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ABSTRACT: Environmental flows are important for the conservation of stream biota.  

Although a range of flows are necessary for the persistence of aquatic species, minimum flow 

standards are often the most basic component.  The objectives of this study were to determine the 

effects of low flows on habitat availability, habitat connectivity, and water temperature and assess 

the consequences to stream fish.  Stream drying disproportionately affects shallow-water habitat 

availability in streams.  Using a wetted-area approach, I found backwaters, riffles, and runs 

experienced the greatest loss of area in this study with decreasing discharge.  Fish assemblage 

relationships with channel units were quantified using ordinations.  Shallow-water channel units 

(i.e., riffles, runs, vegetated edgewaters) structured much of the fish assemblage in Barren Fork 

Creek, particularly benthic fishes.  Additional fluvial specialists (e.g., cardinal shiner) were found 

in the Illinois and Flint Creek and related to higher-velocity habitats.  Diel shifts in habitat use 

were observed in all streams suggesting connectivity between channel units to be important for 

fish.  Continuous recaptures over about 50 days of four PIT-tagged species in Flint Creek were 

analyzed using a multistate model in MARK.  I found survival probabilities of cardinal shiner and 

orangethroat darter were related to daily discharge.  More importantly, transition probabilities 

were related to daily discharge for three species (i.e., cardinal shiner, orangethroat darter, and 

slender madtom).  Transition probabilities were near zero at approximately 0.43 – 0.57 m
3
/s 

suggesting reduced connectivity.  Maximum mean daily water temperatures were: 31.63 ˚C and 

29.55 ˚C for the Illinois River and Flint Creek, respectively.  I used SSTEMP to model a 50% 

reduction in discharge that resulted in a 0.32 ˚C and 0.13 ˚C decrease in maximum water 

temperature in each of the two streams.  Temperature modeling of Barren Fork Creek was 

difficult to interpret because of extreme low flows.  Increasing discharge in the Illinois River and 

Flint Creek showed only minimal reductions in risk of exceeding critical thermal maximum 

(CTM) for fishes.  Flint Creek, however, appeared to offer thermal refugia for many species.  My 

results indicated a discharge of 0.57 m
3
/s was a critical threshold for functional connectivity in 

Flint Creek.  Based on channel morphology, I would expect restricted movements to occur above 

this threshold in the Barren Fork Creek and Illinois River. 
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CHAPTER I 
 

 

BACKGROUND 

 

Societies have exploited the benefits of lotic ecosystems for millennia (Naiman et al. 2002) which 

have global consequences for stream biota (e.g., Australia, Gippel & Stewardson 1995; Asia, 

Dudgeon 2000; North America, Marchetti & Moyle 2001; Europe, Hughes and Rood 2003; 

Central America, Anderson et al. 2006; South America, Barletta et al. 2010; and Africa, White et 

al. 2012).  Rivers and streams have been dammed, pumped, leveed, and channelized to meet 

industrial, agricultural, municipal, and recreational needs.  Impoundments block fish migrations 

(e.g., Dauble & Geist 2000), water abstractions eliminate spawning habitat (e.g., Falke et al. 

2010), and loss of flow variability reduces fish biodiversity (Palmer et al. 2008).  Approximately 

20% of all freshwater fishes are now threatened or endangered due to alteration and destruction of 

lotic systems (Moyle & Leidy 1992; Naiman et al. 2002). 

 Future demands on freshwater resources will increase with growing populations, 

industrialization, and changing climate (Carpenter et al. 1992, Vörösmarty et al. 2000, Gleick 

2003, Mohseni et al. 2003, Hulme 2005, Bates et al. 2008, Palmer et al. 2008, Nelson et al. 2009, 

Vaughan et al. 2009).  Global population growth and industrialization exhibit a “Mauna Loa” like 

curve (Vörösmarty et al. 2000).  As countries expand, they increase water abstractions to serve 

the needs of their burgeoning populations (Jackson et al. 2001).  Another consequence of growing 

societies is more water will be necessary to dilute increased discharge of municipal and industrial  
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wastewater (Postel et al 1996; Englert et al. 2013).  Climate change will also contribute to more 

frequent and intense periods of drought in subtropical regions (Christensen et al. 2007; Min et al. 

2011).  Due to these compounding issues, many countries will face water scarcity by 2050 (Petts 

2009). 

 In the United States, freshwater required for municipal, industrial, and agricultural uses has 

doubled since 1940 and is likely to double again by 2015 (Naiman et al. 1995).  Population 

growth continues to increase, more irrigated lands are currently in cultivation (Balmford 2005), 

and recent advances in technology (e.g., hydrologic fracturing) have increased industrial water 

use (Entrekin et al. 2011).  Water stress is particularly important to states of the High Plains 

Aquifer, where extensive abstraction will be compounded by decreased summer flows due to 

climate change (Döll & Zhang 2010).  For example, Oklahoma is expected to see a 33% increase 

in water use by 2060 which will exceed the available water supply in 67% (55 of 82) of basins 

(Oklahoma Comprehensive Water Plan, OWRB 2012). 

 Increased freshwater demands alter the natural flow regime –the “master variable” controlling 

the biological integrity of lotic ecosystems (Power et al. 1995).  Each river has a unique flow 

regime characterized by magnitude, frequency, duration, seasonal timing, and rate of change 

(Poff et al. 1997).  Lotic biota have evolved with the natural flow regime and the ability of biota 

to respond to an altered flow regime is limited (Palmer et al. 2008).  Shifts outside the natural 

range of flow variability change the biotic composition of lotic ecosystems (Anderson et al. 2006, 

Poff & Zimmerman 2010).  For example, stream abstractions can produce unseasonal low-flow 

conditions more often, for longer periods, and with more extreme variability (Smakhtin 2001).  

These extreme periods of low flow lead to water-quality degradation, loss of habitat and 

connectivity, prevent completion of life cycles, and facilitate invasion by exotic species (Meyer et 

al. 1999, Bunn & Arthington 2002). 
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 Environmental flows are legal protections for the natural flow regime that “maintain the 

components, functions, processes, and resilience of aquatic ecosystems” (Hirji et al. 2009).  

Environmental flows set target values for one or more aspects of flow regime to conserve key 

lotic ecosystem services (e.g., propagation of fish and wildlife).  Minimum flow values are 

environmental flows that set a baseline for flow magnitude to maintain aquatic habitat for stream 

biota, riparian vegetation, human recreation, or aesthetics.  During low-flow periods, minimum 

flows protect from over abstraction where loss of instream habitat is likely.  Environmental flows 

establish the ecosystem as a legitimate water user, which is a critical legal hurdle in states with 

prior-appropriation water laws (e.g., Oklahoma). 

 Currently, Oklahoma has no legally-recognized protections for streamflows.  Lotic systems 

lacking flow standards are at risk to degradation without a proposed management plan.  This does 

not necessarily mean the rivers are in immediate peril; nevertheless, a management plan that 

includes flow recommendations would be highly useful.  Unfortunately, minimum flow 

protections only refer to the amount of water protected from withdrawal (Annear et al. 2002).  

There is no guarantee that the quantity of water protected is the appropriate amount for aquatic 

organisms in the system.  In many cases, minimum flows are much lower than the average natural 

flows. 

 Appropriate environmental flows needed to support fishes and their essential habitats require 

biological information documenting these needs to support the goal of enhanced streamflows 

(Reiser et al. 1989).  Information particularly useful in supporting environmental flows is related 

to the fitness consequences of the aquatic community as a result of flow alterations.  Habitat 

requirement is defined as “environmental features necessary for the persistence of individuals or 

populations” (Rosenfeld 2003).  An understanding of the interactions between flow and habitat 

and the fitness of aquatic organisms provides an important foundation for management of water 

resources.  Without this information, we can only proceed with overly conservative strategies 
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with negative social and economic consequences (Rosenfeld 2003), or no strategy, which may 

result in the loss of aquatic biota (Dudgeon et al. 2006) and important recreational opportunities 

(Daubert & Young 1981, Loehman & Loomis 2008). 

 The goal of this study was to examine how loss of stream discharge affects shallow-water 

habitats important for the movement and survival of stream fishes.  To attain this goal, I 

established three objectives: 1) determine the discharge needed to maintain shallow-water 

habitats and their associated fish assemblage; 2) determine functional connectivity between 

channel units; and 3) examine the effects reduced flows on summer stream temperatures and the 

subsequent consequences to fishes.  The first objective identified the fish assemblage and life 

stages (i.e., juvenile or adult) most susceptible to habitat loss with declining discharge.  The 

second objective moved beyond loss of abiotic habitat to determine if biotic movements were 

affected by changing discharge.  Lastly, the third chapter examined the temperature changes 

related to multiple discharge scenarios to determine which species were most susceptible to 

stream warming and if maintaining a higher discharge would provide thermal buffering at a level 

to prevent the critical thermal maxima of fishes from being exceeded. 
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CHAPTER II 
 

 

QUANTIFYING CHANGING HABITAT AVAILABILITY OF CHANNEL UNITS 

IMPORTANT TO OZARK FISH ASSEMBLAGES 

INTRODUCTION 

Environmental flows are important for conserving stream biota against current and future threats 

of water withdrawals.  Rivers and streams are among the most endangered ecosystems on the 

planet due to anthropogenic demands for freshwater resources and the uncertainty presented by 

global climate change (Ricciardi & Rasmussen 1999).  Current agricultural, industrial, 

commercial, and municipal needs already push the limits of available freshwater (Petts 1996; 

Jackson et al. 2001) and climate change will exacerbate anthropogenic variations in the natural 

flow regime (Vörösmarty et al. 2000).  A river’s flow regime is the “master variable” controlling 

the biological integrity of lotic ecosystems (Power et al. 1995) and is characterized by the 

frequency, timing, duration, magnitude, and rate of change of flows (Poff et al. 1997).  Without 

legal protections, flow alterations will continue to diminish available habitat (Bunn & Arthington 

2002).  However, managers can protect important aspects of the natural flow regime for native 

biota by implementing ecologically-meaningful environmental flows (Acreman & Dunbar 2004). 

 Environmental flows are legally-recognized goals for streamflows that attempt to maintain or 

mimic some portion of the natural flow regime (Tharme 2003).  For example, water releases 

below dams are controlled to produce natural flood pulses for migrating fish (Savannah River, 
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Georgia and South Carolina, Richter & Thomas 2007), prevent fish stranding (Columbia and 

Kootenai rivers, British Columbia; Irvine et al. 2009), and protect riparian habitat (Roanoke 

River, North Carolina; Richter & Thomas 2007).  Although all aspects of the natural flow regime 

are ecologically important, low-flow magnitude is the most common flow consideration (e.g., 

Tallapoosa River, Alabama, Travnichek et al. 1994; multiple tributaries to the Tennessee River, 

Georgia and Tennessee, Bednarek et al. 2005; Oldman River, Alberta, Canada, Rood et al. 2005; 

Richter 2010).  Minimum flows provide limits on water abstractions seasonally or during periods 

of drought and protect against the reduction of aquatic habitat and, in extreme cases, total stream 

drying (Jowett 1997).    

 Habitat is a driving element of biological integrity (Karr & Dudley 1981), but only those 

minimum flows that protect essential habitats will effectively protect fish and other aquatic biota.  

Essential habitats are “environmental features necessary for the persistence of individuals or 

populations” (Rosenfeld 2003).  In lotic ecosystems, shallow waters are essential habitat for the 

production of macroinvertebrate prey items and the completion of the life histories of many 

stream fishes (Lobb III & Orth 1991, Aadland 1993, Brewer et al. 2006).  For example, 

invertebrate-prey production in riffles supplements entire downstream reaches (Rabeni & 

Minshall 1977).  Riffles are habitats with clean substrates and high dissolved oxygen essential for 

spawning and egg survival (Berkman & Rabeni 1987).  Other shallow-water habitats (e.g., 

edgewaters and backwaters) act as important predator refugia for juvenile fishes (Schlosser 

1987).  Unfortunately, stream drying disproportionately affects the availability of shallow-water 

habitats which makes them the most vulnerable to abstractions.  

 Biological information is the key to determine essential habitats and to define the threshold 

for fitness consequences caused by low flows.  Stream drying disproportionately affects the 

availability of shallow-water habitats which increases competition and displaces or isolates 

species into less favorable habitats (Magoulick & Kobza 2003).  However, specific information 
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related to the habitat use of the aquatic community as a result of flow alterations is needed to 

assess minimum flow requirements.  We need to know which species and age groups are using 

shallow-water habitats, both day and night, to accurately determine essential habitats.  For 

example, juvenile fishes use shallow-water habitats (Schlosser 1987), so we can anticipate lost 

discharge may disproportionately affect recruitment.  However, the threshold where shallow-

water habitats become unsuitable for fish (and the point where fitness consequences are likely) 

varies geographically by stream and biologically by species and age class.  Minimum flows 

without this supporting biological information risk not meeting the needs of aquatic biota. 

 The goal of this chapter was to provide biologically-relevant information showing the 

relationship among habitat, biota, and discharge for three Ozark Highland streams in northeast 

Oklahoma.  To achieve this goal, I had two objectives: 1) determine the relationship between 

discharge and shallow-water habitats; and 2) identify the fish assemblage using shallow-water 

habitats both day and night. 

 

METHODS 

Study Area  

The study streams are located in the Ozark Highlands ecoregion of northeastern Oklahoma, USA.  

All Ozark Highlands streams drain into the Arkansas River, the second largest tributary to the 

Mississippi River.  Mean annual precipitation in the catchment is 100 cm and mean annual 

temperature is 13
o
C (Adamski et al. 1995).  Lithology of the Ozark Highlands is mostly limestone 

and dolostone with interbedded chert (Fenneman 1938).  Natural vegetation consists primarily of 

oak-hickory forest and grasslands, but is increasingly replaced by agriculture and residential areas 

(Adamski et al. 1995, Splinter et al. 2010).  Streams in this area are typical of the Ozark 

Highlands with relatively clear flowing waters and cobble-gravel substrates. 
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 Study sites were located on the upper Illinois River and its two major tributaries, Flint Creek 

and Barren Fork Creek (Figure 1).  The State of Oklahoma has designated these waterways as 

“Scenic Rivers” which afford them special protection under the Oklahoma Scenic Rivers Act of 

1970 (82 O.S. 1451-1471).  The upper Illinois River is a 6
th
 order stream with a drainage area of 

2484 km
2
 (959 mi

2
) and mean annual discharge of 26.8 m

3
/s (946 f

3
/s).  Flint Creek is a 3

rd
 order 

tributary with a drainage area of 285 km
2
 (110 mi

2
) and mean annual discharge of 3.3 m

3
/s (118 

f
3
/s).  Barren Fork Creek is a 4

th
 order stream with a drainage area of 936 km

2
 (307 mi

2
) with a 

mean annual discharge of 9.3 m
3
/s (329 f

3
/s). 

Habitat characteristics 

Channel units (discrete morphological features formed by interactions between the stream and 

surrounding landscape at high flows; Leopold et al. 1995) represent one of several spatial scales 

in the hierarchical organization of a stream system (Frissell et al. 1986).  Channel units represent 

a scale at which many management activities in streams take place (e.g., Rabeni & Sowa 1996).  I 

classified channel units, relevant to stream-fish populations in Ozark streams (Peterson & Rabeni 

2001c), following descriptions of Rabeni & Jacobson (1993).  My approach condensed channel 

units into five major categories (i.e., riffles, runs, pools, backwaters, and vegetated edgewaters) 

because of their greater availability within the study area.  Channel units were selected 

haphazardly from each study reach. 

 Microhabitat characteristics (i.e., depth, velocity, substrate composition) were measured 

haphazard in each channel unit to verify appropriate classification.  I measured depth (0.01 m) 

with a top-set wading rod and average water-column velocity (60% depth from the surface) using 

an electromagnetic-flow meter (0.1 m/s; Marsh-McBirney, Frederick, MD).  Substrate 

composition was quantified following modified methods of Bain et al. (1985).  Briefly, a 1-m
2
 

polyvinyl chloride (PVC) frame was used to delineate a specific area in each channel unit and I 
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visually estimated the percent coverage of each of the following substrate-size classes (mm 

diameter): silt (0 - 0.4), sand (0.5 – 1.9), gravel (2 - 19), cobble (20 - 200), boulder (> 200), 

bedrock, and organic material (e.g., aquatic plants, algae, leaves, and woody debris). 

 I measured discharge at each site and on each sampling occasion using the velocity-area 

method (Gordon 2004).  To ensure accuracy of my measurements, measured discharges were 

compared to data from the nearest stream gage in Flint Creek (USGS gage #11110103), Barren 

Fork Creek (USGS gage #11110103), and the upper Illinois River (USGS gage #07196500; 

Figure 2-1). 

Wetted-area data 

I used a modification of the wetted-perimeter method to relate the surface area of individual 

channel units to discharge on Flint Creek, Barren Fork Creek, and the Illinois River.  The wetted-

perimeter method is a technique for defining minimum flows for the base-flow period of a stream 

(Annear et al. 2004).  It uses a graphical representation of wetted perimeter versus discharge as a 

surrogate for physical habitat.  Breakpoints (where there is a rapid change in perimeter) can then 

be calculated to suggest a minimum flow for each stream.  Maintaining flow above the breakpoint 

is thought to protect a stream’s food-producing capacity (HDR 2007) and carrying capacity 

(Leathe & Nelson 1986).  I used surface area instead of wetted perimeter to get more complete 

information on available habitat of individual channel units.   

 Sample discharges needed for wetted-area analyses were estimated from annual flow-

duration curves created with Indicators of Hydrologic Alteration (IHA) software (Nature 

Conservancy; Richter et al. 1996).  Flow-duration curves represent discharge as a probability of 

exceeding zero based on historical mean daily discharge and were created for each study site.  

Samples for wetted-area analyses were selected from exceedance probabilities at 10% increments 

(e.g., 90%, 80%, 70%, etc.).  I only considered flows ≤ 20% exceedance probability in the Illinois 
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River because the river is large and flows > 20% were unsafe for wading.  Further, the focus of 

the project was to identify habitat thresholds under lower-flow conditions.  At selected 

exceedance probabilities, a range of ± 10% discharge was created to allow for flexibility in field 

sampling. 

 I used global positioning system (GPS) technology to assess the changes in available channel 

unit area over multiple discharge scenarios.  Channel units were mapped as polygons by walking 

the perimeter of each channel unit with a differential GPS (Trimble model Juno SB; accuracy ± 1 

m).  This allowed channel units to be repeatedly measured quickly and accurately through time 

(Dauwalter 2006; Reinfelds et al. 2004).  Polygon data were differentially corrected in Pathfinder 

Office (Trimble software) using base station data located in Fayetteville, Arkansas (distance of 71 

km).  Wetted surface areas of each channel unit were calculated from corrected polygon data in 

ArcGIS 10.0 (ESRI, Redlands, CA). 

 Sampling events (n = 50) occurred from May 2012 to May 2013 based on discharge (Table 2-

1).  Some channel units (n = 3) were omitted from the analyses because of obvious discrepancies 

in data points (e.g., increased area at lower flows) caused by occasional low GPS accuracy.  On 

30 April 2013, preliminary USGS gage data from Barren Fork Creek at Eldon Springs was 

incorrect, so discharge measured at the site was used for the analyses.  All other discharge 

measurements used USGS gage data.  

Habitat use by fishes 

Diel habitat use by fishes in Flint Creek, Barren Fork Creek, and the Illinois River was evaluated 

by sampling shallow-water channel units during low-flow conditions in summer 2011 and 2012.  

Most of the fish sampling in 2011 was completed by the Oklahoma Water Resources Board and 

all 2012 data were collected by Oklahoma State University.  Fishes were sampled using a 1-m
2
 

quadrat sampler (Peterson & Rabeni 2001a).  The efficiency of this gear is greater than 50% in 
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channel units less than 0.5-m deep in Ozark streams (Peterson & Rabeni 2001a, Rettig 2003).  

This gear is most efficient for capturing Cyprinidae (84%) and Cottidae (80%), but less efficient 

for Percidae (54%) and Ictaluridae (31%; Peterson & Rabeni 2001a).  Overall, the quadrat 

sampler is an effective gear for sampling many small-bodied fishes, is easy to employ, and 

produces quantifiable estimates of fish densities. 

 A sampling method similar to Peterson and Rabeni (2001a) was used to collect fishes with 

the quadrat sampler.  Fish were trapped inside a 1-m
2
 netted frame by quickly lowering and 

securing the quadrat sampler to the stream bottom.  Trapped fish were “swept” downstream into 

an attached bag via natural and hand-induced flow while simultaneously disturbing the substrate 

to dislodge benthic fishes.  Captured fishes were preserved in 10% formalin and brought back to 

the laboratory for identification.  Each fish was identified to species and measured for total length 

(1.0 mm).  Each species was separated into young-of-year and adult life stages because fish often 

exhibit ontogenetic shifts in habitat use (Schlosser 1987).  Length-frequency histograms in 

combination with published length-at-age data were used to subset each species for analyses 

(Harvey 2008; Table 2-2). 

 Study sites were sampled for fishes both day and night.  Day sampling occurred during 

daylight hours (approximately 0700 to 1800).  Night sampling occurred from 2200 to 0400, but 

only at the three downstream study sites on each stream.  Night sampling followed the same 

methods described above, but because sampling conditions were more difficult, I subsampled 

each channel unit only five times.   

Analyses 

Available habitat thresholds (i.e., breakpoints) were determined using broken-line regression 

(package: segmented) of wetted area-discharge curves in R (Muggeo 2008, R Core Team 2012).  

This approach is continuous-piecewise linear where the response and explanatory variables are 
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represented by two straight lines connected at an unknown breakpoint (Muggeo 2008).  

Segmented methods have been shown to outperform other breakpoint estimations (e.g., grid 

search, Julious, and Bayesian) when regression lines are continuous (Chen et al. 2011).  I first 

created graphical representations of wetted surface area to discharge to visually estimate the 

probable breakpoints for each channel unit.  I used initial visual breakpoint estimates as starting 

values to iteratively fit broken-line models until model convergence (Muggeo 2008).  

Significance (α ≤ 0.05) of each breakpoint was tested using Davie’s test, which tests if slopes are 

significantly different on either side of the breakpoint (Muggeo 2008).  If slopes were the same, 

the wetted area-discharge relationship was considered linear with no breakpoint.  If slopes were 

different, estimates for the optimum breakpoint were provided with 90% confidence intervals.  

Mean breakpoints were then calculated for each channel unit type by study reach and stream 

because channel-unit geomorphology influences wetted-area analyses (Reinfelds et al. 2004).  I 

excluded channel units with linear relationships between area and discharge (i.e., no breakpoint) 

and all pools when averaging across all channel units for stream breakpoints.  Pools with 

significant breakpoints (n = 2) were excluded because they lost little area compared to all other 

channel units.  If the goal is to minimize habitat loss, the value for discharge at the breakpoint is 

the suggested minimum discharge (Robbins et al. 2006). 

 Fish abundances were analyzed using canonical correspondence analysis (CCA) in CANOCO 

4.5 to relate channel unit to fish-community composition.  CCAs were developed on each of the 

three streams for both day and night periods.  Each species was separated into two groups (i.e., 

young-of-year and adult) based on published length-at-age data (Table 2-2).   All species and age 

classes were included in the analyses but were square-root transformed to reduce the influence of 

the most abundant species (ter Braak 1986).  Rare species (i.e., < 1% of total catch) were included 

in analyses to preserve any species interactions but were removed from the final CCA bi-plots to 

improve interpretation.  A unimodal distribution for species-response curves (i.e., each species 
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has one optimal habitat) is assumed in CCA analyses because of zeroes in species-catch data 

(Palmer 1993).  Scaling focused on inter-species distances.  Significance (α ≤ 0.05) of canonical 

axes was tested using an unrestricted Monte-Carlo test with 9,999 permutations. 

 

RESULTS 

Habitat characteristics 

Sampled microhabitats were characteristic of channel units defined by Peterson and Rabeni 

(2001b; Figure 2-2).  Runs and pools were relatively deep channel units, and riffles, backwaters, 

and vegetated edgewaters were shallow.  Water velocities were greatest in riffles and runs 

compared to other channel units.  All channel units had predominately cobble-gravel substrates 

except for backwaters that were mostly smaller substrates and vegetated edgewaters that were 

dominated by organic material (e.g., aquatic macrophytes; Table 2-3).  For each stream, 

backwaters lost the most surface area over the range of measured discharges followed by riffles, 

runs, and then pools (Table 2-4). 

Wetted-area breakpoints 

Flint Creek, the smallest of the three streams, had a mean breakpoint (± 90% CL) at 2.12 m
3
/s ± 

0.74 based on riffle, run, and backwater channel units (Table 2-5).  Riffles began to experience a 

significant decrease in available habitat at the highest discharges (2.66 m
3
/s ± 0.83) and lost 

71.5% of their total area over the sampled discharges.  Runs had a significant loss of available 

area beginning at lower discharges than riffles (1.88 m
3
/s ± 0.76) and maintained a majority of 

their available habitat (decreasing by only 35.8%) at the lowest discharge.  However, backwaters 

had the lowest estimated breakpoint (1.23 m
3
/s ± 0.38), but lost the most available habitat 

(92.7%) over the sampling period.  Pools had no significant declines in area over the measured 



19 
 

discharges.  Available pool habitat was best described by mean area.  Flint Creek’s overall mean 

breakpoint had a flow-exceedance probability of 39% (range: 29 – 56%)—meaning daily 

discharges were above the breakpoint 39% of the time (Table 2-6).  Compared to flow records 

from August (the month with the lowest discharge), daily discharges were above the mean 

breakpoint only 9% of the time and ranged from 5% to 23%.   

 Barren Fork Creek had a mean breakpoint (± 90% CL) at 7.39 m
3
/s ± 4.12 based on upstream 

(8.42 m
3
/s ± 5.13) and downstream (6.06 m

3
/s ± 2.82) study reaches (Table 2-7).  Backwaters 

were the most sensitive to habitat loss (breakpoint at 9.87 m
3
/s ± 5.87) and had the greatest loss of 

total area (93.1%) over the sampled discharges.  In one backwater, the relationship of wetted 

area-discharge was linear (r
2
 = 0.98) and it lost 44% of its maximum measured habitat at the 

mean breakpoint for this habitat type.  Runs (6.94 m
3
/s ± 3.48) and riffles (6.71 m

3
/s ± 3.92) had 

breakpoints considerably lower (~3 m
3
/s) than backwaters.  Run and riffle breakpoints were 

similar, but riffles lost 20% more of their total habitat than runs at the lowest discharge (71.2% 

versus 51.2%, respectively).  Three pools showed linear (r
2
 = 0.90; r

2
 = 0.77, r

2
 = 0.66) 

relationships between area and discharge; however, no more than 25% of maximum wetted area 

was lost over the measured discharges.  Two additional pools had no significant relationships 

between area and discharge and were best described by their means (Table 2-7).  Barren Fork 

Creek’s overall mean breakpoint was exceeded by 30% of the historic daily flows and ranged 

from 19% to 52% exceedance (Table 2-6).  For August, daily flows exceeded the breakpoint only 

4% of the time (range: 2% - 13%). 

 The Illinois River, the largest of the three streams, had the highest mean breakpoint (± 90% 

CL) of 10.36 m
3
/s ± 5.09 based on the average of upstream (11.05 m

3
/s ± 4.09) and downstream 

(7.67 m
3
/s ± 2.27) reaches (Table 2-8).  Backwaters had the highest breakpoint (11.59 m

3
/s ± 

5.40) and lost the greatest amount of total area (76.6%).  Two of these habitats effectively lost 

their entire available habitat (99.3% and 99.9%).  Two additional backwaters lost habitat linearly 
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(r
2
= 0.96, r

2
 = 0.96) and decreased by 60% and 49% at the mean breakpoint for this habitat type.  

Riffles experienced a significant loss of area at 9.99 m
3
/s ± 2.80 m

3
/s and lost 76.4% of their total 

available habitat.  A single riffle had a linear relationship between area and discharge (r
2
 = 0.96), 

but never lost more than 27% of its total available habitat at the lowest discharge.  This particular 

channel unit lost only 21% of the total area at the mean breakpoint for riffles.  The persistence of 

this single riffle appeared to be an exception because two other riffles dried completely and a 

third lost 99.6% of its area.  Only one run had a significant breakpoint (8.53 m
3
/s ± 1.42) and it 

lost only 18.2% of its total area at the lowest sampled discharge.  All runs combined lost a little 

over half of their total area (51.2%).  Four runs had linear relationships between area and 

discharge (r
2
 = 0.60; r

2
 = 0.93; r

2
 = 0.92; r

2
 = 0.89) and lost 20%, 26 %, 38%, and 43% of 

available habitat, respectively, at the mean breakpoint for this habitat type.  Interestingly, the 

Illinois River had two pools with significant breakpoints (mean of 5.72 m
3
/s ± 2.14).  One 

additional pool had a linear relationship (r
2
 = 0.78) and lost 27% of its total available habitat and 

another pool was best described by its mean area.  Daily flow records in the Illinois River 

exceeded the mean breakpoint more than half of the time (56%) and ranged from 42% at the 

upper limit to 80% at the lower limit (Table 2-6).  In August, flow exceedance at the breakpoint 

dropped to 22% at the mean (range: 10% - 58%). 

Habitat use by fishes 

A total of 6,474 fish representing 34 species was collected from 162 channel units (1,278 

subsamples) during summer 2011 and 2012 (Table 2-9).  The most abundant species (89% of 

catch) were: slender madtom Noturus exilis (1,258), Ozark minnow Notropis nubilus (914), 

western mosquitofish Gambusia affinis (900), central stoneroller Compostoma anomalum (894), 

orangethroat darter Etheostoma spectabile (634), cardinal shiner Luxilus cardinalis (601), and 

banded darter Etheostoma zonale (560).  The other 27 species comprised the remaining 11% of 

the total catch (Table 2-9).  A majority of the catch was adult fishes (79%).   
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 Fish assemblages and densities differed by stream and sampling period.  Species diversity 

was greatest in the Illinois River (29 species) compared to Barren Fork Creek (23 species) and 

Flint Creek (18 species); however, mean fish densities were greater in Barren Fork Creek (7.3 

fish/m
2
) than the Illinois River (6.5 fish/m

2
) and Flint Creek (4.1 fish/m

2
; Table 2-10).  The most 

abundant groups in shallow-water habitats of the Illinois River were minnows (e.g., central 

stoneroller, Ozark minnow, and cardinal shiner), darters (e.g., banded darter and orangethroat 

darter), and topminnows (Table 2-10).  Samples from Barren Fork Creek had the only 

occurrences of suckermouth minnow Phenacobius mirabilis and yellow bullhead Amerius natalis; 

however, overall densities were dominated by slender madtom (3.0 fish/m
2
).  The less diverse 

Flint Creek had the only occurrences of northern studfish Fundulus catenatus and southern 

redbelly dace Phoxinus erthrogaster.  The most abundant species in Flint Creek were western 

mosquitofish, slender madtom, and orangethroat darter (Table 2-10).  Day sampling resulted in 

higher diversity (32 species) than night sampling (23 species); however, overall fish densities 

were similar (6.1 fish/m
2
 for day and 5.8 fish/m

2
 for night).  A few species varied markedly in 

overall densities between diel periods.  Ozark minnows had the greatest change in densities 

between periods from a day density of 1.1 fish/m
2
 to 0.3 fish/m

2
 at night.  Slender madtom 

densities increased at night by 0.8 fish/m
2
.  Central stoneroller, sunburst darter Etheostoma 

mihileze, and 10 others also had slightly higher densities at night.   

  Ordination results for the CCA based on daytime collections (hereafter referred to as ‘day 

CCA’) in Flint Creek were significant for the first and all canonical axes, whereas results from 

night CCA indicated all axes combined were significant, but the first axis was not (Table 2-11).  

All axes combined explained 23% of the variation for day samples and 39% for nighttime 

samples.  The first two CCA axes explained the most variation in species dispersion and 

represented the strongest environmental gradients.  The first axis of the daytime CCA was 

positively associated with higher-velocity channel units (i.e. riffles and runs; Table 2-12).  
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Conversely, the same axis was negatively associated with slackwater habitats.  The second day 

axis appeared to be a gradient from exposed habitats (i.e., pools, runs, backwaters) to habitats 

with more available cover (i.e., vegetated edgewaters and riffles).  I used the night CCA to 

interpret overall patterns of species and channel-units associations, but I did not interpret 

individual axes because of lack of significance of the first axis.   

 Species in Flint Creek were distributed along these environmental gradients and associated 

with particular channel units (Figure 2-3).  The day CCA for Flint Creek indicated benthic species 

(e.g., adult banded darter, adult banded sculpin, and both ages of slender madtom) and fluvial 

minnows (e.g., adult cardinal shiner, and young-of-year central stoneroller) were positively 

associated with riffles and runs along the first environmental axis (Figure 2-3).  Adult sunburst 

darter and all ages of western mosquitofish were negatively associated with the first day axis.  

Channel-unit associations remained the same at night except for a shift to backwaters by young-

of-year central stoneroller and young-of-year slender madtom.   Distributed along the second day 

axis were benthic-fluvial species (e.g., banded darter and banded sculpin Cottus carolinae) and 

young-of-year cardinal shiner.  Some species appeared to use all habitats during the day (e.g., 

adult Ozark minnow and adult orangethroat darter) but were more habitat specific at night.  Diel 

shifts were observed for adult sunburst darters from backwater habitats to pools.   

 Ordination results for both periods in Barren Fork Creek were significant for the first and all 

canonical axes (Table 2-13).  All axes combined for the night period explained nearly twice the 

variation (48%) as the day period (24%).  The day CCA indicated the first environmental axis 

was positively related to the most shallow channel units: riffles, vegetated edgewaters and runs 

(Table 2-14).  The same axis was negatively related to slackwater channel units: pools and 

backwaters.  Conversely, the second axis appeared to be primarily related to the dominance of 

macrophyte cover in vegetated edgewaters.  Unlike the day CCA, the first environmental axis of 

the CCA based on nighttime collections appeared to be associated with water velocity (i.e., 
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positively related to slackwater channel units) whereas the second axis appeared to be related to 

water depth (i.e., positively related to pools). 

 In Barren Fork Creek, the first environmental axis of the day CCA was positively associated 

with benthic species (e.g., adult banded sculpin and adult banded darter), but negatively 

associated with slackwater species (e.g., all ages of western mosquitofish) and minnows (e.g., 

adult Ozark minnows and adult carmine shiners Notropis percobromus; Figure 2-3).  At night, 

these species had similar distributions along the first environmental axis and maintained the same 

channel unit associations.  The second axis of the day CCA was strongly associated with young-

of-year fishes (e.g., Ozark minnow and cardinal shiner) and adult longear sunfish Lepomis 

megalotis; however, these species were not collected at night.  The second axis of the night CCA 

was instead associated with adult Ozark minnow and adult sunburst darter.  Adult sunburst darter 

shifted from using backwaters during the day to pools at night.  ‘No fish’ samples were strongly 

associated with pools during the day and backwaters at night. 

 The Illinois River results for the first and all axes were significant for both periods (Table 2-

15).  All axes combined explained 37% of the total variation at night—more than twice that of 

day (15%).  The environmental gradient along the first axis in the day CCA appeared to be related 

to water velocity and was positively correlated with riffles and runs (Table 2-16).  The same axis 

was negatively correlated with slackwater habitats.  Similarly, the night CCA indicated the first 

axis was positively related to higher water velocities.  The second axis in the day CCA was 

positively correlated with more open habitats.  However, the same axis in the night CCA was 

related to water depth. 

 Species groups from daytime samples in the Illinois River had strong habitat associations 

along the first axis including: benthic species, minnows, sunfish, and top minnows (Figure 2-3).  

As expected, many benthic species (e.g., adult banded darter and both age classes of slender 
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madtom) were associated with riffles and runs.  Conversely, minnows (e.g., both age classes of 

Ozark minnow), adult longear sunfish, and both age classes of western mosquitofish were 

associated with backwater habitats.  At night, these species maintained their distributions along 

the first environmental axis and their associated channel units; however, adult longear sunfish 

shifted from pools and backwaters during the day to faster moving water at night (e.g., runs).  The 

only species and life stage strongly distributed along the second day axis was young-of-year 

carmine shiner and it was not observed at night.  The second night axis revealed shifts in habitat 

use for adult cardinal shiner toward relatively deeper habitats (e.g., pools and runs).  Additionally, 

adult orangethroat darter appeared to move out of swifter waters and into backwaters at night.  

During the day, ‘no fish’ samples were more associated with relatively deeper habitats, perhaps 

an indication of my gear bias to shallower water.   

 

DISCUSSION 

My results suggest backwater and riffle habitat availability were the most sensitive to changing 

discharge conditions.  Backwaters are shallow, depositional habitats that are often disconnected 

from the main flow at baseflows (Rabeni & Jacobson 1993).  Peterson and Rabeni (2001b) found 

backwaters to be only 2 – 3% of total surface area in Ozark streams.  These relatively small, off-

channel habitats were more susceptible to desiccation than main-channel habitats even when 

depths were similar; so it is not surprising that their breakpoint were higher than other channel 

units (e.g., riffles).  Flint Creek backwaters were the only exception (likely due to a low sample 

size).  Riffles also lost considerable habitat and even dried completely at low flows, but tended to 

persist longer than backwaters.  Expectedly, runs and pools maintained the most available habitat 

and were the least sensitive to low flows.  Only those pools with extensive shallow edgewaters 

(e.g., Illinois River) had significant breakpoints, but habitat loss remained small relative to total 
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area.  Vegetated edgewaters had shallow mean depths and long sloping margins suggesting high 

rate of habitat a loss.  My findings were similar to others studies that found riffles to be sensitive 

habitats to lost discharge (Aadland 1993); however, backwaters were not one of the habitats 

considered using the wetted-perimeter approach.  Common techniques to estimate minimum 

flows use field observations only at riffles to determine the relationship of available habitat to 

discharge (e.g., Annear 1984; Gippel & Stewardson 1998; Reinfelds 2004).  My results suggest 

minimum flow estimates would benefit from consideration of multiple channel units, particularly 

those known to be important for macroinvertebrate food production (e.g., riffles, Whitledge & 

Rabeni 2000), juvenile rearing (this study), or spawning habitat (e.g., riffles, Brewer et al. 2006). 

 Despite extensive habitat loss at low flows, shallow-water channel units were important 

summer habitats for stream fishes.  Backwaters were previously not considered essential habitats 

because they were ‘off channel’ and did not affect overall stream connectivity (Gippel & 

Stewardson 1998).  However, I found backwaters were used by young-of-year of multiple species 

(e.g., young of year longear sunfish, orangethroat darter, and wedgespot shiner Notropis greenei).  

Backwaters provide rearing habitats for young-of-year fishes avoiding high flows (Moore & 

Gregory 1988) and escaping predation (Schlosser 1987).  Vegetated edgewaters also provide 

rearing habitat for young-of-year species (Lobb & Orth 1991; Rabeni & Jacobson 1993; Peterson 

& Rabeni 2001c).  Macrophytes add habitat complexity that protects juvenile fishes from 

predation and provides more surface area for forage production (Persson & Eklov 1995).  My 

data showed vegetated edgewaters were used by young-of-year rock bass Ambloplites rupestris—

an important sport fish.  As anticipated, riffles were associated with benthic species including: 

multiple darters, slender madtom, and banded sculpin.  High-velocity flows and larger substrates 

provided plenty of cover for these benthic fishes (Rabeni & Jacobson 1993).  Interstitial spaces 

also provided abundant surface area for growth of periphyton and macroinvertebrates, making 

riffle important sites for primary and secondary production (Allan & Castillo 1995; Whitledge & 
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Rabeni 2000; Brewer et al. 2009).  Runs and pools were deeper-water habitats that never dried 

completely.  However, loss of shallow edgewaters around runs and pools could affect the young-

of-year of species that occupy these habitats.  For example, loss of shallow edgewaters forced fish 

into deeper habitats and increased mortality in age-0 salmonids, presumably because of increased 

individual susceptibility to predation (Riley et al. 2009).  By understanding species habitat use, 

we can better predict the response of the fish assemblage to stream drying.   

 Documenting fish shifts among channel units also suggests transitioning between habitats is 

important to the ecology of these species.  Stream fishes use specific habitats that vary with 

season and diel period (Matheney & Rabeni 1995; Brewer & Rabeni 2008).  Diel shifts in habitat 

use are likely related to predator-prey interactions (Kwak et al. 1992) that affect species activity 

levels (e.g., drift, Brewer & Rabeni 2008).  The most interesting diel shifts were associated with 

movements between backwaters and other channel units (e.g., adult sunburst darter and adult 

orangethroat darter).  Adult fish likely transitioned between habitats to access better foraging 

habitats at night (Worischka et al. 2012).  For example, invertebrate prey activity peaked in 

shallow-water habitats at night particularly when prey abundances were high (Culp & Scrimgeour 

1993; Railsback et al. 2005).  Increased nocturnal drift also increased the accumulation of 

macroinvertebrates in depositional habitats (e.g., pools, Schram et al. 1998) that were then 

exploited by resident species (David et al. 2007).  Predation also influences fish habitat use (e.g., 

Schlosser 1988; Kadye & Booth 2014).  At night, predation risk from terrestrial (Harvey & 

Nakomoto 2013) and aquatic (Johnson & Dropkin 1993) piscivores is reduced which may open 

previously restricted habitats to prey fishes.  Juvenile species also moved to backwater habitats at 

night (e.g., central stoneroller and slender madtom).  Juvenile fish reduced activity at night and 

moved into resting habitats to conserve energy (Bonneau & Scarnecchia 1998; Railsback et al. 

2005).  Fish activity levels may be related to other observed patterns.  For example, densities of 

slender madtom increased during night sampling and may be an artifact of increased 
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susceptibility to my gear as they actively forage (Brewer & Rabeni 2008).  Interestingly, 

variations in fish abundances were better explained by channel units at night than during the day.   

This suggests the overall fish assemblage exhibited more continuous movements between habitats 

during the day and more static habitat use at night, potentially when more diurnal species are 

resting (Reebs 2002).  Regardless of the reasons, documenting fish movements between different 

channel units highlights the need to maintain habitat connectivity during summer low flows for 

all life stages.   

 Breakpoint estimates, in many cases, were higher than would be expected for a minimal flow 

designation because of some bias in the wetted-area approach.  This is especially true during low-

flow periods (e.g., August) where daily flows rarely approached the estimated breakpoint in each 

stream.  Some bias is caused by variations in stream geomorphology, which resulted in higher 

breakpoint estimates for small streams and lower estimates for large streams (Annear & Conder 

1984; Jowett 1997).  Breakpoint estimates for Flint Creek, Barren Fork Creek, and the Illinois 

River increased predictably with stream order and upstream reaches had higher breakpoint 

estimates than downstream reaches.  According to the river continuum concept, a stream becomes 

wider and deeper as it continues downstream (Vannote et al. 1980).  Therefore, downstream 

reaches have greater storage capacity and are less sensitive to changes in discharge.  Conversely, 

upstream reaches require a greater proportion of mean flow to maintain habitat and are more 

sensitive to changes in discharge (Jowett 1997).  Channel braiding (e.g., Barren Fork Creek) can 

also introduce an upward bias because flow is dissipated laterally (Jowett 1997).  Most likely, the 

upward bias was due to the breakpoint definition.  The definition states: habitat-discharge 

breakpoints are the minimum flow needed to keep habitats full to the base of their banks (Jowett 

1997).  This level of optimal habitat is not naturally occurring during periods of low flow.  

Habitat losses are part of these systems’ natural flow regimes and are a condition to which native 

species have evolved (Ward & Stanford 1983; Resh et al. 1988; Lake 2003).  My breakpoint 
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estimates are best viewed as the ideal situation and minimum flow expectations would gain most 

by focusing between the lower confidence bands of these estimates and the discharges where 

available habitat is drastically reduced.  Further, a follow-up analysis that examines the frequency 

of these occurrences, by season, would also be insightful. 

 Determining breakpoints by channel unit using the methods used in this study is an 

informative approach to minimum flow estimation because suggested flows are relevant to fish, 

can target particular habitats, can be seasonal adjusted, and outcomes can be continuously 

monitored.  Traditional wetted-perimeter approaches (e.g., Gippel & Stewardson 1998; Annear & 

Conder 1984; Reinfelds et al. 2004) assume riffles are the most sensitive to discharge and 

minimum flows based on riffles are satisfactory for the entire system.  Results from this study 

suggest riffle breakpoints do not adequately protect all habitats and estimated breakpoints from 

multiple habitats would be beneficial.  Understanding habitat loss by channel unit allows seasonal 

adjustment of minimum flow values to better match each systems natural flow regime and 

account for ontogenetic shifts in habitat use (Poff et al. 1997).  For example, higher flows are 

needed to maximize riffle availability for spawning catostomids (e.g., redhorse species, northern 

hogsucker, and white sucker) in spring (Curry & Spacie 1984) and to maintain adequate 

connectivity for downstream migrations in late fall (Grabowski & Isely2006).  Continuous 

sampling protocols can be implemented to monitor target species and improve minimum flow 

recommendations through time (Poff & Zimmerman 2010; Arthington 2012)—a necessary step 

when attempting to balance stakeholder and ecosystem needs in a changing climate (Vörösmarty 

et al. 2000; Arthington 2012).  However, additional research to quantify the fitness consequences 

associated with habitat loss and to determine the threshold for functional connectivity between 

habitats would improve the effectiveness of any flow recommendations.   
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TABLES AND FIGURES 

 

Figure 2-1.—Study sites in the Illinois River catchment for wetted-area and habitat-use sampling. 
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Table 2-1.—Number of wetted area-discharge samples taken over the range of flow-exceedance probabilities established from historical 

annual flow data using Indicators of Hydrologic Alteration. 

Stream 95% 90% 80% 70% 60% 50% 40% 30% 20% 10% Totals 

 Flint Creek 1 1 2 4 - - 1 1 1 1 12 

 Barren Fork Creek 3 - 2 1 7 2 - - 2 5 22 

 Illinois River 1 2 4 2 4 1 1 - 1 - 16 

   

          

50   
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Table 2-2.—Total lengths (TL) for young-of-year (YOY) fishes based on length-frequency histograms from catch data.  Length-frequency 

histograms were compared to published length-at-age data to justify YOY-size thresholds.  Length-at-age data of sister species were used 

where species-specific data was lacking.  Sources of published data are also provided. 

Species 
Length 

freq. (TL) 

Published 

(TL) 
Sister species Publication  

 Etheostoma zonale banded darter 30 30.5 - Pflieger et al. (1975) 

Cottus carolinae banded sculpin 30 27.9 mottled sculpin Pflieger et al. (1975) 

Notropis amblops bigeye chub 50 50.8 - Pflieger et al. (1975) 

Notropis boops bigeye shiner 30 30.5 - Pflieger et al. (1975) 

Moxostoma duquesni black redhorse 90 88.9 - Pflieger et al. (1975) 

Fundulus olivaceus blackspotted topminnow 30 30.5 plains killifish Pflieger et al. (1975) 

Lepomis macrochirus bluegill 35 38.1 - Pflieger et al. (1975) 

Labidesthes sicculus brook silverside 60 63.5 - Pflieger et al. (1975) 

Luxilus cardinalis cardinal shiner 40 43.2 duskystripe shiner Pflieger et al. (1975) 

Notropis percobromus carmine shiner 35 40.6 roseyface shiner Reed (1957) 

Campostoma anomalum central stoneroller 60 58.4 - Pflieger et al. (1975) 

Ictalurus punctatus  channel catfish 66 66 - Pflieger et al. (1975) 

Semotilus atromaculatus creek chub 65 63.5 - Pflieger et al. (1975) 

Erimystax x-punctatus gravel chub 60 63.5 - Pflieger et al. (1975) 

Lepomis cyanellus green sunfish 40 43.2 - Pflieger et al. (1975) 

Etheostoma blenniodes greenside darter 60 63.5 - Pflieger et al. (1975) 

Percina caprodes logperch 70 73.7 - Pflieger et al. (1975) 

Lepomis megalotis longear sunfish 35 33 - Pflieger et al. (1975) 

Gambusia affinis western mosquitofish 15 variable - Pyke (2005) 

Hypentilium nigracans northern hogsucker 100 86.4 - Pflieger et al. (1975) 

Fundulus catenatus northern studfish 40 42.3 - Fisher (1981) 

Etheostoma spectabile orangethroat darter 30 27.9 - Pflieger et al. (1975) 

Notropis nubilus Ozark minnow 35 30.5 - Pflieger et al. (1975) 
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Nocomis asper redspot chub 50 48.3 hornyhead chub Pflieger et al. (1975) 

Ambloplites rupestris rock bass 60 40.6 - Pflieger et al. (1975) 

Noturus exilis slender madtom 40 48.3 - Pflieger et al. (1975) 

Micropterus dolomieu smallmouth bass 90 88.9 - Pflieger et al. (1975) 

Phoxinus erthrogaster southern-redbelly dace 30 27.9 - Pflieger et al. (1975) 

Phenacobius mirabilis suckermouth minnow 40 36 - Etnier (1993) 

Etheostoma mihileze sunburst darter 35 35 stippled darter Hotalling & Taber (1987) 

Lepomis gulosus warmouth 60 40.6 - Pflieger et al. (1975) 

Notropis greenei wedgespot shiner 40 45.7 - Pflieger et al. (1975) 

Catostomus commersonii white sucker 100 96.5 - Pflieger et al. (1975) 

Amerius natalis yellow bullhead 175 177.8 - Pflieger et al. (1975) 
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Figure 2-2.—Mean (± 95% confidence limits) depth (m) and velocity (m/s) by channel-unit for 

all habitat-use samples.  Hollow bars represent depth and grey bars represent velocity. 
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Table 2-3.—Mean substrate composition (percent coverage/m
2 
± 95% C.L.) by channel unit for habitat-use samples taken in summer 2012.  

Substrate-size classes (mm diameter) are: silt (0 - 0.4), sand (0.5 – 1.9), gravel (2 - 19), cobble (20 - 200), boulder (> 200), bedrock, and organic 

material (e.g., aquatic plants, algae, leaves, and woody debris). 

Substrate 
Backwater Pool Riffle Run Vegetated Edgewater 

 

 % ± % ± % ± % ± % ± 

 Organic 9.9 6.1 3.9 2.6 0.2 0.4 0.7 0.9 47.4 8.4 

 Silt 14.3 4.4 8.3 4.4 0.1 0.1 2.4 2.0 8.4 4.0 

 Sand 13.9 6.9 8.2 3.8 2.7 1.9 10.5 4.9 4.0 1.7 

 Gravel 45.7 6.8 52.2 7.0 50.7 8.8 53.9 9.0 30.1 8.2 

 Cobble 15.8 5.9 24.2 5.9 44.9 8.5 30.8 9.2 9.2 4.5 

 Boulder 0.4 0.5 2.2 3.0 1.4 1.6 1.0 1.2 0.7 1.2 

 Bedrock 0.0 0.0 1.0 1.8 0.0 0.0 0.7 1.3 0.1 0.2   
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Table 2-4.—Percent habitat lost (minimum area/maximum area) over the 

course of the study (2012 – 2013) by channel unit and stream. 

Stream Backwater Riffle Run Pool 

  Flint Creek 92.7% 70.9% 33.5% 0.0% 

  Barren Fork Creek 89.6% 78.4% 50.2% 14.4% 

  Illinois River 84.4% 79.5% 35.1% 16.9%     
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Table 2-5.—Mean breakpoint estimates (90% C.L.) for wetted area-discharge relationships by channel unit.  Breakpoints are discharges 

presented as m
3
/s and ft

3
/s.  Significance of each breakpoint was tested with a Davie’s Test.  The R

2
 was provided where relationships were 

linear. 

Flint Creek     

 

Channel Unit 
Breakpoint ± 90% C.I. Davie's Test 

R
2
 

  

 m
3
/s ± 

 

ft
3
/s ± p-value 

  Backwater 1.23 0.38 
 

43.44 13.42 <0.001 - 

  Pool - - 
 

- - 0.410 mean 

  Pool - - 
 

- - 0.640 mean 

  Riffle 3.35 1.23 
 

118.30 43.44 <0.001 - 

  Riffle 1.25 0.31 
 

44.14 10.95 <0.001 - 

  Riffle 3.39 0.96 
 

119.72 33.90 <0.001 - 

  Run 2.42 1.11 
 

85.46 39.20 <0.001 - 

  Run 2.06 0.79 
 

72.75 27.90 <0.001 - 

  Run 1.15 0.39 
 

40.61 13.77 <0.001 - 

  

 

Stream Mean 2.12 0.74 

 

74.92 26.08 
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Table 2-6.—Mean breakpoints (± 90% C.L.) by stream excluding pool channel units.  Also 

included are annual flow-exceedance probabilities for the mean breakpoint and the upper and 

lower confidence intervals for each stream. 

Stream 
Breakpoint ± 90% C.L. 

 

Exceedance Probability   

m
3
/s ± 

 

ft
3
/s ± 

 

mean upper lower 
 

Flint Creek 2.12 0.74 

 

74.92 26.08 

 

39% 19% 52% 
 

Barren Fork Creek 7.39 4.12 
 

260.89 145.52 

 

30% 29% 56% 
 

Illinois River 10.36 5.09   365.90 179.71   56% 42% 80% 
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Table 2-7.—Mean breakpoint estimates (90% C.L.) for wetted area-discharge relationships by channel unit.  Breakpoints are discharges 

presented as m
3
/s and ft

3
/s.  Significance of each breakpoint was tested with a Davie’s Test.  The R

2
 was provided where relationships were 

linear. 

Barren Fork Creek     

L
o

w
er

 r
ea

ch
 

Channel Unit 
Breakpoint ± 90% C.I. Davie's Test 

R
2
 

  m
3
/s ± 

 

ft
3
/s ± p-value 

  Backwater - - 

 

- - 0.002 0.98 

  Backwater 6.12 1.40 
 

216.13 49.44 <0.001 - 

  Pool - - 

 

- - <0.001 0.90 

  Pool - - 

 

- - 0.001 0.77 

  Pool - - 

 

- - 0.143 mean 

  Riffle 8.61 2.64 
 

304.06 93.23 <0.001 - 

  Riffle 7.67 4.25 
 

270.86 150.09 <0.001 - 

  Riffle 2.75 1.85 
 

97.12 65.33 0.037 - 

  Run 4.73 4.63 
 

167.04 163.51 0.067 - 

  Run 7.68 3.07 
 

271.22 108.42 <0.001 - 

  Run 4.83 1.89 
 

170.57 66.75 <0.001 - 

  Reach Mean 6.06 2.82 
 

213.86 99.54 
 

 

    

U
p
p

er
 r

ea
ch

 

Backwater 14.22 10.01 

 

502.18 353.50 <0.001 - 

  Backwater 9.27 6.20 

 

327.37 218.95 <0.001 - 

  Pool - - 

 

- - 0.195 mean 

  Pool - - 

 

- - 0.181 0.66 

  Riffle 7.60 2.57 

 

268.39 90.76 <0.001 - 

  Riffle 2.89 1.71 

 

102.06 60.39 0.007 - 

  Riffle 4.66 1.75 

 

164.57 61.80 <0.001 - 

  Riffle 12.8 12.70 

 

451.68 448.50 <0.001 - 

  Run 5.06 1.49 

 

178.69 52.62 <0.001 - 

  Run 10.26 2.36 

 

362.33 83.34 <0.001 - 

  Run 9.06 7.41 

 

319.95 261.68 0.003 - 

  Reach Mean 8.42 5.13 
 

297.47 181.28 

  

    

  Stream Mean 7.39 4.12 
 

260.89 145.52 

  

    

  

 



49 
 

Table 2-8.—Mean breakpoint estimates (90% C.L.) for wetted area-discharge relationships by channel unit.  Breakpoints are discharges 

presented as m
3
/s and ft

3
/s.  Significance of each breakpoint was tested with a Davie’s Test.  The R

2
 was provided where relationships were 

linear. 

Illinois River     

L
o

w
er

 r
ea

ch
 

Channel Unit 
Breakpoint ± 90% C.I. Davie's Test 

R
2
 

  m
3
/s ± 

 
ft

3
/s ± p-value 

  Backwater - - 
 

- - 0.388 0.96 

  Backwater 5.61 4.00 
 

198.12 141.26 <0.001 - 

  Pool 5.57 3.52 
 

196.70 124.31 0.015 - 

  Pool - - 
 

- - 0.862 mean 

  Riffle 10.59 7.05 
 

373.98 248.97 <0.001 - 

  Riffle 11.49 7.98 
 

405.77 281.81 <0.001 - 

  Riffle 5.11 4.47 
 

180.46 157.86 <0.001 - 

  Run - - 
 

- - 0.419 0.92 

  Run - - 
 

- - 0.001 0.89 

  Reach Mean 7.67 5.40 
 

271.01 190.84 
  

    

U
p
p

er
 r

ea
ch

 

Backwater - - 
 

- - 0.686 0.96 

  Backwater 17.40 7.21 
 

614.48 254.62 0.001 - 

  Backwater 11.76 7.37 
 

415.30 260.27 0.006 - 

  Pool 5.87 2.23 
 

207.30 78.75 0.004 - 

  Pool - - 
 

- - 0.403 0.78 

  Riffle 8.91 2.87 
 

314.66 101.35 <0.001 - 

  Riffle - - 
 

- - 0.451 0.96 

  Riffle 13.85 3.43 
 

489.11 121.13 <0.001 - 

  Run 8.53 1.42 
 

301.23 50.15 <0.001 - 

  Run - - 
 

- - 0.445 0.60 

  Run - - 
 

- - 0.062 0.93 

  Reach Mean 11.05 4.09 

 

390.35 144.38 

  

    

  Stream Mean 10.36 5.09 

 

365.90 179.71 
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Table 2-9.—Total abundances of fishes sampled from Flint Creek and Barren Fork Creek 

(summer 2012) and the upper-Illinois River (summer 2011 and 2012).  Species codes used for 

CCAs are the three-letter abbreviations. 

Species 
Species 

Code 

Flint 

Creek 

Barren 

Fork 

Illinois 

River 
Total 

 

slender madtom sld 249 746 263 1,258 

 Ozark minnow ozk 55 221 638 914 

 western mosquitofish mqf 319 211 370 900 

 central stoneroller cst 107 226 561 894 

 orangethroat darter otd 164 167 303 634 

 cardinal shiner cds 87 152 362 601 

 banded darter bnd 17 33 510 560 

 carmine shiner cms - 7 148 155 

 longear sunfish lgs 20 2 74 96 

 banded sculpin bsc 49 37 9 95 

 sunburst darter sbd 26 47 16 89 

 channel catfish cct - - 49 49 

 greenside darter gsd 5 4 34 43 

 redspot chub rdc 19 3 3 25 

 rock bass rkb 14 4 6 24 

 bluegill blg 5 2 12 19 

 wedgespot shiner wdg - - 18 18 

 gravel chub gvc - - 17 17 

 northern hogsucker nhg - 5 11 16 

 bigeye chub bgc - 1 11 12 

 northern studfish nsf 12 - - 12 

 blackspotted topminnow btp 3 5 - 8 

 green sunfish gsf 4 2 1 7 

 bigeye shiner bgs - 4 2 6 

 creek chub crk - - 6 6 

 black redhorse brh - - 3 3 

 smallmouth bass smb - 1 2 3 

 southern redbelly dace srd 3 - - 3 

 brook silverside bks - - 2 2 

 logperch lgp - - 1 1 

 suckermouth minnow skm - 1 - 1 

 warmouth war - - 1 1 

 white sucker wts - - 1 1 

 yellow bullhead ybh - 1 - 1 

 Total 34 1,158 1,882 3,434 6,474   

 



51 
 

Table 2-10.—Combined day and night total abundances (n) and means of fish densities (fish/m
2
) by stream and channel unit based on 

2011 to 2012 habitat-use data.  Empty (no fish) samples are not included.  Abbreviated channel units are: BW=backwater and 

Veg=vegetated edgewater. 

Species n 

Densities 

 Flint 

Creek 

Barren 

Fork 

Illinois 

River 
BW Pool Riffle Run Veg 

 slender madtom 1,258 0.837 3.017 0.444 1.08 0.251 2.638 1.122 1.144 

 Ozark minnow 914 0.163 0.701 1.415 0.709 1.53 0.142 0.427 1.664 

 western mosquitofish 900 1.219 0.883 0.802 1.503 0.873 0.012 0.184 2.337 

 central stoneroller 894 0.395 0.807 1.185 0.905 0.708 0.916 0.721 1.124 

 orangethroat darter 634 0.551 0.737 0.503 0.317 0.535 0.465 0.337 1.278 

 cardinal shiner 601 0.277 0.526 0.634 0.561 0.447 0.442 0.665 0.41 

 banded darter 560 0.054 0.141 0.724 0.011 0.028 1.194 0.402 0.226 

 carmine shiner 155 - 0.026 0.224 0.048 0.29 0.015 0.126 0.055 

 longear sunfish 96 0.091 0.008 0.134 0.062 0.148 0.011 0.059 0.165 

 banded sculpin 95 0.165 0.136 0.014 0.016 0.022 0.285 0.042 0.072 

 sunburst darter 89 0.093 0.167 0.022 0.019 0.167 0.011 0.076 0.127 

 channel catfish 49 - - 0.11 - 0.012 0.031 0.009 0.206 

 greenside darter 43 0.018 0.017 0.054 - 0.006 0.115 0.025 0.023 

 redspot chub 25 0.089 0.014 0.014 - 0.006 - 0.004 0.167 

 rock bass 24 0.056 0.021 0.016 0.007 0.003 0.005 0.01 0.122 

 bluegill 19 0.013 0.015 0.034 0.007 0.015 - - 0.098 

 wedgespot shiner 18 - - 0.036 0.013 0.027 0.008 - 0.039 

 gravel chub 17 - - 0.022 - 0.009 0.023 0.015 - 

 northern hogsucker 16 - 0.022 0.023 0.014 0.016 0.009 0.034 0.006 

 bigeye chub 12 - 0.003 0.016 0.009 0.031 - - - 

 northern studfish 12 0.04 - - 0.006 0.012 - 0.028 0.006 

 blackspotted topminnow 8 0.014 0.022 - 0.014 0.006 - 0.006 0.025 
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green sunfish 7 0.018 0.011 0.003 0.005 0.012 - - 0.03 

 bigeye shiner 6 - 0.018 0.004 0.007 0.022 - - 0.006 

 creek chub 6 - - 0.015 - - - 0.002 0.032 

 black redhorse 3 - - 0.005 - 0.008 0.004 - - 

 smallmouth bass 3 - 0.005 0.005 - 0.006 0.006 - 0.006 

 southern redbelly dace 3 0.014 - - 0.021 - - - - 
 

brook silverside 2 - - 0.003 - 0.007 - - - 
 

logperch 1 - - 0.003 - - 0.006 - - 
 

suckermouth minnow 1 - 0.005 - - 0.006 - - - 
 

warmouth 1 - - 0.003 0.007 - - - - 

 white sucker 1 - - 0.001 - 0.003 - - - 

 yellow bullhead 1 - 0.008 - 0.011 - - - - 

 Total 6,474 4.106 7.311 6.47 5.351 5.207 6.337 4.294 9.368   
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Table 2-11.—Flint Creek "Day" and "Night" CCA with channel units as explanatory variables.  Eigenvalue for each ordination axis and the 

sum of all eigenvalues are provided along with total explained variance.  "Day CCA" was significant for the first (F-ratio = 3.734, P = < 

0.05) and all canonical axes (F-ratio = 1.906, P = < 0.05).  "Night CCA" was not significant for the first axis (F-ratio = 2.164, P = 0.056), 

but was significant for all canonical axes (F-ratio = 1.438, P = < 0.05). 

 

Day 

 

Night 

 Axes 1 2 3 4 
 

1 2 3 4 

 Eigenvalues: 0.330 0.156 0.064 0.044 
 

0.359 0.163 0.111 0.089 

 Species-environment correlations: 0.912 0.836 0.559 0.571 
 

0.907 0.933 0.697 0.902 

 % variance of species data: 13.0 19.1 21.7 23.4 
 

19.4 28.2 34.2 39.0 

 % variance of species-environment relation: 55.6 81.8 92.7 100 
 

49.7 72.3 87.7 100 

  Sum of all eigenvalues: 2.539 
 1.853 

  Sum of all canonical eigenvalues: 0.593   0.723   
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Table 2-12.—Flint Creek correlation coefficients between channel units and CCA axes (i.e., environmental gradients) both day and night. 

Environmental Variables  
Day 

 
Night 

   Axis 1 Axis 2 

 

Axis 1 Axis 2 

 

 

Channel Units: 

       

  

Riffle 

 

0.7964 -0.5077 

 

0.8516 0.0177 

 

  

Run 

 

0.2597 0.3252 

 

0.2545 -0.3580 

 

  

Pool 

 

-0.1388 0.4362 

 

-0.5878 -0.6336 

 

  

Vegetated Edgewater 

 

-0.7548 -0.6409 

 

-0.3312 0.8852 

     Backwater   -0.1186 0.5463 

 

-0.1310 0.0488   
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Figure 2-3.—Canonical Correspondence Analysis (CCA) plots for samples taken in the day and 

night periods from Flint Creek (upper panel), Barren Fork Creek (middle panel) and the Illinois 

River (lower panel). Species codes are listed in Table 2.9. 
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Table 2-13.—Barren Fork Creek "Day" and "Night" CCA with channel units as explanatory variables.  Eigenvalue for each ordination axis 

and the sum of all eigenvalues are provided along with total explained variance.  "Day CCA" was significant for the first (F-ratio = 2.634, P 

= < 0.05) and all canonical axes (F-ratio = 1.914, P = < 0.05).  "Night CCA" was significant for the first (F-ratio = 3.287, P = < 0.05) and 

all canonical axes (F-ratio = 2.267, P = < 0.05). 

 

Day 

 

Night 

 Axes 1 2 3 4 
 

1 2 3 4 

 Eigenvalues: 0.221 0.175 0.107 0.037 
 

0.416 0.207 0.133 0.044 

 Species-environment correlations: 0.842 0.856 0.797 0.654 
 

0.965 0.923 0.898 0.879 

 % variance of species data: 9.9 17.7 22.5 24.2 
 

24.7 37.1 44.9 47.6 

 % variance of species-environment relation: 40.9 73.3 93.1 100 
 

52.0 77.9 94.5 100 

  Sum of all eigenvalues: 2.234 
 1.683 

  Sum of all canonical eigenvalues: 0.540   0.800   
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Table 2-14.—Barren Fork Creek correlation coefficients between channel units and CCA axes (i.e., environmental gradients) both day and 

night. 

Environmental Variables  
Day 

 
Night 

   Axis 1 Axis 2 

 

Axis 1 Axis 2 

 

 

Channel Units: 

       

  

Riffle 

 

0.8025 -0.3678 

 

-0.5061 -0.2962 

 

  

Run 

 

0.0270 -0.4177 

 

-0.5139 -0.0178 

 

  

Pool 

 

-0.6439 -0.3747 

 

0.2400 0.9463 

 

  

Vegetated Edgewater 

 

0.1483 0.9051 

 

0.1371 -0.1867 

     Backwater   -0.4317 0.1662 

 

0.7843 -0.4356   
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Table 2-15.—Illinois River "Day" and "Night" CCA with channel units as explanatory variables.  Eigenvalue for each ordination axis and 

the sum of all eigenvalues are provided along with total explained variance.  "Day CCA" was significant for the first (F-ratio = 4.244, P = < 

0.05) and all canonical axes (F-ratio = 2.359, P = < 0.05).  "Night CCA" was significant for the first (F-ratio = 2.148, P = < 0.05) and all 

canonical axes (F-ratio = 1.450, P = < 0.05). 

 

Day 

 

Night 

 Axes 1 2 3 4 
 

1 2 3 4 

 Eigenvalues: 0.265 0.167 0.065 0.044 
 

0.360 0.194 0.126 0.068 

 Species-environment correlations: 0.822 0.821 0.640 0.616 
 

0.958 0.833 0.863 0.726 

 % variance of species data: 7.3 11.9 13.7 14.9 
 

17.7 27.2 33.4 36.7 

 % variance of species-environment relation: 49.0 79.8 91.8 100 
 

48.2 74.0 90.9 100 

  Sum of all eigenvalues: 3.635 
 

2.038 

  Sum of all canonical eigenvalues: 0.541   0.750   
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Table 2-16.—Illinois River correlation coefficients between channel units and CCA axes (i.e., environmental gradients) both day and night. 

Environmental variables  
Day 

 
Night 

   Axis 1 Axis 2 

 

Axis 1 Axis 2 

 

 

Channel Units: 

       

  

Riffle 

 

0.8352 0.1661 

 

0.5670 -0.3016 

 

  

Run 

 

0.3952 -0.1903 

 

0.6764 0.5062 

 

  

Pool 

 

-0.4034 -0.6822 

 

-0.5201 0.7424 

 

  

Vegetated Edgewater 

 

-0.4766 0.8465 

 

-0.1919 -0.4689 

     Backwater   -0.2851 -0.1460 

 

-0.3462 -0.3597   
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CHAPTER III 
 

 

DEFINING FUNCTIONAL CONNECTIVITY BETWEEN CHANNEL UNITS OF AN OZARK 

STREAM 

 

INTRODUCTION 

 

Anthropogenic alterations to natural flow regimes threaten key ecosystem services (e.g., 

propagation of fish and wildlife) provided by functioning lotic ecosystems.  Fish and other 

aquatic biota have evolved to a system’s unique flow regime and are limited in their response to 

unnatural changes (Poff et al. 1997).  For example, changes to natural flow regimes lead to 

reduces species fitness, invasion by exotic species, and extirpation of native species (Bunn & 

Arthington 2002; Poff & Zimmerman 2010).  Unfortunately, flow alterations— a consequence of 

dams, channelization, water withdrawals, and levees to leverage freshwater resources— are a 

global problem (Postel et al. 2003).  Increasing demands on these limited water resources coupled 

with future climate change put streams at risk of increased flow alteration (Vörösmarty et al. 

2000; Poff et al. 2003).  Lotic ecosystems are now considered one of the most threatened 

ecosystems on the planet in need of effective protections (Ricciardi & Rasmussen 1999; Dudgeon 

et al. 2006). 

 Environmental flow is a term used to describe the amount of water needed to sustain lotic  
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ecosystems and associated human benefits (Brisbane Declaration 2007) and is often established to 

protect or improve stream function from past, present, and future flow threats (Arthington 2012).  

One of the more commonly introduced environmental-flow protections is a minimum flow value 

(Richter 2010).  Minimum flows maintain a desired level of discharge by limiting human 

abstractions and water diversions during periods of baseflow.  The goal is to maintain stream 

discharge above a threshold where instream uses begin to decline (e.g., where fish experience 

reduced fitness; Annear & Conder 1984).  Minimum flow values are an important consideration 

when protecting lotic ecosystems, but are only one aspect of a stream’s natural flow regime.  

Other aspects of the flow regime (i.e., timing, duration, and the rate of change of flow) need to be 

addressed for full protections (Poff et al. 1997). 

 Minimum flow theory assumes a relationship between stream discharge, habitat availability, 

and fish fitness (Annear & Conder 1984; Jowett 1997).  Discharge structures physical habitat in 

aquatic ecosystems (Jowett 1997; Bunn and Arthington 2002) and habitat is a major determinant 

of biotic composition (Schlosser 1982), so often the relationship between flow and habitat is used 

as a surrogate for biological response (Jowett 1997).  Techniques to estimate minimum flows 

(e.g., hydraulic methods) use field observations to determine the relationship between discharge 

and stream geometry (Annear & Conder 1984; Gippel et al. 1998).  For example, the wetted-area 

approach measures the relationship between stream discharge and channel unit area (see Chapter 

II).  Hydraulic methods are commonly used to estimate instream-flow needs (Jowett 1997).  

Unfortunately, fish fitness and abundance do not have a linear response to available habitat 

(Jowet 1997).  Supplemental approaches that estimate biological responses to flow would 

complement the existing frameworks. 

 Other weaknesses of the wetted-area method lie in assessing habitat connectivity (i.e., 

functional connectivity) and usable habitat for stream fishes (Annear et al. 2004).  Wetted-area 

methods determine the discharge needed to maintain water across channel units but, depending on 
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the character of the stream, this level of discharge may be unsuitable for some species.  For 

example, the discharge where flow across shallow-water riffles is maintained may be too shallow 

to allow passage of large-bodied species (e.g., adult smallmouth bass) effectively isolating them 

to a single habitat.  This level of discharge may even be too shallow for riffle-dwelling fishes 

(e.g., darters) thereby forcing these small-bodied fishes out of optimal habitats.  Reduced habitat 

connectivity and habitat loss confer a disadvantage to overall fish fitness (Fullerton et al. 2010).  

However, when and to what degree they negatively affect fish fitness are often unknown.  To 

retain suitable habitat with minimum flows, it is beneficial to consider the necessity of movement 

within and between channel units to fish fitness. 

 Supplementing minimum flow estimates with direct measures of fish fitness would help make 

recommended flows biologically relevant and likely improve the success of stream conservation 

efforts.  In particular, linking estimates of fish survival to hydraulic-based methods such as wetted 

area add biological support to flow recommendations (see Chapter II).  Survival is a straight 

forward way to measure fish fitness, but connectivity and habitat use are also significant factors 

controlling species persistence through time (Fullerton et al. 2010).  For example, isolated stream-

fish communities of the Great Plains have reduced biodiversity (Perkin & Gido 2012) and are 

more susceptible to species loss (Fagan et al. 2002).  Eventually, highly fragmented and 

dewatered Great Plains stream segments are dominated by benthic fishes (Perkin et al. 2014).  To 

better protect fish from water withdrawls and altered flow dynamics for the long-term, it is 

important to incorporate analyses about stream connectivity.  Only minimum flows that are 

biologically relevant, defensible, and capable of quantifying trade-offs can effectively protect 

fisheries (Annear & Conder 1984). 

 New technologies allow managers to supplement available-habitat measures with 

biologically-relevant and defensible data.  Historically, obtaining real-time information on fish 

movement and survival was impossible because the technology simply was not available.  Recent 
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advances in tag technology (e.g., radio-frequency identification RFID) now allow researchers to 

obtain these data.  Study designs can incorporate mark-recapture experiments to supplement 

environmental-flow estimations even with small-bodied fishes (e.g., darters, madtoms, minnows, 

etc.).  Assumptions of a relationship between available habitat and fish fitness can now be 

empirically supported for the stream-fish assemblage.  The objective of this study was to use 

mark recapture to quantify the effect of low flows on the transition probability and daily survival 

of the following stream fishes: cardinal shiner Luxilus cardinalis, central stoneroller Campostoma 

anomalum, orangethroat darter Etheostoma spectabile, slender madtom Noturus exilis, and 

juvenile smallmouth bass Micropterus dolomieu. 

 

METHODS 

Study area 

My mark-recapture experiments were conducted in Flint Creek, a 3
rd

 order tributary of the Illinois 

River in northeastern Oklahoma, USA (Figure 3-1).  The study catchment was located in the 

Ozark Highlands ecoregion and all streams in the catchment drain to the Arkansas River, the 

second largest tributary to the Mississippi River.  Mean annual precipitation is 100 cm and mean 

annual temperature is 13 
o
C (Adamski et al. 1995).  Flint Creek drains 285 km

2
 (110 mi

2
) of oak-

hickory forest, grasslands, and agriculture and residential areas (Adamski et al. 1995, Splinter et 

al. 2010).  Lithology is mostly limestone, dolostone, sandstone, and shale (Fenneman 1938).  

Karst topography contributes to a number of spring upwellings (Whitledge et al. 2006).  Flint 

Creek is characterized by low suspended sediment loads during baseflow conditions, cobble-

gravel substrates, and has a mean annual discharge of 3.3 m
3
/s (118 f

3
/s).  A 1-km section of 

stream containing a complex of riffle, run, pool, and backwater channel units was selected as my 

study reach (Figure 3-2). 
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Study design 

Mark-recapture methods were used to evaluate fish movements and survival in Flint Creek during 

low-flow conditions in 2011 (August – October) and 2012 (June – November).  Fishes were 

implanted with passive-integrated-transponder (PIT) tags and ‘recaptured’ using stationary long-

range receivers.  The benefits of PIT tags are infinite life span, passive identification, small size, 

and unique codes (Prentice et al. 1990a, Gibbons & Andrews 2004, Cucherousset et al. 2005) that 

allow continuous track tagging through space and time.  Similar mark-recapture approaches have 

successfully used PIT-tag technology to estimate population parameters for stream fishes (e.g., 

Smithson & Johnston 1999; Teixeira & Cortes 2007; Booth et al. 2013).  

Laboratory PIT-tag retention 

Tag loss and the effects of tagging on fish growth and survival violate mark-recapture 

assumptions and bias parameter estimates that can handicap attempts to effectively manage fish 

population (Burnham et al. 1987).  Bolland et al. (2009) recommended PIT tags be evaluated for 

each species prior to conducting field studies to avoid violating mark-recapture assumptions.  

This is an especially important consideration for juveniles and other small-bodied fishes where 

tagging may result in increased mortality or decreased growth (Prentice et al. 1990b).   

 To address these potential issues, I conducted laboratory experiments to assess the fitness 

consequences of intraperitoneal-placed PIT tags in six fish species (cardinal shiner, central 

stoneroller, greenside darter Etheostoma blennioides, orangethroat darter, slender madtom, and 

juvenile smallmouth bass; Table 3-1).  Each fish (≥ 55 mm TL) was injected with a 12-mm PIT 

tag into the peritoneum and held in a 38-L aquarium with a control fish of the same species for 38 

to 45 days.  Control fish were subject to the same steps as treatment fish, but were not tagged.  

Because of their larger size, smallmouth bass (mean TL >125 mm) were injected with a 23-mm 

PIT tag and held in 2,400-L tanks in groups of ten (i.e., 5 treatment and 5 control fish) for 35 
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days.  Growth rates (weight final - weight initial), survival (% alive), and tag retention (% 

retained) were calculated at the conclusion of the experiment.  Significant differences (α = 0.05) 

in mean growth for treatment versus control fish by species were analyzed with a Welch’s t-test 

in R (R Core Team 2012).  Welch’s t-test does not make the assumption of homogeneity of 

variance and uses a correction to adjust degrees of freedom (Field et al. 2012).  Normality of 

growth data by species and treatment was tested with a Shapiro-Wilk test (α = 0.05).  Any 

significant effect of PIT-tag placement found in this study was applied to mark-recapture models 

to make empirical estimates more accurate.  If there were statistically significant differences, I 

also provide Pearson’s correlation coefficient (r) as an estimate of effect size (Field et al. 2012).   

Fish sampling 

Mark-recapture efforts were focused on stream fishes that used shallow-water channel units.  

Total fish tagged was 438 (136 from year one and 302 from year two; Table 3-2).  Fish were 

captured using multiple pass seining techniques.  Though seining is not expected to have high 

efficiencies when sampling small fish (Pierce et al. 1990), it is generally associated with lower 

mortality than other standard gear types such as electrofishing (Dolan & Miranda 2004, Bonar et 

al. 2009).  Sampling with this low-mortality gear reduced extraneous factors that may have 

influenced survival of tagged fishes.  Seine methods varied depending on channel-unit 

characteristics (e.g., deep-slow velocity waters with a typical seine haul and swift waters by kick 

seine; Bonnar et al. 2009).  Each channel unit was sampled until no more than 20 fish were 

captured (which is the number of fish it took 30 minutes to tag), so the maximum holding time of 

untagged fish was less than 1 hour.  Additional steps were taken to reduce fish stress during 

sampling by limiting scale loss due to abrasion and exposure to air and direct sunlight.  Each 

seine net was dipped in a slime-coat protectant (Vidalife: Western Chemical, Ferndale, WA) and 

captured fishes were immediately transferred to a flow-through cage placed in a shaded area of 

the stream.  A minimum of 25 fish per species needed to be tagged in each year to qualify for 



66 
 

analysis.  Orangethroat darter and slender madtom could only be analyzed for year two (i.e., 

2012) because not enough individuals were captured in the first year to qualify for analysis (Table 

3-2).   

Fish tagging 

Fishes were PIT tagged using techniques that minimized stress during tagging.  Fish were 

transferred from holding cages to an anesthetic bath (2.5 mL MS-222 stock solution per liter H20) 

for five minutes or until fish began to lose equilibrium (Hauer and Lamberti 2006).  Required 

concentration of anesthetic varied depending on water temperature due to metabolic rate increases 

with water temperature that sped absorption of MS-222.  Fish were removed from the MS-222, 

measured for total length (1 mm), and tagged.  All fish were handled with wet gauze dipped in a 

slime-coat protectant to limit loss of slime coat and scales.  I also avoided double-handling fish 

because stress in fish is cumulative (Barton et al. 1986).   

 I used a 12 gauge needle to inject 12-mm HDX tags (Oregon RFID, Portland, OR) for fish 

less than 120 mm.  The angle of the needle was 45
o
 above the belly of the fish and inserted 

anteriorly into the peritoneum following methods from Prentice et al. (1990a).  The 12-mm tags 

used in this study weighed approximately 0.1 g and have been used to successfully tag fish as 

small as 60 mm (Cucherousset et al. 2005).  Fish larger than 120 mm were implanted with 23-mm 

HDX tags using a scalpel and finger pressure to gently place the tag in the peritoneum.  Tagged 

fish were placed in a flow-through cage to allow recovery while being protected from predators.  

Cages were placed in a low-velocity area of the stream to prevent fish from being impinged in the 

downstream end.  Fish were allowed to recover for a minimum of 24 hours (Hauer & Lamberti 

2006).  Fish were then checked for mortalities, normal respiration, and normal swimming prior to 

being release back into the channel unit of capture.  Release involved lowering one side of the 

cage into the water column to allow fish to swim out voluntarily.   
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Recaptures 

I used a series of long-range receivers with multiple antennas as remote-monitoring stations to 

passively detect fish movements among channel units.  Antennas were constructed with 10 to 12 

gauge braided copper wire fashioned into loops within protective PVC conduit following the 

methods of Zydlewski et al. (2001).  Antennas spanned the width of the stream at transition zones 

between different channel units and were wired to nearby battery-powered receivers in groups of 

three or four.  Additionally, one receiver and single-antenna station was located at the 

downstream extent of the study reach for a total of eight antennas throughout the study reach 

(Figure 3-2).  As PIT tags passed through the antenna loop, radio frequencies transmitted the 

unique identification code to the receiver where it was recorded along with a date and time stamp.  

Read range varied by the size of the antenna, the size of the PIT tag, and the angle of the fish 

passing through the antenna, but was between 7 to 15 cm for 12-mm tags and 12 to 24 cm for 23-

mm tags (personal observation).  Data from the receivers were downloaded on a weekly basis and 

batteries were changed out as needed in an effort to maintain continuous recaptures.  

Unfortunately, stream shade and overcast conditions interfered with solar recharge and reduced 

battery power to receivers for 11 days in August and 5 days in September 2011.  Days with 

missing data were addressed in the analysis.  

Analysis 

Fish capture histories were analyzed using the multistate model in Program MARK (White & 

Burnham 1999) through the R package RMark (Laake 2013; R Core Team 2012).  Multistate 

models are an extension of the Cormack-Jolly-Seber CJS model (Brownie et al. 1993) that allow 

fish to transition between different states (Hodges & Magoulick 2011).  Like the CJS model, 

multistate models produce estimates for apparent survival (S) and recapture probability (p), but 

add a third estimate for transition probability (Psi).  Apparent survival (S) is true survival times 
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the probability of an individual remaining in the study area, recapture probability (p) is the 

likelihood of recapturing an individual given that it is alive, and transition probability (Psi) is the 

likelihood of an individual transitioning between states given that it is alive and in that state 

(Cooch & White 2006).  Analysis using the RMark interface had the benefits of automated design 

matrices that input directly into Program MARK, easy model building, and concise model outputs 

(Cooch & White 2006). 

 Structure of multistate-capture histories is dependent on the time scale of interest (i.e., time 

steps and period length), the number of states, and number of tagged individuals.  My study 

design collected continuous recaptures, which were compressed to daily time steps to match the 

required Program MARK input while still maintaining a fine temporal scale.  Additionally, time 

periods for analyses (i.e., number of days) were reduced to 50 days in 2012 to match data from 

2011.  Days where antennas were not collecting recaptures were corrected for by varying the 

sampling intervals in RMark from single day to multiple day time steps (Laake 2013).  Two 

states, the channel unit of original capture (i.e., A) and all other channel units (i.e., B), were 

designated in my multistate models to estimate movements between habitats.  All analyses were 

split by species and year to restrict model size and accommodate changes to the study design (i.e., 

an increase in sampling effort, increase in number of tagged individuals, and longer recapture 

duration in year two).  These steps reduced the overall model complexity (i.e., the number of 

estimable parameters). 

 Candidate models for apparent survival (S), recapture probability (p), and transition 

probability (Psi) were built based on the variables of time, discharge, effort, or as a constant.  I 

hypothesized daily changes in stream discharge were a significant factor affecting stream-fish 

movements and survival; therefore, daily discharge was added as an occasion covariate to 

candidate models.  Because the number of channel units sampled during marking or the number 

of antennas actively collecting recapture data influences the recapture probability, I also included 
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a model covariate for ‘effort’ in my candidate models.  Effort was a simple count of the number 

of antennas collecting data on a given day or the number of channel units sampled during 

marking.  An effort covariate also compensates for non-reading antennas due to low battery.  

Effort can only affect recapture probability and was not included for estimates of survival and 

transition probability.  All candidate models (n = 27) were compared to an invariable standard 

model (e.g., constant survival through time) and a time-varying model for survival, recapture, and 

transition probability (Table 3-3). 

 An information-theoretic approach was used for model selection from a set of candidate 

models using an adjusted Akaike’s information criterion QAICc (for small sample size).  First, 

model fit was assessed for the most saturated (i.e., time dependent) model using the variance 

inflation factor (i.e., ĉ) goodness-of-fit approach in U-CARE (Choquet et al. 2009).  This test 

measured for and corrected model overdispersion or ‘noise’ present in the data.  Typically, 

overdispersion is caused by too many model parameters (Cooch & White 2006); however, my 

models had few covariables and any overdisperision was most likely caused by violating model 

assumptions (e.g., unequal recapture probability).  If the most general model adequately fit the 

data, reasonable values for ĉ (e.g., ≤ 3.0) were used to adjust model AICc scores for each model 

set.  I used a model averaging approach to eliminate ambiguity when selecting the best model 

based on AIC ranks (Burnham and Anderson 2002).  Weighted models (i.e., DeltaQAICc < 10) 

were averaged to obtain parameter estimates and 95% confidence intervals.  Averaged models 

were then used to graphically display the relationship of fish survival and transition probability to 

discharge.  Additionally, the overall importance of covariables was determined by summing 

support over all weighted models (Burnham & Anderson 2002).   

 There can be ambiguity in selecting the best model, especially when there is nearly equal 

support between top models; therefore, averaging across all models by weight was used to 

eliminate some of the uncertainty using AIC model selection.  According to Anderson & 
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Burnham (2002), summing support over models is regarded as superior to making inferences 

concerning the relative importance of variables based only on the best model.  To follow this 

approach there must be balance in the number of models that contain each variable of interest 

(Cooch & White 2006). 

 

RESULTS 

Laboratory PIT tag retention 

Tag retention and survival of tagged fish was high for most species.  Tag retention after 60 days 

was 100% for all species except orangethroat darter.  A single tag was lost in the first 30 days and 

dropped retention to 88% for this species.  Survival 24 hours after tagging was 100% for all 

species and remained high for the duration of the study (Table 3-4).  After 30 days, treatment 

survival was 100% for cardinal shiner, central stoneroller, greenside darter, slender madtom, 96% 

for smallmouth bass, and 89% for orangethroat darter.  After 60 days, treatment survival dropped 

to 88% for central stoneroller and to 56% for orangethroat darter, but remained the same for all 

other species (Table 3-4).  Low survival by orangethroat darter may be due to improper diet 

because negative growth was seen for both treatment and control fishes (Figure 3-3).  All 

mortalities were excluded from growth and retention analyses.   

 All species growth data fit the assumption of normality via the Shapiro-Wilk test (P < 0.05).  

Results from the Welch’s t-test indicated differences in growth between trials for orangethroat 

darter were not significant t(13.418) = 1.41, P = 0.18, so I combined the trials into one analysis. 

 Mean growth was not significantly different between treatment and control groups for all 

experimental fishes: cardinal shiners t(18.601) = -0.35, P = 0.73; central stoneroller t(9.964) = 0.29, P 

= 0.78; greenside darter t(2.331) = 0.18, P = 0.87; orangethroat darter t(13.42) = 1.41, P = 0.18; 
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slender madtom t(21.87) = 1.21, P = 0.24; and smallmouth bass t(4.26) = -0.41, P = 0.71 (Figure 3-

3).  My results suggest PIT tagging these fishes does not negatively affect growth and is therefore 

an appropriate approach for short-term, field-based studies. 

Transition probability (movement) and survival 

Significant violations in goodness-of-fit were observed in the global model for all species except 

year one cardinal shiner (Table 3-5).  All violations were the result of the M.ITEC Test which 

checks for variations in recapture probability (the assumption is the probability is equal).  

However, estimates for ĉ overdispersion factors were all reasonable (e.g., < 2.0) and well below 

acceptable thresholds.  Therefore, all model results ranked by QAICc scores were deemed 

acceptable. 

 Recapture probabilities were adequate for 2011 and 2012 for most of the species included in 

the analyses.  All species in 2012 had mean recapture probabilities ≥ 0.20.  In 2011, all species 

except smallmouth bass met the threshold for meaningful inference of 0.20 (Hewitt et al. 2010).  

Mean recapture probability for smallmouth bass in 2011 was 0.16.  

Cardinal shiner 

Model results for cardinal shiner indicated discharge was related to apparent survival and 

transition probability in both years.  For 2011 data, the best fit model suggested survival was 

influenced by discharge, recapture probability by effort, and transition probability was constant 

through time (Table 3-6).  However, this model had only 39% of the Akaike weight and seven 

other models were also possible (though with less weight).  Summed weights over model 

parameters indicated daily discharge had the most support (0.60) as an important predictor of 

survival (Table 3-7).  Model-averaged results estimated high survival over daily time steps and 

was typically above 80% in 2011 and above 90% in 2012; however, much wider confidence 

bands are observed as discharge increases above 1.7 m
3
/s in 2011 (Figure 3-4).  A constant 
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transition probability had more support (0.75) than one influenced by discharge (0.25) in 2011.  

In 2012, only two models were weighted, each having support for discharge in predicting survival 

and transition probability (Table 3-6).  Summed weights showed daily discharge (1.0) as the 

better predictor of both survival and transition probability (Table 3-7).  Recapture probability had 

more support as a constant in my models (0.74). Transition probabilities in 2011 were 

consistently near 0.1, but transition probabilities in 2012 were variable and increased from 0.1 to 

approximately 0.4 above 0.57 m
3
/s (Figure 3-5).  Transition probabilities were near zero below 

0.43 m
3
/s suggesting movement became extremely limited at this flow. 

Central stoneroller 

Model results for central stoneroller showed relatively constant survival and transition 

probabilities in both years.  Each year had eight weighted models and no model had 

overwhelming support.  In 2011, the best fit model suggested survival was constant, recapture 

probability was influence by effort, and transition probability was constant through time (Table 3-

8).  However, this model had only 37% of the Akaike weight.  Mean probability of survival was 

approximately 0.7 and relatively stable with wider confidence limits as discharge increased 

(Figure 3-6).  Mean probability of survival was higher in 2012 approximately 0.9.  Summed 

weights over model parameters indicated discharge was more strongly related to survival, 

whereas transition probabilities for central stonerollers were relatively constant in 2011 (Table 3-

9).  Mean transition probability was relatively low in both sample years (~ 0.25 to 0.30) with 

much greater variation in confidence limits in 2011 (Figure 3-7).  Recapture probability appeared 

to be relatively constant.  Again in 2012, no model showed substantial support as being the best 

model (Table 3-8).  Across all models, survival and transition probability were relatively constant 

over time (Table 3-9).  There was a slight positive trend in transition probability above 0.71 m
3
/s.  

Recapture probability was influenced by effort (i.e., number of antennas operating at any one 

time). 
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Orangethroat darter 

Seven models were weighted for orangethroat darter, but the best-fit model had over twice the 

support (58% Akaike weight) as the next model (20%, Table 3-10).  The best-fit model for 2012 

data supported discharge as an important predictor of survival and transition probability with 

constant recapture probability.  Summed weights over model parameters indicated discharge 

(0.82) was the best predictor of survival (Table 3-11).  Survival in 2012 was relatively high 

throughout the study (> 80%, Figure 3-8).  Discharge was strongly related to transition 

probability of the darter (0.95).  Transition probability increased above 0.57 m
3
/s suggesting more 

movement by the species when discharge was above this level (Figure 3-9).  Recapture 

probability was relatively constant through 2012 (> 0.30). 

Slender madtom 

Model results suggest discharge may be related to apparent survival, but there was full support for 

the relationship between discharge and transition probability (Table 3-12).  Only two models 

were weighted for slender madtom.  The best-fit model (61% Akaike weight) showed constant 

survival, recapture variable with effort, and transition probabilities variable by discharge.  

Similarly, the alternative weighted model showed the same relationship with recapture variability 

and transition probability but, did not support discharge as a predictor of survival (Table 3-12).  

Summed weights over model parameters support constant survival (0.61, Table 3-13).  Survival 

in 2012 was consistently high across measured discharges (> 90%, Figure 3-8).  Discharge, 

however, was fully supported as an important predictor of transition probability (Table 3-13).  

Transition probability and associated variation increased with increasing discharge, particularly at 

discharges above 0.57 m
3
/s (Figure 3-9).  As expected, effort was the best predictor of recapture 

probability with decreasing recaptures when there were fewer active antennas. 

Smallmouth bass 
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Model results for smallmouth bass showed little relationship between daily discharge and survival 

or transition probability in both years (Table 3-14).  Each year had eight weighted models and the 

best-fit model in each year suggested model parameters were constant.  Constant parameter 

estimates had roughly 70% to 75% of the model weight.  Mean survival was high in both sample 

years though, in 2011, parameter estimates were more variable when discharge exceeded 

approximately 1.7 m
3
/s (Figure 3-10).  Discharge influenced transition probability slightly more 

in 2011 (0.31) than in 2012 (0.26; Table 3-15), but the range of discharges encountered by fish 

during the 2011 study period was much greater.  In 2012, transition probability appeared stable 

over time (~ 0.3; Figure 3-11), whereas there was a very slight linear increase in 2011 and much 

wider confidence limits above 1.7 m
3
/s (Figure 3-11).  Recapture probabilities were under 0.2 in 

2011, but near 0.3 in 2012.  Smallmouth bass recapture probabilities in 2011 were the lowest of 

all species and were below ideal thresholds for making valid inferences.   

 

DISCUSSION 

My results suggest the summer transition probabilities of warmwater stream fish were influenced 

by discharge and may relate somewhat to the home range of these species.  Variability in 

transition probabilities among species was probably related to both biotic (e.g., general species 

ecology and home range) and abiotic (e.g., habitat availability) factors.  Fish habitat use and 

movements are driven by species traits such as feeding strategy and predator avoidance.  Benthic 

insectivores (e.g., orangethroat darter and slender madtom) feed on macroinvertebrates in riffles 

(Phillips & Kilambi 1996; Gillette 2012) where densities of macroinvertebrates are often highest 

(Brown & Brussock 1991).  Consequently, many darters appear to obtain resources from small 

areas and have estimated home ranges (i.e., average linear distance) of less than 50 m (typically 

not transitioning between adjacent channel units; Schwalb et al. 2011).  Little work has been done 
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on home ranges of madtoms, but Fuselier (2012) found few transitions among riffles by Neosho 

madtom Noturus placidus suggesting smaller home ranges.  Cardinal shiner also use riffles where 

they feed on downstream drift (Alexander & Perkin 2013) and take advantage of the shallow 

water to avoid larger-bodied predators (Matthews et al. 1994).  Low transition probabilities 

observed in the first year (the higher flow year with no loss of connectivity) may suggest a 

smaller home range for this species. 

 Stream drying may also be a factor that drives transition probabilities of these species.  At 

low flows, shallow-water channel units lose available habitat rapidly (see Chapter II).  Species 

common in shallow-water channel units (e.g., cardinal shiner, orangethroat darter, and slender 

madtom) are more likely to move into adjacent habitats as available habitat shrinks.  Other 

species commonly move out of riffles and into deeper, refuge habitats during drought conditions 

(e.g., Atlantic salmon parr Salmo salar, Armstrong et al. 1998; darters Etheostoma spp., Roberts 

& Angermeier 2007; bigeye shiner Notropis boops, Hodges & Magoulick 2011).  Small home 

ranges and increased predation risk probably limited these species dispersal beyond adjacent 

refuge habitat at low flows.  Highland stoneroller Campostoma spadiceum also move from riffles 

to pools during stream drying (Hodges & Magoulick 2011).  However, stonerollers quickly 

reduce standing crop of algae (Power et al. 1985; Gelwick & Matthews 1992) and will continue 

foraging across channel units, even in the presence of predators (Harvey et al. 1988).  Adult 

smallmouth bass use deeper channel units, have larger home ranges (~150 m), and are most 

active in summer (Todd & Rabeni 1989; Dauwalter & Fisher 2008; Brewer 2013).  Smallmouth 

bass of the size tagged in this study (i.e., < 125 mm TL) move into riffles presumably to feed on 

increased densities of invertebrate prey (Fore et al. 2007).  Runs and pools retain more area at low 

flows (see Chapter II), which, in combination with behavioral traits, likely contributed to 

consistent transition probabilities observed for these species in both years.  Other species found in 
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deeper habitats during low flows maintain movements to monitor adjacent habitat conditions and 

find optimal foraging habitat as conditions change throughout summer (Gowan & Fausch 2002). 

 Daily fish survival was also related to discharge for many species, but cardinal shiner and 

orangethroat darter showed the strongest relationships.  Increased discharge related to decreased 

cardinal shiner survival at a daily time step.  Similar increases in mortality with discharge have 

been observed for stream fish and are hypothesized to be because of vulnerability to high-flow 

events during particular seasons (Grossman et al. 1998).  Short-term increases in flow magnitude 

may have displaced fish downstream (Wesner 2011), increased exposure to predators (Bain et al. 

1988; Magoulick & Kobza 2003), or caused physical stress from physical or chemical changes to 

the environment (Schlosser 1990; Pujolar et al. 2011).  This may be why some of the species 

showed increased variability in daily survival estimates at higher flows; however, there are other 

factors related to high-flow events that are more likely.   

 The relationship between daily survival and discharge was most likely related to three factors: 

the temporal scale of the analyses, tag detection at higher flows, and emigration from the study 

area.  Marsh-Matthews and Matthews (2010) also found that find daily time steps were too short 

to detect the long-term implications of reduced flows on fish fitness.  I anticipate that survival 

would actually increase with some increase in discharge (when within a ‘normal’ range of 

occurrences) when viewed over more coarse time steps (e.g., months or seasonally).  For 

example, seasonal dewatering of stream reaches has led to mass mortality of Ouachita madtom 

Noturus lachneri (Gagen et al. 1998), loss of drying riffle habitats lowered survival of bigeye 

shiner (Hodges & Magoulick 2011), and stream drying appeared to reduce survival of 

smallmouth bass over the summer (Hafs et al. 2010).  High flows influenced tag detections, 

which were apparent in the range of variability of parameter estimates at higher discharges (e.g., 

central stoneroller survival).  High discharge can raise water levels above antenna detection range 

and cause environmental disturbance (e.g., vibrations) that reduce antenna efficiency.  Discharge 
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can also cause permanent emigration from the study area (David & Cross 2002).  Both of these 

factors cause issue with calculations using Cormack-Jolly-Seber models and can bias population 

estimates (Lebreton et al. 1992; Horton & Letcher 2008).  Variable recapture probability has a 

marginal bias in survival estimates (Abadi et al. 2013), but permanent emigration is 

indistinguishable from death.  High emigration rates likely biased survival estimates downward 

and potentially confounded my results of decreased survival with discharge.  This appears to be 

the case for central stoneroller in 2011 that had had the lowest probability of survival (~70%), 

compared to all other species that had daily survival around 90%. 

 Survival is a straightforward way to measure fish fitness, but connectivity between habitats is 

also a significant factor controlling species persistence through time (Fullerton et al. 2010).  My 

results suggest habitat connectivity is lost at approximately 0.43 – 0.57 m
3
/s for several small-

bodied fishes in Flint Creek.  Loss of connectivity due to stream drying reduces downstream drift, 

decreases water quality, and eliminates movements into and across shallow-water habitats 

(Matthews & Marsh-Matthews 2003; Arthington 2012).  Lack of connectivity may affect the 

growth of drift-feeding fishes (e.g., smallmouth bass, Paragamian & Wiley 1987).  Shallow, 

isolated habitats are also more susceptible to atmospheric conditions (e.g., extreme temperatures) 

that raise water temperatures, drop dissolved oxygen, and increase fish stress (Lake 2003).  Fish 

that forage or shelter from predators in shallow waters get pushed into deeper habitats and 

become more concentrated as available habitats continue to shrink, increasing competition and 

predation (Magoulick & Kobza 2003).  Though biota can quickly recolonize rewetted habitats 

(Lonzarich et al. 1998), the long-term effects to populations (e.g., fecundity, body condition, life 

expectancy) can vary by species (Marsh-Matthews & Matthews 2010) and may result in a decline 

in fish diversity (Perkin et al. 2014).  The importance of connected habitats can also be inferred 

from both short (e.g., diel) and long-term (e.g., migrations) habitat shifts by fishes.  As short 

foraging trips between channel units become impossible, so do long distance migrations between 
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tributaries necessary to escape entire dewatered reaches or for important life-history events 

(Jaeger et al. 2014).  Isolating stream-fish communities can reduce fish biodiversity (e.g., Great 

Plains, Perkin & Gido 2012) and makes species more susceptible to extinction (Fagan et al. 

2002). 

 The power of my approach comes from identifying transition probabilities so managers know 

at what discharge fish may become restricted to certain habitats when establishing environmental-

flow protections.  I found many of the species in this study had decreased transitions at 

approximately 0.57 m
3
/s (20 ft

3
/s).  A weakness of the wetted-area method in determining 

minimum flow values is that it does not relate habitat connectivity (i.e., functional connectivity) 

to usable habitat for stream fishes (Annear et al. 2004).  Supplementing minimum streamflow 

estimates with measures of connectivity help make recommended flows biologically relevant and 

likely improves the success of stream conservation efforts.  Additionally, consideration of stream 

connectivity at multiple spatial scales (e.g., channel unit and tributary to tributary) would be 

beneficial for the long-term protection of fishes from flow alterations and climate change.  

Further, incorporating bioenergetics approaches into future studies during extreme low flows 

would provide insight into the effects of habitat isolation on fish growth and persistence.  Linking 

a population model to flow scenarios is an alternative approach that would be beneficial to 

improving our understanding of the effects of flow alteration on fishes. 
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TABLES AND FIGURES 

 

Figure 3-1.—Study site in the Illinois River catchment for mark-recapture experiments.   
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Table 3-1.—Mean total length (TL; 1.0 mm) and total weight (WT; 1.0 g) of fish PIT tagged in 

tag retention trials.  Standard deviations (SD) of means are provided.  PIT tag length and 

diameter (1.0 mm) for each species group are also indicated. 

Species n TL ± SD WT ± SD Tag size 
 

Luxilus cardinalis cardinal shiner 24 91.1 ± 9.6 6.8 ± 2.3 12.0 x 2.12 
 

Campostoma annomalum central stoneroller 16 94.3 ± 18.2 7.3 ± 4.5 12.0 x 2.12 
 

Noturus exilis slender madtom 26 76.8 ± 10.0 3.4 ± 1.4 12.0 x 2.12 
 

Etheostoma spectabile orangethroat darter 14 60.2 ± 5.7 2.1 ± 0.7 12.0 x 2.12 
 

Etheostoma blennioides greenside darter 6 94.8 ± 9.3 6.5 ± 1.7 12.0 x 2.12 
 

Micropterus dolomieu smallmouth bass 50 148.0 ± 10.8 31.0 ± 7.2 23.0 x 3.65   
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Table 3-2.—Mean total length (1 mm) of species PIT tagged in 2011 and 2012 for my multi-

state model analyses.  The minimum (Min), maximum (Max) and standard deviation (SD) of 

total lengths are also provided. 

Year Species n Mean Min Max SD 

 

2011 

cardinal shiner 27 102.7 78 112 9.7 

 central stoneroller 46 102.8 81 133 11.4 

 smallmouth bass 63 72.1 59 143 13.8 

 

2012 

cardinal shiner 112 92.2 68 150 13.8 

 central stoneroller 58 98.6 72 137 14.4 

 orangethroat darter 48 62.3 55 71 4.0 

 slender madtom 44 74.4 62 91 8.0 

 smallmouth bass 40 73.5 53 132 24.4 

   Total 438           
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Figure 3-2.—PIT-tag antenna locations across multiple channel units in Flint Creek. 
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Table 3-3.—Models and parameter descriptions used in multistate mark-recapture analyses. 

# Model 
Parameter Descriptions: 

 Survival (S) Recapture (p) Transition (Psi) 

 1 S(~1)p(~1)Psi(~1) All Constant 

 2 S(~1)p(~1)Psi(~Q) Constant. Constant. Variable with discharge. 

 3 S(~1)p(~1)Psi(~time) Constant. Constant. Variable by day. 

 4 S(~1)p(~effort)Psi(~1) Constant. Variable by number of active antennas. Constant. 

 5 S(~1)p(~effort)Psi(~Q) Constant. Variable by number of active antennas. Variable with discharge. 

 6 S(~1)p(~effort)Psi(~time) Constant. Variable by number of active antennas. Variable by day. 

 7 S(~1)p(~time)Psi(~1) Constant. Variable by day. Constant. 

 8 S(~1)p(~time)Psi(~Q) Constant. Variable by day. Variable with discharge. 

 9 S(~1)p(~time)Psi(~time) Constant. Variable by day. Variable by day. 

 10 S(~Q)p(~1)Psi(~1) Variable with discharge. Constant. Constant. 

 11 S(~Q)p(~1)Psi(~Q) Variable with discharge. Constant. Variable with discharge. 

 12 S(~Q)p(~1)Psi(~time) Variable with discharge. Constant. Variable by day. 

 13 S(~Q)p(~effort)Psi(~1) Variable with discharge. Variable by number of active antennas. Constant. 

 14 S(~Q)p(~effort)Psi(~Q) Variable with discharge. Variable by number of active antennas. Variable with discharge. 

 15 S(~Q)p(~effort)Psi(~time) Variable with discharge. Variable by number of active antennas. Variable by day. 

 16 S(~Q)p(~time)Psi(~1) Variable with discharge. Variable by day. Constant. 

 17 S(~Q)p(~time)Psi(~Q) Variable with discharge. Variable by day. Variable with discharge. 

 18 S(~Q)p(~time)Psi(~time) Variable with discharge. Variable by day. Variable by day. 

 19 S(~time)p(~1)Psi(~1) Variable by day. Constant. Constant. 

 20 S(~time)p(~1)Psi(~Q) Variable by day. Constant. Variable with discharge. 

 21 S(~time)p(~1)Psi(~time) Variable by day. Constant. Variable by day. 

 22 S(~time)p(~effort)Psi(~1) Variable by day. Variable by number of active antennas. Constant. 

 23 S(~time)p(~effort)Psi(~Q) Variable by day. Variable by number of active antennas. Variable with discharge. 

 24 S(~time)p(~effort)Psi(~time) Variable by day. Variable by number of active antennas. Variable by day. 

 25 S(~time)p(~time)Psi(~1) Variable by day. Variable by day. Constant. 

 26 S(~time)p(~time)Psi(~Q) Variable by day. Variable by day. Variable with discharge. 

 27 S(~time)p(~time)Psi(~time) Global Model   
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Table 3-4.—Survival (S) and PIT-tag retention (R) (both expressed as percentages) for 

treatment fishes after 30, 60, and 90 days.  Growth (G = weight final – weight initial) is 

represented as the mean weight gain (+/-) after 35 - 43 days. 

Species n 
30 days 60 days 90 days   

 S R S R S R G 

 L. cardinalis cardinal shiner 12 100 100 100 100 100 100 + 

 C. annomalum central stoneroller 8 100 100 88 100 88 100 + 

 N. exilis slender madtom 13 100 100 100 100 n/a n/a - 

 E. spectabile orangethroat darter 9 89 88 56 88 n/a n/a - 

 E. blennioides greenside darter 3 100 100 100 100 n/a n/a - 

 M. dolomieu smallmouth bass 25 96 100 96 100 n/a n/a +   
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Figure 3-3.—Mean growth (mean weight ± 95% confidence limits) of treatment and control 

fishes during PIT-tag retention experiments.  Growth was not significantly different between PIT-

tag treatment and control groups for any species.   
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Table 3-5. —Goodness-of-fit testing and estimate of the variance inflation factor (i.e., ĉ) for each 

global model (i.e., time varying model) used in multistate mark-recapture analyses. 

Year Species X
2
 df 

Estimate of 

ĉ 

U-CARE significant 

violations 

 2011 cardinal shiner 14.806 9 1.65 - 

 2011 central stoneroller 12.754 10 1.28 TEST M.ITEC 

 2011 smallmouth bass 42.367 22 1.93 TEST M.ITEC 

 2012 cardinal shiner 215.115 111 1.94 TEST M.ITEC 

 2012 central stoneroller 156.98 79 1.99 TEST M.ITEC 

 2012 orangethroat darter 71.186 41 1.74 TEST M.ITEC 

 2012 slender madtom 33.896 33 1.03 TEST M.ITEC 

 2012 smallmouth bass 95.769 64 1.5 TEST M.ITEC 

 Note: TEST M.ITEC tests the H0: there is no difference in the probabilities of being re-

encountered in the different states at i+1 between the animals in the same state at occasion i 

whether encountered or not encountered at these data, conditional on presence at both occasions 

(Choquet et al. 2005). 
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Table 3-6.—Top model results for 2011 and 2012 data on cardinal shiner data.  Only those models with Delta QAICc < 10 are weighted and 

included in the total candidate models. 

Cardinal Shiner 

 Year # Model npar QAICc DeltaQAICc Weight QDeviance ĉ 

 

2011 

13 S(~Q)p(~effort)Psi(~1) 5 251.79 0 0.39 187.44 1.65 

 4 S(~1)p(~effort)Psi(~1) 4 253.53 1.74 0.16 191.52 1.65 

 1 S(~1)p(~1)Psi(~1) 3 253.95 2.16 0.13 194.2 1.65 

 14 S(~Q)p(~effort)Psi(~Q) 6 254.01 2.22 0.13 187.25 1.65 

 10 S(~Q)p(~1)Psi(~1) 4 255.44 3.65 0.06 193.42 1.65 

 5 S(~1)p(~effort)Psi(~Q) 5 255.68 3.89 0.06 191.33 1.65 

 2 S(~1)p(~1)Psi(~Q) 4 256.03 4.23 0.05 194.01 1.65 

 11 S(~Q)p(~1)Psi(~Q) 5 257.59 5.8 0.02 193.24 1.65 

 
2012 

11 S(~Q)p(~1)Psi(~Q) 5 1053.4 0 0.74 837.64 1.94 

 14 S(~Q)p(~effort)Psi(~Q) 6 1055.5 2.05 0.26 837.64 1.94   
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Table 3-7.—Summed weights of parameter covariates across all weighted models for cardinal 

shiner. 

Cardinal Shiner 

 

  covariates S p Psi 

 

2011 

~1 0.40 0.26 0.75 

 time 0 0 0 

 Q 0.60 - 0.25 

 effort - 0.74 - 

 

  covariates S p Psi 

 

2012 

~1 0 0.74 0 

 time 0 0 0 

 Q 1.0 - 1.0 

 effort - 0.26 -   
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Figure 3-4.—Survival probability of cardinal shiner related to discharge during 2011 (upper 

panel) and 2012 (lower panel).  
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Figure 3-5.—Probability of cardinal shiner transitioning to adjacent channel units with changing 

discharge during 2011 (upper panel) and 2012 (lower panel).  
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Table 3-8—Top model results for 2011 and 2012 central stoneroller data.  Only those models weighted (i.e., Delta QAICc < 10) are included of 

the 27 total candidate models.  

Central Stoneroller 

 Year # Model npar QAICc DeltaQAICc Weight QDeviance ĉ 

 

2011 

4 S(~1)p(~effort)Psi(~1) 4 179.98 0 0.37 104.31 1.28 

 1 S(~1)p(~1)Psi(~1) 3 181.54 1.56 0.17 108.09 1.28 

 13 S(~Q)p(~effort)Psi(~1) 5 181.69 1.71 0.16 103.74 1.28 

 5 S(~1)p(~effort)Psi(~Q) 5 182.24 2.26 0.12 104.28 1.28 

 10 S(~Q)p(~1)Psi(~1) 4 183.65 3.67 0.06 107.98 1.28 

 2 S(~1)p(~1)Psi(~Q) 4 183.74 3.76 0.06 108.07 1.28 

 14 S(~Q)p(~effort)Psi(~Q) 6 184.02 4.04 0.05 103.71 1.28 

 11 S(~Q)p(~1)Psi(~Q) 5 185.92 5.93 0.02 107.96 1.28 

 

2012 

10 S(~Q)p(~1)Psi(~1) 4 646.24 0 0.23 542.24 1.99 

 11 S(~Q)p(~1)Psi(~Q) 5 646.47 0.23 0.20 540.40 1.99 

 1 S(~1)p(~1)Psi(~1) 3 647.04 0.80 0.15 545.10 1.99 

 2 S(~1)p(~1)Psi(~Q) 4 647.26 1.01 0.14 543.26 1.99 

 13 S(~Q)p(~effort)Psi(~1) 5 648.18 1.94 0.09 542.11 1.99 

 14 S(~Q)p(~effort)Psi(~Q) 6 648.43 2.18 0.08 540.27 1.99 

 4 S(~1)p(~effort)Psi(~1) 4 648.88 2.64 0.06 544.89 1.99 

 5 S(~1)p(~effort)Psi(~Q) 5 649.12 2.87 0.05 543.05 1.99   
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Figure 3-6.—Survival probability of central stoneroller related to discharge during 2011 (upper 

panel) and 2012 (lower panel).  
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Table 3-9. —Summed weights of parameter covariates across all weighted models for central 

stoneroller. 

Central Stoneroller 

 

  covariates S p Psi 

 

2011 

~1 0.41 0.72 0.53 

 time 0 0 0 

 Q 0.59 - 0.47 

 effort - 0.28 - 

 

  covariates S p Psi 

 

2012 

~1 0.72 0.30 0.76 

 time 0 0 0 

 Q 0.28 - 0.24 

 effort - 0.70 -   
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Figure 3-7.—Probability of central stoneroller transitioning to adjacent channel units with 

changing discharge during 2011 (upper panel) and 2012 (lower panel).  
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Table 3-10.—Top model results for 2012 orangethroat darter data.  Only those models weighted (i.e., Delta QAICc < 10) are included of the 27 

total candidate models.  

Orangethroat Darter 

 Year # Model npar QAICc DeltaQAICc Weight QDeviance ĉ 

 

2012 

11 S(~Q)p(~1)Psi(~Q) 5 408.65 0 0.58 303.37 1.74 

 14 S(~Q)p(~effort)Psi(~Q) 6 410.76 2.10 0.20 303.34 1.74 

 2 S(~1)p(~1)Psi(~Q) 4 411.76 3.10 0.12 308.58 1.74 

 5 S(~1)p(~effort)Psi(~Q) 5 413.78 5.12 0.04 308.49 1.74 

 10 S(~Q)p(~1)Psi(~1) 4 414.36 5.70 0.03 311.18 1.74 

 13 S(~Q)p(~effort)Psi(~1) 5 416.44 7.78 0.01 311.15 1.74 

 1 S(~1)p(~1)Psi(~1) 3 417.49 8.83 0.01 316.40 1.74   
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Table 3-11. —Summed weights of parameter covariates across all weighted models. 

Orangethroat Darter 

 

  covariates S p Psi 

 

2012 

~1 0.18 0.74 0.05 

 time 0 0 0 

 Q 0.82 - 0.95 

 effort - 0.26 -   
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Figure 3-8.—Survival probability of orangethroat darter (upper panel) and slender madtom (lower 

panel) related to discharge during the 2012 field season.  
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Figure 3-9.—Probability of orangethroat darter (upper panel) and slender madtom (lower panel) 

transitioning to adjacent channel units with changing discharge during 2012. 
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Table 3-12.—Top model results for 2012 slender madtom data.  Only those models weighted (i.e., Delta QAICc < 10) are included of the 27 total 

candidate models. 

Slender Madtom 

 Year # Model npar QAICc DeltaQAICc Weight QDeviance ĉ 

 
2012 

5 S(~1)p(~effort)Psi(~Q) 5 700.86 0 0.61 575.52 1.03 

 14 S(~Q)p(~effort)Psi(~Q) 6 701.78 0.92 0.39 574.30 1.03   
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Table 3-13. —Summed weights of parameter covariates across all weighted models for slender 

madtom. 

Slender Madtom 

 

  covariates S p Psi 

 

2012 

~1 0.61 0 0 

 time 0 0 0 

 Q 0.39 - 1.0 

 effort - 1.0 -   
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Table 3-14.—Top model results for 2011 and 2012 smallmouth bass data.  Only those models weighted (i.e., Delta QAICc < 10) are included of 

the 27 total candidate models. 

Smallmouth Bass 

 Year # Model npar QAICc DeltaQAICc Weight QDeviance ĉ 

 

2011 

1 S(~1)p(~1)Psi(~1) 3 313.67 0 0.38 251.7 1.93 

 2 S(~1)p(~1)Psi(~Q) 4 315.25 1.57 0.17 251.15 1.93 

 4 S(~1)p(~effort)Psi(~1) 4 315.78 2.10 0.13 251.68 1.93 

 10 S(~Q)p(~1)Psi(~1) 4 315.78 2.11 0.13 251.69 1.93 

 5 S(~1)p(~effort)Psi(~Q) 5 317.39 3.71 0.06 251.14 1.93 

 11 S(~Q)p(~1)Psi(~Q) 5 317.39 3.72 0.06 251.15 1.93 

 13 S(~Q)p(~effort)Psi(~1) 5 317.93 4.26 0.05 251.68 1.93 

 14 S(~Q)p(~effort)Psi(~Q) 6 319.57 5.90 0.02 251.14 1.93 

 

2012 

1 S(~1)p(~1)Psi(~1) 3 693.84 0 0.40 608.59 1.5 

 4 S(~1)p(~effort)Psi(~1) 4 695.82 1.98 0.15 608.49 1.5 

 2 S(~1)p(~1)Psi(~Q) 4 695.87 2.03 0.14 608.54 1.5 

 10 S(~Q)p(~1)Psi(~1) 4 695.92 2.07 0.14 608.59 1.5 

 5 S(~1)p(~effort)Psi(~Q) 5 697.87 4.03 0.05 608.44 1.5 

 13 S(~Q)p(~effort)Psi(~1) 5 697.92 4.07 0.05 608.49 1.5 

 11 S(~Q)p(~1)Psi(~Q) 5 697.97 4.13 0.05 608.54 1.5 

 14 S(~Q)p(~effort)Psi(~Q) 6 699.99 6.15 0.02 608.44 1.5   
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Figure 3-10.—Survival probability of smallmouth bass related to discharge during 2011 (upper 

panel) and 2012 (lower panel).  
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Table 3-15. —Summed weights of parameter covariates across all weighted models for 

smallmouth bass. 

Smallmouth Bass 

 

  covariates S p Psi 

 

2011 

~1 0.74 0.74 0.69 

 time 0 0 0 

 Q 0.26 - 0.31 

 effort - 0.26 - 

 

  covariates S p Psi 

 

2012 

~1 0.74 0.73 0.74 

 time 0 0 0 

 Q 0.26 - 0.26 

 effort - 0.27 -   
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Figure 3-11.—Probability of smallmouth bass transitioning to adjacent channel units with 

changing discharge during 2011 (upper panel) and 2012 (lower panel).  
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CHAPTER IV 
 

 

TEMPERATURE SUITABILITY FOR THE PERSISTENCE OF OZARK STREAM FISH: 

DOES INCREASING BASEFLOW IMPROVE THERMAL CONDITIONS? 

 

INTRODUCTION 

 

Environmental-flow recommendations would benefit from consideration of flow quantity and 

flow quality to improve the success of long-term stream conservation (Caissie 2006; Olden and 

Naiman 2010).  Water quality (e.g., temperature) governs the water available for human 

consumption, recreation, and controls overall stream function and biotic integrity (Karr and 

Dudley 1981).  Functioning lotic ecosystems provide key ecosystem services (e.g., potable water, 

reduction of aquatic pathogens and pests, propagation of fish and wildlife, and quality of life) 

upon which society ultimately depend (Karr and Dudley 1981; Postel et al. 2005; Loomis et al. 

2000).  Environmental flows aim to protect normal stream function and aquatic-ecosystem 

services by maintaining aspects of the natural flow regime (Poff et al. 1997; Arthington et al. 

2006; Richter et al. 2010).  However, without explicit consideration of water quality, flow 

prescriptions may not have the desired result. 

 Temperature is the most pervasive water-quality parameter because it controls physical and 

chemical processes that shape aquatic ecosystems (Wootton 1990; Brown et al. 2004; Delpha et  
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al. 2009).  Introduced energy (i.e., heat) increases water solubility which makes nutrients (e.g., 

carbon, nitrogen, and phosphorus) more biologically available and increases molecular activity 

which speeds chemical reactions (Cummins 1974; Allan 1995; Stumm & Morgan 2012).  For 

example, stream metabolism is essentially a series of biochemical reactions that increases 

exponentially with water temperature (Brown et al. 2004).  Stream metabolism regulates most 

biological processes, so ecosystem dynamics are largely a consequence of water temperature 

(Brown et al. 2004).  High metabolism and dissolved organic carbon fuels primary (e.g., 

phytoplankton, algae, and cyanobacteria) and secondary (e.g., diatom, protozoa, and 

hyphomycete fungi) production (Stumm and Morgan 2012).  Increased water temperatures also 

speed leaf litter leaching and the breakdown of lignin which better conditions detritus for stream 

invertebrates (Cummins et al. 1989; Allan 1995).  Greater microbial and invertebrate activity 

speed decomposition rates and tighten nutrient spiraling (Cummins 1974; Irons 1994; Ferreira & 

Chauvet 2011). 

 Water temperature shapes the behavior (e.g., Taniguchi et al. 1998; Reese & Harvey 2002; 

Armstrong et al. 2013), condition (e.g., Legler et al. 2010; Johnston et al. 2011; Kuparinen et al. 

2011), and distribution of higher aquatic organisms (e.g., Brewer 2013; Dyer et al. 2013).  

Temperatures signal fish to begin different life-history behaviors including seasonal migrations 

and spawning (Wootton 1990).  Fish growth, development, and life spans are all temperature 

dependent (Coutant 1976; Magnuson et al. 1979; Brown et al. 2004).  Smallmouth bass have been 

found to select temperatures near their bioenergetics optima under field conditions (Brewer 

2013).  Selecting optimal temperature is important because temperatures experienced at early life 

stages influenced adult size, fecundity, and age of maturity of stream fishes (Legler 2010).  This 

is due in part to a rise in heterotrophic respiration with temperature that creates more energy for 

foraging, growth, and reproduction (Brown et al. 2004).  Temperature, because of its effects on 

metabolism, also determines rates of competition, predation, resistance to parasites and disease, 
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and eventual death (Elliott 1981; Brown et al. 2004; Roberts et al. 2012).  For example, creek 

chub Semotilus atromaculatus became competitively dominant over brook trout Salvelinus 

fontinalis and brown trout Salmo trutta at higher temperatures optimal for foraging and growth of 

this species (Taniguchi et al. 1998).  Optimal temperatures improve fish condition and reduce 

contraction rates of parasites and diseases (Le Morvan et al. 1998; Macnab & Barber 2012).  

Survival is also greatest for fishes under optimal temperatures (Smale & Rabeni 1995b; Beitinger 

et al. 2000).  Optimal temperatures vary by species and the climate to which fish have evolved 

(Allan & Flecker 1993); hence, water temperatures are used characterize different stream 

ecosystems (e.g., cold, cool, warm) and their distinct biota. 

 Fish function shows plasticity over a range of temperatures, but there are thermal thresholds 

where fish will experience reduced fitness.  Depending on the magnitude and rate of thermal 

changes there may be minor readjustments of metabolic rates, or major changes in the distribution 

of species that can lead to extirpation or extinction (Coutant 1976).  Fish vary metabolism to 

maintain homeostasis in the face of changing temperatures (Wootton 1990), but this either 

increases resource requirements or lowers available energy.  Eventually homeostasis becomes 

unsustainable because of low energy, low oxygen, or food limitations and fish suspend growth, 

reproduction, reduce stored energy (e.g., fat, muscle, eggs), and enter into a state of reduced 

movement or torpor (Allan & Flecker 1993).  For example, fishes exposed to suboptimal 

temperatures had reduced body condition (e.g., lower growth and higher mortality; Dickerson 

1999), poorer fecundity (e.g., oocyte mutation and hermaphroditism; Lukšienė et al. 2000), and 

limited swimming ability (e.g., increased predation and displacement; Ward et al. 2003).  

Heterotrophic respiration is theorized to play a role in aging, so chronic exposure to even slight 

temperature increases reduces life expectancies (Brown et al. 2004).  At extreme temperatures, 

the enzymes that catalyze metabolic reactions lose shape and become ineffective (Molles 1999).  

Fish exposed to high temperatures lose nerve function and express uncoordinated movements, 
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spasms, and eventual death (Baldwin & Hochachka 1970).  Both elevated and lowered 

temperatures have been implicated in fish kills (Durham et al. 2006; Donaldson et al. 2008) and 

extirpation of native species (e.g., below tailraces; Lessard & Hayes 2003; Haxton & Findlay 

2008).  Consideration of thermal requirements would benefit future conservation and 

management actions (Olden and Naiman 2010). 

Climate change and water abstractions have contributed to significant warming in streams (Webb 

and Nobilis 2007; Kaushal et al. 2010) and as human continue to change the thermal 

environment, the condition and composition of unprotected streams is also anticipated to change.  

Projections estimate a 14.2% loss of temperature-suitable habitat for warmwater fishes and a 50% 

loss for cool and coldwater fishes of the United States (Eaton and Scheller 1996).  Over half of 

the variation in stream temperatures has been accounted for by discharge during summer 

extremes (Isaak et al. 2012), so it is unlikely that traditional management strategies aimed only at 

improving the riparian corridor will do much to protect thermal regimes except in very small 

streams (Whitledge et al. 2006).  The goal of this chapter was to examine the role discharge plays 

in dictating stream temperature changes at the reach scale.  My specific objectives were: 1) 

predict changes in summer stream temperatures under flow alterations; 2) compare predicted 

temperature changes to critical thermal maximum in stream fishes as a means of assessing the 

influence of temperature on Ozark fish assemblages. 

 

METHODS 

Study sites 

The general study catchment is described in Chapter II.  I modeled summer-stream temperatures 

at hypothetically lowered discharges for three 1-km reaches on Flint Creek, Barren Fork Creek, 

and the Illinois River (Figure 4-1).  Flint Creek is a 3
rd 

order tributary with a drainage area of 285 
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km
2
 (110 mi

2
) with mean annual discharge of 3.3 m

3
/s (118 f

3
/s).  Barren Fork Creek is a 4

th
 order 

stream with a drainage area of 936 km
2
 (307 mi

2
) with a mean annual discharge of 9.3 m

3
/s (329 

f
3
/s).  The upper Illinois River is a 6

th
 order stream with a drainage area of 2,484 km

2
 (959 mi

2
) 

with mean annual discharge of 26.8 m
3
/s (946 f

3
/s).  Study sites were chosen haphazardly based 

on representativeness of the reach to the entire system.  

 Oklahoma experienced a drought in summer 2012 (Karl et al. 2012).  Over the 62 days in 

July to August 2012, air temperatures (mean ± S.D.) were 27.91 ± 3.25 °C, maximum air 

temperatures were 35.20 ± 3.77 °C (Table 4-1), and only 84.84 mm of rain fell (1.37 ± 0.64 

mm/day) in the study area.  In the Illinois River, drought conditions resulted in a mean daily 

discharge of 3.09 ± 1.75 m
3
/s (65% below historic means) and measured water temperatures as 

high as 32.09 °C (Table 4-1).  Similarly, Barren Fork Creek had an extreme low discharge of 0.40 

± 0.11 m
3
/s (88% below historic means) and water temperatures up to 31.47 °C.  Flint Creek’s 

mean daily discharge was 0.46 ± 0.16 m
3
/s (71% below historic means), but water temperatures 

never exceeded 30.30 °C. 

Stream-temperature modeling 

Summer water temperatures were modeled at hypothetically lowered discharges using the U.S. 

Geological Survey Stream Segment Temperature Model (SSTEMP) Version 2.0 (Bartholow 

1999).  The SSTEMP model calculates the heat gained or lost from a stream segment to predict 

mean daily stream temperatures and estimate daily minimum and maximum temperatures 

(Bartholow 1999).   

 The steps completed for SSTEMP modeling were: 1) collection of stream and weather data, 

2) model calibration, and 3) stream temperature prediction under theoretical conditions 

(Bartholow 1989).  Stream temperatures were recorded hourly using temperature loggers 

(HOBOlogger Onset, Bourne, MA).  All meteorological data were collected from Mesonet 
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stations (Brock et al. 1995) near Jay, OK (station No. 51, JAYX) and Westville, OK (station No. 

104, WEST).  Stream geometry (i.e., elevations, distances, and stream widths) was measured 

using a rangefinder and GPS (Bartholow 1989).  Stream shading was estimated from measured 

stream characteristics (i.e., mean width, azimuth, latitude, and topographic altitude) and riparian 

vegetation characteristics (i.e., distance from stream, crown diameter, crown height, and 

vegetation density; Bartholow 1999).  Stream discharge was measured using the velocity-area 

method (Gordon 2004) with an electromagnetic-flow meter (Marsh-McBirney, Frederick, MD) 

and wading rod (0.6 depth or 0.2 and 0.8. depth depending on water depth; Gordon 2004).  

Manning’s n was set to 0.035 and the default temperature gradient of 1.650 j/m
2
/s/C was used for 

my scenarios.  Maximum stream temperatures were estimated from models based on measured 

stream conditions in summer 2012 (a drought year).  Model fit was assessed using root-mean-

squared error (RMSE) and coefficient of determination (r
2
). 

 After goodness-of-fit testing, built models were used to predict stream temperatures under 

low-flow conditions during the hottest and driest period of summer 2012.  The mean daily 

discharge for July – August 2012 was collected from the nearest USGS stream gage (Watts, OK 

#07195500; Eldon, OK #11110103; Kansas, OK #11110103) and used as the model base flow 

(i.e., 100%).  Discharge was then hypothetically lowered (i.e., 90%, 75%, and 50%) to mimic 

extreme-low flows (Table 4-2).  I also modeled scenarios of increased discharge (e.g., 200% or 

higher) to assess the feasibility of lowering stream temperatures via flow management (Table 4-

2).  The overall mean breakpoint estimates that were provided in Chapter II were also included as 

a scenario.  I created exceedance probabilities using Monte Carlo resampling (3000 trials with 

100 samples/trial) that randomly selected estimates for input parameters based on prior 

distributions (Bartholow 1999).  I used standard deviations associated with mean daily data as 

parameter distributions during resampling.  To isolate the effects of low flows on summer stream 

temperatures, all meteorology variables and stream inflow temperatures were given prior 
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distributions.  All other stream hydrology, geometry, and shading variables had a distribution of 

zero and remained static at their respective means.  Percent possible sun was given a distribution 

of 90 ± 10% and time of year (i.e., day length) was set to August 1
st
. 

 Model results were compared to published critical thermal maximum (CTM) data for 

warmwater fishes (literature compiled in 2011; Table 4-3) to determine if lethal thermal 

thresholds would be exceeded by the discharge scenarios that I used.  CTM is the accepted 

method for measuring temperature tolerance in fishes (Lutterschmidt & Hutchison 1997).  During 

CTM studies, the water temperature increases at a rate fast enough (1°C per min to 1°C per h; 

Becker & Genoway 1979) to prevent acclimation and continues to increase until the fish reaches 

loss of equilibrium, operculum spasms, or death (Lutterschmidt & Hutchinson 1997).  Given time 

to acclimate to rising temperatures, stream fishes may tolerate higher temperature than many 

CTM studies suggest (Becker & Genoway 1979).  Therefore, studies using acclimation 

temperatures below 20.0 °C were excluded from the meta-analysis, as these stream temperatures 

are considerably lower than expected summer values in my study systems.  For those species with 

multiple published CTMs, the lowest CTM with the highest acclimation temperature was used for 

my comparison. 

 

RESULTS 

Overall goodness-of-fit (i.e., RMSE and r
2
) for SSTEMP models was excellent for predicting 

mean daily water temperatures in Flint Creek, Barren Fork Creek, and the Illinois River (Table 4-

4).  Accuracy of maximum temperatures models was also excellent for the Illinois River (RMSE 

= 0.71 and r
2
 = 0.94).  Maximum-temperature models for Flint Creek (RMSE = 2.36 and r

2
 = 

0.83) and Barren Fork Creek (RMSE = 2.56 and r
2
 = 0.97) were consistent, but slightly 

overestimated maximum water temperatures.   
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 Stream discharge influenced mean maximum water temperatures and the probability of 

exceeding temperatures in the Illinois River and Flint Creek.  In the Illinois River, mean 

maximum water temperature was 31.63 at mean daily discharge (i.e., 100% or 3.09 m
3
/s).  

Reducing discharges by 10%, 25%, and 50% increased maximum water temperatures by 0.06 °C, 

0.15 °C, and 0.32 °C (Figure 4-2).  Likewise, reduced flows slightly increased the probability of 

higher water temperatures (Figure 4-3).  For example, a 50% decrease in summer discharge 

increased the probability of exceeding 33.0 °C from 11% to 24%.  Flint Creek followed a similar 

pattern as the Illinois River, except maximum water temperatures were much cooler.  Maximum 

water temperatures were: 29.55 at mean daily discharge (i.e., 100% or 0.46 m
3
/s), and a 10%, 

25%, and 50% reduction in discharge increased maximum temperatures by only 0.01 °C, 0.05 °C, 

and 0.13 °C (Figure 4-2).  Most importantly, under all discharge scenarios, the probability of 

maximum temperatures exceeding 31 °C (i.e., the upper thermal limit for many fish species) was 

less than 10% (Figure 4-4).  Overall variation in temperatures under multiple flow scenarios was 

small.  For example, at a 10% exceedance probability, maximum temperatures ranged from 30.33 

°C to 30.81 °C (a difference of only 0.48 °C). 

 Water temperature predictions of Barren Fork Creek were difficult to reconcile.  Barren Fork 

Creek had a maximum water temperature of 31.95 ± 0.35 °C at the mean daily discharge for July 

and August (i.e., 0.40 m
3
/s).  Unexpectedly, reductions to 90%, 75%, and 50% of discharge 

decreased maximum water temperatures by 0.02 °C, 0.07 °C, and 0.23 °C (Figure 4-2).  This 

indicates lower discharges have the unrealistic potential for reducing maximum water 

temperatures (e.g., exceedance probabilities that intersected below 32 °C), most likely because of 

the breakdown in the width-discharge equation at extreme low flows (Bartholow 2000).  

However, the probabilities of exceeding higher temperatures followed similar patterns as the 

Illinois River and Flint Creek (i.e., negative correlation with discharge).  For example, a 50% 

decrease in summer baseflows increased the probability of exceeding 34.0 °C from 13% to 18%.  
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Flows increased to 200% of the mean (i.e., 0.80 m
3
/s) had only a 0.01 °C decrease in maximum 

water temperature and a probability of exceeding 34.0 °C near 10%.  However, at 3.27 m
3
/s (i.e., 

my extreme increase of 818% of the mean discharge and the lower limit of my breakpoint 

estimate from Chapter II), I predicted a decrease of 0.55 °C in maximum water temperature and a 

very small (< 5%) probability of exceeding 34.0 °C.  

 Decreased discharge in the Illinois River and Barren Fork Creek increased the probability of 

exceeding CTM thresholds whereas Flint Creek appears to be reasonably buffered against 

temperature fluctuations (Figures 4-4).  For example, at 100% discharge in the Illinois River, 

there was a 39% chance of exceeding CTM for duskystripe shiner Notropis pilsbyri (i.e., sister 

species to cardinal shiner Luxilus cardinalis), a 25 – 31% probability of exceeding CTM for 

southern redbelly dace Phoxinus erthrogaster, banded sculpin Cottus carolinae, and redfin shiner 

Lythrurus umbratilis, and an 11% probability of exceeding CTM for central stoneroller 

Campostoma anomalum and bluntnose minnow Pimephales notatus.  A 50% decrease in 

discharge increased exceedance probabilities to 49% for duskystripe shiner; 36 – 41% for 

southern redbelly dace, banded sculpin, and redfin shiner; and 25% for central stoneroller and 

bluntnose minnow.  At this extreme low discharge, CTM for roseyface shiner Notropis rubellus, 

northern hogsucker Hypentilium nigracans, greenside darter Etheostoma blennioides, and banded 

sculpin were approached but not exceeded.  Alternatively, a 100% increase in discharge lowered 

exceedance probabilities for several species and removed others from immediate risk.  Barren 

Fork Creek had extreme low-flow conditions in 2012 that increased the potential for exceeding 

CTM for several species (Figure 4-4).  Decreased flows increased the possibility of exceeding 

temperature thresholds only slightly.  For example, the probability of exceeding CTM for 

greenside darter and banded sculpin ranged from 10% at full discharge to 15% at half discharge.  

Increased discharge reduced the chance of exceeding temperature thresholds, but a potential to 

exceed CTM remained at all discharges considered.  The unlikely situation of increasing 
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discharge by 818% was the only scenario that effectively reduced the risk of exceeding CTM for 

all species in Barren Fork Creek.  Unlike the other study systems, maximum water temperatures 

in Flint Creek had less than a 10% probability of exceeding CTM for any species even at the 

lowest flows. 

 

DISCUSSION 

Fishes in the Illinois River and Barren Fork Creek were most susceptible to thermal stress and 

temperature stress seemed likely for multiple species in these systems.  Abundant minnow species 

such as cardinal shiner and central stoneroller likely experienced temperatures at or above CTM 

during summer 2012.  Maximum temperatures in Barren Fork Creek had the potential to stress 

more of the assemblage including: common benthic species (e.g., banded sculpin and greenside 

darter) and local game fish (e.g., northern hogsucker).  Continued loss of discharge only 

exacerbated the risk of thermal stress to fishes in these systems.  For example, as habitats shrank, 

shallow waters became more susceptible to warming and fish were likely more exposed to direct 

sunlight (i.e., less available riparian shade; Whitledge & Rabeni 2006). 

 Thermal stress was likely in these systems even when CTM values were not exceeded 

because CTMs represent conservative thermal thresholds and are typically much higher than 

preferred temperatures (i.e., those optimal for growth and reproduction; Hasnain et al. 2013).  

This is due in part to survival temperatures being investigated typically in a controlled laboratory 

setting.  The lab temperature at which fish are acclimated to at the beginning of these studies is an 

important aspect controlling the CTM of fish (Beitinger et al. 2000).  Fish in our study were 

conditioned to high summer temperatures and potentially different CTM than the same species 

identified in the literature conditioned to lower lab temperatures.  Additionally, investigations into 

fish CTM overwhelmingly use adult life stages in experiments.  However, fish vary in their 
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temperature tolerances by life stage (McCullough 1999).  For example, smallmouth bass 

Micropterus dolomieu are more vulnerable to heat death as fertilized eggs and fry than as adults 

(Shuter et al. 1980).  Conversely, juvenile smallmouth bass have higher optimal growth 

temperatures than adults, but are more vulnerable to high temperatures because growth declines 

rapidly above thermal thresholds and smaller fish have less stored energy (Shuter & Post 1990).  

However, because the CTMs used in this study are conservative estimates based on experiments 

using adult fish, I can reasonably assume that thermal stress was likely affecting multiple life 

stages in Barren Fork Creek and Illinois River.   

 Overexposure of stream fishes to high temperatures may reduce the fitness (e.g., growth, 

survival, and fecundity) of populations and addition of other stressors (likely in a natural setting) 

may exacerbate fitness consequences.  Fish can survive at temperatures near or above CTM for 

some period of time, but chronic exposure increases stress, limits growth and reproduction, 

changes behavior, and facilitate invasion by non-native species (Coutant 1976).  Confounding 

biotic (e.g., age, parasites, and competition) and abiotic (e.g., dissolved oxygen and pollution) 

factors can also lower CTM of fishes (Smale & Rabeni 1995b).  In fact, lethal-temperature 

thresholds are a function of temperature, exposure length, and other stressors.  Wehrly et al. 

(2007) found significant reductions in fish thermal tolerances after chronic exposure to adverse 

temperatures.  Exposure to high temperature combined with other stressors may result in 

increased mortality (Coutant 1976).  Eventual shifts in community composition and abundance 

are likely due to thermal stress at multiple temporal scales (Mohseni et al. 2003).  

 Stream connectivity has implications for stream temperatures at multiple spatial scales.  

Continuous discharge links instream habitats (see Chapter III), so reduced discharge is correlated 

with reduced longitudinal (Vannote et al. 1980), horizontal (Junk et al. 1989), and vertical 

connectivity (Fox 2004).  Longitudinal connectivity influences the water quality of receiving 

systems as discharge from cooler-water tributaries acts as buffers against extreme water 
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temperatures and continued downstream heating (Macdonald et al. 2012).  For example, Flint 

Creek discharged maximum water temperatures 2.0 °C cooler into the Illinois River during 

summer 2012.  Lost discharge reduced horizontal connectivity at the channel-unit scale (see 

Chapter II) and created isolated habitats that heated at different rates than main-channel habitats.  

The SSTEMP model assumed constant mixing and a mean temperature was predicted for the 

entire reach; however, backwaters are shallow off-channel habitats that often lose connectivity 

during periods of low flow.  Fish can become isolated in these habitats when waters recede and 

consequently have no mode of escape if water temperatures become bioenergetically unfavorable.  

Under drought conditions of summer 2012, measured temperatures in an isolated backwater 

exceeded the highest predicted maximum water temperatures (e.g., 34.1 °C) in the Illinois River.  

Although some isolation or fragmentation of habitat is normal in streams, the increased frequency 

of these events due to anthropogenic disturbance is harmful for stream-fish communities (Perkin 

et al. 2014).  Loss of vertical or groundwater connectivity would also negatively affect thermal 

regimes.  Depleted groundwater storage has been related to reduced baseflows and higher water 

temperatures (Zektser et al. 2005).  My results suggest Flint Creek provides a cooler and more 

stable thermal regime compared to the other rivers and could provide important refugia to fishes 

as atmospheric conditions warm and surface waters become reduced.  Maintaining connectivity 

of Flint Creek to the Illinois River may be important for fishes that need to seek refugia from 

temperature-stressed habitats.  There may be locations on Barren Fork Creek and the Illinois 

River that offer thermal refugia to fishes (e.g., springs or areas of significant hyporheic storage).  

Identifying the locations of thermal refugia may benefit the persistence of some fish populations 

that occur in the region and have lower CTM values.   

 Environmental flows have been used as a successful management strategy to maintain 

thermal regimes and protect fish, but the approach to achieving this protection varies depending 

on how streamflow is regulated.  Use of minimum flows to reduce summer stream temperatures 
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and avoid exceeding thermal thresholds for fishes has been achieved below dams on the Flathead 

River in Montana (Stanford & Hauer 1992), River Haddeo in the United Kingdom (Webb & 

Walling 1997), and the Nechako River in Canada (Macdonald et al. 2012).  Recommendations of 

modified dam operations to benefit stream temperatures for fish are not an unusual practice (e.g., 

Halleraker et al. 2007; Bartholow 2010).  Many examples related to thermal management used 

hypolimnetic-dam releases to achieve the thermal goal of cooler water.  Rivers and streams that 

are not regulated by large dams, however, do not have reservoir flow releases that may be used to 

alter temperature regimes.  One available management strategy for these systems includes use of 

minimum flow values to cap stream abstractions (Poole & Berman 2001).  These ‘cease-to-pump 

limits’ minimize human exacerbation during critical low flows.  Zeigler et al. (2012) found 

climate change was altering thermal regimes for endemic fish and suggested reduced water 

abstractions as an effective management option.  If thermal protection of streams is the goal, then 

groundwater inflows that establish baseflow levels and moderate stream temperatures in receiving 

streams (Brunke & Gonser 1997) should also be considered.  Pumping wells for agricultural or 

municipal water can draw down the alluvial aquifer and reduce groundwater connectivity in 

streams, even if not directly appropriated from surface waters (Poole & Berman 2001; Fox 2004; 

Fox et al. 2011).  This source of water withdrawal can lead to appreciable changes to baseflows in 

Oklahoma streams (Fox et al. 2011) even though current legislation does not recognize 

groundwater-surface water connections in most basins.  Though my results show that minimum 

flows do little to prevent temperature stress in a single stream reach, at the larger stream scale, 

minimum flows would benefit longitudinal connectivity to potential thermal refugia (e.g., Flint 

Creek).  

  



128 
 

REFERENCES 

Adamski, J. C., J. C. Petersen, et al. (1995). "Environmental and hydrologic setting of the Ozark 

Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma." U.S. Geological Survey 

Water-Resources Investigation Report: 94-4022. 

Allan, J. D. and M. M. Castillo (1995). Stream ecology, Springer. 

Allan, J. D. and A. S. Flecker (1993). "Biodiversity Conservation in Running Waters." 

BioScience 43(1): 32-43. 

Andrews, W. J., M. F. Becker, et al. (2009). “Summary of Surface-water Quality Data from the 

Illinois River Basin in Northeast Oklahoma.” 1970-2007, US Geological Survey. 

Armstrong, J. B., D. E. Schindler, et al. (2013). "Diel horizontal migration in streams: juvenile 

fish exploit spatial heterogeneity in thermal and trophic resources." Ecology 94(9): 2066-

2075. 

Arthington, A. H., S. E. Bunn, et al. (2006). "The Challenge of Providing Environmental Flow 

Rules to Sustain River Ecosystems." Ecological Applications 16(4): 1311-1318. 

Baldwin, J. and P. Hochachka (1970). "Functional significance of isoenzymes in thermal 

acclimatization. Acetylcholinesterase from trout brain." Biochem. j 116: 883-887. 

Bartholow, J. (1999). "Stream Segment Temperature Model (SSTEMP), Version 1.0. 0, Revised 

December 1999. Computer program and user documentation available at 

http://www.mesc.usgs.gov/rsm/rsm_download.html#TEMP." 

Bartholow, J. (2000). "Estimating cumulative effects of clearcutting on stream temperatures." 

Rivers 7(4): 284-297. 



129 
 

Bartholow, J. M. (1989). "Stream temperature investigations: field and analytical methods." 

Biological report. 

Bartholow, J. M. (2010). "Constructing an Interdisciplinary Flow Regime Recommendation." 

JAWRA Journal of the American Water Resources Association 46(5): 892-906. 

Becker, C. D. and R. G. Genoway (1979). "Evaluation of the critical thermal maximum for 

determining thermal tolerance of freshwater fish." Environmental Biology of Fishes 4(3): 

245-256. 

Beitinger, T. L., W. A. Bennett, et al. (2000). "Temperature tolerances of North American 

freshwater fishes exposed to dynamic changes in temperature." Environmental Biology of 

Fishes 58(3): 237-275. 

Brewer, S. K. (2013). "Groundwater influences on the distribution and abundance of riverine 

smallmouth bass, Micropterus dolomieu, in pasture landscapes of the midwestern USA." 

River Research and Applications 29(3): 269-278. 

Brock, F. V., K. C. Crawford, et al. (1995). "The Oklahoma Mesonet: a technical overview." 

Journal of Atmospheric and Oceanic Technology 12(1): 5-19. 

Brown, J. H., J. F. Gillooly, et al. (2004). "Toward a metabolic theory of ecology." Ecology 

85(7): 1771-1789. 

Brunke, M. and T. Gonser (1997). "The ecological significance of exchange processes between 

rivers and groundwater." Freshwater Biology 37(1): 1-33. 

Caissie, D. (2006). "The thermal regime of rivers: a review." Freshwater Biology 51(8): 1389-

1406. 



130 
 

Cheetham, J., C. Garten Jr, et al. (1976). "Temperature tolerance and preference of immature 

channel catfish (Ictalurus punctatus)." Copeia: 609-612. 

Cherry, D. S., K. L. Dickson, et al. (1977). "Preferred, avoided, and lethal temperatures of fish 

during rising temperature conditions." Journal of the Fisheries Board of Canada 34(2): 239-

246. 

Choquet, R., J. D. Lebreton, et al. (2009). "U‐CARE: Utilities for performing goodness of fit tests 

and manipulating CApture–REcapture data." Ecography 32(6): 1071-1074. 

Coutant, C. (1976). "Thermal effects on fish ecology." Encyclopedia of environmental 

engineering 2. 

Cummins, K. W. (1974). "Structure and function of stream ecosystems." BioScience: 631-641. 

Cummins, K. W., M. A. Wilzbach, et al. (1989). "Shredders and riparian vegetation." BioScience 

39(1): 24-30. 

Currie, R. J., W. A. Bennett, et al. (1998). "Critical thermal minima and maxima of three 

freshwater game-fish species acclimated to constant temperatures." Environmental Biology of 

Fishes 51(2): 187-200. 

Delpla, I., A.-V. Jung, et al. (2009). "Impacts of climate change on surface water quality in 

relation to drinking water production." Environment International 35(8): 1225-1233. 

Dickerson, B. R. and G. L. Vinyard (1999). "Effects of High Chronic Temperatures and Diel 

Temperature Cycles on the Survival and Growth of Lahontan Cutthroat Trout." Transactions 

of the American Fisheries Society 128(3): 516 - 521. 

Donaldson, M., S. Cooke, et al. (2008). "Cold shock and fish." Journal of Fish Biology 73(7): 

1491-1530. 



131 
 

Durham, B. W., G. R. Wilde, et al. (2006). "Temperature-caused fish kill in a flowing Great 

Plains river." The Southwestern Naturalist 51(3): 397-401. 

Dyer, J. J., S. K. Brewer, et al. (2013). "The influence of coarse-scale environmental features on 

current and predicted future distributions of narrow-range endemic crayfish populations." 

Freshwater Biology 58(6): 1071-1088. 

Eaton, J. G. and R. M. Scheller (1996). "Effects of climate warming on fish thermal habitat in 

streams of the United States." Limnology and Oceanography: 1109-1115. 

Elliott, J. (1981). "Some aspects of thermal stress on freshwater teleosts." Stress and Fish 209: 

245. 

Fenneman, N. M. (1938). “Physiography of eastern United States.” New York, New York, 

McGraw-Hill Book Co., Inc. 

Ferreira, V. and E. Chauvet (2011). "Synergistic effects of water temperature and dissolved 

nutrients on litter decomposition and associated fungi." Global Change Biology 17(1): 551-

564. 

Fields, R., S. S. Lowe, et al. (1987). "Critical and chronic thermal maxima of northern and 

Florida largemouth bass and their reciprocal F1 and F2 hybrids." Transactions of the 

American Fisheries Society 116(6): 856-863. 

Fox, G. et al. (2011). “Evaluation of a stream-aquifer analysis test for deriving reach-scale 

streambed conductance.” Transactions of the American Society of Agricultural and 

Biological Engineers 54(2): 473-479. 

Fox, G.A. (2004). “Evaluation of a stream aquifer analysis test using analytical solutions and field 

data.” Journal of the American Water Resources Association 40(3):755-763. 



132 
 

Gordon, N. D. (2004). “Stream hydrology: an introduction for ecologists.” John Wiley & Sons 

Inc. 

Halleraker, J., H. Sundt, et al. (2007). "Application of multiscale environmental flow 

methodologies as tools for optimized management of a Norwegian regulated national salmon 

watercourse." River Research and Applications 23(5): 493-510. 

Hasnain, S. S., B. J. Shuter, et al. (2013). "Phylogeny influences the relationships linking key 

ecological thermal metrics for North American freshwater fish species." Canadian Journal of 

Fisheries and Aquatic Sciences 70(7): 964-972. 

Haxton, T. J. and C. S. Findlay (2008). "Meta-analysis of the impacts of water management on 

aquatic communities." Canadian Journal of Fisheries and Aquatic Sciences 65(3): 437-447. 

Hickman, G. D. and M. R. Dewey (1973). "Notes on the upper lethal temperature of the 

duskystripe shiner, Notropis pilsbryi, and the bluegill, Lepomis macrochirus." Transactions of 

the American Fisheries Society 102(4): 838-840. 

Hlohowskyj, I. and T. E. Wissing (1985). "Seasonal changes in the critical thermal maxima of 

fantail (Etheostoma flabellare), greenside (Etheostoma blennioides), and rainbow 

(Etheostoma caeruleum) darters." Canadian Journal of Zoology 63(7): 1629-1633. 

Irons, J. G., M. W. Oswood, et al. (1994). "Latitudinal patterns in leaf litter breakdown: is 

temperature really important?" Freshwater Biology 32(2): 401-411. 

Isaak, D., S. Wollrab, et al. (2012). "Climate change effects on stream and river temperatures 

across the northwest US from 1980–2009 and implications for salmonid fishes." Climatic 

Change 113(2): 499-524. 



133 
 

Johnston, I. A., N. I. Bower, et al. (2011). "Growth and the regulation of myotomal muscle mass 

in teleost fish." The Journal of Experimental Biology 214(10): 1617-1628. 

Junk, W. J., P. B. Bayley, et al. (1989). "The flood pulse concept in river-floodplain systems." 

Canadian special publication of fisheries and aquatic sciences 106(1): 110-127. 

Karl, T., B. Gleason, et al. (2012). "US temperature and drought: Recent anomalies and trends." 

Eos, Transactions American Geophysical Union 93(47): 473-474. 

Karr, J. R. and D. R. Dudley (1981). "Ecological perspective on water quality goals." 

Environmental Management 5(1): 55-68. 

Kaushal, S. S., G. E. Likens, et al. (2010). "Rising stream and river temperatures in the United 

States." Frontiers in Ecology and the Environment 8(9): 461-466. 

Kuparinen, A., J. M. Cano, et al. (2011). "Fish age at maturation is influenced by temperature 

independently of growth." Oecologia 167(2): 435-443. 

Le Morvan, C., D. Troutaud, et al. (1998). "Differential effects of temperature on specific and 

nonspecific immune defences in fish." Journal of Experimental Biology 201(2): 165-168. 

Legler, N. D., T. B. Johnson, et al. (2010). "Water temperature and prey size effects on the rate of 

digestion of larval and early juvenile fish." Transactions of the American Fisheries Society 

139(3): 868-875. 

Lessard, J. A. L. and D. B. Hayes (2003). "Effects of elevated water temperature on fish and 

macroinvertebrate communities below small dams." River Research and Applications 19(7): 

721-732. 



134 
 

Loomis, J., P. Kent, et al. (2000). "Measuring the total economic value of restoring ecosystem 

services in an impaired river basin: results from a contingent valuation survey." Ecological 

Economics 33(1): 103-117. 

Lukšienė, D., O. Sandström, et al. (2000). "The effects of thermal effluent exposure on the 

gametogenesis of female fish." Journal of Fish Biology 56(1): 37-50. 

Lutterschmidt, W. I. and V. H. Hutchison (1997). "The critical thermal maximum: history and 

critique." Canadian Journal of Zoology 75(10): 1561-1574. 

Macdonald, J., J. Morrison, et al. (2012). "The efficacy of reservoir flow regulation for cooling 

migration temperature for sockeye salmon in the Nechako River watershed of British 

Columbia." North American Journal of Fisheries Management 32(3): 415-427. 

Macnab, V. and I. Barber (2012). "Some (worms) like it hot: fish parasites grow faster in warmer 

water, and alter host thermal preferences." Global Change Biology 18(5): 1540-1548. 

Magnuson, J. J., L. B. Crowder, et al. (1979). "Temperature as an ecological resource." American 

Zoologist 19(1): 331. 

Maness, J. D. and V. H. Hutchison (1980). "Acute adjustment of thermal tolerance in vertebrate 

ectotherms following exposure to critical thermal maxima." Journal of thermal biology 5(4): 

225-233. 

McCullough, D. A. (1999). "A review and synthesis of effects of alterations to the water 

temperature regime on freshwater life stages of salmonids, with special reference to Chinook 

salmon." U.S. Environmental Protection Agency, EPA 910-R-99-010, pp. 279. 



135 
 

Mohseni, O., T. R. Erickson, et al. (1999). "Sensitivity of stream temperatures in the United 

States to air temperatures projected under a global warming scenario." Water Resources 

Research 35(12): 3723-3733. 

Mohseni, O. and H. Stefan (1999). "Stream temperature/air temperature relationship: a physical 

interpretation." Journal of Hydrology 218(3): 128-141. 

Mohseni, O., H. G. Stefan, et al. (2003). "Global warming and potential changes in fish habitat in 

US streams." Climatic Change 59(3): 389-409. 

Molles, M. C. and J. F. Cahill (1999). “Ecology: concepts and applications.” WCB/McGraw-Hill 

Dubuque, IA. 

Mundahl, N. D. (1990). "Heat death of fish in shrinking stream pools." American Midland 

Naturalist 123(1): 40-46. 

Nijssen, B., G. M. O'Donnell, et al. (2001). "Hydrologic sensitivity of global rivers to climate 

change." Climatic Change 50(1-2): 143-175. 

Olden, J. D. and R. J. Naiman (2010). "Incorporating thermal regimes into environmental flows 

assessments: modifying dam operations to restore freshwater ecosystem integrity." 

Freshwater Biology 55(1): 86-107. 

Perkin, J. S., K. B. Gido, et al. (2014). "Fragmentation and dewatering transform Great Plains 

stream fish communities." Ecological monographs. 

Poff, N. L., J. D. Allan, et al. (1997). "The Natural Flow Regime." BioScience 47(11): 769-784. 

Poole, G. C. and C. H. Berman (2001). "An Ecological Perspective on In-Stream Temperature: 

Natural Heat Dynamics and Mechanisms of Human-Caused Thermal Degradation." 

Environmental Management 27(6): 787-802. 



136 
 

Postel, S. L. and B. H. Thompson (2005). “Watershed protection: Capturing the benefits of 

nature's water supply services.” Natural Resources Forum, Wiley Online Library. 

Reese, C. D. and B. C. Harvey (2002). "Temperature-dependent interactions between juvenile 

steelhead and Sacramento pikeminnow in laboratory streams." Transactions of the American 

Fisheries Society 131(4): 599-606. 

Richter, B. D. (2010). "Re‐ thinking environmental flows: from allocations and reserves to 

sustainability boundaries." River Research and Applications 26(8): 1052-1063. 

Roberts, R. J. ed. (2012). “Fish pathology.” John Wiley & Sons. 

Scott, N. L. (1987). "Seasonal Variation of Critical Thermal Maximum in the Redbelly Dace, 

Phoxinus erythrogaster (Cyprinidae)." The Southwestern Naturalist: 435-438. 

Shuter, B., J. MacLean, et al. (1980). "Stochastic simulation of temperature effects on first-year 

survival of smallmouth bass." Transactions of the American Fisheries Society 109(1): 1-34. 

Shuter, B. and J. Post (1990). "Climate, population viability, and the zoogeography of temperate 

fishes." Transactions of the American Fisheries Society 119(2): 314-336. 

Smale, M. A. and C. F. Rabeni (1995a). "Hypoxia and hyperthermia tolerances of headwater 

stream fishes." Transactions of the American Fisheries Society 124(5): 698-710. 

Smale, M. A. and C. F. Rabeni (1995b). "Influences of hypoxia and hyperthermia on fish species 

composition in headwater streams." Transactions of the American Fisheries Society 124(5): 

711-725. 

Smith, M. and S. Scott (1975). "Thermal tolerance and biochemical polymorphism of immature 

largemouth bass Micropterus salmoides Lacepede." Georgia Academy of Science 33(4): 180-

184 33(4). 



137 
 

Splinter, D. K., D. C. Dauwalter, et al. (2010). "Watershed Morphology of Highland and 

Mountain Ecoregions in Eastern Oklahoma." The Professional Geographer 63(1): 131-143. 

Stanford, J. A. and F. Richard Hauer (1992). "Mitigating the impacts of stream and lake 

regulation in the Flathead River catchment, Montana, USA: An ecosystem perspective." 

Aquatic Conservation: Marine and Freshwater Ecosystems 2(1): 35-63. 

Stumm, W. and J. J. Morgan (2012). “Aquatic chemistry: chemical equilibria and rates in natural 

waters.” John Wiley & Sons. 

Taniguchi, Y., F. J. Rahel, et al. (1998). "Temperature mediation of competitive interactions 

among three fish species that replace each other along longitudinal stream gradients." 

Canadian Journal of Fisheries and Aquatic Sciences 55(8): 1894-1901. 

van Vliet, M. T., W. H. Franssen, et al. (2013). "Global river discharge and water temperature 

under climate change." Global Environmental Change 23(2): 450-464. 

Vannote, R. L., G. W. Minshall, et al. (1980). "The river continuum concept." Canadian Journal 

of Fisheries and Aquatic Sciences 37(1): 130-137. 

Walsh, S., D. Haney, et al. (1997). "Variation in thermal tolerance and routine metabolism among 

spring‐and stream dwelling freshwater sculpins (Teleostei: Cottidae) of the southeastern 

United States." Ecology of Freshwater Fish 6(2): 84-94. 

Ward, D. L., S. A. Bonar, et al. (2003). "Effects of cold water on susceptibility of age-0 

flannelmouth sucker to predation by rainbow trout." The Southwestern Naturalist 48(1): 43-

46. 

Watenpaugh, D., T. Beitinger, et al. (1985). "Temperature tolerance of nitrite-exposed channel 

catfish." Transactions of the American Fisheries Society 114(2): 274-278. 



138 
 

Webb, B. and D. Walling (1997). "Complex summer water temperature behaviour below a UK 

regulating reservoir." Regulated Rivers: Research & Management 13(5): 463-477. 

Webb, B. W. and F. Nobilis (2007). "Long-term changes in river temperature and the influence of 

climatic and hydrological factors." Hydrological Sciences Journal 52(1): 74-85. 

Wehrly, K. E., L. Wang, et al. (2007). "Field-based estimates of thermal tolerance limits for trout: 

incorporating exposure time and temperature fluctuation." Transactions of the American 

Fisheries Society 136(2): 365-374. 

Whitledge, G. W., C. F. Rabeni, et al. (2006). "Riparian shading and groundwater enhance 

growth potential for smallmouth bass in Ozark streams." Ecological Applications 16(4): 

1461-1473. 

Wootton, R. J. (1990). “Ecology of teleost fishes.” Chapman & Hall. 

Zeigler, M. P., A. S. Todd, et al. (2012). "Evidence of recent climate change within the historic 

range of Rio Grande cutthroat trout: implications for management and future persistence." 

Transactions of the American Fisheries Society 141(4): 1045-1059. 

Zektser, S., H. A. Loáiciga, et al. (2005). "Environmental impacts of groundwater overdraft: 

selected case studies in the southwestern United States." Environmental Geology 47(3): 396-

404. 

  

  



139 
 

TABLES AND FIGURES 

 
Figure 4-1.—Study sites for SSTEMP modeling in the Illinois River catchment. 
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Table 4-1.—Mean water temperature (H20; 
o
C), discharge (Q; m

3
/s), meteorological conditions (i.e., percent humidity, wind speed [m/s], solar 

radiation [J/sec*m
2
]), and ground temperature [

o
C ]) from July – August 2012 used in SSTEMP modeling for Flint Creek, Barren Fork Creek, 

and the Illinois River.  Standard deviations (SD) of means are provided. 

 
Illinois River 

Barren Fork 

Creek 
Flint Creek Air 

o
C 

 Humidity % 
Wind 

m/s 
Solar radiation Soil 

o
C 

 

 

H20 Q  H20 Q  H20 Q  Mean Max 

 Mean 28.37 3.09 28.51 0.4 27.09 0.46 27.91 35.2 53.68 2.73 248.24 29.49 

 SD 1.84 1.75 1.23 0.11 0.94 0.16 3.25 3.77 12.98 0.7 54.04 2.69   
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Table 4-2. —Range of discharges (m
3
/s) used for SSTEMP modeling for Flint Creek, Barren 

Fork Creek, and Illinois River in 2012.  All discharges are presented as a percentage of the mean 

daily discharge observed in July-August 2012. 

 

Percent of Discharge (m
3
/s) 

   100% 90% 75% 50% 200% 300% 818% 

 Flint Creek 0.46 0.41 0.35 0.23 0.92 1.38 - 

 Barren Fork 0.40 0.36 0.30 0.20 0.80 - 3.27 

 Illinois River 3.09 2.78 2.32 1.55 6.23 - -   

Note: discharges were raised (e.g., 200%, 300%, and 818%) to levels within 90% C.L. for mean 

breakpoint estimates (mean of all habitats) obtained from objective one 
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Table 4-3.—Summary of known critical thermal maxima (CTM) for species found in the Illinois River watershed or related species.   

Species 
Mean 

(
o
C) 

SD 
Acclimation 

(
o
C) 

Rate of increase Publication 
 

 

Notropis pilsbyri duskystripe shiner 32 - 22.5 2.0 
o
C day

-1
 Hickman & Dewey (1973) 

 
Phoxinus erthrogaster southern-redbelly dace 32.3 - 21.5 0.5 

o
C min

-1
 Scott (1987) 

 
Cottus carolinae banded sculpin 32.4 0.204 20 0.3 

o
C min

-1
 Walsh et al. (1997) 

 
Lythrurus umbratilis redfin shiner 32.5 - - 1.0 

o
C min

-1
 Maness & Hutchison (1980) 

 
Cottus carolinae banded sculpin 32.8 0.16 20 0.3 

o
C min

-1
 Walsh et al. (1997) 

 
Campostoma anomalum central stoneroller 33 - 30 1.0 

o
C day

-1
 Cherry et al. (1977) 

 
Pimephales notatus bluntnose minnow 33 - 30 1.0 

o
C day

-1
 Cherry et al. (1977) 

 
Notropis rubellus roseyface shiner 34 - 30 1.0 

o
C day

-1
 Cherry et al. (1977) 

 
Hypentilium nigracans northern hogsucker 34 - 33 1.0 

o
C day

-1
 Cherry et al. (1977) 

 
Etheostoma blenniodes greenside darter 34.2 0.4 20 1.0 

o
C min

-1
 Hlohowskyj & Wissing (1984) 

 
Cottus carolinae banded sculpin 34.2 0.1 25 0.3 

o
C min

-1
 Walsh et al. (1997) 

 
Cottus carolinae banded sculpin 34.3 0.1 25 0.3 

o
C min

-1
 Walsh et al. (1997) 

 
Etheostoma blenniodes greenside darter 34.9 0.7 20 1.0 

o
C min

-1
 Hlohowskyj & Wissing (1984) 

 
Micropterus dolomieu smallmouth bass 35 - 33 1.0 

o
C day

-1
 Cherry et al. (1977) 

 
Luxilus zonatus bleeding shiner 35.3 0.5 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Notropis rubellus rosyface shiner 35.3 0.23 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Micropterus salmoides largemouth bass 35.4 0.47 20 0.3 

o
C min

-1
 Currie et al. (1998) 

 
Etheostoma flabellare fantail darter 35.5 1.1 20 1.0 

o
C min

-1
 Hlohowskyj & Wissing (1984) 

 
Ictalurus punctatus  channel catfish 35.5 0.38 20 1.0 

o
C min

-1
 Cheetham et al. (1976) 

 
Lepomis macrochirus bluegill 35.5 - 21.5 2.0 

o
C day

-1
 Hickman & Dewey (1973) 

 
Nocomis biguttatus hornyhead chub 35.6 0.55 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Semotilus atromaculatus creek chub 35.7 0.44 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Phoxinus erthrogaster southern-redbelly dace 35.9 0.42 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Etheostoma flabellare fantail darter 36 0.5 20 1.0 

o
C min

-1
 Hlohowskyj & Wissing (1984) 

 
Etheostoma flabellare fantail darter 36 0.54 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Labidesthes sicculus brook silversides 36 0.44 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Lythrurus umbratilis redfin shiner 36.2 0.54 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Notropis nubilus Ozark minnow 36.2 0.62 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Micropterus salmoides largemouth bass 36.3 0.6 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Ictalurus punctatus  channel catfish 36.4 0.25 20 0.3 

o
C min

-1
 Currie et al. (1998) 

 
Micropterus salmoides largemouth bass 36.5 0.51 24 0.2 

o
C min

-1
 Fields et al. (1987) 
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Etheostoma spectabile orangethroat darter 36.5 0.15 26 2.0 
o
C hour

-1
 Smale & Rabeni (1995a) 

 
Noturus exilis slender madtom 36.5 0.24 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Pimephales notatus bluntnose minnow 36.6 0.48 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Micropterus salmoides largemouth bass 36.7 0.76 20 1.0 

o
C min

-1
 Smith & Scott (1975) 

 
Micropterus salmoides largemouth bass 36.7 0.59 25 0.3 

o
C min

-1
 Currie et al. (1998) 

 
Notemigonus crysoleucas golden shiner 36.8 0.37 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Micropterus dolomieu smallmouth bass 36.9 0.31 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Fundulus sciadicus plains topminnow 37 0.3 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Ambloplites rupestris rock bass 37 - 36 1.0 

o
C day

-1
 Cherry et al. (1977) 

 
Campostoma anomalum central stoneroller 37.2 0.33 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Micropterus salmoides largemouth bass 37.3 0.6 32 1.0 

o
C day

-1
 Fields et al. (1987) 

 
Ictalurus punctatus  channel catfish 37.5 0.52 24 1.0 

o
C min

-1
 Cheetham et al. (1976) 

 
Micropterus salmoides largemouth bass 37.5 0.64 24 0.2 

o
C min

-1
 Fields et al. (1987) 

 
Campostoma anomalum central stoneroller 37.7 0.5 26 0.5-0.8 

o
C min

-1
 Mundahl (1990) 

 
Etheostoma flabellare fantail darter 37.7 0.5 27 0.5-0.8 

o
C min

-1
 Mundahl (1990) 

 
Lepomis megalotis longear sunfish 37.8 0.84 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Pimephales notatus bluntnose minnow 37.9 0.5 25 0.5-0.8 

o
C min

-1
 Mundahl (1990) 

 
Amerius natalis yellow bullhead 37.9 0.44 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Lepomis cyanellus green sunfish 37.9 0.75 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Lepomis macrochirus bluegill 37.9 0.68 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Ictalurus punctatus  channel catfish 38 0.39 20 0.3 

o
C min

-1
 Watenpaugh et al. (1995) 

 
Lepomis macrochirus bluegill 38 - 36 1.0 

o
C day

-1
 Cherry et al. (1977) 

 
Micropterus punctulatus spotted bass 38 - 36 1.0 

o
C day

-1
 Cherry et al. (1977) 

 
Amerius melas black bullhead 38.1 0.39 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Cyprinella lutrensis red shiner 38.1 0.42 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Fundulus olivaceus blackstripe topminnow 38.3 0.67 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Micropterus salmoides largemouth bass 38.5 0.34 30 0.3 

o
C min

-1
 Currie et al. (1998) 

 
Ictalurus punctatus  channel catfish 38.7 0.36 25 0.3 

o
C min

-1
 Currie et al. (1998) 

 
Carpio cyprinus common carp 38.8 0.8 24 0.5-0.8 

o
C min

-1
 Mundahl (1990) 

 
Fundulus notatus blackspotted topminnow 38.8 0.59 26 2.0 

o
C hour

-1
 Smale & Rabeni (1995a) 

 
Ictalurus punctatus  channel catfish 39.2 0.58 28 1.0 

o
C min

-1
 Cheetham et al. (1976) 

 
Micropterus salmoides largemouth bass 39.2 0.64 32 1.0 

o
C day

-1
 Fields et al. (1987) 

 
Micropterus salmoides largemouth bass 40.1 1.33 28 1.0 

o
C min

-1
 Smith & Scott (1975) 

 
Ictalurus punctatus  channel catfish 40.3 0.29 30 0.3 

o
C min

-1
 Currie et al. (1998) 
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Micropterus salmoides largemouth bass 40.9 0.4 32 0.2 
o
C min

-1
 Fields et al. (1987) 

 
Ictalurus punctatus  channel catfish 41 0.31 32 1.0 

o
C min

-1
 Cheetham et al. (1976) 

 
Micropterus salmoides largemouth bass 41.8 0.38 32 0.2 

o
C min

-1
 Fields et al. (1987) 
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Table 4-4.—Goodness-of-fit testing (i.e., root-mean-squared error RMSE and coefficient-of 

determination r
2
) for SSTEMP models.  Model fits for both mean daily temperatures and 

maximum-daily temperatures are included along with sample sizes. 

Stream n 
Mean temp. Max temp. 

 RMSE r
2
 RMSE r

2
 

 Flint Creek 6 0.833 0.98 2.3603 0.83 

 Barren Fork Creek 8 0.6709 0.99 2.561 0.97 

 Illinois River 6 0.5498 0.97 0.7083 0.94   
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Figure 4-2.—Predicted mean maximum water temperatures (° C; ± 95% C.I.) in Barren Fork 

Creek (upper panel), Flint Creek (middle panel) and the Illinois River (lower panel) at mean July-

August discharge (100%), hypothetical reduced discharges (e.g., 90%, 75%, 50% of the mean), 

and a hypothetical increases (200%, 300%, 818%).  Values of percentages are provided in the 

methods section.     
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Figure 4-3.—Exceedance probabilities of maximum-water temperatures under different discharge 

scenarios for conditions present during July – August 2012 in Barren Fork Creek (upper panel), 

Flint Creek (middle panel) and the Illinois River (lower panel).  Hypothetical discharges are the 

same as provided in Figure 4-2.  
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Figure 4-4.—Discharge scenarios with the probability to exceed critical thermal maxima for 

fishes in Barren Fork Creek (upper panel), Flint Creek (middle panel) and the Illinois River 

(lower panel).  Hypothetical discharges are the same as provided in Figure 4-2.  
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