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CHAPTER I 
 
 

INTRODUCTION 

 

Iron is necessary for DNA synthesis, key metabolic reactions, and respiration, and 

thus is an essential micronutrient for mammals.  Despite the relative abundance of iron in 

the earth’s crust, iron deficiency remains the world’s most common nutrient deficiency, 

affecting an estimated 2 billion people worldwide [1]. Iron deficiency progresses in 

stages and can occur with and without anemia.  Iron deficiency anemia occurs in the final 

stage of iron deficiency when iron depletion is severe.  Symptoms of iron deficiency 

anemia include weakness, fatigue, reduced capacity for work, and reduced capacity to 

transport oxygen throughout the body.  In contrast, there is considerable potential for iron 

toxicity as excess iron can lead to tissue and organ damage through the production of 

damaging free radicals [2]. 

 Because iron is an essential nutrient, yet potentially toxic, iron homeostasis is 

controlled both systemically and at the cellular level.  Systemic iron homeostasis is 

primarily regulated through alterations in absorption or utilization and can be thought of 

as a closed system since there is no regulated mechanism for iron excretion.  Intestinal 

absorption of dietary iron is decreased in both iron overload and inflammatory 

conditions, and increased in response to deficiency, enhanced erythropoiesis, and 

inadequate levels of oxygen (or hypoxia) [3, 4]. Iron is recycled by specialized 

 1



macrophages within the reticuloendothelial system that phagocytose senescent or 

damaged red blood cells thereby removing them from circulation [5]. This conservation 

and recycling of body iron contributes to the regulation of iron status since it provides the 

majority of iron entering the plasma to support erythropoiesis, and for incorporation into 

iron-dependent enzymes [6].  Excess iron can also be redistributed to tissues and cells for 

storage in the iron storage protein ferritin [6]. 

Iron Regulatory Proteins (IRPs) are global regulators of cellular iron metabolism.  

This family of cytosolic RNA binding proteins regulates iron metabolism by binding to 

stem-loop structures termed Iron Responsive Elements (IREs), that are located in either 

the 5’ Untranslated Region (UTR) or 3’ UTR of mRNAs encoding proteins involved in 

iron metabolism [7].  These stem-loop IREs are present in the mRNAs encoding proteins 

of iron acquisition (transferrin receptor 1, TfR1; and divalent metal transporter 1, 

DMT1), iron storage (H- and L-ferritin), iron utilization (mitochondrial aconitase, m-

Acon), and iron export (ferroportin, Fpn1) [8]. 

 When iron is limiting, IRPs bind IREs with high affinity inhibiting the translation 

of mRNAs containing 5’IREs, such as ferritin, and stabilizing mRNAs containing 

3’IREs, like TfR1 [7].  In contrast, when iron is adequate, IRPs fail to bind IREs, 

resulting in the activation of ferritin synthesis and degradation of TfR1 mRNA [7, 9].  

IRP1 is a bifunctional protein that exists either as a high-affinity RNA binding protein or 

the cytosolic isoform of the tricarboxylic acid (TCA) cycle Fe-S cluster enzyme 

mitochondrial aconitase (m-acon).  Under iron replete conditions, the formation of an 

[4Fe-4S] cluster promotes the enzymatic function of the protein cytosolic aconitase, c-

acon). Iron deficiency however, results in loss of the Fe-S cluster promoting the high-
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affinity RNA binding activity form of the protein.  Independently of cellular iron status, 

IRP1/c-acon activity can also be regulated by oxidative stress and post-translational 

modification by phosphorylation [10]. 

 Unlike IRP1, IRP2 lacks an [4Fe-4S] cluster, and therefore exhibits no aconitase 

activity.  Instead, IRP2 high affinity RNA binding activity is regulated primarily through 

iron- and oxygen-dependent modulation of protein stability and degradation [7, 10]  

Under iron-replete conditions, IRP2 is targeted for proteasomal degradation through iron 

and/or heme-dependent oxidation mechanisms involving an iron- and oxygen-dependent 

prolyl hydroxylase and subsequent recognition by an E3-ubiquitin ligase required for 

proteasomal degradation [11, 12].  Under iron-deficient or hypoxic conditions, IRP2 is 

stabilized by the inhibition of prolyl hydroxylase activity.  Redox-dependent regulation of 

IRP2 deserves consideration because of the potential relationship between the control of 

iron utilization and the hypoxic response.  

 Cells respond to low oxygen, or hypoxic conditions, by altering the expression of 

specific genes aimed at limiting the effects of decreased oxygen availability.  This 

response is primarily mediated by a family of oxygen-regulated transcription factors 

called the hypoxia inducible factors (HIFs).  There are at least three regulatory subunits 

of HIF (1α, 2α, and 3α) that heterodimerize with the constitutively expressed oxygen-

insensitive HIF-1β (or ARNT) subunit [13].  HIFs function by binding to hypoxia-

response elements (HREs) present in the promoters of target genes thereby regulating 

transcription [13]. HIF-1α and HIF-2α modulate the transcription of an overlapping, yet 

distinct set of target genes involved in cellular glucose metabolism, cell growth, 

apoptosis, as well as in restoration of the oxygen supply by promoting angiogenesis [13, 
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14].  HIF-2α is of particular interest in terms of systemic iron homeostasis as one of its 

direct target genes is erythropoietin (EPO), which is required for stimulating the 

proliferation of red blood cells [6, 8, 15]. 

 Interestingly, HIFs share similar iron- and oxygen-dependent mechanisms of 

regulation as that exhibited by IRP2.  Under normoxic conditions, HIFs are targeted for 

proteasomal degradation by prolyl hydroxylation and interaction with the von-Hippel 

Lindau protein [13, 14, 16]. Under either low oxygen or hypoxic conditions, HIFs are 

stabilized due to the inactivation of prolyl hydroxylation resulting in the regulation of 

target gene expression [8].  These regulatory mechanisms may also coordinate the 

physiological adaptation to iron deficiency, including the increased expression of EPO to 

stimulate erythropoiesis [8].  In the absence of adequate iron stores, however, stimulation 

of erythropoiesis could exacerbate the production of hypochromic microcytic red blood 

cells as a result of impaired heme synthesis and hemoglobin production [6, 8].  Therefore, 

under either iron-deficient or hypoxic conditions, the EPO-dependent stimulation of 

erythropoiesis may be regulated to prevent the formation of immature red blood cells.  

 The recent discovery of an IRE in the 5’UTR of the HIF-2α mRNA has led to the 

hypothesis that the IRP-dependent (and thus iron-dependent) regulation of HIF-2α could 

serve to modulate EPO levels, thereby adjusting the rate of red blood cell production (and 

iron utilization) to iron availability [8].  Thus far, these suggestions have been limited to 

results from in vitro studies [8, 17].  The focus of this work is to examine the in vivo IRP-

dependent regulation of HIF-2α using an animal model of dietary iron deficiency. The 

primary hypothesis is that dietary iron deficiency will activate hepatic IRP RNA binding 

activity resulting in the repression HIF2-α mRNA translation.  This research will provide 
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us with a better understanding of the regulation of iron metabolism and the utilization of 

iron stores under hypoxic conditions.   



CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

Essentiality and Toxicity of Iron 

The essentiality of iron for mammals is characterized by its vital role in many life 

preserving functions including oxygen transport (hemoglobin), cellular respiration 

(cytochromes), and DNA synthesis (ribonucleotide reductase).  Iron is also necessary for 

cellular proliferation, energy metabolism, and has recently been implicated in the 

coordination of metabolic and circadian pathways [21, 22].  However, while many 

functions of iron are attributed to its properties as a transition metal and its ability to 

undergo oxidation and reduction, this redox property of iron also contributes to its ability 

to be potentially toxic through its participation in the generation of damaging free 

radicals by the Haber-Weiss reaction and Fenton chemistry [2, 23]. 

 The body produces approximately 200 billion new red blood cells (RBCs)  daily, 

with each RBC containing millions of hemoglobin molecules [4].  Hemoglobin, which is 

synthesized in reticulocytes, plays a major role in respiration because it carries about 95% 

of the total oxygen found in the body [6, 24].  The daily production of these hemoglobin 

containing RBCs accounts for the majority of iron utilization in the body and represents 

nearly 80% of the iron demand in humans [4].   
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A large part of the essentiality of iron is due to its presence in heme.  It is the iron 

atom at center of heme which makes the transport of oxygen by hemoglobin possible.  In 

heme-containing cytochromes, iron also enables the transport of electrons. In the electron 

transport chain, cytochromes, such as cytochromes b and c, pass along single electrons; 

the transfer of which is made possible by the change in the oxidation state of iron from 

the ferrous (Fe2+) to ferric (Fe3+) state [6].  The oxidation of nutrients through the electron 

transport chain is necessary to release their energy to the body, either in the form of heat 

or ATP.  Other heme containing cytochromes (i.e., cytochrome P450) are involved in 

lipid drug metabolism and steroid hormone synthesis [6].  

 Iron plays a crucial role in DNA synthesis as a part of the iron-dependent enzyme 

ribonucleotide reductase, which converts adenosine phosphate into deoxyadenosine 

phosphate [6].  Iron has also been shown to be absolutely necessary for cellular 

proliferation because iron containing proteins are critical for catalyzing the reactions 

involved in oxygen sensing [25, 26].  Indeed, expression of many of the molecules 

involved in cell cycle progression, proliferation, and oxygen sensing (e.g., p53, n-myc, c-

myc, and HIF-1α) are regulated by intracellular iron levels [25-27].  Additionally, iron 

also plays a catalytic role in other key metabolic reactions such as glycolysis (glycerol-3-

phosphate dehydrogenase), gluconeogenesis (phosphoenolpyruvate carboxykinase or 

PEPCK), and the TCA cycle (mitochondrial aconitase or m-acon) [6].   

More recently, the physiological role of iron has been extended to the 

coordination of mammalian circadian rhythm through a heme-dependent mechanism. 

Lazar and colleagues found that heme is a co-factor for the orphan nuclear receptor Rev-

erbα, a negative regulator of the circadian clock [22].  When the ligand heme is bound to 
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Rev-erbα, it enhances transcriptional repression by promoting the interaction between 

Rev-erbα and the nuclear co-repressor complex [22].  Thus, through the control of Rev-

erbα, cellular iron status may alter the expression of two key gluconeogenic genes – 

glucose-6-phosphatase (G6Pase) and PEPCK [22].  The implication of these exciting 

findings is that iron may function as a central regulator of circadian rhythm thereby 

coordinating metabolic homoeostasis.  

 While iron is absolutely necessary, it is important to note that there is also 

considerable potential for iron toxicity.  Because there are no regulated mechanisms to 

control iron excretion, excess iron can accumulate in body tissues and organs.  As 

mentioned above, part of the essentiality of iron is based on its ability to accept or donate 

electrons, however, in excess this redox activity can lead to the generation of damaging 

free radicals via Fenton chemistry, and the subsequent production of reactive oxygen 

species [2].   

 Fenton chemistry describes the reaction between hydrogen peroxide (H2O2) and 

ferrous iron (Fe2+) that can produce hydroxyl radicals (OH•) and other oxidizing species 

capable of creating biological injury [2].  In fact, elevated iron accumulation in the brain 

has been linked to oxidative damage and neurodegeneration associated with  multiple 

sclerosis, Friedrich’s ataxia, Parkinson’s disease, and Alzheimer’s disease [16].    

 Additionally, oxidative stress and damage has been implicated as a causative 

factor for several chronic diseases including cardiovascular disease and diabetes [28, 29].  

The role of iron in the pathogenesis of these two diseases has been supported by 

epidemiological evidence indicating that elevated iron storage levels are associated with 

increased risk of coronary heart disease and insulin resistance [29, 30].  Although a 
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precise mechanism has not yet been elucidated, the potentially toxic characteristics of 

iron are suspected to play a critical role.  

Iron overload and toxicity is most commonly observed in individuals with 

hemochromatosis, a condition characterized by inappropriate parenchymal iron 

deposition. Hereditary hemochromatosis (Classical or Type I) is the most common 

genetic iron overload disorder affecting approximately 1/200 individuals of northern 

European descent [31].  It is associated with mutations in the HFE gene and characterized 

by dysregulation of intestinal iron absorption resulting in excessive iron storage in organs 

such as the liver, heart and pancreas [32, 33].  Early symptoms of excess deposition of 

iron include fatigue, joint pain, depression, impotence, and increased skin pigmentation 

[33].  Left untreated, patients with hemochromatosis accumulate iron in tissues like the 

liver, heart, and pancreas resulting in the development of cirrhosis, cardiomyopathy, and 

diabetes, respectively [33]. 

Several other iron overload or hemochromatosis disorders exist that are not 

associated with mutations in the HFE gene.  For example, “juvenile” or Type II 

hemochromatosis, is associated with the same phenotypic characteristics as type I 

hemochromatosis but is due to mutations in the gene encoding hemojuvelin (HJV) also 

known as HFE2 [4, 34].  Individuals with juvenile hemochromatosis accumulate iron at a 

much faster rate and tend to experience cardiomyopathy and other endocrinopoathies 

rather than severe liver disease [35].  In the absence of treatment, these patients typically 

suffer from heart failure before age thirty [33, 35].  Other types of hemochromatosis can 

result from mutations in genes encoding the iron hormone hepcidin (HAMP1), the iron 

uptake protein transferrin receptor 2 (TfR2), and the iron export protein ferroportin (Fpn 
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or SLC40A1) [4].  The importance of all of the proteins to the regulation of mammalian 

iron homeostasis will be discussed below. 

 
Iron Absorption, Transport, Utilization, and Uptake 

 The control of iron homeostasis is primarily influenced by an individual’s iron 

needs to support erythropoiesis and the status of body iron stores.  Because there is no 

regulated means for iron excretion, homeostasis is primarily mediated through controlling 

dietary absorption. Intestinal absorption is largely influenced by organismal iron status, 

and may range from 10% (for an individual with a normal iron status) up to 35% (for an 

individual who is iron deficient) [6].  Iron absorption can occur throughout the entire 

length of the small intestine, but is most efficient in the duodenum [6].  Dietary iron 

exists as either heme iron or nonheme iron.  Relatively little is known about heme iron 

absorption, but it has been suggested that it is internalized through the recently identified 

receptor heme carrier protein-1 and then disassembled by heme oxygenase [36, 37].  

Non-heme ferric iron is reduced by an iron-regulated duodenal cytochrome reductase 

(dCytb) [38].  Ferrous iron is then transported across the luminal membrane of 

enterocytes by divalent metal transporter-1 (DMT1) [4, 39, 40].   

 Once in the enterocyte, iron has three fates: (1) storage/excretion, (2) utilization, 

or (3) transport to other tissues.  Iron that is not transported out of the enterocyte can be 

incorporated into the iron storage protein ferritin for short-term storage [6].  If needed, 

iron can later be released from ferritin for transport and utilization.  If iron is not needed, 

it can be “excreted” within the short-lived mucosal cells that are sloughed off every 2-3 

days [6].  Iron can also be used in the intestinal cells as a component of other iron- or 

heme-containing enzymes.  Iron that is neither stored nor utilized in the intestinal cells is 
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transported across the basolateral membrane by the iron export protein ferroportin (Fpn1) 

[39].  Intestinal iron absorption and export is markedly increased in individuals with 

hereditary hemochromatosis as mutations in HFE result in an increase in the expression 

of DMT1 and Fpn1 in the duodenum [41].  A diagram of intestinal iron absorption and 

cellular uptake is shown in Figure 1. 

Following export across the basolateral membrane, ferrous iron (Fe2+)is oxidized 

to  ferric iron (Fe3+) by the multi-copper oxidase hephasestin (Heph) prior to being loaded 

onto the iron transport protein transferrin [6, 39].  Transferrin (Tf), a glycoprotein, binds 

a maximum of two iron atoms and serves as the primary means for interorgan transport 

[9].  Tf plays a critical role in iron transport as it has the capacity to reversibly bind iron.  

This is important because at physiological pH (pH ~7.4) iron is insoluble in its free state 

and is capable of generating free radicals.  However, at physiological pH transferrin binds 

to iron with high affinity, making it safely available for use by the body tissues, such as 

the liver, muscles, and bone marrow [42].   

 Iron uptake in these tissue cells occurs through receptor-mediated endocytosis of 

transferrin via interaction with transferrin receptors (TfRs) 1 and 2 [9, 39].  TfR1 is 

expressed in nearly all tissues and has a higher affinity for diferric Tf than monoferric or 

apo-Tf [42].  TfR1 also has a 20-fold higher affinity for Tf than TfR2 [43].  Several other 

notable differences exist between TfR1 and TfR2.  First, TfR2 expression is limited to 

hepatocytes and erythroid cells whereas TfR1 is ubiquitously expressed.  Next, while 

TfR1 expression is regulated by iron status, TfR2 expression is instead modulated by cell 

growth rate [42].  Finally, TfR1 forms a complex with HFE while TfR2 is incapable of  
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Figure 1 Intestinal absorption and cellular uptake of iron.  (A) Dietary iron absorption.  Non-
heme (Fe3+) is reduced by duodenal cytochrome B (Dcytb) and transported into the cytosol 
by divalent metal transporter-1 (DMT1).  Dietary heme iron is thought to be internalized 
through assistance of heme carrier protein-1, where the Fe2+ is liberated by heme oxygenase.  
In the enterocyte, iron is stored (L- or H- Ferritin), utilized (m-Acon), or exported out of the 
cell by ferroportin-1 (Fpn1).  Following export across the basolateral membrane, Fe3+ is 
oxidized by hephaestin before it is bound to transferrin for transport to various tissues. (B) 
Cellular iron uptake.  The transferrin-bound iron binds to the transferrin receptor (TfR) on 
the surface of the cell.  The Tf/TfR complex is then internalized through receptor-mediated 
endocytosis.  The acidic pH of the endosome results in the release of iron from Tf so that it 
can be pumped into the cytoplasm, most likely through DMT1.  Tf and TfR are recycled 
back to the cell surface where they dissociate upon encountering a neutral pH. 
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interacting with HFE [42].  Once bound, the Tf/TfR complex is endocytosed, the acidic 

pH of the endosome results in the release of iron, and Tf and TfR are recycled back to the 

cell surface where they disassociate upon encountering the nearly neutral pH [42, 44].  

The released iron is then pumped into the cytoplasm, most likely by DMT1 [9].  Once in 

the cytoplasm, iron is either used by the cell (i.e., in the production of iron-containing 

proteins), exported out of the cell through ferroportin, or stored in ferritin, the primary 

storage form of iron in cells.    

A striking feature of mammalian iron metabolism is the extent to which iron is 

conserved by the body following its absorption.  Ferritin is a cytosolic protein involved in 

iron storage and detoxification in across many animal kingdoms including microbial, 

plant, and animal species [9].  In mammals, ferritin molecules are present as 

heteropolymers with 24 subunits of two types, H-subunits (heavy or heart) and L-

subunits (light or liver).  H-subunits exhibit ferroxidase activity that promotes the loading 

of iron into storage, whereas L-subunits are more efficient at promoting mineralization of 

protein nuclei [45, 46].  Different organs and tissues have different levels of expression of 

the two subunits [45, 47]. Ferritin can store up to 4500 iron atoms, though under most 

conditions only 20% of the storage capacity is utilized [48].  Reduction of Fe3+ by 

reductants such as riboflavin, niacin, and vitamin C is required for the release of iron 

from ferritin [6]. However, for transport out of the cell and subsequent transport by 

transferrin, Fe2+ must first be reoxidized by ceruloplasmin [6]. 

 There is no regulated mechanism for iron excretion, but iron losses of around 1 

mg per day occur primarily through obligatory losses (i.e., bleeding and sloughing off of 

mucosal and skin cells).  About 1-2 mg of dietary iron is absorbed each day, but daily 
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erythrocyte production (200 billion RBCs) requires 20-24 mg of iron for hemoglobin 

synthesis [4].  Thus, while absorption of dietary iron is important to satisfy daily iron 

losses, it is the body’s mechanism of conserving and recycling iron that ensures proper 

iron stores.  Although the liver accounts for approximately 60% of the ferritin in the 

body, the remaining 40% is found in cells of the reticulendothelial system (RES) [49].  

Iron is recycled by specialized macrophages within the RES that phagocytose 

senescent or damaged red blood cells and remove them from circulation [5]. Within the 

macrophages, red blood cells are lysed and hemoglobin is degraded by heme oxygenase 

which catalyzes the liberation of iron from heme [4, 23]. Macrophages can then either 

store the iron derived from hemoglobin in ferritin or release iron through the iron export 

protein Fpn1 with the aid of soluble multi-copper oxidase cerruloplasmin (Cp) [50].  The 

majority of iron entering the plasma for distribution or redistribution by transferrin is 

derived from the cells of the RES, sites of hemoglobin destruction and/or ferritin and 

hemoglobin degradation [6].  Thus, cells of the RES play a critical role in maintaining 

whole-body iron homeostasis. 

The adult human body contains iron in two major pools: 1) functional iron in 

hemoglobin, myoglobin and enzymes and 2) storage iron in ferritin and transferrin [24].  

The majority of iron is found in the functional pool, with only about 20% remaining as 

storage iron found primarily in hepatocytes and the macrophages of the 

reticuloendothelial system [34].  In order to maintain iron homeostasis and meet the iron 

requirements of the body, the movement of iron between these two pools must be tightly 

regulated.  
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Control of Iron Homeostasis 

 Because of iron’s essential yet potentially toxic nature, iron homeostasis must be 

maintained at both systemic and cellular levels.  As there is no regulated mechanism 

controlling iron excretion, systemic iron balance is tightly maintained through the 

regulation of absorption from the intestine.  As previously mentioned, the rate and degree 

of absorption is directly related to existing body iron stores and the amount of iron 

needed to support erythropoiesis.  Two regulators, a so-called “store regulator” and 

“erythroid regulator,” are thought to regulate the degree of iron absorption [3, 51].  The 

store regulator inversely affects the rate of iron absorption based on body iron stores, 

such that when levels of this regulator are elevated, there is an overall decrease in the 

amount of dietary iron that is absorbed in the small intestine.  The erythroid regulator, on 

the other hand, enhances iron absorption when an imbalance between iron supply and the 

rate of erythropoiesis in the marrow occurs [3]. 

Four situations lead to measurable changes in intestinal iron absorption: 1) 

abnormal iron availability (overload or deficiency), 2) accelerated erythropoiesis, 3) 

hypoxia, and 4) inflammation [50].  Therefore, iron absorption and plasma availability is 

decreased in response to iron overload and inflammation, and is increased in response to 

an inadequate iron status, enhanced erythropoiesis, and hypoxia [3, 4, 50]. 

Much enthusiasm was generated when the small peptide hormone hepcidin, 

initially thought to function as an antimicrobial agent, was shown to be a major regulator 

of both intestinal iron absorption and iron recycling within the RES [52-54].  The “stores 

regulator,” hepcidin, is the key iron regulatory hormone secreted by the liver and is 

primarily responsible for coordinating iron absorption with existing iron stores to meet 
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systemic iron needs.  Hepcidin regulates systemic iron metabolism by promoting the 

degradation of the iron export protein Fpn1 in both enterocytes and macrophages in the 

RES [53, 55].  Thus, when iron stores are elevated, hepatic hepcidin expression and 

secretion are increased and iron absorption and release from stores is diminished.  

Conversely, when iron stores are low, hepcidin expression is decreased and intestinal iron 

absorption and iron release from the RES is enhanced.  Mutations in HAMP1, the gene 

encoding hepcidin, are associated with the development of a type of juvenile 

hemochromatosis and illustrate the central role this peptide hormone plays in the 

regulation of systemic iron homeostatis [40, 52, 53].   

Hepcidin regulation occurs at the transcriptional level. One means of regulating 

Hepcidin is dependent upon signaling through the bone morphogenetic protein/Smad 

(BMP/Smad) pathway.  BMPs are cytokines which can bind to the cell surface Type I 

and Type II BMP receptors, thereby activating a signaling cascade that generates 

phoshporylated RSmads which dimerize with Smad4 [55].  The RSmad/Smad4 

heterodimer can then translocate to the nucleus and activate transcription of the HAMP1 

gene [55, 56].  Inflammatory cytokines such as IL-6 can also induce HAMP1 

transcription in hepatocytes through activation of STAT3 (which also requires the 

presence of Smad4) and the subsequent binding of STAT3 to a regulatory element in the 

HAMP1 promoter [56, 57].  

When iron levels are high, molecules such as the hemochromatosis gene product 

(HFE), hemojuvelin (HJV), and transferrin receptor 2 (TfR2) are associated with 

increased hepatic hepcidin expression.  Mutations in these genes results in the absence of 

hepcidin and thus iron overload [55]. In response to situations such as anemia and 
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inflammation, hepcidin expression is increased, however, expression is decreased in 

response to hypoxia suggesting that hepcidin is a key regulator in iron homeostasis under 

various pathophysiological conditions [3, 55].  This evidence has been further supported 

by work demonstrating that complete lack of hepcidin in mice results in iron overload, 

while animals overexpressing hepcidin experience decreased body iron levels and severe 

anemia [58, 59].  Thus, an effective means of hepcidin administration in response to iron 

overload, or a means to counteract overexpression of hepcidin seen in inflammatory 

diseases, could have momentous pharmacological value, especially in view of the fact 

that iron deficiency, as seen in anemia of chronic disease, as well as nutritional iron 

deficiency, is a major public health issue. 

 

Iron Deficiency 

 Dietary iron deficiency occurs when iron absorption from the diet fails to meet 

physiological requirements, and can result from several factors. Rapid growth coupled 

with a low iron diet can result in iron deficiency in children. Premenopausal women may 

become iron deficient due to frequent heavy menstrual blood loss.  Other conditions 

associated with increased blood loss include infections, tumors, and inflammation. In 

under developed countries blood loss as a result of parasitic infection can also exceed 

dietary iron intake, resulting in iron deficiency [60]. In general and regardless of etiology, 

iron deficiency progresses in 3 stages: 1) iron stores are depleted, 2) erythropoiesis is 

diminished as the iron supply to the marrow is reduced, and 3) hemoglobin production 

falls leading to anemia [61].  Symptoms include weakness, fatigue, and reduced capacity 
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for work which are largely due to the decreased capacity to transport oxygen as result of 

low hemoglobin levels. 

 Iron deficiency is the world’s most common nutrient deficiency, affecting an 

estimated 2 billion people worldwide, and posing as a major public health issue [1].  

According to the Global Burden of Disease 2000 Project, iron deficiency potentially 

contributes to the death and disability of more than 800,000 individuals annually through 

increased risk of child mortality, maternal mortality, perinatal mortality, cognitive 

impairment, and decreased fitness and productivity [62]. The vast majority of this wide 

spread iron depletion is attributed to parasitic infection due to limited access to clean food 

and water in many developing countries.  Billions of people worldwide are afflicted with 

intestinal worm infections which often results in anemia due to decreased nutrient loss, 

impaired nutrient absorption, and/or an overall decrease in food intake [63]. 

 Iron deficiency disproportionally affects premenopausal and pregnant women, 

infants, and rapidly growing children.  Over 50% of pregnant women in developing 

countries are anemic, and while prevalence in the U.S. has significantly decreased over 

the last thirty years, infants born to poor, minority, and/or immigrant mothers still remain 

at risk for becoming iron deficient [64].  This is significant because iron deficiency 

adversely affects development of the central nervous system through its involvement in 

important developmental processes such as myelination, dendritogenesis, synaptogenesis, 

and neurotransmission [64].  Indeed, infants born to iron deficient women have been 

found to have cognitive, motor, social, and emotional dysfunction, which may be only 

partially reversible with iron repletion [1, 64].   Studies in school age children have 
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shown iron deficiency affects cognition, and that anemic children struggle with social 

inattention and decreased motor activity and school performance [65, 66].   

In adults, iron deficiency even in the absence of anemia can lead to fatigue and 

reduced work performance [1].  This decrease in work capacity is attributed to low 

hemoglobin levels observed in iron deficiency, leading to a decreased efficiency in 

moving oxygen from the lungs to the brain and muscles [67].  Support for this is provided 

by evidence showing that with severe anemia, oxygen transport is restricted to tissue 

oxidative function at anything other than a resting condition [68].  In developing 

countries the impact of iron deficiency comes with a heavy price as the resulting reduced 

work capacity is attributed to the loss of millions of dollars each year [69].  

Consequently, organizations such as the World Health Organization and the International 

Labor Organization are working to establish an effective, cost efficient way of treating 

iron deficiency by means of dietary iron supplementation and treatment for causes such 

as parasitic infection. 

The body utilizes various physiological mechanisms in an attempt to adapt to iron 

deficiency.  First, intestinal expression of both the luminal iron transporter DMT1 and 

basolateral iron exporter Fpn1 is increased [4, 70].  Further, hepcidin expression is 

repressed leading to an enhanced release of iron stores through the de-repression of Fpn1-

mediated iron export from the RES [40, 52].  Next, plasma levels of the iron transport 

protein transferrin are increased in an effort to maximize transport capacity [33, 71].  

Finally, at the cellular level, iron deficiency enhances the expression of the iron uptake 

protein TfR [72].  The responses of various tissues to iron deficiency may differ 

significantly to most efficiently meet the needs of the organism and these tissue-specific 
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responses are thought to be coordinated by iron regulatory proteins.  In summary, these 

physiological adaptive mechanisms function to increase the acquisition and conservation 

of organismal iron under conditions when environmental iron is limiting. 

 

Global Regulators of Iron Metabolism 

 As alluded to above, a number of proteins intimately involved in cellular iron 

homeostasis are post-transcriptionally regulated by the action of Iron Regulatory Proteins 

(IRPs).  The coordination of iron uptake, storage, and utilization is critical in maintaining 

optimal levels of iron and the appropriate distribution of the intracellular iron pool.  

Through the actions of Iron Regulatory Protein 1 (IRP1) and Iron Regulatory Protein 2 

(IRP2), which both act to “sense” the intracellular iron status, total body iron homeostasis 

is tightly controlled.  IRPs regulate iron metabolism through high-affinity binding to Iron 

Responsive Elements (IREs), stem-loop structures in messenger RNA (mRNA) 

composed of a highly conserved CAGUGX hexanucleotide loop sequence [7, 73].  These 

conserved stem-loop structures are located in either the 5’ Untranslated Regions (UTRs) 

or 3’UTRs of mRNAs encoding proteins of iron metabolism and alter protein translation 

or mRNA stability, respectively (Table 1) [7, 10, 73]. 

 Both IRP1 and IRP2 function as high-affinity cytosolic RNA binding proteins that 

are regulated in an iron-dependent manner.  IRP1 is a bifunctional protein exhibiting 

either high affinity RNA binding protein activity (IRP1) or enzymatic activity by 

functioning as the cytosolic isoform of the TCA cycle enzyme aconitase (c-acon) [7, 74].  

The activity (or function) of the protein is largely dependent on the presence or absence  
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Table 1 Established and newly identified targets of IRP action
 

  mRNA            Function of Protein     Location of 
IRE 

 
Transferrin Receptor               Iron transport    3’UTR 
Divalent Metal Transporter 1      Iron uptake    3’UTR 
H- and L-Ferritin        Iron storage    5’UTR 
Ferroportin        Iron export    5’UTR 
Mitochondrial-aconitase         Tricarboxylic Acid Cycle  5’UTR 
Succinate Dehydrogenase*         Tricarboxylic Acid Cycle  5’UTR 
Erythroid Aminolevulinic Acid Synthase Heme biosynthesis   5’UTR 
Hypoxia Inducible Factor-2α   Oxygen Sensing   5’UTR 

 
  IREs located in either the 5’UTR or 3’UTR of mRNAs alter protein translation or 

stability, respectively. *IRE present only in Drosophila melanogaster.  
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of the Fe-S cluster [7, 9].  Under iron replete conditions, the presence of a [4Fe-4S] 

cluster confers enzymatic (aconitase) activity and inhibits high-affinity RNA binding  

activity [75].  Conversely, under iron deficient conditions, the Fe-S cluster is 

“disassembled” resulting in the generation of high-affinity RNA binding activity (IRP1) 

[76].  This iron dependent regulation of IRP1 is shown in Figure 2.  In contrast to IRP1, 

IRP2 does not contain a [4Fe-4S] cluster and lacks aconitase activity, functioning only as 

an RNA binding protein.  Rather than being regulated through the assembly or 

disassembly of an Fe-S cluster, IRP2 is regulated primarily through iron- and oxygen-  

dependent modulation of protein stability (not protein function like IRP1) and 

degradation [77] (Figure 3).  

 Aside from the lack of an Fe-S cluster as in IRP1, IRP 2 also contains an 

additional 73 amino acid sequence that is necessary for its iron-dependent regulation and 

degradation [7].  Through an iron and/or heme-dependent oxidation mechanism involving 

prolyl hydroxylation and recognition by an E3-ubiquitin ligase, IRP2 is uibiqitylated and 

targeted for proteasomal degradation [11, 12].  Under iron-deficient or hypoxic 

conditions, prolyl hydroxylase activity is relatively low and IRP2 is not recognized by the 

E3-ubiquitin ligase.  Thus, IRP2 is not ubiquitylated nor degraded leading to increased 

protein abundance as a function of enhanced stability [11].  This iron- and oxygen- 

dependent regulation of both IRPs deserves consideration because of the potential for 

coordinating both iron and oxygen sensing. 

 IRPs are cytosolic RNA binding proteins that bind to IREs and mediate the 

translation (when present in the 5’UTR) or stability (when the IRE is present in the  
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Figure 2 Iron dependent regulation of IRP1. When cells are iron deficient, IRP1 is converted 
to its active RNA binding form and binds to IREs with high affinity.  Under iron replete 
conditions, IRP1 confers enzymatic activity through the assembly of a [4Fe-4S] cluster and is 
the cytosolic isoform of aconitase (c-Acon).   

 

 

 Figure 3 Iron dependent regulation of IRP2.  Iron regulates IRP2 by enhancing protein 
stability or degradation through a mechanism involving prolyl hydroxylation and recognition 
by an E3-ubiquitin ligase. When iron is limiting prolyl hydroxylase activity is low and IRP2 
is not recognized by the E3-ubiquitin ligase leading to an increase in protein abundance and 
thereby an increase in RNA binding activity.  Excess iron results in recognition of IRP2 by 
the E3-ubiquitin ligase.  IRP2 is then ubiquitylated and targeted for proteasomal degradation 
leading to a decrease in protein abundance and subsequent decrease in RNA binding activity. 
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3’UTR) of mRNAs encoding proteins involved in iron metabolism.  In order to 

understand the mechanisms through which IRPs regulate translation, a brief review of  

protein translation is required.  Figure 4 illustrates how IRPs mediate translation under 

iron deficient and iron adequate conditions. 

Translation initiation on mRNA occurs in three steps: 1) the 40S ribosomal 

subunit binds to the mRNA close to the m7GpppG cap forming the 43S pre-initiation 

complex, 2) the 43S pre-initiation complex scans through the 5’UTR to  the initiation 

codon, and 3) the 60S ribosomal subunit is recruited to form the 80S ribosome so that 

translation can begin [78, 79].  The formation of an IRP/IRE complex within the 5’ UTR  

of mRNAs relatively close to the m7GpppG cap can repress translation initiation through 

stearic hindrance thereby blocking the binding of the 40S ribosomal subunits to the 

mRNA [79-81].  Complexes that are farther away from the cap cannot affect binding of 

40S subunit, but rather inhibit initiation by impeding ribosomal scanning [79].  There is, 

however, a positional requirement that exists in order for IRPs to be able to repress 

translation.  If the IRE is positioned more than ~70nt distal to the m7GpppG cap, IRPs  

are incapable of efficiently blocking translation [82].  This position effect may allow for 

tissue-specific or perhaps developmental regulation of various IRP targets.  Further, 

differences in IRE location and/or thermodynamic stability may contribute to differential 

regulation of translation of mRNAs containing a single IRE in the 5’UTR.  For instance, 

the 5’IRE in ferritin is very strictly regulated with changes in iron status whereas the 

5’IRE in m-acon is less-sensitive to IRP-mediated repression [10, 73, 83, 84].  The 

differences observed in IRE functionality are likely attributed to structural differences in  
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Figure 4 Iron regulatory protein (IRP) regulation of ferritin and transferrin receptor (TfR).  
Under low iron conditions, IRP1 is converted from its cytoscolic aconitase (c-Acon) form to its 
active RNA binding form and IRP2 protein is stabilized.  IRP binding to the 5’IRE in ferritin 
and the 3’IRE in TfR results in repressed ferritin mRNA translation and enhanced TfR mRNA 
stability.  Under iron adequate or high iron conditions, IRP is found mainly in its c-acon form 
and IRP2 protein is degraded.  Consequently, the IRPs fail to exhibit high affinity RNA binding 
activity leading to the activation of ferritin synthesis and a decrease in TfR mRNA stability. 
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the IRE and is based on the observation that even slight variations in the IRE structure 

produces a variety of mRNA-specific responses to alterations in iron availability [73, 83]. 

Finally, unlike IREs present in the 5’UTR, the presence of IREs in the 3’UTR of mRNAs 

encoding TfR and perhaps DMT1, lead to an increase in mRNA stability [85, 86].  Upon 

IRP binding to the IRE in TfR mRNA, the mRNA is stabilized as a result of the 

interference with nuclease access to an endonucleolytic cleavage site in the 3’UTR [87]. 

 IRPs coordinate the cellular response to depleted iron status by decreasing iron 

storage or increasing iron uptake through the regulation of ferritin and transferrin receptor 

mRNA, respectively [7, 10].  When cells are iron deficient, IRPs function as high-affinity 

RNA binding proteins and repress the translation of mRNAs containing 5’UTR IREs 

(i.e., ferritin) and increase the stability of mRNAs containing 3’UTR IREs (i.e., TfR) [10, 

17, 88].  Under iron replete conditions, IRPs lose their high affinity RNA binding 

capacity and fail to bind IREs resulting in the de-repression of ferritin synthesis and a 

decrease in TfR mRNA stability [7].   

 In addition to regulating the expression of proteins involved in iron storage and 

acquisition, IRPs also regulate mRNAs encoding proteins involved in iron utilization.  

For example, erythroid 5’-aminolevulenic acid synthase (eALAS), the rate limiting 

enzyme in heme formation, contains an IRE in its 5’UTR.  In iron deficiency eALAS 

translation is repressed decreasing the overall rate of heme biosynthesis [73]. 

Interestingly, IREs have also been identified in the 5’UTRs of mRNAs encoding 

mithochondrial aconitase (m-acon) and the iron-protein subunit of succinate 

dehydrogenase, SDH (in Drosophila sp. only), two TCA cycle enzymes [7, 10].  The 

regulation of m-acon and SDH via the IRE/IRP system provides a direct link between 
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iron and energy metabolism and is thought to play an important role in fuel utilization 

during iron deficiency [19, 89].   

An IRE is also found in the 3’UTR of the mRNA encoding the iron uptake protein 

(DMT1), though it remains unclear how this IRE functions since there appear to be 

DMT1 splice-variants expressed that do not contain an IRE [90, 91].  In addition to 

regulating iron uptake (TfR and DMT1), IRPs also appear to regulate the translation of 

the iron export protein Fpn1 through an IRE in its 5’UTR (S.L. Clarke, K.L. Ross, R.S. 

Eisenstein, unpublished observations) [18].  Thus, under iron deficient conditions, Fpn1 

translation is repressed, resulting in decreased iron release from hepatocytes, enterocytes, 

and cells of the RES.  It remains unclear what role translational repression plays since the 

primary means of regulating Fpn1 activity is through hepcidin-dependent degradation.  It 

is clear however, that both IRP1 and IRP2 are central regulators of iron metabolism, as 

they regulate proteins involved in the absorption, uptake, transfer, and storage of iron. 

Although the interconversion of IRP1/c-acon via assembly and dissembly of the 

Fe-S cluster is thought to be the primary mechanism through which the protein’s activity 

is regulated, IRP1 activity can also be regulated independent of iron by other means 

including oxidative stress and post-translational modification [92-94].  IRP1 is also be 

regulated by protein kinase C (PKC)-dependent phosphorylation at two PKC 

phosphorylation sites, S711 and S138 [95, 96].  The evidence of phosporylation-

dependent regulation indicates that IRP1 is regulated by means dependent and 

independent of Fe-S cluster assembly/disassembly [92, 96].  Phosphorylation of S711 of 

IRP1 results decreased in aconitase activity and suggests that phosphorylation at this site 

may alter cytosolic citrate/isocitrate metabolism independent of iron status [20].  On the 
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other hand, phosphorylation at S138 of IRP1 results in decreased Fe-S cluster stability 

and through an unknown mechanism enhances protein turnover [92].  Whereas 

phosphorylation of IRP1 provides a means to alter protein function in response to 

extracellular stimuli, modulation of IRP activity in response to oxidative stress appears to 

be a more generalized response due to modification of the [4Fe-4S] cluster.  Hydrogen 

peroxide, nitric oxide, and peroxynitrite are the most well-characterized cluster 

perturbants.  They promote the loss or disassembly of the [4Fe-4S] cluster generating the 

RNA binding form of the protein [7, 10, 97].  IRP2 can also be regulated in an iron-

dependent manner by phosphorylation [7].  Phosphorylation of IRP2 was shown to 

increase RNA binding activity through the activation of a latent pool of IRP2 rather than 

an increase in protein synthesis [98].  Thus, IRP2 appears to be able to switch from a 

high-affinity phoshphorylated RNA binding protein to a low-affinity dephosphorylated 

form through the regulation of phosphatases and protein kinases [7, 98].  Thus, various 

extracellular stimuli are capable of influencing IRP1/c-acon and IRP2 independent of 

cellular iron status. 

Because both IRP1 and IRP2 exhibit similar genetic regulatory functions (as RNA 

binding proteins) and because the function of c-acon remains elusive, the question as to 

whether or not these two proteins are functionally redundant is often asked.  To further 

investigate the specific roles, if any, IRP1 and IRP2, knock-out models have been 

developed (IRP1-/- and IRP2-/, respectively).  In work from the Rouault lab, IRP1-/- mice 

exhibited dysregulated iron metabolism in the kidney and brown fat [74].  Mice with a 

complete genetic ablation of IRP2 exhibited dysregulation of target gene expression in all 

tissues examined [74].  Additionally, while there was no obvious phenotype in IRP1-/- 
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mice, IRP2-/- mice developed microcytic anemia, erythropoietic protoporhyria, and 

neurodegenerative disease [74, 99].  Other laboratories have obtained similar results, 

though the phenotype of IRP2-/- animals is considerably less severe [100].  The loss of 

both IRP1 and IRP2 genes is embryonic lethal [7, 74].  That IRP2 can support biological 

function in the absence of IRP1, but that IRP1 is not able to fully complement the loss of 

IRP2 activity in IRP1-/- animals suggests that these two proteins are not functionally 

redundant. 

 

Hypoxia and HIF Regulation 

 One of the results of prolonged iron deficiency is the development of iron 

deficiency anemia.  As previously discussed, in the absence of appropriate levels of iron, 

erythropoiesis and subsequent hemoglobin synthesis is repressed.  Lack of hemoglobin 

impairs potential oxygen delivery to metabolically active tissues.  Thus, it is important to 

investigate mechanisms coordinating the physiological response to low levels of oxygen 

(hypoxia).  Hypoxia is a vital component in the pathophysiology of many common causes 

of disease and mortality such as myocardial and cerebral ischemia [101, 102].  Cellular 

hypoxia occurs when there is insufficient oxygen to generate enough ATP to sustain 

normal physiological functions like DNA, RNA, and protein synthesis, and key metabolic 

reactions [101].  Hypoxia occurs in a variety of disease states, such as vascular disease, 

chronic inflammation and cancer [101].  In disease states, target organs either fail to 

adequately adapt to hypoxia, or exhibit hypoxia-induced alterations in gene expression as 

a result of disruption of oxygen homeostasis that can further contribute to disease 

pathogenesis [102].  One example of the role hypoxia plays in contributing to the 
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pathogenesis of disease is the mechanism by which hypoxia increases angiogenic factors 

such as VEGF [103, 104].  In cancer, the hypoxic nature of tumors increases expression 

of VEGF promoting angiogenesis, which can lead to vascularization of the tumor further 

exacerbating the condition. 

Hypoxia has a significant effect on gene transcription.  In any given cell, several 

hundred genes are positively (VEGF) or negatively (HAMP1) regulated by hypoxia 

[105].  The body responds to hypoxia by transcriptionally up-regulating genes that 

enhance glycolytic ATP production and oxygen delivery to tissues [13, 101].  A family of 

oxygen-regulated transcription factors called the Hypoxia Inducible Factors (HIFs) is 

primarily responsible for regulating this transcriptional response [13, 101, 106].  

 To date, three HIF regulatory subunits have been identified, HIF-1α, 2α, and 3α 

along with the constitutively expressed oxygen-insensitive HIF-1β, also known as aryl 

hydrocarbon receptor nuclear translator or ARNT [12].  In the presence of oxygen, HIFs 

are targeted for proteasomal degradation by prolyl hydroxylation and interaction with the 

von-Hippel Lindau protein (pVHL), a protein with E3-ubiquitin ligase activity [14, 16, 

107, 108].  The primary function of pVHL is to target ubiquitylated proteins for 

proteasomal degradation [109]. 

Briefly, three 2-oxoglutarate-dependent oxygenases known as prolyl hydroxylase 

domain protein (PHD) 1, PHD2, and PHD3 are responsible for catalyzing the prolyl 

hydroxylation of HIF [105].  pVHL recognizes and binds to hydroxylated proline 

residues, but fails to recognize unhydroxylated HIFs [106, 110].  Thus, pVHL is critical 

for regulating the stability of HIF regulatory subunits by orchestrating ubiquitylation and 

proteasomal degradation [14, 106, 107].   
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 In contrast to prolyl hydroxylation, asparaginyl hydroxylation inhibits the 

transcriptional activation of HIF regulatory subunits independent of protein stability 

[105].  HIF subunits escaping the prolyl-hydroxylation and proteasomal degradation 

pathway can be post-translationally modified through hydroxylation of conserved 

aparagine resuides.  Asparaginyl hydroxylation blocks the interaction of HIF with the 

CREB-binding protein/p300 co-activator (CBP)/p300 complex, preventing the 

transcriptional activation of HIF [79, 106].  Asparaginyl hydroxylation is catalyzed by the 

asparaginyl hydroxylase known as Factor Inhibiting HIF (FIH), which is also a member 

of the 2-oxoglutarate-dependent oxygenase superfamily [28, 29].  Thus, there is a direct 

link between iron and oxygen sensing, because in addition to iron, both PHDs and FIH 

require oxygen as a co-substrate.  

Recently, mitochondria have also been implicated as having an important role in 

the regulation of HIF activation [111, 112].  Under normal oxygen conditions the 

mitochondria consume approximately 90% of available oxygen, leaving the remaining 

~10% for other cellular processes (e.g., as a co-substrate for PHDs) [108].  However, 

under hypoxic condition, the mitochondria consume most of the available oxygen 

because cytochrome c oxidase has a very high affinity for molecular oxygen [101]. This 

oxygen utilization by mitochondria leads to insufficient oxygen for prolyl or asparaginyl 

hydroxylation, thus, HIF regulatory subunits accumulate and subsequently translocate to 

the nucleus [101].  Once in the nucleus, the HIF regulatory subunits heterodimerize with 

HIF-1β, and function by binding to hypoxia responsive elements (HREs) present in the 

promoters of target genes thereby activating transcription [8, 29]. 
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Table 2 HIF target genes 
 

 HIF Target Genes           Cellular Process 
 

Insulin-like growth-factor-binding protein-1 (IGFBP1)  Growth and apoptosis 
BCL2/adenovirus E1B 19kDa interacting protein 3 (BNIP3)  
Endoglin (ENG)        
Calcitonin-receptor-like receptor      
Telomerase reverse transcriptase (TERT) 
Membrane type 1 metalloprotease (MT1-MMP)*     
Erythropoietin (EPO)*         Oxygen supply  
Vascular endothelial growth factor (VEGF) 
Inducible nitric-oxide synthase iNOS 
Endothelial nitric-oxide synthase (eNOS) 
Endothelin-1 (END1) 
Heme oxygenase (HOX) 
Vascular endothelial growth factor (VEGF)         Angiogenesis 
Vascular-endothelial-growth-factor receptor (FLT1) 
Plasminogen-activator inhibitor-1 (PAI-1)* 

Cbp/p300-interacting transactivator (CITED2)*        Transcription 
Inhibitor of differentiation 2 (ID2) 
Erythroblastosis virus E26 oncogene homoglog 1 (ETS1) 
Glucose transporter-1 (GLUT1)           Metabolism 
Hexokinase-2 (HK2) 
Lactate dehydrogenase (LDH) 
Carbonic anhydrase-9 (CAIX) 
Phosphoglycerate kinase 1 (PGK1) 
6-Phospohfructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) 
Transferrin (Tf)              Transport 
Transferrin receptor (TfR) 
Ceruloplasmin (Cp) 
Multidrug-resistance P-glycoprotein 

 
 Target genes transcriptionally activated by HIFs and their functional roles.  *Denotes 

genes that are preferentially targeted by HIF-2α.  
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HIF-1α and HIF-2α regulate the transcription of an overlapping, but separate set of target 

genes involved in cellular metabolism (Table 2) (glucose transporter 1 (GLUT1), 

hexokinase 2 (HK2), and glyceraldehydes 3-phoshpate dehydrogenase (GAPDH)), cell 

growth and apoptosis (insulin like growth factor 1 (IGF1), transforming growth factor β3 

(TGFB3), and endoglin (ENG)), as well as in the restoration of the oxygen supply by 

promoting angiogenesis (vascular endothelial growth factor (VEGF), plasminogen-

activator inhibitor-1 (PAI-1), and EPO) [12, 13, 28].  While HIF1α and HIF2α share an 

overlapping set of target genes, it also appears that these two transcription factors exhibit 

some degree of preference for similar HREs [17, 113]. HIF-1α primarily targets genes 

encoding proteins involved in glucose metabolism (glycolytic enzymes and glucose 

transport), whereas HIF-2α-selective target genes tend to be involved in cell growth and 

oxygen restoration including membrane type 1 metalloprotease (MT1-MMP), PAI-1, 

CITED2 and EPO [17, 114].  In terms of an interaction between iron and oxygen sensing, 

HIF-2α is of particular interest because of its role in regulating EPO expression and the 

stimulation of erythropoiesis, a process that accounts for the majority of iron use in the 

body. 

 Interestingly, the use of iron chelators such as desferrioxamine can elicit the same 

hypoxia transcriptional cascade observed when cellular oxygen is dropped from 

normoxic conditions (21%) to hypoxic conditions (< ~3%) [8, 105, 115, 116].  Under low 

iron conditions, HIFs are stabilized resulting in transactivation of target gene expression 

[8, 105].  In regards to iron metabolism and utilization, the upregulation EPO and 

subsequent increase in erythropoiesis is of particular interest. With adequate iron, the 

hypoxic stabilization of HIF-2α and thereby stimulation of EPO synthesis and red blood 
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cell production serves to meet physiological needs by increasing oxygen transport [117, 

118].  However, in the absence of adequate iron stores, stimulation of erythropoiesis can 

lead to the production of hypochromic microcytic red blood cells due to impaired heme 

synthesis and hemoglobin production potentially further depleting already low iron stores 

[6, 8].  Therefore, under either iron-deficient or hypoxic conditions, EPO stimulation of 

erythropoiesis is regulated to prevent the formation of immature red blood cells.  

Mechanisms through which both iron and oxygen sensing are coordinated remain 

poorly characterized.  However, the discovery of an IRE in the 5’UTR of HIF-2α mRNA 

by Hentze and colleagues has provided new insight into the iron-dependent regulation of 

HIF-2α [8]. This proposed oxygen- and iron-dependent regulatory mechanism is of 

biological significance because of the role of HIF-2α in the regulating EPO.  The results 

from this work suggest the rate of red blood cell production (and iron utilization) is 

adjusted to iron availability though the iron-dependent regulation of HIF-2α translation 

[8].  

 To date, these suggestions have been limited to results from in vitro studies [8, 

17].  We hypothesized that HIF-2α translation occurs through direct action of IRP RNA 

binding activity, and through this mechanism IRPs coordinate iron and oxygen signaling.  

In order to study the effects of dietary iron deficiency in the context of the whole 

organism we used a weanling rat model of diet-induced iron deficiency to investigate the 

extent to which hepatic HIF-2α mRNA translation is regulated in response to dietary iron 

deficiency.  Furthermore, we examined the relationship between the iron-dependent 

translational regulation of HIF-2α mRNA and IRP RNA binding activity.  Our results 

demonstrate that HIF-2α translation is repressed in the livers of iron deficient animals.  
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These findings are consistent with the activation of IRP RNA binding activity, suggesting 

that, in vivo, IRPs regulate the expression of HIF-2α providing a direct link between 

mechanisms controlling cellular iron and oxygen sensing.  



CHAPTER III 
 
 

METHODOLOGY 

 

Animal care 

Twenty-one day old male Sprague-Dawley rats (Harlan Sprague Dawley, 

Indianapolis, IN) weighing 45-50 g were placed on either an iron adequate control (C, 50 

mg Fe/kg) or iron deficient (ID, <5 mg Fe/kg) diet for 21 days.  A third group was pair-

fed (PF) the control diet to the level of food consumed by the ID animals.  The powdered 

diets were purchased from Harland Teklad (Madison, WI; Control - TD.89300 and Iron 

Deficient - TD.80396).  The composition of the iron deficient diet is summarized in 

Table 3.  The iron adequate control diet had an identical composition, but was 

supplemented with 0.235 g/kg ferric citrate. 

After 3 days of acclimation on the control diet, rats were randomly assigned to 

one of three treatment groups (n = 8 animals/group). Control and ID animals were 

allowed ad libitum access to diet and deionized water throughout the treatment period.  

Pair-fed animals were allowed ad libitum access to deionized water, but amount of diet 

provided was restricted to the amount consumed by the ID group.  Food intake and 

individual body weight for each rat was measured and recorded daily. 

Animals were housed individually in wire-bottomed cages at the OSU Laboratory 

Animal Research facility and maintained on a 12 hr light/dark cycle.  Upon completion 
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Table 3 Composition of iron deficient (ID) diet. 
 

 Ingredient      Composition (g/kg) 
 

    Casein, low Cu & Fe         200.0 
  DL-Methionine         3.0 
  Sucrose          549.99 
  Corn Starch          150.0 
  Corn Oil          50.0 
  Mineral Mix, Fe Deficient         35.0 
  Vitamin Mix, AIN-76A        10.0 
  Choline Bitartrate         2.0 
  Ethoxyquin, antioxidant        0.01 

 
 
 The ID diet contained <5 mg Fe/kg diet.  The control diet contained all of the same 

components of the ID diet, but was supplemented with ferric citrate to provide 50 mg 
Fe/kg diet.  Diets were purchased from Harlan Teklad, Madison, WI. 
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of the treatment period, animals were anesthetized with a mixture of ketamine/xylazine 

(75 mg ketamine and 7.5 mg xylazine/kg body weight).   Following cardiac 

exsanguination via the abdominal aorta, tissues were removed, processed for polysome 

analysis, or snap frozen in liquid nitrogen.  All animal studies were approved by the 

Institutional Animal Care and Use Committee of Oklahoma State University. 

 

Assessment of iron status 

Blood from each rat was collected in EDTA-coated tubes and assayed for 

hemoglobin, hematocrit, and percent reticulocytes (Stillwater Medical Center, Stillwater, 

OK). 

 

Polysome profile analysis 

Livers were excised, washed in ice-cold polysome buffer (PB: 40 mM HEPES pH 

7.4, 100 mM KCl, 5 mM MgCl2, 2 mM citrate, and 1 mM dithiothreitol), minced, and 

placed in a Potter-Elvehjem homogenizer.  The liver was homogenized in 3 volumes PB 

using a fitted Teflon pestle.  Approximately, 15 ml of the homogenate was transferred to 

a polypropylene tube and centrifuged (Beckman RC5C Centrifuge) in a SS-34 rotor at 

5000 x g at 4˚C for 20 min.  The upper 2/3 of the supernatant was collected and one 

volume of detergent (10% deoxycholate and 10% Triton X-100) was added to 9 volumes 

of the supernatant.  After adding detergent, the samples were gently mixed by inverting 

the tubes 4-5 times.  Lastly, 500 µL of the sample was layered onto an ice-cold 11 ml 

linear 10% to 43% sucrose gradient in PB.  The samples were centrifuged 

(Thermo/Sorvall WX Ultra) at 180,000 x g in a Sorvall TH-641 swinging bucket rotor for 
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2 h at 4˚C with slow braking.  Immediately following centrifugation, gradients were 

fractionated using an ISCO gradient fractionator (Teldyne Isco, Inc. Lincoln, NE).  The 

absorbance at 254 nm was continuously monitored and 11 x 1 min (~1 ml) fractions were 

collected and stored at -80˚C. 

 

RNA isolation from sucrose gradients  

Total RNA was isolated from 500 µL of each gradient fraction using STAT-60 

(Teltest, Inc., Friendswood, TX). RNA collected from each fraction was resuspended in 

20 µl diethyl pyrocarbonate (DEPC) treated water. The concentration of RNA was 

determined by spectrophotometry (NanoDrop ND-1000, Thermo Fisher Scientific, 

Wilmington, DE) and integrity of 18S and 28S rRNA in the gradient fractions was 

analyzed by agarose gel electrophoresis.  The agarose gel solution was pre-stained with 

GelStar Stain (Lonza, Rockland, ME) and the RNA was visualized using a VersaDoc 

imaging system (Bio-Rad, Hercules, CA) using a 520 Long Pass filter and UV 

transillumination.  It was determined from these images that fractions 1-3 represented the 

free protein pool, some of the ribonucleoprotein (RNP) pool, and a portion of the  

ribosomal subunits, fractions 4-5 primarily contained the ribosomal subunits (40S, 60S, 

and 80S), while fractions 6-10 contained the light and heavy polysomes.   

 

Real-Time PCR from gradient fractions 

Two microliters, or one tenth of the total RNA collected from each fraction was 

treated with DNase I (Roche, Indianapolis, IN – Catalog # 776 785) at 37˚C for 30 min, 

75˚C for 10 min followed by a 4˚C soak cycle. RNA was then reverse transcribed using 
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Superscript II (Invitrogen, Carlsbad, CA – Catalog # 18064-022) to synthesize cDNA [8].  

Each real-time reaction was performed in duplicate using SYBR green chemistry 

(Applied Biosystems, Foster City, CA – Catalogue # 4367659).  Primers were designed 

using the Genebank database or published species-specific sequences and are listed in 

Table 4.  The standard used for primer design and validation was that the amplicon had 

to span the intron, that template titration must form a single dissociation curve, and have 

an efficiency slope of -3.3. 

The relative abundance of cyclophilin, L-Ferritin, TfR, HIF-2α, Fpn1, and m-acon 

mRNA and 18S mRNA was determined in each gradient fraction by real-time PCR using 

an ABI Fast 7900HT Real-Time PCR System (Applied Biosystems, Foster City, CA). 

Cycles included one 2 min hold (50˚C); one 10 min denaturation (95˚C); 40 cycles of 

denaturation (95˚C for 15 sec) and annealing (60˚C for 1 min); and dissociation (95˚C for 

15 sec followed by 60˚C for 15 sec).  Additionally, 2 µg of total RNA isolated from the 

post-mitochondrial supernatant was also DNase treated, reverse transcribed and subjected 

to real-time PCR to examine gene expression.  Real-time PCR reactions were performed 

in duplicate using 25 ng cDNA at a final concentration of 2.5 ng/µl. All real-time PCR 

results were analyzed using the comparative cycle number at threshold (CT) method.   

Total 18S rRNA and cyclophilin B were used as the controls for determining relative 

mRNA abundance in gradient fractions and post-mitochondrial supernatant, respectively.  



Table 4 Primer pairs used for real-time PCR 
 

   Primer Name   Sense Primer           Antisense Primer         Accession No 
   Cyclo  5'-GGTCTTTGGGAAGGTGAAAGAA-3’         5'-GCCATTCCTGGACCCAAAA-3’          NM_017101  
   L-Ft   5'-TTCGCGGTTAGCTCCATACTC-3’         5'-TCACGGCAGCTTCCACTTC-3’         NM_022500  
   TfR1   5'-TCGGCTACCTGGGCTATTGT-3’         5'-CCGCCTCTTCCGCTTCA-3’        XM_340999 
   HIF-2α  5'-GCGACAATGACAGCTGACAA-3’         5'-CGGCATCTCGGGATTTCT-3’         NM_023090 

 
Primer pairs used to quantify polysomal distribution of mRNA in response to dietary iron deficiency.  Cyclo, Cyclophilin; L-Ft, L-
Ferritin; TfR1, Transferrin Receptor 1; HIF-2α, Hypoxia Inducible Factor-2α;  
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Electrophoretic Mobility Shift Assay 

IRP RNA binding activity in the liver was determined by electrophoretic mobility 

shift assay.  First, a plasmid encoding the rat L-Ferritin IRE (generously provided by Dr. 

Richard Eisenstein, University of Wisconsin-Madison, WI) was digested with SmaI to for 

synthesis of radiolabeled RNA.  The vector p16Bgl, which contains the entire rat L-

Ferritin cDNA was used for IRE synthesis as described by Eisenstein et. al [119]. A 73 

nucleotide [32P]-labeled RNA containing the IRE was produced by T7 RNA polymerase.  

The RNA was gel purified though a 10% acrylamide 8M urea gel and specific 

radioactivity of the RNA probe was determined (~4000 dpm/fmol).  Secondly,  cytosolic 

fractions were obtained by adding Triton X-100 (1% final) to the post-mitochondrial 

supernatant described above.  After adding detergent, samples were centrifuged at 16,000 

x g at 4˚C for 25 minutes.  The supernatant was collected and the concentration was 

determined using the bicinchoninic acid (BCA) protein assay [120].  

Spontaneous IRP1 and IRP2 RNA binding activity was assessed by incubating 5 

µg cytosolic extract for 10 minutes on ice with saturating levels of [32P]-labeled RNA (1 

nmol/L) in a final concentration of 5% glycerol, 1 mmol/L magnesium acetate, 20 

mmol/L HEPES, 75 mmol/L potassium chloride and 20 mg/L of nuclease free bovine 

serum albumin in a final volume of 30 µL.  Next, 3 µL of heparin (5 g/L in nuclease-free 

water) was added to each reaction and allowed to incubate an additional 10 minutes. 

Finally, 25 µL of each 33 µl reaction was loaded onto a 0.5X TBE 4% polyacrylamide 

(60:1 acrylamide/bisacrylamide) gel.  During sample preparation, the polyacrylamide gel 

was pre-ran at 150 V for approximately 20 minutes.  Samples were loaded onto gel 
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running at 90 V. After all samples were loaded, they were electrophoresed at 150 V for 

90 minutes.   

Total RNA binding activity was measured by adding 1 µg cytosolic extract in the 

presence of 2% β-mercaptoethanol, to saturating levels of [32P]-labeled RNA as described 

above.  Samples were incubated at room temperature (25˚C) for 30 minutes.  Next, 3 µL 

of heparin was added and the samples were electrophoresed as described above.  Gels 

were then vacuum-dried for two hours using a Model 583 Gel Dryer connected to a 

Hydrotech Vacuum Pump (Bio-Rad, Hercules, CA) and visualized using a Bio-Rad 

Phosphor K imaging screen and Personal Molecular Imager FX imaging system (Bio-

Rad, Hercules, CA).   

RNA binding activity was quantified using OptiQuant Acquisition & Analysis 

software (Packard Bioscience, Meridien, CT).  Briefly, a standard curve of the [32P]-RNA 

was included on each phosphoimaged gel.  The digital light units (DLUs) for the standard 

curve were used to convert DLUs established by phosphoimaging to mol [32P]-RNA by 

determining the counts per minute (cpm) of the standard curve using scintillation 

counting (Packard Tri-Carb 2900 Liquid Scintillation Analyzer, GMI, Inc., Ramsey, 

MN).  Spontaneous and total RNA binding activities are expressed as fmol RNA 

bound/mg protein and pmol RNA bound/mg protein respectively. 

Statistical analyses using ANOVA and Students T-test techniques using SPSS 

software (SPSS, Inc., Chicago, IL) were performed to determine the significance of 

treatment effects.  All tests were done at the 95% confidence level (α = 0.05).  

Descriptive statistics were calculated on all variables to include mean and standard 

deviation.   



CHAPTER IV 
 
 

FINDINGS 

 

Dietary iron deficiency alters total body weight and hematological parameters 

in weanling male rats. To examine the extent to which an ID altered food intake and/or 

weight gain during the study, daily food intake and weight were closely monitored.  

Previous studies have established that a diet providing less than 5 mg Fe/kg diet results in 

decreased food intake and weight gain, thus to control for this we included a pair-fed 

group in the current study [73, 84, 121].  To determine the degree to which dietary 

treatments were associated with the development of anemia, we examined hemoglobin, 

hematocrit, and percent reticulocytes.  The effect of dietary iron deficiency on weight 

gain and indices of iron status among the different treatment groups of rats is shown in 

Figure 5.  The ID and PF groups weighed significantly less than the C group at the end 

of the 21 day period (192.1 ± 2.0 g for the C group compared to 175.2 ± 5.6 g and 170.7 

± 1.1 for the ID and PF groups, respectively, p < 0.001).  The decline in weight gain was 

statistically significant on day 14 and continued through the end of the study (p = 0.029). 

Biochemical indicators of systemic iron status indicated that only animals 

receiving the iron deficient diet were anemic (Figure 6).  Blood hemoglobin and 

hematocrit levels were significantly lower in ID animals.  Hemoglobin was 66.0 ± 2.0 

g/L for the ID animals compared to 135.0 ± 3.0 and 133.0 ± 2.0 g/L for the C and PF  
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Figure 5 Effect of dietary iron deficiency on weight gain. Beginning on day 14 the PF 
and ID groups weighed significantly less than the C group (p = 0.029).  This decline in 
growth rate continued and became more dramatic through the termination of the study.  
Asterisk denotes first statistical significance relative to control.  
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Figure 6 Hematological indices in response to dietary iron deficiency. Biochemical 
indicators of systemic iron status indicate the animals consuming an iron-deficient diet are 
anemic. The ID animals had significantly lower levels of hemoglobin and hematocrit than 
the PF and C animals.  The formation of reticulocytes, or immature red blood cells, is 
another means of confirming the development of anemia.  The ID animals had a significantly 
higher reticulocyte count than the PF and C animals. *Statistical significance (p < 0.001). 
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groups, respectively (p < 0.001) and hematocrit was 16.8 ± 0.7% for the ID animals and  

37.0 ± 0.9 and 38.1 ± 0.7 for the C and PF groups, respectively (p < 0.001).  In iron  

deficiency anemia, the relative abundance of reticulocytes can be used to further confirm 

the development of anemia.  An increase in the number or percent of reticulocytes 

reflects impaired erythropoiesis in response to iron deficiency.  In animals receiving the 

ID diet, the percent reticulocytes in blood was significantly elevated compared to C and 

PF animals (24 ± 0.3% for the ID animals compared to 10.7 ± 0.6% and 10.3 ± 1.1% for 

the C and PF animals, respectively). Further, all of the animals in this study were 

experiencing rapid growth, and this is reflected by the higher-than-normal (for adult rats) 

percent reticulocytes in all treatment groups.   

IRP1 and IRP2 binding activity is increased in livers of iron deficient animals. 

To determine the extent to which dietary iron deficiency affects hepatic IRP1 and IRP2 

RNA binding activity, we quantitatively assayed spontaneous and total IRP binding 

activity in the ID and PF animals.  We compared RNA binding activity of the ID animals 

versus the PF animals because we felt the PF animals served as a more appropriate 

control to confirm that changes in binding activity were a result of iron deficiency and 

not decreased nutrient intake.  Spontaneous IRP1 and IRP2 RNA binding activity 

increased from 455 ± 53 to 793 ± 60 fmol/mg protein for IRP1 and from 93 ± 21 to 324 ± 

121 fmol/mg protein for IPR2 in the liver of the ID animals (Figure 7A).  Thus, the 

spontaneous RNA binding activity of both IRP1 and IRP2 is significantly elevated in 

animals receiving the ID diet compared to the PF animals (p < 0.001). 

Factors such as changes in iron status can influence the distribution between 

active and inactive forms of IRPs.  Under normal physiological conditions, less than  
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Figure 7 Effect of dietary iron deficiency on spontaneous and total binding 
activity of IRP1 and IRP2 in rat liver cytosol.  (A) Spontaneous IRP1 and IRP2 
RNA Binding Activity are increased 0.6 and 3.5-fold, respectively in ID animals 
(p < 0.001).  (B) Total RNA binding activity (spontaneous + latent), as measured 
by the addition of β-mercaptoethanol, remains unchanged in response to dietary 
iron deficiency. 
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about 5% of IRPs in the rat liver are in their active RNA binding form [9].  Addition of 

the reductant β-Mercaptoethanol (β-ME) allows for the measure of total IRP protein 

present by recruiting inactive IRPs to their active RNA binding forms [84, 98, 122].  As 

IRP2 is regulated by degradation of the protein itself, the addition of β-ME does not 

significantly affect IRP2.  Consequently, this assay offers a means of measuring the 

amount of IRP1 present in its inactive (c-aconitase) form [84].  To determine the 

influence of dietary treatment on total IRP binding capacity, we examined the inducible 

binding activity effect of β-ME on IRPs in hepatic cytosolic extracts of the PF and ID 

rats.  Total RNA binding activity was unchanged in response to dietary iron deficiency 

(Figure 7B), indicating that changes in spontaneous IRP binding activity were not a 

function of alterations in the total pool size of IRPs.   

HIF-2α is translationally repressed in livers of iron deficient animals.  Because 

HIF-2α mRNA possesses a functional IRE in its 5’UTR, we were interested in examining 

the extent to which hepatic HIF-2α mRNA was translationally regulated in response to 

dietary iron deficiency [8].  Given the increased IRP RNA binding activity exhibited by 

ID animals, we hypothesized that established and newly identified targets of IRPs (i.e., L-

ferritin and HIF-2α) would be translationally repressed.  We examined the translational 

control by assessing polysomal distribution of target mRNAs in livers of PF and ID 

animals.  Using sucrose density centrifugation, we separated mRNA into inactively 

(ribonucleoprotein, RNP) and actively (polysome) translating fractions.  A representative 

OD254 profile from a sucrose gradient and fractions corresponding to RNPs (1-3), 

ribosomal subunits (4-5), and polysomes (6-10) is shown in Figure 8A-B.  After isolating 

total RNA from gradient fractions, RNA was reverse transcribed and the resulting cDNA  
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Figure 8 Representative polysome profile and agarose gel assesseing integrity and location of 
18S/28S rRNA from sucrose gradient fractions.  (A) The OD254 of each sucrose gradient was 
monitored continuously and 11 x 1 minute fractions were collected (~1ml).  Fractions 1-5 
correspond to RNPs and the ribosomal subunits, and fractions 6-11 correspond to the actively 
translating polysomes.  (B)  RNA was then isolated from each fraction and electrophosed 
through a 0.7% agarose gel to assess integrity and location of the 18S/28S rRNA. 
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was used as a template for real-time PCR to examine mRNA distribution across the 

sucrose gradient.  Cyclophilin B (Cyclo B) and L-Ferritin (L-Ft) mRNA were used as 

negative and positive controls, respectively, for iron-dependent (i.e., IRP) translational 

regulation.   

Real-time PCR analyses show that there is a significant change in the distribution 

of HIF-2α mRNA (Figure 9A) with a greater percentage found in the repressed pool and 

less on the polysomes in response to dietary iron deficiency (47.2% and 38.2% in the 

repressed pool and polysomal pool, respectively in the ID animals compared to 32.3% 

and 57.2% in the repressed and polysomal pools of the PF animals, p < 0.03, Table 5).  

Similarly, translation of L-Ft mRNA, a canonical IRP target, is repressed in the livers of 

ID rats with nearly 90% of mRNA present in the repressed mRNP fraction (85.8% in the 

RNP pool in ID animals compared to 74.8% in the RNP pool in PF animals, p < 0.05, 

Figure 9B, Figure 10, and Table 5).  To determine if the translational repression of 

identified IRP targets is due to a global repression in translation, we examined the 

translational distribution of cyclophilin mRNA.  Nearly 80% of cyclophilin mRNA is 

present in the polysomal fractions and importantly, the polysomal distribution of 

cyclophilin mRNA is unaffected by iron status (Figure 9C and 10).   

Although polysomal analysis can provide useful information regarding 

translational control, it does not accurately reflect changes in the total pool of a given 

mRNA.  Thus, to determine that repression of HIF-2α mRNA was not simply due to 

HIF-2α transcription, we examined HIF-2α mRNA abundance from RNA isolated from 

an equal amount of post-mitochondrial supernatant layered onto the gradients.  The 

relative abundance of HIF-2α mRNA was unaffected by diet (p = 0.76, Figure 11).  
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Figure 9 Polysomal distributions of (A) HIF-2α, (B) L-Ferritin, and (C) Cyclophilin B.  
Fractions 1-5 represent RNPs and ribosomal subunits, and fractions 6-11 correspond to 
polysomes.  Total 18S rRNA in each fraction was used as a control.  *Statistical significance 
between PF and ID animals (p < 0.01).  Error bars show SEM. 
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Figure 10 Total mRNA Distribution in RNP, Subunits, and Polysome fractions.  
*Statistical significance between PF and ID animals (p < 0.05).  Error bars show SEM.  
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Table 5 Fractional distribution of total mRNA in gradient fractions. 
 

mRNA 
 

Diet 
 

mRNP 
 

40S/60S/80S 
 

Polysomes 
 

HIF-2α PF 32.3 10.5 57.2 
ID 47.2* 14.4* 38.2* 

L-Ferritin PF 74.8 3.8 21.4 
ID 85.8* 4.9 9.3 

Cyclophilin PF 12.4 10.7 76.9 
ID 12.4 10.4 76.2 

 
 *Statistical significance between PF and ID animals (p < 0.05). 
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HIF-dependent gene expression is decreased in dietary iron deficiency. Upon 

determining that HIF-2α translation is repressed in dietary iron deficiency, we were 

interested in examining the HIF-1α expression as well as the expression of HIF target 

genes in response to dietary iron deficiency.  To do this we compared the relative mRNA 

abundance of HIF-1α and HIF targets in total RNA isolated from the post-mitochondrial 

supernatant from the ID and PF animals. Interestingly, and in contrast to HIF-2α, HIF-1α 

mRNA expression is decreased in livers of iron deficient animals (Figure 11).  

Next, we investigated the expression of HIF target genes 

(Phosphofructokinase/Fructose Bishpohpatase 3 - PFKFB3, Glucose-6-Phosphatase – 

G6Pase, Glucokinase – GK, and Glucose Transporter 1 – GLUT1), which are typically 

induced in response to hypoxia (Figure 11).  Hepatic expression of PFKFB3, G6Pase, 

and GK did not appreciably change in response to dietary iron deficiency.  In agreement 

with the decreased expression of HIF-1α expression however, GLUT1 expression 

significantly decreased in response to dietary iron deficiency (p = 0.02).  The changes in 

HIF-dependent gene expression were contrary to what was predicted as in vitro treatment 

with iron chelators observed by others, as well as in our own lab, typically results in an 

increase in HIF-dependent gene expression [116, 123]. 

Iron dependent changes in gene expression.  Lastly, we wanted to examine the 

expression of genes with known responses to dietary iron deficiency to serve as positive 

and negative controls.  We examined HAMP1 and TfR1, both of which are expected to 

change in response to dietary iron deficiency, and the post-transcriptionally regulated L-

Ft [3, 4, 42]. As anticipated, hepcidin (HAMP1) mRNA expression is greatly reduced in 

response to iron deficiency (p < 0.001) [3, 55].  The relative abundance of transferrin  
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Figure 11 Real-time PCR analyses HIF-1α and HIF-2α regulatory subunits, iron 
regulated targets, and previously irentified HIF targets.  mRNA levels were normalized to 
Cyclo mRNA as the invariant control.  Numbers beneath gene names indicate CT value 
obtained by real-time PCR for the pair-fed group.  *Statistical significance between PF 
and ID groups (p < 0.05).  Error bars shown SEM. 
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receptor (TfR) is increased in ID animals (p = 0.006); largely as a result of enhanced 

mRNA stability due to an increase in IRP RNA binding activity.  L-Ft mRNA abundance 

is not significantly altered by iron status, in agreement with previous results indicating 

that the IRP-dependent regulation of L-Ft occurs post-transcriptionally (p = 0.234) 

(Figure 11).  
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CHAPTER V 
 
 

DISCUSSION 
 
 
 
 

Due to the essential, yet potentially toxic nature of iron, cellular and organismal 

iron homeostasis must be tightly regulated to prevent iron deficiency or iron toxicity.  

The iron stores regulator peptide hormone, hepcidin, is a critical mediator of organismal 

iron homeostasis, as evidenced by results demonstrating that mutations in either hepcidin, 

or its molecular target Fpn1, are associated with dysregulation of iron metabolism [3, 

124, 125].  While hepcidin is considered a systemic regulator of iron metabolism, IRPs 

are generally considered to be the global regulators of cellular iron metabolism due to 

their role in regulating the expression of proteins involved in iron storage, transport, and 

utilization.  More recently, the targets of IRPs are being expanded beyond mRNAs 

encoding iron-related proteins to include proteins involved in cell cycle 

progression/cellular proliferation (Cell division cycle 14A – cdc14a), oxygen 

sensing/hypoxic adaptation (HIF-2α), and perhaps even proteins implicated in the 

etiology of neurodegenerative disease (α-Synuclein and Amyloid beta A4 precursor 

protein) [8, 126, 127].  Although relatively little is known about the hierarchical 

regulation of IRE-containing transcripts, not all IRE- containing transcripts appear to be 

regulated identically in vivo supporting the concept that both IRE and non-IRE 

sequences, including proximal flanking regions, can contribute to the extent of IRP-
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dependent regulation (S.L. Clarke, K.L. Ross, R.S. Eisenstein, unpublished observations) 

[19, 84]. 

The relatively recent discovery of an apparently functional IRE in the 5’UTR of 

HIF-2α prompted us to examine the extent to which HIF-2α is translationally regulated, 

presumably by IRPs, in response to dietary iron deficiency.  The presence of an IRE in 

HIF-2α is particularly intriguing given that one of the key HIF-2α target genes is the 

erythropoiesis-stimulating hormone erythropoietin [14].  Although the kidney is the 

primary site of EPO expression under normal conditions, hepatic expression of EPO may 

account for approximately 30% of total EPO in response to hypoxic conditions [128].  

Based on the function of IRPs, we and others have proposed that IRP-dependent 

regulation of HIF-2α expression is an adaptive mechanism to coordinate iron stores 

(availability) with the production of red blood cells [8].  Thus, under low-oxygen 

conditions in the absence of adequate iron stores, the increased rate of erythropoiesis is 

attenuated, decreasing the overall production of microcytic hypochromic erythrocytes. 

 In this present study, we have established a role for IRPs in regulating hepatic 

HIF-2α translation in response to dietary iron deficiency.  By examining the effects of 

dietary iron deficiency on well-characterized targets of IRPs (i.e., L-Ft) we demonstrate 

that the translational regulation of HIF-2α mRNA is consistent with the alterations in IRP 

RNA binding activity in response to dietary iron deficiency.   In fact, the degree of 

regulation of HIF-2α appears to be more robust than L-Ft, a canonical target of IRPs.  

We have demonstrated in rapidly growing, but presumably iron replete animals, that only 

~20% of L-Ft mRNA is on polysomes, whereas ~57% of HIF-2α mRNA is in the 

translationally active state.  In response to iron deficiency, about 85% of total L-Ft 
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mRNA is found in the RNP (15% increase relative to control).  For HIF-2α, a fractionally 

greater proportion of mRNA (46% increase relative to control) is shifted into the 

repressed pool.  Given the role of ferritin as the major storage protein and the requirement 

of iron for cell growth and proliferation, the expression of ferritin would be expected to 

be tightly controlled and therefore not actively translated under most physiological 

conditions.  In fact, we found that the majority of L-Ft mRNA is repressed in these 

rapidly growing animals.  Conversely, a greater proportion of HIF-2α mRNA is 

translationally active regardless of iron status, perhaps underscoring the relative 

importance of this constitutively expressed transcription factor in allowing cells to adapt 

to rapidly changing oxygen conditions.  Although oxygen- and iron-dependent changes in 

protein stability are primary mechanisms regulating HIF-2α activity, we have 

demonstrated in vivo that HIF-2α is also regulated at the level of protein translation.  

Again, given the important role of this protein in allowing the organism to adapt to 

hypoxic conditions, translation would not likely be fully blocked, even when iron 

deficiency or hypoxia is most severe.  Instead, the IRP-dependent regulation of HIF-2α 

likely serves as a means to coordinate iron and oxygen sensing, providing the greatest 

degree of conservation of iron in severe iron deficiency.  Under iron-replete but hypoxic 

conditions, the translation of HIF-2α would likely be unaffected by IRPs, thereby 

increasing the expression of HIF-2α-dependent target genes promoting the biological 

adaptation to hypoxia.  However, the extent to which hypoxia or iron deficiency alone 

affects the HIF-2α-dependent transcriptional network remains unclear.   

 In an effort to characterize the effects of iron deficiency on HIF-dependent target 

expression, we examined both iron-regulated and HIF-related genes. Consistent with the 
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role of IRPs in regulating TfR mRNA stability, TfR expression was increased 3 fold in 

the livers of iron deficient animals.  Furthermore, expression of the gene encoding the 

iron peptide hormone hepcidin (HAMP1) is repressed in iron deficient animals.  In the 

absence of hepcidin both intestinal iron uptake and reticuloendothelial iron export is 

increased to provide sufficient iron to promote heme synthesis and erythropoiesis.  

Hepcidin expression is controlled in part through a Bone Morphogenetic Protein (BMP) 

signaling pathway [129].  Hemojuvelin (HJV), expressed primarily by hepatocytes and 

skeletal muscle, is a glycosylphosphatidyl inositol-linked cell surface protein that 

functions as a co-receptor for BMPs [130].  Hemojuvelin acts as an antagonist to BMP 

signaling and can reduce the level of HAMP1 expression by inhibiting the BMP-

dependent signaling cascade [56].  Interestingly, HJV is shed from skeletal muscle in 

response to iron deficiency and is capable of moderately suppressing hepatic HAMP1 

expression [131].  In addition to regulation of expression through a BMP-dependent 

pathway, HAMP1 is also regulated by hypoxia [3].  Although less well-characterized, 

HIFs can also function as transcriptional repressors [105, 132, 133].  Thus, under 

relatively severe iron deficiency or hypoxia, HAMP1 expression is repressed by HIFs 

leading to an enhanced iron uptake by enterocytes and iron release from macrophages.  In 

our study, it is unclear if HAMP1 expression is being negatively regulated through an 

HJV-dependent or HIF-dependent pathway.  Despite a significant repression of HIF-1α, 

mRNA and given the enhanced stability of HIF1-α in iron deficiency and hypoxic 

conditions, it is possible that HAMP1 expression is still, at least in part, being regulated 

by HIFs.   
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In support of the HIF-dependent regulation of HAMP1 is the significant down-

regulation of the HIF target gene, Glucose Transporter 1 (GLUT1), a glucose transporter 

expressed at low levels in the liver.  With its low-affinity and high capacity for glucose 

transport, GLUT2 is a significantly more important glucose transporter, however, the 

regulation of GLUT1 in the liver may be indicative of HIF-dependent repression in other 

tissues (i.e., erythrocytes).  Interestingly, not all GLUTs appeared to be regulated in a 

similar manner. For example, HIFs increase the expression of GLUT1 and GLUT3, but 

decrease the expression of GLUT2 [134].  It remains unclear how the regulation of 

GLUT1 affects hepatic glucose metabolism, however, down-regulation of GLUT1 in the 

CNS (a major site for glucose uptake) would result in decreased glucose uptake by the 

brain and may contribute to alterations in systemic glucose utilization [135]. Others have 

previously shown that severe iron deficiency is associated with an increased reliance on 

glucose as a metabolic fuel for peripheral tissues [117, 136, 137].   

Even with moderate iron deficiency, blood glucose levels are significantly 

elevated consistent with increased oxidation of glucose [117].  It remains unclear, 

especially in iron deficiency, if this hyperglycemia is a result of decreased insulin 

sensitivity or perhaps a diminution of postprandial hepatic glucose uptake.  With a 

significant repression of GLUT1 expression, it is possible that this is one of the 

mechanisms contributing to iron deficient induced hyperglycemia.  Additionally, insulin 

secretion by the pancreatic β-cells may be negatively regulated by iron deficiency and 

could further contribute to hyperglycemia (Eisenstein and Clarke, unpublished 

observations).  A few critical questions still remain.  First, to what extent does a decrease 

in HIF-2α translation affect either hepatic or renal erythropoietin expression?  Second, is 
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there a fundamentally different response to a hypoxic situation in the absence of iron 

deficiency?  Third, are alterations in whole body fuel metabolism related to alterations in 

HIF-dependent signaling pathways?  The extent to which alterations in iron status are 

associated with changes in oxygen sensing and fuel oxidation remains unknown.  

Nonetheless, to the best of our knowledge, the results herein are the first to demonstrate 

in an animal that the translation of HIF-2α is regulated in an iron-dependent manner.  

Furthermore, we found that HIF-dependent gene expression is repressed, which may 

begin to provide a mechanistic basis for one of the contributing factors to hyperglycemia 

observed in moderate to severe iron deficiency.  Clearly, more studies need to be 

conducted to further ascertain ontological changes in oxygen sensing in response to iron 

deficiency and how these changes are related to both hepatic and peripheral tissue 

glucose utilization and oxidation. 



CHAPTER VI 
 
 

CONCLUSIONS 

 

In this study, we have established a role for IRPs in regulating hepatic HIF-2α 

translation in response to dietary iron deficiency utilizing a weanling rat model of iron 

deficiency.  A severely iron deficient diet has been shown to decrease total food intake 

leading to decreased body weight [19, 84, 121].  To control for this, we included a group 

that was pair fed a control diet to the amount of deficiency diet consumed by the ID 

group to ensure our findings were not the result of dietary factors other than the absence 

of iron.  Biochemical measures of systemic iron status indicated that only animals 

consuming the iron-deficient diet were anemic as evidenced by both the significantly 

lower hemoglobin and hematocrit levels in addition to an elevation of the number of 

reticulocytes.  This affirms that observed changes in IRP binding activity and 

translational control were more likely the result of dietary iron deficiency than simply a 

decrease in food intake. 

To examine the extent to which dietary iron deficiency alters hepatic IRP1 and 

IRP2 RNA binding activity, we assayed both spontaneous and total IRP binding activity.  

In agreement with previous studies, spontaneous liver RNA binding activity of both IRP1 

and IRP2 was increased 0.6- and 3.5-fold, respectively, in the livers of the ID animals 

[19, 74, 84, 138].  Next, in order to attribute changes in binding activity to the post-

translational regulation of activity through the recruitment of IRP to its RNA binding 

form through the loss of the [4Fe-4S] cluster, we examined the total RNA binding 

activity of IRP1.  Addition of the strong reductant β-ME allowed us to measure total 
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IRP1 RNA binding, reflecting the total pool of IRP1 (i.e., IRP1 and c-acon) protein 

present by recruiting inactive IRPs to their active binding forms [84, 98, 122]. Total RNA 

binding activity remained unchanged in response to dietary iron deficiency.  Thus, the 

increase in spontaneous RNA binding activity observed in the livers of ID animals was 

not a function of increased IRP1 protein abundance, but reflected a shift in IRP1 to its 

active binding form.  The iron-dependent regulation of IRP1 and IRP2 RNA binding 

activity is consistent with other studies demonstrating a role for IRPs in iron sensing in 

response to iron deficiency [19, 84, 89].  

In accordance with increases in IRP RNA binding activity, we hypothesized that 

IRE-containing transcripts L-Ft and HIF-2α would be regulated in an IRP-dependent 

manner.  In response to our model of dietary iron deficiency, we expected that both L-Ft 

and HIF-2α mRNA would be translationally repressed.  We used sucrose density 

centrifugation to separate mRNA into inactively (RNP) and actively (polysome) 

translating fractions, then used real-time PCR to examine mRNA distribution across the 

sucrose gradient.  As predicted, the translation of the canonical IRP target L-Ft was 

repressed in the livers of ID rats.  We also show for the first time that translation of HIF-

2α, a newly identified potential IRP target, was also repressed in vivo in response to 

dietary iron deficiency.  Importantly, these results are not due to a global repression in 

translation as polysomal distribution of cyclophilin mRNA was unaffected by iron status.  

This affirmed our hypothesis that the iron-dependent regulation of HIF-2α translation 

likely occurs through direct action of IRPs in repressing translational activity.  

Polysomal analysis may not accurately reflect changes in the total pool of a given 

mRNA, thus it was necessary to examine total mRNA expression to establish that 
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repression of HIF-2α mRNA was due to a repression in translation and not simply due to 

a decrease in the total pool size of mRNA via transcriptional regulation.  To examine 

HIF-2α mRNA abundance, RNA was isolated from an equal amount of post-

mitochondrial supernatant separated on the sucrose gradients, reverse transcribed, and 

subjected to real-time PCR to examine alterations in gene expression.  In the liver, the 

relative abundance of HIF-2α mRNA was unaffected by diet, further confirmation of the 

translational, rather than transcriptional, regulation of this IRE-containing transcript.  

Likewise, the relative abundance of the well-characterized IRP target L-Ft was 

unchanged in response to dietary iron deficiency.  These results demonstrate that HIF-2α 

is translationally controlled by IRPs in response to dietary iron availability.      

Interestingly, suppression of HIF2-α translation was coordinated with a decrease 

in HIF-1α expression, suggesting possible cross-talk between HIF-1α and HIF-2α in the 

rodent in response to iron deficiency.  To further explore this possibility, we determined 

the extent to which gene expression of known HIF targets (PFKFB3, G6Pase, GK, and 

GLUT1) is altered in response to dietary iron deficiency.  Although PFKFB3, G6Pase 

and GK gene expression remained unchanged in response to iron deficiency, GLUT1 

expression was actually decreased.  This decrease in GKUT1 expression may be a result 

of decreased HIF-2α translation or perhaps through the down-regulation of HIF-1α 

expression. The attenuation of HIF-dependent gene expression suggests that the iron 

sensing pathway may play a more prominent role than the oxygen sensing pathway in 

response to iron deficiency anemia. 

Although HIF-1α and HIF-2α transcriptionally control an overlapping set of 

target genes, it does appear that these isoforms exhibit a differential preference for 
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hypoxia responsive elements (HREs) present in the promoters of HIF target genes [17, 

113].  Concordantly, ablation of HIF-1α results in a very different phenotype than that of 

HIF-2α knock-out models.  HIF-1α deficient mice die in utero as a result of insufficient 

vascularization [103].   On the other hand, HIF-2α deficient mice, depending on genetic 

background, exhibit phenotypic abnormalities ranging from impaired oxygen 

homeostasis for those that survive the perinatal period to embryonic or perinatal lethality 

because of defects in vascular modeling or lung maturation [139-141].  HIF-2α also 

regulates hematopoiesis in mice in an EPO dependent manner [141].  Mutations in HIF-

2α also promote retinal degeneration in association with increased oxidative stress [141-

143].  These data, and results from short interfering RNA knockdown experiments, 

demonstrate that the EPO gene is preferentially targeted by HIF-2α, thus making the 

iron-dependent regulation of HIF-2α of particular interest with respect to the integration 

of iron and oxygen sensing.    

The discovery of a conserved IRE in the 5’UTR of HIF-2α mRNA revealed a 

previously unknown mechanism for feedback between iron and oxygen sensing, such that 

when iron is scarce, translational repression of HIF-2α could serve to modulate EPO 

production and thereby  iron utilization [8].  As previous studies had been limited 

primarily to in vitro work, we demonstrate for the first time the iron-dependent regulation 

of HIF-2α mRNA translation in relation to dietary iron availability.  Our results confirm 

that in dietary iron deficiency, HIF-2α is translationally repressed though direct action of 

IRP RNA binding activity, thus providing evidence that IRPs may serve to coordinate 

iron and oxygen sensing.    
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Findings from this study have provided a foundation for future studies in the 

coordination of iron and oxygen signaling stimulated an interest further characterizing the 

molecular mechanism associated with altered fuel metabolism in iron deficiency.  

Measurement of serum glucose levels in ID rats from this study and real-time PCR 

analyses of other glucose transporters will allow us to investigate possible mechanisms 

contributing to iron deficiency-related hyperglycemia.  An understanding of the factors 

associated with hyperglycemia in conjunction with iron deficiency has significant 

implications because of the high prevalence of iron deficiency throughout the world and 

how alterations in iron status can affect organismal reliance on glucose as a metabolic 

substrate.   

The results presented herein reveal a translational repression of HIF-2α mRNA in 

response to dietary iron deficiency.  To further assess the consequences of translational 

repression, we plan to perform western blots on hepatic nuclear and cytosolic protein 

extracts to assess the steady-state levels of HIF1-α and HIF-2α .  We expect to find that 

HIF-1α protein is stabilized leading to an increased abundance in the ID animals.  Of 

particular interest is determining the relationship between HIF-2α protein abundance as a 

function of both translational repression and PHD-dependent stabilization.  A decrease in 

HIF-2α protein abundance will confirm the translational repression observed in the 

current study, and, combined with the results from HIF-1α westerns, will indicate the 

extent to which oxygen-dependent and iron-dependent mechanisms control HIF-2α 

protein expression.  Future studies will focus on changes in HIF-2α gene expression in 

response to dietary iron availability.  Using a weanling rat model of iron deficiency we 

will assay time- and iron-dependent changes in IRP activity, in HIF-2α target gene 
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expression, and HIF-2α protein abundance to determine the extent to which changes in 

IRP activity are associated with changes in HIF-2α target gene expression.  These studies 

will help us to define the relative importance of the repression of HIF-2α gene expression 

in response to dietary iron availability and in the coordination of the physiological 

response to iron deficiency and hypoxia. 
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