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CHAPTER 1: INTRODUCTION

Approximately 1.4 million cases of human salmonellosis occur in the United

States each year. The most common causes of this disease are Salmonella enterica

serovars Typhimurium and Enteritidis. In humans, the primary source of infection is

contaminated animal food products. While this disease is primarily self-limiting, there

are many instances in which antibiotics are used for treatment; the current drug of choice

is ciprofloxacin (CDC, 2005). Recent outbreaks of multi-drug resistant Salmonella

infections in humans has led to an increasing concern about the use of antimicrobial

agents in food animals (Hsueh et al, 2004; Zansky et al, 2002).

The use of antimicrobial agents in food animals for growth promotion and

therapeutic purposes is believed to lead to emergence of resistant bacteria (Fox, 2001;

Furuya et al, 2006; Mlot, 2001). Of particular concern is the use of antimicrobial agents

in food animals leading to resistant bacterial infections in humans, especially those

caused by Escherichia coli, Campylobacter spp. and Salmonella spp. (Angulo et al, 2004;

Molbak, 2005). Consequently, use of antibiotics in food animals has been greatly

restricted, particularly the use of fluoroquinolones, such as ciprofloxacin. Indeed, current

strategies employed to reduce the emergence of resistance include a prohibition against

using the same antibacterial agent in both food animals and human patients. Thus,

resistance that develops against a particular antibacterial agent administered to a food

animal is believed to be unlikely to limit therapy of a human patient using another

antibacterial agent. For example, as ciprofloxacin is the treatment of choice for food-

borne salmonellosis in humans, it is not available for use in food animal medicine.
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However, the assumption that resistance to one specific agent does not affect

development of resistance to another drug may not be true. Recent discovery of a

multiple antibiotic resistance (mar) locus chromosomally located in Salmonella species

has complicated the issue. The mar locus responds to exposure to many classes of

antimicrobial agents and disinfectants by increasing efflux protein expression and

decreasing porin expression, leading to multi-drug resistance (Randall et al, 1997 and

2002; Sulavik et al, 1997). The increase in efflux protein expression has been found to

increase resistance to fluoroquinolones (Chu et al, 2005; Goldman et al, 1996). This

means that exposure to many different types of antimicrobials other than

fluoroquinolones can lead to fluoroquinolone-resistant salmonellosis in humans. In fact,

chloramphenicol and tetracycline have been found to induce the mar system in E. coli

and increase resistance to nalidixic acid in vitro (Cohen et al, 1989). Nalidixic acid is a

quinolone antibacterial agent closely related to the fluoroquinolones.

Discovery of the mar system in Salmonella may necessitate a change in the use of

antimicrobial agents in food animals. Tetracyclines, for example, are commonly used in

cattle, for both prophylactic and metaphylactic purposes. The assumption that use of

tetracyclines in cattle will not promote emergence of fluoroquinolone resistance in human

consumers may be incorrect. If exposure to oxytetracycline induces the expression of

multi-drug resistance mechanisms, such as the mar system, the bacteria expressing these

systems will survive exposure to moderate concentrations of oxytetracycline and are

more likely to represent a higher proportion of the bacterial population contaminating

beef products. These bacteria can then be transferred to human consumers, where they

will be resistant to not only tetracyclines but also to other antibacterial agents, including
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ciprofloxacin. Clearly, there is much research that needs to be conducted to more fully

understand the impact of the mar system in vivo, including the possibility that the use of

drugs like tetracyclines in beef cattle can lead to ciprofloxacin-resistant Salmonella

infections in humans.
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CHAPTER 2: LITERATURE REVIEW

Multiple Drug Resistance (MDR)

Definition of multiple drug resistance (MDR)

Bacteria have many ways of resisting the effects of antibiotics or other types of

chemicals commonly used to kill them. In the last ten years, research on bacterial

resistance has found that many bacteria, both Gram-positive and Gram-negative, employ

specific resistance mechanisms that work against many different classes of antibacterials

by decreasing the concentration of drug within the cell (De et al, 2001; Hooper, 2002;

Poole, 2001; Regelink et al, 1999). These mechanisms, termed multi-drug resistance

mechanisms, provide bacteria with resistance to not just one class of antimicrobials, but

to a wide range of different chemical classes. Emergence of these multi-drug resistance

mechanisms has necessitated the development of new agents with novel mechanisms of

action, which is becoming increasingly difficult to accomplish (Neu, 1992).

Overview of types of mechanisms of MDR

There are three main ways that bacteria become resistant to antibiotics: changes in

the target site; destruction of the drug by enzymes; or decreasing/limiting drug

concentration within the cell. Decreasing/limiting drug concentration within the cell is

the main focus of this review and usually results from drug efflux mechanisms and porin

down-regulation (Poole, 2002).
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Target Alteration:

Many drugs used against bacteria require a specific binding site on or within the

bacterium to cause death or inhibition of growth of the organism. A common mechanism

of resistance involves a mutational changing of a particular binding site resulting in

decreased or no binding affinity. This is seen commonly with rifampin, macrolides, and

beta-lactam antibiotics (Neu, 1992; Poole, 2002).

Alteration by Enzymes:

The main mechanism of resistance to beta-lactam antibiotics is the production of

beta-lactamase, an enzyme that cleaves the antibiotic rendering it inactive; this may be

either outside the bacterium or within the periplasmic space. Resistance to

aminoglycoside antibiotics is similar, but uses drug modification instead of enzymatic

cleavage. An aminoglycoside must be transported across the inner cytoplasmic

membrane of the gram-negative cell wall to reach the target site on the ribosome. The

bacterium secretes enzymes that conjugate the aminoglycoside outside the cell, thus

preventing the drug from being able to enter the cell (Neu, 1992).

Decreased Intracellular Drug Concentration Related to Efflux Pumps and Porin

Expression:

Efflux proteins conferring resistance to multiple classes of drugs were originally

identified in the mid 1980s as the P-glycoproteins, which are still studied today in drug -

resistant tumors. Since then, many homologs of the P-glycoprotein system have been

found in both Gram-positive and Gram-negative bacteria. Although most of these efflux
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systems use either the proton motive force or ATP to expel antibacterial agents, it is still

not clear that this is their intended function (Poole, 2001). Often, bacteria use the export

pumps for purposes related more to the environment in which they normally live than to

antibacterials. For example, it is thought that the efflux systems are often found in enteric

bacteria such as Salmonella and E. coli because they are used to help pump out toxic

compounds, such as bile acids, in that environment (Prouty et al, 2004). However, many

studies have found that exposure to antimicrobials effects the gene expression of these

efflux systems (Alonso et al, 2000; Kehrenberg et al, 2001; Lewis 2002).

Efflux systems are most commonly associated with tetracycline resistance, but

recently have been found to provide resistance to many other antimicrobials (Kehrenberg

et al, 2001; Poole, 2002) such as fluoroquinolones, aminoglycosides, macrolides, and

beta-lactams, as well as antiseptics and disinfectants (Alonso et al, 2000; Putman et al,

2000). Hydrophobic agents that easily pass across the outer and inner membranes of

Gram-negative bacteria are collected in the inner side of the cytoplasmic membrane and

pumped out through an outer membrane channel. (See Figure 1)

Currently, there are four known classes of efflux pumps: the major facilitator

superfamily, the small multidrug resistance family, the resistance-nodulation-cell division

family, and the multidrug and toxic compound extrusion family (Putman et al, 2000).

The major facilitator superfamily (MFS) can be divided into two groups based on

the number of transmembrane segments (TMS). The 12-TMS group has been identified

in Staphylococcus aureus, Bacillus subtilis, Lactococcus lactis, Escherichia coli,

Cornyebacterium glutamicum, many species of Mycobacterium, and may be involved in

the fluoroquinolone resistance of Streptococcus pneumoniae. Although these 12-TMS
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sequences are not identical in different bacteria, homology is shared between them. The

other group of MFS is the 14-TMS group which has been shown to increase resistance to

compounds that include, but are not limited to, quaternary ammonium compounds,

diamines, intercalating dyes and possibly chlorhexidines, proving that multidrug

resistance is not limited to systemic antibiotics, but also affects disinfectants and

antiseptics. This set of transporters has been seen in S. aureus, E. coli, B. subtilis,

Mycobacterium species and Vibrio cholerae. Again, these are not all exactly the same

proteins, but they do show homology (Putman et al, 2000).

The small multidrug resistance family (SMR) of proteins are only 107 amino

acids in length and appear to be formed in a tightly packed four-helix antiparallel bundle.

Thesmr genes are located on an integron, and therefore are widely distributed, especially

among gram-negative isolates. Staphylococcus aureus was the first bacterial species

found to have this gene. Escherichia coli, Klebsiella aerogenes, B. subtilis and several

species of Mycobacterium also appear to have smr genes (Putman et al, 2000).

The resistance-nodulation-cell division family (RND) has been associated with

many species of Gram-negative bacteria. RND transporters interact with a membrane

fusion protein and an outer membrane protein to allow drug transport across both the

inner and outer cell membranes of Gram-negative bacteria. These RND pumps have

been identified in Pseudomonas aeruginosa, E. coli, Neisseria gonorrheoeae,

Haemophilus influenzae, Burkholderia pseudomallei, and Stenotrophomonas maltophilia.

All of these pathogens have presented challenges in the therapy of human and animal

health problems due to high incidences of resistance (Alonso et al, 2000; Putman et al,

2000).
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The final family is the multidrug and toxic compound extrusion family (MATE).

Thus far, this protein has been found only in Vibrio parahaemolyticus and E. coli, but has

been shown to mediate resistance to dyes, fluoroquinolones, and aminoglycosides.

Gram-negative bacteria in general are more resistant to antimicrobials than the

Gram-positive bacteria. This is mainly attributed to the Gram-negative complex outer

membrane barrier, which is only selectively permeable. This membrane limits the access

of chemicals to the inside of the cell, the main site of action for most commonly used

antimicrobials (Ames, 1998). Gram-negative bacteria use water-filled (aqueous)

channels, termed porins, in the outer membrane for acquisition of small nutrients, amino

acids, some polar molecules and ions (De et al, 2001).

Porins were originally thought to exclude most drugs because of size restriction:

however, more recent research has found that porins may be important in allowing drug

access to the cell, particularly the hydrophilic agents that cannot diffuse across the outer

membrane (Mallea et al, 1998; Nikaido, 1993). (See Figure 1) Several studies of Gram-

negative bacteria in vitro have shown decreased porin expression in the presence of

antibiotic, signifying that regulation of porin protein expression may be an important

mechanism of resistance employed by these bacteria (Mallea et al, 1998; Regelink et al,

1999).

Studies have identified porins that allow passage of antibacterials in Enterobacter

species, Haemophilus species, and, probably, Mannheimia haemolytica. The porins

recognized have been designated Omp C and Omp F in Enterobacteriaceae species and

Omp P2 in Haemophilus species. Recent studies have identified similar proteins in M.

haemolytica.



9

In the presence of antibiotics, these experiments have indicated that resistant

strains down-regulate porin proteins compared with those strains grown in the absence of

antibiotics (De et al, 2001; Mallea et al, 1998). Down-regulation of the porin proteins

appears to limit antibiotic access to the cell, resulting in resistance against many different

classes of antibiotics. So far, porin regulation has been found to provide resistance to

beta-lactams, chloramphenicols, and tetracyclines (De et al, 2001; Mallea et al, 1998).

How exactly the porins are regulated and to what extent, still remains to be seen. Current

research is focusing on learning more about porins and how they are controlled.

marRAB as a mediator of MDR

The multiple antibiotic resistance (mar) system is a chromosomally mediated

form of multidrug resistance (Barbosa et al, 2000). The genes encoded by this system are

responsible for up-regulating efflux protein systems and down-regulating porin protein

expression along with a variety of other genes. This combination of increasing efflux and

decreasing porin expression creates multi-drug resistance by decreasing intracellular

concentration of both hydrophobic (efflux) and hydrophilic (porin) chemicals, decreasing

the efficacy of a wide range of antimicrobial agents. There are five genes included in the

mar system; marO encodes the operon, marR encodes the regulator, and marA is

primarily responsible for the up and down-regulation of other proteins. The functions of

marB and marC are still unclear. Under normal conditions, in the absence of any

antimicrobials, the MarR protein represses marO, inhibiting the expression of marA, B

and C (Alekshun et al, 2000; Cohen et al, 1993a; Martin et al, 2004). In the presence of

certain antimicrobial agents, MarR becomes inhibited through binding to the agent. This
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allows marO to initiate transcription and translation of marA, B and C (Martin et al,

1996). (See Figure 1).

The MarA protein is considered to be the master regulator (Alekshun et al, 1997;

Gambino et al, 1993; Hachler et al, 1991; Jair et al, 1995). It is currently believed to up-

regulate approximately 47 genes in some bacterial strains, including efflux components,

as well as down-regulate approximately 15 genes including the porin proteins (Chollet et

al, 2002; Cohen et al, 1988; Fralick, 1996). The mar system has been found in many

different organisms, including E. coli O157:H7, Enterobacter aerogenes,Campylobacter

spp., Salmonella spp. and others (Barbosa et al, 2000; Chollet et al, 2002 and 2004;

Randall et al, 2003; Tavio et al, 2004; Yaron et al, 2003).

Compounds that are known to induce the mar system include salicylate,

acetominophen, naphthoquinones, and sodium benzoate (Alekshun et al, 1999a; Cohen et

al, 1993b; Randall et al, 2002; Seone et al, 1995). It is thought that certain antibiotics

may also induce the system in certain bacteria, but not in others. For example,

tetracycline is believed to induce mar in E. coli, but not in Salmonella (Randall et al,

2002). The expression of marA has been shown to increase resistance to a broad range of

antibiotics, including tetracyclines, fluoroquinolones, and beta-lactams (Chu et al, 2005;

Randall et al, 2002; White et al, 1997).

While the induction of the mar system is known to increase resistance to other

compounds, the change in resistance is generally smaller than the resistance resulting

from specific mutations or gene acquisitions. The current hypothesis is that mar allows

bacteria an opportunity to mutate or acquire those genes that will confer a higher level of

resistance and is therefore thought of as more of a stepping-stone to a high level of
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resistance (Alekshun et al, 1997; Goldman et al, 1996). The relevance of this system in

vivo is unknown at this time, but it is thought to be important in both human and

veterinary medicine (Randall et al, 2001).

Relevance of MDR to Human and Animal Health

The development of resistant strains of bacteria is increasing the morbidity and

mortality of bacterial diseases as well as the cost of both human and animal health care

(Shlaes et al, 1997). Emergence of these pathogens is occurring at a frightening rate, and

the development of new chemicals to combat these bacteria has not kept pace with the

emergence of resistant strains. Salmonella, Pseudomonas, Streptococcus, Enterobacter

and Staphylococcus strains are proving to be formidable enemies to hospitals and patients

(Boyce, 2001; Russell, 2002). Infections caused by these bacteria, especially strains like

methicillin-resistant S. aureus, vancomycin-resistant enterococci or fluoroquinolone-

resistant Salmonella, are almost impossible to treat due to the lack of available drugs that

are able to kill these pathogens (Boyce, 2001; Randall et al, 2004).

The largest problems are seen in humans and animals that may be

immunocompromised, which explains why most problems occur in hospital situations.

In these cases, normal flora or commensals become opportunistic pathogens and can be

lethal. These are often the strains that are extremely resistant to a wide variety of drugs

due to efflux expression or porin regulation (Boyce, 2001; FAAIR et al, 2002).
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Relevance of Exposure to Selection/Expression of Resistance

Many studies have demonstrated that exposure to antimicrobials may actually be

promoting development of resistance. It is understood that antibacterial agents do not

initiate gene mutatation to resistant genotypes but select for those isolates that become

resistant due to mutation or acquisition of resistance genes. In vitro studies demonstrate

expression or down-regulation of certain multi-drug resistance mechanisms only in the

presence of antibacterial agents (see marRAB) (De et al, 2001).

In the absence of antibacterial drugs, mechanisms such as the marRAB system

may be a hindrance to growth and therefore are not always part of the expressed genome

in these situations. Only in the presence of antibiotics do these mechanisms seem to

allow the bacteria to survive better than those strains not expressing resistance.

These findings have led many to believe that the prophylactic use of broad-

spectrum agents, especially in food animals, needs to be more tightly controlled (Levy,

1998). It appears that many of the resistant strains that cause severe problems in humans

may be closely associated with, or even the same as, those strains found in healthy food

animals that are receiving regular antibiotic treatment (Fox, 2001; Mlot, 2001). Although

blame is often directed at food animal production and antibiotic use, many researchers are

finding that any exposure to any antimicrobial at any time can lead to resistance.

Therefore, the constant and inappropriate uses of these drugs in both food animals and in

human medicine are providing opportunities for resistance to develop (Mlot, 2001).

Many steps have been taken by the FDA and the CDC to combat the emergence

of antibacterial resistance, and specific committees have been set up to educate the public

on the occurrence of resistance, the steps that can be taken to stop it, and why it is
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important (Fox, 2001; Mlot, 2001; Shlaes et al, 1997). Currently, more research is being

done to determine how these mechanisms are regulated, and to develop new methods of

killing these resistant bacteria.

Salmonella Typhimurium

Overview of the Organism

Salmonella enterica serovar Typhimurium is a Gram-negative rod of the

Enterobacteriaceae family. It is a facultative intracellular organism that utilizes carrier

animals as its primary reservoir. Salmonella is primarily an enteric pathogen that is

capable of causing infection anywhere in the body once it crosses the gastrointestinal

epithelium (Radostits et al, 2000).

Pathogenesis of Infection

Many animals are carriers of Salmonella Typhimurium and show no clinical signs

of infection. However, once these animals are stressed they may start to show clinical

signs, but just importantly they shed the organism in the feces. Other animals that are

naïve to the organism ingest it from feces-contaminated food or water. Once in the

gastrointestinal tract, Salmonella uses fimbriae for attachment and invades the

gastrointestinal epithelium, causing vacuole formation in the epithelial cells. The

immune response results in large numbers of neutrophils infiltrating the lamina propria

and lumen surface. In addition, Salmonella can release a cytotoxin that inhibits protein

synthesis in eukaryotic cells, resulting in cell death. Endotoxin from the bacterial cell

wall as well as the host cell death result in severe inflammation of the lower small
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intestine and colon resulting in secretory and/or hemorrhagic diarrhea (CDC, 2005;

Radostits et al, 2000).

Salmonella survives within macrophages by inhibiting phagolysosome fusion

(Eriksson et al, 2003). It is this adaptation that allows the organism to invade the

macrophages in the Peyer’s patches of the intestine and use this site to gain access to

other lymph nodes as well as the blood stream. Once in the blood stream, a severe

septicemia develops that can lead to infection in almost any organ or site of the body,

including the central nervous system (Radostits et al, 2000). Death is usually associated

with endotoxemia.

In addition to colonization of carrier animals, Salmonella can be found in the

environment. It is capable of replicating at temperatures between 8 and 45°C, can

survive at a pH between 4 and 8 and in the presence or absence of oxygen. Salmonella is

also extremely resistant to drying and therefore can live in the environment for several

years (Radostits et al, 2000).

Importance as a Zoonotic Pathogen

In humans, salmonellosis is a disease caused by many different isolates of

Salmonella, Typhimurium and Enteritidis being the most common serotypes. This

disease is considered zoonotic because the primary route of infection is through

contaminated food products, mainly improperly prepared eggs (Enteritidis) and meat

(Typhimurium). In the United States, it is estimated that 1.4 million cases occur

annually; of these cases, culture by the CDC confirms approximately 40,000 (CDC,

2005).
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The human disease is characterized by fever, abdominal cramps and diarrhea that

typically lasts 5-7 days. These symptoms alone do not necessarily require treatment,

however, should the disease lead to dehydration or sepsis, treatment is required.

Treatment includes fluids and antibiotics, specifically ampicillin,

trimethoprim/sulfamethoxazole or ciprofloxacin. Approximately 600 people die each

year in the United States due to salmonellosis, and these are usually the very young, old

or immunocompromised patients. In 2% of patients, Reiter’s syndrome can develop,

which is characterized by pain in the joints, eye irritation and painful urination, and can

lead to chronic arthritis (CDC, 2005).

Antibacterial Resistance in Salmonella

Salmonella Typhimurium phage type DT104 is perhaps the most recently

notorious of the Salmonella strains. This phage type was originally identified in the early

1980s in the UK. DT104 is unique due to the chromosomal regulation of resistance to

ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline. All of the

multi-drug resistant strains isolated prior to this strain had plasmid-mediated resistance,

believed to be acquired from other organisms. In addition, in the last 10 years, the

susceptibility of DT104 to ciprofloxacin, a common antibiotic of choice for Salmonella

infections in humans, has been declining. This resistance is chromosomally encoded and

is believed to be a result of the use of fluoroquinolone antibiotics in food animals

(Threlfall, 2002).

Phage type DT104 is not the only Salmonella organism exhibiting resistant

phenotypes. In 2002, an outbreak of salmonellosis occurred in the United States due to a
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strain of Salmonella Newport that was resistant to amoxicillin/clavulanate, ampicillin,

cefoxitin, ceftiofur, cephalothin, chloramphenicol, streptomycin, sulfamethoxazol and

tetracycline, with a few of the isolates resistant to kanamycin and ceftriazone (Zansky et

al, 2002). Researchers in Germany identified 319 different strains of Salmonella enterica

causing human infection throughout 2001. The German strains were resistant to beta-

lactams, aminoglycosides, chloramphenicol, sulfonamides and tetracycline (Miko et al,

2005). In Taiwan, ciprofloxacin resistant strains of Salmonella enterica Typhimurium

(non-DT104) and Cholerasuis were found that were transmitted from pigs to humans

(Hsueh et al, 2004).

Currently, the largest concern relating to resistance of human salmonellosis is

resistance to fluoroquinolones. Fluoroquinolone antibiotics are the treatment of choice

for salmonelloses in humans, particularly the septic form of the disease. Resistance to

fluoroquinolones is believed to result from the use of fluoroquinolones in food animals

(Molbak, 2005; Furuya et al, 2006). The mechanisms for resistance to fluoroquinolones

include mutations in genes gyrA and parC, encoding synthesis of the site of action, as

well as efflux mechanisms (Chu et al, 2005; Olliver et al, 2004; Randall et al, 2004a and

2005). Salmonella Typhimurium has five different RND efflux systems, as well as four

efflux systems belonging to the MFS, MATE and ABC families (Nishino, et al, 2005).

In addition, Salmonella has a chromosomally located mar system that, as mentioned

before, affects the expression both efflux and porin systems (Sulavik et al, 1997; Okusu

et al, 1996). While it seems practical to stop the use of fluoroquinolones in food animals

to decrease the incidence of resistant infections in humans, that alone may not be enough,

as exposure to other compounds, including other antibiotics and disinfectants, may lead
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to resistance to fluoroquinolones via the mar system (Cohen et al, 1989; Randall et al,

2004b). To assess the impact of antibiotic exposure on multi-drug resistance, the

expression of genes encoding for resistance mechanisms must be well understood.

Gene Expression and Measurement

Methods for Assessing Gene Expression

Investigating bacterial responses to certain stressors, including antibacterial

agents, cannot be accomplished without first understanding the degree to which these

stressors affect gene expression. Differential gene expression may be influenced at

several functional levels, including at the transcriptome. Methods employed to study

gene transcription include the following:

Differential display using PCR

Generally, differential display using PCR is performed as follows: Two identical

bacterial inocula are cultured in broth, one as a negative standard with minimal stress, the

other with a stressor of interest, such as an antibiotic. Once the cultures have reached the

mid-log phase of growth, the RNA is extracted and then reacted with a set of arbitrary or

random primers to reverse transcribe the RNA. A second set of arbitrary primers is then

added to make short segments of cDNA. These segments are then amplified by PCR and

the products are separated on an agarose gel. The control and stressed group gel patterns

are then compared and genes that are induced or repressed can be isolated for sequencing

and identification (Handfield et al, 1999). An advantage of this technology is that it is
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simple to perform, although somewhat time consuming. The most difficult aspect of this

experimental approach is the isolation of the bacterial RNA. Isolation of enough pure,

undegraded RNA from bacteria is not a trivial task, but once this is accomplished, the

methodology is both simple and effective.

Subtractive and differential hybridization

An alternative to differential display using PCR is subtractive and differential

hybridization. The techniques are very similar in that two cultures are grown, one control

and one stressed. The total RNA is again extracted from each sample; however, in this

case, a probe is used to bind and remove contaminant rRNA. The mRNA is then used to

synthesize cDNA by reverse transcriptase. PCR amplification of the cDNA fragments

using 5’ adaptor oligonucleotides allows for biotin labeling of the control group genes at

the 5’ end. The PCR products from both the control and stress groups are denatured and

then mixed together and allowed to hybridize. The hybridized genes are then passed over

a filter that binds the biotin labeled products and removes them, leaving only the

unlabeled segments. These unlabeled segments are denatured, mixed with the labeled

segments and allowed to hybridize again and passed over filter. This process is repeated

three times to ensure that the products recovered from the filtration process are unique

sequences found only in the stressed group of bacteria (Handfield et al, 1999). This

protocol identifies genes expressed under the stressed conditionsbut not those genes that

are repressed in stress. his protocol requires a high yield of good quality mRNA, which

as stated above is difficult to obtain. This protocol is highly specific in comparison to the
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differential display, but requires further testing to investigate all changes in expression as

it assesses only those genes that are induced under stress.

In vivo expression technology (IVET)

In vivo expression technology (IVET) is used primarily to investigate genes

expressed in vivo, versus those expressed only in vitro. DNA is cleaved into fragments

using restriction endonuclease enzymes. These fragments, from the bacterial

chromosome, are inserted into E. coli DH5αλ plasmid with selection for ampicillin

resistance. These plasmids (suicide vectors) are then transformed into the bacterial strain

of interest, which is then inoculated into the animal model. Bacteria are then recovered

from the animal and plated on media with selective markers such as IPTG and Xgal

(Handfield et al, 1999). Colonies can then be selected based on the expression of the

gene in vivo. While this method can select for a large number of genes that may be

associated with virulence, it is quite time consuming and expensive.

Northern blot

Northern hybridization separates RNAs based on size using an agarose gel matrix.

The relative abundance of certain RNAs can be measured based on the fluorescence once

the gel is stained. To investigate a specific gene of interest, the RNA must be transferred

to a solid matrix, such as a nylon membrane. The RNA can then be screened for certain

sequences or genes of interest using labeled probes. Once the unbound probes are

removed, those RNAs containing the sequence of interest can be identified and the

abundance of that particular transcript determined (Sambrook et al, 2001).
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This protocol has been used for many years and was originally described in 1977

(Alwine et al, 1977). There are several drawbacks to this type of analysis, including the

isolation of large amounts of intact RNA needed for this type of experiment. In addition,

the buffer for the agarose gels must contain formamide, a carcinogen, to inhibit the

denaturation of the RNA during electrophoresis. The transfer of RNA from the gel to the

solid matrix can be somewhat difficult depending on the size and abundance of RNA.

While this method has been used extensively, it is time-consuming and technically

difficult compared to the newer, similar method of microarray analysis (Sambrook et al,

2001).

Gfp reporter

Green fluorescent protein (gfp) is a detection tool that can be used two different

ways to investigate gene expression. A gfp:gene construct can be made in a suicide

vector and inserted into a bacterial chromosome. The bacteria can then be subjected to

different stresses and, or cultured in vivo and the expression of that gene compared by

measuring the level of fluorescence produced. While this approach appears straight-

forward, it is actually quite difficult to create a gfp:gene construct with certain genes

(Randall et al, 2001).

The second method for using gfp is to insert the gfp randomly into the bacterial

chromosome. The fluorescence is then measured in and out of a host environment.

Those bacteria that fluoresce in vivo, but not in vitro have the gfp inserted into a gene that

is up regulated in vivo. In this way, gfp can be used to investigate many genes as opposed

to the regulation of just one gene (Handfield et al, 1999).
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Real time reverse transcriptase PCR

Real time PCR (qPCR) utilizes fluorescent molecules to measure the number of

amplicons produced by each iteration of the PCR process, as opposed to just a final

product. There are essentially two methods for fluorescence-labeling the PCR product:

one is to use an intercalating agent, such as Sybrgreen®, which binds any double stranded

DNA product; the other is to use a labeled probe such as TaqMan® probes, molecular

beacons or scorpions (Dharmaraj, 1998).

Sybrgreen® is very sensitive, but it binds to any double stranded product, such as

primer-dimers. This method requires an extra step following completion of the PCR; a

melting curve analysis. Generating a melting curve involves heating the product until the

intercalating reagent is released. If one PCR product is present, all reactions will occur

around one time point (i.e. one peak will be visible), but if non-specific binding or

primer-dimers are present, they will melt at a different time/temperature creating more

than one peak (Applied Biosystems, 2001).

TaqMan® technology is an example of a probe reaction in which primers and a

probe are designed together. The probe has a quencher on one end and a fluorescent

molecule on the other end. The probe initially binds the specific sequence; the primers

then initiate elongation of the second strand, eventually cleaving the probe from the

primary strand. The cleavage of the probe causes an increase in fluorescence, due to

release from the quencher, that is measured at each step in the PCR cycle (Dharmaraj,

1998).
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Real time PCR can be coupled with reverse transcriptase to detect and quantitate

mRNA. Real time, reverse transcriptase PCR (RT-qPCR) is an extremely sensitive

method that can be used to quantitate changes in gene expression. The sequence

detection system first creates cDNA, which is then amplified by PCR, with detection of

each amplicon. The resulting graph describing the production of fluorescence (related to

DNA concentration) as a function of time forms a sigmoidal curve with the point of

reference in the middle of the exponential phase of replication. A threshold (Ct) value is

set once the fluorescence crosses this threshold and the cycle number is recorded and

used for data analysis. The lower the Ct value, the higher the initial amount of mRNA

template present, and the higher the level of expression of the gene of interest (Applied

Biosystems, 2001; Dharmaraj, 1998).

There are two methods used to quantitate real time analysis; the standard curve

method and the comparative Ct method. The standard curve method is constructed from

RNA of known concentrations, which involves the assembly of cDNA plasmids for each

gene of interest that are then reverse transcribed into the RNA standards and accurately

quantitated. This curve is then used to determine the concentration for mRNA from the

unknown sample. This method, while extremely accurate, is very time consuming,

especially when there is more than one gene of interest (Applied Biosystems, 2001;

Dharmaraj, 1998).

The second method of quantitation is the comparative Ct method. This compares

the Ct values of the sample of interest with a control sample, such as a non-treated

sample. The Ct values of both the sample of interest and the control must be normalized

to a housekeeping gene, which is a gene that is expressed to the same extent in both
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samples, and that has an amplification efficiency that is similar to that of the gene of

interest. In bacteria, the housekeeping gene most commonly used is 16s RNA. To

determine the amplification efficiency, the RNA is diluted to create different

concentrations and the concentrations vs. Ct values are plotted for both the gene of

interest and the housekeeping gene. The resulting plots should have similar slopes,

indicating that the efficiency is similar for the two genes. The fold difference in

expression is calculated using the equation 2-ddCt, where ddCt is equal to dCt[sample]-

dCt[reference]. In this equation, dCt[sample] is the Ct value for that sample, normalized

to the housekeeping gene for that sample, and dCt[reference] is the Ct value for the

reference normalized to the housekeeping gene for the reference (Applied Biosystems,

2001; Dharmaraj, 1998).

Microarray analysis

Microarray analysis usually involves genome wide expression analysis on a

microscope slide. The array is created by selecting genes of interest and binding them to

a microscope slide. There are several techniques for binding DNA to the slide, and

several companies now offer commercially prepared slides with complete genomes for

certain bacteria. The creation of the slide is crucial to the success of the experiment, and

if done in the lab can be very time-consuming, depending on the number of genes of

interest. For each gene, a PCR reaction must be performed to generate a large number of

sequence copies. The PCR product must then be cleaned and placed in an appropriate

buffer and an array printer is then used to transfer the PCR products to the slide (Hedge et

al, 2000).
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A large amount of RNA is required for this analysis; usually a minimum of 10-15

µg of each sample. The RNA is reverse transcribed to DNA with an amino-allyl labeled

nucleotide (usually dUTP). This reaction is cleaned to remove any unused reactants and

then the cDNA is labeled with a cyanine fluor, typically Cy3 for the control sample and

Cy5 for the treatment sample. Following labeling, the reaction product is cleaned again

and concentrated (Hedge et al, 2000; Stintzi, 2005).

Hybridization of the RNA to the array requires preparation of the slide with

prehybridization buffer as well as resuspension of the labeled cDNA in the appropriate

buffer for the slide. Once the labeled probe is applied to the array, it is allowed to

hybridize for 16 to 20 hours. The slide is then cleaned using several different buffers

containing different concentrations of phosphate buffered saline (PBS), sodium dodecyl

sulfate (SDS) and sodium chloride-sodium citratein (SSC) to remove any unbound probes

that would compromise analysis (Hedge et al, 2000).

Analysis of the slide involves scanning of the slide and image processing. There

are several software packages that can assist in identifying spots and subtracting out the

background for each spot individually, as background can vary throughout the slide.

Normalization of the data can be achieved by adding a number of controls in increasing

concentrations to both labeling reactions; the sum of these spots should be equal.

Another normalization technique involves linear regression analysis of measured

intensities of certain genes assumed to be equally expressed in the control and treated

samples. There are other normalization procedures that have been incorporated into the

software used to analyze the slide. Once the slide has been normalized, the genes that are
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differentially expressed can be identified and analyzed for the fold difference in

expression (Hedge et al, 2000).

Microarray can be used to investigate bacterial gene expression in many different

stress conditions, including exposure to antibiotics. It can also be used to compare gene

expression in vivo versus in vitro cultures. However, the large amount of RNA necessary

for the assay makes in vivo collection difficult and time-consuming. In addition, the

process of creating and hybridizing a sensitive array can be technically demanding

(Hinton et al, 2004). Nevertheless, it is becoming an increasingly popular means of

genome expression analysis and will likely become fairly common in bacterial studies.



26

Outer membrane

Cytoplasmic
membrane

Periplasmic space

Outer membrane
porins

Multidrug efflux
pump

O2N C C CH2OH

H

OH H

NH C CHCl 2

O

O2N C C CH2OH

H

OH H

NH C CHCl 2

O

Outer membrane

Cytoplasmic
membrane

Periplasmic space

Outer membrane
porins

Multidrug efflux
pump

O2N C C CH2OH

H

OH H

NH C CHCl 2

O

O2N C C CH2OH

H

OH H

NH C CHCl 2

O

O2N C C CH2OH

H

OH H

NH C CHCl 2

O

O2N C C CH2OH

H

OH H

NH C CHCl 2

O

Figure 1. Diagram depicting both efflux pump and porin protein structures. Efflux
pumps collect hydrophobic chemicals at the inner part of the cytoplasmic membrane and
pump them out through an outer membrane channel. Porin proteins allow passage of
hydrophilic molecules into the cell.
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Figure 2. The mar regulon. Under normal conditions, MarR protein binds and inhibits
marO from expression. In the presence of antibiotic, the MarR protein
becomes bound and can no longer inhibit marO. MarO then initiates the
transcription and translation of marA, marB and marC. MarA then initiates
the transcription and translation of many other proteins including efflux and
porin systems.
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CHAPTER 3: HYPOTHESIS AND EXPERIMENTAL OBJECTIVES

The goal of this research was to evaluate the contribution of the mar regulon to

survival of Salmonella enterica serovar Typhimurium, in the absence of antibiotics or in

the presence of subtherapeutic or therapeutic levels of oxytetracyline. The underlying

hypothesis upon which this goal was based is that the prevalence of bacteria that are

antibiotic resistant due to the expression of multidrug resistance systems increases when

cattle are administered prophylactic antibiotics and that the wide substrate specificity of

these systems confers resistance not only to antibiotics used prophylactically but also to

antibiotics used therapeutically in cattle and human consumers of contaminated beef

products. To achieve this goal, experiments were organized into two phases:

Phase I

Previous studies have reported that expression of the mar system in E. coli is

affected by many different substrates, including tetracycline, but that expression of the

mar system in Salmonella may not be induced by tetracycline (Randall et al, 2002). In

the first phase, in vitro experiments were conducted to determine whether exposure of

Salmonella Typhimurium to oxytetracycline induced expression of the mar regulon. In

addition, the genome of Salmonella Typhimurium was screened to identify other genes

that might play a role in promoting survival of the bacterium in the presence of

oxytetracycline. Specific experimental objectives were to:
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(1) develop methods for studying the expression of marA in the presence and absence of

oxytetracycline;

(2) identify and measure any incubation time-dependent changes in expression of marA

in response to different concentrations of oxytetracycline; and

(3) perform a microarray analysis of the Salmonella Typhimurium genome to identify

any genes other than marA involved in survival of the bacterium in the presence of

oxytetracycline.

Phase II

The second phase was designed to investigate the effect of oxytetracycline on

marA expression in Salmonella Typhimurium in vivo, using a bovine subcutaneous tissue

chamber model. The study was conducted in cattle because contaminated beef is the

most common source of human infection. The specific objectives of this phase were to:

(1) design an effective experimental protocol for infection of tissue chambers to allow

infected tissue fluid collection and analysis of the samples using RNA isolation

and real-time PCR.

(2) use the RT-qPCR protocol designed in Phase I to identify any changes in

expression of marA in vivo in response to parental administration of

oxytetracycline at different doses; and

(3) based on the results of the microarray analysis in Phase I, investigate the roles of

additional, selected genes that may facilitate survival of Salmonella Typhimurium

in vivo, using RT-qPCR.
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CHAPTER 4: EXPRESSION OF marA IN SALMONELLA ENTERICA SEROVAR

TYPHIMURIUM EXPOSED TO OXYTETRACYCLINE IN VITRO

Introduction

Infections caused by Salmonella spp., particularly multi-drug resistant strains, are

a recurring challenge to public health (Threlfall, 2002; Zansky et al, 2002). Of particular

concern is the transmission of resistant Salmonella from food animals to human

consumers of animal food products (Hsueh et al, 2004; Angulo et al, 2004; Miko et al,

2005). Use of antibiotics in food producing animals is suspected to promote the

emergence of multi-drug resistant organisms that can lead to potentially life threatening

infections in humans (Angulo et al, 2004; Mlot, 2001; Fox, 2001). Recent human

outbreaks have been linked to Salmonella Newport and Typhimurium DT104 (Hsueh et

al, 2004; Miko et al, 2005).

Salmonella enterica serovar Typhimurium is one of several Gram-negative

bacteria that employ the chromosomally located mar regulon as a mechanism of multi-

drug resistance (Randall et al, 2001b and 2002). The mar regulon consists of 5 genes:

marR, the repressor; marO, the operator; marA, the master regulator; and marB and

marC, the functions of which have not been clearly determined. (Figure 2) Under normal

conditions (the absence of antibiotics or chemicals), marR represses marO by binding to

it and prohibiting transcription. In the presence of certain chemicals, marR becomes

bound to the chemical and cannot bind marO. This leads to transcription and translation

of marA, B and C. The MarA protein is responsible for up-regulation of approximately

50 genes and the down-regulation of approximately 15-20 genes. The genes affected
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include the acrAB efflux system (up-regulated) and the Omp porin proteins (down-

regulated) (Randall et al, 2002; Alekshun et al, 1997, 1999; Seoane et al, 1995b). Both

efflux pumps and porins are non-specific and allow transmembrane passage of a wide

variety of antibacterial agents belonging to different chemical classes. Coordinated

regulation of efflux pumps and porin expression restricts the intracellular accumulation of

antibacterial agents, which must be in sufficiently high concentrations at intracellular

sites of action to be effective. Thus, increased expression of marA creates multiple

antibiotic resistant phenotypes (Gambino et al, 1993; Nishino et al, 2006; Eaves et al,

2004; Sulavik et al, 1997; Cohen et al, 1988).

Previous studies reported that the marA gene in E. coli is sensitive to

tetracyclines, which are commonly used in the therapy and prophylaxis of cattle diseases.

Current strategies designed to retard the emergence of resistance include avoiding use of

the same antibacterial agents in food animals and humans because development of

resistance against one agent is thought not to affect development of resistance against the

other. However, if exposure to one antibacterial agent promotes emergence of multi-drug

resistance, this assumption may not be correct. Therefore, the objectives of this study

were to identify and measure any incubation time-dependent changes in expression of

marA in response to different concentrations of oxytetracycline, and perform a

microarray analysis of the Salmonella Typhimurium genome to identify any genes other

than marA that may be important in allowing the bacterium to survive in the presence of

oxytetracycline.
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Materials and Methods

Effect of oxytetracycline exposure on expression of marA in Salmonella Typhimurium

Previous studies conducted by Randall and coworkers (2002) indicated that

expression of marA in E. coli is induced by exposure to oxytetracycline, but the

responsiveness of marA in Salmonella Typhimurium had yet to be confirmed. Therefore,

a series of gene expression studies were conducted to investigate the effect of exposure to

oxytetracycline on expression of Salmonella Typhimurium marA: Initially, bacteria were

exposed to oxytetracycline concentrations at or below the MIC value, and the effect on

gene expression was compared to that produced by a positive control, salicylate.

Thereafter, the range of oxytetracycline concentrations was expanded to include

concentrations greater than the MIC. Finally, the effect of duration of exposure to

oxytetracycline (incubation time) on gene expression was studied.

Effect of oxytetracycline at concentrations ≤ MIC versus salicylate

Taqman® primers and probes (Roche Molecular Systems, Inc., Pleasanton, CA)

were selected for the marA gene and 16s RNA (internal control) using Primer Express®

software (Applied Biosystems Inc., Foster City, CA). Salmonella enterica serovar

Typhimurium LT2 (ATCC 700720) was streaked on LB Miller (DIFCO, Becton

Dickinson Microbiology Systems, Sparks, MD) agar plates with increasing

concentrations of oxytetracycline (0, 0.01, 0.05, 0.5, 1, and 2 µg/ml) or salicylate (0, 1,10,

20, 50 and 100 µg/ml). The concentration range selected for oxytetracycline was based

on the MIC for the bacterial isolate (2 µg/ml), which was determined using a standard
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dilution method in LB Miller broth. Inoculated plates were incubated at 37°C for 20

hours and individual colonies were then selected from the plates and transferred to LB

Miller broth (DIFCO, Becton Dickinson Microbiology Systems, Sparks, MD) containing

corresponding concentrations of oxytetracycline (0, 0.01, 0.05, 0.5, 1, and 2 µg/ml) or

salicylate (0, 1, 10, 20, 50 and 100 µg/ml). Cultures were grown in broth to mid-log

phase and samples were collected for RNA extraction.

Effect of oxytetracycline at concentrations ≥ MIC

Further studies of the effect of oxytetracycline on expression of marA investigated

the responsiveness of Salmonella Typhimurium to a wider range of oxytetracycline

concentrations, including a concentration higher than the MIC. The experimental

methods employed for culture of bacteria in oxytetracycline were identical to those

described above, except that initial culture on LB Miller plates occurred in the absence of

oxytetracycline. Individual colonies cultured on solid media were selected and

inoculated into LB Miller broth containing 0, 1, 2 and 4 µg/ml of oxytetracycline and

incubated at 37°C. Using a reference standard curve constructed by plotting the

spectrophotometric absorbance of serial dilutions of bacteria in LB Miller broth against

the concentrations of bacteria determined by spot plate counts, the mid-log growth phases

of the broth cultures were identified and samples were collected for extraction of RNA

and determination of oxytetracycline concentrations by bioassay.
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Effect of incubation time on oxytetracycline-induced expression of marA

For these experiments, bacterial colonies isolated on LB Miller plates were

inoculated into LB Miller broth containing 2 µg/ml oxytetracycline or 100 µg/ml

salicylate. Using the absorbance-CFU reference curve, samples were collected at early-,

mid- and late-log phases of growth. Samples were subjected to the following analyses:

RNA was extracted for gene expression analysis, oxytetracycline was determined by

bioassay, and MIC values were determined for a variety of antibacterial agents and

compared with those of the inoculation strain.

Assay of oxytetracycline concentration

Samples collected for determination of oxytetracycline were centrifuged and the

supernatants were subjected to microbiological assay. Briefly, Bacillus cereus (ATCC

11778) was cultured for 4 hours in Nutrient agar. A 12” x 12” glass plate was prepared

by soaking in 5% hypochlorite solution for 30 minutes, rinsing in deionized water and air

drying. It was then sterilized by wiping with 70% propanol and placed in an oven at

65°C for 15 minutes. The plate was then placed on an adjustable stage to ensure it was

level. Approximately 600 ml of Nutrient agar was inoculated with 0.5 ml of the B.

cereus culture and then poured into the leveled glass plate and allowed to solidify. Wells

were suctioned in the agar using a grid pattern. Duplicate aliquots (150 µl) of samples or

concentration standards (0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 15, 25 µg/ml) were pipetted into

wells, the plate was refrigerated at 4°C for 1 hour and then incubated at 37°C overnight.

Following incubation, a concentration standard curve was established by plotting
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diameters of the zones of inhibition against known concentrations of oxytetracycline.

Concentrations of the samples were determined.

Extraction of RNA and measurement of marA expression

RNA extraction was performed using a modified hot phenol method (Naikare et

al, 2006; Stintzi et al, 2003). Briefly, 10 ml of broth sample was mixed immediately

after collection with 1 ml ice-cold stop solution consisting of 10% buffered phenol in

ethanol. The mixture was centrifuged at 4°C for 15 minutes at 3500g. The supernatant

was removed and the pellet was resuspended in 800 µl lysozyme solution (0.5 mg/ml

lysozyme in TE 10,1 pH 8) before addition of 80 µl 10% SDS. The solution was placed

in a 64°C water bath for 1-2 minutes, 88 µl of 1M sodium acetate was added, and the

sample was mixed. An equal volume of water-saturated phenol was then added, and the

sample was again placed in the 64°C water bath for 8 minutes. The samples were quickly

transferred to ice and then centrifuged for 30 minutes at 19,000g and 4°C. The aqueous

layer was then transferred to a tube containing an equal volume of chloroform, mixed and

then centrifuged for 15 minutes at 19,000g and 4°C. Again, the aqueous layer was

collected and mixed with 1/10 volume 3M sodium acetate, EDTA to 1 mM, and 2.5x

volumes 99% cold ethanol. The samples were then allowed to precipitate at -80°C for at

least 24 hours. Following precipitation, the samples were centrifuged for 1 hour at

19,000g and 4°C to pellet the RNA. The supernatant was removed and the pellet washed

three times with 1 ml 80% ethanol, and then placed in a speed vacuum for 20 minutes to

dry. Samples were then resuspended in 100 µl RNase free water, DNase treated and

cleaned on a Qiagen RNeasy® column. RNA was then checked for DNA by PCR,



36

integrity was confirmed by agarose gel electrophoresis and extracted RNA was

quantitated using RiboGreen® RNA quantification reagent (Molecular Probes, Eugene,

Oregon).

Expression of marA was assessed by RT-qPCR using appropriate primers and

probes. Eurogentec® one-step RT-qPCR MasterMix Plus kits were used following the

supplied protocol. All the RT-qPCR reactions were performed on an ABI Prism 7700

Sequence detector. A comparative analysis was done assuming the 16s gene

(normalizing gene) was maximally expressed under all conditions. The ddCt method was

used for data analysis to determine the fold differences in levels of expression (Applied

Biosystems, 2001). Standard deviations were used to determine statistical significance

between fold differences.

Microarray analysis to identify other genes affected by exposure to oxytetracycline.

Increased synthesis of MarA protein can be expected to affect the expression of

several other genes, including those involved in synthesis of efflux and porin proteins

(Alekshun et al, 1997). In order to study those genes regulated by marA, as well as any

other genes that may be affected by oxytetracycline exposure, expression of the entire

genome was assessed by microarray analysis. A specific oligonucleotide-based

microarray (Combimatrix Custom Array®) was designed to evaluate expression of

approximately 99% (approximately 12,000 genes) of the Salmonella Typhimurium

genome. At least 40 probes per transcript were employed to interrogate the genes

generally recognized to be involved in antibiotic resistance, including the mar regulon,

and those encoding for multi-drug efflux pumps and outer membrane porins.
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Gene expression of mid-log phase bacteria cultured in 2 µg/ml oxytetracycline

were compared to bacteria grown in LB Miller broth with no oxytetracycline, using a

previously described hybridization protocol (Ducey et al, 2005). Briefly, RNA was

extracted using the modified hot-phenol method described above. The RNA

concentration was determined using Ribogreen® (Molecular Probes) and the absence of

DNA was confirmed by PCR. Using equivalent amounts (16 µg) of RNA from each

sample, the RNA was reverse transcribed to cDNA in the presence of aminoallyl

nucleotides. The RNA was mixed with 8 µl of 5x 1st strand buffer, 2 µl of DTT (0.1M),

10 µg random primer and DEPC water to 34.35 µl, and then incubated sequentially at

65°C for 5 minutes and 42°C for 5 minutes. Thereafter, the nucleotide and reverse

transcriptase reagents were mixed (1 µl dGTP, dATP and dCTP at 20 mM, 1.3 µl of

dTTP at 5 mM, 1.35 µl of aminoallyl-dUTP at 10 mM and 2 µl of Superscript® II

(Invitrogen)) and 5.55µl was added to the RNA mixture and allowed to incubate at 42°C

for 2 hours. The reaction was then stopped by base hydrolysis of the RNA using 4 µl of

50 mM EDTA and 2 µl of 10N NaOH and incubated at 65°C for 20 minutes. This

reaction was then neutralized with 4 µl of 5M acetic acid. To remove the free amine, the

reactants and products were filtered through a Microcon® 30 filter with 450 µl of water.

The filtrate was centrifuged at 9800g for 8 minutes, repeated 4 times. The Microcon® 30

filter was then inverted in a new tube and the sample collected by centrifuging at 16,000g

for 1 minute. It was then dried down in a speed vacuum to 9 µl.

At this time, the aminoallyl labeled cDNA was coupled to the Cy dye. Each

sample was resuspended in 10 µl of 0.1 µl of Na-carbonate. Monofunctional NHS-ester

Cy3 and Cy5 solutions were made by resuspending one vial of dye in 65 µl water-free
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DMSO. Ten microliters of Cy3 solution was added to the control (no oxytetracycline)

and 10 µl of Cy5 solution was added to the treated sample (2 µg/ml oxytetracycline).

These were then incubated for 1 hour at room temperature in the dark. Following

incubation, 35 µl of 100 mM NaOAc (pH 5.2) was added and uncoupled dye was

removed using a Qiagen® PCR purification kit. Buffer PB (500 µl) was added to the

mixture and all applied to the column and centrifuged. The column was then washed

with 750 µl of PE buffer 4 times. The sample was then eluted with 40 µl of water at pH

7.4.

To prepare the samples for hybridization, the now Cy - labeled probes were dried

down in a speed vacuum, resuspended in 23.25 µl of water and mixed together. The

following were added individually and mixed by pipetting between each addition: 2.5 µl

10 µg/ml salmon sperm DNA, 25 µl formamide, 25 µl 20x SSC and 1 µl 10% SDS. This

solution was then denatured at 99°C for 2 minutes, cooled to 42°C, then hybridized to the

slide.

The Combimatrix Custom Array® slides were washed with 100 µl of water at

65°C for 10 minutes. They were then prepared with a prehybridization solution

containing 250 µl of 20x SSC, 250 µl formamide, 10 µl of 10% SDS, 10 mg BSA and

water to 1 ml and incubated for 30 minutes at 42°C. Once the prehybridization was

complete, the solution was removed and the hybridization solution containing the labeled

probes was added to the slide and the slide incubated at 42°C overnight (~16 hours). The

hybridization solution was then removed and the slide washed with 2x SSC and 0.1%

SDS for 5 minutes at 42°C. The next wash was with 0.1x SSC and 0.1% SDS for 10

minutes at room temperature. This was followed by 5 washes with 0.1x SSC for 1
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minute each and two final washes with 2x PBS for 5 minutes each. The imaging solution

was added following the final wash and the array scanned using a Perkin Elmer Scan

Array® microarray scanner. The slides were scanned at 532 nm (Cy3) and 635 nm (Cy5)

wavelengths at 5µm resolution and 70, 80 and 90% gain. GenePix Pro 3.0.5 software

(Axon Instruments, Foster City, California) was used to evaluate the fluorescence

intensity of each spot. Spot registration was optimized manually and exported to

OriginPro 7 software (OriginLab Corporation, Northampton, Massachusetts). The spots

were then filtered, and those with bad signals excluded. The background was subtracted

and the fluorescence intensity in each wavelength log2 transformed and normalized using

MIDAS software (The Institute for Genomic Research; http://www.tigr.org/software/).

To analyze the microarray data, the significant analysis of microarray (SAM) algorithm

was used. This Microsoft Excel software add in is available at http://www-

stat.stanford.edu/~tibs/SAM/.

Results

Exposure to salicylate resulted in a concentration-dependent increase in the level

of expression of marA (Figure 3). The growth curves from this experiment indicated that

increasing concentrations of salicylate did not effect the growth of Salmonella, as the

mid-log phase was reached at ~4 hours in all concentrations (Figure 4). When exposed to

oxytetracycline, concentrations lower than the MIC produced no statistically significant

difference in the level of expression of marA. However, at the MIC of 2 µg/ml, a large,

statistically significant difference in expression was observed (Figure 5).
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The next set of experiments were designed to examine more closely the

expression of marA in relation to a wider range of initial oxytetracycline concentrations

and to correlate these results with any changes in drug concentration occurring as a

function of incubation time. Growth curves of Salmonella cultured in 0, 1, 2, and 4

µg/ml of oxytetracycline in LB broth indicated significant concentration – dependent

slowing in growth (Figure 6). However, even though growth rate was decreased at the 2

and 4 µg/ml concentrations, the bacteria still remained viable and entered an exponential

phase of growth after a prolonged initial stationary phase. The 4 µg/ml samples (twice

the MIC of 2 µg/ml) reached mid-log phase at around 52 hours. The corresponding

bioassay results indicated that oxytetracycline had decreased (probably as a result of

degradation) to a concentration of ~1.6 µg/ml at this time (Figure 7). The 2 µg/ml

samples reached mid-log phase at about 40 hours with a corresponding oxytetracycline

concentration of 0.6 µg/ml. Interestingly, the highest level of marA expression occurred

at 2 µg/ml oxytetracycline, and not at the higher 4 µg/ml concentration, even though the

latter had decreased to a level below the MIC by the time the mid-log sample was

collected (Figure 8).

Experiments conducted to assess the expression of marA as a function of

incubation time confirmed that growth of the bacterium is closely correlated with

oxytetracycline concentration and that the microorganism does not enter an exponential

growth phase before the concentration of drug degrades to a level below MIC (Figure 9).

Analysis of marA expression by RT-qPCR indicated that the level of expression was

highest at mid-log phase (~36 hours) when Salmonella Typhimurium was incubated in an

initial oxytetracycline concentration of 2 µg/ml oxytetracycline versus the relative lack of
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gene expression in mid-log phase (~4 hours) bacteria incubated without oxytetracycline

(Figure 10). The increased expression of marA in samples exposed to oxytetracycline

was not only correlated with increased resistance to oxytetracycline, as confirmed by the

higher MIC (8 µg/ml) of the bacterium after incubation versus the pre-incubation

inoculum (2 µg/ml), but the MIC values for several other chemically unrelated

antibacterial agents (chloramphenicol, ampicillin and gentamicin) were also higher in the

incubated samples (Table 1).

Incubation conditions that produced the highest level of marA expression were

selected for microarray analysis: Bacteria were cultured in 2 µg/ml oxytetracycline and

samples were collected at mid-log phase of growth and RNA was extracted. The RNA

isolated at that time point was compared with RNA isolated from samples grown in LB

broth with no oxytetracycline. The goal of the microarray was to identify genes affected

by up-regulation of the MarA protein as well as unrelated genes affected by

oxytetracycline exposure. In contrast to the real-time PCR experiments, microarray

analysis indicated no significant change in the mar regulon or the efflux genes and porin

genes usually associated with mar regulon function. However, approximately 72 other

genes were up-regulated, but only a few of them are considered to be antibacterial

resistance genes (Table 2). Many of the genes that were up-regulated encode for

ribosomal subunit proteins. Approximately 125 genes were down-regulated. While

many of these genes encode for putative outer and inner membrane proteins, none of

these currently are recognized as porin proteins (Table 3). Many of the proteins that were

down regulated are involved in flagella production and assembly.
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Discussion

Many chemicals have been found to induce the mar system in Salmonella,

including salicylate (primary inducer), chloramphenicol, dinitrophenol, paraquat,

benzoate and bile acids (Randall et al, 2001b, 2002; Prouty et al, 2004). It has been

hypothesized that the mar system evolved to aid in the survival of enteric bacteria in the

hostile environment of the gastrointestinal tract, because expression of the system confers

resistance to bile acids (Prouty et al, 2004). While tetracycline has been found to induce

the mar system in E. coli, it has not been implicated in the induction of the system in

Salmonella (Randall et al, 2002). The present research demonstrated that the mar

regulon is in fact induced in Salmonella Typhimurium exposed to oxytetracycline, but

not to the same extent as in response to salicylate.

Concurrent induction of marA expression, and increase in the MIC value for

oxytetracycline, provides strong circumstantial evidence that marA expression is related

to antibacterial resistance. Indeed, concurrent increases in the MIC values for several

other chemically unrelated antibacterial agents is consistent with the induction of multi-

drug resistance mechanisms mediated by efflux pumps and porin proteins. In the cases of

chloramphenicol and gentamicin, the two-fold increases in MIC values were relatively

modest and were consistent with the functions of efflux pumps and porin proteins.

However, the MIC of ampicillin increased eight-fold, suggesting the involvement of

additional resistance mechanisms. It is probable that expression of the mar system may

promote acquisition of additional resistance capabilities (through gene mutations or
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transfer of resistance genes) by allowing higher numbers of bacteria to survive and

replicate (Randall et al, 2002, Chu et al, 2005). As demonstrated in the present study,

this is most likely to occur at concentrations similar to the MIC value, which would result

from dosage regimens that are not high enough to ensure elimination of the bacteria.

The observation that bacteria inoculated into broth containing oxytetracycline at

the MIC level not only express marA but also grow exponentially after a prolonged

stationary phase has very important implications for in vitro sensitivity testing.

Considering that such testing utilizes an 18-hour incubation period, which is of shorter

duration than the stationary phase observed in the present study, a sensitivity

determination based on the absence of growth at the MIC level may overestimate

susceptibility to an antibacterial agent. Indeed, the results of the present study suggest

that the MIC value may vary, depending on the duration of exposure to the antibacterial

agent and the expression status of resistance genes that may be induced by exposure to

the agent.

As stated before, approximately 125 genes were down regulated in the presence

of oxytetracycline, and approximately 72 genes were up regulated. Genes that were

noticeably absent from these lists include the mar genes, marR, marO, marA, marB and

marC. Also missing were the genes that encode for the acrAB efflux system and the

Omp porin proteins that are believed to be regulated by the mar regulon (Alekshun et al,

1999; Cohen et al, 1988). There are several possible explanations for this finding: The

sensitivity of the RT-qPCR system is much higher than that of the microarray system,

which may be one reason the changes seen with PCR are not seen with the microarray.

Another possibility is that the RNA was not extracted in large enough quantity or good



44

enough quality to achieve the sensitivity needed to observe those changes. The genes

that were up regulated include several ribosomal subunit proteins, which may be related

to resistance to oxytetracycline. Oxytetracycline exerts its antibacterial effect by

inhibiting the binding of aminoacyl tRNA to the A site on the 30S ribosomal subunit,

thus inhibiting bacterial protein synthesis. Other proteins of interest include several outer

membrane proteins of unknown function that were up regulated: The putative S-

adenosylmethionine-dependant methyltansferase (STM3109) is involved in macrolide

resistance. Putative outer membrane protein (STM1819) is actually a starvation inducible

outer membrane lipoprotein that has been noted in previous experiments to be down-

regulated in the presence of antibiotic and possibly in response to mar, but was up-

regulated in the present experiment (Price et al, 2000). The major cold shock protein

(STM3649) up regulated here has been found to be involved in the stress response in

certain bacterial species (Katzif et al, 2003; Mangalappalli-Illathu et al, 2006). The

magnesium transport protein, MgtC (STM3764), is required for intramacrophage

replication as it allows for increased uptake of magnesium (Rang et al, 2007).

Tetracyclines bind magnesium to gain entry into the cell and for binding to the ribosomal

subunit, which may lead to low magnesium availability for bacterial cellular needs.

Thus, up-regulation of this gene would promote uptake of magnesium for cellular

processes and facilitate bacterial survival (Chopra et al, 2001). A few other proteins of

interest include the putative SAM-dependent methyltrasfease (STM4500) that is involved

in tellurite resistance and the starvation inducible inner membrane protein, PsiE

(STM4226), both of which were up regulated in the microarray.
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A number of the down-regulated genes are also of particular interest: Several are

putative outer membrane proteins and transport proteins of unknown function. The

majority of the down-regulated genes are involved in flagella production and assembly.

The decrease in production of the flagellar proteins has previously been reported as a

response to antimicrobials (Bader et al, 2003). Perhaps the flagellar proteins are down

regulated as a means to conserve amino acids in a stress environment, or perhaps they are

a liability because they facilitate host recognition of the bacterial cell.

The interest in oxytetracycline stems from the fear that the prophylactic and

metaphylactic use of antimicrobials in food animals may result in resistant infections in

humans (Angulo et al, 2004; Mlot, 2001; Fox, 2001). Oxytetracycline is an approved and

commonly used antibacterial in food animals, both prophylactically and

metaphylactically. Label indications include bacterial pneumonia (shipping fever), pink

eye, as well as any other susceptible infection (Liquimycin®LA200, Pfizer). The

implications of oxytetracycline causing mar induction are significant because it raises the

possibility that prophylactic use of oxytetracycline in food animals may result in

resistance not only to oxytetracycline but also to other antibacterial agents that are used

commonly to treat human infections, such as fluoroquinolones. While this research does

not indicate that oxytetracycline – induced mar expression led to increased resistance to

fluoroquinolones, based on the MIC data and the microarray data, resistance to several

other important antibacterial agents was induced and there is still need for concern that

drugs labeled for use in food animals may lead to resistant infections in humans.
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Figure 3. RT-qPCR results from initial salicylate experiments done in duplicate. Each
column represents the mean fold difference plus and minus the standard
deviation for each sample. This graph indicates an increase in marA
expression with exposure to increasing concentrations of salicylate.
Statistically significant changes are seen at the higher concentrations of 50
and 100 µg/ml (*).
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Figure 4. This growth curve indicates the change in OD600 of Salmonella Typhimurium
over time in increasing concentrations of salicylate (µg/ml). These results
represent one of two growth curves done in the presence of salicylate. The
increasing concentrations of salicylate do not affect the growth rate of
Salmonella.
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Figure 5. RT-qPCR results from oxytetracycline experiments in Salmonella
Typhimurium done in triplicate. This graph indicates a statistically significant
increase in expression of marA at 2 µg/ml (*). Columns represent the mean
fold difference plus and minus the standard deviation.
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Figure 7. Graph showing the initial concentration of oxytetracycline versus the
concentration at mid-log phase of growth of Salmonella as determined by
bioassay. Each column represents the mean plus and minus standard
deviation of the concentration of oxytetracycline (µg/ml) at mid-log phase of
growth done in triplicate. Those samples started at 1 and 2 µg/ml reached
mid-log phase at just above 0.5 µg/ml. The sample started at 4 µg/ml reached
mid-log phase at around 1.5 µg/ml, a statistically significant difference(*).
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Figure 8. Graph depicting the RT-qPCR results of samples taken at mid-log phase in 0,
1, 2, and 4 µg/ml oxytetracycline. Each column represents the mean plus and
minus the standard deviation of the fold difference for marA expression for
that sample. Three biological replicates were done and two RT-qPCR
replicates for each biological sample were analyzed. This graph is a
compilation of all replicates, biological and RT-qPCR. A statistically
significant difference in expression can be seen at 2 and 4 µg/ml, but 2µg/ml
has a much higher fold difference in expression than 4µg/ml (*).
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Figure 10. Graph of the level of expression of marA in 2 µg/ml oxytetracycline at early,
mid and late log phase of the growth curve versus expression in LB without
oxytetracycline. Columns are mean difference plus and minus the standard
deviation for that sample. This data is from one of three biological
experiments with two RT-qPCR analyses done for each biological replicate.
Statistically significant differences can be seen at 20, 28 and 36 hours with the
highest fold difference at 36 hours, mid-log phase (*).
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Table 1. MIC values for Salmonella Typhimurium wild type versus oxytetracycline
induced. This data represents one of three replicates and all had similar
results. The most significant changes are seen in oxytetracycline,
chloramphenicol, ampicillin and gentamicin.

Antibiotic Wild Type Mar-Induced

Oxytetracycline 2 8

Erythromycin >16 >16

Ciprofloxacin <0.125 <0.125

Chloramphenicol 4 8

Ampicillin 2 16

Gentamicin 4 8
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Table 2. Genes up-regulated in the presence of oxytetracycline as determined by
microarray analysis. Those in bold are involved in antibiotic resistance.

UP

ribosomal subunit protein S20 50S ribosomal subunit protein L18
30S ribosomal subunit protein S2 50S ribosomal subunit protein L6
protein chain elongation factor EF-Ts 50S ribosomal subunit protein L5
putative RHS-like protein 30S ribosomal subunit protein S17
protohaeme IX farnesyltransferase 50S ribosomal subunit protein L29
cytochrome o ubiquinol oxidase subunit I 30S ribosomal subunit protein S3
Sec-independent protein secretion pathway component 50S ribosomal subunit protein L22
7,8-diaminopelargonic acid synthetase 30S ribosomal subunit protein S19
protein chain initiation factor IF-1 50S ribosomal subunit protein L2
putative inner membrane protein 50S ribosomal subunit protein L23
50S ribosomal subunit protein L32 50S ribosomal subunit protein L4
putative outer membrane protein 50S ribosomal subunit protein L3
putative outer membrane lipoprotein 30S ribosomal subunit protein S10
50S ribosomal subunit protein L20 30S ribosomal subunit protein S7
putative peptide transport protein 30S ribosomal subunit protein S12
putative outer membrane protein dehydroquinate synthase
50S ribosomal subunit protein L25 putative ribonucleoprotein related-protein
NADH dehydrogenase transcriptional repressor major cold shock protein
50S ribosomal subunit protein L19 50S ribosomal subunit protein L33
tRNA (guanine-7-)-methyltransferase Mg2+ transport protein
16S rRNA processing protein acetolactate synthase I large subunit
30S ribosomal subunit protein S16 small heat shock protein
putative cytoplasmic protein 50S ribosomal subunit protein L34
putative S-adenosylmethionine-dependent methyltransferase 50S ribosomal subunit protein L31
putative cytoplasmic protein preprotein translocase
50S ribosomal subunit protein L27 50 S ribosomal subunit protein L11
30S ribosomal subunit protein S9 50S ribosomal subunit protein L1
possible dehydrogenase putative inner membrane protein
factor-for-inversion stimulation protein 30S ribosomal subunit protein S6
50S ribosomal subunit protein L17 primosomal replication protein N
30S ribosomal subunit protein S11 30S ribosomal subunit protein S18
30S ribosomal subunit protein S13 50S ribosomal subunit protein L9
preprotein translocase putative SAM-dependent methyltransferase
50S ribosomal subunit protein L15 putative cytoplasmic protein
30S ribosomal subunit protein S5
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Table 3. Genes down-regulated in the presence of oxytetracycline as determined by
microarray analysis. Those in bold are involved in antibiotic resistance.

DOWN

putative cytoplasmic protein lysine decarboxylase 1
putrescine/ornithine antiporter secreted effector protein
ornithine decarboxylase isozyme transcriptional regulator
stress response DNA-binding protein invasion regulatory protein
putative minor tail protein putative cytoplasmic protein
anaerobic dimethyl sulfoxide reductase subunit A needle complex export protein
anaerobic dimethyl sulfoxide reductase subunit B needle complex assembly protein
pyruvate formate lyase I needle complex inner membrane lipoprotein
putative FlgK/FlgL export chaperone needle complex minor subunit
anti-FliA factor needle complex major subunit
flagella basal body P-ring formation protein precursor needle complex inner membrane protein
flagellar basal-body rod protein invasion protein regulatory protein
cell-proximal portion of basal-body rod invasion protein transcriptional activator
basal-body rod modification protein invasion protein precursor
flagellar hook protein protein tyrosine phosphatase/GTPase activating protein
cell-proximal portion of basal-body rod secretion chaparone
flagellar basal-body rod protein putative acyl carrier protein
flagellar L-ring protein precursor secreted effector protein
putative flagellar basal body protein translocation machinery component
flagellar biosynthetic protein translocation machinery component
flagellar hook-associated protein 1 translocation machinery component
flagellar hook-associated protein 3 secretion chaperone
MltA-interacting protein A needle complex export protein
putative periplasmic protein needle complex export protein
putative outer membrane protein needle complex export protein
transcriptional regulator needle length control protein
putative periplasmic transport protein needle complex assembly protein
methyl-accepting chemotaxis protein III needle complex secretion ATPase
mannose-specific enzyme IIAB secretion chaperone
mannose-specific enzyme IIC needle complex export protein
mannose-specific enzyme IID invasion protein
hypothetical protein outer membrane secretin precursor
chemotactic response protein invasion regulatory protein
chemotaxis regulator needle complex outer membrane lipoprotein precursor
methyl esterase glycine cleavage complex protein H
methyl accepting chemotaxis protein II fructose-bisphosphate aldolase
chemotaxis docking protein periplasmic L-asparaginase II
chemotaxis sensory histidine protein kinase putative methyl-accepting chemotaxis protein
chemotaxis protein putative cytoplasmic protein
flagellar motor proton conductor component putative methyl-accepting chemotaxis protein
putative periplasmic binding transport protein aerotaxis sensor receptor
putative FliA-regulator L-serine deaminase
sigma 28 pyruvate formate-lyase 4/2-ketobutyrate formate-lyase
lysine-N-methylase propionate kinase/acetate kinase II
flagellin L-threonine/L-serine permease
flagellar hook-associated protein 2 threonine dehydratase
flagellar protein phosphoenolpyruvate carboxykinase
possible FliD export chaperone methyl-accepting transmembrane citrate/phenol chemoreceptor
putative flagellar hook-basal body protein hypothetical protein
flagellar motor switch protein ketodeoxygluconokinase
flagellar assembly protein putative cytoplasmic protein
flagellar protein putative fructose-1,6-bisphosphate aldolase"
flagellar hook-length control protein triosephosphate isomerase
flagellar biosynthetic protein putative methyl-accepting chemotaxis protein
flagellar motor switch protein putative ABC exporter outer membrane component
flagellar biosynthetic protein putative inner membrane protein
polyhedral body protein putative cytoplasmic protein
periplasmic glycerophosphodiester phosphodiesterase putative regulatory protein
putative chemotaxis signal transduction protein putative DNA-binding protein
lysine/cadaverine transport protein methyl-accepting chemotaxis protein I
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CHAPTER 5: THE IN VIVO EFFECT OF OXYTETRACYCLINE ON EXPRESSION

OF THE SALMONELLA TYPHIMURIUM GENES, marA, cspA, mgtC, AND slp, IN

CATTLE.

Introduction

Multi-drug resistant bacteria, including non-typhoidal salmonelloses, are

responsible for increased morbidity and mortality of infections in humans and animals

(Threlfall, 2002; Molbak, 2005; Furuya et al, 2006). Of particular concern are the use of

antibacterial agents in food animals and the possibility that such use may cause the

emergence of resistant food-borne infections in humans (Angulo et al, 2004; Mlot, 2001;

Fox, 2001; Gomez et al, 1997). The current, FDA-sanctioned, approach to minimizing

this risk is to restrict the use of antimicrobial agents in food animals to those agents not

commonly used in humans, thus preserving the susceptibility of human pathogens to

other antibacterial agents used exclusively in humans (Molbak, 2005; Furuya et al, 2006).

However, the recent discovery of multidrug resistant mechanisms, such as those encoded

by the mar regulon, has raised concerns that this approach may not be prudent. As

demonstrated by the experiments described in Chapter 4, the mar system responds to the

presence of certain antimicrobial agents and chemicals by up-regulating synthesis of

MarA protein, which in turn up-regulates genes encoding for efflux systems and down-

regulates genes encoding for porin proteins, thus creating multi-drug resistance in

response to exposure to a single chemical (Alekshun et al, 1999a, 1997, Randall et al,

2002). Therefore, it is possible that exposure to antibacterial agents routinely used in

food animals, and not in humans, could lead to multi-drug resistance against a variety of
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chemically unrelated antibacterial agents, including those used only in humans. For

example, it may be possible, considering the involvement of the mar system, to cause

resistance to fluoroquinolones (restricted use in food animals) by exposure to

oxytetracycline (commonly used in food animals).

Quinolones represent a mechanistic group of antibacterial agents considered to be

one of only a few available drug classes appropriate for use against resistant infections,

including human salmonellosis. However, several recent outbreaks of salmonelloses in

humans have led to the discovery that while ciprofloxacin and nalidixic acid are

recognized to be drugs of choice for treating resistant Salmonella infections, they are no

longer effective in all cases, due to resistance. Fluoroquinolones are not available for

widespread prophylactic use in food animals in the United States, and yet resistant, food-

borne outbreaks have still occurred (Molbak, 2005; Hsueh et al, 2004; Zansky et al,

2002; Miko et al, 2005), thus suggesting that fluoroquinolone resistance in humans may

have been caused by use of different antibacterial agents in food animals and emergence

of multi-drug resistance.

The experiments described in Chapter 4 clearly demonstrated that exposure of

Salmonella Typhimurium to oxytetracycline induced the expression of the marA gene

and concurrently caused the development of multi-drug resistance to oxytetracycline and

several other chemically unrelated antibacterial agents. However, the role of the mar

regulon has not been studied in vivo and it is possible that exposure to oxytetracycline

may also affect the expression of marA-independent mechanisms that confer antibacterial

resistance. Therefore the goal of this study was to investigate the in vivo effect of
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oxytetracycline, at low and high doses, on marA expression as well as the expression of

any other genes that may be involved in oxytetracycline-induced multi-drug resistance.

Selection of genes, other than marA, that may be involved in oxytetracycline-

induced multi-drug resistance was guided by the results of the in vitro microarray

experiment described in Chapter 4. This experiment compared Salmonella Typhimurium

cultured in the absence of antibacterial agents with bacteria grown in broth with 2 ug/ml

oxytetracycline. The genes selected, cspA, mgtC, and slp, encode for a cold shock

protein, a magnesium transport protein and a starvation-induced outer membrane protein,

respectively.

The cold shock protein, CspA, has been found to increase resistance in several

bacteria, including Staphylococcus aureus and Salmonella enterica serovar Enteritidis

(Katzif et al, 2003; Mangalappalli-Illathu et al, 2006). The magnesium transport protein,

MgtC, is up regulated to support intracellular growth of bacteria, and in conditions of low

magnesium concentration (Rang et al, 2007). Oxytetracycline chelates magnesium to

gain entry into the bacterial cell as well as to bind to the ribosomal subunit. Magnesium

bound to oxytetracycline would not be available to the bacterium, unless mgtC is up-

regulated (Chopra et al, 2001). The starvation-induced outer membrane protein, Slp, has

been found to down-regulate in the presence of antibiotic and possibly in response to mar

expression (Price et al, 2000). However, our experiments demonstrated an increase in the

expression of this protein in response to oxytetracycline in vitro.

The in vivo model selected for this study was a bovine soft-tissue infection model,

established by inoculation of tissue chambers implanted subcutaneously in cattle (Clarke

et al, 1989, 1996). These chambers form an abscess like environment, where immune
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cells and drugs can enter and exit, but the infectious agent, in this case Salmonella, is

primarily confined to the chamber. Implantation of several chambers in each animal

allowed collection of multiple samples over a period of several days, thus minimizing the

number of animals needed. Furthermore, Salmonella bacteria could be harvested without

being contaminated with other enteric bacterial organisms.

Materials and Methods

Animals

Nine cross-bred calves were obtained from local sources. Shortly after arrival,

calves were confirmed to be healthy by physical examination and housed in outdoor pens.

They were fed free choice prairie grass hay and a commercial grain ration containing

14% protein. Health was monitored daily by assessing rumen fill, attitude, respiratory

function, and rectal temperature. The study protocol was approved by the Oklahoma

State University Institutional Animal Care Use Committee and the Biosafety Committee.

At the conclusion of each experiment, cattle were euthanized by pentobarbital overdose,

after initial sedation with IM xylazine. Chambers were removed and incinerated, and

cattle were disposed of according to approved biosafety protocols.

Implantation of tissue chambers

Tissue chambers were constructed of Delrin, a non-reactive thermoplastic

(Delrin®, EI du Pont de Nemours & Co, Wilmington, DE), and the top of each chamber

was covered with a medical-grade, silicon-dacron elastomer (Technical Products,
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Decatur, GA) to allow percutaneous collection of samples. Chambers measured 4.6 cm

internal diameter, 5.2 cm outer diameter, and 1.5 cm in depth. Chambers were

assembled, autoclaved and surgically implanted, as previously described (Clarke et al,

1989, 1996). Each calf had 2 tissue chambers implanted subcutaneously in each

paralumbar fossa for a total of 4 chambers per calf. Implanted chambers were allowed to

heal for several months and then checked for sterility by culturing an aspirate of chamber

fluid aerobically and anaerobically; all chambers determined to be infected were removed

prior to inoculation.

Preparation of inocula

Chambers were inoculated with an ATCC strain of Salmonella enterica serovar

Typhimurium LT2 (ATCC 700720). The minimum inhibitory concentration for

oxytetracycline against this isolate was determined to be 2.0 µg/ml. Salmonella

Typhimurium isolates were initially streaked for purity and then cultured for 5 hours

(mid-log phase) in LB Miller broth. Thereafter, the culture was centrifuged at 9800g for

15 minutes to pellet the cells, the supernatant was removed and the cells were

resuspended in phosphate buffered saline (PBS) to the concentration of bacteria required

for each experiment.

Experimental design

Cattle were moved to an indoor BSL-2 facility 2 days prior to inoculation to allow

time acclimatization. Chambers were sampled prior to inoculation to confirm sterility.

Chambers were then inoculated with Salmonella Typhimurium and tissue chamber fluid
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was collected periodically, according to the protocol for each experiment. Samples were

analyzed for determination of bacterial concentration (CFU/ml) and oxytetracycline

activity (in treated cattle), and RNA was extracted for RT-qPCR analysis of gene

expression.

The first experiment involved two calves (#52 and #33). The Salmonella

Typhimurium inoculum was diluted in PBS to a concentration of 6.25 x 106 CFU/ml and

1 ml was injected into each of the chambers. Chambers were sampled immediately

following inoculation, and then at 5 and 24 hours post inoculation. Starting 24 hours after

inoculation, one calf (#52) was administered 2 IV doses (20 mg/kg) of oxytetracycline

(LA200®, Pfizer), 24 hours apart. The other calf (#33) received one IM dose of

oxytetracycline (10 mg/kg) 24 hours after chamber inoculation. Samples were collected

every 12 hours for 10 days and analyzed for bacterial and oxytetracycline concentration.

Samples for RNA extraction were collected immediately prior to oxytetracycline

treatment and at 2, 5 and 10 days post-treatment.

In the second experiment, all chambers in 2 calves (#34 and #67) were inoculated

with a higher concentration of bacteria, 2.75 x 1010 CFU/ml in 1 ml, to provide more

mRNA for extraction and analysis. Samples for determination of bacterial concentration

were collected at 5 and 24 hours post inoculation. At 24 hours post inoculation, cattle

were treated with oxytetracycline: one calf (#67) received 20 mg/kg, IV, twice, 24 hours

apart; and the other calf (#34) received one IM dose of 10 mg/kg. Samples were then

collected on days 1, 2, 3, 4, 5, 7, 11 and 17 post-treatment and analyzed for bacterial and

oxytetracycline concentration. Samples for RNA extraction were collected before

administration of oxytetracycline and on days 1, 4, 7, 11 and 17, post treatment.
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The third experiment was conducted using five calves (#78, #3, #18, #20, and

#11). Each chamber in all calves was inoculated with 1 ml containing ~6 x 109 CFU of

Salmonella Typhimurium. Samples were collected immediately post inoculation and at

1, 2, 3, 4, 5, 6, 7, 8, and 9 days after inoculation for determination of bacterial

concentration. Twenty-four hours after inoculation, chambers were sampled for RNA

extraction. Cattle were then treated with oxytetracycline: Two cattle (#78 and #3)

received one IM injection of 10 mg/kg; two cattle (#18 and #20) received two IV doses of

20 mg/kg, 24 hours apart and one animal (#11) served as a negative control and received

no oxytetracycline. Samples collected at 1, 2, 3, 4, 5, 6, 7, and 8 days after the initial

treatment day were analyzed for the concentration of oxytetracycline. Samples were also

collected at 1, 2, 3, 4, 6, and 8 days after initial treatment for bacterial RNA extraction.

Sample analysis

Samples (0.5 ml) for determination of CFU/ml were immediately placed on ice

and analyzed using spot plate counts on LB Miller agar plates, after serial dilution in

PBS.

Oxytetracycline concentrations in samples (0.5 ml) were determined by bioassay,

using the methods described in Chapter 4.

RNA extraction in preparation for analysis of gene expression proved to be very

challenging due to the low numbers of bacteria within the chambers, particularly in

animals receiving higher doses of oxytetracycline, and the interference of eukaryotic

cells. Several protocols were tested on in vitro cultures to determine the most effective

method of extraction. Protocols tested included the Qiagen RNeasy® (Valencia, CA) and
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Ambion Ribopure® (Austin, TX) kits, a hot phenol protocol designed for intracellular

pathogens and a modified hot phenol method used in the in vitro experiments described

in Chapter 4, respectively. Initially, Salmonella was grown in vitro to a concentration of

~1x108 CFU/ml and diluted to 107, 106, 105, 104, and 103 CFU/ml. These dilutions were

then extracted using all of the protocols listed above. Based on these results, the hot

phenol and the modified hot phenol methods were selected for further testing using tissue

chamber fluid infected with Salmonella Typhimurium. Ultimately, the modified hot

phenol method (Naikare et al, 2006; Stintzi et al, 2003) was determined to yield the best

results and was selected for extraction of in vivo samples (10 ml) collected from tissue

chambers.

Assessment of gene expression

The RT-qPCR primer and probe sets were designed using Primer Express®

software. Eurogentec® one-step RT-qPCR MasterMix Plus kits were used, following the

supplied protocol. All the RT-qPCR reactions were performed on an ABI Prism 7700

Sequence detector®. A comparative analysis was used, assuming the 16s gene

(normalizing gene) was maximally expressed in all conditions. The ddCt method was

used for data analysis to determine the fold differences in level of expression (Applied

Biosystems, 2001). Standard deviations were used to determine statistical significance

between fold differences.

The primary purpose of these experiments was to study the effect oxytetracycline

on marA expression. Therefore, in the first and second cattle experiments, only marA

was studied due to the limited amount of RNA collected and extracted from the samples.
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Fortunately, the third experiment yielded much larger quantities of RNA due to

optimization of the experimental protocol. This success allowed investigation of several

other genes of interest, which were selected for further study based on the results of the in

vitro microarray data described in Chapter 4. These genes encode for the cold shock

protein (STM 3649), the magnesium transport protein (STM 3764), and the starvation

outer membrane protein (STM 1819).

Results

The first experiment served as a pilot study to optimize methods and procedures.

Figure 11 describes the changes in chamber fluid CFU/ml for Salmonella Typhimurium

in both the IV- and IM-treated cattle. While the concentration of bacteria in the

oxytetracycline IV-treated calf decreased dramatically to approximately 100 CFU/ml, the

infection was not sterilized and bacterial numbers eventually rebounded to a final

concentration very similar to that seen in the IM-treated calf. The bacterial numbers

produced by the inoculation employed in this first experiment were insufficient to support

expression analysis of more than one gene, thus necessitating a change in protocol in

subsequent experiments. Bioassay of oxytetracycline activity (Figure 12) indicated a

large difference in oxytetracycline concentrations between the IV- and IM-treated calves.

These results explain the sudden decrease in the number of bacterial cells at

approximately the same time as the second spike in oxytetracycline concentration after

administration of the 20 mg/kg dose. The IM treatment produced a much lower peak

concentration of approximately 1 ug/ml, which was lower than the MIC for the
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inoculation isolate (2 µg/ml). The IV treated calf had a peak concentration of

approximately 6 µg/ml. The RT-qPCR results indicated a slight increase in expression of

marA in the IM-treated animal at 24 hours post-treatment, followed by decreasing

expression during the rest of the sampling period. Intravenous administration of the

higher 20 mg/kg dose caused a slight increase in marA expression at 24 hours post-

treatment, but the expression of marA was much higher at 10 days post-treatment (Figure

13). This pattern of expression mirrored the changes in oxytetracycline concentration as

a function of time.

The second experiment yielded similar results to those of the first. Numbers of

bacteria in tissue chambers decreased significantly in both the IV- and IM-treated animals

(Figure 14). The CFU/ml counts in the IV-treated animal appeared to rebound a little

faster, but by the end of the experiment the bacterial numbers in IV- and IM-treated tissue

chambers were similar. In addition, the oxytetracycline bioassay results were also

similar. The large peak in concentration for the IV calf was slightly higher than that for

the IV calf in the first experiment, reaching a peak concentration of 6.7µg/ml. The IM-

treated calf had a peak concentration of approximately 0.5µg/ml, about half that observed

in the first experiment (Figure 15). Samples collected for analysis of gene expression

were used to optimize methods for RNA extraction. These efforts enabled development

and selection of procedures for analysis of multiple genes in the third experiment, but

unfortunately it was not possible to perform RT-qPCR analysis of gene expression in this

experiment.

In the third experiment, two animals received the low IM dose, two animals

received the high IV dose and one animal served as an untreated control. Bacterial
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counts in tissue chamber fluid decreased in all cattle, including in the non-treated control

animal, thus demonstrating the effect of host defenses in the absence of antibacterial

agent (Figure 16). However, all treated cattle still had lower numbers of bacteria than the

non-treated control, and those cattle treated with the higher IV dose of oxytetracycline

had lower bacterial counts than those treated with the lower IM dose. Although bacterial

counts decreased, none of the infections were sterilized. The concentration of

oxytetracycline was significantly higher in the IV-treated cattle than in the IM-treated

cattle, as expected, although there was more variation than expected between the two IV-

treated cattle (approximately 16 µg/ml and 7 µg/ml). Neither of the IM-treated cattle ever

had a concentration above 2 µg/ml (the MIC). In both the IV- and IM-treated cattle, the

concentration of oxytetracycline continued to decrease gradually through the duration of

the experiment, and even reached undetectable levels in 3 of the 4 treated cattle (Figure

17).

For this third experiment, 20 ml of infected tissue chamber fluid sample was

extracted from each of the chambers for RNA analysis. The expression of marA was

significantly increased in both the IV- and IM-treated cattle, but the fold difference in

expression was much higher in the IV-treated cattle. In both the IM- and IV-treated

cattle, one set of samples indicated an increase in expression early in the experiment

followed by a decline, while the other set did not increase until later in the experiment.

This appears to be a variation associated with the marA gene, as the other genes studied

were more consistent between the two animals for each treatment (Figures 18 and 19).

Figures 20 and 21 describe the expression of the cold shock protein, which is increased in

the IV-treated animals and more so than in the IM-treated animals, with the exception of
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the spike in expression in #78 on day 10. The fold difference in expression of this gene

was not nearly as high as that observed in the marA data. The magnesium transport

protein also had increased expression in the treated cattle (Figures 22 and 23). In this

case, the one IM–treated animal, #78, had the highest level of expression. With the

exception of this animal, the IV-treated animals had higher levels of expression, but again

not as high as the marA gene. The starvation outer membrane protein was expressed the

most in the animal that did not receive any oxytetracycline (Figures 24 and 25); none of

the other animals had any significant increase in expression.

Discussion

Oxytetracycline is not the treatment of choice for salmonelloses in humans and its

use as a prophylactic and therapeutic agent in cattle is believed, therefore, to pose little

risk with regard to promoting development of resistance of human infections to

therapeutic drugs, such as the fluoroquinolones. However, the results of the in vitro

experiments described in Chapter 4 indicated that exposure of Salmonella Typhimurium

to oxytetracycline at concentrations close to the MIC value caused the expression of

marA to increase, and that this response was correlated with increased resistance to

oxytetracycline as well as several other chemically unrelated antibacterial agents. This

observation was consistent with the hypothesis that oxytetracycline can induce expression

of the mar regulon, which regulates expression of a number of multi-drug resistant

mechanisms, including efflux pumps and outer membrane porin proteins, and that

activity of these systems can confer resistance to antibacterial agents unrelated to the
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original inducer. In an effort to test this hypothesis further, it was necessary to confirm

that exposure to oxytetracycline in vivo also caused expression of the marA gene. In

addition, it was recognized that other genes may also be involved, as suggested by the in

vitro microarray data, which implicated cspA, mgtC, and slp.

The in vitro studies described in Chapter 4 indicated that marA expression was

correlated with oxytetracycline concentration, and that the highest expression occurred at

concentrations that were 25 – 50% of the MIC. This result was potentially important

because it suggested that the tissue concentrations produced by prophylactic and

therapeutic dosage regimens may be relevant to the likelihood of resistant strains

emerging. Therefore, different doses of oxytetracycline were employed in the in vivo

experiments to investigate the effect of drug dose and resultant tissue concentrations. In

this respect, the tissue chamber model is ideally suited to the study objectives because it

provides a means of measuring the concentration of antibacterial agent in the same in

vivo location occupied by the bacterial pathogen. Close examination of the

oxytetracycline concentration-time plots (Figure 17) and the marA expression data reveal

similar correlations between drug concentration and gene expression: Significantly

increased gene expression was observed only in oxytetracycline-treated animals.

Furthermore, animals receiving the lower IM dose demonstrated expression levels that

were much lower than those produced by the higher IV dose. However, it was apparent

also that excessively high concentration had a negative impact on expression, as indicated

by the difference between responses induced by the IV dose in the two experimental

animals in the third experiment. Significant expression in calf number 18 occurred only

after the very high peak drug concentration had declined, whereas the response in calf
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number 20, which had a lower peak oxytetracycline concentration, occurred more

quickly. Interestingly, marA expression was increased substantially in the presence of

oxytetracycline that was several-fold higher than the MIC value, thus indicating a higher

resistance of the isolate in vivo than was observed in vitro. Specifically, marA was up-

regulated when the oxytetracycline concentration was between 6 and 8 µg/ml, but at

concentrations above this marA was expressed at the same level as it was in the absence

of antibacterial agent. At concentrations below the 6 – 8 µg/ml level, the expression of

marA was quite variable between animals. It can be assumed from previous studies

(Gambino et al, 1993) as well as the in vitro MIC data reported in Chapter 4, that tissue

chamber bacteria surviving oxytetracycline at concentrations higher than the MIC are

probably also multi-drug resistant.

The gene (cspA) that encodes for the cold shock protein is believed to be involved

in adaptation of Salmonella to different stressors, including exposure to antibacterial

agents (Katzif et al, 2003; Mangalappalli-Illathu et al, 2006). Expression analysis of this

gene in vivo indicated that even in the animal receiving no treatment (#11), the

expression of cspA was altered, although not to the same degree as in the treated animals.

The IV treated animals once again had a higher fold change in expression than the IM

animals, reflecting the higher concentration of oxytetracycline and its effect on the

bacterial cells. With the exception of one animal that received the lower IM dose, there

appeared to be an optimal concentration necessary for cspA expression, as confirmed by

the relative responses in the two animals receiving the high IV dose: the calf with the

lower tissue concentration had higher levels of expression that the calf with the higher

tissue concentrations.
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The magnesium transport protein (mgtC) data indicates an increase in expression

in both the IM- and IV-treated animals early in the experiment, and a subsequent

decrease as the concentration of oxytetracycline declines. The expression response was

greatest in the IM treated cattle, again suggesting a drug concentration dependency

whereby the optimal concentration is neither too high nor too low. Apparently, the mgtC

gene is sensitive to lower concentrations of oxytetracycline, which may be related to the

role of MgtC in promoting intracellular survival of Salmonella (Rang et al, 2007) and the

relative protection from effective drug concentration that the intracellular locations

provide.

The starvation outer membrane protein (slp) is normally down regulated in the

presence of antibiotic (Price et al, 2000). However, in the in vitro microarray study, this

protein was up-regulated in the presence of oxytetracycline. In contrast, the data for the

in vivo study are more consistent with previously published reports in that there was no

evidence of increased gene expression, but gene expression was significantly higher in

non-treated animals versus those that received oxytetracycline.

This preliminary in vivo study of marA, cspA, mgtC and slp, indicates that not

only are the bacteria responding to the host environment, but also to the concentration of

oxytetracycline, as expected. The up-regulation of marA is of particular concern because

this protein alone is responsible for conferring multi-drug resistance by the activation and

inhibition of so many other proteins (Gambino et al, 1993, Alekshun et al, 1997),

including those involved in efflux pumps and porins. While the present study did not

directly address the possibility of oxytetracycline exposure in food animals causing the

emergence of multi-drug resistant Salmonella Typhimurium infections in humans, it is
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clear that the up-regulation of marA and differential expression of cspA, mgtC and slp

provides strong mechanistic evidence that this is possible. Furthermore, the results

confirming the correlation between oxytetracycline concentration and gene expression

indicate that emergence of resistance may be related to drug dose, thus raising the

probability that doses could be optimized to minimize emergence of resistance.
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Figure 11. Growth curve depicting the changes in CFU concentration of Salmonella in
the tissue chamber for the first cattle experiment. The oxytetracycline IV
treated animal has a much lower bacterial cell count at 72 hours post infection,
but rebounds and does not ever reach zero.
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Figure 12. Graph depicting the bioassay results for the first cattle experiment. The IV
treated animal had a peak concentration of 6 µg/ml after the initial dose, and a
second peak at 5.5 µg/ml. Following the second peak the concentration
dropped to zero by 120 hours. The IM treated calf had an initial concentration
around 1 µg/ml that then dropped to zero by 96 hours.
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Figure 13. Graph depicting the RT-qPCR results for the first cattle experiment. Calf
number 33 received one IM dose of oxytetracycline and had a slight increase
in expression of marA at 24 hours post-drug administration and then it
declined again by 10 days. Calf number 52 received two IV doses of
oxytetracycline. The expression of marA was slightly elevated at 24 hours
post-treatment and had an even greater increase in expression at 10 days post
treatment.
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Figure 14. Growth curve depicting bacterial cell numbers for Salmonella for the second
cattle experiment. This experiment started with a higher inoculum and
therefore did not reach as low of a nadir as the first experiment. Again, the
number of bacterial cells did not reach zero.
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Figure 15. Graph depicting oxytetracycline bioassay results for the second cattle
experiment. Number 67 had two IV treatments of oxytetracycline 24 hours
apart, the peak for this calf was almost 7 µg/ml of oxytetracycline following
the second treatment. The concentration then drops sharply to zero by 168
hours. The IM treated calf (#34) had an initial concentration of less than 1
µg/ml and it stayed about this concentration until it dropped to zero at 168
hours.
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Figure 16. Growth curve depicting bacterial cell numbers for Salmonella in the third
cattle experiment. In all animals the bacterial cell counts dropped, including
calf #11 which received no treatment (NT). The IV oxytetracycline - treated
cattle (#18 and #20) had the lowest bacterial cell counts, but by 216 hours the
bacterial cell counts for all cattle had reached about the same level of
1.00E+03.
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Figure 17. Graph depicting the bioassay results for the third cattle experiment. Calf #20
had a similar pattern to the previously IV treated cattle, starting around 7
µg/ml and declining to zero by 168 hours. The IM treated cattle also had
similar patterns to those seen in the previous experiments. Calf #18 had a
peak concentration of almost 16 µg/ml, a very high concentration that did not
reach zero by 192 hours.
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Figure 18. Expression of marA gene in IV oxytetracycline - treated cattle. Calf #20
started with a high level of expression of marA that gradually decreased as the
concentration decreased. Calf #18 had a low concentration that peaked at
around 96 hours, decreased at 144 hours and then increased again at 216
hours. The no-treatment control (NT) had no significant change in
expression. The columns represent the mean fold difference plus and minus
the standard deviation based on the RT-qPCR analyses done in duplicate.
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Figure 19. Expression of marA in oxytetracycline IM treated cattle. Both of the IM
treated cattle had an increase in expression of marA at 24 hours post treatment
compared to the animal receiving no treatment (#11 NT). However, at 48 and
96 hours, #3 continued to have increased expression while #78 had returned to
the same as #11. Columns represent mean fold difference plus and minus the
standard deviation based on the RT-qPCR analyses done in duplicate.
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Figure 20. Expression of STM 3469 the cold shock protein in IV oxytetracycline -
treated cattle. Calf #20 had a much larger increase in expression that #18 for
the IV treated animals even though #18 had much higher concentration of
oxytetracycline. Calf #11 (no treatment) had a significant increase in
expression at 96 hours. Columns represent mean fold difference plus and
minus the standard deviation based on the RT-qPCR analyses done in
duplicate.
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Figure 21. Expression of cold shock protein (STM 3469) in IM oxytetracycline - treated
cattle. Calf #3 had no increase in expression of the cold shock protein
throughout the experiment. Calf #78 had an increase in expression only at
216 hours. Columns represent mean fold difference plus and minus the
standard deviation based on the RT-qPCR analyses done in duplicate.
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Figure 22. Expression of STM 3764 Magnesium transport protein in IV oxytetracycline -
treated cattle. Calf #20 and calf #18 had increases in expression of the
magnesium transport protein at 24 and 48 hours compared to the calf
receiving no treatment. After 48 hours, no difference was seen. Columns
represent mean fold difference plus and minus the standard deviation based on
the RT-qPCR analyses done in duplicate.
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Figure 23. Expression of magnesium transport protein (STM 3764) in IM
oxytetracycline - treated cattle. Calf #78 had a significant increase at 24 hours
that gradually decreased throughout the experiment. Calf #3 had a slight
increase at 24 hours, but not to the same degree as #78. Columns represent
mean fold difference plus and minus the standard deviation based on the RT-
qPCR analyses done in duplicate.
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Figure 24. Expression of STM 1819 Starvation Outer Membrane Protein in IV
oxytetracycline - treated animals. The highest change in expression for this
protein was seen in the #11 calf that received no treatment. This spike was
seen at 24 hours post treatment for the treated calves. Columns represent mean
fold difference plus and minus the standard deviation based on the RT-qPCR
analyses done in duplicate.
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Figure 25. Expression of starvation outer membrane protein (STM 1819) in IM
oxytetracycline-treated cattle. The highest level of expression is again seen in
the animal that received no treatment at all, #11, at 24 hours. Columns
represent mean fold difference plus and minus the standard deviation based on
the RT-qPCR analyses done in duplicate.
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CHAPTER 6: SUMMARY AND CONCLUSIONS

The growing concern of antimicrobial resistance has led to changes in the

regulations for antibacterial drug use in both human and animal medicine. The current

strategy for preventing the spread of resistance includes utilizing antibacterial agents with

spectra of activity that narrowly target the specific etiological pathogens as opposed to

using broad-spectrum drugs, as well as limiting the use of antibacterial agents in food

animal medicine to those not used in human medicine. This approach is predicated on

the understanding that exposure to one antibacterial agent will not lead to emergence of

resistance to other mechanistic classes of agents. However, this strategy does not take

into account the involvement of multi-drug resistance mechanisms, such as the mar

regulon, that may be induced by exposure to one agent and then confer phenotypic

resistance to many different chemical classes of antibacterial agents.

The discovery of the mar system in Salmonella brought into question the wisdom

of current regulatory measures (Sulavik et al, 1997). Salmonella is a common food-

borne pathogen of humans that frequently requires the use of antibiotic for treatment

(CDC 2005). Recent outbreaks of multi-drug resistant Salmonella infections have placed

the use of antimicrobials in food animals under even more scrutiny (Hseuh et al, 2004;

Zansky et al, 2002). Isolates resistant to the fluoroquinolones are of particular concern as

this mechanistic group is considered the last line of defense for treatment of Salmonella

in humans (Molbak, 2005).

In summary, the results of the present study indicated that expression of marA in

Salmonella Typhimurium could be induced by oxytetracycline, in contrast to the
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conclusions of a previously published report (Randall et al, 2002). Furthermore,

exposure of Salmonella Typhimurium to oxytetracycline produces a concentration-

dependent response whereby expression is maximized when concentrations are neither

too high nor too low. Depending on whether such exposure occurs in an in vitro or in

vivo environment, maximal expression generally occurs at concentrations 0.25 – 0.5

times or 3 – 4 times the MIC value, respectively. This observation suggests that dosage

regimens for oxytetracycline in cattle could be optimized to minimize expression of the

mar regulon and any resultant emergence of resistance. Finally, oxytetracycline-induced

increase in marA expression was correlated with increased resistance of oxytetracycline

and several other mechanistically unrelated antibacterial agents in vitro and survival of

the bacterium in vivo, thus presenting strong circumstantial evidence in support of the

underlying project hypothesis; that the prevalence of bacteria that are antibiotic resistant

due to the expression of multidrug resistance systems increases when cattle are

administered prophylactic antibiotics and that the wide substrate specificity of these

systems confers resistance not only to antibiotics used prophylactically but also to

antibiotics used therapeutically in cattle and human consumers of contaminated beef

products. Although the results of the in vitro study failed to identify development of

fluoroquinolone resistance in response to oxytetracycline exposure, previously published

research (Cohen et al, 1989) reported that use of tetracycline antibiotics did lead to

fluoroquinolone resistance in E. coli, so there is still a possibility that this could occur in

Salmonella under different experimental conditions.

Obviously, further studies are needed to confirm that oxytetracycline-induced

expression of marA is directly responsible for development of multi-drug resistance, and
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that this resistance can be transferred to consumers of beef products. The factors relevant

to this possibility clearly are very complex, as is illustrated by the possible involvement

of the three other genes (cspA, mgtC and slp) identified in the in vitro study and

investigated in the in vivo study.

An unexpected finding of the current research project is that in vitro incubation of

Salmonella Typhimurium in liquid media containing oxytetracycline at or higher than the

MIC inhibits growth for at least 18 hours, but that with longer incubation the bacterium

will replicate exponentially, and that this delayed growth is correlated with an increase in

resistance. This observation has important implications with respect to the interpretation

of in vitro sensitivity data (these usually are derived from 18-hour cultures) and may

explain why bacterial isolates classified as being intermediately susceptible may not

respond favorably to therapeutic doses designed only to achieve tissue concentrations that

barely exceed the MIC.
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