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A linear analysis is presented for determining the natural frequen-
cies of vibration of laminated anisotropic rectangular plates. The plate
may consist of an arbitrary number of thin orthotropic layers, the major
material-symmetry axis of each layer oriented arbitrarily with respect to
the longer plate edge. An approximate solution is obtained by the
Rayleigh-Ritz energy method. Numerical results are presented for fully
clamped boundary conditions and compared with experimental results
for symmetrically and unsymmetrically laminated plates.

INTRODUCTION

THE IMPORTANCE of predicting plate or panel vibration characteristics
has grown steadily in the past few years. Because of the critical
strength/weight ratio in design, there is considerable interest in com-
posite materials. Of the many kinds of composite configurations, fiber-
reinforced materials are most popular. On a macroscopic basis, such a
composite behaves as if it were a homogeneous, anisotropic material, i.e.
one that exhibits different elastic properties when tested along different
directional orientations within the body. The particular kind of anisotropy
exhibited by fiber-reinforced composites is that of an orthotropic material,
which has three mutually perpendicular planes of elastic symmetry.
When orthotropic layers oriented at arbitrary angular orientations are
laminated to make a multi-layer structure, the structure is called laminated
anisotropic and a coupling effect is produced. This coupling effect is due
to the interaction of the stretching and the flexural effects.
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Of the numerous analyses of vibrations in rectangular, specially ortho-
tropic® plates referenced in a recent survey paper by Leissa [1], only
eight considered fully clamped edges. Reference [2] is an additional
analysis of this problem not referenced in [1].

Vibrations of generally anisotropic plates have been analyzed by
Waddoups and Ashton [3-5]. Using the Rayleigh-Ritz approach, their
analyses were formulated to use the characteristic beam functions tabu-
lated in [6]. However, they compared with experimental results only for
the completely free and cantilever cases. Later they compared results for
the fully clamped case [7].

So far as arbitrarily laminated plates (including coupling) are con-
cerned, References [8] and [9] considered layered isotropic material
only. Stavsky [10] derived the differential equations, which included the
coupling effect and anisotropic behavior, but did not obtain a solution for
the coupled case. In his survey [1], Leissa mentioned recent work by
Whitney in which closed-form solutions were obtained for arbitrarily
laminated anisotropic plates for two simple boundary conditions.

A complete analysis is developed here for the small-deflection free
vibration of laminated anisotropic rectangular plates and applied specifi-
cally to the practically important case of fully clamped edges. This is
believed to be the first such analysis applicable to these boundary
conditions.

THEORETICAL VIBRATION ANALYSIS

Using the theory of arbitrarily laminated plates obeying the Kirchhoff
hypothesis, such as presented in [11], the following constitutive relation

is obtained:
Nl _[Au By [& o .
{M,} o [Bu D“] {K,} (i,j =1,2,6) 1)

The equations for the elements of the stiffness matrices A, B, and D
are given below.

N hi2 N
A= [ oW di=3 (he=hi) OF
k=1 —h/2 k=1

BT LT SR I R )
Bij=3 2Qi dz =73 5 (hik — hk—1) Oy : (2)

k=1 —h2 k=1
A L I N R 3 (k)
Dij—E 22Q; dZ—Eg(hk_ k-1) Qij
1

k=1 J—hi2 k=

? Orthotropic material with the axes of material symmetry aligned parallel to the respective edges of the plate.
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where k refers to the kth ply, N is the total number of plies, z is the thick-
ness coordinate measured from the midplane of the plate, h is the plate
thickness, h, is the upper surface of the kth ply, and Q;; is the kth ply
reduced stiffness coeflicient, which can be related to the ply orientation
0, and the elastic constants of the orthotropic ply [12].

Neglecting energy dissipation (damping), Hamilton’s principle re-
quires that the time integral of the difference between the potential and
kinetic energies attain a stationary value. However, assuming that the
displacements are proportional to sin wt, the velocities are proportional to
cos wt. Since the integral of sin? wt is equal to the integral of cos? wt, the
time dependencies in the potential and kinetic energies cancel each
other. Thus, it is convenient to apply Hamilton’s principle in terms of the
energies with the time dependencies eliminated, i.e. the amplitudes of
the energies, V and T. Thus, the following energy difference is defined:

L=V-T 3

Neglecting transverse shear and intralaminar shear effects, the poten-
tial energy amplitude can be written as follows:

a (b
V=(1/2) f f (N2, + Ny&y + Neto + Mk, + Myky + Maks) dy dx (4)
0 0

where the N;, €;, M, k; are functions of x and y only.

Substituting the values of the N; and M, from Equation (1) into
Equation (4) would result in an expression for the potential energy in
terms of the strains and curvatures.

Using the classical linear theory of small deflections of thin plates, two
hypotheses will be used to convert the strains and curvatures to displace-
ments. The hypotheses are 1) that displacements are infinitesimal, so
that the linearized strain-displacement relations may be used; and 2) that
slopes are sufficiently small, so that the linearized curvature expressions
are adequate. Thus, the following relations for curvature and midplane
strain hold:

€1 = U,y éz':vay; 66:u7y+ Uy (5)
Ki =~ W,zp; Ko = W,yy; K6:_2w,xy (6)

where u and v are the displacements in the x and y directions, w is the
normal deflection, and a comma denotes differentiation with respect to
the variable following the comma.

Substituting Equations (1), (5), and (6) into Equation (4) gives the
following expression for the potential energy amplitude in terms of
the stiffness coeflicients and displacements:
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a b
= (1/2) f f [Alluazx+2A12u’1~0ey+2A16(u9x)(u9y+ 0,z) +A220’2y
o Jo

+2A56(0,,) (tyy + 0,2) + Ags(t2,, + 0,,)2 — 2B 111, W, 5y

= 2Byt 10,y — 2B 130, W, 5p — 2Bys,,Ww,,, — 4B g, W, 4,

- 2B16(w=.m:) (uay + U:x) - 4B260,yw7.ry - 2B26(wayy) (uoy + Uax)

- 4B66(w’1’y) (u’y + Ua.r) + Dllwzoxx + 2’D12w’xxw’yy + 4D16w91‘1‘w71’y
+ D22w3yy + 4D26w’yyw’ry + 4D66u'72xu] dy dx (7)

Neglecting rotatory inertia, the kinetic energy amplitude is written
as follows:

T=(1/2) j: f:phaz dy dx (8)

where ph is the mass per unit area, and ¥ is the resultant velocity ampli-
tude given by:

02 = @2 (u?+ v+ w?) )

To apply the Rayleigh-Ritz method, the assumed displacement modal
functions for the displacement amplitudes are given the following
general notation:

n m

u=; ; Fom un( ) um(B) o | (10)

where the ¢’s are modal functions and « and 8 denote the normalized
arguments in the x and y directions, respectively, i.e. x/a and y/b.

Substituting Equations (7-9) and (10) into Equat1on (3) yields the
following result:

=12 S S [ [ AUy bun + 24 Comn ) Fom i)

T Ao (GunPon Do) >+ 2A 16 (Frum bun Biom + GrmPun Pom) (Fum Dun Puam)
+ 2A56(Frum bun bum + Gaim Binbom) (G on i) + Ao (Frumn bun Pum
+ GunPinbom)® —=2B11 (Fum bunbum) (E i o buom)
B3 {2 (Ewm®ion Prom) ( Grim Don Pom) 2 (E v buon biom) (Frum biin bum) }
= 2Bos (Enm @uon Piom) (Gum Pon bom) — B1a{4 (Enmn Pron iom) (Fum Gun )
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+ 2 (Fum bun Dum ™+ GrnBon o) (Enn bt bom) }

— Big {4 (Epnbuon iom) (Gumbondim) + 2 (Fo Gun bum

+ Goumbinbom) (Enm un Diom) } —4Be(Fron Pun bunm

+ Gum ®in®on) CEin Guon o) + D (B i P )®

+ 2D 15 (Epnuon brom) (Ern bion Puom) + Doz (E iy Guon bivn)*

+ 4D 16(E i buon buom) (En Dion Puom) +4 D6 (E s bion Grom) (Em Guom Diom)

+ 4D Eunlonon)*1 dadB =L 0 5 [ [ [(Fphnbun)®

+ (Gnm¢1fn¢vm)z + (Enmd)wnd)wm)2] da dB (11)
where ¢,=dd, /o, ¢, = d¢,,/3B, etc.

At this point in the solution for the natural frequencies and modal
shapes, the Rayleigh-Ritz method is applied by minimizing the energy
difference L. The partial differentials of the energy difference are now
taken with respect to the assumed modal shape constants E, F, and G, i.e.:

where k and £ represent the desired numbers of terms taken in the series
appearing in (10). In this investigation three terms in « and three terms
in B8 were used; thus, k,{=1,2,3.

With Equations (12), the stiffness and inertia matrices may be obtained.
For each equation the assumed modal shape coeflicients are collected and
separated into the following matrix form:

[S]—A[I]=0 (13)

where [S] is the stiffness matrix, {I] is the inertia matrix, and A=pho?

This gives a 27 x 27 stiffness matrix. The inertia matrix is composed of
three submatrices appearing on the diagonal only, with each submatrix
being a 3 x 3 matrix.

Having the stiffness and inertia matrices formed, the analysis reduces
to a standard eigenvalue problem. Since the Rayleigh-Ritz method was
used, the stiffness and inertia matrices are both symmetric. Therefore, the
eigenvalue problem is simplified somewhat and there are available com-
puter subroutines to obtain the eigenvalues A.

APPLICATION TO FULLY CLAMPED PLATES

In applying the Rayleigh-Ritz method, the approximate modal shapes
assumed must satisfy all of the kinematic boundary conditions. For a plate
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having all of its edges clamped, the boundary conditions are all kinematic
and can be expressed mathematically as follows:

u=v=0 at x=0,a and y=0,b 7
w=9w/ox=0 at x=0,a C{(14)
w=dw/dy =0 at y=20,b '

The approximate assumed modal functions selected to permit (10) to
satisfy (14) are as follows:

Gy - Sin 27na; bym = sin 27m B

by, = sin 27rna; Gy = sin 2pmp

¢ = cosh K, — cos K, — C,(sinh K, a — sin K, &)

¢um = cosh K,,8 — cos K,,8— C,(sinh K,,8 — sin K,, 8) (15)

where K,, K,, are clamped-beam function coefficients tabulated in [6].

The presence of the factor 2 in the arguments of du,, Gums Guons Gom
needs some explanation. If this factor had been omitted, there would be
net in-plane motion of the center of the plate for all odd values of n and
m. Such motion would not be consistent with the symmetry of the normal-
deflection modal shape and the boundary conditions; thus, the factor of 2
was used to eliminate the inconsistency. In [13], the factor of 2 was
omitted, and it was found that the differences between the results
obtained there and the present results were negligible.

NUMERICAL RESULTS

A computer program was written in FORTRAN IV language to solve
(13) using modal functions (15). The program is documented in [13].

Computations were carried out on an IBM System 360, Series 40 com-
puter for a series of rectangular plates clamped to dimensions a =9 in.
and b =6 in. and laminated of glass-fiber-reinforced plastic (GFRP). The
material properties used for each layer are listed in Table 1. The calcu-

Table 1. Properties for a Single Ply of GFRP*

Quantity Value
Major Young's modulus 2.695 x 10¢ psi
Minor Young's modulus 2.56 x 10¢ psi
Major Poisson’s ratio 0.242
Minor Poisson’s ratio 0.230
Shear modulus 0.6 x 10¢ psi*
Density 0.000197 Ib-sec?/in*
Thickness 0.0105 in.

*Style 909 fabric consisting of E glass fibers with S-320 finish, impregnated with 828 epoxy resin cured with curing
agent Z.

**Estimated value.
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lated natural frequencies for the first three axial and transverse modes are
listed in Table 2 for four different lamination arrangements: the first is
specially orthotropic, the second is generally orthotropic (i.e. plane
anisotropic), the third is layered specially orthotropic, and the fourth is
layered generally orthotropic (i.e. layered anisotropic).

Table 2. Resonant Frequencies in Hertz (Experimental Values in Parentheses)

Two-Layer, Parallel-Ply Oriented at 0°

m 1 2 3
n
1 101(112) 156 244
2 230 288 372
3 425(456) 480 563

Two-Layer, Parallel-Ply Oriented at 45°

m 1 2 3
n
1 95(104) 145 225
2 223 267 344
3 415(427) 460 527

Four-Layer, Cross-Ply, Top Two Layers at 0° & Bottom Two at 90°

m 1 2 3
n
1 190(193) 300 460
2 442 550 710
3 820(860) 925 1080

Four-Layer, Cross-Ply, Top Two Layers at 45° & Botfom Two at —45°

m 1 2 3
n
1 180(167) 280 430
2 425 512 660
3 795(860) 875 1005
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COMPARISON WITH EXPERIMENTAL RESULTS

The numbers in parentheses in Table 2 are the corresponding resonant
frequencies measured experimentally. The plates were clamped to a
rigid clamping fixture which was base excited by an electrodynamic
shaker. Resonance was determined by the peak amplitude response of a
small metallic-foil strain gage at the plate center. Considerable non-
linearity, i.e. increasing frequency with increasing excitation or response
amplitude, was observed. Details of the experiments, as well as an
approximate, nonlinear, specially orthotropic analysis, are presented in
Reference [14]. The resonant frequencies listed in Table 2 were deter-
mined by extrapolating the experimental frequency versus amplitude
curves to zero amplitude.

It is noted that the agreement between the present calculations and
the experimental results was quite good for the lowest mode (n=1,
m=1) but only fair for the third longitudinal mode (n =3, m=1). It was
somewhat surprising that the calculated results were generally lower than
the experimental ones, since the Rayleigh-Ritz method should give an
upper bound. Also transverse shear flexibility, interlaminar shear flexi-
bility, and rotatory inertia have all been neglected in the analysis and they
would all tend to lower the frequency. However, it is believed that the
discrepancy can be attributed to the low value estimated for the shear
modulus and used in the calculations.

The plates used in the experiments exhibited some initial curvature of
the cylindrical type (i.e. zero Gaussian curvature). However, in all cases,
the initial curvatures were uniform, i.e. they had a constant radius of
curvature. This would be expected, since this curvature was undoubtedly
temperature induced. To investigate analytically the effect of the
uniformly-distributed initial bending stresses (induced by flattening the
plates in the clamping fixture) on the natural frequencies, this effect was
added to the Rayleigh-Ritz analysis using the same clamped-clamped
beam functions as in the analysis already described. It was found that
under these conditions (fully clamped edges), the initial curvature had
no effect on the natural frequencies.

It should be mentioned that the use of a more highly anisotropic
composite material, such as boron or graphite reinforced composites,
would have demonstrated the bending-stretching coupling effect more
dramatically, as suggested in a recent paper by Whitney [15].

CONCLUSIONS
The Rayleigh-Ritz free vibrational analysis presented here is believed

to be sufficiently accurate for most engineering purposes for calculation of
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the natural frequencies of clamped rectangular panels consisting of arbi-
trarily laminated, thin, anisotropic layers.

APPENDIX A
EVALUATION OF THE MIXED
TRIGONOMETRIC-CHARACTERISTIC BEAM
FUNCTION INTEGRALS

This appendix is included for future solutions of the Rayleigh-Ritz formulation
for fully clamped rectangular plates, where the characteristic beam function [6]
for a fully clamped beam is used as the assumed modal function for the normal
deflection and simple trigonometric functions are used for the tangential dis-
placements; see Equations (15). When a simple trigonometric function and the
clamped beam function are used as assumed modal functions, the Rayleigh-Ritz
solution yields trigonometric-trigonometric, trigonometric-beam, and beam-beam
combinations of integrals. Trigonometric-trigonometric integrals are evaluated in
standard integral tables and the beam-beam type integrals were given by Felgar
[16]. However, for the combination of trigonometric and beam type integrals,
no published information could be found. Therefore, these integrals were evalu-
ated and are listed below, using the following notation:
¢y = trigonometric function of argument 2n7; ¢, = characteristic clamped beam
function of argument K,,; C,, = coefficient tabulated in [6].

fl Pun Dun da:
0

1
KT @na) {K, sinh K, sin 2n7 — 2nm cosh K,, cos 2nw + 2nw}

4 {cos 2nm+K,)—1 4

2(2nw + K,)

- (—2776)17"_—?1(2 {K, cosh K, sin 2n7 — 2n= sinh K, cos 2nm}

cos 2nm—K,;) —1
2(2n7m —K,)

2(2nm—K,) 2(2nm + K,)
1 bun d);vn da:
Jo

K
m {K, cosh K, sin 2n7 — 2nm sinh K, cos 2nzw}

ic {sin (2nw—K,) sin(2nm+ Kn)}

1K {sin Cnm —K,) sin{(2nm+K,)
"l 2(2n7 — K,) 2(2nm+ K,)

CnK, .
_ m {K, sinh K, sin 2n7 — 2n# cosh K, cos 2nw +2n7)

- Cn Kn {COS (2n7T+ K") —1 +

cos 2nmr—K,) —1
2(2n7w + K,)

2(2nm —K,,)
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[ bun i da
0

2
l(z——l—l(<§11—7r)_2 {K, sinh K, sin 2n7 — 2nx cosh K,, cos 2nm + 2nw}

2@2nw + K,) 2(2nm —K,)

C 2
+ K—i#é(rnl?)Z {K, cosh K, sin 2n7 —2nmx sinh K,, cos 2nw}

_ K%{cos @nr+K,) —1 . cos (2nm —K,) — 1}

—C. K2 {sin (2nm —K,) _sin @nm+K,)
" 2(2nw — K,) 2(2n7 + K,)

!01 (t"unqbu,n da:

2
(2—”% {K, sinh K, cos 2n7 + 2n7 cosh K, sin 2n7}
n

_ sin @nw + K,,) , sin 2n7 —K,)
2””{ 2@nr+ K,) | 2@nm—K,)

— (2—72”%6# {K, cosh K, cos 2nz + 2n sinh K,, sin 2n7 — K, }

cos (K, +2nm)—1 | cos (K,—2nmw) —1
—zmcn{ (K, +2nm) | 2(K,—2nm)

r¢h¢mdw
0

(2%2)72—13_"—10 {K, cosh K,, cos 2nm + 2n7 sinh K, sin 2n7 — K,;}

. cos (K,+2nm) —1 | cos{K,—2nm) —1
2““("{ 3(K, T 2nm) 3(K, —onm)

— l?_;k%%%? {K, sinh K, cos 2n7w + 2nm cosh K,, sin 2nw}

+2nmC, K, {sin (@nm+K,) |, sin (&nm—K,) }

2(2nw+ K,) 2(2nm — K,,)
1
! Bun o d e
[1]

2nqa K2
k?‘*&#)? {K,, sinh K, cos 2n7 + 2nm cosh K, sin 2nw}

4+ 9n 2 18in Cna 4+ K,) | sin @nwr — K,)
"K"{ 2@nn+ K, T 2Cnm —K,)
2nm C, K2

— =it L Ry

Cnayrr ke {K, cosh K, cos 2nm + 2nx sinh K, sin 2nmw — K, }

+ 99 K2 fcos (K, +2nm) =1 | cos (K, —2nw) — 1
”C"K"{ 2(K,+2nm) T 2(K,—2nm)
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NOMENCLATURE

= length and width of panel, respectively
= in-plane stiffness coefficients
= in-plane/flexural coupling coefficients
= clamped-beam function coeflicients tabulated in [6]
= flexural stiffness coefficients
= coefficients of terms in w, u, v, respectively
= plate thickness
= distance from midplane to outside edge of kth layer
= inertia matrix
= clamped-beam function eigenvalues tabulated in [6]
=V-T
stress couples and stress resultants, respectively
= modal numbers associated with the y, x directions
= number of layers
= kth-layer reduced elastic stiffness coefficients transformed to
the x, y directions
= stiffness matrix
= time
= kinetic and potential energy amplitudes
= amplitudes of the displacements in the x, y, z directions
= resultant velocity amplitude
= rectangular coordinates, measured from one corner of the mid-
plane of the plate, in the lengthwise, transverse, and normal
directions
=normalized values of x, y, respectively
=midplane strain components
= curvature components
= phe?
. = plate density
= assumed modal functions
= first and second derivatives of ¢ with respect to the argument
=resonant frequencies
=1,2,6

I

Superscripts (k) =kth layer.
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