of total fixation duration relative to task 

duration was a significant predictor of SA.  In line with this, we assessed percentage of 

total fixation duration to determine whether this confirmed the previous conclusions 

related to total fixation duration. 

 

Table 13. Robust linear regression parameters for the total fixation duration data 

 Estimate Std. 
Error 

t-value Pr(<|t|) 

(Intercept) 36.844 4.055 9.086 < 0.0001 
Rec[Available] 4.281 5.963 0.718 0.473 
AOI[MRMS] 26.991 5.792 4.66 < 0.0001 
AOI[RP] 3.729 5.770 0.646 0.519 
AOI[USF] -4.796 5.778 -0.83 0.407 
Rec[Available]:AOI[MRMS] -8.117 8.508 -0.954 0.341 
Rec[Available]:AOI[RP] -12.572 8.522 -1.475 0.141 
Rec[Available]:AOI[USF] -5.108 7.865 -0.649 0.517 
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After removing two statistical outliers, the data fulfilled the equal variance assumption 

(F = 1.902, p = 0.06976) but not the normality assumption (W = 0.9759, p < 0.001).  As 

with the previous analysis, a robust linear regression was used to fit the data.  The 

Robust Wald test failed to detect a significant interaction between recommender 

condition and AOI (Wald = 0.1889, p = 0.6638), but did identify a significant main 

effect in proportional fixation duration between AOIs (Wald = 24.23, p < 0.001).  

However, an alternative approach to robust ANOVA based on a robust F-test did detect 

a significant interaction between condition and AOI (Robust F = 28.12, p < 0.001).  The 

means displayed in Figure 28, particularly in the USF AOI, lends support to the 

conclusion that the proportion of time spent fixating across the AOIs changed with 

recommender availability. 

Figure 27. Mean total fixation duration by AOI type 
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Figure 28 illustrates that when recommenders were unavailable, participants 

spent the greatest proportion of their time fixating within the MRMS AOI and the least 

amount within the USF AOI.  However, when recommenders were available within the 

USF AOI, the proportion of time spent within the AOI increased moderately.  In 

comparison to the total fixation duration results, the normalized results lead to several 

interesting conclusions.  Specifically, the mean absolute time spent within the USF AOI 

was the lowest in both recommender conditions, yet the proportion of time increased 

with recommenders.   

Mean Number of Fixations by AOI.  The number of fixations variable 

measures the number of times a participant fixated within an AOI.  This parameter has 

	  

Figure 28. Percentage of fixation duration to task duration by AOI and recommender 
condition 
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been used to indicate the salience or relative importance of an AOI to a decision maker; 

AOIs with a greater number of fixations may attract a user’s attention to a greater 

degree (Poole and Ball, 2006).  Whereas the mean total fixation duration reflects the 

absolute time that a participant fixated within an AOI, the number of fixations reflects 

the frequency of fixations within an AOI.  The full dataset was not normally distributed 

(W = 0.8978, p < 0.001), but it did satisfy the equal variance assumption (F = 1.791, p = 

0.0896).  After removing the statistical outliers, the reduced dataset still satisfied the 

equal variance assumption (F = 1.1817, p = 0.3142) and was normally distributed (W = 

0.9881, p = 0.05233). 

An ANOVA test indicated that recommender availability produced a significant 

effect on the number of times a participant fixated during any scenario (F = 4.066, p = 

0.045).  A significant main effect in the number of fixations between AOIs was also 

observed (F = 8.031, p < 0.0001), although no interaction between the AOI type and 

recommender condition was found (F = 1.888, p = 0.133); Figure 29 shows the mean 

number of fixations by AOI type and recommender condition.  A Tukey’s Honestly 

Significant Difference test revealed that the number of fixations in the MRMS AOI 

significantly differed from those in the USF, FFG, and RP AOIs; however, the mean 

number of fixations within the USF, FFG, and RP AOIs did not significantly differ from 

each other.  This may be due to the visual salience of radar imagery in the MRMS AOI, 

or alternatively because radar imagery updated every two minutes during the 

simulations, which was faster than the other AOI types. 

Mean Time to First Fixation by AOI.  Mean time to first fixation indicates the 

amount of time it takes a participant to fixate on a particular AOI (in seconds).  This can 



	199 

be used to interpret the order in which participants viewed AOIs, and could also reflect 

salience of the information contained with each AOI.  Following the removal of 

statistical outliers beyond 3σ from the mean, the data still did not satisfy the assumption 

of equal variance (F = 5.600, p < 0.001) nor the normality assumption (W = 0.6164, p < 

0.001).  Exponentially transforming the dependent variable led to homoscedastic 

residuals (F = 0.9673, p = 0.4554); however, the residuals were still non-normally 

distributed, according to the Shapiro-Wilk test (W = 0.1063, p < 0.001).  Using the 

transformed data, robust linear regression using MM-estimation and bisquare weighting 

was used to estimate differences in first fixation time between recommender condition 

and AOI; the coefficients are shown in Table 14 (Multiple R2 = 0.001895). 

		  

Figure 29. Number of fixations by AOI and condition 
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A Wald test on the robust coefficients failed to identify any significant main 

effects from AOI (Wald = 1.346, p = 0.2459), recommender condition (Wald = 0.8024, 

p = 0.3704), or any significant interaction (Wald = 0.05402, p = 0.8162).  The mean 

first fixation time per AOI by recommender condition is shown in Figure 30; from the 

figure, one can estimate the average order in which AOIs were first viewed.   The mean 

first fixation time on the USF AOI was greatest when recommenders were available.  

This was an unexpected observation; we anticipated that participants would assess the 

USF AOI first in this condition, due to the recommender automation’s novelty.  

Assessing the USF panel after each of other AOIs may suggest that participants were 

developing SA with the more familiar guidance products, then evaluated the goodness 

of the automated recommendations with that foreknowledge; this hypothesis, however, 

is speculative in nature and would require further investigation.	 

Exploratory Analysis of Scanning Behavior.  In addition to recording 

information related to fixations, the eye tracking system also captured information about 

gaze direction.  Whereas the time to first fixation estimates can reflect the order that 

participants moved between AOIs, gaze direction analysis reflects scanning patterns 

Table 14. Robust linear regression parameters for the mean time to the first fixation 
by AOI and recommender condition	

 Estimate Std. 
Error 

t value Pr(>|t|) 

(Intercept) 525.1 342.2 1.534 0.126 
Rec[Available] -446.7 498.6 -0.896 0.371 
AOI[MRMS] -521.3 449.3 -1.16 0.247 
AOI[RP] -126.2 543.1 -0.232 0.816 
AOI[USF] -284 493.2 -0.576 0.565 
Rec[Available]:AOI[MRMS] 561.6 651.9 0.862 0.39 
Rec[Available]:AOI[RP] 228.8 761.3 0.301 0.764 
Rec[Available]:AOI[USF] 445.2 788.1 0.565 0.573 
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among display elements.  In the present study, we hypothesized that the recommenders 

would attract the user’s attention to the USF AOI in which the recommenders were 

embedded in scenarios with the recommender-present condition.  We estimated the 

number of movements between the core AOIs by calculating the frequency of 

bidirectional exchanges; for example, a fixation within the MRMS AOI followed by a 

fixation within the USF AOI would count as an MRMS-USF exchange.  Exchanges 

between AOIs and any part of the display not captured in an AOI (e.g. the menu bar at 

the top of the display) were excluded intentionally.  

Figure 31 presents a comparison between gaze movement exchanges between 

the recommender-present and recommender-absent conditions shown as a percentage of 

 

Figure 30. Mean first fixation time versus AOI type and recommender condition	
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all core AOI exchanges.  When recommenders were absent, participants frequently 

compared the MRMS AOI with the USF and FFG AOIs.  When recommenders were 

present, participants slightly changed their scanning behavior; participants had fewer 

comparisons between the MRMS and FFG AOIs, but slightly more RP-USF and 

MRMS-RP exchanges.	 

 Evaluating guidance usage on a participant-by-participant basis revealed 

individual differences in forecast guidance usage during the forecast decision making 

process.  Figure 32 shows the mean fixation duration percentage by AOI in both 

automation conditions.  While some trends appear, it is clear that each participant had 

unique assessment strategies.  Participants P05 and P13 appeared to have a consistent 

approach for evaluating guidance products, independent of automation condition.  

Conversely, Participant P09’s assessment approach appeared to be swayed by the 

		

 

Figure 31. Bidirectional gaze movements between the core AOIs with and without 
recommenders (always placed in the USF AOI)	
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availability of recommenders, but she generally relied upon the familiar radar imagery 

(MRMS AOI).  Similar to P09, participant P17 showed interest in the recommenders 

but not the unit streamflow visualization itself; otherwise, he was fairly consistent in his 

evaluation strategy.  It is possible that some of these differences were due to variations 

in individual expertise, familiarity with flash flood forecasting guidance products, or 

level of understanding with regard to the recommenders.		

Links Between SA Performance and Eye Movements 

 Although no differences were observed in SA scores between the recommender 

conditions, we also hypothesized that eye tracking metrics would predict SA.  In order 

		   

  

Figure 32. Differences in fixation duration percentage among four participants 
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to identify the predictive power of eye tracking variables on the composite SA score, we 

fit a multiple regression model to the data.  The dataset used for the regression was 

limited in size by the number of eye tracking observations available (n=65).  Apart from 

the eye tracking factors (Total Fixation Duration by AOI (FixDur[AOI]), Percent of 

Duration by AOI (PerDur[AOI]), Number of Fixations by AOI (n[AOI], and First 

Fixation Time by AOI (FF[AOI]), we also included the task duration variable 

(continuous), scenario location variable (categorical, Scenario A, B, and C), and 

recommender condition variable (categorical, available/unavailable). 

Analysis of multicollinearity revealed that six factors (Condition, Scenario, Task 

Duration, Fixation Duration (USF), Fixation Duration (MRMS), and the Number of 

Fixations (USF)) and two interaction terms (Condition*Task Duration and 

Scenario*Task Duration) were highly correlated.  As expected, all Total Fixation 

Duration parameters were highly correlated with the percentage of duration parameters; 

to overcome this, we fit two distinct models, one using total fixation duration and the 

other using percentage of duration. 

Regression with Total Fixation Duration.  We fit the regressions first by 

fitting the maximal model with all the other non-correlated main effects and two 

interactions; the results are shown in Table 15.  While several coefficients were 

significant predictors of SA, the Adjusted R2 value was low (Adj. R2 = 0.1703).  Of all 

the variables included in the maximal model, the only significant main effects identified 

by an ANOVA were related to scenario location (F = 5.952, p = 0.005955) and the 

Fixation Duration in the RP AOI (F = 7.189, p = 0.01111).  Thus, the search for a more 

parsimonious model began. 
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In order to fit the minimal adequate model, we used both the forward and 

backward stepwise selection methods.  The selection method, in which variables are 

iteratively added to or removed from the model, terminated at the inclusion of only two 

variables: the scenario variable and the mean fixation duration within the QPE Return 

Period (RP) AOI (Adj. R2 = 0.4204).  An ANOVA found that both main effects were 

significant (FixDurRP: F = 29.93, p < 0.001; Scenario: F = 9.385, p = 0.0002843).  The 

coefficients for the forward selection minimal adequate model are shown in Table 16. 

 

Table 15. Coefficients for the maximal model (predicting composite SA score) after 
correlated variable removal 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.2730 0.09186 2.972 0.0053 
FixDur[FFG] 0.002009 0.002431 0.8260 0.4142 
FixDur[RP] 0.001360 0.002379 0.5720 0.5712 
n[FFG] -0.0008008 0.001160 -0.6910 0.4944 
n[MRMS] -0.0004548 0.0005594 -0.8130 0.4218 
n[RP] 0.0002446 0.001141 0.2140 0.8315 
FF[USF] 0.002134 0.002209 0.9660 0.3406 
FF[FFG] -0.001258 0.001977 -0.6360 0.5288 
FF[MRMS] -0.0006129 0.004405 -0.1390 0.8901 
FF[RP] 0.0003372 0.001153 0.2930 0.7716 
Rec[Available] 0.003209 0.08228 0.03900 0.9691 
Scenario[A] 0.1160 0.08830 1.314 0.1975 
Scenario[C] -0.07205 0.08660 -0.8320 0.4111 
Rec[Available]:
Scenario[A] 0.02115 0.1173 0.1800 0.8579 
Rec[Available]:
Scenario[C] 0.06459 0.09879 0.6540 0.5175 
	

Table 16. Regression coefficients for the minimal adequate model (predicting 
composite SA score) as identified with a forward stepwise selection method. 

 
 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.2195 0.03680 5.964 < 0.0001 
FixDur[RP] 0.002275 0.0005113 4.450 < 0.0001 
Scenario[A] 0.1023 0.03414 2.995 0.003980 
Scenario[C] -0.03928 0.03512 -1.118 0.2679 
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The forward stepwise regression technique selected the RP AOI as a significant 

predictor, the backward stepwise regression technique selected the MRMS AOI as a 

significant predictor (at the α = 0.10 significance level) of composite SA score.  While 

no effect from automation condition was identified, the results suggest that assessment 

of specific in-development guidance products can improve overall SA. 

Regression with Percentage of Duration.  As with the total fixation duration 

regression, a minimal adequate model was selected with forward and backward 

stepwise regression method.  The forward selection method fitted a model with a higher 

adjusted R2 value than the backward selection method.  Similar to the previous analysis, 

the model contained the scenario variable and the percentage of total duration within the 

QPE Return Period (RP) AOI.  

 In a secondary analysis to predict SA scores at Level 1, 2, and 3, it was found 

that the percentage of total duration within the QPE Return Period (RP) AOI was also a 

significant predictor of SA Level 1 accuracy.  Fixation times did not appear to have any 

significant effect on Level 2 accuracy.  However, the SA Level 3 regression suggested 

that the percentage of total duration within the Unit Streamflow (USF) AOI was a 

significant predictor. 

Confidence Level Analysis 

 Following data collection, participants completed a debriefing questionnaire.  A 

component of the questionnaire assessed their confidence levels during each scenario.  

Confidence scores were self-reported on a scale of 1 (strongly disagree) to 5 (strongly 

agree).    Overall, participants reported having a moderate degree of confidence in the 

Indiana scenario (scenario B; µ = 3.89, σ = 0.66), the West Virginia/Ohio Valley 
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scenario (scenario C; µ = 3.78, σ = 0.53), and the New Jersey scenario (scenario A; µ = 

3.69, σ = 0.77).  No significant difference was identified in confidence between 

locations.  As confidence in task performance level was equivalent between geographic 

locations, this indicates that no scenario was subjectively more challenging than 

another.  

Discussion 

This research explored the relationship between SA and recommenders, a type 

of attention-directing automation.  The experiment assessed SA with a probe-based 

measure, and in addition, we investigated the ability of eye tracking metrics to predict 

SA in a flash flood forecasting task.  Eye tracking is a direct assessment method, yet has 

had only recent applications in the weather forecasting domain.  However, results have 

shown that the method provides researchers with insight into forecaster information-

seeking behavior (Bowden et al., 2016).  In the present study, this novel combination of 

probe-based assessment and eye tracking contributed to a deeper understanding of how 

graphical attention-directing mechanisms affected forecaster SA. 

Independent from SA scores, we hypothesized that participants would fixate on 

the USF AOI more often and for longer durations when recommenders were available 

than when they were not.  Increases in both measures under the recommender-available 

condition were expected due to the additional information provided by the 

recommenders.  This hypothesis was partially confirmed; the number of fixations within 

the USF AOI was significantly greater when recommenders were available than when 

they were not.  This was a logical outcome when one assumes that participants would 

want to familiarize themselves with the unfamiliar recommenders.  However, the 
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fixation duration results also indicated that greater attention to the USF AOI did not 

noticeably diminish the amount of time participants spent assessing information in the 

other AOIs.  This observation was supported further by the task duration results, which 

found that when recommenders were available, participants spent, on average, 

approximately one minute longer assessing the entire dataset than when recommenders 

were unavailable. 

The difference in task duration between conditions may be due to two possible 

causes.  First, the increase in duration may have been related to the additional 

information presented by the recommenders.  Previous research has shown that the 

forecasting process involves a large amount of comparison between information sources 

to make sense of the situation and to assess bias (Kirschenbaum, 2004).  It is likely that 

when confronted with the uncertainty surrounding how to use new information sources, 

the study participants spent the same amount of time reviewing the more familiar AOIs 

but also spent additional time assessing the recommenders.  The evaluation of fixation 

time percentage lends support to this hypothesis. 

The second possibility is that participants took more time to complete the 

scenarios with recommenders due to the unfamiliarity with the recommenders 

themselves.  During the study, several participants commented that they were not sure 

that they were using the recommenders correctly.  When in such a situation, it is 

possible that such participants spent more time assessing the information in the 

recommenders.  Still, this supports the expectation that recommenders would draw 

participant attention from other areas of the display. 
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While several of the eye tracking and task performance metrics indicated a 

significant difference in the recommenders-available condition, not all original 

hypotheses received support.  Specifically, the results did not support the hypothesis 

that the recommenders-available condition would be associated with greater total 

fixation durations in the USF AOI.  Unexpectedly, the USF AOI received the lowest 

total fixation duration of any of the AOIs whether recommenders were available or not.  

Participants spent the greatest amount of time fixating within the MRMS AOI (the radar 

scans).  There are several possible explanations for this outcome.  This panel held the 

radar imagery, and it updated more frequently than the hydrologic models did.  These 

updates meant that the visual stimuli changed more frequently, which may have 

attracted the eyes and motivated participants to reassess the panel more often than the 

other AOIs.  Secondly, the radar imagery had the added benefit of being the most 

familiar information source available in the study.  Participants had varying levels of 

experience with the other three guidance products. 

The comparative nature of situation assessment in weather forecasting has been 

well established in the decision making literature (Kirschenbaum, 2004; Pliske, 

Crandall, & Klein, 2004; Trafton & Hoffman, 2007).  The gaze movement analysis 

revealed that some of the most frequent bidirectional exchanges involved the MRMS 

AOI.  Considered alongside the total fixation duration and fixation duration percentage 

data, this suggests that participants not only used the familiar radar imagery to establish 

a baseline understanding, but they also used it in comparison tasks, perhaps to calibrate 

their mental models to the less familiar guidance products.  This hypothesis may also be 

supported by the first fixation time results.  On average, participants fixated upon the 
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radar imagery before looking anywhere else on the screen, regardless of the 

recommender condition. 

Implications for Eye Tracking as an SA Assessment Method 

The present study suggests that direct, eye tracking-based measures can predict 

SA accuracy, a finding that is consistent previous research (Moore & Gugerty, 2010; 

van de Merwe et al., 2012).  In a study of air traffic controllers, Moore and Gugerty 

(2010) found that percentage of time fixating on an AOI was the strongest predictor of 

overall awareness; the regression analyses in the present study support this.  

Additionally, Moore and Gugerty (2010) observed that low error rates were associated 

with higher number of fixations.  Based on this precedent, we hypothesized that 

participants with large fixation durations (both absolute and percentage-based) and 

fixation counts within the USF AOI would have a higher level of SA than participants 

with low fixation duration and few fixations with the recommenders. 

Similar to the previous studies, we found that the fixation duration percentage 

was a significant predictor of overall SA.  We expanded upon Moore and Gugerty’s 

(2010) work by assessing the predictive power of additional variables and found that the 

total fixation duration and, to a lesser degree, number of fixations within specific AOIs 

were alternative predictors.  The present findings also weakly support Moore and 

Gugerty’s (2010) observation of the inverse relationship between fixation counts and 

error rates.  The stepwise regression analysis showed that one of the eye tracking 

measures—number of fixations within the QPE Return Period (RP) AOI—was a 

significant predictor of overall SA in terms of probe accuracy.  This was unexpected, 

but introduced a new question regarding the utility of other in-development flash flood 
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prediction models.  Although radar scans and Flash Flood Guidance-based (FFG) 

guidance products are available in operational settings, the QPE Return Period (RP) and 

CREST Unit Streamflow (USF) products are currently in-development and not 

available for use in formal work display systems.  In the experimental scenarios where 

recommenders were available, the recommender polygons were always overlaid within 

the USF AOI, so it was intriguing to identify the relationship between frequent use of 

the QPE Return Period guidance product and SA. 

 Although this study did not identify a strong relationship between fixation count 

and SA accuracy, analyses of fixation entropy may provide insight into why participants 

experienced generally low levels of SA.  Entropy, a measure of fixation location 

variability, has been used to evaluate human attention (van de Merwe et al., 2012).  

Moore and Gugerty (2010) found that as error rates increased, participants exhibited 

less focused scanning patterns; the same was found by van de Merwe et al. (2012).  

Moore and Gugerty (2010) found that successful participants tended to fixate in tight 

clusters, whereas low-performing participants fixated in seemingly random motions 

throughout widely spaced areas.  High entropy was attributed to uncertain goals as well 

as high workload (van de Merwe et al., 2012).  However, measuring entropy within the 

weather forecasting display posed a great challenge; whereas aircraft are generally static 

entities, we question whether this behavior would exhibit itself among weather 

forecasters. 

Air traffic control tasks require focus on distinct areas of interest (e.g. aircraft), 

but weather forecasting displays often contain many different types of guidance 

products.  Indeed, the four-panel display used in the present study was a simplified 
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version of the type of displays used in operational forecasting; the simplified display 

was chosen because it allowed for greater control in the experimental design and eye 

tracking analysis.  The decision making literature has suggested that forecasters attend 

to information in a goal-directed manner (Trafton et al., 2000).  Yet, the layout and 

dynamic nature of many forecast guidance products lead to information attributes 

changing not only in location, but also in shape, size, and velocity, among others.  Thus, 

we hypothesize that in an operational forecasting task, a weather forecaster’s attention 

would be more dispersed across a display, and the relationship between entropy and 

error rate may not be generalizable to all domains.  Gugerty (2011) suggested that 

attention allocation capacity could impact an operator’s ability to develop SA; future 

research should explore the role of attention allocation processes on the situation 

assessment process in weather forecasting.   

Implications for Recommender Development 

An investigation of the effects of recommender automation on forecaster SA 

formed the core of this study.  We hypothesized that the recommender polygons would 

act as cues for focal attention, and as such, participants would attend to the highlighted 

areas and develop more accurate SA than when not exposed to recommenders.  While 

the eye tracking performance metrics did reveal differences in scanning behaviors 

between automation levels, the probe-based technique did not identify any significant 

improvements in SA.  There are several possible explanations for this outcome, ranging 

from technological design to individual factors.  

In human-computer interaction domain, the literature has suggested that SA and 

decision making may falter when operators lack experience and trust with technical 
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systems (Kaber & Endsley, 1997).  In the present study, participants received an 

overview of the technical design and purpose of recommenders.  In addition, the 

number of scenarios afforded an opportunity for each participant to work through the 

initial learning curve.  Even so, none of the participants had ever worked with 

recommenders prior to the study, and several were even unfamiliar with the concept.  

Discussions of the out-of-the-loop decision making problem have contained cautions 

against drawing conclusions about the relationship between SA and decision making 

when operators lack necessary experience (Endsley & Kiris, 1995).  Nevertheless, we 

do not think this solely explains low SA scores in the present work, as participants were 

all experienced, professional forecasters with some degree of subject matter expertise in 

hydrologic forecasting. 

Apart from a lack of experience, it is possible that the participants did not trust 

the information provided by the recommenders.  In a study of a severe hail 

recommender system, Karstens et al. (2015) found that forecasters only used 

recommenders in fewer than 20% of the opportunities in which they were provided, 

which the authors interpreted as an indication that the forecasters were not interested in 

using them, or that they didn’t trust the recommendations.  Studies have shown that low 

trust in automation can affect operator performance (Hoff & Bashir, 2015; Kaber & 

Endsley, 1997).  Operators can learn to trust a system if it has a transparent and usable 

design, and if system performance is effective, reliable, and predictable (Hoff & Bashir, 

2015).  As automated decision support systems for weather forecasting develop and 

gain more time in use, we believe that user trust in recommender systems would 

improve with a transparent creation process coupled with a training program.    
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The recommender system’s design may also have influenced participants’ 

abilities to develop SA.  Many previous studies have evaluated the impact of level of 

automation (LOA) on SA; for example, Kaber and Endsley (2004) found that SA level 

and task performance were best with the aid of low to moderate levels of automation.  

They hypothesized that SA decrements could have been due to active and passive 

information processing styles, a conclusion that prefigured Moore and Gugerty’s (2010) 

work.  The present findings, in combination with qualitative studies of weather 

forecasting, suggest that comparison among forecast guidance products and decision 

support automation involves passive as well as focused processing, but that forecast 

guidance use may exhibit itself differently in weather forecasting than in other domains, 

such as air traffic control or driving. 

Lastly, it is also possible that the recommenders did affect SA but that the 

probes lacked the power to detect the differences.  Similar to the current work, in an 

evaluation of LOA and SA, Dao et al. (2009) failed to detect a significant difference in 

SA probe response accuracy during a short-duration task; however, they observed a 

significant effect of automation level on response latency measure.  A preliminary 

analysis of response times in completing SA probes in this research, however, failed to 

detect any significant differences between automation conditions.  Following this 

realization, we hypothesized that the forecast areas in each scenario were too spacious, 

and that participants may have had high levels of SA for smaller sectors, something not 

captured in the scoring metric.  A case study of the scanning patterns of two low-SA 

(overall score) participants revealed that they focused their attention on small sections 

of the forecast area, rarely deviating out to assess other areas of the map.  As a result, 



	215 

they received points for the areas of risk they correctly identified, but received no points 

for the areas of the map they neglected to view.  This may have been a mechanism for 

dealing with the workload, the short timeframe, or it may even have been due to prior 

professional training.  In future work, it would be of benefit to extend this research by 

assessing SA in sectorized forecast decision making. 

Limitations 

Several things may limit the generalizability of this study.  First, participants 

were asked to identify areas of risk over regions of the US that they may not have been 

familiar with.  For example, one participant had extensive experience forecasting in 

Indiana, and so he was very familiar with county names and river structures during the 

two Indiana scenarios.  Others, however, expressed discomfort with being able to assess 

risk accurately in areas with which they were not familiar.  They also had trouble 

remembering the county names and river structures.  As past research into forecasting, 

experience, and SA has shown, experience is a large factor in SA, and such a lack of 

experience may be a contributing factor to diminished performance in this experiment. 

Technical Limitations.  At the time of this study, recommender systems, 

particularly for flash flooding, were in the early development stages.  The recommender 

algorithm used in the present study was based on a threshold from the QPE Ratio 

product.  The QPE-to-FFG ratio product was chosen due to FFG’s familiarity to most 

forecasters across the United States; however, it might have been better either not to 

display FFG as one of the four panels in the display, or to select a different 

recommender product.  Even displayed over the unit streamflow (USF) map, it was 

clear that the recommenders were only highlighting the items that were visible in the 
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QPE-to-FFG ratio map; however, it did provide a way to directly compare the two 

products in a way that overlaying the two maps on top of each other did not (overlaying 

tends to be messy and hard to interpret when the color tables conflict).  Forecasters 

often engage in comparison activities and so this may be a way to facilitate comparison 

and mental model building (Kirschenbaum, 2004; Trafton & Hoffman, 2007). 

In addition, few participants were familiar with the concept of recommender 

systems, which likely impacted general understanding in terms of usage.  In the 

understanding that recommender systems would become more complex prior to 

operationalization, we did not want to mislead participants in terms of the current 

recommender capability.  It is possible that participants may not have fully understood 

how to incorporate recommenders into their decision process.  Nevertheless, the eye 

tracking measures showed that participants did consult the recommender AOI in those 

scenarios where recommenders were available.  As recommender systems take on a 

higher degree of complexity, their place within the situation assessment process may 

adapt.  Due to technical constraints imposed by the current state of recommender 

technology, the present work was not able to capture such user behavior, but we suggest 

that this work has implications on understanding the relationship between SA and 

graphical mechanisms for directing attention in a weather forecasting display. 

 Threats to Internal Validity.  Several measures were taken in order to reduce 

threats to the study’s internal validity.  In terms of a maturation effect, the study was 

designed to be approximately one hour in duration, and in the longest case, the 

participant in question took about one and a half hours to complete the study activities.  

This timeframe was selected to minimize effects from participants’ moods or behaviors 
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changing due to tiredness, inattention, or other factors caused by the experiment.  

Likewise, in order to determine whether the results were affected by testing effects, the 

researcher conducted a statistical test to identify potential differences in responses 

caused by order.  As previously discussed, no significant difference in terms of fixation 

duration was found. 

 Lastly, as with many human-subjects studies, a possible threat from participant 

reactivity exists.  As the experiment occurred in a controlled laboratory environment, 

and participants were aware that the procedures used eye tracking and an experimental 

form of automated guidance, it is possible that participants altered their typical situation 

assessment strategies as a result.  In order to combat this, participants were instructed to 

review the provided data as they usually would.  Nevertheless, several participants 

commented that using the four-panel AWIPS-II display was akin to “trying to work at 

someone else’s desk.”  In future work, a longitudinal study or a naturalistic decision 

making approach could be used to assess effects of recommenders with participants in a 

more natural setting, though this, too, might produce observational bias. 

Summary 

The current study points to several avenues for future work that could improve 

understanding about how weather forecasters develop and maintain SA, particularly 

during tasks involving decision support automation.  While the probe-based technique 

did not reveal a significant effect from the recommender system on overall SA 

accuracy, the eye tracking analysis did reflect differences in scanning behaviors when 

participants had access to the automation.  From these results, we can conclude that the 

recommender system did not distract attention from areas of risk; with that in mind, 
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participants largely had low SA scores across all levels.  Going forward, additional 

work should extend the methodology to forecasting over a smaller sector.  Furthermore, 

using eye tracking with a more naturalistic approach with eye tracking may permit 

researchers to capture data from forecasters in operational settings in a relatively non-

intrusive manner.  This type of approach could provide insight into real-time situation 

assessment in scenarios with real-world impacts.  

 The greatest contribution of this work is the validation that eye tracking can be 

used to assess SA in weather forecasting, a complex sociotechnical work domain.  In 

the few other studies that have explored the use of eye tracking as an SA assessment 

method, research has frequently focused on aviation, air traffic control, and driving.  

The current findings provided direct evidence of the impact of focused attention on 

forecaster SA, and from a methodological perspective, showed that several eye tracking 

metrics can be used, to varying degrees, as predictors of SA.  This research suggests 

that eye tracking has potential for use in operational forecasting environments, and it 

may be an effective tool for assessing training needs for forecasters. 
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Chapter 6: Discussion and Conclusions 
 

Weather forecasters frequently work with large quantities of data, and previous 

research has sought to address concerns related to information overload, increased 

workload, and diminished performance (Daipha, 2010; Karstens et al., 2015; Stuart, 

Schultz, & Klein, 2007).  In the present work, we have been concerned with 

understanding technological design factors that influence situation awareness (SA) and 

decision making during flash flood forecasting tasks.  Here, we have argued that the 

forecasting process and outcomes can be improved by designing decision support 

technology to suit the cognitive and task-related needs of forecasters.  In Chapter 3, we 

investigated the effects of visualization algorithm and visual display properties on 

perception and recognition of a flash flood threat.  In the following chapter, we explored 

the relationship between information requirements, situation assessment, and 

uncertainty management along the forecasting timeline.  Finally, in Chapter 5, we 

analyzed the effects of an automated decision support technology on SA with a novel 

eye tracking methodology. 

The current work sought to enhance current understanding of decision making 

with several studies focused on identifying interactions among decision support design, 

weather forecasting, and SA.  Each study contributed to the user-centered development 

of the Flooded Locations and Simulated Hydrographs (FLASH) suite of flash flood 

forecast guidance products.  In the first study, we found that data aggregation methods 

affected signal detection during a flash flood prediction task.  Signal detection, a 

component of Level 1 SA (perception), involves an operator determining whether or not 

two stimuli are different (Stanislaw & Todorov, 1999).  When evaluating guidance 
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products during a weather event, a forecaster must be able to detect patterns and 

comprehend their significance.  Based on the findings, we concluded that the data 

aggregation method did influence incidence rates of error types in a threat detection task 

within one of the FLASH visualizations.  Participants were statistically most likely to 

make correct threat assessments when the stimulus event had small spatial coverage, 

minimal property damage, and was visualized with the average-based aggregation 

method. 

 The mixed methods analysis in Chapter 4 led to several insights into 

information seeking and uncertainty management behaviors during flash flood 

forecasting.  In the quantitative component, we established that forecasters had different 

SA requirements at different scales, particularly with regard to time and environmental 

activity level.  Like Daipha (2010) and Morss and Ralph (2007), we observed that 

forecasters compared a diverse collection of guidance products prior to making a 

forecast decision.  Out of all the decision support products available to participants in 

the Hazardous Weather Testbed experiment, radar imagery, hydrologic models, and 

flash flood guidance-based guidance products were viewed for the most time prior to 

issuing a watch, whereas radar imagery, flash flood guidance, and quantitative 

precipitation estimates (QPE) guidance products received the most screen time in the 

warning phase.  These observations support Kirschenbaum (2004), who suggested that 

weather forecasters construct their mental models by comparing information sources 

and extracting information. 

In addition to data comparison and goal-directed information extraction, the 

forecasters attempted to develop their SA under uncertain conditions by employing 
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uncertainty management tactics.  Lipshitz and Strauss (1997) proposed that decision 

makers cope with uncertainty through reduction, assumption-based reasoning, weighing 

alternatives, forestalling, and suppression, known as the R.A.W.F.S. heuristic.  Using a 

theoretical coding framework based on work by Lipshitz and Strauss (1997), we found 

that forecasters frequently discussed individual-level tactics, such as reduction and 

suppression, as well as organizational-level tactics, such as acknowledgement.  These 

findings indicate that when under uncertainty, situation assessment involves more than 

intuition and analysis, as proposed by others (Doswell, 2004).  With examples drawn 

from the focus group discussions, we illustrated that SA in weather forecasting is in part 

governed by an individual’s ability to cope with uncertainty. 

The mixed methods study gathered information about situation assessment and 

SA requirements for flash flood forecasting in a naturalistic environment, and the third 

study built upon this foundation to assess the effects of automation on comprehension 

and projection, while also testing the efficacy of eye tracking as an SA predictor.  

Whereas the first two studies primarily assessed elements of Level 1 (perception) and 

Level 2 (comprehension) SA, the final study evaluated SA across all three levels in an 

automation-aided forecasting task.  We hypothesized that availability of flash flood 

recommenders would draw forecaster attention away from other areas of risk, leading to 

an operator-out-of-the-loop phenomenon and diminished awareness.  This hypothesis 

was not supported; no statistical differences were observed in SA scores collected with 

a probe-based technique.  This finding suggests that recommenders hold promise as 

decision support tools for weather forecasting.  Although we had hypothesized that 

recommenders would reduce SA, the results indicated that this did not occur.  Still, 
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participants across the board exhibited low levels of SA, which was attributed to large 

forecasting sectors and levels of local knowledge among participants. 

In relation to the literature, these findings are intriguing.  While Endsley and 

Kiris (1995) observed a negative correlation between automation level and SA, Kaber 

and Endsley (2004) found that moderate levels of automation were associated with 

higher levels of SA.  We suggest that, similar to Kaber and Endsley’s (2004) work, the 

recommenders acted at a moderate level of automation.  Eye tracking showed that 

participants did fixate upon the automation, but as the study did not require participants 

to base decisions on the automation alone, we propose that SA and task duration would 

improve as operators become more experienced with the new systems.  Particularly in 

terms of task duration, as duration decreases, forecast lead time has the potential to 

increase.  In addition, while Dao et al. (2009) did not detect any significant difference in 

SA accuracy between automation levels, they did find that SA as measured by response 

time did correlate to automation level.  A preliminary investigation did not reflect a 

significant correlation between response times and the current results, but further 

research would be needed.  

Limitations 

 As discussed in the prior chapters, each study had several limitations.  Primarily, 

sample sizes, participant expertise, and technical issues had the greatest potential to 

limit the findings and generalizable conclusions.  Here, we reflect upon several of the 

limitations and discuss their relative importance. 

Conclusions from the research were constrained by attributes of the samples.  In 

the data aggregation method evaluation (Chapter 3), the sampled participants did not 
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possess professional expertise, which may reduce the ability to draw generalized 

conclusions about signal detection by expert forecasters.  While the participants were 

not professional forecasters, the sample was selected from the population of 

meteorology students and postdoctoral researchers at the University of Oklahoma.  We 

justified this choice based on the assumption that those engaged in meteorological 

studies would have relevant experience with regard to interpreting map-based 

environmental visualizations. 

Participant experience may have also limited performance in the recommender 

evaluation (Chapter 5).  In weather forecasting, an SA requirement is awareness of 

regional geography, known as local knowledge.  While a sample of expert forecasters 

was used, levels of regional forecasting experience varied.  As overall SA scores were 

generally low, it is possible that some participants lacked geographical knowledge on 

some of the areas used in the scenarios.  Likewise, performance may have also been 

limited by large forecasting sectors. 

In the mixed methods study (Chapter 4), the small sample may cause concern 

that not all viewpoints were captured in the focus groups.  It is worth noting that 

although the sample size was smaller than the literature has recommended, the 

qualitative data achieved saturation.  There is concern that dominant perspectives can 

overshadow alternative, minority comments in small sample focus groups.  This 

limitation was considered in the study design and was addressed with proper facilitation 

techniques.  However, in the quantitative analysis of SA requirements, sampling issues 

may have had a greater impact.  Despite having the potential to collect more than 800 

hours of forecasting data, issues with the recording software and external influences 
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(e.g. participants using personal computing devices) led to a greatly reduced sample.  In 

order to accommodate for this, data quality was ensured with sampling techniques that 

removed inadequate recordings.  Still, conclusions drawn from this data only reflect a 

partial image of information seeking behavior during flash flood forecasting.  

 Upon reflection, these limitations could be overcome through several means in 

future work.  Conducting additional data collection of forecast guidance usage in future 

testbed studies could add to the data corpus.  The same would apply for future 

applications of the focus group methodology.  Circumventing limitations associated 

with participant experience poses a greater challenge, however.  Presenting experienced 

participants with scenarios located in their regions of employment risks biasing 

performance if participants recall the actual weather event.  As such, we recommend 

that future studies consider using non-invasive observational techniques or qualitative 

research methods, such as Cognitive Task Analysis, to assess SA and decision making 

in an operational or quasi-operational forecasting environment. 

Decision Making in Weather Forecasting 

 Through this work, we have provided a complementary perspective to Doswell’s 

(2004) account of decision making heuristics and biases in weather forecast decision 

making.  Doswell (2004) presented a framework of forecast decision making in which 

forecasts were determined through a combination of analytical and intuitive processes.  

Analytic decisions were procedural and rule-based, whereas intuition-based decisions 

were subject to a number of cognitive biases and heuristics, such as the availability and 

representativeness heuristics.  Supporting this framework, Stuart et al. (2007) argued 

that a successful integration of analysis and intuition is at the heart of recognition-
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primed decision making (RPD).  Similarly, as a result of interviews with professional 

forecasters, Pliske, Crandall, and Klein (2004) found that experts were distinguished 

from non-experts in that they used a more flexible approach to forecasting, seeking and 

comparing information sources in order to build a model.  Non-experts had a more fixed 

approach, and primarily relied on computational predictions and procedural policy.  In 

the present work, findings from the focus group analysis corresponded to these earlier 

works and provided an extended understanding of decision support technology’s effects 

on SA under uncertainty. 

Situation awareness (SA) is not only regarded as an influential factor in decision 

making, but much research has focused on its impacts on safety.  While some research 

has focused on effects of SA loss in aviation accidents (Endsley, 1995b; Endsley & 

Garland, 2000), we argue that the implications from loss of SA in weather forecasting 

can have just as great impacts.  In a review of the warning operations during the May 3, 

1999 tornado in Moore, Oklahoma, Andra, Quoetone, and Bunting (2002) attributed 

forecaster SA to tightly-coupled interactions between decision support technology and 

individual expertise.  The authors associated insufficient SA with conditions involving 

situational uncertainty and incorrect forecaster preconceptions.  Insufficient SA was 

compounded by information that was “changing and sometimes unexpected, ambiguous 

or conflicting” (Quoetone, Andra, Bunting, & Jones, 2001).  In the current work, 

observations revealed that forecasters cope with such uncertainty primarily through 

reduction and suppression tactics, although organizational policy also contributes to 

uncertainty and risk management.  However, this revealed a major challenge related to 
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assessment of SA in the forecasting domain: as framed by several existing SA 

frameworks, SA is assessed in relation to a “ground truth.” 

Ground truth has been a point of contention in the literature.  Dekker, 

Hummerdal, and Smith (2010) questioned the appropriateness of accuracy-based 

assessment techniques, expressing the concern that such a method based would require 

an “omniscient, normative arbiter or homunculus that knows completely and accurately 

the interdependencies of all contextually dependent variables” (Dekker et al., 2010). 

While this perhaps poses slightly less of a problem in the weather domain, where events 

can be verified objectively after the fact, some observational systems may still contain 

inaccuracies.  This is relevant to the present work, where “ground truth” was 

determined from historic records and environmental sensor networks (e.g. stream 

gages), which may contain incomplete entries or imprecise recordings.  In our view, 

minimizing the effects of the role of ground truth on probe-based assessment methods is 

deserving of attention in future research.  

  It is possible that a solution could involve reframing “ground truth” in SA 

assessment to align with definitions of forecast goodness.  In domains involving high 

levels of uncertainty, establishing a situational model mirroring the actual environment 

may pose a great challenge.  For example, in long-term weather predictions, a forecaster 

may only have access to climatological data and environmental models, and if initial 

conditions or modeling parameters involve even a small degree of error, predictions can 

diverge from the eventual actuality.  An additional element of complexity is introduced 

when shifting from deterministic to probabilistic forecasts.  One may then ask, is it 
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appropriate to speak of “good SA” if a forecaster’s situational model is dependent upon 

predictions that lack accurate, real-time observations? 

In response to this, we suggest that future studies of SA in weather forecasting 

consider the definition of forecast goodness as discussed by Murphy (1993).  In his 

essay on characterizing forecast quality, Murphy (1993) proposed that a “good” forecast 

was one that best matched current model predictions, led to societal benefit, and most 

relevantly, conformed to the forecaster’s best conception of the current situation.  If one 

assumes the normativist perspective, then one believes that there is a ground truth for all 

decisions (Dekker et al., 2010; Parasuraman, Sheridan, & Wickens, 2008).  While 

recognizing that SA, action selection, and performance are governed by different 

cognitive mechanisms (Wickens, 2015), we question what is the most appropriate type 

of ground truth to use for assessment.  As Endsley (1995c) has pointed out, accurate SA 

does not necessarily equate to good performance.  Indeed, the opposite could easily be 

imagined, in which a forecaster has a high level of awareness of what the models 

predict, and then makes a forecast matching their SA, only in retrospect realizing that 

the prediction was overinflated (or perhaps worse, missed).  Based on the present and 

past research, we suggest that SA is a core component of weather forecast decision 

making, but accurate assessment of it requires further discussion within the scholarly 

community. 

A Reflection Upon Situation Awareness in Theory and Practice 

 In addition to exploring situation assessment in weather forecasting, the findings 

provide insight into human reasoning and judgment under uncertainty.  Underpinning 

this dissertation was Endsley’s 1995 Model of SA, which provided a consistent and 
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widely accepted framework for the design of each experiment.  In conducting the 

present work, we identified several aspects of the construct that have as of yet received 

little attention in the literature. 

 Several of the longstanding tenets of Endsley’s 1995 Model of SA were 

observed in the present work.  In the recommender evaluation, we determined that 

while forecaster SA was not diminished when exposed to the automation, the decision 

support tool did influence certain scanning measures.  In Endsley’s (1995c) model, 

automation is identified as a limiting factor to SA in many decision environments.  

However, Kaber and Endsley (1997) also found that when automation allowed 

interactivity between the operator and the system, SA improved.  This difference in 

levels of automation provides a likely explanation for the present findings. 

 Additionally, Endsley’s 1995 Model of SA recognizes the impact of interface 

design on an operator’s ability to acquire and maintain SA.  Indeed, Endsley (1995c) 

states that interface design affects “how much information can be acquired, how 

accurately it can be acquired, and to what degree it is compatible with the operator’s SA 

needs.”  In the data aggregation evaluation in Chapter 3, we found that the algorithm 

used to aggregate points within a large dataset influences an operator’s Level 1 and 

Level 2 SA.  Although the current goal was to identify an aggregation algorithm that 

minimized missed forecasts, we suggest that these findings could be applied to conform 

to one’s own risk tolerance level. 

The present findings also support recent arguments in favor of the nonlinearity 

of the three levels of SA.  Perhaps misconstrued due to the term “level,” some scholars 

have presumed that the Level 1 precedes Level 2, which in turn precedes Level 3 SA 
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(Chiappe, Strybel, & Vu, 2012; Klein, 2015b).  However, in a recent treatise to address 

misperceptions of the 1995 Model, Endsley (2015) argued that the three levels of SA 

are not necessarily a linear sequence.  While it is easy to view the three levels of SA as 

a process, our findings support Endsley’s (2015b) viewpoint.  The present findings 

support previous work that has showed that situation assessment involves both bottom-

up and top-down processing (Endsley, 1995c).  The findings, particularly from the 

mixed methods analysis, suggested that Level 3 SA preceded a goal-directed search for 

information, which was then coded into Level 1 and Level 2 SA.  The present work 

supports the application of the 1995 Model of SA to the field of forecast decision 

making, an explanatory framework already accepted by practitioners within the weather 

community (Jones, Quoetone, Ferree, Magsig, & Bunting, 2003; Quoetone et al., 2001).  

Nevertheless, this dissertation has shown that several outstanding issues need further 

investigation. 

In the present and related works, the question of external props has consistently 

stimulated debate.  Recent additions to the field, such as the Situated Approach to SA, 

draw their origins in part from the idea that SA can exist in the environment, not solely 

within the head, as they suggest the 1995 Model of SA proposed (Chiappe, Strybel, et 

al., 2012; van Winsen & Dekker, 2015).  Addressing misperceptions of the 1995 Model 

of SA, Endsley (2015b) argued that while SA is affected by situational context, the 

construct is meaningless if it is not contained within memory.  The link between 

memory and SA has been well established in the literature (Endsley, 1995c; Adams, 

Tenney, and Pew, 1995; Wickens, 2015) but we suggest that the role of props needs 

examination.  For example, in the present work, the freeze-probe measure revealed low 
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levels of SA among the participants.  We hypothesized that this may have been due to a 

combination of large forecasting sectors and a divergence between reality and the 

experimental design.  Specifically, we observed participants having difficulty orienting 

to the blank maps presented in the probes.  It is possible that had participants been given 

access to the displays while answering the probes, performance would have improved.  

Indeed, this would be a more familiar process for professional forecasters; few, if any, 

operational forecast decisions without an external prop (e.g. a radar scan or a numerical 

model output) visible on the display.  Thus, while SA acquired from additional 

guidance products would theoretically be contained within the forecaster’s memory, the 

awareness and subsequent action selection does not occur independent of the 

environmental props and cues.  We concur with Endsley (2015a, 2015b) that inanimate 

displays do not possess SA, but we do suggest that further discussion is needed in order 

to establish a role for memory props in existing frameworks. 

Interestingly, the systems-level perspective on SA (also known as the Joint-

Cognitive Systems approach) may provide some insight into the question of props and 

cues.  The scope of this dissertation was delimited to the level of the individual decision 

maker.  However, operational forecasting environments involve a high degree of 

interaction among actors and technological systems.  Although not discussed at length 

within this work, further investigation of how SA is distributed throughout the weather 

forecasting system would contribute to a greater of understanding of the factors that 

influence how SA is dynamically distributed throughout the weather domain.  The 

Team SA framework corresponds to the 1995 Model of SA, and as such, has received 

considerable attention within the literature related to group decision making and 
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performance (Endsley & Jones, 2001; Kaber & Endsley, 1998; Salas, Prince, Baker, & 

Shrestha, 1995).  While yet to receive the level of attention that has been given to the 

1995 Model of SA, newcomers to the field, such as Distributed Situation Awareness 

(Salmon, Stanton, Walker, Jenkins, and Rafferty (2010); Stanton et al. (2006)) and the 

Situated Approach to SA (Chiappe, Rorie, Morgan, and Vu (2012); Chiappe, Strybel, et 

al. (2012)) offer new insights into SA at different levels of decision making.  The 

foundation for both these frameworks, the Joint-Cognitive Systems perspective frames 

SA as an emergent property of a system in which the human operator is a part.  We do 

not suggest that research should only be concerned with decision making at the 

individual- or the systems-level; simply, we argue that in order to gain a more 

comprehensive picture of the factors and processes that influence SA, both levels 

require study. 

Future Work 

The exploration into SA in weather forecasting revealed several new questions 

that could extend models of situation awareness in complex systems.  Particularly in the 

automation study (Chapter 5), we hypothesized that the resulting low SA scores may 

have been due, in part, to the probe technique: a modified Situation Assessment Global 

Assessment Technique (SAGAT; Endsley (1995a)).  When designing the experiment, 

we selected a freeze-probe technique in order to test the assumption that SA was 

construct limited by individual memory.  In Endsley’s (2015b) view, “information that 

exists in the environment… but of which the operator is not aware… does not constitute 

SA.  It is by definition information of which he or she is not aware (hence the opposite 

of SA).”  However, in the automation study as well as the observational work described 
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in Chapter 4, we observed that forecasters appeared to rely on external cues within the 

decision support systems during the reasoning and judgment processes.  Therefore, we 

recommend that future research should extend the method presented here with an 

alternative freeze-probe technique, such as the Situation Present Assessment Method 

(SPAM), which allows operators to access relevant data in order to respond to probes. 

In addition to contributing to a more comprehensive understanding of individual 

cognition, research should also examine the sociotechnical and interactive aspects of 

situation awareness.  Although not the focus of the present work, weather forecasting 

involves a large degree of interaction between human operators and technical systems.  

Particularly, the theoretical frameworks provided by Team SA (Endsley & Jones, 2001; 

Kaber & Endsley, 1998) and Distributed Situation Awareness (Stanton, Salmon, 

Walker, & Jenkins, 2009; Stanton et al., 2006) may partially describe factors affecting 

the transmittance of SA among decision makers within the forecasting system.  Viewing 

SA as a systems-level construct, as does the Distributed Situation Awareness (DSA) 

theory, may have bearing on the study of weather forecasting.  We suggest that a 

comparative evaluation of theoretical models of SA, including DSA, Team SA, and 

Endsley’s 1995 Model, could build on the present findings and ultimately lead to new 

insights into SA and reasoning within the weather forecasting domain.  Such an 

evaluation could provide guidance for training, best practices, and policy in the 

operational forecasting environment.   

From a methodological perspective, the present work confirmed previous 

research regarding eye tracking as a direct measure of SA.  Like Moore and Gugerty 

(2010), we found that fixation duration predicted SA accuracy.  While eye tracking 
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allowed for direct inspection of situation assessment and information scanning 

behavior, it is possible that constraints imposed by the laboratory environment affected 

experimental outcomes, to some degree.  We suggest that incorporating an eye tracking 

method, similar to that used in Chapter 5, within a study framed with the naturalistic 

decision making philosophy would theoretically overcome potential experimenter bias 

while allowing forecasters to work with decision support systems with which they have 

experience. 

Still, limitations within the weather forecasting and environmental sensing 

system add further challenges to adequate assessment of SA.  Scholars have previously 

pointed out that establishing a ground truth for every situation can be difficult, even 

unfeasible, in some situations (Dekker et al., 2010).  While establishing the “ground 

truth” in weather forecasting is possible, limited observational sensor systems and 

verification challenges constrain current ability to receive feedback rapidly during 

forecasting (Gourley et al., 2013).  Indeed, as some of the present focus group findings 

indicated, verification of a flash flood may not even occur if the potentially affected 

area was remote and unlikely to cause direct impact to humans or property.  

Furthermore, in weather forecasting tasks, “ground truth” may not even be possible to 

perceive accurately with existing technology; as has been cautioned throughout this 

work, decision support tools—particularly computational models—involve varying 

degrees of uncertainty introduced by incomplete understanding of environmental 

processes and uncertain initial conditions (Doswell, 2004).  In weather forecasting, 

developing an accurate situational model involves continuous comparison and 

assessment of information sources.  It is our view that until environmental observational 
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systems mirror those found in systems like air traffic control or aviation, forecaster SA 

will be limited to what can be gathered from an incomplete representation of the 

environment. 

Conclusion 

From a theoretical perspective, this work contributed to a greater understanding 

of situation awareness in complex systems involving uncertainty.  Furthermore, this 

research was able to contribute to the development of a flash flood prediction decision 

support system through its transition from research to operations.  While some have 

suggested that it is more appropriate to view SA at a systems-level when studying 

collaborative, sociotechnical systems (Salmon et al., 2008; Stanton, Salmon, & Walker, 

2015), we argue that for weather forecasters, understanding SA at an individual level 

can have several benefits.  From a practice-oriented perspective, studying the 

relationship between SA and technology may provide foundations for design 

improvements to decision support systems (Endsley & Hoffman, 2002).  Secondly, 

designing systems to support situation assessment has been linked to performance, 

specifically in terms of workload- or attention-related errors (Klein, 2000). 

Based on current findings, we conclude that weather forecasting decision 

support systems assist operators in coping with uncertainty in order to acquire and 

maintain situation awareness.  Decision makers leverage technology to maintain SA, 

but it is also important to minimize overreliance upon such systems, which can also lead 

to errors.  This work described SA and situation assessment in the weather forecasting 

domain, but findings and recommendations may provide insight in additional decision 

making environments where uncertainty is high, such as emergency medicine or 
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military command and control.  To expand the power of the present findings, we 

recommend that future research should attend to the interactive nature of situation 

assessment in the weather forecasting domain.   We recommend that development of 

decision support systems, particularly those for weather forecasting, should incorporate 

a user-centered design phase.  SA errors and performance limitations may be reduced 

with increased attention to the effects of interface design and visualization methods on 

human decision making.  
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Appendix A: Logistic Regression Odds Ratios from Chapter 3 
 

 Marginal Effects Conditional Effects 

 Ordinary Logistic Random int. logistic 

 OR   (95% CI) OR  (95% CI) 

Fixed part   
Intercept 6.50 (4.60, 9.50) 6.50 (4.60, 9.50) 

exp(β2) [size] 0.011 (0.003, 0.032) 0.011 (0.003, 0.032) 

exp(β3) [threat] 0.15 (0.089, 0.23) 0.15 (0.089, 0.23) 

exp(β4) [display] 0.29 (0.18, 0.47) 0.29 (0.18, 0.47) 

exp(β5) [size*threat] 206.87 (63.16, 946.22) 206.87 (63.16, 946.22) 

exp(β6) [size*display] 17.39 (5.21, 80.19) 17.39 (5.21, 80.19) 

exp(β7) [threat*display] 11.92 (5.93, 24.37) 11.92 (5.93, 24.37) 
exp(β8) 
[size*threat*display] 0.043 (0.008, 0.18) 0.043 (0.008 0.18) 

Random Part   
ψ -- 0 

ρ -- 0 
Goodness of Fit 
Log likelihood 

 
-630.80 

 
-630.80 

Hosmer-Lemeshow 1.00  
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Appendix B:  Guidance Products Available in HWT-Hydro 2014 
	
 

Experimental Products 
	

Experimental Models	 CREST Maximum Return Period 
HRRR-Forced CREST 
CREST Soil Moisture 
CREST Streamflow 
SAC-SMA Soil Moisture 
SAC-SMA Streamflow 
	

Precipitable Water (PW)	 Precipitable Water Analysis (RAOBs) 
Precipitable Water Percentile (RAOBs) 
Precipitable Water Analysis (RAP) 
Precipitable Water Percentile (RAP)	

Quantitative Precipitation 
Estimate (QPE)  
 

MRMS QPE 

Quantitative Precipitation 
Forecast (QPF) 
 

MRMS QPF 

Flash Flood Guidance Ratio 
(FFG)	

QPE to Flash Flood Guidance Ratio 
QPF to Flash Flood Guidance Ratio 
	

Average Recurrence Interval 
(ARI)	

Precipitation Return Period (QPE) 
Precipitation Return Period (QPF) 
	

	 	
Operational Products 

 
FFA/FFW/LSRs Flash Flood Advisories 

Flash Flood Watch (FFA) 
Flash Flood Warnings (FFW) 
Experimental Flash Flood Warnings 
Flood Warnings 
Local Storm Reports (LSRs) 
 

Radar MRMS Seamless Hybrid-Scan Reflectivity 
MRMS Quality-Controlled Composite Reflectivity 
 

Satellite Infrared (IR) Window 
Water Vapor Satellite 
Visible Satellite 
3.9u, 13u, 11u-3.9u, 11u-13u, 3.7u, 3.7u-13u 
WV/IR 
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Ensembles and Data 
Assimilation 
 

ECMWF-HiRes Model 
GFS20 
GFS 
HiResW-ARW-East and West 

 HiResW-NMM-East and West 
High Resolution Rapid Refresh Model (HRRR) 
LAPS 
NAM12, NAM40, NAM80 
RAP13, RAP40 
SREF 
UKMET Ensemble 
 

Observations Surface Plots 
METAR Station Plots 
Synoptic Plots 
 

Overlays State Boundaries and Names 
County Boundaries and Names 
Rivers and Streams 
Lakes 
River Drainage Basins 
Cities 
County Warning Area Boundaries 
River Forecast Center Boundaries 
Interstates and US Highways 
Railroads 
High Resolution Topographic Imagery 
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Appendix C: Portion of a Screen Recording Transcript from HWT-Hydro 
 

Product Start Time End Time 

Web Maximum Return Period CREST 2:28:28 2:32:28 

FLASH Surface MRMS Seamless Hybrid-Scan Reflectivity 2:32:28 2:32:51 

FLASH Surface 1-hr Precipitation Return Period (Forecast) 2:32:28 2:32:51 

FLASH Surface 3-hr Precipitation Return Period (Forecast) 2:32:28 2:32:51 

FLASH Surface 6-hr Precipitation Return Period (Forecast) 2:32:28 2:32:51 

FLASH Surface HRRR-Forced CREST 2:32:51 2:32:56 

Local Storm Reports 2:32:56 2:33:06 

Flood Advisories 2:32:56 2:33:06 

Flood Warnings 2:32:56 2:33:06 

Flash Flood Warnings 2:32:56 2:33:06 

Experimental Flash Flood Warnings 2:32:56 2:33:06 

FLASH Surface MRMS Seamless Hybrid-Scan Reflectivity 2:32:56 2:33:44 

FLASH Surface 1-hr Precipitation Return Period (Forecast) 2:33:06 2:33:44 

FLASH Surface 3-hr Precipitation Return Period (Forecast) 2:33:06 2:33:44 

FLASH Surface 6-hr Precipitation Return Period (Forecast) 2:33:06 2:33:44 

Flood Advisories 2:33:44 2:34:31 

Flood Warnings 2:33:44 2:34:31 

Flash Flood Warnings 2:33:44 2:34:31 

Experimental Flash Flood Warnings 2:33:44 2:34:31 

FLASH Surface MRMS Seamless Hybrid-Scan Reflectivity 2:33:44 2:35:33 

FLASH Surface 1-hr MRMS Radar-Only QPE to FFG Ratio 2:33:44 2:34:09 

FLASH Surface 3-hr MRMS Radar-Only QPE to FFG Ratio 2:33:44 2:34:09 

FLASH Surface 6-hr MRMS Radar-Only QPE to FFG Ratio 2:33:44 2:34:09 

Local Storm Reports 2:34:09 2:34:31 

FLASH Surface 1-hr Precipitation Return Period (Forecast) 2:34:31 2:34:36 

FLASH Surface 3-hr Precipitation Return Period (Forecast) 2:34:31 2:34:36 
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Appendix D: Focus Group Questions in HWT-Hydro 2014 
 

General	Forecasting	Experience	
	

1. Please describe your approach in issuing forecasts and warnings this week.  
What tools and products do you usually use to guide your decisions when 
issuing flash flood watches and warnings?  (If issuing watches and warnings is 
not part of your current job, what products have you used in the past or during 
training exercises?) 

2. What challenges or difficulties did you encounter while forecasting this week? 
 
Uncertainty, Probability, and Confidence 
 

3. What role does your personal confidence (in terms of what the models predict, 
what your background experience indicates, your extrapolation of future events, 
etc.) play in producing the flash flood watches?  Flash flood warnings? 
 

We are interested in knowing more about your opinions about categorization of flash 
floods: 

4. How did issuing attributes of severity for watches and (nuisance v. major) 
enable you to communicate threat information? 

5. What did you find helpful about the categorization?  What would you change 
about the categorization? 

6. Did participating in HWT-Hydro 2014 affect how you view probabilities in 
flash flood forecasting?  How? 

7. When assigning uncertainty estimates to the magnitudes, what factors affected 
your decisions?  For example, were there any cases where you were more or less 
likely to issue a warning based on factors like geography? 
 

We would now like to ask some questions about watches and lead times. 
8. What are your thoughts on the current paradigm for issuing flash flood watches? 
9. What benefits and challenges do producing flash flood watches with long lead 

times afford?  Can you think of any lead time that would to absolutely too long? 
10. What benefits and challenges do producing flash flood watches with short lead 

times afford?  
11. What kind of products would be most useful to you at the flash flood watch 

scale?  Warning scale? 
 

12. Do you have any further comments about your experiences with issuing watches 
and warnings during the past week?   
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Appendix E: List of Probes Used in Chapter 5 
	

SA 
Level 

Probe Administration    
(in Qualtrics) 

Scoring Method 

1 Using the provided (blank) map, point 
out the area(s) that received the highest 
[return period / streamflow / QPE-to-
FFG ratio] values in the past two 
hours. 

Heat Map +1 point for selecting 
an area within the 
correct area 
+0.5 point for 
selecting an area 
within the correct 
county 
+0.25 points for 
selecting an area 
within an adjacent 
county 
+0 point for being 
outside of range or a 
miss 

 In [units] over the past two hours, what 
was the peak [metric, e.g. return 
period] value reached? 

Manual entry +1 for being within ± 
20 units from target) 
+0 for being outside 
range 

2 Using the provided (blank) map, point 
out all the areas that have conditions 
associated with flash flooding at the 
most recent timestamp. 

Heat map +1 point for selecting 
an area within the 
correct area 
+0.5 point for 
selecting an area 
within the correct 
county 
+0.25 points for 
selecting an area 
within an adjacent 
county 
+0 point for being 
outside of range or a 
miss 

 Using the provided map, click which 
polygons highlight areas with 
conditions associated with flash 
flooding at the current time. 

Hot spot +1 for each correct 
identification 
+0 for not warning on 
either areas 

3 Using the provided (blank) map, point 
out all the areas you would expect to 
be under greatest risk for flash flooding 
in the next two hours. 

Heat map +1 point for selecting 
an area within the 
correct area 
+0.5 point for 
selecting an area 
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within the correct 
county 
+0.25 points for 
selecting an area 
within an adjacent 
county 
+0 point for being 
outside of range or a 
miss 

 In hours, indicate the lengths of valid 
time you would assign to the warnings 
in this region. 

Manual entry +1 point for matching 
time to stream gage 
falling below flood 
stage 
+0.5 point for ± 2 
hours past stream gage 
falling below flood 
stage 
+0 for being outside 
range 
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Appendix F: Example Briefing Used in Chapter 5 
	

URGENT - IMMEDIATE BROADCAST REQUESTED 
FLOOD WATCH 
NATIONAL WEATHER SERVICE NORTHERN INDIANA 
826 PM EDT MON JUL 13 2015 
 
INZ003-012-013-015-020-022>027-032>034-140800- 
/O.EXT.KIWX.FF.A.0005.000000T0000Z-150714T0800Z/ 
/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/ 
LA PORTE-STARKE-PULASKI-FULTON IN-WHITE-CASS IN-MIAMI-
WABASH-HUNTINGTON-WELLS-ADAMS-GRANT-BLACKFORD-JAY- 
INCLUDING THE CITIES OF...MICHIGAN CITY...LA PORTE... 
KNOX...NORTH JUDSON...BASS 
LAKE...WINAMAC...FRANCESVILLE... 
MEDARYVILLE...ROCHESTER...AKRON...MONTICELLO...BROOKSTON..
.MONON...LOGANSPORT...ROYAL CENTER...PERU...GRISSOM 
AFB...MEXICO...WABASH...NORTH MANCHESTER...HUNTINGTON... 
ROANOKE...BLUFFTON...OSSIAN...DECATUR...BERNE...MARION... 
GAS CITY...UPLAND...HARTFORD CITY...MONTPELIER... 
PORTLAND...DUNKIRK 
826 PM EDT MON JUL 13 2015 
 
...FLASH FLOOD WATCH NOW IN EFFECT UNTIL 4 AM EDT /3 AM 
CDT/TUESDAY... 
 
THE FLASH FLOOD WATCH IS NOW IN EFFECT FOR 
 
* A PORTION OF NORTHERN INDIANA...INCLUDING THE FOLLOWING  
  AREAS...ADAMS...BLACKFORD...CASS IN...FULTON IN... 
GRANT... HUNTINGTON...JAY...LA PORTE...MIAMI... 
PULASKI...STARKE... WABASH...WELLS AND WHITE.  
 
* UNTIL 4 AM EDT /3 AM CDT/ TUESDAY 
 
* FIRST ROUND OF STORMS THIS MORNING DROPPED BETWEEN AN 
INCH AND AN INCH AND A HALF ACROSS MOST OF THE FORECAST 
AREA.  
 
* FLOODING WILL QUICKLY OCCUR ANYWHERE STORMS DEVELOP THIS 
EVENING INTO THE EARLY PORTION OF THE OVERNIGHT HOURS WITH 
ANOTHER 1 TO 2 INCHES EXPECTED FROM ANY OF THESE STORMS. A 
FEW ISOLATED LOCATIONS MAY SEE 3 OR MORE INCHES OF RAIN 
TONIGHT...ESPECIALLY IF TRAINING STORMS DEVELOP. 
	
URGENT - IMMEDIATE BROADCAST REQUESTED 
FLOOD WATCH 
NATIONAL WEATHER SERVICE INDIANAPOLIS IN 
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347 PM EDT MON JUL 13 2015 
 
...FLASH FLOODING POSSIBLE THROUGH TONIGHT... 
 
.ADDITIONAL ROUNDS OF STRONG TO SEVERE THUNDERSTORMS ARE 
EXPECTED TO DEVELOP THROUGH LATE TONIGHT WITH THE 
POTENTIAL TO PRODUCE SIGNIFICANT RAINFALL AMOUNTS. 
WIDESPREAD RAINFALL OF 2 TO 5 INCHES HAS OCCURRED IN THE 
LAST SIX DAYS... WITH POCKETS AS HIGH AS NEARLY 9 INCHES 
OF RAINFALL. ADDITIONAL SIGNIFICANT RAINFALL WILL BE 
LIKELY TO CAUSE FLASH FLOODING IN THESE AREAS. 
 
INZ021-028>031-035>049-051>057-060>065-067>072-140400- 
/O.CAN.KIND.FF.A.0005.000000T0000Z-150714T0900Z/ 
/O.NEW.KIND.FF.A.0006.150713T2000Z-150714T1200Z/ 
/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/ 
CARROLL-WARREN-TIPPECANOE-CLINTON-HOWARD-FOUNTAIN-
MONTGOMERY-BOONE-TIPTON-HAMILTON-MADISON-DELAWARE-
RANDOLPH-VERMILLION-PARKE-PUTNAM-HENDRICKS-MARION-HANCOCK-
HENRY-VIGO-CLAY-OWEN-MORGAN-JOHNSON-SHELBY-RUSH-SULLIVAN-
GREENE-MONROE-BROWN-BARTHOLOMEW-DECATUR-KNOX-DAVIESS-
MARTIN-LAWRENCE-JACKSON-JENNINGS-INCLUDING THE CITIES 
OF...LAFAYETTE...FRANKFORT...KOKOMO...CRAWFORDSVILLE... 
ANDERSON...MUNCIE...INDIANAPOLIS...TERRE HAUTE... 
SHELBYVILLE...BLOOMINGTON...COLUMBUS...VINCENNES... 
BEDFORD...SEYMOUR 
 
347 PM EDT MON JUL 13 2015 
 
...FLASH FLOOD WATCH IN EFFECT THROUGH TUESDAY MORNING... 
 
THE NATIONAL WEATHER SERVICE IN INDIANAPOLIS HAS ISSUED A 
 
* FLASH FLOOD WATCH FOR A PORTION OF INDIANA...INCLUDING 
THE FOLLOWING AREAS...BARTHOLOMEW...BOONE...BROWN... 
CARROLL...CLAY...CLINTON...DAVIESS...DECATUR...DELAWARE... 
FOUNTAIN...GREENE...HAMILTON...HANCOCK...HENDRICKS... 
HENRY...HOWARD...JACKSON...JENNINGS...JOHNSON...KNOX... 
LAWRENCE...MADISON...MARION...MARTIN...MONROE... 
MONTGOMERY...MORGAN...OWEN...PARKE...PUTNAM...RANDOLPH... 
RUSH...SHELBY...SULLIVAN...TIPPECANOE...TIPTON...VERMILLIO
N...VIGO AND WARREN.  
 
* THROUGH TUESDAY MORNING 
* WIDESPREAD SIGNIFICANT RAINFALL HAS OCCURRED OVER THE 
LAST SIX DAYS...WITH ADDITIONAL SIGNIFICANT RAINFALL 

POSSIBLE TONIGHT. AREAS RECEIVING SIGNIFICANT RAINFALL 
WILL BE LIKELY TO EXPERIENCE FLASH FLOODING.	



	

	


