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CHAPTER I 

I NT RO DUCT I ON 

Embrittlementreferstotheloss of ductility and/or tensile strength 

of an engineering material due to interaction with its environment [l]. 

Many metals that are normally ductile in inert environments are embrit­

tled by hydrogen and certain specific 1 iquid metals [2]. Embrittlement 

can cause catastrophic results, for failure can occur in designs suppos­

edly proven to be safe. During the Apollo program, NASA experienced 

hydrogen embrittlement-related failures of pressure vessels while being 

filled with gaseous hydrogen to rated pressure [3]. The story is told 

of catastrophic failures of brass components when ordinary mercury ther­

mometers were broken and their contents spilled on the metal surface [4}. 

Hydrogen can be introduced into metals while the metal is still in 

the molten state. Welding and electroplating have been known to cause 

hydrogen pickup, and cathodic protection of structures can sometimes 

have the deleterious side effect of inducing hydrogen embrittlement (HE) 

[5]. In all of the above-mentioned cases, moisture around the pickup 

site is a common source of hydrogen. Liquid metals, on the other hand, 

are found in contact with sol id metals by design, e.g., 1 iquid-metal­

cooled fast breeder reactors [6] and the use of mercury in instruments. 

Hydrogen embrittlement has a direct economic impact on the petroleum in­

dustry, where sour gas (H 2S) is often encountered in deep wells [7]. 

Temperatures can exceed 400°F, and downhole pressures often reach 20,000 



psi. In cases where chemical inhibitors are economically unfeasible, 

the oil industry often turns to nickel-base alloys to solve its corro­

sion problems. 

2 

This study grew from previous work done at Oklahoma State Univer­

sity. Price and Good [8] tested 10 nickel alloys that typify commercial­

ly available lnco alloys, including Nickel 200, the Monels, lnconels, 

and lncoloys. Testing was done at room temperature in a liquid mercury 

environment. Good found that all of the al lays tested were susceptible 

to mercury embrittlement. Traylor [9] tested a similar range of lnco 

alloys in hydrogen and found they were also embrittled to a degree. The 

inference was that all nickel alloys, under appropriate conditions, wi 11 

be embrittled by mercury and hydrogen. Monel 400 and K-500, both of 

which are used extensively in downhole completions of deep (including 

sour gas) wells, were found to be the most susceptible to embrittlement 

of all the alloys that were tested. Researchers [2, 8, 9] have pointed 

out the similarities in behavior between hydrogen and mercury embrittle­

ment, and have postulated that the embrittl ing mechanism may be the same 

for both environments. 

Some of the relevant variables affecting embrittlement are strain 

rate, grain size, and test temperature. The present study is concerned 

with testing the effects of strain rate and grain size on mercury and 

hydrogen embrittlement of Monel 400. It is hoped that by comparing the 

effects of the two environments, a better understanding can be reached 

of the embrittlement mechanism involved. 



CHAPTER I I 

REVIEW OF THE LITERATURE 

lntroduct ion 

The present study is a direct follow-up of work done by Traylor [9]; 

therefore, his review of the literature is directly applicable. Because 

of this, general background material will not be coveted here. The atten­

tion of this chapter is focused on pertinent theories of embrittlement 

mechanisms. 

Embrittlement by Liquid Metals 

The phenomenon of liquid metal embrittlement (LME) is well document­

ed, but is not yet clearly understood. Consequently, numerous mechanisms 

have been proposed to explain LME. Four of these models are summarized 

below. 

Reduction in Surface Energy Model 

Researchers in both the Soviet Union [10, l l] and the United States 

[12, 13] have proposed that adsorption of the liquid metal at the sol id­

liquid metal interface causes a reduction of the free energy at the solid 

metal surface. This accounts for an effect to a depth of only a few 

atomic layers, however, and does not provide a large enough reduction in 

energy to propagate a crack, for it has been shown by Low [l If] that the 

3 
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total energy needed for crack propagation is many times greater than the 

surface energy of the sol id. Thus, this model does not seem to account 

for all of the effects of LME. 

Stress-Assisted Dissolution Model 

Robertson [15] suggested that crack propagation in U'1E occurs by dis-

solution of the stressed atoms at the leading edge of a crack. The dis-

solved base metal is then diffused into the bulk liquid. He theorized 

that high stress levels at the crack tip increased the solubility of the 

base metal in the embrittler. However, researchers [ll, 12] have found 

empirically that embrittlement almost never occurs in two metals which 

- display significant joint solubility. For example, mercury has been 

shown to embrittle pure nickel, yet the solubility of mercury in nickel 

is extremely limited. Besides, the dissolution of the base metal would 

tend to blunt an advancing crack. The conclusion is that the Robertson 

model is an unlikely mechanism for LME. 

Reduction in Cohesion Model 

A leading theory advanced by ':Jestwood and Kamdar [16, 17] andStoloff 

and Johnston [18] proposes that the liquid metal causes an adsorption-

induced reduction in the cohesive strength between base metal atoms (Fig-

ure 1). As the sample is stressed, the liquid metal atom B is spontane-

ously adsorbed at the tip of the crack, reducing the strength of the bond 

A-A . When the stress reaches a new (lower) critical breaking stress, 
0 

the bond breaks and the crack propagates to the bond A-A 1 , where the se-

quence begins again. Thus, Kamdar [17] proposes that LME is a special 

case of brittle fracture, and that the effects of mechanical and 



Figure I. Schematic Representation of Displace­
ment of Atoms at the Tip of a Crack. 
The bond A-A0 is the crack tip and 
B is the liquid metal atom. (After 
Kamdar [17].) 
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metallurgical factors on embrittlement can be attributed to the princi-

ples of brittle fracture. 

Gilman [19] and Kelly et al. [20] have presented a criterion by which 

the ductile or brittle behavior of solids may be predicted. The hypoth-

esis for metals is that if the ratio of the largest tensile fracture 

stress, amax' in the neighborhood of the crack tip to the largest shear 

stress, Tmax' on the most favorably-oriented slip plane near the tip is 

greater than roughly Jo,· the failure wi 11 be predominantly ductile, and 

if a IT s 10, the failure will be largely brittle. 0 and T max max max max 

are material properties, and are independent of the state of stress pre-

sent in the component. The Kelly criterion thus provides a basis for 

the brittle intergranular fracture of a normally ductile metal when 

stressed in the presence of an embrittling liquid metal. If adsorption 

of the liquid metal reduces a while leaving T unchanged, the ratio max max 

0 /T will be reduced, favoring brittle failure. Thus the degree of max max 

embrittlement is a function of the reduction of a max 

For the reduction in the cohesion model to be considered valid, the 

following effects should be observed for LME: 

l. Strain rate effects. Kamdar [17] predicted that an increase in 

strain rate should increase embrittlement on the basis of an increase of 

the ductile-to-brittle transition temperature. He based his prediction 

on tests run on 6 mm square zinc monocrystals coated with 1 iquid gallium 

and liquid mercury. 

2. Grain size effects. In keeping with the "special case of brittle 
_l_ 

fracture 11 idea, the fracture strength should vary linearly with d 2 , where 

dis the material grain size [17]. Specifically, refinement of the grain size 

decreases embrittlementbydecreasingthe lengths of dislocation pile-ups. 
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Stress-Aided Diffusion Penetration Model 

Krishtal [21] proposed a mechanism for LME that involved stress-aided 

diffusion of embrittler atoms into the grnin boundaries of the base model. 

Gordon and An [22], in tests involving indium as an embrittler in 1~140 

steel, refined the Krishtal idea in.to a two-step proce.ss, whereby (1) the 

embrittler atoms change from the adsorbed to the dissolved state, and 

(2) the dissolved embrittler atoms diffuse along grain boundaries. In 

the penetration zones, the embrittler atoms lower the crack resistance 

and decrease slip. When enough embrittler atoms have built up to some 

critical depth in one of the penetration zones, crack nucleation occurs. 

Thus crack nucleation would occur after some incubation period. The nu-

cleat ion time, t , can be represented by 
n 

t - exp 
n 

L\G 
s 

RT 
exp ( l ) 

where L\Gs and LIGd are the respective activation energies for steps (1) 

and (2). The embrittlement process is thermally activated and stress-

dependent. 

On the basis of the stress-aided diffusion model, the following 

characteristics should be expected from LME: 

l. Delayed failure should occur after the development of penetra-

tion zones. 

2. Strain rate effects. Gordon and An [22, p. 453] believe that 

increasing strain rates require higher temperatures 11 to provide suffi-

cient volume diffusion to dissipate the grain boundary penetration zones. 11 

Therefore, at a constant temperature, increasing the strain rate should 

decrease embrittlement. 
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3. Grain size effects. Refining the grain size should decrease 

the severity of LME by reducing the stress concentrations at dislocation 

pile-ups at grain boundaries. 

Embrittlement by Hydrogen 

Many different mechanisms have been suggested to account for hydro-

gen embrittlement (HE) in metals. Some of these depend on the diffusion 

of hydrogen into the metal lattice [2]. In nickel and its alloys, though, 

this volume effect is an unlikely mechanism, for the diffusivityofhydro­

-14 2 
gen in nickel at 25°C is only -5 x 10 m /s. Some popular HE theories 

appear below. 

Beachem Hydrogen-Assisted Cracking Model 

Beachem [23] suggested that concentrated hydrogen dissolved in the 

metal lattice just ahead of the crack tip aids in the deformation pro-

cess by unlocking dislocations and allowing them to move at reduced 

stresses. In tests on steel, he found a wide range of fractographic fea-

tures which were dependent upon the stress intensity at the crack tip. 

At low stress intensities the cracking was intergranular, while at high-

er stress intensities transgranular tearing and finally microvoids were 

found. These findings were quite significant in that he showe~ hydrogen-

assisted cracking was not identified with one specific type of fracture 

surface. 

Planar Pressure Mechanism 

This model, put forth by Zapffe [24] and Tetelman and Robertson [25], 

states that the high pressures developed within internal hydrogen gas 
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pores of hydrogen-charged materials cause cracking. This mechanism can­

not explain embrittlement of steel by low-pressure hydrogen, for the high 

pressures simply would not develop within the metal [5]. 

Reduction of Surface Energy Model 

Petch and Stables [26] argued that diffused hydrogen acts to reduce 

the surface energy at internally free surfaces. As in the similar LME 

model, this does not provide sufficient reduction in energy to propagate 

a crack and therefore cannot be considered as the control ling mechanism 

for HE. 

Lynch Adsorption Model 

Lynch [2], in research comparing HE and LME in nickel single crys­

tals, proposed that embrittler adsorption at the tip of the advancing 

crack facilitates the nucleation of dislocations. Crack growth by slip 

can occur at lower stresses in the presence of an embrittler than in an 

inert environment, e.g., argon. His mechanism is similar to the Kamdar 

reduction in cohesion model. 

The Effect of Metallurgical Vari­

ables on Embrittlement 

Costas [27], in tests on nickel-copper alloys that ranged from 10 

to 67 percent nickel, found that phosphorus content had a conspicuous 

effect on the alloys 1 susceptibi 1 ity to mercury embrittlement. The 

amount of phosphorous required to avoid embrittlement increased with in­

creasing nickel content. Heat treatment was also found to have an ef­

fect, the implication being that furnace-cooled samples had more 
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phosphorous segregated at the grain boundaries than did quenched samples 

and were thus better able to resist embrittlement. 

Tensile tests on Mone] 400 in both mercury and hydrogen environ­

ments by Funkenbusch et al. [28] confirmed the earlier work done by Cos­

tas [27]. Specimens were either quenched or furnace-cooled from 900°C, 

and phosphorus concentration at the grain boundaries was found to be 

twice as high in the furnace-cooled samples. The increased grain boun­

dary concentration decreased embrittlement by both hydrogen and mercury, 

possibly due to improved grain boundary atomic packing. 



CHAPTER I I I 

EXPERIMENTAL PROCEDURE 

The Material 

Mone! 400 (UNS N04400) is a nickel-copper al Joy containing 66 per­

cent nickel and 31.5 percent copper nominally. Typical applications of 

Mone] 400 are as pump parts, propeller shafts, chemical-processing equip­

ment, and heat exchanger tubing. The alloy is more resistant than nickel 

to corrosion under reducing conditions, and more resistant than copper 

to corrosion under oxidizing conditions. In addition, the alloy is gen-

erally free from stress-corrosion cracking. Its face-centered cubic 

structure affords good ductility and toughness down to liquid helium tem­

peratures, while tensile strengths as high as 120 ksi can be achieved by 

cold rolling [28]. The as-received Mone! 400 1.vas a cold drawn, stress­

rel ieved bar, of 12.7 mm diameter from Huntington Alloy heat number 

M9631B. The specific chemical composition and mechanical properties are 

presented in Table I. 

Test specimen geometry was the same for both tensile and fatigue 

tests. Test samples were 130 mm long; ends were unthreaded. The center 

of the sample had a region approximately 40 mm long in which the diameter 

gradually decreased to 6.35 m~ at the specimen center. Figure 2 shows 

the specimen geometry. The principle behind the geometry was to localize 

the fr~cture zone while avoiding any significant stress concentration; 

12 



Figure 2. Specimen Geometry for Em­
brittlement Testing 
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Tensile specimens typically received a 600 grit finish, although some 

were chemically polished for surface observations. Fatigue specimens 

were chemically polished. 

TABLE I 

COMPOSITIONANDAS-RECEIVED PROPERTIES OF MONEL Lf()O 
HUNTINGTON ALLOY, HEAT NUMBER M963 l B 

(A) Chemical Composition (B) Meehan i ca 1 P rope rt i es 
Element Percent 

Nickel 65.710 Yield Strenoth 

Copper 31. 150 (0. 2% Offset) 97. 5 ksi 

Iron 1. 600 Tensile 
Strength 117. 7 ksi 

Manganese 1 . 130 Hardness Rs 99 
Si l icon 0.230 % Elongation 25 
Carbon 0. 160 % Reduction 
Aluminum 0.013 in Area 64 

Sul fur 0.009 

15 

Grain size was controlled by annealing in a mild vacuum. Annealing 

temperatures ranged from 700°C to 1090°C, and as the photographs wil 1 

show, grain sizes ranged from 25 to over 500 µm. Specimens were furnace-

cooled after annealing. 

Testing 

All tests were performed at room temperature on an MTS machine. 
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Tensile tests were done under a ramp input; 152 mm in 10 5 s was the typi-

cal ramp speed. 

Because of specimen geometry, the strain rate at the specimen cen-

ter had to be measured experimentally. This was done by mounting al mm-

long foil-type strain gage on the specimen. The strain gage formed the 

active gage of a Wheatstone Bridge arrangement. Circuity included a 

Vishay/Ell is 20 Digital Strain Indicator, with temperature compensation. 

When the MTS ramp speed was 152 mm in 10 5 s, this arrangement gave a 

strain rate of l .6 x l0- 5 s- 1 . Certain tensile tests used ramp speeds of 

one to three orders of magnitude higher or lower, and are noted in the 

text. Fatigue tests were run in fluctuating tension (R = 0) at approxi-

mately 35 Hz, with a sinusoidal loading pattern. 

Testing was done in air, mercury, and hydrogen. For the mercury 

tests, a small cup of mercury surrounded the specimens, which had previ-

ously been cleaned in HCl to ensure proper wetting of the specimen by 

the mercury. For the hydrogen tests, the samples formed the cathode of 

-2 
an electrolytic cell and were dynamically charged at the rate of 200 Am . 

Two platinum wires formed the anode. The electrolyte was sulfurfc acid 

at a pH of 3.2, to which 0.25 g/l of sodium arsenite were added to in-

hibit hydrogen recombination. Charging was accomplished using a Prince-

ton Applied Research Model 173 Potentiostat/Galvanostat. Figure 3 shows 

the environmental cell used for hydrogen testing. 

Microscopic Observations 

After fracture, all samples were ultrasonically cleaned in prepara-

tion for microscopic examination. Specimens were first viewed in a 

Bausch & Lomb l0-70x Stereoscopic Zoom Microscope (SZM) and later examined 



Figure 3. Environmental Cell Used in 
Hydrogen Testing 
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in a Jeol Model 35 Scanning Electron Microscope (SEM). Some of the fa­

tigue specimens were taken off the MTS prior to fracture and were exam­

ined under a Reichert optical microscope outfitted with Nomarski inter­

ference contrast equipment. This gave outstanding views of the minute 

height differences. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

Variation in Strain Rate 

Tensile tests were performed on specimens of 250 µm average grain 

size. The samples were tested in air, mercury, and hydrogen. The re­

s u I ts fo I 1 ow. 

Tests in Air 

The FCC metals 1 ike nickel and copper usually show 1 ittle strain 

rate sensitivity [5]; consequently, little variation in mechanical prop­

erties was expected. Two tests were run in air at strain rates differ­

ing by 10 3 for comparison purposes and results are summarized in Table 

I I. There was only a slight change in tensile strength and both samples 

experienced.large reduction in area. Fracture surfaces were cup-and­

cone (Figure 4) and no side cracking occurred. When viewed at higher 

magnifications in the SEM, the expected rnicrovoids covered the surface. 

There was no detectable difference in void size between the two samples. 

Figure 5 is representative of the fractography. 

Tests in Mercury 

Tests were completed in mercury at five strain rates; the data are 

given in Table 111. The pertinent features are: 

20 



TABLE I I 

TENSILE STRENGTH AND REDUCTION IN AREA 
OF MONEL 400 TESTED IN AIR 

Strain Rate, Tensile Reduction 

1 .6 

l.6 

s-1 Strength, ksi in 

x 

x 

10-2 94 
10-5 89 

TABLE I I I 

TENSILE STRENGTH AND REDUCTION IN AREA 
OF MONEL 400 TESTED IN MERCURY 

/\rea, ~ 

74 

n 

Strain Rate, Tensile Reduction 
s-1 Strength, ksi in Area, % 

l. 6 x 10-2 95 64 

1 .6 x 10- 3 93 33 

l. 6 x 10-4 69 14 

1. 6 x 10-5 63 11 

1 .6 x 10-6 58 9 

21 



Figure 4. Fracture Surface of Monel 400 Broken in 
Air. The fracture surface is cup-and­
cone. 

Figure 5. Detai I of t1icrovoids Covering the 
Fracture Surface of Monel 400 
Broken in Air. 
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1. The alloy exhibits a large strain rate sensitivity in mercury. 

As strain rate decreased by a factor of 104 , the tensile strength fell 

from 95 to 58 ksi. 

2. Reduction in area decreased (embrittlement increased) consider-

ably as strain rate decreased, and was accompanied by a change in frac-

ture mode from ductile microvoids to transgranular tearing to clean in-

tergranular cracking. 

3. Side cracking was observed in al 1 specimens except at the high-

est strain rate. The side cracking was largely flat (oriented 90° to 

the principal stress axis), with a few slant (45°) cracks linking the 

flat cracks. The incidence of slant cracking increased with the strain 

rate. By measuring the diameter of the sample at the crack farthest 

from the fracture, it was determined that side cracking occurred at ap-

proximately 81 ±3% of the tensile strength. The data are summarized in 

Table IV. 

TABLE IV 

EXTENT OF SIDE CRACKING IN MONEL 400 TESTED IN MERCURY 

Farthest Crack Maximum Stress (J o, 

Strain Rate, From Fracture Seen by Farthest max, 'O 

-=rs s-1 Surface, mm Crack, ksi 

1. 6 x 10-2 (no side cracking) 

1 .6 x 10-3 6 78 84 

1. 6 x 10-4 8 54 78 
1. 6 x lo-5 5 51 81 

1. 6 x 10-6 10 49 84 



25 

4. Evidence of slip at the grain boundaries decreased with decreas-

ing strain rate, as did secondary (longitudinal) cracking. 

At low magnifications (-15 x) in the SEM, the fractographic features 

are noteworthy. At the highest strain rate in mercury, transgranular 

tearing seems to cover about 40 percent of the surface, while the balance 

is made up of microvoids (Fi~ure 6). This contrasts with the 100 per-

cent microvoid appearance of the sample broken in air at the same strain 

rate, seen earlier in Figure 4. 

As the strain rate was lowered, embrittlement progressively became 

more severe. Figure 7 shows an overall view of a sample broken at 1.6 x 

-1 
s The edges appear to have failed by transgranular tearing and 

much secondary (longitudinal) cracking is visible. Nearer the center of 

the fracture surface, relatively clean intergranular cracking predomi-

nates. Another tenfold decrease in strain rate produced somewhat clean-

er intergranular cracking. Figure 8 shows a seemingly 100 percent inter-

granular fracture. Less secondary cracking is visible in this sample 

than in the previous two. 

-5 -1 
Figures 9 and 10 correspond to strain rates of 1 .6 x 10 s and 

-6 -1 
1.6 x 10 s , respectively. In each, individual grains appear cleanly 

and few secondary cracks are visible. It was felt that at a slow enough 

strain rate, secondary cracks would completely disappear. 

Higher magnifications (-200 x) in the SEM permitted sharper con-

trasts to be drawn as to the extent of embrittlement. Figure 11 shows 

the intense plastic deformation accompanying transgranular tearing near 

the edge of the sample shown in Figure 6. Slip marks and secondary 

cracks are visible. At the next slower rate (l.6 x 10- 3 s- 1), grain 

boundaries are more distinct (Figure 12). This photograph was taken 



Figure 6. 

Figure 7. 

Fracture Surface of Mone] 400 Broken in Mercury 
at 1.6 x lo-2 s- 1. Microvoids cover over 50~ 
of the surface, with the balance made up of 
transgranular tearing. 

Fracture Surface of Mone! 400 Broken in Mercury 
at 1.6 x 10-3 s-1 This photograph shows 
tearing around the edges, and intergranular 
cracking near the center. 
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Figure 8. 

Figure 9. 

Fracture Surface of Monel 400 Broken in Mercury 
at 1.6 x 10-4 s- 1. No tearing is visible; 
the entire fracture looks to be intergranular. 

Fracture Surface of Mone! 400 Broken in Mercury 
at 1.6 x 10-5 s-1 Clean intergranular crack-
ing. 
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Figure 10. Fracture Surface of Monel 400 Broken in Mercury 
at 1.6 x 10-6 s-1. Clean inte~granular crack­
ing. 

Figure ll. Detail of Transgranular Tearing at Lower 
Edge of Figure 6. Slip marks and sec­
ondary cracks are visible. 
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Figure 12. Appearance of lntergranular Cracking and 
Light Tearing Near the Center of Figure 
7. Slip marks can be seen on some grain 
faces, and some tearing is visible. 

Figure 13. lntergranular Cracking Near the Center of 
Figure 8. This shows much cleaner crack­
ing than in Figure 12, though some slip 
and extremely light tearing is visible. 
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near the center of the sample shown in Figure 7. Slip marks are heavy 

on some grains, though some faces appear quite clean. The tearing and 

secondary cracking associated with the transgranular mode are still in 

evidence. In this fracture as well as the other predominantly intergran-

ularly fractures, the incidence of tearing decreases towards the sample 

center. The fractography becomes noticeably cleaner (more intergranular) 

about three to four grains from the edge of the sample, but slip marks 

become slightly more apparent again at the very center. 

A cons~derably cleaner intergranular fracture can be seen in Figure 

-4 -1 13, corresponding to a strain rate of 1.6 x 10 s Some 1 ight tear-

ing persists and faint multiple slip systems can be identified. Slip 

traces and tearing are nearly absent in Figure 14, taken at the center 

of Figure 9. The fracture is cleanly intergranular and a few scattered 

second-phase particles, up to 5 µmin diameter, may be seen as small 

pock marks. Some secondary cracking persists, though the cracks are not 

nearly as gaping as those in the higher strain rate samples. 

At the very slowest strain rate, the fracture is utterly clean in-

tergranular near the center (Figure 15). The grain surfaces show the 

same pock marks as in Figure 14, but are conspicuously free from slip 

marks, tearing, and secondary cracking. 

These tests brought up an interesting question: \,fas the variation 

in degree of embrittlement already documented strictly a function of 

strain rate, or was an incubation period involved in the embrittlement 

process? That is to say, would a sample loaded quickly to a high stress 

level in mercury, and then held, eventually fail under the static load? 

In an attempt to answer these questions, chemically polished samples 

were tested at two static loads. These samples were held at load for a 



Figure 14. Clean lntergranular Cracking at the Center 
of Figure 9. A few scattered second 
phase particles and faint slip traces 
may be seen. 

Figure 15. Utterly Clean lntergranular Cracking at the 
Center of Figure 10. Some second phase 
particles are present, but slip and tear­
ing are not seen. 
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time considerably longer than the usual length of the standard dynamic 

tensile tests; still, no failures occurred. The 50 ksi test was inter-

rupted at 6, 25, 93, 11, and 133 hours and the surface was examined 

under the SZM for evidence of the beginnings of cracks. No cracks were 

found; however, slip marks were visible on individual grains and an in-

tense band of plastic deformation circled the center of the sample. This 

band of deformation did not enlarge or change substantially after it was 

first noted at the 25 hour mark. After being held at a high static load, 

the samples were fractured in slow strain rate tensile tests. Results 

are presented in Table V. 

Static 
Load, 
ksi 

63 

50 

TABLE V 

RESULTS OF STATIC/TENSILE TESTS 
OF MONEL 400 IN MERCURY 

Time at Strain Rate Tensile 
Load, During Ten- Strength, 
hrs sile Test, s - I ksi 

20 I .6 x I 0...:5 76 

150 l. 6 x lo-6 69 

Reduction 
in 

Area, ?6 

16 

15 

When compared with the standard tensile test data shown in Table 

I I I, some results are surprising. The samples held at a static load and 

then dynamically broken showed approximately 20 percent higher tensile 

strengths and over 50 percent more reduction in area than the samples 

broken in the standard tensile test at a corresponding strain rate. 
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Tests in Hydrogen 

Tests were run at three strain rates in hydrogen; the data are shown 

in Table VI. Higher strain rates were not used because of charging rate 

limitations which would raise the question of whether hydrogen access to 

the advancing crack would become a limiting factor. The features of in-

terest include: 

l. Hydrogen is a less potent embrittler than mercury in t1onel 400. 

Strain rates which gave 100 percent intergranular cracking in mercury 

caused predominantly transgranular tearing in the presence of hydrogen. 

The tensile strengths of samples tested in hydrogen were between the ten-

si le strengths of the samples tested in air and mercury. 

2. Consistent with the tests in mercury, embrittlement increased 

considerably with decreasing strain rate. A 100 percent intergranular 

fracture was never observed in the hydrogen tests; on the contrary, an 

upper limit to the extent of embrittlement seemed to occur. 

3. Side cracking was extensive in the samples fractured in the pre-

sence of hydrogen, but side cracking occurred at a higher proportion of 

the tensile strength than in the mercury tests ( 95% for hydrogen vs. 

81% for mercury), as shown in Table VI I. As in mercury, the flat cracks 

dominated but some slant cracks were observed, and their proportion in-

creased with strain rate. 

Variations in fractography were less obvious in the hydrogen sam-

ples viewed at low magnifications in the SEM. Figure 16 shovis an over­

-4 -l 
all view of the sample tested at a strain rate of l .6 x 10 s . The 

interior is mostly microvoids, and only the edges show tearing and a 

little cracking. At a tenfold lower strain rate, a much larger area 



TABLE VI 

TENSILE STRENGTH AND REDUCTION IN AREA 
OF MONEL 400 TESTED IN HYDROGEN 

Strain Tensile Reduction 
Rate, s - I Strength, ksi in Area, 

I .6 x 10 -4 
91 56 

l.6xl0-S 83 32 

1.6xl0 -6 82 30 

TABLE VI I 

EXTENT OF SIDE CRACKING IN MONEL 400 
TESTED IN HYDROGEN 

Fa rt hes t Crack Maximum Stress 
Strain Rate, From Fracture Seen by Farthest 

s-1 Surf ace, mm Crack, ksi 

I. 6 x 10- 4 10 88 

1. 6 x 10- 5 9 77 
I .6 x 10-6 8 79 

% 

(J 
max 
rs 

97 

92 

96 
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Figure 16. 

Figure 17. 

Fracture Surface of Mone! 400 Broken in Hydrogen 
at I .6 x 10-4 s-I Microvoids dominate; some 
tearing can be seen on the periphery. 

Fracture Surface of Monel 400 Broken in Hydrogen 
at 1 .6 x lo-5 s-l Tearing is much more exten­
sive than in Figure 16. Some individual grains 
may be seen near the edge. 
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experienced embrittlement, as shown in Figure 17. Some grain faces can 

be seen and many gaping secondary cracks are visible. Little difference 

in the fractography was apparent when the strain rate was lowered an­

other factor of 10 (Figure 18). Approximately the same proportion of 

the fracture surface is covered by voids and the tearing/cracking fea­

tures also appear to be quite similar. The inference is that some sort 

of 1 imit was reached as to the extent of embrittlement and another order 

of magnitude decrease in strain rate would give substantially the same 

results. This theory could not be confirmed though, due to 1 imitations 

in the test equipment. 

Higher magnifications in the SEM confirmed the .earlier observations. 

Figure 19, taken at the edge of the sample shown in Figure 16, shows 

the entire transition from clean intergranular_ facets to transgranular 

tearing and secondary cracking to void coalescence, in a distance of 

about 1 mm. Figure 20, taken at the edge of the sample shown in Figure 

17 shows mixed intergranular cracking and transgranular tearing. Slip 

marks are visible on most of the grain faces and many secondary cracks 

are present. The fractography is almost indistinguishable from that 

shown in Figure 21, photographed at the edge of the sample shown in Fig­

ure 18. The difference, however, is that the latter was taken on a sam­

ple tested at a ten times slower rate than the former. Nearer the cen­

ter of both samples, the fractography remained strikingly similar. Fig­

ures 22 and 23 were taken in the interiors of Figures 17 and 18, respec­

tively. Both show gaping secondary cracks, intense tearing, and the 

beginnings of a transition to microvoids. These similarities throughout 

the samples reinforce the inference of an embrittlement 1 imit for the 

stated grain size and hydrogen charging rate. 



Figure 18. Fracture Surface of Mone] 400 Broken in Hydrogen 
at l .6 x 10-6 s-1. Little change is seen from 
a~pearance of Figure 17. 

Figure 19. Rapid Transition of Fracture Mode at the Edge of 
Figure 16. At lower left, a few clean inter­
granular faces mix with transgranular tearing. 
Microvoids dominate at upper right, nearer the 
center of the sample. 
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Figure 20. Mixed lntergranular and Transgranular Zone 
at the Edge of Figure 17. The strain 
rate was 1 .6 x 10-5 s-1. 

Figure 21. Mixed lntergranular and Transgranular Zone 
at the Edge of Figure 18. Note the simi­
larity to Figure 20, where the strain 
rate was ten times faster. 
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Figure 22. Tearing, Cracks, and Microvoids at the 
Center of Figure 17. 

Figure 23. Tearing and Cracks Near the Center of 
Figure 18. The appearance is virtu­
ally the same as Figure 22. 
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A question raised by these tests was whether the transition in frac-

ture appearance with depth of penetration was due to I imited hydrogen 

penetration, and whether different diameters would give different ten-

si le strengths. This question was explored for three different diameters 

(Table VI I I). There was a very small increase in tensile strength with 

increasing diameter, but the depth of the intergranular/transgranular 

zone remained approximately constant. It was not clear whether the tran-

sit ion near the center was due to a critical stress intensity or lack of 

available hydrogen. 

Sample 

TABLE V 11 I 

EFFECT OF SAMPLE DIAMETER ON MONEL 400 
TESTED IN HYDROGEN 

Tensile Reduction Depth of 
Diameter, Strength, in Appearance of 

mm ksi Area, % Mic rovo i ds , mm 

3.63 80 20 2.0 

6.35 83 32 3.0 

9.78 84 37 2.5 

Variation in Grain Size 

Tensile tests were performed in air, mercury, and hydrogen at room 

temperature for a variety of grain diameters ranging from 35 to 500 µm. 

The strain rate was held at a constant 1 .6 x 10- 5 s-l for these tests 

and the results appear below. 
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Tests in Air 

Two grain sizes were tested in air: fine-grained (35 µm) and coarse-

grained (250 µm). The results are presented in Table IX. As expected, 

the grain size had only a minor effect on the tensile strength and due-

til ity of the samples. The fractures were cup-and-cone; failure was by 

microvoid coalescence. 

TABLE IX 

VARIATION OF TENSILE STRENGTH AND REDUCTION IN AREA 
\.JITH GRAIN SIZE OF l10NEL 400 TESTED IN AIR 

Grain Tens i 1 e Reduction 
Diameter, Hardness, Strength, in 

µm Rg ksi Area, % 

35 70 92 67 

250 57 89 70 

Tests in Mercury 

Five different grain sizes were tested in mercury. The data are 

given in Table X. Interesting points are: 

l. The tests showed a conspicuous decrease in tensile strength in 

the presence of mercury. Embrittlement, when measured as the decrease 

in tensile strength and reduction in area, tended to increase with in-

creasing grain size. An exception was the ultra-coarse (500 µm) sample, 

which exhibited relatively high strength and good ductility. 



TABLE X 

VARIATION OF TENSILE STRENGTH AND REDUCTION IN AREA 
WITH GRAIN SIZE OF MONEL 400 TESTED IN MERCURY 

Grain Hardness, Tensile Reduction 
Diameter, µm Rs Strength, ksi in Area, o, 

:o 

35 70 73 - CJ_ -z_ V- ( 12 

80 64 71 11 

150 59 63 12 

250 57 63 'il'I"'' 11 

500 54 84 31 

TABLE XI 

VARIATION OF THE EXTENT OF SIDE CRACKING WITH 
GRAIN SIZE OF MONEL 400 TESTED IN MERCURY 

Farthest Crack Maximum Stress a 
Grain From Fracture Seen by Farthest max 

--rs-, 
Diameter, µm Surf ace, mm Crack, ksi 

35 73 100 

80 4 75 98 

150 5 54 86 

250 5 51 81 

500 10 60 71 

51 

o, 
to 
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2. Fractures were generally intergranular with some transgranular 

tearing near the sample edge. ~fo obvious transition occurred in the frac­

ture .mode as grain size varied, except for the 500 J.Jm grain size. 

3. Side cracking was more extensive in the larger-grained samples. 

Also, the relative stress level at which side cracking occurred decreas­

ed with increasing grain size, as shown in Table XI (page 51). The 

coarser-grained (hence softer) samples experienced more plastic deforma­

tion at a given stress. This caused greater accommodation between indi­

vidual grains and more side cracking. 

Electron microscopy revealed little difference between the samples 

other than the large variations in grain size. Figures 24 through 27 

show seemingly 100 percent intergranular fractures in the range of grain 

sizes from 35 to 250 µm. In the 500 µm sample, however, a change in frac­

ture mode has taken place (Figure 28). A mixture of intergranular and 

transgranular features is visible even at low magnifications. Secondary 

cracks are also quite clear. 

Higher magnifications (200 x to 500 x) fail to show significant 

fractographic differences in the four finest-grained samples. The 80 µm 

grain size is typical: at the edge, tearing, secondary cracking, and 

intergranular cracking are observed (Figure 29), while nearer the center, 

the fracture seen in Figure 30 is quite clean intergranular cracking. 

A sharp contrast is seen i.n the coarsest grain size. Figure 31 

shovJs mostly transgranular tearing and secondary cracking, vJith a few 

intergranular facets visible. 

Tests in Hydrogen 

As in mercury, tests were run for five different grain sizes; the 



Figure 24. Fracture Surface of 35 µm Grain Size 
Monel 400 Broken in Mercury. The 
fracture appears to be 100% inter­
granular. 

Figure 25. Fracture Surface of 80 µm Grain Size 
Monel 400 Broken in Mercury 
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Figure 26. Fracture Surface of 150 µm Grain Size 
Monel 400 Broken in Mercury 

Figure 27. Fracture Surface of 250 µm Grain Size 
Monel 400 Broken in Mercury 
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Figure 28. Fracture Surface of 500 µm Grain Size 
Monel 400 Broken in Mercury. In 
contrast to Figures 24-27, the sur­
face is a mix of intergranular and 
transgranular, with huge secondary 
cracks. 

Figure 29. lntergranular Cracking Mixed With Tearing 
at the Edge of Figure 25. This was typi­
cal of the four finest-grained samples 
broken in mercury. 
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Figure 30. lntergranular Cracking in the Interior of 
Figure 25. Again, this was representa­
tive of the four finest-grained samples. 

Figure 31. Transgranular Tearing at the Center of Figure 28. 
This contrasts with the utterly brittle frac­
ture seen in Figure 30. 
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data are summarized in Table XI I. Key points include the fol lowing: 

l. A small decrease in tensile strength was noted for the speci­

mens tested in hydrogen, but the loss of strength was less in hydrogen 

than in mercury. 

2. The reduction in area is much less in hydrogen than in air. 
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Reduction in area generally increased with increasing grain size; i.e., 

the embrittlement generally decreased. 

3. Side cracking was heavier in the larger grain sizes. As in mer­

cury, the relative stress at which cracking occurred was lower in the 

larger-grained samples. The data can be seen in Table XI I I. 

The lower magnification photographs from the SEH reflect closely 

the trend of decreasing embrittlement with increasing grain size. Figure 

32 shows the finest-grained sample at a 20° tilt for clarity. The ex­

terior two-thirds of the sample is covered by a mix of intergranular 

cracking and transgranular tearing, while the center is microvoids. A 

slightly larger proportion of voids is seen in Figure 33. The voids con­

stitute the lightest-colored band and run generally southwest to north­

east. Regions of cracking and tearing are also visible. 

Microvoids cover over half the surface of the 150 µm grain sample 

(Figure 34). Three distinct areas of tearing and secondary cracking are 

seen at the edges and little or no intergranular cracking is apparent. 

The 250 µm test appears not to fit the pattern of decreasing embrittle­

ment, in terms of both reduction in area and fraci:ography. This sample 

was shown earlier in Figure 17. A few clean intergranular faces can be 

seen at the lower edge, but the fracture is largely transgranular with 

heavy secondary cracking. Voids cover about 30 percent of the surface. 

Figure 35 shows a large void area covering ~veil over half of the coarsest-



TABLE XI I 

VARIATION OF TENSILE STRENGTH AND REDUCTION IN AREA 
WITH GRAIN SIZE OF MONEL 400 TESTED IN HYDROGEN 

Grain Hardness, Tensile Reduction 
Diameter, µm Rs Strength, ksi in Area, % 

35 7'J 80 \")I 
(J; I 12 

80 64 81 19 

150 59 86 43 

250 57 83 i'' . 32 

500 54 85 45 

TABLE XI I I 

VARIATION OF THE EXTENT OF SIOE CRACKING WITH 
GRAIN SIZE OF MONEL 400 TESTED IN HYDROGEN 

Farthest Crack Maximum Stress CT 

Grain From Fracture Seen by Farthest 
max 
TS ' Diameter, µm Surface, mm Crack, ksi 

35 81 100 

80 8 81 100 

150 10 82 96 

250 10 76 92 

500 12 71 84 
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Figure 32. Fracture Surface of 35 µm Grain Size Monel 400 
Broken in Hydrogen. The outer ring is a mix 
of intergranular and transgranular, while 
the center is covered with microvoids. 

Figure 33. Fracture Surface of Bo µm Grain Size Monel 400 
Broken in Hydrogen. Voids cover a slightly 
larger region than in Figure 32, and run 
from lower left to upper right. 
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Figure 34. Fracture Surface of 150 µm Grain Size Mone] 400 
Broken in Hydrogen. Voids cover over half 
the surface in this photograph, while tearing 
and secondary cracking may be seen around the 
edges. 

Figure 35. Fracture Surface of 500 µm Grain Size Monel 400 
Broken in Hydrogen. In this photograph, the 
coarsest-grained sample, microvoids cover 
well over half of the fracture surface. 
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grained samples cracking and possibly tearing can be seen around the 

edges. 
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Comparisons made at higher magnification show that the most embrit­

tled areas of each sample (near the edges) reflect the general trend al­

ready presented. Figure 36 shows mostly intergranular cracking and some 

tearing at the edge of the finest-grained sample. Figure 37, taken near 

the edge of the 30 µm grain size sample, shows relatively clean inter­

granular cracking also. The major difference in these two samples (be­

sides grain size) was that the intergranular area was larger in the 

finest-grained sample. 

In the coarser-grained samples, a quick transition away from the 

intergranular mode can be seen. Figure 38 shows the rapid onset of tear­

ing and secondary cracking quite near the edge of the 150 µm grain-size 

sample. In Figure 20, seen previously, the intergranular holds the gen-

eral pattern toward decreasing embrittlement in the coarser-grained sizes. 

Figure 39 shows the transition from intergranular to transgranular less 

than one grain in from the surface in the 500 µm grain size. This sam­

ple showed complete transition to.microvoids at two grains in from the 

edge. 

Fatigue Tests 

Fatigue tests run on Mone! 400 and other nickel al Joys by Price and 

Good [8] in mercury have shown sharply reduced 1 ives, while tests run in 

hydrogen by Traylor [9] showed somewhat lower 1 ives than tests run 1n 

air. These tests were done on fine-grained annealed specimens at a 

stress level of 60 ksi. The data for Mone! 400 are presented in Table 

XIV. 



Figure 36. lntergranular Cracking Covering the 
Edge of Figure 32. Some tearing 
and secondary cracking is visible. 

Figure 37. Relatively Clean lntergranular Cracking Near 
the Edge of Figure 33. The area of inter­
granular cracking in this sample was smal 1-
er than in the 80 µm sample. 
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Figure 38. Tearing and Cracking Near the Edge of Figure 34. 
Moving upward away from the sample edge, the 
transition from intergranular to transgranular 
is quite rapid. 

Figure 39. lntergranular-to-Transgranular Transition at the 
Edge of Figure 35. This sample showed complete 
transition to microvoids just two grains (-1 mm) 
in from the edge. 
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TABLE XIV 

FATIGUE LIFE DATA FOR FINE-GRAINED MONEL L100 
TESTED IN AIR, HYDROGEN, AND MERCURY 

Environ- Fatigue Cycles to 
ment Stress, ksi Failure 

Air 60 630,000 

Hydrogen 60 79 ,000 

Mercury 6'J 3,400 
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An interesting feature of these tests was that the fractography of 

the fatigue failures closely resembled tensile failures in the same en-

vironment. Striations were rarely observed on the fracture surfaces, 

and cracks initiated by tearing one grain deep before going to mostly 

intergranular in mercury and hydrogen. Air tests showed mostly trans-

granular tearing with a few intergranular facets scattered along the 

surface. 

Fatigue tests run on 250 µm grain size chemically-polished samples 

showed much the same behavior. As shown in Table XV, a test run at 40 

ksi in mercury produced a similar fatigue life to an air test run at 56 

ksi, while a hydrogen test run at 56 ksi gave about one-fourth the 1 ife 

found in air. 

The fractography of the toarse-grained fatigue samples also matched 

well with the tensile tests. Crack initiation was intergranularfromthe 

edge, contrasting with the fine-grained samples, in which the first grain 

showed transgranular tearing. Figure 40 shows the initiation zone of 

the mercury fatigue sample. The fracture is almost purely intergranular 



TABLE XV 

FATIGUE LIFE DATA FOR 250 µm GRAIN SIZE MONEL 400 
TESTED IN AIR, HYDROGEN, AND MERCURY 

Environ- Fatigue Cycles to 
ment Stress, ksi Failure 

Air 56 635,000 

Hydrogen 56 173,000 

Hydrogen 53 1 ,348,ooo 

Hydrogen 50 1 ,900 ,000 
UJo Break) 

Mercury 40 644,000 
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Figure 40. Initiation Zone of Fatigue Crack for Test in 
Mercury. The fatigue crack was nearly 100% 
intergranular from the edge. 

Figure 41. Small Area of Tearing on Mercury 
Fatigue Fracture. This area 
covered maybe 3 to 5 grains. 
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from the edge, although a few areas could be seen where tearing occurred 

(Figure 41). A highly magnified area of Figure 41 is seen in Figure 42, 

showing extremely faint striations. 

The tests in hydrogen also showed intergranular initiation zones, as 

seen in the 56 ksi sample (Figure 43). Tearing was seen more often than 

in mercury, and a transition to almost 100 percent tearing occurred only 

a few grains from the surface. The initiation zone of the 53 ksi test 

is shown in Figure 44. The crack began intergranularly at the lower 

right, but tearing was apparent on part of almost every grain. The 50 

ksi test was interrupted at 1.9 mill ion cycles. SZM inspection showed 

no cracking, so the sample was rapidly pulled to failure. Electron 

microscopy showed the beginnings of a crack, indicated by arrows in Fig­

ure 45. Most of the grains seen are along the side of the sample. 

Discussion 

Relative Embrittlement of Hydrogen and Mercury 

In tensile tests with Nickel 200, Traylor [9] found that hydrogen 

was a somewhat more potent embrittling agent than mercury. The present 

tests with Mone] 400 do not support that finding, as mercury consistent­

ly caused a greater loss of strength and ductility in tensile tests at a 

given strain rate, and gave considerably reduced fatigue lives 1n tests 

run at a given stress level. This comparative ineffectiveness of hydro­

gen does not seem to be a factor of limited supply of hydrogen, for Tray­

lor found intergranular cracking at the center of Monel 400 fatigue spec-

imens at the same hydrogen charging rate. In addition, surface cracking 

was observed at considerably lower stress levels in mercury than in 



Figure 42. Appearance of Fatigue Striations on Mercury 
Fatigue Fracture. This is a highly magni­
fied region of Figure 41. The direction 
of crack propagation was from bottom to 
top. 

Figure 43. Initiation Zone of Fatigue Crack for 56 ksi 
Test in Hydrogen. The crack started at 
the lower left, and was intergranular, 
with some tearing in later grains. 
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Figure 44. Initiation Zone of Fatfgue Crack for 53 ksi 
Test in Hydrogen. The crack began inter­
granularly at the bottom edge of the photo­
graph, giving way subsequently to some 
mixed tearing. 

Figure 115. Initiation Zone of Fatigue Crack for 50 ksi 
Test in Hydrogen. This test was interrupt­
ed after l .9 mill ion cycles and then rapid­
ly pulled to failure. The arrows point to 
the initiation zone that presumably was 
less than one grain deep when the test was 
interrupted. 
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hydrogen, though present tests have shown that an ample supply of hydro-

gen exists at the surface, based on tests run with different diameter 

specimens. 

Embrittlement would seem, initially, to be a surface-dominated pro-

cess. Mercury, with its large atomic size, surely cannot penetrate be-

low the surface of the metal, and hydrogen penetration should be minimal, 

for the low diffusion rate (5 x lo- 14 m2/s) of hydrogen in nickel at 25°C 

should be of the same order of magnitude as for Mone!. Depth of penetra­

tion is a function of the square root of the product of diffusivity and 

time [30], so the maximum penetration of hydrogen ahead of an advancing 

crack is -0.5 µm [31], which seems insignificant in grain sizes from 35 

to 500 um. 

A comparison can be made with hydrogen embrittlement in steels. Hy­

drogen can diffuse much faster into steels [32], and so cracking initi-

ates below the surface in the plane strain zone, and breaks through to 

the surface at a later time. If hydrogen were penetrating significantly 

into Monel, similar subsurface crack initiation would be expected, which 

was not the case. 

The inference that can be drawn is that the driving force for em-

brittlement, whatever it is, is stronger in mercury than in hydrogen. 

If an incubation period and grain boundary penetration are necessary, 

after Gordon and An [22], then the faster diffusion of hydrogen is more 

tha~ offset by the increased potency of mercury. On the other hand, the 

possbi l ity that a sufficient hydrogen concentration is unavailable--be-

cause prompt diffusion enhances dispersion--can hardly be the case, for 

the diffusion rate is too low. 
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Fracture Surface Characteristics 

Comparisons of the fractography showed that the same fracture sur­

face appearance was found in both hydrogen and mercury, though in vary­

ing degrees. The sequence was mixed intergranular/transgranular, clean 

intergranular, transgranular tearing, and microvoids, with a larger pro-

portion of intergranular fracture in mercury. In tests for hydrogen em-

brittlement, Beachem [23] identified a sequence of intergranular, trans­

granular, and microvoid coalescence, which seems to be the case here. 

He correlated the transition in fractography with an increase in stress 

i n t ens i t y fa c to r , i . e . , i n t e r g r a n u 1 a r f r a ct u re a t 1 ow s t res s i n ten s i t y , 

going to transgranular and microvoids at higher values of stress inten­

sity. The fact that a greater amount of intergranular fracture was found 

in the mercury tests points to fracture at lower stress intensities. 

This is consistent with the greatly reduced tensile strength, reduction 

in area, and fatigue 1 ife for tests in Mercury. Traylor [9] found no 

evidence of intergranular fracture in slow tensile tests of Nickel 200 

in mercury, but observed intergranular fracture in fatigue tests where 

the stress intensity was lower. 

The stress intensity is proportional to the square root of the plas­

tic zone radius [5]. An increase in stress intensity would therefore 

give increased strain around the crack tip. At some critical stress in­

tensity, it can be argued that.the plastic deformation and dislocation 

density reach a threshold value where specific planes of atoms within 

the groins become more thermodynamically active than the grain boundary 

atoms and therefore react preferentially. This is consistent with the 

results of Good [8] and Traylor [9], who demonstrated that cold worked 
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(prestrained) materials show less intergranular embrittlement than an-

nealed materials. In the mixed tearing zones near the surface, certain 

grains receive much more deformation than others by virtue of their ori-

entation. Mone] is highly anisotropic; the elastic modulus in the <111> 

direction is more than twice that in the <100> direction [5]. Boas and 

Hargreaves [33], studying coarse-grained aluminum, found that certain 

individual grains in tensile specimens experienced elongation seven 

times greater than that experienced by adjacent grains. In Mone], there-

fore, some grains may have already been strained beyond a certain thresh-

old value when the crack tip reaches them, and so fail by transgranular 

tearing. Other, less heavily deformed grains then fail by intergranular 

cracking. 

The concept of a threshold strain value may also explain why hydro-

gen causes proportionately less intergranular fracture than mercury. 

Tests have shown that surface cracking in hydrogen initiates at a much 

higher strain level than in mercury, which means that more grains may 

have already exceeded the threshold strain, leading to more tearing and 

less intergranular cracking in the hydrogen samples. 

Strain Rate Effects 

The FCC metals (e.g., nickel, copper, aluminum) are considered much 

less sensitive to variations in strain rate than the BCC metals (e.g., 

iron, chromium, tungsten) [5]. The fol lowing relationship has been de-

. 
veloped to relate yield stress, oys' to strain rate, s: 

0 ys 
·m 

C E 

where c is a constant and m is the strain rate sensitivity. For FCC 

(2) 



metals below about 0.5 of their melting temperature, m is quite low; at 

room temperature for aluminum, m equals -Q.02 [3°4]. For these reasons, 

little or no strain rate sensitivity was expected or observed for Mone] 

400 tested in air. 

An increase in strain rate can be equated to testing at a lower tem­

perature [5], and FCC metals show relatively small changes in yield 

strength over a wide range of temperatures. Annealed Monel 400, for exam­

ple, has a yield strength of approximately 29 ksi at l00°C and 34 ksi at 

0°C [29]. However, in the present study, a noticeable strain rate effect 

has been discovered in tests of Monel 400 in mercury. The large drop in 

tensile strength with decreasing strain rate is particularly interesting, 

for Funkenbusch et al. [28], Costas [27], and Traylor [9] did not associ­

ate any decrease in tensile strength with mercury embrittlernent in Monel 

400. Why should there be a strain rate effect associated with mercury 

embrittlement and, to a lesser extent, with hydrogen embrittlement? Com­

parisons can be made to high temperature creep. In a typical study of 

creep done at constant temperature; time to failure, tf; and strain at 

failure, sf' are noted. As the stress level is raised, tf decreases 

while sf increases. Also in creep, at high tf and low sf' the fracture 

is intergranular; at low tf and high sf' the fracture is transgranular. 

Creep is a thermally activated process; HE and LME may be also. There 

are similarities; however, without dislocation climb, in increase in 

stress level is needed to provide more strain. The more time taken in 

the slower tests provides a greater thermal contribution to enhance em­

brittlement. Of the current LME models, the Gordon and An [22] theory 

involves incubation periods and activation energies. The results al­

ready presented seem to support this model in that it correctly accounts 
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for the effect of varying strain rate. If the embrittlement process is 

thermally activated, then increasing strain rates would need higher tern-

peratures so that sufficient diffusion of the embrittler could occur. 

All tests in this work were run at room temperatures; hence the effect 

would be to decrease embrittlement at higher strain rates. As this was 

the observed effect, the conclusion can be drawn that the embrittlement 

process is thermally activated and time-dependent. 

Grain Size Effects 

Kamdar [17] and Gordon and An [22] proposed that in LME the fracture 

strength of the metal behaves according to the Petch relation~hip, i.e., 

o a d-!z ( 3) 
fracture 

where d is the average grain diameter. Studies of zinc bicrystals tested 

in I iquid mercury [35] and cadmium in liquid ~al 1 ium [18] confirmed this 

effect. Both zinc and cadmium have the hexagonal close-packed (HCP) crys-

tal structure. A number of investigators have upheld the Petch relation-

ship for BCC metals, which undergo the ductile-to-brittle transition [5]. 

The effect in FCC Monel, however, was not as pronounced. Tests in mer-

cury showed a slight increase in embrittlement with the four finest grain 

sizes, but the effect was much less pronounced than that predicted by 

the Petch relationship. In the coarsest grain size, a marked reduction 

in embrittlement was noted. The extremely large grains offer little mu-

tual constraint from plastic deformation, so the possibi 1 ity exists that 

plane stress conditions prevail throughout the sample, hence dominating 

any embrittl ing effect. Once again, the concept of a threshold strain 

can be applied to explain the fractographic behavior. When the advancing 
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crack tip meets up with a deformed grain, the existing plastic deforma­

tion is above the level which can allow intergranular fracture, so the 

crack propagates by tearing. In tests run in mercury, where cracking 

can occur at a stress level well below the tensile strength, the lack of 

constraint only becomes a significant factor in the extremely coarse 

grain size (-500 µm). 

The variable grain size tests in hydrogen, as in the variable strain 

rate tests, showed less embrittlement than in mercury. The extent of 

embrittlement generally decreased with increasing grain size. As hydro­

gen is a less potent embrittler than mercury, a higher proportion of the 

tensile strength is needed to cause cracking in the presence of hydrogen. 

Higher stresses cause more plastic deformation. Accordingly, more grains 

reach the threshold strain before they see the advancing crack, even in 

the finer-grained samples where the mutual plastic constraint between 

grains is stronger. As the advancing crack contacts many more grains 

which have already surpassed the threshold strain level, transgranular 

tearing becomes the favored met hod of propagation. It is suggested for hy­

drogen that the threshold strain is surpassed much more quickly, even in 

the fine-grained samples, and that its effect overwhelms the embrittl ing 

effects associated with the Petch relationship. This can account for the 

trend of decreasing embrittlement with increasing grain size. 

Fatigue Tests 

In high cycle fatigue tests of engineering materials in inert envi­

ronments, it is generally recognized that crack initiation makes up the 

overwhelming proportion of the fatigue life of a component, while fatigue 

crack propagation takes maybe only l percent of the total fatigue life 
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[36]. The large reduction in fatigue life for the samples tested in mer­

cury, and the smaller reduction seen in hydrogen, point to a mechanism 

which stimulates initiation as well as propagation of a fatigue crack. 

The results show that mercury must affect the initiation considerably 

more than hydrogen, consistent with the tensile tests. It is interest-

ing to note that the fractography of the fatigue tests was largely indis­

tinguishable from that of the tensile tests. With fatigue cracks initi­

ating at lower stress intensities, it may be anticipated that fatigue 

tests would show cleaner intergranular fractures than would tensile tests; 

this was found to be true. Also, fatigue cracks usually initiate at slip 

bands; this seemed to be the case for Nickel 200 in mercury [8], but the 

origins were intergranular here. 

Static Tests 

The significance of the limited tests involving hold periods under 

tensile load is not clear; a complete test sequence involving a range of 

hold times and different stress levels would be necessary to evaluate 

this phenomenon. This lies beyond the scope of this thesis. Presumably, 

some stress relaxation process is involved. The effect of the static 

load is similar to cold working the material, in that the slow tensile 

tests run after the hold periods showed less embrittlement than in the 

corresponding standard tensile tests. This effect of cold work was not 

unexpected; Price and Good [8] and Kamdar [17] have noted it in the liter-

ature. 



CHAPTER V 

CONCLUSIONS 

l. Monel 400 is embrittled by both hydrogen and mercury, the lat­

ter being the more severe environment. Loss of ductility was accompan­

ied by a reduction in tensile strength in both environments when compared 

to tests in air. 

2. A common fracture sequence of intergranular, transgranular, and 

microvoid coalescence was identified in both environments. This sequence 

was associated with a constantly increasing stress intensity factor at 

the advancing crack tip. 

3. The alloy exhibited increasing susceptibility to embrittlement 

with decreasing strain rate in both environments. It was felt that the 

driving force behind both hydrogen and mercury embrittlement is thermal­

ly activated. 

4. Mone] 400 showed a slight increase in embrittlement in mercury 

with increasing grain size, except for the coarsest-grained sample which 

exhibited largely ductile behavior. In hydrogen, embrittlement steadily 

decreased as grain size increased. Two competing processes were believ­

ed to oppositely influence the grain size effect upon embrittlement. 

5. The fatigue life of the alloy was greatly reduced by mercury, 

and moderately reduced by hydrogen. A common embrittlement mechanism 

probably affected both the initiation and propagation stages of crack 

growth. 

8G 



6. Although none of the current theories of embrittlement could 

fully account for the experimental observations, the results most strong­

ly support the stress-aided diffusion penetration model of Gordon and An 

(22]. 
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