
INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfflming. While the
most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the material
submitted.

The following explanation of techniques is provided to help you understand
markings or notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document
photographed is “Misâng Page(s)” . If it was possible to obtain die missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting through an image and duplicating
adjacent pages to assure you of complete continuity.

2. When an image on the Him is obliterated with a round black mark it is an
indication that the film inspector noticed either blurred copy because of
movement during exposure, or duplicate copy. Unless we meant to delete
copyrighted materials that should not have been filmed, you will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo
graphed the photographer has followed a definite method in “sectioning”
the material. It is customary to begin filming at the upper left hand comer
of a large sheet and to continue from left to right in equal sections with
small overlaps. If necessary, sectioning is continued again—beginning
below the first row and continuing on until complete.

4. For any illustrations that caimot be reproduced satisfactorily by
xerography, photographic prints can be purchased at additional cost and
tipped into your xerographic copy. Requests can be made to our
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we
have filmed the best available copy.

Universi^
A/UcTOTlms

International
300 N. ZEEB ROAD. ANN ARBOR. Ml 4 8106
18 B ED FO RD ROW. LONDON WC1R 4EJ. ENGLAND

7923790
IrORKUf KOFI EMMANUEL

f a u l t t e s t g e n e r a t i o n f o r s e q u e n t i a lCIRCUITS; A SEARCH DIRECTING HEURISTIC.
THE UNIVERSITY OF OKLAHOMA, PH.D., 1979

Univefsiv
. Micronlrns
irtemationa] s o o n , z ë e b r o a o . a n n a r b o r , mi «sioe

PLEASE NOTE:
In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark .

1. Glossy photographs
2. Colored illustrations
3. Photographs with dark background
4. Illustrations are poor copy ___
5. Print shows through as there is text on both sides of page
6. Indistinct, broken or small print on several pages_______ throughout

7. Tightly bound copy with print lost in spine
8. Computer printout pages with indistinct print
9. Page(s) lacking when material received, and not availablefrom school or author _ _ _ _ _ _
10. Page(s)_ _ _ _ _ _ seem to be missing in numbering only as textfollows _ _ _ _ _ _
11. Poor carbon copy _ _ _ _ _ _
12. Not original copy, several pages with blurred type
13. Appendix pages are poor copy _ _ _ _ _ _
14. Original copy with light type _ _ _ _ _ _
15. Curling and wrinkled pages _ _ _ _ _ _
16. Other

Ui

Infsmadonai
300 N. 2 £ £ 3 RD.. ANN ARSOR. Ml ^8706 !313I 761-4700

THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

FAULT TEST GENERATION FOR SEQUENTIAL CIRCUITS :
A SEARCH DIRECTING HEURISTIC

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

BY
KOFI EMMANUEL TORKU
Norman, Oklahoma

1979

FAULT TEST GENERATION FOR SEQUENTIAL CIRCUITS:
A SEARCH DIRECTING HEURISTIC

APPROVED BY

DISSERTATION COZmiTTEE

• ACKNOWLEDGEMENTS

At the end of an effort to produce a dissertation,
I owe special credits to many people : more than just another
page of acknowledgements.

Dr. B. M. Huey deserves special thanks, as my major
advisor and dissertation director. He got me interested in
this area of research and gave a tremendous personal and pro
fessional support; in fact, this is truly our dissertation.
To Drs. W. T. Cronenwett, J. A. Payne, A. Rafii and H. J.
Kumin I am grateful for their consideration and encouragement
during the preparation of this dissertation.

I am also indebted to Dr. C. R. Haden, former Director
of the School of Electrical Engineering for his personal en
couragement .

This research is based on the SCIRTSS project begun at
the University of Arizona. We are grateful for permission to
use their circuits for testing.

The partial financial support I received from Kumasi
University is appreciated.

I X i

Finally, my deepest gratitude goes'to my wife, Regina,
for her loving support; and to my daughters, Agatha and Amy
for their lost evenings.

IV

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS V Ü
LIST OF TABLES ix
ABSTRACT ... X

I. INTRODUCTION 1
1.1 Previous Results 2
1.2 The Sequential Circuit Test Search System

(SCIRTSS) 3
1.3 Guiding Sensitization Search 9
1.4 Proposed Work 11

II. PETRI NET AS AN AID TO FAULT DETECTION........ 13
2.1 Introduction 13
2.2 Background 14

2.2.2 Firing Rules 15
2.3 Petri Net as an Aid to Guiding Sensitiza

tion Search............... 18
2.3.1 Types of Places 20
2.3.2 Formal Definition of Petri Net for

Guiding Sensitization Search . 24
2.4 Generating the Petri Net from AHPL 25
2.5 Complete Petri Net 32
2.6 Summary................................ 41

III. HEURISTIC FUNCTION DEVELOPMENT 42
3.1 Introduction 42
3.2 State Equation of a Petri N e t 43
3.3 Implied Transition Firing 49
3.4 The Heuristic Function 53

3.4.1 Counter and Shift/Rotate
Transitions 59

V

IV. INPUT VECTOR GUIDANCE......................... 65
4.1 Introduction...............'........... 65
4.2 Selecting Input Vectors 66

4.2.1 Control Branch Input Selection
Procedure 67

4.2.2 Register Transfer Input Selection 78
4.3 Using the Input Vector Selection Procedure 83
4.4 Terminating the Petri N e t 84

V. CASE STUDIES AND RESULTS 87
5.1 Case I: The Narrow Window Circuit 89
5.2 Case II: The Anti-Random Circuit....... 97
5.3 Case III: Search-Sort Processor 101
5.4 Case IV: Four-Bit Expandable Micro

processor 108
VI. SUMMARY AND CONCLUSIONS 125

6.1 Summary................................ 125
6.2 Limitations and Further Work 127
6.3 Conclusion 129

APPENDIX A.l: SCIRTSS SEARCH ROUTINES 131
APPENDIX A.2: PETRI NET AND HEURISTIC COST VALUE

ROUTINES 142
APPENDIX A.3: PSEUDO-NSIM SUBROUTINES FOR CASES I-IV . 150
APPENDIX B: CIRCUIT SCHEMATICS FOR CASES I - I V...... 157
LIST OF REFERENCES 171

VI

LIST OF ILLUSTRATIONS

Figure Page
1.1 SCIRTSS Flow Diagram....................... 7
2.1 Petri Net Model 16
2.2 Firing of an Enabled Transition 17
2.3 Petri Net for Illustrating Transition Time .. 21
2.4 Petri Nets Illustrating Different Types of

Places 23
2.5(a) Setting Up the Goal Places 26
2.5(b) Expanding the Goal Places 26
2.6 Unconditional Control Transition 31
2.7 AHPL Description of Exaitç>le 33
2.8(a) First Stage of Petri Net Generation 34
2.8(b) Second Stage of Generation of Example

Petri N e t 36
2.9 Subnets for Control States One and S i x 38
2.10 A Complex Control State Subnet 38
3.1 Petri Net for Example 3.1 45
3.2 Example Petri Net for Illustrating Transition

Firing............................... 45
3.3 Derivation of Marking Vector 48
3.4 Dealing with Loops in the Petri N e t 51
3.5 Derivation of R^ 52

vii

3.6 Petri Net for Illustrating Heuristic Function
Confutation............... 57

3.7 Modelling Count Transition 60
3.8 Heuristic Cost Function Computation........ 63
4.1 Construction of CS Branching Function 71
4.2 Petri Net Example for Input Vector Weighting 79
5.1 AHPL Description of Case Study I 90
5.2 Control State Diagram of Narrow Window Circuit 91
5.3 AHPL Description of Case Study II 98
5.4 AHPL Description of Case Study III 102
5.5 AHPL Description of Case Study I V 110
5.6 Block Diagram of Four-Bit Microprocessor 113

vxix

LIST OF TABLES

Table Page
2.1 The Petri Net Listing for Fig. 2.7 39
2.2 Place Listing for Table 2.1 40
5.1 Petri Net Listing for Case I 93
5.2 Place Listing for Case I 94
5.3 Test Runs for Case I 96
5.4 Listing of Petri Net for Case II 99
5.5 Place Listing for Case II 99
5.6 Summary of Test Runs for Case II 100
5.7 Petri Net Listing for Case III 103
5.8 Place Listing for Case III 104
5.9 State Space Search for Case III 107
5.10 Summary of Test Runs for Case III 108
5.11 Petri Net Listing for Case I V 114

XX

ABSTRACT

The use of Petri nets to model the register transfers
and change of control states in a sequential machine described
in a Computer Hardware Description Language (CHDL) with the
aim of guiding state space searches is proposed. Each fault
to be detected defines a set of goal nodes for the state space
search. These goal nodes together with a CHDL description of
the circuit are used to generate a Petri net. Some portions
of this process are invariant with respect to the goal states,
depending entirely on the CHDL description.

Two guidance mechanisms are derived from the petri net;
heuristic cost value and input vector guidance. For each ma
chine state encountered during the state space search, a state
vector is derived from the petri net. A heuristic cost value
is computed based on the state vector; this cost value being
a measure of the effect of reaching one machine state in the
state space search on the transitions in the petri net. The
petri net also contains information about input vectors that
are associated with each control state. The most important
of these are selected based on an established criteria. The

heuristic cost value and the input vectors are used to guide
sensitization searches in the Sequential Circuit Test Search
System (SCIRTSS). Four case studies are presented to test
the effectiveness of the guidance mechanism. The results show
that the developed model is a promising tool that can be used
in fault test set generation in complex sequential circuits.

XX

CHAPTER I

INTRODUCTION

The advent of integrated circuits and very large scale
integration has made fault detection in digital systems a com
plex process. The number of states inside integrated circuit
chips has grown: one chip may have hundreds of flip flops,
hence the state space has become much larger. It is no longer
possible to provide additional test points brought to external
connections due to packaging limitations. This pin limitation
constrains the number of outputs observable and inputs to con
trol the sequential circuit inside. The concepts of controll
ability and observability are important in understanding this
problem. Control refers to the ability to apply a complete set
of tests to a subsystem via external inputs, that is, control
points. Observation refers to the ability to observe the out
puts of a subsystem via external outputs, that is, observation
points. If many flip flop outputs were observable and controll
able, faults could be easily detected through direct observation
of the outputs. However, this is expensive and one has to rely
on the limited inputs and outputs of the chip to develop a test
generation sequence. Constraining the number of inputs forces

the testing to become highly sequential; thus a sequence of in
puts that enable the effect of the fault to be observable at the
output must be found by the fault detection system. Finding
this sequence must be efficient to avoid waste of computer time.
1.1 Previous Results

The earliest fault diagnosis programs were written to
exercise machine functions, rather than hardware. Generally, a
complex machine instruction like MULTIPLY or DIVIDE was executed
and the results were compared with those obtained using an
equivalent sequence of simpler instructions, like SHIFT, ADD or
SUBTRACT. If there was a discrepancy between the results,
then the complex operation was assumed to be defective. The re
sults from such tests might not necessarily be valid due to the
limited nature of the test as reported by Estrin (1953) and
other investigators.

Eldred (1959) was one of the first investigators to
appreciate the importance of diagnostic programs which test
machine hardware rather than its functions. This was a major
improvement and hardware-oriented diagnostics came into general
use and are still being used. Eldred's results were developed
for fault detection in combinational circuits of one or two
levels. An extension of Eldred's work to circuits having any
number of levels followed; the process is labelled one dimen
sional path sensitization. Although many investigators worked
in this area, Armstrong is prominently linked with this method.

The idea is to choose a path from the site of a fault
to the output; the inputs to the gates along this path are

assigned values so as to propagate any change on the faulty
line along the chosen path to the output. This path is called
a sensitized path and the process of constructing the path is
called the forward-trace phase of the method. After setting
up a sensitized path, we trace back from the gates along the
sensitized path toward the primary inputs. This is the back-
ward-trace phase of the method.

Although Schneider (1967) has provided a counter example
to show that the method is not an algorithm, this method has
been very useful in practice. Its defect is the occasional
inability to produce a test when one exists.

J. Paul Roth (1966, 1967) formulated an algorithmic
method which sensitizes all possible paths from the site of the
fault to the output simultaneously. He called this method the
d-algorithm. The d-algorithm has proved to be a general solu
tion to the problem of fault detection in combinational circuits,

The formal algorithmic approach to fault detection in
sequential circuits has been studied by various investigators
including Poage and McCluskey (1964), Hennie (1964) and Kime
(1966). These algorithmic approaches are impractical for any
but small circuits and small classes of faults. This is due to
the following difficulties:

a. For each possible circuit state, a potential test
input must be evaluated. The number of states
increases as 2^ where n is the number of memory
elements in the circuit. This puts a practical limit
on the complexity that the circuit cam have.

4

b. A homing sequence (Hennie, 1964) must be found
that forces the machine into a known state. It
may be very lengthy or one may not exist for some
circuits.

c. Some sequential circuits, especially large circuits,
can not be easily described by a state table.

The alternative approaches to fault test generation in
sequential circuits are non-algorithmic: methods that treat
fairly large circuits and are economical of computer time.

The Sequential Analyzer of Seshu and Freeman (1962, 1965)
was one of the first non-algorithmic test generation methods.
The Analyzer is a digital simulator. An heuristic is presented
to the Analyzer with a sequential circuit plus a specified set
of faults. The heuristic proposes one or more potential tests
which are simulated to determine their performance. Some sort
of numerical measure of performance is computed for each test
input and the one with the highest figure of merit is used pro
vided its value exceeds a predetermined value. Otherwise the
heuristic has failed and another is tried. Four heuristics
were developed and are tried. If all four heuristics fail, the
system gives up.

All of the heuristics of the Analyzer have proved to be
reasonably effective for small circuits. They are, however,
impractical for large circuits because of the computer time re
quired to simulate the various candidate tests. Because the
heuristics employ local rather than global optimization tech
niques , they do not guarantee a minimal test sequence..

other non-algorithmic test generation methods were
developed by Kubo (1968), Breuer (1971), Bouricius et. al
(1971) and Rutman (1972). All of these essentially transform
the sequential circuit into an iterative combinational circuit.
The d-algorithm is then applied to generate a candidate test.
The iterative model has been quite successful for sequential
circuits that are largely combinational in form and where the
number of circuit iterations required to model the time frames
needed to propagate the fault to the output is small. But
when the number of state variables is large, the testing pro
cedure has to be abandoned due to the fact that the computa
tional time becomes exorbitant.

1.2 The Sequential Circuit Test Search System (SCIRTSS)
The Sequential Circuit Test Search System, developed

by Hill, Belt (1973), Carter (1973) and Huey (1975) is based
on a non-algorithmic method using heuristic graph searching
techniques. Two heuristic tree search procedures automatically
determine trial input sequences which are used to simulate sim
ultaneously all single faults of the circuit. The sequential
circuit is partitioned into its control and data portions as done
in most Computer Hardware Design Languages (CHDL's). The control
input combinations are applied in every node expansion while
only input vectors previously specified by an input vector gen
erating routine are considered. Thus, the search is primarily
that of the state graph of the control circuit. The node ex
pansion is computed by simulating a CHDL rather than by circuit

simulation, an approach which leads to a great reduction in
computation time. The design language used is AHPL (Hill and
Peterson, 1978).

We present here a simple description of SCIRTSS. A more
detailed description is given in Hill and Huey (1977) and Huey
(1978). SCIRTSS incorporates the single permanent fault assump
tion and assumes that both the faulty and the good network ope
rate in clock mode. Fig. 1.1 shows a block diagram of the test
generation system. SCIRTSS has two main search routines: The
sensitization search and the propagation search.. For a particu
lar fault to be detected, a sequence of inputs must be found
that takes the fault-free circuit from its initial state to a
state such that the input sequence generates a sensitized path
from the site of the fault to either an output or to a flip-flop.
This input sequence is called the fault-sensitization sequence
^ d the process of determining this sequence is the sensitiza
tion search shown in block 2. The application of the fault-
sensitizing sequence may cause the effect of the fault to appear
at the output or to be stored in a flip-flop. In the latter
case, a sequence of inputs is needed to cause the register trans
fers to make the discrepancy between the faulty and fault-free
circuits observable at the output. This input sequence is the
fault-propagation sequence and the process of propagating the
stored fault to the output is the propagation search shown in
block 3.

Both the propagation and sensitization searches use
guidance mechanisms to reduce the search cost. The searches are

Select
Fault

)-algorithm

Sensitization
Search

Elemental
Simulation
Fault List
Reduction

3
Propagation Select

Search Fault

Yes

Figure 1.1 SCIRTSS Flow Diagram

8

conducted over control and user-specified data input only and
consider only one fault at a time.

Blocks 1 and 4 in Fig. 1.1 are the d-algorithm and
elemental simulator, respectively, that are incorporated into
SCIRTSS. If a fault is ever to cause malfunction, there must
be some state of the machine for which the outputs are in
error or the next states of the good and faulty machines differ.
If the set of untested faults and a circuit inter-connection
list are given, a modified d-algorithm can find states for
which the faults will cause erroneous next states or outputs.
This d-algorithm treats the circuit as if it were combinational
by Considering its behavior for only one clock period. The
test vectors returned by the d-algorithm are converted into
primary inputs and "present" states and the test generation prob
lem becomes reaching one of these present states. Inputs are se
lected heuristically and the response of the machine is simu
lated with the AHPL simulator until the search for a sequence
of input vectors to move the machine to one of the goal states
is successful. Once this happens, SCIRTSS enters the fault pro
pagation mode to extend the effect of the fault to a primary
output. Inputs are again selected heuristically and the machine
is simulated in a search of the control state graph until a
sequence of input vectors is found which will move the fault
to the output.

After finding a test sequence, it must be verified using
the elemental simulator of block 4 in Fig. 1.1. This simulator

and the AHPL simulator are different in three aspects :
a. The effect of using the faulty gate to perform

register transfers in propagating the fault is
only approximated in the AHPL simulator.

b. The AHPL simulator uses a single machine and each
variable may be 0, 1, D, D, or X (unknown). The
elemental simulator permits each variable to be
only Of 1, or X for a given machine, but simultan
eously simulates the good machine M, and for each
undetected fault fj_, a faulty machine

c. The AHPL simulator is about 25 times faster than
the elemental simulator. This makes the trial and
error searching practical in terms of computer time.

In block 4, Fig. 1.1, all other faults detected by the
same input sequence are removed from further consideration.
SCIRTSS checks the states of the good and faulty machines re
maining for faults stored in flip-flops as a result of the in
put sequence just applied. If new faults are stored, the program
continues in fault propagation mode. There is a point at which
the set of untested faults is not empty, but none of the remain
ing faults have resulted in an error occurring in a register.
The register transfer simulator is no longer useful at this
stage for propagating faults to the output and SCIRTSS must re
enter sensitization mode.

1.3 Guiding Sensitization Search
SCIRTSS has been very effective in generating faults

10

for highly sequential circuits. Huey and Hill (1977) give some
statistics to show the usefulness of SCIRTSS. The propagation
search has produced consistent results throughout the history
of SCIRTSS. Sensitization search, on the other hand, has not
been as successful. This is due to the fact that sensitiza
tion mode searching occurs after SCIRTSS has run out of faults
to propagate and the remaining faults are usually difficult to
reach. Essentially, the sensitization search is confronted
with the task of moving the machine into a small set of goal
states which are inherently difficult to reach. Many highly
circuit dependent heuristics were written to cope with this
problem. Huey (1975) was the first to.attempt to provide
a general purpose heuristic function and minimize the manual
effort required of a user in forming an input sequence. His pro
posals also improved the efficiency of the sensitization search.

The question that is answered by the fault sensitization
phase of SCIRTSS is "how can the states of the fault-free cir
cuit and faulty circuit be differentiated?" For a given fault
f a sensitized path from f^ to a flip-flop FF^ is determined
by a combined state and input vector v^ = (Xj,Yj) where Xj is
the input to the combinational logic and is the flip-flop
state. Of course, V. may not be unique; thus, for f^ we have
a set of vectors which determine the
sensitized path. After the V\j's have been found by the modi
fied d-algorithm, a sequence of input vectors must be found to
move the machine from its present state to state Y^. Finding

11

this sequence of inputs is the sensitization search which can
be regarded as a graph theoretical problem of finding a path
from any of the starting nodes to any of a set of goal nodes,
states that provide a sensitized path to an output or a flip-
flop. This search, like the propagation search, requires di
rection to be efficient.

The problem reduction graph approach of Huey (1975) has
provided a guidance mechanism for the sensitization search whose
effectiveness is independent of the circuit under test. In the
problem reduction graph, the problem of reaching a goal state
is resolved into subproblems which are in turn iteratively
broken into subproblems terminating in simple problems. The
nodes in the problem reduction graph are weighted and a heuris
tic value for each state encountered in the state space search
is computed based on the weights of the nodes in the problem
graph that are not satisfied by the search state. The problem
graph also indicates input vectors associated with each control
state. These input vectors are used together with the heuris
tic function to guide the sensitization search.

1.4 Proposed Work
The problem reduction graph approach has demonstrated

its effectiveness in guiding fault-sensitization searches for
goal states in complex sequential circuits that are very diffi
cult to reach. This approach is the first to provide a general
purpose guiding mechanism for the sensitization search.

Is it the best? Using the idea.of analyzing a design

12

language description can a more efficient method be found?
This research is an attempt to find out answers to these ques
tions. Also, the problem reduction graph introduces the idea of
”'Tf links" which were not actually used in generating the
heuristic function nor in the selection of input vectors to
guide the search. It is our intention to study an efficient
method of selecting input vectors to guide the sensitization
search.

In studying how the heuristic cost function is derived
from the problem reduction graph, it becomes apparent that the
function is trying to measure the effect of satisfying a node
on the overall desired goal of reaching a solution. Petri nets
are graph models that have been used in various areas of com
puter science to study the interconnection properties of systems.
It appears then that petri nets are also very suitable for mea
suring the effect of reaching one state in a state space search
on the overall desired goal state.

This research presents the use of petri nets to model
the register transfers and change of control states in a sequen
tial machine described in a Computer Hardware Description Language
with the aim of guiding fault-sensitization searches.

The next chapter develops the model and the following
two chapters develop the guidance mechanisms for the sensitiza
tion searches. In Chapter five, four different circuits are
used to test the method.

CHAPTER II

PETRI NETS AS AN AID TO FAULT DETECTION

2.1 Introduction
For each search state of the sensitization search,a cost

value is computed and external input vectors are provided to
the search program to guide the search. This combination of
input vectors and heuristic cost values increases the effi
ciency of the search. Because the heuristic cost value must
be computed for each node as it is generated, its computation
must not be time-consuming, otherwise it will slow down the
search. The external input vectors must be judiciously chosen
for each state to minimize "trial and error."

Before the commencement of the sensitization search,
goal states are defined by the d-algorithm as explained in
section 1.2. These goal nodes can be broken down into
subnodes and the subnodes broken down further until an essen
tially trivial node is reached. These subnodes are concerned
with transferring vectors (a^,a2 .•-a^), a: e(0,x,l) into given
registers or moving the machine into a given control state and/
or applying an input vector (a^,a2 ...a^) at a given control
state. The problem can then be thought of as: "How can we

13

14

reach the goal node(s) starting from the trivial nodes?" In
this chapter we present the technique of modeling the register
transfers and change of control states in a given machine by
a petri net.

By studying the relationship between the various "tran
sitions" and nodes in the petri net for each machine state,
we can derive an heuristic value for the given state. Also,
input vectors to be applied at any given control state can be
obtained from the petri net.

It is assumed the given circuit is described in a com
puter hardware description language (CHDL). For our discussion
we use AHPL (Hill & Peterson 1978) due to familiarity.

2.2 Background
"Petri nets" are graph models used to study the inter

connection properties of concurrent and parallel systems.
C.A. Petri (1962) proposed in his dissertation "Communication
with Automata" that the basic phenomena of communication,
such as the switching logic of totally asynchronous automata

/

are representable by purely combinatorial-topological means.
Thus, he proposed the construction of a net with more practical
applicability in the design and programming of information
processing machines than does the theory of abstract automata.
Holt et al (1968) developed Petri's work to such a state that
it is applicable to many areas in computer science.

Our purpose here is to use this modelling device to
model the register transfers and state transitions that can

15

occur in a machine, given a set of goal nodes.
2.2.2 Firing Rules
Fig. 2.1(a) is a large-scale distributed system which

interconnects many information processing elements or process
ors. For the purpose of studying the relationship between
the interconnection and the overall behavior of the system,
each information processing element may be represented by a
module of the general form shown in Fig. 2.1(b). The vertical
bar is called a "transition" while the circles are referred to
as "places" or "locations." A petri net is the interconnec
tions of such modules. Thus we may look upon a petri net
as a directed bipartite graph wherein there is
allowed a directed arc from a place or location to a transi
tion, or from a transition to a place. In order to simulate
the flow of control in a petri net, each place is marked with
(that is, may have assigned to it) a non-negative number of
tokens. We may think of a token as representing a datum, or
denoting the presence of some condition or some control signal
associated with its place.

The transition obeys the following rules :
a. A transition is said to be "enabled" or "firable"

if each of its input places contain at least one
token,

b. The "firing" of an enabled transition consists of
removing one token from each of its input places,
and adding one token to each of its output places.
Fig. 2.2 gives an illustration.

16

Input
Signals

— P»» Information b•
-------->

#
ir £^Ow6S a x n g »
Element

Output
Signals

Fig. 2.1(a) Model

Input
Signals Output

Signals

Fig. 2.1(b) Building Block

17

(a) Before Firing

(b) After Firing

Figure 2.2 Firing of an Enabled Transition

18

c. Though it may fully be enabled, a transition cannot
fire until directed to do so (by some outside con
trol) .

In summary, we may think of transition as an event
which can fire (i.e., occur) if all places (conditions) input
to that transition have tokens (are satisfied).

2.3 Petri Net as an Aid to Guiding Sensitization Search
Given a set of goal nodes G(), we can reduce them to

subnodes, until we obtain a set of trivial or terminal nodes.
Thus, for each set of goal nodes we can generate a petri net
where the transitions correspond to register transfers or
changes of control state. Remember that a transition is singly
an event: a register transfer that must be done or a change
of state of the machine from one control state to another. For
our model we will define five types of transitions:

(1) Register Transfer: This type of transition models the
change of state of a register; transferring a vector
(a^,...,an), ag,(0,X,l) from one set of registers or in
put into a destination register.

(2) Control: This type of transition models the change of
control state of the sequential machine.

(3) Single Transfer: This type of transition models un
docked control states and terminal expressions. The
transition that fires to fill the goal place (sec.
2.3.1) belongs to this group.

19

(4) Count: The count transition models the change
of state of a counter.

(5) Shift/Rotate: This transition type models the
shifting and/or rotation of a given register.

Generally, all transition types, except type three,
have an execution completion time associated with them. This
timing requirement is included in our model because we are
dealing with clocked sequential circuits: if all the conditions
for loading a register are fulfilled at time t^, the register is
loaded with the vector at the next clock period. Similarly, if
conditions for change of control state are fulfilled during
time t^, the machine enters the next control state at time t^+i*
For slower memories, the reading (or writing) from memory is not
completed until some units of time after the process was begun.
Hence, this timing provision takes care of all timing require
ments ; in fact, the simple transfer (type three) is a special
case in which the process is completed during the same clock
period. This latter case correctly models the "NO DEIAY" tim
ing requirement of AHPL (Hill & Peterson, 1978).

For each transition in the petri net, we can associate
a time unit t(i) which would indicate the number of time units
that separate the transition and the goal. Why should we link
the transition time to the goal place? This is done to give a
measure of the time units that would elapse before the goal is
filled with a token after a particular transition is fired.
Remember that filling the goal place is our target and as such

20

every formulation takes into account the question "how easily
can the goal place be filled?" In Fig. 2.3, taking as the
goal and assuming all transitions have execution completion
time of one unit associated with them, then it can be seen
that if t^ fires then the goal P^ would be filled; however, if
t^ fires, tg and t̂ ̂must fire before the goal can be filled.
Thus the transition time of t^ is t(4) = 3 while the transi
tion time of t^ is t(l) = 1. Of course, this assumes that the
firing order is t^ ^ t^ + t^.

Summarizing our discussion of the preceeding paragraphs,
for each transition in the petri net generated for a given
fault, we can associate two parameters:

s =: the type of transition
t(i) =: transition time; that is defined as the number

of time transitions separating the transition
and the goal place.

2.3.1. Types of Places
In our model, the places represent conditions or re

quirements which must be satisfied during a sensitization
search. We can define five different types of places:

a. Goal: This is a unique place in the petri net; it
represents the condition of sensitizing the fault
under consideration.

b. Control: This type of place or location represents
the requirement of moving the machine into a given
control state.

c. Register: Loading or transferring a predetermined
vector ai,a2 ...an a#;(0 ,l,x) into a register.
Counter and shift registers are in this category.

21

P

Figure 2.3 Petri Net for Illustrating Transition Time

22

d. Input: Placing a vector ^ external
input.

e. Output: This type of place models the condition of
a vector a^yeg.-a^ appearing at the external output.

These conditions will be shown just outside the circles
as in Fig. 2.4(a). Since the machine can only be in one and
only one control state at any given time,and a register can
only be loaded with one vector in any given control state, the
places in the petri net can only have a maximum of one token at
any time. When a condition is fulfilled, the appropriate place
is filled with one token.

Some places in the petri net will have more than one in
coming arc. This means that the condition represented by the
place can be fulfilled or satisfied from any of several transi
tions. For example, for a register AR to be loaded with a
vector a^ag.'.a^, the machine must be in either control states
1 , 3 or 5. In each control state, when some condition is ful
filled, then AR is loaded. In control state 1, this occurs
when register IR contains a^,a2 «..a^. In control state 5, an
input vector a^a2 *..a^ is applied. Fig. 2.4(b) illustrates
this condition. Of course, t^, t2 , or t^ can only fire when
their respective places are filled.

To differentiate the goal place from all other places
in the petri net, we use the visual representation shown in
Fig. 2.4(c). The input places to t^, t2 and tg are the test
vectors generated by the d-algorithm any of which would cause
an erroneous next state to result from the presence of the

23

(a)

P2 P 3

P3 =: AR; a]_a2 • • • ajj

?2 =: cs-1
P3 =: IR; a]_32 -. • ajj
P4 =; cs-5

IN ; â_ a2 •. • â ^
cs .3

Py — ; OR ; a2̂ a2 - • • â^

P4 P5
(b)

P6 P7

(c)

Figure 2.4 Petri Nets Illustrating Different Types of Places

24

fault. If any of the transitions t^, t- 2 or t^ are fired, then
the goal place is filled which implies the fault is sensitized.

2.3.2 Formal Definition of Petri Net for Guiding
Sensitization Search

Although petri nets have many properties like reach
ability, liveness, and safeness (or boundaries), most of the
work reported on the properties of petri nets are concerned
with subclasses of petri nets (such as "marked" graphs). We
do not intend to investigate any of these properties in our
model; rather our aim is to develop a means of guiding the
sensitization search from the petri net generated for a given
fault, given the CHDL description.

Before giving a formal definition of our model, we define
the state of a petri net; A token distribution in a petri net
is called a marking or state. Initially, each place has a
status (full or empty) referred to collectively as marking M.

We have now presented all the material needed for a
formal definition of a petri net as an aid to computing
heuristic values for guiding sensitization search;

For a given fault we define a petri net as a quintuple:

P = {G, T, Pjj, P̂ ,
where G = set of test vectors returned by the d-algorithm,

each of which will cause an erroneous next state
to result from the presence of the fault.

T = the set of transitions.

25

Pjj = the set of non-terminal places or locations
from which further subnets can be generated.

= the set of terminal places.
= marking or state of the petri net. Usually

one will be interested in the state just after
the machine has been driven into a search state
Si.

Generally P^ H P^ = 0 , the null place and we will often
denote P^ U P^ by P, the set of all places in the petri net.

2.4 Generating the Petri Net from AHPL
The petri net generation process starts with the goal

states returned by the d-algorithm. The way(s) in which these
goal places can be filled is generated using the knowledge of
the hardware for the control states, registers, inputs and
memories which are available in the AHPL description statements.
For example, if the d-algorithm returns'{AC: XIOX, IR: IXX)
and (AC: lOXX, IR: IXX), we would have the net shown in
Fig. 2.5(a). t^ and tg are the transitions which fire to '
fill the'goal place with a token. By our model, it needs
either t^ or to fire to have the goal place P^ filled.
We must now generate the remaining portions of the petri net
from P2 , P 3 and P4 .

There are three different types of expressions in the
AHPL description from which the remaining portions of the petri
net must be generated:

26

Tl.

AC:X10X IRrlXX ACîlOXX

•4

Figure 2.5(a) Setting Up the Goal Places

P5

ab: 0 1ab: 1 0 cs.k 14

11 13
Figure 2.5(b) Expanding the Goal Places

27

1. Condition expressions
2. Register Transfer expressions
3. Control Branch expressions

A good discussion of how these expressions are handled is
given in SCIRTSS (Huey, 1975, pp. 24-35) and will not be given
here in detail.

Equation 2.1 contains condition expressions which must
be satisfied before a register transfer can take place.

K. AC (ÎR^aIR2 AÂC) V (IR^AlR^AB) (2.1)

It simply means that if jR^ is zero and IR2 is one, then trans
fer the complement of the contents of register AC into register
aÇ.; however, if IR^ is one and IR2 is zero, the contents of
register B are transferred into register AC. Of course, this
can only be done at control K. Assuming IR is a 3-bit register,
then the condition IR^aIR2 is translated into the condition
IR:01X; similarly IR^aIR2 becomes the condition IR:10X. Notice
that these conditions are not dependent upon the values in any
of the specified registers; that is, the conditions are invariant
with respect to the goal places. We will return to this point
a little later.

For the sake of generality, equation 2.1 is rewritten
as in equation 2 . 2 where IR^ is replaced by a and IR2 by b;
a and b are in effect control variables.

K. AC -c (aA b AÂC) V (a^A B) (2.2)

28

Given equation 2.2 which is a register transfer expression
and the goal nodes of Fig. 2.5(a), our task is to find transi
tions and their input places such that if the transitions are
fired, places Pg and would be filled with tokens; that is,
register AC would be loaded with the vector XIOX or lOXX.
From the register transfer expression of equation 2.2, we see
that AC can be loaded with a required vector C^CgC^C^ in one
of two ways:

1. If the machine is in control state K and AC
contains C^CgCgC^

or 2. If the machine is in control state K and register
B contains C^C2 C^C^. For the first case the condition ab:10
must be satisfied while ab must be 0 1 in the second case.
We thus need two transitions t^ and t^ to expand the goal place
AC:XIOX. Each one of these transitions has input places as
shown in Fig. 2.5(b). The place AC:10XX is expanded in a simi
lar fashion. Transitions and tg are transitions of
type one since they all model the register transfer which takes
place if all the conditions are fulfilled one time period
earlier.

Places Pg, Pg and P^ are all input places to the same
transition and they will be called brothers. Transition t^ is
a descendant of transition t^ since if t^ is fired and place P3

is filled with a token, then t^ can fire assuming all other
conditions are fulfilled. More generally, a transition tj(t^)
is said to be a descendant (ancestor) of a transition ti(tj) if
tj_ can be ultimately fired after the firing of tj (after

29

progressing through some further firing, if necessary). In
particular, t^(t^) is an immediate descendant (ancestor) of
tfCtj) if an output place of tj is an input place to tĵ .

After the goal places have been expanded as in
Fig. 2.5(b), the new register places generated are also ex
panded by the same reasoning.

The third type of expression in AHPL is the control
branch expression. There are two ways control can pass from
one control state K to another.

a. Unconditionally :
K. -> (i)

b. Conditionally :
K. (a,b,c,...)/(ij^,i2/i2/***)

In the first case, control passes from control state K to
control state i without any condition. This often happens
after a register transfer or some other action takes place
in control state K. The machine is then sent to control state
i to initiate some other action. The second case of transfer
of control occurs only when a given condition is fulfilled.

IIn the example given above, control passes from control state
K to control state i^, ±2 / or ig depending on whether the con
dition a, b or c is fulfilled.

In order to represent these two types of control branch
expressions in the petri net, we classify two types of control
transitions:

30

1. Type 2a: Conditional control transition
2. Type 2b: üncondtional control transition.

Where we have conditional change of control state, each member
of the set {i^y i^,...} becomes an output place of a tran
sition t^^f t^2 ' tCg, respectively, whose input places are
control state K and the respective conditions: a,b,c,--..

Control can pass from more than one control state to
control state i unconditionally in a given circuit. To follow
the rules of transition firing, this has to be modelled as shown
in Fig. 2.6(a) so that if any of transitions t^^, ^^2’ ^c3
the place CS-K is filled. This accurately models the hardware
behavior but can lead to a proliferation of transitions. For
this reason, we choose the representation of Fig. 2.6(b) which
violates the general firing rule. For this type of transition
(type 2 b), if any of the input places is filled, the transition
becomes firable. This is justifiable since a transition is
modelling a change of control state and we are interested only
in the firing of the transition.

Notice that the control state expansion is completely
invariant with respect to the goal places; that is, it is not
dependent on where the fault is located in the machine.

After discussing how subnets are generated from control
branch and register transfer expressions, one may ask "how are
the firings of transitions derived from these expressions
handled?" In section 2.2, we gave the firing rules of a transi
tion: firing an enabled transition consists of removing one
token from each of its inputs and adding one token to its output

31

cs .k

-C3

Figure 2.6(a)

cs k

Figure 2.6(b) Unconditional Control Transition

32

place(s). Since register transfer in AHPL is non-destructive
and the conditions for a control state transition remain after
the change of control state, there seems to be a problem with
our model! As will be explained in Chapter three, we are
mainly interested in transitions that have fired during each
sensitization state. Hence, we care only about the output
places of transitions that are fired. In section 3.3 we intro
duce the notion of implied transition firing; the discussion
in that section will give a good understanding of why we do
not take pains to model the non-destructiveness of register
transfers nor restore the condition tokens for control state
transition.

2.5 Complete Petri Net
We use the AHPL described circuit of Fig. 2.7 to

illustrate the generation of a full petri net from the circuit
description.

The set of goals which would sensitize the fault is:

lOlllXXllXX
XXOXXXXOIXX

From the AHPL declaration syntax, ACrllXX, MDR: IIXX and
IR: 101 are input places to transition t^ while IR:XXO and
AC: 0IXX are input to transition t2 . Any of t^ and t2 firing
fills the goal place with a token and the fault is sensitized.
There is no time delay involved, hence t^ and t2 are simple
transfers of type 3. The first stage of our net is shown in
Fig. 2.8 (a).

33

MODULE: SP
MEMORY: IR[3]; MDR[4]; AC[4]
INPUT: INP[4]

OUTPUT: MOR

1. IR aViNP

H- (INP4 , INP4)/(1 ,2)

2 . - (IR3,ÏR3)/(3,7)

3. H. ((ÏR^AÏR^) , (ÎR^AIR^) , (IR̂ ÂÏR̂))/(4,5,G)

4. MDR INP; MOR -«-AC
H- 1

5. AC ■«- INP
^ 1

6 . AC ■«- AC A MDR
MOR -«- AC

1

7. AC -«- +AC
MOR -«- AC
-»■ 1

Figure 2.7 AHPL Description of Example

34

Goal

ACrllXX MDRrllXX IRrlOl ACrOlXXIRrXXO

Figure 2.8(a) First Stage of the Petri Net Generation

35

At the second stage, we start by searching for a
solution to the question "how can place be filled with a
token?" filled with a token means that the register AC
has been loaded with the vector llXX. There are two alter
nate ways of doing this ;

a. In the first case, if a transition t^ with input
places INPrllXX and CS*5 is fired, then at the
next clock period, the contents of AC will be
IIXX. Hence t^ has transition type 1; that is
register transfer and its transition time is one.

b. Alternatively, if a transition t^ with input
places CS*6 , ACrllXX and MDRrllXX is fired.
Transition t^ also has transition time one and
is of type one.

Notice how, for example, the input places MDRrXlXX and ACrOlXX
are obtained from the "and" operation of control state 6 since
the output place is ACrOlXX and we have logical AND of registers
AC and MDR, we specify the vector to correspond to the
desired goal and then determine what the contents of MDR must
be to give the correct result.

With this reasoning, we obtain the second stage of the
petri net as shown in Fig. 2.8(b).

Now that we have encountered control states as places,
we shall explain how these are treated before going on with the
complete net generation. As discussed in the section 2.3,
control branch expressions are completely invariant with respect

13
Pli

P l i

14

Figure 2.8(b) Second Stage of Generation of Example Petri Net
wa\

37

to the goals. These control subnets are generated before the
generation of the full petri net. To generate the subnet
corresponding to a control state, we use the same reasoning:
how can I get to control state K? In the example circuit
under discussion, this is almost trival. Fig. 2.9 shows the
subnet for control states six and one. It is appropriate to
show here one subnet from one of the example circuits dis
cussed in Chapter Five. This is the control state nineteen
subnet of case four, the four-bit microprocessor. This sub
net in Fig. 2.10 is complex compared to our example circuit
of Fig. 2.7.

When the decision to add the subnet of a control state
to a main petri net is made, the linking step consists of
adding the transition time of the output of the control state
place to the transition time of the transition to which the
control state is output. In this case, if we are linking
OS* 6 in Fig. 2.9 to transition t^ in Fig. 2.8b, we would add
the transition time of t^ to the transition time of CS.6 .

To complete the petri net generation, we would link
the subnets for control states 1,4,5 and 5 to t3 ,t4 »t5 ,tg,t7 ,
tg and tg in Fig. 2.8(b). After expanding the goal places
we have the complete petri net shown in Table 2.1. The name
of each place is given in Table 2.2.

38

iCS.l

es. 5es.7 es .4 es.6

es. 6

es.3 IRrlOX
(a) (b)

Figure 2.9 Subnets for Control States One & Six

es.15

IRrOlOXIRrOOOO IR:001X es.4es.4

ieS:010Xes.3leSrOOlXles : 0000 es.3

Figure 2.10 A Con^lex Control State Subnet

39

Transition Output Place Input Places . Transition Time
0
0

1 Pq Pl,P2'P3
2 Pq P4'PS
3 Pi P6'P7
4 Pi Pl'P2'P8
5 P2 P9.P6
6 P3 Pll'Pl2
7 P4 Pll'P22
8 P5 P7'Pl3
9 P5 PS'P8'Pl4

10 P7 PlO'Pïs
11 Pis ^ll'Pl3
12 P8 PiO'Pie
13 ^10 Pl7'P23
14 ^23 Pll'Pl8
15 PI6 Pll'Pl9
16 P9 Pl0'P20
17 P20 Pll'P21
^18 ?1 P23'P25
ti9 P5 P23'P24

2
3
2
3
4
3
2
3
1
1

Table 2.1 The Petri Net Listing for Figure 2.7

40

Place Name Place Name
Goal Pl3 INPtOlXX

^ 1
AC:11XX Pl4 MDR:01XX

^ 2
MDRrllXX Pis IRrOlX

P3
IRrlOl PI6 IR:10X

P4
IRtXXO Pl7 es . 2

P 5 . AC:01XX Pis INPrXXlX

P6 INP;11XX Pl9 INPtlOXX

P? es. 5 P2 0
IR:OOX

^ 8 CS . 6 P2 I INPrOQXX

^9 es.4 P2 2
INPîXXOX

PlO es. 3 P 2 3
es.7

Pli es.i P2 4
ACrXOlX

P1 2 INP:101X P2 5
ACzXllX

Table 2.2 Place Listing for Table 2.1 and Figure 2.8CbL

41

2.6 Summary
In section 2.3 we defined a petri net as an aid to

guiding sensitization searches and followed this up with an
exanple in section 2.4. As noted in the background information
of section 2 .2 , petri nets have been used to model various sys
tems and can thus be used to model the machine of Pig. 2.7.
It is not the subject of this work to show how a petri net can
be used to model a machine itself, given the CHDL description;
however, we would point out that such a model would be very
different from the model of section 2.3. The latter is based
on the notion of a goal place and is an attempt to model the
change of control states and register transfers that must take
place to fill the goal place with a token. It is thus depen
dent on the particular fault under consideration. Most of the
places are dependent on the goal state; the only exception be
ing the places that are responsible for control state branching
and conditional register transfer.

CHAPTER III

HEURISTIC FUNCTION DEVELOPMENT

3.1 Introduction
In SCIRTSS, both the processes of fault-propagation

and fault sensitization are accomplished by an heuristic
graph search. The use of heuristic evaluation functions to
direct the search of state-space graphs has been studied by
many authors (see, for example. Hart et al, 1968 and Michie and
Ross, 1970). Nilson gives a good treatment of the different
ideas on which these evaluation functions are based. SCIRTSS
assigns a weight to each node as it is reached. This weight is
given by

W = G + wH
"where G is the minimum number of transitions from
the initial node state to the node, H is some
heuristically determined value, and w is a constant
indicating the relative importance of H in computing
the total weight" (Carter, 1973).

In this chapter we present the development of a heuris
tic function from the Petri net to guide the sensitization
search. First, we present the tools that are needed in developing

42

43

the heuristic function; then the several ideas considered are
presented.

3.2 State Equation of a Petri Net
Although the mathematical properties of petri nets

have not been well exploited, we have found the state equations
a useful tool in developing a heuristic function for guiding
the sensitization search.

Throughout this chapter, the reader is reminded that
we have the "natural" functioning of petri nets presented,
followed by our application.

Let p and t denote the numbers of places and transi
tions in a petri net, respectively.
Defn. 3.1; A marking or state vector, M^, is a p x 1 column

vector of non-negative integers. The jth entry
of Mj, , m̂ denotes the number of tokens on place
j immediately prior to the Kth firing.

In the natural functioning of the petri net, it is customary
to progress through a series of firing sequences; thus, we can
speak of the "Kth firing." denotes the initial marking or
state.
Defn. 3.2; The Kth "firing" or "control" vector, V^, is a

t X 1 column vector of I's and O's. The i^h entry
of Vj, is one only if transition i is to be fired
at the K^^ firing opportunity.

Let A = [a^j] be a t X p matrix having a^j = 1 if place j is an
input place for transition i; otherwise aT^ = 0 .

44

Atj is similarly defined with at^ = 1 only if place j is an
output place of transition i.
Defn. 3.3: The matrix A = A'*' - A~ represents the token changes

in each of the p places when transition i fires once.
The state equation;

th
^ + 1 = ^ ^ = 0,1,2,... (1)

gives the marking resulting from marking by the K
firing vector, V^. T implies matrix transpose operation.
Mj, + A^V^ ^ 0 for each K.

An example will make these definitions clearer.

Example 1: For the petri net of Fig. 3.1 the A~ and A"̂ matrices
are:

3 4

A"

1
0
0
0

2
1
0
0

1
0
0

0
1
1

5
0
0

1

1
1
0
0

2
0
1
0

3
0

0
1

4
0

0
0

5
0
0
0

45

Figure 3.1 Petri Net for Example 3.1

Figure 3.2 Exanç>le Petri Net for
Illustrating Transition
Firing

46

The matrix A is

A = A - A =
1 -1
0 1
0 0

-1
0
1

0
-1
-1

0
0

-1

The initial marking M ^ = [0 0 0 1 1]'̂ . The marking resulting
from firing t^ and t^ is:

0
1
1
0
0

0
0
0
1
1

1
-1
-1
0
0

0
1
0
•1
0

0
0
1

-1
-1

0
1
1

For the petri net generated for a given fault, we are
interested in transitions that have been fired after driving
the machine into a search state S. Thus, we shall let Mg de
note the marking or state vector after reaching state S.
Then Mg^ denotes the marking vector after all firable transi
tions have been fired.

The state equation of a petri net for a given fault is
now written as:

(2)

where A is the matrix defined in Defn. 3.3 and Vg is the firing
or control vector, at search state S, that defines which transi
tions are to be fired.

47

During the sensitization search, starting from the
initial state, each unique state is numbered and called a node.
Hence, the marking vector Mg can also be written as where
i is the node number that is associated with search state S.
Mg gives the conditions fulfilled at search state S. In our
model, there is a.transition time associated with all but the
type 3 transition (section 2.3). For this type of transi
tion, if all the input places are filled with tokens, it is
fired. This is not the case with all other types of transitions;
they require time. For example, if conditions for loading a
register are fulfilled at search state S, the register will be
loaded during the next clock period. Thus, Mg_̂_ in equation (2)
will add the outputs of those transitions that have no time
associated with them to the state vector Mg.

To compute Mg^, we have two choices: either use the
arithmetic and matrix operation of equation (2) or use the data
structure of the petri net together with the information in the
search state S to derive Mg^. In the former case, we have to
deal with large sparse matrices A+, A~ and A. TThen the algo
rithm was written, it was apparent that there would be a waste
of computer memory. Hence, we chose the second alternative:
relying on the data structure of the petri net and the search
state to derive Mg and Mg^. The algorithm for doing this is
shown in Fig. 3.3. The first section of the algorithm compares
the present machine state and register contents with the
machine state and register contents needed to place a token

48

, marking vector i
the control state of the
current search node

CS

CSj_, the control state of the
petri net
the value of the register
of the petri net

V£, the value of the register at
the present search node

ktrin̂ , set of input transitions
to transition i, t;PLACE TYPE
CSOTHER REG IN nip̂ , no. of input

places to tj_

;ype:3

Does>
Si cover

i=l

clear i
j=l, 1
j=0

EXIT

Figure 3-3 Derivation of Marking Vector

49

in each place in the petri net. This portion of the algorithm
is, of course, similar in the problem reduction graph (page
75, Huey, 1975). The second section tests if all the input
places of a transition are filled with tokens. If so, the out
put place of the transition is filled with a token (the transi
tion fires) if the transition is of type 3.

3.3 Implied Transition Firing
In the application of petri nets to fault detection, we

are interested in the goal place being filled with a token.
Thus, if any place, say ? 2 of the net in Fig. 3.2 is filled, we
have to be concerned with which transitions were fired or can
be inferred to be fired for that particular place to be filled
with a token. For , either t2 or t^ or both might have been
fired at the firing for it to be filled. After ? 2 is fill
ed, only Pg must be filled for t^ to be fired, filling
the goal place with a token. Hence, after the firing, once
P2 is filled, we will consider all transitions that are descen
dants of P2 to be fired since they are of no interest. A tran
sition descendant of a place is a transition that fires to have
the place filled with a token. In Fig. 3.2, t2 and tg are both
descendants of P2 • By similar reasoning, transition t^ is an
(immediate) descendant of tg and tg.

The marking vector after the firing for Fig. 3.2
is

= [0 1 0 0 0 0 0 0]̂ .

50

Recall that this gives the places that have been filled with
tokens after the firing. From we can find all transi
tions in the petri net that were fired or can be inferred to
be fired. We define a new vector R^:

Defn. 3.3: The transition status vector R^ = {r^} is a
1 X t vector having entries r̂ ̂where

if transition i was fired or can be inferred
r. = < to be fired during the firing.1

otherwise.

The notion of implied transition firing is actually
related to the heuristic function development which is presented
in section 3.4. When a set of places is filled at a search
state S, then we attempt to identify the set of transitions
which need no longer be considered, as being necessary to fire
before filling the goal place with a token. Put in another
way, if say ? 2 of Fig. 3.2 is filled with a token, then we pose
the question: "Starting from the terminal nodes and transitions,
which transition firing sequence might have caused P2 to be
filled with a token?" In this case it must have been the se
quence t^ -*■ tg or t^ -► t2 . The notion of implied transi
tion firing is not found in the natural functioning of the
petri net.

What happens if there are loops in the petri net?
This is simply dealt with during the construction of
R̂ , the transition status vector. R^ is derived from Mg^;

51

Figure 3.4 Dealing with Loops in the Petri Net

52

Clear
i
j

all r:
=1
=0

j=j+l

IMD̂ : immediate descendant of t£
NTPOj : # of transitions to which

place j is output
LSOTIt: : set of transitions to which

place j is output
r̂ : transition status vector i

K=LSOTRj

=k=1
K=I,SOTRj+l

jf=lMDi+l

Figure 3.5 Derivation of

53

during the derivation process we enumerate descendant transitions
of a place that is filled with a token. During the enumeration
process if any transition is already marked in the whole pro
cess is terminated. In Fig. 3.4, if is filled, the algorithm
of Fig. 3.5 which derives would detect a loop between the
transitions and t^. Since t^ is the transition descendant of
P2 / it is marked first in R^. The immediate descendant of tg is
tg while t^ is the immediate descendant of tg. In attempting
to mark the immediate descendant of t^ (which is tg), it is dis
covered that tg is already marked and the process is terminated.

3.4 The Heuristic Function
For each node that is reached during the sensitization

search, we would like to compute a heuristic cost value based on
information from the petri net. Our aim is to indicate which
node is most likely to be useful in finding the goal node. For
sensitization search state S, we seek to minimize the heuristic
cost function H(S); then for all nodes that are candidates for
expansion, we choose that which has the minimum cost value H(S)
as the most promising.

For each search state S, our main concern is: how can
the machine be moved nearer the goal from state S. This question
must be answered from the petri net. Three options seem appeal
ing, either:

a. use the places that have been filled in the petri
net at search state S,

54

b. use the transitions that have been fired at
state S, or

c. use a combination of both the places and transi
tions

as an indicator of nearness to the goal. The background dis
cussion of section 2 . 2 on petri nets will be helpful in under
standing the present discussion. Remember that we use petri
nets to model "conditions" represented by places and "events"
represented by transitions.

To use both the places filled and transitions fired as
our indicator of nearness to the goal, i.e., to compute H(S)
would be superfluous since the module of Fig. 2.1 represents
an information processing element.

When a place is filled with a token, it indicates a
condition has been fulfilled. Hence, it is possible to use
the places (conditions) filled with tokens (fulfilled) to in
dicate how near we are to the goal. However, to be dealing with
the places instead of the transitions, we have to spend more
time detecting loops between places and this can slow down the
search. Also, in the petri net, it is more natural to be con
cerned with the firing of transitions and transition firing
sequence.

The firing of a transition indicates an "activity" has
taken place— in our model there has been, say, a change of con
trol state, for example. Our interest is to indicate how this
affects the overall behavior of the machine, for that matter.

55

how near we are to the goal. From these considerations, we
choose as our basic measure, the number of fired transitions
in the petri net.

The transition status vector, defined in Defn. 3.3
actually constitutes a mask on the transitions in the petri
net that are no longer of interest to us; we might think of
these transitions as having been fired already. Hence, for
each search state S, we can compute the heuristic cost function
as :

Nt
H(S) = N. - Z r; (3)

^ i=l
where is the total number of transitions in the petri

net
= {r%} is the transition status vector.

Consider Fig. 3.6. If for state A, ? 2 is filled, then the
marking vector is

M̂_j_ = [0 1 0 0 0 0 0 0 0]T;

The transition status vector would be derived as explained in
the previous section to be

= [0 1 1 1 0]

then H(A) = 5 - 3 = 2 .

If, on the other hand, state B has filled with a
token we would have;

,T= [0 0 0 0 1 0 0 0 0]

56

and = [0 0 0 1 0].

H(B) would be computed as:

H(B) = 5 - 1 = 4 , indicating the importance of
state A over state B.

The simple expression of equation (3) is not satisfac
tory ii&ien a terminal place of a transition is filled with a
token but the transition itself is not fired. Specifi
cally, in Fig. 3.6, if for state A, and Pg are filled with
tokens, then

^A+ = [0 0 0 1 0 1 0 0 0]T

and = [0 0 0 0 0] since no transition was fired.

Now, if for state B, no place of the petri net is filled with
a token, then

= [0 0 0 0 0 0 0 0 0]

and R^ = [0 0 0 0 0] .

For both states A and B, the heuristic function computed from
equation (3) would be:

H(A) = H(B) =5.
Intuitively, state A should be nearer to our desired goal than
state B.

This suggests that terminal places must be given special
treatment in the computation of H. The modified expression for
H now becomes:

Nt +
H(S) = Nt - [Z ri + Z m .] (4)

i=l i=PT j ^

57

Figure 3.6 Petri Net for Illustrating Heuristic Function
Computation

58

where
Mg = {mt} the marking vector after all transitions ̂ J

have been fired in state S
n • = number of brothers of P.J J
g _ . V, if Pj is an input to any member of

otherwise.

The last term of equation (4) is the one that computes contri
butions from terminal places that are filled but their
associated transitions have not been fired. The 6 factor takes
care of this situation. It is assumed that for a transition to
fire, each filled place contributes a fraction 1 /n^ where n^ is
the number of places input to that transition.

Applying equation (4) to the two states A and B men
tioned in the previous paragraph, with:

= [0 0 0 1 0 1 0 0 0]̂
= [0 0 0 0 0]

and = [0 0 0 0 0 0 0 0 0]
= [0 0 0 0 0].

Using 'equation (4) we have

H(A) = 5 - [0 + % + h + h] = 3.5
and H(B) = 5 - [0] = 5 -

which indicates correctly the importance of state A over state
B. Note also how the function treats the importance of ter
minal place Pg which is an input place to more than one transi
tion.

59

3.4.1 Counter and Shift/Rotate Transitions
In chapter two we introduced the count transition;

this is a transition that models the change of state of a
counter. Similarly, the shift/rotate transition models the
change of state of a shift register. The model of the counter
transition shown in Fig. 3.7(a) is actually a compression of what
would be a series of transitions and places. Consider a
counter that counts from 0 to 4. There is a change of state
of the counter, that is, a transition whenever the required
conditions are fulfilled (i.e., the condition place is filled
with a token). Thus, if the counter is in state 0, and if
the condition place is filled, the transition t^ will "fire"
during the next clock period. This must be repeated four
times before the desired state KNTrlOO can be reached (Fig. 3.7
b). This suggests that when a counter transition is included
in the petri net, we increase the number of transitions in the
petri net by the number of times the counter must count before
reaching its goal state. For Fig. 3.7(b), we might have to in
crease the number of transitions by 4.

This approach would not give an accurate guidance to
our search routine. If, for example, a counter is enabled and
loaded with 0 1 1 0 (binary six), counts to 1 0 1 0 (ten), and then
is disabled, and we then add 15 = 15 - 1 to the total number of
transitions, we have not given an accurate representation of
the counter operation. Thus, the heuristic function computed
on this basis would be misleading.

60

(i) Unconditional Count
Transition

(ii) Conditional Count Tran
sition

(a)

Condition for
Count Operation

KNTrlOO

KNTrOll

KNTrOlO

001

(b)
KNTrOOa

Figure*3.7 Modelling Count Transition

61

An alternate and more accurate approach is to consider
the output place of the count transition as a goal and then
compare the state of the counter during the search with the
goal. Let bd(i,s) be the arithmetic binary difference between
the value in the counter at the present search state S and the
goal state of the counter. Then

bd(i,s) = JL(g^ 9)̂ - V^)

where g^....g^ = goal state of the counter

V,....V = value in counter i after the current
1 n

search state S.

Obviously, if bd(i,S) is zero, then our goal is reached and t^
fires, hence the contribution from the counter transition is
one. However, if bd^ is not zero, then we are a distance of
bd(i,S) from the goal and the contribution from the count
transition is

[1 - bd(i,S)/X (9^,--- 9 %)]. (5)

Note that although we have chosen the distance between the goal
state of the counter and the value in the counter at state S to
measure our nearness to the goal, we are in essence answering
the question: "how far is the count/shift transition from fir
ing?" Hence, it is the transition firing that is actually our
measure of nearness to the goal. Accordingly, expression (5)
takes on values ranging from zero to one.

62

For shift registers, we define bd(i,S) as the number
of times the shift register must be shifted (left or right)
from the present state S so as to satisfy the desired goal.

Shift registers and counters are very highly sequential
circuits that are very troublesome in fault test generation,
especially when they are buried. Expression (5) enables us to
provide proper guidance at each state of the search; for
ordinary registers we give guidance based on whether the regis
ter contains the correct vector or not; guidance for shift
registers/counters goes further than that. If the shift regis
ter or counter does not contain the correct value, we compute
how far it is from reaching the required value. Needless to
say, it is impossible or very difficult to use the same criteria
for ordinary registers.

Adding the contribution from the counter and shift/
rotate transitions, the heuristic cost function of equation (4)
now becomes

Nt
H(S) = - [Zri + Z 6 m T

^ i=l,igq jep̂ nj ^

+ Z (1 - bd(i,S)/_L(g.g_...g^)]
I EC ̂ ^

where C = the set of count and shift/rotate transitions.
The flow chart for computing the heuristic cost function is
shown in Fia. 3.8.

63

type:3

j=ITSRP+l

hpt=hpt+iA ip^

HDT=0
HCNT=0
HHVE=0
HSFN=0
t=l

HBVS. contribution form R vector
HCÎTT, contribution from counters
HPT, contribution from terminal

placer
HSFN, Heuristic Cost Value
t̂, transition i

ITERP̂ , set of terminal places
KTRTPj, set of transitions to which

place j is input
mP̂ , no. of i/p places to t£
NTP, no. of terminal places

Figure 3.8 Heuristic Cost Function Computation

64

i= 0

type:4

EXIT

Compute
bdi

i=i+l

HRVE=HRVE+1

Figure 3.8 cont'd

CHAPTER IV
INPUT VECTOR GUIDANCE

4.1 Introduction
In the last chapter we developed a guiding mechanism

for a search by finding a heuristic value that enables us to
indicate the nodes most likely to lead to the goal. The se
cond guidance mechanism used in SCIRTSS is the reliance on
user supplied input vector tables (Carter, 1973) . SCIRTSS III
attempts the selection of these input vectors automatically
(Huey 1975, p. 81).

In sensitization searches a branch is made to each
possible next control state from the current control state of
the search node being expanded, if an input vector exists
which satisfies the conditions of the control branch. Although
the search routine itself generates part of the input vector
needed to satisfy the control branch condition, we can derive
information from the petri net to make this process more
efficient. Also, the sensitization search can use a great
deal of guidance where data inputs are concerned.

65

66

In a Computer Hardware Description -Language like AHPL
where each input-to-register transfer is associated with a
control state, the input vector suggestions can be grouped by
the control state at which each is to be applied. In this way,
at any given control state an input vector can be readily
available for use to increase the search efficiency. This has
been the approach in SCIRTSS.

In the petri net generated we have places or locations
that represent the condition of placing an input vector (â ,
agf.'.an) ^i 6(0' 1' X) on an external input. The control
states at which these places are filled with tokens can be
readily obtained from the petri net. Most of these places or
locations are invariant with respect to the goal or the fault
under consideration as they are generated from control ex
pressions. Hence, the control state associated with these
places can be obtained in the form of subnets before the com
mencement of any sensitization search.

4.2 Selecting Input Vectors
In some circuits, many input vectors may be associated

with a given control state. In SCIRTSS, when attempting
to expand a node, the search routine applies each suggested
input vector to all control branches. Thus, for a node that
has m input vectors and n successor control states, the search

67

expands m x n next states- Hence, these input vectors must be
judiciously selected to avoid misleading the search.

However, this selection process is not a trivial issue.
In fact, each input place that appears in the petri net is im
portant, for if a given input place is never filled, it may
be impossible to reach the goalI

In our input vector selection process, we classify
the input vectors according to the two main types of expres
sions in AHPL:

Control Branch Expression
and Register Transfer Expression.

4.2.1 Control Branch Input Selection Procedure
Generally, a conditional control branch is made in

AHPL depending upon
a) some input signal, such as ready, link. etc. We

call such a signal control signal,
and/or b) the bit combinations in some register(s), many of

which are loaded directly from the external inputs
at some control state(s).

Both the control signals and registers that are responsible
for branching from one control state to another appear in the
petri net. In the case of control signals, we can select the
values of these signals so as to prevent the generation of

68

unnecessary nodes during the state space search. In particu
lar, consider the examples

(i) k OUT«H-A
(ready, ready)/(k,j)

(ii) k INC(A)
— »-(A/A A ready, A/A)/(k,j)

In both examples, the machine waits in control state k until
some condition is fulfilled. During the search, should this
behavior be simulated? Not necessarily; for if we examine
the register transfer at cs.k of example (i), it would be a
waste of time to continue looping to control state k to be
performing the same register transfer. On the other hand,
it is essential to repeat the counter operation of example
(ii). Hence the search must branch to cs.k whenever it enters
control state k .

The examples of the preceeding paragraph indicate that
we can control the control states that the machine branches to
during the search in order to improve the search efficiency.
This is done during the branching function generation. The
petri net contains information on the control signals that
cause branching from one control state to another. If the
value of a control signal causes the machine to wait in any

69

particular control state and neither a count nor shift opera
tion takes place in that control state, then the machine is
not allowed to loop in that control state during the search.
Because we have the count and shift transitions in the petri
net, these conditions are easily detected.

The more common method in which a conditional control
branch is made in AHPL depends on the contents of some regis
ter, for example an instruction register in a computer. Many
of these registers are loaded directly from the external in
puts at some control states. Frequently there are too many
input vectors to be applied at the respective control states
and we have to choose only about two or three of these input
vectors. The importance of properly selecting these input
vectors is not hard to see: by leaving out some input vectors
it may not be possible to visit some control states(s) and the
penalty can be very high.

Ideally, we should select the input vectors such that
it would be possible to visit all control states in the petri
net. This philosophy is not without danger, however. In some
cases, there may be more than one goal. Thus if any of the
control states say, 1 %, ±2 , ig is reached and the correct re
gister is loaded then the search is successful. In this case,
although many control states may appear in the petri net, it

70

seems appealing to select a subset of these control states
and aim at reaching only members of this subset. This ap
proach would nullify the advantage of having more than one
goal and of course it is very difficult and time consuming to
select a subset of control states. We aim at selecting
the input vectors such that it would be possible to visit all
the important control states in the petri net.

Defn 4.1; The Control State Branch Vector, = -̂ s^,S2 ,
..Sĵ J. is a set of input vectors s^, that can cause a trans
fer from control state j to control state k . The set of all
Control State Branch Vectors is denoted by B% = .. ,BnikJ

The vector B̂ ̂should not be confused with the input vectors
that can be applied at control state k. In the latter case,
we have input vectors which, if applied when the machine is
in control state k, causes some register transfer. The Control
State Branch Vector, B]̂ , on the other hand consists of input
vectors which are actually responsible for the machine ever
branching to cs.k. Bĵ is derived from the control state sub
nets as shown in Fig. 4.1. In this figure, we mark all regis
ter places that have been encountered for easy identification
when we are selecting input vectors in section 4.2.3. In the
petri net, an immediate predecessor of a place i or location

71

immediate prede
cessor of place i
place j
set of input vectors
that cause branch
to cs.k

NPDjç : no. immediate prede
cessors of cs.k
no. immediate prede
cessors of place j

NCS : no. of CS
INPUT

iji type

IN

j=j+l

i=i+l

Figure 4.1 Construction of CS Branching Function

72

is a place j that is input to a transition-that fires to fill
place i with a token.

The vector is independent of all faults and thus
can be constructed once for all sensitization searches.

The next step in the Control Branch Input selection
is the formation of a Common Transfer Vector.

Some input vectors in each B^ cover other input vec
tors in some Bj. Hence we define a common transfer vector.

(kĵ / ^ 2 ' * • •) — S2 , ... s Ii — 1,2,3..

as the set of input vectors Sj_ that are common to control
states The vector is easily derived by checking
if each input vector sj_ in Bt̂ ̂covers any other input vector

in B]̂ 2 -
We give an illustration at this point. In the

next chapter, we will present a 4-bit microprocessor as a case
study. The Control Branch Vectors for this circuit are:

B 5 = ^4,ics:X001, IXXx]
Bg = (5,ics:XX01, XOIX}
Bg = £ 5,ics :10XX ̂
Bio = {5,ics:XlX0; 6 ,ics:XlXx}
Bi2 = £lO,ics:XXlx}

73

Bi4 = {1 2 , icsrXXXO; 15, icsrXOlX, icsrXlOO; 10, ics:XXXOx}
Bis = {4 , icsrXOlX, icsrXOOO, ics:110x}
B] _ 5 = {4 , icsrOllO^
Bis = {4 , icsrOlll}
Bi9 = fis, icsrXlOO, icsrXlOl}
B 2 0 = fis, icsrXOOOj

There is a 4-bit input line, ics, that is used to load the
Index Register. The machine has twenty control states. Those
control states that are not directly controlled by input vec
tors do not, of course, appear in the Branch Vectors. The
common transfer vectors derived from the B]̂ 's are:

Fi(4,5,6,8,14) = icsrlOOlJ
F2(4,5,10,12,14) ics:1110}
F3(4,6,10,5,15,19) = ics:1101}
F4 (4,5,10,14) = ics : 1100 J-
Fs(4,14,5,6,8) ics:101X^
F7(4,15) = ’ics:XOOO}
FS(4,16) = ics:OilOj
Fg(4,18) = ics : OlllJ"

Fio(4,15,19) = icsill00; icsillOl
Fii(4,15,20) = ics:0000J

74

Comparing the transfer vectors Fy and F3 , we observe that the
input vector csrXOOO will cause a branch to control state 15
only while cstllOl will cause a branch to control state 15
and control state 14. Hence the input vector csd.101 can re
place csîXOO and we say that P3 has overridden P7 . To test
those transfer vectors that have been overridden, we use the
expression:

Fi(kj^,k2) - Fi(%l'k2) A^j (ki/k2 ,k3 ,--) (4.1)

for i = l,2 ,...n; j = 1 ,2 , n; i ^ j where n is the number
of common transfer vectors. If expression 4.1 is empty, then
Fĵ is overridden by Fj and Fj_ is deleted together with its
corresponding input vector.

The danger with the test of 4.1 is that the input vec
tor picked would let the machine wander from one control state
to another. For example,ics:X000 of Fy would branch from con
trol state 4 to control state 15. However, since % overrides
Fy, ics:1101 replaces ics:XOOO. In this case to reach control
state 15, the machine might have to visit control state 14 be
fore reaching control state 151 This is our dilemma: on the
one hand trying to limit the number of inputs and on the
other hand the "best" selected inputs periodically wandering
from one control state to another. However, it is better to

75

be able to visit many control states with a few input vectors
than being unable to do so at all.

Applying the test of expression 4.1 to the Common
Transfer Vector of our example, we have F]_, F4 , F-y and F^g
overridden. The Reduced Common Transfer Vectors are:

F2 (4,5,10,12,14) = [ics:1110%
F3(4,5,6,10,15,19) ={ics:110l}
F 5(4, 5 , 6 ,8,14) ={ics:101X, ics:100l}
F g (4 , 1 6) = {ics:0 1 1 0 }
F g (4 , 1 8) = (ics: 0 1 1 1 }

Fii (4,15,20) = (ics:0 0 0 0 }

Hence from the initial 20 Control Branch Input vectors, we
have six vectors in the Common Transfer Vectors. Which one
of these should be selected?

Our final reduction process calls for the removal of
any control state that is common to all the Reduced Transfer
Vectors. The resulting vector is called a "G Common Transfer
Vector." For our example, we have

Gi(5,10,12,14) = {ics:1110}
G2 (5,6,10,15,19) = {ics:110l}
0 3 (5 ,6 ,8 ,1 4) = {ics:101X, ics:1001%
6 4 (1 6) = {ics: 0 1 1 0]

76

6 5 (1 8) = {ics;0 1 1 l|
6 5 (1 5 ,2 0) = {̂ ics : OOOOj

In this example, we have six input vectors that determine the
control states that the machine can branch into. We must only
select two or three of these input vectors for application
at the required control state. Several factors need be taken
into account when selecting input vectors from the 6 Common
Transfer Vectors.
(i) The input selection procedure outlined in the preceeding
paragraphs is completely independent of the fault being sen
sitized; the 6 Common Transfer Vectors are derived once for
all sensitization searches. Hence when the decision is made
to select input vectors, the input vectors in the 6 Common
Transfer Vectors are selected based on the control states in
the Common Transfer Vectors and the petri net for the fault.
The control states that do not appear in the petri net for
the particular fault are dropped from the Common Transfer Vec
tor for this fault. If any of the 6 ^ becomes empty then it
is dropped from consideration.
(ii) Any of the 6 j_ which contains a control state that is
one of the goals for the sensitization search should certain
ly be included.

77

(iii) For those that have only one control state and the
control state is not one of our goals, we have to check if
any register transfer takes place in the particular control
state. If not, the input vector associated with the control
state can be dropped from the list. On the other hand, if a
register transfer takes place and the only way that transfer
can take place is for the machine to be in that particular
control state, then the control state may be important.

We formalize the discussion above by computing a fac
tor of importance, q, for each Common Transfer Vector that is
left after all control states not appearing in the petri net
have been dropped. For each Gj_, we have:

qj[_ = mnp (4.2)

where m = the number of control states in Gj_; generally, n =
p = 1. However, if any member of Gj_ is a goal control state,
then n = M, where M is the largest value of m. The constant,
p, takes care of those Gj_ that have only one control state as
a member. If a count or shift operation occurs in that con
trol state or the only way a register transfer takes place in
the machine is when the machine is in that particular control
state, then p is made equal to 2 to reflect that inç>ortance.

After computing the factor, qj_, for all G^, the two
(or three) input vectors that have the highest factor of

78

importance are selected; these input vectors would control the
states the machine visits during the search.

4.2.2 Register Transfer Input Selection
The second type of expression from which input vectors

must be generated is the register transfer expression. This
usually consists of loading a register with an external input
at any given control state.

After selecting the input vectors for branching from
one control state to another, we must select another two (or
three) input vectors which would determine the vectors that
are loaded into the various registers. We could approach this
selection process in much the same way that we approached the
Control State Input selection. However, we can efficiently
make use of the transition time of the transition to which
the vector is an input place in the petri net and obtain
quite an accurate result. We give an illustration of this
process.

The places P4 and P 5 in Fig. 4.2 represent the condi
tion of placing the vectors XLOO and lOOX respectively on the
external input, IN. Both places are associated with the same
control state, cs.k. P4 is an input place to transition t^ which
has transition time t = 1 while P 5 is an input to transition
t2 which has transition time t = 3. If the machine reaches

79

Goal

R1;X100

CS .kINtXlOO

Rl:100

Fig. 4.2 Petri Net Example for Input Vector Weighting

80

control state K and the input vector (lN:XI-Oo} is applied
then transition t£ becomes fir able and the goal place would
be filled during the next clock period. However, if the input
vector INrlOOX is selected, transition t£ would have to fire,
followed by transition t^ and finally tg before the goal can
be filled. Obviously, input vector IN:3CL00 is a better choice
than INrlOOX for our aim is to reach the goal with the least
number of input sequences.

This example demonstrates that the information from
the transition time of the transitions in the petri net can
be helpful in selecting input vectors to be loaded into regis
ters. For an input place in the petri net, we can compute
the "weight," W of an input vector from:

W(Pi) = q(Q -T(i)) (4.3)

where Q = maximum transition time in the petri net.
T(i) = transition time of the transition to which Pj_ is

input.
q = a factor indicating how critical the register

transfer may be.

The factor q is computed as:

q = (c - n)

81

where n is the number of ways the register-can be loaded and
c is an arbitrary constant selected such that no q̂ _ is zero.
The factor q is quite important; if a register A can be loaded
in three ways and another register can only be loaded in one
way, then the input vector that is used to load B must be more
critical than the one used to load A.

For the example of Fig. 4.2, taking c = 2, we have

q = 2 - 1 = 1

Q = 3

and = 1 X (3 - 1) = 2
W(Pg) = 1 X (3 - 3) = 0

Hence we see the importance of "92 over P^.
One may argue that in Fig. 4.2, if the input vector

of P5 is not selected, P 3 may never be filled with a token
and as such it would be inç)ossible to reach the goal I This
may be true and in fact, the same argument may arise in con
nection with all the input vectors. The idea is to
select the most "promising" input vectors and leave the less
critical ones to be generated randomly.

Before weighting the input vectors, we check if these
input vectors are covered by any of the input vectors selected
by the control branch selection procedure. If so, the particu
lar input vector is not taken into consideration again.

82

In attempting to select input vectors from register
transfer expressions, special attention must be devoted to
counters and shift registers. This class of registers repre
sents complex sequential circuits that are troublesome in test
set generation. If an input vector must be loaded into any
of these special registers it may be critical. In a given ma
chine only a few input vectors may be loaded into a counter
or shift register. For these reasons, any input places asso
ciated with count or shift/rotate transitions in the petri net
are included in the list of input vectors to guide the search.

In section 4.2.1 we discussed how to handle condition
al control state branching expressions. One may wonder whether
condition expressions which control register transfers require
any special treatment. In the AHPL expression:

k* A 4 — B*cb

if the input cb is high, then register B is loaded into regis
ter A . In this example there will be only one input vector
cb:l associated with control state cs.k; this input vector
will naturally be used to guide the search. However, if there
are many input vectors to be applied at cs.k, the input selec
tion procedure of this section will have to be evoked and the
input vectors that control conditional register transfers are
treated like the other register transfer input vectors.

83

4.3 Using the Input Vector Selection Procedure
The input vector selection procedure treated in the

preceding sections is applied to a given circuit only if the
number of input vectors to be applied at a given control
state exceeds a user specified number. The optimum number is
not known although five (5) has been used for previous SCIRTSS
tests and is used for testing in the next chapter. The input
vector selection is done once for each sensitization search;
the Common Transfer Vectors of section 4.2.2 are constructed
only once for each machine while the input vectors from the
Common Transfer Vectors are selected after the construction
of the petri net.

Naturally, when the number of input vectors per con
trol state is less than the user specified number for all con
trol states in a given machine, the input vector selection
procedure is not needed. In this case all the input vectors
appearing in the petri net are used to guide the search.

Finally, the input vector guidance mechanism, like the
heuristic cost value guiding mechanism, is intended to be ma
chine invariant. However, it may be easy to find test sequen
ces for some machines without using input guidance. It
will be very difficult to detect this "easy" condition using
the artificial intelligence method proposed in this work. An
experienced user, on the other hand can recognize such types

84

of machines. For this reason, a user may have the option of
indicating to SCIRTSS whether he wants input vector guidance
or not. In the next chapter we present case studies to show
some machines that do not need input vector selection proce
dure.

4.4 Terminating the Petri Net
The question of terminating the petri net generation

has been deferred till now because we want to explain how the
heuristic function is calculated and how inputs are selected
for guiding the search. Since we are concerned about the num
ber of transitions that have been fired in the net for a given
search state, it is essential that we include enough transi
tions in the petri net. For smaller circuits, then, given a
set of goal nodes, the petri net must be expanded until the
initial control state, usually control state one, is reached
and the input places are all external places.

However, for more conplex circuits, for example, the
microprocessor circuit described in the following chapter, it
is necessary to terminate the petri net generation to prevent
having too many places and transitions. In SCIRTSS III, the
problem graph generation is terminated based on the ease with
which a node was satisfied in past searches. We use the same
decision rules for terminating the generation of the petri net,
with the following added:

85

1. Every control state at which a register transfer
or conditional branch occurs must be expanded at least
once. This implies that it its not necessary to ex
pand a control state in the AHPL description in which
only an unconditional branch to another control state
occurs. This rule is due to the fact that if a par
ticular control state, say cs.5 is used as a terminal
place, then if the machine is in cs.4, cs.3, or cs.2,
no transitions in the petri net can be inferred to
have been fired. Hence the weighting function would
not be able to differentiate between control state
five and control state three, for exan^le, and this
is misleading to the search routine.
2. Where a register, RE, is loaded with primary in
puts at a given control state and the place
^EtE:a%a2 .. is associated with a transition whose
transition time is 2 or less, this particular place
must be expanded at least once. Since in weighting
input vectors to be selected we gave a high priority
with places whose transitions have small transition
time, a register associated with such a transition
should not be left to be randomly loaded1

86

When the two rules above are followed and still there are many
more places to he expanded, all places associated with transi
tion times bigger than a user specified value are marked ter
minal and not expanded.

CHAPTER V
CASE STUDIES AND RESULTS

The guidance mechanisms described in the previous
chapters are supposed to be independent of any circuit de
scription. A user would only have to prepare the parameters
of his particular circuit and submit it as data to the rou
tine. To test these concepts, four markedly different cir
cuits with varying degrees of complexity were submitted to
the test generation program. Faults that were considered dif
ficult for SCIRTSS sensitization searches to reach were selec
ted for detection.

For each fault, the d-algorithm routine found a set
of goal nodes. The petri net was generated manually and sub
mitted as data to routine GNPT whose listing appears in Appen
dix A. This routine sets up pointers to the various places
and transitions in the petri net. The routine HEUSUB confutes
the heuristic value at each step of the sensitization search.
This routine is also listed in Appendix A. The only cases
where there were more than five input vectors were cases III
and IV. For these cases, the input vectors were selected

87

88

based on the criteria in chapter four and submitted as data
to the main search routine. All four circuits have been pre
viously used as test cases in the full SCIRTSS run at the
University of Arizona. In the early tests, special guidance
routines had to be written for each case (Ng (1974), Van
Helsland (1974)). Huey (1975) used these circuits to test
his general purpose guidance mechanism and we shall frequent
ly refer to the results obtained using the petri net and those
obtained using the problem reduction graph which was used in
SCIRTSS III.

For each sensitization search, the goal node(s) and
starting node are submitted to the main search routine as data.
The routine expands each node and confutes the heuristic value
for the node. This heuristic value is cougared with other
nodes that are candidates for expansion. The node with the
minimum heuristic value is picked as most promising and ex
panded. The search is either successful in which case it re
turns "SEARCH SUCCESSFUL" message together with the goal reach
ed, or fails. In the latter case, there are two ways it can
fail:

a) When the search routine runs out of nodes to ex
pand, i.e., all nodes have been expanded without any
new node being generated, it returns "MINIMUM HEURISTIC
SEARCH FAILS."

89

b) If the search continues for more than a user
specified limit (NSIM call limits) without finding
a successful input sequence, it is terminated as an
unsuccessful sensitization search. A limit of 1 0 0 0

was set for the test run.

5.1 Case I; The Narrow Window Circuit
The first circuit to be used to test the guidance

mechanism is a "narrow window" circuit where certain control
states are hard to reach due to control branching conditions
which are hard to satisfy. The only searches to fail detec
tion in earlier SCIRTSS testing were those where reaching a
goal node involved reaching a control state in one set when
the initial state for the search was in the other. The AHPL
description of this circuit is shown in Fig. 5.1 while Fig.
5.2 shows the control state diagram. There are two sets of
control states: GA and GB. The fault requiring the most dif
ficult sensitization search possible is the one associated
with the branch logic from cs.ll to cs.l if the machine is
initially in cs.l. The fault to be sensitized is at the out
put of the logic which implements the branch condition:

cs.ll — > (A/A)/(I)

90

MODULE: NARROW WINDOW CIRCUIT
MEMORY: A[3]; B[3]; CNT[4]; Y[l]
INPUTS: X[3]; II, 12

OUTPUTS: Z, Bl, C

1. A X; Yf-Il; CNT INC(CNT)
^ (Ï2, I2)/(2,5)

2. B -f- ü)VaDD(A,B); C aVADD(A,B)
^ (Y,Y)/(3,4)

3. B -f- (0 VaDD(A,B) ; C ■<- aVADD(A,B)

4. CNT X- INC (CNT) *11
-»■ ((CNT^ACNTg), (CNT^ACNTg))/(8 ,l)

5. A f(AAB)
(Ï2, I2)/(6,7)

6 . B ■<- £ (3) ; Z ^ 1;

7. CNT INC (CNT) *Y
^ ((CNT^ACNT2),(CNT^ACNT2)) / (8,1)

8 . A -f- B*I2; B A*I2
-»■ (ïr,l2)/(9,ll)

9. A 3 4- A/(A,B)*I1

10. B + +B; A ^ +A
11. B,A Bi2,B3,A,X3

-»■ ((V/A), (V/Â))/(8 ,l)
Figure 5.1 AHPL Description of Case Study I

91

12:0 2:1

GA
I:0> Y:1

States CNT,''CKT̂ =0 12:1

CNT

7A:111:0 11:1

GB 11 A:000
States

Figure 5.2 Control State Diagram of Narrow Window Circuit

92

This fault is the output of OR gate #90 stuck-at-one. To sen
sitize this fault, starting from control state one, the narrow
window conditions for going from GA to GB must first be satis
fied (cNTrllXX^, then the condition A:000 must be satisfied.

The d-algorithm returns one test vector which indi
cates that place A:000 and cs.ll must be satisfied for the
fault to be sensitized. The petri net generated is shown in
Table 5.1 and the place listing in Table 5.2. From the petri
net we have only one input vector X:000 which was submitted
to help in guiding the search. This input vector alone pro
vided enough guidance to find an input sequence that is com
parable to those found using heuristic function guidance. Two
sets of tests were run on this circuit:

1) When the machine is in reset state, i.e., c.s.l
and state vector is 0000 0000 000, and
2) When the machine is in control state 1 and regis
ters A and B contain the vectors ^111^. In both cases
the goal node is the same.
When the search starts from the reset state, the goal

is not very difficult to reach although it is not trivial.
The combined heuristic value-input vector guidance expands
about 50% less nodes than using input vectors only. It may

93

Table 5.1 Petri Net Listing for Case I

Output Input Immediate
Transition_____ Type_____Place Places Descdt

T1 3 PI 2,3 2,3,4,5,6
T2 1 P2 7,8 8,9,10,14
T4 1 P2 8,9 8,9,10,24
T5 1 P2 5,6
T6 1 P2 10 13
T7 2 P3 9 11,12
T8 1 P8 10 13
T9 1 P8 10 13
TIC 1 P8 14 21
Tll 2 P9 12,13 17,18,19
T12 2 P9 11,13 16,17
T13 2 PI G 16 15
T14 1 P8 3,17,18 7
T15 2 P16 9 11,12
T16 6 Pli 14,19 21
T17 4 PI 3
T18 2 P12 7 22
T19 2 P12 15 20
T20 2 PIS 7 22
T21 2 P14 19 23

94

Table 5.1 cont'd

Transition Type
Output
Place

Input
Places

Immediate
Descdt

T22
T23
T24

2

2
1

P7
P19
P8

6
5
15 20

Table 5.2 Place Listing for Case I

p 1 GOAL p 11 es .4
p 2 A: 000 p 12 es.7 ■
p 3 cs.ll p 13 KNTrllXX
p 4 A:XOO p 14 es.3
p 5 IX: 000 p 15 es.6
p 6 cs.l p 16 es.9
p 7 es. 5 p 17 BtXOO
p 8 B;000 p 18 ArOXX
p 9 es. 10 p 19 es.2
p 10 es.10

95

be startling at first to observe from Table 5.3(a) that the
heuristic cost value alone expanded the same number of nodes
as the combination of heuristic value and input vector gui
dance. This is expected since the register A contains ^000^
to start with and this is the same vector that is loaded by
the input vector.

In the second test run, with registers A and B both
containing the vector £lll}, more nodes are expanded before
reaching a goal. The input vector only guidance found a se
quence whose length is three more than the combined input and
heuristic cost value guidance. The results of this test are
summarized in Table 5.3(b). With the heuristic value only,
only 50 nodes were expanded and the length of the sequence
found is 27. In this particular result, register A was load
ed with £ 0 0 0 } on the first expansion thus leading to the ex
pansion of very few nodes. However, the length of sequence
found is suboptimal. Case Study 1(b) is a good illustration
of the fact that both heuristic cost value and input guidance
are required to give an optimal sequence. SCIRTSS III ran the
same test and expanded about 50% more nodes than the results
reported here. In both cases, the length of the sequence
found is about the same.

Table 5.3. Test Runs for Case I

96

A B CNT Y
(a) starting node: 0 0 0 0 0 0 0 0 0 0 0

Type of Guidance Length of
Sequence Found

Total Nodes
Searched

No guidance none found 1 0 0 0

Input vector only 33 170
Heuristic vector only
(w = 75) 26 94
Heuristic value (w=75)
and input vector 26 94

A B
(b) starting node; 1 1 1 1 1 1

CNT Y
0 0 0 0 0

Type of Guidance Length of
Sequence Found

Total Nodes
Searched

No guidance none found 1 0 0 0

Input vector only 26 252
Heuristic value only
(w = 75) 27 60
Heuristic value (w=50)
and input vector 23 277
Heuristic value (w=200)
and input vector 24 238

97

5.2 Case II: The Anti-Random Circuit
The second case study is an anti-random circuit.

This circuit has the special feature of a chain of control
states where each control state either loops to itself unless
a counter has counted up to seven, or resets to an initial
state if the control input RS is 1. The AHPL description is
given in Fig. 5.3. The heuristic function computation will
in this case be very much dependent on the count transition.

The fault to be sensitized is in the logic that inple-
ments the register transfer

Z A/fe

in control state five. This fault is at the output of AND
gate #65, stuck-at-zero. The d-algorithm returns a vector
which indicates the machine must be driven into cs.5 and load
register B with 11111111 to sensitize the fault. The petri
net generated for this case is shown in Table 5.4. The inputs
to transition t^ which fires to fill the goal place are cs.5
and 3:11111111. Needless to say, to load all one's into a
register is not likely to happen by chance.

There are two input vectors in the petri net which
were used as heuristic input vectors. These two input vectors
were very effective in guiding the search. However, the heur

istic function-input vector guidance provided an efficient

98

MODULE; ANTI-RANDOM CIRCUIT
MEMORY: KNT[3]; B[8]
INPUTS: X[8]; RS

OUTPUTS: 0UT[8]; Z

1. KNT TTTT

(RS,RS)/(1,6)

2. KNT 1- INC (CNT)
((A/KNT),(A/KNTARS),(A/KNTARS))/(3,l,2)

3. KNT -<- £ (3) ; B X

4. KNT INC (KNT)
((A/KNT) , (A/KNTARS) , (A/KNTARS))/(5,l,4)

5. Z -f- A/B; OUT e(8)
1

5. KNT -f- INC (KNT)
((A/KNT),(A/KNTARS),(A/KNTARS))/(?,!,6)

7. KNT + £(3); B X

8 . KNT INC (KNT)
-»■ ((A/KNT) , (A/KNTARS) , (A/KNTARS))/(9,l,8)

9. Z + 0; OUT 4- B
4- 1

Figure 5.3 AHPL Description of Case Study II

99

Table 5.4 Listing of Petri Net for Case II

Transition Type
Output
Place

Input
Places

Immediate
Descdt

T1 3 PI 2,3 2,3,4
T2 2 P2 4,5 5,6,7
T3 1 P3 6,7 9
T4 1 P3 8,9 8

T5 2 P4 6 9
T6 4 P5
T7 4 P5
T8 2 P9 5,10 6,7,10
T9 2 P6 5,11 6,7,11
TIO 2 PIO 1 2

Tll 2 Pli 1 2

Table 5.5 Place Listing for Case II

P 1 GOAL P 7 IXlllllll •

P 2 CS.5 P 8 IXOOOOOOO
P 3 Bllllllll P 9 es.7
P 4 es .4 P 10 es.6

P 5 KNT:111 P 11 es.2

P 6 es.3 P 12 cs.l

100

guidance: only fifty nodes were expanded and the length of
the sequence found is two less than when only input vector
guidance is used. It is interesting to note that heuristic
value only could not find any sequence. This is because of
the nature of the goal: to randomly generate all I's is not
very easy. However, the combination of the two types of
guidance expands 50% fewer nodes than the input vector
onlyl A summary of the test run is given in Table 5.5.

Comparing the problem reduction graph method of
SCIRTSS III, we note that 122 nodes were expanded by the heur-
istic-value input vector guidance to find a sequence of length
29.

Table 5.6. Summary of Test Runs for Case II
Type of Guidance

No guidance
Input vectors only
Heuristic value only
(w = 75)
Heuristic value (w=50)
and input vectors
Heuristic value only
(w=1 0 0) and input vectors

Length of
Input Sequence

none found
20

none found

18

18

Total Nodes
Searched

1000
113

1000

50

53

101

5.3 Case III; Search-Sort Processor
Another circuit used to test SCIRTSS is a search-sort

processor which includes a random access memory. The data
word is only two bits in width since the width of data word
does not present any problem in test generation. The instruc
tion register is externally loaded when the machine is in con
trol state 1. Fig. 5.4 shows the AHPL description.

The petri net generated for this case is shown in
Table 5.7. From the petri net one can notice that places
that are of register transfer type dominate the control states
3:1. Hence the heuristic function computed would be very much
controlled by register contents.

A careful look at the machine description shows that
all control branch conditions are determined by the contents
of the instruction register which is in turn dependent upon
the input vectors applied at control state one. This makes
the input vector selection very crucial and in fact, is the
first test to the selection procedure of Chapter Four.

The fault being sensitized is at the output of the
memory cell stuck-at-zero. The d-algorithm returns one
test vector which signifies that the machine must be moved
into control state four, and registers AR, IR loaded with vec
tors 100, XXI respectively while XI must be written into the
fourth memory location to sensitize the fault.

102

MODULE: SEARCH-SORT PROCESSOR
MEMORY: M[8;3]; AR[3]; IR[3]; MD[3]; AC[3]
INPUTS: A[3]; IN[3]; X[3]

OUTPUTS: AC[3]; out; accept; input

1. AR ^ A; IR + IN; accept -f- 1

2. + (IRoytlRQAlR^jfflRgAlR^AlRgiftlRoAlRiAlRg))/(3,4,5,6)

3. AC ^ (IR̂ AIR2)V(ACAMD) * (IR^A^)V MD * (^AIR2)V X* (S^A^)
MD AC* (IR^AIR^) ; input *- IRAIR^

1

4. MD *- +MD*IR2 V IR2 *BUSFN(M;DCD(AR))
^ 1

5. out 1
1

6 . M*DCD(MA) *- MD
1

Figure 5.4 AHPL Description of Case Study III

103

Table 5.7 Petri Net Listing for Case III

Output Input Immediate
Transition Type Place Places Descdt

T1 3 PI 2 ,3,4,S 2,3,4,15
T2 2 P2 6,7 5,6
T3 1 P3 8,9
T4 1 P4 1 0 , 1 1 7,9
T5 1 P14 13,19 1 0

T6 1 P7 8 , 2 2

T7 2 Pli 6 , 1 2 8

T8 1 P12 8,16
T9 1 PIO 13,14,15 5,10,11,14
TIO 2 P13 6,17 13
Tll 1 P14 13,20,21 1 0 , 1 2

T12 1 P21 8,18
T13 1 P17 8,18
T14 1 PIS 8 , 2 2

T15 1 PS 8,23

104

Table 5.8 Place Listing for Case III

P 1 GOAL P 13 es.3
p 2 es .4 P 14 ACzXl
p 3 ARrlOO P 15 RIRzXOl
p 4 M4:X1 P 16 IN; 011
p 5 RIR:XX1 P 17 RIRzlXX
p 6 es.2 P 18 IN:200
p 7 RIRîOOX P 19 ACzXO
p 8 es.i P 20 IX:X1
p 9 lArlOG P 21 RIRzXOO
p 10 MD:X1 P 22 IN; 001
p 11 es.6 P 23 IN;XX1
p 12 RIRrOlX

105

The Control Branch Vectors obtained for this circuit
are:

Bg = IN:1XX
B4 = IN: COX
B 5 = IN: 010
Bg = IN:Oil

Only control state five does not appear in the petri net and
hence the G Common Transfer Vectors are:

Gi(3) = IN:1XX
G2(4) = IN:OOX
Gg(6) = IN:Oil

For the input vectors associated with register transfers, we
have:

A:100
IN:XX1
IN: 001

Both A:100 and IN:XX1 received high weighting values and were
selected according to our rules. Hence we have the vectors :

IN:1XX; IN:OOX; IN:Oil

106

selected from the Control Branch Input Selection procedure
and

A;100? IN:XX1

selected from the Register Transfer Input selection procedure.
The input vector INrXXl from the second selection process
covers the vector IN:COX and so IN:OCX is dropped from the
list. Hence for application at control state one we have the
four vectors :

A:100; IN:XX1; IN:Oil and IN:1XX

selected to guide the search.
To make the search as difficult as possible the start

ing node was chosen as:

CS AR IR AC MD
1 001 110 00 01 00

This circuit responds very well to guidance:
only 36 nodes were expanded to reach the goal I The whole
state space search is shown in Table 5.9 while the various
runs are summarized in Table 5.10.

Comparing our results with SCIRTSS III, we note that
in SCIRTSS I I I 69 nodes were expanded to reach the goal and
the length of the sequence found is 17. The input vector only

Table 5.9 State Space Search for Case III

ULf.r

1 r c n . NUUE L t V L L C US r VALUE C . 5 . I 'HEI I .Ni lUL l u p u r v i c r i i o Ü1A1C VE: 1 (111

0 1 0 1 0 6 1 0 2 3 3 3 3 3 3 3 0 0 1 1 l O U l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 01 3 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 1 9 4 3 1 0 1 0 0 1 1 0 0 0 1 0 o i l 01OOOO00000000000000
3 4 1 1 0 7 3 1 1 0 1 1 > 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 5 2 6 0 4 2 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ü (> 3 1 76 1 5 001n o u o o i u o 0 0 1 0 0 0 0 0 0 0 0 0 0 0 OOOUUOOOO
o 7 2 02 6 3 10 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 a 3 9 6 1 7 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
II 0 4 04 2 0 l O O ' I O l O l 1 0 0 (III 1 0 1 0 0 0) 9 0 0 1 3 0 0 0 0 0 0 JOO
V 10 4 9 7 2 0 1 1 0 0 1 1 Ô 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 11 4 1 1 0 2 II 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
11 1 3 5 71 4 9 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
13 1 3 6 1 7 9 1 1 2 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 3 1 4 5 0 5 6 10 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 OOOl 0 3 0 0 0 0 0 0 9 0
14 1'3 6 9 9 1 1 4 10110101 n o 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1 Ü 16 7 0 7 3 15 l O O O l 1 1 0 1 0 0 01 1 0 1 0 0 0 9 0 0 0 1 0 0 9 0 0 0 0 1 0 0
l o 1 7 7 1 0 0 2 1 5 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1 7 1 U 7 1 1 3 2 1 5 1 0 1 1 0 0 1 1 1 0 1 1 (10 01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
l U 1 9 a 74 6 1 6 1 0 0 0 1 10 0 lOI) 0 1 1 0 1 0 0 0 0 0 9 0 1 9 0 9 9 0 0 0 1 0 0
19 3 0 9 0 9 1 1 9 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
3 0 21 1 0 9 0 2 2 0 1 0 0 111 10 1 0 0 0 1 1 0 1 0 0 0 0 0 4 0 1 0 0) 1 0 0 0 1 0 0
3 1 3 2 10 1 0 3 3 2 0 1 1 1 1 1 1 1 1 111 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
3 3 2 3 10 1 1 » 2 2 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
3 3 2 4 11 7 7 6 3 1 0 1) 1) 0 1 1 0 1 0 0 o n 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
3 4 2 5 12 9 2 1 2 4 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
3 ‘J 2 5 u 0 0 6 17 0 0 1 0 0 0 1 1 1 0 1 1) 11 0 1 0 0 0 0 0 9 0 1 0 0 0 0 0 0 0 1 0 0
3 0 2 6 9 1 0 2 1 2 5 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
2 7 27 10 9 0 2 3 6 1 0 0 0 1 1 OUI 0 0 0 1 1 0 1 OOOOOOO1 0 0 0 0 0 1 0 1 0 0
2U 2 0 1 0 1 0 3 3 3 6 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1) 0 0 0 9 9) 1 0 0 0 0 9 1 0 1 0 0
3 0 3 9 10 1 16 3 2 » 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
3 0 3 0 1 1 77 6 2 7 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 4 1 0 0 0 0 0 1 0 1 0 0
31 31 1 3 9 3 1 3 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 9 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
3 3 3 3 1 3 9 3 3 31 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
3 3 3 3 1 3 1 0 6 3 31 0 1 1 0 1 1 1 0 01 1 01 l o i o o o o o o o i o o o l m o i o o
3 4 3 4 13 1 1 9 3 31 OOU1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
3U 3 5 14 0 0 4 3 3 0 0 1 0 0 0 1 0 1 0 0 m i l 0 1 0 0 0 0 0 0 0 1 0 4 0 1 0 1 0 1 0 0

ÜÜAIILM b U L C l i S S I OL

(■UAL Ht :ACHUD
r i H A L NIJ Ut

10 0
1 3 J OO 1 0 1 0 0 0 J Q) 0 l UUO K U O 1 >0

J 6 N S I M C A L L S

108

guidance in both cases expanded about the same number of nodes
but our results show a sequence of length 15 while SCIRTSS III
found a sequence of length 629.

This case study has again demonstrated that both heur
istic cost value and input vector guidance are necessary to
produce an efficient search and obtain a sequence of reason
able length-

Table 5.10. Summary of Test Runs for Case III
Type of Guidance Length of Total Nodes
________________ Sequence Found Searched
No guidance none found search failed
Input vectors only 15 577
Heuristic value only
(w = 2 0 0) none found search failed
Input vectors and
heuristic value
(w = 200) 14 36

5.4 Case IV: Four-Bit Expandable Microprocessor
The last case study is a four-bit microprocessor slice.

As far as automatic test generation is concerned, the data word
poses no difficulty: thus there would be very little differ
ence if, say an eight-bit microprocessor were being tested. The
preceeding three cases were designed with the aim of stalling

109

the test generation and guidance principle. This case is in
tended to test the usefulness of the guidance principle on a
real world problem. Besides, the control description is far
more conç>lex than the previous cases. The arithmetic unit in
cludes a full adder and other more sophisticated combinational
logic functions. Figure 5.5 gives the AHPL description and
the block diagram appears in Figure 5.6.

The fault selected for the sensitization search was
at the carry out bit of the program counter slice (OR gate
#172) stuck-at-zero. The d-algorithm returned three vectors
that could sensitize the fault:

{CS.IO, PC:1111, IR;XX1X}
{CS.14, PC:nil}
{CS.19, PC:nil}

The petri net generated is shown in Table 5.11. As expected,
the petri net is large, having fifty-seven transitions and 57
places. Almost all places that were of register transfer type
were expanded except IRrlXXX and IR:X001 which were left un
expanded because of the ease with which they have been satis
fied in the past.

The main source of difficulty in perfomning sensitiza
tion searches on this circuit is that often many instructions

110

MODULE: FOUR-BIT MICROPROCESSOR
MEMORY: UR[4]; AC[4]; IR[4]; PC[4]
INPUTS: DN[4]; ICS[4]; linki, slave, ready

OUTPUTS: DO[4]; lOSR; linko

1. UR ^ PC

2. DO -I- UR; lOSR = 1,0,1
-»• (ready, ready)/(2,3)

3. IR -s-ICS; UR DN; lOSR 0,1,0
-*■ (ready, ready)/(3,4)

4. -»■ ((IR^VdR^AÏR^AlR^)),(ÏR^AIR2 AIR3 AÏR^),(IR^AIR2 AIR2 AIR^),
((IR^AIR2 AIR3 AIR^) AdR^AlR^)) / (5,16 ,18 ,15)

5. DO UR*slave; lOSR ■«- (1, 0,1) *slave
(ready, (ready A ((IR^AIR^)V(IR2 AIR^))) ,

(readyAÏR2 AÏR2 AÏR^),(readyAlR^AÏR^),
(readyAIR^AlRgAlR^))/(5,6,8,10,12)

6. UR 4. DN; lOSR 0,1,0
(ready, ready)/(6 ,7)

7. DO UR; lOSR ■«- 1,0,1
(ready, (readyAlR^AlR2),(readyAlR^AlR2), IR2)/(7 ,8 ,1 2 ,1 0)

8 . UR DN; lOSR 0,1,0
-»■ (ready, ready)/(8 ,9)

Figure 5.5 AHPL Description of Case Study IV

Ill

9. AC + (UR * IR3) V (ADD(AC,UR) * (IR^AIR^))
V (NAND(AC,UR) * (IR^AIR^))
Inko (CO A slave) * (IR^AIR^) ; CO=Carryout of ADD (AC,UR)
^ (14)

10. UR ■<- (AC * IR3) V (INC (PC) * IR3)
Inko (slave V CPC) * IR3 ; CPO=Carryout of INC (PC)

(11)

11. DO -c UR; lOSR 4- 1,1,0
(ready, (ready A IR3) , (ready A IR3))/(ll,14,12)

12. UR **- DN; lOSR ■*- 0,0,1
-»• (ready, ready) / (12,13)

13. PC UR
^ (IR4,IR4)/(14,1)

14. PC ■<- INC (PC); Inko ■*- slave CPO; CPO=Carryout of INC (PC)
-»■ (1)

15. HALT 1; lOSR ^ (1,0,0) * (ÎR2 AÏR3 AÎR4)
AC 4- (ÏR2 AÏR3 AÏR^)
AC ■<- +(AC,lnki)*(lR2 AIR3 AlR^)
Inko 4- AC * (IR2 AIR3 AIR^)
Inko ((AC A slave) V(lnkiAslave)) * (IR2 AÏR3 AÏR^)
Inko -c (v(AC)Vlnki) * (IR2 AÏR3 AIR4)

(Continued)

112

15. (Continued)
((ÏRgAÏRgAÏR^ifflR^AÏRgAÏR^Alnki),
(ÏR^AIR^),(IR^AÏR^AÏR^A.(Inki),
(IR^AÎR^AIR^A (V/ACV miel)),
(IR^AÏR^AIR^A (V/ACV Inki)) / (20 ,19 ,14 ,14,19 ,14)

16. ÜR f- DN; lOSR ■<- 0,1,0
(ready, ready)/(16,17)

17. AC ■<- UR
(14)

18. DO 4- UR; lOSR 1,1,1
(ready, ready)/(18,14)

19. PC INC (PC) ; Inko slaveACPO; CPO=Carryout of INC (PC)
(14)

20. ^ (lnki,lnki)/(3,20)

Figure 5.5 cont'd

113

CONTROLready > lOSR
SEQUENCERs lave

ICS IR

ARITHMETIC
Inko

AC

Inki
DN

UR

INCRE-f
MENT '
LOGIC

PC

figure 5.6 Block Diagram of Four-bit Microprocessor

Table 5.11 Petri Net Listing for Cass IV

114

Transition Type
Output
Place

Input
Places

Immediate
Descdt

T1 3 PI 2,3,4 21,22,4,6
T2 3 PI 3,S 4,6,7,8,9,10
T3 3 PI 3,6 4,6,12,13
T4 4 P3 5,6 7,8,9,10,12,:
T5 4 P22 5,6 7,8,9,10,12,:
T6 1 P3 7,8 39,40,41,42,.
T7 2 PS 1 1 26
T8 2 PS 12,13 37, S3
T9 2 PS 7,13 37,45
TIG 6 PS 6,9,10 12,13,32,34
Til 2 P12 2 2 1 , 2 2

T12 2 P6 15,16 14,15,16,17
T13 2 P6 16,17,18 15,16,17,18
T14 1 PIS 19,20 56
T15 2 P16 24,2S 19,55
T16 2 P16 24,26 20,55
T17 2 P16 24,27 23,55
T18 1 P17 2 0 ,S2 56
T19 1 P2S 20,28 56
T20 1 P26 20,29 56

115
Table 5.11 cont'd

Output Input Immediate
Transition Type Place Places Descdt

T21 2 P2 15,30 14,53,54
T22 2 P2 15,32 14,24
T23 1 P27 2 0 , 2 1 56
T24 2 P32 34 27,28
T25 1 P14 20,33 56
T26 2 Pll 41 38,52
T27 2 P34 30,35 29,53,54
T28 2 P34 30,36 30,53,54
T29 1 P35 20,37
T30 1 P36 2 0 , 2 1 56
T31 1 P4 20,38 56
T32 2 PIO 24,39 33
T33 1 P39 20,50 56
T34 2 P9 44 35,56
T35 2 P44 24,42 36,55
T36 1 P42 20,46 56
T37 1 P13 20,40 56
T38 2 P41 30,14 25,53,54
T39 1 P8 34,51 56
T40 1 P8 2,22,45 5,21,22
T41 1 P8 47,51 46,47,49
T42 1 P8 41,51 38,52

116
Table 5.11 cont'd

Output Input Immediate
Transition Type Place Places Descdt

T43 1 P8 44,51 35
T44 1 P8 2,13,43 21,22,37
T45 2 P7 47,0 46,47,49
T46 2 P47 30,49 50,53,54
T47 2 P47 32,48 48,24
T48 1 P48 20,31 56
T49 2 P47 12,49 11,50
T50 1 P49 20,23 56
T51 1 P45 20,38 56
T52 2 P41 14,32 24,25
T53 2 P30 24,55 55
T54 2 P30 24,56 55
T55 2 P24 2 0 56
T56 6 P20 53,54 57
T57 2 P53 57

Table 5.11 cont'd. Place Listing for Case IV

117

p 1 GOAL p 23 les;X111
p 2 es.10 p 24 es .4
p 3 KPCrllll p 25 RIRtOOOO
p 4 RIR:2212 p 26 RIR:001X
p 5 es. 14 p 27 RIRrOlOX
p 6 es. 19 p 28 les:0000
p 7 es.13 p 29 ieS:001X
p 8 UR:1111 p 30 es.5
p 9 es. 17 p 31 ieS:OOXX
p 10 es.18 p 32 es.7
p 11 es.9 p 33 ieS:1000
p 12 es. 11 p 34 es.6
p 13 RIRrXXOO p 35 RIRrXOlX
p 14 RIR:1000 p 36 RIRzXXOl
p 15 RIR:X100 p 37 les:X01X
p 16 es .15 p 38 lestxxix
p 17 RIR:X101 p 39 RIRzOlll
p 18 AC:0000 p 40 leSrXXOO
p 19 lestxioo p 41 es.8
p 20 es.3 p 42 RIRiOllO
p 21 les : 0101 p 43 AC:1111
p 22 KPe:1110 p 44 es. 16

118

Table 5.11 cont'd
P 45 RIRrXXlX
P 46 ICSîOllO
P 47 es. 12
P 48 RIRrOOXX
P 49 RIRrXlll
P 50 ICStOlll
P 51 DNrllll
P 52 ICSrXlGl
P 53 es.2
P 54 es,20
P 55 RIR:1XXX
P 56 RIRzXOOl
P 57 es.i

119

must be executed to cause the necessary data vector manipula
tions for reaching a goal node. If the instruction register,
IR, is not loaded properly at control state three, the next
5 to 10 control steps do not offer any opportunity to modify
the contents of IR nor does the machine return to CS.3. Also,
a great many of the control branches depend entirely on the
contents of IR.

To reach our goal, place ^PCillll^ must be filled with
a token while our initial state is PC:0000. To avoid many
cycles of incrementing the program counter, a junç type instruc
tion must be executed. This is either the instruction |̂ IR:llloJ
or {iRrOllo}.

Needless to say, the input vector selection is very
crucial in reaching our goal. The instruction register IR is
loaded with external input at CS. 3. There are over sixteen in
put vectors associated with CS.3 from which four or five must
be selected.

The Control Branch Input Vectors of this microprocessor
were used as an example in Chapter Four, Section 4.2.1. From
that procedure three vectors were selected:

ics:1 0 1 X; ics:1 1 0 0 ; ics: 0 1 1 0

120

It should be noted that the Control Branch‘Input Vector selec
tion process is invariant with respect to the fault; for that mat
ter, there was no way of knowing that icszlllO & icszOllO are cri
tical! However, with the basic philosophy of selecting the input
vectors such that as far as it is possible all important control
states are visited during the search, we have been able to se
lect the "best" input vectors. From the petri net for this
circuit, it was detected that the machine does not have to
"wait" in control states 3, 5, 7, 8 , 12, 15, 18 and 20 during
the search. As discussed in Section 4.2.2 the register trans
fers that take place in these control states do not need to
be repeated when the control signal "ready" is low.

The results obtained from this machine are fantastic!
With the information on the control signals that can control
branching from one control state to another, we performed two
separate tests :

a) the control branching derived directly from the
AHPL description

b) control branching selected according to the infor
mation from the petri net.

The results are listed in Tables 5.12(a) and 5.12(b). In
SCIRTSS III, the control branching functions were derived di
rectly from the AHPL description. This corresponds to the

121

results of Table 5.12(a). Even in this case, 508 nodes were
expanded to obtain a sequence of length 15. The best result
reported in Table 5.12(a) expanded 50% less nodes to obtain a
sequence of length 18.

We have included the results of Table 5.12(a) only for
the sake of meaningful comparison with the results of SCIRTSS
III. The results of Table 5.12(b) indicate the effectiveness
of the petri net in guiding the search in complex circuits
with very difficult goals. Using input vectors only, a se
quence of length 16 was found and only 91 nodes were expanded1
However, both the heuristic cost value and input vectors pro
duced a sequence of length 20 and expanded only 47 nodes 1
Although the input sequence is suboptimal, the search is al
most 50% more efficient than using only input vectors and thus
is a very good result.

The visual representation of Figure 5.8 is given to
show the disparity between the results of the search in all
four circuits when no guidance is used and when there is gui
dance. The best results of SCIRTSS III, the problem reduction
graph model and the petri net model are also indicated.

As a natural consequence of the comparison of the re
sults obtained in this work with the results of the problem
reduction graph approach, one may ask, "which is faster?"

TEST RUNS FOR CASE IV
Table 5.12(a)

122

Tvpe of Guidance
Length of Sequence

Found
No. of Nodes
Expanded

No guidance none found 1 0 0 0

Input vectors only none found 1 0 0 0

Heuristic value only none found 1 0 0 0

Heuristic value
(w = 75) and
input vectors

18 287

Heuristic value
(w = 1 0 0) and
input vectors

18 230

Table 5.12(b)

Tvpe of Guidance
Length of Sequence

Pound
No. of Nodes
Expanded

No guidance none found 1 0 0 0

Input vector only 16 91
Heuristic value only none found search failed
Heuristic value
(w = 1 0 0) and
input vectors

2 0 47

123

1000--

T3mTScro
I
to
0)-o
s
(Wo
s

510

430

350

•w•u270

190

1 1 0

30
5 7 9 1 1 2 0

Fig. 5.8 Circuit Complexity (No. of Control States)

124

This is a difficult question to answer since SCIRTSS III does
not report the amount of computer time taken to perform the
search. The number of nodes expanded is by far a better com
parison; however, we can refer to an informal computer output
of SCIRTSS III that expands 300 nodes in 48 seconds. Using
the same circuit, our program expanded 202 nodes in 29 seconds.
On the other hand, the input vector selection process of Chapter
Four is much more complex than that of the Problem Reduction
Graph. Again since this is done only once for each search (if
needed) the far fewer number of nodes expanded more than off
sets the complexity of the selection procedure.

CHAPTER VI
SUMMARY AND CONCLUSION

6 .1 Summary
Guidance for sensitization searches enable these

searches to reach their desired goals after expanding relative
ly fewer nodes than if the searches are not guided at all; in
most cases these unguided searches terminate abruptly.

A petri net model is presented that models the regis
ter transfers and change of control states in a sequential ma
chine described in a Computer Hardware Description Language
(CHDL). For each sensitization search, a new petri net is gen
erated based on the goal node(s) and the CHDL circuit description.
Portions of this process are completely independent of the fault.

Each set of goal nodes forms input places to a tran
sition which if fired implies the fault is sensitized and the
search is successful. Only one control state appears as input
to each of these transitions. The remaining portions of the
petri net are generated from these input places.

For each machine state encountered during the state
space search, a marking or state vector is derived from the

125

126

petri net, using the general state equations of a petri net.
Based on the marking vector, a heuristic cost value is confu
ted which measures essentially the effect of reaching one ma
chine state on the transitions in the petri net. The direction
of the search is determined by these heuristic cost values :
a node with the minimum heuristic cost value is selected as
most promising and is expanded in the state space search.

The petri net also contains information about input
vectors that are associated with each control state. The most
important of these input vectors are selected for inclusion in
the input vector table that guides the search. For the pur
pose of selection, the input vectors are classified into two
categories: those input vectors that are responsible for con
trol state branching and those that are used only for register
transfer. The input vectors that cause the sequential machine
to branch to the most number of control states are selected
from the first category for inclusion in the table while the
register transfer input vectors are weighted, using information
from the petri net. The input vectors receiving the highest
weight from this weighting process are selected and,together
with those selected from the control branch category, form the
set of input vectors that provide input vector guidance.
Again, portions of the input vector selection process are in
dependent of the fault.

127

Although AHPL was used in this research/ the results
are applicable to any Computer Hardware Description Language
that has the same structure as AHPL. That is, the expressions
in that particular CHDL must be classifiable as:

1. Conditional Register Transfer expression
2. Unconditional Register Transfer expression
3. Conditional Control Branch Expression

or 4. Unconditional Control Branch Expression.
Four very difficult circuits were used as case studies

to test the proposed guidance mechanism. The sensitization
search goal for each of these circuits was selected to be as
difficult as possible. In each case, the proposed guidance
mechanism provides an improved performance in the sensitiza
tion search when compared with the guidance methods of the
problem reduction graph of SCIRTSS III.

6.2 Limitations and Further Work
The effort to provide an automatic test sequence gen

eration sequence has resulted in a complicated test generation
system. For each sensitization search a new petri net has to
be generated? although portions of this process simply in
volve linking subnets yet this can be time consuming. Fur
ther, where there are many input vectors, an input selection
procedure must be evoked.

128

Although Computer Hardware Description Languages are
becoming increasingly popular as design tools, many machine
designs do not use them. This limits the scope of application
of this work.

The generation of a new petri net for each fault can
be avoided if we can have a petri net model of the machine
itself such that each fault has a "unique impact" on the petri
net. From this "unique impact" we can derive a heuristic cost
value and perh^s be able to choose input vectors to guide the
search. This research has not been able to produce such a
petri net model of the machine; we had to generate the petri
net starting from the goal nodes. This area can be investiga
ted further.

The Problem Reduction Graph relies heavily on past
SCIRTSS runs to obtain statistical information both for com
puting the heuristic value and terminating the graph genera
tion. The petri net relies on statistical data from previous
runs only for terminating the petri net generation. It would
be desirable to get rid of relying on statistical data from
previous runs completely. Maybe if we can produce the "uni
versal" petri net mentioned in the previous paragraph then the
problem would disappear. If not, a user specified optimum maxi
mum transition time must be given for terminating the petri
net generation. This optimum number is not yet known.

129

6.3 Conclusion
The four case studies of Chapter Five are complex se

quential circuits with diverse characteristics and were selec
ted with the aim of examining potential weaknesses in the ap
proach. Moreover, the initial states were selected to be a
maximum distance from the goals. Based on these four tests,
we conclude that for sequential machines with very different
characteristics, the guidance provided for sensitization
searches using the petri net derived from the Computer Hard
ware Design Language description of the machine, is signifi
cantly more efficient. Sensitization searching in SCIRTSS is
thus less likely to encounter node limit termination- Petri
nets have been used in various areas of conç>uter science to
study the interconnection properties of systems. In our ap
proach we have diverged from the normal use of petri nets when
applicable; the idea of using these nets to analyze a Conputer
Hardware Description Language with the aim of guiding a state
space search is novel and has proven to be remarkably effec
tive .

APPENDIX A.l

SCIRTSS SEARCH ROUTINES

130

FUHTRAN IV G LEVEL 21 M M N UAIU = 7 8 3 4 1 1 3 / 3 4 / 2 0 PAGE 0 0 0 1

CT
C
C
C.Occ
cc

PHUGRAH TO PERFURM jClHISS IV SEARCH
K. e. ÎORKU OECEMBCR 7TM 1070

CUNIRUL STATE BRANCHING FUNCTION TAtl_ES.
NRSCSIII NUMUER UP SUttCSSUR C.Ü. FUR C.S. I «
KSSCII.J) J-TM SUCCESSUR C.S. TU C.S. I.
NHTRHS(I.J) NUMBER OF TERMS IN BRANCHING FN. FROM C.S. I TO

THE J-TH SUCCESSOR.
VECTORS 10 HEPHESENT THE TERMS OF THE CONTROL STATE BRANCHING FNS.
EACH VECTOR II.J.K) IS THE l-TH TERM OF HR. FN. FROM C.S. J TO

THE K-TH SUCCESSOR.
HIT I =0 FOR OON'I CARE OH ZERO ON INPUT OR FF I.

=l FUR VALUE REOUIREO OR I FOR INPUT O R F F I.
VECTOR OF REOUIREO INPUTS
VALUES REOUIREO FOR INPUTS GIVEN HV MF IP
VECTOR OF REUUIRED FF»S FUR TERM.
VALUES REOUIREO FUR FF*S INUICATEO ÜY MFSP.

TRANSITION N

MFIPII.U.K)
MFIV(l.J.K)
MFSP(l.J.K)
MFSVII.J..KI

PETRI NET ARRAYS
KTYP(N) NTH TRASITIUN TYPE
KPNAM(I) ITH PLACE NAME
LNK(I) INDEX TO VECTOR OF PLACES
M(J) MARKING VECTOR
KHIII VECTOR OF FIRED TRANSITIONS
NIPL(N) NO OF INPUT PLACES TO TRANSITION N
IPLAO(N) POINTER TU TO SET OF INPUT PLACES TO
KTRININ» LIST OF INPUT PLACES TO TRANSITION N
KOPLIN) OUTPUT PLACE OF TRANSITION N
KTRTINN TRANSIT ION TIME OF TRANSITION N
lOESPIN) POINTER TO IMMEOIATE OESCENOANTS OF TRANSITION N
IMOCIIN) SET OF IMMEOIATE OESENDANTS OF TR. N
KOIRtI) POINTER TO SET' Ol- TRANSITIONS TO WHICH

PLACE I IS OUTPUT
LOSTR(I) LIST OF TRANSITIONS TO WHICH OUTPUT

PLACES POINT
NO OF PLACES IN THE PETRI NET
NO OF TRANSITIONS IN IHE NET
NO OF TERMINAL PLACSE

l-TH FF VECTOR (VALUES PRESENT I FOR GRAPH.
l-TH FF VECTOR (VALUES WHERE REUUIRLO) FUR GRAPH.
NUMUER OF INPUI VECTORS TO HE APai.lEO AT C.S. I.
J-TH INPUT VECTOR TO HE APPLIED AT C.S. I.

NP
NT
NT PL

MGRPII I
MGRVI 1 I
NCSIVI I I
MCSIPII.J)
MCSIVII.J)

SEARCH SPACE.
MGOALPII I
MGOALVII)
NOOECSII 1
NOD IP(I)
NSTAIEI11
NPREUII)
NOOLEVII>

l-TH ELEMENT OF EACH ARRAY IS FOR l-TH NODE.
l-TH GOAL HOOL. IT *S WHERE VALUES ARE REOUIREO.
l-TH GOAL NUDE. REÜÜ1PE0 IF VALUES.
MACHlRh CUNIKÜL SIAE AT NODE 1.
FULL INPUT VECTOR APPLIEO TO PREJFCtSSOR TO REACH I
FULL PLIPFLOP VALOr VECTOR FUR CURRINT (l-TH) NODE.
INDEX TO THE PRF.OLCrsSOR LF NODE I.
LuVLE OF THE SE ART.H GRA^H EOF NUDE I.

LUH

FUHTRAN IV U LEVCL 21 MA IN UATU = FU3 4I I 1 / 3 4 / 2 0 RAGL- 0 0 0 2

0 0 0 1
0002
0003
0004
0005
000b
0007
0000
0009
0010
001 1
0 0 1 2
0013

00 14
0015
0016
001 7
0010
0019
0020
00 21

0022
0023
0024
0025
0026
002 7

0020
0029
00 30
U03I
0032
0033

C
C
CC
c
c
c
c
c

NÜUEHII)
COMMUNICAT ION

K T RMIII)
KIRMFIII
MTRMFII I

GENERAL AUXILIARY
KTCMRII I

HEURISTIC ViElGHT CUMRUTEO FUR NOUE 1.
VLCTURS FUR RSUNSM ROUTING.

0=0. 1=1. 2=X RbOUIRGU VALUE EUR INPUT I.
0=0. 1=1. 2=X REUUIKED VALUE FUR FLIPELUP
VECTOR OF NEXT STATE VALUES.
USE VECTOR.
GENERAL INUEX STORAGE USE ARRAY.

INTEGER
DIMENSION

NRSCSI25).KSSCI25.5).NRIRHSI25.5I
NCSIVI25)

INTEGER NOOECSI10001 .NUOIP(IOOO) .NPItEOI 1000).NUOEHII 000 I
INTEGER KTF.MPI5) .NOOLEVI 1000)
INTEGER KGUALI5)
INI EGER M F IPI25.5.5) .MG IVI25.5.5).MFSPI 25.5.5) ,MFSV{25.5.5)
INTEGER MCSIPI25.I5).MCSIVI25.15)
INIEGER MGUALPI5) .MGOALVI5).NSTATEI I 000)
LOGICAL FS1. COVER.DLÜUG
LUGI CAL PCSIIF . PGRNUS .PGRWT . PHI NV
COMMUN/PAK/NVEC
CUHHUN/NSIM/KTRM11 16).KTRMFI 36).MIHHFI 36).NPFF
COMMUN/HEUSU/NC.IMEGA.KPNAMII 00).LNKI I 00).KÜPLI 100).KTRTI 100).
4IPLADI100).NIPLI100).KUTRI100).IMUCTI480).IDESPI120).LSOTRI240).
4KTRINI240).KTVPI100).ITERPI45).KTRTPIU5).KTPTAI50).KN1PLI I 0.3).
♦ MGRPI40).MGRVI 40).NT.NP.NIPL
CUMMUN/PRINT/P CS UK , PG,<NI)3 . PGRW T .PHINV
EQUIVALENCE I KN1 RL . KSNU.JE)
INTEGER42 SEIA(IOOO)
DAI A ULANK.XNEW.UEL/' ‘.'NEW ». 'DLET'/
DATA KS/'CS •/
DATA KGR/'GR. •/
DATA DEUOG/.FALSE./
IRXA=65S49

DATA INPUT SECTION

: READ GENERAL PARAMETERS.
READ 1 . NR IN.NRI F .NCS
READ I .NLI M. IMI-IGA
READ 77 7 7.PC5UF.PORHU5.PGRWT.PHINV

777 7 FORMAT lULI)
PRINT 001 .NMN.NKFI .NCS.NLI M, I MEGA

001 FURMATI IHI/20X , • NUMUER ur INPUI S'. T45. H O . /
C 20X. « NUMUER (JF FLIPI LUPS' .145.110./
C 20X. 'NUMUER OF CUNTRUi. SIATCS',1 45.1 10/
C /20X.'SEARCH LUUP LI HIT' .150. 11)/,. 3X.'OMEGA'.TsO. I 10//)

: READ IN CONTROL STATE DRANCH TONE TIONS.
I* (PCSIlF) PRINT 002

<102 FURMAT (I5X . • CUNT RDL SlAlE URANCH , UllCI I Oui.' ./)
DU 12 1=1.NCS
READ I.N5CS
NRSCSII)=NSC5
IF (PCÜUF) PRINT 1,0 3, I ,NSCS

0 0to

et JRTRAN IV G LEVEL 21 MA IN DATE = r 0 3 A I 1 3 / 3 4 / 2 0 PAGE 0 0 0 3

0 0 3 4
0 0 3 0
0 0 3 6
0 0 3 /
0 0 3 0
0 0 3 V

0 0 4 0
0 0 4 1
0 0 4 2
0 0 4 3
0 0 4 4
0 0 4 5
0 0 4 6
0 0 4 7
0 0 4 0
0 0 4 9
0 0 6 0
0 0 5 1
0 0 5 2

0 0 5 3
0 0 5 4
0 0 5 5
0 0 5 6

0 0 5 7
0 0 5 0
0 0 5 9
0 0 6 0
0 0 6 1
0 0 6 2
0 0 6 3
0 0 6 4
0 0 6 5
0 0 6 6

0 0 6 7
0 0 6 0
0 0 6 9
0 0 7 0
0 0 7 1
0 0 7 2
0 0 7 3
0 0 74
0 0 7 5
0 0 76
0 0 7 7
0 0 7 0
0 0 7 9
0000
0 0 8 1

0 03 EORMATI20X , • CtlNTItUL 5TAIE • . I 3 • lOX . I 3. • 5UCCE5Sni)S •)
DO 12 J-ltNSC5
READ It KSSCIItJit NTRM5
NRTRMSIItJ)=NTRM3
IE (PCSOF) PRINT 004,KSSCIItJItNTRMS

804 FURMAT(20Xt* C ,St• ,I 3,I OXt*FUNCI 1 UN HAS».13,' TERMS.»/
C 3JX,» INPUTS» tIOXt»FLIPFLUPS» I
DU 12 K=I,NTRM5
READ 2t KTRMItKIRMF
IF(PCSOt I PRINT dOS,lKTRMIIIXI,IX=t,NRIN)
iriPCSUF) PRINT 806,IKTRMFIIXI , 1X=I,NRFF I

005 rURMAT(30Xt161II
(106 FURMAT 11 (IF ,SOX .36II I

NVEC=NR1H
CALL PACKIKTRMItMFIPIItJ,KItMF iV(I,J.KII
NVEC^NRFF
CALL PACK!KTRMF,MFsPI I,J ,KI .MFSVI I,J,KIt

12 CUNTINUE
1 F0RMATI3I5I
2 FURMATIOUIII

C READ IN STARTING NODE AND SET UP AS FIRS! NUDE.
READ 4,KNTRLtMTRMF
PRINT BIO.KNTKL,(MIRMFI I XI,IX=I,NRFFI

610 FURMAT l//|5X,»STARI ING NUDE»,/30X,'C.S.» t13,5X, 'STATE »,361 I I
CALL PACKIMTkMFtXtNSTATEM I I

C READ IN GOAL NUDES.
READ 1, NGDALS
PRINT 820,NGDALS

020 FURMAT(///I5X.'GOAL NUDES' « I OX.13, ' NUDES.» I
DU 10 1=1,NGDALS
REAU 4,KGUAL(I I,(KTRMFI IX ItIX= ItNKFFI

4 FURMAT I IS,5X,36 11 I
PRINT 022,KGCIAL(I I , (KTRMF I I X I , 1 X= I .NRI F I

022 FURMATI30X,'C.S.' t13,5Xt'STATE » ,361 I I
10 CALL PACK!KTRMF,MGUALPII ItMGUALVII I I

CALL GPTNT
C READ IN COHTRUL STATE INPUT VECTORS.

IF (PIIINVI PR I NT 04 U
04 0 FURMAI (////20X ,'IIEUR 1ST I C INPUT VECTURU DV ClINTRUL STATE.»/I

DU 17 1=1,NCS
READ I, N
IF (PIIINVI PRINT 041,1,.I

841 F D R M A T (2 0 x , » C U n T F u L S T M E» .I 3, I OX,I 3,• VFCTURS.'T
MCSIVIIl=N
NVFC=KR1N
DU 17 J = I ,N
READ 2, KTRMI
IF (PIIINVI PRINT OJI , (KTRMI I I X I , IX= I ,RRIN)

021 FURMAT(lOX,361 11
17 CALL PACKIKTRMI,MCS(PI I,JI,MCSI VI I,J))

DU 880 N=l , I DO ")
SETA(N1=0

HWW

y
FORTRAN IV G LEVEL 21 MAIN DATE 71)3*1 I 3 / 3 A / 2 Ü PAGE 0 0 0 *

0002

0003
0004

0005
0006
0007
0000
0009
00 90
0091
0092
0093
0094

008 CONTINUE

0095
0096
0097
0090
0099
0 1 0 0
0 1 0 1
0 1 0 2
0 1 0 3
01 04

0105
0 106
01 07

0 1 0 0
01 09
0 1 1 0
0 I I I
0 I 12

0113
0114

0115
0 1 16
01 I 7
0 1 1 0

: SET UP STARTING NUOL POINTERS.
PRINT 050

050 FURMAT!IHI.///45X,*STATE SPACE SEARCH»///
C lOX.•ITER.».6X.»NUUE ».4X.'LEVEL',4X,'COST VALUE' .3X,'C.S.'.4X.
C 'PREO.NUDE'f3X,'INPUT VECTOR',5X,'STATE VECTOR'//)
NCALLS=0
NRNOS=l
NOOE=0
NOOECSIll=KNTRL
NXSTT-NSTATEII)
NUOIP!I 1=0
NE=0
NOOLEVI11=0
FST=.TRUE.
GO TO 500

SEARCH EXPANSION LOOP
C
C
C
C
c
c

SCAN FOR NEXT NODE TO EXPAND
NEXT NODE TO UE EXPANUED WILL
VALUE WHICH NEVER OEFORE ÜEEN
9 FST=.FALSE.

MINH=3000
l=NRNDS

109 I = I-I
IF I I .LE.01 GO TO 134
IF INÜDEHII).GE.MINMI 00 TO
IFISETAII 1 .EO.I 1 GO TU 109
MINH=NODLHIII
NUOE=I
GO TU 109

C GENERATE NEXT INPUI FROM INPUT
C SEARCH INPUT APPLICATION LOUP i

UE THE ONE
EXPANDED.

109

WITH THE SMALLEST HEURISTIC

VECTOR) * * * SET , 4 *
104 IF IMINH.LT.15001 GO TU I 14

PRINT 902
902 FORMATI///45X,'MINIMUM HEURISIIC NUDE SEARCH FAILS.',/

C 4SX,'SEARCH TERM!NAIED,'I
STOP

II* KSHUDt=NOOfcCSINOOEI
NRI=NCSIVIKSNOOEI
NSCS = NRSCSIKSN(lUEI
SE I AI NCJOE I = I

: p l a c e n c o e o n s e t a , a l r l a o y e x p a n d e u
NE=NOOLEVINODE)H
Of) 200 11 N= I, NRI

C CUNIRUL STATE APPLICAIIUN LUUP.
00 3*0 ICS=l,NSCa
NVI;C = NR IN
CALL UMPACKIKTRMI . MCS I PI KSNIIUL , 11N I , MCS I V IK SNOOL , I IN I I
II lOEHUG) PI<INI I S3 I , I KTRMI I I XI ,1 X=l , I I I

PURTRAN I V U LEVEL 21 MAIN DATE = / m 3 4 l 1 3 / 3 4 / 2 0 PAGE 0 0 0 b

0119 1501 rÜKMATI lUXi •INI'UT APPLtCATIUN LOUP*. 101 I I
0 1 2 0 JJ- 0
0121 NTRH=NRTRMSIKSNUDE.1C3)
0122 DU 301 1=1.NTRM

C CHECK IF TERM IS SATISFIED UY STATE ÜF PREUECESSUR NUDE.
0123 NVEC=NHFF
0124 II I .NUT.CUVLR IMI SP(KSNUDE. ICS.Il.MFSVIKSNUDE,ICS,I ».NSTATE 1 NUDE) 1

C I CU TU 301
C TERM WAS SATISFIED. FURM TAULE UF TERMS SATISFIED,

0125 JJ=JJ+1
9120 KIEMPIJJ)=I

C CHECK IE INPUT SAIISFILS TERM
0127 NVEC = NR IN
0120 CALL UNPAC KIKT FIMF , MF I P (KSNUUE , ICS.I 1 . MF 1 V (KSNUDE . I CS • I I I
0 1 2 9 I F I D C D U O l P R I N T 1 5 0 0 . I K I R M F I 1 X) . 1 X - I . 1 1 I
0130 1500 FURMATIlOX,"CS UKAHCHINS TERM ' ,IS 111
0131 DU 309 3=1.NR IN
0132 If (KTRMKJl.GT.I > ÜU TU 309
0 133 IF (K1RMFI3l.0T.il GU TU 309
0134 IF (KTRMI(3 1.NC.KIRMFI3I1 GU TO 301
0135 309 CONTINUE
0136 GU TU 350
0137 301 CONTINUE
013(1 If (33.EU.0) GO lU 300

C OVERRIDE INPUT VECTUR.
0139 CALL RANOUlIRXA,IRXU.RANFl
0140 IRXA=IHXI1
0141 3=RANF4NTRM»I
0142 CALL UNPACK(KTRMF,Mf1P (KSNUDl ,ICS,31,MF I V (KSNUDE,1CS ,31 I
0143 IF (DinUUl PRINT 1505, IKTRMFII XI,IX=1, 11 I
0144 1505 FURMATIlOX.'UVEHHIDE INPUI VECTUR.',10 I I 1

C MERGE INPUT VECTUR AND REDJIRED VEClUR
0 1 4 5 3 5 0 UU 3 1 1 3 = 1 . N R I N
0140 IF IKTRMFI 3 I .LT.2 I KTRMII 31=KTRMFI31
0147 311 CONTINUE
014U IF(DCUUGl PRINT I 593.IKTUMI I I X 1 . IX = I .I 1)
0149 1503 FURMATIlUX.'MERGE INPUT VECTOR '.Kill

C RANDOM FILL
0150 UD 201 1=1,NRIN
0151 IF IKTRMllll.LE.il GU TU 201
0132 CALL RANDUlIRXA,IRXO.RANF1
01 S3 IRXA=1RXD
0154 KIP II I I> = RANF10.5
0155 231 CUNTINUE
0 1 5 5 I F I U E I I U G l P R I N T I o J 2 . I K I >(M I I I X I , I X= I . I I 1
0 1 5 7 1 5 0 2 F U R M A T I l O A , ' R A N D O M F I L L R E S U L I ' , I I , I 1 1

U1
C P S L U Ü U - N S I M R O U T I N E I U S I M U L A T E E I R C U I I O E H A V I U R .
C

0 1 5 0 N C A L L S = M E , \ L L M 1
0 1 5 9 N V t C = N R F F
0 1 5 0 C A L L U N P A C K ! K T R MF , 9 1 A 11:1 N U U L I 1

FUI*THAN IV li LEVEL 21 MA IN d a t e y U J A I I 3 / 3 A / 2 0 PAGE OOIIG

0161
0162
01 ü3
0:64
01 65
0166
0167
0160

0164
01 70
01 71
01 72
01 73

01 74
01 75
01 76
0177

01 70
01 79
01 00
0 1 0 1
01 02

0103
01 04
0105
0106
0107
0 1 0 0
0109
0190

0191
0192
01 93
01 94
0195
01 96
0197
0190
0199
0 2 0 0
0 2 0 1
0 2 0 2
0 2 0 3
0204

400

1 0 2

CALL PSDNSMIKNThL)
NVEC=NR1N
CALL PACKl KTPMl .X iNUDlPl NKND'J I I
NVtC=NF.rF
CALL PACKIMTKMF,X.NXST TI
NSTATElNHNf)S)=NX5TT
NÜOECS(NUNDS)=KSSCIKSNUDEtlCGI
NClOLtV(NKNl)S) = Nc

C
C COMPUTE HEURISTIC VALUE EUR VECTUR.
500 CALL HEUSUDINDDÜCSINRNUS).NXSTI.IVALI

IF IIVAL.LE.1023) GU TU 1010
PRINT 100. IVAL

100 FURMAT 1* HEURISTIC VALUE EXCEEDS 1023 AT*.110)
IVAL=1023

C CHECK FUR REDUNDANT NUDE. ASSIGN MINIMUM HEURISTIC LINKAGE.
1010 N=NRNUS

NUUEH(NRN0S)=1VAL
NTCMP=NRNDS
STAT=ULANK

C CHECK FOR REALISED GUAL.
DU 102 1=1«NGUALS
IF 1 .NUT.CUVCRIMGUALPl1).MGUALV(1 I.MSTAThlNRNDS))) GO TU 102
IF IKGUALII>.LT.O) GO TU 900
IF IKNTRL.EU.KGUALIDI GU TU 900
CUNTINUE

C CHECK IF NODE WAS ALREDY EXPANDED. IF SO DELETE
C IF ALREDY EXPANDED OUT HAS LOWER COST VALUE
C REMOVE I RUM SET A AS A CANUIDATE FUR EXPANSION
103 N=N-1

IF (N.LE.O) GU TU 101
IF (NSTATEIN).NE.NSTATEINRNDSI) GU TU 103
IF INODCCSIN).N E .NUUECSINRNDS) I Ü3 TU 103
IF INUDEHIN).LE.NUDEHINRNDS)) GU TU 106
IFISETAIN).EU.O) GU TU 1111
SI a t= xnf:w
s e t a INI = •)

C RCMUVE FROM SE1A
G U T O l)5

1111 CONTINUE
NllUIPi N)=NUDIP INRNDS)
NPREDIN)=NPRED(NRNDS)
NUDEHIN) = NUDEHIN,\NUS)
NODLEVIN)=NUDLEV(NRNDSI
GU TO (Oil
NTCMP:HIEMPFI
IF I NRNDS.LT .1 000 I uU (11 IDs
PRINT toil
FORMAT I"* ARRAY D1 MEN-. I UN INI. IXCECDED. SlARLN HAL IS.')
SI UP
SIAI=OEL
PRINT 116 0 . bl AT .NLAt L:> . NRNDS . NcUl.EV (NRNDS I . IVAL , NDDLCSI NRNDS) .NUDE

1 0 1

103

106
I US

HU>
cn

rURTMAN IV ü LEVEL 21 MAIN UATE = ?U:iAI I 3 / 3 4 / 2 U I»A<1E 0 0 0 /

020S 060
0206
0207
0208
0209 062
0210
021 1
3212 107
0213
0214 300
021 S 200
021 6
0217 90)
02 1(1
0219 904
0220
0221 90S
0222
0223 075
0224
0225

C tlKTRI^K IX) .IX=1 .NRIN) ilMIRMI I IX) . I X= I . NREE >
FURMAI I IX. A4. TO. u(10 > OX) .AX f I 1 I 1 . TOO . 3<i I 1)
NRNOa=NTEMP
IF IF ST) GO TO 9
IF (STAT.EQ.XNEM) PRINT 062. M
FURMATCINF."NEW*.14)
IF (NCALLS.LE.NLIM) GO TU 300
PRINT 107
FORMAT (• NSIM CALL LIMIT EXCEEUEO. SEARCH HALTS.')
STOP
CONTINUE
CUNTINUE
GO TO 9
CALL UNPACKIKTRMF.MGUALPII) .MGUALVI I))
PRINT 904.(KTRMF(IX).IX=I.NRIF)
rURMATI///4&X.'SEARCH SUCCESSFUL'///3ÜX.'GOAL REACHED'.5X,3611)
PRINT 9ÜH.IMTRMF(IX).1X=l.NRFF)
FORMAT (30X.'FINAL NODE '.SX.3611)
PRINT Q7S.NCALLS
FORMATI//20X.I 0. ' NSIM ÉALLS')
SI OP
END

W

FORTRAN IV C LEVUL 21 MA IN UAIU T 8 3 4 1 1 3 / 3 4 / 2 0 PAGE 0 0 0 1

CT
000 1 SUORUUTINE UNPACKIKiKPiKV)
0002 INTEGER KC3b)
0003 COMMÜN/PAK/N
0004 KU=KP
0005 KW=KV
0006 l=N
0007 1 KU0=KQ/2
0000 KWW=KW/2
0009 . K (1)=2
00 to IF IKQU42.OE,K0) K(ll=0
001 1 IF (KWW42.l t .KW) K(l»=l
0012 KÜ=KÜÜ
00 13 KW=KWW
0014 1=1-1
0015 IP (I.GT.O) GO TO I
0016 RETURN
0017 ENt)

W
0 0

I (HUMAN IV ti LEVLL 21 MA IN u A t n = f o a A i 1 3 / 3 4 / 2 0 MAGE 0 0 0 1

0001
0002
000 3

0004
00 05
0006
0007
0000
0009
0010
00 11
0 0 12
0013

C/4
CT

LOGICAL FONCTION COVEIt I Ml> >MV i K V 1
INTEGKN KI 36 ItMl 36 I
CUMMUN/PAK/N

C OETUHMINE IF THE VALUES IN THE K-VF.CTÜN SATISFY THE REQUIREMENTS
C PWESENTEO UY THE M-VECTUIi.

COVER:.FALSE,
CALL UNPACK(KtOfKVI
CALL UNPACKIM.MP.MVI
00 I 1=1.N
IF (MlI1.6T.II GO TU I
IF IMIIl.NE.KlI)) RETURN

I CUNTINUE
COVER:.TRUE.
RETURN
UNO

HW AO

rORTRAN IV ü L t V K L 21 MA IN UATE = TB3AI I 3 / 3 4 / 2 U PAGE 0 0 0 1

C I
000 I

0002
0003
0004
0005
0006
0007
0008
0009
001 0
00 1 I
0 0 1 2
0013

SUUKUUTINE PACKIK.KPtKV)
REDUCES AN ARRAY TU TWU INTEGER WDRDS

INTEGER KI36)
COMMÜN/PAK/N
KP=0
KV=0
UQ 1 1=1.N
KP=KPEKP
KV=KVfKV
IF (K(I),GT.11 KP=KPF1
IF (K U 1 .EU.l 1 KV = KV + 1

1 CONTINUE
RETURN
END

H

O

APPENDIX A.2

PETRI.NET AND HEURISTIC COST VALUE ROUTINES

141

FUR1RAN IV C LEVEL 21 MA IN DATE = r 0 3 4 l 1 3 / 3 4 / 2 0 PAGE 0 0 0 1

0 00 1

0002

0003
0004
0005
0006
0007
0000
0009

001 0
001 I
0012
0 0 13
00 14
0015
00 16
001 7
üOlU
00 19
0020
0021
0022
0023

0024
0025
0026
002 7
0020
0029
003 0
0031

0032

0033
0034
0035
00 36
0037

00 JU
0039

1 0
27

LNKIN» = KO

C
CT

5UURUUTINE GPTNT
C ROUTINE TUAT GENERATES TUE PETRI NET
C READ IN PLACE ARRAVô ANU SE T POINTERS

COMMON/UEUSO/NE, IMEGA,KPNAMI100ItLNK(100)iKÜPLI 100> tKTRTI100),
41 PLAD1100).NIPLI 1001.KOTRl100).IMOCT1400I.IDESPl 120I.LSOTR1240)t
4KIRINC240).KTYP(100) .1 TERP145) .KTRTP1U5) .KTPTM50) .KNIPLl 10,3) .
«MGRP140).MGRVIAO).NT.NP.NIPL
DIMENSION INPUT(9.100) .KTEMI20).ITEM 120).KIRMFl36)
LOGICAL DEOUG
DATA DEIIUG/.FALSE./
DATA HEG.KUNTH.IXIN.LAST.SP / »R•.•C •.•1•.•F •.• • /
M - 0
N = 0
IND = 0

C READ IN PLACE TOKENS
C NEXT CARD
120 N = NT I

READ 10.1 INPOT.IJ.N) .3 = 1 .9).K0. (KTEM(J).J = l.U)
FORMAT (9A1.IX.I2.IX.012)
(F (INPUT!1.N).EU.LAST) GO TU
LNK(N) = 0
KPNAM(N) = INPUT 11.N)
IF (KPNAMIN).EO.KONTR)
IF (KQ.GL.O) GO TU 16
READ 72.KTRMF
FORMAT!SOI 1)
M = M U
CALL PACK!KTHMF.MGRP!M).MGRV!M))
LNKIN) =M
CONTINUE
POINTER TU SEI UF TRANSITIONS 10 VUIICU PLACE IS OUTPUT
IND = IND Tl
KOIRINI = IND
DO la 1 = 1.8
LSOTRIINU) = KTEM!1)
IF !KTEM!I).EQ.O) GO TO 20
)ND=1ND Tl
CONTINUE
GO TU 120
lOTAL V OF
NP = N
READ IN
N = 0 INO = 0
M =0
N = NT I
R E A D 200.K IVIM N) .NIPLI NI . IK1L iT| J) . J = I . (I) . KdPL I N I .

CKIRI!N).IITEM!31.J =1.10 1
2)0 FORMAI!II.IX.I2.IX.3I2.IX.I2.IX.I2,IX.I0 I2)

IF IMVPINI .61 .1.) oO TU 300

72

16
SET

I 8
2 0

GET
27

NOW

2 2 0

PL ACES
— I
TRANSITION iVRii AV

K)

FORTRAN TV G LCVCl. a t GRTIIT UATE = 7I I3AI I 3 / 3 A / 2 0 PAGE 0 0 0 2

0040
0041
0042
0043
0044
0045
004b
0047
0040

004V
0000
0051
0052
0053
0054
0055

005b
0057
0050
0059

OObO
0061
0062
0063
0064
0065
0066
0067
0060
0069
0070
00 71
0072
0073
00 74
0075
00 76
0077
00 70
0079
0080
0001
0082
0083
0084
0085
00 06

C S E T P O I N T E R T U I N P U T P L A C E S U F C U R R E N T T R A N S I T l U N S
I N D = 1 N U F I
I P L A O (N) = I N U
DU 2 5 1 = 1 I O

I F (K T E M l 1 I . E U .) l G O TO 2 0
K T I U N I I N D I = K T E M l 1 1
I N O = I N D * I

2 5 C O N T I N U E
2 0 M = M F l

I D E S P I N) = M
C T H E A D D R E S S

D U 2 9 1 = 1 . 1 0
I M U C T l M t = I T E M (1)
I F 1 I T E M ! 1) . E U . O) ÛU T U 3 0
M = M U

2 9 C U N T I N U E
3 0 GU T O 2 2 0

3 0 0 NT = N - I
C T O T A L NU U F T R A N S I T I U N S
C P R I N T T H E P E T R I N E T

P R I N T 4 0 0
4 0 0 F O R M A T I I N I , / / / / / , 1 5 X , « L I S T I N G O F P E T R I N E T « 1

P R I N T 4 0 1
4 0 1 I 0 R M A T I / / / . 9 X . " T R A N S I T I 0 N ' , 5 X , « T Y P E » . S X . ' O U T P U T P L A C F * .

C S X . ' I N P U T P L A C E S ' . 2 X , ' I M M E D I A T E D E S C O T ')
DU 4 7 0 N = l . N T
P R I N T 4 5 0 . N . K T Y P 1 N I « K U P L I N I

4 5 0 F O R M A T I 9 X , ' T ' , 1 2 . l U X , 1 2 . 1 3 X , ' P ' . 1 2 , 1 5 X . ' P ' , 1 2 1
N I N P P = N 1 P L I N)
I F I N I N P P . E Q . O I GO T O 4 5 3
M = I P L A D | N)
DO 4 5 2 1 = 1 . N I N P P
KK = K T R 1 N (H)
I F I M . E U . O I GU T O 4 7 0
P R I N T 4 O 0 . K T R 1 N I M I

4 6 0 F O R M A T I 5 0 X . I 2) ,
M = MF 1

4 5 2 C U N T I N U E
4 5 3 C U N T I N U E

M = 1 D L S P I N)
DU 4 S I 1 = 1 . 8
KK = I M D C T I M)
I F I K K . E U . O) G O T U 4 7 0
P R I N T 4 1 1 , KK

4 1 1 F U R M A T I 6 . Î X . 1 2)
M = M E |

4 5 1 C O N T I N U E
4 7 0 C O N T I N U E

P R I N T 4 8 0
DU 5 0 0 N = I , N P

4 8 0 F O R M A T I I III . / / / / / / . 2 0 X , ' P L A C E L I S I I N G • , / / /)
PRINT 4 90.N.I INPUTI3 ,N). 3=1,9)

144

cye*w e<e.

(MS-es

nesn
UJ
<3 n

zua.
z%

mZu
z%

cvi
zU !
3.M- I
Z '

N in@ 3M o OJ It 3z 3 3 Cz O3 J O ■3J» u c. 3
z Q. M X 3< u 3 z V 3 Z 3z *> z 3 X < X X 33 z X X Z 3X 3 2. X 3Z O N ON Z w AJe u O C X V O 3z !J < z z X< 1" z X 3 XX z 3 c. X Xa. s. a o X X a in X az u X X z II zz Z ?u X < zX w z N IIo u X e X II a Xui N z n a 3 U) 3 z e z a z3 3 3 o s X z z cZ 3 o z 3 w X o o U)

< u * < X U < 3 w II < II < m X X
r o z z s Z X z a Z w oZ z z II M < z c z o a II < z a X 3N 3 o UJ 3 X X o 3 II z X z 3 XV u. z z z X X 15 z z & X X a X

3•i o o < o CVI < N n
UJ o > UJ o N X o n <r> tn < z o c o z 6 otuu u o

3
a.z

o3

5Ë
J S. Z
- w 3 Z M o •« UJ •^ O n N-Z UJ — « Z N

Z 3 I fc- C— Z Z 3 O" II Z O »-^ -J • ̂ zo z a -Z 3 K U o 2». V z — a 3.U) o U) o c o

£ o
X o CM

z X
z g X

%X < II a rj
3 z X X

X H 3 3K 3 X X Z Z z
< X 3 X < z
r II o It z Z Z 3

It Z Z a
3 z 3 X X z 3 X z
X a X — X X s V u z
s N. 3 oN X O oc N w

o>
z N. O 5» o At 3 ♦ in a N 3 O' 9 AJ n in -3 N 9 O' 9 At 3 m a 9 9 9 (M 3 9

9 O 3 0» 0» O' O' O' O' O' O' O' O' O O 9 9 9 9 9 9 9 9 At At At CMAt Atz e o O o 9 o o o o 9 9 e* o3 9 a O o O o o o o O O o o O 9 9 9 9 9 9 9 9 9 9 9 O 9 9 9 9 9 9 9 9 9 9 9 9 9

FORTKAN IV G LEVEL 21 MA I M DATE = 7 B3 AI I 3 / 3 A / 2 U PAGE 0 0 0 1

0 0 0 1

0002

0003
0004
0005
0006
Û00T
0000
0000
00 10
00 1 I
0012

00 I 3
0014
0015

0 0 1 b 00 1 /
0018

0019
0 0 2 0
0 0 2 1
0 0 2 2
0023
0024
0025
902b

0027
0028
0029
00 30

0031
0032
0033
0034

00 35
003b
0037
0030
0039

CT

C
c
c

c c

U U U R O U r i N E H U U S U U I K N T R L . N X S l T t I V A L)
T H I S R O U T I N E D E R I V E S THE S T AT E VE C T OR UF THE P E T R I NENT
U E F U R E C A F T E R F I R I N G . I H E V L C I U R KR I S L UMP UT E U AND
I HE F I N A L H E U R I S T I C F U N C T I O N

C U M M O N / H E U S D / N C , I MLGA. Kl ’ NA.MI I ' O O I . L N X (1 0 0) t K D P L I 1 0 0) . KTR T I 1 0 0 1 .
4 1 P L A 0 I 1 9 0) . N I P L I 1 0 0) . K U T R (I O O) . I M D C T (4 8 0) . I O E S P (1 2 0) . L S U T R (2 4 9) .
* K T R I N I 2 4 0) . K T Y P I 1 0 0) . 1 TERI M 4 5) . K T R T P (8 5) i K T P T A I S O) . K N T P L 1 1 0 , 3) ,
* M G R P I 4 0) , M G R V I 4 0) , N 1 , N P , N 1 P L

I N T E G E R Ml 1 0 0) , K R (1 0 0) , K F I R D I 1 0 0)
I N T E G E R K T R MF I 3 b) , M T R M F (3 b) , 1 KXZ
I N T E G E R G R P H , X 1 N C , 1 X 1 N , C S
C. ÜMMON/ PAK/ NV
C O M M D N / N S l M / I X X Z l U O) . N R F F
L O G I C A L D C DU G , C O V E R
L O G I C A L G I , L T
O A I A DCn UG / . F A L S E . /
DATA G R P H . C S . I X I N . X I N C / ' G ' , ' C * , ' 1 ' , ' K ' /
N V = N R F F

CL E AR M VECTOR TO ZE RO
DO 1 I = 1 , N P

I Ml I I = 0
DO b I = 1 , N P

GOAL OR COUNT E R P L A C E
I F (K P N A M I I) . E O . G R P H . U R . K P N A M I I) . E U . X I N C) GU TO 6
I F I K P N A H I I) . E Q . C S) GU TO b 2
I F I K P N A MI I) , E () . IX I N) GU TO 8 0

R E G I S T E R VE CT OR NUDE — CHECK F O R C O V E R ,
L I K = L N K I I)
I F I C OVE R ! M G R I ' I L I K I , MGRV I L I K) , NX5T T I) GO TO 8 3
GO TO 6
I F (L N K I I) . N E . K N T R L) GO TO b
Ml 1) = 1
C O N I I N U E
I F I D E U U G) P R I N T T 7 , I M l J) , J = 1 , N P)
FORMAT I / / / . , 5 X , ' S I AT E VECTOR ULFOF. E F I R I N G • , / , 5 X , 8 0 I 2)
D E R I V E THE S T A T E VE CTOR A F I E R THE K I I I F I R I G
DU 1 9 9 I = 1 . NT

60

6280
6

77
NOW

KFIRDI1) =0
NIP =N1PLI1)
IND =1PLADI1)

C PICK IHE INPUT PLACE
111 J = KIR INI INU)

IF IMI J l.h'O.O) GO TO 199
NIP = NlP-1
IF I KTYPI I) .F.O.G)

C UNCUtlUIT lONAL CONI POL
IF INIP.E(I.O) GO
INO =INUF1
GO TO 111
II I KTYPI I I ,NL .3 I
3 = KUPLI I I

r O IKAN3ITION I

GO 10
j I ate

TO 120

125
IRAhlbl I ION

4̂
UI

1 2 0 jil lO 1.

FORTRAN I V G LEVLL 21 (It 0300 UATE = F03AJ 1J/3A/2U f»AGE 0 0 0 2

0040
004 I
0042

0043
0044
0045
0040
0047

0040
0049
0050
0051
0052
0053
0054

0055
0050
0057
0050
0059
OOuU
0001
0002
0003
0004
0065

0000
0007
0000
0009
0070
0071
0072

0073
0074
00 75
00 70

0077
00 70

M(J) =1
GO TU 199

125 KF IRUll) =1
C KflFO IS THE LIST UF F IRAULE TAN51TIÜNS I.E.
C ALL CUNOillUNS FUR FIRING ARC FULF ILLtD UNLLV THEY NAVE NOT OEEN
C. COMMANOEU TU FIRE

199 CUNTINUE
IF (UEtlUG) PR I NI 200.1 M(Jl . J=I .NIM

200 FURMAT15X,'ST ATE VECTOR AFTER F IRING',///,IX,00121
IF (DEDUG) PRINT 2222 »(KFIRfK J) . J=1.N T)

2222 FORMAT(5X,'F IRAULE TRANSITIUNS' 1X.OOI2)
C UERIVe VECTOR KR . THE SET OF ALL F IREO TRANSITIUNS AND THOSE THAT CAN
C OE INFERRED TO BE FIREO
C CLEAR VECTUEH KR

DO 201 I = I,NT
201 KR(I) =0

DO 249 J = I,NP
IF (M(J).EO.n) GU TO 2 49
INU = KOTRlJ1
IF(INU.EU.O) GU TO 249

211 1 = LSUTRIIND)
C PICK TRANSITION TO WHICH THIS PLACE IS OUTPUT

IF(I.EU.O) GO TU 249
KR(I) =l
INI) = INUfl
GO TU 211

249 CONTINUE
IF (ULUUG) PRINT 250.(KR(J) .J = I .NT)

250 FORMAT(//,IX,•riREu TRANSITIONS ',//,IX,0012)
no 299 I =1«NT
IF (KR(I),EU.O) GU TO 29 9
INU = lOESPII)

252 IMS =1MUCT(IND)
C PICK IMMEUIAIE DESECNUANT UF TRANSITION 1

IF (IMS.EQ.O) GU TU 299
KR(IMS) -I
INU = lNU+1
GO TO 252

299 CONTINUE
IF (DEBUG) PRINT 3J0,(KR(J) , J = 1.NT)

300 FURMAI(//,5X,« KR AFTER ALL INFERRED IRAS. HAVE ÜCEN ADUEO',
c//,ao(12))

C NOW COMPUTE THE HEUR1ST 1C FUNCTION.
HPT -0.
HCNT =0.
HR VE = 0.
HSFN =0.

C n C R P IS THE SET OF YE TERMINAL PLACES, KTPTA IS THE PUINTER TO
C TRANSITIUNS TU WHICH TERMINAL PLACE I POINTS
C T KTRTP IS THE LIST ul TRANSITIONS «H1CH HAVE TERM INAL PLACES AS INPUT

00 349 L=l,NTPl.
J -ITLRP(L)

H
0 1

hU«TI«AN IV li LEVLL E l Hi U a U l l DATE = T(I34I 1 3 / 3 4 / 2 8 PAOE 0 0 0 3

0079

0080

0081

0082
0083
0084
0088
o o e c
0087
0088
0089
0090
0091
0092

0093

0094
0095
0096
0097
0098
0099
0 1 0 0
0 1 0 1
0192

0103
01040105
0106
01 07
01 08

01 09
0 110

0 1 1 1
0112
0113

0114
0115
01 lu
0117

J IS INPUT

T 1./NIP

C PICK TLTtMINAL PLACE
IF (MW).ED. 0) ÜI) TU 34 9

C CHECK AOUVE
N =KTPTA(L)

C AOUUESS UF TRANSITION TU WHICH
305 I = KTHTP(N)

C PICK TRANS
IF (I.EG.01 GU TÛ 349
IF (KK(l).EQ.ll GU lU 310
NIP =NIPL(I)
IF (KTYP(I >.EU.3) HPT = HPI

310 N =N*I
GU 1U 305

34 9 CONTINUE
IFIUEDUUI PRINT 350. HPT

350 FURf1AT(5X. 'CUTRIUU. FROM TERM PLACES ' .FI0.4)
DO 449 1=1.NT
IFIKTYPI1).NE.41 GU TU 400

C INC HEURISTIC CUM^UIATlUN
J =KOPLII)

C OUTUT PLACE
C KNTPL IS THE SET UE CUUNT PLACES
C KNTPLII.l) CONTAINS IHE 0 PLACE #.KNTPL(1.2) IS
C THE NU UF I LIPFLUPS IN THE COUNTER
C KNTPL11,3) IS THE FIRST FF NU UF COUNTER 1

DO 351 N=l.10
IF (KNTPLtN.I).EQ.J) GU TO 356
11 IN.EM.10) PRINT 355.J

351 CONTINUE
355 FORMAT(5X.•KMT PLACE '.12.«NUI FOUND IN KNTPL TAHLE')
356 KK =: KNTPL IN,2)

JJ = KNTPLIN.3)
JK = JJ F KK - I

64 1.1K=LNKW)
C INC HEURISTIC CUMPUTATlUH.

KVAL=0
MVAL=0
LT=.FALSE.
GI=.FALSE.
CAL L UNPACK(MT RMF,MGRPILIK) .MGRVILIK))
CALL UNPACKIKTRMF .0..1XSI1)

C CHECK FOR GGAL GRI AI L(< THAN. LESS THAN.
DU 65 3=33.UK
I F (M I R M F I 3) . r o . ^ . A N D . KTRMF (3) . C O . 1)
I F (M l R M F (3) . L G . I , A N U . K I R M F (3) . E Q . O)
IF (GT.UR.LT) GU lU 66

65 CUNTINUE
C SET Ml RMF INDL T LRMl N AT LS 1IJ GIVI M1H1H3M DIFFLREHCE FRl.M NXSl T

6 6 DU 6 7 K = 3 3 . 3 K
IF (MTRMF(K) .1.1 .2) GU III 66
MIRHF(K)=1
IT (G l) M I I M F (k) = K I 6 , I F (H I

AND EUUAL TU NEXT STATE.

LI=.TFUC.
G I = .1HUE.

HOHTKAN IV G LEVUL 21 l l l . U j J U UATE = / (W 4 I 1 3 / 3 4 / 2 6 PAGE 0 0 0 4

C CUMPUTE VALUES IN EACH CUUNTEH.
o n e 6U KVAL=KVAL424KTnMKIK)
0119 OT MVAL=MVAL*2*MThclF(K»
0120 IE (LTI MVAL = MVAL E 2**KK
0121 TO KU = IMVAL KVAL»
0122 XVAL = MVAL
0123 HCNT - HCNT ♦ (I. -KU/XVAL)
0124 ir (ULUUGI PK INI 3‘3 T tKD .HCNT • I KTLMi I N) • N= I • NEFF I ,

4|MTRMFIN).N=I,NMFFI
0125 357 FOIIMATISX, *KU ' , 13.» HCNT ' ,1 I 0.4./.5X. ' KTOMF » . 50 12 «

♦/.5X.' MTPMF »,5012)
0126 GO TO 449
0127 400 IFIKHIIt.EQ.O) GU lU 449
0120 HKVE =HKVE E l .
0129 44 9 CONTINUE
0 130 HSFN =NT- (HPT E HCNI E HPVC»
0131 IVAL = NE E IMEGA4H5FN/NT
01 32 II-IUEOUG) PM I NT 455.HMVE,HSFN. IVAL
0133 455 FORMAT (5X. *11 VEC CUNTR . « . F 1 0 .4, ' HFN ' .F 10.4 .131
0134 RETURN
0135 ENU

H
00

APPENDIX A.3

PSEÜDO-NSIM SUBROUTINES FOR CASES I-IV

149

150

9
Ô
O

O

eseu

n
N.r

m
a

M
UJ
<
O

w

2 1 : U z
X. <0

nZ r — %
/ : z
z w-

i * .33 CU n V) —

zz

oo
9
J»

9
N S

nI
a
y>

uUJ
>UJ

o N 3U 3 X oz < o z 3z J o Ci X z 3X 3 ZS o % zz f e'.0(/) Xz o u 3a z M z u < WU) u X z z z <f >a u. N z o X O > oJ) Z rj n X n n IIu; z X X 11 oZ < iA II o 11 N II _J 9 Jz Z II X II II < II eu 1 ZK S 11 3 N > 9 N X £23 z z 9 U X X zO z 3 X 3 X X 3 X II 11 eu < X X II s U
UJ S s z M n z U eu J eu > z •J 3Z z X z 3 £2 < < <3 ir. 3 C 3 3 3 o > 3 > 0 II X > Xa U Û z "J 3 z (J z 3 a Z O O X z c
ow
z 9 9 9 w an M <v eu eu

z
z

n
11
X

U
3

z IL

C

<»
11

Zz -3 C
KoJ

3

U
Z

9

Cy :
<

' Z »-
Z X 3 ̂

9Ji
S-VZCZZ-.

«• 9 —

M 9
•y
UJ > Z — u z

« 2 2
— > >
(U II tl"223 > >
9

I _jIl ru « • \ - X
Jn < u.> z

* X zX 11 zw ^ 3
^ > 'U

3
1)

• n 'Z.3 ri• r w-* ^ X nI/; r) ̂ Il •
% I* ^ —9 — nh— V Z£?t|52
- 3 S Z Z 3

-3 O N — 99 9

Z<

Z3IL
O9O

AlM^aCN990'"<UnCtn'0^-99 99999999"#"*"^^""*""#^^"* 000000000990099‘*'̂ ̂0 0 0 0 0 9 0 0 9 0
O 9 O «• eu ^..... . . -fuivnnnnm

O O O O O O O O O O O O O o o o o o o o o o o o o o o o
9ift-0̂“090*»îU»̂ <lft9r-.wvPuNfueueueuîueufvicvOo o o 9 o0 9 0 0 0 9 0 0

U)Oh*9?*9-»î\in<finÔ *3‘>9
0 0 9 0 0 0 9 0 0 0 9 0 9 0 9 99 9 9 0 0 9 0 o 9 0 o 0 o 0 9 0

151

eue

o<
&

a
euVmN,n

o

£t/l Zi

n IL 9 o
II • £ eu n n O C
X IL % O c

£ U u ü . U. U. IL
J : X £ £ £ £ £ £

II C £ ££ £ £o X -f O k- K
II n O X X X X X Xo II II II li II (f II IIu X X £ II £ \i!

e m D n eu m O c
"# X Z h- Z Z Z

IL ü. £ X II X IL K IL IL iL IL £
£ T D y 9 £ 3 £ £ £ £ £ 3

II X s Z Z £ £ £ £ £ £ a
X Ü. U IL O 11 3 H W h* Ui 2M «• £ £ Z — £ a — V £ £ £ £ £ £ £ £ £W

— oo G»

Z<s
o:n&L

i n (n t n u) V) (n (n a u) \ 3 a c ' O ' 0 6 O C C c ^ *00000900090090000000o o o o o o o o o o e o o o o o o o o o

r-UKTI<AN IV U L t V k L 21 MAIN DATE = 7 8 3 3 7 1 8 / 3 7 / 2 2 MAGE 0 0 0 1

CT
0001 SUflROUTlNE PSDNSH(KNTR)

C MEGISTEU TRANSFER SIMULATOR 1PSEUDU-NS1M) FOR CASE
0002 COMMÜN/NS1M/KT RM 1(16).KTRMF136 1 .MTRMF(36).NRFF
00 13 GU TO (1,2,3«2,9,2,7,2«91,KNIR
0004 9 RETURN

C INCREMENT THE COUNTER (CONTROL STATES 2,4.6,01
00 Jb 2 3=0
000b 00 101 1=1,3
0007 101 3=3»3FKTRMFI1)
0008 3 = 3+1
0000 00 102 1=1,3
00 10 K=3/2
00 1 1 MTRMF14-11=0
0012 IF 13.NE.K+K) HTRMF(4-|)=1
00 13 102 3=K
00 14 RETURN

C CONTROL STATE 3. INPUT TO ACCUMULATOR
00 lb 3 00 103 1=1,8
0016 103 HTRMF(3+1)=KTRH1(1)
001 7 GO TU 1

C CONTROL STATE 7, COMPLEMENT OF INPUT TO OUFFER.
0010 7 00 104 1=1,8
0019 MTRMF13+1)=1-KTRM1(1>
0020 IF (MTRMF(3+1).LT,0> MTRMF13+11=2
0021 104 CONTINUE

C CLEAR THE COUNTER (CONTROL STATES 1,3,7,91
0022 1 00 100 1=1,3
0023 too MTRMF1 I 1=0
0024 RETURN
002b END

II

oi

F J i U U A U IV tj L E V u L 2 1 t ' ÜJ NÜM DA 1C = / U 3 3 / 1 1 1 / 4 0 / 0 7 l»A(iL- •)(»•) I

UOOI s u m . DUT IMC PSDMSMI KI I VWL i
C R E Ü I S I C R T R A N S F E R S l M U L A T U r t « P S E U U U - N 5 I H I FUR C A S E I I I
C 4 I . 0 = F I 1 . I K 0 = F F 4 . M U 0 - F F 7 , ACO =1 F 9

0 0 0 2 C U M M U N / N S l M / K T l i M 11 l u) . M RMF 1 J 6 1 .MTRMF I 1 6) . N R F F
0 0 J J DU 1 1 = 1 . NR F F
Oil J l 1 HTI .MF 1 1) = KTRMJ 1 1)
OOO' j

C.
GU TO (1 0 . 2 0 . 3 0 . 4 0 . 6 0 . 4 1 J . K N I R L

CÜN1RUL S T A T E 1 A R = I N A . 1 1 = 1 N I N
ooul, 1 0 lJU 11 1 = 1 . 6
0 0 0 7 I I M I H M F l l) = K T R M 1 (1)

C CUNT RUE S T A T E 2 . l l l . A N C H l N u U N L Y .
0 0 0(1 2 0 R ET URN

L E UNTRUE S T A T E 3 . L U N D I T I U N A E T R A N S F E R S I J ASED ON I R .
ooov 3 0 I F (K T H M F I S) . E U . I) 3 U f U 3 4
110 1 0 I F (K T R M F 1 6) . E G . 1) GU TU 3 2

c 1 R=XUU AC=X
0 0 1 1 DO 3 I 1 = 1 . 2
0 0 1 2 31 MTRMF(Ü F 1 I = K T R M 1 (U F I)
0 0 I J R ET UR N

c 1 R = X 0 1 AC=MD MU=AC
0 0 14 3 2 DU 3 3 1 = 1 . 2
0 0 I ;» MT R M F (0 ♦ 1 » =K T R M F 1 0 F 1)
1)0 1(> 3.1 MTRMF (6 F I) = KT R M F (a * I)
0 J 1 7 R E I U J . N
O ' J l l l .14 I F (K T R M F 1 6) . E U . l 1 Gil TU 3 o

L 1R = X 1 J A C = A C . AND.MIJ
0 0 1 0 DU 3*3 1 = 1 . 2
0 0 2 0 M T K M F l U f 1) = .)
J >21 I F (K T R M F l B F l) . E U . 1 . AN D . K T R MF (6 1 1 1 . E U . 11 M l R M E l U l l)
0 0 3 2 3 5 C O N T I N U E

C I R = X 1 1 AC--AC
0 0 . . j 3 0 DO 3 7 1 = 0 , 1 0
0 0 2 4 M T R M F l 1 1 = 0
0 J 3 b I F (K T R M F I 1) . E U . O 1 MTRMF(1 1 = 1
Ü 0 2 U 3 7 C O N T I N U E
0 0 2 1 R ET UR N

r. CUNT RUE S T A T E 4 .
0 0 2 0 4 0 I F (K) R M F (b) . E U . l) GU l U 41

(. H U I A I E MD E E F T .
0 0 2 V M l R M F (7) = K T R M F 1 0)
OOJ O MTRHI (0) = K T R M F 1 7)
J J . 11 RE T URN

I. l UMl’U r i ; TJIE O AS E JTJUM J IE AUiJRl S S II I RE G I S 1ER A R .
0 J 0 2 41 J = J
0 0 J j lJU 4 2 1 = 1 . 3
0 0 J 4 3 = 3 1 3
J J . l b I F I KTRMF 1 1) . 1 1 . 1) 3 = 3 H
00.1(1 4 2 C O N T I N U E
0 0 J 7 3 = 3 * 2 1 1 0
0 0 . 1 0 11 (K N T R E . E U . o) u U 1 J u O

c READ FROM MEMORY Til Ml)
J J JV UI) 4 3 1 = 1 . 2

UlU)

l l i H l K A N IV G LEVEL 21 PSDNSM I M I E = 7 l U I f I U / 4 t l / ') 7 PAGE >002

U N L Y .

MU TU MEMUKV.

0 > AO A3 M T M M E 1 6 » ! I = K I K M E (I t J I
C CUNTHOL S T A T E 5 . OU T P U T

0) 1 1 GO PE TUtIN
C CUNTMUL S T A T E 6 , » K 1 T L

0 0 A 2 (>0 UU (11 1 =1 >2
0) AO 0 1 M T H M t - (l * J » = K T P H F (6 T I I
OOAA UETUfIN
OOAO ENU

Ul
4:.

FUIUKAN IV G L hV b L i \ I'bUNGM DAI II = 7 U 3 3 0 ia/i6/ao P A o n 0 0 0 1

UOU 1 b U U K U U I I N C P S D N S M (K N T O L)
C K L C l S l t . K T H A N S f t H S I MUI . AI UK (P S L O Ü O - N O I M) F U U C A S Euooa C U M M U N / N S I M / K t l t M l (l O) . K r i l M C I 3 0) i MT K M M 3 0) . N K l ' i -

1) 0 0 0 I N T C G C H J C I Ü) , J U I 4 I , K TUM 1 1 K TKMI - . MT K H I - • J X t KX
0 0 0 4 1)0 2 0 0 1 = 1 . NI TCF
0 0 0 0 2 0 0 MTU Ml (1) = K T K M F I 1 1
0 0 0 0 G O T U I 1 t 1 0 0 . 3 0 t 1 0 0 . I 0 0 • 3 t 1 0 0 « 3 , < 3 > 1 0 » I 0 0 « 3 , 1 3 .

* 1 0 0 . 2 0 . 1 0 0 . 1 0 0) . K NT I T L
0 0 0 7 1 0 0 2 0 1 1 = 1 . 4ooou 2 0 1 M T K M F I 1 l = K T U M F (U » l 1
OOOO K L T U R N
0 0 1 0 3 0 U U 2 0 2 1 = 1 . 4
0 0 1 1 2 0 2 M T R M F l I 2 T 1) = K T R M I (4 F I)
0 0 3 DO 2 0 3 1 = 1 . 4
0 0 1 J 2 0 3 M T R M F (I) = K T H N I (1 I
0 0 1 4 U t T URN
O O I Ü 0 I F (K T R M F I I G I . N C . O) GU TU 2 0 0
0 0 1 G UU 2 0 4 1 = 1 . 4
0 0 1 7 2 0 4 M T O M F I 4 H) = K i n M F 1 1)
0 0 1 0 R E T U R N
0 0 1 0 2 0 5 I F I K I H M F I 1 0) . E Q . O . U R . K T R M F I 1 0) . L O . l) GU T U 2 0 1)
OOL' O P R I N T U O Ûooai OOO F O R M A T I S X . • A D U l A C . U R) «)
0 0 a o 1 = 4
0 0 2 J J X = K T R M I 1 9)
0 0 2 4 2 0 0 K X = L X I K T R M F I 1) . K T R M F I 1 4 4 1 1
0 0 2 0 M T R M F 1 1 « 4) = L X (K X . J X 1
0 0 2 6 KX = L O I K T R M F I 1) . K T R M F I 1 4 4))
0 0 2 7 J X = L A I K X . J X I
0 0 2 0 K X = L A I K T R M F I 1 I . K T R M F I 1 4 4))
0 0 2 0 J X = L O I J X . K X)
O O J O 1 = 1 - 1
0 0 3 1 I F I I . G T . 0) GU T U 2 0 0
0 0 3 2 R E T U R N
0) 3 3 2 0 0 UU 2 0 9 1 = 1 , 4
0 0 3 4 2 0 9 M T R M F I 4 4 1) = l - L A I K T R M F I 1) . K T R M F I 4 « l))
0 0 30 RE T U R N
0 0 3 0 10 I F I K T R M I I 1 5) . R E . 0 1 GU T U 2 0
0 0 3 7 UU 2 1 0 1 = l . .4
0 0 3 0 2 1 0 M l R M F I 1) = K T R M F 1 4 » 1)
0 0 3 0 R E T U R N
0 0 4 0 2) J C | 5) = K T R H I 1 9)
3 0 4 1 1 = 4
0 0 4 2 2 1 1 J C I 1) = 1 . AI K T R M F 1 0 4 1) . J C I 1 41))
0 0 4 3 J i l l 1) = L X l K T R M F 1 0 4 1) . J C I 1 4 1))
0 0 4 4 1 = 1 - 1
0 0 4 ; , I F I I . G T . 0 I GU I U 2 1 1
0) 4 0 I I (K N T T ' L , N1 . 1 0) G U I D 2 2
0 0 4 7 21 I F I K T R M F 1 1 5) . N L . 1) GU I I I 1 0 0
0 0 4 0 UU 2 1 2 1 = 1 . 4
0 0 4 V 2 1 2 M l R M F I 1) = J U (1)
0 0 5 0 R E T U R N

I V

tn
Ul

APPENDIX B

CIRCDIT SCHEMATICS FOR CASES I-IV

156

: g > - ”7 =] E h

(o u t p u t)

S s > -

“" Æ >
F t ?) -0 8 ® i> 9 a D lOtt

NOTE:
1

D II Q F 4 Ï £ >

This note applies to all subse
quent circuit diagrams
All OUT arrows indicate connec
tion elsewhere
All IN arrows (X) indicate
connection to circuit elements
or inputs
Clock and reset lines are not
shown

H
tn

Fig. B-1 Case I: Control Circuit

158

4 8

49

A 24

CNTj NT,C N T

53

Fig. B.2 Case I: Counter Circuit

19 22 A,B,
17 20

13 21

55
57

10 A, 23 X,

82 8377 73

62 63 64

88 8987868584

.90.

Fig. B.3 Case I: Register A Circuit
UlU)

108 (0994 95 96 104 105 [106 107100 101 102 103

1 1 21(0,

A, 10 a 140 A, 458; 25

120 121 122 123 121 125113 114

134 il35 136 139138,(OUTPUT)

Fig. B.4 Case I: Register B Circuit

< 5 ^ 1
A6 X T
J X d 3 4
K

...... ...P K
V -

T

/ 0 W - r/9 ■ J = R - X 20

T V I
Fig# B.5 Case II; Control Circuit o>

3B
Clock

39 47

57 SO 555352

OUTi

Fig B.6 Case II : Regis ter C ircu i ts
cnro

163

D D
1 2

Fig. B.7 Case III: Control Circuit

164

Clock

A R r e g i s t e r

I R R E G I S T E R

132 15 17 148 13 1 8

49
52

57 58 59 65 6 6 67

.60 64, ,68,

r e g i s t e r

74 75 76 77 78

,73, ,82.

84

AC r e g i s t e r

Fig. B-8 Case III: Register Circuits

165

*fç9 Clock

5 #)

= ^ L >

ifiôô)-

34

40

cl
^30

G
®33

tr
' 36

■ l I 1

T
39

42

Flg. B.9 Case HI: Memory Circuit

46)----o|5
Inki ;

75» D 1 Q '2 °
r K

read y

_J27B

33)

ni ± g h
31 35

»
35 34r e a d y

Fready

55 56 57
35 34

ready

Fig. B.IO Case IV: Control Circuit m03

7 6 ^
250>-

77>
78>
79>

88 8 9

I n k i >
S0>

1258r e a d y 130>

45>
41 >

61 >
44 >

Fig. B.ll Case IV; SKIP Control Circuit
H

20
urn, UR,

1071 |l0 6 l 11051 1104

115

2S9J |2£0| \2«lJ l26£

165
109
164
163

,t6 3 l ■

120,

423) 1124] (lasj |U5

Fig. 9.12 Case IV: UR Register Circuit Q\00

27252465
AC,AC, AC,AC,131 InKi

130 2641.80—

< 108
-C 109 < 110

79 >
slave>
InKi >- 132 133 134 135 136ICS INPUT

127 128 77
78

,129
154 155 156 157

153
158 159

149 150 152,
33 35

Fig. B.13 Case IV: AC and IR Registers

<y»

IM
I S 9

1*21 242] 12*3

tor

164

166] l246||247

197 167

196’

fox
16 16

'200 163 184162160

Fig. B.14 Case IV* PC Register and lOSR Circuits H
O

<231< 24
<20

208211
W

214210 212 215 216 220 206 207
\ Z v

219218

_< slove
r l % o)= 113>

<2724 20

66. I 6 1 b. b..b-L
227 228 229

- l .b Q..

232
act. A I A b.a.L

222 223 224 238233 235 2372301225

112

231

Fig. B.15 Case IV; Full Adder Circuit
H

LIST OF REFERENCES

Armstrong, D. B ., "On Finding a Nearly Minimal Set of Fault
Detection Tests for Combinational Logic Nets," IEEE
Transactions on Electronic Computers, EC-15 (1966),
pp. 66-73.

Belt, J. E., A Heuristic Search Approach to Test Sequence
Generation for AHPL Described Synchronous Sequential
Circuits. Ph.D. Dissertation, Department of Electrical
Engineering, University of Arizona, 1973.

Bouricius, W. G., E. P. Hsieh, G. R. Putzolu, J. P. Roth,
P. R. Schneider, and C. J. Tan, "Algorithms for De
tection of Faults in Logic Circuits," IEEE Transactions
on Computers, C-20(ll), 1971, pp. 1258-1264.

Breuer, M. A., "A Random and an Algorithmic Technique for
Fault Detection Test Generation for Sequential Cir
cuits," IEEE Transactions on Computers, C-20(ll),
1971, pp. 1364-1370.

Carter, E. A., Fault Test Generation for Sequential Circuits
Described in AHPL, Ph.D. Dissertation, Department of
Electrical Engineering, University of Arizona, 1973.

Eldred, R. D., "Test Routines Based on Symbolic Logic State
ments," Journal of the ACM, 6(1), 1959, pp. 33-36.

Estrin, G., "Diagnosis and Prediction of Malfunctions in the
Computing Machine at the Institute of Advanced Study,"
IRE International Convention Record. Pt. 7 (1953),
pp. 59-61.

Hart, P., N. Nilsson, and B. Raphael, "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths," IEEE
Transactions on Systems Science and Cybernetics,
see-4(2) (1968), pp. 100-107.

172

173

Hennie, F. C., "Fault Detection Experiments for Sequential
Circuits," Proceeding's of the 5th Annual Symposium on
Switching Theory and Logical Design, 1964, pp. 95-110.

Hill, F. J., and B . M. Huey, "SCIRTSS: A Search System for
Sequential Circuit Test Sequences," IEEE Transactions
on Computers, Vol. C-26, May 1977, pp. 490-502.

Hill, F. J., and G. R. Peterson, Digital Systems: Hardware
Organization and Design. Wiley, New York, 1978.

Hill, F. J. and B. M. Huey, "A Design Language Based Approach
to Test Sequence Generation," Computer. Vol. 10,
Number 6, June 1977, pp. 28-33.

Holt, .A. W., et al.. "Final Report of the Information System
Theory Project," Tech. Report RADC-TR-68-305. Rome
Air Development Center, 1968.

Huey, B . M., Search Directing Heuristic for the Sequential
Circuit Test Search System, Ph.D. Dissertation,
University of Arizona, 1975.

Huey, B . M., "Guiding Sensitization Searched"Using Problem
Reduction Gr^hs," Proceedings of -fche 14th Annual
Design Automation Conference, p. 274-291.

Kime, C. R., "An Organization for Checking Experiments on Se
quential Circuits," IEEE Transactions on Electronic
Computers, EC-17(4), 1966, pp. 352-366.

Kubo, H., "A Procedure for Generating Test Sequences to Detect
Sequential Circuit Failures," NEC Journal of Research
and Development. 12, 1968, pp. 69-78.

Michie, D ., and R. Ross, "Experiments with the Adaptive Graph
Transverser," Machine Intelligence 5, B. Meltzer and
D. Michie (eds.), American Elsevier Publishing Company,
Inc., New York, 1970, pp. 301-318.

Ng, W . W ., Evaluation of a LSI Fault Detection Program Using
a Four-Bit Microcomputer Processor Circuit, M.S.
Thesis, Department of Electrical Engineering, Univer
sity of Arizona, 1974.

174

Nilsson, Nils J., Problem-Solving Methods in Artificial In
telligence , McGraw-Hill, New York,'1971.

Petri, C- A., "Kbiranunikation mit Automaten," Univ. of Bonn
1962; translation by C. F. Green, Jr. "Communication
with Automata," Supplement to Tech. Doc. Rep. #1.
Rome Air Development Center, Contract # AF30(602)-
3324, 1965.

Poage, J. F., and E. J. McCluskey, "Derivation of Optimal Test
Sequences for Sequential Machines," Proceedings of
the 5th Annual Symposium on Switching Theory and Logi
cal Design, 1964.

Roth, J. P., "Diagnosis of Automata Failures: A Calculus and
a Method,” IBM Journal of Research and Development,
10, 1966, pp. 278-291.

Roth, J. P., W. G. Bouricius, and P. R. Schneider, "Programmed
Algorithms to Compute Tests and Distinguish Between
Failures in Logic Circuits," IEEE Transactions on
Electronic Computers. EC-16(5) (1967), pp. 567-579.

Rutman, R. A., "Fault Detection Test Generation for Sequential
Logic by Heuristic Tree Search," IEEE Repository Paper
R-72-187. Sept.-Oct. 1972.

Schneider, P. R., "On the Necessity to Examine D-Chains in
Diagnostic Test Generation - An Example," IBM Journal
of Research and Development, 11(1), 1967, p. 114.

Seshu, S., and D. N. Freeman, "The Diagnosis of Asynchronous
Sequential Switching Systems," IRE Transactions on
Electronic Computers, EC-11(4), 1962, pp. 459-465.

Seshu, S., "On an Improved Diagnosis Program," IEEE Trans
actions on Electronic Computers, EC-14(1), 1965,
pp. 76-79.

Van Helsland, M., Evaluation of SCIRTSS Performance on Sequen
tial Circuits Biased Against Random Sequences, M.S.
Thesis, Department of Electrical Engineering, Univer
sity of Arizona, 1974.

