INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the
most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the material
submitted.

The following explanation of techniques is provided to help you understand
markings or notations which may appear on this reproduction.

1. The sign or ‘“‘target” for pagesapparently lacking from the document
photographed is “Missing Page(s)”’. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting through an image and duplicating
adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an
indication that the film inspector noticed either blurred copy because of
movement during exposure, or duplicate copy. Unless we meant to delete
copyrighted materials that shouid not have been filmed, you will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo-
graphed the photographer has followed a definite method in “sectioning”
the material. It is customary to begin filming at the upper left hand corner
of a large sheet and to continue from left to right in equal secticns with
small overlaps. If necessary, sectioning is continued again—beginning
below the first row and continuing on until complete.

4.For any illustrations that cannot be reproduced satisfactorily by
xerography, photographic prints can be purchased at additional cost and
tipped into your xerographic copy. Requests can be made to our
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we
have filmed the best available copy.

unmfgﬁlms
international

300 N. ZEEB ROAD, ANN ARBOR, MI 48106
18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND

7923790

| TORKU, KOFI EMMANUEL
* FAULT TEST GENERATION FOR SEGUENTIAL
CIRCUITS: A SEARCH DIRECTING HEURISTIC,

THE UNIVERSITY OF OKLAHOMA, PH,D,, 1979

Universi
International 300 N, zE£B ROAD, ANN ARBOR, M1 43106

§ —

PLEASE NOTE:

In a1l cases this material has been filmed in the best possible
way from the available copy. Problems encountered with this
document have been identified here with a check mark v~ .
1. Glossy photographs
2. Colored illustrations

. Photographs with dark background

3

4, Illustrations are poor copy

5. Print shows through as thére %s text on both sides of page
6

. Indistinct, broken or small print on several pages throughout

7. Tightly bound copy with print lost in spine '
8. Computer printout pages with indistinct print ;
9. Page(s) lacking when material received, and not available

from school or author

10. Page(s) seam to be miséing in numbering only as text
follows

11. Poor carbon copy

12. Not original copy, several pages with blurred type
13. Appendix pages are poor copy

14. Original copy with 1ight type

15. Curling and wrinkled pages

16. Other '

v
Intermnational

300 N. ZEE8 RD.. ANN ARBOR, M1 48106 (313} 761-4700

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

FAULT TEST GENERATION FOR SEQUENTIAL CIRCUITS:

A SEARCH DIRECTING HEURISTIC

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requiremgnts for the
degree of

DOCTOR OF FHILOSOPHY

BY
KOFI EMMANUEL TORKU
Norman, Oklahoma

1979

FAULT TEST GENERATION FOR SEQUENTIAL CIRCUITS:

A SEARCH DIRECTING HEURISTIC

APPROVED BY

209 Doay
M//%m

/{/'/"-(1\) //Kx m

J

DISSERTATION COMMITTEE

- ACKNOWLEDGEMENTS

At the end of an effort to produce a dissertation,

I owe special credits to many people: more than just another
page of acknowledgements.

Dr. B. M. Huey deserves special thanks, as my major
advisor and dissertation director. He got me interested in
this area of research and gave a tremendous personal and pro-
fessional support; in fact, this is truly our dissertation.

To Drs. W. T. Cronenwett, J. A. Payne, A. Rafii and H. J.
Kumin I am grateful for their consideration and encouragement
during the preparation of this dissertation.

I am also indebted to Dr. C. R. Haden, former Director
of the School of Electrical Engineering for his personal en-
couragement.

This research is based on the SCIRTSS project begun at
the University of Arizona. We are grateful for permission to
use their circuits for testing.

The partial financial support I received from Kumasi

University is appreciated.

iii

Finally, my deepest gratitude goes to my wife, Regina,
for her loving support:; and to my daughters, Agatha and Amy

for their lost evenings.

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS .cccecccececrcccoccccacscscaasosasass Vil

LxST OF TABLES ® ® GO GOOOO NN LN L LSOO NS OO0 ® 000 ix
ABSTRACT ...cccceccccccccccccsscccccccocas cecscccccccen .o x

I. INTRODUCTIONc0.- csccuvececcscnsnacssncsaasne 1
1.1 Previous Results ceccceccccecsnce 2

1.2 The Sequential Circuit Test Search System
(SCIRTSS) ..cv.-.. ecesssssccessccsccacces 3
1.3 Guiding Sensitization Search 9
1.4 Proposed Work cececs ccecececccsccncna 11
RI NET AS AN AID TO FAULT DETECTION0000.. 13
.1 Introductionc.cccececececan cececccns 13
.2 Backgroundccccccccccccscaccas cocecane 14
2.2.2 Firing Rules cesiensovcece 15

2.3 Petri Net as an Aid to Guiding Sensitiza-~
tion SearCh ..c..ceceececcccccccccccances 18
2.3.1 Types 0f PlaceScceeeveoccna 20

2.3.2 Formal Definition of Petri Net for

Guiding Sensitization Search . 24
Generating the Petri Net from AHPL 25
Complete Petri Netcccveececccvccccans 32
SUMMAYY ecccceesccroccvcscsccssacsscscasscss 41

II. PET
2
2

.

N NN
o U

IJII. HEURISTIC FUNCTION DEVELOPMENT ...cccccccccscccce 42
3.1 Introductionccieccecsccccoccccccccncna 42
3.2 State Equation of a Petri Netcccc00 43
3.3 Implied Transition Firingccccecececs 49
3.4 The Heuristic Functioncccccveceeccsn 53
3.4.1 Counter and Shift/Rotate
TransitionNSccecceccccccs 59

IV. INPUT VECTOR GUIDANCE ..ccccccccoccccccsocccococsn
4.1 Introduction cesecscenssssees
4.2 Selecting Input Vectorsceccecceves

4.2.1 Control Branch Input Selection

4.2.2 Register Transfer Input Selection
4.3 TUsing the Input Vector Selection Procedure

ProceduUreccecceceeccisccee

4.4 Terminating the Petri Netccec0ccce..

V. CASE STUDIES AND RESULTS ...ccccccccccccccccccons

5.1 Case I: The Narrow Window Circuit
5.2 Case II: The Anti-Random Circuit
5.3 Case III: Search-Sort ProCeSSOr ..ceceeee
5.4 Case IV: Four-Bit Expandable Micro- -

prOCessor ® © 00 0000 00 0000000000000 0s0ae0o0

VI. SUMMARY AND CONCLUSIONS ..cceecccocccceccvcssvoccca
6.1 SUMMAYY .cceccececccceccccccoscscscascoscocnae
6.2 Limitations and Further Workcccececececes
6.3 ConcluSionccceccecccsccoscaccccccscnaca

APPENDIX A.l: SCIRTSS SEARCH ROUTINESccccecccees

APPENDIX A.2: PETRI NET AND HEURISTIC COST VALUE

ROUTINES ..ccceccecccccccccccccccocns

APPENDIX A.3: PSEUDO-NSIM SUBROUTINES FOR CASES I-IV .

APPENDIX B: CIRCUIT SCHEMATICS FOR CASES I-IV

LIST OF REFERENCES

65
65
66

67
78
83
84
87
89
97
101
108
125
125
127
129

131

142

150

157

171

Figure
1.1

201

2.2

2.4

2.5(a)

2.5(b)

N
.
oY

2.7
2.8(a)

2.8(b)

2.9
2.10
3.1

3.2

3.3

3.4

LIST OF ILLUSTRATIONS

SCIRTSS Flow Diagramcccccecocccses

Petri Net Model

ooooo ® © 0 0 0000000 00000000

Firing of an Enabled Transition

®e oo oo

Petri Net for Illustrating Transition Time ..

Petri Nets Illustrating Different Types of

Places

Setting Up the Goal PlacesS ...ccceeecceces

Expanding the Goal Placesccccecveee

Unconditional Control Transition

AHPL Description

of Examplecccc00.0-

First Stage of Petri Net Generation

Second Stage of Generation of Example
Petri Netccciececccccccnccccans coe

Subnets for Control States One and Six .

A Complex Control State Subnet

Petri Net for Example 3.1cccccc-.

Example Petri Net for Illustrating Transition

Firing

00000

ooooo

Derivation of Marking Vectorc.ccceeeccees

Dealing with Loops in the Petri Net

Derivation of Ry

23

26

26

31

33

34

36

38

38

45

45

48

51

52

3.6

3.7

3.8

4.1

4.2

5.1

5.2

5.3

5‘4

5.5

5.6

Petri Net for Illuétrating Heuristic Function
Computation ...cceecececocccoscacscscccns 57

Modelling Count Transitionccccececcecccss 60
Heuristic Cost Function Computation 63
Construction of CS Branching Function 71
Petri Net Example for Input Vector Weighting 79
AHPL Description of Case Study Icceve-n 90
Control State Diagram of Narrow Window Circuit 91
AHPL Description of Case Study IIccc0e. 98
AHPL Description of Case Study III 102
AHPL Description of Case Study IV 110

Block Diagram of Four-Bit Microprocessor 113

viii

LIST OF TABLES

Table
2.1 The Petri Net Listing for Fig. 2.7 .c.ceccece.
2.2 Place Listing for Table 2.1ccecececcccee
5.1 Petri Net Listing for Case Icccccevececes
5.2 Place Listing for Case Icccccecccccccces
5.3 Test Runs for Case I coesesscccssccsne
5.4 Listing of Petri Net for Case II ...ccccecee-
5.5 Place Listing for Case IIccecccccncccces
5.6 Summary of Test Runs for Case II ..cccecececceos
5.7 Petri Net Listing for Case IIIcccececeece.
5.8 Place Listing for Case IITIcccec0ccceccoe
5.9 State Space Search for Case IIIccccccvcee
5.10 Summary of Test Runs for Case IIT cocense
5.11 Petri Net Listing for Case IV ...ccceccccccss

Page
39

40
93
94
96
99
99
100
103
104
107
108

114

ABSTRACT

The use of Petri nets to model the register transfers
and change of control states in a sequential machine described
in a Computer Hardware Description Language (CHDL) with the
aim of guiding state space searches is proposed. Each fault
to be detected defines a set of goal nodes for the étate space
- search. These goal nodes together with a CHDL description of
the circuit are used to generate a Petri net. Some portions
of this process are invariant with respect to the goal states,
depending entirely on the CHDL description.

Two guidance mechanisms are derived from the petri net:
heuristic cost value and input vector guidance. Foi each ma-
chine state encountered during the state space search, a state
vector is derived from the petri net. A heuristic cost value
is computed based on the state vector; this cost value being
a measure of theAeffect of reaching one machine state in the
state space search on the transitions in the petri net. The
petri net also contains information about input vectors that
are associated with each control state. The most important

of these are selected based on an established criteria. The

heuristic cost value and the input vectors are used to guide
sensitization searches in the Sequential Circuit Test Search
System (SCIRTSS). Four case studies are presented to test
the effectiveness of the guidance mechanism. The results show
that the developed model is a promising tool that can be used

in fault test set generation in complex sequential circuits.

xi

CHAPTER I
INTRODUCTION

The advent of integrated circuits and very large scale
integration has made fault detection in digital systems a com-
plex process. The number of states inside integrated circuit
chips has grown: one chip may have hundreds of flip flops,
hence the state space has become much larger. It is no longer
possible to provide additional test points brought to external
connections due to packaging limitations. This pin limitation
constrains the number of outputs observable and inputs to con-
trol the sequential circuit inside. The concepts of controll-

ability and observability are important in understanding this

problem. Control refers to the ability to apply a complete set
of tests to a sﬁﬁsystem via external inputs, that is,control
points. Observation refers to the ability to observe the out-
puts of a subsystem via external outputs, that is, observation
points. If many flip flop outputs were observable and controll-
able, faults could be easily detected through direct observation
of the outputs. However, this is expensive and one has to rely
on the limited inputs and outputs of the chip to develop a test

generation seqguence. Constraining the number of inputs forces

1

the testing to become highly sequential; thus a sequence of in-
puts that enable the effect of the fault to be observable at the
output must be found by the fault detection system. Finding

this sequence must be efficient to avoid waste of computer time.

1.1 Previous Results

The earliest fault diagnosis programs were written to
exercise machine functions, rather than hardware. Genefally, a
complex machine instruction like MULTIPLY or DIVIDE was executed
and the results were compared with those obtained using an
equivalent seguence of simpler instructions, like SHIFT, ADD or
SUBTRACT. If there was a discrepancy between the results,
then the complex operation was assumed to be defective. Tﬁe re-
sults from such tests might not necessarily be valid due to the
limited nature of the test as reported by Estrin (1953) and
other investigators.

Eldred (1959) was one of the first investigators to
appreciate the importance of diagnostic programs which test
machine hardware rather than its functions. This was a major
improvement and hardware-oriented diagnostics came into general
use and are still being used. Eldred's results were developed
for fault detection in combinational circuits of one or two
levels. An extension of Eldred's work to circuits having any
number of levels followed; the process is labelled one dimen-
sional path sensitization. Although many investigators worked
in this area, Armstrong is prominently linked with this method.

The idea is to choose a path from the site of a fault

to thée output; the inputs to the gates along this path are

assigned values so as to propagate any change on the faulty
line along the chosen path to the output. This path is called
a sensitized path and the process of constructing the path is
called the forward-trace phase of the method. After setting
up a sensitized path, we trace back from the gates along the
sensitized path toward the primary inputs. This is the back-
ward-trace Phase of the method.

Although Schneider (1967) has provided a counter example
to show that the method is not an algorithm, this method has
been very useful in practice. Its defect is the occasional
inability to produce a test when one exists.

J. Paul Roth (1966, i967) formulated an algorithmic
method which sensitizes all possible paths from the site of the
fault to the output simultaneously. He called this method the
d-algorithm. The d-algorithm has proved to be a general solu-
tion to the problem of fault detection in combinational circuits.

The formal algorithmic approach to fault detection in
sequential circuits has been studied by various investigators
including Poage and McCluskey (1964), Hennie (1964) and Kime
(1966). These algorithmic approaches are impractical for any
but small circuits and small classes of faults. This is due to
the followipg difficulties: |

a. For each possible circuit state, a potential test

input must be evaluated. The number of states
increases as 20 where n is the number of memory
elements in the circuit. This puts a practical limit

on the complexity that the circuit can have.

b. A homing sequence (Hennie, 1964) must be found
that forces the machine into a known state. It
may be very lengthy or one may not exist for some
circuits.

c. Some sequential circuits, especially large circuits,

can not be easily described by a state table.

The alternative approaches to fault test generation in
sequential circuits are non-algorithmic: methods that treat
fairly large circuits and are economical of computer time.

The Sequential Analyzer of Seshu and Freeman (1962, 1965)
was one of the first non-algorithmic test generation methods.
The Analyzer is a digital simulator. An heuristic is presenied
to the Analyzer with a sequential circuit plus a specified set
of faults. The heuristic proposes one or more potential tests
which are simulated to determine their performance. Some sort
of numerical measure of performance is computed for each test
input and the oné with the highest figure of merit is used pro-
vided its value exceeds a predetermined value. Otherwise the
heuristic has failed and another is tried. Four heuristics
were déveloped and are tried. If all four heuristics fail, the
system gives up.

All of the heuristics of the Analyzer have proved to be
reasonably effective for small circuits. They are, however,
impractical for large circuits because of the computer time re-
quired to simulate the various candidate tests. Because the
heuristics employ local rather than global optimization tech-

nigques, they do not guarantee a minimal test sequence..

Other non-algorithmic test generation methods were
developed by Kubo (1968), Breuer (1971), Bouricius et. al
(1971) and Rutman (1972). All of these essentially transform
the sequential circuit into an iterative combinational circuit.
The d-algorithm is then applied to generate a candidate test.
The iterative model has been quite successful for sequential
circuits that are largely combinational in form and where the
number of circuit iterations required to model the time frames
needed to propagate the fault to the output is small. But
when the number of state variables is large, the testing pro-
cedure has to be abandoned due to the fact that the computa-

tional time becomes exorbitant.

1.2 The Sequential Circuit Test Search System (SCIRTSS)

The Sequential Circuit Test Search System, developed
by Hill, Belt (1973), Carter (1973) and Huey (1975) is based
on a non-algorithmic method using heuristic graph searching
techniques. Two heuristic tree search procedures automatically
determine trial input sequences which are used to simulate sim-
ultaneously all single faults of the circuit. The sequential
circuit is partitioned into its control and data pcrtions as done
in most Computer Hardware Design Languages (CHDL's). The control
input combinations are applied in every node expansion while
only input vectors previously specified by an input vector gen-
erating routine are considered. Thus, the search is primarily
that of the state graph of the control circuit. The node ex-

pansion is computed by simulating a CHDL rather than by circuit

simulation, an approach which leads to a great reduction in
computatién time. The design language used is AHPL (Hill and
Peterson, 1978).

We present here a simple description of SCIRTSS. A more
detailed description is given in Hill and Huey (1977) and Huey
(1978). SCIRTSS incorporates the single permanent fault assump-
tion and assumes that both the faulty and the good network ope-
rate in clock mode. Fig. 1.1 shows a block diagram of the test
generation system. SCIRTSS has two main search routines: The
sensiﬁization search and the propagation search.. For a particu-
lar fault to be detected, a sequence of inputs must be found
that takes the fault-free circuit from its initial state to a
state such that the input sequence generates a sensitized path
from the site of the fault to either an output or to a flip-flop.
This input sequence is called the fault-sensitization sequence
and the process of determining this sequence is the sensitiza-
tion search shown in block 2. The application of the fault-
sensitizing sequence may cause the effect of the fault to appear
at the output or to be stored in a flip-flop. In the latter
case, a sequence of inputs is needed to cause the register trans-
fers to make the discrepancy between the faulty and fault-free
circuits observable at the output. This input sequence is the
fault-propagation sequence and the process of propagating the
stored fault to the output is the propagation search shown in
block 3.

Both the propagation and sensitization searches use

guidance mechanisms to reduce the search cost. The searches are

Select
Fault

I

D-algorithm

J,

2

Sensitization
Search

Propagation
Search

Elemental
Simulation
Fault List
Reduction

Select
Fault

Yes

Figure 1.1

SCIRTSS Flow Diagram

conducted over control and user-specified data input only and
consider only one fault at a time.

Blocks 1 and 4 in Fig. 1.1 are the d-algorithm and
elemental simulator, respectively, that are incorporated into
SCIRTSS. If a fault is ever to cause malfunction, there must
be some state of the machine for which the outputs are in
error or the next states of the good and faulty machines differ.
If_the set of untested faults and a circuit inter-connection
list are given, a modified d-algorithm can find states for
which the faults will cause erroneous next states or outputs.
This d-algorithm treats the circuit as if it were combinational
by cunsidering its behavior for only one clock period. The
test vectors returned by the d-algorithm are converted into
priméry inputs and "present" states and the test generation prob-
lem becomes reaching one of these present states. Inputs are se-
lected heuristically and the response of the machine is simu-
lated with the AHPL simulator until the search for 5 sequence
of input vectors to move the machine to one of the goal states
is successful. Once this happens, SCIRTSS enters the fault pro-
pagation mode to extend the effect of the‘fault to a primary
output. Inputs are again selected heuristically and the machine
is simulated in a search of the control state graph until a
sequence of input vectors is found which will move the fault
to the output.

After finding a test sequence, it must be verified using

the elemental simulator of block 4 in Fig. 1.1. This simulator

and the AHPL simulator are different in three aspects:

a. The effect of using the faulty gate to perform
register transfers in propagating the fault is
only approximated in the AHPL simulator.

b. The AHPL simulator uses a single machine and each
variable may be 0, 1, D, D, or X (unknown). The
elemental simulator permits each variable to be
only 0, 1, or X for a given machine, but simultan-
eously simulates the good machine M, and for each
undetected fault £;, a faulty machine M.,

c. The AHPL simulator is about 25 times faster than
the elemental simulator. This makes the trial and
error searching practical in terms of computer time.

In block 4, Fig. 1.1, all other faults detected by the

same input sequence are removed from further consideration.
SCIRTSS cheéks the states of the good and faulty machines re-
maining for faults stored in flip-flops as a result of the in-
put sequence just applied. If new faults are stored, the program
continues in fault propagation mode. There is a point at which
the set of untested faults is not empty, but none of the remain-
ing faults have resulted in an error occurring in a register.

The register transfer simulator is no longer useful at this

stage for propagating faults to the output and SCIRTSS must re-

enter sensitization mode.

1.3 Guiding Sensitization Search

SCIRTSS has been very effective in generating faults

10

for highly sequential circuits. Huey and Hill (1977) give some
statistics to show the usefulness of SCIRTSSg The propagation
search has produced consistent results throughout the history
of SCIRTSS. Sensitization search, on the other hand, has not
been as successful. This is due tc the fact that sensitiza-
tion mode searching occurs after SCIRTSS has run out of faults
to propagate and the remaining faults are usually difficult to
reach. Essentially, the sensitization search is confronted
with the task of moving the machine into a small set of goal
states which are inherently difficult to reach. Many highly
circuit dependent heuristics were written to cope with this
problem. Huey (1975) was the first to.attempt to provide
a general purpose héuristic function and minimize the manual
effort required of a user in forming an input sequence. His pro-
posals also improved the efficiency of the sensitization search.
The question that is answered by the fault sensitization
phase of SCIRTSS is "how can the states of the fault-free cir-
cuit and faulty circuit be differentiated?" For a given fault

£ a sensitized path from fi to a flip-flop FF; is determined

i
by a combined state and input vector vj = (xj,Yj) where Xj is

the input to the combinational logic and Yj is the flip-flop

state. Of coﬁrse, Vj may not be unique; thus, for fi we have
a set of vectors Vi = {vil’ Vi2" . . Vin} which determine the
sensitized path. After the Vij's have been found by the modi-
fied d-algorithm, a sequence of input vectors must be found to

move the machine from its present state to state Yj. Finding

11

this sequence of inputs is the sensitization search which can
be regarded as a graph theoretical problem of finding a path
from any of the starting nodes to any of a set of goal nodes,
states that provide z sensitized path to an output or a flip-
flop. This search, like the propagation search, requires di-
rection to be efficient.

The problem reduction graph approach of Huey (1975) has
provided a guidance mechanism for the sensitization search whose
effectiveness is independent of the circuit under test. 1In the
problem reduction graph, the problem of reaching a goal state
is resolved into subproblems which are in turn iteratively
broken into subproblems terminating in simple problems. The
nodes in the problem reduction graph are weighted and a heuris-
tic value for each state encountered in the state space search
is computed based on the weights of the nodes in the problem
graph that are not satisfied by the search state. The problem
graph also indicates input véctors associated with each control
state. These input vectors are used together with the heuris-

tic function to guide the sensitization search.

1.4 Proposed Work

The problem reduction graph approach has demonstrated
its effectiveness in guiding fault-sensitization searches for
goal states in complex sequential circuits that are very diffi-
cult to reach. This approach is the first to provide a general
purpose guiding mechanism for the sensitization search.

Is it the best? Using the idea.of analyzing a design

12

language description can a more efficient method be found?

This research is an attempt to find out answers to these ques-
tions. Also, the problem reduction graph introduces the idea of
"¢ links" which were not actually used in generating the
heuristic function nor in the selection of input vectors to
guide the search. It is our intention to study an efficient
method of selecting input vectors to guide the sensitization
search.]

In'studying how the heuristic cost function is derived
from the problem reduction graph, it becomes apparent that the
function is trying to measure the effect of satisfying a node
on the overall desired goal of reaching a solution. Petri nets
are graph models that have been used in various areas of com-
puter science to study the interconnectiﬁn properties of systems.
It appears then that petri nets are also very suitable for mea-
suring the effect of reaching one state in a state space search
on the overall desired goal state.

This research presents the use of petri nets to model
the register transfers and change of control states in a sequen-
tial machine described in a Computer Eardware Description Language
with the aim of guiding fault-sensitization searches.

The next chapter develops the model and the following
two chapters develop the guidance mechanisms for the sensitiza-
tion searches. In Chapter five, four different circuits are

used to test the method.

CHAPTER II

PETRI NETS AS AN AID TO FAULT DETECTION

2.1 Introduction

For each search state of the sensitization search, a cost
value is computed and external input vectors are provided to
the search program to guide the search. This combination of
input vectors and heuristic cost values increases the effi-
ciency of the search. Because the heuristic cost value must
be computed for each node as it is generated, its computation
must not be time-consuming, otherwise it will slow down the
search. The external input vectors must be judiciously chosen
for each state to minimize "trial and error."

Before the commencement of the sensitization search,
goal states are defined by the d-algorithm as explained in
section 1.2. These goal nodes can be broken down into
subnodes and the subﬂodes broken down further until an essen-
tially trivial node is reached. These subnodes are concerned
with transferring vectors (al,az...an), a: €(0,x,1) into given
registers or moving the machine into a given control state and/
or applying an input vector (al,az...an) at a given control

state. The problem can then be thought of as: "How can we

13

14

reach the goal node(s) starting from the trivial nodes?" 1In
this chapter we present the technique of modeling the register
transfers and change of control states in a given machine by
a petri net.

By studying the relationship between the various "tran-
sitions"” and nodes in the petri net for each machine state,
we can derive an heuristic value for the given state. Also,
input vectors to be applied at any given control state can be
obtained from the petri net.

It is assumed the given circuit is described in a com-
puter hardware description language (CHDL). For our discussion

we use AHPL (Hill & Peterson 1978) due to familiarity.

2.2 Background

"Petri nets" are graph models used to study the inter-
connection properties of concurrent and parallel systems;
C.A. Petri (1962) proposed in his dissertation "Communication
with Automata® that the basic phenomena of communication,
such as the switching logic of totally asynchronous automata,
are representable by purely combinatorial-topological means.
Thus, he proposed the construction of a net with more practical
applicability in the design and programming of information
processiﬁg machines than does the theory of abstract automata.
Holt et al (1968) developed Petri's work to such a state that
it is applicable to many areas in computer science.

Our purpose here is to use this modelling device to

model the register transfers and state transitions that can

15

occur in a machine, given a set of goal nodes.

2.2.2 Firing Rules

Fig. 2.1(a) is a large-scale distributed system which
interconnects many information processing elements or process-
ors. For the purpose of studying the relationship between
the interconnection and the overall behavior of the system,
each information processing element may be represented by a
module of the general form shown in Fig. 2.1(b). The vertical
bar is called a "transition" while the circles are referred to
as "places" or "locations." A petri net is the interconnec-
tions of such modules. Thus we may look upon a petri net
as a directed bipartite graph wherein there is
allowed a directed arc from a place or location to a transi-
tion, or from a transition to a place. In order to simulate
the flow of control in a petri net, each place is marked with
(that is, may have assigned to it) a non-negative number of
tokens. We may think of a token as representing a datum, or
denoting the presence of some condition or some control signal
associated with its place.

The transition obeys the following rules:

a. A transition is said to be "enabled" or "firable"
if each of its input places contain at least one
token,

b. The "firing" of an enabled transition consists of
removing one token from each of its input places,
and adding one token to each of its output places.

FPig. 2.2 gives an illustration.

16

—_—1) 0
. Information .
Input . . Output
44 Processing ‘_____T_4>
Signals . . Signals
~—®] Element >

Fig. 2.1(a) Model

Input
Signals

Fig. 2.1(b) Building Block

(a) Before Firing

(b) After Firing

Figure 2.2 Firing of an Enabled Transition

17

18

c. Though it may fully be enabled, a transition cannot
fire until directed to do so (by some outside con-
trol).

In summary, we may think of transition as an event

which can fire (i.e., occur) if all places (conditions) input

to that transition have tokens (are satisfied).

2.3 Petri Net as an Aid to Guiding Sensitization Search

Given a set of goal nodes G()}, we can reduce them to
subnodes, until we obtain a set of trivial or terminal nodes.
Thus, for each set of goal nodes we can generate a petri net
where the transitions correspond- to regisfer transfers or
changes of control state. Remember that a transition is simply
an event: a register transfer that must be done or a change
of state of the machine from one control state to another. For
our model we will define five types of transitions:

(1) Register Transfer: This type of transition models the
change of state of a register; transferring a vector
(2;,.-...a2an), ag(0,X,1) from one set of registers or in-
put into a destination register.

(2) Control: This type of transition models the change of
control state of the sequential machine.

(3) Simple Transfer: This type of transition models un-
clocked control states and terminal expressions. The
transition that fires to fill the goal place (sec.

2.3.1) belongs to this group.

19

(4) Count: The count transition models the change
of state of a counter.
(5) Shift/Rotate: This transition type models the
shifting and/or rotation of a given register.

Generally, all transition types, except type three,
have an execution completion time associated with them. This
timing requirement is included in our model because we are
dealing with clocked sequential circuits: if all the conditions
for loading a register are fulfilled at time tr the register is
loaded with the wvector at the next clock period. Similarly, if
conditions for change of control state are fulfilled during
time t,, the machine enters the next control state at time tp,;.
For slower memories, the reading (or writing) from memory is not
completed until some units of time after the process was begun.
Hence, this timing provision takes care of all timing require-
ments; in fact, the simple transfer (type three) is a special
case in which the process is completed during the same clock
period. This latter case correctly models the "NO DELAY" tim-
ing requirement of AHPL (Hill & Peterson, 1978).

For each transition in the petri net, we can associate
a time unit t(i) which would indicate the number of time units
that separate the transition and the goal. Why should we link
the transition time to the goal place? This is done to give a
measure of the time units that would elapse before the goal is
filled with a token after a particular transition is fired.

Remember that filling the goal place is our target and as such

20

every formulation takes into account the question "how easily
can the goal place be filled?" 1In Fig. 2.3, taking Pl as the
goal and assuming all transitions have execution completion
time of one unit associated with them, then it can be seen
that if = fires then the goal Pl would be filled; however, if
ty fires, t3 and tl must fire before the goal can be filled.
Thus the transition time of ty is t(4) = 3 while the transi-
tion time of t, is t(1) = 1. Of course, this assumes that the

1
firing order is t4 > t3 - tl‘
Summarizing our discussion of the preceeding paragraphs,
for each transition in the petri net generated for a given
fault, we can associate two parameters:

S

the type of transition

t (1) transition time; that is defined as the number

of time transitions separating the transition
and the goal place.
2.3.1. Types of Places

In our model, the places represent conditions or re-
quirements which must be satisfied during a sensitization
search. We can define five different types of places:

a. Goal: This is a unique place in the petri net; it
represents the condition of sensitizing the fault
under consideration.

b. Control: This type of place or location represents
the requirement of moving the machine into a given
control state.

¢c. Register: Loading or transferring a predetermined
vector aj,az...ay 2aje (0,1,x) into a register.
Counter and shift registers are in this category.

Figure 2.3 Petri Net for Illustrating Transition Time

21

22

d. Input: Placing a vector ajray...a, on an external

input.

e. Output: This type of place models the condition of

a vector ajra,..a, appearing at the external output.

These conditions will be shown just outside the circles
as in Fig. 2.4(a). Since the machine can only be in one and
only one control state at any given time.,and a register can
only be loaded with one vector in any given control state, the
places in the petri net can only have a maximum of one token at
any time. When a condition is fulfilled, the appropriate place
is filled with one token.

Some places in the petri net will have more than one in-
coming arc. This means that the condition represented by the
place can be fulfilled or satisfied from any of several transi-
tions. For example, for a register AR to be loaded with a
vector ajag.--ap s fhe machine must be in either control states
1, 3 or 5. In each control state, when some condition is ful-
filled, then AR is loaded. In control state 1, this occurs

when register IR contains a;sa In control state 5, an

2°°"%n:°
input vector ajas...a, is applied. Fig. 2.4(b) illustrates
this condition. Of course, tl' t2, or t3 can only fire when
their respective places are filled.

To differentiate the goal place from all other places
in the petri net, we use the visual representation shown in
Fig. 2.4(c). The input places to tl’ ty and ty are the test

vectors generated by the d-algorithm any of which would cause

an erroneous next state to result from the presence of the

23

P; =: AR:ajaz...ap
(2) Py =: cs.l

Py =z IR:ajaz...an
cs.5
INzajaz...an
cs.3

OR:ajag...a,

(b)

(c)

t1 ta t3

Figure 2.4 Petri Nets Illustrating Different Types of Places

24

fault. If any of the transitions tys t, or t, are fired, then
the goal place is filled which implies the fault is sensitized.

2.3.2 Formal Definition of Petri Net for Guiding

Sensitization Search

Although petri nets have many properties like reach-
ability, liveness, and safeness (or boundaries), most of the
work reported on the properties of'petri nets are concerned
with subclasses of petri nets (such as "marked" graphs). We
do not intend to investigate any of these properties in our
model; rather our aim is to develop a heans of guiding the
sensitization search from the petri net generated for a given
fault, given the CHDL.description.

Before giving a formal definition of our model, we define
the state of a petri net: A token distribution in a petri net

is called a marking or state. Initially, each place has a

status (full or empty) referred to collectively as marking M.

We have now presented all the material needed for a
formal definition of a petri net as an aid to computing
heuristic values for guiding sensitization search:

For a given fault we define a petri net as a quintuple:

Pp = {G, T, Pyr Por Mn}

set of test vectors returned by the d-algorithm,

]

where G

each of which will cause an erroneous next state
to result from the presence of the fault.

T = the set of transitions.

25

P, = the set of non-terminal places or locations
from which further subnets can be generated.

= the set of terminal places.

M = marking or state of the petri net. Usually
one will be interested in the state just after
the machine has been driven into a search state
Si.

Generally PN n PT =@ , the null place and we will often

denote Py u Pn by P, the set of all places in the petri net.

2.4 Generating the Petri Net from AHPL

The petri net generation process starts with the goal
states returned by the d-algorithm. The way(s) in which these
goal places can be filled is generated using the knowledge of
the hardware for the control states, registers, inputs and
memories which are available in the AHPL description statements.
For example, if the d-algorithm returns (AC: XIOX, IR: IXX)
and (AC: 10XX, 1R: 1XX), we would have the net shown in
Fig. 2.5(a). =1 and t, are the transitions which fire to
~£ill the 'goal place with a token. By our model, it needs
either tl or t, to fire to have the goal place Pl filled.

We must now generate the remaining portions of the petri net
from P2, P3 and Pg.

There are three different types of expressions in the
AHPL description from which the remaining portions of the petri

net must be generated:

26

AC:X10X IR:1XX AC:10XX

Figure 2.5(a) Setting Up the Goal Places

P2

AC:clc203c4 B:clc2c3c4 Pll

Figure 2.5(b) Expanding the Goal Places

27

1. Condition expressions

2. Register Transfer expfessions

3. Control Branch expressions
A good discussion of how these expressions are handled is
given in SCIRTSS (Huey, 1975, pp. 24-35) and will not be given
here in detail.

Equation 2.1 contains condition expressions which must

be satisfied before a register transfer can take place.

K. AC <-(ﬁlAIR AAC) V (IRlAﬁzAB) (2.1)

2
It simply means that if IRl is zero and IR2 is one, then trans-
fer the complement of the contents of register AC into register
AC; however, if IRl is one and IR2 is zero, the contents of
register B are transferred into register AC. Of course, this
can only be done at control K. Assuming IR is a 3-bit register,

then the condition TﬁiAIRZ is translated into the condition

IR:01X; similarly IRlAIR2 becomes the condition IR:10X. Notice
that these conditions are not dependent upon the values in any
of the specified registers; that is, the conditions are invariant
with respect to the goal places. We will return to this point
a little later.

For the sake of generality, equation 2.1 is rewritten
as in equation 2.2 where IRl is replaced by a and IR, by b;

a and b are in effect control variables.

K. AC<«(aabaAC) V (aasba B) (2.2)

28

Given equation 2.2 which is a register transfer expression
and the goal nodes of Fig. 2.5(a), our task is to find transi-
tions and their input places such that if the transitions are
£ired, places P, and p, would be filled with tokens; that is,
register AC would be loaded with the wector X10X or 1l0XX.
From the register. transfer expression of equation 2.2, we see
that AC can be loaded with a required vector C1C203C4 in one
of two ways:
1. If the machine is in control state X and AC
contains Eiaéaéaé
or 2. If the machine is in control state K and register
ﬁ contains C1C2C3C4. For the first case the condition ab:10
must be satisfied while ab must be 01 in the second case.
We thus need two transitions t3 and t4 to expand the goal place
AC:X10X. Each one of these transitions has input places as
shown in Fig. 2.5(b). The place AC:10XX is expanded in a simi-
lar fashion. Transitions tart, sty and te are transitions of
type one.since they all model the register transfer which takes
place if all the conditions are fulfilled one time period
earlier.
Places Py, Pg and P, are all input places to the same
transition and they will be called brothers. Transition ty is
a descendant of transition t, since if t

1 3
is filled with a token, then tl can fire assuming all other

is fired and place P3

conditions are fulfilled. More generally, a transition tj(ti)
is said to be a descendant (ancestor) of a transition ti(tj) if

t; can be ultimately fired after the firing of ty (after

29

progressing through some further firiﬁg, if necessary). In
particular, tj(ti) is an immediate descendant (ancestor) of
ti(tj) if an output place of tj is an input place to ty-

After the goal places have been expanded as in
Fig. 2.5(b), the new register places generated are also ex-
panded by the same reasoning.

The third type of expression in AHPL is the control
branch expression. There are two ways control can pass from
one control state K to another.

a. Unconditionally:

K. = (1)

b. Conditiohally:

K. = (a,b,c,...)/(il,iz,i3,...)

In the first case, control passes from control state K to
control state i without any condition. This often happens
after a register transfer or some other action takes place
in control state'K. The machine is then sent to control state
i to initiate some other action. The second case of transfer
of control occurs only when a given condition is fulfilled.
In the example given above, control passes from control Etate
K to control state il’ i2, or i3 depending on wheth.er the con-
dition a, b or ¢ is fulfilled.

In order to represent these two types of control branch
expressions in the petri net, we classify two types of control

transitions:

30

1. Type 2a: Conditional control transition

2. Type 2b: Uncondtional control transition.
Where we have conditional change of control state, each member
of the set {il, i2, i3,...} becomes an output place of a tran-
sition tcl’ tc2’ tc3, respgctively, whose input places are
control state K and the respective conditions: a,b,c,....

Control can pass from more than one control state to
control state i unconditionally in a given circuit. To follow
the rules of transition firing, this has to be modelled as shown
t fires

c1’ Tc27 te3
the place CS-K is filled. This accurately models the hardware

in Fig. 2.6(a) so that if any of transitions t

behavior but can lead to a proliferation of transitions. For
this reason, we choose the representation of Fig. 2.6(b) which
violates the general firing rule. For this type of transition
(type 2b), if any of the input places is filled, the transition
becomes firable. This is justifiable since a transition is
modelling a change of control state and we are interested only
in the firing of the transition.

Notice that the control state expansion is completely
invariant with respect to the goal places; that is, it is not
dependent on where the fault is located in the machine.

After discussing how subnets are generated from control
branch and register transfer expressions, one may ask "how are
the firings of transitions derived from these expressions
handled?" 1In section 2.2, we gave the firing rules of a transi-
tion: firing an enabled transition consists of removing one

token from each of its inputs and adding one token to its output

Figure 2.6(a)

Figure 2.6(b)

Unconditional Control Transition

31

32

place(s). Since register transfer in AHPL is non-destructive
and the conditions for a control state transition remain after
the change of control state, there seems to be a problem with
our model! As will be explained in Chapter three, we are
mainly interested in transitions that have fired during each
sensitization state. Hence, we care only about the output
places of transitions that are fired. 1In section 3.3 we intro-
duce the notion of implied transition firing; the discussion
in that section will give a good understanding of why we do
not take pains to model the non-destructiveness of register
transfers nor restore the condition tokens for control state

transition.

2.5 Complete Petri Net

We use the AHPL described circuit of Fig. 2.7 to
illustrate the generation of a full petri net from the circuit
description.

The set of goals which would sensitize the fault is:

10111XX11XX
XX0XXXX01XX

From the AHPLAdeclaration svntax, AC:11XX, MDR: 11XX and

IR: 101 are input places to transition tl while IR:XXO and
AC:01XX are input to transition t,. Any of t and t, firing
fills the goal place with a token and the fault is sensitized.
There is no time delay involved, hence tl and t, are simple
transfers of type 3. The first stage of our net is shown in

Fig. 2.8(a).

MODULE: SP
MEMORY: IR[3]; MDR[4]: AC[4]
INPUT: INP[4]

OUTPUT: MOR

1. IR <« a3/INP

> (INP,, INP,)/(1,2)
2. > (IR3,IR3)/(3,7)
3. > ((TRAIR,), (TR AIR)), (IR|ATR,))/(4,5,6)

4. MDR <« INP; MOR «AC

-1
5. AC <« INP
-1

6. AC « AC AMDR
MOR <« AC

- 1

7. AC + #4AC
MOR « AC

-1

Figure 2.7 AHPL Description of Example

34

AC:11XX MDR:11XX IR:101 IR:XXO0 AC:01XX

Figure 2.8(a)

First Stage of the Petri Net Generation

35

At the second stage, we start by searching for a
solution to the guestion "how can place Pl be filled with a
token?" Pl filled with a token means that the register AC
has been loaded with the vector 11XX. There are two alter-
nate ways of doing this:

a. In the first case, if a transition t3 with input

places INP:11XX and CS°5 is fired, then at the
next clock period, the contents of AC will be
11XX. Hence t3 has transition type 1l; that is
register transfer and its transition time is one.

b. Alternatively, if a transigion t, with input

places CS+6, AC:11XX and MDR:11XX is fired.

Transition t, also has transition time one and

is of type one.
Notice how, for example, the input places MDR:X1XX and AC:01XX
are obtained from the "and" operation of control state 6 since
the output place is AC:01XX and we have logical AND of registers
AC and MDR, we specify the vector 213,253, to correspond to the
desired goal and then determine what the contents of MDR must
be to give the correct result.

With this reasoning, we obtain the second stage of the
petri net as shown in Fig. 2.8(b).

Now that we have encountered control states as places, -
we shall explain how these are treated before going on with the
complete net generation. As discussed in the section 2.3,

control branch expressions are completely invariant with respect

ZAA
t t
e - b1 < B2
7 A 4 \%
/4 \ t4] t6 1T tg
(O O O s
P11 P12

Figure 2.8(b) Second Stage of Generation of Example Petri Net

9¢

37

to the goals. These control subnets are generated before the
generation of the full petri net. To generate the subnet
corresponding to a control state, we use the same reasoning:
how can I get to control state K? In the example circuit
under discussicn, this is almost trival. Fig. 2.9 shows the
subnet for control states six and one. It is appropriate to
show here one subnet from one of the example circuits dis-
cussed in Chapter Five. This is the control state nineteen
subnet of case four, the four-bit microprocessor. This sub-
net in Fig. 2.10 is complex compared to our example circuit
of Fig. 2.7.

When the decision to add the subnet of a control state
to a main petri net is made, the linking step consists of
adding the transition time of the output of the control state
place to the transition time of the transition to which the
control state is output. In this case, if we are linking
CS+-6 in Fig. 2.9 to transition t, in Fig. 2.8b, we would add
the transition time of t4 to the transition time of CS.6.

To complete the petri net generation, we would link
the subnets for control states 1,4,5 and 6 to tg3,tg,ts.tg.t7,

t, and t, in Fig. 2.8(b). After expanding the goal places

8 9
we have the complete petri net shown in Table 2.1. The name

of each place is given in Table 2.2.

38

Cs.1l CS.6

Cs.7 Cs.4 CS.5 CS.6 cS.3 IR:10X

(a) (b)

Figure 2.9 Subnets for Control States One & Six

IR:0000 IR:010X

e

ICS:0000 ICS:001X Cs.3 ICS:010X

IR:001X o34

Figure 2.10 A Complex Control State Subnet

39

Transition Output Place Input Places . Transition Time

1 Po P1.,P2,P3 0
2 Po P4.P5 0
3 Py Pg.P7 1
4 Py P1.P,,Pg 1
5 Py Pg,Pg 1
6 P3 | P11.P12 1
7 Py P11.P32 1
8 Pg P7,P13 1
9 Ps P5,Pg.P1g4 - 1
10 P P10:P15 2
11 Pis P11.P;3 3
12 Pg P10.P1g 2
13 P10 P17:P23 3
14 P23 P11.P1g 4
15 P16 P11-P19 3
16 Pgy P;0:P20 2
17 P20 P11.P21 3
tig P1 ' P23.P35 1
t19 Ps5 P23.P2g 1

Table 2.1 The Petri Net Listing for Figure 2.7

Place Name

Pp Goal

Py AC:11XX
Py MDR:11XX
Py IR:101
Py 'IR:XXO0
Py AC:01XX
Pg INP:11XX
P7 Ccs.5

Pg cs.6

P9 Ccs.4

P10 cs.3

Pi1 Ccs.1l

P12 INP:101X

Place Name

Pi3 INP:01XX
P1q MDR:01XX
P1s IR:01X
Pig IR:10X
P17 cs.2

Pisg INP :XX1X
P1g INP:10XX
Pap IR:00X
Py INP:00XX
Pyo INP:XX0X
Py3 Cs.7

P24 AC:X01X
Pys AC:X11X

Table 2.2 Place Listing for Table 2.1 and Figure 2.8(h)

40

41

2.6 Summary

In section 2.3 we defined a petri net as an aid to
guiding sensitization searches and followed this up with an
example in section 2.4. As noted in the background information
of section 2.2, petri nets have been used to model various sys-
tems and can thus be used to model the machine of Fig. 2.7.

It is not the subject of this work to show how a petri net can
be used to model a machine itself, given the CHDL description;
however, we would point out that such a model would be very
different from the model of section 2.3. The latter is based
on the notion of a goal place and is an attempt to model the
change of control states and register transfers that must take
place to £fill the goal place with a token. It is thus depen-
dent on the particularvfault under consideration. Most of the
places are dependent on the goal state; the only exception be-

ing the places that are responsible for control state branching.

and conditional register transfer.

CHAPTER IIIX

HEURISTIC FUNCTION DEVELOPMENT

3.1 Introduction

In SCIRTSS; both the processes of fault-propagation
and fault sensitization are accomplished by an heuristic
graph search. The use of heuristic evaluation functions to
direct the search of state-space graphs has been studied by
many authors (see, for example, Hart et al, 1968 and Michie and
Ross, 1970). Nilson gives a good treatment of the different
ideas on which these evaluation functions are based. SCIRTSS
assigns a weight to each node as it is reached. This weight is

given by

W =G + wH
"where G is the minimum number of transitions from
the initial node state to the node, H is some
heuristically determined value, and w is a constant
indicating the relative importance of H in computing
the total weight" (Carter, 1973). ‘

In this chapter we present the development of a heuris-

tic function from the Petri net to guide the sensitization

search. First, we present the tools that are needed in developing

42

43

the heuristic function; then the several ideas considered are

presented.

3.2 State Egquation of a Petri Net.

Although the mathematical properties of petri nets
have not been well exploited, we have found the state equations
a useful tool in developing a heuristic function for guiding
the sensitization search.

Throughout this chapter, the reader is reminded that
we have the "natural" functioning of petri nets presented,
followed by our application.

Let p and t denote the numbers of places and transi-
tions in a petri net, respectively.

Defn. 3.1: A marking or state vector, MK' is ap x 1 column
vector of non-negative integers. The jth entry
of My HB denotes the number of tokens on place
j immediately prior to the Kth firing.
In the natural functioning of the petri net, it is customary
to progress through a series of firing sequences; thus, we can
speak of the "Kth firing.” Mg denotes the initial marking or
state.
Defn. 3.2: The Kth "firing" or "control" vector, VK’ is a

t x 1 column vector of 1's and O's. The ith entry

of VK is one only if transition i is to be fired

at the KR

firing opportunity.
Let A~ = [aij] be a t x p matrix having»aij =1 if place j is an

input place for transition i; otherwise azj = 0.

44

Afj is similarly defined with azj = 1 only if place j is an
output place of transition i.
Defn. 3.3: The matrix A = AT - A” represents the token changes

in each of the p places when transition i fires once.

The state equation:

M, = Mo o+ ATVK, K =20,1,2,... (1)

gives the marking MK+1 resulting from marking MK by the Kth

firing vector, V T implies matrix transpose operation.

K-
M, + ATVK > 0 for each K.
An example will make these definitions clearer.

Example 1l: For the petri net of Fig. 3.1 the A~ and AT matrices

are:
1 2 3 4 5
t; o 1 1 0 o]
Am = ot o 0 0 1 0
£3 0 0 0 1 1
1 2 3 4 5
£ 1 0 0 0 o]
At =, 0 1 0 0 0
ty 0 0 1 0 0]

45

Figure 3.1 Petri Net for Example 3.1

Figure 3.2 Example Petri Net for
Illustrating Transition
Pg Firing

46

The matrix A is

1 -1 -1 0 0

+ -
A = A- A = 0 1 0 -1 0
0 0 1 -1 -1

The initial marking Mo =[00011]T. fThe marking Ml resulting

from firing t2 and t3 is:

"o] o] 1 0 o |
1 0 -1 1 0 0
1] = 0 + |-1 0 1 1
0 1 o -1 -1 1
0 1 0 0o -

R | L] L_ 1]

For the petri net generated for a given fault, we are
_interested in transitions that have been fired after driving
the machine into a search state S. Thus, we shall let Mg de-
note the marking or state vector after reaching state S.
Then MS+ denotes the marking vector after all firable transi-
tions have been fired.

The state equation of a petri net for a given fault is
now written as:

T

MS+ = MS+AVS (2)

where A is the matrix defined in Defn. 3.3 and Vg is the firing
or control vector, at search state S, that defines which transi-

tions are to be fired.

47

During the sensitization search, starting from the
initial state, each unique state is numbered and called a node.

Hence, the marking vector M. can also be written as Mi where

S
i is the node number that is associated with search state S.
Mg gives the conditions fulfilled at search state S. 1In our
model, there is a transition time associated with all but the
type 3 transition (section 2.3). For this type of transi-
tion, if all the input places are filled with tokens, it is
fired. This is not the case with all other types of transitions;
they require time. For example, if conditions for loading a
register are fulfilled at search state S, the register will be
loaded during the next clock period. Thus, Mg, in equation (2)
will add the outputs of those transitions that have no time
associated with them to the state wvector M.

To compute MS+' we have two choices: either use the
arithmetic and matrix operation of egquation (2) or use the data
structure of the petri net together with the information in the

search state S to derive M In the former case, we have to

S+°
deal with large sparse matrices AT, A" and A. When the algo-
rithm was written, it was apparent that there would be a waste
of computer memory. Hence, we chose the second alternative:

relying on the data structure of the petri net and the search
and M

state to derive M The algorithm for doing this is

S S+°

shown in Fig. 3.3. The first section of the algorithm compares
the present machine state and register contents with the

machine state and register contents needed to place a token

48

IENTER
m5, marking vector i
clear ;g: N
j=1, CSy., the control state of the
j= current search node

CS;, the control state of the
petri net

j=j+1 S;., the value of the register
of the petri net

Vi, the value of the register at
the present search node

ktrin;, set of input transitions
PLACE TYPE to transition i, tj

nip;, no. of imput
places to t;

=

j=kopd ;
| my=1

Figure 3.3 Derivation of Marking Vector

49

in each place in the petri net. This portion of the algorithm
is, of course, similar in the problem reduction graph (page
75, Huey, 1975). The second section tests if all the input
Places of a transition are filled with tokens. If so, the out-
put place of the transition is filled with a token (the transi-

tion fires) if the transition is of type 3.

3.3. Implied Transition Firing

In the application of petri nets to fault detection, we
are interested in the goal place being filled with a token.
Thus, if any place, say P2 of the net in Fig. 3.2 is filled, we
have to be concerned with which transitions were fired or can
be inferred to be fired for that particular place to be filled
with a token. For P2, either t2 or t3 or both might have been
h is £ill-

fired at the X firing for it to be filled. After P

2
ed, only P3 must be filled for t, to be fired, filling
the goal place with a token. Hence, after the Kth firing, once
P, is filled, we will consider all transitions that are descen-
dants of P, to be fired since they are of no interest. A tran-

sition descendant of a place is a transition that fires to have

the place filled with a token. In Fig. 3.2, ty and t3 are both

descendants of P;. By similar reasoning, transition t4 is an

(immediate) descendant of ty and t3.

th

The marking vector MK+ after the K firing for Fig. 3.2

is

M, = [0 1 0 0 0 0 0 0j<.

50

Recall that this gives the places that have been filled with-
tokens after the Kth firing. From MK+’ we can find all transi-

tions in the petri net that were fired or can be inferred to

be fired. We define a new vector RK:

Defn. 3.3: The Kth transition status vector RK = {ri} is a

1l x t vector having entries ry where

1 if transition i was fired or can be inferred
r; = to be fired during the Kth firing.
0 otherwise.

The notion of implied transition firing is actually
related to the heuristic function development which is presented
in section 3.4. When a set of places is filled at a search
state S, then we attempt to identify the set of transitions
which need no longer be considered as being necessary to fire
before filling the goal place with a token. Put in another
way, if say P2 of Fig. 3.2 is filled with a token, then we pose
the question: "Starting from the terminal nodes and transitions,
which transition firing sequence might have caused P, to be
filled with a token?" In this case it must have been the se-
quence t, * tg or t, > t,. The notior of implied transi-
tion firing is not found in the natural functioning of the
petri net.

What happens if there are loops in the petri net?

This is simply dealt with during the construction of

RK' the transition status vector. RK is derived from MS+7

ceans @

Pg

Figure 3.4 Dealing with Loops in the Petri Net

51

I

Clear all rj IMD; 3
i=1

j=0 NTPOJ' H

LSOT% s

3=j+1 r; ¢

52

immediate descendant of tj

4 of transitions to which
place j is output

set of transitions to which
place j is output

transition status vector i

Figure 3.5 Derivation of Ry

53

during the derivation process we enumerate descendant transitions
of a place that is filled with a token. During the enumeration
process if any transition is already marked in Ry the whole pro-
cess is terminated. In Fig. 3.4, 1if P2 is filled, the algoxithm
of Fig. 3.5 which derives Ry would detect a loop between the
transitions t2 and t4. Since t2 is the transition descendant of
PZ’ it is marked first in Ry The immediate descendant of t, is
t3 while t4 is the immediate descendant of t3. In attempting

to mark the immediate descendant of t4 (which is tz), it is dis-

covered that t, is already marked and the process is terminated.

3.4 The Heuristic Function

For each node that is reached during the sensitization
search, we would like to compute a heuristic cost value based on
information from the petri net. Our aim is to indicate which
node is most likely to be useful in finding the goal node. For
sensitization search state S, we seek to minimize the heuristic
cost function H(S); then for all nodes that are candidates for
expansion, we choose that which has the minimum cost value H(S)
as the most promising.

For each search state S, our main concern is: how can
the machine be moved nearer the goal from state S. This gquestion
must be answered from the petri net. Three options seem appeal-
ing, either:

a. use the places that have been filled in the petri

net at search state S,

54

b. use the transitions that have been fired at

state S, or

c. use a combination of both the places and transi-

tions
as an indicator of nearness to the goal. The background dis-
cussion of section 2.2 on petri nets will be helpful in under-
standing the present discussion. Remember that we use petri
nets to model "conditions" represented by places and "events"
represented by transitions.

To use both the places filled and transitions fired as
our indicator of nearness to the goal, i.e., to compute H(S)
would be superfluous since the module of Fig. 2.1 represents
an information processing element.

When a place is filled with a token, it indicates a
condition has been fulfilled. Hence, it is possible to use
the places (conditions) fillea with tokens (fulfilled) to in-
dicate how near we are to the goal. However, to be dealing with
the places instead of the transitions, we have to spend more
time detecting loops between places and this can slow down the
search. Also, in the petri net, it is more natural to be con-
cerned with the firing of transitions and transition firing
sequence.

The firing of a transition indicates an "activity" has
taken place--in our model there has been, say, a change of con-
trol state, for example. Our interest is to indicate how this

affects the overall behavior of the machine, for that matter,

55

how near we are to the goal. From these considerations, we
choose as our basic measure, the number of fired transitions
in the petri net.
The transition status vector, Ry defined in Defn. 3.3
actually constitutes a mask on the transitions in the petri
net that are no longer of interest to us; we might think of
these transitions as having been fired already. Hence, for
each search state S, we can compute the heuristic cost function
as:
Nt
H(S) = N, - I rj (3)
i=1
where Ny is the total number of transitions in the petri

net

Ry = {ri} is the transition status vector.

Consider Fig. 3.6. If for state A, P2 is filled, then the

marking vector MA+ is

= T
MA+ =[0 1 0 0 0 O O 0 0] :

The transition status vector would be derived as explained in

the previous section to be

RK =[{0 1 1 1 0]

]

then H(A) =5 - 3 2.

If, on the other hand, state B has PS filled with a

token we would have:

MB+=[000010000]T

56

and RK = [0 0 0 1 O0].

H(B) would be computed as:

H(B) = 5 - 1 = 4, indicating the importance of
state A over state B.
The simple expression of equation (3) is not satisfac-
tory when a terminal place of a transition is filled with a
token but the transition itself is not fired. Specifi-
cally, in Fig. 3.6, if for state A, P4 and P6 are filled with

tokens, then

= T
MA+ = {0 0 0 1 0 1 .0 0 0]
and RK = [0 0 0 0 0] since no transition was fired.

Now, if for state B, no place of the petri net is filled with
a token, then

MB+ =[0 0 0 0 O O O 0 O]

and RK =f[{0 0 0 0 O0].

For both states A and B, the heuristic function computed from
equation (3) would be:

H(A) = H(B) = 5.
Intuitively, state A should be nearer to our desired goal than
state B.

This suggests that terminal places must be given special
treatment in the computation of H. The modified expression for
H now becomes:

Nt +

H(S) =Ng - [I ri+ I Lm’'] (4)
i=1 JePp)

Figure 3.6 Petri Net for Illustrating Heuristic Function
Computation

37

58

where
M; = ﬁng} the marking vector after all transitions
have been fired in state S
pj = number of brothers of Pj

5 = 0 if Pj is an input to any member of R
1 otherwise.

The last term of equation (4) is the one that computes contri-
butions from terminal places that are filled but their
associated transitions have not been fired. The ¢ factor takes
care of this situation. It is assumed that for a transition to
fire, each filled place contributes a fraction 1/nj where nj is
the number of places input to that transition.

Applying equation (4) to the two states A and B men-

tioned in the previous paragraph, with:

My¥ = [0 0 0 1 0 1 0 0 01"
+
R, = [0 0 0 0 0]

and M+ = [0 0 0 0 0 0 0 0 0]
R+ = [0 0 0 0 oOl.

Using equation (4) we have

H(a) 5~-[0+ %+ %+ %] = 3.5

and H(B) = 5 - [0] = 5.
which indicates correctly the importance of state A over state
B. Note also how the function treats the importance of ter-

minal place P6 which is an input place to more than one transi-

tion.

59

3.4.1 Counter and Shift/Rotate Transitions

In chapter two we introduced the coﬁnt transition;
this is a transition that models the change of state of a
counter. Similarly, the shift/rotate transition models the
change of state of a shift register. The model of the counter
transition shown in Fig. 3.7(a) is actually a compression of what
would be a series of transitions and places. Consider a
counter that counts from 0 to 4. There is a change of state
of the counter, that is, a transition whenever the required
conditions are fulfilled (i.e., the condition place is filled
with a token). Thus, if the counter is in state 0, and if
the condition place is filled, the transition tl will "fire"
during the next clock period. This must be repeated four
times before the desired state KNT:100 can be reached (Fig. 3.7
b). This suggests that when a counter transition is included
in the petri net, we increase the number of transitions in the
petri net by the number of times the counter must count before
reaching its goal state. For Fig. 3.7(b), we might have to in-
crease the number of transitions by 4.

This approach would not give an accurate guidance to
our search routine. If, for example, a counter is enabled and
loaded with 0110 (binary six), counts to 1010 (ten), and then
is disabled, and we then add 15 = 16 - 1 to the total number of
transitions, we have not given an accurate representation of
the counter operation. Thus, the heuristic function computed

on this basis would be misleading.

60

te

(i) Unconditional Count
Transition

{ii) Conditional Count Tran-
sition

(a)

<001

Condition for
Count Operation

Figure'®3.7 Modelling Count Transition

6l

An alternate and more accurate approach is to consider
the output place of the count transition as a goal and then
compare the state of the counter during the search with the
goal. Let bd(i,s) be the arithmetic binary difference between
the value in the counter at the present search state S and the

goal state of the counter. Then

bd(i,s) = L(gy....q)) - Lv)
" where 9y-+++9p T goal state of the counter

VyeoeV

1 n value in counter i after the current

I

search state S.

Obviously, if bd(i,S) is zero, then our goal is reached and tc
fires, hence the contribution from the counter transition is
one. However, if bdi is not zero, then we are a distance of
bd(i,S) from the goal and the contribution from the count

transition is
[1 - bd(i,8)/L (gys---.9,)]- (5)

Note that although we have chosen the distance between the goal
state of the counter and the value in the counter at state S to
measure our nearness to the goal, we are in essence answering
the gquestion: "how far is the count/shift transition from fir-
ing?" Hence, it is the transition firing that is actually our
measure of nearness to the goal. Accordingly, expression (5)

takes on values ranging from zero to one.

62

For shift registers, we define bd(i,S) as the number
of times the shift register must be shifted (left or right)
from the present state S so as to satisfy the desired goal.

Shift registers and counters are very highly sequential
circuits that are very troublesome in fault test generation,
especially when they are buried. Expression (5) enables us to
provide proper guidance at each state of the search; for
ordinary registers we give guidance based on whether the regis-
ter contains the correct vector or not; guidance for shift
registers/counters goes further than that. If the shift regis-
ter or counter does not contain the correct value, we compute
how far it is from reaching the required value. Needless to
say, it is impossible or very difficult to use the same criteria
for ordinary registers.

Adding the contribution from the counter and shift/
rotate transitions, the heuristic cost function of equation (4)

now becomes

Nt

H(S) =N_ ~- [Zr; + z 8 m.
® ielide jey, A3

+ ¥ (1 - bd(i,s)/ 4(9:9,5...9_) 1]
TeC 1°2 n

where C = the set of count and shift/rotate transitions.
The flow chart for computing the heuristic cost function is

shown in Fig. 3.8.

HCNT=0

j=ITERP+1 |

¥
v
4
sp'r=m>r+1/mp]-]
j :NTP
Y

a

63

contribution form R vector
contribution from counters

contribution from terminal
placer

Heuristic Cost Value
transition i
set of terminal places

set of transitions to which
place j is input

no. of i/P places to tj

no. of terminal places

Figure 3.8 EHeuristic Cost Function Computation

compute
bdi

HCNT=HCNT+
(L-bdi/MVAL

HRVE=HRVE+1

Figure 3.8 cont'd

64

CHAPTER IV

INPUT VECTOR GUIDANCE

4.1 Introduction

In the last chapter we devzloped a guiding mechanism
for a search by finding a heuristic value that enables us to
indicate the nodes most likely to lead to the goal. The se-
cond guidance mechanism used in SCIRTSS is the reliance on
user supplied input vector tables (Carter, 1973). SCIRTSS III
attempts the selection of these input vectors automatically
(Huey 1975, p. 81).

In sensitization searches a branch is made to each
possible next control state from the current control state of
the search node being expanded, if an input vector exists
which satisfies the conditions of the control branch. Although
the search routine itself generates partvof the input vector
needed to satisfy the control branch condition, we can derive
information from the petri net to make this process more
efficient. Also, the sensitization search can use a great

deal of guidance where data inputs are concerned.

65

66

In a Computer Hardware Description-Language like AHPL
where each input-to-register transfer is associated with a
control state, the input vector suggestions can be grouped by
the control state at which each is to be applied. In this way,
at any given control state an input vector can be readily
available for use to increase the search efficiency. This has
been the approach in SCIRTSS.

In the petri net generated we have places or locations
that represent the condition of placing an input vector (al,
a2,...an) a; €(0, 1, X) on an external input. The control
states at which these places are filled with tokens can be
readily obtained from the petri net. Most of these places or
locations are invariant with respect to the goal or the fault
under consideration as they are generated from control ex-
pressions. Hence, the control state associated with these
places can be obtained in the form of subnets before the com-

mencement of any sensitization search.

4.2 Selecting Input Vectors

In some circuits, many input vectors may be associated
with a given control state. In SCIRTSS, when attempting
to expand a node, the search routine applies each suggested
input vector to all control branches. Thus, for a node that

has m input vectors and n successor control states, the search

67

expands m X n next states. Hence, these input vectors must be
judiciously selected to avoid misleading the search.

However, this selection process is not a trivial issue.
In fact, each input place that appears in the petri net is im-
portant, for if a given input place is never filled, it may
be impossible to reach the goal!

In our input vector selection process, we classify
the input vectors according to the two main types of expres-
sions in AHPL:

Control Branch Expression

and Register Transfer Expression.

4.2.1 Control Branch Input Selection Procedure

Generally, a conditional control branch is made in
AHPL depending upon

a) some input signal, such as ready, link, etc. We

call such a signal control signal.

and/or b) the bit combinations in some register(s), many of
which are loaded directly from the external inputs
at some control state(s).

Both the control signals and registers that are responsible

for branching from one control state to another appear in the

petri net. In the case of control signals, we can select the

values of these signals so as to prevent the generation of

68

i unnecessary nodes during the state space search. In particu-
’ lar, consider the examples

(i) k OUT <« A

—» (Teady, ready)/(k,3)

(ii) k A <«—INC(R)

— (A/A Aready, A/2)/(k,3)

.In both examples, the machine waits in control state k until
some condition is fulfilled. During the search, should this
behavior be simulated? Not necessarily; for if we examine
the register transfer at cs.k of example (i), it would be a
waste of time to continue looping to control state k to be
performing the same register transfer. On the other hand,
it is essential to repeat the counter operation of example
(ii). Hence thg search must branch to c¢s.k whenever it enters
control state k.

The examples of the preceeding paragraph indicate that
we can control the control states that the machine branches to
during the search in order to improve the search efficiency.
This is done during the branching function generation. The
petri net contains information on the control signals that
cause branching from one control state to another. If the

value of a control signal causes the machine to wait in any

particular control state and neither a count nor shift opera-
tion takes place in that control state, then the machine is
not allowed to loop in that control state during the search.
Because we have the count and shift transitions in the petri
net, these conditions are easily' detected.

The more common method in which a conditional control
branch is made in AHPL depends on the contents of some regis-
ter, for example an instruction register in a computer. Many
of these registers are loaded directly from the external in-
puts at some control states. Frequently there are too many
input vectors to be applied at the respective control states
and we have to choose only a2bout two or three of these input
vectors. The importance of properly selecting these input
vectors is not hard to see: by leaving out some input vectors
it may not be possible to visit some control states(s) and the
penalty can be very high.

Ideally, we should select the input vectors such that
it would be possible to visit all control states in the petri
net. This philosophy is not without danger, however. In some
cases, there may be more than one goal. Thus if any of the
control states say, ij, iy, i3 is reached and the correct re-
"gister is loaded then the search is successful. In this case,

although many control states may appear in the petri net, it

70

seems appealing to select a subset of these control states
and aim at reaching only members of this subset. This ap-
proach would nullify the advantage of having more than one
goal and of course it is very difficult and time consuming to
select a subset of control states. We aim at selecting

the input vectors such that it woul:l be possible to visit all

the important control states in the petri net.

Defn 4.1: The Control State Branch Vector, Bjk = {}1,52,
..sn} is a set of input vectors s;, that can cause a2 trans-
fer from control state j to control state k. The set of all

Control State Branch Vectors is denoted by By = {?jkl--'Bmk}-

The vector By should not be confused with the input vectors
that can be applied at control state k. In the latter case,

we ﬁave input vectors which, if applied when the machine is

in control state k, causes some register transfer. The Control
State Branch Vector, By, on the other hand consists of input
vectors which are actuaily responsible for the machine ever
branching to c¢s.k. By is derived from the control state sub-
nets as shown in Fig. 4.1. In this figure, we mark all regis-
ter places that have been encountered for easy identification
when we are selecting input vectors in section 4.2.3. In the

petri net, an immediate predecessor of a place i or location

k=k+1

j=j+1

PDrg type

3 & |B[f+]=P;

NCS
INPUT

<}
<3

i=i+l

B (L] =p;

"

71

jth immediate prede-

cessor of place i
place j

set of input vectors
that cause branch
to CS.k

no. immediate prede-
cessors of CS.k

no. immediate prede-~
cessors of place j

no. of Cs

Figure 4.1 Construction of CS Branching Function

72

is a place j that is input to a tramnsition-that fires to f£ill
place i with a token.
The vector By is independent of all faults and thus

can be constructed once for all sensitization searches.

The next step in the Control Branch Input selection
is the formation of a Common Transfer Vector.
Some input vectors in each By cover other input vec-

tors in some Bj. Hence we define a common transfer vector,

Fp(kykp,---) = {s152,--53} L =1,2,3...

as the set of input vectors s; that are common to control
states kj,k3,... The vector Ff is easily derived by checking
if each input vector sj in Bkl covers any other input vector
in Bkz'

We give an illustration at this point. In the
next chapter, we will present a 4-bit microprocessor as a case

study. The Control Branch Vectors for this circuit are:

By = {4,ics:X001, 1XxXX}

Bg = {5,ics:Xx01, X01X}

Bg = {5.ics:10%XX }

Big = {5,ics:X1X0; 6,ics:XIXX}

B12 = {lO,ics :XXlX}

73

Bjg = {12, ics:XXX0; 15, ics:XO0lX, ics:X100; 10, ics:XXXOX}
Bys = {4, ics:X0lX, ics:X000, ics:110X}

Big = {4, ics:0110}

Big = {4, ics:0111}

B1g = {15, ics:X100, ics:X10l}

{15, ics:x000}

w
N
(o]

]

There is a 4-bit input line, ics, that is used to load the
Index Register. The machine has twenty control states. Those
control states that are not airectly controlled by input vec-
tors do not, of course, appear in the Branch Vectors. The

common transfer vectors derived from the By's are:

F1(4,5,6,8,14) = {ics:1001}
F5(4,5,10,12,14) = {ics:1110}
F3(4,6,10,5,15,19) = {ics:1101}
Fy(4,5,10,14) = {ics:1100}
F5(4,14,5,6,8) = {ies:101x}
F7(4,15) = {ics:x000}
Fg(4,16) = {ics:0110}
Fg(4,18) = {ics:0111}

{ics:1100; ies:1101f

F11(4,15,20) §ics:0000}¢

74

Comparing the transfer vectors F5 and F3, we observe that the
input vector c¢s:X000 will cause a branch to control state 15
only while c¢s:1101 will cause a branch to control state 15
and control state 14. Hence the input vector c¢s:d101 can re-

place cs:X00 and we say that F3 has overridden ¥ . To test

those transfer vectors that have been overridden, we use the

expressions:
Fi(kl,kz..) - Fi(kl,kz...) nFj (kl,kz,k3, o) (4.1)

for i =1,2,...n; j =1,2,...n; 1 # j where n is the number
of common transfer vectors. If expression 4.1 is empty, then

F-

i 1s overridden by Fy and Fj is deleted together with its

corresponding input vector.

The danger with the test of 4.1 is that the input vec-
tor picked would let the machine wandér from one control state
to another. For example,ics:X000 of F5 would branch from con-
trol state 4 to control state 15. However, since 3 overrides
F5, ics:1101 replaces ics:X000. In this case to reach control
state 15, the machine might have to visit control state 14 be-
fore reaching control state 15! This is our dilemma: on the
one hand trying to limit the number of inputs and on the

other hand the "best" selected inputs periodically wandering

from one control state to another. However, it is better to

75

be able to visit many control states with a few input vectors
than being unable to do so at all.

Applying the test of expression 4.1 to the Common
Transfer Vector of our example, we have F1, Fg, F; and Fjq

overridden. The Reduced Common Transfer Vectors are:

F,(4,5,10,12,14) ={ics:1110}
F3(4,5,6,10,15,19) = fics:1101}
F5(4,5,6,8,14) = [ics:101x, ics:1001}
Fg(4,16) ={ies:0110}

Fg(4,18) = {ics: 0111}
F11(4,15,20) = {ics:0000}

Hence from the initial 20 Control Branch Input vectors, we
have six vectors in the Common Transfer Vectors. Wﬁich one
of these should be selected?

Our final reduction process calls for the removal of
any control state that is common to all the Reduced Transfer
Vectors. The resulting vector is called a "G Common Transfer

Vector." For our ex le, we have
amp

G1(5,10,12,14) = {ies:1110}

G,(5,6,10,15,19)

{ies:1101}

G3(5,6,8,14) {ics:101x, ics:1001}

G4 (16) {ics:0110}

76

G5 (18)

{ies:0113}

Gg (15,20) = {;cs:oooq}

In this example, we have six input vectors that determine the
control states that the machine can branch into. We must only
select two or three of these input vectors for application

at the required control state. Several factors need be taken
into account when selecting input vectors from the G Common
Transfer Vectors.

(i) The input selection procedure outlined in the preceeding
paragraphs is completely independent of the fault being sen-
sitized; the G Common Transfer Vectors are derived once for
all sensitization searches. Hence when the decision is made
to select input vectors, the input vectors in the G Common
Transfer Vectors are selected based on the control states in
the Common Transfer Vectors and the petri net for the fault.
The control states that do not appear in the petri net for

the particular fault are dropped from the Common Transfer Vec-
tor for this fault. If any of the G; becomes empty then it

is dropped from consideration.

(ii) Any of the G; which contains a control state that is

one of the goals for the sensitization search should certain-

ly be included.

77

(iii) For those G; that have only one control state and the
control state is not one of our goals, we have to check if
any register transfer takes place in the particular control
state. If not, the input vector associated with the control
state can be dropped from the list. On the other hand, if a
register transfer takes place and the only way that transfer
can take place is for the machine to be in that particular
control state, then the control state may be important.

We formalize the discussion above by computing a fac-
tor of importance, g, for each Common Transfer Vector that is
left after all control states not appearing in the petri net

have been dropped. For each G;j, we have:

gj = mnp (4.2)

where m = the humber of control states in Gj; generally, n =
p = 1. However, if any member of G; is a goal control state,
then n = M, where M is the largest value of m. The constant,
p, takes care of those Gj; that have only one control state as
a member. If a count or shift operation occurs in that con-
trol state or the only way a register transfer takes place in
fhe machine is when the machine is in that particular control
state, then p is made equal to 2 to reflect that importance.
After computing the factor, qj, for all Gj, the two

{or three) input vectcors that have the highest factor of

78

importance are selected; these input vectors would control the

states the machine visits during the search.

4.2.2 Register Transfer Input Selection

The second type of expression from which input vectors
must be generated is the register transfer expression. This
usually consists of 1oadiﬁg a register with an external input
at any given control state.

After selecting the input vectors for branching from
one control state to another, we must select another two (or
three) input vectors which would determine the vectors that
are loaded into the various registers. We could approach this
selection process in much the same way that we approached the
Control State Input selection. However, we can efficiently
make use of the transition time of the transition to which
the vector is an input place in the petri net and obtain
guite an accurate result. We give an illustration of this
process.

The places P4 and Pg in Fig. 4.2 represent the condi-
tion of placing the vectors X100 and 100X respectively on the
external input, IN. Both places are associated with the same
control state, c¢s.k. Py is an input place to tramsition tj which
has transition time.t = 1 while Pg is an input to transition

ts which has transition time t = 3. If the machine reaches

79

Goal
Py
to
P3
t2
Py
IN:X100
t3
R1:100
T4
PS P3
IN:=100X cs .k

Fig. 4.2 Petri Net Example for Input Vector Weighting

80

céntrol state K and the input vector {iN:XlOQ} is applied

then transition t, becomes firable and the goal place would

be filled during the next clock period. However, if the input
veétor IN:100X is selected, transition ts would have to fire,
followed by transition tg and finally t3 before the goal can
be filled. Obviously, input vector IN:X100 is a better choice
than IN:100X for our aim is to reach the goal with the least
number of input sequences.

This egample demonstrates that the information from
the transition time of the transitions in the petri net can
be helpful in selecting input vectors to be loaded into regié-
ters. For an input place Pj in the petri net, we can compute

the "weight,"” W of an input vector from:

W(P;) = q(Q - (i) (4.3)

where Q maximum transition time in the petri net.

T(i)

transition time of the transition to which P; is
input.

a factor indicating how critical the register
transfer may be.

Q
i

The factor g is computed as:

g = (c - n)

81

where n is the number of ways the register-can be loaded and

c is an arbitrary constant selected such that no q; is zero.
The factor g is quite important; if a register A can be loaded
in three ways and another register can only be loaded in one
way, then the input vector that is used to load B must be more
critical than the one used to load A.

For the example of Fig. 4.2, taking ¢ = 2, we have

Q=3
and W(P,) =1x (3-1) =2
W(Pg) =1 x (3 -3) =0

Hence we see the importance of P, over Pg,.

One may argue that in Fig. 4.2, if the input vector
of Pg is not selected, P3 may never be filled with a token
and as such it would be impossible to reach the goal! This
may be true and in fact, the same argument may arise in con-
nection with all the input vectors. The idea is to
select the most "promising"” input vectors and leave the less
critical ones to be generated randomly.

Before weighting the input vectors, we check if these
input vectors are covered by any of the input vectors selected
by the control branch selection procedure. If so, the particu-~

lar input vector is not taken into consideration again.

82

In attempting to select input vectors from register
transfer expressions, special attention must be devoted to
counters and shift registers. This class of registers repre-
sents complex sequential circuits that are troublesome in test
set generation. If an input vector must be loaded into any
of these special registers it may be critical. In a given ma-
chine only a few input vectors may be loaded into a counter
or shift register. For these reasons, any input places ass;—
ciated with count or shift/rotate transitions in the petri net
are included in the list of input vectors to guide the search.

In section 4.2.1 we discussed how to handle condition-
al control state branching expressions. One may wonder whether

condition expressions which control register transfers require

any special treatment. In the AHPL expression:
k- A < Bxchb

if the input cb is high, then register B is loaded into regis-
ter A. In this example there will be only one input vector
cb:1 associated with control state cs.k; this input vector
will naturally be used to guide the search. However, if there
are many input vectors to be applied at cs.k, the input selec-
tion procedure of this section will have to be evoked and the
input vectors that control conditional register transfers are

treated like the other register transfer input vectors.

83

4.3 Using the Input Vector Selection Procedure

The input vector selection procedure treated in the
preceding sections is applied to a given circuit only if the
number of input vectors to be applied at a given contrel
state exceeds a user specified number. The optimum number is
not known althoﬁgh five (5) has been used for previous SCIRTSS
tests and is used for testing in the next chapter. The input
vector selection is done once for each sensitization search;
the Common Transfer Vectors of section 4.2.2 are constructed
. only once for each machine while the input vectors from the
Common Transfer Vectors are selected after the construction
of the petri net.

Naturally, when the number of input vectors per con-
trol state is less than the user specified number for all con-
trol states in a given machine, the input vector selection
procedure is not needed. In this case all the input vectors
appearing in the petri net are used to guide the search.

Finally, the input vector guidance mechanism, like the
heuristic cost value guiding mechanism, is intended to be ma-
chine invariant. However, it may be easy to find test sequen-
ces for some machines without using input guidance. It
will be very difficult to detect this "easy" condition using
the artificial intelligence method proposed in this work. An

experienced user, on the other hand can recognize such types

84

of machines. For this reason, a usef may have the option of
indicating to SCIRTSS whether he wants input vector guidance
or not. In the next chapter we present case studies to show
some machines that do not need input vector selection proce-

dure.

4.4 Terminating the Petri Net

The question of terminating the petri net generation
has been deferred till now because we want to explain how the
heuristic function is calculated and how inputs are selected
for guiding the sedarch. Siﬁce we are concerned about the num-
ber of transitions that have been fired in the net for a given
search state, it is essential that we include enough transi-
tions in the petri net. For smaller circuits, then, given a
set of goal nodes, the petri net must be expanded until the
initial control state, usually control state one, is reached
and the input places are all external places.

However, for more complex circuits, for example, the
microprocessor circuit described in the following chapter, it
is necessary to terminate the petri net generation to prevent
having too many places and transitions. In SCIRTSS III, the
problem graph generation is terminated based on the ease with
which a node was satisfied in past searches. We use the same
decision rules for terminating the generation of the petri net,

with the following added:

85

1. Every control state at which a_ register transfer
or conditional branch occurs must be expanded at least
once. This implies that it its not necessary to ex-
pand a control state in the AHPL description in which
only an unconditional branch to another control state
occurs. This rule ié due to the fact that if a par-
ticular control state, say c¢s.5 is used as a terminal
place, then if the machine is in ¢s.4, ¢s.3, or cs.2,
no transitions in the petri net can be inferred to
have been fired. Hence the weighting function would
not be able to differentiate between control state
five and control state three, for example, and this
is misleading to the search routine.

2. Where a register, RE, is loaded with primary in-
puts at a given control state and the place
{kE:alaz...an} is associated with a transition whose
transition time is 2 or less, this particular place
must be expanded at least once. Since in weighting
input vectors to be selected we gave a high priority
with places whose transitions have small transition
time, a register associated with such a transition

should not be left to be randomly loaded!:

86

When the two rules above are followed and still there are many
more places to be expanded, all places associated with transi-

tion times bigger than a user specified value are marked ter-

minal and not expanded.

CHAPTER V

CASE STUDIES AND RESULTS

The guidance mechanisms described in the previous
chapters are supposed to be independent of any circuit de-
scription. A user would only have to prepare the parameters
of his particular circuit and submit it as data to the rou-
tine. To test these concepts, four markedly different cir-
cuits with varying degrees of complexity were submitted to
the test generation program. Faults that were considered dif-
ficult for SCIRTSS sensitization searches to reach were selec-
ted for detection.

For each fault, the d-algorithm routine found a set
of goal nodes. The petri net was generated manually and sub-
mitted as data to routine GNPT whose listing appears in Appen-
dix A. This routine sets up pointers to the various places
and transitions in the petri net. The routine HEUSUB compﬁtes
the heuristic value at each step of the sensitization search.
This routine is also listed in Appendix A. The only cases
where there were more than five input vectors were cases III

and IV. For these cases, the input vectors were selected

87

88

based on the criteria in chapter four and submitted as data

to the main search routine. All four circuits have been pre-
.viously used as test cases in the full SCIRTSS run at the
University of Arizona. In the early tests, special guidance
routines had to be written for each case (Ng (1974), Van
Helsland (1974)). Huey (1975) used these circuits to test

his general purpose guidance mechanism and we shall frequent-
ly refer to the results obtained using the petri net and those
obtained using the problem reduction graph which was used in
SCIRTSS III.

For each sensitization search, the goal node(s) and
starting node are submitted to the main search routine as data.
The routine expands each node and computes the heuristic value
for the node. This heuristic value is compared with other
nodes that are candidates.for expansion. The node with the
minimum heuristic value is picked as most promising and ex-
panded. The search is either successful in which case it re-
turns "SEARCH SUCCESSFUL" message together with the goal reach-
ed, or fails. In the latter case, there are two ways it can
fail:

a) When the search routine runs out of nodes to ex-

pand, i.e., all nodes have been expanded without any

new node being generated, it returns "MINIMUM HEURISTIC

SEARCH FAILS."

89

b) If the search continues for more than a user
specified limit (NSIM call limits) without finding
a successful input sequence, it is terminated as an
unsuccessful sensitization search. A limit of 1000

was set for the test run.

5.1 Case I: The Narrow Window Circuit

The first circuit to be used to tesﬁ the guidance
mechanism is a "narrow window" circuit where certain control
states are hard to reach due to control branching conditions
which are hard to satisfy. The only searches to fail detec-
tion in earlier SCIRTSS testing were those where reaching a
goal node involved reaching a control state in one set when
the initial state for the search was in .the other. The AHPL
description of this circuit is shown in Fig. 5.1 while Fig.
5.2 shows the control state diagram. There are two sets of
control states: GA and GB. The fault requiring the most dif-
ficult sensitization search possible is the one associated
with the branch logic from cs.ll to cs.l if the machine is
initially in cs.l. The fault to be sensitized is at the out-

put of the logic which implements the branch condition:

cs.ll —> (A/2) /(1)

MODULE: NARROW WINDOW CIRCUIT

10.
11.

MEMORY: A[3]; B[3]; CNT[4]; Y{1]
INPUTS: X[{3]; I1, I2

ouTPUTS: Z, Bl, C

A« X; Y<«Il; CNT +« INC(CNT)

> (I2, 12)/(2,5)

B « w®/ADD(A,B); C « ol/ADD(A,B)

+ (Y,¥)/(3,4)
B « w3/ADD(A,B); C « ol/ADD(A,B)

CNT <« INC(CNT)xI1l

> ((CNTlACNTz), (CNTlICNTZ))/ (8,1)

A <« +(AAB)

+ (I2, 12)/(6,7)

-
’
-

CNT <« INC(CNT) xY

> ((CNTlJ&CNTZ),(CNTlACNTz) Y / (8,1)

A +« BxI2; b + AxI2

+ (I1,12)/(9,11)

A3 < A/(A,B)*I1

B« 4B; A « 4A

B,A « B,,B,,A,X

27737 3
+ ((v/a), (V/B))/(8,1)

Figure 5.1 AHPL Description of Case Study I

90

91

States

GB

States

Figure 5.2 Control State Diagram of Narrow Window Circuit

92

This fault is the output of OR gate #90 stuck-~at-one. To sen-
sitize this fault, starting from control state one, the narrow
window conditions for going from GA to GB must first be satis-

fied {?NT:IIXX}, then the condition A:000 must be satisfied.

The d-algorithm returns one test vector which indi-
cates that Q}ace A:000 and cs.ll must be satisfied for the
fault to be sensitized. The petri net generated is shown in
Table 5.1 and the place listing in Table 5.2. From the petri
net we have only one input vector X:000 which was submitted
to help in guiding the search. This input vector alone pro-
vided enough guidance to find an input sequence that is com-
parable to those found using heuristic function guidance. Two
sets of tests were run on this circuit:

1) When the machine is in reset state, i.e.. c.s.l

and state vector is 0000 0000 000, and

2) When the machine is in control state 1 and regis-

ters A and B contain the vectors i}llg. In both cases

the goal node is the same.

When the search starts from the reset state, the goal
is not very difficult to reach although it is not trivial.

The combined heuristic value-input vector guidance expands

about 50% less nodes than using input vectors only. It may

Table 5.1 Petri Net Listing for Case I

93

Output Input Immediate

Transition Type “Place Places Descdt

T1 3 Pl 2,3 2,3,4,5,6,7

T2 1 Pz 7,8 8,9,10,14,24

T4 1 P2 8,9 8,9,10,24,11,12

TS 1 P2 5,6

T6 1 P2 10 13

T7 2 P3 9 11,12

T8 1 P8 10 13

T9 1 P8 10 13

T10 1 P8 14 21

T1l 2 P9 12,13 17,18,19

T12 2 P9 11,13 16,17

T13 2 P10 16 15

T14 1 P8 3,17,18 7

T15 2 P16 9 11,12

T16 6 P11 14,19 21

T17 4 P13

T18 2 P12 7 22

T19 2 P12 15 20

T20 2 P15 7 22

T21 2 P14 19 23

Table 5.1 cont'd

94

Output Input Immediate
Transition Type Place Places Descdt
T22 2 P7 6
T23 2 P19 6
T24 1 P8 15 20
Table 5.2 Place Listing for Case I
P 1 GOAL 11 Cs.4
P 2 A:000 12 Cs.7
P 3 Cs.1l1 13 RNT:1I1XX
P 4 A:X00 14 Cs.3
P 5 IX:000 15 Cs.6
P 6 Cs.1 16 Cs.9
P 7 Ccs.5 17 B:X00
P 8 B:000 18 A: XX
P 9 Cs.1l0 19 cs.2
Pp 10 <cs.1l0

95

be startling at first to observe from Table 5.3(a) that the
heuristic cost value alone expanded the same number of nodes
as the combination of heuristic value and input vector gui-
dance. This is expected since the register A contains {000}
to start with and this is the same vector that is loaded by
the input vector.

In the second test run, with registers A and B both
containing the vector {lll}, more nodes are expanded before
reaching a goal. The input vector only guidance found a se-
éuence whose length is three more than the combined input and
heuristic cost value guidance. The results of this test are
summarized in Table 5.3(b). With the heuristic value only,
only 60 nodes were expanded and the length of the sequence
found is 27. In this particular result, register A was load-
ed with {OOO} on the first expansion thus leading to the ex-
pansion of very few nodes. However, the length of seguence
found is suboptimal. Case Study 1(b) is a good illustration
of the fact that both heuristic cost value and input guidance
are required to give an optimal segquence. SCIRTSS III ran the
same test and expanded about 60% more nodes than the results
reported here. In both cases, the length of the sequence

found is about the same.

96

Table 5.3. Test Runs for Case I

A B CNT Y
(a) starting node: 000 000 0000 ©

Type of Guidance Length of Total Nodes

Sequence Found Searched
No guidance none found 1000
Input vector only 33 170
Heuristic vector only
(w = 75) 26 94
Heuristic value (w=75)
and input vector 26 94

2 B CNT Y

(b) starting node: 111 111 0000 O

Type of Guidance Length of Total Nodes
Sequence Found Searched

No guidance none found 1000

Input vector only 26 252

Heuristic value only
(w = 75) 27 60

Heuristic wvalue (w=50)
and input vector 23 277

Heuristic value (w=200)
and input vector 24 238

97

5.2 Case II: The Anti-Random Circuit

The second case study is an anti-random circuit.
This circuit has the special feature of a chain of control
states where each control state either loops to itself unless
a counter'has counted up to seven, or resets to an initial
state if the control input RS is 1. The AHPL description is
given in Fig. 5.3. The heuristic function computation will
in this case be very much dependent on the count transition.
The fault to be sensitized is in the logic that imple-

ments the register transfer
Z &~— AB

in control state five. This fault is at the output of AND
gate #66, stuck-at-zero. The d-algorithm returns a vector
which indicates the machine must be driven into c¢s.5 and load
register B with 11111111 to sensitize the fault. The petri
net generated for this case is shown in Table 5.4. The inputs
to transition tj which fires to £ill the goal place are cs.5
and B:11111111. ©Needless to say, to load all one's into a
register is not likely to happen by chance.

There are two input vectors in the petri net which
were used as heuristic input vectors. These two input vectors

were very effective in guiding the search. However, the heur-

istic function-input vector guidance provided an efficient

MODULE: ANTI-RANDOM CIRCUIT
MEMORY: KNT[3]; B[8]
INPUTS: X[8]; RS

OUTPUTS: OUT{[8]; 2

1. KNT « €(3)
+ (RS,RS)/(1,6)

2. KNT < INC(CNT)

+ ((A/RNT), (A/RNTARS) , (RL/RNTARS))/(3,1,2)
3. KNT « €(3); B « X

4. KNT < INC (KNT)

+ ((A/RNT), (A/RNTARS) , (R/RNTARS))/(5,1,4)

5. Z « A/B; OUT <« €(8)
-1
6. KNT <« INC(KNT)

+ ((A/XNT), (R/RNTARS) , (A/RNTARS))/(7,1,6)
7. RKNT <« €(3); B « X

8. KNT <« INC(KNT)

-+ ((A/RNT), (A/RNTARS), (K/RNTARS))/(9,1,8)

9. Z « 0; OUT « B

+ 1

Figure 5.3 AHPL Description of Case Study II

Table 5.4 Listing of Petri Net for Case II

99

Output Input Immediate
Transition Type Place Places Descdt
T1 3 Pl 2,3 2,3,4
T2 .2 P2 4,5 5,6,7
T3 1 P3 6,7 9
T4 1 P3 8,9 8
TS5 2 P4 6 9
T6 4 P5
T7 4 P5
T8 2 P9 5,10 6,7,10
T9 2) 5,11 6,7,11
T10 2 P10 12
Tll 2 P11 12
Table 5.5 Place Listing for Case II
P 1 GOAL P 7 IX11113111
P 2 Cs.5 P 8 IX0000000
P 3 B11111111 P 9 Cs.7
P 4 CsS.4 P 10 ¢Cs.6
P 5 KNT:111 P 11 Cs.2
P 6 CsS.3 P 12 GCs.1l

100

guidance: only fifty nodes were expanded and the length of
the sequence found is two less than when orly input vector
guidance is used. It is interesting to note that heuristic
value only could not find any sequence. This is because of
the nature of the goal: to randomly generate all 1's is not
very easy. However, the combination of the two types of
guidance expands 50% fewer nodes than the input vector
only. A summary of the test run is given in Table 5.6.'
Comparing the problem reduction graph‘method of
SCIRTSS III, we note that 122 nodes were expanded by the heur-
istic-value input vector guidance to find a sequence of length

29.

Table 5.6. Summary of Test Runs for Case II

Type of Guidance Length of Total Nodes
Input Seguence Searched

No guidance none found 1000

Input vectors only 20 113

Heuristic value only
(w = 75) none found 1000

Heuristic value (w=50)
and input vectors 18 50

Heuristic value only
(w=100) and input vectors 18 53

101

5.3 Case IITI: Search-Sort Processor

Another circuit used to test SCIRTSS is a search-sort
processor which includes a random access memory. The data
word is only two bits in width since the width of data word
does not present any problem in test generation. The instruc-
tion register is externally loaded when the machine is in con-
trol state 1. PFig. 5.4 shows the AHPL description.

The petri net generated for this case is shown in
Table 5.7. From the petri net one can notice that places
that are of registef transfer type dominate the control states.
3:1. Hence the heuristic function computed would be very much
controlled by register contents.

A careful look at the machine description shows that
all control branch conditions are determined by the contents
of the instruction register which is in turn dependent upon
the input vectors applied at control state one. This makes
the input vector selection very crucial and in fact, is the
first test to the selection procedure of Chapter Four.

The fault being sensitized is at the output of the

4 stuck-at-zero. The d-algorithm returns one

memory cell My
test vector which signifies that the machine must be moved
into control state four, and registers AR, IR loaded with vec-

tors 100, XX1 respectively while X1 must be written into the

fourth memory location to sensitize the fault.

102

MODULE: SEARCH-SORT PROCESSOR
MEMORY: M[8:;3]; AR[3]; IR[3]; MDI[3]; ACI[3]
INPUTS: A[3]; IN[3]; X[3]

OUTPUTS: AC[3]; out; accept; input
1. AR « A; IR +« IN; accept <« 1

2. -+ (IRO,(IROAIRl),(IROAIR AIRZ),(IROAIR AIRz) y/(3,4,5,6)

1 1

3. AC + ACx (IRlAIRZ)V(ACI_\m)*(IRlA;iz)V MD * (ﬁlAIRZ)V X* (’fﬁlAﬁz)

MD <« AC# (ﬁlAmz); input <« ﬁAﬁz

+ 1

4. MD + 4MD*IR,V IR

5 Z*BUSFN (M; DCD (AR))

-1

5. out <« 1

-1

6. M+DCD (MA) <« MD

+ 1

Figure 5.4 AHPL Description of Case Study III

Table 5.7 Petri Net Listing for Case III

103

Output Input Immediate

Transition Type Place Places Descdt

T1 3 Pl 2,3,4,5 2,3,4,15

T2 2 P2 6,7 5,6

T3 1 P3 8,9

T4 1 P4 10,11 7.9

T5 1 P14 13,19 10

T6 1 P7 8,22

T7 2 P11 6,12 8

T8 1 P12 8,16

T9 1 P10 13,14,15 5,10,11,14

T10 2 P13 6,17 13

T1l 1 P14 13,20,21 10,12

T12 1 P21 8,18

T13 1 P17 8,18

T1l4 1 P15 8,22

T15 1 P5 8,23

Table 5.8 Place Listing for Case III

P 10

Cs.4

AR:100

M4:X1

RIR:XX1

Cs.2

RIR:00X

Cs.1l

IA:=100

MD:X1

Cs.6

RIR:01X

Uyl

14

15

16

17

18

19

20

21

22

23

104

Cs.3
AC:X1
RIR:X01
IN:011
RIR:1XX
IN:200
AC:=XO0
IX:X1
RIR:X00
IN:001

IN:XX1

105

The Control Branch Vectors obtained for this circuit

By = IN:1XX
By = IN:00X
Bs = IN:010

Bg = iN: 011

Only control state five does not appear in the petri net and

hence the G Common Transfer Vectors are:

G (3) = IN:1XX

G, (4) IN:00X

G3(6) = IN:011

For the input vectors associated with register transfers, we

have:

A:100
IN:XX1

IN:001

Both A:100 and IN:XX1 received high weighting values and were

selected according to our rules. Hence we have the vectors:

IN:1XX; IN:00X; IN:011

106

selected from the Control Branch Input Selgction procedure

and

A:100:; IN:-:XX1

selected from the Register Transfer Input selection procedure.
The input vector IN:XX1 from the second selection process
covers the vector IN:00X and so IN:00X is dropped from the

list. Hence for application at control state one we have the

four vectors:
A:100; IN:XX1; IN:01l1 and IN:1XX

selected to guide the search.

To make the search as difficult as possible the start-

ing node was chosen as:

cs AR IR ac Mp M4

1 00l 110 00 o1 00

This circuit responds very well to guidance:
only 36 nodes were expanded to reach the goal! The whole
state space search is shown in Table 5.9 while the various
runs are summarized in Table 5.10.

Comparing our results with SCIRTSS III, we note that
in SCIRTSS III, 69 nodes were expanded to reach the goal and

the length of the sequence found is 17. The input vector only

DLET

LTER.

CeUN=O

~C

20
al
22
23
24
e
Lo
27
20
29
30
31
3
33
34
35

NUDE

Q& wn -

o

LEVEL

Table 5.9 State Space Search for Case III

(1] 100
1 ul
1 94
1 107
2 (M)
3 176
2 11
3 v
4 va
L) 97
4 110
S 4]
(7 L7y
S 0o
6 94
7 134
7 100
7 1HJ
8 74
9 349
10 Y0
10 104
10 110
11 77
12 92
1) gy
9 102
10 90
(XY 104
10 116
11 I&4
12 ve
14 94
13 100
13 119
14 1)

GUAL REACHED
FINAL NuLc

30 NSIM CALLSY

CuLT VALUE Cobe

PREDJHOLE

t]
2 1
2 1
2 1
4 2
1 5
6 3
1 7
2 3
2 a
2)
q 9
1 12
(A to
1 14
2 15
2 10
2 15
[1o
1 19
2 20
2 20
2 20
153 21
1 24
[17
1 25
2 26
2 20
2 20
(4] 217
] 319
« 31
2 Jn
2 31
4 J2

STARCH LULCESLIUL

INPUT VICTUR

222222229%01
10000100100
01001100010
IN11)01N N1
01001111100
DO LD L EVD)
10111000010
01100011010
190970191100
11001101110
00110001001
11110000100
01011101100
101501111
10110101110
10001110100
10121101101
1011001101
10021100100
10101010100
10021110100
TR OSSR E R

‘01110011011

SN3IN1EN 10D
11001000100

uoldu011 10}

0U0795101101
10001100100
00V91111000
111100001111
111929101100
N1019010)00
1000011100
nitn1onl
ool ootloooy
00100010190

I00eg2 12222222222 a221222222
1290V 1013000012 10001012 1)

STATE VEZTUR

1101 003 AI0N0T00000000
00101000000000000000000
01100000000000V0000000DN
190019N0%J9000D009001)Q
00101000000000000000000
V0100N00N0000DNYVLONVNY
01101000000000000000000
011010000000100010000000
an101090:3901939095000 3720
01101000000010000000000
1000100000001 002000000
00101000000080000000000
00100000VU00010000000000
011910900N003050H0009)0
011010000000100000004800
0110130000001 009D000800
01101000000010000000100
1000100000001 0090000100
0110100003201 2999000109
01101000000010001000800
01101000000010031000100
01101000000010001000100
10001000000010001000¢t 00
01101N00YDNNINHNLION0I00
01101000000010001000100
Q110190000301 000D0N0100
01101000000010000010100
01101000000010000010100
011019000793 10000210100
100010000000100000301300
Vi1010000000100000L01300
NEEI0I290000210001010100
00101000000010001010100
N11012000090010001DL0INO
10001000000010001010100
NNI01000000N01000101V100

LOT

108

guidance in both cases expanded about the same number of nodes
but our results show a sequence of length 15 while SCIRTSS III

found a sequence of length 629.

This case study has again demonstrated that both heur-
istic cost value and input vector guidance are necessary to
produce an efficient search and obtain a sequence of reason-

able length.

Table 5.10. Summary of Test Runs for Case III

Type of Guidance Length of Total Nodes
Sequence Found Searched

No guidance none found search failed

Input vectors only 15 577

Heuristic value only
(w = 200) none found search failed

Input vectors and
heuristic value '
(w = 200) 14 36

5.4 Case IV: Four-Bit Expandable Microprocessor

The last case study is a four-bit microprocessor slice.
As far as automatic test generation is concerned, the data word
poses no difficulty: thus there would be very little differ-
ence if, say an eight-bit microprocessor were being tested. The

preceeding three cases were designed with the aim of stalling

109

the test generation and guidance principle. This case is in-
tended to test the usefulness of the guidance principle on a
real world problem. Besides, the control description is far
more complex than the previous cases. The arithmetic unit in-
cludes a full adder and other more sophisticated combinational
logic functions. Figure 5.5 gives the AHPL description and
the block diagram appears in Figure 5.6.

The fault selected for the sensitization search was
at the carry out bit of the program counter slice (OR gate
#172) stuck-at-zero. The d-algorithm returned three vectors

that could sensitize the fault:

{cs.10, pci1111, 1R:xXIX}
{cs.14, pc:1111}

{cs.19, pc:1111}

The petri net generated is shown in Table 5.11. As expected,
the petri net is large, having fifty-seven transitions and 57
places. Almost all places that were of register transfer type
were expanded except IR:1XXX and IR:X001 which were left un-
expanded because of the ease with which they have been satis-
fied in the past.

The main source of difficulty in performing sensitiza-

tion searches on this circuit is that often many instructions

110

MODULE: FOUR-BIT MICROPROCESSOR
MEMORY: UR[4]; AC[4]; IR[4]; PCI[4]
INPUTS: DN[4];ICS[4]; linki, slave, ready

OUTPUTS: DO[4]; IOSR; linko
1. UR « PC

2. DO « UR; IOSR = 1,0,1

+ (ready, ready)/(2,3)

3. IR «ICS; UR <« DN; IOSR <« 0,1,0

+ (ready, ready)/(3,4)

4. > ((IRlV(IR2A1R3AIR4)),(IRlAIRZAIR3AIR4),(IRlAIRzAIR3AIR4),
((ﬁlAﬁzAﬁ3A1R4)A(I—R2A1R3))/(5,16,18,15)
5. DO <« URxslave; IOSR <« (1,0,1)*slave

+ (ready, (ready A((f§5A1R4)V(T§éAIR3))),

(readyAfﬁéAfﬁ Afﬁé),(readyAIRzAf§4),

3

(readyAIRZAIR AIR4) y/(5,6,8,10,12)

3

6. UR <« DN; IOSR « 0,1,0

+ (ready, ready)/(6,7)

7. DO « UR; IOSR « 1,0,1

+ (ready, (readyAIRlAfﬁé),(readyATﬁiAfﬁé), IR,)/(7,8,12,10)

8. UR « DN; IOSR « 0,1,0

+ (ready, ready)/(8,9)

Figure 5.5 AHPL Description of Case Study IV

10.

11.

12.

13.

14.

15.

111

AC « (UR * f§3) V (ADD(AC,UR) * (IR3AT§4))
V (NAND(AC,UR) * (IR3AIR4))
lnko « (CO A slave)*(IR3Af§;); CO=Carryout of ADD(AC,UR)

+ (14)

UR +« (AC * T§3) V (INC(PC) * IR,)
lnko « (slave V CPO) * IR3; CPO=Carryout of INC(PC)

+~ (11)

DO <« UR; IOSR « 1,1,0

+ (ready, (ready A T§3),(ready A T§3))/(11,14,12)

UR « DN; IOSR < 0,0,1

+ (ready,ready)/(12,13)

PC « UR

~ (TR,,IR,)/(14,1)

PC « INC(PC); 1nko + slave CPO; CPO=Carryout of INC(PC)

+ (1)

HALT « 1; IOSR <« (l,O,O)*(fﬁéAfEBAf§4)
AC <« e(4)*(f§éAf§éAT§4)

AC <« +(AC,lnki)*(f§éAIR3
Inko « AC *(IR,AIR;AIR,)
lnko « ((AC A siave)V(lnkiAslave))*(IRzAf§

lnko <« (V(AC)Vlnki) * (IRZAT§3AIR4)

AIR4)
3AIR4)

(Continued)

15.

16.

17.

18.

19.

20.

112

(Continued)

- (ﬁzAﬁBAﬁ4) , (IRZAI_E{'3Aﬁ4Alnki) ,
(IR2A1R3) , (I,R2A1R3A1R4A- (Inki),

(IRZAIR3

(IRZAIR3

AIR4A (v/acv Inki)),

AIR4A(V/ACV Inki))/(20,19,14,14,19,14).

UR <« DN; IOSR <« 0,1,0

+ (ready,ready)/(16,17)

AC « UR

» (14)

DO « UR; IOSR <« 1,1,1

+ (ready, ready)/(18,14)

PC « INC(PC); lnko <« slaveACPO; CPO=Carrvout of INC(PC)
- (14)

+ (1nki,lnki)/(3,20)

Figure 5.5 cont'd

113

CONTROL .
ready > T0SR
e lave SEQUENCER
N -
Ics = > R
ARITEMETIC AN
LOGIC UNIT ‘ 1nko

W
—
—

AC 3

Inki ~ \]
»
DN %*27 »
7 4
> R —> DO
n ey L . >
INCRET_| |
MENT He—r
LOGIC |
<R3

Figure 5.6 Block Diagram of Four-bit Microprocessor

114

Table 5.11 Petri Net Listing fcr Case IV
Output Input Immediate

Transition Type Place Places Descdt
T1 3 P1 2,3,4 21,22,4,6
T2 3 Pl 3,5 4,6,7,8,9,10
T3 . 3 Pl 3,6 4,6,12,13
T4 4 P3 5,6 7.8,9,10,12,13
TS5 4 P22 5,6 7,8,9,10,12,13
T6 1 P3 7.8 39,40,41,42,43,44,45
T7 2 P5 11 26
T8 2 P5 12,13 37,53
T9 2 P5 7,13 37,45
T10 6 P5 6,9,10 12,13,32,34
T11l 2 P12 2 21,22
T12 2 P6 15,16 14,15,16,17
T13 2 P6 16,17,18 15,16,17,18
T1l4 l. P15 19,20 56
T15 2 P16 24,25 ;9,55
T1l6 2 Pl6 24,26 20,55
T17 2 Ple6 24,27 23,55
T18 1 P17 20,52 56
T19 1 P25 20,28 56

T20 1 P26 20,29 56

Table 5.11 cont'd

115

Output Input Immediate

Transition Type Place Places Descdt

T21 2 P2 15,30 14,53,54

T22 2 P2 15,32 14,24

T23 1 P27 20,21 56

T24 2 P32 34 27,28

T25 1 Pl4 20,33 56

T26 2 P11 41 38,52

T27 2 P34 30,35 29,53,54

T28 2 P34 30,36 30,53,54

729 1 P35 20,37

T30 1 P36 20,21 56

T31 1 P4 20,38 56

T32 2 P10 24,39 33

T33 1 P39 20,50 56

T34 2 P9 44 35,56

T35 2 P44 24,42 36,55

T36 1 P42 20,46 56

T37 1 P13 20,40 56

T38 2 P4l 30,14 25,53,54

T39 1 P8 34,51 56

T40 1 P8 2,22,45 5,21,22

T41 1 X 47,51 46,47,49

T42 1 P8 41,51 38,52

116

Table 5.11 cont'd

Output Input Immediate

Transition Type Place Places Descdt

T43 1 P8 44,51 35

T44 1 P8 2,13,43 21,22,37

T45 2 P7 47,0 46,47 ,49

T46 2 P47 30,49 50,53,54

T47 2 P47 32,48 48,24

T48 1 P48 20,31 56

T49 2 P47 12,49 11,50

TS50 1 P49 20,23 56

T51 ' 1 P45 20,38 56

T52 2 P4l 14,32 24,25

T53 2 P30 24,55 55

T54 2 P30 24,56 55

T55 2 P24 20 56

T56 6 P20 53,54 57

T57 2 P53 57

Table 5.11 cont'd.

P 10
P 11
P 12
P 13
P 14
P 15
P 16
P 17
P 18
P 19

P 20

GOAL

CS.10

KpC:1111

RIR:2212

CS.14

Cs.19

CsS.13

UR:1111

Cs.17

cs.18

cs.9

cs.1l1

RIR:XX00

RIR:1000

RIR:X100

Cs.1l5

RIR:X101

AC:0000

ICS:X100

Cs.3

ICS:0101

KpC:1110

Place Listing for Case IV

P

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

ICS:X111l

CS.4

RIR:0000

RIR:001X

RIR:010X

ICS:0000

ICS:001X

Cs.5

ICS:00XX

Cs.7

ICS:1000

CS.6

RIR:X01X

RIR:XX01

ICS:X01lX

ICS:XX1X

RIR:0111

ICS:XX00

cs.s8

RIR:0110

AC:1111

Cs.16

117

Table 5.11 cont'd

P 45

P 46

P 47

P 48

P 49

P 50

P 351

P 52

P 53

P 54

P 55

P 56

P 57

RIR:XX1X

ICs:0110

cs.l1l2

RIR:00XX

RIR:X111

ICS:0111

DN:1111

ICs:X101

Cs.2

CS.20

RIR:1IXXX

RIR:X001

Cs.1

118

119

must be executed to cause the necessary data vector manipula-
tions for reaching a goal node. If the instruction register,
IR, is not loaded properly at control state three, the next

5 to 10 control steps do not offer any opportunity to modify
the contents of IR nor does the machine return to CS.3. Also,
a great many of the control branches depend entirely on the
contents of IR.

To reach our goal, place {PC:llll} must be filled with
a token while our initial state is PC:0000. To avoid many
cycles of incrementing the program counter, a jump type instruc-
tion must be executed. This is either the instruction {iR:lllQ}
or {IR:0110}.

Needless to say, the input vector selection is very
crucial in reaching dur goal. The instruction register IR is
loaded with external input at CS. 3. There are over sixteen in-
put vectors associated with CS.3 from which four or five must
be selected.

The Control Branch Input Vectors of this microprocessor
were used as an example in Chapter Four, Section 4.2.1. From

that procedure three vectors were selected:

ics:101X:; ics:1100; ics:0110

120

It should be noted that the Control Branch Input Vector selec-
tion process is invariant with respect to the fault; for that mat-
ter, there was no way of knowing that ics:1110 & ics:0110 are cri-
tical! However, with the basic philosophy of selecting the input
vectors such that as far as it is éossible all important control
states are visited during the search, we have been able to se- .
lect the "best" input vectors. From the petri net for this
circuit, it was detected that the machine does not have to
"wait" in control states 3, 6, 7, 8, 12, 16, 18 and 20 during
the search. As discussed in Section 4.2.2 the register trans-
fers that take place in these control states do not need to
be repeated when the control signal "ready" is low.
The results obtained from this machine are fantastic!
With the information on the control signals that can control
branching from one control state to another, we performed two
separate tests:
a) the control branching derived directly from the
AHPL description
b) control branching selected according to the infor-
mation from the petri net.
'/The results are listed in Tables 5.12(a) and 5.12(b). 1In

SCIRTSS III, the control branching functions were derived di-

rectly from the AHPL description. This corresponds to the

121

results of Table 5.12(a). Even in this case, 508 nodes were
expanded to obtain a sequence of length 15. The best result
reported in Table 5.12(a) expanded 50% less nodes to obtain a
sequence of length 18.

We have included the results of Table 5.12(a) only for
the sake of meaningful comparison with the results of SCIRTSS
III. The results of Table 5.12(b) indicate the effectiveness
of the petri net in guiding the search in complex circuits
with very difficult goals. Using input vectors only, a se-
quence of length 16 was found and only 91 nodes were expanded:
However, both the heuristic cost value and input vectors pro-
duced a sequence of length 20 and expanded only 47 nodes!
Although the input sequence is suboptimal, the search is al-
most 50% more efficient than using only input vectors and thus
is a very good result.

The visual representation of Figure 5.8 is given to
show the disparity between the results of the search in all
four circuits when no guidance is used and when there is gui-
dance. The best results of SCIRTSS III, the problem reduction
graph model and the petri net model are also indicated.

As a natural consequence of the comparison of the re-
sults obtained in this work with the results of the problem

reduction graph approach, one may ask, "which is faster?"

TEST RUNS FOR CASE IV

Table 5.12(a)

Length of Sequence

122

No. of Nodes

Type of Guidance Found Expanded
No guidance none found 1000
Input vectors only none found 1000
Heuristic value only none found 1000
Heuristic value

(w = 75) and 18 287
input vectors

Heuristic value

(w = 100) and 18 230

input vectors

Table 5.12(b)

Length of Sequence

No. of Nodes

Type of Guidance Found Expanded
No guidance none found 1000
16 91

Input vector only
Heuristic value only
Heuristic value

(w = 100) and
input vectors

none found

20

search failed

47

No. of Nodes Expanded

No Guidance °
O-— - —_—-— —— — — — —@

10004

32
M)

A}

5101

4301

350 ->

v

270 1

190 1

110 9

30 4 y : g —t
5 7 . 9 11 20

Fig. 5.8 Circuit Complexity (No. of Control States)

124

This is a difficult question to answer since SCIRTSS III does
not report the amount of computer time taken to perform the
search. The number of nodes expanded is by far a better com-
parison; hcwgver, we can refer to an informal computer output

of SCIRTSS III that expands 300 nodes in 48 seconds. Using

the same circuit, our program expanded 202 nodes in 29 seconds.
On the other hand, the input vector selection process of Chapter
Four is much more comflex than that of the Problem Reduction
Graph. Again since this is done 6nly once for each search (if
needed) the far fewer number of nodes expanded more than off-

sets the complexity of the selection procedure.

CHAPTER VI

SUMMARY AND CONCLUSION

6.1 Summary

Guidance for sensitization searches enable these
searches to reach their desired gdals after expanding relative-
ly fewer nodes than if the searches are not guided at all; in
most cases these unguided searches terminate abruptly. -

A petri net model is presented that models the regis-
ter transfers and change of control states in a sequential ma-
chine described in a Computer Hardware Description Language
(CHDL). For each sensitization search, 2 new petri net is gen-
erated based on the goal node(s) and the CHDL circuit description.
Portions of this process are completely independent of the fault.

Each set of goal nodes forms input places to a tran-
sition which if fired implies the fault is sensitized and the
search is successful. Only one control state appears as input
to each of these transitions. The remaining portions of the
petri net are generated from these input places.

For each machine state encountered during the state

space search, a marking or state vector is derived from the

125

126

petri net, using the general state equations of a petri net.
Based on the marking vector, a heuristic cost value is compu-
ted which measures essentially the effect of reaching one ma-
chine state on the transitions in the petri net. The direction
of the search is determined by these heuristic cost values:

a node with the minimum heuristic cost value is selected as
most promising and is expanded in the state space search.

The petri net also contains information about input
vectors that are associated with eacn control state. The most
important of these input vectors are selected for inclusion in
the input vector table that guides the search. For the pur-
pose of selection, the input vectors are classified into two
categories: those input vectors that are responsible for con-
trol state branching and those that are used only for register
transfer. The input vectors that cau;e the sequential machine
to branch to the most number of control states are selected
from the first category for inclusion in the table while the
register transfer input vectors are weighted, using information
from the petri net. The input vectors receiving the highest
weight from this weighting process are selected and, together
with those selected from the control branch category, form the
set of input vectors that provide input vector guidance.
Again, portions of the input vector selection process are in-

dependent of the fault.

127

Although AHPL was used in this research, the results
are applicable to any Computer Hardware Description Language
that has the same structure as 2HPL. That is, the expressions
in that particular CHDL must be classifiable as:

1. Conditional Register Transfer expression

2. Unconditional Register Transfer expression

3. Conditional Control Branch Expression
or 4. Unconditional Control Branch Expression.

Four very difficult circuits were used as case studies
to test the proposed guidance mechanism. The sensitization
search goal for each of these circuits was selected to be as
difficult as possible. In each case, the proposed guidance
mechanism provides an improved performance in the sensitiza-
tion search when compared with the guidance methods of the

problem reduction graph of SCIRTSS III.

6.2 Limitations and Further Work

The effort to provide an automatic test seguence gen-
eration seguence has resulted in a complicated test generation
system. For each sensitization search a new petri net has to
be generated; although portions of this process simply in-
volve 1linking subnets yet this can be time consuming. Fur-
ther, where there are many input vectors, an input selection

procedure must be evoked.

128

Although Computer Hardware Description Languages are
becoming increasingly popular és design tools, many machine
designs do not use them. This limits the scope of application
of this work.

The generation of a new petri net for each fault can
be avoided if we can have a petri net model of the machine
itself such that each fault has a "unique impact" on the petri
net. From this "unique impact"” we can derive a heuristic cost
value and perhaps be able to choose input vectors to guide the
search. This research has not been able to produce such a
petri net model of the machine; we had to generate the pétri
net starting from the goal nodes. This area can be investiga-
ted further.

The Problem Rgduction Graph relies heavily on past
SCIRTSS runs to obtain statistical information both for com-
puting the heuristic value and terminating the graph genera-
tion. The petri net relies on statistical data from previous
runs only for terminating the petri net generation. It would
be desirable to get rid of relying on statistical data from
previous runs completely. Maybe if we can produce the "uni-
versal" petri net mentioned in the previous paragraph then the
problem would disappear. If not, a user specified optimum maxi-
mum transition time must be given for terminating the petri

net generation. This optimum number is not yet known.

129

"6.3 Conclusion

The four case studies of Chapter Five are complex se-
quential circuits with diverse characteristics and were selec-
ted with the aim of examining potential wezknesses in the ap-
proach. Moreover, the initial states were selected to be a
maximum distance from the goals. Based on these four tests,
we conclude that for sequential machines with very different
characteristics, the guidance provided for sensitization
searches using the petri net derived from the Computer Hard-
ware Design Language description of the machine, is signifi-
cantly more efficient. Sensitization searching in SCIRTSS is
thus less likely to encounter node limit termination. Petri
nets have been used in various areas of computer science to
study the interconnection properties of systems. In our ap-
proach we havé diverged from the normal use of petri nets when
applicable; the idea of using these nets to analyze a Computer
Hardware Description Language with the aim of guiding a state
space search is novel and has proven to be remarkably effec-

tive.

APPENDIX A.1l

SCIRTSS SEARCH ROUTINES

130

FURTRAN IV G LEVEL 21 MA LN DATE = 78341 13734728 PAGE

e NN sNs Nz RaNaRakaRaRaRakasRaRaRs RaReRa o s Ra ek Ko Na s Xa e aNa Na e Na s Ne e Na Ra N s NN s N el ol s o N a N o e N o]

-

HRUGHAM TO PERFURM SCIKRTSS IV SEARCH
Ke Ee TORKU ODECEMBER 7TH 1978

CUNTROL STATE BRANCHING FUNCTION TVAH.ES.

NRSCS{L) NUMBER QF SUCCESSUR CebSe FUR CaSe 1o
KSSC{1leJd) J=Tit SUCCESSUR CeSe TU CoeSe 1.
NRTRMS(§+9) NUMBER OF TERMS IN BRANCHING FNe FROM CeSe I TO

THE J=-TH SUCCE3SUR.
VECTORS TO REPRESENT THE TERMS UF THE CUONTROL SYATE BRANCHING FNSe
EACH VECTUR (1eJeK) IS THE 1-TH TERM UF HRe FNe FROM CeSe J TD
THE K-TH SUCCLSSUR,.
BIT | =0 FOR DON'1T CARE UR ZERU ON INPUT UR FF 1.
=) FUR VALUE REQUIRED OR } FOR INPUT UR FF 1.

MFEIP(kedeK) VECTUOR UF REQUIRED INPUTS

MEIVEL s 3K} VALUES REQUIRED FUR INPUTS GIVEN HY MFIP
MESP(1leJeK) VECTOIR UF REQUIRED FF'S FUR TERM.

MFSV (1 JaK) VALUES REQUIRED FUR FF'S INDICATED UY MFSP,

PETRL NET ARRAYS
KTYP(N) NTH TRASITIUN TYPE
KPNAM{1) 1TH PLACE NAME

LNK(T) INDEX TO VECTOR OF PLACES
MtJ) MARKING VECTOR
KR{L) VECTUR OF FIRED TRANSITVIONS

NIPL (N) NO UF INPUYT PLACES TO TRANSITIUN N
LPLADEN) POINTER Tu T SET OF INPUY PLACES YO TYRANSITION N
KTRIN(N) LIST OF INPUT PLACES TU TRANSITION N
KOPL(N) QUYPUT PLACE OF TRANSITION N
KTRT(NN TRANSITION TIME OF TRANSITIUN N
IDESPI(N) POINTER TU IMMEDIATE DESCENDANTS OF TRANSITION N
IMDCY(N) SET UF IMMEDIATE DLESENDANYS OF TR. N
KOIRLT) POINTER TO SET UOF TRANSITIUNS TO WHICH

. PLACE L 1S 0uTPUTY
LOSTRUL) LISY OF TRANSITIUNS TO WHICH OUTPUT

PLACES PUINY

NP NO OF PLACES IN THE PET R NEY
NT NO OF TKANSITIUNSG IN IHE NET
NTPL NO OF TERMINAL PLACSE
MGRP(1) 1-TH FF VECTUR (VALUES PRLSENT) FOUR GKAPH.
MGRVIT) I=-TH FF VECTOR (VALULS MHERE REQUIKLD) FUR GRAPH.
NCSEIVIL) NUMBLER OF IWPRUT VECTIORS 10 UE APILIED AT CeSe 1o
MCSERP(T49) J=TH INPJUT VECTUHR TUL UHE APPLIED AT CeSe 1o

MCSIVILELI)
SEARCH SPACE. I-TH ELEMENRT OF EACH ARRAY [S FOR §-Tif NUDE.

MGUALP (1) I-Tif GUAL HODL,. FF 'S WHERE VALUES ARE REQUIRED.
MGUALV{]) 1-TH GUAL NUDEs KEQULIIED I-F VALUES. -

NODECS(1) MACHINE CUNTHRUL OLIAE AT NUDE 1

NODIR(1) FULL INPUT VECTOR APILIED TO PRODECESSUR TO PEACH
NSTATE(CL) FULL FLINFLUEP VALUE vECTUR FOR CURRENT (I-TH) NDODE.
NPRED (L) LHOEA FO Tk PREVLCESSUR GF NUDL (o

NUDLEV(L) LeVEL UF THL SEARGCH GRAPH VU NUDE T -

0001

T€T

FURTRAN 1V

0001
Qoo2
0003
0004
0005
0006
0007
0008
0009
0010
nnll
oo12
0013

0014
0015
0016
0017
0018
0019
0020
on21l

0022
V23
0024
ov2s
0926
0027

0028
an29
00 30
uoil
0332
0044

G LEVEL
C
c Cco
C
C
C
C GE
Cc
C
C

c DA
C
C KE
Trre

401

21 MA LN DATE = 7434l 13734728
NODEH(1) HEURISTIC WEIGHY COMPUTED FUR NODE 1.

MMUNICAT JUN VECTORS FUR PSDNSIA RUUTEINE,

KTRML (1) 0=0s I=1s =X REQUIREU VALUE FUOR INPUT 1.

KIRMF (1) - 3= 121y 2=X KEQUIKED VALUE FUR FLIPFLUP T,

MTRMF (1] VECTUR UF NEXT STATE VALULS.

NERAL AUXILIARY USE VECTOR.

KTEUP(L) GENERAL THDEX STURAGL USLE ARRAY.

INTEGER HRSCS(23) s KSSLI25+5) NRTRMS(2545)

DIMENSION NCSIV(25)

INTEGER NODECS5(1002) o+NUDIP(1000) oNPHED(1000) ¢ NUDEH(1000)
INTEGER KTEMPIS) sNUOLEV{1000)

INTEGER KGUAL{(H)

INTEGER MEIP(250509) oMFIVI2Se505) e MFSP (2L ¢5¢5) +MFSV(2545+¢5)
INTEGER MCSIPL25e15) s MCSIV(26,415)

INTEGER MGOALP(S5) +IMGUALVIDH) «NSTATECIVOO)

LOGICAL I'STe CUVLER+DLEBUG

LOGI CAL PCSHF ¢ PGRNUS +PGRWT s PHI NV

CUOMMUN/PAK /NVEC

COMMUNZNS IM/KTIMEL L0) o KTRMF (36) ¢+MTRMF { 36) o NRFFF

COMMUN/HEUSB/ZHNE s IMEGAs KPNAMIL10O0)+ LNKCLTIOD) o KUPLELION) yKTRTL100)
$IPLADC100) o NIPLL100) sKOTRCLI00) » IMDCTL4B0) oIDESP(L120) +LSOYR(240),
PKTRINC240) o KTYPLLO00) o I TERP(AS) s KTRTP (UGS) o KTPTA(SO) oKNIPLE IO 3) o
CMGRP(40) s MGRV{ Q0) o NT oNPo NTPL
CUMMUN/ZPRINT/P CSUF s PGINOS+PGRW T2 PHINY

EQUIVALENCE (KNIRLKSHUDE)

INVEGER®2 SETA(IOUU)

DATA HLANK s XNEWsDEL/?® "o INEW * 'DLET Y/

DATA KS/°CSs vy

DATA KGR/'GRe t/

DATA DEUUGZ oFALDL o/ .

IRXA=E65549 .

TA INPUT SECTION #4443 246040423 4440044420008t 8 0400 0888000000404

AD GLNCRAL PAKAMETERS .,

READ 1+ HRINWNREEFNUS

READ JoNLIM, IMEGA

READ 7727.BCHOFPORNIDY s PSRAT o PHINV

FORMAY (4L1)

PRINT SO1eNfcINoNRFE o HCS o NLT ity § MEGA

FORMATCLHL 720X 3 * NUMBCER OF INBUTIS' T45,110,/7

C 20X *NUMULE OF FLEIPFLUMDS o145 40104/

€ 20XKs "HUMHBLER OF CONTRUL STATES*yT1a%.110/7

C 720X SLARCH LUGEY LINMIT o 10D 113/ 603X *OMEGAY s T2, 110/77)

C READ IN CONTIUL STATL WRANCIH FURC TIUG,

872

1E (PCSBHY) PRINT 392

FURMAT(ISXK o YCONTRUL LTATE REANCH TUNCT TUNG oY 0 7)
DU 12 1=1+NC3

READ 1 oNSCH

HRSCS (L) =n5CY

IF (PCSUED) PRIBT 50360 oHSHUS

PAGL 0002

o

CET

FORTRAN IV G LEVEL

0034
003%
0036
Q037
0038
003y

0040
0041}
0042
0043
0244
0049
0040
D087
0048
0049
0050
0051

0052

0053
0054
0055
0056

0057
0058
0059
0060
000Gl
0062
0063
0064
0065
0066

0067
0oLy
0069
0070
0071
0072
0073
0074
0075
00706
Qorz
0078
0079
Qo uo
0081

YR}

804

8605
(11117

12
]
2

21 MA TN DATE = 78341 13734728

FORMATL{20X ¢ ' CONTRRUL LTATE o0 3,10Xe 130 SUCCESSORS?)
DD 12 J=1+NSCS

READ 1o KSSCUIesJ)s NTKRMS

NRTRMS(1+J)=NTIAS

IF (PCSBF) PRINT BUA,KSSC(LeJ) o NTKUS

FURMAT (20X * CoSed s 3¢ 10X s FUNCIIUN HAS®» 13,' TERMS.'/
C 3IXs"INPUTS® 10X e *FLIPFLUPSY)

DO 12 K=1NTRMS

READ 24 KTHMI o KIRMF

IF(PCSDF) PRINY 05+ {KTRMICIX) o IX=14NRIN)

IfF (PCSUF) PRINT 800 (KTRMFCIX) s 1X=1 s NRFE)
FORMAT(30Xs0011)

FURMAT (1H# 4S0X 361 1)

NVEC=NRIN

CALL PACKIKTRMIEsMFIP (L 9JoK) s MF EVIE2JeK))

MVEC=NRFF

CALL PACK(KTRMF 4MFELP (Lo JoK) s MFSVIEvJeK))

CUNT INUE

FORMAT(315)

FURMAT(uUUL))

C READ IN STARTING NUDE AND SET UP AS FIRST NODE.

810

READ 4y KNTRL »MIRMF

PRINT BE0sKNTRLe {MTKME (I X) o IX=1oNKFF)

FURMAY (/715X *STARTING HUDE® ¢ /30X s *CaSe 9 l3s0Xe 'STATE *23611)
CALL PACK(MTRME X o NSTATECL))

C READ IN GUAL NOOLS.

820

4

822
12

READ 1, NGOALS

PRINT 8204.NGOALS

FURMAT (/77 15X« YGUAL NUDES « 10X 1340 NODESW?)
DO 10 I=1,NGUALS

READ A yKGUALLE) o (KTRMF (LX) o 1X= 1o NRFF)

FORMAT (15.,6Xs3011)

PRINT 8B22,KGOALE1) s (RTRMEF (IX) o 1X=14NREF)
FORMAT (30X s CoSe? o (396X e 'STATE ‘401 1)
CALL PACKIKTRME ¢ MGUALP (T) «MGUALVI(T))

CALL GPTNY

C READ TN CONTRGL STATE ENPUT VECTURS.

849

B4l

821

IF (PHINV) PRINT 384u .

FORMAT(/Z/7/720X *HEURISTIC IHPUT VECTURS BY CONRTROL ST1ATEe*/)
DU 17 1=1,NCS

KEAD 1+ N

tE (PHINV) PRINT ual el il

FORMATUENDA+'CUNTHUL STATE 9 [3.10Xe134* VECTURSW')
NCSIvV(l)=h

NVEFC=ARIN

DO 17 J=1en

READ 24 KTRMI

IF (PHINV) PRINI 821 o (KIRMICIX) o IX=1 o N IN)

FURMAT (10K 3061 1) .

CALL PACKIKTRII s MCSIP (T o)) oCH IV I))

VU 888 N=1e10D)

SLTA{N)=O

PAGE 0003

€ET

FORTRAN IV G LEVEL 21 MALIN DAYE = 78341 13734728
uog2 688 CONTINUE
C
C SET UP STARTIHNG NUDE POINTERS.

0083

oou4 .

00us
00806
087
0088
0089
0090
0091
0092
0093
0094

0095
0096
00y7
0098
0099
0100
o101
0102
0103
0104

0105
ol1a6
0107

01008
0109

0110

orut
2112

0113
o114

o115
o116
o117
o118

[sNsNaNaNals!

C
C

PRINT 850
B850 FURMAT(IHI o//7/740X¢*STATE SPACE SEARCH'///

C 10X 'ITER«*96Xo"NUDE ?94Xe *LEVEL 04X "CUST VALUE® 93Xs?'CeSas? 04X,
C 'PREDeNUDE® 43X INPUT VECTOR?® 44X, 'STATE VECTORY//)
NCALLS=0

NRNDS=1

NODE=0

NUODECS (1)=KNTRL

NXSTT=NSTATE(])

NUDLPLL =0

NE=0

NODLEV(L)=0

FST=eTRUE .

GO TO %00

SEARCH EXPANSION LOUP
SCAN FOR NEXT NODE TOD EX?AND
NEXT NODE TO BE EXPANDED wllLL UOC THE UNE WITH THE SMALLEST HEURISTIC
VALUE WHICH NEVER OEFORE DEEN EXPANIED.,
9 FST=eFALSE.
MINH=3000
1=NRNDS

109 1 = 1-1
It (1.LEeO) GO TO 124
1E (NODENML 1) +GE.MINH) GU YO 109
IF(SETA(L) +EQel) GU} TU 109
MINH=NODEN(E)
NuoE=1
GO 10 199
GENERATE NEXT INPUT FRUM [NPUT VECCTUR SET.
SEARCH INPUT APPLICATIUN LOUP # % % & & % & % ¢ 2 ¢ & 4 = ¢ % % ¢ + & ¢ ¢ @
104 IF (MINMaLTYo1S00) GU TU 1148
PRINT 902
902 FORMAT(//7/7a5X s *MINIMAUM HEURIST IC NUDE SEARCH FAILS .Y,/
C A3Xs'SEARCH TERMINATED)
sTap
116 KSNUDE=NUDECSINULL)
HRI=NCSIVIKSNUODE)
NSCH=NRSCS{KSNUDLE)
SETA(NOLE) = 1
PLACE NCODE UN SETA » ALREADY EXPANDLD
NE =HUIDLEVINUDL) +1
DO 200 TIN=T.NRI
CONTRUL STATL APPLICATIUN LODUP,
DU 3993 [C3=1,NSCH
HVEC=NRIN
CALL UNPACK (KT R ¢ iACHLIPIKINUUE o HIN) o MCS IVIKSNODE S 3 IN))
IF (DEBUG) PHRINT JU) 1o (KTRATCER) o IX=10 1 1)

PAGE 0004

PET

v

FUORTRAN IV G LEVEL 2} MAIN DATE = 708341 13734728

o9
0120
o121
0122

0123
0124

0125
27120

Q27
ol28
0129
o130
0131
0132
0133
0134
0135
0136
0137
0138

0139
0140
olal
0142
0ot a3
0144

0148
01406
0147
0148
0149

0150
[A B}]
01352
0153
0154
0143
01%0

L1557

2158
015y
01060

1501 FOKRMAT(1UX, *INOUT APPLICATIUN LUUPY's 10611)
JJ=0 .
NTRM=NRTRMS { KSNODE 4 [CS)
DO 301 I=1+NTRM
€ CHECK IF TERM IS SATISFIED 68Y STATE OF PREDECESSUR NODE e
NVEC=NRFF
LE (oNOT o CUVER (MESP(K3NUDEs 1CS o I Do MFSVIKSNUDE ¢ 1C 501) sNSTATE(NODE))
C) GU TU 301
C TERM WAS SATISHFIED, FUORM TAULE UF TERMS SATISFIED,
NNENNEY]
KTEMPLJJI) =1
C CHECK 1f INPUT SATISFILS TCEAM
NVEC = NRIN
CALL UNPACKLKTRMEoMF IP(KSNODE » TCSe) oMF IV(KSNUDE o ICS e))
IF(DCBUG) PRINT 15004 (KTRMF{IX)elXZ1e11)
1500 FURMAT(IOX,"(S DRANCHING TERM wlblt)
DU 309 J=14NRIN
1F (KTRMI{JU) suTel) GU TU 309
IF (KIRMF(J)+6Tel) GU TU 309
IF (KTRMICJ) oNCKIRMF(J)) GO TO 301
309 CUONTINUE
GU TU 340
3N CONYINVE
Ik (JJ.EQ.0) GO TU 300
C UOVERRIDE INPUT VECTUR,
CALL RANOUCIRXAs LItXU o RANE)
IRXA=IRXH
J=RANF ¢ NTRM#1L
CALL UNPACK(KTHME oM TP (KSNUDLE s ICSoJ) yMFIV(KSNODE ¢ §CS e J)})
1F (DERUG) PRINT 1505, (RTRMFULIX)eIX=1411)
1500 FORMATLI0X o *UVERRIDE INPUT VECTURe's1011)
C MERGLE IWPUT VECTUR AND REQJIRED VECIUN
350 DU J11 J=1 JNRIM
IF (KTKWMF(JD)al.To2) KIRML(JI)SKTRHF(I)
311 COUNTINUE
IF (DEBUG) PRINT 1573 J(KTKMI(IX) oIX=1411)
1503 FURAATLI0K .+ "MERGE INPUT VECTUR Yatol)
¢ RANDLDM FiLL
VO 201 =1 NhIN
W (RTRME(IYeLEGL) GU TU 201
CALL RANDU{IRXAy TRXt o KKANE)
IRKA=LIRXD
KIES) (T)=RANE K049
231 CUNTINUE
1F (DEBUG) PRINT 1092 (KT 4101 X)sIX=00 1)
S02 FURMAT(IOA ¢ *RANDUIA FILL RESULT LS TN

PSLEULO0-NSIM RUUTINE Tu HSIMULATL CIRCULT LGLIIAVIOR,

o0 -

NCALLS=HUALL H¢]
NVEC=NREF
CALL UNPACKIKTRME s gL TALE (LD))

PAGE 0005

GET

FORTRAN 1V 6 LEVEL

0161
o162
0163
01064
0165
01066
0167
ol68

0169
0170
o173

0172
0173

0174
0175
0170
0177

0178
0179
Q180
0181
0182

o183
01 64
0185
o186
o187
vl188
0189
0190

0191
0192
0193
0l v4
0195
01906
0197
0196
0199
9200
0201
0202
0203
0294

C

21 MAIN DAYE = T8341 13734728
CALL PSONSMIKNTKL)

NVEC=NRIN

CALL PACKIKTRML+X s NUDLIP{NRNDS))}

NVEC=NRFF :

CALL PACK{MIRMF o+ Xo NXSTT)

NSTATEINRNDS) =NXSTT

NUDECS (NRNDS)=KSSC(KSNUDt +1CS)

NUOLEVINRNDS)=NE

C CUMPUTE HEURISTIC VALUE FUR VECTOUR.

500

100

CALL HEUSUD(NODECS (NRNDS) s NXST e IVAL)

IF (IVALLLEL1023) GU TO 1010

PRINT 100, 1VAL

FORMAT (* HEURISTIC VALUE EXCEEDSY 1023 AT'.119)
IVAL=1023

C CHECK FUR REZDUNDANT NUULEe ASSTIGN MINIMUM HEURISTIC LINKAGE,
1010 N=NKNDS

NUODEH{NRNDS) =1VAL
NTEHMP=NRND S
STAT=ULANK

C CHECK FOR REALISED GUAL .

4n0

102

0OU 102 1=1,NGOALS

IF (eNOTLCOVERIMULOALP (L) s MGUALV LT) oNSTATE(NINDS))) GO TO 102
IF (KGUAL{T).LT.0) GO TO YOO

IF (KNTRL«EQ«KGUAL(L)}) GU TU 900

CUNT INUE

C CHECK IF NODE WAS ALREDY EXPANDEDs IF S0 DELETE
C IF ALREDY EXPANDED BUT HAS LUWER COST VALVE
C REMOVE FRUM SET A AS A CANDIDATE FUOR EXPANSIOH

103

N=N-1

IF (NeLEWD) GU TU 101

It (NSTATE(N) sNESNSTATE(NKNDS)) GU TU 193
IF (NUDECS (H) o NE «NUDLCSI{NRNDS)) GI TO 103
I (NUODEHEN) o LE. HUDEMHINRNDS }) GU TO 100
IF(SETA{N) +CQs0) GU TU L1111

STAT=XNEW

SETA(N) =)

C REMUOVLE FRUM SGETA '

111

103

103

100
105

GO TD 1%

CUNTINUE

NOODIPIN)=NODIP (tINDS)

NPRRED {N) =HPRED (MRNDS)

NUDEH(N)=NUDEHININU S)

HOOLEV (N)=HUDLEV (NRHVS)

SuU TU 19

NTEMP=NITEMPHL

IF (NRNODS LT 1 003) o TH 10D

PHINT OB

FORMAT (' ARRAY DLdCKh UL L XCERDLRD . SUEARCH HALTS . %)
sioe

ST AT=0EL

PRINT 060s STATsHUALLY HTHDLD s HUBLEV IHRNDS) o IVAL o HODECSORRNDS) o HODE

PAGE. v0onL

9¢€T

FURTRAN 1V G LEVEL

0209
0206
0207
0208
0209y
0210
0211

Ja12
0213
0214
0215
0216
0217
0218
0219
2220
0221

0222
0223
0224
0225

860

462

107

300
200

909

904

21 MAIN DATE = 74341 13734728

C o (KTRMECIX) o EX=1 o NREND o (MTRMI LEIX) o 1X=1 s NRFF)
FORMATCIX 9 AQsTUs 0L 1595X)08Xs 111147T90,3611)
NRNDS=SNTEMP
IF {(FST) GO 7O 9
IF (STAT.EQXNEN) PRINT 062, N
FURMATI1H¢ o "NEW* 4 14)

IF (NCALLSLE.NLIM) GU TO 300

PRINT 107

FORMAT (* NSIM CALL LIMIT EXCEELEDOs SEAKCH HALTS.')
sTOP

CONTINUE

CUNT INVE

GO 10 9

CALL UNPACK(KTRMF » MGUALP (1) sMGLALV(I))

PRINT 904 (KTRMF (IX) oI X=1 oNRIFF)
FURMAT(///700X ¢ *SEARCH SUCCESHFUL*///730Xe *GUAL. REACHED®* +5Xe 3011)
PRINY 9050 (MTRMF LIX) oI X=1 o NIRFF)

FORMAT (30X 'FINAL NODE %e5Xe3011)

PRINT Q75,NCALLS

FURMAT (//720Xs 18 ' NSIM CALLS')

stTop

END

PAGE 0007

LET

FORTRAN IV G LEVEL

0001
0002
0004
0004
0005
00926
0007
0008
0009
0010
0011
0012
Vo013
0014
001S
0016
0017

cr

21 A 1N

SUBKUUT INE UNPACK(K oK ¢ KV}
INTEGER K(J36)
COMMUN/PAK/N

KQ=KP

Kw=KV

I=N

KQao=Kars2

KWWw=Kw/2

K{l)=2

IF (KQQ%2,GE KQ) K(1)}=0
IF (KWWH2 4L ToKW) Kl)=1
KQ=Kau

Kw=KwW

I=1-1

IF (1.GTe0) GO F¥0) 1
RETURN

END

VATE = 7834Ll"

13734728

PAGE 0001

\

8€1

FORTRAN 1V

0001
00902
0003

0004
0oos
0006
0007
0008
0009
0010
o011
0012
o013

G

LEV

crza
cY

C
C

L 21 MA LN DATE = 78341 13734728
LOGICAL FUNCTIUON COVER(MPJMVIKV)
INTEGER K(36)+M(36)
COMMUN/PAK/N

DETERMINLE {F THE VALUES IN THE K-VECTUH SATISFY THE REQUIREMENTS

PRESENTED UV THE M-VECTUh.
COVERSJFALSE,
CALL UNPACK(KeDsKV)
CALL UNPACK(MoMP oMV}
DO I I=1.N
IF (M(T1)sTWl) GO TOU
IF (M{1)eNEK(1)) RETURN
1 CUNTINUE
COVER=eTRUE o
RETURN
END

PAGE 0001

6ET

FORTRAN IV 6 LEVEL 21 HMA [N DATE = 78341 13734728 PAGE 0001

cv
0021 SUBROUTINE PACK(KsKi?¢KV)
C REODUCES AN ARRAY T0O TwU INTEGER WURDS
0002 INTEGER K{(306)
0003 COMMON/PAK /N
0004 KpP=0
0005 Kv=0
0006 DO 1 §=1eN
0007 KP=KPt+KP
0008 KV=KVEKY
0099 IF (K(§)aGToel) KP=KP#IL
0010 IF (K{1)eEWQel) KV=KV+L
0011 1 COUNTINUE
0012 RETURN
0012 END

o¥%T

APPENDIX A.2

‘PETRI NET AND HEURISTIC COST VALUE ROUTINES

141

.~

FORTRAN IV G LEVEL 21 MAIN DATE

0001

0002

0003
0004
000S
0006
0007
0008
0009

0010
0011
0012
0013
V014
0015
ovto
0017
uo18
0019
0020
0o21
0022
0023

0024
Q025
0026
0027
ovas
0029
0030
0031

V032

0033
0034
0035
00436
0037

DRI
0039

C
C

C

T
SUBROUT INE GPTNT
ROUTINE THAT GENERATES THE PETRI NET

C READ IN PLACE ARKAYS AND SET PUINTEKRS
COMMON/ZHEUSB/NE, IMEGAI KPNAM(I00D)sLNK(100) KUPLI100)KTRT(100),
$1PLADCIN0) oNIPLELIVO) oKUTR(I0U) 4 IMOCT (480) 4 IDESP(120)eLSOTR{240) ¢
EKTRINC240) o KTYP(100) oI TERP(A45) «KTRTP(US) sKTPTA(S0) KNIPL(1043),

<
C

TMGRP(QU) ¢ MGRVIAD) o HT JNPsNTPL

70341 13734728

»

DIMUENSIUN INBUT(95100) +KTEM(20)2ITEM(20) +KIRMF(36)

LOGICAL DEBUG
DATA DENUG/+FALSL ./

DATA REG/KOUNTRe IXINILASTSP 700 'C ot tF 0,0 ¢ /

M=0
N =0
IND = 0
RCAD IN PLACE TUKENS
NEXT CARD
120 N = N¢ti .
READ 10+ (INPUTLIIN) 9J=1 99D s KQo (KTEM(J) s J =
10 FORMAT (UALIX o125 1X,8882)
IF CLINPUT(1oN) sEULLAST) GO YO 27
LNK(N) = 0
KPNAMIN) = INPUT (1.N)
IF (KPNAM(N) s EQeKUNTR) LNK(N) = KQ
IF (KQ.GE.Q) GO TU 106
READ 72 +KTRMF
72 FURMAT(8O11)
M= M#)
CALL PACK(IKTRME s MGRP (M) » MGIRVIM))
LNKEN) =M
16 CONTINUE

IND = IND #1 ‘
KUTIR(N) = IND
0D 18 1 = 18
LSOTRIIND) = KTGM(L)
IF (KTEMUI)«EQeD) GO TO 20
IND=IND ¢1
10 CUNTINVE
20 GO YO 120
GET TOUTAL # OF PLACLS

27 NP = N -~ |

NUW RLEAD IN TRANSITLIUN ARRAY
N =0
o = 0
" =0

220 N = N¢1

1:8)

C SET PUOINTER TU SET UF THANSITIONS 1O wHICH PILLACE IS UUTPUY

READ 200 KTIVPINI s illIPLIN) o (KTLMEUD o d =1 08) s KAPLIN) »

CKIRVANI LLTEM(I) od =1419)
230 FORMAT(EIL y IXol Qo lX sl)Xol 2ol Rell el Xe)OLIR)
BE ARKIVI(HD) oGl o) 4L TO JOO

PAGE 0001

VT

FORTRAN 1V G LEVEL 21 eGP TUY DATE = 70341 13734728 ﬁAGE 0002

C SET POINTER TU INPUT PLACLES UF CURRCENT TRANSIVIUNS

0040 IND =INDt1
0041 TPLADINY =1IND
0042 D) 25 1=]1.,8
00a3 IF (KTEM(1).EQ4)) GU TU 28
0044 KIRINUIND) = KTEM(L)
004s IND =IND+I
00406 25 CUNTINUE
0047 28 M = M+
0048 JDESP(N) =i
C THE ADDRESS
0049 DO 29 1=1.,10
0050 IMDCT(M) =ITEM(L)
0051 IF (ITEMIID).CQ) GO TO 30
00s52 M= M#l
0053 29 CUNT INUE
0054 3n G TO 220
0059 300 NT =N =~ |

C TOTAL NU UF TRANSITIUNS .
C PRINT THE PETRI NET

0056 PRINT 400

0057 400 FURMAT (1ML /7777 15X+ 'LISTING OF PETRI NET)

0058 PRINY a0l

0059 401 FORMATA///7+9XKs 'TRANSIT IUN® ¢ 5Xs *TYPE® 45X ¢ "OUTPUT PLACF?,
C5Xe® INPUT PLACES® 92X ¢ ¢ IMMEDIATE DESCUT *) .

0060 . D0 470 N=1,NT

006l PRINT 4504 NeKTYP(N)+KOPL (N)

0062 450 FORMATUUX o T? 412,10Xe02010Xe'P,12,15XeP%,12) .

0063 NIENPP =NIPLIN)

0064 IF (NINPPL.EQ.O) GO TU 453

0065 M =IPLAD(N)

0066 DU 452 1=1.NINPP

0067 KK =KTRIN(M)

0060 1EL MsEQL0) GU TU 470

0069 PRINT 400+ KTRIN(M)

Vo070 460 FUORMATUS0X.12)

o071 =Mt}

0072 452 CUNTINUFE

0073 453 CONTINUE

0074 M =IDLSPIN)

V7S DU 451 L=1,8 .

0076 KK = [IMDCT (M)

0077 1€ (KKoEQe0) GO Tu 420

0078 PRINT 411,KK

0079 411 FURMAT(L2Xs12)

0080 M =M¢L *

0031 451 CONTENUC

0082 AT0 CONTINUE

0083 PRINT 480

0084 DO S00 H= L NP .

00us ABD FURMATCLMNL o 277777 429K ¢ *PLACE LISTING *4//7)

o080 PRINT 490 eNs(THPUTLJND)e J=19Y)

€V1

144

€060 YV

ONY
NN A
ANNT INOD
ANNT INND
T4lN= W
(21X IVIIO S
AN 222 INIMd
002 0L 09 (0°03°uR) 1
CHYANLN = %N
Gl1i=1 Ao 0
(MIVADIN= W
(21%,001- INANT4*21¢¢ DV WHILe *XS)LVIHO
{N)JUIRTS 229 INTYHAY
TJINSI=N 002 00
NMNLTH (ONOTI0° 10N®))
1~=N=1d 1IN
ANNT INOD
T4(NT= ON]
€FY N1 0D (0°0N° (ANT) IULN) JT
(1IHIAN= (OND)dR UL
S1¢1=1 §59 0a
ONl= (N)VidiX
14ON1= ON1
(21G1XT1¢21) vy
999 01 09 (0°DI*INIANILL) It
(GO I=C CUFINAN) (NI JUTALD P VO VI
14N= N
0= QNI
. 0=N

002
nEe"

222

Q99
6569

veo

££€9

499

0:ANT IDVd TIVHIHWNIL NI ava

09 01 O

(214XGe2T¢XG421%¢ ADIVId YALINNOD 4 *XS)IVHUOSA

CEON) TAANNS (ZEN) TAANAC (TENDTGINY ¢220 INTHd (DNATQYIT
2090 01 09 (Q°0°(VT*N)TdINN) AT

(EXTe21)ICavViNIO A

CCONI TAINR (2ON) TAANHC (TON)IJENNCT IO avay

1+N= N

0= N

2?9

tio

009

SHACHAN 3OV Td HALINNDD NI avay

(IVEEXTC U odde * X02)AVHYIOS
ANNT INOD
neszvesel IvE82 = 31v0 INLgD 12

(12,34
00S

J

sz10
LEa L]
£a1o
2210
teto
o210
6110
fi1t10
2110
atto
sito
vito
€110
cetto
AR RN
oNto
601tQ
a010
2010
aata
G010
votlo
€010
2010
tovo
ooto
6600
|a600
L600

2600
4600
v600
£600
2600
1600
0600
6800

8000
2800

AFAIT O Al NvHLHNS

FORTRAN

0001

0002

0003
0004
0905
0006
0007
0098
0009
0010
ov1l1
o012

0013
0014
0o1s

001t6
0017
0018

0019
0020
oo21
0022
0023
0024
0025
202606

- 0027
0028
002y
00 30

0031
ov 32
0033
0034

09 35
0936
0037
0038
0039

IV G LEVEL 21 MAEN

cY

C
Cc
Cc

1

DAYE = 78341 13734728

SUUROUT INE HEUSUD(KNTIL oNXSTT, 1VAL)
THIS RUUTINE DERIVES THE STATE VECTUR UF THE PETR1 NENT
BEFURE &€ AFTER FIRINGe THE VECTUR KR IS COMBUTED ANOD
THE F INAL HEURESTIC FUNCTIUN
CUOMMON/HEUSB/NEe IMEGAs KPNAM(YO00)sLNK(100) ¢ KOPL(100) ¢ KTRT{100),
CIPLADILD0) o NIPLELIOD) +KUTRI100) o IMOCY (R8O)¢ IDESP(120),LSOTR(240),
*KTHRINC240) oy KTYPCLO0) o I TERIP(AS) o KTRTP(LS) +KTPTA(S0) o KNTPL(1043)
HHUGRP (40) s MGRV 40) o NT o NP NIPL
INTEGER M(100)KK(L00D) KFIKD(100)
INTEGER KTYRMF (306} s MTRMF(JO) s I XX2Z
INTEGER GRPH+XINCIXINSCS
COMMON/ZPAK /NV
COMMUNZNSLMZIXXZ (U) s NRFF
LOGICAL DEBUGCOVE
LUGICAL GT,LY
DATA DCOUG /ZoFALSE o/
DATA GRPHsCSeIXINGXINC /%Gty "C'e'1 'K/
HV=NRFF
CLEAR M VECTUK TO ZERU
DU 1 1 =1eNP
1 M{Ll) =0
DO 6 1 =10P
C GUAL UR COUNTER PLACH
TFCKPNAMOL) cEQeGRIPH Uk s KPNAMLU L) dEQWXINC) GU YO 6
IF (KPNAM(I)EQ.LS) GU TU b2
IF (KPNAM(L)LQJIXIN) GU TO 80
KEGISTER VECTUR NUDE -~—- CHECK FOR COVER.,
60 LIK=LNK(I)
IF (CUVERIMGRP{LLIK) s MURVILIK) s NXSTT)) GO TU 0D
GO TLU 6
62 IF GLNKCL) o NESKNTRL) GO TU O
a0 ML) =1
6 CONT INUE
IF(DEUUG) PRINT 77s(M(J) 9J=1oNIP)
77 FORMAT(//7/7+9X+ *STATE VECTUR ULFOKE FIRING %4/ ¢5X¢8012)
NUW DERBIVE THE STATE VECTUR AFTER THE K T FIRIG
DU 199 1 =1,N}
KEIRB(1) =0
NLP =NLPLCL)
IND =IPLAD(L)
PICK THE [HPUT PLACE T O IRANSITIGH
111 J = KIRINUIND)
I (M{J)EQ4D) GU Tu LYQ
NIP = NIP-1
I (KTYP(T1)EQ.G) GU 10O 12
UNCUHDIT TONAL CURTRULL T ATE TRAMSE YT IUN
IF (NIP.EQeY) GU TU 20
() =inNved
G0 TU 111
a0 - (KTYP{L)eHLe3)Y o) TU 1n
J = KUPLCIL)

PAGE 0001

SPT

FORTRAN LV G LEVEL 21 HE USUH DATE = /8341 13734728

0040
0041
V042

0043
0044
0045
0046
0047

0048
0049
0050
0951
0052
0053
0054

0055
00506
0057
0058
0049
0000
0001
00062
0063
0004
0065

00066
+D vy 4
0006
0069
0070
0071
vor2

0273
0074
0075
0076

Qu77?
o078

M{J) =1
GO TO 199
125 KFIRBL(L) =1
KFIFB IS THE LIST OF FIRAULCG TANSITIONS 1.E.
AL.LL CUNDITIUNS FOR FIRING ARE FULF ILLED ONLLY THEY HAVE NOT BEEN
COMMANDED TO FIRE
199 CUNTINVE
IF (DEBUG) PRINL 200+(M(J)eJd=14ND) ‘
200 FORMAT(SXs'STATE VECTUR AFTER FIRING'4/7//+1Xy0012)
IF (DEBUG) PRINT 22224 (KFIRB(J) +J=1sNT)
2222 FURMAT(SXs '"FIRABLE TRANSITIUNS *¢/01Xe8012)
DERIVE VECTOR KRe THE SET OF ALL FIRED TRANSITIUONS AND THUSE THAT CAN
BE INFERRED TUO BE FIKED
CLEAR VECTUER KR
DO 201 | =1 NT
201 KR(1) =0
DO 249 J =1.HP
IF (MUJ)eEQ.D) GU TO 249
IND = KOTYREJ)
IE(INOJEQeO) GO TO 249
211 1 = LSOTIR(IND)
C PICK TRANSITION TU wWHICH THIS PLACLE 1S DUTput
IF{1.EQ.0) GO TU 249
KREL) =1
IND = END#IL
GO Tu 211
249 CONT INVUE
IF (DLBUG) PRINT 250¢(KIREJ) s J=14NT)
250 FURMAT (/721X *FIRELD TRANSIVIOUNS 'e//701X4,8012)
DO 299 1 =1eNT
IF (KR(1)sQ0) GO TU 299
IND = [DESP(1)
262 IMS =IMUCY(IND)
C PICK IMUAEDIATE DESECHNDANTY OF TRANSIVION 1
IF (IMNS.E£Q.0) GU TU 299
KR{IMS) =1
END = IND+1
G0 Ty 292
279 CUNT INUE
IF (DEBUG) PRINT 300, (KR(J) sJ=1sN1)
300 FURMAT(//7e5Xe? KR AFTEKR ALL INFEKKED FTRAS. HAVE BEEN ADDEOY,
Cz7+80012))
C NOw COMPUTE THE HEURISTIC FUNCTEUN.

anon

ano

HPT =0,
HCNT =0,
HIIVE = 0.
HSEN =0,

IYERP 1S THE SET UF vo& TLRAENAL PLACESy KIPTA 5 THE PUINFER TO
TRANSTVIUNSG YO wHiIon TERATHAL BLACE | 2O1NTS
T KTKTP 16 THE LIS Ul TRANSTTLUND wHICH HAVE TERMINAL PLACES AS TNPUT
DU 349 L= NTOL
J SEVCikp(L)

[aKalka)

PAGE 0002

o991

FURTRAN IV G LEVLL 21 HIUSUB

0079

0080

0081

0082
0083
0084
0085
008¢
0087
008y
0089
0090
0091

oova

0093

0294
0095
0oYve
00u7
0098
0999
0100
0101
o122

0103
0104
0105
01006
o107
o108

0109
o119
11
0112
o113

0ottla
0115
Olleu
o117

C

C

co0on

C

C

C

DATE = 16341 13734728

PICK TERMINAL PLACL
IF (M{J)eEQe D) GO TU 439
CHECK, ADUVE
N =KTPTA(L)
ADDRESS OF TRANSITION TU wHICH J 1§ INPUT
305 1 = KTRIP(N)
PICK TKANS
IF (1.EQs0) GO YO 349
IF (KR(1)4EQel) GU U J10
NIP =NIPLLI)
IF (KTYP(L) EQ.3) HPT = HPT + 1o/NIP
310 N =N+l
G0 TO 305
349 CONT INUE
IE(DEBUG) PRINT S50, HPT
350 FURMAT(SXs 'CUTRILU. FROM TERM PLACES *4F1044)
DO 449 1=1,NT
IF(KTYP(1)«NE44) GU TU 2090
INC HEURISTIC COUMJUTATIUN
J =KOPLLT)
QUTUT PLACE
KNTPL 1S THE SET OF CUUNT PLACES
KNTHLUL +1) CONTAINS [HE # PLACE #,KNTPL(1,2) IS
THE NUO OF FLIPFLUPS IN THE CUOUNTER
KNTPL(1+3) IS THE FIRST FF NO OF COUNTER |
0O 351 N=L.10
IF (KNTPL{Ns1)+EQsJ) GU TO 346
IF (HeEQe10) PRINT 3954
351 CONT INUE
355 FORMAT(SX o 'KNT PLACE * 4124 'HUY FUUND [N KNTPL TABLE?)

396 KK = KNIPL(N.2)
JJ = KNTPL(Ne3)
JK = JJ ¢+ RK - 1
64 LIK=LNK(J)
INC HEURISTIC CUOMPUTATIUN. .
KVAL =0
MVAL=0

LT=eFALSGE
GU=oFALSL. »
CALL UNPACK{(MY KMUF ¢y MGREP (L IK) sMGRVIL IK))
CALL UNPACK{KTEMEF ¢ e NIXST 1)
CHECK fOR GUAL. GRIATLR TIHAN, LILHS THAN, AND EQUAL T NEXT STATE.
DO 65 J=JJ.JK
IF (MIRMFU D) oF Qe e ATDSKTRME (J) ¢EUe 1) LT=oTHUE,
It (MTRMEC(J) s e § s ANDSKTRME(J) Qe Q) GUl=e TRUL S
IF (GTosLRWLT) GU TU LL
695 CUNY INVE .
SLT MIRMF INDETLRMINATES Tu GIVE MINIMUM DIFFLRENCE FRULUM NXSTY
oL DU LT K=JJJK
IF (MTRMFIK)el.T o) LU TU b
MIRMF(K) =]
IT (6T) MTEME(R)=KTIhAE ()

PAGE 0003

Lyl

FORTRAN IV G

ol18
0119
0L120
otr2¢
0122
ot23
0124

0125

0126
0127
o128
0129
0130
o131
0132
0133
0l34
0139

LEVEL

21 HEU3V0 DATE = a4}

C CUMPUTE VALUES IN LACH CUUNTER.

6y
o7

70

337

400

249

4595

KVALZKVAL® 2 tKTPHF (K)

MVAL=MVAL$2+MThaF (K}

1F (LY) MVAL = MVAL ¢+ 2¢4#KK

KD = (MVAL -’ KVAL)

XVAL = MVAL

HCNT = HCNT + (1o =KD/XVAL)

1F (DEBUG) PRINT 357 +KDoHCNT s (KTRME (N) oN=1 o NKFF) o
CUMTRMFIN) o 4= 1y NRFF)

FORMAT({S5X s 2 KD 4 134°% HCNT *F 10440790 Xe* KTARMF 0,5012

¥/95Xs" MIRMUF t,5012)

GO TO 449

IF{KR(1)eCQ0) GL TU 449

HRVE =IRVE ¢ 1. e
CONTINUE

HOFN =NT—= (HPT + HCNT + HIRVC)

ILVAL = NE ¢ IMEGASHSFN/NT

1 (DEBUG) PRINT 455 ,HHRVE s HSFNe VAL

FORMAT(SXe *I1 VEC CUNTRs *sF 10046 HFN *4F10.4,413)
RETURN

END

13734728

PAGE 9004

8VT

APPENDIX A.3

PSEUDO-NSIM SUBROUTINES FOR CASES I-1IV

149

150

£el=1 tet 0@ 001 cCoo0

NuN1 £R00
(B REIHFSENE FE 8 IITITE TSR Lt 9500
(REEN EURTSETE BRI 2%00
£01=1 16 DA 9400
NUALIM (020U (G) TN 41 e S100
GRGTEN 4900
N="WWAL 2 £Y00
SCI=T)My CIVATS E 5NN) Il 2400
0=(T~11)3vuLn 1v00
2/WAL=N 0v00
v*1=1 £/ 0Q AE£00
T4IVALI="IVAS acoo0
(1 WU Y4 WAL WWAL=WWAL 22 1£00
ot*2=1 22 0o 2700
O="TWAL 12 S£00
HINNOD TIHL LNAWAMNONT D
NUNIAY (0°0A (V) IHULINY 4T 02 YE£00
NUN13IY £C00
O=(1)ANULIW 19 2500
Q'y=1 19 00 09 1€00
NunL3IY 0T00
) INKIANND 1S 6200
1= (XTI)ANULH (LD LT 4R) ARHINCONY S T2DT (1) I LNY a1, azo00
O={X1)4Waaw 1200
£=X1 (0°02°X1) 41 9200
: 1-1=X1 6200
€*1=1 15 Q0 0g 4200
NuN Y £200
12 01 09 (1°03(%) IAN) 91 O 2200
NHNL Y 1200
M="lvAl 22 0200
1= (F=2) SNUAW (CIVATCLTI4X) 41 6100
0=(r—2)INUIN 9100
2/ WAL= 1100
£41=r 22 00 9100
CI4C) ANBANAC I AMHINE VAT WAL =WWAY 12 s100
£el1=t 12 NnQ vio00
0="WAl 02 £100
0=(1)aWMIN 1T 2100
ctez=y It 0a e¢ ttoo
12 a1 a9 0100
(ONIRMAIN= (T L) S 6000
ANNTINDD 1) 7000
CIYIWNMEN=CT) Vi AN 2000
€41=) 11 DO 01 2000
IUANNSLOTII4001005°00°02000¢06G40H402°02%01) 0L O 5000
CIYAWMEA=CT) W 1 v000
tte1=1 t 0a €000
RN LAC) IMALIWS (9) ANUINS LTI T W LI/WISN/ZNDHWND 2000
T ASVYD 04 (WISN-OANTISU) MLIVINKHIS HIASNVUL BILSIo3n D
CTHINNIHENGSY ANTANDANNS 1000

1000 IOV a2sve/et) 1v€82 = 3LvQ WSMAS 12 13A371 9 Al NVHLUDY

151

anN3g 01200

NYNL3Y 6900

(1) IHYLRA=(9) dNUL W Q900

COY RYLN=(S) ANY LW 2900

(G UL N=t ©) IADL W n900
(E)THHIN=(E) INTLW G900
(CIANUIN=L(2) AR LK Y900

() AWULAN=LT) AW Ot £900

NUN13Y 900

U=(€) dWyiw 1200

’ ANNTLINDD 16 0900
NENLAN (0°0I 1) AW LYY 20 6500
0%t=1 16 0a 8500

0=(£)IntH 2S00

NHENLAN (00O (L) INULN) IT1 06 9560
Nanit aY ' 5500
(CA1)IHRAN=(C4XT) Ikt 101 500

(BB EULIG IR SR EIN I €500

f=X1 (0°Da*X1) 41 2500

I=1=X1 1500

200G 19Vd a2z74€/¢t tvenlL = 31va WSHOS 12 3AIT 9 Al NVHIYCH

FURTIKAN IV G LEVEL 21 MA LN DATE = 78337 18737722 ' PAGE 0001

cT

0001 SUBROUTINE PSDNSMEKNTR)

C HEGISTER TRANSFER SIMULATOR (PSEUDUO-NSIM) FOR CASE (I
0002 _ CUMMON/NSIM/KTRMLIC16) ¢ KT RMF (36) sMTRMF (36) «NRFF
0033 GU TO (1026302e9+2070249) 9oKNIR
0004 9 REVTURN

C INCREMENY THE COUNTER (CUNTRUL SVATES 2:4¢6,08)
0025 2 J=0
0006 00 101 1=1,3
Qov7 100 J=JHJEKTRMFLL)
oovs8 J=J¢1l
0009 D0 102 1=1,+3
onio K=J/2
0011 MTRMF(4-1)=0
0012 IF (JeNEsK+K) MTRMF (a-])=1
0013 102 J=K
0014 RE TURN

C CONVROUL SYATE 3. INPUT YO ACCUMULATUR
0015 3 D0 103 1=1.8
ooile6 103 MIRMF (3 ¢+1)=KYRMI(L)
0017 GO TO 1

C COUNTYROL STATE 7. COMPLEMENY UF INPUT TO BDUFFER.
001b 7 DO 104 [=],8
0019 MTRMF { 3¢1)=1-KIRMI(1)
0020 IF (MYRMF(341)eL.Te0) MIRMF(3I+I)=2
ovzi 104 CONTINUE m

C CLEAR THE COUNTER (CUNTRUL STATES 1:347+9)
0022 L DO 100 1=1,3
on23 100 MTRMF(I)=0
0024 RETURN
002% END

(4514

FORTRAN IV L LEVEL 21

00V

0002

00)3
0)a
QUL

0ovon
ovu7

0ouvs

00y
woly

o
1D N
Uity

JI1a
[HTLN
Dle
PR Y4
0918

001y
R0 gt}
RT3
0022

00ud
LD Y2
II2hH
0Vl
o7

00’y

VO Y
[{TUST))
)it

Y32
0oy 33
LD K
)J) 4L
Qoo
o g7
[MVRY)

))ay

C

PSONGM DAIC = 78337 Lyz7a%/707

SUBKUOUT THE PSDHSMIKNTRL)
REGISTER TRANSFER SIMULATUR (PSEUDU-NSIM) FOR CASE 111
AKO=FEly 1KRO=FFa,s MUD=FF7s ACO=IFY
CUMMUNZNS EM/ZKTEM LU LU) o KERME {36) o MTRMF { 36) oNRIFF
DO 1 [=1 JNRFF
1 MTIHMF (T)=KTRMF (1)
GU TO (10,20430,40e50¢41) KNIRL
CUNTROL STATE 1 AR=LN Ay 1=l W
10 LU 11 1=1,0
1l MIRMF UL D)=KTIRMILL)
CUNTHUL STATE 24 URANCHING ONLY,
20 REVURN
CUNTROL STATE 3e¢ CUNDITIUNAL THANSFERS BASED ON IH .
30 IF (KTRMF(5),Euel) sU FU 34
IT (KTRMFLO6).E0.1) GU TUu 32
1i=X0U0 AC=X
0V J1 I=1,42
31 MIRMF (U841)=KTRML(LHL)
RETURN
1R=X01 AC=MD MD=AC
32 DU 33 1=1,2
MTRME (D41)=KTRUFLO+L)
33 MU (O L)SKTIME (B4 1)

RETUKN
31 IF (KTRME(G) ot Qel) GU TU 30
IR=x1) - AC=ACe AND e MD

D6 39 1=1e2
HIRMF(84+1) =0 .
IF (KTRMF (G841) sEQal e ANDOKTRMF (641)oEQel) MIRMF{UHI) =1}
35 CUNTINUE
IrR=X11 AC=-AC
Jo DO J7 1=9,10
HIRMF (T)=V
IF (KTRMP(1)otUeV) HTLMF(T)=1
37 CUNTINUL
RETURN
CUNTROL STATE 4,
40 IF (KIRMF(6)eENLL) Gu U al
RUTATE MU LEFT,
MERMF (7) =K 11241 (8)
MIRME (V) =KTRUE(T)

RETURN
CUMPLTE THE DALE FRUM TYL ADDRESS I REGISTER ARt
41 J=)

DY 42 =168

J=J+J

IF (KTRMECE) olide) J=d L
42 CUNTINVE

JEJe 210

tF (RNTKLLQe0) uh) WY
READ FROM MEMURY Tu 4D

no 43 1=1.2

IPAGL

DI DY

€St

FURTRAN IV 6 LEVEL 21 PSDNSM DATE = 78337

= 14240707 PAGE Y002
949 43 MTRMELO6#])SKTKMEC(L +J)
C CUNTRUL STATE 5. OUTPUT UNLY,

Uy 53 RE TURN

: C CUNTRUL STATE O, WwRITL MD TU MEMURY,
Qa2 60 DO Ll 1=1,2
9) a3 01 MTKMF (I ¢J)=KTRMF(O+T)
0044 RETURN .
0oab END

ST

FURTRAN IV G LLVEL

0201

0002
005
0004
0005
(DD

ovnN7
0008
Q0uUYy
o0l
0d11
0012
0013
[T\ R X
001 Y
0ovl0L
oOL7
001y
[V
vo20
ovz21
DIVY-Y)
0023
0024
ovaYy
vozo
P IVRY 4
2928
00zy
0039
00 31
v 42
0)39
00 3a
(VD I 31
Jn o
0037
o3y
0049
0040
J0a)
0042
ouvad
0044
V0An
046
0davr
ovag
DU R
0uH0

21 BSUNGM DATE = 78336 13716720

SUURUUTING PSONSMIKNTRL)

C REGISTLR TRANSFER SIMULATUR (PSLUDL-NLEM) FOR CASE LV

&9

201

30
202

203

204
205

uvoL

2400

£L0u
209

190
219

2°)

CUMMUN/NSIM/RTRMLICIO) o KTRMF (30) «MTRMF (30) o NRETF
INTEGEK JCES D)o JU(A)e KTHMEsKTRMIE sMTHMIF s JX oKX
OO 200 1=1 yNRFF

MIRME (1) =KTRMF (L)

GU TU (1910063001008 00¢3¢100+3¢941001000391392061503417,
$ 100s2061004,100) KNTRL

DO 201 (=144

MIRMF (L)=KTRMF {4 ¢+1)

RUTURN

DU 202 §=1+4

MIRMF(12¢1)=KTRMI(4¢+])

DO 203 1=144

MIRMF (1)=KTRMI (L)

KL TURN

IF (KTRAF{15)NELO) GU TU 20

DO 204 1=1.4

MTRMF (4 L)=KIRMF (1)

RETUKN

I (KTRMFELIS5) eEQeOeURSKTRME(LIO) oLQel) GO TU 208
PRINT 8006

FORMAT(HX o' ADDCAGUR)Y)

I=4

JX=KTRMI(D)
KX=LXEKTRME(L) oKTRMF(L#42))

MIBME (1 4¢4)=LX{KXsJIX)
KXZLOIKIRMEL L) JKTRMFLT4))
JX=LA(KXsJX)
KX=LA(KTHRME (1) +KTHRMF(144))
JA=LO{JIXeKX)

1=1=-1 .

1 {1+GTW0) GU TUu 2006

RE TURN

vl 209 1=1+4
MIRME(A+1)=1-LA{RTRMF(1) KTUME{4¢]))
RE TURN

I (KTKME(1S5)eHNELO) GU TU 20

LO 210 1=1.4

MIRME (1)=KTRUIF(4tl)

RETURN

JC{L)=KTRML(Y)

1=4

JCLI)=LACRTRMF(U L) o JC (1))
JIHL)=LXCRTRME(u+1) oL UL 1))

1=1-1

I (1.67T.0) GU T 211

(f (KNTEL oNE. o 10) 6O 10 22

I (KTRMELLD)Nl) GU TU 1UV

pu 212 1=1 .4

MILMF (T)=0U¢ 1)

RELTURN

PAGE

nooy

SST

APPENDIX B

CIRCUIT SCHEMATICS FOR CASES I-IV

156

. B-1 Case I:

Control Circuit

e ED Ik e I Vg EX DS XY pa D
32 . 30 ; 35
o5ot 33
t; (oureuy) i_
: a>—- NOTE:
® _79}‘) —1}
IED oBa r{%EE} |°93 b 100 -~ l. This noFe appligs to all subsei
LL—— Li::>—> guent circuit diagrams
45
T 2. All OUT arrows indicate connec-
46
a> EED___D“Q' tion elsewhere
»— |
, 3. All IN arrows (>) indicate
connection to circuit elements
or inputs
4, Clock and reset lines are not '

LST

shown

158

12

X

a 1 16 (CNT,) 24
Y
{5(CNT;) I
b
{4 (CNT)
5i
S0
T _K T K T K T K
13 14 5 S
Q Q Q Q
CNT, CNT, CNT, CNT,
o

Fig. B.2 Case I: Counter Circuit

ol

A, Bg
A, B,y 5 H
13 21 19 2

954,908, 5 | 1 X, Ay B, X,

AB,
17 20

82f |83

s8] (59| [eo] (61 l 2} (63 (64 65
|85 @ 87
T
17 | A, m As
- >

o6l [67] [esl[es] (70 7|J 22]{73] |74](75 76 79 8ol [&1 @

88

A,

%

Fig. B.3 Case I: Register A Circuit

|

6S1T

i1

g

108, 11 A,
vY 1

!97’- {08 {109

{13}

C

(ouvpuT)

114 @ sl (1] [us] lio

134

-

S

@:21@ 23] |iza] li25 Q?

127 {12§

.IH2§ 130) {131} 132

2{ |e,

Fig. B.4 Case I:

&

:)

o«
4—9'\)-

Register B Circuit

133
i4

09T

[

p3

=

) 5

D7

oo |

i
689 Gl
— a
rE==kl T —‘L
° 18 | L= a)-r 1o [s7)—r 20
“"i‘: B

Fig. B.5 Case II: Control Circuit

191

O——
\|——
Ep—
—_—]56) Z
3 7 I
16—
7—
38
Xo Xl)(1 Xa X4~ X5 XG X1
Clock
o B I ‘odd” }»
L.
39 QO) Y 42 43 a4 |45 46 47
D ©
“0® Fu®] [*r°] PFs®| 1€4”] |58 “6° 17
9
PUPP PR E
| l l I | |
OuT, Our, OuTy Qurg Outy Outy Our, QuTy

Fig B.6 Case II : Register Circuits

29l

163

Fig. B.7 Case III: Control Circuit

Ao A, A,
Clock
y
G [»] G D G [})
7 8 °
[l !
AR REGISTER
INg IN IN
-_1_\ 1 2
! / T T
[6 D
{10 114 12
IR REGISTER
116 14 16 132 15 {7 {148 {3 18
49
g: T 1
L. 57/|58] {59 161162163 65)|65} (67
55
& & &9
o).
156
=/ 1 T T
13 14 15
X 1 | 16 M R£GSTER]
o 13 . ?4 i7 X, 1 118
A7-
yo
0. { I
69117071 ({72 7417576 [77 78/ {79/ (80] |81
¢ & &)
=
__84f ! 1]
- G D 6 0 G D
16 17 18

Fig. B.8 Case III:

AC REGISTER

Register Circuits

164

165

Case III: Memory Circuit

Fig.B.9

32 33 >——y
23 38) 1252 s
* D 48) 15§ 1" es7
36 { : 476
Inki 250
42 w
ready ready 78)>
‘ a 44 79)>
73—1) @ 1 276)] 60— S o 37 b4 =
I iza [::)‘ K3 I-I:425I, J 2 s
49 ready ready . 3? ';5;1
r4 40
3 ,—@‘fsa 53 h—p > a-—{ 54 - 6l
a7 ready K K ready@"’ .
slave L _4253 ' r@ : ' L
FT% <32 R {159 DO & 63)—
e—f {48 “QE‘, 3 <8
" 254) 55|56/ |57) 58>
[* | 254 -
lisd i = S
64 _
v ready
34 > e 34 t — 1
66 ready b 68 E [__1'2: ¢ _7_'/ 0|36~ 73 \ . @—)
fand e/
f L 67 69 35
L n= .

Fig. B.10 Case IV: Control Circuit -

991

76 > o1, S
7% % —ed
79— @
ki1 82 -
80> _ﬂ@_ B p{9a
" R n[D=="08
L |
45> 7g° T @
K _ 41> 90
& T 87) olra ! - *_—@_%

Fig. B.1l1] Case IV:

SKIP Control Circuit

L9T

up 123 n»t 28 M‘rbour
’ L % .
P [,
” K5 .
a : 2] [w1) {00
24 R, TRy 103
1 ~208
N\
' . e 9l <13
92 94 95 96] 197) 98] 199 -
ettt ———————— o
‘ DATA-IN
o
i 204
ne g tus) e {2
187 »
138 >
- 189>
.‘G' .
. L Ll AL _
6 €6 2ot : esﬂ 2sﬂ 261) \ze2
178 3 : l - 186
17> 4 183
§76 po- < 184
1750 <1063

Fig. B.12

Case 1IV:

UR Reglster Circuit

89T

~ IY 149 146 150 M7 151 118 152 226
’ 3 o[T K] [T Kk
2] o] [z [é%l
Loae FEPY

231 236 24

Y \

[< 62
glzlc)

il

€2y 4

<——‘9w 3

<10, ¢

131 InKj _ 1
80— 120 @ > > 7?' lnkhi

79> —< 108

slave)) <109

IS INPUT InKi -—J_ 132 Q33 Q34 Q35 36 . :::)
Y v 127} (128 i 7
3 78
: \ o1

5) 2
154 159 Esg Q57 92 > ‘

o3 > | 62

153

Fig. B.13 Case IV: AC and IR Registers

691

Fig. B,14 Case IV: PC Register and IOSR Circuits

—t 108
199 . L
™ 1194 |l93l |l92| 191 1w liwzlhze
[1]] B
174 . ,
I0SR, k4
L) 103R§
IOSR‘ lh’\‘
{113 M
e\ |-Gy
195 @ @ w:;) u%
| 90> _ ' By
1390 991 o) o1 96 119] {160] Lo @ w3] lisa)] lies] (ise

OLT

< 23]
<22
‘ ‘ B | | | | - —< 20
@@Q@ o] o1s @'g 07| b
| | slave
4 20 %13 “2Soy7 <t <62 (Co)
(rj et —23 3
. | LAl) & .]) N 1Y . bbbl
22| |223 E@ Ezs Ezﬂ Esﬁ 233 %5 Esﬂ 237] 238 23§ Eaj
7
12
231 241 Inki 62

(cy)

Fig. B.15 Case IV: Full Adder Circuit

TLT

LIST OF REFERENCES

- Armstrong, D. B., "On Finding a Nearly Minimal Set of Fault
Detection Tests for Combinational Logic Nets," IEEE
Transactions on Electronic Computers, EC-15 (1966),
pPpP. 66-73.

Belt, J. E., A Heuristic Search Approach to Test Sequence
Generation for AHPL, Described Synchronous Seguential
Circuits, Ph.D. Dissertation, Department of Electrical
Engineering, University of Arizona, 1973.

Bouricius, W. G., E. P. Hsieh, G. R. Putzolu, J. P. Roth,
P. R. Schneider, and C. J. Tan, "Algorithms for De-
tection of Faults in Logic Circuits," IEEE Transactions

on Computers, C-20(il), 1971, pp. 1258-1264.

Breuer, M. A., "A Random and an Algorithmic Technique for
Fault Detection Test Generation for Sequential Cir-
cuits," IEEE Transactions on Computers, C-20(11),
1971, pp. 1364-1370.

Carter, E. A., Fault Test Generation for Sequential Circuits
Described in AHPL, Ph.D. Dissertation, Department of
Electrical Engineering, University of Arizona, 1973.

Eldred, R. D., "Test Routines Based on Symbolic Logic State-
ments," Journal of the ACM, 6(1), 1959, pp. 33-36.

Estrin, G., "Diagnosis and Prediction of Malfunctions in the
Computing Machine at the Institute of Advanced Study,"
IRE International Convention Record, Pt. 7 (1953),
Pp. 59-61.

Hart, P., N. Nilsson, and B. Raphael, "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths," IEEE
Transactions on Systems Science and Cvbernetics,
scc-4(2) (1968), pp. 100-107.

172

173

Hennie, F. C., "Fault Detection Experiments for Sequential
Circuits," Proceedings of the 5th Annual Symposium on
Switching Theory and Logical Design, 1964, pp. 95-110.

Hill, F. J., and B. M. Huey, "SCIRTSS: A Search System for
Sequential Circuit Test Sequences," IEEE Transactions
on Computers, Vol. C-26, May 1977, pp. 490-502.

Hill, F. J., and G. R. Peterson, Digital Systems: Hardware
Organization and Design, Wiley, New York, 1978.

Hill, F. J. and B. M. Huey, "A Design Language Based Zpproach
to Test Sequence Generation,"” Computer, Vol. 10,
Number 6, June 1977, pp. 28-33.

Holt, A. W., et _al., "Final Report of the Information System

Theory Project," Tech. Report RADC-TR-68-305, Rome
Air Development Center, 1968.

Huey, B. M., Search Directing Heuristic for the Sequential
Circuit Test Search System, Ph.D. Dissertation,

University of Arizona, 1975.

Huey, B. M., "Guiding Sensitization Searched Using Problem
Reduction Graphs," Proceedings of the 14th Annual
Design Automation Conference, p. 274-291.

Kime, C. R., "An Organization for Checking Experiments on Se-
quential Circuits," IEEE Transactions on Electronic
Computers, EC-17(4), 1966, pp. 352-366.

Kubo, H., "A Procedure for Generating Test Seguences to Detect
Sequential Circuit Failures," NEC Journal of Research
and Development, 12, 1968, pp. 69-78.

‘Michie, D., and R. Ross, "Experiments with the Adaptive Graph
Transverser, " Machine Intelligence 5, B. Meltzer and
D. Michie (eds.), American Elsevier Publishing Company,
Inc., New York, 1970, pp. 301~-318.

Ng, W. W., Evaluation of a LSI Fault Detection Program Using
a Four-Bit Microcomputer Processor Circuit, M.S.
Thesis, Department of Electrical Engineering, Univer-
sity of Arizona, 1974.

174

Nilsson, Nils J., Problem-Solving Methods in Artificial In-
telligence, McGraw-Hill, New York, 1971.

Petri, C. A., "Kommunikation mit Automaten," Univ. of Bonn
1962; translation by C. F. Green, Jr. "Communication
with Automata," Supplement to Tech. Doc. Rep. #1,
Rome Air Development Center, Contract # AF30(602) -
3324, 1965.

Poage, J. F., and E. J. McCluskey, "Derivation of Optimal Test
Sequences for Sequential Machines," Proceedings of
the 5th Annual Symposium on Switching Theory and Logi-
cal Design, 1964.

Roth, J. P., "Diagnosis of Automata Failures: A Calculus and

a Method,” IBM Journal of Research and Development,
10, 1966, pp. 278-291.

Roth, J. P., W. G. Bouricius, and P. R. Schneider, "Programmed
Algorithms to Compute Tests and Distinguish Between
Failures in Logic Circuits," IEEE Transactions on
Electronic_Computers, EC-16{(5) (1967), pp. 567-579.

Rutman, R. A., "Fault Detection Test Generation for Sequential
Logic by Heuristic Tree Search," IEEE Repository Paper
R-72-187, Sept.-Oct. 1972.

Schneider, P. R., "On the Necessity to Examine D-Chains in
Diagnostic Test Generation - An Example," IBM Journal
of Research and Development, 11(1), 1967, p. 114.

Seshu, S., and D. N. Freeman, "The Diagnosis of Asynchronous
Sequential Switching Systems," IRE Transactions on
Electronic Computers, EC-11(4), 1962, pp. 459-465.

Seshu, S., "On an Improved Diagnosis Program," IEEE Trans-
actions on Electronic Computers, EC-14(1), 1965,
ppo 76-790

Van Helsland, M., Evaluation of SCIRTSS Performance on Sequen-
tial Circuits Biased Against Random Seguences, M.S.
Thesis, Department of Electrical Engineering, Univer-
sity of Arizona, 1974.

