INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that shouid not have been filmed, you will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

300 N. ZEEB ROAD. ANN ARBOR. MI 48106
18 BEDFORD ROW, LONDON WCIR $4 E J$, ENGLAND

ITORKU, KOFI EMMANUEL
FAULT TEST GENERATION FOR SEQUENTIAL CIRCUITS: A SEARCH DIRECTING HEURISTIC. THE UNIVERSITY OF OKLAHOMA, PH.D., 1979

University
Microfilms
International 300 N. ZEEB ROAD. ANN ARBOR. M1 48106

PLEASE NOTE:
In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark r.

1. Glossy photographs \qquad
2. Colored illustrations \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Print shows through as there is text on both sides of page \qquad
6. Indistinct, broken or small print on several pages \qquad throughout
7. Tightly bound copy with print lost in spine \qquad
8. Computer printout pages with indistinct print \qquad
9. Page(s) \qquad lacking when material recejved, and not available from school or author \qquad
10. Page(s) \qquad seem to be missing in numbering only as text foliows \qquad

11. Poor carbon copy \qquad
12. Not original copy, several pages with blurred type \qquad
13. Appendix pages are poor copy \qquad
14. Original copy with light type \qquad
15. Curling and wrinkled pages \qquad
16. Other \qquad

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

FAULT TEST GENERATION FOR SEQUENTIAL CIRCUITS:

A SEARCH DIRECTING HEURISTIC

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of

DOCTOR OF FHIIOSOPHY

BY
KOFI EMMANUES TORKU
Norman, Oklahoma

FAULT TEST GENERATION FOR SEQUENTIAI CIRCUITS:

A SEARCH DIRECTING HEURISTIC

DISSERTATION COMMITTEE

ACKNOWLEDGEMENTS

At the end of an effort to produce a dissertation, I owe special credits to many people: more than just another page of acknowledgements.

Dr. B. M. Huey deserves special thanks, as my major advisor and dissertation director. He got me interested in this area of research and gave a tremendous personal and professional support; in fact, this is truly our dissertation. To Drs. W. T. Cronenwett, J. A. Payne, A. Rafii and H. J. Kumin I am grateful for their consideration and encouragement during the preparation of this dissertation.

I am also indebted to Dr. C. R. Haden, former Director of the School of Electrical Engineering for his personal encouragement.

This research is based on the SCIRISS project begun at the University of Arizona. We are grateful for permission to use their circuits for testing.

The partial financial support I received from Kumasi University is appreciated.

Finally, my deepest gratitude goes'to my wife, Regina, for her loving support; and to my daughters, Agatha and Amy for their lost evenings.

TABLE OF CONTENTS

Page
LIST OF IIMUSTRATIONS vii
IIST OF TABLES ix
ABSTRACT x
I. INTRODUCTION 1
1.1 Previous Results 2
1.2 The Sequential Circuit Test Search System (SCIRISS) 3
1.3 Guiding Sensitization Search 9
1.4 Proposed Work 11
II. PETRI NET AS AN AID TO FAULT DETECTION 13
2.1 Introduction 13
2.2 Background 14
2.2.2 Firing Rules 15
2.3 Petri Net as an Aid to Guiding Sensitiza- tion Search 18
2.3.1 Types of Places 20
2.3.2 Formal Definition of Petri Net for Guiding Sensitization Search 24
2.4 Generating the Petri Net from AHPL 25
2.5 Complete Petri Net 32
2.6 Summary 41
III. HEURISTIC FUNCTION DEVELOPMENT 42
3.1 Introduction 42
3.2 State Equation of a Petri Net 43
3.3 Implied Transition Firing 49
3.4 The Heuristic Function 53
3.4.1 Counter and Shift/Rotate Transitions 59
IV. INPUT VECTOR GUIDANCE 65
4.1 Introduction 65
4.2 Selecting Input Vectors 66
4.2.1 Control Branch Input Selection Procedure 67
4.2.2 Register Transfer Input Selection 78
4.3 Using the Input Vector Selection Procedure 83
4.4 Terminating the Petri Net 84
V. CASE STUDIES AND RESULTS 87
5.1 Case I: The Narrow Window Circuit 89
5.2 Case II: The Anti-Random Circuit 97
5.3 Case III: Search-Sort Processor 101
5.4 Case IV: Four-Bit Expandable Micro- processor 108
VI. SUMMARY AND CONCLUSIONS 125
6.1 Summary 125
6.2 Limitations and Further Work 127
6.3 Conclusion 129
APPENDIX A.l: SCIRTSS SEARCH ROUTINES 131
APPENDIX A.2: PETRI NET AND HEURISTIC COST VALUE ROUTINES 142
APPENDIX A.3: PSEUDO-NSIM SUBROUTINES FOR CASES I-IV 150
APPENDIX B: CIRCUIT SCHEMATICS FOR CASES I-IV 157
LIST OF REFERENCES 171

IIST OF IILUSTRATIONS

Figure Page
1.1 SCIRTSS Flow Diagram 7
2.1 Petri Net Model 16
2.2 Firing of an Enabled Transition 17
2.3 Petri Net for Illustrating Transition Time 21
2.4 Petri Nets Illustrating Different Types of Places 23
2.5(a) Setting Up the Goal Places 26
2.5(b) Expanding the Goal Places 26
2.6 Unconditional Control Transition 31
2.7 AHPL Description of Example 33
2.8(a) First Stage of Petri Net Generation 34
2.8(b) Second Stage of Generation of Example Petri Net 36
2.9 Subnets for Control States One and Six 38
2.10 A Complex Control State Subnet 38
3.1 Petri Net for Example 3.1 45
3.2 Example Petri Net for Illustrating Transition Firing 45
3.3 Derivation of Marking Vector 48
3.4 Dealing with Loops in the Petri Net 51
3.5 Derivation of R_{k} 52
3.6 Petri Net for Illustrating Heuristic Function Computation 57
3.7 Modelling Count Transition 60
3.8 Heuristic Cost Function Computation 63
4.1 Construction of CS Branching Function 71
4.2 Petri Net Example for Input Vector Weighting 79
5.1 AHPL Description of Case Study I 90
5.2 Control State Diagram of Narrow Window Circuit 91
5.3 AHPI Description of Case Study II 98
5.4 AHPL Description of Case Study III 102
5.5 AHPI Description of Case Study IV 110
5.6 Block Diagram of Four-Bit Microprocessor 113

LIST OF TABLES

Table2.1 The Petri Net Listing for Fig. 2.739
2.2 Place Listing for Table 2.1 40
5.1 Petri Net Listing for Case I 93
5.2 Place Iisting for Case I 94
5.3 Test Runs for Case I 96
5.4 Listing of Petri Net for Case II 99
5.5 Place Listing for Case II 99
5.6 Sumary of Test Runs for Case II 100
5.7 Petri Net Listing for Case III 103
5.8 Place Listing for Case III 104
5.9 State Space Search for Case III 107
5.10 Summary of Test Runs for Case III 108
5.11 Petri Net Listing for Case IV 114

ABSTRACT

The use of Peiri nets to model the register transfers and change of control states in a sequential machine described in a Computer Hardware Description Language (CHDL) with the aim of guiding state space searches is proposed. Each fault to be detected defines a set of goal nodes for the state space search. These goal nodes together with a CHDL description of the circuit are used to generate a Petri net. Some portions of this process are invariant with respect to the goal states, depending entirely on the CHDL description.

Two guidance mechanisms are derived from the petri net: heuristic cost value and input vector guidance. For each machine state encountered during the state space search, a state vector is derived from the petri net. A heuristic cost value is computed based on the state vector; this cost value being a measure of the effect of reaching one machine state in the state space search on the transitions in the petri net. The petri net also contains information about input vectors that are associated with each control state. The most important of these are selected based on an established criteria. The
heuristic cost value and the input vectors are used to guide sensitization searches in the Sequential Circuit Test Search System (SCIRTSS). Four case studies are presented to test the effectiveness of the guidance mechanism. The results show that the developed model is a promising tool that can be used in fault test set generation in complex sequential circuits.

CHAPTER I

INTRODUCTION

The advent of integrated circuits and very large scale integration has made fault detection in digital systems a complex process. The number of states inside integrated circuit chips has grown: one chip may have hundreds of flip flops, hence the state space has become much larger. It is no longer possible to provide additional test points brought to external connections due to packaging limitations. This pin limitation constrains the number of outputs observable and inputs to control the sequential circuit inside. The concepts of controllability and observability are important in understanding this problem. Control refers to the ability to apply a complete set of tests to a subsystem via external inputs, that is, control points. Observation refers to the ability to observe the outputs of a subsystem via external outputs, that is, observation points. If many flip flop outputs were observable and controllable, faults could be easily detected through direct observation of the outputs. However, this is expensive and one has to rely on the limited inputs and outputs of the chip to develop a test generation sequence. Constraining the number of inputs forces
the testing to become highly sequential; thus a sequence of inputs that enable the effect of the fault to be observable at the output must be found by the fault detection system. Finding this sequence must be efficient to avoid waste of computer time.

1.1 Previous Results

The earliest fault diagnosis programs were written to exercise machine functions, rather than hardware. Generally, a complex machine instruction like MULTIPLY or DIVIDE was executed and the results were compared with those obtained using an equivalent sequence of simpler instructions, like SHIFT, ADD or SUBTRACT. If there was a discrepancy between the results, then the complex operation was assumed to be defective. The results from such tests might not necessarily be valid due to the limited nature of the test as reported by Estrin (1953) and other investigators.

Eldred (1959) was one of the first investigators to appreciate the importance of diagnostic programs which test machine hardware rather than its functions. This was a major improvement and hardware-oriented diagnostics came into general use and are still being used. Eldred's results were developed for fault detection in combinational circuits of one or two levels. An extension of Eldred's work to circuits having any number of levels followed; the process is labelled one dimensional path sensitization. Although many investigators worked in this area, Armstrong is prominently linked with this method. The idea is to choose a path from the site of a fault to the output; the inputs to the gates along this path are
assigned values so as to propagate any change on the faulty line along the chosen path to the output. This path is called a sensitized path and the process of constructing the path is called the forward-trace phase of the method. After setting up a sensitized path, we trace back from the gates along the sensitized path toward the primary inputs. This is the back-ward-trace phase of the method.

Although Schneider (1967) has provided a counter example to show that the method is not an algorithm, this method has been very useful in practice. Its defect is the occasional inability to produce a test when one exists.
J. Paul Roth (1966, 1967) formulated an algorithmic method which sensitizes all possible paths from the site of the fault to the output simultaneously. He called this method the d-algorithm. The d-algorithm has proved to be a general solution to the problem of fault detection in combinational circuits.

The formal algorithmic approach to fault detection in sequential circuits has been studied by various investigators including Poage and McCluskey (1964), Hennie (1964) and Kime (1966). These algorithmic approaches are impractical for any but small circuits and small classes of faults. This is due to the following difficulties:
a. For each possible circuit state, a potential test input must be evaluated. The number of states increases as 2^{n} where n is the number of memory elements in the circuit. This puts a practical limit on the complexity that the circuit can have.
b. A homing sequence (Hennie, 1964) must be found that forces the machine into a known state. It may be very lengthy or one may not exist for some sircuits.
c. Some sequential circuits, especially large circuits, can not be easily described by a state table.

The alternative approaches to fault test generation in sequential circuits are non-algorithmic: methods that treat fairly large circuits and are economical of computer time.

The Sequential Analyzer of Seshu and Freeman (1962, 1965) was one of the first non-algorithmic test generation methods. The Analyzer is a digital simulator. An heuristic is presented to the Analyzer with a sequential circuit plus a specified set of faults. The heuristic proposes one or more potential tests which are simulated to determine their performance. Some sort of numerical measure of performance is computed for each test input and the one with the highest figure of merit is used provided its value exceeds a predetermined value. Otherwise the heuristic has failed and another is tried. Four heuristics were developed and are tried. If all four heuristics fail, the system gives up.

All of the heuristics of the Analyzer have proved to be reasonably effective for small circuits. They are, however, impractical for large circuits because of the computer time required to simulate the various candidate tests. Because the heuristics employ local rather than global optimization techniques, they do not guarantee a minimal test sequence..

Other non-algorithmic test generation methods were developed by Kubo (1968), Breuer (1971), Bouricius et. al (1971) and Rutman (1972). All of these essentially transform the sequential circuit into an iterative combinational circuit. The d-algorithm is then applied to generate a candidate test. The iterative model has been quite successful for sequential circuits that are largely combinational in form and where the number of circuit iterations required to model the time frames needed to propagate the fault to the output is small. But when the number of state variables is large, the testing procedure has to be abandoned due to the fact that the computational time becomes exorbitant.

1.2 The Sequential Circuit Test Search System (SCIRTSS)

The Sequential Circuit Test Search System, developed by Hill, Belt (1973), Carter (1973) and Huey (1975) is based on a non-algorithmic method using heuristic graph searching techniques. Two heuristic tree search procedures automatically determine trial input sequences which are used to simulate simultaneously all single faults of the circuit. The sequential circuit is partitioned into its control and data portions as done in most Computer Hardware Design Languages (CHDL's). The control input combinations are applied in every node expansion while only input vectors previously specified by an input vector generating routine are considered. Thus, the search is primarily that of the state graph of the control circuit. The node expansion is computed by simulating a CHDL rather than by circuit
simulation, an approach which leads to a great reduction in computation time. The design language used is AHPL (Hill and Peterson, 1978).

We present here a simple description of SCIRTSS. A more detailed description is given in Hill and Huey (1977) and Huey (1978). SCIRTSS incorporates the single permanent fault assumption and assumes that both the faulty and the good network operate in clock mode. Fig. 1.1 shows a block diagram of the test generation system. SCIRTSS has two main search routines: The sensitization search and the propagation search.. For a particular fault to be detected, a sequence of inputs must be found that takes the fault-free circuit from its initial state to a state such that the input sequence generates a sensitized path from the site of the fault to either an output or to a flip-flop. This input sequence is called the fault-sensitization sequence and the process of determining this sequence is the sensitization search shown in block 2. The application of the faultsensitizing sequence may cause the effect of the fault to appear at the output or to be stored in a flip-flop. In the latter case, a sequence of inputs is needed to cause the register transfers to make the discrepancy between the faulty and fault-free circuits observable at the output. This input sequence is the fault-propagation sequence and the process of propagating the stored fault to the output is the propagation search shown in block 3.

Both the propagation and sensitization searches use guidance mechanisms to reduce the search cost. The searches are

conducted over control and user-specified data input only and consider only one fault at a time.

Blocks 1 and 4 in Fig. 1.1 are the d-algorithm and elemental simulator, respectively, that are incorporated into SCIRTSS. If a fault is ever to cause malfunction, there must be some state of the machine for which the outputs are in error or the next states of the good and faulty machines differ. If the set of untested faults and a circuit inter-connection list are given, a modified d-algorithm can find states for which the faults will cause erroneous next states or outputs. This d-algorithm treats the circuit as if it were combinational by cunsidering its behavior for only one clock period. The test vectors returned by the d-algorithm are converted into primary inputs and "present" states and the test generation problem becomes reaching one of these present states. Inputs are selected heuristically and the response of the machine is simulated with the AHPL simulator until the search for a sequence of input vectors to move the machine to one of the goal states is successful. Once this happens, SCIRTSS enters the fault propagation mode to extend the effect of the fault to a primary output. Inputs are again selected heuristically and the machine is simulated in a search of the control state graph until a sequence of input vectors is found which will move the fault to the output.

After finding a test sequence, it must be verified using the elemental simulator of block 4 in Fig. l.l. This simulator
and the AHPL simulator are different in three aspects:
a. The effect of using the faulty gate to perform register transfers in propagating the fault is only approximated in the AHPL simulator.
b. The AHPL simulator uses a single machine and each variable may be $0,1, D, \bar{D}$, or X (unknown). The elemental simulator permits each variable to be only 0,1 , or X for a given machine, but simultaneously simulates the good machine M, and for each undetected fault f_{i}, a faulty machine $M_{f i}$.
c. The AHPL simulator is about 25 times faster than the elemental simulator. This makes the trial and error searching practical in terms of computer time.

In block 4, Fig. l. 1, all other faults detected by the same input sequence are removed from further consideration. SCIRTSS checks the states of the good and faulty machines remaining for faults stored in flip-flops as a result of the input sequence just applied. If new faults are stored, the program continues in fault propagation mode. There is a point at which the set of untested faults is not empty, but none of the remaining faults have resulted in an error occurring in a register. The register transfer simulator is no longer useful at this stage for propagating faults to the output and SCIRTSS must reenter sensitization mode.

1.3 Guiding Sensitization Search

SCIRTSS has been very effective in generating faults
for highly sequential circuits. Huey and Hill (1977) give some statistics to show the usefulness of SCIRTSS. The propagation search has produced consistent results throughout the history of SCIRTSS. Sensitization search, on the other hand, has not been as successful. This is due to the fact that sensitization mode searching occurs after SCIRTSS has run out of faults to propagate and the remaining faults are usually difficult to reach. Essentially, the sensitization search is confronted with the task of moving the machine into a small set of goal states which are inherently difficult to reach. Many highly circuit dependent heuristics were written to cope with this problem. Huey (1975) was the first to attempt to provide a general purpose heuristic function and minimize the manual effort required of a user in forming an input sequence. His proposals also improved the efficiency of the sensitization search. The question that is answered by the fault sensitization phase of SCIRTSS is "how can the states of the fault-free circuit and faulty circuit be differentiated?" For a given fault $f_{i}, ~ a ~ s e n s i t i z e d ~ p a t h ~ f r o m ~ f_{i}$ to a flip-flop F_{i} is determined by a combined state and input vector $v_{j}=\left(X_{j}, Y_{j}\right)$ where X_{j} is the input to the combinational logic and Y_{j} is the flip-flop state. Of course, V_{j} may not be unique; thus, for f_{i} we have a set of vectors $V_{i}=\left\{V_{i 1}, V_{i 2}\right.$, . . $\left.V_{i n}\right\}$ which determine the sensitized path. After the $V_{i j}$'s have been found by the modified d-algorithm, a sequence of input vectors must be found to move the machine from its present state to state Y_{j}. Finding
this sequence of inputs is the sensitization search which can be regarded as a graph theoretical problem of finding a path from any of the starting nodes to any of a set of goal nodes, states that provide a sensitized path to an output or a flipflop. This search, like the propagation search, requires direction to be efficient.

The problem reduction graph approach of Huey (1975) has provided a guidance mechanism for the sensitization search whose effectiveness is independent of the circuit under test. In the problem reduction graph, the problem of reaching a goal state is resolved into subproblems which are in turn iteratively broken into subproblems terminating in simple problems. The nodes in the problem reduction graph are weighted and a heuristic value for each state encountered in the state space search is computed based on the weights of the nodes in the problem graph that are not satisfied by the search state. The problem graph also indicates input vectors associated with each control state. These input vectors are usea together with the heuristic function to guide the sensitization search.

1.4 Proposed Work

The problem reduction graph approach has demonstrated its effectiveness in guiding fault-sensitization searches for goal states in complex sequential circuits that are very difficult to reach. This approach is the first to provide a general purpose guiding mechanism for the sensitization search. Is it the best? Using the idea, of analyzing a design
language description can a more efficient method be found? This research is an attempt to find out answers to these questions. Also, the problem reduction graph introduces the idea of " て links" which were not actually used in generating the heuristic function nor in the selection of input vectors to guide the search. It is our intention to study an efficient method of selecting input vectors to guide the sensitization search.

In studying how the heuristic cost function is derived from the problem reduction graph, it becomes apparent that the function is trying to measure the effect of satisfying a node on the overall desired goal of reaching a solution. Petri nets are graph models that have been used in various areas of computer science to study the interconnection properties of systems. It appears then that petri nets are also very suitable for measuring the effect of reaching one state in a state space search on the overall desired goal state.

This research presents the use of petri nets to model the register transfers and change of control states in a sequential machine described in a Computer Hardware Description Language with the aim of guiding fault-sensitization searches.

The next chapter develops the model and the following two chapters develop the guidance mechanisms for the sensitization searches. In Chapter five, four different circuits are used to test the method.

CHAPTER II

PETRI NETS AS AN AID TO FAULT DETECTION

2.1 Introduction

For each search state of the sensitization search, a cost value is computed and external input vectors are provided to the search program to guide the search. This combination of input vectors and heuristic cost values increases the efficiency of the search. Because the heuristic cost value must be computed for each node as it is generated, its computation must not be time-consuming, otherwise it will slow down the search. The external input vectors must be judiciously chosen for each state to minimize "trial and error."

Before the commencement of the sensitization search, goal states are defined by the d-algorithm as explained in section l.2. These goal nodes can be broken down into subnodes and the subnodes broken down further until an essentially trivial node is reached. These subnodes are concerned with transferring vectors $\left(a_{1}, a_{2} \ldots a_{n}\right), a: \varepsilon(0, x, 1)$ into given registers or moving the machine into a given control state and/ or applying an input vector $\left(a_{1}, a_{2} \ldots a_{n}\right)$ at a given control state. The problem can then be thought of as: "How can we
reach the goal node(s) starting from the trivial nodes?" In this chapter we present the technique of modeling the register transfers and change of control states in a given machine by a petri net.

By studying the relationship between the various "transitions" and nodes in the petri net for each machine state, we can derive an heuristic value for the given state. Also, input vectors to be applied at any given control state can be obtained from the petri net.

It is assumed the given circuit is described in a computer hardware description language (CHDL). For our discussion we use AHPL (Hill \& Peterson 1978) due to familiarity.

2.2 Background

"Petri nets" are graph models used to study the interconnection properties of concurrent and parallel systems. C.A. Petri (1962) proposed in his dissertation "Communication with Automati" that the basic phenomena of communication, such as the switching logic of totally asynchronous automata are representable by purely combinatorial-topological means. Thus, he proposed the construction of a net with more practical applicability in the design and programming of information processing machines than does the theory of abstract automata. Holt et al (1968) developed Petri's work to such a state that it is applicable to many areas in computer science.

Our purpose here is to use this modelling device to model the register transfers and state transitions that can
occur in a machine, given a set of goal nodes.

2.2.2 Firing Rules

Fig. 2.l(a) is a large-scale distributed system which interconnects many information processing elements or processors. For the purpose of studying the relationship between the interconnection and the overall behavior of the system, each information processing element may be represented by a module of the general form shown in Fig. 2.l(b). The vertical bar is called a "transition" while the circles are referred to as "places" or "locations." A petri net is the interconnections of such modules. Thus we may look upon a petri net as a directed bipartite graph wherein there is allowed a directed arc from a place or location to a transition, or from a transition to a place. In order to simulate the flow of control in a petri net, each place is marked with (that is, may have assigned to it) a non-negative number of tokens. We may think of a token as representing a datum, or denoting the presence of some condition or some control signal associated with its place.

The transition obeys the following rules:
a. A transition is said to be "enabled" or "firable" if each of its input places contain at least one token,
b. The "firing" of an enabled transition consists of removing one token from each of its input places, and adding one token to each of its output places. Fig. 2.2 gives an illustration.

Fig. 2.1(a) Model

Fig. 2.1(b) Building Block

(a) Before Firing

(b) After Firing

Figure 2.2 Firing of an Enabled Transition
C. Though it may fully be enabled, a transition cannot fire until directed to do so (by some outside control).

In summary, we may think of transition as an event which can fire (i.e., occur) if all places (conditions) input to that transition have tokens (are satisfied).

2.3 Petri Net as an Aid to Guiding Sensitization Search

Given a set of goal nodes $G()$, we can reduce them to subnodes, until we obtain a set of trivial or terminal nodes. Thus, for each set of goal nodes we can generate a petri net where the transitions correspond to register transfers or changes of control state. Remember that a transition is simply an event: a register transfer that must be done or a change of state of the machine from one control state to another. For our model we will define five types of transitions:
(1) Register Transfer: This type of transition models the change of state of a register; transferring a vector $\left(a_{1}, \ldots, a_{n}\right), a \varepsilon(0, X, 1)$ from one set of registers or input into a destination register.
(2) Control: This type of transition models the change of control state of the sequential machine.
(3) Simple Transfer: This type of transition models unclocked control states and terminal expressions. The transition that fires to fill the goal place (sec. 2.3.1) belongs to this group.
(4) Count: The count transition models the change of state of a counter.
(5) Shift/Rotate: This transition type models the shifting and/or rotation of a given register.

Generally, all transition types, except type three, have an execution completion time associated with them. This timing requirement is included in our model because we are dealing with clocked sequential circuits: if all the conditions for loading a register are fulfilled at time t_{n}, the register is loaded with the vector at the next clock period. Similarly, if conditions for change of control state are fulfilled during time t_{n}, the machine enters the next control state at time t_{n+1}. For slower memories, the reading (or writing) from memory is not completed until some units of time after the process was begun. Hence, this timing provision takes care of all timing requirements; in fact, the simple transfer (type three) is a special case in which the process is completed during the same clock period. This latter case correctly models the "NO DELAY" timing requirement of AHPL (Hill \& Peterson, 1978).

For each transition in the petri net, we can associate a time unit $t(i)$ which would indicate the number of time units that separate the transition and the goal. Why should we link the transition time to the goal place? This is done to give a measure of the time units that would elapse before the goal is filled with a token after a particular transition is fired. Rememwer that filling the goal place is our target and as such
every formulation takes into account the question "how easily can the goal place be filled?" In Fig. 2.3, taking P_{1} as the goal and assuming all transitions have execution completion time of one unit associated with them, then it can be seen that if t_{1} fires then the goal P_{1} would be filled; however, if t_{4} fires, t_{3} and t_{1} must fire before the goal can be filled. Thus the transition time of t_{4} is $t(4)=3$ while the transition time of t_{I} is $t(I)=1$. Of course, this assumes that the firing order is $t_{4} \rightarrow t_{3} \rightarrow t_{1}$.

Summarizing our discussion of the preceeding paragraphs, for each transition in the petri net generated for a given fault, we can associate two parameters:
$s=$: the type of transition
$t(i)=$: transition time; that is defined as the number of time transitions separating the transition and the goal place.
2.3.1. Types of Places

In our model, the places represent conditions or requirements which must be satisfied during a sensitization search. We can define five different types of places:
a. Goal: This is a unique place in the petri net; it represents the condition of sensitizing the fault under consideration.
b. Control: This type of place or location represents the requirement of moving the machine into a given control state.
c. Register: Loading or transferring a predetermined vector $a_{1}, a_{2} \ldots a_{n} a_{i} \varepsilon(0,1, x)$ into a register. Counter and shift registers are in this category.

Figure 2.3 Petri Net for Illustrating Transition Time
a. Input: Placing a vector $a_{1}, a_{2} \ldots a_{n}$ on an external input.
e. Output: This type of place models the condition of a vector $a_{1}, a_{2} \ldots a_{n}$ appearing at the external output.
These conditions will be shown just outside the circles as in Fig. 2.4(a). Since the machine can only be in one and only one control state at any given time and a register can only be loaded with one vector in any given control state, the places in the petri net can only have a maximum of one token at any time. When a condition is fulfilled, the appropriate place is filled with one token.

Some places in the petri net will have more than one incoming arc. This means that the condition represented by the place can be fulfilled or satisfied from any of several transitions. For example, for a register $A R$ to be loaded with a vector $a_{1} a_{2} \ldots a_{n}$, the machine must be in either control states 1, 3 or 5. In each control state, when some condition is fulfilled, then $A R$ is loaded. In control state 1 , this occurs when register $I R$ contains $a_{1}, a_{2} \ldots a_{n}$: In control state 5 , an input vector $a_{1} a_{2} \ldots a_{n}$ is applied. Fig. 2.4(b) illustrates this condition. Of course, t_{1}, t_{2}, or t_{3} can only fire when their respective places are filled.

To differentiate the goal place from all other places in the petri net, we use the visual representation shown in Fig. 2.4(c). The input places to t_{1}, t_{2} and t_{3} are the test vectors generated by the d-algorithm any of which would cause an erroneous next state to result from the presence of the

(a)
$P_{1}=: \quad A R: a_{1} a_{2} \ldots a_{n}$
$P_{2}=$: cs.1
$P_{3}=: \quad I R: a_{1} a_{2} \ldots a_{n}$
$P_{4}=: \quad$ cs. 5
$P_{5}=: \quad I N: a_{1} a_{2} \ldots a_{n}$
$P_{6}=: \quad \operatorname{cs.} 3$

$$
P_{7}=: O R: a_{1} a_{2} \ldots a_{n}
$$

Figure 2.4 Petri Nets Illustrating Different Types of Places
fault. If any of the transitions t_{1}, t_{2} or. t_{3} are fired, then the goal place is filled which implies the fault is sensitized. 2.3.2 Formal Definition of Petri Net for Guiding

Sensitization Search

Although petri nets have many properties like reachability, liveness, and safeness (or boundaries), most of the work reported on the properties of petri nets are concerned with subclasses of petri nets (such as "marked" graphs). We do not intend to investigate any of these properties in our model; rather our aim is to develop a means of guiding the sensitization search from the petri net generated for a given fault, given the CHDI description.

Before giving a formal definition of our model, we define the state of a petri net: A token distribution in a petri net is called a marking or state. Initially, each place has a status (full or empty) referred to collectively as marking M.

We have now presented all the material needed for a formal definition of a petri net as an aid to computing heuristic values for guiding sensitization search:

For a given fault we define a petri net as a quintuple:

$$
P=\left\{G, T, P_{N}, P_{T}, M_{n}\right\}
$$

where $G=$ set of test vectors returned by the d-algorithm, each of which will cause an erroneous next state to result from the presence of the fault.
$T=$ the set of transitions.

$$
\begin{aligned}
P_{N}= & \text { the set of non-terminal places or locations } \\
& \text { from which further subnets can be generated. } \\
P_{T}= & \text { the set of terminal places. } \\
M_{n}= & \text { marking or state of the petri net. Usually } \\
& \text { one will be interested in the state just after } \\
& \text { the machine has been driven into a search state } \\
& \text { Si. }
\end{aligned}
$$

Generally $P_{N} \cap P_{T}=\varnothing$, the null place and we will often denote $P_{N} U P_{T}$ by P, the set of all places in the petri net.

2.4 Generating the Petri Net from AHPL

The petri net generation process starts with the goal states returned by the d-algorithm. The way(s) in which these goal places can be filled is generated using the knowledge of the hardware for the control states, registers, inputs and memories which are available in the AHPL description statements. For example, if the d-algorithm returns (AC: xIOX, IR: IXX) and (AC: loxx, lR: 1XX), we would have the net shown in Fig. 2.5(a). t_{1} and t_{2} are the transitions which fire to fill the goal place with a token. By our model, it needs either t_{1} or t_{2} to fire to have the goal place P_{1} filled. We must now generate the remaining portions of the petri net from P_{2}, P_{3} and P_{4}.

There are three different types of expressions in the AHPL description from which the remaining portions of the petri net must be generated:

Figure 2.5(a) Setting Up the Goal Places

Figure 2.5(b) Expanding the Goal Places

1. Condition expressions
2. Register Transfer expressions
3. Control Branch expressions

A good discussion of how these expressions are handled is given in SCIRTSS (Huey, 1975, pp. 24-35) and will not be given here in detail.

Equation 2.1 contains condition expressions which must be satisfied before a register transfer can take place.

$$
\begin{equation*}
\text { K. } A C \leftarrow\left(\overline{I R}_{1} \Lambda I R_{2} \Lambda \overline{A C}\right) \vee \quad\left(I R_{1} \Lambda \overline{I R}_{2} \Lambda B\right) \tag{2.1}
\end{equation*}
$$

It simply means that if $I R_{1}$ is zero and $I R_{2}$ is one, then transfer the complement of the contents of register $A C$ into register $A C$; however, if $I R_{1}$ is one and $I R_{2}$ is zero, the contents of register B are transferred into register $A C$. Of course, this can only be done at control K. Assuming IR is a 3-bit register, then the condition $\overline{I R}_{1} \wedge I R_{2}$ is translated into the condition IR:O1X; similarly $I R_{1} \wedge \overline{I R}_{2}$ becomes the condition IR:IOX. Notice that these conditions are not dependent upon the values in any of the specified registers; that is, the conditions are invariant with respect to the goal places. We will return to this point a little later.

For the sake of generality, equation 2.1 is rewritten as in equation 2.2 where ${I R_{1}}$ is replaced by a and $I R_{2}$ by $b ;$ a and b are in effect control variables.

$$
\begin{equation*}
\text { K. } A C+(\bar{a} \wedge b \wedge \overline{A C}) V(a \wedge \bar{b} \wedge B) \tag{2.2}
\end{equation*}
$$

Given equation 2.2 which is a register transfer expression and the goal nodes of Fig. 2.5(a), our task is to find transitions and their input places such that if the transitions are fired, places P_{2} and P_{4} would be filled with tokens; that is, register $A C$ would be loaded with the vector XlOX or 10 XX . From the register transfer expression of equation 2.2 , we see that $A C$ can be loaded with a required vector $C_{1} C_{2} C_{3} C_{4}$ in one of two ways:

> 1. If the machine is in control state K and AC contains $\overline{\mathrm{C}}_{1} \overline{\mathrm{C}}_{2} \overline{\mathrm{C}}_{3} \overline{\mathrm{C}}_{4}$
or 2. If the machine is in control state K and register B contains $C_{1} C_{2} C_{3} C_{4}$. For the first case the condition $a b: I 0$ must be satisfied while $a b$ must be 01 in the second case. We thus need two transitions t_{3} and t_{4} to expand the goal place AC:XIOX. Each one of these transitions has input places as shown in Fig. $2.5(\mathrm{~b})$. The place AC: IOXX is expanded in a similar fashion. Transitions t_{3}, t_{4}, t_{5} and t_{6} are transitions of type one:since they all model the register transfer which takes place if all the conditions are fulfilled one time period earlier.

Places P_{5}, P_{6} and P_{7} are all input places to the same transition and they will be called brothers. Transition t_{3} is a descendant of transition t_{1} since if t_{3} is fired and place P_{3} is filled with a token, then t_{1} can fire assuming all other conditions are fulfilled. More generally, a transition $t_{j}\left(t_{i}\right)$ is said to be a descendant (ancestor) of a transition $t_{i}\left(t_{j}\right)$ if t_{i} can be ultimately fired after the firing of t_{j} (after
progressing through some further firing, if. necessary). In particular, $t_{j}\left(t_{i}\right)$ is an immediate descendant (ancestor) of $t_{i}\left(t_{j}\right)$ if an output place of t_{j} is an input place to t_{i}.

After the goal places have been expanded as in Fig. $2.5(b)$, the new register places generated are also expanded by the same reasoning.

The third type of expression in AHPL is the control branch expression. There are two ways control car pass from one control state K to another.
a. Unconditionally:

$$
\text { K. } \rightarrow \text { (i) }
$$

b. Conditionally:

$$
\text { K. } \rightarrow(a, b, c, \ldots) /\left(i_{1}, i_{2}, i_{3}, \ldots\right)
$$

In the first case, control passes from control state K to control state i without any condition. This often happens after a register transfer or some other action takes place in control state K. The machine is then sent to control state i to initiate some other action. The second case of transfer of control occurs only when a given condition is fulfilled. In the example given above, control passes from control state K to control state i_{1}, i_{2}, or i_{3} depending on whether the condition a, b or c is fulfilled.

In order to represent these two types of control branch expressions in the petri net, we classify two types of control transitions:

1. Type 2a: Conditional control transition
2. Type 2b: Uncondtional control transition. Where we have conditional change of control state, each member of the set $\left\{i_{1}, i_{2}, i_{3}, \ldots\right\}$ becomes an output place of a transition $t_{c 1}{ }^{\prime} t_{c 2}{ }^{\prime}{t c_{3}}^{\prime}$ respectively, whose input places are control state K and the respective conditions: a, b, c, \ldots.

Control can pass from more than one control state to control state i unconditionally in a given circuit. To follow the rules of transition firing, this has to be modelled as shown in Fig. 2.6(a) so that if any of transitions $t_{c l}, t_{c 2}, t_{c 3}$ fires the place CS:K is filled. This accurately models the hardware behavior but can lead to a proliferation of transitions. For this reason, we choose the representation of Fig. 2.6(b) which violates the general firing rule. For this type of transition (type 2b), if any of the input places is filled, the transition becomes firable. This is justifiable since a transition is modelling a change of control state and we are interested only in the firing of the transition.

Notice that the control state expansion is completely invariant with respect to the goal places; that is, it is not dependent on where the fault is located in the machine.

After discussing how subnets are generated from control branch and register transfer expressions, one may ask "how are the firings of transitions derived from these expressions handled?" In section 2.2, we gave the firing rules of a transition: firing an enabled transition consists of removing one token from each of its inputs and adding one token to its output

Figure $2.6(\mathrm{a})$

Figure 2.6(b) Unconditional Control Transition
place(s). Since register transfer in AHPI is non-destructive and the conditions for a control state transition remain after the change of control state, there seems to be a problem with our model: As will be explained in Chapter three, we are mainly interested in transitions that have fired during each sensitization state. Hence, we care only about the output places of transitions that are fired. In section 3.3 we introduce the notion of implied transition firing; the discussion in that section will give a good understanding of why we do not take pains to model the non-destructiveness of register transfers nor restore the condition tokens for control state transition.

2.5 Complete Petri Net

We use the AHPL described circuit of Fig. 2.7 to illustrate the generation of a full petri net from the circuit description.

The set of goals which would sensitize the fault is:

$$
\begin{aligned}
& \text { 101118x11xx } \\
& \text { xx0xxxxolxx }
\end{aligned}
$$

From the AHPL declaration syntax, AC:llXx, MDR: 11 XX and IR: 101 are input places to transition t_{1} while IR:XXO and $A C: 01 x X$ are input to transition t_{2}. Any of t_{1} and t_{2} firing fills the goal place with a token and the fault is sensitized. There is no time delay involved, hence t_{1} and t_{2} are simple transfers of type 3. The first stage of our net is shown in Fig. 2.8(a).

MODULE: SP

MEMORY: $\operatorname{IR}[3] ; \operatorname{MDR}[4] ; \mathrm{AC}[4]$
INPUT: INP [4]
OUTPUT: MOR

1. $I R \leftarrow \alpha^{3} / I N P$

$$
\rightarrow\left(\operatorname{INP}_{4}, \overline{\operatorname{INP}}_{4}\right) /(I, 2)
$$

2. $\rightarrow\left(\mathrm{IR}_{3}, \overline{\operatorname{IR}}_{3}\right) /(3,7)$
3. $\rightarrow\left(\left(\overline{I R}_{1} \Lambda \overline{I R}_{2}\right),\left({\overline{I R_{1}}}_{1} \Lambda R_{2}\right),\left(\operatorname{IR}_{1} \Lambda \overline{I R}_{2}\right)\right) /(4,5,6)$
4. $M D R \leftarrow I N P ; \quad M O R \leftarrow A C$
$\rightarrow 1$
5. AC \leftarrow INP
$\rightarrow 1$
6. $A C \leftarrow A C \Lambda M D R$

MOR + AC
$\rightarrow 1$
7. $A C+\uparrow A C$
$M O R+A C$
$\rightarrow 1$

Figure 2.7 AHPL Description of Example

Figure 2.8(a) First Stage of the Petri Net Generation

At the second stage, we start by searching for a solution to the question "how can place P_{I} be filled with a token?" P_{1} filled with a token means that the register AC has been loaded with the vector llxx. There are two alternate ways of doing this:
a. In the first case, if a transition t_{3} with input places INP:IlXX and CS.5 is fired, then at the next clock period, the contents of AC will be llXX. Hence t_{3} has transition type 1 ; that is register transfer and its transition time is one.
b. Alternatively, if a transition t_{4} with input places CS•б, AC:IIXX and MDR:IlXX is fired. Transition t_{4} also has transition time one and is of type one.

Notice how, for example, the input places MDR:XIXX and AC:01XX are obtained from the "and" operation of control state 6 since the output place is AC:OlXX and we have logical AND of registers $A C$ and MDR, we specify the vector $a_{1} a_{2} a_{3} a_{4}$ to correspond to the desired goal and then determine what the contents of MDR must be to give the correct result.

With this reasoning, we obtain the second stage of the petri net as shown in Fig. 2.8(b).

Now that we have encountered control states as places, we shall explain how these are treated before going on with the complete net generation. As discussed in the section 2.3, control branch expressions are completely invariant with respect

Figure 2.8(b) Second Stage of Generation of Example Petri Net
to the goals. These control subnets are generated before the generation of the full petri net. To generate the subnet corresponding to a control state, we use the same reasoning: how can I get to control state K ? In the example circuit under discussion, this is almost trival. Fig. 2.9 shows the subnet for control staies six anu one. It is appropriate to show here one subnet from one of the example circuits discussed in Chapter Five. This is the control state nineteen subnet of case four, the four-bit microprocessor. This subnet in Fig. 2.10 is complex compared to our example circuit of Fig. 2.7.

When the decision to add the subnet of a control state to a main petri net is made, the linking step consists of adding the transition time of the output of the control state place to the transition time of the transition to which the control state is output. In this case, if we are linking CS.6 in Fig. 2.9 to transition t_{4} in Fig. 2.8 b , we would add the transition time of t_{4} to the transition time of CS. 6 . To complete the petri net generation, we would link the subnets for control states $1,4,5$ and 6 to $t_{3}, t_{4}, t_{5}, t_{6}, t_{7}$, t_{8} and t_{9} in Fig. 2.8(b). After expanding the goal places we have the complete petri net shown in Table 2.1. The name of each place is given in Table 2.2.

Figure 2.9 Subnets for Control States One \& Six

Figure 2.10 A Complex Control State Subnet

1	P_{0}	$\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$	0
2	P_{0}	$\mathrm{P}_{4}, \mathrm{P}_{5}$	0
3	P_{1}	$\mathrm{P}_{6}, \mathrm{P}_{7}$	1
4	P_{1}	$\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{8}$	1
5	P_{2}	$\mathrm{P}_{9}, \mathrm{P}_{6}$	1
6	P_{3}	$\mathrm{P}_{11}, \mathrm{P}_{12}$	1
7	P_{4}	$\mathrm{P}_{11}, \mathrm{P}_{22}$	1
8	P_{5}	$\mathrm{P}_{7}, \mathrm{P}_{13}$	1
9	P_{5}	$\mathrm{P}_{5}, \mathrm{P}_{8}, \mathrm{P}_{14}$	1
10	P_{7}	$\mathrm{P}_{10}, \mathrm{P}_{15}$	2
11	P_{15}	$\mathrm{P}_{11}, \mathrm{P}_{13}$	3
12	P_{8}	$\mathrm{P}_{10}, \mathrm{P}_{16}$	2
13	P_{10}	$\mathrm{P}_{17}, \mathrm{P}_{23}$	3
14	P_{23}	$\mathrm{P}_{11}, \mathrm{P}_{18}$	4
15	P_{16}	$\mathrm{P}_{11}, \mathrm{P}_{19}$	3
16	P_{9}	$\mathrm{P}_{10}, \mathrm{P}_{20}$	2
17	P_{20}	$\mathrm{P}_{11}, \mathrm{P}_{21}$	3
t_{18}	P_{1}	$\mathrm{P}_{23}, \mathrm{P}_{25}$	1
t_{19}	P_{5}	$\mathrm{P}_{23}, \mathrm{P}_{24}$	1

Table 2.1 The Petri Net Listing for Figure 2.7

Place	Name	Place	Name
P_{0}	Goal	P_{13}	INP : 01XX
P_{1}	AC: 11 XX	P_{14}	MDR:01XX
P_{2}	MDR:IIXX	P_{15}	IR:01X
P_{3}	IR:IO1	P_{16}	IR:10X
P_{4}	IR:XXO	P_{17}	CS .2
P_{5}	AC: 01XX	P_{18}	INP : XXIX
P_{6}	INP : 11 XX	P_{19}	INP : $10 \times \mathrm{X}$
P_{7}	CS. 5	P_{20}	IR:00x
P_{8}	CS. 6	P_{21}	INP : 00xX
P_{9}	CS. 4	P_{22}	INP : XXOX
$\mathrm{P}_{\text {IO }}$	CS. 3	P_{23}	CS. 7
P_{11}	CS .1	P_{24}	AC: $\mathrm{X01X}$
P_{12}	INP $: 101 \mathrm{X}$	P_{25}	AC: XIIX

Table 2.2 Place Iisting for Table 2.1 and Figure 2.8 (b)

In section 2.3 we defined a petri net as an aid to guiding sensitization searches and followed this up with an example in section 2.4. As noted in the background information of section 2.2 , petri nets have been used to model various systems and can thus be used to model the machine of Fig. 2.7. It is not the subject of this work to show how a petri net can be used to model a machine itself, given the CHDL description; however, we would point out that such a model would be very different from the model of section 2.3. The latter is based on the notion of a goal place and is an attempt to model the change of control states and register transfers that must take place to fill the goal place with a token. It is thus dependent on the particular fault under consideration. Most of the places are dependent on the goal state; the only exception being the places that are responsible for control state branching and conditional register transfer.

CHAPTER III

HEURISTIC FUNCTION DEVELOPMENT

3.1 Introduction

In SCIRTSS: both the processes of fault-propagation and fault sensitization are accomplished by an heuristic graph search. The use of heuristic evaluation functions to direct the search of state-space graphs has been studied by many authors (see, for example, Hart et al, 1968 and Michie and Ross, 1970). Nilson gives a good treatment of the different ideas on which these evaluation functions are based. SCIRTSS assigns a weight to each node as it is reached. This weight is given by

$$
\mathrm{W}=\mathrm{G}+\mathrm{wH}
$$

"where G is the minimum number of transitions from the initial node state to the node, H is some heuristically determined value, and w is a constant innijcacing tie relative importance of H in computing the total weight" (Carter, 1973).

In this chapter we present the development of a heuristic function from the Petri net to guide the sensitization search. First, we present the tools that are needed in developing
the heuristic function; then the several ideas considered are presented.

3.2 State Equation of a Petri Net.

Although the mathematical properties of petri nets have not been well exploited, we have found the state equations a useful tool in developing a heuristic function for guiding the sensitization search.

Throughout this chapter, the reader is reminded that we have the "natural" functioning of petri nets presented, followed by our application.

Let p and t denote the numbers of places and transitions in a petri net, respectively. Defn. 3.1: A marking or state vector, M_{K}, is a $p x l$ column vector of non-negative integers. The jth entry of M_{K}, m_{j} denotes the number of tokens on place j imediately prior to the Kth firing.

In the natural functioning of the petri net, it is customary to progress through a series of firing sequences; thus, we can speak of the "Kth firing." M_{0} denotes the initial marking or state.

Defn. 3.2: The Kth "firing" or "control" vector, $V_{K \prime}$ is a $t \times 1$ column vector of 1 's and 0 's. The $i t h$ entry of V_{K} is one only if transition i is to be fired at the $K^{\text {th }}$ firing opportunity.

Let $A^{-}=\left[a_{i j}\right]$ be a $t \times p$ matrix having $a_{i j}^{-}=1$ if place j is an input place for transition i; otherwise $a_{i j}=0$.
$A_{i j}^{+}$is similarly defined with $a_{i j}^{+}=1$ only if place j is an output place of transition i.

Defn. 3.3: The matrix $A=A^{+}-A^{-}$represents the token changes in each of the p places when transition i fires once. The state equation:

$$
\begin{equation*}
M_{K+1}=M_{K}+A^{T} V_{K}, K=0,1,2, \ldots \tag{I}
\end{equation*}
$$

gives the marking M_{K+1} resulting from marking M_{K} by the $K^{\text {th }}$ firing vector, V_{K}. T implies matrix transpose operation. $M_{K}+A^{T} V_{K} \geq 0$ for each K.

An example will make these definitions clearer.
Example l: For the petri net of Fig. 3.1 the A^{-}and A^{+}matrices are:

$$
\left.\left.\begin{array}{c}
A^{-}=\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
t_{1} \\
t_{2} \\
t_{3}
\end{array}\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \\
A^{+}=\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right. \\
0 \\
0
\end{array}\right] \begin{array}{l}
1 \\
0
\end{array}\right]
$$

Figure 3.1 Petri Net for Example 3.1

The matrix A is

$$
A=A^{+} A^{-}=\left[\begin{array}{rrrrr}
1 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & -1
\end{array}\right]
$$

The initial marking $M_{0}=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}\right]^{T}$. The marking M_{1} resulting from firing t_{2} and t_{3} is:

$$
\left[\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

For the petri net generated for a given fault, we are interested in transitions that have been fired after driving the machine into a search state S. Thus, we shall let M_{S} denote the marking or state vector after reaching state S. Then M_{S+} denotes the marking vector after all firable transitions have been fired.

The state equation of a petri net for a given fault is now written as:

$$
\begin{equation*}
M_{S+}=M_{S}+A^{T} V_{S} \tag{2}
\end{equation*}
$$

where A is the matrix defined in Defn. 3.3 and V_{S} is the firing or control vector, at search state S, that defines which transitions are to be fired.

During the sensitization search, starting from the initial state, each unique state is numbered and called a node. Hence, the marking vector M_{S} can also be written as M_{i} where i is the node number that is associated with search state S. M_{S} gives the conditions fulfilled at search state S. In our model, there is a transition time associated with all but the type 3 transition (section 2.3). For this type of transition, if all the input places are filled with tokens, it is fired. This is not the case with all other types of transitions; they require time. For example, if conditions for loading a register are fulfilled at search state S, the register will be loaded during the next clock period. Thus, M_{S+} in equation (2) will add the outputs of those transitions that have no time associated with them to the state vector M_{S}.

To compute M_{S+}, we have two choices: either use the arithmetic and matrix operation of equation (2) or use the data structure of the petri net together with the information in the search state S to derive M_{S+}. In the former case, we have to deal with large sparse matrices $\mathrm{A}^{+}, \mathrm{A}^{-}$and X . When the algorithm was written, it was apparent that there would be a waste of computer memory. Hence, we chose the second alternative: relying on the data structure of the petri net and the search state to derive M_{S} and M_{S+}. The algorithm for doing this is shown in Fig. 3.3. The first section of the algorithm compares the present machine state and register contents with the machine state and register contents needed to place a token

Figure 3.3 Derivation of Marking Vector
in each place in the petri net. This portion of the algorithm is, of course, similar in the problem reduction graph (page 75, Huey, 1975). The second section tests if all the input places of a transition are filled with tokens. If so, the output place of the transition is filled with a token (the transition fires) if the transition is of type. 3.

3.3 Implied Transition Firing

In the application of petri nets to fault detection, we are interested in the goal place being filled with a token. Thus, if any place, say P_{2} of the net in Fig. 3.2 is filled, we have to be concerned with which transitions were fired or can be inferred to be fired for that particular place to be filled with a token. For P_{2}, either t_{2} or t_{3} or both might have been fired at the $K^{\text {th }}$ firing for it to be filled. After P_{2} is filled, only P_{3} must be filled for t_{1} to be fired, filling the goal place with a token. Hence, after the $k^{\text {th }}$ firing, once P_{2} is filled, we will consider all transitions that are descendants of P_{2} to be fired since they are of no interest. A transition descendant of a place is a transition that fires to have the place filled with a token. In Fig. 3.2, t_{2} and t_{3} are both descendants of P_{2}. By similar reasoning, transition t_{4} is an (immediate) descendant of t_{2} and t_{3}.

The marking vector M_{K+} after the $K^{\text {th }}$ firing for Fig. 3.2
is

$$
M_{\mathrm{K}+}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}}
$$

Recall that this gives the places that have been filled with tokens after the $K^{\text {th }}$ firing. From M_{K+}, we can find all transitions in the petri net that were fired or can be inferred to be fired. We define a new vector R_{K} :

Defn. 3.3: The $K^{\text {th }}$ transition status vector $R_{K}=\left\{r_{i}\right\}$ is a $1 \mathrm{x} t$ vector having entries r_{i} where

The notion of implied transition firing is actually related to the heuristic function development which is presented in section 3.4. When a set of places is filled at a search state S, then we attempt to identify the set of transitions which need no longer be considered as being necessary to fire before filling the goal place with a token. Put in another way, if say P_{2} of Fig. 3.2 is filled with a token, then we pose the question: "Starting from the terminal nodes and transitions, which transition firing sequence might have caused P_{2} to be filled with a token?" In this case it must have been the sequence $t_{4} \rightarrow t_{3}$ or $t_{4} \rightarrow t_{2}$. The notion of implied iransition firing is not found in the natural functioning of the petri net.

What happens if there are loops in the petri net?
This is simply dealt with during the construction of R_{K}, the transition status vector. R_{K} is derived from M_{S+};

Figure 3.4 Dealing with Loops in the Petri Net

Figure 3.5 Derivation of R_{k}
during the derivation process we enumerate descendant transitions of a place that is filled with a token. During the enumeration process if any transition is already marked in R_{K} the whole process is terminated. In Fig. 3.4, if P_{2} is filled, the algorithm of Fig. 3.5 which derives R_{K} would detect a loop between the transitions t_{2} and t_{4}. Since t_{2} is the transition descendant of P_{2}, it is marked first in R_{K}. The immediate descendant of t_{2} is t_{3} while t_{4} is the immediate descendant of t_{3}. In attempting to mark the immediate descendant of t_{4} (which is t_{2}), it is discovered that t_{2} is already marked and the process is terminated.

3.4 The Heuristic Function

For each node that is reached during the sensitization search, we would like to compute a heuristic cost value based on information from the petri net. Our aim is to indicate which node is most likely to be useful in finding the goal node. For sensitization search state S, we seek to minimize the heuristic cost function $H(S)$; then for all nodes that are candidates for expansion, we choose that which has the minimum cost value $H(S)$ as the most promising.

For each search state S, our main concern is: how can the machine be moved nearer the goal from state S. This question must be answered from the petri net. Three options seem appealing, either:
a. use the places that have been filled in the petri net at search state S,
b. use the transitions that have been fired at state S, or
c. use a combination of both the places and transitions
as an indicator of nearness to the goal. The background discussion of section 2.2 on petri nets will be helpful in understanding the present discussion. Remember that we use petri nets to model "conditions" represented by places and "events" represented by transitions.

To use both the places filled and transitions fired as our indicator of nearness to the goal, i.e., to compute $H(S)$ would be superfluous since the module of Fig. 2.1 represents an information processing element.

When a place is filled with a token, it indicates a condition has been fulfilled. Hence, it is possible to use the places (conditions) filled with tokens (fulfilled) to indicate how near we are to the goal. However, to be dealing with the places instead of the transitions, we have to spend more time detecting loops between places and this can slow down the search. Also, in the petri net, it is more natural to be concerned with the firing of transitions and transition firing sequence.

The firing of a transition indicates an "activity" has taken place--in our model there has been, say, a change of control state, for example. Our interest is to indicate how this affects the overall behavior of the machine, for that matter,
how near we are to the goal. From these considerations, we choose as our basic measure, the number of fired transitions in the petri net.

The transition status vector, R_{K} defined in Defn. 3.3 actually constitutes a mask on the transitions in the petri net that are no longer of interest to us; we might think of these transitions as having been fired already. Hence, for each search state S, we can compute the heuristic cost function as:

$$
\begin{equation*}
H(S)=N_{t}-\sum_{i=I}^{N t} r_{i} \tag{3}
\end{equation*}
$$

where N_{t} is the total number of transitions in the petri net

$$
R_{R}=\left\{r_{i}\right\} \text { is the transition status vector. }
$$

Consider Fig. 3.6. If for state A, P_{2} is filled, then the marking vector M_{A+} is

$$
M_{A+}=\left[\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{T}:
$$

The transition status vector would be derived as explained in the previous section to be
then

$$
R_{\mathrm{K}}=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

$$
H(A)=5-3=2
$$

If, on the other hand, state B has P_{5} filled with a token we would have:

$$
M_{B+}=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]^{T}
$$

and $\quad R_{K}=\left[\begin{array}{lllll}0 & 0 & 0 & I & 0\end{array}\right]$.
$H(B)$ would be computed as:

$$
\mathrm{H}(\mathrm{~B})=5-1=4 \text {, indicating the importance of }
$$

state A over state B.
The simple expression of equation (3) is not satisfactory when a terminal place of a transition is filled with a token but the transition itself is not fired. Specifically, in Fig. 3.6, if for state A, P_{4} and P_{6} are filled with tokens, then

$$
\begin{aligned}
\mathrm{M}_{\mathrm{A}+} & =\left[\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}} \\
\text { and } \mathrm{R}_{\mathrm{K}} & =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] \text { since no transition was fired. }
\end{aligned}
$$ Now, if for state B, no place of the petri net is filled with a token, then

$$
\begin{aligned}
M_{B+} & =\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\text { and } R_{K} & =\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

For both states A and B, the heuristic function computed from equation (3) would be:

$$
H(A)=H(B)=5
$$

Intuitively, state A should be nearer to our desired goal than state B.

This suggests that terminal places must be given special treatment in the computation of H. The modified expression for H now becomes:

$$
\begin{equation*}
H(S)=N_{t}-\left[\sum_{i=1}^{N t} r_{i}+\sum_{j \varepsilon P_{T}}^{\sum} \frac{\delta}{n_{j}} m_{j}^{+}\right] \tag{4}
\end{equation*}
$$

Figure 3.6 Petri Net for Illustrating Heuristic Function Computation
where

$$
\left.\begin{array}{rl}
M_{S}^{+}= & \left\{m_{j}^{+}\right\} \text {the marking vector after all transitions } \\
\text { have been fired in state } S
\end{array}\right] \begin{aligned}
n_{j} & =\text { number of brothers of } P_{j} \\
\delta & = \begin{cases}0 & \text { if } P_{j} \text { is an input to any member of } R_{S} \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

The last term of equation (4) is the one that computes contributions from terminal places that are filled but their associated transitions have not been fired. The δ factor takes care of this situation. It is assumed that for a transition to fire, each filled place contributes a fraction l / n_{i} where n_{i} is the number of places input to that transition.

Applying equation (4) to the two states A and B mentioned in the previous paragraph, with:

$$
\left.\begin{array}{rl}
\mathrm{M}_{\mathrm{A}}^{+} & =\left[\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}} \\
\text { and } & \\
\mathrm{R}_{\mathrm{K}}^{+} & =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathrm{M}_{\mathrm{B}}^{+} & =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} 0\right.
\end{array}\right]
$$

Using equation (4) we have

$$
\begin{aligned}
H(A) & =5-\left[0+\frac{1}{2}+\frac{1}{2}+\frac{3}{2}\right]=3.5 \\
\text { and } H(B) & =5-[0]=5 .
\end{aligned}
$$

which indicates correctly the importance of state A over state B. Note also how the function treats the importance of terminal place P_{6} which is an input place to more than one transition.

3.4.1 Counter and Shift/Rotate Transitions

In chapter two we introduced the count transition; this is a transition that models the change of state of a counter. Similarly, the shift/rotate transition models the change of state of a shift register. The model of the counter transition shown in Fig. 3.7(a) is actually a compression of what would be a series of transitions and places. Consider a counter that counts from 0 to 4. There is a change of state of the counter, that is, a transition whenever the required conditions are fulfilled (i.e., the condition place is filled with a token). Thus, if the counter is in state 0 , and if the condition place is filled, the transition t_{1} will "fire" during the next clock period. This must be repeated four times before the desired state KNT:100 can be reached (Fig. 3.7 b). This suggests that when a counter transition is included in the petri net, we increase the number of transitions in the petri net by the number of times the counter must count before reaching its goal state. For Fig. 3.7(b), we might have to increase the number of transitions by 4.

This approach would not give an accurate guidance to our search routine. If, for example, a counter is enabled and loaded with 0110 (binary six), counts to 1010 (ten), and then is disabled, and we then add $15=16-1$ to the total number of transitions, we have not given an accurate representation of the counter operation. Thus, the heuristic function computed on this basis would be misleading.

(i) Unconditional Count Transition

(ii) Conditional Count Transition
(a)

An alternate and more accurate approach is to consider the output place of the count transition as a goal and then compare the state of the counter during the search with the goal. Let bd(i,s) be the arithmetic binary difference between the value in the counter at the present search state S and the goal state of the counter. Then

$$
\begin{aligned}
b d(i, s)= & \mathcal{L}\left(g_{1} \cdots \cdot g_{n}\right)-\perp\left(v_{1} \cdots v_{n}\right) \\
\text { where } g_{1} \cdots \cdot g_{n}= & \text { goal state of the counter } \\
v_{1} \ldots \cdot v_{n}= & \text { value in counter } i \text { after the current } \\
& \text { search state } s .
\end{aligned}
$$

Obviously, if bd(i,s) is zero, then our goal is reached and t_{c} fires, hence the contribution from the counter transition is one. However, if bd_{i} is not zero, then we are a distance of bd(i,S) from the goal and the contribution from the count transition is

$$
\begin{equation*}
\left[1-b d(i, s) / \perp\left(g_{1}, \ldots g_{n}\right)\right] \tag{5}
\end{equation*}
$$

Note that although we have chosen the distance between the goal state of the counter and the value in the counter at state S to measure our nearness to the goal, we are in essence answering the question: "how far is the count/shift transition from firing?" Hence, it is the transition firing that is actually our measure of nearness to the goal. Accordingly, expression (5) takes on values ranging from zero to one.

For shift registers, we define bd(i,S) as the number of times the shift register must be shifted (left or right) from the present state S so as to satisfy the desired goal.

Shift registers and counters are very highly sequential circuits that are very troublesome in fault test generation, especially when they are buried. Expression (5) enables us to provide proper guidance at each state of the search; for ordinary registers we give guidance based on whether the register contains the correct vector or not; guidance for shift registers/counters goes further than that. If the shift register or counter does not contain the correct value, we compute how far it is from reaching the required value. Needless to say, it is impossible or very difficult to use the same criteria for ordinary registers.

Adding the contribution from the counter and shift/ rotate transitions, the heuristic cost function of equation now becomes

$$
\begin{aligned}
H(S)= & N_{t}-\underset{i=1, i \notin \mathrm{C}}{\sum_{\Sigma_{i}}}+\sum_{j \varepsilon_{p_{T}}}^{\sum_{n j}} \frac{\delta}{m_{j}} m_{j}^{+} \\
& +\sum_{I \varepsilon C}\left(1-b d(i, s) / \perp\left(g_{1} g_{2} \ldots g_{n}\right)\right]
\end{aligned}
$$

where $C=$ the set of count and shift/rotate transitions. The flow chart for computing the heuristic cost function is shown in Fig. 3.8.

ERVE, contribution form R vector ECNT, contribution from counters HPT, contribution from terminal placer

HSFN, Heuristic Cost Value
t_{i}, transition i
ITERP ${ }_{i}$, set of terminal places
KIRTP $_{j}$, set of transitions to which
place j is input $N I P_{i}$, no. of i / P places to t_{i} NTP, no. of teminal places

Figure 3.8 cont'd

CHAPTER IV

INPUT VECTOR GUIDANCE

4.1 Introduction

In the last chapter we devaloped a guiding mechanism for a search by finding a heuristic value that enables us to indicate the nodes most likely to lead to the goal. The second guidance mechanism used in SCIRTSS is the reliance on user supplied input vector tables (Carter, 1973). SCIRTSS III attempts the selection of these input vectors automatically (Huey 1975, p. 81).

In sensitization searches a branch is made to each possible next control state from the current control state of the search node being expanded, if an input vector exists which satisfies the conditions of the control branch. Although the search routine itself generates part of the input vector needed to satisfy the control branch condition, we can derive information from the petri net to make this process more efficient. Also, the sensitization search can use a great deal of guidance where data inputs are concerned.

In a Computer Hardware Description Language like AHPL where each input-to-register transfer is associated with a control state, the input vector suggestions can be grouped by the control state at which each is to be applied. In this way, at any given control state an input vector can be readily available for use to increase the search efficiency. This has been the approach in SCIRTSS.

In the petri net generated we have places or locations that represent the condition of placing an input vector (a_{1}, $\left.a_{2}, \ldots a_{n}\right) a_{i} \varepsilon(0,1, x)$ on an external input. The control states at which these places are filled with tokens can be readily obtained from the petri net. Most of these places or locations are invariant with respect to the goal or the fault under consideration as they are generated from control expressions. Hence, the control state associated with these places can be obtained in the form of subnets before the commencement of any sensitization search.

4.2 Selecting Input Vectors

In some circuits, many input vectors may be associated with a given control state. In SCIRTSS, when attempting to expand a node, the search routine applies each suggested input vector to all control branches. Thus, for a node that has minput vectors and n successor control states, the search
expands $m \times n$ next states. Hence, these input vectors must be judiciously selected to avoid misleading the search.

However, this selection process is not a trivial issue. In fact, each input place that appears in the petri net is important, for if a given input place is never filled, it may be impossible to reach the goal:

In our input vector selection process, we classify the input vectors accoraing to the two main types of expressions in AFPL:
and Register Transfer Expression.
Control Branch Expression

4.2.1 Control Branch Input Selection Procedure

Generally, a conditional control branch is made in
AHPL depending upon
a) some input signal, such as ready, link, etc. We call such a signal control signal.
and/or b) the bit combinations in some register(s), many of which are loaded directly from the external inputs at some control state(s).

Both the control signals and registers that are responsible for branching from one control state to another appear in the petri net. In the case of control signals, we can select the values of these signals so as to prevent the generation of
unnecessary nodes during the state space search. In particular, consider the examples

$$
\begin{array}{rl}
\text { (i) } k & \text { OUT } \leftarrow A \\
& \rightarrow(\overline{\text { ready }, \text { ready }) /(k, j)} \\
\text { (ii) } k & A \leftarrow \operatorname{INC}(A) \\
& \rightarrow(\overline{A / A} \wedge \text { ready }, \wedge / A) /(k, j)
\end{array}
$$

In both examples, the machine waits in control state k until some condition is fulfilled. During the search, should this behavior be simulated? Not necessarily; for if we examine the register transfer at cs.k of example (i), it would be a waste of time to continue looping to control state k to be performing the same register transfer. On the other hand, it is essential to repeat the counter operation of example (ii). Hence the search must branch to cs.k whenever it enters control state k.

The examples of the preceeding paragraph indicate that we can control the control states that the machine branches to during the search in order to improve the search efficiency. This is done during the branching function generation. The petri net contains information on the control signals that cause branching from one control state to another. If the value of a control signal causes the machine to wait in any
particular control state and neither a count nor shift operation takes place in that control state, then the machine is not allowed to loop in that control state during the search. Because we have the count and shift transitions in the petri net, these conditions are easily detected.

The more common method in which a conditional control branch is made in AHPL depends on the contents of some register, for example an instruction register in a computer. Many of these registers are loaded directly from the external inputs at some control. states. Frequently there are too many input vectors to be applied at the respective control states and we have to choose only about two or three of these input vectors. The importance of properly selecting these input vectors is not hard to see: by leaving out some input vectors it may not be possible to visit some control states(s) and the penalty can be very high.

Ideally, we should select the input vectors such that it would be possible to visit all control states in the petri net. This philosophy is not without danger, however. In some cases, there may be more than one goal. Thus if any of the control states say, i_{1}, i_{2}, i_{3} is reached and the correct register is loaded then the search is successful. In this case, although many conirol states may appear in the petri net, it
seems appealing to select a subset of these control states and aim at reaching only members of this subset. This approach would nullify the advantage of having more than one goal and of course it is very difficult and time consuming to select a subset of control states. We aim at selecting the input vectors such that it woula be possible to visit all the important control states in the petri net.

Defn 4.1: The Control State Branch Vector, $B_{j k}=\left\{s_{1}, s_{2}\right.$, $\left.\ldots s_{n}\right\}$ is a set of input vectors s_{i}, that can cause a transfer from control state j to control state \dot{k}. The set of all Control State $B r a n c h$ Vectors is denoted by $B_{k}=\left\{B_{j k}, \ldots, B_{m k}\right\}$.

The vector B_{k} should not be confused with the input vectors that can be applied at control state k. In the latter case, we have input vectors which, if applied when the machine is in control state k, causes some register transfer. The Control State Branch Vector, B_{k}, on the other hand consists of input vectors which are actually responsible for the machine ever branching to cs.k. B_{k} is derived from the control state subnets as shown in Fig. 4.1. In this figure, we mark all register places that have been encountered for easy identification when we are selecting input vectors in section 4.2.3. In the petri net, an immediate predecessor of a place i or location

Figure 4.1 Construction of CS Branching Function
is a place j that is input to a transition• that fires to fill place i with a token.

The vector B_{k} is independent of all faults and thus can be constructed once for all sensitization searches.

The next step in the Control Branch Input selection is the formation of a Common Transfer Vector.

Some input vectors in each B_{k} cover other input vectors in some B_{j}. Hence we define a common transfer vector,

$$
F_{I}\left(k_{1}, k_{2}, \ldots\right)=\left\{s_{1}, s_{2}, \ldots s_{3}\right\} \quad L=1,2,3 \ldots
$$

as the set of input vectors s_{i} that are common to control states k_{1}, k_{2}, \ldots The vector F_{I} is easily derived by checking if each input vector s_{i} in $B_{k_{1}}$ covers any other input vector in $\mathrm{B}_{\mathrm{k}_{2}}$.

We give an illustration at this point. In the next chapter, we will present a 4-bit microprocessor as a case study. The Control Branch Vectors for this circuit are:

$$
\begin{aligned}
& B_{5}=\{4, i c s=x 001,1 \mathrm{XXx}\} \\
& B_{6}=\{5, i c s: X X 01, \operatorname{xOLX}\} \\
& \mathrm{B}_{8}=\{5, \mathrm{ics}: 10 \mathrm{xx}\} \\
& \mathrm{B}_{10}=\{5, \mathrm{ics}: \mathrm{XIXO} ; 6, \mathrm{ics}: \mathrm{XIXX}\} \\
& B_{I 2}=\{10, \text { ics }: X X 1 x\}
\end{aligned}
$$

$$
\begin{aligned}
& B_{14}=\{12 \text {, ics:XXX0; 15, ics:X01X, ics:X100; 10, ics:XXX0X\} } \\
& B_{15}=\{4, \text { ics:X01X, ics:X000, ics:110X }\} \\
& B_{16}=\{4, \text { ics }: 0110\} \\
& B_{18}=\{4, \text { ics:0111 }\} \\
& B_{19}=\{15, \text { ics:X100, ics:X101 }\} \\
& B_{20}=\{15, \text { ics }: X 000\}
\end{aligned}
$$

There is a 4-bit input line, ics, that is used to load the Index Register. The machine has twenty control states. Those control states that are not directly controlled by input vectors do not, of course, appear in the Branch Vectors. The common transfer vectors derived from the B_{k} 's are:

$$
\begin{array}{ll}
F_{1}(4,5,6,8,14) & =\{\text { ics: } 1001\} \\
F_{2}(4,5,10,12,14) & =\{\text { ics }: 1110\} \\
F_{3}(4,6,10,5,15,19) & =\{\text { ics }: 1101\} \\
F_{4}(4,5,10,14) & =\{\text { ics: } 1100\} \\
F_{5}(4,14,5,6,8) & =\{\text { ics }: 101 x\} \\
F_{7}(4,15) & =\{\text { ics }: \times 000\} \\
F_{8}(4,16) & =\{\text { ics }: 0110\} \\
F_{9}(4,18) & =\{\text { ics }: 0111\} \\
F_{10}(4,15,19) & =\{\text { ics }: 1100 ; \text { ics:1101\}} \\
F_{11}(4,15,20) & =\{\text { ics }: 0000\}
\end{array}
$$

Comparing the transfer vectors F_{7} and F_{3}, we observe that the input vector cs:X000 will cause a branch to control state 15 only while cs:llol will cause a branch to control state 15 and control state 14. Hence the input vector csillol can replace cs:X00 and we say that F_{3} has overridden F_{7}. To test those transfer vectors that have been overridden, we use the expression:

$$
\begin{equation*}
F_{i}\left(k_{1}, k_{2} \ldots\right)-F_{i}\left(k_{1}, k_{2} \ldots\right) \cap F_{j}\left(k_{1}, k_{2}, k_{3}, \ldots\right) \tag{4.1}
\end{equation*}
$$

for $i=1,2, \ldots n ; j=1,2, \ldots n ; i \neq j$ where n is the number of common transfer vectors. If expression 4.1 is empty, then F_{i} is overridden by F_{j} and F_{i} is deleted together with its corresponding input vector.

The danger with the test of 4.1 is that the input vector picked would let the machine wander from one control state to another. For example,ics:X000 of F_{7} would branch from control state 4 to control state 15. However, since F3 overrides F_{7}, ics:Il01 replaces ics:X000. In this case to reach control state 15 , the machine might have to visit control state 14 before reaching control state 15: This is our dilemma: on the one hand trying to limit the number of inputs and on the other hand the "best" selected inputs periodically wandering from one control state to another. However, it is better to
be able to visit many control states with a few input vectors than being unable to do so at all.

Applying the test of expression 4.1 to the Common Transfer Vector of our example, we have F_{1}, F_{4}, F_{7} and F_{10} overridden. The Reduced Common Transfer Vectors are:

$$
\begin{array}{ll}
F_{2}(4,5,10,12,14) & =\{\text { ics: } 1110\} \\
F_{3}(4,5,6,10,15,19) & =\{\text { ics: } 1101\} \\
F_{5}(4,5,6,8,14) & =\{\text { ics: } 101 \mathrm{x}, \text { ics }: 1001\} \\
F_{8}(4,16) & =\{\text { ics }: 0110\} \\
F_{9}(4,18) & =\{\text { ics }: 0111\} \\
F_{11}(4,15,20) & =\{\text { ics }: 0000\}
\end{array}
$$

Hence from the initial 20 Control Branch Input vectors, we have six vectors in the Common Transfer Vectors. Which one of these should be selected?

Our final reduction process calls for the removal of any control state that is common to all the Reduced Transfer Vectors. The resulting vector is called a "G Common Transfer Vector." For our example, we have

$$
\begin{aligned}
& G_{1}(5,10,12,14) \\
& G_{2}(5,6,10,15,19) \\
& G_{3}(5,6,8,14) \\
& G_{4}(16)
\end{aligned}
$$

$$
=\{\text { ics:1110 }\}
$$

$$
=\{\text { ics:1101\} }
$$

$$
=\{\text { ics:101x, ics:1001 }\}
$$

$$
=\{\text { ics:0110 }\}
$$

$$
\begin{array}{ll}
G_{5}(18) & =\{\text { ics }: 0111\} \\
G_{5}(15,20) & =\{\text { ics }: 0000\}
\end{array}
$$

In this example, we have six input vectors that determine the control states that the machine can branch into. We must only select two or three of these input vectors for application at the required control state. Several factors need be taken into account when selecting input vectors from the G Comon Transfer Vectors.
(i) The input selection procedure outlined in the preceeding paragraphs is completely independent of the fault being sensitized; the G Common Transfer Vectors are derived once for all sensitization searches. Hence when the decision is made to select input vectors, the input vectors in the G Common Transfer Vectors are selected based on the control states in the Comon Transfer Vectors and the petri net for the fault. The control states that do not appear in the petri net for the particular fault are dropped from the Common Transfer Vector for this fault. If any of the G_{i} becomes empty then it is dropped from consideration.
(ii) Any of the G_{i} which contains a control state that is one of the goals for the sensitization search should certainly be included.
(iii) For those G_{i} that have only one control state and the control state is not one of our goals, we have to check if any register transfer takes place in the particular control state. If not, the input vector associated with the control state can be dropped from the list. On the other hand, if a register transfer takes place and the only way that transfer can take place is for the machine to be in that particular control state, then the control state may be important.

We formalize the discussion above by computing a factor of importance, q, for each Common Transfer Vector that is left after all control states not appearing in the petri net have been dropped. For each G_{i}, we have:

$$
\begin{equation*}
q_{i}=m n p \tag{4.2}
\end{equation*}
$$

where $m=$ the number of control states in G_{i}; generally, $n=$ $p=1$. However, if any member of G_{i} is a goal control state, then $n=M$, where M is the largest value of m. The constant, p, takes care of those G_{i} that have only one control state as a member. If a count or shift operation occurs in that control state or the only way a register transfer takes place in the machine is when the machine is in that particular control state, then p is made equal to 2 to reflect that importance. After computing the factor, q_{i}, for all G_{i}, the two (or inrea) input vectors that have the highest factor of
importance are selected; these input vectors would control the states the machine visits during the search.

4.2.2 Register Transfer Input Selection

The second type of expression from which input vectors must be generated is the register transfer expression. This usually consists of loading a register with an external input at any given control stäte.

After selecting the input vectors for branching from one control state to another, we must select another two (or three) input vectors which would determine the vectors that are loaded into the various registers. We could approach this selection process in much the same way that we approached the Control State Input selection. However, we can efficiently make use of the transition time of the transition to which the vector is an input place in the petri net and obtain quite an accurate result. We give an illustration of this process.

The places P_{4} and P_{5} in Fig. 4.2 represent the condition of placing the vectors $X 100$ and 100 X respectiveiy on the external input, IN. Both places are associated with the same control state, cs.k. P_{4} is an input place to transition t_{1} which has transition time $t=1$ while P_{5} is an input to transition t_{2} which has transition time $t=3$. If the machine reaches

Fig. 4.2 Petri Net Example for Input Vector Weighting
control state K and the input vector $\{I N: X I .00\}$ is applied then transition t_{2} becomes firable and the goal place would be filled during the next clock period. However, is the input vector $I N: 100 X$ is selected, transition t_{2} would have to fire, followed by transition t_{4} and finally t_{3} before the goal can be filled. Obviously, input vector IN:XIOO is a better choice than IN:100X for our aim is to reach the goal with the least number of input sequences.

This example demonstrates that the information from the transition time of the transitions in the petri net can be helpful in selecting input vectors to be loaded into registers. For an input place P_{i} in the petri net, we can compute the "weight," W of an input vector from:

$$
\begin{equation*}
W\left(P_{i}\right)=q(Q-\tau(i)) \tag{4.3}
\end{equation*}
$$

where $Q=$ maximum transition time in the petri net.

$$
\begin{aligned}
\tau(i)= & \text { transition time of the transition to which } P_{i} \text { is } \\
& \text { input. } \\
q= & \text { a factor indicating how critical the register } \\
& \text { transfer may be. }
\end{aligned}
$$

The factor q is computed as:

$$
q=(c-n)
$$

where n is the number of ways the register•can be loaded and c is an arbitrary constant selected such that no q_{i} is zero. The factor q is quite important; if a register A can be loaded in three ways and another register can only be loaded in one way, then the input vector that is used to load B must be more critical than the one used to load A.

For the example of Fig. 4.2, taking $c=2$, we have

$$
\begin{aligned}
& q=2-1=1 \\
& Q=3
\end{aligned}
$$

and

$$
\begin{aligned}
& W\left(P_{4}\right)=1 \times(3-1)=2 \\
& W\left(P_{5}\right)=1 \times(3-3)=0
\end{aligned}
$$

Hence we see the importance of P_{2} over P_{4}.
One may argue that in Fig. 4.2, if the input vector of P_{5} is not selected, P_{3} may never be filled with a token and as such it would be impossible to reach the goal: This may be true and in fact, the same argument may arise in connection with all the input vectors. The idea is to select the most "promising" input vectors and leave the less critical ones to be generated randomly.

Before weighting the input vectors, we check if these input vectors are covered by any of the input vectars selected by the control branch selection procedure. If so, the particular input vector is not taken into consideration again.

In attempting to select input vectors from register transfer expressions, special attention must be devoted to counters and shift registers. This class of registers represents complex sequential circuits that are troublesome in test set generation. If an input vector must be loaded into any of these special registers it may be critical. In a given machine only a few input vectors may be loaded into a counter or shift register. For these reasons, any input places associated with count or shift/rotate transitions in the petri net are included in the list of input vectors to guide the search.

In section 4.2.1 we discussed how to handle conditional control state branching expressions. One may wonder whether condition expressions which control register transfers require any special treatment. In the AHPI expression:

$$
k \cdot \quad A \leftarrow B * C b
$$

if the input cb is. high, then register B is loaded into register A. In this example there will be only one input vector cb:l associated with control state cs.k; this input vector will naturally be used to guide the search. However, if there are many input vectors to be applied at cs. k, the input selection procedure of this section will have to be evoked and the input vectors that control conditional register transfers are treated like the other register transfer input vectors.

4.3 Using the Input Vector Selection Procedure

The input vector selection procedure treated in the preceding sections is applied to a given circuit only if the number of input vectors to be applied at a given control state exceeds a user specified number. The optimum number is not known although five (5) has been used for previous SCIRTSS tests and is used for testing in the next chapter. The input vector selection is done once for each sensitization search; the Common Transfer Vectors of section 4.2.2 are constructed only once for each machine while the input vectors from the Common Transfer Vectors are selected after the construction of the petri net.

Naturally, when the number of input vectors per control state is less than the user specified number for all control states in a given machine, the input vector selection procedure is not needed. In this case all the input vectors appearing in the petri net are used to guide the search.

Finally, the input vector guidance mechanism, like the heuristic cost value guiding mechanism, is intended to be machine invariant. However, it may be easy to find test sequences for some machines without using input guidance. It will be very difficult to detect this "easy" condition using the artificial intelligence method proposed in this work. An experienced user, on the other hand can recognize such types
of machines. For this reason, a user may have the option of indicating to SCIRTSS whether he wants input vector guidance or not. In the next chapter we present case studies to show some machines that do not need input vector selection procedure.

4.4 Terminating the Petri Net

The question of terminating the petri net generation has been deferred till now because we want to explain how the heuristic function is calculated and how inputs are selected for guiding the search. Since we are concerned about the number of transitions that have been fired in the net for a given search state, it is essential that we include enough transitions in the petri net. For smaller circuits, then, given a set of goal nodes, the petri net must be expanded until the initial control state, usually control state one, is reached and the input places are all external places.

However, for more complex circuits, for example, the microprocessor circuit described in the following chapter, it is necessary to terminate the petri net generation to prevent having too many places and transitions. In SCIRTSS III, the problem graph generation is terminated based on the ease with which a node was satisfied in past searches. We use the same decision rules for terminating the generation of the petri net, with the following added:

1. Every control state at which a register transfer or conditional branch occurs must be expanded at least once. This implies that it its not necessary to expand a control state in the AHPL description in which only an unconditional branch to another control state occurs. This rule is due to the fact that if a particular control state, say cs. 5 is used as a terminal place, then if the machine is in cs.4, cs.3, or cs.2, no transitions in the petri net can be inferred to have been fired. Hence the weighting function would not be able to differentiate between control state five and control state three, for example, and this is misleading to the search routine. 2. Where a register, RE, is loaded with primary inputs at a given control state and the place $\left\{R E: a_{1} a_{2} \ldots a_{n}\right\}$ is associated with a transition whose transition time is 2 or less, this particular place must be expanded at least once. Since in weighting input vectors to be selected we gave a high priority with places whose transitions have small transition time, a register associated with such a transition should not be left to be randomly loaded:

When the two rules above are followed and still there are many more places to be expanded, all places associated with transition times bigger than a user specified value are marked terminal and not expanded.

CHAPTER V

CASE STUDIES AND RESULTS

The guidance mechanisms described in the previous chapters are supposed to be independent of any circuit description. A user would only have to prepare the parameters of his particular circuit and submit it as data to the routine. To test these concepts, four markedly different circuits with varying degrees of complexity were submitted to the test generation program. Faults that were considered difficult for SCIRTSS sensitization searches to reach were selected for detection.

For each fault, the d-algorithm routine found a set of goal nodes. The petri net was generated manually and submitted as data to routine GNPT whose listing appears in Appendix A. This routine sets up pointers to the various places and transitions in the petri net. The routine HEUSUB computes the heuristic value at each step of the sensitization search. This routine is also listed in Appendix A. The only cases where there were more than five input vectors were cases III and IV. For these cases, the input vectors were selected
based on the criteria in chapter four and submitted as data to the main search routine. All four circuits have been previously used as test cases in the full SCIRTSS run at the University of Arizona. In the early tests, special guidance routines had to be written for each case (Ng (1974), Van Helsland (1974)). Huey (1975) used these circuits to test his general purpose guidance mechanism and we shall frequently refer to the results obtained using the petri net and those obtained using the problem reduction graph which was used in SCIRTSS III.

For each sensitization search, the goal node(s) and starting node are submitted to the main search routine as data. The routine expands each node and computes the heuristic value for the node. This heuristic value is compared with other nodes that are candidates for expansion. The node with the minimum heuristic value is picked as most promising and expanded. The search is either successful in which case it returns "SEARCH SUCCESSFUL" message together with the goal reached, or fails. In the latter case, there are two ways it can fail:
a) When the search routine runs out of nodes to expand, i.e., all nodes have been expanded without any new node being generated, it returns "MINIMUM HEURISTIC SEARCH FAILS."
b) If the search continues for more than a user specified limit (NSIM call limits) without finding a successful input sequence, it is terminated as an unsuccessful sensitization search. A limit of 1000 was set for the test run.

5.1 Case I: The Narrow Window Circuit

The first circuit to be used to test the guidance mechanism is a "narrow window" circuit where certain control states are hard to reach due to control branching conditions which are hard to satisfy. The only searches to fail detection in earlier SCIRISS testing were those where reaching a goal node involved reaching a control state in one set when the initial state for the search was in the other. The AHPL description of this circuit is shown in Fig. 5.1 while Fig. 5.2 shows the control state diagram. There are two sets of control states: $G A$ and $G B$. The fault requiring the most difficult sensitization search possible is the one associated with the branch logic from cs. 11 to cs.l if the machine is initially in cs.l. The fault to be sensitized is at the output of the logic which implements the branch condition:

$$
\operatorname{cs.} 11 \longrightarrow(\Lambda / A) /(1)
$$

MODULE: NARROW WINDOW CIRCUIT

MEMORY: A[3]; B[3]; CNT[4]; Y[1]
INPUTS: $\mathrm{X}[3] ; \mathrm{Il}, \mathrm{I} 2$
OUTPUTS: $\mathrm{Z}, \mathrm{Bl}, \mathrm{C}$

1. $\mathrm{A} \leftarrow \mathrm{X} ; \mathrm{Y}+\mathrm{Il} ; \mathrm{CNT} \leqslant \operatorname{INC}(\mathrm{CNT})$
$\rightarrow(\overline{I 2}, I 2) /(2,5)$
2. $B \leftarrow \omega^{3} / A D D(A, B) ; C \leftarrow \alpha^{1} / A D D(A, B)$
$\rightarrow(\bar{Y}, Y) /(3,4)$
3. $B \leftarrow \omega^{3} / A D D(A, B) ; C \leftarrow \alpha^{1} / A D D(A, B)$
4. $\quad \mathrm{CNT} \leftarrow \mathrm{INC}(\mathrm{CNT}) * I I$
$\rightarrow\left(\left(\mathrm{CNT}_{1} \Lambda \mathrm{CNT}_{2}\right),\left({\left.\left.\overline{\mathrm{CNT}}{ }_{1}{\Lambda \mathrm{CNT}_{2}}_{2}\right)\right) /(8,1), ~(1)}\right.\right.$
5. $A \leftarrow \uparrow(A \cap B)$
$\rightarrow(\overline{I 2}, I 2) /(6,7)$
6. $B+\overline{\varepsilon(3)} ; Z-1 ;$
7. $C N T \leftarrow \operatorname{INC}(C N T) * Y$
$\rightarrow\left(\left(\mathrm{CNT}_{1} \wedge \mathrm{CNT}_{2}\right),\left(\overline{\mathrm{CNT}_{1} \Lambda \mathrm{CNT}_{2}}\right)\right) /(8,1)$
8. $A+B * I 2 ; ~ D+A * I 2$
$\rightarrow(\overline{I I}, I 2) /(9, I 1)$
9. $\quad A_{3} \leftarrow \Lambda /(A, B) * I I$
10. $B \leftarrow \uparrow B ; A \leftarrow \uparrow A$
11. $B, A \leftarrow B_{2}, B_{3}, A, X_{3}$
$\rightarrow((\mathrm{V} / \mathrm{A}),(\overline{\mathrm{V} / \mathrm{A}})) /(8,1)$
Figure 5.1 AHPL Description of Case Study I

Figure 5.2 Control State Diagram of Narrow Window Circuit

This fault is the output of OR gate \#90 stụck-at-one. To sensitize this fault, starting from control state one, the narrow window conditions for going from GA to GB must first be satisfied $\{C N T: 11 X X\}$, then the condition $A: 000$ must be satisfied.

The d-algorithm returns one test vector which indicates that place A:000 and cs. 11 must be satisfied for the fault to be sensitized. The petri net generated is shown in Table 5.1 and the place listing in Table 5.2. From the petri net we have only one input vector $\mathrm{X}: 000$ which was submitted to help in guiding the search. This input vector alone provided enough guidance to find an input sequence that is comparable to those found using heuristic function guidance. Two sets of tests were run on this circuit:

1) When the machine is in reset state, i.e.: c.s.l and state vector is 00000000000 , and
2) When the machine is in control state 1 and registers A and B contain the vectors $\{111\}$. In both cases the goal node is the same.

When the search starts from the reset state, the goal is not very difficult to reach although it is not trivial. The combined heuristic value-input vector guidance expands about 50% less nodes than using input vectors only. It may

Table 5.1 Petri Net Iisting for Case I

Transition	Type	Output Place	Input Places	Immediate Descdt
T1	3	PI	2,3	2,3,4,5,6,7
T2	1	P2	7,8	8,9,10,14,24
T4	1	P2	8,9	8,9,10,24,11,12
T5	1	P2	5,6	
T6	1	P2	10	13
T7	2	P3	9	11,12
T8	1	P8	10	13
T9	1	P8	10	13
T10	1	P8	14	21
TII	2	P9	12,13	17,18,19
T12	2	P9	11,13	16,17
T13	2	P10	16	15
T14	1	P8	3,17,18	7
T15	2	P16	9	11,12
T16	6	P11	14,19	21
T17	4	P13		
T18	2	P12	7	22
T19	2	P12	15	20
T20	2	P15	7	22
T21	2	P14	19	23

Table 5.1 cont'd

Transition	Type	Output Place	Input Places	Immediate Descdt
T22	2	P7	6	
T23	2	P19	6	
T24	1	P8	15	20

Table 5.2 Place Listing for Case I

P	1	GOAL	P	11	CS .4
P	2	$A=000$	P	12	CS. 7
P	3	CS. 11	P	13	KNT : 11 XX
P	4	A: XOO	P	14	CS 3
P	5	IX: 000	P	15	CS. 6
P	6	CS. 1	P	16	CS. 9
P	7	CS. 5	P	17	$B=\mathrm{XOO}$
P	8	B:000	P	18	A : 0xX
P	9	CS. 10	P	19	CS .2
P	10	CS .10			

be startling at first to observe from Table 5.3(a) that the heuristic cost value alone expanded the same number of nodes as the combination of heuristic value and input vector guidance. This is expected since the register A contains $\{000\}$ to start with and this is the same vector that is loaded by the input vector.

In the second test run, with registers A and B both containing the vector $\{111\}$, more nodes are expanded before reaching a goal. The input vector only guidance found a sequence whose length is three more than the combined input and heuristic cost value guidance. The results of this test are sumarized in Table 5.3(b). With the heuristic value only, only 60 nodes were expanded and the length of the sequence found is 27. In this particular result, register A was loaded with $\{000\}$ on the first expansion thus leading to the expansion of very few nodes. However, the length of sequence found is suboptimal. Case Study $l(b)$ is a good illustration of the fact that both heuristic cost value and input guidance are required to give an optimal sequence. SCIRTSS III ran the same test and expanded about 60% more nodes than the results reported here. In both cases, the length of the sequence found is about the same.

Table 5.3. Test Runs for Case I

(a) starting node:	$\begin{gathered} A \\ 000 \end{gathered}$	$\begin{gathered} B \\ 000 \end{gathered}$	$\begin{array}{r} \text { CNT } \\ 0000 \end{array}$	Y	
Type of Guidance $\quad \begin{array}{r}\text { Lengt } \\ \text { Sequence }\end{array}$	th of Foun				Total Nodes Searched
No guidance none	found				1000
Input vector only	33				170
Heuristic vector only $(w=75)$	26				94
Heuristic value (w=75) and input vector	26				94
(b) starting node:	$\stackrel{A}{A} \underset{111}{ }$	$\begin{gathered} B \\ \text { III } \end{gathered}$	$\begin{array}{r} \text { CNT } \\ 0000 \end{array}$	Y	
Type of Guidance $\begin{array}{r}\text { Lengt } \\ \text { Sequence }\end{array}$	th of Found				Total Nodes Searched
No guidance none	found				1000
Input vector only	26				252
Heuristic value only $(w=75)$	27				60
Heuristic value ($w=50$) and input vector	23				277
Heuristic value ($w=200$) and input vector	24				238

Abstract

5.2 Case II: The Anti-Random Circuit

The second case study is an anti-random circuit. This circuit has the special feature of a chain of control states where each control state either loops to itself unless a counter has counted up to seven, or resets to an initial state if the control input RS is l. The AHPL description is given in Fig. 5.3. The heuristic function computation will in this case be very much dependent on the count transition. The fault to be sensitized is in the logic that implements the register transfer

in control state five. This fault is at the output of AND gate \#66, stuck-at-zero. The d-algorithm returns a vector which indicates the machine must be driven into cs.5 and load register B with $l l l l l l$ to sensitize the fault. The petri net generated for this case is shown in Table 5.4. The inputs. to transition t_{I} which fires to fill the goal place are cs. 5 and B:Illlllll. Needless to say, to load all one's into a register is not likely to happen by chance.

There are two input vectors in the petri net which
were used as heuristic input vectors. These two input vectors were very effective in guiding the search. However, the heuristic function-input vector guidance provided an efficient

MODULE: ANTI-RANDOM CIRCUIT
MEMORY: KNT[3]; B[8]
INPUTS: X[8]; RS
OUTPUTS: OUT[8]; 2

1. $\mathrm{KNT}+\overline{\varepsilon(3)}$
$\rightarrow(\overline{R S}, R S) /(1,6)$
2. $\mathrm{KNT} \leqslant \mathrm{INC}(\mathrm{CNT})$
$\rightarrow((\Lambda / \mathrm{KNT}),(\overline{\Lambda / \mathrm{KNT}} \Lambda \overline{\mathrm{RS}}),(\overline{\Lambda / \mathrm{KNT}} \Lambda R S)) /(3,1,2)$
3. $\mathrm{KNT} \leftarrow \overline{\varepsilon(3)} ; \mathrm{B} \leftarrow \mathrm{X}$
4. $K N T+I N C(K N T)$
$\rightarrow((\Lambda / K N T),(\overline{\Lambda / K N T} \Lambda \overline{R S}),(\overline{\Lambda / K N T} \Lambda R S)) /(5,1,4)$
5. $Z \leftarrow \Lambda / B ;$ OUT $\leftarrow \overline{\varepsilon(8)}$
$\rightarrow 1$
6. $\mathrm{KNT} \leftarrow \operatorname{INC}(\mathrm{KNT})$
$\rightarrow((\Lambda / K N T),(\overline{\Lambda / K N T} \Lambda R S),(\overline{\Lambda / K N T} \Lambda \overline{R S})) /(7,1,6)$
7. $\mathrm{KNT} \leftarrow \overline{\varepsilon(3)} ; \mathrm{B} \leftarrow \overline{\mathrm{X}}$
8. $\mathrm{KNT} \leftarrow \operatorname{INC}(\mathrm{KNT})$
$\rightarrow((\Lambda / K N T),(\Lambda / K N T \Lambda R S),(\overline{\Lambda / K N T} \Lambda \overline{R S})) /(9,1,8)$
9. $\mathrm{Z} \leftarrow 0$; OUT +B
$\rightarrow 1$

Figure 5.3 AHPL Description of Case Study II

Table 5.4 Listing of Petri Net for Case II

Transition	Type	Output Place	Input Places	Immediate Descdt
T1	3	P1	2,3	$2,3,4$
T2	2	P2	4,5	$5,6,7$
T3	1	P3	6,7	9
T4	1	P3	8,9	8
T5	2	P4	6	9
T6	4	P5		
T7	4	P5		$6,7,10$
T9	2	P9	5,10	$6,7,11$
T10	2	P6	5,11	

Table 5.5 Place Listing for Case II

P	1	GOAL	P	7	IXIIIIIII
P	2	CS. 5	P	8	IX0000000
P	3	B11111111	P	9	CS. 7
P	4	CS 4	p	10	CS. 6
P	5	KNT: 1111	p	11	CS . 2
P	6	CS. 3	P	12	CS. 1

guidance: only fifty nodes were expanded and the length of the sequence found is two less than when orily input vector guidance is used. It is interesting to note that heuristic value only could not find any sequence. This is because of the nature of the goal: to randomly generate all l's is not very easy. However, the combination of the two types of guidance expands 50% fewer nodes than the input vector only: A summary of the test run is given in Table 5.6. Comparing the problem reduction graph method of SCIRTSS III, we note that 122 nodes were expanded by the heur-istic-value input vector guidance to find a sequence of length 29.

Table 5.6. Summary of Test Runs for Case II

Type of Guidance

No guidance
Input vectors only
Heuristic value only ($\mathrm{w}=75$)

Heuristic value (w=50) and input vectors 1850
Heuristic value only($w=100$) and input vectors 18

1853

5.3 Case III: Search-Sort Processor .

Another circuit used to test SCIRTSS is a search-sort processor which includes a random access memory. The data word is only two bits in width since the width of data word does not present any problem in test generation. The instruction register is externally loaded when the machine is in control state l. Fig. 5.4 shows the AHPL description.

The petri net generated for this case is shown in Table 5.7. From the petri net one can notice that places that are of register transfer type dominate the control states 3:1. Hence the heuristic function computed would be very much controlled by register contents.

A careful look at the machine description shows that all control branch conditions are determined by the contents of the instruction register which is in turn dependent upon the input vectors applied at control state one. This makes the input vector selection very crucial and in fact, is the first test to the selection procedure of Chapter Four.

The fault being sensitized is at the output of the memory cell M_{1}^{4} stuck-at-zero. The d-algorithm returns one test vector which signifies that the machine must be moved into control state four, and registers $A R, I R$ loaded with vectors 100, XXI respectively while Xl must be written into the fourth memory location to sensitize the fault.

MODULE: SEARCH-SORT PROCESSOR
MEMORY: M[8;3]; AR[3]; IR[3]; MD[3]; AC[3]
INPUTS: A[3]; IN[3]; $\mathrm{X}[3]$
OUTPUTS: AC[3]; out; accept; input

1. $\quad A R \leftarrow A ; I R \leftarrow I N ;$ accept +1
2. $\rightarrow\left(\operatorname{IR}_{0},\left(\overline{I R}_{0} \Lambda{\overline{I R_{1}}}_{1}\right),\left(\overline{I R}_{0} \Lambda I R_{1} \Lambda{\overline{I R_{2}}}\right),\left({\overline{I R_{0}}}_{0} \Lambda R_{1} \Lambda I R_{2}\right)\right) /(3,4,5,6)$
3. $\mathrm{AC} \leftarrow \overline{\mathrm{AC}} *\left(\mathrm{IR}_{1} \Lambda I R_{2}\right) \vee(\mathrm{AC} \Lambda \mathrm{MD}) *\left(\mathrm{IR}_{1} \Lambda \overline{I R_{2}}\right) \vee M D *\left(\overline{\operatorname{IR}} \Lambda I R_{2}\right) \vee \mathrm{X} *\left(\overline{\overline{I R}_{1}} \Lambda \overline{I R_{2}}\right)$
$M D+A C *\left(\overline{I R}_{1} \Lambda I R_{2}\right) ;$ input $+\overline{I R} \Lambda \overline{I R}_{2}$
$\rightarrow 1$
4. $M D+\uparrow M D * \overline{I R}_{2} \vee I R_{2} * \operatorname{BUSFN}(M ; D C D(A R))$
$\rightarrow 1$
5. out +1
\rightarrow I
6. $M * D C D(M A) \leftarrow M D$
$\rightarrow 1$

Figure 5.4 AHPL Description of Case Study III

Table 5.7 Petri Net Listing for Case III.

Transition	Type	Output Place	Input Places	Immediate Descdt
TI	3	P1	2,3,4,5	2,3,4,15
T2	2	P2	6,7	5,6
T3	1	P3	8,9	
T4	1	P4	10,11	7,9
T5	1	P14	13,19	10
T6	1	P7	8,22	
T7	2	P11	6,12	8
T8	1	P12	8,16	
T9	1	P10	13,14,15	5,10,11,14
T10	2	P13	6,17	13
T11	1	P14	13,20,21	10,12
T12	1	P21	8,18	
T13	1	P17	8,18	
T14	1	P15	8,22	
T15	1	P5	8,23	

P	1	GOAL	F	13	CS. 3
P	2	CS .4	P	14	$A C=X 1$
P	3	AR: 100	P	15	RIR:X01
P	4	M4: Xl	P	16	IN: 011
P	5	RIR:XXI	P	17	RIR:IXX
P	6	CS .2	P	18	IN: 200
P	7	RIR:00X	P	19	AC $=\mathrm{XO}$
P	8	CS. 1	P	20	IX:XI
P	9	IA: 100	P	21	RIR: $\mathrm{X00}$
P	10	MD: XI	P	22	IN: 001
P	11	CS 6	P	23	IN:XXI
P	12	RIR $=01 \mathrm{X}$			

The Control Branch Vectors obtained for this circuit are:

$$
\begin{aligned}
& B_{3}=I N: 1 X X \\
& B_{4}=I N: 00 X \\
& B_{5}=I N: 010 \\
& B_{6}=I N: 011
\end{aligned}
$$

Only control state five does not appear in the petri net and hence the G Common Transfer Vectors are:

```
\(G_{I}(3)=I N: I X X\)
\(G_{2}(4)=I N: O O X\)
\(G_{3}(6)=I N: 011\)
```

For the input vectors associated with register transfers, we have:
$A=100$
IN:XXI

IN: 001

Both $A: 100$ and IN:XXI received high weighting values and were selected according to our rules. Hence we have the vectors:
selected from the Control Branch Input Selection procedure and
A:I00; IN:XXI
selected from the Register Transfer Input selection procedure. The input vector IN:XXI from the second selection process covers the vector IN:OOX and so IN:OOX is dropped from the list. Hence for application at control state one we have the four vectors:
$A: 100 ; I N: X X 1 ; I N: 011$ and $I N=I X X$
selected to guide the search.
To make the search as difficult as possible the starting node was chosen as:

CS	AR	IR	AC	$M D$	M^{4}
1	001	110	00	01	00

This circuit responds very well to guidance:
only 36 nodes were expanded to reach the goal: The whole state space search is shown in Table 5.9 while the various runs are sumarized in Table 5.10.

Comparing our results with SCIRTSS III, we note that in SCIRTSS III,. 69 nodes were expanded to reach the goal and the length of the sequence found is 17. The input vector only

Table 5.9 State Space Search for Case III

	ITER.	nude	Level	CUST VAL.UE	c.s.	brenernue:	Iriput victin	State vectur
	0	1	0	100	1	11	22023223001	11001000005000000000000
	1	2	1	41	2	1	10000100100	00101000000000000000000
	2	3	1	94	:	1	01001100010	011010000070000000000100
	3	4	1	107	2	1	(1)113010151	1)0010nosunonnonnmonjilu
	4	5	2	40	4	2	01001111100	00101001000000000000000
	S	6	3	176	1	5	00100000100	001 0000000000000000000)
	0	7	2	4.	6	3	10111000010	01101000000000000000000
	7	8	3	96	1	7	01100011010	011010000000100010000000
	4	4	4	44	2	3	100001?1100	(1)101090).101.900)000)
	9	10	4	97	2	${ }^{8}$	11001101110	01101000000010000000000
	10	11	4	110	2	4	00110001001	10001000000010020000000
	11	12	5	81	4	9	11110000100	00101000000010000000000
	12	13	6	179	1	12	01011101100	00100000000010000000000
	13	14	5	13	6	10	10:311111)	01151090()0010)n:0000)30
	14	15	6	99	1	14	10110101110	01101000000010000000100
	15	16	7	b 1	2	15	10001110100	01101000130101000150131150
	16	17	7	103	2	15	101:1101101	01101000000010000000100
	17	18	7	115	2	15	10110011101	10001000000010000000100
	14	14	8	74	6	10	100.1100100	01151000032012029100110n
	19	20	9	(3)	1	19	10101010100	01101000000010001000100
	20	21	10	90	2	20	10011110100	011010000090100.11000100
	21	22	10	103	2	20	1111111111	01101000000010001000100
	22	23	10	110	2	20	01110011011	10001000001010001000100
	23	24	11	77	6	21	91)190117800	U110100036リD109n1090200
DLET	24	25	12	92	1	24	11001000100	01101000000010001000100
	こ	25	8	uv	6	17	. 1010101011101	1)I1U10000030100000100100
	aU	20	9	102	1	25	000)9101101	01101000000010000010100
	27	27	10	90	2	26	10001100100	01101000000010000010100
	24	20	10	103	\%	26	000)1111000	01101m00nns)1 0000310100
	29	29	10	110	2	26	11110001111	10001000000010000010100
	30	30	11	77	6	21	11150101100	01101000000010000010100
	31	31	12	92:	1	31)	21019010100	(110170000n010001010100
	$3{ }^{\text {a }}$	32	13	9.5	2	31	10000111100	00101000000010001010100
	3.3	33	13	100	2	31	1)1101110111	01101000007010601010110
	34	34	13	119	:	31	voulvolotevo	10001000000010001010100
	35	35	14	30	4	32	00100010100	00101000000010001010100

SEARCH BUCCESSGUL

[^0]guidance in both cases expanded about the same number of nodes but our results show a sequence of length 15 while SCIRTSS III found a sequence of length 629.

This case study has again demonstrated that both heuristic cost value and input vector guidance are necessary to produce an efficient search and obtain a sequence of reasonable length.

Table 5.10. Sumary of Test Runs for Case III	
Type of Guidance	Length of Sequence Found
No guidance Input vectors only Heuristic value only (w = 200)	Total Nodes Searched
Input vectors and heuristic value (w $=200$)	none found

5.4 Case IV: Four-Bit Expandable Microprocessor

The last case study is a four-bit microprocessor slice. As far as automatic test generation is concerned, the data word poses no difficulty: thus there would be very little difference if, say an eight-bit microprocessor were being tested. The preceeding three cases were designed with the aim of stalling
the test generation and guidance principle, This case is intended to test the usefulness of the guidance principle on a real world problem. Besides, the control description is far more complex than the previous cases. The arithmetic unit includes a full adder and other more sophisticated combinational logic functions. Figure 5.5 gives the AHPL description and the block diagram appears in Figure 5.6.

The fault selected for the sensitization search was at the carry out bit of the program counter slice (OR gate \#172) stuck-at-zero. The d-algorithm returned three vectors that could sensitize the fault:

$$
\begin{aligned}
& \{C S .10, P C: 1111, \text { IR:XXIX }\} \\
& \{C S .14, P C: 1111\} \\
& \{C S .19, P C: 1111\}
\end{aligned}
$$

The petri net generated is shown in Table 5.11. As expected, the petri net is large, having fifty-seven transitions and 57 places. Almost all places that were of register transfer type were expanded except IR:IXXX and IR:XOOI which were left unexpanded because of the ease with which they have been satisfied in the past.

The main source of difficulty in performing sensitization searches on this circuit is that often many instructions

MODULE: FOUR-BIT MICROPROCESSOR
MEMORY: UR[4]; AC[4]; IR[4]; PC[4]
INPUTS: DN[4];ICS[4]; linki, slave, ready OUTPUTS: DO[4]; IOSR; Iinko

1. $\quad U R \leftarrow P C$
2. $\quad D O \leftarrow U R ;$ IOSR $=1,0,1$
\rightarrow ($\overline{\text { ready }}$, ready $) /(2,3)$
3. IR $-I C S ; U R \leftarrow D N ; I O S R \leftarrow 0,1,0$
$\rightarrow(\overline{\text { ready }}$, ready $) /(3,4)$
4. $\rightarrow\left(\operatorname{IR}_{1} V\left(\overline{I R}_{2} \Lambda \overline{I R}_{3} \Lambda I R_{4}\right)\right),\left(\overline{I R}_{1} \Lambda I R_{2} \Lambda I R_{3} \Lambda \overline{I R}_{4}\right),\left(\operatorname{IR}_{1} \Lambda I R_{2} \Lambda I R_{3} \Lambda I R_{4}\right)$, $\left.\left(\overline{\overline{I R_{1}} \Lambda \overline{I R_{2}} \Lambda \overline{I R_{3}} \Lambda I R_{4}}\right) \Lambda\left(\overline{\overline{I R}_{2} \Lambda I R_{3}}\right)\right) /(5,16,18,15)$
5. DO \leftarrow UR*slave; IOSR $\leftarrow(1,0,1) *$ slave
$\rightarrow\left(\overline{\text { ready }},\left(\right.\right.$ ready $\left.\Lambda\left(\overline{I R}_{3} \Lambda I R_{4}\right) \vee\left(\overline{I R}_{2} \Lambda I R_{3}\right)\right)$), (ready $\left.\Lambda \overline{I R}_{2} \Lambda \overline{I R}_{3} \Lambda \overline{I R}_{4}\right)$, (ready $\left.\Lambda R_{2} \Lambda \overline{I R}_{4}\right)$,
$\left(\right.$ ready $\left.\Lambda I R_{2} \Lambda I R_{3} \Lambda I R_{4}\right) /(5,6,8,10,12)$
6. $U R \leftarrow D N$; $I O S R \leftarrow 0,1,0$
\rightarrow (ready, ready)/(6,7)
7. $D O \leftarrow U R ; ~ I O S R \leftarrow 1,0,1$
$\rightarrow\left(\overline{\text { ready }},\left(r e a d y \Lambda I R_{1} \Lambda \overline{I R}_{2}\right),\left(r e a d y \Lambda \overline{I R}_{1} \Lambda \overline{I R}_{2}\right), I R_{2}\right) /(7,8,12,10)$
8. UR $\leftarrow D N$; IOSR $\leftarrow 0,1,0$
\rightarrow (ready, ready)/(8,9)

Figure 5.5 AHPL Description of Case Study IV
9. $A C \leftarrow\left(U R * \overline{I R}_{3}\right) V\left(A D D(A C, U R) *\left(I_{3} \Lambda \overline{I R}_{4}\right)\right)$
$V\left(\operatorname{NAND}(A C, U R) *\left(I R_{3} \Lambda I R_{4}\right)\right)$
lnko $+(\mathrm{CO} \Lambda$ slave $) *\left(\mathrm{IR}_{3} \Lambda{\overline{I R_{4}}}_{4}\right)$; CO=Carryout of $A D D(A C, U R)$
\rightarrow (14)
10. $\mathrm{UR}+\left(\mathrm{AC} * \overline{I R}_{3}\right) \vee\left(\operatorname{INC}(P C) * I R_{3}\right)$

Inko $*\left(\overline{\text { slave }} \mathrm{V}\right.$ CPO) $* \mathrm{IR}_{3} ; \mathrm{CPO}=$ Carryout of $\operatorname{INC}(P C)$
\rightarrow (II)
11. $D O \leftarrow U R ; ~ I O S R ~+1,1,0$
$\rightarrow\left(\overline{r e a d y},\left(r e a d y ~ \wedge \overline{I R}_{3}\right),\left(r e a d y ~ \wedge \overline{I R}_{3}\right)\right) /(11,14,12)$
12. UR + DN; IOSR $\leftarrow 0,0,1$
$\rightarrow(\overline{r e a d y}, r e a d y) /(12,13)$
13. $P C+U R$
$\rightarrow\left(\overline{I R}_{4}, I R_{4}\right) /(14, I)$
14. $P C+$ INC (PC); Inko + $\overline{\text { slave } C P O ; ~ C P O=C a r r y o u t ~ o f ~ I N C ~(P C) ~}$
\rightarrow (1)
15. $\quad \mathrm{HALT}+1 ; \quad \operatorname{IOSR} \leftarrow(1,0,0) *\left(\overline{\mathrm{IR}}_{2} \Lambda \overline{I R}_{3} \Lambda \overline{I R}_{4}\right)$
$\mathrm{AC}+\overline{\varepsilon(4)}^{*}\left(\overline{I R}_{2} \Lambda \overline{I R}_{3} \Lambda \overline{I R}_{4}\right)$
$A C+\uparrow(A C, I n k i) *\left(\overline{I R}_{2} \Lambda I R_{3} \Lambda I R_{4}\right)$
lnko $+A C *\left(\overline{I R}_{2} \Lambda I R_{3} \Lambda I R_{4}\right)$
lnko $+(($ AC $\Lambda \overline{\text { slave }}) V(\operatorname{lnki} \Lambda$ slave $)) *\left(I_{2} \Lambda \overline{I R}_{3} \Lambda \overline{I R}_{4}\right)$
lnko $\leftarrow(\mathrm{V}(\mathrm{AC}) \mathrm{Vlnki}) *\left(\mathrm{IR}_{2} \Lambda \overline{I R}_{3} \Lambda I R_{4}\right)$
(Continued)
15. (Continued)

$$
\begin{aligned}
\rightarrow & \left(\overline{I R}_{2} \Lambda \overline{I R}_{3} \Lambda \overline{\overline{I R}}_{4}\right),\left(\mathrm{IR}_{2} \Lambda \overline{I R}_{3} \Lambda \overline{I R}_{4} \Lambda \operatorname{Inki}\right), \\
& \left(\overline{I R}_{2} \Lambda I R_{3}\right),\left(I R_{2} \Lambda \overline{I R}_{3} \Lambda \overline{I R}_{4} \Lambda \cdot(\operatorname{lnki}),\right. \\
& \left(I R_{2} \Lambda \overline{I R}_{3} \Lambda I R_{4} \Lambda(\overline{\mathrm{~V} / A C V} \operatorname{Inki})\right. \\
& \left(I R_{2} \Lambda \overline{I R}_{3} \Lambda I R_{4} \Lambda(V / A C V \operatorname{lnki})\right) /(20,19,14,14,19,14) .
\end{aligned}
$$

16. UR $\leftarrow \mathrm{DN} ; ~ I O S R \leftarrow 0,1,0$
$\rightarrow(\overline{\text { ready }}$, ready $) /(16,17)$
17. $A C+U R$
\rightarrow (14)
18. $D O+U R ; ~ I O S R ~ \& ~ 1,1,1$
$\rightarrow(\overline{r e a d y}$, ready $) /(18,14)$
19. $P C \leftarrow I N C(P C)$; lnko $\leftarrow \overline{\text { slave }}$ ($C P O ; \quad C P O=$ Carryout of INC (PC) \rightarrow (14)
20. $\rightarrow(\operatorname{lnki} \overline{1 n k i}) /(3,20)$

Figure 5.5 cont'd

Figure 5.6 Block Diagram of Four-bit Microprocessor

Table 5.11 Petri Net Listing for Case IV .

Transition	Type	Output Place	Input Places	Immediate Descdt
TI	3	P1	2,3,4	21,22,4,6
T2	3	P1	3,5	4,6,7,8,9,10
T3	3	P1	3,6	4,6,12,13
T4	4	P3	5,6	7,8,9,10,12,13
T5	4	P22	5,6	7,8,9,10,12,13
T6	1	P3	7,8	39,40,41,42,43,44,45
T7	2	P5	11	26
T8	2	P5	12,13	37,53
T9	2	P5	7,13	37,45
T10	6	P5	6,9,10	12,13,32,34
TII	2	P12	2	21,22
T12	2	P6	15,16	14,15,16,17
TI3	2	P6	16,17,18	15,16,17,18
T14	1	P15	19,20	56
TI5	2	P16	24,25	19,55
T16	2	P16	24,26	20,55
T17	2	P16	24,27	23,55
T18	1	P17	20,52	56
T19	1	P25	20,28	56
T20	1	P26	20,29	56

Table 5.11 cont'd

Transition	Type	Output Place	Input Places	Immediate Descdt
T21	2	P2	15,30	14,53,54
T22	2	P2	15,32	14,24
T23	1	P27	20,21	56
T24	2	P32	34	27,28
T25	1	P14	20,33	56
T26	2	PII	41	38,52
T27	2	P34	30,35	29,53,54
T28	2	P34	30,36	30,53,54
T29	1	P35	20,37	
T30	1	P36	20,21	56
T31	1	P4	20,38	56
T32	2	P10	24,39	33
T33	1	P39	20,50	56
T34	2	P9	44	35,56
T35	2	P44	24,42	36,55
T36	1	P42	20,46	56
T37	1	PI3	20,40	56
T38	2	P41	30,14	25,53,54
T39	1	P8	34,51	56
T40	1	P8	2,22,45	5,21,22
T41	1	P8	47,51	46,47.49
T42	1	P8	41,51	38,52

Table 5.11 cont'd

Transition	Type	Output Place	Input Places	Immediate Descdt
T43	1	P8	44,51	35
T44	1	P8	2,13,43	21,22,37
T45	2	P7	47,0	46,47.49
T46	2	P47	30,49	50,53,54
T47	2	P47	32,48	48,24
T48	1	P48	20,31	56
T49	2	P47	12,49	11,50
T50	1	P49	20,23	56
T51	1	P45	20,38	56
T52	2	P41	14,32	24,25
T53	2	P30	24,55	55
T54	2	P30	24,56	55
T55	2	P24	20	56
T56	6	P20	53,54	57
T57	2	P53	57	

Table 5.11 cont'd. Place Listing for Case IV

P	1	GOAL	P	23	ICS:XIII
P	2	CS .10	P	24	CS .4
P	3	KPC:1111	P	25	RIR:0000
P	4	RIR:2212	P	26	RIR:001X
P	5	CS .14	P	27	RIR:010X
P	6	CS. 19	P	28	ICS:0000
P	7	CS .13	P	29	ICS:001X
P	8	UR:1111	P	30	CS .5
P	9	CS .17	P	31	ICS : 00XX
P	10	CS .18	P	32	CS .7
P	11	CS. 9	P	33	ICS:1000
P	12	CS .11	P	34	CS 6
P	13	RIR:XX00	P	35	RIR:X01X
P	14	RIR:1000	P	36	RIR:XXOI
P	15	RIR:X100	P	37	ICS:X01X
P	16	CS .15	P	38	ICS:XXIX
P	17	RIR:X101	P	39	RIR:0111
P	18	$A C=0000$	P	40	ICS :XX00
P	19	ICS:X100	P	41	CS. 8
P	20	CS. 3	P	42	RIR:0110
P	21	ICS:0101	P	43	$A C=1111$
P	22	KPC:1110	P	44	CS. 16

Table 5.11 cont'd
P 45 RIR:XXIX
P 46 ICS:0110
P 47 CS. 12
P 48 RIR:00XX
P 49 RIR:XIll
P 50 ICS:0111
P 51 DN:1111
P 52 ICS:XIO1
P $\quad 53 \quad$ CS 2
P $\quad 54 \quad$ CS. 20
P 55 RIR:IXXX
P 56 RIR:X001
P 57 CS.I
must be executed to cause the necessary data vector manipulations for reaching a goal node. If the instruction register, IR, is not loaded properly at control state three, the next 5 to 10 control steps do not offer any opportunity to modify the contents of IR nor does the machine return to CS.3. Also, a great many of the control branches depend entirely on the contents of IR.

To reach our goal, place $\{P C: I l l l\}$ must be filled with a token while our initial state is PC:0000. To avoia many cycles of incrementing the program counter, a jump type instruction must be executed. This is either the instruction \{IR:Illo\} or $\{I R: 0110\}$.

Needless to say, the input vector selection is very crucial in reaching our goal. The instruction register IR is loaded with external input at CS.3. There are over sixteen input vectors associated with CS. 3 from which four or five must be selected.

The Control Branch Input Vectors of this microprocessor were used as an example in Chapter Four, Section 4.2.1. From that procedure three vectors were selected:

```
ics:IO1X; ics:1l00; ics:0110
```

It should be noted that the Control Branch Input Vector seleciion process is invariant with respect to the fault; for that matter, there was no way of knowing that ics:Illo \& ics:0110 are critical: However, with the basic philosophy of selecting the input vectors such that as far as it is possible all important control states are visited during the search, we have been able to select the "best" input vectors. From the petri net for this circuit, it was detected that the machine does not have to "wait" in control states $3,6,7,8,12,16,18$ and 20 during the search. As discussed in Section 4.2.2 the register transfers that take place in these control states do not need to be repeated when the control signal "ready" is low.

The results obtained from this machine are fantastic! With the information on the control signals that can control branching from one control state to another, we performed two separate tests:
a) the control branching derived directly from the AHPL description
b) control branching selected according to the information from the petri net.

The results are listed in Tables 5.12(a) and 5.12(b). In SCIRTSS III, the control branching functions were derived directly from the AHPL description. This corresponds to the
results of Table $5.12(a)$. Even in this case, 508 nodes were expanded to obtain a sequence of length 15. The best result reported in Table $5.12(a)$ expanded 50% less nodes to obtain a sequence of length 18.

We have included the reṣults of Table 5.12(a) only for the sake of meaningful comparison with the results of SCIRTSS III. The results of Table $5.12(b)$ indicate the effectiveness Of the petri net in guiding the search in complex circuits with very difficult goals. Using input vectors only, a sequence of length 16 was found and only 91 nodes were expanded: However, both the heuristic cost value and input vectors produced a sequence of length 20 and expanded only 47 nodes: Although the input sequence is suboptimal, the search is almost 50% more efficient than using only input vectors and thus is a very good result.

The visual representation of Figure 5.8 is given to show the disparity between the results of the search in all four circuits when no guidance is used and when there is guidance. The best results of SCIRTSS III, the problem reduction graph model and the petri net model are also indicated.

As a natural consequence of the comparison of the results obtained in this work with the results of the problem reduction graph approach, one may ask, "which is faster?"

TEST RUNS FOR CASE IV •
Table 5.12(a)

Type of Guidance	Length of Sequence Found	No. of Nodes Expanded
No guidance	none found	1000
Input vectors only	none found	1000
Heuristic value only	none found	1000
Heuristic value (w $=75$) and input vectors	18	287
Heuristic value (w $=100$) and input vectors	18	230

Table $5.12(\mathrm{~b})$

Type of Guidance	Length of Sequence Found	No. of Nodes Expanded
No guidance	none found	1000
Input vector only	16	91
Heuristic value only	none found	search failed
Heuristic value (w $=100)$ and input vectors	20	47

Fig. 5.8 Circuit Complexity (No. of Control States)

This is a difficult question to answer since SCIRTSS III does not report the amount of computer time taken to perform the search. The number of nodes expanded is by far a better comparison; however, we can refer to an informal computer output of SCIRTSS III that expands 300 nodes in 48 seconds. Using the same circuit, our program expanded 202 nodes in 29 seconds. On the other hand, the input vector selection process of Chapter Four is much more complex than that of the Problem Reduction Graph. Again since this is done only once for each search (if needed) the far fewer number of nodes expanded more than offsets the complexity of the selection procedure.

CHAPTER VI

SUMMARY AND CONCLUSION

6.1 Summary

Guidance for sensitization searches enable these searches to reach their desired goals after expanding relatively fewer nodes than if the searches are not guided at all; in most cases these unguided searches terminate abruptly.

A petri net model is presented that models the register transfers and change of control states in a sequential machine described in a Computer Hardware Description Language (CHDL). For each sensitization search, 2 new petri net is generated based on the goal node(s) and the CHDL circuit description. Portions of this process are completely independent of the fault.

Each set of goal nodes forms input places to a transition which if fired implies the fault is sensitized and the search is successful. Only one control state appears as input to each of these transitions. The remaining portions of the petri net are generated from these input places.

For each machine state encountered during the state space search, a marking or state vector is derived from the
petri net, using the general state equations of a petri net. Based on the marking vector, a heuristic cost value is computed which measures essentially the effect of reaching one machine state on the transitions in the petri net. The direction of the search is determined by these heuristic cost values: a node with the minimum heuristic cost value is selected as most promising and is expanded in the state space search. The petri net also contains information about input vectors that are associated with eacin control state. The most important of these input vectors are selected for inclusion in the input vector table that guides the search. For the purpose of selection, the input vectors are classified into two categories: those input vectors that are responsible for control state branching and those that are used only for register transfer. The input vectors that cause the sequential machine to branch to the most number of control states are selected from the first category for inclusion in the table while the register transfer input vectors are weighted, using information from the petri net. The input vectors receiving the highest weight from this weighting process are selected and,together with those selected from the control branch category, form the set of input vectors that provide input vector guidance. Again, portions of the input vector selection process are independent of the fault.

Although AHPI was used in this research, the results are applicable to any Computer Hardware Description Language that has the same structure as AHPL. That is, the expressions in that particular CHDL must be classifiable as:

1. Conditional Register Transfer expression
2. Unconditional Register Transfer expression
3. Conditional Control Branch Expression
or 4. Unconditional Control Branch Expression.
Four very difficult circuits were used as case studies to test the proposed guidance mechanism. The sensitization search goal for each of these circuits was selected to be as difficult as possible. In each case, the proposed guidance mechanism provides an improved performance in the sensitization search when compared with the guidance methods of the problem reduction graph of SCIRTSS III.

6.2 Iimitations and Further Work

The effort to provide an automatic test sequence generation sequence has resulted in a complicated test generation system. For each sensitization search a new petri net has to be generated; although portions of this process simply involve linking subnets yet this can be time consuming. Further, where there are many input vectors, an input selection procedure must be evoked.

Although Computer Hardware Description Languages are becoming increasingly popular as design tools, many machine designs do not use them. This limits the scope of application of this work.

The generation of a new petri net for each fault can be avoided if we can have a petri net model of the machine itself such that each fault has a "unique impact" on the petri net. From this "unique impact" we can derive a heuristic cost value and perhaps be able to choose input vectors to guide the search. This research has not been able to produce such a petri net model of the machine; we had to generate the petri net starting from the goal nodes. This area can be investigated further.

The Problem Reduction Graph relies heavily on past SCIRTSS runs to obtain statistical information both for computing the heuristic value and terminating the graph generation. The petri net relies on statistical data from previous runs only for terminating the petri net generation. It would be desirable to get rid of relying on statistical data from previous runs completely. Maybe if we can produce the "universal" petri net mentioned in the previous paragraph then the problem would disappear. If not, a user specified optimum maximum transition time must be given for terminating the petri net generation. This optimum number is not yet known.

6.3 Conclusion

The four case studies of Chapter Five are complex sequential circuits with diverse characteristics and were selected with the aim of examining potential weaknesses in the approach. Moreover, the initial states were selected to be a maximum distance from the goals. Based on these four tests, we conclude that for sequential machines with very different characteristics, the guidance provided for sensitization searches using the petri net derived from the Computer Hardware Design Language description of the machine, is significantly more efficient. Sensitization searching in SCIRTSS is thus less likely to encounter node limit termination. Petri nets have been used in various areas of computer science to study the interconnection properties of systems. In our approach we have diverged from the normal use of petri nets when applicable; the idea of using these nets to analyze a Computer Hardware Description Language with the aim of guiding a state space search is novel and has proven to be remarkably effective.

APPENDIX A. 1

SCIRTSS SEARCH ROUTINES

```
C HRUGHAM TO PERFLGM SCRHTSS IV SEARCH
K.E. IORKU OECEMHER TTH IOTB
    CUNIIROL STATE BRANCHING FUNCTIGN TAB_ES
        NRSCS(I) NUMGER OF SUCCESjUH C.S. FOlR C.S. I.
        KSSC(i.j) J-TH SUCCESSUR C.S. TUC.S. 1.
        NRTRMS(I.J) NUMBER OF TERMS IN GRANCHING FN. FROM C.S. I TO
            THE J-TH SUCCESSUR.
        VECTORS TO KEPRESENT IHE TERMS UF THE CONTROL STATE BIRANCHING FNSO
        EACH VECTUR (I,J.K) IS THE I-TH TERM OF GR. FN. FRUM C.S.J ID
            THE K-TH SUCCESSUIR.
        HIT I =O FOR DON'I CARE OR LERO ON INPUT UR FF I.
            =I FUR VALUE REUUIRED UR I FOK INPUT UR FF I.
        MFIP(loJ.K) VECTUR OF REQUIRED INPUTS
        mFIV&I,J.Ki VALUES REQUIRED FUR INPUTS GIVEN HY MFIP
        MFSP(I.J.Ki VECTUIR UF REUUIRED FFOS FUR TERM.
        MFSV(I,JaKI VALUES REQUIHEU FUR FF'S INDICATED GY MFSP.
    PETRI NET ARRAYS
    KTYP(N) NTH IRASITIUN TYPE
    KPNAM(i) ITH PLACL NAME
    LNKII! INDEX TO VECTOR OF PLACES
    LNK(I) INDEX TO VECTUR
    KH(I)
    KH(I) VECIUR OF FIRED TRANSITIUNS
    NIPL(N) NO UF INPUT PLACES RO THANSITIUN N
    IPLAO(NI PDINIEN IU TO SET OF INPUT PLACES IO YRANSITION N
    KJAIN(N) LIST OF INPUT PLACES TO TRANSITION N
    KOPLIN: DUTPUT PLACE UF TRANSITIUN N
    KIRIINN TRANSIIIUN TIME OF TRANSIIIUNN
    IOESP{N\ PUINTER TO IMMEOIATE DESCENDANTS GF TRANSITION N
    IMDCI(NI SET UF IMMEUIATE DESENDANTS DF TR. N
    KOIKII| POINTER TO SET UH PHANSITIUNS TU WIIICH
        mlace I IS uUTPUY
    LOSTR(I) LIST OF THANSITIONS TO WHICH OUTPUY
    PlACES PUINT
    NP NU OF PLACES IN THE PEIHI NEI
    NT NO OF THANSIJIUNSS IN IHE NET
    HTPL NO Gf: TERMINAL PLACSE
        MGRP(I) 1-THFF VECTUK (VALUES PRESENTI FOUR GFAPH
```



```
        NCEIV(I)
        I-TH FF VECTORE (VALURS WIENE REQU(FLD) FUK GRAPH.
        NCSIV(I)
        NUMUEN OF INDUI VLCIJFS TO HE APDLIT.O AT COS. I.
        MCSIP(I,N)
        MCSIV(!.J)
    sEARCH SPACE, I-TH ELEMEHT UF EACH ARHAY IS FOH I-TIG NUDE.
        MGUALP(I) I-TII UUAL IUSUL. IT IS WIIEIRE VALUES ARF REQUIREO.
        HGUALV(J) l-TH GHAL NHHE, hi:UUIDEU IFF VALUES.
        NODECS(I) MACHINE. CUNIKLL SIAT: AT NUDE I,
        N00\P(1)
        NSTAIE|!)
        NPMEU(I)
        NuOLEV(I)
        FULL INPUT VGCJIIR AB;ALEEO TO MREDECSSSOUR TO PEACHY I
        fULL FL||ELOW Valut vEC!U|& FOIt CURRENI (I-THI) NDUE.
        HODEX TU TIL PREULCEBSGOR CF NUILE I.
```


NODEHII HEURISJIC WEIGHT COAPUTED FOR NOUE 1. COMAUNICATIUN VECTOLS FUR PSIONSSA RUUTINE

KTRMI(1) $0=0,1=1,2=\mathrm{X}$ REQUIREU VALUE IFUR INHUT I.
 mtimpeil vectur uF next siate valuls.
KTE!AP(II GEREMAL IHDEX STURAGE: USE: AMHAY.

INIEGER MRSCS(2j),KSSC(25.5), NIRIRMS(25.5)
DIMENSIIN NCSIV(25)
INTEGER NDDECS(100:D), NUDIP(1000), NPIEO(11000) ONUDEH1(1000)
IHTEGER KTHPAP(S). NUOLEVVI 10001
INTEGER KGUAL(!)

INTEGER MCSIP(25.15).MCSIV(25.15)
INIEGER MGUALH(S). MGGALV(!)), NSTATE (IDOOI
LOGICAL FSI. CUVERODEBUG
LUGICAL PCSIBF, DGRNUS, PGI2WT, BIIINV
CUMMUN/PAK/NVEC
COMMUN/NS IM/KTIAI (16), KTRMF (36), MTHMF (36), NRFF
COMMUN/HEUSB/ISE, IMEGA, KIDNAM(100),LNK(100), KUPL(10N1,KTRT(100).

* (IPLAD(100), NIPL(100), KUTIR(100), (MINCT(480), IDESP(120), LSUTR(240).
*KTRIN(240), KTYP(100), ITERI (45), KTRTI(BS), KTPTA(50), KINPL(10.3).
- MGRP (40). MGRV(4U) ONT ORP. NIPL

CUMMUNFPRINT/PCSUF, RGiANOS, PGRWT, PIIINV
EOUIVALENCE (KNIIIL, KSHUIJE)
INTEGER\&2 SEIA(IOUU)
DAIA ULANK, XNEW, UEL/' ••'NEW •••DLETM/
DATA KS/OCS !
DATA KGIR/'GIR• '/
DATA DE:UUG/ •FALSE. $/$
IR $\times A=65549$

$\stackrel{C}{C}$
head gl.ncrial paliameteres.
REESO I. NIRIN,NRIF, NCLS
READ I, NLIM, IMI:GA

7777 FOHMAT (GLL)

it (PCSLif) Pixist aua

UU $12 t=1, N C:$
READ 1.NSC:
(HRSCs(I)=rdics


```
    GHS CONTINUE
    C SET UP STARTING NUDE POINTEIAS.
        mancol
```



```
            CPIED.NUNE'.3X,'INIPUT VECTOR',SX,'SIATE VECTOR'//)
            NCALLS=0
            NRNDS=
            NODE=0
            NUDECS(1)=KNJRL
            NKSTI=NSTATE:(I)
            NUDIP(1:=0
            N(iDLE V(I)=0
            FST=.JRUE.
            GO TO :00
    C
    C SCAN FOR NEXT NOUE TO EXPAIID
    NEXI NODE TO BE EXPAINHED WILL UE THE UNE WITH THE SAILLEST HEURISTIC
    9 FST=.FALSE.
        MINHI=3NOO
        I= I-I
            If (NUOEEIII).GE.NINH) GU TO 109
            MFSETAl!j.ED.DJ GI TU DQO
            NIOLE=1
            ENELIATE NEXT INIPUT F
    IF (MINHELT.1501)) GU TU 114
        PRINT 902
        & FORMAI(///4SX,0MINISUM HEURISIIC NUUE SEARCH FAILS.'.'
                siop
            K!RIUEGSIVIKSNINU)
        (KSNOJIE:
        *K
        GHUL Sitall alpllicaiIIJN LIJUP.
```


(:ALL RSUNSMIKNTKL)

NVEC = NRIN
CALL PACK(KTRMI\& X.NUDIP(NTRNDS:)
NVEC = NFFF
CALL PACK (MIIUMF, XONXSITI
NSTATE(NRNDS) = NXSTI
NUDLCS (NKNDS) $=K S S C(K$ SNUDE: •ICS)
NUDLEV(NRNDSS) = PEE
c
C CUMIUTE HEURISTIC VALUE FUR VECTUR.
500 CALL HEUSUH(NODLCS (NRNOS), NXSTI.IVAL)
(1) (IVAL.LE.IV23) GU TU 1010

PRINT 100. IVAL
100 FURMAT (" HEUKISTIC VALUE EXCEEOS 1023 AT'. IIJI iVAL=1023
C CHECK FUK RLDUNIJANI NUIAE. ASSIGN MINIMUM HEORISTIC LIHKAGE. 1010 N=HINDS

NUUEH(NIRNDS $)=1$ VAL
NTEAIFENRNOS
C CHECK FON REALISED GUAL.
4DO OU $102 \quad i=1$, NGUALS
IF (.NUT. CUVCR(MGUALP(I), MGUALV(I),VSTATE(NIRNOS))) GO TO 102
IF (KGUAL.(I).LI.U) GO TU you
IF (KNTRL.EU.KGUAL(I) GU TO 900
102 CUNTINUE
C CHECK If NODE WAS ALREDY EXPANDED. If SO UELETE
C If alfeeor expanised gut has luwer cust value
C REMOVE TRUM SEI A AS A CANUIOATE FUR EXPANSIUH
$103 \mathrm{~N}=\mathrm{N}-1$
1F (NolE.OO) GU TU 101
It (NSTATE(N). NE.NSTATE(NI\&NI);)) GO TU 103
if (NUUECS(H). NE. NUULLCS(NIRNISS)) GJ 10103
If. (NUDE:I(N) -LE:INHOEH(NIRNDS)) GU TO 100
IF(SETA(N).EU.O) GU TU 1111
SIMT =XNF:
St:VA(N) = $)$
C. REMUVL FRUM GEIA

GU 101%
III CUNTINUE
NOOIP(N)=NDDID (rHENDS $)$
NIDREU (N) = HIIRE:U(IHKND:)
NUDEH(N) = NUILEH(NNNUS)
HOOLEV (IN) = HUDLEV (NIRHDS)
Gu TO ISt
101 NTEMPEPAIGMIP+1

PHINT 1013

-10"
06 SIAI=UEL

C 1		
000 1		SUHKUUTINE UNPACK(K.KP,KV)
0002		CNIEGER K(36)
0003		COMPAUN/PAK/N
0004		$K 0=K P$
0005		KW=KV
0006		$\boldsymbol{t}=\mathrm{N}$
0007	1	KUO=KO/2
0000		KWW=KW/2
0009		K(1)=2
0010		If (Kau*2, GE, K(J) K(t)=0
0011		IF (KWW* 2 -LJ.KW) K(1)=1
0012		$K Q=K Q U$
0013		$K W=K W W$
0014		$1=1-1$
0015		IF (I.GJ.O) G() TO 1
0016		RETUHN
0017		END

CI SUBROUXINE PACK(K, KD, KV)

002
C HEOUCES AN Allilar to iwU INTEGER WIHDS
INTEGER K(3G)
COMMUN/PAK/N
$K P=0$
$K V=0$
DO $1=1, N$
$K P=K P+K P$
$K V=K V+K V$
$K V=K V+K V$
$1 F(K(1)-G T-1) K P=K P+1$
if (K(I).GT•I) KP=KP+1
1 CUNTINUE:
RETURN
ENO

APPENDIX A. 2

PEIRI. NET AND HEURISTIC COST VALUE ROUTINES
SUGROUTINE GPTNT
C ROUTINE THAT GENERATES THE HETRI NET
C head in place affiays anu set pulnteks
COMPACN/IEUSB/NE, IMEGA, KPNAH(100), LNK (100), KOPL(100), KIRT(100).
*IPLAD(I)O), NIPL(IUO), KUTII(IOU),IMOCT(400), IDESP(120).LSOTR(240),
*KTRIN(240), KTYP(100), ITERP(45),KTRTP(U5),KTPT4(50),KNIPL(10,3).
* MGRP(qU), MGRV(AO) ,HT, NP.NTPL
DIMENSIUN INPUT(9.1OU) FKTEM(2O), ITEM(20), KIRAF(36)
DIMENSIUN INDU
LUGICAL DEGUG

$M=0$
$4=0$
INO $=0$
c reau in mlace tukens
C NEXI CARD
$120 \mathrm{~N}=\mathrm{N}+$
READ 10.(INPUT.(J.N),J=1.9).KO.(KIEM(J),J = 1.0)

(F (INPUT(I,N) ©EU.LAST) GO 1027
LNK(N) $=0$
$\operatorname{KPNAM}(N)=I$ NPUT $(1, N)$
IF (KPNAM(N) EROKOHICI) LNK(N) $=K O$
IF (KPNAM(N).ER.KUIVIR) LNK(N) $=$ KU
(F (KQ.GE.O) GO TU 10
REAU 72.KTRMF
72 FURMATI 甘OI 11
$M=M+1$
CALL PACK(KTRMI: MGRP(M), MGRV(M))
1.NK(N) $=M$
CONK INUE
C SE P PUINTE: IU SEJ UF TKANSITIUNS TG WHICII PIACE IS UUIPUT
1 NO $=1$ IND +1
KUIR(N) $=1 N D$
(1) $18 \quad 1=1,8$
LS(ITR(INO) $=K T E A(1)$
IF (KTEMC().EQ.O) GU TO 20
IF $\mathrm{N}, \mathrm{S}=1 \mathrm{NO}+1$
is CUINTINUE
in Gortro 120
C GEI IUTAL OF PLAClis
27 NIS $=N$ OF
C NUW RLAIS IN IHANSIIIUN AlSi<AY
$\mathbf{N}=\mathbf{0}$
$\operatorname{INO}=0$
$\mathrm{M}=0$
2?O $N=N+1$
HEAB $200, K$ YYP(N),HBPL(N), (KILA(J), J =1, B), K (IPL(N),
CKIRI (N).(1TEM(J).J =1.l.)

IF (KIVI?(H).Gl-1.) wel ral 300

page：modas
13／34／24
DAIE $=$ TE34 4

UL2 FORIAAT（SX．＇COUNJER PLACE ，12．5X．12．5X．（2），KNTHL（N．3）
GO TU Gilo PIACE INFO
NO $=0$
READ GAT，（TERP（N），（KTEM（J），J＝1，1S）

C READ in tehminal place info
$\quad 0 B 7 N=0$ ？
$\stackrel{0}{\circ}$
$\stackrel{+}{\dot{~}}$
KJPrA（N）$=1$ ND
$\begin{aligned} & \text { KIDYARN } \\ & \text { DU } 655 \\ & \text { K }\end{aligned}=1.15$
644 MOMAY 182
IF（KInIDI
655 CONTINUE
60 NTPL＝N－1

$M=K T P T A(N)$
$M O L$

TF（KK．EOCO）GO 10700

cas cunt inue

0087
0008
0049

097
099
0101
3 0103 0104
0105 2
0108
○○このッざロ


```
GUUROUIINE HEUSUUGKNJIGL,NXSIT, IVALI'
    C THIS RUGTINE DIERIVES THE STATE VECTUR UF THE PETRI NR
C IIE FINAL IIEUIRISTIC FUNCTIUN
```



```
            *IPLAD(100),NIPL(100), K(IJR(100), IMUCY(480),IDESP(120),LSUTR(240),
            *KTKIN(240),KTYP(100),ITLRP(45),KTRIP(ES),KTPTA(SO),KNTPL(10.3).
            4/4GHP(40),MGPV(40),NI,NP,NIPL
            INTEGER M(100) OKF(100) NRFIRO(100)
            INTEGER KTRMF(36),MTRMF( 36), 1 X XZ
            INTEGER GRPH,XINC.IXIN,CS
            CUMMOH/PAK/NY
            OMMOH/PAK/NV 
            COMMUN/NSIM/IXX<(BB),NIRFF
            LOGICAL DEBUG.COVEK
            LUGICAL GI.LI
            DAJA dCEUGG/ofalSt:./
            OAIA GRBMI,CSOIXINOXINC /'G'.'C'.'I'.'K'/
            HV =NRFF
C ClEAR M VECTOH to zersu
            DU 1 1=1,NH
            | M(t)=0
            OU C I = I NP
C C GUAL UR COUNTER PLACIE
            IF(KPNAN(I).EQ.GHIII.UK.OIPNAMII).EU.XINC) GO TO 6
            IF (KPNAM(I).EO.CS) GU TU }6
            IF (KPNAM(I).LO.IXIN) GU IO an
        HEGISTER VECTUR NUUE -- CHECK FGR COVER.
    60 LIK=LNK(I)
            IF (CUVER(MGBIP(LIK),MGRV(LIK),HXSIT)) GO TU U.
            gu rog
    62 IF (LNN(I).NE.oKHIISL) (iU TU O
    *O M(I) = I
        6 CONIINUE
            IF(DEUUG) P&INT (7,(M(J),J=1,NIJ
```



```
C NUW DEHIVE TIIE SIATE VECIUR AFIER IHE K III FIRIG
            DU 1OO I =1.NT
            kF1RB(1)=0
            NIJ)=NIPL(I)
            IND = IMLAO(1)
```



```
    III J = KIRIN(INO)
            f(M(J).E(U.O) GU TU 19%
            NIP=NIP-I
            |(KTYIP(I),FO.G) GO 10 12!
C UNCUHOITIONAL CUHIIRLL OIATA. IKANISIIION
            IF (NIP.EO.O) (;| IU 1<0)
            ICli) = INU&I
            (r10)= (NU*
    120 11. (KJYI(I).NL.3) wl) J| 1s:%
    J= KUPL(I)
```


$J=1$ CKHAL

C CUMIDUTE VALUES IN EACII CUUNTER.

0118
0119
0120
0121
0122
0123
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
Gs KVAL=KVAL\#2+KTRMF (K)
67 MVAL $=$ MVAL * $2+M T \operatorname{FMF}(K$
If (LY) AVAL = MVAL * $2 * * K K$
70 KD $=$ (MVAL - KVAL)
XVAL $=$ MVAL
HCHT $=$ HCHT + (1. -KUFXVAL)

* (MIRMF (N) , N= 1 , NRFF

GO 10449
400 (F (KK(1)-C.O.O) GU IU 499
HRVE = IHRVE 1 .
449 CONTINUE
HSFN =NT- (HPT + HCHT + HIIVCS
$1 \mathrm{VAL}=N E+1 \mathrm{MEG} \uparrow \neq 1 \mathrm{SF} F \mathrm{~N} / \mathrm{NT}$
IF-(DEBU(PRINT 455.1 IRVE.HSTAN. IVAL
4SS FURMAT(SK. DR VEC CUNIR. ',FIO.A.: IFN ••F10.4.13)
RETURII
ENO

APPENDIX A. 3

PSEUDO-NSIM SUBROUTINES FOR CASES I-IV
page 0001

$$
\text { DAIE }=713341
$$

$$
13 / 34 / 20
$$

$$
\text { PAGE } 9 D O 2
$$

0001
0002
003
0004

0035
0006
0007
0007
0008
0009
0010
0011
0012
0013
0014

0013
016
017

0018
019
0020
$00: 1$

022
0023
024
0025

SURHDUTINE PSDNSM(KNTH)
C HEGISTG:A TRANSFER SIMULATOR (PSEUDU-NSIM) FOR CASE II CUMIUN/ NSIM/KTRMI(16), KIRMF(36) OMTRMF (36) -NRFF GU TO (1.2.3.2.9.2.7.2.9).KNIR
9 RETURN
C INCREMENT THE CQUNTER (CUNTROL STATES 2.4.6.aI
$2 \quad J=0$
00 $101 \quad 1=1,3$
$101 J=J+J+K$ TRMF (1)
$J=\mathrm{J}+1$
$001021=1.3$
$k=J / 2$
$\operatorname{MTRMF}(4-1)=0$
IF (J.NE, K + K) MTRMF (4-I) =
102 J=K
RE TURN
c CONTRUL STATE 3. INPUT TO ACCUMULATUR
3 DO $103 \quad 1=1.8$
03 MTRMF $(3+1)=K$ KRMI(1)
GO TO:
C CUNTROL STATE 7. COMPLEMENT UF INPUT TO BUFFER.
1 DO $1041=1,8$
MTRMF (3+I) $=1-K$ IRMI(I)
IF (MIMMF $(3+1) \cdot L$ © 0) $\operatorname{MrRMF}(j+1)=2$
104 CONTINUE
C CLEAR THE COUNTER (CUNTHUL STATES 1.3.7.9)
1 DO 1 DO $1=1.3$
100 MTAMF $(I)=0$
RETURN
ENO
 1日 $\rightarrow \mathrm{J}:=1.2$

43 MTNAF $(6+1)=K$ (KAIF $(1+J)$
C. CUNTKIL STATE 5. GUYPUT ONI.Y.
G) RETUIRN
CONTRUL STATE G. WIIITE MD TU MEMURY.

C contrul state 0
61 MTHMF $(1+5)=K$ (KMF (6+1)
RE TURH
ENU
-)
0044
004s

1 DO $2011=1.4$

20：MIRMF $(12+i)=K \operatorname{IRM} 1(4+1)$
3 110 203 $I=1.4$ MIIRMF（1）＝K RRMI（I）

1F IKTIMAF（15
MTAMF（4＋I）＝K IRMF（I RETUISN
•（K）
－OHAAT（EX：＇ADO（AC．UR）＇）
JX＝KTRM（1）
KX＝L $K x=L O(K \operatorname{IRNs}:(1), K \operatorname{TRMF}(1+4))$
$J X=L A(K X, J X)$
$K X=L A(K I$ KMF（I），KTHMF（Ita）
1＝1－1
rHE IURN

O9 MIRMF（4＋i）＝1－LA（KTKMF（1），KTKMF：（4＋1））

0 （ $210 \quad 1=1.0$
MIRAF：（1）FK TRMF（441） $1=4$

$1=1-1$
（k．ar．oj gu Ju 21
 M1いは世（1）＝Jul 121：IU181

APPENDIX B

CIRCUIT SCEEMATICS FOR CASES I-IV

Fig. B-l Case I: Control Circuit

Fig. B. 2 Case I: Counter Circuit

Fig. B. 3 Case I: Register A Circuit

Fig. B. 4 Case I: Register B Circuit

Fig. B. 5 Case II: Control Cfrcuit

Fig B. 6 Case II : Register Circuits

Fig. B. 7 Case III: Control Circuit

Fig. B. 8 Case III: Register Circuits

Fig. B. 9 Case III: Memory Circuit

Fig. B. 10 Case IV: Control Circuit

Fig. B. 11 Case IV: SKIP Control Circuit

Fig. B. 12 Case IV: UR Register Circuit

Fig. B. 13 Case IV: AC and IR Registers

Fig. B. 14 Case IV: PC Register and IOSR Circuits

Fig. B.I5 Case IV: Full Adder Circuit

LIST OF REFERENCES

- Armstrong, D. B.. "On Finding a Nearly Minimal Set of Fault Detection Tests for Combinational Logic Nets," IEEE Transaciions on Electronic Computers, EC-15 (1966), pp. 66-73.

Belt, J. E., A Heuristic Search Approach to Test Sequence Generation for AHPL Described Synchronous Sequential Circuits, Ph.D. Dissertation, Department of Electrical Engineering, University of Arizona, 1973.

Bouricius, W. G., E. P. Hsieh, G. R. Putzolu, J. P. Roth, P. R. Schneider, and C. J. Tan, "Algorithms for Detection of Faults in Logic Circuits," IEEE Transactions on Computers, $\mathrm{C}-20(11)$, 1971, pp. 1258-1264.

Breuer, M. A., "A Random and an Algorithmic Technique for Fault Detection Test Generation for Sequential Circuits," IEEE Transactions on Computers, C-20(11), 1971, pp. 1364-1370.

Carter, E. A., Fault Test Generation for Sequential Circuits Described in AHPL, Ph.D. Dissertation, Department of Electrical Engineering, University of Arizona, 1973.

Eldred, R. D., "Test Routines Based on Symbolic Logic Statements," Journal of the ACM, 6(1), 1959, pp. 33-36.

Estrin, G., "Diagnosis and Prediction of Malfunctions in the Computing Machine at the Institute of Advanced Study," IRE International Convention Record, Pt. 7 (1953), pp. 59-61.

Hart, P., N. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics, scc-4(2) (1968), pp. 100-107.

Hennie, F. C., "Fault Detection Experiments for Sequential Circuits," Proceedings of the 5th Annual Symposium on Switching Theory and Logical Design, 1964, pp. 95-110.

Hill, F. J., and B. M. Huey, "SCIRTSS: A Search System for Sequential Circuit Test Sequences," IEEE Transactions on Computers, Vol. C-26, May 1977, pp. 490-502.

Hill, F. J., and G. R. Peterson, Diqital Systems: Hardware Orqanization and Desion, Wiley, New York, 1978.

Hill, F. J. and B. M. Huey, "A Design Language Based Approach to Test Sequence Generation," Computer, Vol. 10, Number 6, June 1977, pp. 28-33.

Holt, A. W., et al., "Final Report of the Information System Theory Project," Tech. Report RADC-TR-68-305, Rome Air Development Center, 1968.

Fiuey, B. M., Search Directing Heuristic for the Sequential Circuit Test Search System, Ph.D. Dissertation, University of Arizona, 1975.

Huey, B. M., "Guiding Sensitization Searches Using Problem Reduction Graphs," Proceedings of the 14 th Annual Design Automation Conference, D. 274-291.

Kime, C. R., "An Organization for Checking Experiments on Sequential Circuits," IEEE Transactions on Electronic Computers, EC-17(4), 1966, pp. 352-366.

Kubo, H., "A Procedure for Generating Test Sequences to Detect Sequential Circuit Failures," NEC Journal of Research and Development, 12, 1968, pp. 69-78.

Michie, D., and R. Ross, "Experiments with the Adaptive Graph Transverser," Machine Intelliqence 5, B. Meltzer and D. Michie (eds.), American Elsevier Publishing Company, Inc., New York, 1970, pp. 301-318.

Ng, W. W., Evaluation of a LSI Fault Detection Program Using a Four-Bit Microcomputer Processor Circuit, M.S. Thesis, Department of Electrical Engineering, University of Arizona, 1974.

Nilsson, Nils J., Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, New York, 1971.

Petri, C. A., "Kommunikation mit Automaten," Univ. of Bonn 1962; translation by C. F. Green, Jr. "Communication with Automata," Supplement to Tech. Doc. Rep. \#l, Rome Air Development Center, Contract \# AF30(602)3324, 1965.

Poage, J. F., and E. J. McCluskey, "Derivation of Optimal Test Sequences for Sequential Machines," Proceedings of the 5th Annual Symposium on Switching Theory and Iogical Desion, 1964.

Roth, J. P., "Diagnosis of Automata Failures: A Calculus and a Method," IBM Journal of Research and Development, 10, 1966, pp. 278-291.

Roth, J. P., W. G. Bouricius, and P. R. Schneider, "Programmed Algorithms to Compute Tests and Distinguish Between Failures in Logic Circuits," IEEE Transactions on Electronic Computers, EC-16(5) (1967), pp. 567-579.

Rutman, R. A., "Fault Detection Test Generation for Sequential Logic by Heuristic Tree Search," IEEE Repository Paper R-72-187, Sept.-Oct. 1972.

Schneider, P. R., "On the Necessity to Examine D-Chains in Diagnostic Test Generation - An Example," IBM Journal of Research and Development, $11(1), 1967$, p. 114.

Seshu, S., and D. N. Freeman, "The Diagnosis of Asynchronous Sequential Switching Systems," IRE Transactions on Electronic Computers, EC-11(4), 1962, pp. 459-465.

Seshu, S., "On an Improved Diagnosis Program," IEEE Transactions on Electronic Computers, EC-14(1), 1965, pp. 76-79.

Van Helsland, M., Evaluation of SCIRTSS Performance on Sequential Circuits Biased Against Random Seguences, M.S. Thesis, Department of Electrical Engineering, University of Arizona, 1974.

[^0]: gual reacinto
 rinal nijue

