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CHAPTER I 

INTRODUCTION 

The beef industry is the largest food and fiber industry in the U.S. (NCBA, 2001). 

This industry relies on the USDA quality grading system to classify carcasses into groups 

based on expected meat palatability. Beef grading standards were first developed by the 

United States Department of Agriculture (USDA) in 1926 to facilitate marketing (USDA, 

1997). A trained USDA employee, working independently of both the producer and the 

packer, determines beef grades. Meat retailers and restaurants use USDA grades as a 

value guideline. 

Typical packing plant production rates allow only 9 to 18 seconds per carcass to 

assign grades (Belk et al., 1998). Although highly trained, USDA graders are subject to 

fatigue and emotional strain, which can affect the decision-making process. Cross et al. 

(1980) reported as much as 21 % error in manual grading. Due to the subjective nature of 

the process, there are inconsistencies in grade assignment. An objective "instrumented" 

carcass evaluation procedure is needed to ensure consistent quality. The "Value-Based 

Marketing Task Force" of the Cattlemen's Beef Board and the "National Beef Instrument 

Assessment Plan" of the National Live Stock and Meat Board identified video image 

analysis, or computer vision, as the most promising instrumented technique for industrial 

application (Belk et al., 1996). 

Quality grades are based on marbling levels (abundance and distribution of 

intramuscular fat within the lean) and on physiological maturity' of the carcass. Five 
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maturity groups have been defined. They are; A, B, C, D, and E, in order of increasing 

maturity. The National Beef Quality Audit-2000 reported that almost all carcasses 

processed in the U.S. are of the younger "A" maturity (McKenna et al., 2002). As a 

result, USDA quality grades rely heavily on marbling as a predictor of palatability. 

Wheeler et al. (1994) reported that marbling explained, at most, 5% of the variation in 

palatability traits. The current grading system, then, is not successful in segmenting 

carcasses on the basis of palatability. 

Meat palatability traits include tenderness, juiciness, and flavor of the cooked 

product. Tenderness alone is addressed in this study, because: 

• Consumers hold tenderness as the primary factor in eating satisfaction. 

• Consumers can differentiate tenderness level and are willing to pay a premium 

for tenderness (Boleman et al., 1997). 

• When tenderness is guaranteed on the label, consumers will pay more (Lusk et 

al., 2001). 

• Tenderness is positively related to juiciness and flavor (Winger and Hagyard, 

1994). 

• The tenderness coefficient of variability found in U.S. carcasses is almost 

twice that of juiciness and flavor (Koohmaraie, 1995). Predicting a meat 

property that exhibits larger variability is more easily instrumented. 

The beef industry is looking for an instrument that can take readings on fresh beef 

to predict tenderness of the cooked product. It is common industry practice to age beef 

carcasses for 10-14 days to enhance tenderness. Increase in tenderness during aging 

varies considerably from animal to animal (Wheeler and Koohmaraie, 1994). The 
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variability effects of postmortem aging and cooking on ultimate tenderness present an 

immense challenge in the development of a predicting instrument. As a result, direct 

measurement of beef tenderness is not now included in carcass grading. Because 

carcasses are not priced on tenderness, producers lack incentive to produce tender 

carcasses. Thus, consumer preference is not transmitted to the producer. 

Objectives 

The overall objective of this study is to develop nondestructive methods to predict 

beef palatability. Initial effort was directed toward developing a method to predict 

USDA quality grade. Acknowledging the limitation of USDA quality grading in 

addressing consumer preference, this investigation subsequently examined three 

nondestructive methods to predict aged, cooked-beef tenderness: 

I. Computer vision, 

2. Near-infrared spectroscopy, 

3. X-ray imaging. 

Dissertation Organization 

Chapter 2 reviews pertinent literature related to this study. Chapters 3-9 are 

prepared as stand-alone chapters compatible with the American Society of Agricultural 

Engineers (ASAE) Transactions format. In Chapter 10, results of Chapters 3-9 are 

summarized, and suggestions for future work are presented. A synopsis of Chapters 3-9 

is presented below. 

Chapters 3 and 4 describe the development of a computer vision system to predict 

USDA quality grade. USDA inspectors assign quality grades from visual appraisal of the 
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longissimus dorsi (1.d.) muscle from the carcass sectioned between the 1th and 13th ribs. 

Segmentation of the l.d. muscle from the steak image is the primary step in developing a 

successful computer vision system for grading beef. In Chapter 3, an adaptive 

segmentation algorithm is developed to separate the l.d. muscle from the beef steak 

image. Features are extracted from the segmented l.d. muscle and used to predict USDA 

quality grade. A bioequivalence statistical analysis method is implemented in Chapter 4 

to evaluate if grades predicted by the computer vision system are significantly equivalent 

to grades assigned by expert graders. 

Chapters 5, 6, and 7 describe the development of the computer vision system to 

predict tenderness. Chapter 5 uses the gray-level sum-and-difference histogram to 

extract statistical textural features. Chapters 6 and 7 describe multiresolution textural 

analysis using Gabor filters and wavelets, respectively. 

Development of an NIR spectroscopy system is described in Chapter 8. An NIR 

spectrometer with reflectance probe is used to acquire online spectral scans from beef 

carcasses. A chemometric model is developed to predict cooked-beef tenderness. The 

system was tested online in two Texas packing plants. 

Chapter 9 examines the feasibility of using beef X-ray attenuation properties to 

predict tenderness. Appendix A describes the development and calibration of an X-ray 

imaging system to enable measurement of attenuation properties of biological materials. 

4 



References 

Belk, K. E., J. A. Scanga, J. D. Tatum, J. W. Wise, and G. C. Smith. 1998. Simulated 

instrument augmentation of USDA yield grade application to beef carcasses. 

Journal of Animal Science 76(2): 522-527. 

Belk, K. E., J. D. Tatum, G. Dolezal, B. Morgan, and G. C. Smith. 1996. Meat 

composition measurement: status of applied research on instrument assessment of 

composition since completion of the 1994 National Beef Instrument Assessment 

Planning Symposium. In Reciprocal Meat Conference Proceedings, 49: 172-174. 

Boleman, S. J., S. L. Boleman, R. K. Miller, J. F. Taylor, H. R. Cross, T. L. Wheeler, M. 

Koohmaraie, S. D. Shackelford, M. F. Miller, R. L. West, D. D. Johnson, and J. 

W. Savell. 1997. Consumer evaluation of beef of known categories of tenderness. 

Journal of Animal Science 75(6): 1521-1524. 

Cross, H. R., L. W. Douglass, E. D. Linderman, C. E. Murphey, J. W. Savell, G. C. 

Smith, and D. M. Stiffler. 1980. An evaluation of the accuracy and uniformity of 

the USDA beef quality and yield grading system. Final report to office of 

inspector general, USDA. 

Koohmaraie, M. 1995. The biological basis of meat tenderness and potential genetic 

approaches for its control and prediction. Clay Center, NE.: USDA-ARS, Roman 

L. Hruska U.S. Meat Animal Research Center. Available at: 

http://meats.marc.usda.gov/MRU_ WWW/ICMST95/ICMST95.html. Accessed on 

9 February 2004. 

5 



Lusk, J. L., J.A. Fox, T.C. Schroeder, J. Mintert, and M. Koohmaraie. 2001. In-store 

valuation of steak tenderness. American Journal of Agricultural Economics 83(3): 

539-550. 

McKenna, D.R., D. L. Roebert, P. K. Bates, T. B. Schmidt, D. S. Hale, D. B. Griffin, J. 

W. Savell, J.C. Brooks, J.B. Morgan, T. H. Montgomery, K. E. Belk, and G. C. 

Smith. 2002. National Beef Quality Audit-2000: survey of targeted cattle and 

carcass characteristics related to quality, quantity, and value of fed steers and 

heifers. Journal of Animal Science 80(5): 1212-1222. 

NCBA. 2001. The U.S. beef industry: its impact on the American economy. Fact Sheet. 

Centennial, CO.: National Cattlemen's Beef Association. Available at: 

http://www.beef.org/dsp/dsp_content.cfm ?locationld=71 O&contentTypeld= 1 &co 

ntentld=252. Accessed on 11 February 2004. 

USDA. 1997. United States standards for grades of carcass beef. Effective date January 

31, 1997. Washington, DC.: Livestock and Seed Division of the Agricultural 

Marketing Service. Available at: 

http://www.ams.usda.gov/lsg/stand/standards/beef-car.pdf. Accessed on 9 

February 2004. 

Wheeler, T. L., L. V. Cundiff, and R. M. Koch. 1994. Effect of marbling degree on beef 

palatability in Bos taurus and Bos indicus cattle. Journal of Animal Science 

72(12): 3145-3151. 

Wheeler, T. L., and M. Koohmaraie. 1994. Prerigor and postrigor changes in tenderness 

of ovine longissimus muscle. Journal of Animal Science 72(5): 1232-1238. 

6 



Winger, R. C., and C. J. Hagyard. 1994. Chapter 4: Juiciness - its importance and some 

contributing factors. In Quality attributes and their measurement in meat, poultry 

and fish products. Advances in meat research series. Vol. 9. 94-124. A. M. 

Pearson and T. R. Dutson, eds. London, UK.: Blackie Academic & Professional. 

7 



CHAPTER II 

REVIEW OF LITERATURE 

Current Beef Grading System 

Since 1927, the Meat Grading and Certification Branch of the USDA has been 

providing a voluntary beef grading and stamping service to the beef industry. USDA 

inspectors assign both quality and yield grades. Quality grade categorizes the carcasses 

based on beef palatability factors, whereas yield grade gives an estimate of saleable red 

meat. Quality grades are assigned from visual appraisal of the longissimus dorsi (l.d.) 

muscle sectioned between the 121h and 13th ribs (Fig. 2.1). 

Figure 2.1. Ribeye sectioned between 1 ih and 13th ribs. 

Quality grades are based on marbling levels (abundance and distribution of 

intramuscular fat on the surface of the l.d. muscle) and physiological maturity of the 

carcass. The USDA defines ten marbling scores and has published photographs 
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illustrating these scores. These photographs serve as references, when needed, for 

official marbling scores. Five levels of carcass maturity are defined on the basis of color, 

texture, and firmness of the l.d. muscle and on the level of ossification of cartilage at the 

ends of the dorsal spinous processes of the vertebral column. USDA yield grades are 

determined through the assessment of the following characteristics: area of the l.d. 

between the 12th and 13th rib, hot carcass weight, thickness of fat opposite the l.d., and an 

estimation of internal kidney, pelvic, and heart fat. USDA yield grades are used to 

determine the percentage of boneless, retail cuts that can be obtained from the major 

portions of the carcasses. USDA publishes detailed beef carcass grading procedures 

(USDA, 1997). 

Due to the subjective nature of the grading process, there are inconsistencies in 

grade assignment. Graders tend to favor mid-range estimates instead of using the whole 

quality grade range from Prime to Choice to Select to Standard. The National Beef 

Quality Survey-2000 reports that 91.4% of carcasses grade either USDA Select or Low 

Choice (McKenna et al., 2002). Subjective grading does not foster confidence in the 

current marketing system. Lack of effective incentive for producing quality carcasses has 

led to beef industry loss of protein market-share to the chicken industry (Lusk et al·., 

2001). An objective "instrumented" carcass evaluation procedure is needed to ensure 

consistent quality and to facilitate value.,.based marketing. 

Objective Grading 

Clearly, the current grading system has some undesirable characteristics. The 

beef industry has been searching for an objective grading system for more than two 

decades. In 1979, the FSQS (now the Agricultural Marketing Service and the Food 
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Safety Inspection Service of the USDA) and the National Aeronautical Space Agency 

(NASA) jointly funded a study at the Jet Propulsion Lab managed by California Institute 

of Technology, Pasadena, CA to identify technologies for beef quality grading (Cross and 

Whittaker, 1992). NASA named ultrasound and video image analysis (VIA) as potential 

technologies for objective grading. 

Ultrasound 

Ultrasound is sound with frequencies above the audible range for humans (>20 

kHz). Interaction of ultrasound with a sample can be used to determine material 

properties. Two modes of ultrasound are used. The A-mode (amplitude modulation, 

one-dimensional representation) measures the amplitude of the sound wave after 

interacting with the sample. The B-mode (brightness modulation) is a two-dimensional 

representation of a material. For carcass evaluation, sound waves of 3.5 MHz are 

commonly used (Perkins et al., 2003). 

Due to development by the medical community, there are off-the-shelf, portable, 

real-time ultrasound instruments available on the market. This technology can be 

successful in predicting marbling scores of live cattle, rather than carcasses (Cross and 

Belk, 1994). The major problem with this technique is that the instrument must be held 

at a specific location on the live animal in order to obtain useable image quality. If 

technicians are not well-trained, large errors can result. Based on the predicted marbling 

score in live animals using ultrasound, suitable harvest date for slaughter cattle can be 

identified. However, ultrasound is not suitable for predicting beef grades (Smith, 1999). 
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Magnetic Resonance Imaging (MRI) 

When a strong magnetic field is applied to a biological material such as a food 

product, certain atomic nuclei (with spin angular momentum) interact. Orientation of the 

atomic particles reaches an equilibrium condition. A resonant radio frequency is applied 

to excite the particles resulting in a non-equilibrium state. The atomic particles then 

return to a state of equilibrium by releasing decaying energy. This energy is sensed as a 

magnetic resonance signal (Stroshine, 1998). The hydrogen nucleus has the strongest 

magnetic moment. Because hydrogen is a major chemical component in food products, 

MRI has been successfully used in investigating water content and chemical composition. 

MRI has been successfully used for investigating water interaction in meat during 

freezing (Renou et al., 2003) and high-pressure treatment (Bertram et al., 2004). 

Antequera et al. (2003) obtained accuracy of 83% for predicting intramuscular fat and 

70% for sensory and chemical traits of dry-cured loin using-MRI. Mitchell et al. (2001a) 

used MRI for body composition analysis of live pigs. Bonny et al. (2000a, b) 

demonstrated that MRI images of bovine muscles show features of connective tissue. 

However, these authors did not use MRI to predict connective tissue content. 

Video Image· Analysis 

Video image analysis systems are suitable for simulating human vision. A VIA· 

system consists of a camera to capture video images of lighted objects. In case of an 

analog video camera, a frame grabber is used to digitize image signals. A digital image 

has finite resolution (sampling) and bit-depth (quantization). A gray-scale and a color 

image are represented by a two-dimensional and a three-dimensional matrix, respectively. 

Various image processing algorithms (mathematical operations on the image matrix) can 
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be implemented to segment an object of interest in the image frame and to extract 

specific features. Pattern recognition methods incorporating statistical algorithms or 

neural networks are used to predict food quality from extracted features. Key advantages 

of VIA are: nondestructive, objective, and consistent. Once developed, VIA is fast and 

can be implemented in an industry environment. In some cases, VIA has even more 

advantage in that it can capture images beyond the visible range (near-infrared, X-ray, 

etc.) using suitable sensors. Because of these advantages, VIA systems have been 

developed around the world for beef carcass grading. Several are explained below: 

Kansas State University 

After NASA identified VIA as a promising technology for beef quality grading, 

Kansas State University won the contract from the USDA ARS in 1980 to develop a VIA 

system. The system acquired and processed gray-scale images of 244 x 248 pixel 

resolution. A frame positioned the video camera over the ribeye in the hanging carcass. 

Lighting was provided by four fluorescent lamps. An infrared stop filter and a red filter 

on the lens enabled the use of simple thresholding to segment background, lean, and fat 

in the digital image (Lenhert and Gilliland, 1985). The system was tested in the U.S. 

Meat Animal Research Center, Clay Center, NE from 1981-83. Cross et al. (1983) and 

Wassenberg et al. (1986) reported that the system had more potential for yield grading 

than for quality grading. 

Danish Beef Classification Center 

The Danish Meat Research Institute developed Beef Classification Centre (BCC), 

a VIA system for predicting yield grade according to the EUROP scheme regulated by 

European Union (Petersen et al. 1989). The EUROP scheme defines fatness and 
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conformation (shape) on a scale of 1 to 5. Each class is further divided into three sub

classes (Nielsen et al., 1997). In addition to weight and type of animal, these scales are 

used to determine yield grade of the carcass. The first generation (BCC-1) used a 

monochrome camera (Signe et al., 1989). The second generation BCC-2 used a 3-CCD 

color camera (Borggaard et al., 1996). A movable frame grabbed a carcass on the rail 

and held a predefined position for imaging (Fig. 2.2). A green background screen was 

used. The lighting system consisted of two large lamps with 18 halogen bulbs. One 

image was taken with lights ON and another image with lights OFF. The two images 

. were subtracted to eliminate the effect of ambient light. In addition, structured lighting 

(Fig. 2.2) was used to reconstruct the three-dimensional shape of the carcass (Madsen and 

Thodberg, 1999). The system was calibrated using a 1 x 2-m calibration plate to correct 

for geometric distortion and lens distortion. Color and gray-scale calibration plates were 

imaged for color calibration (Madsen and Thodberg, 1999). After segmenting the carcass 

from the background using the green/red ratio for thresholding, carcass contour 

information was collected. The carcass area was divided in to 60 regions. Mean, 

variance, and covariance of the red, green, and blue (RGB) color features were extracted. 

From the image obtained by structured lighting, the thickness was calculated at 340 

points on the carcass. Principal component analysis was performed to reduce 

dimensionality of features. The BCC-2 gave errors 16-22% lower than those of the 

classifier (on-line manual grader), when grades assigned by the inspector or expert grader 

were used as reference. The R2 value for predicting conformation, fatness, fat color, 

percent saleable meat, and ribeye area were 0.93, 0.75, 0.89, 0.70, and 0.85, respectively 

(Borggaard et al., 1996). The system could analyze 80 carcasses per hour. 
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Figure 2.2. Danish BCC-2 system. Courtesy: SFK Technology A/S, Denmark. 

Australian VIAscan® 

The Australian Meat Research Corporation developed a color VIA system called 

(VIAscan®) to predict beef grades. The VIAscan® consists of two vision systems; hot 

assessment system (HAS), and chiller assessment system (CAS). The HAS acquires a 

video image of the whole carcass on the slaughter/dressing floor and evaluates the 

surface contour and the outside surface fatness (Cannel et al., 1999). The CAS system 

consists of a frame that encloses a solid-state RGB video camera within a stainless steel 

shroud (Benn et al., 1998). At the bottom of the frame, structural guides ensure proper 

alignment of the camera with the carcass. The lens is fitted with a polarizing filter. The 

lamp assembly consists of a finned heat-sink housing a 12-V dichroic lamp fitted with an 

infrared filter, diffuser, and polarizer. The infrared filter is provided to minimize heat 
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damage to the meat. Matt reflectors surround the frame to provide uniform illumination 

of the meat surface. Polarization filters in the lens and lamp assembly are oriented to 

minimize specular reflection. A computer for image analysis and a monitor to display 

video images are enclosed in a waterproof cabinet. A frame grabber in the computer 

digitizes to a 24-bit true color image with 512 x 512 spatial resolution. Both spatial and 

color calibrations are performed. Images of black, gray, white, and color reference 

boards are acquired for color calibration. Coefficients of a quadratic equation for relating 

the observed color values to the reference color values were developed. This equation is 

subsequently used for color correction (Benn et al., 1998). 

The CAS system measures ribeye area, marbling scores, meat color, fat color, and 

subcutaneous fat thickness. First, the image is globally thresholded in the red band to 

separate objects from background. Global fixed thresholding is performed on the RIG 

ratio image to separate fat and lean. The largest object is identified. A heuristic 

procedure is performed to remove extraneous tissue from the ribeye muscle. Ribeye area 

is calculated by counting the number of ribeye pixels. A local thresholding method is 

used to segment marbling in the ribeye. After marbling segmentation, average R, G, and 

B values of pixels classified as lean and marbling are calculated as a measure of lean 

color and fat color, respectively (Benn et al., 1998). 

Cannell et al. (1999) evaluated VIAscan® for predicting saleable meat yield using 

240 carcasses. Predictions were compared with yield grades assigned by online graders 

at packing plant speeds and by expert graders working at a comfortable pace. Because 

online graders make errors in estimating ribeye area (Belk et al., 1998), Cannel et al. 
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(1999) also evaluated VIAscan® as an augmentation tool for estimating ribeye area for 

online graders. Results are shown in Table 2.1. 

Table 2.1. Evaluation of VIAscan® for predicting saleable meat yield (Cannel et 
al., 1999). 

Percent variation accounted in fabrication yields at fat-trim levels of: 
Method 

Commodity-trimmed Closely trimmed Very closely trimmed 

Expert Grader 51 74 74 

Online Grader 37 54 54 

VIAscan® 46 66 71 

VIAscan® 
55 75 75 

Augmentation 

Cannel et al. (1999) concluded that VIAscan® estimated fabricated yields more 

accurately than online graders, but less accurately than expert graders. However, when 

VIAscan ® ribeye area estimates were provided to online graders, the accuracy of 

cutability prediction was slightly higher than that of expert graders. Goering (1999) 

reported that the VIAscan® did not accurately predict quality grade. 

Allen and Finnerty (2000) conducted a comprehensive comparative study of three 

VIA systems; Danish BCC-2, Australian VIAscan®, and German VBS2000. Conducted 

in two trials in an Irish beef packing plant, the study compared prediction of carcass 

conformation, fat class, and saleable meat yield under European classification standards. 

In the first trial, images of 7,247 carcasses were captured by the three systems. Reference 

classification scores for 4,278 carcasses were provided to the manufacturers for 

calibration. Predictions were evaluated on the remaining 2,969 carcasses. All three 

systems predicted saleable red meat yield with high accuracy (residual standard deviation 
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of 1.1-1.2%). All systems predicted conformation class with much higher accuracy than 

fat class (Table. 2.2). One of the criteria set by the European Union Beef Management 

Committee for approving a VIA system is that at least 88% of the predictions should be 

within one subclass of the reference panel for fat class. Because this criterion was not 

met, none of these systems was approved for beef carcass classification in the Irish beef 

industry. 

Table 2.2. Percentage of carcasses that fall within one subclass for the 
prediction in the validation set (Allen and Finnerty, 2000). 

Trial 1 Trial 2 
Class 

BCC-2 VIAscan® VBS2000 BCC-2 VIAscan® VBS2000 

Conformation 

Fat 

92.8 

80.4 

Canadian Vision System 

91.0 

72.0 

96.5 

74.6 

97.0 

79.6 

94.2 

76.1 

95.4 

74.4 

Tong et al. (1998) developed a color VIA beef grading system known as Canadian Vision 

Sy~tem (CVS). Similar to VIAscan®, the CVS is also comprised of two subsystems; a 

carcass image processing subsystem, and a ribeye image processing subsystem. A color 

calibration matrix is derived by comparing the acquired images of five color boards 

(black, white, red, green, and blue) with images of the same color reference boards 

acquired under controlled lighting conditions. Spatial calibration is established by 

imaging a latticed white board having a grid of black lines spaced at known intervals. A 

blue, non-reflective background is used for carcass image analysis, because the blue hue 

has highest contrast with the reddish/yellowish carcass. Simple thresholding is used to 

detect the contours of the whole carcass. On the carcass contour, anatomical features 

17 



such as the tail, lower hip, etc. are identified. Several distance measurements based on 

anatomical features are made on the carcass contour (Fig. 2.3). These readings are used 

in a regression equation to predict saleable meat yield. 

Figure 2.3. Linear measurements made from whole carcass image, CVS system. 
Courtesy: Research Management Systems, USA Inc., Fort Collins, 
CO. 

For the ribeye image analysis system, an 18% gray card and a Kodak color 

calibration card are imaged to calibrate the camera for brightness and color, respectively. 

Figure 2.4 shows the CVS ribeye image analysis system capturing the image of a ribeye. 

After acquiring the ribeye image, it is corrected for brightness and color. Image contrast 

is enhanced and thresholding is performed in the brightness and saturation bands to 

classify fat, lean, and cartilage. The image is then down-sampled by a factor of 8 and 8 

along rows and columns, respectively. Using four-connected blob analysis, the largest 

component of the image is identified. A heuristic approach is implemented to remove 

extraneous tissue in order to segment the ribeye. Accuracy of the segmentation was not 

reported. Figure 2.5 shows the segmented l.d. muscle boundary in the ribeye image. 
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Ribeye area and subcutaneous fat thickness at four points are measured. After identifying 

marbling and classifying fat flecks into two classes based on size, percent lean area is 

calculated. The R2 value of saleable yield prediction was 0.84, based on 20 carcass and 5 

ribeye measurements (Tong et al. 1998). 

Figure 2.4. CVS captures ribeye image. Courtesy: Research Management 
Systems, USA Inc., Fort Collins, CO. 

Cannell et al. (2002) evaluated CVS for predicting fabricated yields of closely 

trimmed subprimals using 296 carcasses. CVS accounted for 64% of variation in 

fabricated yields. When CVS measured ribeye area was provided to expert graders, the 

variation accounted for increased slightly to 65%. Expert graders and online graders 

accounted for 67% and 39% of variation in fabricated yields, respectively. This result 

shows that USDA expert yield grading provides a reasonable accurate estimate (67%) of 

fabricated yield. However, online graders' estimate of fabricated yield grade was poor 

(39%) due to the time constraint imposed. 
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Figure 2.5. Calculation of ribeye area, subcutaneous fat thickness, and marbling 
from ribeye image, CVS system. Courtesy: Research Management 
Systems, USA Inc., Fort Collins, CO. 

Steiner et al. (2003a) evaluated VIAscan® and CVS as augmentation tools for 

online graders predicting yield grade. In Phase 1 (505 carcasses), yield grades assigned 

by online graders provided with ribeye area measurements made by VIAscan® and CVS 

correlated with those assigned by expert graders at 0.93 and 0.95, respectively. In Phase 

II (290 carcasses), online yield grades augmented by VIAscan® and CVS accounted for 

60 and 63% of variation in fabricated yields, respectively. In comparison, online yield 

grades and expert yield grades accounted for 55 and 71 % of variation. Steiner et al. 

(2003a) concluded that augmentation by video image analysis systems improved the 

accuracy of prediction of fabricated yields . 
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Steiner et al. (2003b) evaluated accuracy and repeatability of longissimus dorsi 

(ribeye) muscle area (LMA) measured by CVS. Two reference LMA values were used. 

One was measured by expert graders using a grid scale, and the other by tracing l.d. on 

acetate paper and subsequently measuring the area using a polar planimeter. The authors 

tested two CVS instruments to evaluate accuracy and repeatability of LMA measurement 

by three procedures. In the first procedure, three sequences of images of ribeye were 

obtained with the camera head in place. In the second procedure, sequential images were 

acquired with the camera head removed and placed over ribeye between each reading. 

Carcasses were stationary in the above two procedures. In the last procedure, images 

were acquired three separate times as carcasses advanced at a chain speed of 360 

carcasses/h. Both sides of 50 carcasses were used in this study. CVS predicted traced 

muscle LMA more accurately than expert-gridded LMA. 

Table 2.3. Accuracy (R2) and repeatability (standard deviation, SD) of CVS for 
predicting LMA (Steiner et al., 2003b) 

Acetate/Planimeter traced LMA USDA requirement 
Procedure 

R2 SD (cm2) R2 SD (cm2) 

1 0.94 0.77 >0.95 <1.59 

2 0.93 1.10 >0.95 <1.59 

3 0.86 2.13 >0.90 <1.90 

As expected, CVS predicted LMA more accurately when carcasses were stationary 

{Table 2.3). USDA (2001) laid out the requirements for approval of VIA for predicting 

LMA for augmenting yield grades. Repeatability of CVS exceeded the requirements, and 

the accuracy approached the requirements for stationary LMA measurements (procedures 
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1 and 2). However, CVS did not clearly meet the requirements for in-motion LMA 

measurements (Table 2.3). 

MARC Beef Carcass Image Analysis System 

The Roman L. Hruska U.S. Meat Animal Research Center (MARC) has developed a beef 

carcass image analysis system. Shackelford et al. (1998) developed an offline imaging 

system to predict retail product yield from ribeye steaks. Image processing was 

performed using ImagePro® software (Media Cybernetics, Carlsbad, CA). A regression 

model was developed using 33 samples and was validated with another 33 samples. The 

R2 value for predicting retail product yield was 0.91 for th~ validation data set. Based on 

this work, MARC collaborated with a major U.S. beef packing plant to develop this 

technology for online grading of carcasses. Shackelford et al. (2003) evaluated the 

MARC system using 800 carcasses. Half of the samples were used to develop regression 

models and the other half were used for validation. The prediction equations accounted 

for 90% of variation in yield grades assigned by the expert graders, whereas the official 

yield grades assigned by the online graders accounted for only 73%. The authors 

reported that the system did not predict quality grade accurately. 

Other Studies 

Gerrard et al. (1996) utilized image processing techniques to predict color and 

marbling scores of 60 steaks, offline. After segmenting the l.d. muscle, various color and 

marbling features were extracted. Stepwise backward elimination regression models 

were built for predicting color and marbling scores. Reported R2 values for prediction of 

color and marbling scores were 0.86 and 0.84, respectively. Their investigation did not 

predict quality grade. 
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Lu and Tan (2004) showed that features extracted from the ribeye image predicted 

lean percentage yield with R2 value of 0.55. In comparison, the corresponding R2 value 

achieved by yield grade factors (fat thickness; percentage of kidney, pelvic, and heart fat 

(KPH); ribeye area; and hot carcass weight) was 0.76. Their study showed that USDA 

yield grade factors were more accurate in predicting lean percentage yield. 

Hatem et al. (2q03) developed a system to predict maturity grade from vertebra 

images taken from 110 carcasses. First, they manually segmented cartilage and the 

connected bone from each image. They then extracted features from the manually 

segmented image to predict maturity grade. Using cross-validation, their neural network 

model classified carcasses into five maturity grades with an accuracy of 45%. In order to 

develop an algorithm to automatically segment cartilage and connected bone from the 

vertebra images, Hatem and Tan (2003) captured the images of the thoracic vertebrae of 

83 carcasses. They reported that their algorithm gave satisfactory segmentation results 

on 69 images. 

In summary, there are commercial VIA systems available for predicting yield 

grades, accurately. USDA yield grade is calculated from four factors: hot carcass weight, 

KPH, subcutaneous fat thickness, and ribeye area. The first two factors can be 

objectively measured by weight scale. USDA online graders accurately measure fat 

thickness; however they make subjective errors in estimation of ribeye area. Belk et al. 

(1998) envisioned an instrument-augmented grading system in which VIA-predicted 

ribeye area was combined with online grader assessment of fat thickness and objective 

measurement of hot carcass weight and KPH to predict yield grade. Recently, USDA 

approved the use of VIA systems for grader-assisted determination of beef yield grades 
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(Ishmael, 2000; USDA, 2001). Commercial VIA systems segment l.d. muscle to 

calculate ribeye area and segment marbling to predict percent lean. It should be noted 

that no studies have been conducted to test commercial VIA systems for predicting 

marbling score or quality grade. Therefore, the USDA has not approved VIA systems for 

predicting quality grade. It can be inferred that none of the systems can estimate USDA 

quality grade with enough accuracy to be implemented online in packing plants. 

Nevertheless, these studies show that VIA has great potential for estimating beef quality 

grades. 

Tenderness 

Meat palatability is defined as the tenderness, juiciness, and flavor of the cooked 

product. Of these characteristics, tenderness is the primary determinant of customer 

satisfaction. Moreover, tenderness is positively correlated with meat juiciness and taste 

(Winger and Hagyard, 1994). In the 1995 National Beef Quality Audit (Boleman et al., 

1998), inadequate beef tenderness was identified as the second largest quality concern of 

beef among purveyors, retailers, and restaurants. Currently, the USDA grading system 

does not incorporate a direct measure of tenderness, because there is no accurate, rapid, 

non-destructive method for predicting tenderness available to beef industry. 

Marbling is often considered to be a reliable predictor of meat tenderness. 

However, the literature shows contradictory results regarding the influence of marbling 

on tenderness (Jeremiah, 1996). Research has shown that marbling adequately predicts 

meat tenderness (in young animals) when a wide range of marbling exists within the 

group being tested. However, the National Beef Quality Audit-1995 revealed that 82% 
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of carcasses were graded USDA Select or Low Choice, and 83.5% of those carcasses 

carried marbling scores of either "slight" or "small" (Holeman et al., 1998). Thus, most 

carcasses graded in U.S. packing plants fall within a small range of marbling and quality 

grades. Moreover, the National Beef Tenderness Survey (Morgan et al., 1991) showed 

that consumers experience undesirable toughness in one of every four steaks consumed. 

It follows that the current quality grading system is not adequately sorting carcasses on 

the basis of tenderness. 

Economic Importance of Beef Tenderness 

Bolemanet al. (1997) color-coded steaks based on tenderness categories (tender, 

medium, and tough) and delivered two steaks from each category to 42 families. After 

cooking, the consumers were asked to complete a survey. The survey showed that 

consumers were able to detect differences among tenderness categories. Then, the 

authors posted a $1.10/kg price difference between each tenderness category. Consumers 

were asked to purchase steaks. As expected, 94.6% of consumers bought tender steaks, 

whereas 3.6% and 1.8% of consumers bought medium and tough steaks, respectively. 

The study showed that consumers can discern tenderness and are willing to pay a 

premium for tenderness. 

Lusk et al. (2001) conducted a consumer survey on perception of tenderness and 

examined the consumer's willingness to pay for tenderness in a grocery store setting. 

They color-coded tender steaks (red) and tough steaks (blue) and provided samples from 

each category. Sixty-nine percent of consumers showed preference for a tender steak. 

All customers were provided a free blue-coded (tough) steak for participating in the 

survey. If they preferred a red-coded (tender) steak, they could bid to exchange it for 
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their tough steak. If their bid exceeded a predetermined level, they would make the 

exchange at that bid price. Participants were willing to pay $2.72/kg for a tender steak, 

when relying on taste alone. In another treatment, the steaks were labeled as tender and 

tough instead of being color-coded. Then, 84% of consumers preferred tender steaks. 

More than half of the participants were willing to pay $4.06/kg more for a "guaranteed 

tender" steak. 

Shackelford etal. (2001) showed that more than half of consumers are willing to 

pay $1.10/kg premium for "guaranteed tender" U.S. Select grade steaks. Note that Select 

grade has less marbling and is traditionally less preferred by customers. 

These studies show that most consumers can discern tenderness and a 

considerable portion of those consumers are willing to pay a premium for steaks that are 

"guaranteed tender." 

Biological Aspects of Tenderness 

Koohmaraie (1995) states that genetics control about 30% of the variation in beef 

tenderness within a si.ngle breed. It follows that 70% of variation in tenderness is 

affected by environmental factors. Based on traditional animal breeding theory, it takes 

about 40 years to improve the shear-force tenderness by 1 kg through progeny testing and 

breeding programs. The author argues that it is not practical to improve tenderness by 

genetic means alone due to the time and expense involved. 
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Biochemical Aspects of Tenderness 

Immediately after slaughter, most meat is tender. During rigor development, increase in 

sarcomere length leads to meat toughness. Meat achieves its maximum toughness 

between 12 and 24 h postmortem. During this time, an opposite phenomenon called 

tenderizationbegins and continues for 14-21 days in meat stored at refrigerated 

temperatures. This process is also commonly known as "aging." Proteolytic enzymes 

break myofibrillar proteins and weaken structural integrity. The result is improved 

tenderness. Unlike the toughening process, tenderization is highly non-uniform. This 

variation in tenderization produces inconsistencies in meat tenderness (Koohmaraie, 

1996). 

Tenderness Standards 

Sensory Analysis 

One method of evaluating beef tenderness is by human sensory analysis. Beef 

samples are cooked, then analyzed by a trained sensory panel. This method is accurate, 

but destructive, time-consuming, and expensive. 

Wamer-Bratzler Shear Force 

Currently, meat scientists use the Wamer-Bratzler shear (WBS) force as an 

objective measure of tenderness. The process involves preparing a 2.54-cm thick steak, 

and cooking to an internal temperature of 70 °C. The steak is cooled, and 1.27-cm cores 

are removed from the ribeye, parallel to the muscle fibers (AMSA, 1995). The cores are 

then sheared perpendicular to the muscle fibers on an Instron Universal Testing Machine 

(Instron Corp, Canton, MA). The force required to shear the core is recorded and taken 
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as measure ·of meat tenderness. Higher shear-force values indicate tougher meat. 

Generally, beef steaks are aged for 14-21 days at 1 °C prior to cooking to match industry 

practice. WBS has been used by meat scientists for several decades. The method is 

accurate, but lacks repeatability due to two factors: 

• Even though cores must be removed randomly from the cooked steaks, 

general guidelines suggest that the user avoid spots with thick marbling or 

connective tissue. Manual error is introduced. 

• Cores must be removed at an angle parallel to muscle fiber. Subjective human 

judgment again intervenes. 

Slice Shear Force 

Researchers at the United States Meat Animal Research Center in Clay Center, 

NB have developed a slice shear force (SSF) system to measure beef tenderness 

(Shackelford et al., 1999a). The system is based on the WBS procedure described above, 

but utilizes belt-driven, automated equipment to increase speed and efficiency. For beef 

ribeye, the muscle fibers are at approximately 45° to the surface. SSF procedures require 

that the sample to be sheared be removed at a 45° angle, parallel to the muscle fibers. 

Instead of re~oving several cores, SSF removes one large sample and is then sheared. 

Koohmaraie (1999) and Wheeler et al. (2001) outline the following procedures to obtain 

the sample for shearing. 

A first cut is made 1 cm from the lateral end of the cooked steak. Then, using box 

A (Fig. 2.6), the second cut is made 5 cm from the first cut. Utilizing slice box B, the 

slice shear sample is removed at an angle of 45° using a knife with two parallel blades 

spaced 1 cm apart. The cut is approximately parallel to muscle fiber orientation. 
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BoxB ----

Two-bladed 
knife 

Figure 2.6. Sample slice acquisition equipment. 

This procedure generates a cooked meat sample measuring 5 cm in length by 1 

cm in thickness and 2.5 cm in width (Fig. 2.7). Sample location was selected to minimize 

connective tissue within the sample slice. 

- Sample slice 

Figure 2.7. Sample slice from ribeye. 

Slice shear force is measured using a flat, blunt-end blade attached to an Instron 

Universal Testing Machine. Force required to shear the muscle fibers of the slice is 

recorded as a slice shear force. Higher slice shear force values indicated "tougher" beef. 

Shear-force values are obtained at three days postmortem and regressed using pre

determined regression equations to predict shear force at 14 days postmortem. The entire 

process (steak removal, cooking, shear-force determination, and classification) can be 
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completed in 10-15 minutes (Shackelford et al., 1997). The beef industry has not adopted 

this technique, because it is destructive to sample. However, meat scientists are 

beginning to prefer SSF values as a tenderness reference over WBS values, because of 

higher repeatability (NCBA, 2002). 

Methods for Predicting Tenderness 

Tenderness Probes 

Various minimally invasive probe-type technologies have been developed. 

Swatland et al. (1998) developed a connective tissue probe that measures beef tenderness 

on the basis of ultraviolet fluorescence of connective tissue and the electro-mechanical 

resistance to penetration of the probe needle. For strip-loin steaks aged 21 days, they 

reported R2 values for prediction of tenderness and flavor of 0.18 and 0.17, respectively. 

Jeremiah and Phillips (2000) evaluated the performance of a tenderness probe developed 

by the Meat Industry Research Institute of New Zealand and reported an R2 value for 

prediction of overall tenderness of strip-loin steaks of 0.44. 

George et al. (1997) evaluated an electromechanical penetrometer by Tendertec 

(Tendertec International, Bemboka, Australia). Tendertec predicted sensory tenderness 

scores with an R2 value of 0.02. The authors concluded that this instrument was not 

useful for predicting beef tenderness. 

Belk et al. (2001) evaluated Tendertec in four experiments. In the first two 

experiments, Tendertec did not correlate with WBS tenderness values. In the other two 

experiments, the correlations were significantly different from zero, but were weak. 

They concluded that Tendertec was unable to predict tenderness in young carcasses, and 

may be of limited use in older mature cattle. Smith (1999) reviewed different probe 

30 



technologies and reported that none of these probes predicted beef tenderness with 

sufficient accuracy. 

Colorimeter 

Wulf et al. (1997) investigated the correlation of colorimetric readings (L *, 

brightness; a*, red-green; b*, yellow-blue) with beef tenderness, and reported that b* 

values showed the highest correlation with shear force (R2 = 0.14). Wulf and Wise 

(1999) reported that L *, a*, and b* readings correlated with lean maturity scores by 

-0.67, -0.30, and -0.40, respectively. 

Wulf and Page (2000) developed a quality grade augmentation system that 

supplemented current USDA Quality Grade Standards with L *a*b* colorimeter readings, 

pH, and hump height. In their study, they found that the darkest 20-25% of the beef 

carcasses·were less palatable than others. Muscle color readings, when combined with 

marbling score, hump height, and muscle pH explained 36-46% of variation in beef 

palatability. 

BeefCam® 

Based on the color-tenderness relationship described above, Colorado State 

University in collaboration with Hunter Associates Laboratory, Inc. (Reston, VA) 

developed BeefCam®, a computer vision-based system to predict beef tenderness. Wyle 

et al. (1999) evaluated the BeefCam® system in two trials. The R2 value of prediction of 

tenderness for trials 1 and 2 were 0.19 and 0.07, respectively. 

Vote et al. (2003) evaluated BeefCam® in four experiments. The R2 values for 

predicting WBS values were 0.17, 0.30, 0.19, and 0.06 for the four tests. Combining the 

four experiments, 36% of tested carcasses were tough (WBS value > 4.5 kg). When 
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carcasses were ranked from tender to tough on the basis of BeefCam® predictions, only 

3% of tough carcasses were correctly identified in the predicted top 10% of the toughest 

carcasses. 

Wyle et al. (2003) evaluated BeefCam® using 769 carcasses. The regression 

model using variables measured by BeefCam® predicted WBS values with an R2 value of 

0.18. When quality grade data were included in the model, the R2 value improved to 

0.21. Of 769 carcasses tested, 13.8% of carcasses were tough. However, only 51.9% of 

carcasses were certified as tender, which indicates that large numbers of tender carcasses 

were misclassified as tough. They concluded that further development of the system was 

necessary for commercial application. 

Slice Shear Force 

In two experiments, Shackelford et al. (1997) evaluated 1-d or 2-d postmortem 

WBS values as a predictor of 14-d postmortem WBS values. The first experiment 

(n=400) was conducted in the laboratory, and the second experiment (n=554) was 

conducted under commercial processing conditions. They classified steaks with 1-d or 

2-d WBS values into three tenderness categories (tender, medium, and tough). Steaks 

with 14-d WBS values were classified into two tenderness categories. All carcasses in 

the "tender" category, 1-d postmortem, were still in the "tender" category at 14-d 

postmortem. Most of the carcasses (81 % and 85% in exp. 1 and 2, respectively) in the 

"medium" category, 1-d postmortem, were in the "tender" category at 14-d postmortem. 

Most of the carcasses (74% and 67% in exp. 1 and 2, respectively) in the "tough" 

category, day 1, were still in the "tough" category on day 14. Day-2 WBS values 

predicted 14-d WBS values with an R2 value of 0.46. 
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Following the above study, Shackelford et al. (1999a) developed a system called 

"slice shear force" (SSF) for measuring beef tenderness under commercial processing 

conditions. Their SSF procedures were explained earlier. They reported an SSF 

repeatability of 0.89, exceeding the WBS repeatability of 0.85 reported earlier by 

Wheeler et al. (1998). Three-day postmortem SSF values accounted for 51 % and 61 % of 

variation in 14-d WBS values and sensory panel tenderness scores, respectively. 

Shackelford et al. (1999b) compared WBS and SSF for predicting trained sensory 

panel tenderness ratings. SSF predicted sensory tenderness with an R2 value of 0.67, 

whereas the corresponding R2 value for WBS was 0.59. They reported that the SSF 

procedure is highly repeatable (0.91). 

In a study supported by the National Cattlemen's Beef Association (Wheeler et 

al., 2002), the SSF, the colorimeter, and the BeefCam® were tested. The authors drew 

following conclusions: 

• BeefCam® did not perform well in this study. 

• The colorimeter performed inconsistently, giving unreliable results with 

USDA Select carcasses. 

• Indirect, non-invasive methods to predict meat tenderness are not currently 

sufficiently accurate to warrant adoption by the industry. 

• The direct measure of tenderness provided by SSF resulted in relatively 

accurate identification of "tender" beef carcasses. However, it appears that 

the industry does not favor this sample-destructive technology. 

Results of the Wheeler et al. (2002) study are shown in Figure 2.8. At the 100% 

tenderness certification level, all carcasses were certified as tender, and therefore no 
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sorting was performed. Just over 9% of the tested carcasses were tough. The carcasses 

were ordered on the basis of predicted tenderness scores. At 90% tenderness 

certification, 10% of tough carcasses were grouped as "not certified tender." The 

remaining 90% of carcasses were grouped as "certified tender." Error was defined as 

percentage of tough carcasses in the "certified tender" group. If the instruments had 

performed optimally, all tough carcasses (about 9%) would be placed in the top 10%, and 

there would be no error in 90-10% tenderness certification levels. None of the systems 

met these criteria (Fig. 2.8). 
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Figure 2.8. Comparison of SSF, Colorimeter, and BeefCam® (Wheeler et al., 
2002}. 

Image Texture 

Li et al. (2001) used wavelet-based textural features to classify beef carcasses into 

tender and tough groups. Fifty-nine samples were imaged with a spatial resolution of 480 

x 512. Each image was divided into 56 subimages, with 64 x 64 resolution. From 8 

extremely tender samples, 45 subimages were randomly selected. Another 45 subimages 
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were randomly selected from 9 extremely tough samples. These 90 subimages were the 

only images used in the study (Li et al., 1999a). It is not clear why the authors did not 

use more subimages, when one tough sample can produce 56 subimages. Wavelet 

textural features (n=35) were extracted from each subimage. Fisher's discriminant model 

was developed to classify tender and tough samples and was evaluated by cross

validation (leave-one-out technique). They achieved 83.3% correct classification (Li et 

al., 2001; Li et al., 1999a). Only 17 samples with extreme tenderness scores were used 

in this study. Had the other samples with intermediate tenderness scores been used, the 

correct classification rate would obviously have been reduced. 

Li et al. (1999b) showed the utility of image textural features for predicting beef 

tenderness from 90 imaged samples. Color and marbling features predicted sensory 

tenderness scores with an R2 value of 0.30. When textural features were included, the R2 

value increased to 0.72. 

Near-infrared Spectroscopy 

Light reflected in the visible region of the spectrum gives an objective 

measurement of the color of food objects, whereas light reflected in the near-infrared 

(NIR) region contains information about food physical and chemical properties. 

Contradictory results have been reported in the literature regarding the use of NIR 

spectroscopy for predicting beef tenderness. Some studies have been conducted using 

laboratory spectrometers with special requirements for sample preparation. Others have 

used fiber-optic reflectance probes that can be more easily applied in a processing plant 

environment. In most studies, the NIR spectral scan and reference shear-force tenderness 
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values were acquired at the same point in time. A few studies have used scans acquired 

at early postmortem to predict tenderness after aging. It is important to recognize these 

differences in order to understand the inconsistent results reported in the literature. 

Pioneering Work 

Use of NIR spectroscopy for predicting beef tenderness was pioneered by 

Mitsumoto et al. (1991 ). A limited number of samples was used in the study (11 steers 

with 6 muscles/steer). They collected spectral reflectance data (1100-2500 nm) on 3-d 

postmortem samples to predict 3-d WBS values. Samples were prepared and placed in 

sample holders for scanning. A multiple linear regression equation with four selected 

wavelengths predicted 3-d WBS values with R2 values of 0.68. This study showed 

promise and aroused broad interest in using NIR for predicting beef tenderness. 

Matforsk Norwegian Research Group 

A series of studies were conducted at the Matforsk Norwegian Food Research 

Institute. Hildrum et al. (1994) conducte~ a feasibility study with 10 carcasses (3 cows, 7 

bulls) at 3 aging periods (1, 8, and 14 days). They acquired scans in 1100-2500 nm range 

under controlled conditions requiring special sample preparation. Thirty spectral scans 

were used to build a two-factor principal component regression model with multiplicative 

scatter correction (MSC) data preprocessing. The model predicted WBS values with an 

R2 value of 0.62. Note that 1-d spectra predicted 1-d WBS values, while 14-d spectra 

predicted 14-d WBS values. 

In continuation of the work, Hildrum et al. (1995) used 40 carcasses (both cows 

and bulls) at 3 aging periods (1, 7, and 14 days). Thirty carcasses were chilled slowly, 

whereas 10 carcasses were subjected to electric stimulation and rapid chillin~. Spectra 
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were collected from fresh samples and frozen/thawed samples. It is interesting to note 

that the NIR spectra collected from frozen/thawed samples predicted WBS values more 

accurately (R2 = 0.50) than those collected fresh (R2 = 0.34). The authors speculated that 

the freezing step increased the difference in structure between tender and tough samples. 

Note that the model predicted current WBS values rather than forecasting future WBS 

values. 

R!l}dbotten et al. (2000) studied the feasibility of using early (4- and 26-hour) 

postmortem NIR spectroscopy to predict 2-d and 7-d WBS values from 127 carcasses. 

Spectra recorded at 4-h and 26-h postmortem exhibited some differences in 1100-1900 

nm range. The rigor mortis process starts at about 4-h postmortem and ends before 26 

hours. The authors hypothesized that the difference between the two spectra collected at 

the beginning and end of rigor mortis is related to the aging potential of the carcasses. 

However, they found that spectra differences did not contain essential information to 

predict final tenderness of aged samples. Partial least squares (PLS) models with MSC 

preprocessing of 4-h NIR spectra predicted 2-d and 7-d WBS readings with R2 values of 

0.25 and 0.27, respectively. Models based on 26-h spectra predicted 2-d and 7-d WBS 

readings with R2 values of 0.36 and 0.37, respectively. They concluded that their study 

did not support the hypothesis that early postmortem NIR spectroscopy can be used as a 

predictor of final tenderness. 

R!l}dbotten et al. (2001) used a spectrometer (950-1700 nm) equipped with a diode 

array detector to predict tenderness of 12 carcasses. Traditional NIR spectrometers use 

grating and require scanning to acquire complete spectra. Diode array-based 

spectrometers acquire spectra without scanning, and thus acquisition is more rapid. The 
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authors were able to acquire 150 spectra to cover the entire surface of a sample on both 

sides in 7 s. Four samples were collected from each carcass. NIR spectra and WBS 

readings were recorded at 2, 9, and 21 days postmortem. Separate models for different 

aging periods predicted current tenderness with R2 value of 0.36-0.69. With regard to 

forecasting tenderness, a 2-d spectrum model predicted 9-d WBS values with moderate 

accuracy (R2 = 0.52). Less accuracy was reported for forecasting 21-d WBS values (R2 = 

0.27). Special sample preparation was not required for this spectrometer. 

Teagasc Irish Research Group 

Byrne et al. (1998) used a scanning spectrometer (750-1098 nm) equipped with a 

fiber optic probe to predict beef tenderness of 70 heifer carcasses. Due to lamp 

replacement during the course of this study, two separate models were developed using 

20 and 50 samples, respectively. Results of the second set are described here. A 10-

factor PLS model based on 1-d spectra predicted 14-d WBS values with R2 = 0.68. 

Models based on 2-, 7-, and 14-d spectra predicted less accurately (R2 = 0.20- 0.45). 

This result is intriguing, because 1-d spectra were able to predict 14-d WBS values more 

accurately than 14-d spectra. This result contradicts expectations, because a 1-d spectrum 

is forecasting tenderness that involves the variability of aging, whereas a 14-d spectrum 

predicts current tenderness. Even the prediction accuracies of models based on 1-d and 

2-d spectra were considerably different. NIR readings and WBS values were collected on 

different steaks from the same carcasses. The authors suggested that the collecting NIR 

readings and WBS values from the same meat sample would improve the accuracy. 

Continuing the above work, Venel et al. (2001) acquired NIR spectra (750-1098 

nm) on longissimus dorsi (l.d.) and semimembranosus muscles from 75 animals. 
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Following the recommendation made by Byrne et al. (1998), the site of spectral 

measurement was marked with a scalpel, and WBS values were measured at the same 

site. Spectra and WBS values were collected at 14-d post mortem. NIR spectroscopy 

was unable to predict tenderness for semimembranosus muscle. For l.d. muscle, R2 

values for tenderness prediction ranged from 0.27-0.33. When separate models were 

developed for each segregation of samples based on sex, grade, and pH, R2 values of 

prediction ranged from 0.15-0.54. 

Other Work 

Park et al. (1998) collected NIR spectra (1100-2498 nm) and WBS values on 

frozen and thawed samples at either 7-d or 14-d post mortem on 119 samples. Special 

sample preparation was required. They developed a 6-factor PLS model to predict 

tenderness with R2 values of 0.67 and 0.63 for calibration (n=80) and validation (n=39) 

sets, respectively. Note that 7-d spectra predicted 7-d WBS values and 14-d spectra 

predicted 14-d WBS values. Hildrum et al. (1995) reported that the spectra collected on 

the samples that were frozen/thawed predicted WBS values more accurately than .those 

collected on fresh samples. However, samples will not be frozen and thawed in industry 

application. 

Liu et al. (2003) collected NIR spectra (400-2498 nm) and WBS values from 24 

carcasses at 2, 4, 8, 14, and 21 days postmortem. An 8-factor PLS model predicted WBS 

values with R2 = 0.49. Note that the model did not forecast aged tenderness. When the 

data were segregated into different aging periods, prediction accuracy increased for 4-d 

and 21-d aging periods, while accuracy decreased for other aging periods. 
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Leroy et al. (2003) used a Fourier Transform NIR spectrometer to record spectra 

(833-2500 nm) from 189 samples using transmission and reflectance modes at 2-d and 

8-d postmortem. Using the reflectance mode, the 2-d spectra model predicted 2-d and 8-

d WBS readings with R2 values of 0.25 and 0.19, respectively. With the transmission 

mode, a 2-d spectra model predicted 2~d and 8-d WBS readings with R2 values of 0.41 

and 0.15, respectively. 

To summarize, several studies reported moderate to promising results in 

predicting current-status tenderness (Mitsumoto et al., 1991; Hildrum et al., 1994, 1995; 

R¢dbotten et al., 2001; Park et al., 1998; Liu et al., 2003). Only one study (Byrne et al., 

1998) reported success in forecasting tenderness. However, another study from the same 

research group (Venel et al., 2001) reported failure in predicting current tenderness. 

Three studies reported failure in forecasting tenderness (R¢dbotten et al., 2000, 2001; 

Leroy et al., 2003). 

X-ray Absorption 

Dual-energy X-ray absorption (DEXA) has been used successfully for body 

composition analysis in humans and animals. Principles of DEXA have been 

demonstrated by Buzzell and Pintauro (2004). Mitchell et al. (1997) investigated dual

energy X-ray absorption for composition analysis of three-rib sections of beef using a 

commercial densitometer designed for medical imaging. They took scans at energy 

levels of 38 and 70 keV. Reported R-values (ratio of attenuation coefficient at the two 

energy levels) were 1.2 for fat and 1.4 for 100% lean (Mitchell et al., 2003). Calibration 

details were not given. DEXA measurements predicted the compositions of ribs with 

correlation coefficients ranging from 0.85 to 0.94. Continuing the work, Mitchell et al. 
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(1998a) used DEXA to study composition of pork carcasses. Mitchell et al. (1998b, 

1998c, 2001b) used DEXA for body composition analysis and to measure bone mineral 

content and density in live pigs. 

Brienne et al. (2001) used DEXA for assessment of meat fat content. They used 

a commercial densitometer that employs 24 sodium iodide detectors, to obtain images at 

44 and 70 keV at 0.2 mA. They positioned a series of 12 Plexiglass plates under the X

ray source tube to attenuate the X-ray photons and avoid detector saturation. Then, they 

estimated incident intensity, Io, by accounting for the absorption due to Plexiglass. 

DEXA predicted various chemical components with R2 values ranging from 0.70 to 0.97. 

A patent application has been filed in New Zealand covering evaluation of meat 

properties (including tenderness) using X-ray absorption. The patent disclosure indicates 

that the invention does not use an objective test of meat tenderness for comparison with 

X-ray measurements. Their "estimated tenderness" is based on unidentified visual 

features of the meat (Murray, 2001). 
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CHAPTERIII 

COMPUTER VISION SEGMENTATION OF THE LONGISSIMUS 

DORSI FOR BEEF QUALITY GRADING 

S. Jeyamkondan, N. Ray, G.A. Kranzler, and S. Acton 

Abstract 

A computer vision system was developed to support automation of beef quality 

grading. Images of beef steaks were acquired for algorithm development. Fat and lean 

were differentiated using a fuzzy c-means clustering algorithm. Segmentation of the 

longissimus dorsi (l.d.) muscle is required, because experts assign quality grades based 

primarily on visual appraisal of the l.d. A robust segmentation algorithm was developed 

using convex hull procedures. The l.d. was segmented from the steak using 

morphological operations of erosion and dilation. At the end of each iteration of erosion 

and dilation, a convex hull was fitted to the image, and compactness was measured. 

Iterations were continued to yield the most compact l.d. Classification error in 

segmentation was 1.97%. Average error pixel distance of segmentation by the computer 

vision system was 4.4 pixels. 

Keywords. beef grading, adaptive segmentation, video image analysis, fuzzy c

means clustering, convex hull, computer vision. 
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Introduction 

The beef industry is currently the largest food and fiber industry in the U.S., with 

$55 billion of retail sales in 1999 (NCBA, 2000). To facilitate marketing, beef grading 

standards were developed by the United States Department of Agriculture (USDA) to 

classify carcasses into quality and yield grades. A trained employee of the USDA, 

working independently of both the producer and the packer, determines beef grades. 

Graders assign quality grades from visual appraisal of the longissimus dorsi (l.d.) 

muscle from the carcass sectioned between the 12th and 13th rib (Fig. 3.la). Quality 

grades are based on marbling levels (abundance and distribution of intramuscular fat) and 

physiological maturity of the carcass. Graders follow USDA quality grading standards 

(USDA, 1997). 

Typical packing plant production rates allow only 9 to 18 seconds to assign 

grades (Belk et al., 1998). Although highly trained, these graders are subject to fatigue 

and emotional strain, which can affect the decision-making process. The subjective 

nature of the grading process produces inconsistencies in judgment. Resulting grading 

errors have negative economic impact on the producers as well as packers. 

An objective "instrumented" carcass evaluation procedure is needed to ensure 

consistent quality and to facilitate value-based marketing. The Value-Based Marketing . 

Task Force of the Cattlemen's Beef Board and the National Beef Instrument Assessment 

Plan of the National Live Stock and Meat Board identified video image analysis (VIA) as 

the most promising technique for instrumenting carcass evaluation (Belk et al., 1996). 

Computer vision/VIA has significant potential for automating the quality control 

process. Computer vision technology in the form of color video cameras, image 
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digitizers, and computer processing best matches the human eye for quality grading (Biju, 

1998). Over the past 15 years, researchers have applied computer vision to the grading 

of various agricultural products such as tree seedlings (Kranzler and Rigney, 1989) and 

pork carcasses (Goldenberg and Lu, 1997). There is interest around the globe in applying 

computer vision to beef grading (Belk et al., 2001; Benn et al., 1998; Borggaard et al., 

1996; Newman, 1995; Tong et al., 1998). 

Segmentation of the l.d. muscle from the steak image (Fig. 3.1) is the primary step 

in developing a successful computer vision system for grading beef. Small errors in 

segmentation can lead to incorrect interpretation of intermuscular fat as marbling and 

result in considerable error in determination of marbling score and quality grade. 

McDonald and Chen (1990) used the morphological operation, 'open,' to remove 

extraneous tissue from the l.d. muscle. Computation time was 30 min for the 

morphological operations. In the Canadian Vision System, a commercially available beef 

grading system, a heuristic approach was implemented to define the l.d. muscle boundary 

(Tong et al., 1998). Accuracy of segmentation was not reported. 

Gao et al. (1995) described two image segmentation techniques. They first 

employed rectangular prism boundary methods. Their second method was based on 

Mahalanobis distance in red-green-blue (RGB) color space. Average grade classification 

errors for five ham images were 16% and 15% for the first and second techniques, 

respectively. Lu and Tan (1998) reported that the segmentation of lean from fat can be 

improved by using non-linear transformations such as quadratic and hyperbolic tangent 

transforms on pixel values. However, the authors did not report removal of extraneous 

muscle tissue that was not part of the l.d. 
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a. Original image. b. After 151 iteration, percent area= 75.07%. 

c. After 2nd iteration, percent area= 83.31 %. d. After 3rd iteration, percent area = 86.88%. 

e. After 4th iteration; Percent area= 85 .03%. f. Segmented l.d. muscle. 

Figure 3.1. Segmentation of longissimus dorsi (l.d.) muscle by adaptive erosion 
and dilation using convex hull fitting. White line surrounding the 
muscle is the convex hull. 
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Oklahoma State University is developing a computer vision system to predict beef 

quality. The algorithm described by McDonald and Chen (1990) was found to work well 

for segmenting the l.d. muscle, if threshold value and the parameters of morphological 

operation (number of iterations and size of the structuring element) were fine-tuned for 

each image. Threshold value and morphological parameters were fixed in their 

algorithm, resulting in under-segmentation in some images and over-segmentation in 

others. In this study, we have developed procedures to automatically optimize threshold 

value and morphological parameters for each image. 

Materials and Methods 

Samples 

Ribeye rolls from 40 carcasses at 2-d postmortem were obtained from a regional 

commercial beef processing plant. Criteria for choosing the carcasses included variation 

in marbling, lean color, and ribeye size. A steak (2.54 cm thick) was removed from the 

loin end of a ribeye roll from each carcass. Ribeye steaks were vacuum packaged and 

transported to Oklahoma State University in chilled containers. Steaks were 

overwrapped in styrofoam trays and chilled at 36°F for 2 to 3 h prior to evaluation. 

Video images of steaks were acquired at 3-d postmortem. These procedures simulated 

industry practice in which USDA inspectors evaluate chilled, bloomed ribeyes on 

carcasses at 2-3 d postmortem. Prior to VIA assessment, two expert graders 

independently evaluated steaks for USDA marbling score and color score. 

59 



Hardware 

Images of steaks were acquired using a 550 MHz PC equipped with an Integral 

Technologies FlashPoint 128 image digitizer. Resolution of the color video camera 

(A209, Microlmage Video Systems) was 480 x 640 pixels. Output was in RGB format. 

A dedicated lighting chamber with six 50-watt halogen lamps provided uniform 

illumination. Steaks were positioned in the camera field-of-view on a matte black 

surface. The field-of-view was approximately 13.4 x 17.9 cm. Calibrated pixel size was 

0.28 by 0.28 mm. 

Reference Segmentation 

Images from fresh steak samples (n=40) were used in this study (Fig. 3.la). To 

evaluate the accuracy of VIA segmentation, an expert grader used graphics software to 

manually trace the l.d. muscle boundary on a computer monitor. Ambiguous regions 

surrounding the l.d. muscle challenge even expert graders to identify the ribeye boundary 

consistently. In order to evaluate the repeatability error or imprecision of manual 

segmentation, the expert grader traced the l.d. muscle again after two weeks. These 

traced l.d. muscles were used as the segmentation accuracy reference. 

Image Processing 

Image processing algorithms were coded in MATLAB 6.0 (Matlab, 2001). 

Background segmentation was the first operation. The red band from the RGB data gave 

a well-separated bimodal histogram. Simple thresholding in the red band worked well in 

distinguishing the background from the steak. The next operation separated lean meat 

from fat flecks within the ribeye. Thresholding in the green and blue bands discriminated 
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fat from lean. However, histograms in the green and blue bands displayed a single peak 

(Fig. 3.2). As a result, finding a critical threshold that was robust for all images was 

difficult. Thresholding levels were affected by variation among steaks in color of the 

lean. An adaptive thresholding approach was needed. One of the most common 

unsupervised segmentation algorithms is clustering (Johnson, 1998). A fuzzy c-means 

clustering algorithm was used in this study to separate fat from lean. 
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Figure 3.2. Green-band histogram of beef steak image. 

Fuzzy C-means Clustering Algorithm 

Clustering models can use a range of similarity criteria for grouping data into 

classes. A suitable model for classifying fat and lean should employ mathematical 

measures that capture clusters in the way the eye perceives them (Bezdek et al., 1999). 

The c-means family of clustering models is based on the least squares criterion. C-means 
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are widely used for batch clustering. Based on optimization, c-means models can be 

classified as hard, fuzzy, or probabilistic. Simulating human perception, fuzzy c-means 

(FCM) is suitable for clustering fat and lean meat. The FCM algorithm used in this study 

is explained below (Bezdek, 1981). 

Let us assume that we want to classify the pixels of an image "I" into "C" 

classes. Each pixel at position (x,y) has the fuzzy membership value for the ith class, ui(x, 

y). The clustering technique is based on minimizing an objective function that accounts 

for the distance between cluster centers and the data (here in pixel value) within various 

clusters. The objective function in this case is given by (Bezdek, 1981), 

Where: U = fuzzy c-means class partition, 

M = set of cluster centers, and 

m = fuzzy exponent, value is greater than 1. 

Given a pixel value l(x, y), the measure: 

di ( X, y) = 11 ( X, y )- µi I 

(3.1) 

(3.2) 

is the distance between the pixel value and the cluster center, µ;,, for the ith class. This 

distance is weighted in the objective function by the fuzzy membership value for the 

corresponding pixel. The objective function is iteratively minimized, subject to the 

following conditions (Bezdek, 1981): 

(3.3) 

and 

(3.4) 
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At the start of the iteration scheme, fuzzy membership values are assigned 

random values and normalized to unity for each pixel. Next, the iteration scheme 

proceeds, computing the following two quantities in sequence (Bezdek, 1981): 

[ 

C ( ( )Jm/(m-1)] 
u/x,y)=ll LL d; t·Y) . 

x,y l=I di X, y 

and 

r ( U; ( x, y) r 1 ( x, y) 
µ.=-x,~y~~~~~~-

1 . I ( ui ( x, y) r 
x,y 

(3.5) 

(3.6) 

"Convergence" is defined by insignificant change (less than 0.1 % ) between the 

two successive values of the objective function. The output of the scheme is the partition, 

U, of the pixels into C classes. In this study, the imaged steak was grouped into two 

classes; fat and lean. 

Even though FCM is more robust than thresholding, it is computationally 

intensive. FCM is an iterative procedure. Computation time increases considerably with 

increase in image size. In order to reduce computation time, a critical factor in real-time 

applications, the image size was reduced to 120 x 160 pixels by downsampling. 

Downsampling was performed by selecting every 4th row and column in the original 

image. Fat and lean were classified by FCM. On all the pixels classified as fat, 

minimum gray levels on the blue and green bands were determined. These two values 

were then used to threshold the original image to distinguish the fat areas from lean. 

Because threshold values are automatically adjusted for every image, this procedure is 

more robust. 
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Removal of lntermuscular Fat 

Intermuscular fat refers to fat surrounding the l.d. muscle. After classification of 

fat and lean, intermuscular fat flecks were removed. Blob analysis (Gonzalez and 

Woods, 1992) was conducted to remove the meat bits that were not touching the l.d. 

muscle. At this stage, the steak image contained l.d. muscle and some extraneous tissue. 

In Figure 3 .1 b, the extraneous tissues are peninsulas touching the periphery of the l.d. 

muscle. The segmented l.d. muscle is shown in Figure 3.lf. 

Morphological Operations 

Extraneous tissue can be removed by morphological operations such as erosion 

and dilation (Serra, 1982). The size and shape of the morphological mask and number of 

iterations are critical factors for optimal results. Because these parameters vary from 

sample to sample, fixing the mask size and number of iterations reduces the robustness of 

the algorithm. These parameters must be adjusted for every sample, based on sample 

shape. A lower number of iterations of erosion and dilation may not remove all 

extr~eous tissues, whereas an excessive number of iterations will remove portions of l.d. 

muscle. Optimizing the number of iterations is critical for effective segmentation. 

The l.d. muscle is oval (convex) in shape. In our work, the morphological mask 

was fixed. A 3 x 3 diamond-shaped morphological mask was used. The number of 

iterations was to be varied to achieve the most compact image. Therefore, a measure of 

compactness had to be defined. At the end of an erosion operation, blob analysis was 

conducted to identify the largest component. Separated components were removed, and a 

dilation operation was performed. An edge map (Gonzalez and Woods, 1992) was 
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created and a convex hull (described below) was fitted (Fig. 3.lb-le). The percent area 

of lean inside the convex hull was used as the compactness measure. 

The convex hull is the smallest possible convex polygon that contains all the input 

points. If each point on the edge map is visualized as a nail protruding from a board, the 

convex hull is then the shape formed by a rubber band stretched around the nails. 

Jarvis's "march" algorithm was implemented to find the convex hull (Cormen et al., 

1989). Intuitively, Jarvis's march computes the convex hull by a package-wrapping 

technique. Input to the algorithm was the edge map of the image resulting from erosion 

and dilation (Fig. 3.3). For faster implementation, the edge map was first converted 

from Cartesian to polar coordinates. 

Let "n" be the number of edge pixels. The objective of the Jarvis's march 

algorithm is to determine a sequence, H = {po, PI, ... , Ph-d, of vertices of the convex hull 

that can warp all edge pixels. Figure 3.3 shows the edge map of the image resulting from 

the morphological operation. All these edge pixels are candidates for the set of vertices 

of the convex hull. The first vertex chosen, po, is the lowest edge pixel in the edge map 

(Fig. 3.3). The next vertex, PI, has the smallest polar angle with respect to p0• Similarly, 

pz has the smallest polar angle with respect to PI, and so on. Once we reach the highest 

vertex, Pk, the next vertex, Pk+h is chosen with the least polar angle with respect to Pk, but 

from the negative x-axis. The procedure continues, until the first vertex, p0, is reached. 

These vertices can be connected to form the convex hull (Fig. 3.lb). 
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Figure 3.3. Jarvis's march algorithm to determine convex hull. Vertices of 
convex hull determined by the algorithm are indicated by cross 
marks. 

Percent area of the ribeye inside the convex hull was determined at the end of 

each iteration (Figs. 3.lb-le). Iterations were halted when the area of the object was 

reduced by 70%. This percentage is based on the heuristic that the ribeye occupies at 

least 70% of the whole steak area. The maximum number of iterations was set at 5, 

because further iteration split the l.d. muscle into smaller pieces for most images. Fixing 

a maximum limit on the number of iterations also reduced computation time. After three 

iterations, holes in the image due to marbling were filled before successive iterations to 

avoid splitting the l.d. muscle into small components. Percent area of muscle enclosed by 

the convex hull was analyzed for all iterations. The convex hull in which the maximum 
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percent area was obtained was selected. The convex hull boundary was filled by a flood

fill operation (Foley et al., 1995). The filled boundary was then combined by logical 

AND operations with the thresholded original image, in which lean areas were 1 's and fat 

pieces and background were O's. Holes (due to marbling) were then filled, and an edge 

map was created. This edge map defined the boundary of the l.d. muscle. The number of 

iterations of morphological operations was adjusted using the convex hull procedure to 

obtain the most compact convex l.d. muscle. 

Segmentation Accuracy 

Classification Error 

Percent accuracy of classifying true l.d. muscle pixels as l.d. is given by: 

M N 

II AND( R(i, j),S(i, j)) 

LM= 

Where: LM is the l.d. match in%, 

R is the reference l.d. image traced by the expert grader, 

S is the l.d. image segmented by the algorithm. 

(3.7) 

The logical operation, AND, is performed pixel-by-pixel. Note that R and S are binary 

images with l.d. muscle pixels represented as 1 and background pixels represented by 0. 

Percent Type I error (l.d. muscle pixel wrongly classified as background pixel) is given 

by 100-LM. The expert grader traced the l.d. muscle twice to determine the repeatability 

errors in manual segmentation. As a result, two reference images were generated. 

Percent of Type I errors was calculated separately for the two reference images, and the 

average percent Type I error was recorded. 
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Percent accuracy of classifying tme background pixels as background is given by: 

M N 

LL NOR ( R(i, j), s (i, j)) 
i j 

M N 100 (3.8) BM= 
LLNOT(S(i,j)) 

i j 

Where: BM is the background match in percent. NOR and NOT are logical operations 

performed pixel-by-pixel. Percent of Type II errors (background pixel wrongly classified 

as I.ct. muscle pixel) is given by 100-BM. Percent classification error was calculated as 

the average of percent Type I and II errors. Note that classification accuracy may be 

calculated as (100 - percent classification error). 

Average Error Pixel Distance 

We propose another measure of segmentation accuracy; Average Error Pixel 

Distance (AEPD), given by: 

N M 

LLXOR(R(i, j),S(i, j)) 
AEPD =-i_j ______ _ 

N M (3.9) 

LLP(i,j) 
i j 

where XOR is the "exclusive OR" logical operation and Pis the boundary or perimeter of 

the I.ct. muscle traced by the expert grader. The image, P, can be obtained by finding 

edges of the reference I.ct. muscle image, S, using a Sobel operator (Gonzalez and 

Woods, 1992). XOR produces an output of 1 when there is either a background 

mismatch or an l.d. muscle mismatch. XOR produces an output of O when there is a 

correct match. Figure 3.4 shows the mismatch between the l.d. muscle segmented by the 

algorithm (Fig. 3.lf) and the reference image. Sum of mismatch of all pixels in the 

image is normalized by the length of the boundary of the reference l.d. muscle. The 
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normalized value, thus, denotes the average distance of the segmented l.d. muscle 

boundary from the reference 1 .d. muscle boundary in pixels. 

Figure 3.4. Mismatch between the segmented image (Fig. 1 f) and the reference 
image. White regions indicate mismatch, whereas black regions 
indicate match. 

Resolution and Accuracy 

In the steak image, the l.d. muscle is large enough to reduce the need for high

resolution (480 x 640) segmentation. By trail-and-error, we found that segmentation 

accuracy did not drop significantly when the image resolution was reduced by a factor of 

up to 16. Reducing the resolution increased computational speed. In this study, we have 

reported results of performing image processing operations on downsampled images with 

120 x 160 resolution. For low-resolution images, the morphological mask used was a 2 x 

2 square mask, with the maximum number of iterations set at 4. Once the convex hull 

vertices were determined, the size of the polygon (convex hull) was doubled by scaling 
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the vertex Coordinates by the factor of two. All other image processing operations were 

the same as those implemented for original-resolution images. Segmentation accuracy 

and computation times were compared for implementation on both original- and low

resolution images. 

Results and Discussion 

The adaptive segmentation procedure for a sample image is illustrated in figure 

3.1. FCM clustering produced a binarized image with lean= 1, and fat and background= 

0. The binary image was eroded and dilated to remove extraneous tissues (Fig. 3.lb). A 

convex hull was fitted to the image. The white lined polygon surrounding the objects in 

Figure 3.lb-le is the convex hull. Percent area of l.d. muscle within the convex hull was 

calculated as 75.07% after the first iteration. After the second and third iterations, the 

percent area grew to 83.31 and 86.88%, indicating increase~ compactness. However, 

after the fourth iteration, the percent area within the convex hull was reduced to 85%, 

indicating that some part of l.d. muscle had been eroded. Therefore, the optimum _number 

of iterations for this sample was 3. Based on the criterion of maximum muscle area 

within the convex hull, the convex hull from the 3rd iteration was selected. The convex 

hull was filled and combined (logical AND) with the original image that was obtained 

after FCM clustering. Holes ( due to marbling. flecks) in the resulting image were filled 

and multiplied (pointwise, pixel-by-pixel) by the original image (Fig. 3.la) to define the 

l.d. muscle (Fig. 3. lf). The number of morphological iterations ranged from 1 to 4 and 1 

to 5 for low- and original-resolution images, respectively. In traditional implementation 

of morphological operations, the number of iterations is fixed. Our algorithm was 
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designed to select the number of iterations yielding the most compact l.d. muscle area. 

The result is an algorithm that is more robust. 

Percent classification errors, AEPD, and computation time for both low- and 

original- resolution images for all samples are shown in Table 3.1. To indicate 

variability, the maximum, minimum, and standard deviation for all measures are given. 

The average percent classification error and AEPD between the l.d. muscles traced for 

the same image by the expert grader were 1.19% and 2.3 pixels, respectively, for the 40 

images. When a boundary is digitized, an AEPD of at least 1 pixel is inherent. The 

average repeatability error of the reference method (l.d. muscle traced by the expert 

grader) with which the algorithm is compared was 1.19% (Table 3.1). One cannot expect 

any algorithm to perform better than the precision of the reference. Image processing 

operations on the original-resolution image resulted in an average percent classification 

error and AEPD between the l.d. muscle segmented by the algorithm and that traced by 

the expert grader of 1.93% and 3.9 pixels, respectively. Average computation time for 

the original-resolution images was 16.4 s. The corresponding average percent 

classification error, AEPD, and computation time for image processing on low-resolution 

images were 1.97%, 4.4, and 9.8 s (Table 1). Implementing the algorithm on the 

original-resolution images resulted in minimal improvement in segmentation results 

(about 0.04% improvement in classification accuracy), but computation time was 

increased by 40%. Thus, implementing the algorithm on low-resolution images is more 

suitable for real-time applications. In images No. 2, 8, 25, and 26, classification errors on 

low-resolution images were lower than those on original-resolution images (Table 3.1). 

One would expect image processing on original-resolution images would result in lower 
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Table 3.1. Evaluation of segmentation accuracy and computation time. 

ID 
Original-Resolution ( 480x640) Low-Resolution (120x160) ExEert vs ExEert 

1Error (%) 2AEPD time (s) Error(%) AEPD time (s) Error(%) AEPD 
1 2.14 3.5 17.66 2.23 3.7 10.58 1.71 3.8 
2 2.85 8.2 17.31 1.92 4.6 9.96 1.57 2.6 
3 2.09 5.8 16.6 2.11 5.7 9.4 1.43 2.6 
4 1.92 5.7 15.19 2.04 5.7 10.18 1.85 3.8 
5 1.80 2.7 15.56 2.07 4.2 9.31 1.06 2 
6 1.12 1.9 15.88 1.32 2.5 8.95 0.86 1.7 
7 1.56 3.4 14.73 1.84 4.1 8.66 1.16 1.9 
8 2.19 3.4 16.46 0.88 1.9 9.63 0.82 1.7 
9 1.81 2.6 16.69 2.13 2.9 10.15 1.03 1.7 
10 1.44 2.6 21.06 1.52 2.7 12.78 1.00 1.9 
11 1.13 2.7 15.95 1.50 3.2 8.97 1.35 2.7 
12 1.37 3.6 16.23 1.90 5.5 9.55 0.96 1.9 
13 1.24 2.8 16.21 1.24 2.8 9.42 1.20 2.2 
14 1.68 3.7 16.03 1.78 5.3 9.2 1.13 2.3 
15 1.78 3.4 16.75 1.94 3.4 9.68 1.46 2.6 
16 1.64 2.9 16.07 1.41 2.7 9.49 1.03 2.1 
17 1.31 2.9 16.09 2.26 4 8.63 1.32 2.4 
18 1.15 2 16.62 1.32 2.2 9.04 1.09 2 
19 1.29 3.1 15.91 1.47 3.1 9.06 1.27 2.4 
20 1.93 4 16.23 1.58 3.7 10.07 0.83 1.5 
21 3.12 4.8 17.1 2.00 4.2 9.87 2.62 5.4 
22 1.35 3.4 15.77 1.46 3.3 9.1 1.03 2 
23 1.76 5.5 17.57 1.86 5.5 10.63 1.06 2 
24 1.60 4.7 12.76 1.78 4.7 9.39 1.05 1.9 
25 2.77 5 16.11 1.46 3.7 9.67 1.05 1.9 
26 1.41 2.7 16.68 1.10 2.3 11.1 0.94 1.8 
27 1.43 2.4 12.7 1.50 2.5 9.58 0.88 1.8 
28 2.13 5 16.45 2.50 7.4 9.11 2.10 3.7 
29 2.91 4.8 18.07 1.99 5 11.33 1.02 1.9 
30 2.10 5.4 16.98 2.15 5.4 9.5 0.90 1.8 
31 1.42 2.6 17.49 1.38 2.7 10.57 0.72 1.4 
32 1.22 2.7 17.24 1.35 2.8 9.97 1.22 2.6 
33 1.18 2.9 17.01 1.48 4 10.58 1.16 2.5 
34 1.41 2.6 15.35 1.05 2.6 8.75 0.63 1.4 
35 1.94 3.2 15.03 1.69 3.2 8.73 1.01 1.9 
36 1.44 4.9 17.29 1.35 4.9 10.39 1.07 2.4 
37 5.86 9.5 16.85 7.12 11.1 9.87 0.88 1.8 
38 4.11 6.8 16.66 4.33 7 10.59 2.03 3.9 
39 2.59 4.3 16.16 2.23 4 9.73 0.89 1.8 
40 2.03 3.6 18 4.49 16.8 11.51 1.06 2 

Avg. 1.93 3.9 16.41 1.97 4.4 9.82 1.19 2.3 
Max. 5.86 9.5 21.06 7.12 16.8 12.78 2.62 5.4 
Min 1.12 1.9 12.7 0.88 1.9 8.63 0.63 1.4 
Std. 0.90 1.6 1.36 1.09 2.6 0.87 0.40 0.8 

1Error - Percent classification error. 2 AEPD - average error pixel distance, in pixels. 
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classification errors than on low-resolution images. This contradiction is due to the 

difference in morphological masks used. A square-shaped mask was better suited to 

those particular four images than a diamond-shaped mask. The result was higher 

classification accuracy for those images with low-resolution. 

Gao et al. (1995) reported that the classification error of their segmentation 

algorithms was 15-16%. The adaptive segmentation method presented here had 

classification errors of less than 2%, representing a significant improvement. Ye (1993) 

reported that a knowledge-based approach to segmenting the l.d. muscle failed in 20% of 

the images. Tong et al. (1998) implemented a heuristic approach, but did not report the 

accuracy of segmentation. It is difficult to develop a knowledge-based or heuristic 

approach to l.d. segmentation that works on all steaks because of the high biological 

variability involved. Our approach, using adaptive segmentation, appears to be more 

robust. Our algorithm was tested with a limited number of samples (n=40). Validation 

with more samples is recommended. 

Conclusion 

Segmentation of the longissimus dorsi is the critical first step in beef quality 

grading. In this work, we have implemented and tested an adaptive, robust segmentation 

method. Threshold values, determined from fuzzy c-means clustering on downsampled 

images (120 x 160), were used to threshold original-resolution images (480 x 640). 

Threshold values were adjusted for each image on the basis of PCM clustering, resulting 

in more accurate classification of fat and lean. Convex hull fitting procedures were used 

to measure the compactness of the l.d. muscle. The number of iterations of erosion and 

dilation was selected to achieve the most compact l.d. muscle. The average error pixel 
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distance and classification errors were 3.9 pixels and 1.93%, respectively, when original

resolution images were used. These algorithms were shown to be sufficiently robust to 

handle the high biological variability encountered in beef grading. Implementing 

morphological operations on low-resolution images (120 x 160) and extending the final 

segmentation results to original resolution lowered classification accuracy minimally 

(0.04% ), but reduced computation time by 40%. The average error pixel distance and 

classification errors indicating imprecision (repeatability error) of reference expert 

segmentation were 2.3 pixels and 1.19%, respectively. Classification errors were similar 

to the imprecision of the reference, indicating strong performance of our adaptive 

segmentation algorithm. This automated approach showed efficacy and promise for 

challenging beef-grading tasks. 
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CHAPTERIV 

BIOEQUIVALENCE ANALYSIS FOR BEEF QUALITY 

GRADING USING COMPUTER VISION 

S. Jeyamkondan, G.A. Kranzler, and L. Claypool 

Abstract 

Assessment of similarity instead of difference between the means of different 

populations has become an item of growing interest in the area of computer vision for 

quality inspection of food and agriculture products. This research application presents a 

classic bioequivalence problem. In this study, the confidence interval approach for 

solving bioequivalence problems is explained. Then, an application in beef quality 

grad_ing using computer vision is implemented to demonstrate the use of bioequivalence 

analysis. 

A computer vision system was developed to support automation of beef quality 

grading. Forty images of ribeye steaks were acquired. After segmenting the longissimus 

dorsi (l.d.) muscle, marbling and color features were extracted to build regression models 

for predicting marbling and color scores. Quality grade was predicted using another 

regression model incorporating both marbling and color features. The R2 values of 

prediction for color score, marbling score, and quality grade were 0.86, 0.64, and 0.76, 

respectively. Bioequivalence analysis was conducted. Grades predicted by the computer 
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vision system were statistically equivalent to the grades assigned by expert graders at a= 

0.05. 

Keywords. Bioequivalence testing, computer vision, beef grading, confidence 

interval method, equivalence. 

Introduction 

Traditional statistical analysis is designed to detect the difference in the means of 

two populations. Researchers typically propose a new technique or method to replace an 

existing technique. It is the responsibility of the innovator to prove that the new 

technique is indeed significantly better than the existing technique with (1-a) 100 

confidence, where a is the significance level. Thus, the null hypothesis assumes that the 

new technique is no better than the existing technique (the two means are equal). The 

alternate or research hypothesis is that the new technique is better than the existing 

technique (the two means are different). A (l-a.)100 confidence interval (Cl) is 

constructed on the difference of the two means. The CI is defined by the lower 

confidence and upper. confidence limits. If the sign, or polarity, of the two limits is 

different, the null hypothesis is not rejected. If the CI does not cross over zero, the null 

hypothesis is rejected, and the alternate hypothesis is accepted. So, the statistical 

analyses are developed to handle the null hypothesis as equivalence, and the alternate 

hypothesis as a difference. In the classical statistical sense, failing to reject the null 

hypothesis does not mean that the equivalence is proved. It is similar to a jury trial in 

which failing to convict a person does not prove innocence (Steel et al., 1997). 
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The assessment of similaiity instead of difference between the means of different 

populations has become an issue of growing interest in the area of computer vision for 

quality inspection of food and agriculture products. Computer vision systems have been 

developed to automate the grading of various agricultural products such as tree seedlings 

(Kranzler and Rigney, 1989), apples (Leemans et al. 1998), pork (Goldenberg and Lu, 

1997), chicken (Barni et al., 1997), and veal (Denoyelle and Berny, 1999). Before the 

computer vision system can replace the existing manual grading system, it must prove 

that the quality grades assigned are statistically equivalent to grades assigned by the 

manual graders. To prove equivalence, the null and alternate hypotheses must be 

switched. This example poses a classic problem of bioequivalence. 

Bioequivalence problems are commonly encountered in pharmaceutical industries 

(Munk, 2000). When a drug patent expires, other manufacturers produce new drugs to 

substitute for the traditional drug. Before substitute drugs are put on the market, 

manufacturers must prove that the therapeutic effect of the new drug is equivalent to that 

of the existing drug (O'Quigley and Baudoin, 1988). As a result, statistical techniques 

have been developed to assess the similarity of means (Dannenberg et al., 1994; Holder 

and Hsuan, 1993; Kinsella, 1989; Lobenberg and Amidon, 2000). 

In this study, we have implemented the "confidence interval" method for 

bioequivalence analysis. The application of beef quality grading using computer vision 

was implemented to demonstrate the use of the "confidence interval" method for 

bioequivalence analysis. 
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Confidence Interval Method 

An appropriate null hypothesis for our application is, "Quality traits predicted by 

the computer vision system are different from those assigned by expert manual graders." 

HO : µe - µc :;t 0 

Where: P-e = mean grade assigned by the expert manual graders, 

/Jr: = mean grade assigned by the computer vision system. 

The alternate or research hypothesis is, "grades are equivalent." 

Ha :µe -µc =0 

(4.1) 

(4.2) 

Let d (i) be the difference between the grade assigned by the manual graders, 

Ye(i), and that assigned by the computer vision system, Yc(i), for the sample, i. 

(4.3) 

Let d and sd be the mean and standard deviation, respectively, for the differences 

for n sample pairs. A confidence interval (CI) is built for the mean of the differences. 

Equivalence is claimed if the whole CI is within ±c; where c is the level to be selected by 

the experimenter. In other words, equivalence is claimed only if: 

Lower confidence limit > -c, and 

Upper confidence limit < c. 

This procedure is known as the two one-sided test (Kinsella, 1989). Thus, a 

(1-2a.)100 two-sided CI is appropriate for this test so that each side is tested separately at 

the a level of significance (Hsu et al., 1994). The CI is given by 

(4.4) 

Where: ta = 1 - a quantile of at-distribution with the degrees of freedom, n-1, 
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s 
sJ = standard error= .J;;,, 

s = standard deviation for the differences for n sample pairs. 
d 

Note that in the classical paired t-test, if the CI includes zero, the two means are 

declared to be not significantly different at the 2a level of significance. In order to 

declare equivalence at the a level of significance, the entire CI must be enclosed within 

the small range, ± c. 

Selection of 'c' 

Selection of the value of 'c' can influence the outcome of the study and should be 

carefully selected and justified. After rigorous studies on bioequivalence of drugs, U.S. 

Food and Drug Administration (FDA) regulations state that 'c' must be set at 20% of the 

reference mean because of the high biological variability involved in testing human 

subjects (Benet 1999). 

In this application, the value of CI should be such that a difference of the 

magnitude of 'c' is of no practical importance in the grading process. Manual grading is 

subjective. Two expert graders may give different grades to the same sample. Common 

grading practice requires that the performance of the computer vision system be 

compared to this subjective manual grading standard with its high variability. The 'c' 

should be selected, based on the precision of the manual grading system. 

Two or more expert graders should assign the grades. Even though the grades 

assigned by one expert grader may differ from those assigned by another expert grader, 

these variations will be considered random variation and therefore statistically equivalent. 

Select a value of Ce (subscript 'e' stands for expert graders) such that the CI at 

82 



[(1-2a)100] is completely contained within± Ce to declare equivalence at the a level of 

significance. Then, 'c' is calculated as: 

c= kc e 
(4.5) 

Where k is a constant between 1.0 and 2.0, depending on the circumstances. This 

procedure is based on the concept that the accuracy of the computer vision system in 

reference to manual graders cannot be greater than the precision of the manual graders. 

Beef Quality Grading 

In our application, we demonstrate the use of bioequivalence analysis in a 

computer vision application for beef quality evaluation. Graders assign quality grades 

from visual appraisal of the longissimus dorsi (l.d.) muscle between the 12th and 13th rib. 

Quality grades are based primarily on marbling levels (abundance and distribution of 

intramuscular fat on the surface of the l.d. muscle) and on the physiological maturity of 

the carcass. The USDA defines ten degrees of marbling (Table 4.1) and has published 

photographs illustrating marbling abundance. With these photographs as reference, 

graders assign a marbling score. Detailed procedures involved in beef carcass quality 

grading are published by USDA (USDA, 1997). There is wide interest around the globe 

in applying computer vision for objective beef grading (Benn et al. 1998; Borggaard, et 

al., 1996; Newman, 1995; Tong et al., 1998). 

A computer vision system was developed to support automation of beef quality grading 

(Jeyamkondan et al., 2000). Forty images of ribeye steaks were acquired. Two expert 

graders assigned color scores based on published color standards (Butler et. al., 1980). 

The standards contain eight photographs to illustrate eight different color classes with 
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scores from 1 (bleached red) to 8 (very dark red). The expert graders also determined 

marbling scores and assigned quality grades according to official USDA standards. 

Marbling scores and USDA quality grades were converted to numerical values following 

USDA recommendations (Tables 4.1 and 4.2). 

Table 4.1. Numerical values for marbling scores. 

Marbling Scores* Numerical Values 

Abundant (00-100) 1000-llOO 

Moderately Abundant (00-99) 900-999 

Slightly Abundant (00-99) 800-899 

Moderate (00-99) 700-799 

Modest (00-99) 600-699 

Small (00-99) 500-599 

Slight (00-99) 400-499 

Traces (00-99) 300-399 

Practically Devoid (00-99) .200-299 

Devoid (00-99) 100-199 

Note: Devoid 100 is same as Practically Devoid 00 
* Detailed description of marbling scores is given in USDA (1997). Adapted from Johnson and 

Dockerty (1990). 

The l.d. muscle was segmented from the ribeye using morphological operations. 

After segmenting marbling by fuzzy c-means clustering (Jeyamkondan et al. 2000), mean 

and standard deviation of lean color in red, green, and blue bands were calculated. 

Marbling features extracted include number, area, and perimeter of fat flecks. Stepwise 

regression models were developed in SAS 8.1 to predict color score, marbling score, and 

USDA quality grade using extracted features. 
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Table 4.2. Numerical scale for quality grades. 

Numerical Scale 
USDA Quality Grade* 

High (67-99) Average (34-66) Low (00-33) 

Prime 24 23 22 

Choice 21 20 19 

Select 18 17 16 

Standard 15 14 13 

Commercial 11 10 9 

Utility 9 8 7 

* Detailed description of quality grades is given in USDA (1997). 
Adapted from Johnson and Dockerty (1990). 

The experimental design was a paired sample design. Expert graders and the 

computer vision system assigned grades for all samples. Grades were compared for 

every sample. The objective was to conduct bioequivalence analysis to determine 

whether the grades assigned by the computer vision system were statistically equivalent 

to those assigned by the expert graders. In this study, the a. value selected was 0.05. In 

the analysis of equivalence, the significance level will be reported as 0.05. · For the 

analysis of the difference of means, a significance level of 0.10 (2a.) will be used. 

In this study, we set the value of k at 1.0. Therefore, equivalence is declared if the 

error of the computer vision system is less than the repeatability error of the manual 

graders. Note that we compare the vision system error with the variability between two 

expert graders. If the expert grader assigns grade for the same sample a few minutes 

later, he/she may give a different grade. This difference is called variability within the 

expert grader. We assumed that the within variation is much smaller than the between 
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variation, and accordingly, the between variation was used as a reference for selecting the 

value of 'c.' 

Marbling Score 

The regression model developed for predicting the marbling score using extracted 

marbling features was: 

MS= 275.45 + 177.07 * edge-53.07 * fat -30.79 * num (4.6) 

Where: MS = marbling score, 

edge = total perimeter of fat flecks per 1000 mm2 of l.d. muscle area, 

fat = total area of fat flecks per 1000 mm2 of l.d. muscle area, 

num = number of fat pieces per 1000 mm2 of l.d. muscle area. 

Note that all features were normalized with respect to l.d. muscle area. The R2 

value was 0.64. The equivalence analysis for marbling score is given in Table 4.3. 

Marbling scores assigned by the two expert graders were not significantly different at a. = 

0.10. To declare equivalence for marbling scores, Ce must reach 1.35. At this level (c = 

Ce = 1.35), the CI of expert versus computer vision was completely contained within 

±1.35 (Table 4.3) and therefore, the scores assigned by the computer vision system and 

the experts were equivalent. The conceptual meaning is that the marbling score assigned 

by the computer vision was within ±1.35 points (which is 13.5% within each marbling 

level, Table. 4.1) of that given by the expert grader, and we are 95% confident in our 

procedure. Variability between graders in assigning marbling scores (precision of 

manual grading for marbling score) was 1.35. Manual grading is the reference standard 

and computer vision is an instrument to be calibrated. Accuracy of the computer vision 
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system canf1ot be greater than the precision of manual grading. Based on this concept, 

we declare equivalence. 

Table 4.3. Equivalence analysis for color and marbling scores and quality 
grades. 

Expert 1 vs Expert 2 Expert Average vs CV* 
Parameters 

Marbling Color Grade Marbling Color Grade 

Mean of Differences -0.35 0.84 -0.08 0.00 0.00 0.00 

Standard Error of the Differences 0.59 0.12 0.26 0.77 0.07 0.33 

Lower Confidence Limit at 90% -1.35 0.64 -0.34 -1.29 -0.12 -0.33 

Upper Confidence Limit at 90% 0.65 1.05 0.18 1.29 0.12 0.33 

R2 0.81 0.66 0.85 0.64. 0.86 0.76 

*Computer Vision 

Color Score 

Color features extracted were the mean and standard deviation of the red, green, 

and blue components of the lean meat. As expected, the color score was highly 

correlated with the mean value of the red component. The regression equation was: 

CS= 15.20-0.05 * mR (4.7) 

Where: CS = color score, and 

mR = mean value of red component of lean. 

The R2 value was 0.86. Table 4.3 shows the bioequivalence analysis for color score. The 

90% upper and lower confidence limits for expert 1 versus expert 2 did not cross zero. 

This result indicates that the color scores assigned by the two expert graders were 

significantly different at a. = 0.10. The reason for this discrepancy could be that there are 

no widely accepted color standards, and therefore graders were not rigorously trained for 
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assigning color score. Rather, they were well-trained to directly assign carcass maturity. 

The regression model that used the extracted color features as input generalized well with 

the average color scores given by the two expert graders. The 90% CI for computer 

vision versus expert graders was much smaller, and confidence limits crossed zero. Thus, 

equivalence was declared. The predicted R2 value (0.86) is much higher than the square 

of the correlation coefficient between the two expert graders (0.66) (Table 4.3). 

Quality Grades 

The regression model for predicting the quality grade was: 

Grade = 12.55 + 0.12 * mR - 0.30 * mB - 0.38 * stdR + 0.41.* stdG + 1.49 * edge ( 4.8) 

Where : mB = mean of the blue component of lean meat, 

std.R = standard deviation of the red component of lean meat, 

stdG = standard deviation of the green component of lean meat. 

The R2 value was 0.76. Table 4.3. shows the bioequivalence analysis for quality 

grade. For the grades assigned by the two· expert graders to be considered statistically 

equivalent, Ce must reach 0.34. If c is taken as 0.34, the scores assigned by the computer 

vision system and the experts were equivalent. Thus, the grade assigned by the 

computer vision system was within 0.34 points of that given by the expert graders, and 

we are 95% confident of our procedure. 

Conclusion 

The confidence interval method was explained for a bioequivalence problem that 

is commonly encountered in evaluation of computer visions systems for quality 

inspection of food and agricultural products. Bioequivalence analysis was conducted for 
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computer vision applied to beef quality grading to demonstrate use of the confidence 

interval method. USDA quality grades assigned by the computer vision system were 

statistically equivalent to those assigned by the expert graders at the significance level of 

0.05. 
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CHAPTERV 

PREDICTING BEEF TENDERNESS FROM 

STATISTICAL IMAGE TEXTURAL FEATURES 

S. Jeyamkondan and G.A. Kranzler 

Abstract 

A computer vision system was developed to predict cooked-beef tenderness. The 

objective was to predict Warner-Bratzler shear-force tenderness on 14-day aged beef 

using textural features extracted from 110 fresh beef color images. After ribeye 

segmentation, images were converted from RGB to CIE LAB color space. Gray-level 

difference histograms were constructed from each L *, a*, and b* color band, and 

statistical textural features were extracted. The system predicted shear force with an R2 

value of 0.50 and correctly classified 79% of samples into two tenderness categories. 

Detailed close-up images were also acquired from the final 48 samples. Textural 

features extracted from these captured more textural information and predicted shear 

force with a higher R2 value of 0.72. Classification into two tenderness groups was 92% 

correct. Computer vision shows promise for online prediction of cooked-beef tenderness. 

Keywords. Computer vision, beef tenderness, Warner-Bratzler shear force, 

textural features, image processing. 
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Introduction 

The beef industry is the largest food industry in the U.S. (NCBA, 2001). To 

facilitate marketing, beef grading standards were developed by the USDA to classify 

carcasses into quality and yield grades. Quality grade categorizes the carcasses on the 

basis of predicted palatability factors. Beef tenderness is a primary factor determining 

customer satisfaction. Despite its significance, beef tenderness is not considered in 

carcass grading. Direct evaluation is absent, because there is currently no suitable 

method available to the industry for predicting tenderness on-line. 

In the 1995 National Beef Quality Audit (Boleman et al., 1998), inadequate 

tenderness was identified as the second largest quality concern among purveyors, 

retailers, and restaurants. The National Beef Tenderness Survey (Morgan et al., 1991) 

showed that consumers experience undesirable toughness in one of every four steaks 

consumed. Because carcasses are not priced on the basis of tenderness, producers lack 

incentive to supply a tender product. As a result, consumer preference is not routed back 

to the producers. 

Wulf et al. (1997) investigated the correlation between CIE LAB colorimetric 

readings (L *, a*, and b*) and beef tenderness and reported that the b* value showed the 

highest correlation with Warner-Bratzler shear-force (WBS) tenderness values (R2 = 

0.14). Based on this color/tenderness relationship, Colorado State University, in 

collaboration with Hunter Associates Laboratory, Inc., developed BeefCam®, a computer 

vision system to predict beef tenderness. 

Vote et al. (2003) evaluated the BeefCam® system in four experiments. The R2 

values for predicting WBS tenderness values were 0.17, 0.30, 0.19, and 0.06 for the four 
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experiments. Wyle et al. (2003) reported that BeefCam® predicted WBS values with an 

R2 value of 0.18. Of 769 carcasses tested, 13.8% carcasses were "tough." However, only 

51.9% of carcasses were certified as "tender," which indicates that large numbers of 

tender carcasses were misclassified as tough. They concluded that further development 

of the system was necessary for commercial application. 

Li et al. (1999a) developed image processing techniques to predict cooked-beef 

tenderness. In addition to color and marbling features, they used textural features from 

gray-level co-occurrence matrices of pixel values in RGB color space for predicting 

sensory tenderness scores. Prediction of sensory tenderness score yielded an R2 value of 

0.70 for the training data set and 0.62 for the testing data set, using 14 factors in a partial 

least squares model. 

Li et al. (2001) used wavelet-based textural features to classify beef carcasses into 

tender and tough groups. Fifty-nine samples were imaged with a spatial resolution of 480 

x 512. Each image was divided into 56 subimages, with 64 x 64 resolution. From 8 

extremely tender samples, 45 subimages were selected. Another 45 subimages were 

selected from 9 extremely tough samples. These 90 subimages were the only images 

used in the study (Li et al., 1999b). It is not clear why the authors did not use more 

subimages in this study, when one tough sample can produce 56 subimages. Wavelet 

textural features (n=35) were extracted from each subimage. Fisher's discriminant model 

was developed to classify tender and tough samples and was evaluated by cross

validation (leave-one-out technique). They achieved 83.3% correct classification (Li et 

al., 2001; Li et al., 1999b). Only 17 samples with extreme tenderness scores were used 
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in this study. If the other samples with intermediate tenderness scores were used, the 

correct classification rate would obviously be reduced. 

In a study supported by National Cattlemen's Beef Association for evaluating 

instruments for predicting beef tenderness, Wheeler et al. (2002) concluded that the 

nondestructive methods based on color (BeefCam®, colorimeter) are not accurate. In 

summary, there appears to be no satisfactory technique available to predict beef 

tenderness online. Previous studies by Li et al. (1999a, 1999b, 2001) show that image 

texture can be used to predict beef tenderness. However, more work is required for 

implementation. 

Recently, we developed a computer vision system to predict USDA quality grade 

(Biju, 1998). An adaptive thresholding method using a fuzzy c-means algorithm was 

developed to discriminate fat from lean meat (Jeyamkondan et al., 2000). A robust 

morphological method was developed to segment the ribeye (Jeyamkondan et al., 2004). 

Quality grades predicted by the computer vision system were statistically equivalent to 

those assigned by expert graders (Jeyamkondan et al., 2001). 

The objective of this study was to extend our computer vision system to predict 

shear-force tenderness using image textural features extracted from CIE LAB color 

space. 

Materials & Methods 

Samples 

Individual beef steaks were analyzed in this study. Fresh steaks (n=l 10) 

presenting a broad range of marbling, quality, and tenderness characteristics were 
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collected from the Oklahoma State University Food and Agriculture Products Center and 

from regional commercial packing plants (Table 5.1). 

Table 5.1. Descriptive statistics of carcass data. 

Variable N Mean Std. dev. Min. Max. 

Shear Force, kg 110 4.30 0.94 2.38 7.60 

Hot Carcass Weight, kg 71 323.8 46.8 228.3 474.7 

Marblint 110 534.6 150.0 270 1010 

Lean Maturitl 105 182.5 47.3 130 430 

Skeletal Maturitl 110 191.2 79.1 120 600 

Overall Maturitl. 105 187.1 58.1 135 515 

Quality Gradec 110 17.5 2.9 8 24 

Ribeye Area, cm2 101 76.2 12.2 45.8 115.5 

aMarbling: 200=Practically Devoid00, 300=Traces00, 400=Slight00, 500=SmaU00, 600=Modest00, etc. 

bMaturity: I00=A00, 200=B00, etc. 

cUSDA Quality Grade: Ut - = 7, Ut O = 8, Ut + = 9, ... , Pr - = 22, Pr O = 23, Pr+= 24 (Johnson and 
Dockerty, 1990). 

Computer Vision System 

Our computer vision system consisted of a color video camera (A209 Microlmage 

Video Systems), an image digitizer (FlashPoint 128 Integral Technologies), and a 550 

MHz PC and monitor to perform image processing operations. 

A dedicated lighting chamber was designed for diffuse and uniform distribution 

of light. The white interior of an arched cover directed base lighting to a 20x30 cm 

imaging area (Fig. 5.1). Light was supplied by six 50-watt halogen lamps powered by a 

feedback controller to stabilize illumination level. The camera was mounted above the 

lighting chamber, viewing the imaging area through an observation port. A removable 
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pan with a matte black surface was used to position the steak in the camera field-of-view. 

Camera resolution was 640 by 480 pixels. Output was in red-green-blue (RGB) format. 

A calibration grid was employed to quantify pixel size. 

Figure 5.1 . Video image analysis system. 

An 8-mm lens was mounted on the camera to capture a full-scale image (134 x 

179 mm) of the sample steak (Fig. 5.2). For the final 48 samples, close-up images (32 x 

43 mm) of the central portion of ribeye were obtained with a 50-mm lens. The close-up 

images (Fig. 5.3) provided more textural details. 

Figure 5.2. Full image of ribeye steak, 8-mm lens. 
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Figure 5.3. Close-up image from central ribeye, 50-mm lens. 

Tenderness Reference 

After imaging, the steaks were vacuum packaged and aged for 14 days at l °C. 

Steaks were then cooked in an impingement oven to an internal temperature of 70°C. 

Following cooling, six 12-mm diameter core samples were removed parallel to muscle 

fibers from each steak ribeye. Each core was then sheared using an Instron Universal 

Testing Machine fitted with a Warner-Bratzler shear-head attachment. The mean of the 

peak shear-force values from six core samples was taken as the steak tenderness 

reference. Recommended laboratory guidelines for beef tenderness measurement were 

followed (AMSA, 1995). 

Image Processing 

All image processing algorithms were coded in MATLAB 6.0 (The Math Works, 

Inc.). 

Preprocessing for Full-scale Images 

Segmenting the ribeye from the background, intermuscular fat, and extraneous 

tissue is a critical first step in processing steak images. The ribeye must be isolated for 
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processing, because shear-force tenderness values are taken from the ribeye, and because 

experts assign quality grades on the basis of visual appraisal of the ribeye. The 

segmentation algorithm described by Jeyamkondan et al. (2000, 2004) was used to 

segment the ribeye. 

Color Space Conversion 

Color, size, and orientation of patterns influence the perception of texture. The 

same texture at two different spatial scales will be perceived as two different textures. 

· Color textural features were extracted from ribeyes segmented from full-scale steak 

images and from the central region of the ribeye taken in close-up images. All images 

were acquired in RGB format, then transformed to HSI (hue, saturation, intensity) color 

space. HSI is more compatible with human interpretation. Intensity indicates the 

brightness of the image, ranging from black to white. Brightness is calculated by 

averaging values for the R, G, and B color bands. Hue describes a pure color (yellow, 

orange, or red), whereas saturation describes the degree to which a pure color is diluted 

by ~hite light. Details for converting RGB to HSI are outlined in Gonzalez and Woods 

(1992). 

RGB images were also transformed to CIEL*, a*, b* (LAB) color space. The 

CIE LAB is a perceptually uniform color space which mimics the logarithmic response of 

the eye. Lightness, L*, ranges from O (black) to 100 (white), a* ranges from-100 

(green) to 100 (red), and b* ranges from -100 (blue) to 100 (yellow). 

To convert RGB to CIE LAB, the first step is to transform RGB to CIE XYZ 

color space. The International Commission on Illumination (CIE, from French title) 

gives the transformation matrix for converting from RGB to CIE XYZ (Poynton, 1999): 
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[
X] [0.412453 0.357580 0.180423][R] 
Y = 0.212671 0.715160 0.072169 G 

Z 0.019334 0.119193 0.950227 B 

(5.1) 

The transformation matrix containing spectral weighting values was derived by the CIE 

from experiments involving human observers. 'Y' is the luminance component of color. 

Note that the weighting values for luminance sum to one. The above equation assumes 

the CIE D65 illuminant as a white point. This illuminant has a color temperature of 6504 

K and approximates daylight. The CIE defines a normalization procedure to compute x 

and y chromaticity coordinates: 

X y 
x= ;y= ;z=l-x-y 

X+Y+Z X+Y+Z 
(5.2) 

The chromaticity coordinates of D65 are: x = 0.3127 and y = 0.3291 (Walker, 1996). The 

luminance; Y, is always equal to 100 for a reference white. Procedures for converting 

CIE XYZ to CIE LAB values are as follows (Connolly and Fleiss, 1997): 

Where: 

L =116/ ( ;,)-16 
a· =500[t( :} t( ;,)] 
b. =200[1(;,)-1(:,)] 

f(q) =efi 
16 

f(q) = 7.787q +-
116 

(5.3) 

q >0.008856 

q ~0.008856 

Xo, Y 0 , and Z0 are the tristimulus values of reference white. For the D6s illuminant, X0 , 

Y0 , and Z0 values are 95.04, 100, and 108.89, respectively. 
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Statistical Textural Features 

Spatial gray-level co-occurrence matrices (GLCM) comprise the most powerful 

statistical textual analysis algorithm for extracting second-order textural features 

(Haralick et al., 1973). They proposed that textural information in an image can be 

captured in a co-occurrence matrix containing relative frequencies with which a pixel of 

gray level 'i' occurs with a neighboring pixel of gray level 'j' separated by a relative 

distance. 

Let 'I' be the textural image of size 'K' x 'L'. Each pixel is denoted by l(k, 1) 

with k=l,2, ... , K; and 1=1,2, ... , L. Haralick et al. formed the co-occurrence matrix with 

relative distance defined in polar coordinates (d, 0), where dis the radial distance and 0 is 

the angle between the two pixels, with respect to the horizontal axis. However, it is easy 

to describe the co-occurrence matrix using relative distance described in Cartesian 

coordinates (di, d2). The probability of observing two pixels with a relative distance (di, 

d2) in an image with gray levels 'i' and 'j' is given by (Unser, 1986): 

P(Yi = i, y2 = j) = P(i, j) 

Yi= l(k,l) 

y 2 =l(k+dpl+di) 

(5.4) 

The matrix 'P' is called a co-occurrence matrix. Note that the above equation does not 

depend on absolute indexes (k, 1). If the original image, I, has a dynamic range of Ng, 

then the size of the co-occurrence matrix, P, is Ng x Ng. Haralick et al. defined fourteen 

textural features that can be extracted from the co-occurrence matrix. GLCM has been 

successfully implemented in many applications, including textural analysis of satellite 

imagery. GLCM is also computationally demanding and consequently too slow for 

online implementation. 

101 



As an alternative, Unser (1986) developed a computationally efficient method 

called the gray-level difference histogram (GLDH) to calculate second-order textural 

features. GLDH yields textural features similar to those from GLCM. The key 

advantage of GLDH is rapid computation. For textural analysis of an image with 256 

gray levels, GLDH is not only 64 times faster but also requires 64 times less memory 

than GLCM. Typically, the variables Yt and Y2 in Eqn. 5.4 are correlated. Principal 

component analysis can be applied to produce two new variables (z1, z2) that are not 

correlated and can explain all information in the original variables (y1, y2). If the original 

variables (y1, y2) are normalized to have zero mean and unit variance, then the new 

variables (z1, z2) can be calculated by: 

(5.5) 

If the constant (1/ Ji) in the above equation is ignored, the new variables are the sum 

and difference of the original variables. Thus, the co-occurrence matrix can be replaced 

by: 

(5.6) 

Because z1 and z2 are independent (i.e., not correlated), the joint probability function 

P(z1, z2) can be written as a product of the individual probability functions P(z1) and 

(5.7) 

Computation is now much simpler. 

Based on the above theory, GLDH is implemented as follows (Unser, 1986). First 

the 'sum' (S) and 'difference' (D) images are calculated as: 
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S(k,l) = l(k,l) + l(k + d1 ,l + d2 ) 

D(k,l) = l(k,l)- l(k + di,l + dz) 
(5.8) 

The dynamic range of the 'sum' and 'difference' images is twice that of the original 

image. Histograms of 'sum' and 'difference' images are calculated as hs (i) and hd (j), 

respectively. The histograms are then normalized to obtain 'sum' and 'difference' 

probability functions, as given by: 

p (i) = hs(i) 
s KL 

p ( ') = hd(j) 
d 1 KL 

(i = 2, ... ,2Ng) 

(j=-Ng +l, ... ,Ng -1) 

(5.9) 

Seven textural features; energy, correlation, entropy, contrast, homogeneity, 

cluster shade, and cluster prominence were calculated from the 'sum' and 'difference' 

histograms, in addition to mean (µ) and variance of the image. Energy measures textural 

uniformity, i.e., the repetition of pixel pairs, and is calculated by: 

Energy= L ( P, (i) (~:( ~ (j) )2 
i j 

Correlation is a measure of gray-level linear dependencies in the image and is calculated 

by: 

Correlation= .!..{L (i- 2µ) 2 P, (i)-L j2 ~ (j)} 
2 ; j 

Entropy measures disorder of the image and is calculated by: 

Entropy = - LP, (i) log ( P, (i)) - L ~ (j) log ( Pd (j)) 
i j 

When the image is not texturally uniform, entropy is large. 

Homogeneity, also called an inverse difference moment, is given by: 
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Homogeneity = L ~ ?,i (j) 
j 1+ J 

At constant energy, homogeneity is inversely proportional to contrast. Similarly, at 

constant contrast, homogeneity is inversely proportional to energy. 

Contrast is calculated by: 

Contrast = L j2 Pd (j) 
j 

Cluster shade and cluster prominence describe the clustering of pixels pairs using third 

and fourth moments, respectively (Baraldi and Parmiggiani, 1995). They are calculated 

by (Unser, 1986): 

Shade= L (i-2µ)3 P, (i) 
i 

Prominence= L (i - 2µ)4 P, (i) 
i 

The GLDH algorithm can be applied only to gray-scale images and was therefore 

applied to each color band; red (R), green (G), blue (B), hue (H), saturation (S), intensity 

(I), lightness (L *), a*, and b*. 

Marbling Features 

The fuzzy c-means clustering algorithm described in Jeyamkondan et al. (2004) 

was used to discriminate fat from lean meat. Total numbers of fat flecks, area of fat 

flecks, and perimeter of fat flecks were calculated. 

Statistical Models 

Separate stepwise regression models with "maximum R2 improvement" as the 

decision criterion were developed for predicting shear-force tenderness using color 
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textural and marbling features extracted from full-scale and close-up images. Analysis 

was performed in SAS 8.1 statistical software. 

Results 

Prediction of Tenderness from Full-scale Images 

The R2 value for prediction of Warner-Bratzler shear force was 0.50. Samples 

were classified as 'tough' when shear force equaled or exceeded 10 lbf (44.4 N) and 

'tender' when shear force was less than 10 lbf. Seventy nine percent of the steaks were 

correctly classified into tenderness categories by our computer vision system using full 

images. The confusion matrix for tenderness classification is given in Table. 5.2. 

Table 5.2. Confusion matrix for tenderness classification, full-scale images. 

Percent Classified into 
Observed 

Tender Tough 

Tendera 84.0 16.0 

Toughb 31.4 68.6 

"Tender: Warner-Bratzler shear force< lOlbf (44.4 N) 

bTough: Warner-Bratzler shear force>= lOlbf (44.4 N) 

Prediction of Tenderness from Close-up Images 

Textural features from only the CIE LAB color bands L * and a* were selected by 

the stepwise regression procedure. Features selected by the regression model were mean, 

contrast, cluster shade and cluster prominence of L *, contrast and entropy of a*, and 

number and perimeter of fat flecks. The R2 value of the regression model for prediction 

of Warner-Bratzler shear force was 0.72. Overall correct classification rate into two 
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tenderness categories was 92%. The confusion matrix for classification is shown in 

Table. 5.3. 

Table 5.3. Confusion matrix for tenderness classification, close-up images. 

Percent classified into 
Actual 

Tender Tough 

Tendera 97.3 2.7 

Toughb 27.3 72.7 

a Tender: Wamer-Bratzler shear force< lOlbf (44.4 N) 

bTough: Warner-Bratzler shear force>= lOlbf (44.4 N) 

Discussion 

Close-up images captured more textural information and therefore explained more 

variation in beef tenderness than full-scale images. Better prediction by close-up images 

suggested that the central portion of the ribeye was representative of the entire ribeye. 

Because ribeye segmentation was not required, close-up images simplified the program 

and reduced computation time. 

Li et al. (1999a) extracted textural features using GLCM and gray-level pixel 

value run-length features in RGB color space. They developed a PLS model with 14 

factors that predicted sensory tenderness with R2 values of 0.70 and 0.62 for training set 

and testing set, respectively. We have implemented GDLH, a less complex algorithm in 

CIE LAB color space that is fast enough for on-line application. The eight-feature 

regression model predicted Wamer-Bratzler shear force with an R2 value of 0.72. The 

stepwise regression models selected features extracted from the L * and a* bands, in 

addition to two marbling features. Wulf et al. (1997) reported that b* values showed the 
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highest correlation with shear force (R2 = 0.14). In our study, none of the textural 

features extracted from b* band was targeted by the stepwise selection procedure. Wulf 

et al. (1997) used a colorimeter to obtain average L *a*b* values from each steak. In our 

study, RGB images was converted to CIE LAB images, and therefore L *a*b* values 

were available at each pixel location in the image. More accurate results in this study 

may be attributable to the fact that tenderness may be related to textural distribution of 

L *a*b* values, rather than average L *a*b* values. 

Enzymatic action during aging tenderizes beef. The beef industry, however, is 

interested in predicting tenderness of the carcass at the time of slaughter so that carcasses 

can be marketed on the basis of their true value related to customer preference. In this 

study, we demonstrated a computer vision system that can predict aged-beef tenderness 

from fresh-beef images. Images were captured before aging and models were developed 

to predict tenderness after 14 days of aging. 

Conclusion 

Textural features in CIE LAB color space were extracted using a gray-level 

difference histogram algorithm. Close-up images contained more textural information 

and predicted tenderness more accurately than full-scale images. Color textural features 

extracted from close-up images predicted Wamer-Bratzler,shear-force tenderness values 

with an R2 value of 0.72. Overall correct classification into tenderness categories of 

'tender' and 'tough' was 92%. Implementing the computer vision system with close-up 

images not only increased prediction accuracy, but also reduced computation time. 

Computer vision shows promise as a nondestructive method of predicting beef tenderness 

that can be implemented online. 
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CHAPTER VI 

TEXTURE ANALYSIS OF BEEF IMAGES 

USING THE GABOR FILTER 

S. Jeyamk:ondan, G.A. Kranzler, and G. Fan 

Abstract 

Tenderness is a critical factor in consumer perception of beef palatability. We 

developed algorithms to extract textural features from beef digital images to predict aged, 

cooked-beef tenderness that can be easily incorporated into existing computer vision 

systems. 

Images of fresh beef steaks (N = 186) were acquired using a computer vision 

system. We used a Gabor filter to extract textural features. The Gabor filter is a bank of 

band-pass filters designed in the spatial domain. The filter kernel is a Gaussian 

modulated by a complex exponential. A powerful property of the Gabor filter that makes 

it suitable for this application is that the filter is localized in both the spatial and 

frequency domains. A four-scale and six-orientation Gabor filter consists of a bank of 24 

band-pass filters. A digital image processed through this filer is decomposed into 24 

images, each with a distinct frequency band and orientation. The mean and standard 

deviation of these decomposed images were calculated. 
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A canonical discriminant model was developed to reduce 48 textural features to 2 

canonical features. The model classified the steaks into three tenderness categories with 

79 .6% accuracy using the leave-one-out cross validation method. 

Keywords. Beef tenderness, texture features, computer vision, image analysis, 

Gabor filter, canonical discriminant analysis. 

Introduction 

The U.S. beef industry forms the largest part of the nation's food and fiber 

industry, with a retail value of $57 billion in 2001 (NCBA, 2003). In Oklahoma, cattle 

sales represent 53.1 % of all agricultural marketing (OBIC, 2003). USDA developed beef 

grading standards to facilitate marketing (USDA, 1997). USDA quality grade depends 

on marbling as a major factor influencing palatability. However, the literature shows 

contradictory results regarding the influence of marbling on tenderness (Jeremiah, 1996). 

The National Beef Tenderness Survey-1998 revealed that USDA quality grade has little 

or no effect on consumer sensory evaluation or shear-force tenderness values (Brooks et 

al., 2000). 

Tenderness is a critical factor in consumer perception of beef palatability. 

National Beef Quality Audits conducted in 1991 (Lorenzen et al. 1993), 1995 (Boleman 

et al., 1998), and 2000 (McKenna et al., 2002) identified inadequate tenderness as one of 

the largest quality concerns in the beef industry. Despite its significance as a quality 

indicator, tenderness is not a factor affecting product value for producers and packers, 

because the USDA quality grading system does not currently incorporate tenderness. 

Direct evaluation is absent, because there is currently no industry accepted method 

available for predicting tenderness online. 
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Currently, computer vision or video image analysis (VIA) systems are available to 

predict beef yield and quality grade (Benn et al., 1988; Tong et al., 1998; Belk et al., 

2001). VIA systems capture images of fresh ribeye and use them to predict yield and 

quality grades. The USDA has approved the use of VIA systems for grader-assisted 

determination of beef yield grades (USDA, 2001). However, VIA use for quality grade 

assignment awaits approval. 

In this study, we have developed algorithms to extract textural features from beef 

images to predict aged, cooked-beef tenderness that can be easily incorporated into 

existing computer vision systems. Implementation of the Gabor filter algorithm is 

explained. 

Materials and Methods 

Samples 

Beef strip loin steak samples (n=I86) were collected from regional packing 

plants. Quality grades of the tested carcasses were generated to reflect the proportion of 

quality grades typically found in U.S. packing plants (i.e., 2.3% Prime, 41.2% Choice, 

43.3% Select, and 3.4% Standard) as reported by the recent National Beef Quality Audit 

-2000 (McKenna et al., 2002). Beef samples were prepared for imaging at the 

Oklahoma State University Food and Agricultural Products Research Center. One-inch 

steaks were cut, individually identified, and allowed to "bloom" for 30 minutes prior to 

imaging. 

114 



Computer Vision System 

The computer vision system consisted of a color video camera (A209 Microlmage 

Video Systems), an image digitizer (Flash Point 128 Integral Technologies) and a 1.0 

GHz PC. Images of the beef steaks were captured in a diffuse, uniform lighting chamber. 

Light was provided by six 50-watt halogen lamps powered by a stabilizing feedback 

controller. The camera was mounted above the lighting chamber, viewing a 32x43 mm 

imaging area through an observation port. Camera resolution was 640x480 pixels. Pixel 

size was 67 x 67 µm. Output was in the red-green-blue (ROB) format. 

Tenderness Reference Measurement 

After imaging, samples were vacuum-packaged and aged for 14 days. Steaks 

were then cooked in· an impingement oven to an internal temperature of 70° C. After 

cooling, six 12-mm diameter cores were sampled randomly from each steak ribeye. 

Cores were removed parallel to the muscle fibers. Force required to shear the core was 

recorded using a Wamer-Bratzler attachment to an Instron Universal Testing Machine. 

Peak shear-force values from the six replicate cores were averaged to obtain the shear

force tenderness reference value (AMSA, 1995). Higher shear-force values indicated 

"tougher" beef. Steaks were identified as "tender," "medium," and "tough" if the shear

force values were less than 8.5 lbf (37.7 N), between 8.5 and 10 lbf, and greater than 10 

lbf (44.4 N), respectively. 

Image Texture 

Texture is related to the frequency content of an image. An image from the 

spatial domain can be converted to the frequency domain using the Fourier transform 
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(Ff). Energy concentrated at the center of the frequency spectrum indicates low

frequency content (textural coarseness), whereas energy from regions far from the center 

of the frequency spectrum indicates high-frequency content (textural fineness). The 

spatial domain ( original image) contains complete spatial information, but no frequency 

information. The Ff identifies all spectral components of an image, however it does not 

contain spatial information. The Ff analyzes the image globally, not locally. In order to 

obtain spatial localization of frequency components, the image must be analyzed locally. 

To meet this requirement, the short-time Fourier transform (STFT) was introduced. An 

image was spatially localized by multiplying the image by a spatial window. The 

windowed image is then Fourier-transformed to obtain frequency components of that 

spatially localized image. Various windows including rectangular, triangular, and 

Gaussian can be used. When the window is a Gaussian, the STFT is also known as the 

Gabor Transform, from its inventor, Dennis Gabor (Misiti et al., 1996). The Gabor 

transform is implemented with a bank of band-pass digital filters. As a result, the name 

"Gabor filter" is commonly used in the literature. 

Digital Filter 

A digital filter can be used to separate certain frequency content in an image. For 

instance, a high-pass filter attenuates low-frequency content and passes high-frequency 

content. The converse is true for a low-pass filter. A band-pass filter passes only a 

specific band of frequencies. A digital filter is called a linear filter when it satisfies the 

following conditions (Oppenheim and Schafer, 1991): 
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H(cf+dg) = cH(f)+dH(g) (6.1) 

Where: H(f) is the output of a linear filter on an image,!, 

f and g are images, 

c and dare constants. 

A space-invariant filter means that the filter characteristics do not vary with the 

location of the image. A linear space-invariant (LSI) filter can be completely 

characterized by its impulse response (Oppenheim and Schafer, 1999). An impulse can 

be represented digitally by a matrix with a value 1 at'the center and Oat all other 

locations. The output image of the LSI filter is given by the convolution of the impulse 

response of the filter with the input image: 

g = h** f (6.2) 

Where: g is the output image from the filter, 

f is the input image to the filter, 

h is the impulse response of the filter, 

**is the two-dimensional convolution operation. 

The concept of the convolution may be seen in an image or signal processing 

textbook such as Oppenheim and Schafer (1991). Conducted in the spatial domain, the 

convolution operation is computationally intensive. Convolution in a spatial domain is 

equivalent to multiplication in the frequency domain. As a result, convolution is usually 

implemented in the frequency domain. An FT of the impulse response reveals the 

frequency response of the filter. The frequency response indicates how the filter 

attenuates or amplifies frequency content in the input image. Equation 6.2 in spatial 

domain is equivalent to the following equation in the frequency domain: 
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G(u,v) = H(u,v)F(u,v) (6.3) 

Where: G = FT of the output image, g, 

H = frequency response of the filter, which is FT of impulse response, h, 

F = FT of the input image, f 

If we take the inverse Fourier transform (IFT) of the output ( G), we obtain the filtered 

image, g. 

Gabor Filter 

The algorithm for the Gabor filter described in Manjunath and Ma (1996) was 

implemented in Matlab 6.1. (Mathworks, Natick, MA). Band-pass filters are designed in 

the spatial domain. The kernel function of an FT is a complex exponential, whereas the 

kernel function of a Gabor filter is a Gaussian function modulated by a complex 

exponential. A Gaussian is a smooth bell-shaped curve. The width of a Gaussian can be 

defined by the parameter, 'variance.' Because the FT of the Gaussian is also a Gaussian 

(Oppenheim and Schafer, 1999), the window is smooth in both the spatial and frequency 

domains. When the Gaussian is rotated in the spatial domain, the Gaussian in the 

frequency domain also rotates. Variances of Gaussians in the spatial and frequency 

domains are inversely related (Oppenheim and Schafer, 1999). 

The frequency responses of a bank of band-pass filters are designed with the 

following objectives: 

• Combined frequency response of all band-pass filters must cover either one

half of the frequency spectrum. The other half has redundant information, 

because the FT of a real image is conjugate-symmetric. 
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• There should be minimal overlap between the frequency response of a given 

band-pass filter and that of adjacent band-pass filters. 

Figure 6.1 shows frequency responses of 24 band-pass filters. Contours indicate the half

peak magnitude of the frequency response. Note that the shape of the frequency response 

is a Gaussian and that the half-peak magnitude contour of a band-pass filter just touches 

the contours of other filters. 

0.5 ( 
0.4 

> 
~ 0.3 

10.2 
~ ~ 0.1 

0 

-0.1 

-0.2'-------J----....... ____ __._ ____ _._ ____ ..__ ___ __ 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 

Horizontal frequency, u 

Figure 6.1 . Gabor filter design (Adapted from Manjunath and Ma, 1996). 

Gabor filter design requires four parameters: number of scales (S), number of orientations 

(K), center frequency of the Gaussian of the coarsest scale (the Gaussian with the 

smallest contour size) along the u-axis ( Uz), and center frequency of the Gaussian of the 

coarsest scale (the Gaussian with the smallest contour size) along u-axis (Uh)- Parameters 

for the Gabor filter shown in Figure 6.1 are: S=4, K=6, U1=0.05, and Uh=0.4. 
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Variances of Gaussians in the frequency domain are determined by: 

Where: au = variance of the Gaussian kernel along u-axis, 

av = variance of the Gaussian kernel along v-axis, 

(
ij J-S~l a= _h 

u1 

Then, the variances of the Gaussian in the spatial domain are calculated by: 

Where: ax = variance of the Gaussian kernel along x-axis, 

a Y =variance of the Gaussian kernel along y-axis, 

The Gabor filter is then designed in the spatial domain by: 

Where: x' and y ' are oriented/rotated coordinates 
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m = 0, 1, ... , S-1, 

n=0,1, ... ,K-1. 

To illustrate Gabor filter design, a Gabor filter of size 128 x 128 with three scales 

and three orientations is selected. Figure 6.1 shows the Gabor filters for an orientation (n 

= O; horizontal in spatial; vertical in frequency domain) and three scales. The first row in 

Figure 6.1 represents the coarsest scale, the last row represents the finest scale, and the 

middle row represents the medium scale. The first and second columns represent real 

and imaginary parts, respectively, of the impulse response of the band-pass filter. The 

third column represents the frequency response of the band-pass filter. 

Figure 6.2. Impulse and frequency response of Gabor filter (K=3; S=3; n=O; 
/77=0, 1,2). 

The following observations can be made from Figure 6.2. 

1. Both impulse and frequency responses are Gaussian shaped. 
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2. Impulse response is a Gaussian modulated by an exponential. The real part is 

the Gaussian modulated by a cosine, whereas the imaginary part is the 

Gaussian modulated by a sine. 

3. Frequency response is also a Gaussian, but shifted by the amount equal to the 

frequency of the exponential which modulated the impulse response. 

4. Variance of Gaussian in the frequency domain is inversely related to the 

variance of the Gaussian in the spatial domain. 

5. Variance of the Gaussian in the spatial domain for coarse scale (row 1) is 

largest, whereas that for fine scale (row 3) is smallest. 

6. Variance of the Gaussian in the frequency domain for the coarse scale (row 1) 

is smallest, and the center of the Gaussian is closer to the center of the FT 

image. Therefore, this filter captures the low-frequency content of the image. 

7. Variance of the Gaussian in the frequency domain increases by log base 2, as 

the scale or the central frequency of the Gaussian increases (from row 1 to 

row 3). This response simulates human vision, which is more sensitive to 

low-frequency content than high-frequency content. Therefore, the bandwidth 

of the band-pass filter increases as the central frequency increases. 

Column 3 in Figure 6.2 is the image display of the frequency response of the Gabor 

filters. The gray-level corresponds to the amplitude of the frequency response. 

Another method of visualization is a three-dimensional mesh plot. Figures 6.3-

6.5 show the frequency response for coarse, medium, and fine scale. These frequency 

responses are band-pass in nature. The response shape is Gaussian, and the surface is 

smooth. 
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Figure 6.3. Frequency response of the Gabor filter (K=3; S=3; n=O; 111=0). 

3 . . . ~ .... . 

2.5 
. ,• ' 

2 
Cl) 
-0 
::s - 1.5 

.. , · 

a. 
E 

<( 

0.5 

0 
128 

V 

0 0 

·· · ···:· 

.. ... . . 

u 

.. 

. ·. 

· , .. . . . 

· .. .. . 

. ·. 

·· . ; 

'• .. 

128 

Figure 6.4. Frequency response of the Gabor filter (K=3; S=3; n=O; 111=1 ). 

123 



0.8 

~ 0.6 
:::l 

Cl.. 

~ 0.4 

0.2 

··· ·· .. .. 

.... . 

·· ··· · 

... .. 

·· · · : 

, • •' 

··· ··· 

,,· ·············: ,~~,..... . .. .. 
·1~·'1... • . •. ••• . . . ;•'{•· i,t; , .... ,, .. 

,,•• 
··· · · 

V 

0 0 

··· · · 
.... .. .... 

· ··· ·· 

128 

u 

Figure 6.5. Frequency response of the Gabor filter (K=3; S=3; 11=0; IT1=2). 

As indicated earlier, frequency response of a filter defines what frequency regions are 

attenuated or amplified. Peak amplitude for coarse scale is higher than that for fine scale. 

The filters are designed such that the volume under the Gaussian for any scale and 

orientation is the same. Equal weight is given for all textural scales and orientations. 

The scale (m = 0) would capture coarse texture, whereas the scale (m = 2) would capture 

fine-textured features. 

Following Figure 6.2, the Gabor filters for the other two orientations are given in 

Figures 6.6 and 6.7. All these filters would constitute a bank of band-pass filters. Gabor 

filters form a complete, but non-orthogonal basis set. 
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Figure 6.6. Impulse and frequency response of Gabor filter (K=3; S=3; 11=1; 
171=0, 1,2). 

Figure 6.7. Impulse and frequency response of Gabor filter (K=3; S=3; 11=2; 
171=0, 1,2). 
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In this study, a Gabor filter with six orientations and four scales was used. 

Coverage of the frequency spectrum by a bank of band-pass filters is shown in Figure 

6.8. Note that this figure is an image-display of frequency coverage, whereas Figure 6.1. 

displays half-peak magnitude contours of all band-pass filters. The volume under each 

Gaussian is the same, because the kernel function in Equation 6.1 contains the 

normalizing factor a-m . 

Horizontal frequency, u 

Figure 6.8. Coverage of frequency magnitude spectrum by Gabor filter. 

Implementation of Gabor Filter 

Implementation of a four-scale, six-orientation Gabor filter for a particular scale 

(m = 1) and horizontal orientation (n = 0) is illustrated in Figure. 6.9. 
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Real Part Imaginary Part 

a. Input Image b. Impulse response of a band-pass filter 

c. Image in Fourier domain d. Frequency response of a band-pass filter 

Multiplication pixel-by-pixel 

IFf 

e. Filtered image frequencies f. Output filtered image 

Figure 6.9. Illustration of a Gabor filter (S=4, K=6, m=1; r1=0). 
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If the input image (Fig. 6.9a) is convolved with the impulse response of a band

pass filter (Fig. 6.9b) described by the Equation 6.2., the output image (Fig. 6.9f) will 

result. As indicated earlier, the convolution operation is computationally intensive. 

Filtering, therefore, is conducted in the Fourier domain. The FT identifies frequency 

components in the image (Fig. 6.9c). The FT of the impulse response reveals the 

frequency response of the filter. Frequency response clearly indicates the band of 

frequencies passed by the filter (Fig. 6.9d). When an FT of the image is multiplied 

pixel-by-pixel by the frequency response of the filter, the filtered image in the Fourier 

domain results (Fig. 6.9e ). Note that the FT values have a large dynamic range. To 

display the FT as an image, the dynamic range is linearly compressed between O and 255. 

Dynamic ranges of Fig. 6.9d and 6.9e were different and were therefore compressed at 

different levels. Due to these differences in compression level, the frequency band in 

Fig. 6.9e appears to be larger than that in Fig. 6.9d. In fact, Figures 6.9d and 6.9e have 

the same frequency band. The filtered image in the Fourier domain (Fig. 6.9e) is then 

transformed by an IFT to the spatial domain (Fig. 6.9f). 

If a particular location in the filtered image is bright, that location has more 

texture corresponding with that target frequency band and orientation. The mean of the 

filtered image represents the amount of texture described by the frequency band and 

orientation present in the input image. The variance of the filtered image would describe 

the variability of that texture from pixel-to-pixel in the image. The mean and the 

variance of the filtered images provide a description of textural distribution at various 

scales and orientations. In total, 48 features were extracted. 
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Canonical Discriminant Analysis 

In this study, 186 beef samples were used and 48 features were extracted from the 

image of each sample. These beef samples were classified into three tenderness 

categories; tough, medium, and tender. Prediction of category would be simpler if all 

samples in each category formed a distinct cluster in the 48-dimensional feature space. 

This method would work successfully if there were large numbers of samples (10-20 

times the number of features) and if features were uncorrelated. However, textural 

features are correlated, and a small number of samples can lead to an over-fitted model 

resulting in poor generalization. 

Canonical discriminant analysis (CDA) is a dimension-reduction technique 

similar to principal component analysis (PCA). Like PCA, CDA also creates new 

uncorrelated features which are linear combinations of the original features. The number 

of new features generated is equal to the number of categories-I. For this study, two new 

canonical features were generated for each sample. Thus, CDA converted the original 

48-dimensional feature space to a new 2-dimensional canonical feature space. The new 

features were calculated such that all samples within a category were tightly clustered 

and that the centers of the cluster categories were far apart. The new variables were then 

used in discriminant analysis (Johnson, 1998). The canonical discriminant model was 

developed in SAS (SAS Institute Inc., Cary, NC). 

For classifying a new sample into a tenderness category, two canonical scores 

were calculated from 48 textural features using a linear combination equation. The new 

sample was then assigned to the category with the cluster center closest to the canonical 

scores of the new sample. 
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Results 

Each image was decomposed to 24 images with distinct frequency bands. 

Calculating the mean and standard deviation of those 24 images produced 48 features . 

From the canonical model, two canonical features were calculated for all images. The 

mean canonical score for each category was then calculated as shown in Figure 6.10. 

We can divide the canonical feature space into three regions for three categories. The 

boundary lines are obtained by constructing perpendicular bisectors of lines connecting 

all pairs of group means and then erasing the portions of these bisectors that are not 

informative. 
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Figure 6.10. Territorial map for tenderness classification. 
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Figure 6.11 shows the canonical scores for three categories in the canonical 

feature space. As expected, there were a few misclassifications that fell on the category 

boundaries. 
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Figure 6.11. Distribution of beef samples in canonical feature space. 

Table 6.1 shows the distance between the means of canonical features of three 

4 

categories. As expected, "tender" is closer to "medium" than "tough." However, the 

distance between the tough and tender is not much larger than the distance between tough 

and medium. This proximity could cause difficulty in discriminating new samples. 

Resubstitution results are obtained when the samples used for building the model are 
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employed to test the model (Table 6.2). Table 6.2 shows that 77 .1 % of tender steaks 

were correctly classified. Overall accuracy was 80.1 %. 

Table 6.1. Distance matrix between categories in canonical feature space. 

Category Tender Medium Tough 

Tender 0 3.62 8.31 

Medium 3.62 0 7.53 

Tough 8.31 7.53 0 

Table 6.2. Resubstitution results of canonical discriminant model. 

Observed Predicted Category 

Category 
Tender Medium Tough Total 

111 22 11 144 
Tender 

77.1% 15.3% 7.6% 100% 

1 30 1 32 
Medium 

3.1% 93.8% 3.1% 100% 

0 2 8 10 
Tough 

0% 20% 80% 100% 

Accuracy 99.1% 55.6% 40% 80.1% 

For testing, the cross-validation method was used. This procedure is also known 

as the "leave-one-out" method. The first sample was removed from the data set, and a 

discrimination rule was found using the remaining N-1 samples. The classification of the 

first sample was predicted. Then, the first sample was put back into the data set, and the 

second sample was removed. As before, a discrimination rule was found using the 
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remaining N-1 samples, and the classification of the second sample was predicted. This 

process was repeated for each sample. The resulting N different classifications can be 

' used to find a nearly unbiased estimate of the accuracy of the discrimination rule 

(Johnson, 1998). Results are shown in Table 6.3. 

Table 6.3. Cross-validation results. 

Observed Predicted Category 

Category 
Tender Medium Tough Total 

111 22 11 144 
Tender 

77.1% 15.3% 7.6% 100% 

2 29 1 32 
Medium 

6.3% 90.6% 3.1% 100% 

0 2 8 10 
Tough 

0% 20% 80% 100% 

Accuracy 98.2% 54.7% 40% 79.6% 

Overall accuracy was 79.6%, closely approximating the 80.1 % obtained for the 

resubstitution method. This match indicates that the model has not over-fitted and is 

therefore robust. The only concern with this model is that 11 tender samples were 

misclassified as tough. Over 98% of samples classified as tender were indeed tender 

samples. These samples can be sold as "guaranteed tender" to premium markets such as 

restaurants. Over 96% of samples classified as medium were either tender or medium. 

These samples can be directed to consumer markets. About 80% of tough carcasses were 

correctly identified in the tough category. About 10% of samples tested were predicted 
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in the tough category. These carcasses can be used for either processed meat or marketed 

after treating to improve tenderness. 

Conclusion 

We developed algorithms employing the Gabor filter to extract textural features 

that predicted aged-beef tenderness scores with 79.6% accuracy. Over 98% of samples 

classified as tender were indeed tender samples. About 80% of tough carcasses were 

correctly identified. The remaining 20% were misclassified in the neighboring 

tenderness category, medium. Implementation of our algorithms in existing computer 

vision systems for beef quality grading would enable the U.S. beef industry to expand 

market share by responding to consumer tenderness preference at the market place. 
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CHAPTER VII 

PREDICTING BEEF TENDERNESS FROM 

WAVELET TEXTURAL FEATURES 

S. Jeyamkondan and G.A. Kranzler 

Abstract 

Beef tenderness is a primary consideration in consumer satisfaction. A computer 

vision system was developed to predict 14-day aged cooked-beef tenderness. Images of 

186 fresh beef steaks were acquired at 3-d postmortem. Images were decomposed up to 

five levels using the fourth-order Daubechies wavelet. Energy and color correlation 

signatures were extracted from wavelet-decomposed images and used as textural features. 

A stepwise linear regression model was used to predict 14-d Warner-Bratzler shear-force 

(WBS) tenderness scores. The correlation coefficient between the observed and 

predicted shear-force values was 0.54. In comparison, 7-d WBS values predicted 14-d 

WBS values with a correlation coefficient of 0.53. Thus, predictions by textural features 

extracted from fresh images acquired at 3-d postmortem using the computer vision 

system (nondestructive method) were as accurate as 7-d WBS values (sample-destructive 

method). 

The beef industry is more interested in identifying "tough" carcasses than in 

predicting shear-force values. A limited number of tough samples (10) in the tested 
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carcasses prevented evaluation of the system for classifying carcasses into "tender" and 

"tough" categories. An alternative method was used to evaluate the system for sorting 

carcasses based on tenderness at nine certification levels. At all tenderness certification 

levels, there were significant differences between the shear-force values for "certified 

tender" and "not certified tender" samples. The system was capable of accurately sorting 

and categorizing fresh beef samples on the basis of aged-beef tenderness. 

Keywords. Daubechies wavelet, short-time Fourier transform, computer vision, 

quadrature mirror filters, Warner-Bratzler shear force, image processing, video image 

analysis. 

Introduction 

In 1995, the National Cattlemen's Beef Association listed, " .. development of an 

instrument or procedure that can adequately measure quality, cutability and tenderness in 

beef carcasses in modern packing plants ... " as a top priority of the beef industry. During 

the last decade, extensive research has been directed toward developing instruments for 

measuring beef palatability. Significant advances were made in predicting cutability, but 

not in estimating tenderness. 

Tenderness is a critical factor in consumer perception of beef palatability. In the 

1995 National Beef Quality Audit (Holeman et al., 1998), inadequate tenderness was 

identified as the second largest quality concern in the beef industry. The National Beef 

Tenderness Survey (Morgan et al., 1991) showed that consumers experience undesirable 

toughness in 25% of steaks consumed. Despite its significance as a quality indicator, 

tenderness is not a factor affecting product value for producers and packers, because the 

USDA quality grading system (USDA, 1997) does not currently incorporate tenderness. 
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Direct evaluation is absent, because there is currently no widely accepted method 

available for predicting tenderness online. Because carcasses are not priced on the basis 

of tenderness, producers lack incentive to supply a tender product. As a result, consumer 

preference is not routed back to the producers. There is growing recognition that beef 

tenderness must be incorporated in the quality grading process if true, value-based 

marketing is to develop. 

Responding to the need for objective measurement, researchers have developed 

three instrumented systems for predicting beef tenderness: BeefCam® (Belk et al., 2001), 

Colorimeter Method (Wulf et al.~ 1997), and Slice Shear Force (Shackelford, et al., 

1997). In a recent comparative study, performance of these systems was evaluated. 

Because of low accuracy or invasive requirements, none of the systems was judged ready 

for industry acceptance (Wheeler et al., 2002). A sufficiently accurate, nondestructive 

method for online evaluation of tenderness continues to elude the beef industry. 

Kim et al. (1998) utilized wavelet textural features from ultrasound images to 

predict intermuscular fat percentage with an R2 value of 0.62. Huang et al. (1997) 

extracted 25 wavelet textural features for beef tenderness prediction from 29 ultrasonic 

elastogram images. The wavelet textural features predicted WBS scores obtained after 

aging for 2, 14, 28, and 42 days with R2 values ranging from 0.72-0.95. Had 26 samples 

been used instead of 29, they would have obtained a perfect R2 value of 1. The large 

number of parameters in the regression model, with respect to number of samples tested, 

raised serious questions of overfitting. 

The USDA has recently approved video image analysis (VIA) or computer vision . 

for predicting yield grade in packing plants (USDA, 2001). Commercial VIA systems 
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are available to predict yield grades (Benn et al., 1988; Tong et al., 1998; Belk et al., 

2001). These systems capture and process ribeye images to predict yield and quality 

grades. The opportunity exists to extract textural features from those ribeye images to 

predict beef tenderness. 

Li et al. (2001) used wavelet-based textural features to classify beef carcasses into 

tender and tough groups. Fifty-nine samples were imaged with a spatial resolution of 480 

x 512. Each image was divided into 56 subimages, with 64 x 64 resolution. From eight 

extremely tender samples, 45 subimages were randomly selected. Another 45 subimages 

were randomly selected from nine extremely tough samples. These 90 subimages were 

the only images used in the study (Li et al., 1999). It is not clear why the authors did not 

use more subimages in this study, when one tough sample can produce 56 subimages. 

Wavelet textural features (n=35) were extracted from each subimage. Fisher's 

discriminant model was developed to classify tender and tough samples and was 

evaluated by cross-validation (leave-one-out technique). They achieved 83.3% correct 

clas~ification (Li et al., 2001; Li et al., 1999). Only 17 samples with extreme tenderness 

scores were used in this study. Had the other· samples with intermediate tenderness 

scores been used, the correct classification rate would obviously have been reduced. 

In summary, studies by Li et al. (2001) and Huang et al. (1997) show promise for 

utilizing wavelet textural features for beef tenderness prediction. The objective of this 

study was to develop a computer vision system that can extract textural features in the 

wavelet domain from fresh beef images to predict aged, cooked-beef tenderness. 
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Materials and Methods 

Samples 

Beef ribeye rolls (n=l 86) were collected from regional packing plants. 

Descriptive statistics from sample carcass data are shown in Table 7 .1. 

Table 7.1. Descriptive statistics from sample carcass data. 

Parameter Mean Standard Deviation Minimum Maximum 

Marblint 494.8 72.9 330 730 

Quality Gradeb 18.0 1.4 15 21 

7-d WBSC, kg 3.80 0.79 2.50 7.16 

14-d WBS, kg 3.41 0.64 2.25 5.81 

8Marbling: 300=Traces00, 400=Slight00, 500=Small00, 600=Modest00, 700=Moderate00 

1uSDA Quality Grade: High Standard=15, Low Select=16, Average Select=17, High Select=18, Low 
Choice=19, Average Choice=20, High Choice=21 (Johnson and Dockerty, 1990). 

"WBS: Warner-Bratzler shear-force tenderness values. 

Marbling scores ranged from Traces to Moderate. Quality grade ranged from 

High Standard to High Choice. Most of the carcasses graded either Select or Choice, 

which is in agreement with grade distribution identified in the most recent National Beef 

Quality Audit - 2000 (McKenna et al., 2002). As expected, the mean and standard 

deviation of the Wamer-Bratzler shear-force (WBS) values on 14-d postmortem samples 

were smaller than those for 7-d postmortem. These results indicate that longer-aged 

samples were more tender, and that variability of tenderness among samples was reduced 

with aging. 

Two one-inch paired steaks were cut from each ribeye roll and individually 

identified. The steaks were allowed color-bloom for 30 minutes. One of the steaks was 
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imaged, then vacuum packaged and aged for 14 days. The other steak was vacuum 

packaged and aged for 7 days. 

Computer Vision System 

The computer vision system consisted of a color video camera (A209 Microlmage 

Video Systems), an image digitizer (Flash Point 128 Integral Technologies) and a 1.0 

GHz PC and monitor. Images of the beef steaks were captured in a vaulted lighting 

chamber. Diffuse, uniform light was provided by six 50-watt halogen lamps powered by 

a stabilizing feedback controller. The camera was mounted above the chamber, viewing 

a 32 x 43 mm imaging area through an observation port. Camera resolution was 640 x 

480 pixels. Pixel size was 67 x 67 µm. Output was in the red-green-blue (RGB) format. 

Tenderness Reference Measurement 

The imaged steak was designated for obtaining 14-day aged WBS values, whereas 

7-day aged WBS values were collected from the other steak from the same carcass. 

Following aging at 1 ° C, steaks were cooked in an impingement oven to an internal 

temperature of 70° C. After cooling, six 12-mm diameter cores were sampled randomly 

from each steak ribeye. Force required to shear the core was recorded using a Wamer

Bratzler attachment to an Instron Universal Testing Machine. Peak shear-force values 

from the six replicate cores were averaged to obtain the shear-force tenderness reference 

value (AMSA, 1995). Higher shear-force values indicated "tougher" beef. 

Image Texture 

References on texture analysis often begin with the observation that there is no 

single, unambiguous, widely accepted definition for texture (Livens, 2002). IEEE 
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standard 610-4 (1990) states, "Texture is an attribute representing the spatial arrangement 

of the gray levels of the pixels in a region." Texture refers to repetition of basic patterns 

called texels (Jain, 1989). Textures in nature are often random. Because there is no clear 

definition for texture, extracting textural features has been an ongoing challenge. In this 

study, textural features were extracted in the wavelet domain. Image processing 

algorithms were coded in Matlab 6.0 (Mathworks, Natick, MA). 

Need for New Transform 

·The spatial domain (original image) contains complete spatial (temporal, in case 

of signal processing) information, but no frequency inf orm:ation. The Fourier transform 

(FT) identifies all spectral components of an image; however it does not contain spatial 

information. The Ff analyzes the image/signal globally, not locally. In order to obtain 

spatial localization of frequency components, the image must be analyzed locally. To 

meet this requirement, the short-time Fourier transform (STFT) was introduced 

(Oppenheim and Schafer, 1999). 

Short-time Fourier Transform 

To begin implementation of the STFT, a window of finite length is selected. This 

window is moved over the signal, and the Ff of the windowed signal is calculated. The 

STFT is a compromise between temporal and frequency domains. When the window 

size is infinitesimally small, the STFT becomes a unit impulse function and gives only 

temporal information. When the window is infinitely large, the STFT becomes an Ff. 

The wider the window, the lower the temporal resolution and the higher the frequency 

resolution. The Heisenberg uncertainty principle implies that it is not possible to achieve 

144 



higher temporal resolution and higher frequency resolution at the same time. The main 

disadvantage of the STFT is that once the window size is fixed, spatial/temporal 

resolution is the same for all frequency components (Pollikar, 2002). 

Wavelet Transform 

The higher the frequency, the higher is the rate of change in gray level with 

respect to spatial distartce. In order to capture high frequencies, high spatial resolution is 

required. Typically, an image contains very few high frequencies, and thus larger 

bandwidth (low-frequency resolution) is adequate. Low frequencies indicate that the 

gray level changes slowly, and therefore low spatial resolution is sufficient. A high

frequency resolution (narrow bandwidth) is required, because an image contains a large 

amount of low-frequency content. It follows that the resolutions in the frequency and 

spatial domains are inversely related. 

It is preferred to have a transform with variable window size, instead of a fixed 

window size as in the STFT. The wavelet transform (WT) overcomes the limitations of 

the STFT by employing a variable-length window. A narrower window is employed in 

the high frequency range, because it provides higher spatial resolution (lower frequency 

resolution) to capture high-frequency content of the image. A wider window is used in 

the low-frequency range, because it provides higher frequency resolution (lower spatial 

resolution) to analyze low-frequency content of the image. The function used to window 

the image is called a ''mother wavelet." 

The WT research community uses the term "scale" instead of "frequency." Scale 

is defined as I/frequency. As with maps, high-scale provides an overview of the region 
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(low-frequency content), whereas low-scale provides intricate details of the region (high

frequency content). 

Continuous Wavelet Transform 

A one-dimensional continuous wavelet transform (CWT) for a time signal is 

defined as (Van de Wouwer, 1999): 

1 OOJ (t-b) W(a,b) = ..ra_ __ x(t) · lfl* -;;-- dt (7.1) 

Where: W(a,b) = CWT coefficients of a time signal, x(t), 

a = translation parameter, measure of time, 

b = scale parameter, inversely related to frequency. 

* *(t-a) * l/f a,b (t) = l/f b = mother wavelet l/f translated by 'a' and scaled by 'b' 

Translation means a time-shift of the signal. When the scale is between O and 1 

(low-scale), the mother wavelet lfl* is contracted (narrow window) and can analyze high 

frequency. When the scale is greater than 1 (high-scale), the mother wavelet is expanded 

or dilated (wider window) and can analyze low frequency. In many practical 

applications, high frequency does not continue for the duration of the signal. Thus, we 

need high temporal resolution to capture the high-frequency components (fast-changing 

signal). Low frequency usually continues for the duration of the signal. We need less 

temporal resolution to capture slowly-changing signal components (Pollikar, 2002). 

CWT can be interpreted as a time-scale plot of the signal. The mother wavelet is 

translated by 'b' and dilated by 'a' and then multiplied by the entire signal. The result is 

normalized by dividing by the square root of the scale, so that the transformed signal has 

equal energy at all scales. If the signal at the particular location (b) has a frequency 
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component'corresponding to that scale (a), the CWT coefficient, W(a,b), will be large. 

Therefore, W(a,b) can be interpreted as the cross-correlation between the signal and the 

mother wavelet translated by 'b' and scaled by 'a' (Pollikar, 2002). 

Mother Wavelet 

The term 'wavelet' literally means small wave, indicating that it is of finite width 

and therefore compactly supported. The wavelet functions should satisfy the following 

conditions (Pollikar, 2002): 

= f lj/(t)dt = 0 (7.2) 

= f llj/(t)l2 dt < 00 (7.3) 

Equation (7.2) signifies that it is a wave with a zero mean. It does not have a D.C. 

component. Equation (7.3) signifies that the energy of the wavelet function is finite, 

meaning that it is compactly supported. Note that in the FT, the base functions are sines 

and cosines, which have infinite width. An example of a mother wavelet is shown in 

Figure. 7 .1. 

The Haar wavelet is the earliest and simplest wavelet. It is a square step function. 

Other wavelet families include Daubechies, biorthogonal, coiflets, symlets, Morlet, 

Mexican hat, and Meyer (Misiti et al., 1996). In short, wavelets are mathematical 

functions that decompose the signal or image into various frequency components with 

resolution matched to the scale. 
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Figure 7.1. Fourth-order Daubechies (db4) mother wavelet. 

Discrete Wavelet Transform 

Even though the CWT can be implemented in discrete format, there is too much 

redundant information in the decomposed signals/images. In the discrete wavelet 

transform (DWT), down-sampling is perlormed at each level of decomposition to remove 

redundant information. At the same time, perlect reconstruction of the original 

signal/image is possible. 

Filter-bank Representation of DWT 

Discrete wavelet transforms are usually implemented using filters. W(a,b) can be 

interpreted as the output of the filter with an impulse response of If/* a.o (-b) to the input 

signal x(b ). Thus, there is a family of filters characterized by the translation parameter 

'a' for a given mother wavelet. For more details, refer to Strang and Nguyen (1996). 
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Let x(n) be the original signal, sampled at n points. Let h(n) and g(n) be low- and 

high-pass filters corresponding to a given mother wavelet. Low- and high-pass filters for 

the Daubechies of order 4 (db4) wavelet are given in Figures 7.2. In fact, the low-pass 

filter (h[n]) and high-pass filter (g[n]) are related to each other by the following 

relationship (Pollikar et al, 2002): 

h[L-1-n] = (-lf g[n], (7.4) 

where L is the filter length. This relationship allows for perfect reconstruction of the 

original signals from wavelet coefficients. The filters satisfying the above condition are 

known as "quadrature mirror filters." 

0.8 
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0.4 

0.2 

0 

-0.2 
0 2 4 6 8 
a. Decomposition low-pass filter 

0,8 ,--~~~~~~~~--, 

0.6 

0.4 

0.2 

0 -------o---....---,-------
-0.2 ,....__~_._~___.___. ........ _._~__. 

0 2 4 6 8 
c. Reconstruction low-pass filter 

1 

0.5 

0 

-0.5 

-1 
0 2 4 6 8 
b. Decomposition high-pass filter 

d. Reconstruction high-pass filter 

Figure 7.2. Low- and high-pass filters for implementation of the 4th order 
Daubechies wavelet. 
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The.original signal is first passed through the low-pass filter to obtain 

approximation and the high-pass filter to obtain details. The resulting signals are down

sampled by a factor of 2. This procedure results in the same memory storage 

requirements for the decomposed signals as for the original signal. The approximation at 

level-I decomposition can be sent through the same low- and high-pass filters to obtain 

the second-level DWT coefficients. The decomposition can be continued. 

As the levels of de~omposition increase, the amount of down-sampling increases. 

The result is lower resolution. At the first level of decomposition, high-frequency 

components are extracted with higher temporal/spatial resolution. As the number of 

levels increases, the lower-frequency components are extracted at lower temporal/spatial 

resolution. This sequence results in the decomposition of the original signal into a series 

of signals with different frequency components and with resolution matched to scale. 

This is known as "multiresolution analysis" (MRA). 

Original signals can be perfectly reconstructed from the wavelet coefficients. 

Reconstruction low-pass {h[n]) and high-pass (g[ii]) filters are related to decomposition 

low- and high-pass filters by (Figure 7 .2): 

-
h[n] = h[L-I-n] 

(7.5) 
g[n]=g[L-1-n] 

For reconstruction of the signals from wavelet coefficients, details and 

approximation coefficients at the last level of decomposition are first up-sampled by a 

factor of 2 and passed through the reconstruction low- and high-pass filters. Outputs 

from the two filters are added to obtain the approximation at the previous level. This 

sequence is continued until the original signal is obtained. 
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Wavelet Decomposition of Images 

A two-dimensional WT can be obtained from the product of two one-dimensional WT's. 

The one-dimensional WT provides two sets of coefficients at each level of 

decomposition; namely, approximation and details. Likewise, a two-dimensional WT 

provides 4 sets of coefficients at each level of decomposition (Fig. 7.3). 

Rows 

A 

Columns 

Input 
Image 

Rows 

Columns 

D 

Figure 7.3. Wavelet decomposition of images using filters. Downward arrows 
indicate down-sampling by a factor of 2 along rows or columns. A -
approximation, H - horizontal details, V - vertical details, D - diagonal 
details. 

Rows of the input image are first passed through the low- and high-pass filters, followed · 

by down-sampling along the rows by a factor of 2. The columns of resulting images 
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from both filters are sent through low- and high-pass filters followed by down-sampling 

along the columns to obtain four sets of coefficients; namely, approximation, horizontal, 

vertical, and diagonal details (Fig. 7 .3 ). 

The original image has now been decomposed using the db4 wavelet for level 1 

(Fig. 7.4). For the next level of decomposition, the approximation (Al) is again 

decomposed to second-level approximation (A2), horizontal (H2), vertical (V2), and 

diagonal details (D2). This procedure can be continued for further decomposition. 

Figure 7.4. Level 1 decomposition of image using the Haar wavelet. A -
approximation, H - horizontal details, V - vertical details, D - diagonal 
details. 

Another way to view the wavelet decomposed images is to reconstruct the image 

using particular wavelet coefficients at each level. This approach produces the same

sized image for each approximation and detail. However, the high-level decomposed 

152 



images will show pixelization, because they were constructed from low-resolution 

coefficients (Fig. 7 .5). Details at level 1 contain the highest frequencies of the original 

image, and therefore need higher spatial resolution to show the quickly varying details. 

As the level increases, the frequency of the details decreases. For example, level 5 has 

the coarsest or lowest frequency content of the image. Thus, lower resolution is 

sufficient to capture those slowly changing details. The original and decomposed images 

have the following relationship. Let I be the original image (Fig. 7 .5). 

I= Al+Hl+Vl+Dl 

= A2+H2+V2+D2+H1+V1+D1 

= A3+H3+V3+D3+H2+V2+D2 +Hl+Vl+Dl 

= A4+ H4+V4+D4+H3+V3+D3+H2+V2+D2 +Hl+Vl+Dl 

= A5+ H5+V5+D5+H4+V4+D4+H3+V3+D3 + H2+V2+D2 +Hl+Vl+Dl 

Wavelet Features 

One of the simplest and most effective features is the energy in wavelet

decomposed images. The (normalized) energy of a decomposed image of size N x M can 

be calculated by: 

1 NM 2 

E=-I,I,(I(i,j)) 
NM i=lj=l 

(7.5) 

Because details have a zero mean, the energy is also equal to the variance of the 

decomposed images. Wavelet energy signatures indicate the distribution of energy along 

the frequency axis over scale and orientation. They are powerful for characterizing 

image texture (Van de Wouwer et al., 1999). Energy signatures for color images can be 

obtained separately for each RGB color band. 
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Original Image (I) 

Figure 7.5. Five-level decomposition of beef images using the db4 wavelet. 
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Color covariance features can be calculated from the energy of the image that is 

obtained by multiplying the corresponding detail coefficients of two color bands pixel

by-pixel. Covariance features for wavelet-decomposed color image at a particular scale 

and orientation can be calculated by (Van de Wouwer et al., 1999): 

CRG =-1-f I: ( R(i, j)G(i, j)) 
NM i=lj=1 

CGB = - 1-f f ( G(i, j)B(i, j)) 
NM i=lj=1 

(7.6) 

C BR = - 1-f f ( B(i, j)R(i, j)) 
NM i=lj=I 

Where: CRG = covariance feature between the red (R) and green (G) bands, 

CGB = covariance feature between the G and blue (B) bands, 

CBR = covariance feature between the B and R bands of the wavelet

decomposed image at a particular scale and orientation. 

Covariance features are dependent on the energy of the corresponding color 

bands. Covariance features can be normalized by dividing by the square root of 

corresponding color-band energies to produce color correlation features as given by 

(Livens et al., 1997): 

C 
C - pq 

pq - Jc;; Jc:; (7.7) 

Where: p=q={R,G,B};p=l=q, 

Cpq = color correlation feature between the color bands, p and q, 

C pq = color covariance feature between the color bands, p and q, 

CPP = energy in the color band, p, of the wavelet-decomposed image. 
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Color correlation values range from -1 to 1. If the detail coefficients of two color-bands 

vary spatially in a similar fashion, the color correlation value will be close to 1. 

Color Space Conversion 

Color influences the perception of texture. In this study, wavelet textural features 

were extracted in HSI (hue, saturation, intensity) and CIE L*a*b* (LAB) color spaces in 

addition to ROB format. Intensity indicates the brightness of the image, which is 

calculated by averaging the R, G, and B color bands. Intensity ranges from black to 

white. Hue describes a pure color (yellow, orange, or red), whereas saturation describes 

the degree to which a pure color is diluted by white light. Details for converting ROB to 

HSI are outlined in Gonzalez and Woods (1992). 

The CIE LAB is a perceptually uniform color space which mimics the logarithmic 

response of the eye. The lightness, L * ranges from O (black) to 100 (white), a* ranges 

from -100 (green) to 100 (red), and b* ranges from -100 (blue) to 100 (yellow). Details 

for conversion of ROB to CIE LAB color space are given in Connolly and Pleiss (1997). 

For conversion, chromaticity values from a white reference are required. The CIE 

standard illuminant (A) was used as a white reference, because it simulates a tungsten

halogen light source (Wyszecki and Stiles, 1982). This illuminant is suitable, because 

our images of beef steaks were acquired with illumination provided by tungsten-halogen 

light bulbs. 

Statistical Evaluation of the System 

Our evaluation of system performance followed procedures described by Wheeler 

et al. (2002). They assessed performance of three instrumented tenderness prediction 

systems on the basis of progressive certification of steak sample tenderness in 10% 
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certification increments. Any steaks generating shear-force values greater than 4.53 kg 

(10.0 lbs) were classified as "tough." The rest were "tender." In the description that 

follows, "observed values" refers to the reference WBS values. "Predicted values" refers 

to the shear force predicted by the computer vision system. 

Samples were first sorted and ordered on the basis of predicted values. For 10% 

certification levels, 10% of the steaks having the lowest predicted values were classified 

into a "certified tender" group and the remaining into a "not certified tender" group. The 

mean observed Warner-Bratzler shear-force values were compared for the two groups 

using a 't' test for independent samples (a= 0.05). First, equality of variance for the two 

groups was tested. If the variances were equal, a pooled variance estimate was used in 

the 't' test. If the variances were not equal, Satterthwaite approximation was used to 

estimate the variance. A significant difference in mean observed shear-force values 

between the two groups would infer that the computer vision system had successfully 

sorted the "tender" from the "tough" samples at that certification level. Any "tough" 

sample (observed shear-force value greater than 4.53 kg) in the "certified tender" group 

was designated as an error. This procedure was repeated for certification levels up to 

90%, in 10% increments. A 100% certification level signified classifying all samples as 

"tender" (without sorting). Thus, error at 100% certification level indicates the total 

number of "tough" carcasses. 
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Results & Discussion 

Wavelet Textural Features 

Each color band of the image was separately decomposed by db4 wavelet for five 

scales. At each scale, there were three orientations: horizontal, vertical, and diagonal. 

This procedure produced 15 decomposed images for each color band. In total, there were 

45 decomposed images for a color image with three color bands. Energy features were 

calculated for each decomposed image. In addition, rotationally-invariant details were 

calculated by adding details (pixel-by-pixel) of three orientations at each scale, as 

outlined by Kim et al. (1998). Five rotationally-invariant detail images were produced 

for each color band. From these rotationally-invariant images of three color bands, 15 

energy features and 15 correlation features were calculated. In total, 75 features were 

extracted per color image in RGB color space. Images were also transformed to HSI and 

CIE LAB color spaces. Similar features were extracted in these color spaces, bringing 

the total number features to 225 per image. 

Regression Model 

The number of features extracted from an image is higher than the total number of 

images used in the study. Also, several textural features were correlated with each other. 

Thus, a feature reduction step is necessary. A forward-selection method (significance 

level for entry = 0.20) was used in a linear regression model to identify a select number 

of features to predict 14-d WBS values. This procedure serves the purposes of both 

feature reduction and tenderness prediction. Twelve features were selected by the model 

(Table 7 .2). 
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Table 7.2. Wavelet textural feature selected by the regression model. 

No. Feature Type Color Bands Scale Orientation 

1 Correlation L*, a* 5 All1 

2 Energy b* 4 Diagonal 

3 Correlation S,V 2 All 

4 Correlation R,G 5 All 

5 Correlation L*, a* 4 All 

6 Correlation R,G 4 All 

7 Correlation S,V 5 All 

8 Energy b* 5 All 

9 Energy b* 4 All 

10 Energy L* 1 Horizontal 

11 Energy B 1 All 

12 Energy a* 3 Diagonal 

1 All - rotationally-invariant details, obtained by summing details at all three orientations. 

The first feature selected was the correlation between the wavelet-decomposed 

images at the 5th scale from the L * and a* bands. Correlation coefficient between the 

observed and predicted shear force values was 0.54. In comparison, 7-d WBS values 

predicted 14-d WBS values with a correlation coefficient of 0.53. Thus, predictions by 

textural features extracted from fresh images using the computer vision system 

(nondestructive) performed as well as 7-d WBS values (sample-destructive). 

The beef industry is more interested in identifying "tough" carcasses than in 

predicting shear-force values. In our study, the limited number of tough samples (10) in 

the tested carcasses prevented evaluation of the system for classifying carcasses into 

159 



"tender" and "tough" categories. Therefore, the certification method described by 

Wheeler et al. (2002) was used to evaluate the system for sorting carcasses on the basis of 

nine tenderness certification levels. 

Evaluation of the System 

Certification results from the computer vision system are given in Table. 7.3. At 

all certification levels, there were significant differences between the observed WBS 

values for "certified tender" and "not certified tender" samples. This result indicates that 

the system is capable of sorting tough carcasses from tender carcasses with good 

accuracy. 

Table 7.3. Statistical differences of the mean observed shear-force values 
between "certified tender'' and "not certified tender'' groups. 

Certification Observed Warner-Bratzler Shear Force, kg. 

Level 
Certified Tender Not Certified Tender Difference 

90 3.31 4.29 0.98* 

80 3.29 3.91 0.62* 

70 3.26 3.76 0.50* 

60 3.20 3.72 0.52* 

50 3.15 3.66 0.51* 

40 3.11 3.60 0.49* 

30 3.09 3.55 0.46* 

20 3.00 3.51 0.51* 

10 2.80 3.48 0.68* 

*Mean observed shear-force values for "certified tender" and "not certified tender" were 
significantly different at a= 0.05. 
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At the 100% certification level, no sorting was done. There were 10 tough 

samples in the data set (Fig. 7.6). Out of 10 tough samples, 8 were correctly identified in 

the "not certified tender" group at 90% certification level. Two tough carcasses were 

wrongly certified as tender. Note that the error in classification from lower certification 

levels is carried over to the error in higher certification levels. Thus, the error reported in 

Figure 7.6 is cumulative, as the certification levels increase from 10-90%. For example, 

one tough sample was incorrectly classified as "certified tender" at the 70% certification 

level. In addition to this error, another tough sample was incorrectly classified as 

"certified tender" at the 80% certification level, bringing the total number of 

rnisclassifications to 2. Below the 60% certification level, there were no errors. 
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Figure 7.6. Error of the computer vision system at various certification levels. 
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Conclusion 

Textural features were extracted in the wavelet domain using the 4th order 

Daubechies wavelet. A forward-selection method in the linear regression model was 

used for feature reduction and to predict 14-day aged, cooked-beef tenderness scores. 

Correlation between observed Warner-Bratzler shear-force values and predicted values 

was 0.54. In comparison, 7-d WBS values predicted 14-d WBS values with a correlation 

coefficient of 0.53. Thus, predictions by textural features extracted from fresh images 

using the computer vision system (nondestructive method) were as good as 7-d WBS 

values (sample-destructive method). At all tenderness certification levels, there were 

significant differences between the shear-force values for "certified tender" and "not 

certified tender" samples. These results show the ability of the system to accurately sort 

the steaks on the basis of cooked-beef tenderness. The system demonstrated the use of 

textural features extracted from images of fresh steaks to accurately predict aged, cooked

beef tenderness. 
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CHAPTER VIII 

PREDICTING BEEF TENDERNESS USING NEAR-INFRARED 

SPECTROSCOPY 

S. Jeyamkondan, G. Kranzler, B. Morgan, and S. Rust 

Abstract 

A near-infrared spectral reflectance system was developed and tested online to 

predict 14-day aged, cooked-beef tenderness. A contact probe with a built-in tungsten

halogen light source supplied broadband light to the ribeye surface. Fiberoptics in the 

probe transmitted reflected light to a spectrometer with a spectral range of 400-2500 nm. 

In the first phase, steak samples (n=292) were brought from packing plants to the 

lab and scanned with the spectrometer. After scanning, samples were vacuum-packaged 

and aged for 14 days. They were then cooked in an impingement oven to an internal 

temperature of 70° C. Slice shear-force values were recorded for tenderness reference. 

In phase two, the spectrometer was modified for packing plant conditions. 

Spectral scans were obtained on-line on ribbed carcasses (n=276). A partial least squares 

regression model was developed to predict tenderness scores from spectral reflectance. 

In phase three, the developed model was validated by scanning carcasses (n=200) on-line. 

The predicted shear-force values and samples were sent to the U.S. Meat Animal 
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Research Center for third-party validation. At up to 70% tenderness certification levels, 

the system was able to successfully sort tough from tender carcasses. 

Keywords: Beef tenderness, near-infrared spectroscopy, spectral reflectance, 

non-destructive evaluation. 

Introduction 

Beef tenderness is a primary consideration in consumer satisfaction. Despite its 

significance as a quality indicator, tenderness is not a current factor directly affecting 

product value for beef producers and packers. There is growing recognition that beef 

tenderness must be incorporated in the quality grading process if true value-based 

marketing is to take place. Developing instrumentation to predict tenderness was 

identified as a top priority for the beef industry by the National Cattlemen's Beef 

Association (NCBA, 2002). In the U.S. meat marketing system, beef products leave the 

packing plant at about three days postmortem. It takes approximately 14 days for the 

beef products to reach the consumer. The beef industry needs an instrument that can scan 

fresh meat at 2-3 days postmortem and predict ultimate 14-day cooked-beef tenderness. 

Major challenges stem from variability in the aging process and in cooking. 

USDA Beef Quality Grading 

The primary method used today to classify carcasses into various palatability 

groups is USDA quality grading (USDA, 1997). This method is employed because it is 

nondestructive and can be implemented online. The majority of U.S. beef falls into a 

narrow range of quality-grade variation. Roughly 80% of carcasses grade either USDA 
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Select or Low Choice (McKenna et al., 2002). Consumer dissatisfaction with the eating 

quality of beef generally relates to carcasses within this range. This match has led to 

questioning the economic value of the Quality grade. Graders tend to favor mid-range 

estimates instead of using the whole Quality grade range of U.S. Prime to U.S. Standard. 

Error rates for assignment of USDA Quality and Yield grades have been reported to be as 

high as 12%. In other words, one of eight carcasses is stamped with the wrong USDA 

Quality grade (J.W. Wise, 1997, USDA; personal communication). 

Instrument Grading 

Instrument grading has the potential to improve prediction of palatability by 

employing technology to sort carcasses into Quality groups. Three technologies that 

have been developed to determine beef tenderness are the U.S. Meat Animal Research 

Center (MARC) Slice Shear Force, the Colorado State University (CSU) BeefCam®, and 

the Colorimeter developed at South Dakota State University. A brief overview of these 

methods follows. 

The MARC Slice Shear Force system uses belt-driven, automated equipment to 

facilitate sample processing (Shackelford et al., 1999). Shear-force values are obtained at 

three days postmortem and regressed to predict shear force at 14 days postmortem. This 

method is accurate at identifying beef that can be guaranteed tender. Because it is 

sample-destructive and relatively time-consuming, the system is not yet acceptable for 

on-line application. Perhaps the greatest drawback associated with this system is that it 

measures beef tenderness at early postmortem. It does not take into account variation in 

tenderness associated with postmortem aging. 
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Colorado State University (CSU), in collaboration with Hunter Associates 

Laboratory, Inc. (Reston, VA) developed the BeefCam® system to predict beef 

tenderness. The CSU BeefCam® is a video image analysis system that processes images 

of the ribeye to predict tenderness (Belk et al., 2001). This method meets the criteria of 

being nondestructive and relatively fast. 

Wulf and Page (2000) developed a quality grade augmentation system that 

supplements current USDA Quality Grade Standards with Colorimeter readings 

(L *a*b*), pH measurements, and hump height to predict beef tenderness. 

In a study supported by the NCBA (Wheeler et al., 2002), these tenderness 

prediction technologies were tested. The following conclusions were reached: 

• Indirect, non-invasive methods to predict meat tenderness that are based 

primarily on lean color are not sufficiently accurate to warrant current use. 

• BeefCam® did not perform well in this study. 

• The Colorimeter performed inconsistently, particularly on USDA Select 

carcasses. 

• Direct measure of tenderness provided by Slice Shear Force resulted in a more 

accurate identification of "tender" beef carcasses. Because this method is 

sample-destructive and time-consuming, it appears that industry acceptance is 

unlikely. 

A sufficiently accurate nondestructive instrument to predict aged beef tenderness 

continues to elude the beef industry. 
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Near-infrared Spectroscopy 

Light reflected in the visible region of the spectrum gives an objective 

measurement of the color of food objects, whereas light reflected in the near-infrared 

(NIR) region contains information about food physical and chemical properties. 

Contradictory results have been reported in the literature regarding the use of NIR 

spectroscopy for predicting beef tenderness. Some studies have been conducted using 

laboratory spectrometers with special requirements for sample preparation. Others have 

used fiber-optic reflectance probes that can be more easily applied in a processing plant 

environment. In most studies, the NIR spectral scan and reference shear-force tenderness 

values were acquired at the same point in time. A few studies have used scans acquired 

at early postmortem to predict tenderness after aging. It is important to recognize these 

differences in order to understand the inconsistent results reported in the literature. 

Pioneering Work 

Use of NIR spectroscopy for predicting beef tenderness was pioneered by 

Mitsumoto et al. (1991). A limited number of samples was used in the study (11 steers, 

6 muscles per steer). They collected spectral reflectance data (1100-2500 nm) on 3-d 

postmortem samples to predict 3-d Warner-Bratzler shear-force (WBS) values. Samples 

were prepared and placed in sample holders for scanning. A multiple linear regression 

equation with four selected wavelengths predicted 3-d WBS values with R2 values of 

0.68. This study showed promise and aroused broad interest in using NIR for predicting 

beef tenderness. 
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Matforsk Norwegian Research Group 

A series of studies were conducted at the Matforsk Norwegian Food Research 

Institute. Hildrum et al. (1994) conducted a feasibility study with 10 carcasses (3 cows, 7 

bulls) at three aging periods (1, 8, and 14 days). They acquired scans in the 1100-2500 

nm range under controlled conditions requiring special sample preparation. Thirty 

spectral scans were used to build a two-factor principal component regression model with 

multiplicative scatter correction (MSC) data preprocessing. The model predicted WBS 

values with an R2 value of 0.62. Note that 1-d spectra predicted 1-d WBS values, and 14-

d spectra predicted 14-d WBS values. 

In continuation of the work, Hildrum et al. (1995) used 40 carcasses (both cows 

and bulls) at three aging periods (1, 7, and 14 days). Thirty carcasses were chilled 

slowly. Ten carcasses were subjected to electric stimulation and rapid chilling. Spectra 

were collected from fresh samples and frozen/thawed samples. It is interesting to note 

that the NIR spectra collected from frozen/thawed samples predicted WBS values more 

acc~rately (R2 = 0.50) than those collected fresh (R2 = 0.34). The authors speculated that 

the freezing step increased the difference in structure between tender and tough samples. 

Note that the model predicted current WBS values rather than forecasting ultimate WBS 

values. 

R0dbotten et al. (2000) studied the feasibility of using early (4- and 26-hour) 

postmortem NIR spectroscopy to predict 2-d and 7-d WBS values from 127 carcasses. 

Spectra recorded at 4-h and 26-h postmortem exhibited some differences in the 1100-

1900 nm range. The rigor mortis process starts at about 4-h postmortem and ends before 

26 hours. The authors hypothesized that the difference between the two spectra collected 
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at the beginning and end of rigor mortis is related to the aging potential of the carcasses. 

However, they found that spectra differences did not contain essential information to 

predict final tenderness of aged samples. Partial least squares (PLS) models with MSC 

preprocessing of 4-h NIR spectra predicted 2-d and 7-d WBS readings with R2 values of 

0.25 and 0.27, respectively. Models based on 26-h spectra predicted 2-d and 7-d WBS 

readings with R2 values of 0.36 and 0.37, respectively. They concluded that their study 

did not support the hypothesis that early postmortem NIR spectroscopy can be used as a 

predictor of final tenderness. 

R0dbotten et al. (2001) used a spectrometer (950-1700 nm) equipped with a diode 

array detector to predict tenderness of 12 carcasses. Traditional NIR spectrometers use 

grating and require scanning to acquire complete spectra. Diode array-based 

spectrometers acquire spectra without scanning, making acquisition more rapid. The 

authors were able to acquire 150 spectra to cover the entire surf ace of a sample on both 

sides in 7 s. Four samples were collected from each carcass. NIR spectra and WBS 

readings were recorded at 2, 9, and 21 days postmortem. Separate models for different 

aging periods predicted current tenderness with R2 value of 0.36-0.69. With regard to 

forecasting tenderness, a 2-d spectra model predicted 9-d WBS values with moderate 

accuracy (R2 = 0.52). Less accuracy was reported for forecasting 21-d WBS values (R2 = 

0.27). Special sample preparation was not required for this spectrometer. 

Teagasc Irish Research Group 

Byrne et al. (1998) used a scanning spectrometer (750-1098 nm) equipped with a 

fiber optic probe to predict beef tenderness of 70 heifers. Due to lamp replacement 

during the course of this study, two separate models were developed using 20 and 50 
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samples, respectively. Results of the second set are described here. A IO-factor model 

based on 1-d spectra predicted 14-d WBS values with R2 = 0.68. Models based on 2-, 7-, 

and 14-d spectra predicted less accurately (R2 = 0.20- 0.45). This result is intriguing, 

because 1-d spectra were able to predict 14-d WBS values more accurately than 14-d 

spectra. This result contradicts expectations, because a 1-d spectrum is forecasting 

tenderness that involves the variability of aging, whereas a 14-d spectrum predicts current 

tenderness. Even the prediction accuracies of models based on 1-d and 2-d spectra were 

considerably different. NIR readings and WBS values were collected on different steaks 

from the same carcasses. The authors suggested that the collecting NIR readings and 

WBS values from the same meat sample would improve the accuracy. 

Continuing the above work, Venel et al. (2001) acquired NIR spectra (750-1098 

nm) on longissimus dorsi (l.d.) and semimembranosus muscles from 75 animals. 

Following the recommendation made by Byrne et al. (1998), the site of spectral 

measurement was marked with a scalpel, and WBS values were measured at the same 

site. Spectra and WBS values were collected at 14-d post mortem. NIR spectroscopy 

was unable to predict tenderness for semimembranosus muscle. For l.d. muscle, R2 

values for tenderness prediction ranged from 0.27-0.33. When separate models were 

developed for each segregation of samples based on sex, grade, and pH, R2 values of 

prediction ranged from 0.15-0.54. 

Other Work 

Park et al. (1998) collected NIR spectra (1100-2498 nm) and WBS values on 

frozen and thawed samples at either 7-d or 14-d post mortem on 119 samples. Special 

sample preparation was required. They developed a 6-factor PLS model to predict 

174 



tenderness with R2 values of 0.67 and 0.63 for calibration (n=80) and validation (n=39) 

sets, respectively. Note that 7-d spectra predicted 7-d WBS values and 14-d spectra 

predicted 14-d WBS values. Hildrum et al. (1995) reported that the spectra collected on 

the samples that were frozen/thawed predicted WBS values more accurately than those 

collected on fresh samples. However, in industry application, samples will not be frozen 

and thawed. 

Liu et al. (2003) collected NIR spectra (400-2498 nm) and WBS values from 24 

carcasses at 2, 4, 8, 14, and 21 days postmortem. An 8-factor PLS model predicted WBS 

values with R2 = 0.49. Note that the model did not forecast aged tenderness. When the 

data were segregated into different aging periods, prediction accuracy increased for 4-d 

and 21-d aging periods, while accuracy decreased for other aging periods. 

Leroy et al. (2003) used a Fourier Transform NIR spectrometer to record spectra 

(833-2500 nm) from 189 samples using transmission and reflectance modes at 2-d and 8-

d postmortem. Using the reflectance mode, the 2-d spectra model predicted 2-d and 8-d 

WB~ readings with R2 values of 0.25 and 0.19, respectively. With the transmission 

mode, a 2-d spectra model predicted 2-d and 8-d WBS readings with R2 values of 0.41 

and 0.15, respectively. 

To summarize, several studies reported moderate to promising results in 

predicting current-status tenderness (Mitsumoto et al., 1991; Hildrum et al., 1994, 1995; 

Rjljdbotten et al., 2001; Park et al., 1998; Liu et al., 2003). Only one study (Byrne et al., 

1998) reported success in forecasting tenderness. However, another study from the same 

research group (Venel et al., 2001) reported failure in predicting current tenderness. 
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Three studies reported failure in forecasting tenderness (Rj1jdbotten et al., 2000, 2001; 

Leroy et al., 2003). 

Objectives 

The overall objective of this study is to investigate the feasibility of using NIR 

spectral reflectance to predict tenderness in a packing-plant environment. Specific 

objectives were: 

• Develop a portable system to collect near-infrared spectral reflectance values 

from fresh meat at 3-d postmortem in a packing-plant environment. 

• Develop chemometric models to relate spectral reflectance to 14-d shear-force 

tenderness. 

• Evaluate the system in a packing-plant environment. 

Materials & Methods 

Meat Samples 

Beef ribeye roll samples (n=768) were collected from two regional packing 

plants. Quality grades of the tested carcasses were 50% USDA Select and 50% Low 
Choice. This project was conducted in three phases. In Phase I (laboratory scanning), 

carcasses (n=292) were selected at the USDA grading station (approximately 48 h 

postmortem). Carcasses identified and selected were individually routed off onto 

separate rails by USDA quality grade. Approximately 100 carcasses per grade per plant 

were selected. Carcass grade data factors such as ribeye area, lean maturity, skeletal 

maturity, marbling score, and quality grade as evaluated and stamped by USDA grader 
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were collected. Hot carcass weight and carcass identification numbers were recorded 

from plant tags. 

Following grade data collection, all carcasses were fabricated. Individually 

identified ribeye rolls (IMPS# 112) were collected, vacuum-packaged, and packed into 

ice chests with ice packs for transportation from the packing plant to the Oklahoma State 

University (OSU) Food and Agricultural Products Research Center. At approximately 

72 h postmortem, a one-inch (2.54 cm) steak was cut from the anterior end of each ribeye 

roll, individually identified, and allowed to "bloom" for 30 minutes. Sample steaks were 

moved to the OSU Biosystems & Agricultural Engineering Machine Vision Laboratory 

for spectral scanning under controlled conditions. Following scanning, steaks were 

vacuum-packaged, aged for 14 days (l.0°C), and then frozen (-2.0°C) for later shear-force 

measurements. After thawing, s.teaks were cooked, chilled for 24 hours, and then slice 

shear-force values were measured. Slice shear-force measurement (described later) was 

used as tenderness reference. 

In Phase II, carcasses (n=276) from two commercial plants were selected at the 

grading stand and routed onto separate rails by USDA quality grade. In-plant scanning 

was performed on each carcass (n=lOO, USDA Choice; n=lOO, USDA Select). Carcass 

grade and shear data were collected, and Phase I procedures were repeated. The 

concluding portion of the project (Phase III) consisted of third-party verification that 

included in-plant scanning and delivering the scanned ribeye steaks (n=200), along with 

predicted tenderness categories, to the U.S. Meat Animal Research Center in Clay Center, 

Nebraska for slice shear-force measurements. These tenderness ratings were established 
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from the in-plant spectral scans obtained from the two cooperating beef processing 

facilities. 

NIR Spectrometer 

The spectrometer used in this study (FieldSpec Pro JR, Analytical Spectral 

Devices, Inc.) scans in the visible and NIR regions (400-2500 nm). For in-plant 

operation, the spectrometer is secured in a backpack, with a notebook computer 

supported in view of the operator (Fig. 8. la). The fiberoptic cable from the spectrometer 

terminates in a contact probe that projects broadband lighting and positions the cable to 

collect the light reflected from the beef surface (Fig. 8.lb). 

(a) In-plant scanning operation. (b) Contact probe positioned on ribeye. 

Figure 8.1. Scanning a sample in a packing plant using a portable spectrometer 
with contact probe. 

Reflectance Measurement 

Optimization of integration time was accomplished by periodic placement of the 

contact probe on a white reference plate (Spectralon® Diffuse Reflectance Targets, 
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LabSphere, Inc.). For a given scan, 10 spectra were collected consecutively and averaged 

to minimize electronic noise. Three spectra were collected at three locations near the 

lateral end of the ribeye, in an effort to avoid connective tissue. The median of the three 

spectra was calculated and saved as the reflectance spectrum for that beef sample. 

Calculating the median avoided the effect of outliers related to a thick marbling spot or 

connective tissue. 

Shear-Force Measurement 

Traditionally, Warner-Bratzler shear-force values have been used as the 

tenderness reference. This procedure involves coring steaks parallel to muscle fibers to 

collect cylindrical samples for shearing. Coring angle and location of core samples were 

not standardized, leading to limited repeatability. Precision of reference values is critical 

in developing reliable models. A new tenderness reference method known as "slice 

shear" has been developed by the U.S. Meat Animal Research Center (Shackelford et al., 

1999). In their method, a larger sample is sliced at a fixed location on the ribeye, at a 

45° angle. This procedure produces better repeatability than the WBS method. The slice 

shear method was used as the tenderness reference in this study. 

Steaks for slice shear-force (SSF) assessment were thawed for 24 hours at 1 to 

2°C and cooked on a belt-fed impingement oven (Model 1132-000-A, Lincoln 

Foodservice Products, Inc.). Preliminary test cooking was done to determine appropriate 

cooking times to reach a 71 °C internal temperature. Slice shear force was measured after 

the cooked steaks were allowed to chill for 24 hours at 4°C. Using the procedures 

outlined by Shackelford et al. (1999), a first cut was made 1 cm from the lateral end of 

the cooked steak. The second cut was made at 5 cm from the first cut. The slice shear 
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sample was removed at an angle of 45° using a knife with two parallel blades separated 

by a 1-cm space. This procedure generated a cooked meat sample measuring 5 cm in 

length by 1 cm in thickness and 2.5 cm in width. This sample location was selected so 

that limited connective tissue would be located within the slice shear sample. Slice shear 

force was measured using a flat, blunt-end blade (slice shear attachment) attached to an 

Instron Universal Testing Machine (lnstron Corp, Canton, MA). Force required to shear 

the muscle fibers of the slice was recorded as the reference slice-shear force. Higher slice 

shear-force values indicated "tougher" beef. 

Model Development 

This is a multivariate data analysis problem. Each spectrum has 2,150 data points 

or independent variables .. Slice shear force is the dependent variable. A dimensionality 

reduction technique must be employed to avoid over-fitting. We used a partial least 

square (PLS) regression. PLS produces new features that are linear combinations of 

original spectral data points such that the new factors are not correlated and explain most 

of the variation in both dependent and independent variables (CAMO, 1998). 

Absorbance spectra in the region of 400-1650 nm were used to predict slice shear force. 

Signal strength from reflections beyond 1650 nm was below threshold. The model was 

developed using Unscrambler software (Camo, Inc.). Cross-validation procedures 

(Esbension, 2001) were employed to select the number of PLS factors to include in the 

models. 
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Evaluation of Statistical Model 

Our evaluation of system performance followed procedures described by Wheeler 

et al. (2002). They assessed performance of three instrumented tenderness prediction 

systems on the basis of progressive certification of steak sample "tenderness" in 10% 

certification increments. We classified steaks with 14-d slice shear force greater than 25 

kg as "tough" and the rest as "tender." In the description that follows, "observed values" 

refers to the reference slice shear-force values. "Predicted values" refers to the 14-d 

shear force predicted by the spectral reflectance system. 

Samples were first sorted and ordered on the basis of predicted values. For 10% 

certification levels, 10% of the steaks having the lowest predicted values were classified 

into a "certified tender" group and the remaining into a "not certified tender" group. The 

mean observed slice shear-force values were compared for the two groups using a 't' test 

for independent samples ( a = 0.05). First, equality of variance for the two groups was 

tested. If the variances were equal, a pooled variance estimate was used in the one-tailed 

't' test. One-tailed test was conducted, because the mean shear-force value of "not 

certified tender" group was expected to be greater than that of "certified tender" group. If 

the variances. were not equal, Satterthwaite approximation was used to estimate the 

variance. A significant difference in mean observed shear-force values between the two 

groups would indicate that the spectral reflectance system had successfully sorted the 

tender from the tough samples at that certification level. Any tough sample (observed 

14-d SSF ~ 25 kg) in the "certified tender" group was an error. This procedure was 

repeated for certification levels up to 90%, in 10% increments. A 100% certification 

level signified classifying all samples as tender (without sorting). 
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Results & Discussion 

Meat Samples 

The system was developed and tested using carcasses with a wide range of hot 

carcass weights and USDA yield grades (Table 8.1). Most of the carcasses were of "A" 

maturity and graded either "Select" or "Choice." This sample selection is in agreement 

with typical packing-pant grade distribution as reported in the recent National Beef 

Quality Audit- 2000 (McKenna et al., 2002). 

Table 8.1. Carcass and shear data summary of all samples (n=768). 

Variable Mean SD Minimum Maximum 

Hot Carcass Weight, lb 760.8 250.1 520.4 1001.7 

USDA Yield Grade 2.5 0.8 0.6 4.6 

Selected Maturitl 162 12 135 240 

Lean Maturitya 167 28 130 270 

Marbling Scoreb 492 79 230 860 

USDA Quality Gradec 670 64 510 830 

Slice Shear Force, kg 18.15 4.14 9.87 39.87 

•Maturity: I00=A 00, 200=B00, etc. 

1Marbling: 200=Practically Devoid00, 300=Traces00, 400=S1ight00, 500=SmaII00, 600=Modest00, etc. 

0USDA Quality Grade: 500=Standard00, 600=Select00, 700=Choice00, 800=Prime00 

NIR Readings 

In general, tough meat absorbed more light than tender meat. This result is in 

agreement with previous studies (R!ZSdbotten et al., 2000; Leroy et al., 2003). Beyond 

1,400 nm, the signal level is low due to water absorption. The reflectance (R) spectrum 

is converted to an absorbance spectrum by the log (1/R) transformation. This 
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transformation is commonly employed to linearize the relationship between the 

concentration of an absorbing compound and the absorption spectrum (Hruschka, 2001). 

A typical absorbance spectrum is shown in Fig. 8.2. 

400 700 1000 1300 1600 1900 2200 2500 

Wavelength (nm) 

Figure 8.2. Typical absorbance spectrum from beef ribeye. 

The spectra recorded in the laboratory were slightly different from those recorded 

in the packing plant due to different environmental conditions. Therefore, the model 

developed from Phase II samples acquired in the packing plant was used to predict slice 

shear-force values for samples in Phase III. Phase II and III samples were labeled as 

calibration and validation samples, respectively. A I-factor PLS model was found to be 

optimum. The correlation coefficient between the observed and predicted values was 

0.34. Standard error of calibration and prediction were both 4.17 kg. Note that slice 

shear-force values greater than 25 kg are considered "tough" carcasses. 
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A low correlation coefficient between the observed and predicted slice shear-force 

values indicated that the system did not predict specific tenderness values with high 

accuracy. However, the beef industry is more interested in identifying tough carcasses 

than in predicting exact shear-force values. Acategorical model c~mld be developed to 

classify carcasses into tender (SSF < 25 kg) or tough (SSF >= 25 kg). By this criterion, 

only 6.8% of the carcasses tested in this study were tough. It follows, that an instrument 

designed to automatically classify all carcasses as "tender" would be 93.2% accurate in 

this study. This anomaly stems from the low number of tough carcasses in the sample 

population. Wheeler et al. (2002) faced this same problem when they evaluated three 

instruments for predicting beef tenderness. They developed a "tenderness certification" 

method to evaluate and compare the instruments. Instead of using one cutoff point (SSF 

= 25 kg) to classify a carcass as tender or tough, they used nine cutoff points. The 

samples were sorted, based on instrument prediction. At 10% certification level, 10% of 

samples with the lowest predicted shear-force values were certified as tender and the 

remaining 90% as tough. If the instrument sorted the carcasses successfully, there would 

be a significant difference in the statistical means of the actual ( observed, not predicted) 

shear-force values. This procedure was continued up to 90% certification level, in 10% 

increments. 

Table 8.2 shows the mean shear-force values for "certified tender" and "not 

certified tender" groups at various certification levels. Significant differences at all 

certification levels would indicate that the system successfully sorted the carcasses into 

two certified tenderness groups. Table 8.3 shows the certification table for Phase ill 

(validation) samples. Significant differences between the mean shear-force values 
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between the two groups were observed at or below 70% certification levels. Performance 

of the system in the validation data set is slightly lower than that in the calibration data 

set. 

Table 8.2. Mean shear-force values of Certified Tender and Not Certified 
Tender groups for Phase II (calibration) samples. 

Percentage Slice Shear Force (kg) 
Certification 

Level Certified Tender Not Certified Tender Difference 

90 18.21 20.88 2.67* 

80 17.89 20.87 2.98* 

70 17.65 20.44 2.79* 

60 17.50 19.96 2.46* 

50 17.26 19.71 2.45* 

40 17.21 19.32 2.11* 

30 16.70 19.24 2.54* 

20 16.35 19.01 2.66* 

10 16.03 18.75 2.72* 

*Difference between "certified tender" and "not certified tender" significant (P < 0.05) .. 

One factor affecting comparative performance may be the different cooking 

modes used for calibration and validation steak samples. As mentioned earlier, SSF 

values were generated for calibration samples in-house at Oklahoma State University. 

Calibration samples were cooked in a belt-fed traditional impingement oven. Cooking 

time was about 10 minutes. SSF values for validation samples were generated by 

MARC. The MARC personnel used a belt grill operating at a high temperature for the 

"very rapid" cooking protocol described in Shackelford et al. (1999). Cooking time was 

4.4 minutes. Shackelford et al. (1999) observed that "very rapid" cooking resulted in 
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more surface crust formation and drip loss. Differences in cooking could have affected 

comparative slice shear-force value, compromizing analysis of results. 

Table 8.3. Mean shear-force values of Certified Tender and Not Certified 
Tender groups for Phase Ill (validation) samples. 

Percentage Slice Shear Force (kg) 
Certification 

Level Certified Tender Not Certified Tender Difference 

90 14.60 14.80 0.20 

80 14.62 14.64 0.03 

70 13.99 16.09 2.09* 

60 13.71 15.99 2.28* 

50 13.44 15.80 2.36* 

40 13.10 15.63 2.53* 

30 13.01 15.31 2.30* 

20 13.39 14.93 1.54* 

10 13.05 14.80 1.75* 

*Difference between "certified tender" and "not certified tender" significant (P < 0.05). 

Nevertheless, significant differences ~ere observed at or below 70% certification 

levels. This result indicates that the system successfully sorted the tough from tender 

carcasses at or below 70% certification levels. Practical implications to the beef industry 

are that, if the top 30% of carcasses sorted "tough" by this system are removed, the 

remaining 70% can be sold as "guaranteed tender" for premium markets such as 

restaurants. 
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Conclusions 

An NIR spectral reflectance system with contact probe was developed and 

evaluated on-line. The contact probe provided stable broadband light and fixed the 

geometry of light and fiberoptic probe in relation to the meat surface. Spectral 

reflectance values were collected at 3-d postmortem and were used to forecast 14-d slice 

shear-force tenderness values. Low correlation between the observed and predicted slice 

shear-force values indicated that the system did not predict exact tenderness values with 

high accuracy. However, the system was able to sort carcasses into tenderness categories 

with high accuracy. At up to 70% certification levels, the system successfully sorted 

carcasses into two certified tenderness categories. Implications to the beef industry are 

that 70% of the "certified tender" carcasses could be sold as "guaranteed tender" to 

premium markets. 
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CHAPTER IX 

PREDICTING BEEF TENDERNESS USING 

X-RAY ATTENUATION PROPERTIES 

S. Jeyamkondan, G.A. Kranzler, P. Wedder, T. Bowser 

Abstract 

Tenderness is a critical factor in consumer perception of beef palatability. The objective 

of this study is to evaluate the feasibility of using X-ray attenuation properties of beef to 

predict aged, cooked-beef tenderness. Our digital soft X-ray imaging system consisted of 

a variable-energy X-ray source (10-50 kV; 0-1 mA), a photodiode array coupled with 

phosphor scintillation material, a 12-bit digitizer, and a computer. System calibration 

was executed and a regression model was developed to predict incident X-ray intensity 

based on voltage and current settings. 

Beef steak samples (n = 378) were obtained from regional packing plants. X-ray 

images of steaks were acquired at voltages of 30, 35, 40, and 45 kV at 1 mA current and 

460 ms integration time. After imaging, the steaks were aged for 14 days. Slice shear

force measurements were collected as the tenderness reference. R-value (ratio of low

energy mass attenuation coefficient to high-energy mass attenuation coefficient) was 

calculated pixel-by-pixel. Mean and standard deviation of R-value images were extracted 
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as attenuation features. These features were then related to 14-d shear-force tenderness 

scores. 

No suitable model could be developed to predict tenderness. Enzymatic activity 

during aging is known to produce chemical changes that aid tenderization. Molecular 

composition does not change during this aging process. X-ray attenuation is affected by 

molecular composition of a material, but not by chemical structure. This study does not 

support the hypothesis that the X-ray attenuation property can be used to predict beef 

tenderness. 

Keywords: X-ray imaging, mass attenuation coefficient, dual-energy X-ray 

absorption, R-value, beef tenderness. 

Introduction 

X-rays in the range of 10-50 keV (kilo electron-volts) are about 10,000 times 

more energetic than visible light. Due to this high energy content, the photons can 

penetrate most materials. Resistance to penetration or degree of attenuation varies with 

different materials. This attenuation property can be used to differentiate between 

materials on the basis of composition, thickness, and density. This relationship makes X

rays ideal for nondestructive quality evaluation of food products and detection of foriegn 

objects. 

Dual-energy X-ray absorption (DEXA) has been successfully used for body 

composition analysis in humans and animals. Theory and applications of DEXA have 

been demonstrated by Buzzell and Pintauro (2004). Mitchell et al. (1997) investigated 

DEXA for composition analysis of three-rib sections of beef using a commercial 

densitometer designed for medical imaging. DEXA measurements predicted the lipids, 
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protein, and fat content of ribs, with correlation coefficients ranging from 0.85 to 0.94. 

Continuing the work, Mitchell et al. (1998a) used DEXA to study composition of pork 

carcasses. Mitchell et al. (1998b, 1998c, 2001) used DEXA for body composition 

analysis and to measure bone mineral content and density in live pigs. 

Brienne et al. (2001) used DEXA for assessment of meat fat content. They used a 

commercial densitometer that employs 24 sodium iodide detectors to obtain images at 44 

and 70 keV at 0.2 mA. They positioned a series of 12 Plexiglass plates under the X-ray 

source tube to attenuate the X-ray photons and avoid detector saturation. Then, they 

estimated incident intensity, I0 , by accounting for the Plexiglass absorption. DEXA 

predicted various chemical components with R2 values ranging from 0.70 to 0.97. 

A patent application has been filed in New Zealand covering evaluation of meat 

properties (including tenderness) using X-ray absorption. The patent disclosure indicates 

that the invention does not use an objective test of meat tenderness for comparison with 

X-ray measurements. Their "estimated tenderness" is based on unidentified visual 

features of the meat (Murray, 2001). 

The objective of this study is to evaluate the feasibility of using X-ray attenuation 

properties to predict beef tenderness. 

Materials & Methods 

Principles of X-rays 

When a high voltage is applied between the cathode and anode of an X-ray tube, 

electrons from the cathode accelerate toward the target anode. When the fast-moving 

stream of electrons is suddenly decelerated by the anode, X-rays are produced. X-rays 
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can be characterized by quantity and quality. Quantity refers to the number of the 

photons, whereas quality refers to the energy of the photons. Intensity is the product of 

the number of photons and associated energy. Thus, X-ray intensity depends on photon 

numbers and energy levels (Curry et al., 1990). 

Quantity of X-rays can be increased by increasing X-ray tube current (mA). The 

X-ray tube current refers to the rate of electrons flowing between the two electrodes. 

Quality of X-rays can be increased by raising the peak voltage between the two 

electrodes. If a 50 kVp (peak kilovoltage) is applied between the two electrodes, the 

maximum energy achieved by the X-rays is 50 keV. In implementation, X-ray tubes 

actually produce a spectrum (range of wavelengths/energies) of X-rays. 

In the atomic structure of a material, X-ray photons interact with the orbital 

electrons. X-rays with energy levels less than 50 keV interact with matter either by 

scattering or by absorption. Scattering is the undesired form of interaction. In scattering, 

X-ray photons are deflected by the orbital electrons and end up being detected in the 

"wrong" location on the detector. This creates a "fog" in an X-ray image (Curry et al., 

1990). 

Photoelectric absorption is the more desired form of interaction, from the 

standpoint of image quality. When an X-ray photon interacts with inner orbits such as 

K-, L-, or M-shells, the photon looses all its energy by ejecting the electron from the 

orbit. The excess energy is transmitted as the kinetic energy of the ejected photon. 

Because the photon looses all its energy, it disappears. The result of this interaction is 

termed photoelectric absorption (Curry et al., 1990). 
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Beer's law states that the intensity of X-rays is attenuated exponentially due to 

interaction with matter (Curry et al., 1990): 

Where:! = transmitted X-ray intensity, 

10 = incident X-ray intensity, 

µ m = mass attenuation coefficient (cm2/g), 

p = material density (g/cm\ 

t = material thickness (cm). 

(9.1) 

It is important to note that the above relationship is valid only for monochromatic 

X-rays, i.e., the mass attenuation coefficient is defined only for X-ray photons having the 

same energy level. The mass attenuation coefficient is a material property and therefore 

does not vary with the thickness of the material. It is constant for X-rays of a given 

energy level. 

X-ray Imaging System 

A schematic of our X-ray imaging system is shown in Figure 9.1. The X-ray 

source tube (Model XTF-5011 Oxford Instruments X-ray Technology, Inc.) consists of a 

cathode and anode in an evacuated envelope. The tube includes a beryllium window 

(atomic number 4), which has a low attenuation coefficient. The beryllium window 

filters out very-low energy X-rays (less than 5 keV). The X-rays leaves the tube as an 

elliptic spot and spreads out. A cooling fan is placed above the tube. 

The X-ray camera (Model Shad-o-Box ™ 1024 Rad-icon Imaging Corp.) consists 

of a two-dimensional photodiode array of size 1024 x 1024. The imaging area is 50 mm 
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x 50 mm. Center-to-center distance between pixels is 48 µ,m. Above the photodetector 

array, a Gd20 2S scintillator screen converts the X-rays to visible light that is detected by 

the photodetector array. A graphite window shrouds the scintillator to shield against 

ambient light. The sensors are optimized to detect X-rays in the range of 10 to 50 keV. 

Peak Voltage (kVp) 
and Current (mA) 

Data Acquisition 
& Control Card 

t 
©IP 
~~ ......... -1.....__F_r_am_e_G_r_a_b_b_er_ .... 

~ 

X-ray 
Camera 

Radiation 
Shield 

Figure 9.1 . Schematic of X-ray imaging system. 

The analog signal from the photodiode array is transmitted to a 12-bit frame grabber 

through a parallel interface. Maximum frame rate is just above 2 frames/s . The 

minimum integration time to acquire an image frame is 460 ms. 

The camera/sensor is set on a height-adjustable holder, with the X-ray source tube 

fixed above. The sample object is placed between the tube and the camera. Input 

voltage and current supplied to the tube are controlled by a data acquisition and control 

card (DAQ-801 , Omega Engineering Inc.). Voltage can be varied from 10-50 keV. 

Current is adjustable from 0.1 to 1 mA. 
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The source tube and camera are boxed in a 500 x 500 x 500 mm aluminum X-ray 

shield. Lead sheeting (6.35-mm) lines the interior. Two Plexiglass side windows allow 

for visual inspection. A safety switch in the door automatically cuts power to the X-ray 

tube when the door is opened. 

Samples 

Beef ribeye steaks (n=378) were collected from two regional packing plants. 

After selecting carcasses at the USDA grading station (approximately 48-h postmortem), 

carcass grade data factors were collected. Following grade data collection, all carcasses 

were fabricated. Individually identified ribeye rolls (IMPS# 112) were collected, 

vacuum-packaged, and packed into ice chests for transportion back to the Oklahoma 

State University (OSU) Food and Agricultural Products Research Center. At 

approximately 72-h postmortem, a one-inch steak (2.54 cm) was cut from the anterior 

end, individually identified, and allowed to "bloom" for 30 minutes. Trays were moved 

to the OSU Biosystems & Agricultural Engineering Machine Vision Laboratory for 

X..:ray imaging. 

X-ray Imaging 

X-ray images of steaks were acquired at voltages of 30, 35, 40, and 45 kV at 1 mA 

current and 460 ms integration time. All four images of a steak were acquired without 

altering the position of the steak sample. After imaging, the steaks were vacuum

packaged, aged for 14 days, and then frozen (-2.0° C) for later shear-force tenderness 

measurements. 
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Slice Shear-Force Measurement 

Traditionally, Warner-Bratzler shear force values have been used as the 

tenderness reference. This procedure involves coring steaks parallel to muscle fibers to 

collect cylindrical samples for shearing. Coring angle and location of core samples were 

not standardized, leading to limited repeatability. Precision of reference values is critical 

in developing reliable models. A new tenderness reference method known as "slice 

shear" has been developed by the U.S. Meat Animal Research Center (Shackelford et al., 

1999). In their method, a larger sample is sliced at a fixed location of the ribeye, at a 45° 

angle. This procedure produces better repeatability than the WBS method. The slice 

shear method was used as the tenderness reference in this study. 

Steaks for slice shear-force (SSF) assessment were thawed for 24 hours at 1 to 

2° C and cooked on a belt-fed impingement oven (Model: 1132-000-A Lincoln 

Foodservice Products, Inc.). Preliminary test cooking was done to determine appropriate 

cooking times to reach a 71 °C internal temperature. Slice shear force was measured after 

the cooked steaks were allowed to chill for 24 hours at 4°C. Using the procedures 

outlined by Shackelford et al. (1999), a first cut was made 1 cm from the lateral end of 

the cooked steak. The second cut was made at 5 cm from the first cut. The slice shear 

sample was removed at an angle of 45° using a knife with two parallel blades separated 

by a 1-cm space. This procedure generated a cooked meat sample measuring 5 cm in 

length by 1 cm in thickness and 2.5 cm in width. This sample location was selected so 

that limited connective tissue would be located within the slice shear sample. Slice shear 

force was measured using a flat, blunt-end blade (slice shear attachment) attached to an . 

Instron Universal Testing Machine (Instron Corp, Canton, MA). Force required to shear 
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the muscle fibers of the slice was recorded as the reference slice shear force. Higher SSF 

values indicated "tougher" beef. Typically, a steak is classified as "tough," if the SSF 

value is greater than 25 kg. 

X-ray Data Analysis 

By rearranging Equation 9.1, the attenuation coefficient of a sample at a given 

voltage can be calculated as: 

(9.2) 

For each image, the attenuation coefficient was calculated pixel-by-pixel. The 

transmitted image, I, was obtained by placing the beef steak between the X-ray source 

and camera. The incident X-ray intensity or blank image, Io, was obtained by acquiring 

an image without an object between the source and the camera. Both I and Io must be 

acquired at same voltage, current, and integration time. Integration time was set at 460 

ms for all images in this study. When a sample was placed between the source and 

camera, high voltage and current (for instance, 45 kV and 1 mA) were required in order 

to acquire a quality image. Unfortunately, high voltage and current saturated the 

photodiode array when there was no material between the source and camera. Under 

conditions in which the photodiode array did not saturate for blank images (for instance, 

20 kV and 1 mA), the transmitted image was too dark. At low voltages, the X-rays were 

completely attenuated by the sample. 

The system was calibrated, and a regression model was developed to estimate Io 

on the basis of input voltage and current: 

I0 =A+ B(current) + C(voltage*current) (9.3) 
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A, B, and Care regression coefficients. These coefficients were calculated separately for 

every pixel. Details of calibration are given in Appendix A. Equation 9.2 requires entry 

of the thickness of the beef steak sample at every pixel. It is almost impossible to 

measure the thickness of steak accurately, because of pliable muscle surface and small 

pixel size. Accuracy of thickness measurement is critical for calculation of attenuation 

coefficient. In this study, we calculated an R-value (another material property related to 

X-ray attenuation), that does not require thickness measurements. 

R-value is defined as the ratio of the attenuation coefficient at low-energy level to 

the attenuation coefficient at high-energy level (Buzzell and Pintauro, 2004). As the 

energy of X-rays increases, the attenuation coefficient decreases. However, the rate at 

which the attenuation coefficient decreases with energy varies from material to material. 

This material property has been successfully used in dual-energy X-ray absorption 

techniques for determining biological body composition. The R-value of human muscle 

is linearly related to the fat content of the muscle (Buzzell and Pintauro, 2004). Mitchell 

et al. (2003) reported the R-values of pork lean and fat at 38 and 70 keV as 1.4 and 1.2, 

respectively. The R-value is calculated by: 

L m(f J 
R= ;: = (I:J 

m In -
IH 

0 

where superscripts 'L' and 'H' stand for low- and high-energy levels, respectively. 

(9.4) 

Equation 9.4 does not require the calculation of thickness. In this study, R-values 

were calculated (pixel-by-pixel) at various energy combinations (UH: 30/35, 30/40, 

30/45, 35/40, 35/45, 40/45). However, only a single tenderness reference score was 
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available for the whole steak. Therefore, the mean and standard deviation of these R

value images were calculated and used to predict beef tenderness. In total, 12 features 

were extracted for each sample. 

Results & Discussion 

An X-ray image of a beef steak is shown in Figure 9.2. Marbling features are 

evident in the image. Figure 9.3 shows an R-value image of the same steak. The R

value image looks like a random noise image void of features. 

Figure 9.2. X-ray image of a beef steak. 

Linear correlation coefficients between the features and slice shear force ranged 

from 0.02 to 0.09. None of the correlations was significantly different from zero (a= 
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0.05). These results indicate that X-ray attenuation properties of beef are not related to 

tenderness. 

Figure 9.3. A-value image of a beef steak. 

In order to detect any weak relationship between attenuation properties and SSF, 10 

extreme tender samples (SSF <= 11.83 kg) and 10 extreme tough samples (SSF >= 27.61 

kg) were selected. The t-test for independent samples was conducted to detect any 

significant differences in any of the features between the two extreme categories (a= 

0.05). There were no significant differences between two categories for any of the 12 

features. This result indicates that there was not even a weak relationship between 

attenuation properties of beef and tenderness. 

The X-ray mass attenuation coefficient is affected by molecular composition, but 

not by chemical structure (Desrosier, 1960). In fact, the mass attenuation coefficient of a 

203 



compound can be determined by knowing the atomic weight and weight fraction of all 

constituents (Berger et al., 1999; Hubbell and Seltzer, 1996). For example, polyethylene 

has a molecular composition of [ C2H4 1n. By adjusting the processing conditions, low

density polyethylene (LDPE) or high-density polyethylene (HDPE) can be selectively 

manufactured. LDPE and HDPE have the same molecular composition, but different 

polymer branching. D~nsities are very different. Mass attenuation coefficients are 

identical. 

The molecular composition of beef does not change during the aging process. 

That is, the amounts of carbon, oxygen, hydrogen, and other elements present in the beef 

muscle immediately after slaughter are the same after aging. Thus, R-value images 

obtained immediately after slaughter and after aging should be similar. However, 

enzymatic activity during aging is known to produce chemical changes that help 

tenderize the beef. Thus, X-ray attenuation properties cannot be used to predict beef 

tenderness. 

Conclusions 

A digital soft X-ray imaging system was developed and calibrated. X-ray images of beef 

steaks were acquired at various energy levels. R-value (ratio of attenuation coefficient at 

low energy level to that at high energy) images were calculated. Mean and standard 

deviation of R-value images, obtained at various energy level combinations, were used to 

predict slice shear-force tenderness values. No suitable model could be developed to 

predict tenderness. X-ray attenuation properties of beef cannot be used to predict 

tenderness, because those properties are not affected by chemical changes. This study 
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does not support the hypothesis that X-ray attenuation properties are related to 

tenderness. 
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CHAPTERX 

CONCLUSIONS 

Summary 

The U.S. beef industry relies primarily on the USDA quality grading system to 

classify carcasses on the basis of expected meat palatability. Because grades are assigned 

by human inspection, this system is subjective. In order to achieve consistent and 

accurate evaluation, an instrumented, objective grading system is desired. 

Responding to industry needs, a computer vision system was developed to acquire 

and process images of fresh beef. Segmentation of the longissimus dorsi (l.d.) muscle is 

the first step in computer vision quality grading, because USDA inspectors assign quality 

grades by visual appraisal of the l.d. muscle. The l.d. muscle must be separated from the 

intermuscular fat and extraneous tissue. Small errors in segmentation can lead to 

incorrect interpretation of intermuscular fat as marbling and result in considerable error in 

determining marbling score and quality grade. In processing beef images, simple 

thresholding is typically used to separate fat and lean. In this study, a fuzzy c-means 

clustering (FCM) algorithm was used to classify image pixels into fat or lean. FCM is 

more robust and less affected by variations in illumination level and overall color of the 

meat. 

After separating the fat, the most direct procedure for removing extraneous tissue 

is by morphological operations. The size and shape of the morphological mask and 
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number of iterations are critical factors for optimal results. In this study, the number of 

iterations was automatically adjusted from feedback based on the shape of the ribeye, 

while the size of the mask was fixed. Using convex hull fitting procedures, the number 

of iterations was automatically optimized for each sample to achieve the most compact 

l.d. muscle. Implementing morphological operations on down-sampled images and 

extending the final segmentation results to original resolution lowered classification 

accuracy minimally (0.04% ), but reduced computation time by 40%. Classification error 

and average error pixel distance of segmentation were 1.97% and 4.4 pixels, respectively. 

In comparison, classification error and average error pixel distance by expert manual 

segmentation (indicating imprecision or repeatability error) were 1.19% and 2.3 pixels, 

respectively. Classification errors were similar to the imprecision of the expert reference, 

indicating strong performance of our adaptive segmentation algorithm. 

After segmenting the longissimus dorsi (l.d.) muscle, marbling and color features 

were extracted to build regression models for predicting marbling and color scores. 

Quality grade was predicted using an additional regression model incorporating both 

marbling and color features. The R2 values of prediction for color score, marbling score, 

and quality grade were 0.86, 0.64, and 0.76, respectively. 

One of the major challenges in developing instrumentation for beef quality 

grading is that the reference, manual grading, is not precise. For example, two manual 

graders may not assign the same quality grade and marbling score to the same carcass. 

During model development, the computer vision system is referenced to the grades 

assigned by manual graders. The model is compromised by the imprecision of the 
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reference. Thus, one can not expect the error of the computer vision to be less than the 

imprecision of the reference. 

In order to justify replacement of the current manual grading system by the 

computer vision system, it is the responsibility of the developer to prove that the 

instrument predictions are indeed statistically equivalent to the scores assigned by the 

manual graders. Note that "significantly not different" is not the same as "significantly 

equivalent." This situation is similar to the bioequivalence problem commonly 

encountered by the pharmaceutical industry. In this study, equivalence was declared 

when the computer vision error was less than or equal to the imprecision of the reference. 

Based on this analysis, grades predicted by the computer vision system were significantly 

equivalent to the grades assigned by expert graders at a= 0.05. 

The USDA quality grading system is used as a tool to classify carcasses into 

groups on the basis of expected meat palatability. Thus, it is an indirect measure of meat 

palatability. Tenderness is a major palatability factor. USDA quality grading relies 

heavily on abundance and distribution of marbling in assigning quality grades. Various 

studies, however, report that marbling shows only a week relationship with palatability 

traits. Tough carcasses are found at all levels of marbling. Thus, the current quality 

grading system does not satisfactorily sort carcasses on the basis of tenderness. 

Consequently, the beef industry has been looking for a nondestructive carcass evaluation 

technique to predict aged, cooked-beef tenderness for online. 

Developing an instrument to predict beef tenderness continues to be a challenge 

because of broad variability involved in aging and cooking. To enhance tenderness, it is 

standard industry practice to age beef for at least 14 days. In general, aging improves 
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tenderness. However, the amount of tenderization varies considerably from carcass-to

carcass. The beef industry targets an instrument that collects readings on a carcass at 2-3 

days postmortem and predicts 14-day aged tenderness. The instrument should be able to 

account for the range of the changes encountered during the aging process. Tenderness is 

also a property of the cooked product. The way in which the beef is cooked also affects 

tenderness palatability. Even though shear-force tenderness scores are collected from 

samples cooked under controlled conditions, the cooking equipment used is still not 

uniform. Predicting a property of cooked meat from fresh meat poses a major challenge. 

As ribeye images were acquired for predicting USDA quality grade, the natural 

procedural progression was to extract textural features from those images to predict beef 

tenderness. A close-up image (resolution: 480 x 640; size: 32 x 43 mm) of a central 

ribeye area provided more textural information than a full-scale image of a ribeye 

(resolution: 480 x 640; size: 134 x 179 mm). In addition, the l.d. muscle segmentation 

operation was eliminated in the close-up image, saving significant computation time. 

Images were transformed to CIE LAB color space. Second-order statistical textural 

features were extracted in the spatial domain using gray-level distance histograms. The 

R2 value of the regression model for prediction of Wamer-Bratzler shear-force was 0.72. 

Classification into two tenderness categories was achieved with 92% accuracy. 

Encouraged by the above results, further studies were conducted to improve 

performance by extracting textural features in joint spatial-frequency domains. A Gabor 

filter was used to extract textural energy distribution in four scales (coarser to finer 

texture) and six orientations ( directionality of texture). A canonical discriminant model 

classified carcasses into three tenderness categories, with 80% accuracy. When the 
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model classified two tenderness categories, accuracy improved to 92%. Thus, 

performance of the Gabor filter was similar to that of the gray-level distance histograms. 

A four-scale and six-orientation Gabor filter decomposes an image into 24 images 

with distinct frequency bands and orientations. As a result, memory requirements are 

high. Wavelets also decompose an image into several subimages of distinct frequency 

band and of three orientations. Down-sampling is performed at each level of wavelet 

decomposition to remove redundant information. Unlike the Gabor filter, memory 

requirements do not increase for wavelet analysis. In our study, wavelet textural features 

predicted shear-force values with a low correlation coefficient of 0.53. A tenderness 

certification method was used to evaluate the ability of the system to sort carcasses. At 

all tenderness certification levels, significant differences were observed between the 

mean observed shear-force values of two certified groups. This result indicated that the 

wavelet textural features were able to successfully sort the carcasses on the basis of 

tenderness. The performance of wavelet textural features cannot be directly compared to 

that of Gabor and statistical textural features, because performance evaluation methods 

were different. In summary, the Gabor filter and wavelets did not provide a significant 

advantage over gray-level distance histograms. 

Computer vision in the visible region of the spectrum simulates human vision. 

Tender beef has fine muscle fibers, whereas tough beef has visibly coarser muscle fibers. 

Fresh beef images in the visible region do not contain explicit chemical/biochemical 

information. Light reflected from the beef sample in the near-infrared (NIR) region of 

the spectrum does contain information about chemical properties. Because tenderness is 

thought to be related to meat chemical properties affected by aging, NIR offers higher 
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potential for information related to aging, in addition to the current state of tenderness. 

Thus, NIR spectroscopy was evaluated for predicting beef tenderness. 

In this dissertation, NIR was more rigorously tested than computer vision. For 

computer vision evaluation, steaks were imaged in the laboratory (offline). Evaluation 

of the NIR system was conducted in packing plants. Spectral scans of the ribeye on 

hanging carcasses were acquired online. Further, performance of the NIR system was 

validated by an outside party. For validation, carcasses (n=200) were scanned online in 

the packing plant and the model developed was used to predict tenderness scores. After 

scanning, a steak was cut from each carcass, aged for 14 days, and frozen. Frozen steaks, 

along with predicted tenderness categories, were forwarded to the U.S. Meat Animal 

Research Center (MARC) in Clay Center, Nebraska for validation. MARC cooked the 

samples and collected slice-shear force measurements in their laboratory. MARC 

cooking equipment and cooking time varied from procedures used at Oklahoma State 

University for model development. Because of these differences, validation results were 

slightly below our calibration results. Nevertheless, significant differences between the 

slice-shear force values of "certified tender" and "not certified tender" were observed at 

or below 70% tenderness certification levels. The system successfully sorted "tough" 

from "tender" carcasses at or below 70% tenderness certification levels. Practical 

implications for the beef industry are that, if 30% of carcasses sorted "tough" by this 

system are removed, the remaining 70% can be sold as "guaranteed tender" to premium 

markets such as restaurants. 

For an earlier food quality inspection project, a soft X-ray digital imaging system 

was developed at OSU Biosystems and Agricultural Engineering. In this dissertation, a 
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feasibility study was conducted to determine whether X-ray attenuation properties of beef 

could be used to predict tenderness. The system was calibrated and a regression model 

was developed to predict incident X-ray intensity, based on input voltage and current. R

values (ratio of attenuation coefficient at low-energy to that at high-energy) were 

calculated at several energy combinations. No correlation was found between X-ray 

attenuation and tenderness. No suitable model could be developed to predict beef 

tenderness. This study does not support the hypothesis that attenuation properties are 

related to tenderness. 

Suggestions for Future Research 

This dissertation evaluated three nondestructive technologies and concluded that 

two, computer vision and NIR spectroscopy, showed promise for predicting aged, 

cooked-beef tenderness. The NIR system used in this study collected spectral scans from 

a 1-cm diameter area on the ribeye surface. A foreoptic can be fitted to the end of 

fiberoptic probe to widen the field-of-view. Implementation would allow collecting 

spectral scans from a larger area on ribeye surface. Fresh beef reflects less than 40% of 

incident light in the visible-NIR region. In this study, a white reference plate was used to 

optimize integration time. Instead of the white reference, a 50% gray plate could be used 

to optimize integration time. This change would double the integration time, improving 

signal strength to increase information gathered. 

In this study, orthogonal wavelet transform was used, which produces 

rotationally-variant features. Rotation of the image would change these wavelet features. 

To reduce this effect, details at three orientations were added. This procedure did not 

completely eliminate the effect of rotation on features. There are non-orthogonal 
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(redundant) wavelet transforms such as steerable wavelet pyramids that produce 

rotationally-invariant and translationally-invariant features. Non-orthogonal wavelet 

transforms should be evaluated for textural analysis of beef images. Our computer vision 

system was developed to predict beef tenderness offline. The system should be modified 

for online, packing-plant implementation. For online operation, the camera should be 

fitted to a frame with a shrouded lighting system. Calibration procedures for illumination 

and color would need to be developed and implemented. Performance evaluation in a 

packing plant environment would be required. 

Performance of both NIR and computer vision systems can be improved by 

incorporating supplemental factors such as sex, age, and breed of the animal, carcass 

weight, geographical region of origin, type of feed, etc. This additional information will 

be more easily accessible in future because of more rigorous animal tracking spurred by 

the recent threat of mad cow disease. 

NIR can probe chemical characteristics of a food material on the basis of 

intramolecular vibrational frequencies, but define the internal structure. X-rays can 

provide information on internal structure of materials, but cannot provide details on 

chemical characteristics. Magnetic resonance can provide details on both chemical 

characteristics and the internal structure of materials. Magnetic resonance imaging 

(MRI) has been successful for investigating composition analysis and water holding 

capacity of meat. Only two studies have shown that MRI images can senses tenderness

related connective tissue. No work has been done using MRI to predict beef tenderness. 

This topic would be of interest for future investigation. 
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We found that both image texture and spectral reflectance were useful in 

predicting tenderness. The next logical step is to evaluate hyperspectral imaging, which 

is an extension of both computer vision and NIR spectroscopy. A typical RGB (red

green-blue) camera captures image in three broadband spectral regions. A spectrometer 

captures spectral content of a small window, without spatial resolution. In contrast, a 

hyperspectral camera collects spectral contents of every pixel of an image, with high 

spectral resolution. This technology produces a 3-D data cube (x, y, 11.). Thus, the 

hyperspectral camera can be considered as an extension of an RGB camera with higher 

resolution on the spectral axis (11.). 

One way to capture hyperspectral data is by use of a non-scanning, computed 

tomography imaging spectrometer (CTIS). The Optics Science Center, University of 

Arizona is leading research in the CTIS area. They designed a special grating to project 

the data cube on a focal-plane 2-D array of detectors in selected directions. The 3-D data 

cube was then reconstructed from those 2-D image projections using computed 

tomography techniques. One advantage is that this method is non-scanning, and thus the 

capture of hyperspectral data is rapid. The disadvantage is that a trade-off exists between 

spectral and spatial resolution. CTIS is still in the research stage and may be useful in 

future for collecting hyperspectral data. 

The most common method of collecting hyperspectral imaging data is by using 

liquid crystal tunable imaging filters. These filters are commercially available and can be 

fitted to the lens of a broad-spectrum camera. These filters pass a specific spectral band 

of reflected light for imaging. By tuning these filters, the band-pass region can be shifted 

throughout the designed spectral range. Switching speed between bands is currently 
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about 150 ms. If the integration time is set at 150 ms, roughly three spectral bands can be 

acquired per second. Thus, this method is slower than CTIS. Unlike CTIS, spatial 

resolution depends only on the camera and is not compromised by spectral resolution. In 

application, textural features could be extracted from each spectral band. Drawing from 

preliminary studies, the most productive bands would be selected. Only the selected 

band-pass filters would be installed, considerably reducing acquisition time. 

The effectiveness of computer vision and NIR systems in predicting tenderness of 

other middle and end muscle cuts such as triceps brachii, rectus femoris, gluteus medius, 

semimembranosus, and semitendinosus, should be evaluated. An experiment can be 

designed to determine the relationship between the shear-force values of l.d. muscle and 

the shear-force values of other muscle cuts. If a strong relationship exists, the instrument 

can collect readings from l.d. muscle and use them to predict tenderness ratings of other 

muscles from the same carcass. 

In this dissertation, shear-force values were used as the tenderness reference. 

Trai!led sensory panels can be used to assign scores for tenderness, juiciness, flavor, and 

overall palatability. Collecting sensory panel.scores is more time-consuming and labor

intensive than measuring shear-force values. However, sensory scores are more 

representative of consumer perception of beef palatability. Shear-force values and 

sensory scores should be combined as the palatability reference for future work. 

The computer vision and NIR system can be used to classify the carcasses into 

three tenderness categories. A study can be conducted to determine consumer perception 

of these categories. Two steaks from each category (n = 6) can be delivered to each 

household. Steaks can be color-coded by category so that the consumer does not know 
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the tenderness class. After eating the steaks, consumers would be asked to complete a 

survey. Based on consumer response, effectiveness of these nondestructive methods can 

be evaluated on the basis of consumer perceptions. 
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APPENDIX A 

DEVELOPMENT AND CALIBRATION OF A SOFT X-RAY DIGITAL 

IMAGING SYSTEM FOR AGRICULTURAL PRODUCTS 

Nachiket Kotwaliwale, Jeyamkondan Subbiah, 

Paul R. Weckler, Gerald H. Brusewitz, and Glenn A. Kranzler 

Abstract 

Soft X-ray imaging of agricultural products for quality determination is gaining 

worldwide interest. Recent advances in technology have made it possible to capture, 

store, and instantaneously process digital X-ray images at higher resolution for lower 

cost. An X-ray imaging system was developed and calibrated to capture images with a 

resolution of 1024 x 1024 pixels over a 50 mm x 50 mm area. Maximum X-ray tube 

voltage was 50 kVp, maximum current 1 mA, and signal integration time tanged from 

460 to 6700 ms. The system consists of an X-ray source tube, a camera composed of a 

CMOS photodiode array, a frame grabber, and a data acquisition and control card. 

Because the X-ray beam is polychromatic, and the detector responses are variable, 

calibration is necessary to relate image intensity to X-ray attenuation. Imprecision of the 

system was 0.64% of the response range (1.63 gray level for an 8-bit pixel depth). 

Response, measured as mean pixel intensity, varied linearly with X-ray tube current and 

integration time and had a quadratic relationship with peak tube voltage. A regression 
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model was developed to estimate blank image intensity at higher voltages and currents. 

Prediction and validation errors for the model were 0.46% and 1.06% · ( 1.18 and 2. 72 gray 

level), respectively. Beam hardening effect was demonstrated using a polystyrene target. 

The procedure explained in this paper can be used to calibrate a soft X-ray imaging 

system for radiometric measurements. 

Keywords. X-ray, Calibration, Digital radiograph, X-ray imaging, Beam hardening 

Introduction 

Non-destructive quality evaluation of agricultural products is a major area of 

interest for the agricultural processing industry. Availability of advanced technology has 

expanded avenues for non-destructive food quality determination. Techniques such as 

NIR imaging, MRI, and X-ray imaging have been explored to determine quality based on 

indicators not visible on the surface of the product (Chen and Sun, 1991). X-ray imaging 

is a leading contender to detect internal defects (Tollner, 2002). Successful applications 

include defect detection or quality evaluation of particle board (Steiner et al., 1978), 

pistachio nuts (Keagy et al.,1995), mangoes (Thomas, et al., 1995), apples (Schatzki et 

al., 1997), peaches (Barcelon et al., 1999), poultry (Tao and Ibarra, 2000), almonds (Kim 

and Schatzki, 2001), wheat (Karunakaran et al., 2002), and onions (Tollner, 2002). 

Historically, X-ray imaging has been conducted on photographic plates or films 

(Curry et al., 1990), and internal defects were identified manually. Earlier applications of 

digital image processing algorithms on X-ray images required scanning of X-ray films 

(Keagy and Schatzki, 1993). Recent advances in technology have led to use of line-scan 

(Kim and Schatzki, 2000) and area-scan (Haff and Slaughter, 2002) cameras for X-ray 
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imaging. Improved digital hardware has enabled real-time X-ray imaging while reducing 

equipment cost. 

Principle of X-ray Imaging 

When high voltage in the order of kilovolts to megavolts is applied between 

electrodes in a vacuum, high-speed electrons from the cathode hit the anode of an X-ray 

tube, and X-rays are generated by Bremstrahlung and characteristic radiation processes 

(Curry et al., 1990). X-ray intensity depends on the quantity and quality of the radiation. 

Quantity refers to the number of photons, and quality refers to the energy of the photons. 

X-ray beam energy is the product of the number of photons and their associated energies. 

The quantity/flux of X-rays can be increased by increasing the X-ray tube current. 

Increasing the voltage between the two electrodes increases the mean photon energy in 

generated X-rays. Tube voltage limits the maximum energy of the photons. An X-ray 

beam produced by an X-ray tube has photons of different energies because of variation in 

energies of electrons hitting the anode and due to quantum effect i.e. the fact that most 

electrons give up their energy in stages (Curry et al., 1990). This polychromatic X-ray 

beam consists of a range of energies (wavelengths) of X-ray photons produced by the X

ray tube (Fig. A. 1). The spectrum in Figure 1 was simulated with X-ray toolbox 

(Siemens, 2001). 

X-ray photons interact with orbital electrons of atoms of the material through 

which they are passing. In the soft X-ray region (<50 keV), X-rays photons are absorbed 

("photoelectric collision"), transmitted, or scattered (Desrosier, 1960). Absorption and 

transmission are the most desired form of interaction in terms of achieving a quality 

image. Scattering creates an undesirable "fog" in the image. Fortunately, scattering 
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occurs for less than 10-15% of total interactions in the 10-50 ke V range and therefore can 

be safely ignored (Curry et al., 1990). 

0 10 20 30 
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Figure A.1. A typical spectrum of X-rays produced by tungsten anode at 40 kV 
peak voltage with 125 µm Be filter (Siemens, 2001 ). 

The total energy of an X-ray beam decreases exponentially as it moves through an 

object, due to the interaction of X-rays with matter. This phenomenon is called 

attenuation (Curry et al., 1990). For monochromatic radiation, the attenuation of X-rays 

through the material is given by: 

I=Io·exp(-~·t·p) (A.I) 

Where~ is mass attenuation coefficient (cm2/g), pis material density (g/cm3) and tis 

thickness (cm) through which the X-ray passes. 

The mass attenuation coefficient is a property of the material and depends on 

atomic number and incident photon energy. If the absorbing material consists of more 

than one element, the mass attenuation coefficient of the composite material will be a 

function of mass attenuation coefficients of individual elements and their mass fraction in 
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the path of the photon beam. The difference between mass attenuation coefficient,. 

density and thickness of two or materials in a composite forms image contrast in an X-ray 

image. 

It is important to realize that this attenuation coefficient is a function of photon 

energy (Hubbell and Seltzer, 1996) and for monochromatic radiation it is constant for a 

material. For polychromatic X-rays each energy has its own coefficient value, thus the 

net attenuation coefficient of material changes with thickness of material. This 

phenomenon is known as "beam hardening" (Paiva et al., 1998). This effect causes an 

increase in the mean energy of the X-ray beam as it passes through the material. 

Solid-state X-ray area detectors have spatial non-uniformities and distortions in 

the detector response. As a result, the recorded signal is not proportional to the incident 

X-ray intensity (Barna et al., 1999). These factors cause variability in detector-to

detector response, and therefore it is necessary that a digital X-ray imaging device be 

calibrated to relate detector response to the transmitted intensity of the X-ray beam. 

An X-ray imaging system was developed to study X-ray attenuation of 

agricultural products and relate it to product quality. Calibration of the equipment is 

discussed in this paper. 

Materials and Methods 

Equipment 

The equipment consists of an X-ray tube, X-ray camera, computer, digital frame 

grabber, and data acquisition and control card (Fig. A. 2). 
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Figure A.2. Schematic of the equipment setup. 

X-ray Tube 

Radiation 
Shield 

Suitable X-ray images of agricultural products can be acquired at X-ray tube 

voltages less than 50 keV (Steiner et al. , 1978, Kim and Schatzki, 2000, Karunakaran el 

al., 2002). An X-ray tube (Model: XTF TM -5011, Oxford Instruments, X-Ray 

Technologies, Inc. , Scotts Valley, CA), capable of operating at voltages from 4 to 50 kVp 

with maximum current of 1 mA was acquired. X-rays generated at a tungsten anode pass 

through 127-µm thick beryllium window with a diverging cone angle of 25°. The X-ray 

spot at the window exit is an oval of 76 x 93 µm. 

X-ray Camera 

An X-ray camera (Model: Shad-o-Box ™ -1024, Rad-Icon, Inc., Santa Clara, CA) 

was positioned below the target sample. The camera was constructed with a two

dimensional photodiode array of 1024 by 1024 pixels on 48-µ,m center-center spacing 
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giving a detector area of 49.2 x 49.2 mm. A Gd20 2S scintillator screen, placed in direct 

contact with the photodiode array, converts incident X-ray photons to visible light, which 

in turn are detected by the photodiodes. A graphite window blocks ambient light and 

protects the sensitive electronics from radiation damage. The analog signal from the 

photodiode array is digitized to 12-bit quantization in the camera and acquired by the 

frame grabber (Model: Imagenation® PXD 1000, Imagenation Corp., Beaverton, OR). 

The camera acquires image frames with signal integration time ranging from 460 to 6700 

ms. 

A data acquisition and control card (Model: Omega® DAQ 801 OM, Omega 

Engineering, Inc., Stamford, CT) was mounted in the computer ISA-bus for X-ray tube 

control. Software controlled peak voltage and current to the X-ray tube were 

implemented. 

System Calibration and Testing 

Calibration addressed the effect on detector response (X-ray image intensity) of: 

(a) the instrument characteristics, viz., dark current (camera) and polychromatic X-rays 

(source tube); and (b) the input variables, viz., signal integration time, X-ray tube current, 

and X-ray tube voltage. Images were captured with the camera placed 153 mm from the 

X-ray source and quantized at 8-bit depth for analysis. Only the central 1000 x 1000 

pixels were used in this study because some pixels near the border were either dead or did 

not receive X-ray photons as expected. Images were analyzed using MATLAB (The 

Mathworks, Inc., Natick, MA), and all statistical analyses were conducted in SAS (SAS 

Institute, Inc., Cary, N.C.) .. 
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Dark Cu"ent 

The detector array accumulates some signal even when not exposed to X-ray 

radiation. This effect is due to dark current (leakage) in the photodetector. Thermally 

generated charge is the main source of dark current in the photodetector array (Barna et 

al., 1999). Images generated by the photodetector consist of the signal due to dark 

current in addition to the signal generated by incident X-ray energy. Therefore, the dark 

current image ( or offset image) must be deducted from all the images to obtain the net 

signal due to X-rays. To eliminate the effect of ambient temperature on signal or detector 

response, an offset image was acquired just before acquisition of each image used in the 

calibration study. 

Flat-Field Co"ection 

Non-uniformities in pixel response, phosphor scintillator, optical coupling, and 

transmission cause variation in response across the face of the detector (Gruner et al., 

2002). Flat-field correction, also known as gain correction, is commonly employed to 

overcome these abnormalities and is multiplicative in nature (Barna, et al., 1999).· The 

primary research interest was in calculating the attenuation coefficient, which is 

calculated fr~m the ratio of two intensities, I and 10 (Eqn. A.l). This multiplicative 

correction cancels out during division, and therefore flat-field correction was not 

employed on images used in this study. 

Effect of Equipment Variables 

To determine the effect of X-ray tube current on image detector response, images 

were acquired at currents from 0.1 to 1 mA in steps of 0.1 mA for voltages from 12.5 to 

22.5 kVp in steps of 2.5 kVp, and from 25 to 50 kVp in steps of 5 kVp. Detectors 
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saturated at high voltages and currents (Ref. Section ahead - Development of Model) 

therefore, a suitable uniform material was placed over the detector array for voltages 

above 25 kVp such that the detectors did not saturate at 1 mA for that particular voltage. 

The lowest available integration time of 460 ms was used. 

To study the effect of X-ray tube voltage on image detector response, blank 

images were acquired at currents from 0.2 to 1 mA in steps of 0.1 mA for voltages from 

12.5 to 22.5 kVp in steps of 2.5 kVp. From 25 to 50 kVp in steps of 5 kVp, images were 

acquired at current levels of 0.25, 0.50, 0.75, and 1.00 mA with a suitable uniform 

material placed over detector so that the detectors did not saturate at 50 kVp for that 

particular current. Signal integration time was set to 460 ms. 

To test the effect of signal integration time, images were acquired at 460, 640, 

820, and 1000 ms for eight different combinations of voltage and current. A uniform 

material, if required, was placed over the detector, to prevent saturation at 1000 ms. 

Repeatability of System 

Imprecision is defined as lack of repeatability in the system. It consists of: (a) 

variability of the X-ray source tube in producing the desired quantity and quality of X-ray 

photons, and (b) variability in response of photodiode arrays to X-rays. An experiment 

was set-up as a factorial design with four levels of integration time (460, 640, 820, and 

1000 ms), two levels of voltage supplied to tube (30, 50, kVp), and three levels of current 

supplied to tube (0.3, 0.6, and 0.9 mA). At each condition, if required, the X-ray beam 

was filtered using a uniform material to avoid image saturation. Three replicates were 

collected. Standard deviation of gray level at each pixel for three replicates was 
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calculated. Mean of standard deviation of gray level of all one million detectors (pixels) 

was reported as the imprecision of the system at that condition. 

Development of Model 

Blank images were acquired when no material was between the detector and X

ray tube. Blank images taken at different voltages and currents represent incident X-ray 

intensity (Io) at that condition. Io is required to calculate attenuation coefficient (Eqn. 

Al). Detector response increases with increasing voltage, current, or integration time, 

but reaches a limit after which an increase in any of these factors does not increase 

detector response. Figure A.3 shows a linear response for current and curvilinear 

response for voltage at lower voltage and current levels at 460-ms integration time. A 

plateau of surface at higher voltages and currents indicates saturation of detectors (Fig. 

A.3). Detector saturation complicates calculation of attenuation coefficient. For 

instance, at 50 kVp and 1 mA we should capture a good quality image of an agricultural 

product. Such an image would represent transmitted X-ray intensity (I) at 50 kVp and 1 

mA. However, because the detector saturated at that condition, the estimate of Io is 

erroneous, and hence calculations of the attenuation coefficient would be incorrect. 

Therefore, calibration equations were developed to explain the relationship between 

voltage, current, and blank image intensity at 460 ms integration time. Detectors did not 

saturate at 1 mA and 460-ms for voltages below 25 kVp. Therefore, images were 

acquired at voltages from 25 to 50 kVp at intervals of 1 kVp, and at 10-15 different 

current levels, where detectors did not saturate. In total, 897 images were acquired to 

develop the model. The developed statistical model can be used to estimate extrapolated 

image intensity at higher voltages and currents, where detectors normally saturate. 
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Because detector-to-detector variation was quite high, (Fig. A.4), calibration equations 

were developed for each of the 1 million pixels. 
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Figure A.3. Detector saturation at higher voltages and currents at 460 ms. 

Figure A.4. Blank image (1 0) taken at 50 kVp, 0.22 mA, 460 ms demonstrating 
detector variation. 
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To validate the models, new blank images were acquired under conditions 

different from those with which the model was developed. Conditions were selected to 

avoid detector saturation. At each voltage from 25-50 kVp in steps of 1 kVp, one 

validation image was acquired. 

Target Mass Attenuation Coefficient 

Polystyrene sheets of thickness from 0.08 to 6.03 cm (22 levels) were used to 

predict mass attenuation coefficient (cm2/g). Polystyrene was selected, because its 

density and atomic number are similar to biological materials (McFarlane, et al., 2000). 

Images were obtained at 460-ms signal integration time, at 15 to 50 kVp, and at three 

currents chosen such that the histogram distribution fell within the dynamic range of 

mean image intensities between 80 and 170 gray level. Blank images captured to 

develop statistical model were used for incident energy without attenuation (lo), wherever 

possible. Otherwise, Io for the conditions were estimated from the developed model. 

Attenuation coefficient was calculated using Equation A.1. 

Results and Discussion 

Effect of X-ray Tube Current 

Figure A.5 shows the scatter plot of current versus intensity at voltages from 12.5 

kVp to 22.5 kVp. Intensity is linearly related to current with R2 values of linear fit are 

above 0.99. Note that plots are for blank images, and thus the positive effect of voltage 

on intensity can also be seen. Scatter plots of current versus intensity at voltages from 25· 
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to 50 kVp are shown in Figure A.6. However, voltage curves cannot be compared to 

each other, as different attenuation materials were used to avoid detector saturation. 
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Figure A.5. Effect of current on intensity at lower voltages for blank images. 
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Figure A.6. Effect of current on intensity at higher voltages for images with 
filtered X-ray beam. 
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For instance, 0.127 mm mild steel sheet was used at 50 kVp whereas 3.175 mm 

LDPE and 4.76 mm HOPE sheet were used at 30 kVp. The attenuation materials were 

selected such that the intensity at the highest current (1 mA) was in the range of 120-160 

gray level. Despite attenuation, at each voltage the linear effect of current on intensity is 

eminent. The linear relationship between current and image intensity is in agreement 

with the literature (Curry et al., 1990, Gambaccini et al., 1996). 

Effect of X-ray Tube Voltage 

The effect of voltage on intensity of blank images at voltages from 12.5 kVp to 

22.5 kVp is presented in Figure A.7. Voltage showed a quadratic relationship with 

intensity. Peak voltage determines the maximum energy of the X-ray photons. In 

addition, higher voltage also increases the number of X-ray photons by increasing the 

electron cloud near the anode. Therefore, X-ray intensity increases as the square of the 

kilovoltage (Curry et. al., 1990). Regression models were constructed with intensity as 

dependent variable and voltage and square of voltage as independent variables. At lower 

currents (0.1 to 0.3 mA) the square of the voltage does not have a significant effect on 

intensity. At higher current (~0.4 mA), the intensity depends on the square of the 

voltage. Adjusted R2 values greater than 0.94 were obtained at various currents. Data at 

voltages higher than 22.5 kVp is not shown in Figure 7, because images at these voltages 

were taken with the X-ray beam filtered differently to avoid detector saturation and to 

keep the signal level high enough to detect. However, when analyzed for individual 

currents, at lower current (0.25 mA), the voltage-squared term was not significant. At 

higher currents (~0.50 mA), the intensity was dependent on square of the voltage. 

Adjusted R2 values greater than 0.99 were obtained at all currents. The quadratic effect 
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of voltage on intensity holds only for the unfiltered X-ray beam (Krestel, 1990). The 

beryllium window in the X-ray tube and filters used to avoid detector saturation can be 

identified as reasons for lack of a quadratic relation at lower currents. At higher currents 

the photon flux density was sufficient to show a significant quadratic relationship. 
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Figure A.7. Effect of voltage on intensity of blank images at various currents. 

Effect of Integration Time 

The effect of integration time on the mean image intensity is shown in Figure A.8. 

R2 values of more than 0.99 were observed, indicating that the response varied linearly 

with signal integration time. Gambaccini et al., (1996) reported the cumulative effect of 

current and integration time to be linear on X-ray image intensity. Some deviations in 

linearity at high voltage levels can be attributed to detector saturation. Increasing 

integration time not only increases signal level but also increases dark current level. 

Detectors tend to saturate at longer integration times, causing a decrease in the net signal. 
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Figure A.9 shows this saturation effect for images taken at 15 kVp and 1 mA at different 

integration times. 
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Figure A.8. Effect of integration time on the mean image intensity for eight 
different combinations of voltage and current. 
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Figure A.9. Saturation in dark current and signal due to increase in integration 
time. 
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Integration times above 1500 ms result in loss of information and at 5000 ms both dark 

current and signal become saturated and hence the net signal drops to zero. The 

integration time limit for detector saturation would be different for different voltages. 

Imprecision 

System imprecision indicated by the mean standard deviation, ranged from 0.16% 

to 1.38% (0.41 to 3.52 gray level) with a mean of 0.64% (1.63 gray level). All 

combinations of two-way interaction of three factors were not significant at 95% level of 

significance. All factors, voltage (p=0.15), current (p=0.22), and integration time 

(p=0.23) did not have significant effect on the imprecision of the system. This result 

implies that the imprecision of the system is stable with respect to all input variables. 

The mean imprecision of 1.63 gray level is relatively insignificant compared to dynamic 

range (0-255 gray level). 

Statistical Model 

Statistical regression models were developed using data from blank images where 

detectors did not saturate. These models can be used to predict incident intensity at 

conditions in which detector saturation occurs. Because intensity is directly proportional 

to current (Fig. A.5 and A.6) and proportional to the square of the voltage (Fig. A.7), the 

following model was first evaluated. 

I0=A+B·i+C·v2 (A.6) 

Where: Io is pixel intensity, A, B, and Care regression coefficients, i is current and vis 

tube voltage. When this model was applied, the adjusted R2 value was only 0.68. 
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Because the intensity was linearly related to current, separate regression models 

were developed for each voltage level from 25-50 kVp in steps of 1 kVp. The statistical 

model evaluated was: 

lo(v) = Av + Bv · i (A.7) 

The R2 values were greater than 0.99 for all models. The slope (Bv) in Equation 

A.7 was linearly related to voltage (Fig. A.10), as given by: 

Bv = C+D · V (A.8) 

By combining Equations A.7 and A.8, a single model was obtained to estimate 

pixel intensity (lo) for all voltages (kVp) and currents (mA). 

lo=A+C·i+D·i·v (A.9) 

Coefficients A, C, and D were calculated for each of the one million pixels from 

897 images captured for model development. 
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Figure A.10. Relationship between voltage and slope of the linear current model. 

Evaluation of Statistical Models 

The developed model (Eqn. A.9) was used to predict intensity of blank images at 

conditions under which the model was developed. Mean absolute deviation of the 
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predicted intensity from observed intensity values was 1.18 gray level (0.46% deviation). 

The predicted intensity versus observed intensity for different voltages and currents is 

shown in Figure A.11. Adjusted R2 value was higher than 0.99 for a linear fit. The plot 

shows a slight sigmoid shape indicated that higher-order terms of (kVp*mA), mA, kVp 

could improve the degree of fit. Including higher-order coefficients did not improve the 

R2 value nor the distribution residuals. The validation error was 1.06% (2. 72 gray level). 

Errors are of the order of system imprecision ( 1.63 gray level), indicating the models are 

adequate for practical purposes. 
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Figure A.11. Evaluation of model {Eqn. A.9) for calibration images. 

Target Attenuation Coefficient 

The measured mass attenuation coefficient of the polystyrene decreased with the 

thickness of polystyrene (Fig. A.12). This is due to "beam hardening" of polychromatic 

X-rays produced by the source tube. At a given thickness, mass attenuation coefficients 

were less for higher voltages (Fig. A.12) as also reported by Curry et al. (1990) and 
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Hubbell and Seltzer (1996). A sharp drop in attenuation coefficient values is evident at 

lower thickness. However, the drop decreased with thicker material. The attenuation 

coefficient values will drop until the polychromatic X-ray beam becomes effectively 

monochromatic, i.e. the mean energy of the beam reaches the applied peak voltage . 

.... 
C 
Cl) 

·c:; 

i 
0 

1.8 

1.6 

1.4 
C N- 1.2 
.2 E 
'ta ~ 1.0 
::, -i 0.8 
a! 0.6 

0.4 
0.2 -·-•n•-•''"'''"•••••••••-•-•••••---·-·•---··---··----·---·-··•-·-··-·-•-••·----·•-"''-""''""''"•-·•-•••·-·---··•••·---·-••••••-•-•••••-•-•-••·------•-••-•••-•-••-·•-·•-

0.0 -+--~~~..--~~---.-~~~-.,-~~~-.--~~~..--~~---.~---' 

0 1 2 3 4 5 6 

Thickness (cm) 

...,....- 25 kVp _._ 30 kVp --- 35 kVp ~ 40 kVp -+- 45 kVp --1r- 50 kVp 

Figure A.12. Attenuation coefficient of polystyrene at different X-ray energies 

Conclusions 

Development of soft X-ray imaging system for agricultural products and 

calibration of that system was presented in this study. Repeatability of the system was 

established. Effect of X-ray imaging variables (X-ray tube voltage, current, integration 

time), inconsistencies in X-ray source and detectors and product thickness on the image 

pixel intensities was discussed in detail. An attempt was also made to deal with detector 
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saturation at higher voltages and currents. The following conclusions can be drawn from 

this study: 

• X-ray tube current is linearly related to detector response, while X-ray voltage 

has a quadratic relationship. 

• The signal integration time has a linear effect on detector response; however 

high integration times can saturate the detector. 

• System imprecision ranged from 0.16% to 1.38% (0.41 to 3.52 gray level) 

with a mean of 0.64% (1.63 gray level). 

• Statistical models developed to estimate incident intensity (Io) at higher 

voltages and currents (at which sensors saturate) were successful with R2 > 

0.99, prediction error= 1.18 gray level, and validation error= 2.72 gray level. 

Error was of the order of system imprecision (1.62 gray level). 

• Attenuation coefficient of polystyrene was determined, which varied with 

material thickness due to beam hardening effect. 
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