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ABSTRACT

The use of Petri nets to model the register transfers 
and change of control states in a sequential machine described 
in a Computer Hardware Description Language (CHDL) with the 
aim of guiding state space searches is proposed. Each fault 
to be detected defines a set of goal nodes for the state space 
search. These goal nodes together with a CHDL description of 
the circuit are used to generate a Petri net. Some portions 
of this process are invariant with respect to the goal states, 
depending entirely on the CHDL description.

Two guidance mechanisms are derived from the petri net; 
heuristic cost value and input vector guidance. For each ma
chine state encountered during the state space search, a state 
vector is derived from the petri net. A heuristic cost value 
is computed based on the state vector; this cost value being 
a measure of the effect of reaching one machine state in the 
state space search on the transitions in the petri net. The 
petri net also contains information about input vectors that 
are associated with each control state. The most important 
of these are selected based on an established criteria. The



heuristic cost value and the input vectors are used to guide 
sensitization searches in the Sequential Circuit Test Search 
System (SCIRTSS). Four case studies are presented to test 
the effectiveness of the guidance mechanism. The results show 
that the developed model is a promising tool that can be used 
in fault test set generation in complex sequential circuits.

XX



CHAPTER I

INTRODUCTION

The advent of integrated circuits and very large scale 
integration has made fault detection in digital systems a com
plex process. The number of states inside integrated circuit 
chips has grown: one chip may have hundreds of flip flops,
hence the state space has become much larger. It is no longer 
possible to provide additional test points brought to external 
connections due to packaging limitations. This pin limitation 
constrains the number of outputs observable and inputs to con
trol the sequential circuit inside. The concepts of controll
ability and observability are important in understanding this 
problem. Control refers to the ability to apply a complete set 
of tests to a subsystem via external inputs, that is, control 
points. Observation refers to the ability to observe the out
puts of a subsystem via external outputs, that is, observation 
points. If many flip flop outputs were observable and controll
able, faults could be easily detected through direct observation 
of the outputs. However, this is expensive and one has to rely 
on the limited inputs and outputs of the chip to develop a test 
generation sequence. Constraining the number of inputs forces



the testing to become highly sequential; thus a sequence of in
puts that enable the effect of the fault to be observable at the 
output must be found by the fault detection system. Finding 
this sequence must be efficient to avoid waste of computer time.
1.1 Previous Results

The earliest fault diagnosis programs were written to 
exercise machine functions, rather than hardware. Generally, a 
complex machine instruction like MULTIPLY or DIVIDE was executed 
and the results were compared with those obtained using an 
equivalent sequence of simpler instructions, like SHIFT, ADD or 
SUBTRACT. If there was a discrepancy between the results, 
then the complex operation was assumed to be defective. The re
sults from such tests might not necessarily be valid due to the 
limited nature of the test as reported by Estrin (1953) and 
other investigators.

Eldred (1959) was one of the first investigators to 
appreciate the importance of diagnostic programs which test 
machine hardware rather than its functions. This was a major 
improvement and hardware-oriented diagnostics came into general 
use and are still being used. Eldred's results were developed 
for fault detection in combinational circuits of one or two 
levels. An extension of Eldred's work to circuits having any 
number of levels followed; the process is labelled one dimen
sional path sensitization. Although many investigators worked 
in this area, Armstrong is prominently linked with this method.

The idea is to choose a path from the site of a fault 
to the output; the inputs to the gates along this path are



assigned values so as to propagate any change on the faulty 
line along the chosen path to the output. This path is called 
a sensitized path and the process of constructing the path is 
called the forward-trace phase of the method. After setting 
up a sensitized path, we trace back from the gates along the 
sensitized path toward the primary inputs. This is the back- 
ward-trace phase of the method.

Although Schneider (1967) has provided a counter example 
to show that the method is not an algorithm, this method has 
been very useful in practice. Its defect is the occasional 
inability to produce a test when one exists.

J. Paul Roth (1966, 1967) formulated an algorithmic 
method which sensitizes all possible paths from the site of the 
fault to the output simultaneously. He called this method the 
d-algorithm. The d-algorithm has proved to be a general solu
tion to the problem of fault detection in combinational circuits, 

The formal algorithmic approach to fault detection in 
sequential circuits has been studied by various investigators 
including Poage and McCluskey (1964), Hennie (1964) and Kime 
(1966). These algorithmic approaches are impractical for any 
but small circuits and small classes of faults. This is due to 
the following difficulties:

a. For each possible circuit state, a potential test 
input must be evaluated. The number of states 
increases as 2^ where n is the number of memory 
elements in the circuit. This puts a practical limit 
on the complexity that the circuit cam have.
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b. A homing sequence (Hennie, 1964) must be found 
that forces the machine into a known state. It 
may be very lengthy or one may not exist for some 
circuits.

c. Some sequential circuits, especially large circuits, 
can not be easily described by a state table.

The alternative approaches to fault test generation in 
sequential circuits are non-algorithmic: methods that treat
fairly large circuits and are economical of computer time.

The Sequential Analyzer of Seshu and Freeman (1962, 1965) 
was one of the first non-algorithmic test generation methods.
The Analyzer is a digital simulator. An heuristic is presented 
to the Analyzer with a sequential circuit plus a specified set 
of faults. The heuristic proposes one or more potential tests 
which are simulated to determine their performance. Some sort 
of numerical measure of performance is computed for each test 
input and the one with the highest figure of merit is used pro
vided its value exceeds a predetermined value. Otherwise the 
heuristic has failed and another is tried. Four heuristics 
were developed and are tried. If all four heuristics fail, the 
system gives up.

All of the heuristics of the Analyzer have proved to be 
reasonably effective for small circuits. They are, however, 
impractical for large circuits because of the computer time re
quired to simulate the various candidate tests. Because the 
heuristics employ local rather than global optimization tech
niques , they do not guarantee a minimal test sequence..



other non-algorithmic test generation methods were 
developed by Kubo (1968), Breuer (1971), Bouricius et. al 
(1971) and Rutman (1972). All of these essentially transform 
the sequential circuit into an iterative combinational circuit. 
The d-algorithm is then applied to generate a candidate test.
The iterative model has been quite successful for sequential 
circuits that are largely combinational in form and where the 
number of circuit iterations required to model the time frames 
needed to propagate the fault to the output is small. But 
when the number of state variables is large, the testing pro
cedure has to be abandoned due to the fact that the computa
tional time becomes exorbitant.

1.2 The Sequential Circuit Test Search System (SCIRTSS)
The Sequential Circuit Test Search System, developed 

by Hill, Belt (1973), Carter (1973) and Huey (1975) is based 
on a non-algorithmic method using heuristic graph searching 
techniques. Two heuristic tree search procedures automatically 
determine trial input sequences which are used to simulate sim
ultaneously all single faults of the circuit. The sequential 
circuit is partitioned into its control and data portions as done 
in most Computer Hardware Design Languages (CHDL's). The control 
input combinations are applied in every node expansion while 
only input vectors previously specified by an input vector gen
erating routine are considered. Thus, the search is primarily 
that of the state graph of the control circuit. The node ex
pansion is computed by simulating a CHDL rather than by circuit



simulation, an approach which leads to a great reduction in 
computation time. The design language used is AHPL (Hill and 
Peterson, 1978).

We present here a simple description of SCIRTSS. A more 
detailed description is given in Hill and Huey (1977) and Huey 
(1978). SCIRTSS incorporates the single permanent fault assump
tion and assumes that both the faulty and the good network ope
rate in clock mode. Fig. 1.1 shows a block diagram of the test 
generation system. SCIRTSS has two main search routines: The
sensitization search and the propagation search.. For a particu
lar fault to be detected, a sequence of inputs must be found 
that takes the fault-free circuit from its initial state to a 
state such that the input sequence generates a sensitized path 
from the site of the fault to either an output or to a flip-flop. 
This input sequence is called the fault-sensitization sequence 
^ d  the process of determining this sequence is the sensitiza
tion search shown in block 2. The application of the fault- 
sensitizing sequence may cause the effect of the fault to appear 
at the output or to be stored in a flip-flop. In the latter 
case, a sequence of inputs is needed to cause the register trans
fers to make the discrepancy between the faulty and fault-free 
circuits observable at the output. This input sequence is the
fault-propagation sequence and the process of propagating the 
stored fault to the output is the propagation search shown in 
block 3.

Both the propagation and sensitization searches use 
guidance mechanisms to reduce the search cost. The searches are
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Figure 1.1 SCIRTSS Flow Diagram
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conducted over control and user-specified data input only and 
consider only one fault at a time.

Blocks 1 and 4 in Fig. 1.1 are the d-algorithm and 
elemental simulator, respectively, that are incorporated into 
SCIRTSS. If a fault is ever to cause malfunction, there must 
be some state of the machine for which the outputs are in 
error or the next states of the good and faulty machines differ. 
If the set of untested faults and a circuit inter-connection 
list are given, a modified d-algorithm can find states for 
which the faults will cause erroneous next states or outputs.
This d-algorithm treats the circuit as if it were combinational 
by Considering its behavior for only one clock period. The 
test vectors returned by the d-algorithm are converted into 
primary inputs and "present" states and the test generation prob
lem becomes reaching one of these present states. Inputs are se
lected heuristically and the response of the machine is simu
lated with the AHPL simulator until the search for a sequence 
of input vectors to move the machine to one of the goal states 
is successful. Once this happens, SCIRTSS enters the fault pro
pagation mode to extend the effect of the fault to a primary 
output. Inputs are again selected heuristically and the machine 
is simulated in a search of the control state graph until a 
sequence of input vectors is found which will move the fault 
to the output.

After finding a test sequence, it must be verified using 
the elemental simulator of block 4 in Fig. 1.1. This simulator



and the AHPL simulator are different in three aspects :
a. The effect of using the faulty gate to perform 

register transfers in propagating the fault is 
only approximated in the AHPL simulator.

b. The AHPL simulator uses a single machine and each 
variable may be 0, 1, D, D, or X (unknown). The 
elemental simulator permits each variable to be 
only Of 1, or X for a given machine, but simultan
eously simulates the good machine M, and for each 
undetected fault fj_, a faulty machine

c. The AHPL simulator is about 25 times faster than 
the elemental simulator. This makes the trial and 
error searching practical in terms of computer time.

In block 4, Fig. 1.1, all other faults detected by the
same input sequence are removed from further consideration. 
SCIRTSS checks the states of the good and faulty machines re
maining for faults stored in flip-flops as a result of the in
put sequence just applied. If new faults are stored, the program 
continues in fault propagation mode. There is a point at which 
the set of untested faults is not empty, but none of the remain
ing faults have resulted in an error occurring in a register.
The register transfer simulator is no longer useful at this 
stage for propagating faults to the output and SCIRTSS must re
enter sensitization mode.

1.3 Guiding Sensitization Search
SCIRTSS has been very effective in generating faults
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for highly sequential circuits. Huey and Hill (1977) give some 
statistics to show the usefulness of SCIRTSS. The propagation 
search has produced consistent results throughout the history 
of SCIRTSS. Sensitization search, on the other hand, has not 
been as successful. This is due to the fact that sensitiza
tion mode searching occurs after SCIRTSS has run out of faults 
to propagate and the remaining faults are usually difficult to 
reach. Essentially, the sensitization search is confronted 
with the task of moving the machine into a small set of goal 
states which are inherently difficult to reach. Many highly 
circuit dependent heuristics were written to cope with this 
problem. Huey (1975) was the first to.attempt to provide 
a general purpose heuristic function and minimize the manual 
effort required of a user in forming an input sequence. His pro
posals also improved the efficiency of the sensitization search.

The question that is answered by the fault sensitization 
phase of SCIRTSS is "how can the states of the fault-free cir
cuit and faulty circuit be differentiated?" For a given fault 
f a  sensitized path from f^ to a flip-flop FF^ is determined 
by a combined state and input vector v^ = (Xj,Yj) where Xj is 
the input to the combinational logic and is the flip-flop
state. Of course, V. may not be unique; thus, for f^ we have
a set of vectors which determine the
sensitized path. After the V\j's have been found by the modi
fied d-algorithm, a sequence of input vectors must be found to 
move the machine from its present state to state Y^. Finding
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this sequence of inputs is the sensitization search which can 
be regarded as a graph theoretical problem of finding a path 
from any of the starting nodes to any of a set of goal nodes, 
states that provide a sensitized path to an output or a flip- 
flop. This search, like the propagation search, requires di
rection to be efficient.

The problem reduction graph approach of Huey (1975) has 
provided a guidance mechanism for the sensitization search whose 
effectiveness is independent of the circuit under test. In the 
problem reduction graph, the problem of reaching a goal state 
is resolved into subproblems which are in turn iteratively 
broken into subproblems terminating in simple problems. The 
nodes in the problem reduction graph are weighted and a heuris
tic value for each state encountered in the state space search 
is computed based on the weights of the nodes in the problem 
graph that are not satisfied by the search state. The problem 
graph also indicates input vectors associated with each control 
state. These input vectors are used together with the heuris
tic function to guide the sensitization search.

1.4 Proposed Work
The problem reduction graph approach has demonstrated 

its effectiveness in guiding fault-sensitization searches for 
goal states in complex sequential circuits that are very diffi
cult to reach. This approach is the first to provide a general 
purpose guiding mechanism for the sensitization search.

Is it the best? Using the idea.of analyzing a design
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language description can a more efficient method be found?
This research is an attempt to find out answers to these ques
tions. Also, the problem reduction graph introduces the idea of 
”'Tf links" which were not actually used in generating the 
heuristic function nor in the selection of input vectors to 
guide the search. It is our intention to study an efficient 
method of selecting input vectors to guide the sensitization 
search.

In studying how the heuristic cost function is derived 
from the problem reduction graph, it becomes apparent that the 
function is trying to measure the effect of satisfying a node 
on the overall desired goal of reaching a solution. Petri nets 
are graph models that have been used in various areas of com
puter science to study the interconnection properties of systems. 
It appears then that petri nets are also very suitable for mea
suring the effect of reaching one state in a state space search 
on the overall desired goal state.

This research presents the use of petri nets to model 
the register transfers and change of control states in a sequen
tial machine described in a Computer Hardware Description Language 
with the aim of guiding fault-sensitization searches.

The next chapter develops the model and the following 
two chapters develop the guidance mechanisms for the sensitiza
tion searches. In Chapter five, four different circuits are 
used to test the method.



CHAPTER II

PETRI NETS AS AN AID TO FAULT DETECTION

2.1 Introduction
For each search state of the sensitization search,a cost 

value is computed and external input vectors are provided to 
the search program to guide the search. This combination of 
input vectors and heuristic cost values increases the effi
ciency of the search. Because the heuristic cost value must 
be computed for each node as it is generated, its computation 
must not be time-consuming, otherwise it will slow down the 
search. The external input vectors must be judiciously chosen 
for each state to minimize "trial and error."

Before the commencement of the sensitization search, 
goal states are defined by the d-algorithm as explained in 
section 1.2. These goal nodes can be broken down into
subnodes and the subnodes broken down further until an essen
tially trivial node is reached. These subnodes are concerned 
with transferring vectors (a^,a2 .•-a^), a: e(0,x,l) into given 
registers or moving the machine into a given control state and/ 
or applying an input vector (a^,a2 ...a^) at a given control 
state. The problem can then be thought of as: "How can we

13
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reach the goal node(s) starting from the trivial nodes?" In 
this chapter we present the technique of modeling the register 
transfers and change of control states in a given machine by 
a petri net.

By studying the relationship between the various "tran
sitions" and nodes in the petri net for each machine state, 
we can derive an heuristic value for the given state. Also, 
input vectors to be applied at any given control state can be 
obtained from the petri net.

It is assumed the given circuit is described in a com
puter hardware description language (CHDL). For our discussion 
we use AHPL (Hill & Peterson 1978) due to familiarity.

2.2 Background
"Petri nets" are graph models used to study the inter

connection properties of concurrent and parallel systems.
C.A. Petri (1962) proposed in his dissertation "Communication 
with Automata" that the basic phenomena of communication, 
such as the switching logic of totally asynchronous automata

/

are representable by purely combinatorial-topological means.
Thus, he proposed the construction of a net with more practical 
applicability in the design and programming of information 
processing machines than does the theory of abstract automata. 
Holt et al (1968) developed Petri's work to such a state that 
it is applicable to many areas in computer science.

Our purpose here is to use this modelling device to 
model the register transfers and state transitions that can
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occur in a machine, given a set of goal nodes.
2.2.2 Firing Rules
Fig. 2.1(a) is a large-scale distributed system which 

interconnects many information processing elements or process
ors. For the purpose of studying the relationship between 
the interconnection and the overall behavior of the system, 
each information processing element may be represented by a 
module of the general form shown in Fig. 2.1(b). The vertical 
bar is called a "transition" while the circles are referred to 
as "places" or "locations." A petri net is the interconnec
tions of such modules. Thus we may look upon a petri net 
as a directed bipartite graph wherein there is 
allowed a directed arc from a place or location to a transi
tion, or from a transition to a place. In order to simulate 
the flow of control in a petri net, each place is marked with 
(that is, may have assigned to it) a non-negative number of 
tokens. We may think of a token as representing a datum, or 
denoting the presence of some condition or some control signal 
associated with its place.

The transition obeys the following rules :
a. A transition is said to be "enabled" or "firable" 

if each of its input places contain at least one 
token,

b. The "firing" of an enabled transition consists of 
removing one token from each of its input places, 
and adding one token to each of its output places. 
Fig. 2.2 gives an illustration.
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(a) Before Firing

(b) After Firing

Figure 2.2 Firing of an Enabled Transition
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c. Though it may fully be enabled, a transition cannot 
fire until directed to do so (by some outside con
trol) .

In summary, we may think of transition as an event 
which can fire (i.e., occur) if all places (conditions) input 
to that transition have tokens (are satisfied).

2.3 Petri Net as an Aid to Guiding Sensitization Search
Given a set of goal nodes G( ), we can reduce them to 

subnodes, until we obtain a set of trivial or terminal nodes. 
Thus, for each set of goal nodes we can generate a petri net 
where the transitions correspond to register transfers or 
changes of control state. Remember that a transition is singly 
an event: a register transfer that must be done or a change
of state of the machine from one control state to another. For 
our model we will define five types of transitions:

(1) Register Transfer: This type of transition models the 
change of state of a register; transferring a vector
(a^,...,an), ag,(0,X,l) from one set of registers or in
put into a destination register.

(2) Control: This type of transition models the change of
control state of the sequential machine.

(3) Single Transfer: This type of transition models un
docked control states and terminal expressions. The 
transition that fires to fill the goal place (sec.
2.3.1) belongs to this group.
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(4) Count: The count transition models the change 
of state of a counter.

(5) Shift/Rotate: This transition type models the 
shifting and/or rotation of a given register.

Generally, all transition types, except type three, 
have an execution completion time associated with them. This 
timing requirement is included in our model because we are 
dealing with clocked sequential circuits: if all the conditions
for loading a register are fulfilled at time t^, the register is 
loaded with the vector at the next clock period. Similarly, if 
conditions for change of control state are fulfilled during 
time t^, the machine enters the next control state at time t^+i* 
For slower memories, the reading (or writing) from memory is not 
completed until some units of time after the process was begun. 
Hence, this timing provision takes care of all timing require
ments ; in fact, the simple transfer (type three) is a special 
case in which the process is completed during the same clock 
period. This latter case correctly models the "NO DEIAY" tim
ing requirement of AHPL (Hill & Peterson, 1978).

For each transition in the petri net, we can associate 
a time unit t(i) which would indicate the number of time units 
that separate the transition and the goal. Why should we link 
the transition time to the goal place? This is done to give a 
measure of the time units that would elapse before the goal is 
filled with a token after a particular transition is fired. 
Remember that filling the goal place is our target and as such
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every formulation takes into account the question "how easily 
can the goal place be filled?" In Fig. 2.3, taking as the 
goal and assuming all transitions have execution completion 
time of one unit associated with them, then it can be seen 
that if t^ fires then the goal P^ would be filled; however, if 
t^ fires, tg and t̂  ̂must fire before the goal can be filled.
Thus the transition time of t^ is t(4) = 3 while the transi
tion time of t^ is t(l) = 1. Of course, this assumes that the
firing order is t^ ^ t^ + t^.

Summarizing our discussion of the preceeding paragraphs, 
for each transition in the petri net generated for a given 
fault, we can associate two parameters:

s =: the type of transition 
t(i) =: transition time; that is defined as the number 

of time transitions separating the transition 
and the goal place.

2.3.1. Types of Places
In our model, the places represent conditions or re

quirements which must be satisfied during a sensitization 
search. We can define five different types of places:

a. Goal: This is a unique place in the petri net; it
represents the condition of sensitizing the fault 
under consideration.

b. Control: This type of place or location represents 
the requirement of moving the machine into a given 
control state.

c. Register: Loading or transferring a predetermined 
vector ai,a2 ...an a#;(0 ,l,x) into a register. 
Counter and shift registers are in this category.



21

P

Figure 2.3 Petri Net for Illustrating Transition Time
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d. Input: Placing a vector ^  external
input.

e. Output: This type of place models the condition of
a vector a^yeg.-a^ appearing at the external output.

These conditions will be shown just outside the circles 
as in Fig. 2.4(a). Since the machine can only be in one and 
only one control state at any given time,and a register can 
only be loaded with one vector in any given control state, the 
places in the petri net can only have a maximum of one token at
any time. When a condition is fulfilled, the appropriate place
is filled with one token.

Some places in the petri net will have more than one in
coming arc. This means that the condition represented by the 
place can be fulfilled or satisfied from any of several transi
tions. For example, for a register AR to be loaded with a 
vector a^ag.'.a^, the machine must be in either control states 
1 , 3 or 5. In each control state, when some condition is ful
filled, then AR is loaded. In control state 1, this occurs 
when register IR contains a^,a2 «..a^. In control state 5, an 
input vector a^a2 *..a^ is applied. Fig. 2.4(b) illustrates 
this condition. Of course, t^, t2 , or t^ can only fire when
their respective places are filled.

To differentiate the goal place from all other places 
in the petri net, we use the visual representation shown in 
Fig. 2.4(c). The input places to t^, t2  and tg are the test 
vectors generated by the d-algorithm any of which would cause 
an erroneous next state to result from the presence of the
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(a)

P2 P 3

P3 =: AR; a]_a2 • • • ajj

?2 =: cs-1
P3 =: IR; a]_32 -. • ajj
P4 =; cs-5

IN ; â_ a2 •. • â ^
cs .3

Py — ; OR ; a2̂ a2 - • • â^

P4 P5 
(b)

P6 P7

(c)

Figure 2.4 Petri Nets Illustrating Different Types of Places
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fault. If any of the transitions t^, t- 2 or t^ are fired, then 
the goal place is filled which implies the fault is sensitized.

2.3.2 Formal Definition of Petri Net for Guiding 
Sensitization Search

Although petri nets have many properties like reach
ability, liveness, and safeness (or boundaries), most of the 
work reported on the properties of petri nets are concerned 
with subclasses of petri nets (such as "marked" graphs). We 
do not intend to investigate any of these properties in our 
model; rather our aim is to develop a means of guiding the 
sensitization search from the petri net generated for a given 
fault, given the CHDL description.

Before giving a formal definition of our model, we define 
the state of a petri net; A token distribution in a petri net 
is called a marking or state. Initially, each place has a 
status (full or empty) referred to collectively as marking M.

We have now presented all the material needed for a 
formal definition of a petri net as an aid to computing 
heuristic values for guiding sensitization search;

For a given fault we define a petri net as a quintuple:

P = {G, T, Pjj, P̂ ,
where G = set of test vectors returned by the d-algorithm,

each of which will cause an erroneous next state 
to result from the presence of the fault.

T = the set of transitions.
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Pjj = the set of non-terminal places or locations 
from which further subnets can be generated.

= the set of terminal places.
= marking or state of the petri net. Usually 

one will be interested in the state just after 
the machine has been driven into a search state 
Si.

Generally P^ H P^ = 0  , the null place and we will often
denote P^ U P^ by P, the set of all places in the petri net.

2.4 Generating the Petri Net from AHPL
The petri net generation process starts with the goal 

states returned by the d-algorithm. The way(s) in which these 
goal places can be filled is generated using the knowledge of 
the hardware for the control states, registers, inputs and 
memories which are available in the AHPL description statements. 
For example, if the d-algorithm returns'{AC: XIOX, IR: IXX) 
and (AC: lOXX, IR: IXX), we would have the net shown in 
Fig. 2.5(a). t^ and tg are the transitions which fire to ' 
fill the'goal place with a token. By our model, it needs 
either t^ or to fire to have the goal place P^ filled.
We must now generate the remaining portions of the petri net 
from P2 , P 3  and P4 .

There are three different types of expressions in the 
AHPL description from which the remaining portions of the petri 
net must be generated:
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Tl.

AC:X10X IRrlXX ACîlOXX

•4

Figure 2.5(a) Setting Up the Goal Places

P5

ab: 0 1ab: 1 0 cs.k 14

11 13
Figure 2.5(b) Expanding the Goal Places
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1. Condition expressions
2. Register Transfer expressions
3. Control Branch expressions

A good discussion of how these expressions are handled is 
given in SCIRTSS (Huey, 1975, pp. 24-35) and will not be given 
here in detail.

Equation 2.1 contains condition expressions which must 
be satisfied before a register transfer can take place.

K. AC (ÎR^aIR2 AÂC) V (IR^AlR^AB) (2.1)

It simply means that if jR^ is zero and IR2  is one, then trans
fer the complement of the contents of register AC into register 
aÇ.; however, if IR^ is one and IR2  is zero, the contents of 
register B are transferred into register AC. Of course, this 
can only be done at control K. Assuming IR is a 3-bit register, 
then the condition IR^aIR2  is translated into the condition 
IR:01X; similarly IR^aIR2  becomes the condition IR:10X. Notice 
that these conditions are not dependent upon the values in any 
of the specified registers; that is, the conditions are invariant 
with respect to the goal places. We will return to this point 
a little later.

For the sake of generality, equation 2.1 is rewritten 
as in equation 2 . 2  where IR^ is replaced by a and IR2  by b; 
a and b are in effect control variables.

K. AC -c (aA b AÂC) V (a^A B) (2.2)
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Given equation 2.2 which is a register transfer expression 
and the goal nodes of Fig. 2.5(a), our task is to find transi
tions and their input places such that if the transitions are 
fired, places Pg and would be filled with tokens; that is, 
register AC would be loaded with the vector XIOX or lOXX.
From the register transfer expression of equation 2.2, we see 
that AC can be loaded with a required vector C^CgC^C^ in one 
of two ways:

1. If the machine is in control state K and AC 
contains C^CgCgC^ 

or 2. If the machine is in control state K and register 
B contains C^C2 C^C^. For the first case the condition ab:10 
must be satisfied while ab must be 0 1  in the second case.
We thus need two transitions t^ and t^ to expand the goal place 
AC:XIOX. Each one of these transitions has input places as 
shown in Fig. 2.5(b). The place AC:10XX is expanded in a simi
lar fashion. Transitions and tg are transitions of
type one since they all model the register transfer which takes 
place if all the conditions are fulfilled one time period 
earlier.

Places Pg, Pg and P^ are all input places to the same 
transition and they will be called brothers. Transition t^ is 
a descendant of transition t^ since if t^ is fired and place P3  

is filled with a token, then t^ can fire assuming all other 
conditions are fulfilled. More generally, a transition tj(t^) 
is said to be a descendant (ancestor) of a transition ti(tj) if 
tj_ can be ultimately fired after the firing of tj (after
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progressing through some further firing, if necessary). In 
particular, t^(t^) is an immediate descendant (ancestor) of 
tfCtj) if an output place of tj is an input place to tĵ .

After the goal places have been expanded as in 
Fig. 2.5(b), the new register places generated are also ex
panded by the same reasoning.

The third type of expression in AHPL is the control 
branch expression. There are two ways control can pass from 
one control state K to another.

a. Unconditionally :
K. -> (i)

b. Conditionally :
K. (a,b,c,...)/(ij^,i2/i2/***)

In the first case, control passes from control state K to 
control state i without any condition. This often happens 
after a register transfer or some other action takes place 
in control state K. The machine is then sent to control state 
i to initiate some other action. The second case of transfer 
of control occurs only when a given condition is fulfilled.

IIn the example given above, control passes from control state 
K to control state i^, ±2 / or ig depending on whether the con
dition a, b or c is fulfilled.

In order to represent these two types of control branch 
expressions in the petri net, we classify two types of control 
transitions:
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1. Type 2a: Conditional control transition
2. Type 2b: üncondtional control transition.

Where we have conditional change of control state, each member 
of the set {i^y i^,...} becomes an output place of a tran
sition t^^f t^2 ' tCg, respectively, whose input places are 
control state K and the respective conditions: a,b,c,--..

Control can pass from more than one control state to 
control state i unconditionally in a given circuit. To follow 
the rules of transition firing, this has to be modelled as shown 
in Fig. 2.6(a) so that if any of transitions t^^, ^^2’ ^c3 
the place CS-K is filled. This accurately models the hardware 
behavior but can lead to a proliferation of transitions. For 
this reason, we choose the representation of Fig. 2.6(b) which 
violates the general firing rule. For this type of transition 
(type 2 b), if any of the input places is filled, the transition 
becomes firable. This is justifiable since a transition is 
modelling a change of control state and we are interested only 
in the firing of the transition.

Notice that the control state expansion is completely 
invariant with respect to the goal places; that is, it is not 
dependent on where the fault is located in the machine.

After discussing how subnets are generated from control 
branch and register transfer expressions, one may ask "how are 
the firings of transitions derived from these expressions 
handled?" In section 2.2, we gave the firing rules of a transi
tion: firing an enabled transition consists of removing one
token from each of its inputs and adding one token to its output
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Figure 2.6(a)
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Figure 2.6(b) Unconditional Control Transition
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place(s). Since register transfer in AHPL is non-destructive 
and the conditions for a control state transition remain after 
the change of control state, there seems to be a problem with 
our model! As will be explained in Chapter three, we are 
mainly interested in transitions that have fired during each 
sensitization state. Hence, we care only about the output 
places of transitions that are fired. In section 3.3 we intro
duce the notion of implied transition firing; the discussion 
in that section will give a good understanding of why we do 
not take pains to model the non-destructiveness of register 
transfers nor restore the condition tokens for control state 
transition.

2.5 Complete Petri Net
We use the AHPL described circuit of Fig. 2.7 to 

illustrate the generation of a full petri net from the circuit 
description.

The set of goals which would sensitize the fault is:

lOlllXXllXX
XXOXXXXOIXX

From the AHPL declaration syntax, ACrllXX, MDR: IIXX and 
IR: 101 are input places to transition t^ while IR:XXO and 
AC: 0IXX are input to transition t2 . Any of t^ and t2  firing 
fills the goal place with a token and the fault is sensitized. 
There is no time delay involved, hence t^ and t2  are simple 
transfers of type 3. The first stage of our net is shown in 
Fig. 2.8 (a).
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MODULE: SP
MEMORY: IR[3]; MDR[4]; AC[4]
INPUT: INP[4]

OUTPUT: MOR

1. IR aViNP

H- (INP4 , INP4 )/(1 ,2 )

2 . - (IR3,ÏR3)/(3,7)

3. H. ( (ÏR^AÏR^) , (ÎR^AIR^) , (IR̂ ÂÏR̂ ) )/(4,5,G)

4. MDR INP; MOR -«-AC
H- 1

5. AC ■«- INP
^ 1

6 . AC ■«- AC A MDR
MOR -«- AC

1

7. AC -«- +AC
MOR -«- AC 
-»■ 1

Figure 2.7 AHPL Description of Example
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Goal

ACrllXX MDRrllXX IRrlOl ACrOlXXIRrXXO

Figure 2.8(a) First Stage of the Petri Net Generation
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At the second stage, we start by searching for a 
solution to the question "how can place be filled with a
token?" filled with a token means that the register AC
has been loaded with the vector llXX. There are two alter
nate ways of doing this ;

a. In the first case, if a transition t^ with input 
places INPrllXX and CS*5 is fired, then at the 
next clock period, the contents of AC will be 
IIXX. Hence t^ has transition type 1; that is 
register transfer and its transition time is one.

b. Alternatively, if a transition t^ with input
places CS*6 , ACrllXX and MDRrllXX is fired. 
Transition t^ also has transition time one and 
is of type one.

Notice how, for example, the input places MDRrXlXX and ACrOlXX 
are obtained from the "and" operation of control state 6  since 
the output place is ACrOlXX and we have logical AND of registers 
AC and MDR, we specify the vector to correspond to the
desired goal and then determine what the contents of MDR must 
be to give the correct result.

With this reasoning, we obtain the second stage of the 
petri net as shown in Fig. 2.8(b).

Now that we have encountered control states as places, 
we shall explain how these are treated before going on with the 
complete net generation. As discussed in the section 2.3, 
control branch expressions are completely invariant with respect
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Figure 2.8(b) Second Stage of Generation of Example Petri Net
wa\
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to the goals. These control subnets are generated before the 
generation of the full petri net. To generate the subnet 
corresponding to a control state, we use the same reasoning:
how can I get to control state K? In the example circuit
under discussion, this is almost trival. Fig. 2.9 shows the 
subnet for control states six and one. It is appropriate to 
show here one subnet from one of the example circuits dis
cussed in Chapter Five. This is the control state nineteen 
subnet of case four, the four-bit microprocessor. This sub
net in Fig. 2.10 is complex compared to our example circuit 
of Fig. 2.7.

When the decision to add the subnet of a control state 
to a main petri net is made, the linking step consists of 
adding the transition time of the output of the control state 
place to the transition time of the transition to which the 
control state is output. In this case, if we are linking
OS* 6  in Fig. 2.9 to transition t^ in Fig. 2.8b, we would add
the transition time of t^ to the transition time of CS.6 .

To complete the petri net generation, we would link 
the subnets for control states 1,4,5 and 5 to t3 ,t4 »t5 ,tg,t7 , 
tg and tg in Fig. 2.8(b). After expanding the goal places 
we have the complete petri net shown in Table 2.1. The name 
of each place is given in Table 2.2.
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iCS.l

es. 5es.7 es .4 es.6

es. 6

es.3 IRrlOX
(a) (b)

Figure 2.9 Subnets for Control States One & Six

es.15

IRrOlOXIRrOOOO IR:001X es.4es.4

ieS:010Xes.3leSrOOlXles : 0000 es.3

Figure 2.10 A Con^lex Control State Subnet
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Transition Output Place Input Places . Transition Time
0 
0

1 Pq Pl,P2'P3
2 Pq P4'PS
3 Pi P6'P7
4 Pi Pl'P2'P8
5 P2 P9.P6
6 P3 Pll'Pl2
7 P4 Pll'P22
8 P5 P7'Pl3
9 P5 PS'P8'Pl4

10 P7 PlO'Pïs
11 Pis ^ll'Pl3
12 P8 PiO'Pie
13 ^10 Pl7'P23
14 ^23 Pll'Pl8
15 PI6 Pll'Pl9
16 P9 Pl0'P20
17 P20 Pll'P21
^18 ?1 P23'P25
ti9 P5 P23'P24

2
3
2
3
4 
3 
2 
3 
1 
1

Table 2.1 The Petri Net Listing for Figure 2.7
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Place Name Place Name
Goal Pl3 INPtOlXX

^ 1
AC:11XX Pl4 MDR:01XX

^ 2
MDRrllXX Pis IRrOlX

P3
IRrlOl PI6 IR:10X

P4
IRtXXO Pl7 es . 2

P 5 . AC:01XX Pis INPrXXlX

P6 INP;11XX Pl9 INPtlOXX

P? es. 5 P2 0
IR:OOX

^ 8 CS . 6 P2 I INPrOQXX

^9 es.4 P2 2
INPîXXOX

PlO es. 3 P 2 3
es.7

Pli es.i P2 4
ACrXOlX

P1 2 INP:101X P2 5
ACzXllX

Table 2.2 Place Listing for Table 2.1 and Figure 2.8CbL
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2.6 Summary
In section 2.3 we defined a petri net as an aid to 

guiding sensitization searches and followed this up with an 
exanple in section 2.4. As noted in the background information 
of section 2 .2 , petri nets have been used to model various sys
tems and can thus be used to model the machine of Pig. 2.7.
It is not the subject of this work to show how a petri net can 
be used to model a machine itself, given the CHDL description; 
however, we would point out that such a model would be very 
different from the model of section 2.3. The latter is based 
on the notion of a goal place and is an attempt to model the 
change of control states and register transfers that must take 
place to fill the goal place with a token. It is thus depen
dent on the particular fault under consideration. Most of the 
places are dependent on the goal state; the only exception be
ing the places that are responsible for control state branching 
and conditional register transfer.



CHAPTER III 

HEURISTIC FUNCTION DEVELOPMENT

3.1 Introduction
In SCIRTSS, both the processes of fault-propagation 

and fault sensitization are accomplished by an heuristic 
graph search. The use of heuristic evaluation functions to 
direct the search of state-space graphs has been studied by 
many authors (see, for example. Hart et al, 1968 and Michie and 
Ross, 1970). Nilson gives a good treatment of the different 
ideas on which these evaluation functions are based. SCIRTSS 
assigns a weight to each node as it is reached. This weight is 
given by

W = G + wH
"where G is the minimum number of transitions from 
the initial node state to the node, H is some 
heuristically determined value, and w is a constant 
indicating the relative importance of H in computing 
the total weight" (Carter, 1973).

In this chapter we present the development of a heuris
tic function from the Petri net to guide the sensitization 
search. First, we present the tools that are needed in developing

42
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the heuristic function; then the several ideas considered are 
presented.

3.2 State Equation of a Petri Net
Although the mathematical properties of petri nets 

have not been well exploited, we have found the state equations 
a useful tool in developing a heuristic function for guiding 
the sensitization search.

Throughout this chapter, the reader is reminded that 
we have the "natural" functioning of petri nets presented, 
followed by our application.

Let p and t denote the numbers of places and transi
tions in a petri net, respectively.
Defn. 3.1; A marking or state vector, M^, is a p x 1 column

vector of non-negative integers. The jth entry
of Mj, , m̂  denotes the number of tokens on place 
j immediately prior to the Kth firing.

In the natural functioning of the petri net, it is customary 
to progress through a series of firing sequences; thus, we can 
speak of the "Kth firing." denotes the initial marking or
state.
Defn. 3.2; The Kth "firing" or "control" vector, V^, is a

t X 1 column vector of I's and O's. The i^h entry 
of Vj, is one only if transition i is to be fired 
at the K^^ firing opportunity.

Let A = [a^j] be a t X p matrix having a^j = 1 if place j is an 
input place for transition i; otherwise aT^ = 0 .
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Atj is similarly defined with at^ = 1  only if place j is an 
output place of transition i.
Defn. 3.3: The matrix A = A'*' - A~ represents the token changes

in each of the p places when transition i fires once. 
The state equation;

th
^ + 1  = ^  ^ = 0,1,2,... (1)

gives the marking resulting from marking by the K
firing vector, V^. T implies matrix transpose operation.
Mj, + A^V^ ^ 0  for each K.

An example will make these definitions clearer.

Example 1: For the petri net of Fig. 3.1 the A~ and A"̂  matrices
are:

3 4

A"

1
0
0
0

2
1
0
0

1
0
0

0
1
1

5
0
0

1

1
1
0
0

2
0
1
0

3
0

0
1

4
0

0
0

5
0
0
0
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Figure 3.1 Petri Net for Example 3.1

Figure 3.2 Exanç>le Petri Net for
Illustrating Transition 
Firing
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The matrix A is

A = A - A =
1 -1
0 1
0 0

-1
0
1

0
-1
-1

0
0

-1

The initial marking M ^ =  [0 0 0 1 1]'̂ . The marking resulting 
from firing t^ and t^ is:

0
1
1
0
0

0
0
0
1
1

1
-1
-1
0
0

0
1
0
•1
0

0
0
1

-1
-1

0
1
1

For the petri net generated for a given fault, we are 
interested in transitions that have been fired after driving 
the machine into a search state S. Thus, we shall let Mg de
note the marking or state vector after reaching state S.
Then Mg^ denotes the marking vector after all firable transi
tions have been fired.

The state equation of a petri net for a given fault is 
now written as:

(2)

where A is the matrix defined in Defn. 3.3 and Vg is the firing 
or control vector, at search state S, that defines which transi
tions are to be fired.
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During the sensitization search, starting from the 
initial state, each unique state is numbered and called a node. 
Hence, the marking vector Mg can also be written as where 
i is the node number that is associated with search state S.
Mg gives the conditions fulfilled at search state S. In our 
model, there is a.transition time associated with all but the 
type 3 transition (section 2.3). For this type of transi
tion, if all the input places are filled with tokens, it is 
fired. This is not the case with all other types of transitions; 
they require time. For example, if conditions for loading a 
register are fulfilled at search state S, the register will be 
loaded during the next clock period. Thus, Mg_̂_ in equation (2) 
will add the outputs of those transitions that have no time 
associated with them to the state vector Mg.

To compute Mg^, we have two choices: either use the
arithmetic and matrix operation of equation (2 ) or use the data 
structure of the petri net together with the information in the 
search state S to derive Mg^. In the former case, we have to 
deal with large sparse matrices A+, A~ and A. TThen the algo
rithm was written, it was apparent that there would be a waste 
of computer memory. Hence, we chose the second alternative: 
relying on the data structure of the petri net and the search 
state to derive Mg and Mg^. The algorithm for doing this is 
shown in Fig. 3.3. The first section of the algorithm compares 
the present machine state and register contents with the 
machine state and register contents needed to place a token
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, marking vector i
the control state of the 
current search node
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CSj_, the control state of the 
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Si cover
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j=l, 1 
j=0

EXIT

Figure 3-3 Derivation of Marking Vector
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in each place in the petri net. This portion of the algorithm 
is, of course, similar in the problem reduction graph (page 
75, Huey, 1975). The second section tests if all the input 
places of a transition are filled with tokens. If so, the out
put place of the transition is filled with a token (the transi
tion fires) if the transition is of type 3.

3.3 Implied Transition Firing
In the application of petri nets to fault detection, we 

are interested in the goal place being filled with a token.
Thus, if any place, say ? 2  of the net in Fig. 3.2 is filled, we 
have to be concerned with which transitions were fired or can 
be inferred to be fired for that particular place to be filled 
with a token. For , either t2  or t^ or both might have been 
fired at the firing for it to be filled. After ? 2  is fill
ed, only Pg must be filled for t^ to be fired, filling
the goal place with a token. Hence, after the firing, once
P2  is filled, we will consider all transitions that are descen
dants of P2  to be fired since they are of no interest. A tran
sition descendant of a place is a transition that fires to have
the place filled with a token. In Fig. 3.2, t2  and tg are both
descendants of P2 • By similar reasoning, transition t^ is an 
(immediate) descendant of tg and tg.

The marking vector after the firing for Fig. 3.2
is

= [ 0  1 0 0 0 0 0 0 ]̂ .
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Recall that this gives the places that have been filled with 
tokens after the firing. From we can find all transi
tions in the petri net that were fired or can be inferred to 
be fired. We define a new vector R^:

Defn. 3.3: The transition status vector R^ = {r^} is a
1  X t vector having entries r̂  ̂where

if transition i was fired or can be inferred 
r. = < to be fired during the firing.1

otherwise.

The notion of implied transition firing is actually 
related to the heuristic function development which is presented 
in section 3.4. When a set of places is filled at a search 
state S, then we attempt to identify the set of transitions 
which need no longer be considered, as being necessary to fire 
before filling the goal place with a token. Put in another 
way, if say ? 2  of Fig. 3.2 is filled with a token, then we pose 
the question: "Starting from the terminal nodes and transitions,
which transition firing sequence might have caused P2  to be 
filled with a token?" In this case it must have been the se
quence t^ -*■ tg or t^ -► t2 . The notion of implied transi
tion firing is not found in the natural functioning of the 
petri net.

What happens if there are loops in the petri net?
This is simply dealt with during the construction of 
R̂ , the transition status vector. R^ is derived from Mg^;
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Figure 3.4 Dealing with Loops in the Petri Net
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Figure 3.5 Derivation of
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during the derivation process we enumerate descendant transitions 
of a place that is filled with a token. During the enumeration 
process if any transition is already marked in the whole pro
cess is terminated. In Fig. 3.4, if is filled, the algorithm 
of Fig. 3.5 which derives would detect a loop between the 
transitions and t^. Since t^ is the transition descendant of 
P2 / it is marked first in R^. The immediate descendant of tg is 
tg while t^ is the immediate descendant of tg. In attempting 
to mark the immediate descendant of t^ (which is tg), it is dis
covered that tg is already marked and the process is terminated.

3.4 The Heuristic Function
For each node that is reached during the sensitization 

search, we would like to compute a heuristic cost value based on 
information from the petri net. Our aim is to indicate which 
node is most likely to be useful in finding the goal node. For 
sensitization search state S, we seek to minimize the heuristic 
cost function H(S); then for all nodes that are candidates for 
expansion, we choose that which has the minimum cost value H(S) 
as the most promising.

For each search state S, our main concern is: how can
the machine be moved nearer the goal from state S. This question 
must be answered from the petri net. Three options seem appeal
ing, either:

a. use the places that have been filled in the petri 
net at search state S,
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b. use the transitions that have been fired at 
state S, or

c. use a combination of both the places and transi
tions

as an indicator of nearness to the goal. The background dis
cussion of section 2 . 2  on petri nets will be helpful in under
standing the present discussion. Remember that we use petri 
nets to model "conditions" represented by places and "events" 
represented by transitions.

To use both the places filled and transitions fired as 
our indicator of nearness to the goal, i.e., to compute H(S) 
would be superfluous since the module of Fig. 2.1 represents 
an information processing element.

When a place is filled with a token, it indicates a 
condition has been fulfilled. Hence, it is possible to use 
the places (conditions) filled with tokens (fulfilled) to in
dicate how near we are to the goal. However, to be dealing with 
the places instead of the transitions, we have to spend more 
time detecting loops between places and this can slow down the 
search. Also, in the petri net, it is more natural to be con
cerned with the firing of transitions and transition firing 
sequence.

The firing of a transition indicates an "activity" has 
taken place— in our model there has been, say, a change of con
trol state, for example. Our interest is to indicate how this 
affects the overall behavior of the machine, for that matter.
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how near we are to the goal. From these considerations, we 
choose as our basic measure, the number of fired transitions 
in the petri net.

The transition status vector, defined in Defn. 3.3 
actually constitutes a mask on the transitions in the petri 
net that are no longer of interest to us; we might think of 
these transitions as having been fired already. Hence, for 
each search state S, we can compute the heuristic cost function 
as :

Nt
H(S) = N. - Z r; (3)

^ i=l
where is the total number of transitions in the petri 

net
= {r%} is the transition status vector.

Consider Fig. 3.6. If for state A, ? 2  is filled, then the 
marking vector is

M̂_j_ = [ 0 1 0 0 0 0 0 0  0]T;

The transition status vector would be derived as explained in 
the previous section to be

= [0 1 1 1 0] 

then H(A) = 5 - 3 = 2 .

If, on the other hand, state B has filled with a 
token we would have;

,T= [ 0  0 0 0 1 0 0 0  0]
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and = [ 0  0  0  1  0 ].

H(B) would be computed as:

H(B) = 5 - 1 = 4 ,  indicating the importance of 
state A over state B.

The simple expression of equation (3) is not satisfac
tory ii&ien a terminal place of a transition is filled with a 
token but the transition itself is not fired. Specifi
cally, in Fig. 3.6, if for state A, and Pg are filled with
tokens, then

^A+ = [0 0 0 1 0 1 0 0 0]T

and = [ 0  0  0  0  0 ] since no transition was fired.

Now, if for state B, no place of the petri net is filled with
a token, then

= [0 0 0 0 0 0 0 0 0]

and R^ = [ 0  0  0  0  0 ] .

For both states A and B, the heuristic function computed from
equation (3) would be:

H(A) = H(B) =5.
Intuitively, state A should be nearer to our desired goal than 
state B.

This suggests that terminal places must be given special 
treatment in the computation of H. The modified expression for 
H now becomes:

Nt +
H(S) = Nt - [ Z ri + Z m . ] (4)

i=l i=PT j ^
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Figure 3.6 Petri Net for Illustrating Heuristic Function 
Computation
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where
Mg = {mt} the marking vector after all transitions  ̂ J

have been fired in state S 
n • = number of brothers of P.J J
g _ . V, if Pj is an input to any member of

otherwise.

The last term of equation (4) is the one that computes contri
butions from terminal places that are filled but their 
associated transitions have not been fired. The 6 factor takes 
care of this situation. It is assumed that for a transition to 
fire, each filled place contributes a fraction 1 /n^ where n^ is 
the number of places input to that transition.

Applying equation (4) to the two states A and B men
tioned in the previous paragraph, with:

= [ 0 0 0 1 0  1 0 0 0 ]̂
= [ 0 0 0 0 0 ]

and = [ 0 0 0 0 0  0  0 0 0 ]
= [ 0 0 0 0 0 ].

Using 'equation (4) we have

H(A) = 5 - [ 0 + % + h + h] = 3.5
and H(B) = 5 - [0 ] = 5 -

which indicates correctly the importance of state A over state 
B. Note also how the function treats the importance of ter
minal place Pg which is an input place to more than one transi
tion.
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3.4.1 Counter and Shift/Rotate Transitions
In chapter two we introduced the count transition; 

this is a transition that models the change of state of a 
counter. Similarly, the shift/rotate transition models the 
change of state of a shift register. The model of the counter 
transition shown in Fig. 3.7(a) is actually a compression of what 
would be a series of transitions and places. Consider a 
counter that counts from 0 to 4. There is a change of state 
of the counter, that is, a transition whenever the required 
conditions are fulfilled (i.e., the condition place is filled 
with a token). Thus, if the counter is in state 0, and if 
the condition place is filled, the transition t^ will "fire" 
during the next clock period. This must be repeated four 
times before the desired state KNTrlOO can be reached (Fig. 3.7 
b). This suggests that when a counter transition is included 
in the petri net, we increase the number of transitions in the 
petri net by the number of times the counter must count before 
reaching its goal state. For Fig. 3.7(b), we might have to in
crease the number of transitions by 4.

This approach would not give an accurate guidance to 
our search routine. If, for example, a counter is enabled and 
loaded with 0 1 1 0  (binary six), counts to 1 0 1 0  (ten), and then 
is disabled, and we then add 15 = 15 - 1 to the total number of 
transitions, we have not given an accurate representation of 
the counter operation. Thus, the heuristic function computed 
on this basis would be misleading.
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(i) Unconditional Count 
Transition

(ii) Conditional Count Tran
sition

(a)

Condition for
Count Operation

KNTrlOO

KNTrOll

KNTrOlO

001

(b)
KNTrOOa

Figure*3.7 Modelling Count Transition
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An alternate and more accurate approach is to consider 
the output place of the count transition as a goal and then 
compare the state of the counter during the search with the 
goal. Let bd(i,s) be the arithmetic binary difference between 
the value in the counter at the present search state S and the 
goal state of the counter. Then

bd(i,s) = JL(g^ 9 )̂ -  V^)

where g^....g^ = goal state of the counter

V,....V = value in counter i after the current 
1  n

search state S.

Obviously, if bd(i,S) is zero, then our goal is reached and t^ 
fires, hence the contribution from the counter transition is 
one. However, if bd^ is not zero, then we are a distance of 
bd(i,S) from the goal and the contribution from the count 
transition is

[1 - bd(i,S)/X (9^,--- 9 %)]. (5)

Note that although we have chosen the distance between the goal 
state of the counter and the value in the counter at state S to 
measure our nearness to the goal, we are in essence answering 
the question: "how far is the count/shift transition from fir
ing?" Hence, it is the transition firing that is actually our 
measure of nearness to the goal. Accordingly, expression (5) 
takes on values ranging from zero to one.
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For shift registers, we define bd(i,S) as the number 
of times the shift register must be shifted (left or right) 
from the present state S so as to satisfy the desired goal.

Shift registers and counters are very highly sequential 
circuits that are very troublesome in fault test generation, 
especially when they are buried. Expression (5) enables us to 
provide proper guidance at each state of the search; for 
ordinary registers we give guidance based on whether the regis
ter contains the correct vector or not; guidance for shift 
registers/counters goes further than that. If the shift regis
ter or counter does not contain the correct value, we compute 
how far it is from reaching the required value. Needless to 
say, it is impossible or very difficult to use the same criteria 
for ordinary registers.

Adding the contribution from the counter and shift/ 
rotate transitions, the heuristic cost function of equation (4) 
now becomes

Nt
H(S) = - [ Zri + Z 6 m T

^ i=l,igq jep̂  nj ^

+ Z (1 - bd(i,S)/_L(g.g_...g^) ]
I EC  ̂ ^

where C = the set of count and shift/rotate transitions.
The flow chart for computing the heuristic cost function is
shown in Fia. 3.8.
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type:3
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HDT=0
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Figure 3.8 Heuristic Cost Function Computation
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i= 0

type:4

EXIT
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bdi

i=i+l

HRVE=HRVE+1

Figure 3.8 cont'd



CHAPTER IV 
INPUT VECTOR GUIDANCE

4.1 Introduction
In the last chapter we developed a guiding mechanism 

for a search by finding a heuristic value that enables us to 
indicate the nodes most likely to lead to the goal. The se
cond guidance mechanism used in SCIRTSS is the reliance on 
user supplied input vector tables (Carter, 1973) . SCIRTSS III 
attempts the selection of these input vectors automatically 
(Huey 1975, p. 81).

In sensitization searches a branch is made to each 
possible next control state from the current control state of 
the search node being expanded, if an input vector exists 
which satisfies the conditions of the control branch. Although 
the search routine itself generates part of the input vector 
needed to satisfy the control branch condition, we can derive 
information from the petri net to make this process more 
efficient. Also, the sensitization search can use a great 
deal of guidance where data inputs are concerned.

65
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In a Computer Hardware Description -Language like AHPL 
where each input-to-register transfer is associated with a 
control state, the input vector suggestions can be grouped by 
the control state at which each is to be applied. In this way, 
at any given control state an input vector can be readily 
available for use to increase the search efficiency. This has 
been the approach in SCIRTSS.

In the petri net generated we have places or locations 
that represent the condition of placing an input vector (â , 
agf.'.an) ^i 6(0' 1' X) on an external input. The control 
states at which these places are filled with tokens can be 
readily obtained from the petri net. Most of these places or 
locations are invariant with respect to the goal or the fault 
under consideration as they are generated from control ex
pressions. Hence, the control state associated with these 
places can be obtained in the form of subnets before the com
mencement of any sensitization search.

4.2 Selecting Input Vectors
In some circuits, many input vectors may be associated 

with a given control state. In SCIRTSS, when attempting 
to expand a node, the search routine applies each suggested 
input vector to all control branches. Thus, for a node that 
has m input vectors and n successor control states, the search
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expands m x n next states- Hence, these input vectors must be 
judiciously selected to avoid misleading the search.

However, this selection process is not a trivial issue. 
In fact, each input place that appears in the petri net is im
portant, for if a given input place is never filled, it may 
be impossible to reach the goalI

In our input vector selection process, we classify 
the input vectors according to the two main types of expres
sions in AHPL:

Control Branch Expression 
and Register Transfer Expression.

4.2.1 Control Branch Input Selection Procedure 
Generally, a conditional control branch is made in 

AHPL depending upon
a) some input signal, such as ready, link. etc. We 

call such a signal control signal, 
and/or b) the bit combinations in some register(s), many of 

which are loaded directly from the external inputs 
at some control state(s).

Both the control signals and registers that are responsible 
for branching from one control state to another appear in the 
petri net. In the case of control signals, we can select the 
values of these signals so as to prevent the generation of
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unnecessary nodes during the state space search. In particu
lar, consider the examples

(i) k OUT«H-A
(ready, ready)/(k,j)

(ii) k INC(A)
— »-(A/A A ready, A/A)/(k,j)

In both examples, the machine waits in control state k until 
some condition is fulfilled. During the search, should this 
behavior be simulated? Not necessarily; for if we examine 
the register transfer at cs.k of example (i), it would be a 
waste of time to continue looping to control state k to be 
performing the same register transfer. On the other hand, 
it is essential to repeat the counter operation of example
(ii). Hence the search must branch to cs.k whenever it enters 
control state k .

The examples of the preceeding paragraph indicate that 
we can control the control states that the machine branches to 
during the search in order to improve the search efficiency. 
This is done during the branching function generation. The 
petri net contains information on the control signals that 
cause branching from one control state to another. If the 
value of a control signal causes the machine to wait in any
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particular control state and neither a count nor shift opera
tion takes place in that control state, then the machine is 
not allowed to loop in that control state during the search. 
Because we have the count and shift transitions in the petri 
net, these conditions are easily detected.

The more common method in which a conditional control 
branch is made in AHPL depends on the contents of some regis
ter, for example an instruction register in a computer. Many 
of these registers are loaded directly from the external in
puts at some control states. Frequently there are too many 
input vectors to be applied at the respective control states 
and we have to choose only about two or three of these input 
vectors. The importance of properly selecting these input 
vectors is not hard to see: by leaving out some input vectors
it may not be possible to visit some control states(s) and the 
penalty can be very high.

Ideally, we should select the input vectors such that 
it would be possible to visit all control states in the petri 
net. This philosophy is not without danger, however. In some 
cases, there may be more than one goal. Thus if any of the 
control states say, 1 %, ±2 , ig is reached and the correct re
gister is loaded then the search is successful. In this case, 
although many control states may appear in the petri net, it
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seems appealing to select a subset of these control states 
and aim at reaching only members of this subset. This ap
proach would nullify the advantage of having more than one 
goal and of course it is very difficult and time consuming to 
select a subset of control states. We aim at selecting 
the input vectors such that it would be possible to visit all 
the important control states in the petri net.

Defn 4.1; The Control State Branch Vector, = -̂ s^,S2 ,
..Sĵ J. is a set of input vectors s^, that can cause a trans
fer from control state j to control state k . The set of all 
Control State Branch Vectors is denoted by B% = .. ,BnikJ

The vector B̂  ̂should not be confused with the input vectors 
that can be applied at control state k. In the latter case, 
we have input vectors which, if applied when the machine is 
in control state k, causes some register transfer. The Control 
State Branch Vector, B]̂ , on the other hand consists of input 
vectors which are actually responsible for the machine ever 
branching to cs.k. Bĵ  is derived from the control state sub
nets as shown in Fig. 4.1. In this figure, we mark all regis
ter places that have been encountered for easy identification 
when we are selecting input vectors in section 4.2.3. In the 
petri net, an immediate predecessor of a place i or location
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immediate prede
cessor of place i
place j
set of input vectors 
that cause branch 
to cs.k

NPDjç : no. immediate prede
cessors of cs.k
no. immediate prede 
cessors of place j

NCS : no. of CS
INPUT

iji type

IN

j=j+l

i=i+l

Figure 4.1 Construction of CS Branching Function
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is a place j that is input to a transition-that fires to fill 
place i with a token.

The vector is independent of all faults and thus 
can be constructed once for all sensitization searches.

The next step in the Control Branch Input selection 
is the formation of a Common Transfer Vector.

Some input vectors in each B^ cover other input vec
tors in some Bj. Hence we define a common transfer vector.

(kĵ  / ^ 2  ' * • • ) — S2  , ... s Ii — 1,2,3..

as the set of input vectors Sj_ that are common to control 
states The vector is easily derived by checking
if each input vector sj_ in Bt̂  ̂covers any other input vector 

in B]̂ 2 -
We give an illustration at this point. In the 

next chapter, we will present a 4-bit microprocessor as a case 
study. The Control Branch Vectors for this circuit are:

B 5  = ^4,ics:X001, IXXx]
Bg = (5,ics:XX01, XOIX}
Bg = £ 5,ics :10XX ̂
Bio = {5,ics:XlX0; 6 ,ics:XlXx}
Bi2  = £lO,ics:XXlx}
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Bi4  = {1 2 , icsrXXXO; 15, icsrXOlX, icsrXlOO; 10, ics:XXXOx} 
Bis = {4 , icsrXOlX, icsrXOOO, ics:110x}
B] _ 5 = {4 , icsrOllO^
Bis = {4 , icsrOlll}
Bi9 = fis, icsrXlOO, icsrXlOl}
B 2 0  = fis, icsrXOOOj

There is a 4-bit input line, ics, that is used to load the 
Index Register. The machine has twenty control states. Those 
control states that are not directly controlled by input vec
tors do not, of course, appear in the Branch Vectors. The 
common transfer vectors derived from the B]̂ 's are:

Fi(4,5,6,8,14) = icsrlOOlJ
F2(4,5,10,12,14) ics:1110}
F3(4,6,10,5,15,19) = ics:1101}
F4 (4,5,10,14) = ics : 1100 J-
Fs(4,14,5,6,8) ics:101X^
F7(4,15) = ’ics:XOOO}
FS(4,16) = ics:OilOj
Fg(4,18) = ics : OlllJ"

Fio(4,15,19) = icsill00; icsillOl
Fii(4,15,20) = ics:0000J
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Comparing the transfer vectors Fy and F3  , we observe that the 
input vector csrXOOO will cause a branch to control state 15 
only while cstllOl will cause a branch to control state 15 
and control state 14. Hence the input vector csd.101 can re
place csîXOO and we say that P3 has overridden P7 . To test 
those transfer vectors that have been overridden, we use the 
expression:

Fi(kj^,k2  ) - Fi(%l'k2 ) A^j (ki/k2 ,k3 ,--) (4.1)

for i = l,2 ,...n; j = 1 ,2 , n; i ^ j where n is the number
of common transfer vectors. If expression 4.1 is empty, then 
Fĵ  is overridden by Fj and Fj_ is deleted together with its 
corresponding input vector.

The danger with the test of 4.1 is that the input vec
tor picked would let the machine wander from one control state 
to another. For example,ics:X000 of Fy would branch from con
trol state 4 to control state 15. However, since %  overrides 
Fy, ics:1101 replaces ics:XOOO. In this case to reach control 
state 15, the machine might have to visit control state 14 be
fore reaching control state 151 This is our dilemma: on the
one hand trying to limit the number of inputs and on the 
other hand the "best" selected inputs periodically wandering 
from one control state to another. However, it is better to
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be able to visit many control states with a few input vectors 
than being unable to do so at all.

Applying the test of expression 4.1 to the Common 
Transfer Vector of our example, we have F]_, F4 , F-y and F^g 
overridden. The Reduced Common Transfer Vectors are:

F2 (4,5,10,12,14) = [ics:1110%
F3(4,5,6,10,15,19) ={ics:110l}
F 5(4, 5 , 6 ,8,14) ={ics:101X, ics:100l}
F g ( 4 , 1 6 )  = {ics:0 1 1 0 }
F g ( 4 , 1 8 )  = (ics: 0 1 1 1 }

Fii (4,15,20) = (ics:0 0 0 0 }

Hence from the initial 20 Control Branch Input vectors, we 
have six vectors in the Common Transfer Vectors. Which one 
of these should be selected?

Our final reduction process calls for the removal of
any control state that is common to all the Reduced Transfer
Vectors. The resulting vector is called a "G Common Transfer
Vector." For our example, we have

Gi(5,10,12,14) = {ics:1110}
G2 (5,6,10,15,19) = {ics:110l}
0 3 (5 ,6 ,8 ,1 4 ) = {ics:101X, ics:1001%
6 4 (1 6 ) = {ics: 0 1 1 0 ]
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6 5 (1 8 ) = {ics;0 1 1 l|
6 5 (1 5 ,2 0 ) = {̂ ics : OOOOj

In this example, we have six input vectors that determine the 
control states that the machine can branch into. We must only 
select two or three of these input vectors for application 
at the required control state. Several factors need be taken 
into account when selecting input vectors from the 6  Common 
Transfer Vectors.
(i) The input selection procedure outlined in the preceeding 
paragraphs is completely independent of the fault being sen
sitized; the 6  Common Transfer Vectors are derived once for 
all sensitization searches. Hence when the decision is made 
to select input vectors, the input vectors in the 6  Common 
Transfer Vectors are selected based on the control states in 
the Common Transfer Vectors and the petri net for the fault. 
The control states that do not appear in the petri net for 
the particular fault are dropped from the Common Transfer Vec
tor for this fault. If any of the 6 ^ becomes empty then it
is dropped from consideration.
(ii) Any of the 6 j_ which contains a control state that is 
one of the goals for the sensitization search should certain
ly be included.
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(iii) For those that have only one control state and the 
control state is not one of our goals, we have to check if 
any register transfer takes place in the particular control 
state. If not, the input vector associated with the control 
state can be dropped from the list. On the other hand, if a 
register transfer takes place and the only way that transfer 
can take place is for the machine to be in that particular 
control state, then the control state may be important.

We formalize the discussion above by computing a fac
tor of importance, q, for each Common Transfer Vector that is 
left after all control states not appearing in the petri net 
have been dropped. For each Gj_, we have:

qj[_ = mnp (4.2)

where m = the number of control states in Gj_; generally, n = 
p = 1. However, if any member of Gj_ is a goal control state, 
then n = M, where M is the largest value of m. The constant, 
p, takes care of those Gj_ that have only one control state as 
a member. If a count or shift operation occurs in that con
trol state or the only way a register transfer takes place in 
the machine is when the machine is in that particular control 
state, then p is made equal to 2  to reflect that inç>ortance.

After computing the factor, qj_, for all G^, the two 
(or three) input vectors that have the highest factor of
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importance are selected; these input vectors would control the 
states the machine visits during the search.

4.2.2 Register Transfer Input Selection
The second type of expression from which input vectors 

must be generated is the register transfer expression. This 
usually consists of loading a register with an external input 
at any given control state.

After selecting the input vectors for branching from 
one control state to another, we must select another two (or 
three) input vectors which would determine the vectors that 
are loaded into the various registers. We could approach this 
selection process in much the same way that we approached the 
Control State Input selection. However, we can efficiently 
make use of the transition time of the transition to which 
the vector is an input place in the petri net and obtain 
quite an accurate result. We give an illustration of this 
process.

The places P4  and P 5  in Fig. 4.2 represent the condi
tion of placing the vectors XLOO and lOOX respectively on the 
external input, IN. Both places are associated with the same 
control state, cs.k. P4  is an input place to transition t^ which 
has transition time t = 1  while P 5  is an input to transition 
t2  which has transition time t = 3. If the machine reaches
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Goal

R1;X100

CS .kINtXlOO

Rl:100

Fig. 4.2 Petri Net Example for Input Vector Weighting
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control state K and the input vector (lN:XI-Oo} is applied 
then transition t£ becomes fir able and the goal place would 
be filled during the next clock period. However, if the input 
vector INrlOOX is selected, transition t£ would have to fire, 
followed by transition t^ and finally tg before the goal can 
be filled. Obviously, input vector IN:3CL00 is a better choice 
than INrlOOX for our aim is to reach the goal with the least 
number of input sequences.

This example demonstrates that the information from 
the transition time of the transitions in the petri net can 
be helpful in selecting input vectors to be loaded into regis
ters. For an input place in the petri net, we can compute 
the "weight," W of an input vector from:

W(Pi) = q(Q -T(i)) (4.3)

where Q = maximum transition time in the petri net.
T(i) = transition time of the transition to which Pj_ is 

input.
q = a factor indicating how critical the register 

transfer may be.

The factor q is computed as:

q = (c - n)
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where n is the number of ways the register-can be loaded and 
c is an arbitrary constant selected such that no q̂ _ is zero. 
The factor q is quite important; if a register A can be loaded 
in three ways and another register can only be loaded in one 
way, then the input vector that is used to load B must be more
critical than the one used to load A.

For the example of Fig. 4.2, taking c = 2, we have

q = 2  - 1  = 1  

Q = 3

and = 1 X (3 - 1) = 2
W(Pg) = 1 X  (3 - 3) = 0

Hence we see the importance of "92  over P^.
One may argue that in Fig. 4.2, if the input vector 

of P5  is not selected, P 3  may never be filled with a token 
and as such it would be inç)ossible to reach the goal I This 
may be true and in fact, the same argument may arise in con
nection with all the input vectors. The idea is to 
select the most "promising" input vectors and leave the less 
critical ones to be generated randomly.

Before weighting the input vectors, we check if these 
input vectors are covered by any of the input vectors selected 
by the control branch selection procedure. If so, the particu
lar input vector is not taken into consideration again.
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In attempting to select input vectors from register 
transfer expressions, special attention must be devoted to 
counters and shift registers. This class of registers repre
sents complex sequential circuits that are troublesome in test 
set generation. If an input vector must be loaded into any 
of these special registers it may be critical. In a given ma
chine only a few input vectors may be loaded into a counter 
or shift register. For these reasons, any input places asso
ciated with count or shift/rotate transitions in the petri net 
are included in the list of input vectors to guide the search.

In section 4.2.1 we discussed how to handle condition
al control state branching expressions. One may wonder whether 
condition expressions which control register transfers require 
any special treatment. In the AHPL expression:

k* A 4 — B*cb

if the input cb is high, then register B is loaded into regis
ter A . In this example there will be only one input vector 
cb:l associated with control state cs.k; this input vector 
will naturally be used to guide the search. However, if there 
are many input vectors to be applied at cs.k, the input selec
tion procedure of this section will have to be evoked and the 
input vectors that control conditional register transfers are 
treated like the other register transfer input vectors.



83

4.3 Using the Input Vector Selection Procedure
The input vector selection procedure treated in the 

preceding sections is applied to a given circuit only if the 
number of input vectors to be applied at a given control 
state exceeds a user specified number. The optimum number is 
not known although five (5) has been used for previous SCIRTSS 
tests and is used for testing in the next chapter. The input 
vector selection is done once for each sensitization search; 
the Common Transfer Vectors of section 4.2.2 are constructed 
only once for each machine while the input vectors from the 
Common Transfer Vectors are selected after the construction 
of the petri net.

Naturally, when the number of input vectors per con
trol state is less than the user specified number for all con
trol states in a given machine, the input vector selection 
procedure is not needed. In this case all the input vectors 
appearing in the petri net are used to guide the search.

Finally, the input vector guidance mechanism, like the 
heuristic cost value guiding mechanism, is intended to be ma
chine invariant. However, it may be easy to find test sequen
ces for some machines without using input guidance. It 
will be very difficult to detect this "easy" condition using 
the artificial intelligence method proposed in this work. An 
experienced user, on the other hand can recognize such types
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of machines. For this reason, a user may have the option of 
indicating to SCIRTSS whether he wants input vector guidance 
or not. In the next chapter we present case studies to show 
some machines that do not need input vector selection proce
dure.

4.4 Terminating the Petri Net
The question of terminating the petri net generation 

has been deferred till now because we want to explain how the 
heuristic function is calculated and how inputs are selected 
for guiding the search. Since we are concerned about the num
ber of transitions that have been fired in the net for a given 
search state, it is essential that we include enough transi
tions in the petri net. For smaller circuits, then, given a 
set of goal nodes, the petri net must be expanded until the 
initial control state, usually control state one, is reached 
and the input places are all external places.

However, for more conplex circuits, for example, the 
microprocessor circuit described in the following chapter, it 
is necessary to terminate the petri net generation to prevent 
having too many places and transitions. In SCIRTSS III, the 
problem graph generation is terminated based on the ease with 
which a node was satisfied in past searches. We use the same 
decision rules for terminating the generation of the petri net, 
with the following added:
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1. Every control state at which a register transfer 
or conditional branch occurs must be expanded at least 
once. This implies that it its not necessary to ex
pand a control state in the AHPL description in which 
only an unconditional branch to another control state 
occurs. This rule is due to the fact that if a par
ticular control state, say cs.5 is used as a terminal 
place, then if the machine is in cs.4, cs.3, or cs.2, 
no transitions in the petri net can be inferred to 
have been fired. Hence the weighting function would 
not be able to differentiate between control state 
five and control state three, for exan^le, and this
is misleading to the search routine.
2. Where a register, RE, is loaded with primary in
puts at a given control state and the place 
^EtE:a%a2 .. is associated with a transition whose 
transition time is 2  or less, this particular place 
must be expanded at least once. Since in weighting 
input vectors to be selected we gave a high priority 
with places whose transitions have small transition 
time, a register associated with such a transition 
should not be left to be randomly loaded1
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When the two rules above are followed and still there are many 
more places to he expanded, all places associated with transi
tion times bigger than a user specified value are marked ter
minal and not expanded.



CHAPTER V 
CASE STUDIES AND RESULTS

The guidance mechanisms described in the previous 
chapters are supposed to be independent of any circuit de
scription. A user would only have to prepare the parameters 
of his particular circuit and submit it as data to the rou
tine. To test these concepts, four markedly different cir
cuits with varying degrees of complexity were submitted to 
the test generation program. Faults that were considered dif
ficult for SCIRTSS sensitization searches to reach were selec
ted for detection.

For each fault, the d-algorithm routine found a set 
of goal nodes. The petri net was generated manually and sub
mitted as data to routine GNPT whose listing appears in Appen
dix A. This routine sets up pointers to the various places 
and transitions in the petri net. The routine HEUSUB confutes 
the heuristic value at each step of the sensitization search. 
This routine is also listed in Appendix A. The only cases 
where there were more than five input vectors were cases III 
and IV. For these cases, the input vectors were selected

87
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based on the criteria in chapter four and submitted as data 
to the main search routine. All four circuits have been pre
viously used as test cases in the full SCIRTSS run at the 
University of Arizona. In the early tests, special guidance 
routines had to be written for each case (Ng (1974), Van 
Helsland (1974)). Huey (1975) used these circuits to test 
his general purpose guidance mechanism and we shall frequent
ly refer to the results obtained using the petri net and those 
obtained using the problem reduction graph which was used in 
SCIRTSS III.

For each sensitization search, the goal node(s) and 
starting node are submitted to the main search routine as data. 
The routine expands each node and confutes the heuristic value 
for the node. This heuristic value is cougared with other 
nodes that are candidates for expansion. The node with the 
minimum heuristic value is picked as most promising and ex
panded. The search is either successful in which case it re
turns "SEARCH SUCCESSFUL" message together with the goal reach
ed, or fails. In the latter case, there are two ways it can 
fail:

a) When the search routine runs out of nodes to ex
pand, i.e., all nodes have been expanded without any 
new node being generated, it returns "MINIMUM HEURISTIC 
SEARCH FAILS."
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b) If the search continues for more than a user 
specified limit (NSIM call limits) without finding 
a successful input sequence, it is terminated as an 
unsuccessful sensitization search. A limit of 1 0 0 0  

was set for the test run.

5.1 Case I; The Narrow Window Circuit
The first circuit to be used to test the guidance

mechanism is a "narrow window" circuit where certain control 
states are hard to reach due to control branching conditions 
which are hard to satisfy. The only searches to fail detec
tion in earlier SCIRTSS testing were those where reaching a 
goal node involved reaching a control state in one set when 
the initial state for the search was in the other. The AHPL
description of this circuit is shown in Fig. 5.1 while Fig.
5.2 shows the control state diagram. There are two sets of 
control states: GA and GB. The fault requiring the most dif
ficult sensitization search possible is the one associated 
with the branch logic from cs.ll to cs.l if the machine is 
initially in cs.l. The fault to be sensitized is at the out
put of the logic which implements the branch condition:

cs.ll — > ( A/A)/(I)



90

MODULE: NARROW WINDOW CIRCUIT
MEMORY: A[3]; B[3]; CNT[4]; Y[l]
INPUTS: X[3]; II, 12

OUTPUTS: Z, Bl, C

1. A X; Yf-Il; CNT INC(CNT)
^ (Ï2, I2)/(2,5)

2. B -f- ü)VaDD(A,B); C aVADD(A,B)
^ (Y,Y)/(3,4)

3. B -f- (0 VaDD(A,B) ; C ■<- aVADD(A,B)

4. CNT X- INC (CNT) *11
-»■ ( (CNT^ACNTg), (CNT^ACNTg) )/(8 ,l)

5. A f(AAB)
(Ï2, I2)/(6,7)

6 . B ■<- £ (3) ; Z ^ 1;

7. CNT INC (CNT) *Y
^ ( (CNT^ACNT2),(CNT^ACNT2) ) / (8,1)

8 . A -f- B*I2; B A*I2 
-»■ (ïr,l2)/(9,ll)

9. A 3  4- A/(A,B)*I1

10. B + +B; A ^ +A
11. B,A Bi2,B3,A,X3

-»■ ( (V/A), (V/Â) )/(8 ,l)
Figure 5.1 AHPL Description of Case Study I
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12:0 2:1

GA
I:0> Y:1

States CNT,''CKT̂  =0 12:1

CNT

7A:111:0 11:1

GB 11 A:000
States

Figure 5.2 Control State Diagram of Narrow Window Circuit



92

This fault is the output of OR gate #90 stuck-at-one. To sen
sitize this fault, starting from control state one, the narrow 
window conditions for going from GA to GB must first be satis
fied (cNTrllXX^, then the condition A:000 must be satisfied.

The d-algorithm returns one test vector which indi
cates that place A:000 and cs.ll must be satisfied for the 
fault to be sensitized. The petri net generated is shown in 
Table 5.1 and the place listing in Table 5.2. From the petri 
net we have only one input vector X:000 which was submitted 
to help in guiding the search. This input vector alone pro
vided enough guidance to find an input sequence that is com
parable to those found using heuristic function guidance. Two 
sets of tests were run on this circuit:

1) When the machine is in reset state, i.e., c.s.l 
and state vector is 0000 0000 000, and
2) When the machine is in control state 1 and regis
ters A and B contain the vectors ^111^. In both cases 
the goal node is the same.
When the search starts from the reset state, the goal 

is not very difficult to reach although it is not trivial.
The combined heuristic value-input vector guidance expands 
about 50% less nodes than using input vectors only. It may
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Table 5.1 Petri Net Listing for Case I

Output Input Immediate
Transition_____ Type_____Place Places Descdt

T1 3 PI 2,3 2,3,4,5,6
T2 1 P2 7,8 8,9,10,14
T4 1 P2 8,9 8,9,10,24
T5 1 P2 5,6
T6 1 P2 10 13
T7 2 P3 9 11,12
T8 1 P8 10 13
T9 1 P8 10 13
TIC 1 P8 14 21
Tll 2 P9 12,13 17,18,19
T12 2 P9 11,13 16,17
T13 2 PI G 16 15
T14 1 P8 3,17,18 7
T15 2 P16 9 11,12
T16 6 Pli 14,19 21
T17 4 PI 3
T18 2 P12 7 22
T19 2 P12 15 20
T20 2 PIS 7 22
T21 2 P14 19 23
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Table 5.1 cont'd

Transition Type
Output
Place

Input
Places

Immediate
Descdt

T22
T23
T24

2

2
1

P7
P19
P8

6
5
15 20

Table 5.2 Place Listing for Case I

p 1 GOAL p 11 es .4
p 2 A: 000 p 12 es.7 ■
p 3 cs.ll p 13 KNTrllXX
p 4 A:XOO p 14 es.3
p 5 IX: 000 p 15 es.6
p 6 cs.l p 16 es.9
p 7 es. 5 p 17 BtXOO
p 8 B;000 p 18 ArOXX
p 9 es. 10 p 19 es.2
p 10 es.10
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be startling at first to observe from Table 5.3(a) that the 
heuristic cost value alone expanded the same number of nodes 
as the combination of heuristic value and input vector gui
dance. This is expected since the register A contains ^000^ 
to start with and this is the same vector that is loaded by 
the input vector.

In the second test run, with registers A and B both 
containing the vector £lll}, more nodes are expanded before 
reaching a goal. The input vector only guidance found a se
quence whose length is three more than the combined input and 
heuristic cost value guidance. The results of this test are 
summarized in Table 5.3(b). With the heuristic value only, 
only 50 nodes were expanded and the length of the sequence 
found is 27. In this particular result, register A was load
ed with £ 0 0 0 } on the first expansion thus leading to the ex
pansion of very few nodes. However, the length of sequence 
found is suboptimal. Case Study 1(b) is a good illustration 
of the fact that both heuristic cost value and input guidance 
are required to give an optimal sequence. SCIRTSS III ran the 
same test and expanded about 50% more nodes than the results 
reported here. In both cases, the length of the sequence 
found is about the same.
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A B CNT Y
(a) starting node: 0 0 0  0 0 0  0 0 0 0  0

Type of Guidance Length of 
Sequence Found

Total Nodes 
Searched

No guidance none found 1 0 0 0

Input vector only 33 170
Heuristic vector only 
(w = 75) 26 94
Heuristic value (w=75) 
and input vector 26 94

A B
(b) starting node; 1 1 1  1 1 1

CNT Y 
0 0 0 0  0

Type of Guidance Length of 
Sequence Found

Total Nodes 
Searched

No guidance none found 1 0 0 0

Input vector only 26 252
Heuristic value only 
(w = 75) 27 60
Heuristic value (w=50) 
and input vector 23 277
Heuristic value (w=200)
and input vector 24 238
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5.2 Case II: The Anti-Random Circuit
The second case study is an anti-random circuit.

This circuit has the special feature of a chain of control 
states where each control state either loops to itself unless 
a counter has counted up to seven, or resets to an initial 
state if the control input RS is 1. The AHPL description is 
given in Fig. 5.3. The heuristic function computation will 
in this case be very much dependent on the count transition.

The fault to be sensitized is in the logic that inple- 
ments the register transfer

Z A/fe

in control state five. This fault is at the output of AND 
gate #65, stuck-at-zero. The d-algorithm returns a vector 
which indicates the machine must be driven into cs.5 and load 
register B with 11111111 to sensitize the fault. The petri 
net generated for this case is shown in Table 5.4. The inputs 
to transition t^ which fires to fill the goal place are cs.5 
and 3:11111111. Needless to say, to load all one's into a 
register is not likely to happen by chance.

There are two input vectors in the petri net which 
were used as heuristic input vectors. These two input vectors 
were very effective in guiding the search. However, the heur

istic function-input vector guidance provided an efficient
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MODULE; ANTI-RANDOM CIRCUIT 
MEMORY: KNT[3]; B[8 ]
INPUTS: X[8 ]; RS

OUTPUTS: 0UT[8]; Z

1. KNT TTTT

(RS,RS)/(1,6)

2. KNT 1- INC (CNT)
( (A/KNT),(A/KNTARS),(A/KNTARS) )/(3,l,2)

3. KNT -<- £ (3) ; B X

4. KNT INC (KNT)
( (A/KNT) , (A/KNTARS) , (A/KNTARS) )/(5,l,4)

5. Z -f- A/B; OUT e(8 )
1

5. KNT -f- INC (KNT)
( (A/KNT),(A/KNTARS),(A/KNTARS) )/(?,!,6 )

7. KNT + £(3); B X

8 . KNT INC (KNT)
-»■ ( (A/KNT) , (A/KNTARS) , (A/KNTARS) )/(9,l,8)

9. Z + 0; OUT 4- B
4- 1

Figure 5.3 AHPL Description of Case Study II
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Table 5.4 Listing of Petri Net for Case II

Transition Type
Output
Place

Input
Places

Immediate
Descdt

T1 3 PI 2,3 2,3,4
T2 2 P2 4,5 5,6,7
T3 1 P3 6,7 9
T4 1 P3 8,9 8

T5 2 P4 6 9
T6 4 P5
T7 4 P5
T8 2 P9 5,10 6,7,10
T9 2 P6 5,11 6,7,11
TIO 2 PIO 1 2

Tll 2 Pli 1 2

Table 5.5 Place Listing for Case II

P 1 GOAL P 7 IXlllllll •

P 2 CS.5 P 8 IXOOOOOOO
P 3 Bllllllll P 9 es.7
P 4 es .4 P 10 es.6

P 5 KNT:111 P 11 es.2

P 6 es.3 P 12 cs.l
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guidance: only fifty nodes were expanded and the length of
the sequence found is two less than when only input vector 
guidance is used. It is interesting to note that heuristic 
value only could not find any sequence. This is because of 
the nature of the goal: to randomly generate all I's is not
very easy. However, the combination of the two types of
guidance expands 50% fewer nodes than the input vector 
onlyl A summary of the test run is given in Table 5.5.

Comparing the problem reduction graph method of 
SCIRTSS III, we note that 122 nodes were expanded by the heur- 
istic-value input vector guidance to find a sequence of length 
29.

Table 5.6. Summary of Test Runs for Case II
Type of Guidance

No guidance
Input vectors only
Heuristic value only 
(w = 75)
Heuristic value (w=50) 
and input vectors
Heuristic value only 
(w=1 0 0 ) and input vectors

Length of 
Input Sequence

none found 
20

none found

18

18

Total Nodes 
Searched

1000
113

1000

50

53
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5.3 Case III; Search-Sort Processor
Another circuit used to test SCIRTSS is a search-sort 

processor which includes a random access memory. The data 
word is only two bits in width since the width of data word 
does not present any problem in test generation. The instruc
tion register is externally loaded when the machine is in con
trol state 1. Fig. 5.4 shows the AHPL description.

The petri net generated for this case is shown in 
Table 5.7. From the petri net one can notice that places 
that are of register transfer type dominate the control states 
3:1. Hence the heuristic function computed would be very much 
controlled by register contents.

A careful look at the machine description shows that 
all control branch conditions are determined by the contents 
of the instruction register which is in turn dependent upon 
the input vectors applied at control state one. This makes 
the input vector selection very crucial and in fact, is the 
first test to the selection procedure of Chapter Four.

The fault being sensitized is at the output of the 
memory cell stuck-at-zero. The d-algorithm returns one
test vector which signifies that the machine must be moved 
into control state four, and registers AR, IR loaded with vec
tors 100, XXI respectively while XI must be written into the 
fourth memory location to sensitize the fault.
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MODULE: SEARCH-SORT PROCESSOR
MEMORY: M[8;3]; AR[3]; IR[3]; MD[3]; AC[3]
INPUTS: A[3]; IN[3]; X[3]

OUTPUTS: AC[3]; out; accept; input

1. AR ^ A; IR + IN; accept -f- 1

2. + (IRoytlRQAlR^jfflRgAlR^AlRgiftlRoAlRiAlRg) )/(3,4,5,6)

3. AC ^  (IR̂ AIR2 )V(ACAMD) * (IR^A^)V MD * (^AIR2 )V X* (S^A^)
MD AC* (IR^AIR^) ; input *- IRAIR^

1

4. MD *- +MD*IR2 V IR2 *BUSFN(M;DCD(AR) ) 
^ 1

5. out 1
1

6 . M*DCD(MA) *- MD
1

Figure 5.4 AHPL Description of Case Study III
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Table 5.7 Petri Net Listing for Case III

Output Input Immediate
Transition Type Place Places Descdt

T1 3 PI 2 ,3,4,S 2,3,4,15
T2 2 P2 6,7 5,6
T3 1 P3 8,9
T4 1 P4 1 0 , 1 1 7,9
T5 1 P14 13,19 1 0

T6 1 P7 8 , 2 2

T7 2 Pli 6 , 1 2 8

T8 1 P12 8,16
T9 1 PIO 13,14,15 5,10,11,14
TIO 2 P13 6,17 13
Tll 1 P14 13,20,21 1 0 , 1 2

T12 1 P21 8,18
T13 1 P17 8,18
T14 1 PIS 8 , 2 2

T15 1 PS 8,23
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Table 5.8 Place Listing for Case III

P 1 GOAL P 13 es.3
p 2 es .4 P 14 ACzXl
p 3 ARrlOO P 15 RIRzXOl
p 4 M4:X1 P 16 IN; 011
p 5 RIR:XX1 P 17 RIRzlXX
p 6 es.2 P 18 IN:200
p 7 RIRîOOX P 19 ACzXO
p 8 es.i P 20 IX:X1
p 9 lArlOG P 21 RIRzXOO
p 10 MD:X1 P 22 IN; 001
p 11 es.6 P 23 IN;XX1
p 12 RIRrOlX
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The Control Branch Vectors obtained for this circuit
are:

Bg = IN:1XX 
B4  = IN: COX 
B 5  = IN: 010 
Bg = IN:Oil

Only control state five does not appear in the petri net and 
hence the G Common Transfer Vectors are:

Gi(3) = IN:1XX 
G2(4) = IN:OOX 
Gg(6 ) = IN:Oil

For the input vectors associated with register transfers, we 
have:

A:100 
IN:XX1 
IN: 001

Both A:100 and IN:XX1 received high weighting values and were 
selected according to our rules. Hence we have the vectors :

IN:1XX; IN:OOX; IN:Oil
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selected from the Control Branch Input Selection procedure 
and

A;100? IN:XX1

selected from the Register Transfer Input selection procedure. 
The input vector INrXXl from the second selection process
covers the vector IN:COX and so IN:OCX is dropped from the
list. Hence for application at control state one we have the
four vectors :

A:100; IN:XX1; IN:Oil and IN:1XX

selected to guide the search.
To make the search as difficult as possible the start

ing node was chosen as:

CS AR IR AC MD
1 001 110 00 01 00

This circuit responds very well to guidance: 
only 36 nodes were expanded to reach the goal I The whole 
state space search is shown in Table 5.9 while the various 
runs are summarized in Table 5.10.

Comparing our results with SCIRTSS III, we note that 
in SCIRTSS I I I 69 nodes were expanded to reach the goal and 
the length of the sequence found is 17. The input vector only



Table 5.9 State Space Search for Case III
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o 7 2 02 6 3 10 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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guidance in both cases expanded about the same number of nodes 
but our results show a sequence of length 15 while SCIRTSS III 
found a sequence of length 629.

This case study has again demonstrated that both heur
istic cost value and input vector guidance are necessary to 
produce an efficient search and obtain a sequence of reason
able length-

Table 5.10. Summary of Test Runs for Case III
Type of Guidance Length of Total Nodes
________________ Sequence Found Searched
No guidance none found search failed
Input vectors only 15 577
Heuristic value only
(w = 2 0 0 ) none found search failed
Input vectors and 
heuristic value
(w = 200) 14 36

5.4 Case IV: Four-Bit Expandable Microprocessor
The last case study is a four-bit microprocessor slice. 

As far as automatic test generation is concerned, the data word 
poses no difficulty: thus there would be very little differ
ence if, say an eight-bit microprocessor were being tested. The 
preceeding three cases were designed with the aim of stalling
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the test generation and guidance principle. This case is in
tended to test the usefulness of the guidance principle on a 
real world problem. Besides, the control description is far 
more conç>lex than the previous cases. The arithmetic unit in
cludes a full adder and other more sophisticated combinational 
logic functions. Figure 5.5 gives the AHPL description and 
the block diagram appears in Figure 5.6.

The fault selected for the sensitization search was 
at the carry out bit of the program counter slice (OR gate 
#172) stuck-at-zero. The d-algorithm returned three vectors 
that could sensitize the fault:

{CS.IO, PC:1111, IR;XX1X} 
{CS.14, PC:nil}
{CS.19, PC:nil}

The petri net generated is shown in Table 5.11. As expected, 
the petri net is large, having fifty-seven transitions and 57 
places. Almost all places that were of register transfer type 
were expanded except IRrlXXX and IR:X001 which were left un
expanded because of the ease with which they have been satis
fied in the past.

The main source of difficulty in perfomning sensitiza
tion searches on this circuit is that often many instructions
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MODULE: FOUR-BIT MICROPROCESSOR
MEMORY: UR[4]; AC[4]; IR[4]; PC[4]
INPUTS: DN[4]; ICS[4]; linki, slave, ready 

OUTPUTS: DO[4]; lOSR; linko

1. UR ^ PC

2. DO -I- UR; lOSR = 1,0,1
-»• (ready, ready)/(2,3)

3. IR -s-ICS; UR DN; lOSR 0,1,0
-*■ (ready, ready)/(3,4)

4. -»■ ( (IR^VdR^AÏR^AlR^) ),(ÏR^AIR2 AIR3 AÏR^),(IR^AIR2 AIR2 AIR^),
( (IR^AIR2 AIR3 AIR^) AdR^AlR^) ) / (5,16 ,18 ,15)

5. DO UR*slave; lOSR ■«- (1, 0,1) *slave
(ready, (ready A ( (IR^AIR^)V(IR2 AIR^) ) ) , 

(readyAÏR2 AÏR2 AÏR^),(readyAlR^AÏR^), 
(readyAIR^AlRgAlR^) )/(5,6,8,10,12)

6. UR 4. DN; lOSR 0,1,0
(ready, ready)/(6 ,7)

7. DO UR; lOSR ■«- 1,0,1
(ready, (readyAlR^AlR2 ),(readyAlR^AlR2 ), IR2 )/(7 ,8 ,1 2 ,1 0 )

8 . UR DN; lOSR 0,1,0
-»■ (ready, ready)/(8 ,9)

Figure 5.5 AHPL Description of Case Study IV
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9. AC + (UR * IR3 ) V (ADD(AC,UR) * (IR^AIR^) )
V (NAND(AC,UR) * (IR^AIR^) )
Inko (CO A slave) * (IR^AIR^) ; CO=Carryout of ADD (AC,UR) 
^ (14)

10. UR ■<- (AC * IR3 ) V (INC (PC) * IR3 )
Inko (slave V CPC) * IR3 ; CPO=Carryout of INC (PC) 

(11)

11. DO -c UR; lOSR 4- 1,1,0
(ready, (ready A IR3 ) , (ready A IR3 ) )/(ll,14,12)

12. UR **- DN; lOSR ■*- 0,0,1
-»• (ready, ready) / (12,13)

13. PC UR
^ (IR4,IR4)/(14,1)

14. PC ■<- INC (PC); Inko ■*- slave CPO; CPO=Carryout of INC (PC)
-»■ (1)

15. HALT 1; lOSR ^ (1,0,0) * (ÎR2 AÏR3 AÎR4 )
AC 4- (ÏR2 AÏR3 AÏR^)
AC ■<- +(AC,lnki)*(lR2 AIR3 AlR^)
Inko 4- AC * (IR2 AIR3 AIR^)
Inko ( (AC A slave) V(lnkiAslave) ) * (IR2 AÏR3 AÏR^)
Inko -c (v(AC)Vlnki) * (IR2 AÏR3 AIR4 )

(Continued)
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15. (Continued)
( (ÏRgAÏRgAÏR^ifflR^AÏRgAÏR^Alnki),
(ÏR^AIR^),(IR^AÏR^AÏR^A.(Inki),
(IR^AÎR^AIR^A (V/ACV miel) ),
(IR^AÏR^AIR^A (V/ACV Inki) ) / (20 ,19 ,14 ,14,19 ,14)

16. ÜR f- DN; lOSR ■<- 0,1,0
(ready, ready)/(16,17)

17. AC ■<- UR
(14)

18. DO 4- UR; lOSR 1,1,1
(ready, ready)/(18,14)

19. PC INC (PC) ; Inko slaveACPO; CPO=Carryout of INC (PC) 
(14)

20. ^ (lnki,lnki)/(3,20)

Figure 5.5 cont'd
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CONTROLready > lOSR
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figure 5.6 Block Diagram of Four-bit Microprocessor
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Transition Type
Output
Place

Input
Places

Immediate
Descdt

T1 3 PI 2,3,4 21,22,4,6
T2 3 PI 3,S 4,6,7,8,9,10
T3 3 PI 3,6 4,6,12,13
T4 4 P3 5,6 7,8,9,10,12,:
T5 4 P22 5,6 7,8,9,10,12,:
T6 1 P3 7,8 39,40,41,42,.
T7 2 PS 1 1 26
T8 2 PS 12,13 37, S3
T9 2 PS 7,13 37,45
TIG 6 PS 6,9,10 12,13,32,34
Til 2 P12 2 2 1 , 2 2

T12 2 P6 15,16 14,15,16,17
T13 2 P6 16,17,18 15,16,17,18
T14 1 PIS 19,20 56
T15 2 P16 24,2S 19,55
T16 2 P16 24,26 20,55
T17 2 P16 24,27 23,55
T18 1 P17 2 0 ,S2 56
T19 1 P2S 20,28 56
T20 1 P26 20,29 56
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Table 5.11 cont'd

Output Input Immediate
Transition Type Place Places Descdt

T21 2 P2 15,30 14,53,54
T22 2 P2 15,32 14,24
T23 1 P27 2 0 , 2 1 56
T24 2 P32 34 27,28
T25 1 P14 20,33 56
T26 2 Pll 41 38,52
T27 2 P34 30,35 29,53,54
T28 2 P34 30,36 30,53,54
T29 1 P35 20,37
T30 1 P36 2 0 , 2 1 56
T31 1 P4 20,38 56
T32 2 PIO 24,39 33
T33 1 P39 20,50 56
T34 2 P9 44 35,56
T35 2 P44 24,42 36,55
T36 1 P42 20,46 56
T37 1 P13 20,40 56
T38 2 P41 30,14 25,53,54
T39 1 P8 34,51 56
T40 1 P8 2,22,45 5,21,22
T41 1 P8 47,51 46,47,49
T42 1 P8 41,51 38,52
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Table 5.11 cont'd

Output Input Immediate
Transition Type Place Places Descdt

T43 1 P8 44,51 35
T44 1 P8 2,13,43 21,22,37
T45 2 P7 47,0 46,47,49
T46 2 P47 30,49 50,53,54
T47 2 P47 32,48 48,24
T48 1 P48 20,31 56
T49 2 P47 12,49 11,50
T50 1 P49 20,23 56
T51 1 P45 20,38 56
T52 2 P41 14,32 24,25
T53 2 P30 24,55 55
T54 2 P30 24,56 55
T55 2 P24 2 0 56
T56 6 P20 53,54 57
T57 2 P53 57
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p 1 GOAL p 23 les;X111
p 2 es.10 p 24 es .4
p 3 KPCrllll p 25 RIRtOOOO
p 4 RIR:2212 p 26 RIR:001X
p 5 es. 14 p 27 RIRrOlOX
p 6 es. 19 p 28 les:0000
p 7 es.13 p 29 ieS:001X
p 8 UR:1111 p 30 es.5
p 9 es. 17 p 31 ieS:OOXX
p 10 es.18 p 32 es.7
p 11 es.9 p 33 ieS:1000
p 12 es. 11 p 34 es.6
p 13 RIRrXXOO p 35 RIRrXOlX
p 14 RIR:1000 p 36 RIRzXXOl
p 15 RIR:X100 p 37 les:X01X
p 16 es .15 p 38 lestxxix
p 17 RIR:X101 p 39 RIRzOlll
p 18 AC:0000 p 40 leSrXXOO
p 19 lestxioo p 41 es.8
p 20 es.3 p 42 RIRiOllO
p 21 les : 0101 p 43 AC:1111
p 22 KPe:1110 p 44 es. 16
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Table 5.11 cont'd
P 45 RIRrXXlX
P 46 ICSîOllO
P 47 es. 12
P 48 RIRrOOXX
P 49 RIRrXlll
P 50 ICStOlll
P 51 DNrllll
P 52 ICSrXlGl
P 53 es.2
P 54 es,20
P 55 RIR:1XXX
P 56 RIRzXOOl
P 57 es.i
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must be executed to cause the necessary data vector manipula
tions for reaching a goal node. If the instruction register,
IR, is not loaded properly at control state three, the next 
5 to 10 control steps do not offer any opportunity to modify 
the contents of IR nor does the machine return to CS.3. Also, 
a great many of the control branches depend entirely on the 
contents of IR.

To reach our goal, place ^PCillll^ must be filled with 
a token while our initial state is PC:0000. To avoid many 
cycles of incrementing the program counter, a junç type instruc
tion must be executed. This is either the instruction |̂ IR:llloJ 
or {iRrOllo}.

Needless to say, the input vector selection is very 
crucial in reaching our goal. The instruction register IR is 
loaded with external input at CS. 3. There are over sixteen in
put vectors associated with CS.3 from which four or five must 
be selected.

The Control Branch Input Vectors of this microprocessor 
were used as an example in Chapter Four, Section 4.2.1. From 
that procedure three vectors were selected:

ics:1 0 1 X; ics:1 1 0 0 ; ics: 0 1 1 0
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It should be noted that the Control Branch‘Input Vector selec
tion process is invariant with respect to the fault; for that mat
ter, there was no way of knowing that icszlllO & icszOllO are cri
tical! However, with the basic philosophy of selecting the input 
vectors such that as far as it is possible all important control 
states are visited during the search, we have been able to se
lect the "best" input vectors. From the petri net for this 
circuit, it was detected that the machine does not have to 
"wait" in control states 3, 5, 7, 8 , 12, 15, 18 and 20 during 
the search. As discussed in Section 4.2.2 the register trans
fers that take place in these control states do not need to 
be repeated when the control signal "ready" is low.

The results obtained from this machine are fantastic!
With the information on the control signals that can control 
branching from one control state to another, we performed two 
separate tests :

a) the control branching derived directly from the 
AHPL description

b) control branching selected according to the infor
mation from the petri net.

The results are listed in Tables 5.12(a) and 5.12(b). In 
SCIRTSS III, the control branching functions were derived di
rectly from the AHPL description. This corresponds to the
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results of Table 5.12(a). Even in this case, 508 nodes were 
expanded to obtain a sequence of length 15. The best result 
reported in Table 5.12(a) expanded 50% less nodes to obtain a 
sequence of length 18.

We have included the results of Table 5.12(a) only for 
the sake of meaningful comparison with the results of SCIRTSS
III. The results of Table 5.12(b) indicate the effectiveness 
of the petri net in guiding the search in complex circuits 
with very difficult goals. Using input vectors only, a se
quence of length 16 was found and only 91 nodes were expanded1 
However, both the heuristic cost value and input vectors pro
duced a sequence of length 20 and expanded only 47 nodes 1 
Although the input sequence is suboptimal, the search is al
most 50% more efficient than using only input vectors and thus 
is a very good result.

The visual representation of Figure 5.8 is given to 
show the disparity between the results of the search in all 
four circuits when no guidance is used and when there is gui
dance. The best results of SCIRTSS III, the problem reduction 
graph model and the petri net model are also indicated.

As a natural consequence of the comparison of the re
sults obtained in this work with the results of the problem 
reduction graph approach, one may ask, "which is faster?"
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Table 5.12(a)
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Tvpe of Guidance
Length of Sequence 

Found
No. of Nodes 
Expanded

No guidance none found 1 0 0 0

Input vectors only none found 1 0 0 0

Heuristic value only none found 1 0 0 0

Heuristic value 
(w = 75) and 
input vectors

18 287

Heuristic value 
(w = 1 0 0 ) and 
input vectors

18 230

Table 5.12(b)

Tvpe of Guidance
Length of Sequence 

Pound
No. of Nodes 
Expanded

No guidance none found 1 0 0 0

Input vector only 16 91
Heuristic value only none found search failed
Heuristic value 
(w = 1 0 0 ) and 
input vectors

2 0 47
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This is a difficult question to answer since SCIRTSS III does 
not report the amount of computer time taken to perform the 
search. The number of nodes expanded is by far a better com
parison; however, we can refer to an informal computer output 
of SCIRTSS III that expands 300 nodes in 48 seconds. Using 
the same circuit, our program expanded 202 nodes in 29 seconds. 
On the other hand, the input vector selection process of Chapter 
Four is much more complex than that of the Problem Reduction 
Graph. Again since this is done only once for each search (if 
needed) the far fewer number of nodes expanded more than off
sets the complexity of the selection procedure.



CHAPTER VI 
SUMMARY AND CONCLUSION

6 .1 Summary
Guidance for sensitization searches enable these 

searches to reach their desired goals after expanding relative
ly fewer nodes than if the searches are not guided at all; in 
most cases these unguided searches terminate abruptly.

A petri net model is presented that models the regis
ter transfers and change of control states in a sequential ma
chine described in a Computer Hardware Description Language 
(CHDL). For each sensitization search, a new petri net is gen
erated based on the goal node(s) and the CHDL circuit description. 
Portions of this process are completely independent of the fault.

Each set of goal nodes forms input places to a tran
sition which if fired implies the fault is sensitized and the 
search is successful. Only one control state appears as input 
to each of these transitions. The remaining portions of the 
petri net are generated from these input places.

For each machine state encountered during the state 
space search, a marking or state vector is derived from the

125
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petri net, using the general state equations of a petri net. 
Based on the marking vector, a heuristic cost value is confu
ted which measures essentially the effect of reaching one ma
chine state on the transitions in the petri net. The direction 
of the search is determined by these heuristic cost values : 
a node with the minimum heuristic cost value is selected as 
most promising and is expanded in the state space search.

The petri net also contains information about input 
vectors that are associated with each control state. The most 
important of these input vectors are selected for inclusion in 
the input vector table that guides the search. For the pur
pose of selection, the input vectors are classified into two 
categories: those input vectors that are responsible for con
trol state branching and those that are used only for register 
transfer. The input vectors that cause the sequential machine 
to branch to the most number of control states are selected 
from the first category for inclusion in the table while the 
register transfer input vectors are weighted, using information 
from the petri net. The input vectors receiving the highest 
weight from this weighting process are selected and,together 
with those selected from the control branch category, form the 
set of input vectors that provide input vector guidance.
Again, portions of the input vector selection process are in
dependent of the fault.
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Although AHPL was used in this research/ the results 
are applicable to any Computer Hardware Description Language 
that has the same structure as AHPL. That is, the expressions 
in that particular CHDL must be classifiable as:

1. Conditional Register Transfer expression
2. Unconditional Register Transfer expression
3. Conditional Control Branch Expression 

or 4. Unconditional Control Branch Expression.
Four very difficult circuits were used as case studies 

to test the proposed guidance mechanism. The sensitization 
search goal for each of these circuits was selected to be as 
difficult as possible. In each case, the proposed guidance 
mechanism provides an improved performance in the sensitiza
tion search when compared with the guidance methods of the 
problem reduction graph of SCIRTSS III.

6.2 Limitations and Further Work
The effort to provide an automatic test sequence gen

eration sequence has resulted in a complicated test generation 
system. For each sensitization search a new petri net has to 
be generated? although portions of this process simply in
volve linking subnets yet this can be time consuming. Fur
ther, where there are many input vectors, an input selection 
procedure must be evoked.
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Although Computer Hardware Description Languages are 
becoming increasingly popular as design tools, many machine 
designs do not use them. This limits the scope of application 
of this work.

The generation of a new petri net for each fault can 
be avoided if we can have a petri net model of the machine 
itself such that each fault has a "unique impact" on the petri 
net. From this "unique impact" we can derive a heuristic cost 
value and perh^s be able to choose input vectors to guide the 
search. This research has not been able to produce such a 
petri net model of the machine; we had to generate the petri 
net starting from the goal nodes. This area can be investiga
ted further.

The Problem Reduction Graph relies heavily on past 
SCIRTSS runs to obtain statistical information both for com
puting the heuristic value and terminating the graph genera
tion. The petri net relies on statistical data from previous 
runs only for terminating the petri net generation. It would 
be desirable to get rid of relying on statistical data from 
previous runs completely. Maybe if we can produce the "uni
versal" petri net mentioned in the previous paragraph then the 
problem would disappear. If not, a user specified optimum maxi
mum transition time must be given for terminating the petri 
net generation. This optimum number is not yet known.
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6.3 Conclusion
The four case studies of Chapter Five are complex se

quential circuits with diverse characteristics and were selec
ted with the aim of examining potential weaknesses in the ap
proach. Moreover, the initial states were selected to be a 
maximum distance from the goals. Based on these four tests, 
we conclude that for sequential machines with very different 
characteristics, the guidance provided for sensitization 
searches using the petri net derived from the Computer Hard
ware Design Language description of the machine, is signifi
cantly more efficient. Sensitization searching in SCIRTSS is 
thus less likely to encounter node limit termination- Petri 
nets have been used in various areas of conç>uter science to 
study the interconnection properties of systems. In our ap
proach we have diverged from the normal use of petri nets when 
applicable; the idea of using these nets to analyze a Conputer 
Hardware Description Language with the aim of guiding a state 
space search is novel and has proven to be remarkably effec
tive .
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C.Occcccccccccccccccccccccccccccccccccccccccccc
cc

PHUGRAH TO PERFURM jClHISS IV SEARCH 
K. e. ÎORKU OECEMBCR 7TM 1070
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MFIV(l.J.K)
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PETRI NET ARRAYS 
KTYP(N) NTH TRASITIUN TYPE 
KPNAM(I) ITH PLACE NAME
LNK(I) INDEX TO VECTOR OF PLACES
M(J) MARKING VECTOR
KHIII VECTOR OF FIRED TRANSITIONS
NIPL(N) NO OF INPUT PLACES TO TRANSITION N 
IPLAO(N) POINTER TU TO SET OF INPUT PLACES TO
KTRININ» LIST OF INPUT PLACES TO TRANSITION N
KOPLIN) OUTPUT PLACE OF TRANSITION N
KTRTINN TRANSIT ION TIME OF TRANSITION N
lOESPIN) POINTER TO IMMEOIATE OESCENOANTS OF TRANSITION N 
IMOCIIN) SET OF IMMEOIATE OESENDANTS OF TR. N 
KOIRtI) POINTER TO SET' Ol- TRANSITIONS TO WHICH

PLACE I IS OUTPUT
LOSTR(I) LIST OF TRANSITIONS TO WHICH OUTPUT

PLACES POINT
NO OF PLACES IN THE PETRI NET 
NO OF TRANSITIONS IN IHE NET 
NO OF TERMINAL PLACSE

l-TH FF VECTOR (VALUES PRESENT I FOR GRAPH.
l-TH FF VECTOR (VALUES WHERE REUUIRLO) FUR GRAPH.
NUMUER OF INPUI VECTORS TO HE APai.lEO AT C.S. I. 
J-TH INPUT VECTOR TO HE APPLIED AT C.S. I.

NP 
NT
NT PL

MGRPII I 
MGRVI 1 I 
NCSIVI I I 
MCSIPII.J) 
MCSIVII.J) 

SEARCH SPACE. 
MGOALPII I 
MGOALVII ) 
NOOECSII 1 
NOD IP( I) 
NSTAIEI11 
NPREUII) 
NOOLEVII>

l-TH ELEMENT OF EACH ARRAY IS FOR l-TH NODE.
l-TH GOAL HOOL. IT *S WHERE VALUES ARE REOUIREO. 
l-TH GOAL NUDE. REÜÜ1PE0 IF VALUES.
MACHlRh CUNIKÜL SIAE AT NODE 1.
FULL INPUT VECTOR APPLIEO TO PREJFCtSSOR TO REACH I 
FULL PLIPFLOP VALOr VECTOR FUR CURRINT (l-TH) NODE. 
INDEX TO THE PRF.OLCrsSOR LF NODE I.
LuVLE OF THE SE ART.H GRA^H EOF NUDE I.

LUH
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0 0 0 1
0002
0003
0004
0005 
000b 
0007 
0000
0009
0010 
001 1 
0 0 1 2  
0013

00 14
0015
0016
001 7 
0010
0019
0020 
00 21

0022
0023
0024
0025
0026 
002 7

0020 
0029 
00 30 
U03I
0032
0033

C
C
CC
c
c
c
c
c

NÜUEHII)
COMMUNICAT ION 

K T RMIII)
KIRMFIII 
MTRMFII I 

GENERAL AUXILIARY 
KTCMRII I

HEURISTIC ViElGHT CUMRUTEO FUR NOUE 1. 
VLCTURS FUR RSUNSM ROUTING.

0=0. 1=1. 2=X RbOUIRGU VALUE EUR INPUT I.
0=0. 1=1. 2=X REUUIKED VALUE FUR FLIPELUP 
VECTOR OF NEXT STATE VALUES.
USE VECTOR.
GENERAL INUEX STORAGE USE ARRAY.

INTEGER
DIMENSION

NRSCSI25).KSSCI25.5).NRIRHSI25.5I 
NCSIVI25)

INTEGER NOOECSI10001 .NUOIP(IOOO) .NPItEOI 1000).NUOEHII 000 I 
INTEGER KTF.MPI5) .NOOLEVI 1000)
INTEGER KGUALI5)
INI EGER M F IPI25.5.5) .MG IVI25.5.5).MFSPI 25.5.5) ,MFSV{25.5.5)
INTEGER MCSIPI25.I5).MCSIVI25.15)
INIEGER MGUALPI5) .MGOALVI5).NSTATEI I 000)
LOGICAL FS1. COVER.DLÜUG
LUGI CAL PCSIIF . PGRNUS .PGRWT . PHI NV
COMMUN/PAK/NVEC
CUHHUN/NSIM/KTRM11 16).KTRMFI 36).MIHHFI 36).NPFF
COMMUN/HEUSU/NC.IMEGA.KPNAMII 00).LNKI I 00).KÜPLI 100).KTRTI 100). 
4IPLADI100).NIPLI100).KUTRI100).IMUCTI480).IDESPI120).LSOTRI240). 
4KTRINI240).KTVPI100).ITERPI45).KTRTPIU5).KTPTAI50).KN1PLI I 0.3).
♦ MGRPI40).MGRVI 40).NT.NP.NIPL 
CUMMUN/PRINT/P CS UK , PG,<NI)3 . PGRW T .PHINV 
EQUIVALENCE I KN1 RL . KSNU.JE )
INTEGER42 SEIA(IOOO)
DAI A ULANK.XNEW.UEL/' ‘.'NEW ». 'DLET'/
DATA KS/'CS •/
DATA KGR/'GR. •/
DATA DEUOG/.FALSE./
IRXA=65S49 

DATA INPUT SECTION

: READ GENERAL PARAMETERS.
READ 1 .  NR IN.NRI F .NCS 
READ I .NLI M. IMI-IGA
READ 77 7 7.PC5UF.PORHU5.PGRWT.PHINV 

777 7 FORMAT lULI)
PRINT 001 .NMN.NKFI .NCS.NLI M, I MEGA 

001 FURMATI IHI/20X , • NUMUER ur INPUI S'. T45. H O . /
C 20X. « NUMUER (JF FLIPI LUPS' .145.110./
C 20X. 'NUMUER OF CUNTRUi. SIATCS',1 45.1 10/
C /20X.'SEARCH LUUP LI HIT' .150. 11 )/,. 3X.'OMEGA'.TsO. I 10//) 

: READ IN CONTROL STATE DRANCH TONE TIONS.
I* (PCSIlF) PRINT 002 

<102 FURMAT ( I5X . • CUNT RDL SlAlE URANCH , UllCI I Oui.' ./)
DU 12 1=1.NCS 
READ I.N5CS 
NRSCSII)=NSC5
IF (PCÜUF ) PRINT 1,0 3, I ,NSCS

0 0to
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0 0 3 4
0 0 3 0
0 0 3 6
0 0 3 /
0 0 3 0
0 0 3 V

0 0 4 0
0 0 4 1
0 0 4 2
0 0 4 3
0 0 4 4
0 0 4 5
0 0 4 6  
0 0 4  7 
0 0 4 0  
0 0 4  9 
0 0 6 0
0 0 5 1
0 0 5 2

0 0 5 3
0 0 5 4
0 0 5 5
0 0 5 6

0 0 5 7  
0 0 5 0
0 0 5 9
0 0 6 0  
0 0 6 1  
0 0 6 2
0 0 6 3
0 0 6 4
0 0 6 5
0 0 6 6

0 0 6 7
0 0 6 0
0 0 6 9
0 0 7 0
0 0 7 1
0 0 7 2
0 0 7 3  
0 0  74 
0 0 7 5  
0 0  76  
0 0 7 7  
0 0 7 0  
0 0 7 9  
0000 
0 0 8 1

0 03 EORMATI20X , • CtlNTItUL 5TAIE • . I 3 • lOX . I 3. • 5UCCE5Sni)S • )
DO 12 J-ltNSC5
READ It KSSCIItJit NTRM5
NRTRMSIItJ)=NTRM3
IE (PCSOF) PRINT 004,KSSCIItJItNTRMS 

804 FURMAT(20Xt* C ,St• ,I 3,I OXt*FUNCI 1 UN HAS».13,' TERMS.»/
C 3JX,» INPUTS» tIOXt»FLIPFLUPS» I 
DU 12 K=I,NTRM5 
READ 2t KTRMItKIRMF
IF(PCSOt I PRINT dOS,lKTRMIIIXI,IX=t,NRIN) 
iriPCSUF) PRINT 806,IKTRMFIIXI , 1X=I,NRFF I 

005 rURMAT(30Xt161II 
(106 FURMAT 11 (IF ,SOX .36II I 

NVEC=NR1H
CALL PACKIKTRMItMFIPIItJ,KItMF iV(I,J.KII
NVEC^NRFF
CALL PACK!KTRMF,MFsPI I,J ,KI .MFSVI I,J,KIt 

12 CUNTINUE
1 F0RMATI3I5I
2 FURMATIOUIII

C READ IN STARTING NODE AND SET UP AS FIRS! NUDE.
READ 4,KNTRLtMTRMF
PRINT BIO.KNTKL,(MIRMFI I XI,IX=I,NRFFI 

610 FURMAT l//|5X,»STARI ING NUDE»,/30X,'C.S.» t13,5X, 'STATE »,361 I I 
CALL PACKIMTkMFtXtNSTATEM I I 

C READ IN GOAL NUDES.
READ 1, NGDALS 
PRINT 820,NGDALS

020 FURMAT(///I5X.'GOAL NUDES' « I OX.13, ' NUDES.» I 
DU 10 1=1,NGDALS
REAU 4,KGUAL(I I,(KTRMFI IX ItIX= ItNKFFI 

4 FURMAT I IS,5X,36 11 I
PRINT 022,KGCIAL( I I , (KTRMF I I X I , 1 X= I .NRI F I

022 FURMATI30X,'C.S.' t13,5Xt'STATE » ,361 I I
10 CALL PACK!KTRMF,MGUALPII ItMGUALVII I I

CALL GPTNT 
C READ IN COHTRUL STATE INPUT VECTORS.

IF (PIIINVI PR I NT 04 U 
04 0  FURMAI (////20X ,'IIEUR 1ST I C INPUT VECTURU DV ClINTRUL STATE.»/I 

DU 17 1=1,NCS 
READ I, N
IF (PIIINVI PRINT 041,1,.I 

841 F D R M A T ( 2 0 x , » C U n T F u L  S T M E» .I 3, I OX,I 3,• VFCTURS.'T 
MCSIVIIl=N 
NVFC=KR1N 
DU 17 J = I ,N 
READ 2, KTRMI
IF (PIIINVI PRINT OJI , (KTRMI I I X I , IX= I ,RRIN)

021 FURMAT(lOX,361 11
17 CALL PACKIKTRMI,MCS(PI I,JI,MCSI VI I,J ))

DU 880 N=l , I DO ")
SETA(N1=0

HWW
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0002

0003
0004

0005
0006 
0007 
0000 
0009 
00 90
0091
0092
0093
0094

008 CONTINUE

0095
0096
0097 
0090
0099
0 1 0 0  
0 1 0 1  
0 1 0 2  
0 1 0 3  
01 04

0105 
0 106 
01 07

0 1 0 0  
01 09 
0 1 1 0  
0 I I I
0 I 12

0113
0114

0115
0 1 16 
01 I 7 
0 1 1 0

: SET UP STARTING NUOL POINTERS.
PRINT 050

050 FURMAT!IHI.///45X,*STATE SPACE SEARCH»///
C lOX.•ITER.».6X.»NUUE ».4X.'LEVEL',4X,'COST VALUE' .3X,'C.S.'.4X. 
C 'PREO.NUDE'f3X,'INPUT VECTOR',5X,'STATE VECTOR'//)
NCALLS=0
NRNOS=l
NOOE=0
NOOECSIll=KNTRL 
NXSTT-NSTATEII)
NUOIP!I 1=0 
NE=0
NOOLEVI11=0 
FST=.TRUE.
GO TO 500

SEARCH EXPANSION LOOP
C
C
C
C
c
c

SCAN FOR NEXT NODE TO EXPAND 
NEXT NODE TO UE EXPANUED WILL 
VALUE WHICH NEVER OEFORE ÜEEN 
9 FST=.FALSE.

MINH=3000 
l=NRNDS 

109 I = I-I
IF I I .LE.01 GO TO 134 
IF INÜDEHII).GE.MINMI 00 TO 
IFISETAII 1 .EO.I 1 GO TU 109 
MINH=NODLHIII 
NUOE=I 
GO TU 109 

C GENERATE NEXT INPUI FROM INPUT 
C SEARCH INPUT APPLICATION LOUP i

UE THE ONE 
EXPANDED.

109

WITH THE SMALLEST HEURISTIC

VECTOR ) * * * SET , 4 *
104 IF IMINH.LT.15001 GO TU I 14 

PRINT 902
902 FORMATI///45X,'MINIMUM HEURISIIC NUDE SEARCH FAILS.',/ 

C 4SX,'SEARCH TERM!NAIED,'I 
STOP

II* KSHUDt=NOOfcCSINOOEI 
NRI=NCSIVIKSNOOEI 
NSCS = NRSCSIKSN(lUEI 
SE I AI NCJOE I = I

: p l a c e  n c o e  o n  s e t a  , a l r l a o y  e x p a n d e u
NE=NOOLEVINODE)H 
Of) 200 11 N= I, NRI 

C CUNIRUL STATE APPLICAIIUN LUUP.
00 3*0 ICS=l,NSCa 
NVI;C = NR IN
CALL UMPACKIKTRMI . MCS I PI KSNIIUL , 11N I , MCS I V IK SNOOL , I IN I I 
II lOEHUG) PI<INI I S3 I , I KTRMI I I XI ,1 X=l , I I I
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0119 1501 rÜKMATI lUXi •INI'UT APPLtCATIUN LOUP*. 101 I I
0 1 2 0  JJ- 0
0121 NTRH=NRTRMSIKSNUDE.1C3)
0122 DU 301 1=1.NTRM

C CHECK IF TERM IS SATISFIED UY STATE ÜF PREUECESSUR NUDE.
0123 NVEC=NHFF
0124 II I .NUT.CUVLR IMI SP(KSNUDE. ICS.Il.MFSVIKSNUDE,ICS,I ».NSTATE 1 NUDE) 1 

C I CU TU 301
C TERM WAS SATISFIED. FURM TAULE UF TERMS SATISFIED,

0125 JJ=JJ+1
9120 KIEMPIJJ)=I

C CHECK IE INPUT SAIISFILS TERM
0127 NVEC = NR IN
0120 CALL UNPAC KIKT FIMF , MF I P ( KSNUUE , ICS.I 1 . MF 1 V ( KSNUDE . I CS • I I I
0 1 2 9  I F I D C D U O l  P R I N T  1 5 0 0 . I K  I R M F I  1 X )  . 1 X - I . 1 1  I
0130 1500 FURMATIlOX,"CS UKAHCHINS TERM ' ,IS 111
0131 DU 309 3=1.NR IN
0132 If (KTRMKJl.GT.I > ÜU TU 309
0 133 IF (K1RMFI3l.0T.il GU TU 309
0134 IF (KTRMI(3 1.NC.KIRMFI3I1 GU TO 301
0135 309 CONTINUE
0136 GU TU 350
0137 301 CONTINUE
013(1 If (33.EU.0) GO lU 300

C OVERRIDE INPUT VECTUR.
0139 CALL RANOUlIRXA,IRXU.RANFl
0140 IRXA=IHXI1
0141 3=RANF4NTRM»I
0142 CALL UNPACK(KTRMF,Mf1P (KSNUDl ,ICS,31,MF I V (KSNUDE,1CS ,31 I
0143 IF (DinUUl PRINT 1505, IKTRMFII XI,IX=1, 11 I
0144 1505 FURMATIlOX.'UVEHHIDE INPUI VECTUR.',10 I I 1

C MERGE INPUT VECTUR AND REDJIRED VEClUR
0 1 4 5  3 5 0  UU 3 1 1  3 = 1  . N R  I N
0140 IF IKTRMFI 3 I .LT.2 I KTRMII 31=KTRMFI31
0147 311 CONTINUE
014U IF(DCUUGl PRINT I 593.IKTUMI I I X 1 . IX = I .I 1 )
0149 1503 FURMATIlUX.'MERGE INPUT VECTOR '.Kill

C RANDOM FILL
0150 UD 201 1=1,NRIN
0151 IF IKTRMllll.LE.il GU TU 201
0132 CALL RANDUlIRXA,IRXO.RANF1
01 S3 IRXA=1RXD
0154 KIP II I I> = RANF10.5
0155 231 CUNTINUE
0 1  5 5  I F  I  U E I I U G l  P R I N T  I o J  2 .  I K I >(M I I I X I ,  I X= I .  I I 1
0  1 5 7  1 5 0 2  F U R M A T  I l O A  , ' R A N D O M  F I L L  R E S U L I  '  ,  I I ,  I 1 1

U1
C P S L U Ü U - N S I M  R O U T I N E  I U  S I M U L A T E  E I R C U I I  O E H A V I U R .
C

0 1 5 0  N C A L L S  =  M E , \ L L M  1
0 1 5 9  N V t C = N R F F
0 1 5 0  C A L L  U N P A C K !  K T R MF  , 9  1 A 11:1 N U U L  I 1
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0161 
0162 
01 ü3 
0:64 
01 65 
0166 
0167 
0160

0164 
01 70 
01 71 
01 72 
01 73

01 74 
01 75 
01 76 
0177

01 70 
01 79 
01 00 
0 1 0 1
01 02

0103 
01 04
0105
0106 
0107 
0 1 0 0  
0109
0190

0191
0192 
01 93 
01 94 
0195 
01 96 
0197 
0190
0199
0 2 0 0  
0 2 0 1  
0 2 0 2  
0 2 0  3 
0204

400

1 0 2

CALL PSDNSMIKNThL)
NVEC=NR1N
CALL PACKl KTPMl .X iNUDlPl NKND'J I I 
NVtC=NF.rF
CALL PACKIMTKMF,X.NXST TI
NSTATElNHNf)S)=NX5TT
NÜOECS(NUNDS)=KSSCIKSNUDEtlCGI
NClOLtV(NKNl)S) = Nc

C
C COMPUTE HEURISTIC VALUE EUR VECTUR.
500 CALL HEUSUDINDDÜCSINRNUS).NXSTI.IVALI 

IF IIVAL.LE.1023) GU TU 1010 
PRINT 100. IVAL 

100 FURMAT 1* HEURISTIC VALUE EXCEEDS 1023 AT*.110)
IVAL=1023

C CHECK FUR REDUNDANT NUDE. ASSIGN MINIMUM HEURISTIC LINKAGE.
1010 N=NRNUS

NUUEH(NRN0S)=1VAL 
NTCMP=NRNDS 
STAT=ULANK 

C CHECK FOR REALISED GUAL.
DU 102 1=1«NGUALS
IF 1 .NUT.CUVCRIMGUALPl1).MGUALV(1 I.MSTAThlNRNDS) )) GO TU 102 
IF IKGUALII>.LT.O) GO TU 900 
IF IKNTRL.EU.KGUALIDI GU TU 900 
CUNTINUE

C CHECK IF NODE WAS ALREDY EXPANDED. IF SO DELETE 
C IF ALREDY EXPANDED OUT HAS LOWER COST VALUE 
C REMOVE I RUM SET A AS A CANUIDATE FUR EXPANSION 
103 N=N-1

IF (N.LE.O) GU TU 101
IF (NSTATEIN).NE.NSTATEINRNDSI) GU TU 103 
IF INODCCSIN).N E .NUUECSINRNDS) I Ü3 TU 103 
IF INUDEHIN).LE.NUDEHINRNDS)) GU TU 106 
IFISETAIN).EU.O) GU TU 1111 
SI a t= xnf:w 
s e t a  INI =  •)

C RCMUVE FROM SE1A 
G U T O l  )5 

1111 CONTINUE
NllUIPi N)=NUDIP INRNDS )
NPREDIN)=NPRED(NRNDS)
NUDEHIN) = NUDEHIN,\NUS)
NODLEVIN)=NUDLEV(NRNDSI 
GU TO (Oil 
NTCMP:HIEMPFI
IF I NRNDS.LT .1 000 I uU (11 IDs 
PRINT toil
FORMAT I"* ARRAY D1 MEN-. I UN INI. IXCECDED. SlARLN HAL IS.')
SI UP
SIAI=OEL
PRINT 116 0 . bl AT .NLAt L:> . NRNDS . NcUl.EV ( NRNDS I . IVAL , NDDLCSI NRNDS ) .NUDE

1 0 1

103

106 
I US

HU>
cn
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020S 060
0206
0207
0208
0209 062
0210
021 1
3212 107
0213
0214 300
021 S 200
021 6
0217 90)
02 1(1
0219 904
0220
0221 90S
0222
0223 075
0224
0225

C tlKTRI^K IX) .IX=1 .NRIN) ilMIRMI I IX ) . I X= I . NREE >
FURMAI I IX. A4. TO. u( 10 > OX) .AX f I 1 I 1 . TOO . 3<i I 1 )
NRNOa=NTEMP
IF IF ST) GO TO 9
IF (STAT.EQ.XNEM) PRINT 062. M 
FURMATCINF."NEW*.14)
IF (NCALLS.LE.NLIM) GO TU 300 
PRINT 107
FORMAT (• NSIM CALL LIMIT EXCEEUEO. SEARCH HALTS.')
STOP
CONTINUE 
CUNTINUE 
GO TO 9
CALL UNPACKIKTRMF.MGUALPII) .MGUALVI I))
PRINT 904.(KTRMF(IX).IX=I.NRIF)
rURMATI///4&X.'SEARCH SUCCESSFUL'///3ÜX.'GOAL REACHED'.5X,3611) 
PRINT 9ÜH.IMTRMF(IX).1X=l.NRFF )
FORMAT (30X.'FINAL NODE '.SX.3611)
PRINT Q7S.NCALLS
FORMATI//20X.I 0. ' NSIM ÉALLS')
SI OP 
END

W
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CT
000 1 SUORUUTINE UNPACKIKiKPiKV)
0002 INTEGER KC3b)
0003 COMMÜN/PAK/N
0004 KU=KP
0005 KW=KV
0006 l=N
0007 1 KU0=KQ/2
0000 KWW=KW/2
0009 . K ( 1)=2
00 to IF IKQU42.OE,K0) K(ll=0
001 1 IF (KWW42.l t .KW) K(l»=l
0012 KÜ=KÜÜ
00 13 KW=KWW
0014 1=1-1
0015 IP (I.GT.O) GO TO I
0016 RETURN
0017 ENt)

W
0 0
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0001 
0002 
000 3

0004 
00 05 
0006 
0007 
0000
0009
0010 
00 11 
0 0 12 
0013

C/4
CT

LOGICAL FONCTION COVEIt I Ml> >MV i K V 1 
INTEGKN KI 36 ItMl 36 I 
CUMMUN/PAK/N

C OETUHMINE IF THE VALUES IN THE K-VF.CTÜN SATISFY THE REQUIREMENTS 
C PWESENTEO UY THE M-VECTUIi.

COVER:.FALSE,
CALL UNPACK(KtOfKVI 
CALL UNPACKIM.MP.MVI 
00 I 1=1.N
IF (MlI1.6T.II GO TU I 
IF IMIIl.NE.KlI)) RETURN 

I CUNTINUE
COVER:.TRUE.
RETURN
UNO

HW AO
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C I
000 I

0002
0003
0004
0005
0006
0007
0008 
0009
001 0 
00 1 I 
0 0 1 2  
0013

SUUKUUTINE PACKIK.KPtKV)
REDUCES AN ARRAY TU TWU INTEGER WDRDS 

INTEGER KI36)
COMMÜN/PAK/N
KP=0
KV=0
UQ 1 1=1.N
KP=KPEKP
KV=KVfKV
IF (K(I),GT.11 KP=KPF1 
IF ( K U  1 .EU.l 1 KV = KV + 1 

1 CONTINUE 
RETURN 
END

H  

O
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PETRI.NET AND HEURISTIC COST VALUE ROUTINES

141
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0 00 1

0002

0003
0004
0005
0006 
0007 
0000 
0009

001 0 
001 I
0012 
0 0 13
00 14 
0015 
00 16
001 7 
üOlU 
00 19 
0020 
0021 
0022
0023

0024
0025
0026
002 7 
0020 
0029
003 0
0031

0032

0033
0034
0035 
00 36 
0037

00 JU 
0039

1 0
27

LNKIN» = KO

C
CT

5UURUUTINE GPTNT 
C ROUTINE TUAT GENERATES TUE PETRI NET 
C READ IN PLACE ARRAVô ANU SE T POINTERS

COMMON/UEUSO/NE, IMEGA,KPNAMI100ItLNK(100)iKÜPLI 100> tKTRTI100),
41 PLAD1100).NIPLI 1001.KOTRl100).IMOCT1400I.IDESPl 120I.LSOTR1240)t 
4KIRINC240).KTYP( 100) .1 TERP145) .KTRTP1U5) .KTPTM50) .KNIPLl 10,3) . 
«MGRP140).MGRVIAO).NT.NP.NIPL 
DIMENSION INPUT(9.100) .KTEMI20).ITEM 120).KIRMFl36)
LOGICAL DEOUG 
DATA DEIIUG/.FALSE./
DATA HEG.KUNTH.IXIN.LAST.SP / »R•.•C •.•1•.•F •.• • /
M - 0 
N = 0 
IND = 0 

C READ IN PLACE TOKENS 
C NEXT CARD 
120 N = NT I

READ 10.1 INPOT.IJ.N) .3 = 1 .9).K0. (KTEM(J).J = l.U)
FORMAT (9A1.IX.I2.IX.012)
(F (INPUT!1.N).EU.LAST) GO TU 
LNK(N) = 0
KPNAM(N) = INPUT 11.N)
IF (KPNAMIN).EO.KONTR)
IF (KQ.GL.O) GO TU 16 
READ 72.KTRMF 
FORMAT!SOI 1)
M = M U
CALL PACK!KTHMF.MGRP!M).MGRV!M ) )
LNKIN) =M 
CONTINUE
POINTER TU SEI UF TRANSITIONS 10 VUIICU PLACE IS OUTPUT 
IND = IND Tl 
KOIRINI = IND 
DO la 1 = 1.8 
LSOTRIINU) = KTEM!1)
IF !KTEM!I).EQ.O) GO TO 20 
)ND=1ND Tl 
CONTINUE 
GO TU 120 
lOTAL V OF 
NP = N 
READ IN 
N = 0 INO = 0  
M =0 
N = NT I
R E A D  200.K IVIM N) .NIPLI NI . IK1L iT| J )  . J  = I . (I ) . KdPL I N I .

CKIRI!N).IITEM!31.J =1.10 1 
2)0 FORMAI!II.IX.I2.IX.3I2.IX.I2.IX.I2,IX.I0 I2)

IF IMVPINI .61 .1.) oO TU 300

72

16
SET

I 8
2 0

GET
27

NOW

2 2 0

PL ACES 
— I
TRANSITION iVRii AV

K)
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0040
0041
0042
0043
0044
0045 
004b 
0047 
0040

004V
0000
0051
0052
0053
0054
0055

005b
0057
0050
0059

OObO
0061
0062
0063
0064
0065
0066 
0067
0060
0069
0070 
00 71
0072
0073 
00 74 
0075 
00 76 
0077
00 70
0079
0080
0001 
0082
0083
0084
0085 
00 06

C S E T  P O I N T E R  T U  I N P U T  P L A C E S  U F  C U R R E N T  T R A N S I T l U N S  
I N D  = 1 N U F I  
I P L A O ( N )  = I N U  
DU 2 5  1 = 1  I O  

I F  ( K T E M l 1 I . E U . ) l  G O  TO 2 0  
K T I U N I I N D I  =  K T E M l  1 1 
I N O  = I N D * I  

2 5  C O N T I N U E  
2 0  M =  M F l

I D E S P I N )  = M 
C T H E  A D D R E S S

D U  2 9  1 = 1  . 1 0  
I M U C T l M t  = I T E M ( 1 )
I F  1 I T E M ! 1 ) . E U . O ) ÛU T U  3 0  
M = M U

2 9  C U N T I N U E
3 0  GU T O  2 2 0  

3 0 0  NT = N  -  I
C T O T A L  NU U F  T R A N S I T I U N S  
C P R I N T  T H E  P E T R I  N E T  

P R I N T  4 0 0
4 0 0  F O R M A T  I I N I , / / / / / , 1 5 X , « L I S T I N G  O F  P E T R I  N E T  « 1 

P R I N T  4 0 1
4 0 1  I 0 R M A T I / / / . 9 X . " T R A N S I T I 0 N ' , 5 X , « T Y P E » . S X . ' O U T P U T  P L A C F * .  

C S X . ' I N P U T  P L A C E S ' . 2 X , ' I M M E D I A T E  D E S C O T  ' )
DU 4 7 0  N = l . N T
P R I N T  4 5 0 . N . K T Y P 1 N I « K U P L I N I

4 5 0  F O R M A T I 9 X , ' T ' , 1 2 . l U X , 1 2 . 1 3 X , ' P ' . 1 2 , 1 5 X . ' P ' , 1 2 1  
N I N P P  = N 1 P L I N )
I F  I N I N P P . E Q . O I  GO T O  4 5 3  
M = I P L A D | N )
DO 4 5 2  1 = 1 . N I N P P  
KK = K T R 1 N ( H )
I F  I M . E U . O I  GU T O  4  7 0  
P R I N T  4 O 0 . K T R 1 N I M I  

4 6 0  F O R M A T I 5 0 X . I 2 )  ,
M = MF 1

4 5 2  C U N T I N U E
4 5 3  C U N T I N U E

M = 1 D L S P I N )
DU 4 S I  1 =  1 . 8  
KK =  I M D C T I M )
I F  I K K . E U . O )  G O  T U  4 7 0  
P R I N T  4 1 1 , KK 

4 1 1  F U R M A T I 6 . Î X .  1 2 )
M = M E |

4 5 1  C O N T I N U E  
4  7 0  C O N T I N U E

P R I N T  4  8 0  
DU 5 0 0  N = I , N P  

4 8 0  F O R M A T  I I  III  . / / / / / / . 2 0 X , ' P L A C E  L I S I I N G  • , / / / )
PRINT 4 90.N.I INPUTI3 ,N). 3=1,9)
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0 0 0 1

0002

0003
0004
0005
0006 
Û00T 
0000 
0000 
00 10 
00 1 I 
0012

00 I 3
0014
0015

0 0 1 b 00 1 / 
0018

0019
0 0 2 0  
0 0 2 1  
0 0 2 2
0023
0024
0025 
902b

0027
0028
0029 
00 30

0031
0032
0033
0034

00 35 
003b 
0037
0030 
0039

CT

C
c
c

c  c

U U U R O U r i N E  H U U S U U I K N T R L . N X S l T t I V A L )
T H I S  R O U T I N E  D E R I V E S  THE S T AT E  VE C T OR UF THE P E T R I  NENT 
U E F U R E  C A F T E R  F I R I N G .  I H E  V L C I U R  KR I S  L UMP UT E U AND 
I HE F I N A L  H E U R I S T I C  F U N C T I O N

C U M M O N / H E U S D / N C ,  I MLGA.  Kl ’ NA.MI I ' O O I . L N X  ( 1 0 0 )  t K D P L I  1 0 0  ) .  KTR T I  1 0 0 1  .  
4 1 P L A 0 I 1 9 0 )  . N I P L I  1 0 0 ) . K U T R ( I O O )  . I M D C T ( 4 8 0 ) . I O E S P (  1 2 0 ) . L S U T R ( 2 4 9 ) .  
* K T R I N I 2 4 0 ) . K T Y P I  1 0 0 ) . 1 TERI M 4 5 )  . K T R T P ( 8 5 )  i K T P T A I S O ) . K N T P L 1 1 0 , 3 ) ,  
* M G R P I 4 0 ) , M G R V I 4 0 ) , N 1 , N P , N 1 P L  

I N T E G E R  Ml  1 0 0 ) , K R ( 1 0 0 )  , K F I R D I 1 0 0 )
I N T E G E R  K T R MF I  3 b ) , M T R M F ( 3 b ) , 1 KXZ
I N T E G E R  G R P H , X 1 N C , 1 X 1 N , C S
C. ÜMMON/ PAK/ NV
C O M M D N / N S l M / I X X Z l U O ) . N R F F
L O G I C A L  D C DU G , C O V E R
L O G I C A L  G I , L T
O A I A  DCn UG / . F A L S E . /
DATA G R P H . C S . I X I N . X I N C  / ' G ' ,  ' C * , ' 1 ' , ' K ' /
N V = N R F F  

CL E AR M VECTOR TO ZE RO 
DO 1 I = 1 , N P  

I Ml  I I = 0
DO b  I = 1 , N P  

GOAL OR COUNT E R  P L A C E
I F ( K P N A M I I ) . E O . G R P H . U R . K P N A M I I ) . E U . X I N C ) GU TO 6  
I F  I K P N A H I I ) . E Q . C S )  GU TO b 2  
I F  I K P N A MI  I ) , E ( ) .  IX I N )  GU TO 8 0  

R E G I S T E R  VE CT OR NUDE —  CHECK F O R  C O V E R ,
L I K = L N K I I )
I F  I C OVE R !  M G R I ' I L I K I  , MGRV I L I K )  , NX5T T I ) GO TO 8 3
GO TO 6
I F  ( L N K I I ) . N E . K N T R L )  GO TO b  
Ml  1 )  = 1  
C O N I I N U E
I F I D E U U G )  P R I N T  T 7 , I M l J ) , J = 1 , N P )
FORMAT I / / / . , 5 X ,  ' S I  AT E  VECTOR ULFOF. E F I R I N G  • , / , 5 X  , 8 0  I 2  )
D E R I V E  THE S T A T E  VE CTOR A F I E R  THE K I I I  F I R I G  
DU 1 9 9  I = 1 . NT

60

6280
6

77
NOW

KFIRDI1) =0 
NIP =N1PLI1)
IND =1PLADI1)

C PICK IHE INPUT PLACE 
111 J = KIR INI INU)

IF IMI J l.h'O.O) GO TO 199 
NIP = NlP-1 
IF I KTYPI I ) .F.O.G )

C UNCUtlUIT lONAL CONI POL 
IF INIP.E(I.O) GO 
INO =INUF1 
GO TO 111 
II I KTYPI I I ,NL .3 I 
3 = KUPLI I I

r O IKAN3ITION I

GO 10
j I ate

TO 120

125
IRAhlbl I ION

4̂
UI

1 2 0 jil lO 1.
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0040 
004 I
0042

0043
0044
0045 
0040 
0047

0040
0049
0050
0051
0052
0053
0054

0055 
0050 
0057 
0050 
0059 
OOuU 
0001 
0002
0003
0004 
0065

0000
0007
0000
0009
0070
0071
0072

0073
0074 
00 75 
00 70

0077 
00 70

M(J) =1
GO TU 199 

125 KF IRUll ) =1 
C KflFO IS THE LIST UF F IRAULE TAN51TIÜNS I.E.
C ALL CUNOillUNS FUR FIRING ARC FULF ILLtD UNLLV THEY NAVE NOT OEEN 
C. COMMANOEU TU FIRE

199 CUNTINUE
IF (UEtlUG) PR I NI 200.1 M( Jl . J=I .NIM

200 FURMAT15X,'ST ATE VECTOR AFTER F IRING',///,IX,00121 
IF (DEDUG) PRINT 2222 »(KFIRfK J ) . J=1.N T )

2222 FORMAT(5X,'F IRAULE TRANSITIUNS' 1X.OOI2)
C UERIVe VECTOR KR . THE SET OF ALL F IREO TRANSITIUNS AND THOSE THAT CAN 
C OE INFERRED TO BE FIREO 
C CLEAR VECTUEH KR

DO 201 I = I,NT
201 KR(I) =0

DO 249 J = I,NP 
IF (M(J).EO.n) GU TO 2 49 
INU = KOTRlJ1 
IF(INU.EU.O) GU TO 249 

211 1 = LSUTRIIND)
C PICK TRANSITION TO WHICH THIS PLACE IS OUTPUT 

IF(I.EU.O) GO TU 249 
KR(I) =l 
INI) = INUfl 
GO TU 211

249 CONTINUE
IF (ULUUG) PRINT 250.(KR(J) .J = I .NT)

250 FORMAT(//,IX,•riREu TRANSITIONS ',//,IX,0012) 
no 299 I =1«NT
IF (KR(I),EU.O) GU TO 29 9 
INU = lOESPII)

252 IMS =1MUCT(IND)
C PICK IMMEUIAIE DESECNUANT UF TRANSITION 1 

IF (IMS.EQ.O) GU TU 299 
KR(IMS) -I 
INU = lNU+1 
GO TO 252

299 CONTINUE
IF (DEBUG) PRINT 3J0,(KR(J) , J = 1.NT)

300 FURMAI(//,5X,« KR AFTER ALL INFERRED IRAS. HAVE ÜCEN ADUEO',
c//,ao(12))

C NOW COMPUTE THE HEUR1ST 1C FUNCTION.
HPT -0.
HCNT =0.
HR VE = 0.
HSFN =0.

C n C R P  IS THE SET OF YE TERMINAL PLACES, KTPTA IS THE PUINTER TO 
C TRANSITIUNS TU WHICH TERMINAL PLACE I POINTS
C T KTRTP IS THE LIST ul TRANSITIONS «H1CH HAVE TERM INAL PLACES AS INPUT 

00 349 L=l,NTPl.
J -ITLRP(L)

H
0 1
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0079

0080 

0081

0082
0083
0084 
0088 
o o e c
0087
0088
0089
0090
0091
0092

0093

0094
0095
0096
0097
0098
0099
0 1 0 0  
0 1 0 1  
0192

0103
01040105
0106 
01 07 
01 08

01 09 
0 110 

0 1 1 1  
0112
0113

0114
0115 
01 lu 
0117

J IS INPUT

T 1./NIP

C PICK TLTtMINAL PLACE
IF (MW).ED. 0) ÜI) TU 34 9 

C CHECK AOUVE
N =KTPTA(L)

C AOUUESS UF TRANSITION TU WHICH 
305 I = KTHTP(N)

C PICK TRANS
IF (I.EG.01 GU TÛ 349 
IF (KK(l).EQ.ll GU lU 310 
NIP =NIPL(I)
IF (KTYP( I >.EU.3) HPT = HPI 

310 N =N*I
GU 1U 305 

34 9 CONTINUE
IFIUEDUUI PRINT 350. HPT

350 FURf1AT(5X. 'CUTRIUU. FROM TERM PLACES ' .FI0.4)
DO 449 1=1.NT
IFIKTYPI1).NE.41 GU TU 400 

C INC HEURISTIC CUM^UIATlUN 
J =KOPLII)

C OUTUT PLACE
C KNTPL IS THE SET UE CUUNT PLACES
C KNTPLII.l) CONTAINS IHE 0 PLACE #.KNTPL(1.2) IS 
C THE NU UF I LIPFLUPS IN THE COUNTER 
C KNTPL11,3) IS THE FIRST FF NU UF COUNTER 1 

DO 351 N=l.10
IF (KNTPLtN.I).EQ.J) GU TO 356 
11 IN.EM.10) PRINT 355.J

351 CONTINUE
355 FORMAT(5X.•KMT PLACE '.12.«NUI FOUND IN KNTPL TAHLE')
356 KK =: KNTPL IN,2)

JJ = KNTPLIN.3)
JK = JJ F KK - I

64 1.1K=LNKW)
C INC HEURISTIC CUMPUTATlUH.

KVAL=0 
MVAL=0 
LT=.FALSE.
GI=.FALSE.
CAL L UNPACK(MT RMF,MGRPILIK) .MGRVILIK))
CALL UNPACKIKTRMF .0..1XSI1 )

C CHECK FOR GGAL GRI AI L(< THAN. LESS THAN.
DU 65 3=33.UK
I F  ( M I R M F I 3 )  . r o . ^ . A N D . KTRMF ( 3 )  . C O . 1 )
I F  ( M l R M F ( 3 ) . L G . I , A N U . K I R M F ( 3 ) . E Q . O )
IF (GT.UR.LT) GU lU 66

65 CUNTINUE
C SET Ml RMF INDL T LRMl N AT LS 1IJ GIVI M1H1H3M DIFFLREHCE FRl.M NXSl T

6 6  DU 6  7 K = 3 3 . 3 K
IF (MTRMF(K) .1.1 .2) GU III 66 
MIRHF(K)=1
IT ( G l )  M I I M F  ( k ) = K I 6 , I F  ( H I

AND EUUAL TU NEXT STATE.

LI=.TFUC.
G I = .1HUE.
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C CUMPUTE VALUES IN EACH CUUNTEH. 
o n e  6U KVAL=KVAL424KTnMKIK)
0119 OT MVAL=MVAL*2*MThclF(K»
0120 IE (LTI MVAL = MVAL E 2**KK
0121 TO KU = IMVAL KVAL»
0122 XVAL = MVAL
0123 HCNT - HCNT ♦ (I. -KU/XVAL)
0124 ir (ULUUGI PK INI 3‘3 T tKD .HCNT • I KTLMi I N ) • N= I • NEFF I ,

4|MTRMFIN).N=I,NMFFI
0125 357 FOIIMATISX, *KU ' , 13.» HCNT ' ,1 I 0.4./.5X. ' KTOMF » . 50 12 «

♦/.5X.' MTPMF »,5012)
0126 GO TO 449
0127 400 IFIKHIIt.EQ.O) GU lU 449
0120 HKVE =HKVE E l .
0129 44 9 CONTINUE
0 130 HSFN =NT- (HPT E HCNI E HPVC»
0131 IVAL = NE E IMEGA4H5FN/NT
01 32 II-IUEOUG) PM I NT 455.HMVE,HSFN. IVAL
0133  455 FORMAT (5X. *11 VEC CUNTR . « . F 1 0 .4, '  HFN '  .F 10.4 .131
0134 RETURN
0135 ENU

H
00
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PSEÜDO-NSIM SUBROUTINES FOR CASES I-IV
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CT
0001 SUflROUTlNE PSDNSH(KNTR)

C MEGISTEU TRANSFER SIMULATOR 1PSEUDU-NS1M) FOR CASE
0002 COMMÜN/NS1M/KT RM 1(16).KTRMF136 1 .MTRMF(36).NRFF
00 13 GU TO (1,2,3«2,9,2,7,2«91,KNIR
0004 9 RETURN

C INCREMENT THE COUNTER (CONTROL STATES 2,4.6,01
00 Jb 2 3=0
000b 00 101 1=1,3
0007 101 3=3»3FKTRMFI1)
0008 3 = 3+1
0000 00 102 1=1,3
00 10 K=3/2
00 1 1 MTRMF14-11=0
0012 IF 13.NE.K+K) HTRMF(4-|)=1
00 13 102 3=K
00 14 RETURN

C CONTROL STATE 3. INPUT TO ACCUMULATOR
00 lb 3 00 103 1=1,8
0016 103 HTRMF(3+1)=KTRH1(1)
001 7 GO TU 1

C CONTROL STATE 7, COMPLEMENT OF INPUT TO OUFFER.
0010 7 00 104 1=1,8
0019 MTRMF13+1)=1-KTRM1(1>
0020 IF (MTRMF(3+1).LT,0> MTRMF13+11=2
0021 104 CONTINUE

C CLEAR THE COUNTER (CONTROL STATES 1,3,7,91
0022 1 00 100 1=1,3
0023 too MTRMF1 I 1=0
0024 RETURN
002b END

II

oi



F J i U U A U  IV tj L E V u L  2 1 t ' ÜJ NÜM DA 1C = / U 3  3 / 1 1 1 / 4 0 / 0 7 l»A(iL- •)(»•) I

UOOI s u m . DUT IMC PSDMSMI KI I VWL i  
C R E Ü I S I C R  T R A N S F E R  S l M U L A T U r t  « P S E U U U - N 5 I H I  FUR C A S E  I I I  
C 4 I . 0  = F I 1 .  I K 0 = F F 4 .  M U 0 - F F 7  ,  ACO =1 F 9

0 0 0 2 C U M M U N / N S l M / K T l i M  11 l u  ) . M  RMF 1 J 6  1 .MTRMF I 1 6 )  . N R F F
0 0  J J DU 1 1 = 1 . NR F F
Oil J l 1 HTI .MF 1 1 ) = KTRMJ 1 1 )
OOO' j

C.
GU TO ( 1 0 . 2 0 . 3 0 . 4 0 . 6 0 . 4 1 J . K N I R L  

CÜN1RUL S T A T E  1 A R = I N  A .  1 1 = 1  N I N
ooul, 1 0  lJU 11  1 = 1  . 6
0 0 0 7 I I  M I H M F l l ) = K T R M 1 ( 1 )

C CUNT RUE S T A T E  2 .  l l l . A N C H l N u  U N L Y .
0 0  0(1 2 0  R ET URN

L E UNTRUE S T A T E  3 .  L U N D I  T I U N A E T R A N S F E R S  I J ASED ON I R .
ooov 3 0  I F  ( K T H M F I S ) . E U . I ) 3 U  f U  3 4
110 1 0 I F  ( K T R M F 1 6 ) . E G . 1 )  GU TU 3 2

c 1 R=XUU AC=X
0 0  1 1 DO 3  I 1 =  1 . 2
0 0  1 2 31 MTRMF( Ü F 1 I = K T R M 1 ( U F I )
0 0  I J R ET UR N

c 1 R = X 0 1  AC=MD MU=AC
0 0  14 3 2  DU 3 3  1 = 1 . 2
0 0  I ;» MT R M F ( 0 ♦ 1  » =K T R M F 1 0  F 1 )
1)0 1(> 3.1 MTRMF ( 6 F I  ) = KT R M F  ( a *  I )
0  J 1 7 R E I U J . N
O ' J l l l .14 I F  ( K T R M F 1 6 )  . E U . l  1 Gil  TU 3 o

L 1R = X 1 J  A C = A C .  AND.MIJ
0 0  1 0 DU 3*3 1 =  1 . 2
0 0 2 0 M T K M F l U f  1 ) = . )
J >21 I F  ( K T R M F l B F l ) . E U . 1 . AN D . K T R MF  ( 6 1 1 1 . E U . 11 M l R M E l U l l )
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Fig. B-1 Case I: Control Circuit
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