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ABSTRACT 

 Biogeographic research has benefited from the digitizing of large databases 

derived from natural history collections and biological surveys.  These resources made 

available via the Internet can be accessed by biogeographers around the world to address 

a multitude of ecological and geographic questions.  Utilizing this data taps into hundreds 

of years of study and countless hours of research conducted by biologists across the 

globe.  This dissertation could not have been completed without the availability of  data 

collected by legions of researchers from museums, herbaria, and government agencies.  

By taking advantage of data collected by others, I was able to work at a geographic scale 

that would have been impossible had I gathered all my own data.   

 In chapter one, I use herbarium data to describe the temporal and spatial patterns 

of invasive and expansive species for the entire state of Oklahoma.  Because of the 

inherent bias in collections of natural history specimens.  I test techniques for eliminating 

temporal collecting bias: regression models and proportion curves.  I found that patterns 

of species invasion and expansion in Oklahoma could be detected using these techniques 

which were developed for regions with longer collecting plant histories.  The proportion 

curve analysis eliminated some biases inherent in herbarium data by reducing the effect 

of collecting effort.  Both the regression model and proportion curve analyses illustrate 

the temporal invasion patterns of alien, invasive species.  However, the native species did 

not show a clear expansion pattern. The information found in recently established 

herbaria may not be sensitive enough to detect the increase of abundance of native 

species. 
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 Currently species distribution modelling is one of the most popular methods of 

utilizing large, georeferenced, biological databases.  Chapter two is a brief review of the 

overabundant literature on species distribution modelling.  Topics covered are the 

theoretical basis for distribution modelling, species and predictor data, modelling 

techniques, model evaluation, and uses for predictive maps created by modelling. 

 Using survey data collected for the U.S. Fish and Wildlife Service, I apply species 

distribution modelling techniques to predict suitable habitat for the endangered American 

burying beetle (Nicrophorus americanus).  Using a suite of predictor variable thought to 

influence a burrowing insect, I built several models using a variety of modelling 

techniques.  The Maxent modelling algorithm performed the best.  However, being a 

generalist species, the suitable habitat for N. americanus was not well modelled.  Model 

performance could be improved by incorporating information on the cause of N. 

americanus’s endangered status and its population shrinkage.  To improve the models 

and consequently the recovery effort for the species, I need to take into account 

interactions including congener and vertebrate competition and a reduction in optimally 

sized prey.   Creating an accurate spatial layer of this data will be a future challenge.  My 

hope was to produce a map of potentially suitable habitat for N. americanus that would 

guide conservation efforts within the state of Oklahoma.  Although the model was not 

highly accurate, the map of suitable habitat can help to inform conservation biologists of 

areas that have suitable habitat for the N. americanus. 

In chapter four, I return to the invasive species theme by addressing the question 

of whether the introduced distribution of invasive species can be predicted from its native 

range.  I modelled the potential distribution within the United States of three alien 
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invasive species native to Europe using the Maxent modelling technique.  Using 

occurrence data from both the native (Europe) and introduced (US) ranges, I used 

reciprocal modelling to evaluate habitat discrepancies between the introduced and native 

ranges.  This modelling approach can help to determine which environmental factors 

within the introduced range are different from the native range and which habitats within 

the native range are not represented in the introduced range.  Further, reciprocal 

modelling can reveal potential problems with occurrence data and predictor variables in 

both native and introduced ranges, but it also has also been used to investigate ecological 

phenomena, such as niche shifts of invasive species in their introduced range.  The native 

occurrences in Europe accurately predicted the distribution within Europe; and 

introduced occurrences in the US accurately predicted the US distribution.  However, the 

reciprocal models did not perform well.  The explanations for the dissociated ranges of 

each species in Europe and US can possibly be related to the hypotheses postulated for 

invasive species success.  The characteristics that make a species invasive may be the 

cause of the species’ environmental range to be different in the native and introduced 

regions.  My aim was to see if we could use easily obtained data to model the potential 

areas of invasion within our state and use this information to assist conservation efforts 

such as early detection and rapid response.  My model results indicate that the occupied 

niches are too inconsistent between the native and introduced ranges to make models 

useful at the scale we are interested in.  Further modeling attempts will utilize more 

introduced occurrence data from areas within our region of the United States.  This will 

entail a more concerted effort to locate available data in the areas where the species may 

be expanding.    
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INTRODUCTION 
 

This dissertation began with an interest in utilizing for research the vast storehouse 

of data collected in the herbaria of Oklahoma, now digitized as the Oklahoma Vascular 

Plants Database (OVPD; Hoagland et al. 2009).  I wanted to explore biogeographic 

questions at the state level by mining the data collected by botanists over the past 100+ 

years.  My interest in invasive plants led me to chose my first dissertation problem - Can 

we use data in the OVPD to map the historic invasion of plants across Oklahoma?  And 

can we apply the same techniques to species that are native, but exhibit invasive behavior 

in response to human disturbance?  The results of my investigation into these questions 

make up the contents of Chapter 1. 

Having explored the historic spread of invasives, I was interested to see if we could 

predict the future distribution of invasive species that have not yet become well 

established in Oklahoma.  A recently developed and growing sub-field of biogeography - 

species distribution modelling - became an excellent tool to study the potential 

distribution of new invasive species.  Species distribution modelling (SDM) is currently 

the trendy line of research and the literature is extensive and rapidly growing.  Because of 

its relatively new status, there were few texts or articles that compile and review the 

literature when I began my research into SDM.  I conducted a review of the literature for 

my own use to better understand the background and proper use and interpretation of the 

models produced by these techniques (Chapter 2).  During the course of researching and 

writing the literature review, I thought it wise to introduce myself to SDM using a small 

data set that contained both presence and absence data.  Survey data for the American 

burying beetle were available and a model of its habitat preference would be useful for 
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conservation efforts within Oklahoma for this endangered species.   

I was lucky enough to attend the “Species Distribution Modeling Methods for 

Conservation Biologists” workshop hosted by the American Museum of Natural History 

and lead by Richard Pearson and Steven Phillips who have authored many articles on the 

topic.  At the workshop, I was inspired to take my invasive species modeling 

international and use the native range data to explore the potential range invasive species 

in a new area.  My intention was to use the result to help locate areas in Oklahoma that 

had the potential habitat for particular invasive species, but my results illustrate a not 

uncommon problem - species do not necessarily occupy the same climatic niche in their 

native and introduced ranges. 
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Can herbarium records be used to map alien species invasion  

and native species expansion over the past 100 years?  

 

Priscilla H. C. Crawford 1, * 

& Bruce W. Hoagland 1, 2 

 

1 Oklahoma Biological Survey, University of Oklahoma,  

111 E. Chesapeake St., Norman, OK 73019, USA;   

2 Department of Geography, University of Oklahoma,  

Norman, OK 73019, USA 

 

* Correspondence: Priscilla H. C. Crawford, Oklahoma Biological Survey,  

University of Oklahoma, 111 E. Chesapeake St., Norman, OK 73019, USA.  

E-mail: prill@ou.edu. 

 

 

formatted for submission to Journal of Biogeography  

(published in Vol 36: pg 651-661; doi: 10.1111/j.1365-2699.2008.02043.x) 

 



4 

Abstract 

Aim  To determine if the temporal and spatial pattern of alien plant invasion and native 

plant expansion can be observed using 100 years of herbarium data from Oklahoma, USA 

and to eliminate herbarium collection biases in such analyses. 

Location  Oklahoma, USA. 

Methods Using herbaria records from the Oklahoma Vascular Plants Database from 

1903 to 2004, we reconstructed the spatial and temporal collection history of two alien, 

invasive taxa (Lonicera japonica and Tamarix spp.) and three native, expansive species 

(Ambrosia psilostachya, Amphiachyris dracunculoides and Juniperus virginiana).  To 

compare the overall collecting trend, groups of native, non-expansive taxa were selected 

as counterparts.  We recorded the year of the first collection in each township in 

Oklahoma for all taxa.  The cumulative number of occupied townships was log-

transformed, plotted against time, and modelled with linear regression.  The slope of the 

linear regression represented collection trend over time for the non-expansive counterpart 

group.  However, for the invasive and  expansive species, the regression slope 

represented the collection effort plus invasion or expansion rate.  We calculated the 

proportion of invasive and expansive species to non-expansive species by dividing the 

cumulative number of townships for each invasive or expansive species by the 

cumulative number of townships occupied by the counterpart group (proportion curve). 

Results   Maps of the collection records of invasive and expansive taxa illustrated no 

discernable spatial invasion or expansion pattern.  The slopes of the linear regression for 

alien, invasive taxa were significantly steeper than those of their associated native, non-

expansive counterparts, indicating an increase in abundance.  Juniperus virginiana, L. 
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japonica and Tamarix spp. exhibited one or more periods during which they were 

collected at a disproportionately higher rate than their native, non-expansive counterparts.  

Main conclusions  Patterns of species invasion and expansion in Oklahoma were 

detected using techniques developed for regions with longer collecting plant histories.  

The proportion curve analysis eliminated some biases inherent in herbarium data by 

reducing the effect of collecting effort.  Both the regression model and proportion curve 

analyses illustrate the temporal invasion patterns of alien, invasive species.  The native 

species did not show a clear expansion pattern. The information found in recently 

established herbaria may not be sensitive enough to detect the increase of abundance of 

native species.  
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INTRODUCTION 

 Understanding the temporal and spatial dynamics of invasive and expansive species 

has become an important research topic for biogeographers, ecologists, weed scientists 

and conservation biologists.  To understand the geographic history of alien plant 

invasions and native plant expansions many researchers are turning to the vast 

storehouses of information associated with herbarium specimens.  Collections of alien 

plant species in herbaria around the world are being analysed to help ecologists recognize 

the spatio-temporal patterns of plant invasions (Stadler et al., 1998; Delisle et al., 2003; 

Woods et al., 2005; Wu et al., 2005; Barney, 2006; Chauvel et al., 2006; Fuentes et al., 

2008).  Herbaria are underutilized institutions that contain a large repository of historical 

and geographical information.  Pyšek, using European herbarium specimens, developed a 

technique to quantify invasion rate (Pyšek, 1991; Pyšek & Prach, 1993; Mihulka & 

Pyšek, 2001; Pyšek et al., 2003).  He used the term “invasion curve” to represent a 

regression model of the cumulative number of localities of an invasive plant plotted 

against the year of collection.  The slope of the regression was considered a 

quantification of the invasion rate (Pyšek & Prach, 1993).   

However, we must be cautious interpreting regression models calculated from 

herbarium data because of the non-random sampling bias inherent in plant collections.  

Few studies take into consideration the biased nature of natural history collections such 

as: unequal sampling effort over time, non-random geographic representation, poor 

location information, incorrect identification, and disproportionately represented taxa.  

Therefore, methods must be developed to remove such biases to reveal the true pattern of 

invasion.  Temporal variation in plant collection effort is apparent when the number of 
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herbarium specimens is plotted against year.  For example, in the herbaria of the state of 

Oklahoma, USA, the number of specimens collected per year since 1883 varies from zero 

to 6365, with a mean of 1752 per year (Hoagland et al., 2006).  The intensity of floristic 

inventory is therefore highly variable and should be taken into account when studying 

invasive species.  The increase in the number of specimens of an invasive species may 

indicate an increase in abundance, or simply may mean an increase in the overall 

collecting effort that year or decade. Mihulka & Pysek (2001), using data from herbaria 

across Europe, corrected for collection rate among countries to account for the variation 

in plant collecting intensity.   Delisle et al. (2003) also developed a method to account for 

the bias associated with temporal variation in plant collections in riparian areas of 

southern Québec, Canada.  They selected widespread, native, non-invasive species to 

provide a picture of collecting trends in the region.  In addition to comparing collection 

rates, they calculated the ratio of invasive and non-invasive plant records for each year, 

termed the “proportion curve” (Delisle et al., 2003).  If the proportion of invasive species 

collections increases over a period of time, this suggests that the invasive species 

increased in range or abundance.  This differs from Pyšek’s invasion curve, which 

evaluates the overall invasion rate of a species since its first collection and does not take 

into account specific time periods during which invasion may have occurred rapidly. 

 Pyšek also recognized that herbarium data had limitations and believed that a 

“strong, long-term florisitic tradition” in the region was important to produce reliable 

analysis of plant invasion (Pyšek & Prach, 1993).  Yet, Fuentes et al. (2008) in Chile, 

Woods et al. (2005) in Kansas, USA, Delisle et al. (2003) in Québec, Canada, and 

Stadler et al. (1998) in Kenya all produced analyses with data sets that were significantly 
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more recent than the several hundred years of data available in Europe.  In Kansas the 

earliest specimen was collected in 1869, while in Québec the earliest specimen was 

collected in 1820.  For Chile, Fuentes et al. (2008) only analysed the herbarium 

specimens collected since 1900.  In Kenya a few specimens were collected before 1940, 

but most were collected after 1960.  Wu et al. (2005) were concerned with the adequacy 

of using herbarium data to map the distribution of alien, invasive species because of their 

short-term history in Korea.  They studied Crotolaria species that had only been 

naturalized for 70 years.  Not all European studies have the benefit of a long-term data 

set.  Chauvel et al. (2006) examined the increase of North American Ambrosia species in 

France using only approximately 150 years of data.   

We were interested in testing these methods on herbarium data found in the 

Oklahoma Vascular Plants Database (OVPD), the repository for the plant collection data 

of the state of Oklahoma.  The OVPD represents slightly over 120 years of plant 

collecting, with the earliest specimen collected in 1883, though significant numbers of 

plant collections were not made until the 1910s (Hoagland et al., 2006).  Not only are we 

interested in applying these methods to truly invasive species, but are also interested in 

detecting the patterns of increase of native, expansive species.  Invasive taxa are alien 

species that have spread over a considerable area after introduction from another region 

by humans (Richardson et al., 2007).  Expansive species are native plants that are moving 

into new areas and increasing in abundance because of human-induced changes to the 

landscape.  Some of the expansive species are considered agricultural weeds, but some, 

especially in the Great Plains of North America, are woody species encroaching on 

grasslands.   In this paper, we address the following questions. (1) Will we be able to 
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detect the spatial and temporal invasion pattern of alien plants in Oklahoma using the 

relatively recent collecting history represented in the OVPD?  (2) Can we effectively 

eliminate regional and temporal biases using previously developed research methods? (3) 

Will these methods be suitable for illustrating expansion patterns of native, weedy plant 

species?  

 

MATERIALS AND METHODS 

We reconstructed the spatial and temporal collection history of: two alien, 

invasive taxa; three native, expansive species; and three native, non-expansive 

counterpart groups using records in the OVPD.  We chose taxa that are both alien and 

native to see if we would be able to detect a spatio-temporal pattern of increase from 

herbarium records. Nomenclature follows the PLANTS Database (USDA, NRCS, 2006). 

We selected four species and one genus that are considered “weeds” in the Great Plains 

(Stubbendieck et al., 1994; Southern Weed Science Society, 1998; Coppedge et al., 2002; 

Friedman et al., 2005; USDA, NRCS, 2006): Ambrosia psilostachya DC. (Asteraceae), 

Amphiachyris dracunculoides (DC.) Nutt. (Asteraceae), Juniperus virginiana L. 

(Cupressaceae), Lonicera japonica Thunb. (Caprifoliaceae), and Tamarix L. 

(Tamaricaceae).  Ambrosia psilostachya and A. dracunculoides are native to Oklahoma 

and are considered agricultural weeds (USDA, NRCS, 2006).  Juniperus virginiana is a 

woody species native to Oklahoma that is known to increase in abundance in grasslands 

in the absence of fire (Coppedge et al., 2002; USDA, NRCS, 2006).  Lonicera japonica 

and Tamarix are alien, invasive taxa that originated in Asia and Eurasia, respectively 

(USDA, NRCS, 2006).  Species of Tamarix known to occur in Oklahoma are T. 
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parviflora, T. ramosissima and T. chinensis (Tyrl et al., 2006).  We grouped all species of 

Tamarix for our analysis due to the difficulties in identification, current confusion in the 

taxonomy, and similar ecological functional roles.  

To compare the overall collecting trend, groups of non-expansive species native 

to Oklahoma were selected as counterparts for each invasive or expansive taxon.  Species 

chosen for counterpart groups were selected based on the following criteria: represented 

in the OVPD with at least 200 specimens; distribution similar to the invasive or 

expansive taxa; similar life form or habit; readily identifiable; and not taxonomically 

confusing.  We used a combination of several species to diminish possible collecting bias 

found in any particular species. 

The following species in the Asteraceae were assigned to the non-invasive 

counterpart group for A. dracunculoides and A. psilostachya:  Engelmannia peristenia 

(Raf.) Goodman & Lawson, Gaillardia pulchella Foug., Liatris squarrosa (L.) Michx., 

Pyrrhopappus grandiflorus (Nutt.) Nutt. and Ratibida columnifera (Nutt.) Woot. & 

Standl.  An effort was made to choose species within the same family, approximately the 

same size, and found in similar habitats. The following common, woody species were 

chosen as native, non-expansive counterparts for both J. virginiana and Tamarix spp.: 

Morus rubra L. (Moraceae), Prunus angustifolia Marsh. (Rosaceae), Rhus aromatica Ait. 

(Anacardiaceae) and Sapindus saponaria L. (Sapindaceae).  Similar to the invasive and 

expansive species to which they will be compared, these  woody species are large shrubs 

or small trees and are widely distributed throughout the study area.  We chose two 

congeneric species, Lonicera flava Sims and Lonicera sempervirens L., as native, non-

expansive counterparts for L. japonica. These were chosen based on similar taxonomy 
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(within the same genus), habit (vining perennials), habitat (woodland edges and 

fencerows), and distribution (eastern Oklahoma).  By comparing the temporal and spatial 

collection rates of invasive and expansive taxa to non-expansive taxa, we attempt to 

understand the general collecting trend so that attention could be drawn to the invasion 

and expansion history.  We hope to de-emphasize the general collecting trend of the 

native, non-expansive taxa from the collecting trend of invasive species to emphasize the 

increase in abundance over time of the invasive and expansive species.  

All specimen records for invasive and expansive species and their non-expansive, 

native counterpart groups were selected from the OVPD, which includes all plant 

collections from the following major herbaria: OKL, OKLA, TULS, OCLA, CSU, and 

DUR (for institution names and locations, see Holmgren & Holmgren, 2006; Hoagland et 

al., 2006).  At the time of this research, minor plant collections represented in the OVPD 

were from Oklahoma Panhandle State University at Goodwell and the University of 

Oklahoma Biological Station at Kingston.  In general, herbarium specimens have the 

following associated data: species name, location of collection, collector, collection date 

and collector’s collection number.  However, there is no standard label format or data 

requirements and many specimens lack even basic data.  The variable nature of 

information provided on herbarium specimen labels required the elimination of some 

specimens from our study.  First, specimens lacking specific collection date were 

removed from analysis.  Cultivated specimens were also removed from analysis. 

Specimens with unknown or imprecise location information were excluded from analysis.  

Specimens of the same species with identical collectors, collection dates, collection 

numbers and locations were considered duplicate records and treated as one collection. 
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Specimens in the resulting data set were georeferenced to township (93.3 km2) 

and mapped using ArcGIS 9.1 (ESRI®, Redlands, CA, USA).  Townships, established in 

Oklahoma during the Public Land Survey of 1871, are quadrangles approximately 6 

miles (9.66 km) on each side and contain 36 equal sections (Hoagland, 2006).  If not 

recorded, the township was determined by interpreting directions to collection location 

provided on the herbarium label.  The date and location of the first collection in each 

township was identified and the total number of townships in which the invasive and non-

invasive counterpart groups were found was calculated.  For a better comparison of the 

uneven sample sizes of the invasive and expansive species with their counterpart groups, 

we log-transformed (log10) the cumulative number of occupied townships.  Beginning 

with the first collection of the invasive or expansive taxa, the data were plotted against 

time, and linear regression models were calculated.  The slope of the linear regression 

model was used to quantify the collection and invasion or expansion rate of the taxa in 

this study.  The slope of the curve represented collection effort over time for the non-

invasive counterpart group and collection effort plus invasion rate for invasive species.  

The steeper the slope of the curve, the faster the rate of collection or invasion (Pyšek & 

Prach, 1993).  We then tested equality of the slopes of the regressions (Sokal & Rohlf, 

1995).  We also employed the method developed by Delisle et al. (2003) to compare the 

trend in general collecting of non-invasive species to the collection trend of invasive 

species because this method does not correct for the temporal variability of plant 

collections.  We calculated the proportion of invasive to non-invasive plant collections by 

dividing the cumulative number of townships for each invasive species by the cumulative 

number of townships occupied by the non-invasive counterpart group (proportional 



13 

curve).  This proportion illustrated in graphical format, the proportional curve, allowed us 

to examine collection rate during short time periods.     

 

RESULTS 

Herbarium specimens 

Following the removal of unusable and duplicate specimens, 3696 records 

remained for analysis (Table 1). Of those, township was recorded on the specimen label 

for 1103 records.  3114 were manually georeferenced.  Although the first specimen used 

in this analysis was collected in 1903, relatively few specimens of taxa of interest were 

collected in Oklahoma before 1935. 

Spatial and temporal distribution 

The native, non-expansive counterpart groups of woody species and Asteraceae 

taxa were found throughout Oklahoma and were not concentrated in any geographic 

region (Fig. 1a,c). The native, expansive taxa, A. dracunculoides, A. psilostachya and J. 

virginiana, also were not limited to a particular region of the state (Fig. 2a,b,c).  Lonicera 

collections, both native and alien, were generally restricted to the eastern half of 

Oklahoma (Fig. 1b, 2d).  Tamarix was found across Oklahoma with the exception of the 

south-eastern corner (Fig. 2e).   

The maps generated from specimen location information illustrated no discernable 

spatial invasion or expansion pattern by any of the invasive or expansive taxa; new 

localities in different regions of the state were collected simultaneously (Fig. 2).  The 

earliest collections of A. dracunculoides, A. psilostachya and J. virginiana were scattered 

across Oklahoma in a pattern that did not suggest an expansion front or radial expansion 
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pattern (Fig. 2a,b,c).  The first four collections of L. japonica were made in north-central 

Oklahoma in the 1930s (Fig. 2d).  However, subsequent collections were scattered 

throughout the eastern half of the state and did not follow a radial pattern of invasion.  

The first Tamarix collection was made in the centre of the state in 1910.  There was no 

apparent radial or linear (such as along a river corridor) invasion of Tamarix based on 

initial analysis of the early collections points (Fig. 2e).  The lack of evidence of an 

invasion front could indicate that the alien species were first introduced to the state in 

multiple locations. 

Invasion and expansion rates 

The linear regression models for the native, expansive species, A. dracunculoides, 

A. psilostachya, and J. virginiana, were not significantly steeper than the models of the 

associated non-invasive counterpart groups (P > 0.05; Fig. 3a,b,c).  The regression 

models for both the alien, invasive taxa, L. japonica and Tamarix, had significantly 

steeper slopes than the associated non-invasive counterparts (P < 0.01; Fig. 3d,e).  This 

indicates that the rate at which L. japonica and Tamarix have been collected over the last 

100 years has increased in comparison to the collection rate of their associated non-

invasive counterpart taxa.  The comparisons of the regressions of A. dracunculoides, A. 

psilostachya and J. virginiana to their native counterparts indicate that the collection 

rates of these species are not significantly different from the overall collection rate. 

 The proportion curve analysis indicates a time period during which for some of the 

invasive and expansive taxa were collected disproportionately more compared to their 

native counterpart group (Fig. 4). Juniperus virginiana shows a likely increase in 

abundance during the 1930s, but, interestingly, appears to decline from that period to the 
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present (Fig. 4c).  Lonicera japonica has a dramatic spike after its initial collection in the 

1930s and the proportion curve illustrates a steady increase in abundance relative to its 

native congeners since 1970 (Fig. 4d).  Tamarix also increased in abundance in the 1930s 

and shows a slight increase during the 1960s (Fig. 4e).  Neither A. dracunculoides nor A. 

psilostachya have proportion curves that illustrate remarkable expansion, with the 

exception of a small, short increase in the late 1930s by A. dracunculoides (Fig. 4a,b). 

 

DISCUSSION 

Regression models and proportion curves 

Generally, after the initial introduction of an invasive species, the pattern of 

invasion begins with a lag period of few collections followed by a period of rapid, 

exponential expansion.  Alien, invasive species recently studied in France (Chauvel, 

2006), Kenya (Stadler et al., 1998), Quebec (Delisle et al., 2003), and across Europe 

(Pyšek & Prach, 1993) and North America (Barney, 2006) follow this temporal invasion 

pattern.  Our data appear not to support a typical lag period because the short, flat portion 

of the curve at the beginning of the time period is also seen in the native, non-expansive 

taxa.  This suggests that the pattern is an artefact of collection history.  The absence of a 

true lag period may be the result of the OVPD not having records during this phase of the 

invasion.  The alien species in our study were both introduced to North America before 

many specimens in the OVPD were collected.  The lack of a lag phase may also be due to 

the generation time (time for the population to reproduce) of the alien species in our 

research.  Pyšek & Prach (1993) found that the generation time of riparian species 

affected the rate of invasion.  The shorter a species lifespan, the faster the invasion rate.  
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The alien species examined in our research are both long lived perennials, one a woody 

vine and the other a small tree/shrub.  Both Pyšek & Prach (1993) and Delisle et al. 

(2005) were working with species in riparian areas, a habitat type that may see a faster 

rate of invasion.  Water flow can be an important dispersal agent for both seed and 

vegetation fragments (Baker, 1974; Richardson et al., 2007).   

We found, in spite of the short and variable plant collecting history in Oklahoma, 

that the regression models indicate an invasion trend in the alien taxa (L. japonica and 

Tamarix).  Both regression models had steeper slopes than their non-invasive counterpart 

groups, signifying over the past 100 years that the cumulative number of townships 

occupied was increasing faster than the number of townships occupied by non-invasive 

species.  Delisle et al. (2003) found that four of the six invasive species in their study 

exhibited steeper slopes than their native counterpart groups.  The expansion trend was 

not clear for the native, expansive species that we studied.  This may be due to the nature 

of native, expansive species.  Native, expansive plants have presumably been present in 

the region since the arrival of Europeans in North America, but they increase in 

abundance over time, in response, mostly, to human disturbance.  In Oklahoma, this may 

be the result of a variety of factors, such as fire suppression, regrowth in abandoned 

fields, or intensive grazing.  By looking at native, expansive species, we are really 

looking at an increase in population abundance which differs greatly from alien plant 

invasion.  Attempting to use herbarium data to understand population dynamics of native 

species will be extremely difficult, if not impossible, due to the irregular nature of plant 

collecting and herbarium data. 
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 The proportion curves revealed temporal invasion and expansion patterns, but at a 

finer scale and therefore may better serve for analysis of data sets that cover a shorter 

time frame. Juniperus virginiana, L. japonica and Tamarix exhibited one or more periods 

during which they were collected at a disproportionately higher rate than their native, 

non-expansive counterparts (Fig. 4c,d,e).  Because the proportion curve of L. japonica 

shows an increase compared to that of the native congeners over the past 30 years until 

the present, we may hypothesize that L. japonica continues to invade new locations (Fig. 

4d). Juniperus virginiana’s proportion curve shows a significant increase in collections 

during the 1930s, but also has a steady decline for approximately the last 50 years.  These 

results contradict other studies that clearly demonstrate that J. virginiana has expanded 

into grasslands in Oklahoma over the past 50 years (Coppedge et al., 2002).  The 

differing results from the proportion curves of J. virginiana and L. japonica may be an 

indication of plant collector bias.  The continued collection of L. japonica above the rate 

of its native congeners is evidence of continued expansion of L. japonica into new 

locations.  Plant collectors are interested in collecting species new to an area or rare in a 

habitat.  The decline in J. virginiana collections with respect to other native woody 

species may be counterintuitive evidence of its increase in abundance.  Botanists 

generally have neglected to collect native species considered to be abundant weeds.  One 

of the most ubiquitous species in North America, Taraxacum officinale (common 

dandelion), has only 202 records in the 210,000 records of the OVPD (Hoagland et al., 

2006).  However, Woods et al. (2005) found that early collections of alien species in 

Kansas were extensive and were consistent with the overall collecting pattern for the 

state.  The possible lack of interest in collecting native “weedy” species makes analyses 
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such as ours more complicated.  While native, expansive species may be ignored, alien, 

invasive species may currently hold the interest of collectors who are trying to document 

their spread.  The increase of L. japonica and Tamarix specimens in the past decade 

signify the recent trend to identify and control alien, invasive species and may not 

necessarily signify an increase in their real-world abundance. 

Complications of herbarium data 

The relatively short history of plant collecting in Oklahoma is problematic when 

one wants to understand long-term trends in biogeography of the region especially the 

invasion history of alien species.  Pyšek & Prach (1993) believe that a long history of 

thorough plant collecting is necessary to produce reliable results.  Initial collecting of the 

Oklahoma flora began late, when some alien species had already been introduced.  Both 

L. japonica and Tamarix were introduced to North America in the early 1800s (Baum, 

1967; USDA, ARS, 1970), well before the first herbaria were established in Oklahoma.  

However, this study demonstrates that the data from herbarium specimens in Oklahoma 

are sufficient to demonstrate periods of invasion by alien taxa.  The history of plant 

collecting in Oklahoma may be too short for detailed analysis of spatial patterns and 

population increase of native, expansive species.  

The nature of herbarium records, which involves opportunistic and non-systematic 

plant collecting, makes analysis difficult because this type of data gathering introduces 

several biases.  Several historical events, beginning with the establishment of the state’s 

universities, influenced the temporal plant collecting pattern of the records in the OVPD.  

The geographic pattern of plant collecting is determined by the preference of the plant 

collector, not based on a systematic grid of the state, or stratified random sampling of 
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ecoregions.  Taxonomic bias, overrepresentation of certain groups of taxa, can be found 

in many collections.  All temporal, geographic, and taxonomic biases must be considered 

for one to be confident in the results obtained from herbarium data research.  Through 

various methods we made an effort to reduce the power of these biases to control our 

results.    

Maps of plant distributions made with records in the OVPD should give us a 

reasonably accurate picture of the current extent of a given species within Oklahoma.  

Wu et al. (2005) tested the adequacy of herbarium data to illustrate the distribution of 

alien taxa.  By comparing herbarium data with extensive field surveys, they found that 

herbarium records gave an accurate picture of the distribution and frequency of several 

species introduced into Korea during the last 70 years.  Plant distribution maps will be 

more accurate as the number of plant collections increases.  Therefore, the longer the 

history of plant collecting in the region, the better documented the flora, and the more 

comprehensive the herbarium collections.  The accumulation of specimens over 100 

years should provide a good illustration of species distribution.  Mapping the records 

from the earliest decades would be less likely to yield a reliable representation of species 

distribution because there simply are fewer specimens collected.  Attempting to discern a 

pattern of invasion over time using the somewhat sparse data prior to 1930 is unlikely to 

represent the true invasion history of a plant; instead, we merely document the “invasion” 

of Oklahoma by botanists.  Given the short history of the herbaria embodied in the 

OVPD, analysis of the change in species distribution over time can be misleading.  In 

reality, we did not find a spatial invasion pattern in the maps generated in our analysis.  

Neither of the alien taxa illustrates the pattern of species introduction and subsequent 
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exponential spread via a front or corridor.  This could indicate that the alien taxa were 

introduced prior to most collections in the OVPD or were introduced at multiple sites at 

approximately the same point in time.  Delisle et al. (2003) and Pyšek (1991) found 

invasive riparian species dispersing along river corridors, but our maps of Tamarix gave 

little indication that it was spreading up or down riparian zones.  We believe that Tamarix 

is almost certainly spreading along rivers in Oklahoma (DiTomaso, 1998); however, our 

data are not sufficiently sensitive, either temporally or geographically, to map the pattern.  

Baker (1974) described the typical North American invasion pattern to be scattered 

populations expanding to fill in absences between populations. Both the invasive alien 

and native expansive taxa in our study appear to follow this pattern. 

The geographic distribution of specimens collected in Oklahoma is not random, but 

instead follows a pattern correlated to population centres and botanically “interesting” 

areas.  More species have been collected in counties with institutes of higher education 

than in neighboring counties, though one would expect the flora to be similarly diverse 

(Hoagland et al., 2006).  Researchers in Kansas identified population centres as one of 

the problematic biases (Woods et al., 2005) and Iverson & Prasad (1998) actually took 

into account the number of botanists residing in a county when they modelled the 

diversity of the Illinois flora.  Locations of canyons, mountains, unique rock outcrops, 

and other topographically outstanding elements have lured botanists to collect many 

specimens to document their distinctive flora.  Counties with such features are 

overrepresented in the OVPD (Hoagland et al., 2006).      

Other biases can be found in collections.  Concentration on a particular group of 

plants will produce a taxonomic bias.  Many systematists deposit their collection of a 
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single genus or species in a herbarium.  Being knowledgeable of the region’s history can 

also be useful.  For example, certain prairie species may be overrepresented if they are 

part of roadside plantings organized by the Department of Transportation.  Small 

projects, such as these, maybe unknown and, alas, we cannot know all the nuances of bias 

in our data sets. 

 

CONCLUSIONS 

 One could argue that too many uncontrolled variables in herbarium data sets cause 

inaccurate representations of the historical biogeography of taxa.  Nonetheless, the 

techniques developed by other biogeographers to analyse patterns of species invasion and 

eliminate biases inherent in herbarium data have been successful, to a degree, in our 

research.  We deliberately chose taxa that are known to have increased in abundance and 

to be invasive in Oklahoma.  We found that the alien, invasive species demonstrate an 

invasion trend in both the regression model and proportion curve analyses.  However, the 

native species that have been labelled “expansive” did not show a clear expansion 

pattern.  The information found in herbaria, especially comparatively recently established 

herbaria, may not be sensitive enough to detect the increase of abundance of native 

species in response to human disturbance, for example.  Yet, herbaria are important 

storehouses of phytogeographic data.  Unfortunately they are threatened institutions; 

plant collecting in the U.S. is in decline (Prather et al., 2004), a trend confounded by a 

reduced interest in plant taxonomy (Wortley et al., 2002), and the elimination of herbaria 

at some universities in recent years.  Herbaria represent many decades of plant collecting, 

thousands of miles travelled, and countless man-hours of identification.  We hope 
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research such as ours will encourage others to take advantage of information gathered by 

the scores of botanists before us and to design novel techniques and new avenues of 

research utilizing herbarium records.   
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Table 1.  The number of townships in Oklahoma, USA occupied by select alien, invasive 

taxa1, native, expansive species2, and native, non-expansive counterpart groups3.  The 

total number of townships in Oklahoma is 2098.  Specimens were recorded in the 

Oklahoma Vascular Plants Database (OVPD), the repository for the plant collecting data 

of the state of Oklahoma.   * Specimens were removed from analysis if they could not be 

georeferenced, were missing collection year, were cultivated, or were duplicate 

collections. 

 
Total number 
of specimens 

in OVPD 

Number of 
specimens used 

in analysis* 

Number of 
townships in which 

taxa were found 

Year of first 
collection 

Ambrosia psilostachya2 240 201 140 1913 

Amphiachyris dracunculoides 2 277 236 168 1913 

Juniperus virginiana 2 603 466 236 1913 

Lonicera japonica1 121 103 75 1936 

Tamarix species1 398 297 178 1910 

Native, non-expansive 
Asteraceae3 1002 859 463 1903 

Native Lonicera species 3 283 231 103 1913 

Native, noninvasive woody3 1201 1003 555 1906 
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Figure 1. The spatial and temporal collection history of select native, non-expansive 

groups in Oklahoma, USA.  Occupied townships (9.66 x 9.66 km) are shaded based on 

the time period during which the first collection of that taxon was made.  Darker 

townships are the locations of the earliest plant records. 
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Figure 2. The spatial and temporal collection history of select alien, invasive and native, 

expansive taxa in Oklahoma, USA.  Occupied townships (9.66 x 9.66 km) are shaded 

based on the time period during which the first collection of that taxon was made.  Darker 

townships are the locations of the earliest plant records.
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Figure 3.  Invasion and expansion curves generated for select invasive and expansive taxa 

compared to the general collection trend of the native, non-expansive counterpart group.  

The slope of the linear regression represented collection trend over time for the non-

expansive counterpart group.  However, for the alien, invasive taxa and native, expansive 

species the regression slope represented the collection effort plus invasion or expansion 

rate.  All linear regressions were statistically significant (P < 0.001).  Regression pairs 

with * indicate slopes that differ significantly from each other (P < 0.01).
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Figure 4.  Proportion curves were calculated by dividing the cumulative number of 

townships in Oklahoma for each alien, invasive or native, expansive species by the 

cumulative number of townships occupied by the native, non-expansive counterpart 

group.  Periods of increase, indicated by the shading, occur when the invasive or 

expansive taxa was collected more often than would be expected from the general 

collecting trend.
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ecological and biogeographic questions:  

a review of the literature 
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INTRODUCTION 

Species distribution models (SDM) have become important tools for ecologists, 

biogeographers, conservation biologists, and restoration ecologists.  While much of the 

SDM literature focuses on testing existing techniques (for examples see: (Elith and others 

2006; Fielding and Bell 1997; Kadmon and others 2003; Meynard and Quinn 2007; 

Muñoz and Felicísimo 2004; Pearce and Boyce 2006; Segurado and Araújo 2004; 

Stockwell and Peterson 2002)), other researchers are using these tools for hypothesis 

generation or adding them to the suite of tools for conservation decision-makers.  Like 

other multivariate statistical analyses, SDMs attempt to reduce the number of potential 

variables in a data set to determine those that best explain a species’ distribution.  

Therefore, SDMs help to understand and possibly quantify the ecological requirements of 

a species (Box and others 1993; Costa and others 2007; Danks and Klein 2002; De'ath 

2002; De'ath and Fabricius 2000; Laurent and others 2004; Murphy and Lovett-Doust 

2007; Norris and others 2006).  It has been argued that SDMs, in fact, model the niche of 

the species (this will be discussed further in the next section).  However, a species’ 

distribution is not simply a result of the physical environment matching the ecological 

requirements of a species.  Evolutionary and historical factors also determine a species 

distribution and SDMs may illuminate the geographic or historical features that limit a 

species’ modern distribution (Anderson 2003; Camarero and others 2005; Van Mannen 

and others 2002).  If SDM results, based on ecological data, suggest a much wider 

distribution, what might be causing the limited distributions?  Further hypothesis testing 

may lead to an understanding of the dispersal barriers or historical situation that created 

the current, seemingly limited, distribution. 
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In this literature review, I cover the essential topics associated with SDMs.  First, I 

discuss the niche concept and the variety of theoretical interpretations of model output.  I 

then consider issues associated with data, both species occurrence data and environmental 

data, that are generally used to build SDMs.  Of course, there are a multitude of 

modelling techniques, a few of which I briefly describe and compare.  Model comparison 

can be performed using a variety of methods that I summarize.  Finally, I discuss the 

current challenges facing modelers and outline some potential improvements to this field 

of inquiry. 

Species distribution modelling has proven useful for locating populations of rare, 

endangered, or even undiscovered species (Pearson and others 2007; Peppler-Lisbach and 

Schräder 2004).  Although not widely published in the scientific literature, many 

biologists associated with state agencies are using SDMs to find populations of rare or 

endangered taxa and plant communities (Fertig and others 1998).  For example, Natural 

Heritage Programs, which maintain spatial data of the occurrence of rare and endangered 

species at state and regional scales, have begun to apply SDMs for locating populations 

of rare species.  The Wyoming Natural Diversity Database has successfully used SDMs 

to locate several new populations of pygmy rabbit in areas where experienced biologists 

did not expect to find the species or seriously consider as suitable locations (Beauvais and 

others 2004).  The Oregon Natural Heritage Information Center biologists found nine 

new locations of grassy balds, a rare plant community, with information from only 35 

original locations (Buechling and Tobalske 2007) allowing them to make more informed 

conservation recommendations.  In relatively little known areas, researchers are using 

SDMs of related taxa to find rare and even undiscovered species.   Surrogate taxa are 
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modelled with the expectation that similar species will have similar ecological 

requirements (Römermann and others 2007).  New reptile species have been found in 

Madagascar using this modelling approach (Raxworthy and others 2003). 

Locating new populations of rare species is just one conservation application of  

SDMs.  Models have been used to help identify sites of high potential biotic diversity 

(Cowling and Samways 1994; Ferrier and Guisan 2006; Iverson and Prasad 1998a; Lira-

Noriega and others 2007; Ortega-Huerta and Peterson 2004; ter Steege and others 2003).  

These model results can help to identify sites for land conservation or nature reserve 

systems (Danks and Klein 2002; Ortega-Huerta and Peterson 2004; Rodríguez and others 

2007; Tole 2006).  Making important conservation decisions based on species 

distribution models must be done with caution.  Size of data set, bias in the data, and gaps 

in data coverage will affect the quality of the results (Hopkins 2007; Loiselle and others 

2007; Stockwell and Peterson 2002; ter Steege and others 2003; Vaughan and Ormerod 

2003).  Model choice and even how the model is evaluated will determine the type and 

degree of error significantly affect results (Loiselle and others 2003; Pearson and others 

2006).   

Conservation biologists also are using SDMs to identify specific locations that are 

best suited for species reintroduction or translocation (Carey and Brown 1994).  In 

chapter 3 of this dissertation, I use SDMs to create a map of habitat suitability for the 

American burying beetle.  I expect these results will not only contribute to a better 

understanding of the ecological requirements and species distribution, but also be used by 

the U.S. Fish and Wildlife Service to determine the best locations for beetle translocation 

from road or pipeline construction sites. 
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Alien species invasion can also be explored with SDMs.  When species are 

introduced into a new region by humans they are transported over evolutionary and 

biogeographic time and space.  Having overcome dispersal barriers, these species attempt 

to carve out an ecological niche in a new region.  Many alien species are currently in the 

process of invading a new region and have not reached their full potential (Peterson and 

others 2003; Peterson and Vieglais 2001; Welk and others 2002).  By projecting the 

ecological requirements from the home range on the newly invaded region, the models 

can predict the potential extent of invasion in the new region (Anderson and others 2006; 

Collingham and others 2000; Hulme 2003; Peterson 2003; Peterson and Nakazawa 2007; 

Peterson and others 2003; Peterson and Vieglais 2001; Robertson and others 2001; Welk 

and others 2002; Zhu and others 2007).  In chapter 4 of this dissertation, I attempt to 

model invasive species distribution using native and introduced range data.  SDMs may 

also be able to predict what species are likely to become invasive before they have ever 

been introduced to a new region (Nyári and others 2006).  Because of the potential 

economic and ecological impact of alien species invasion, many researchers are exploring 

the use of SDMs to help in the fight against invasive species (Dark 2004; Lippitt and 

others 2008). 

Finally, the hottest topic in an already fiery field is using SDMs to predict future 

suitable habitat in the face of global climate change.  Researchers build models with 

species current distributions under current climate conditions, then alter climate data to 

reflect various climate change scenarios and project the resulting hypothesized 

distributions (Araújo and Luoto 2007; Araújo and Pearson 2005; Araújo and others 

2005a; Araújo and Rahbek 2006; Carey and Brown 1994; Iverson and Prasad 1998b; 
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Oberhauser and Peterson 2003; Papes 2007; Pearson and Dawson 2003; Pearson and 

others 2006; Thuiller and others 2005a; Thuiller and others 2005b).  There are many 

complicating factors that affect the results of these models.  Like all models, they can be 

significantly affected by the model algorithm, model assumptions, parameterization of 

the model, and the geographic range of the data, but the added uncertainty of climate 

models confounds the errors in the prediction (Araújo and others 2005b; Davis and others 

1998).  In addition, because these models are predicting future distributions based on 

potential climate change, model evaluation becomes problematic.  In their review of 

distribution models based on future global warming, Botkin and others (2007) found that 

few of the models were evaluated and none were able to validate the model with 

independent data.  Validation with a truly independent data set may be impossible 

(Araújo and others 2005a).  However, work continues to improve the model output and 

model forecasts (Araújo and Luoto 2007; Araújo and New 2007).    

 

NICHE CONCEPTS 

In the SDM literature one can find varying opinions on the terminology and the 

most appropriate definitions of model outcomes, but at their theoretical base, SDMs rely 

on the niche concept.  In fact, modelers cannot even agree on what to call these models: 

species distribution models, potential habitat models, climate envelope models, or 

ecological niche models, for example.  However, there is no clear, uniform definition for 

niche in the discipline of ecology.  Researchers continue to argue over theoretical 

semantics in using “niche” to explain the output of correlative, descriptive models.  Most 

authors in the SDM literature use, or at least imply, the basic niche definition put forth by 
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Hutchinson (1957) where the niche is a multidimensional space in which the many axes 

represent gradients of variables that limit an organism’s or population’s fitness (as cited 

in (Olding-Smee and others 2003)).  The niche concept attempts to explain species 

abundance patterns along multiple environmental gradients.  Hutchinson distinguished 

between the fundamental and realized niche.  The fundamental niche represents the 

theoretical space occupied by a species in which the combination of all relevant 

environmental variables allow the species to survive and reproduce.  However, the 

general interpretation of the fundamental niche does not include biotic interactions, in 

particular interspecific competition.  Therefore, it was necessary to define the realized 

niche as a portion of the fundamental niche where the species is competitively dominant 

and can successfully reproduce. 

Pulliam (2000) put forth several theoretical niche or distribution relationships.  He 

proposed the following four possible scenarios: 

1. Grinellian niche, or Hutchinson’s fundamental niche — species will occur where the 

environmental variables are suitable. 

2. Hutchinson’s realized niche — a subset of the fundamental niche where it is limited 

by interspecific competition or other biotic interactions. 

3. Source-sink dynamics — species may be found in locations that will not support 

reproduction, based on metapopulation theory (the study of the interactions of 

populations separated in geographic space). 

4. Dispersal limitation — also related to metapopulation dynamics, suggests that species 

are absent from suitable habitat because of limitations in organism dispersal and the 
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time needed to establish a successful reproductive population in fitting habitat 

patches. 

The niche or distribution of an individual species may be described with any of these 

theoretical frameworks.  Knowledge of the environmental and physiological limitations 

of a species will improve the outcome of a distribution model because model choice and 

model parameters will have direct ecological meaning. 

The source–sink scenario is one concept that is not often incorporated in 

distribution modelling.  In general, it is not known if a record of presence in the data set 

is from a source or sink population.  When recording species presence, especially a rare 

species, it is very difficult to know if you are collecting data from a self sustaining 

population.  It is likely that data sets acquired from opportunistically collected records 

(records not collected as part of a methodical research study) contain observations of 

individuals from sink populations.  Therefore, most models are built on data that do not 

represent the true niche, fundamental or realized, because data come from locations that 

may not allow for successful reproduction.  Logically, the models constructed on these 

data should not be called “niche” models (Araújo and Guisan 2006; Kearney 2006). 

Soberón and Peterson (2005) argue that the data set entered into the model is the 

spatial representation of the fundamental niche because the observations are correlated to 

abiotic variables and, therefore, they argue that these modelling techniques should be 

called niche models rather than distribution models.  They contend that the distribution of 

a species is a “complex expression of its ecology and evolutionary history.”  They assert 

that the modelling algorithms produce an estimate of the fundamental niche, which is 

more imprecise than a species distribution.  The true distribution of a species, they 
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reason, includes in its concept the limitations of the species due to dispersal/migration 

and the evolutionary capacity of a population to adapt to new environments.  Both 

Kearney (2006) and Guisan and Thuiller (2005) strongly disagree with Soberón and 

Peterson (2005) and argue that correlative distribution models do not represent the 

fundamental niche of an organism.  They hold that Soberón and Peterson (2005) are not 

taking into account that the observational data are already constrained by biotic factors.  

They assert that only mechanistic models based on direct measurements of physiology or 

behavior can produce the fundamental niche, any use of observational data are, in effect, 

reflecting the realized niche.   

Araújo and Guisan (2006) want to dismiss any use of the formal definition of niche 

with respect to distribution modelling.  They suggest that ignoring biotic interactions 

when defining the fundamental niche is incorrect.  They believe that even Hutchinson 

recognized that positive biotic interactions influenced the fundamental niche.  They quote 

Hutchinson’s (1957) concluding remarks to support this argument: 

… all variables, both physical and biological, being considered, the 
fundamental niche of any species will completely define its ecological 
properties. 
…Interaction of any of the considered species [defining the realized niche] is 
regarded as competitive…All species other than those under consideration are 
regarded as part of the coordinate system. 
 

They interpret Hutchinson’s statements to mean that biotic interactions other than 

competition, such as pollination or parasitic relationships, should be included in the 

multidimensional space that defines the fundamental niche.  They support Leibold’s 

(1995) updated niche definition which combines Hutchinson’s realized niche concept, but 

also adds the impact of organisms on their environment. 
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Not only are organisms affected by the environment, but the organisms themselves 

also can modify their environment.  This concept is not routinely considered in 

distribution modelling.  Elton (1939), MacArthur (1967), and Leibold (1995) support the 

resource-consumer or trophic level niche ideas that place an emphasis on the organism’s 

role or function within the environment.  Laland and others (1999) extend the concept 

further by describing how the evolutionary process can be affected by “niche 

construction.”  Niche construction occurs when organisms reshape both the abiotic and 

biotic relationships that determine their niche.  This modification causes feedbacks that 

alters the pressures of natural selection and consequently the dynamics of the 

evolutionary process. While theoretically compelling, the niche construction hypothesis 

is too complex to be integrated into today’s distribution models.  Also, the scale at which 

an organism changes the environment is usually very fine, which may excuse this concept 

from applications in very large scale (continental or regional) distribution modelling.  

Both Kearney (2006) and Araújo and Guisan (2006) endorse the term “habitat” to 

describe output of the SDMs.  Kearney maintains that the term niche implies that we 

understand and take into account the behavioral, morphological, and physiological 

properties of a species.  He believes it is more appropriate to characterize the output of 

correlative models, which do not imply cause and effect, as potential habitat maps thus 

emphasizing the descriptive nature of these modelling techniques and discouraging 

possible misuse.  He also advocates reserving the term “niche” for situations that truly 

describe the direct effect of the environment on fitness or potential for reproduction of a 

population, such as in the mechanistic models.  Araújo and Guisan (2006) also 

recommend using the phrase “potential geographic distribution” with modelling 
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techniques that have a definite spatial aspect and model results and output is projected in 

a map format. 

 A sophisticated argument on the ecological theory behind SDM may not 

necessarily be important, however.  What is important is trying to decide what occurrence 

data really represent.  That is where biological expertise comes into action.  The 

algorithm is used to find areas that are most similar to the occurrence data.  The 

environmental data used to predict the distribution will also help to determine if the 

model represents the realized or fundamental niche or simply suitable climatic conditions.  

However, the use of niche seems to imply that the observational data represent 

occurrence data from individuals within their realized niche where they can successfully 

reproduce, which may not always be the case (i.e. sink populations or individuals caught 

during dispersal).  The arguments for using the terms “habitat” or “distribution” 

modelling have won over this author.  For the purposes of this dissertation and my 

subsequent research depending on the context, I will continue to use the phrase 

“distribution modelling” or suitable “habitat.” 

 

MODEL TRAINING DATA 

Bias and completeness 

Species observations, or training data, are the most important component of SDM.  

Without a high quality data set of sufficient size and scope, you can expect great error in 

model output.  The greatest difficulties with SDMs result from assumptions associated 

with the model techniques and the actual characteristics of the observational data set.  

Parametric procedures require a random sample of unbiased, independent observations.  
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However, these features are rarely found in data sets used in distribution modelling, 

because almost none of the data have been collected for the purpose of spatial modelling.  

Thus the methods used to analyze the data must take into consideration the unfavorable 

characteristics of the data, such as geographic bias or uneven sampling effort.  Bias is 

represented in data sets in many ways depending upon the specific methods of data 

gathering (Barry and Elith 2006).   

Several groups of researchers have tested biased data in models to explore the 

effect each type of bias has on model output.  Kadmon and colleagues (2004) were 

concerned that roadside bias in observational data sets of woody plants would affect the 

results of models relating species to climate variables.  They found, for Israel at least, that 

roadside observations and the road network did not have a climatic correlation.  

However, Canadian breeding bird survey data, which are based on road transects, were 

significantly biased with most points occurring in the south, thus over-representing 

warmer climates (Phillips and others 2009).  Some roadside observations are very likely 

to have some environmental bias beyond climatic related variables, such as 

disproportionately representing disturbed or fencerow habitat.  Models built with 

predictor variables other than climatic are likely to be affected by roadside bias.  Loiselle 

and colleagues (2007) were concerned that underlying climate bias in herbarium data 

may be influencing model predictions.  In the Neotropics, they found an increase in the 

number of plant collections within specific ranges of several climate gradients.  

Fortunately, they found that this bias did not greatly impact the model output.  Instead, 

they found the greatest factor in model performance to be the number of observations in 

the training data.  Hortal and others (2007) found that large databases for well sampled 



47 

areas still have gaps and biases that affect model performance.  Their work concerned the 

diversity of seed-plants in Tenerif, Canary Islands.  They recommend assessing the 

completeness of a database with respect to the environmental variables used in the model 

building.   

The principal source of bias in the training data is that observations are not spread 

evenly across the environment gradients on which the predictions are based, but it has 

been shown that stratifying the samples can improve model performance (Barry and Elith 

2006; Vaughan and Ormerod 2003).  If a data set is biased to one end of an 

environmental gradient, then this may lead to spurious relationships between prediction 

and response variables.  To counter this affect, Araújo and Guisan (2006) suggest that 

subsampling observations may improve the quality of the data set.  They suggest 

reducing identified bias by removing selected observations in the over-represented 

environmental space.  However, this can result in a reduction of data points, which are 

highly valuable in model building.  They also recommend additional stratified sampling 

based on the areas that are not well represented in the observation data set (Araújo and 

Guisan 2006). 

Sample size, the number of observations used to train the model, appears to be the 

most important factor, after data accuracy, in model performance.  All modelling 

techniques benefit from additional training data and suffer when training data are limited 

(Hernandez and others 2006; Loiselle and others 2007; Stockwell and Peterson 2002).  

The size of the data set necessary to accurately model a species distribution will be 

relative to the complexity of the species-environment relationship (Barry and Elith 2006).  

Researchers have had the greatest success modelling species with specialized or specific 
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ecological requirements (Brotons and others 2004).  Hernandez and colleagues (2006) 

were able to produce useful models with as few as 10 positive observations of a wide 

variety of animal species with specialized ecological requirements.  Success with such a 

small data set could be a result of the researchers understanding the species’ ecological 

requirements and a relatively simple relationship between the species and the 

environment.  In generalist species, where the species can tolerate a wide range of 

environmental gradients in a variety of combinations, models are more mathematically 

complex and may not perform well (Brotons and others 2004).  The smaller the training 

data set, the fewer the number of predictor variables that can used in the model building 

(Burnham and Anderson 2002).    

Small data sets are typical of rare or poorly known species and in areas that have 

not been intensively surveyed.  One purpose of modelling these species is to identify 

areas of potential habitat to focus further research.  Surrogate taxa can be used to model 

the potential distribution of species that have very few recorded observations (Rushton 

and others 2004). Also, a survey of landowners for the presence of a conspicuous species 

may stand in for traditional occurrence data in areas that have had few inventories by 

biologists (Vaughan and Ormerod 2003). 

 

Pseudo-absences 

One of the short comings of both natural history collections and bird survey data is 

the lack of reliable absence data.  Absence data are necessary for many of the older 

modelling techniques.  Because many observation data sets are lacking absence records, 

pseudo-absences are generated and used in model building.  Pseudo-absences, also 
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known as background data, often are placed at random onto the study area (Stockwell and 

Peters 1999).  However, an alternative to simply using randomly generated pseudo-

absences is to limit their placement to areas where they are unlikely to be found.  

Chefaoui and Lobo (2008), working with a threatened, endemic moth, used presence-only 

modelling techniques to identify unsuitable habitats in which to focus the generation of 

pseudo-absences.  They found that Generalized Linear Models performed better with 

expertly selected pseudo-absences than with the randomly chosen pseudo-absences.  

Lütolf and colleagues (2006) tested several approaches to generate pseudo-absence data 

for three butterfly species. They tried placing pseudo-absences in areas that had no 

observations of the model species or no records for species with similar habitat 

preferences generated the best models.  Both techniques relied on preliminary model 

building from which to decide pseudo-absence locations.  This may confound the 

subsequent models because both models take advantage of the same training data set.  

Also, using non-random pseudo-absences may over-fit the model to the training data, 

which will increase accuracy with the training data, but reduce transferability to 

independent data (Chefaoui and Lobo 2008).  Another strategy they tested was to assume 

that areas with high numbers of butterfly records have been relatively thoroughly 

searched for butterfly species.  Therefore, if there was no record for the butterfly species 

modelled in highly surveyed areas, then it is likely absent.  Surprisingly, this hypothesis 

was not supported.  Models made with pseudo-absence data based on this hypothesis 

performed poorly, in fact more poorly than models built on randomly generated pseudo-

absence data (Lütolf and others 2006).  
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Old data are routinely removed from spatial analysis because it is assumed that they 

may represent environmental conditions that are no longer present and/or reflect past 

distribution patterns prior to the influence of anthropogenic land cover and land use and 

climate change (Raxworthy and others 2003).  Also, older data tend not be accurate in 

location description (Rowe 2005). Yet, results from Lütolf and colleagues (2006) indicate 

that older data may improve model predictions.  They found that when 100 year-old data 

were removed, a model’s ability to predict present day occurrences significantly 

decreased. 

 

Spatial Autocorrelation 

Spatial autocorrelation exists when the value of a data point is more or less similar 

to the values of nearby data points than would be expected from a random distribution 

(Legendre 1993).  Spatial autocorrelation is an assessment of the relationship of a 

variable to its spatial location.  Spatial autocorrelation can be positive or negative; 

positive when points with similar values appear together spatially and negative when 

values are dissimilar (Legendre 1993).  Generally, we encounter positive spatial 

autocorrelation in ecological data.  Most ecological data have a spatial structure and the 

distribution of a species is neither uniform nor random; and the same can be said for 

environmental data (Henebry and Merchant 2002).  The spatial patterns most often seen 

are patches or gradients.  These patterns are often generated by multiple environmental 

and ecological factors. 

Data that exhibit spatial autocorrelation should not be used in classical statistical 

tests because the data points are not independent observations (Beale and others 2007; 
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Legendre 1993; Legendre and others 2002; Lennon 2000).  Most statistical tests are based 

on the assumption that data points, or observations, are independent (Gotelli and Ellison 

2004).  However, we can no longer make that assumption when the values of neighboring 

data points are interrelated.  Lennon (2000) found that when spatial autocorrelation was 

not corrected the variables with high spatial autocorrelation were more likely to be 

“significant” in classical statistical tests.  Spatial autocorrelation, a form of 

pseudoreplication, can lead to an overestimation of sample size and an inflation of 

statistical significance of correlations.  For example, to improve model performance by 

increasing the sample size of a 10 point data set a researcher may collect 10 new points, 

each adjacent to one of the original 10.  Although there are now 20 data points, they are 

not spatially independent.  By using n = 20, the degrees of freedom will be overestimated, 

inaccurate p values will be calculated, and the standard errors of the correlation 

coefficients will be underestimated.  This results in an increase in type I error, rejecting 

the null hypothesis, and assigning a false positive (Gotelli and Ellison 2004; Legendre 

and others 2002; Liebhold and Sharov 1998).  

Spatial autocorrelation can be quantified by calculating Moran’s I, which is based 

on the residuals of a regression analysis (Gotelli and Ellison 2004).  The “I coefficient” 

compares the expected value and variance of spatially defined points and determines the 

number of pairs that have a spatial relationship.  The values for Moran’s I range from -1 

to 1; values close to 1 indicate positive spatial autocorrelation and negative values a 

negative spatial autocorrelation.  A value not statistically different from 0 means there is 

no spatial autocorrelation (Liebhold and Gurevitch 2002; Liebhold and Sharov 1998).   
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Once the degree of spatial autocorrelation has been determined, one must decide 

how to correct it.  One simple, but imperfect, technique is to remove data to increase the 

separation distance of clustered points (Guisan and others 2006).  For this method, points 

are assigned a buffer based on the species’ biology and autecology that often represents 

an individual’s home range.  Buffers that overlap could be considered observations of the 

same individual.  Data points are then removed until there are no overlapping buffers.  

This usually reduces spatial autocorrelation but also discards potentially valuable 

information.  Accurate ecological information can be costly to obtain and discarding it 

could be considered wasteful.   

The use of spatial autoregressive models can help eliminate the spatial 

autocorrelation effect within the data (Carl and Kühn 2007; Dark 2004; Lichstein and 

others 2002; Segurado and Araújo 2004).  The use of spatially explicit models is more 

advantageous than throwing away data and will generate fewer errors in spatially 

autocorrelated data sets than classical statistical techniques such as regression models.  

Normally distributed data perform well in autoregressive models, but much of the 

occurrence data are presence-absence and not abundance, therefore a binary distribution.  

Carl and Kühn (2007) were able to remove spatial autocorrelation affects found in binary 

(presence-absence) data by using the generalized estimating equation model, a lesser-

known method.  Classification tree analyses appear to perform better with spatially 

autocorrelated data as well.  Segurado and others (2006) and Cablk and others (2002) 

tested the effect of spatial autocorrelation in distribution models, and found in spite of 

autocorrelation in the original data, classification trees accurately modelled correlative 

relationships between species richness and several environmental variables.  Legendre 
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and others (2002) employed Dutilleul’s modified t-test, which corrects for variance of the 

test statistic and degrees of freedom in response to spatial autocorrelation, and found it to 

effectively correct for spatial autocorrelation.  

Hawkins and others (2007) suggest that spatial autocorrelation may not be a factor 

in analyses of very large scale data.  They found that statistical analysis was not affected 

by the spatial autocorrelation of gridded data on a continent scale.  Using ordinary least 

squares regression (OLS), they tested the assumption that spatial autocorrelation would 

significantly affect the OLS coefficients of data taken from 110 x 110 km cells across 

several continents.  Moran’s I indicated spatial autocorrelation at relatively short-

distances (approximately 750-1500 km) given the geographic distances sampled (4500-

9000 km).  However, the OLS coefficients appeared to be unaffected by spatial 

autocorrelation (Hawkins and others 2007). 

We expect environmental data to have spatial autocorrelation.  Although this poses 

potential statistical difficulties, we can also use it as an opportunity to identify the 

significance and understand the basis of the spatial patterns of the data. 

 

PREDICTOR DATA 

Environmental predictor variables fall into two major groups: indirect and direct.  

Direct variables are elements of the environment that directly affect the distribution of a 

species.  Direct variables often have a physiological influence on the species (Austin 

2002).  For plants, direct variables would include: soil nutrients, solar radiation, 

precipitation, and days under 0°C.  For animals, some examples of direct variables are: 

nesting sites, host plants, water temperature, and vegetation height.  Indirect variables do 
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not have a physiological affect, instead they are correlated to an environmental factor that 

directly impacts the species.  For instance, altitude, longitude, or mean annual 

temperature do not directly limit species distribution, but instead it is their correlation 

with night time temperature, precipitation gradient, or evapotranspiration (respectively) 

that is the direct cause (Austin 2002; Korner 2007; Vaughan and Ormerod 2003).  When 

direct variables are not easily measured, indirect variables are used as surrogates and 

integrated in the model.   

Although predictor variables must contain some amount of error, few researchers 

acknowledge error and attempt to correct for it (Barry and Elith 2006).  Error, or 

inaccuracy, can be a product of the nature of the data layer.  For example, ecotones 

between the vegetation types are rarely classified.  Ecotones blur the lines between 

vegetation types and create fuzzy boundaries.  However, much vegetation classification 

data were originally digitized into distinct categorical polygons.  The blurred line 

representing the transition from forest to grassland is not easily represented in the GIS.   

Transferability of the model will be compromised if error in environmental data 

influenced the original model building, because error in environmental variables may 

have a greater effect when applied to a new area.  A new area to which the model is 

applied may not have the same degree of error and the model will perform poorly in the 

new situation (Barry and Elith 2006).  Rowe (2005) found that the quality of the 

georeferencing of historic specimens can significantly affect the attribution of the 

environmental data.  The accuracy of recently georeferenced records is quite good due to 

the widespread use of GPS units.  However, many natural history collection records must 

be assigned coordinates based on textual descriptions of the location found on the 
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specimen label.  Rowe (2005) calculated an accuracy buffer for all occurrence points 

based on the specificity of the location description.  She plotted the points and buffers on 

a digital elevation model (DEM) to determine the potential inaccuracy that is transferred 

during elevation attribution.  She found over 50% of the mammal collections in Utah 

could have elevation errors of over 400 m due to the lack of precision in georeferenced 

specimens.   

The quality and accuracy of the DEM itself is an important factor in species 

distribution models (Barry and Elith 2006).  While DEMs, at large scales, are quite 

accurate, they may be inaccurate at local scales. The errors within a DEM can be 

attributed to several causes.  In particular, interpolation of digitized contour lines from 

topographic maps introduces error into the DEM which compounds errors inherent in the 

original data source and the digitizing process itself (Barry and Elith 2006).  Because 

many environmental variables — such as slope, aspect, and elevation — are derived from 

DEM, it is important to understand how error in the DEM will propagate error in the 

derived variables.  Van Niel and colleagues (2004) wanted to determine to what extent 

error in a DEM propagates error in secondary and tertiary derived variables.  Logically, 

one would assume that error would increase with the level of derivation, but Van Niel 

and colleagues (2004) did not find this to be the case.  Secondary variables, slope and 

aspect, had lower levels of accuracy compared to the tertiary variable solar radiation.  

Therefore, less derived does not necessarily mean less error. 

Some of the original species distribution modelling techniques were solely based on 

climatic variables as predictors of distribution.  Since then, researchers have moved 

beyond using simple environmental layers, such as climate, vegetation, and topography 
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as predictor variables recognizing that interactions occur between environmental 

variables, though some of the modelling techniques neglect to incorporate them.  Adding 

interaction coefficients into the model or creating environmental layers quantifying the 

interaction will make model interpretability and validation more complicated.  Interaction 

terms in the algorithm greatly increases the number of parameters in the model (Guisan 

and Thuiller 2005).  In addition, biotic interactions help to constrain species distributions 

and more researchers are trying to include the distribution or abundance of host, predator, 

or competitor species  (Araújo and Luoto 2007; Davis and others 1998).  Predictor 

variables that represent human influence also are being used in models, for example 

population density, airport density, and distance to roads (Kadmon and others 2004; 

Lippitt and others 2008).  As a result, the use of remotely sensed data in species 

distribution models is increasing (Prates-Clark and others 2008).  Satellite images are 

easier to acquire and are at high enough resolutions for fine ecological analysis.  Many 

different environmental variables can be generated from satellite imagery — such as 

vegetation type and density, land cover and use, evergreen tree cover, or surface geology.  

Remotely sensed data are becoming easier to use given the computational power of 

current desktop computers and the availability of high resolution images (Lillesand and 

others 2004).   

 

MODEL TYPES 

Introduction 

To relate known species occurrence data to the environment, many modelling 

methods have been developed and are currently in use.  All modelling methods, to a great 
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extent, possess similar characteristics fundamental to species distribution modelling.  

These characteristics are as follows: 

1. Region under evaluation is represented in a GIS using raster format layers (grid cells). 

2. Response variable is a data set made up of points of species observations — the 

values may be simply presence, presence–absence, or abundance. 

3. Predictor variables are usually environmental layers in the GIS that, ideally, have an 

effect on the distribution of the response variable. 

4. A function, which maybe simple or complex, is calculated to relate the response and 

predictor variables.  This function will then classify each raster cell of the study 

region as suitable or unsuitable for the species. 

The greatest variation among the modelling techniques is the type of function that 

determines the response–predictor relationship (Austin 2002).  In this section I briefly 

review the popular modelling techniques found in the current literature and explore some 

of the advantages, disadvantages, and other noteworthy aspects of these methods. 

 

Envelope Models 

Envelope techniques have traditionally focused on the relationship between species 

distribution and climatic variables only; and consequently, are often referred to as climate 

envelope models (Kadmon and others 2003).  BIOCLIM is one of the available software 

packages for envelope models.  For its foundation in environmental space, the envelope 

model draws a rectangle resembling an envelope — hence the name — that bounds the 

range of climate variables suitable for the species (Nix 1986) as reported in (Carpenter 

and others 1993).  Figure 2a is a simple example using two predictor variables, but 
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envelope models are multidimensional, similar to the niche concept.  One of the 

weaknesses of the envelope model is the rectangular shape which may include unsuitable 

habitat in the “corners” of the envelope.  To address this problem, more complex shapes 

have been used to better characterize the species–climate relationship.  Walker and Cox 

(1991) developed a variation of the climate envelope using irregular polygon envelopes, 

also known as convex hull (Fig. 2b).  Convex hull methods, such as Habitat, eliminate the 

extra environmental space within the rectangles that is unlikely to have accurate 

presence–absence discrimination (Carpenter and others 1993).  Both rectangular and 

convex hull envelopes define potential environments as “core” or “marginal.”  Robertson 

and colleagues (2004) refer to these as crisp envelopes because the predictions are 

classified into three values—core, marginal, or absent.  In turn, they developed a new 

modelling technique called fuzzy envelopment modelling that uses fuzzy logic.  

Robertson and colleagues (2004) have refined the crisp envelope by changing how the 

model copes with uncertainty and classification — the fuzzy model defines a continuous 

classification.  The use of fuzzy logic in species distribution models is still in its early 

stages, but poses to be an ecologically realistic approach after further evaluation by 

researchers.  

 

Domain 

The Domain procedure uses a point-to-point similarity metric to assign a 

classification value to each grid cell based on its proximity in environmental space to the 

most similar species presence location (Carpenter and others 1993).  Environmental 

similarity between the grid cell and the known presence site is calculated by summing the 
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standard distance, in environmental space, between two points for each environmental 

variable.  Standardized distance is then calculated by dividing the standard distance by 

the range of the environmental variables and equalizing the contribution from each 

environmental variable.  The equal weight given to all the predictor variables may be 

considered a disadvantage of the Domain procedure.  The output for Domain is the 

maximum similarity values between each grid cell and the known presence observations. 

Output in the form of positive values indicate presence; negative values are a prediction 

of  absence.  The output is a measure of the classification confidence — not a prediction 

of the probability of occurrence (Carpenter and others 1993). 

 

Ecological Niche Factor Analysis 

Ecological Niche Factor Analysis (ENFA) is a relatively new approach explicitly 

created to model species niches from presence–only data.   Hirzel and colleagues (2002) 

emphasize that the model attempts to be ecologically realistic by assuming a unimodal 

relationship between the species and the environmental variables.  In this factor analysis, 

the first factor (called the marginality factor) attempts to maximize the distance, in 

ecological space, between the species optimum for an environmental variable and the 

mean value of that variable for the entire geographic study area.  The other factors 

maximize the specialization of the species along the environmental gradient by analyzing 

the ecological variance.  The eigenvectors and eigenvalues are then used to map habitat 

suitability (Hirzel and others 2002).  Few studies have been published comparing ENFA 

to more widely used algorithms.  So far, evidence indicates that ENFA may be a 

promising technique to use with presence–only data sets (Sattler and others 2007; Tole 



60 

2006).  ENFA has also been used to help choose unsuitable habitat in which to generate 

pseudo–absence points for other modelling algorithms (Chefaoui and Lobo 2007; 2008). 

 

Ordination 

Canonical Correspondence Analysis (CCA) is one of the more common ordination 

techniques used in distribution modelling.  CCA is an indirect gradient analysis technique 

that relates environmental gradients to the distribution or abundance of a species (ter 

Braak 1986).  Like ENFA, CCA assumes a unimodal relationship between the species 

and the environmental variable.  CCA is a combination of correspondence analysis and 

multiple regression; using the reciprocal averaging algorithm of correspondence analysis 

combined with a multiple regression which is performed at each averaging cycle.   The 

axes of the CCA are two dimensional combinations of the environmental and occurrence 

data.  CCA is a “constrained” technique because the resulting ordination is constrained by 

the environmental variables (ter Braak 1986).  The assumptions of a CCA, however, are 

difficult to satisfy with data typically available for distribution modelling.  CCA requires: 

normally distributed data with symmetrical tails on the bell curve; species having equal 

amplitude in response to the environmental variable; and species optima evenly spaced 

along the environmental gradient (ter Braak 1986).  Further research on CCA capabilities 

acknowledge that function performance may not be significantly affected if the 

assumptions are violated (Palmer 1993).  The advantages of CCA are that it can use 

abundance data in addition to presence–absence data.  CCA can also be used for multiple 

species at a time, but uses the same environmental variables for all species. 
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Regression 

This suite of modelling techniques is the most widely used for species distribution 

prediction (Guisan and Zimmermann 2000).  Regression has been thoroughly studied and 

produces models that are easily interpreted.  Generalized linear models (GLMs) and 

generalized additive models (GAMs) are applied extensively in SDM because of their 

statistical power and their potential to realistically model species–environment 

relationships (Austin 2002; Yee and Mitchell 1991).  GLMs are parametric techniques 

that assume a linear relationship, which may not always be ecologically appropriate.  

However, at finer scale a linear relationship may be the best representation of the 

relationship (Fig. 1).  GAMs are considered more ecologically realistic because they use 

non-parametric functions that are more capable of modelling complex response–predictor 

relationships.  GAMs may create models that fit the training data better than GLMs, but 

this appears to come at a cost.  When validated with independent evaluation data, GAMs 

do not perform as well because of over-fitting, which limits the transferability of the 

model to different areas or time periods (Randin and others 2006).  Unfortunately 

because of the complexity of the algorithm used to determine the shape of the species–

environment relationship, GAMs require a large training data set to produce an accurate 

model (Yee and Mitchell 1991).   

For all regression techniques, occurrence data should be independent and therefore 

not exhibit spatial autocorrelation.  Stratified sampling across environmental gradients 

will improve regression models.  This can be done by either removing data points, which 

may eliminate valuable data, or by additional field sampling, which may be costly and 

impractical.  The use of spatial autoregressive models can help to eliminate the spatial 
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autocorrelation effect within the data (Carl and Kühn 2007; Collingham and others 2000; 

Dark 2004; Lichstein and others 2002; Maggini and others 2006; Segurado and Araújo 

2004). 

A relatively new strategy for improving regression models is the use of 

information-theoretic approaches to select the best model based on the number of 

predictive variables and predictive accuracy (Johnson and Omland 2004).  As the number 

of predictive variables in a model increases, the ability of the model to fit the training 

data increases.  Maximizing accuracy or fit of the model, without considering model 

complexity, will favor a model that utilizes all possible parameters.  With a large 

collection of predictor variables, it is possible to over-fit the model.  The model becomes 

extremely good at predicting the training data, but poorly predicts data outside the 

original range.  This, of course, reduces the potential usefulness of the model.  To combat 

over-fitting and increasing complexity of models, model selection methods, such as 

Akaike’s information criterion (AIC), have become increasingly popular in species 

distribution model research (Gibson and others 2004; Johnson and Omland 2004; 

Rushton and others 2004).  AIC not only takes into consideration the model fit, but also 

imposes a penalty based on the number of predictor variables within the model.  AIC is 

used to identify the most parsimonious set of models given the number of predictor 

variables and the ability of the model to correctly predict presence and absence (Burnham 

and Anderson 2002). 

Another common method of reducing the number of predictive variables is to run a 

multivariate analysis on the correlation matrix to determine which variables are most 

important to the species distribution (Manel and others 2001).  This also can help to 
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explore the potential relationships between environmental data and observational data 

before model building.  Analysis of the environmental data prior to model building is 

necessary to determine multi-collinearity among the variables.  Most modelling 

procedures assume the predictor data sets are independent.  Removing predictors that are 

highly correlated will improve the model performance.  Thuiller and colleagues (2003) 

found that AIC allowed for additional predictor redundancy even after variables were 

selected with a PCA. 

 

Classification and Regression Trees 

Classification and regression tree (CART) methods can create predictive maps by 

either determining classes or average values for each grid cell of the study area.  The 

algorithm divides the training data into two sub-sets, iteratively, based on the 

environmental variable that best reduces the variance in the response variable.  A tree is 

constructed by further divisions causing dichotomous branching for each split of the data.  

This continues with all new sub-sets until all occurrences have been classified.  The 

branches of the tree can lead to presence or absence based on the environmental variable 

used to sort the data (De'ath and Fabricius 2000).  The CART method allows for species 

to be present in two different habitat types because CART can identify multiple 

combinations of environmental variables that may be suitable for presence — multiple 

branches of the tree may lead to presence (Norris and others 2006). 

Random Forest is a form of CART that increases the power of the classification tree 

by generating multiple models from repeatedly sub-sampled training data sets 

(bootstrapping).  The multiple models grow a “forest” of trees of which each tree is 
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“grown” from a randomized subset of environmental variables.  Each species data point 

is classified by all trees in the “forest.”  The classification backed by the greatest number 

of trees becomes the value for the data point  (Breiman 2001).  Although increasing the 

number of trees does not appear to increase over-fitting in Random Forests (Prasad and 

others 2006), it does complicate model interpretability  (De'ath 2002)  

 Yet another advanced CART method is Boosted Regression Trees (BRT).  The 

BRT models incorporate the regression tree algorithm of CART with a boosting 

algorithm that combines and summarizes a collection of many — 100s to 1000s — trees.  

In contrast, conventional regression finds a single tree or model that is the best.  Boosting 

works on the premise that “it is easier to find many rough rules of thumb that it is to find 

a single highly accurate prediction rule” (Schapire 2002).  The boosting procedure builds 

many “mediocre” models then combines them to produce an average.  The addition of the 

boosting algorithm also enables the BRT models to better represent smooth species 

response curves by averaging many — 100s to 1000s — trees (Elith and others 2008).  

The models also are able to represent non-linear relationships and interactions between 

predictor variables (Elith and others 2008). 

 Although BRT modelling could be considered a “black-box” method, as many 

other machine learning methods have been labeled, it appears in initial modelling 

research that BRT results are making ecological sense (Elith and others 2006).  One 

significant drawback of BRT is current implementation requires absence records in the 

training data set.  Although modelers have had good results by using random background 

data or pseudo-absences (Elith and others 2006) (Elith and others 2008).  Because of its 

complexity, BRT models can easily over-fit the training data.  Elith and colleagues 
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(2008) have developed and published a tutorial and guidelines to facilitate the proper 

implementation and parameterization of BRT (see online supplement for (Elith and 

others 2008)).  However, additional studies using BRT for SDM are necessary to fully 

understand their parameterization for a variety of species in many different regions. 

 

GARP 

Genetic algorithm for rule-set prediction (GARP) is a machine learning algorithm 

that takes an artificial intelligence approach to species distribution modelling.  GARP 

develops rules for the distribution based on an iterative process of selection, evaluation, 

testing, and incorporation or rejection.  GARP can improve the algorithms based on its 

calculations.  This process is handled solely by the software without additional user input.  

Selection occurs when GARP chooses and implements one of several modelling 

algorithms to the training data.  That algorithm, or rule, evolves to maximize accuracy of 

the model predictions.  This evolutionary process is said to be analogous to DNA 

evolution — point mutations, deletions, crossing over — and accordingly the term 

“genetic” reflects this method.  The accuracy procedure occurs up to 1000 times or until 

newly evolved rules do not improve the accuracy.  The resulting rule-set is the model of 

the potential distribution and is mapped as predicted presence or absence (Stockwell and 

Peters 1999).  GARP should, theoretically, perform better than individual modelling 

algorithms because it applies and selects the most accurate models (Peterson and 

Nakazawa 2007; Stockwell 2007).  GARP, however, performed poorly in comparison to 

many other modelling techniques (Elith and others 2006).  Additional research indicates 



66 

that GARP may be most useful in situations where presence-only data are available in a 

very small data set (Pearson and others 2007; Stockwell and Peterson 2002). 

Because of the random procedures built into GARP, the output will be different 

every time it is run despite the identical input and parameterization (Anderson and others 

2003).  This is an important concern for ecologists using and evaluating the model — 

results are not easily replicated or interpreted.  The ecological relationship between 

species presence and the environmental variable is hidden within the software. 

 

Maximum Entropy 

Maximum Entropy (Maxent), like other machine learning techniques, improves the 

modelling algorithm automatically through a series of trainings with the data set.  The 

creators of the Maxent technique used in species distribution modelling state that it is 

able to predict a species’ distribution based on “incomplete information” — species 

observation data that do not necessarily cover the entire suitable range of environmental 

variables.  Maxent estimates the distribution with maximum entropy (the most uniform or 

spread out distribution) of the known presence points given the constraints put on the 

distribution with respect to the point’s relationship to the environmental layers.  This 

relationship is quantified by using the empirical average of the environmental variable at 

all presence records (Phillips and others 2006).  The implementation of Maxent for 

species distribution modelling was specifically designed for use with presence-only data.  

In comparison with other presence-only methods, it performs significantly better.  

Maxent also performs well when compared to presence–absence procedures that utilize 
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both real and pseudo-absence data  (Elith and others 2006; Hernandez and others 2006; 

Pearson and others 2007). 

Maxent has several features that improve the models predictive performance and 

interpretability.  Maxent can take into account the interaction between environmental 

variables.  Maxent output is the probability of distribution, which is mathematically 

defined.  Maxent also has a built in procedure to counteract over-fitting of the model; it 

employs a relaxation that allows the estimated distribution to go beyond the empirical 

average within the error bounds.  This smoothing procedure, called regularization, can 

potentially correct for small sample size (Phillips and others 2006).  Yet, recent research 

indicates mixed results of models built from small data sets (see both (Pearson and others 

2007; Peterson and others 2007)).  

Because it is a new technique, Maxent has not been thoroughly tested for potential 

weaknesses.  The effect of spatial autocorrelation within a data set has not been tested by 

independent researchers.  Also because of its recent application to species distribution 

modelling, there are fewer known rules that help to guide the use, and reduce the misuse 

or misinterpretation, of this technique.  Although Maximum entropy modelling is new to 

ecology, this technique has been used for many different applications and research into its 

uses, problems, and advantages is active and growing (Phillips and others 2006).   

 

MODEL COMPARISON 

Several recent papers have systematically compared the performance of multiple 

modelling techniques.  The most comprehensive comparison to date was carried out by 

Elith and colleagues (2006) who tested 16 different modelling techniques using many 
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species in several geographic regions.  One of their main objectives was to demonstrate 

the utility of presence-only data in species distribution modelling.  Therefore, they did 

not use true absence data, but they did generate pseudo-absence data for techniques that 

required it.  Generalized dissimilarity modelling (GDM), Maxent, boosted regression 

trees (BRT), and multivariate adaptive regression splines for community data (MARS-

COMM) performed the best on average for all regions and species.  Elith and colleagues 

(2006) suggest that future models will perform better through the use of some of these 

newer, more advanced techniques — such as BRT, MARS-COMM, and GDM.   Elith 

and colleagues (2006) believe that the best performing models share some key 

characteristics: ability to model complex species–predictor relationships and, by using 

smoothing or regularization techniques, do not over-fit the data. Techniques that 

responded poorly to the data were some of the older and more established methods: 

BIOCLIM (one type of envelope model), multivariate adaptive regression splines for 

individual species data (MARS-INT), Domain, and the desktop application of GARP 

(DK-GARP).  However, almost all tests resulted in models that predicted species 

occurrence better than random.  Elith and others (2006) comparison of model 

performance also illustrates the variability of modelling success across regions.  Some 

regions, particularly Canada and the Australian wet tropics have more difficulty 

producing reliable model results.  This reduction in model performance is most likely 

related to the quality of available data — both species and environmental — going into 

the model for these regions.  For example, in Canada, the species occurrence data are 

biased toward the southern portion of the country, leaving a large geographic gap in the 

training data.   
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Where as Elith and others (2006) provide a thorough analysis of modelling 

methods, they do not consider finer details of the modelling process such as variable 

selection and modelling choice using information-theoretic approaches.  Additional 

research on these topics needs to be done to test how models may be enhanced by 

refining their use.   

Other comparison studies have not tested as many techniques, but their results have 

helped us to understand the circumstances that cause good, or bad, model results.  Size of 

the occurrence data set has a significant effect on the model results with some modelling 

techniques producing useful models with small sample sizes.  Maynard and Quinn 

(2007), using artificially generated data, found that GARP performed very well with 

extremely small sample sizes.  Hernandez and colleagues (2006) also found GARP, in 

addition to Maxent, to perform reasonably well with small occurrence data sets.  

Prevalence, the ratio of presence to absence points, in species occurrence data will reduce 

the effective sample size.  Maynard and Quinn (2007) found that a prevalence of 5% in a 

2000 point data set was equivalent to having a sample size of 200 with a 50% prevalence. 

The scale at which a model is built will also be an important factor in model 

outcome.  Although scale was not directly addressed by Elith and others (2006), Thuiller 

and colleagues (2003) did evaluate model performance at different scales.  Of the three 

model types tested (GLM, GAM, and CART), they found some models performed better 

at larger scales.  They suggest models that can handle complex relationships will be 

better able to model at a variety of scales.  Models that rely on a particular way to 

describe relationships, linear for example, may not be good for large scale analyses 

because it is less likely for species responses to be linear across the entire gradient of 
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environmental variables.  Linear models may be very useful at finer scales because the 

response is more likely to be linear over a shorter distance along the gradient (Fig. 1) 

(Segurado and Araújo 2004; Thuiller and others 2003). 

In addition to scale, model accuracy will be affected by the range of a species’ 

ecological requirements and tolerances.  A specialist species with a narrow geographic 

range and specific ecological requirements are easier to model —  relationships between 

specialist species and environment can be simply expressed mathematically.  The 

distribution of generalist species with a high tolerance of a wide range of ecological 

situations across a large geographic extent will be much more difficult to predict.  The 

model’s capability to represent these broad relationships is limited (Elith and others 2006; 

Hernandez and others 2006; Segurado and Araújo 2004).  Because SDM attempts to 

characterize and quantify the species relationship to the environment, the more specific, 

and simple, the relationship is the better.    

Published comparisons of models show that there is no one technique that is 

superior for all circumstances, but certain modelling algorithms and software packages 

perform better in general (Hernandez and others 2006; Meynard and Quinn 2007; Muñoz 

and Felicísimo 2004; Segurado and Araújo 2004; Thuiller and others 2003; Vayssieres 

and others 2000).  When deciding on a modelling technique you must take into account 

the available training data.  Questions that should be asked are: How big is the data set? 

Does it cover the entire range of the species?  Does it include absence data?  Is there 

significant spatial autocorrelation?  Does the environmental data include categorical 

values?  Answers to these questions will help to determine technique type.  Answering 

additional questions may lead to good model choices, such as: What is the purpose of the 
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model; how will the results be used?  If the intent is to identify land as endangered 

species habitat, then choose a model that minimizes false presence.  Is the objective to 

understand the ecological relationship between predictor and response variables?  Then 

choose a mathematical model that is interpretable.  Even practical considerations have 

merit.  How easily is the model implemented?  Can existing data be used and are 

computer resources available?  Table 2 outlines some of the important distinguishing 

features of each model type.  These model properties will help to determine the most 

appropriate method for a given situation. 

The models discussed and employed in this literature review and dissertation are 

correlative in nature.  In other words, all SDMs incorporate algorithms that correlate 

species point occurrence data with a variety of environmental data.  The algorithms 

attempt to find areas that are environmentally similar to those areas where the species is 

known to be present or absent.  However, another branch of distribution modelling is 

interested in understanding the underlying mechanisms that determine species 

distributions.  The mechanistic approach directly measures the individual’s response to 

abiotic variables, and, thus, determining the direct cause of a species geographic 

limitation.  Kearney (2006) highly recommends more research be done to apply spatially 

referenced data to mechanistic models of niches. 

 

MODEL EVALUATION 

Model evaluation is the testing process that helps determine the validity of the 

model predictions.  Testing must be conducted to defend the applicability of a model to 

the given data and to the true distribution.  In general, models are evaluated based on the 
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percentage of prediction errors, which are either false presence or false absence.  The 

results of model evaluation are cross-tabulated in a confusion matrix (also known as an 

error matrix or contingency table) that compares the predicted and actual presence-

absence points, which can be reported as either counts or percentages (Tab. 1).  False 

presence errors are type I or commission errors; false absences are type II or omission 

errors.  The confusion matrix also tallies true presence and true absence (Gotelli and 

Ellison 2004).  Conventional statistical tests on contingency tables are inappropriate for 

evaluating model performance.  Tests such as chi-square would result in highly 

significant values for situations that were either very accurate (high values of TP and TA) 

or very inaccurate (high values of FP and FN) (Gotelli and Ellison 2004).   

Instead, from these four simple counts many accuracy measures can be derived.  

The most common of these are prediction success, sensitivity, specificity, and Cohen’s 

kappa.  Prediction success is the simple calculation of the percentage of points for which 

presence or absence is accurately predicted.  Sensitivity (TP/(TP+FP)) is the likelihood 

that a predicted presence point should actually be absent.  Specificity (TA/(TA+FA)) is 

the likelihood that a predicted absence point should really be classified as present.  

Cohen’s kappa is a one of the few measures that uses all the data within a confusion 

matrix, taking into account commission and omission errors as well as sensitivity and 

specificity, to produce an index value.  The index ranges from -1 to 1 — with high values 

meaning the predictions match the observation data, 0 indicating random agreement, and 

low values meaning the predictions are opposite of the observations (Elith and others 

2006; Fielding and Bell 1997; Manel and others 2001).    
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Due to the nature of the available information, most models are built with binary 

observation data — simple presence-absence records for a given location.  The 

environmental data used to build models are generally not binary, but are categorical with 

several possibilities or a continuous range of values.  Consequently the model output is a 

continuous range of possibilities of presence.  Each pixel or grid cell contains a value 

representing percentage of presence likelihood or percent suitability.  Traditional model 

evaluation techniques cannot use the continuous model output, instead, the data must be 

converted to binary format (presence-absence) and a threshold percentage must be 

chosen.  A threshold value of 0.5 is often chosen because it is the point at which the 

percentage of false presence and false absences are equal.  However, when the data set 

does not have an equal number of absence and presence points, the threshold is biased 

towards the more common point (Manel and others 2001) (Jiménez-Valverde and Lobo 

2006).   When the number of absence points is equal to the number of presence points, it 

is said that the data set has a prevalence of 0.5.  Prevalence is higher when the presence to 

absence point ratio is higher.    

Liu and others (2005) conducted a comparison of twelve threshold selecting 

approaches using data sets with seven levels of prevalence.  They found that most 

threshold determining procedures worked well in data sets with a prevalence of 0.5 and 

that model output is always biased toward the larger of the two groups, presence or 

absence.   This especially poses a problem with modelling techniques that rely on 

presence-only data sets or randomly generated pseudo-absence points, which usually 

outnumber the original present point data 100 fold.   The choice of the threshold must be 
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adjusted based on the most common point in the data set (Collingham and others 2000; 

Jiménez-Valverde and Lobo 2006; Liu and others 2005; Manel and others 2001).   

Research by Manel and others (2001) and Liu and others (2005) also illustrates that 

some threshold dependent model evaluation procedures are affected by data prevalence.  

Predictive success, sensitivity, and specificity are all significantly affected by prevalence 

in the data set.  However, Manel and his colleagues found that Cohen’s Kappa was only 

“marginally affected by prevalence” and recommend it as a simple calculation for model 

evaluation.  Another advantage of Cohen’s kappa is that it is always calculable despite 

the occurrence of zeros in the confusion matrix (Manel and others 2001). 

Receiver-operating characteristic (ROC) plots have been widely used in recent 

years as a threshold independent evaluation technique for distribution models.  Before 

their acceptance in the ecological modelling discipline, ROC plots have been used to 

discriminate radar signals, medical diagnostic test results, and weather predictions 

(Fielding and Bell 1997).  ROC plots appear to be useful for species distribution 

modelling because they are not significantly affected by prevalence (Manel and others 

2001) and their use eliminates the need to subjectively choose a threshold for model 

evaluation.  The ROC curve plots sensitivity as a function of (1 - specificity) over the 

entire range of thresholds.  A curve that maximizes sensitivity for low values of (1 - 

specificity) is characteristic of good model performance.  This is illustrated by a curve 

that comes close to the upper left corner of the ROC plot (Zweig and Cambell 1993).  

The Area Underneath the Curve (AUC) is calculated and becomes a score of the model’s 

accuracy for all possible thresholds.  The score can range from 0.5 to 1 — 1 indicating 

perfect discrimination between present and absent points and 0.5 indicating the chance of 
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being present or absent is 50% and therefore no discrimination between the two.  An 

index has been developed for AUC values: a value of 0.5-0.7 is considered low accuracy; 

0.7-0.9 is considered useful; and 0.9 and above is considered high accuracy (Swets 1988).   

Despite its wide use, the validity of AUC as a measure of model accuracy has been 

questioned recently.  Lobo and others (2007) recommend not using AUC for several 

reasons.  First, they argue that AUC does not measure accuracy, but instead simply 

measures discrimination.  If the predicted probabilities of species occurrence range from 

0.4 to 0.6 in the region, the discrimination between suitable habitat and unsuitable habitat 

is low.  The accuracy of the model may be very high, meaning the species occurrence 

probabilities may be accurate even though the discrimination between presence and 

absence is poor. Lobo and others (2007) also point out that it is not useful to have one 

score represent the entire range of thresholds because it is unlikely that the extremes of 

the threshold range contain useful information.  The far edges of the threshold range 

correspond to very high type I or type II errors.  The range of thresholds of interest are 

found in the middle where type I and type II errors are nearer to equal. Additionally, 

Lobo and others (2007) believe the main argument for using AUC — because it is 

threshold independent — is questionable.  In the past, threshold choice has been 

considered subjective, but thresholds can be chosen using several tested methods (Liu 

and others 2005).   

Models are evaluated both internally and externally.  Internal evaluation is how 

well the model fits the training data.  In the literature it is also known as resubstitution 

because it reuses the training data to verify the model.  This estimation of model accuracy 

is, obviously, biased.  Models tend to over-fit the training data because the model is built 
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on the subtle variation of each point in the training data (Fielding 2002).  While the 

model may fit the training data well, the additional variation found in the species 

occurrence in the real world may not be accurately predicted.  Therefore, it is 

recommended that an independent data set be used to conduct an external evaluation — 

how well the model is able to fit a separate, independent set of evaluation data (Elith and 

others 2006; Loiselle and others 2007; Peterson 2005).  Evaluation data ideally would be 

a truly independent data set, possibly obtained via different methods, during a different 

time period, or in a different region (Araújo and Guisan 2006; Manel and others 1999; 

Manel and others 2001).  Unfortunately a genuinely independent data set is usually not 

available (however, see (Elith and others 2006; Fielding 2002)).  Instead many modelers 

simply “hold out” a random selection of observations to be used in the external 

evaluation.  A basic rule of thumb for the amount of evaluation data is 20-30% of the 

available observation points (Araújo and others 2005a; Pearson and others 2006; Thuiller 

2003).  However, Huberty and Olejnik (2006) developed a method for determining the 

percentage of data that should be held out for evaluation purposes.  They propose that the 

amount of evaluation data should be based on the number of predictor or environmental 

variables used in the model.  They recommend using: 

      [1 + (p-1)1/2]-1 

where p is the number of predictors or environmental layers.  As the number of 

environmental layers to build the model is increased the percentage of points used to 

build the model (the training data) should increase. 

Instead of simply removing data for evaluation, more sophisticated data partitioning 

techniques have been developed to allow all available data to be used for model building.  
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Bootstrapping and jack-knifing procedures are common when models are built with small 

observational data sets (see review in (Fielding and Bell 1997). These procedures build 

the models repeatedly with random observations taken out for evaluation then replaced in 

the training data and models are built and evaluated again with a different selection of 

data (Fielding 2002).  An average of the results is then reported.  This may be the best 

compromise for small data sets representing rare species or relatively unknown regions, 

for which each data point is necessary for model building (Pearson and others 2007). 

The modelling objective should help to determine the best method for model 

evaluation.  When determining the appropriate threshold, the types of errors to minimize 

based on the goal or the modelling project must be ascertained (Lobo and others 2007; 

Loiselle and others 2003).  For example, thresholds should be optimized to reduce type I 

error, false presence, attempting to locate populations for research purposes.  However, 

reducing type II errors might enhance accuracy for inventories  of an endangered species 

in a region of rapid human development.  Loiselle and others (2003) analyzed error type 

and how it could affect conservation planning.  She and her colleagues were exploring 

the usefulness of distribution models for identifying potential land for conservation 

reserves.  They found that models that tended to minimize false positives, type I errors, 

were more likely to agree with expert ecologist opinions on good locations for land 

reserves.  They conclude that the models, in general, may overestimate species habitat 

and possibly misdirect conservation effort. 
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FUTURE DIRECTIONS 

 The current state of most species distribution modelling focuses on basic 

implementation.  Modelling algorithms correlate environmental data with species 

occurrence data.  This is not a new concept — not in the least (Forbes 1844; Humboldt 

1815).  Because of the emergence of spatial technologies and advanced computing power 

SDMs can consider large areas, the whole globe in fact, and dozens of predictor 

variables.  Models can also incorporate data from satellite images that allow the study of 

remote and little known regions.  Advances have been made developing different 

techniques to manage spatial autocorrelation, presence-only data, and small training data 

sets. 

Currently SDMs have problems that need to be addressed in the future to improve 

the reliability of their predictions.  One of the current challenges is modelling species that 

are not at equilibrium with their environment, such as invading species being modelled in 

their new region.  Native species may be still responding to past disturbances such as fire 

or even glacial retreat of the last ice age.  Most modelling techniques assume equilibrium, 

but new techniques need to be developed to help account for this situation (Guisan and 

Thuiller 2005). 

In the recent literature several articles debate the most appropriate evaluation 

methods for SDMs.  Researchers disagree about the validity of certain model validation 

procedures (Araújo and Guisan 2006; Austin 2007; Guisan and Thuiller 2005; Jimenéz-

Valverde and others 2008; Lobo and others 2007).  Basic model evaluation needs to be 

standardized so that models can be compared across species, regions, and time periods.  

Model evaluation can be improved through additional, yet simple, reporting.  Vaughan 
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and Ormerod (2005) found that sufficient model testing was “scarce and errors were 

seldom diagnosed.”  They go on to suggest some straightforward practices that do not 

include novel calculations, but simply provide the reader with a better understanding of 

how the model was evaluated.  They recommend that modelers report on the model’s 

overall performance, including its ability to be generalized and transferred.  They also 

believe researchers should explain their evaluation parameters, such as threshold 

determination, to indicate the possible uses of the model.  Finally, they advise researchers 

to identify the model’s weaknesses and communicate the possible causes (Vaughan and 

Ormerod 2005).  

While some species distribution modelling software packages allow data to be 

dumped in and models to be built with little guidance from the biologist, it may be better 

for model choice to be directed by expert knowledge.  Relevant predictor variables can be 

selected by biologists, who can then analyze them to determine which explain the most 

variation in the occurrence data.  This is not new.  What is relatively new is the use of the 

information-theoretic approach to model selection (Burnham and Anderson 2002).  The 

information-theoretic approach will assist in choosing the most parsimonious model — 

the model that explains most of the variation weighted by the number of parameters used.  

Biologists and modelers will benefit from using this approach to choose elegant and 

ecologically significant models (Guisan and Thuiller 2005).  

The future of species distribution modelling promises to reveal some exciting 

techniques to cope with the dilemmas of current modelling approaches.  Austin (2002) 

argues that there needs to be a better connection between ecological theory and statistical 

modelling.  Researchers are stepping back and looking at the theoretical principles at the 
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root of species distributions and finding that a fundamental part of niche theory is missing 

— biotic interactions.  The inclusion of interactions between species that, in part, govern 

species distribution will increase the ecological relevance of the model.  The distribution 

of competitor, predator, and mutualist species can easily be added to a model, but the 

interaction coefficients may be more complicated.  Nonetheless, knowledge of species 

life history is needed to produce good models.  The inclusion of additional relevant 

predictor variables is a necessary challenge.  Future modelers are obliged to consider 

migration and dispersal as important determinants of a species distribution.  The literature 

is burgeoning with studies on the effect climate change will have on species distributions.  

It is becoming more evident that migration and dispersal characteristics of a species will 

become important factors as human caused habitat and climate change transforms species 

distributions.  Species distribution models may also benefit by including theoretical 

concepts of population ecology.  Metapopulation theory may improve the model’s 

ecological relevance.  Understanding and adding source-sink dynamics of the target 

species into models will lead to results that better represent the ecology of the organism 

(Austin 2002; Guisan and others 2006; Guisan and Thuiller 2005).   

Communities and functional groups will be better modelled in the next several 

years.  Already techniques have been designed to work with multiple species to build 

models of communities.  The theoretical challenge for ecologists will be: How to 

reconcile individual responses to the environment with the desire to model entire 

communities as one?  Modelling functional groups may, therefore, be less formidable 

because — depending upon how the group is defined — they may respond similarly to an 

environmental gradient.
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Table 1.  A typical confusion matrix.  TP = true presence; FP = false presence; FA = false 

absence; TA = true absence. 

 

  Actual 
  present absent 

Predicted 
present TP FP 
absent FA TA 
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Table 2.  A quick comparison of common modeling techniques in the current literature.   

 Statistical 
Method 

Categorical data Assumption
s 

Good with 
small 

samples? 

Different 
Weights for 

predictor 
variables? 

Implementation Response data 
requirements 

Misc Comments 

Envelope 
Models 

transparent no   no no Bioclim software  uses only presence 
consistently performs poorly in 
model comparisons 

BRT 
machine 
learning -  
mysterious 

yes 
non-

parametric 
yes yes Package for R 

presence and absence, or 
abundance 

newer technique that is performing 
well 

Domain interpretable  yes   yes no ArcGIS tool  uses only presence 
consistently performs poorly in 
model comparisons 

CCA transparent yes parametric neutral yes Canoco 
presence and absence, or 
abundance 

difficult to create a predictive map 
from results 

CART interpretable yes 
non-

parametric 
yes yes  Package for R 

presence and absence, or 
abundance 

allows interaction of predictors 

ENFA transparent yes 
assumes 
unimodal 

relationship 
no ?  Package for R uses only presence no longer regularly used 

GARP 
machine 
learning -  
mysterious 

yes, but hasn’t been 
thoroughly tested 

  yes ? Desktop GARP  uses only presence 
consistently performs poorly in 
model comparisons 

Maxent 
machine 
learning -  
mysterious 

yes   yes yes Stand alone software uses only presence 
newer technique that is performing 
well 

Random 
Forest 

machine 
learning -  
mysterious 

yes 
non-

parametric 
yes yes  Package for R 

presence and absence, or 
abundance 

can deal with uneven prevalence 

Regression 
- GLM 

transparent yes 
parametric, 

linear 
relationships 

neutral yes Package for R 
requires presence and 
absence 

well studied model that performs 
moderately well 

Regression 
- GAM 

transparent yes 
complex 

relationships 
no yes Package for R 

requires presence and 
absence 

improves on GLM, but may overfit 
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Figure 1.  A unimodal response curve of a species along an environmental gradient may 

appear linear when only a portion of the range is examined (dashed box). 
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Figure 1 
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Figure 2.  This example illustrates a simple two variable climate envelope model.  The 

stars represent values of the environmental variables for individual species observations.  

The area within the solid box is the core environment and the dotted line is the boundary 

of the marginal environment.  The original envelope model is constrained to a box or 

rectangular shape (a); however, the convex hull may be an irregular polygon (b).    
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INTRODUCTION 

The goal of the Endangered Species Act is to improve the chances of listed 

species’ survival by increasing population levels, as outlined in an endangered  species 

recovery plan (US Fish and Wildlife Service 1991).  If successful, this can result in a 

species being delisted, but in order to achieve the goal of species recovery the 

demography, habitat preferences, reproductive biology, and cause of the species decline 

must be understood.  However there are disparities in the level of available knowledge 

for threatened and endangered species.  For example, considerable information has been 

compiled on the status and life history of species such as the  Red-cockaded Woodpecker 

or Mexican grey wolf, but less in known about the Soccoro springsnail or rock gnome 

lichen (US Fish and Wildlife Service 2009).  

The American burying beetle (Nicrophorus americanus) was listed as an 

endangered species in 1989 (Federal Register 54 (133): 29652-29655).  Like many 

threatened and endangered invertebrates, information about N. americanus prior to listing 

consisted of the taxonomic description and morphological characterization (US Fish and 

Wildlife Service 1991, 2009).  Although 1000s of surveys across the United States 

conducted since listing have contributed to our knowledge of N. americanus’s range and 

populations, they focused on determining species presence and have minimally 

contributed to our knowledge of its habitat affinities and reproductive biology.  Research 

conducted since its addition to the endangered species list has focused on the breeding 

season and over-wintering habitat preferences (Creighton et al. 1993b; Lomolino & 

Creighton 1996; Lomolino et al. 1994; Schnell et al. 2007), population dynamics (Bedick 

et al. 1999; Holloway & Schnell 1997; Peyton 2003; Raithel et al. 2006), and best survey 
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practices (Bedick et al. 2004; Creighton et al. 1993a).  However, we believe much 

remains to be discovered about the reproductive and over-wintering requirements of N. 

americanus.  

N. americanus was once considered common throughout eastern North America 

(US Fish and Wildlife Service 1991), but at the time of its listing, the range had been 

reduced to two disjunct populations; one on an island off the coast of Rhode Island and 

another in eastern Oklahoma.  Surveys throughout the historic range since listing have 

located extant populations in central Nebraska, south-central South Dakota, southeastern 

Kansas, western Arkansas, and northeast Texas (US Fish and Wildlife Service 1991).  

Populations in the historic range east of the Mississippi River have not been found. 

Endangered species are generally rare for one of two reasons: they were always 

rare due to habitat specialization or restricted endemism or their population size was 

substantially reduced due to habitat loss or catastrophic events (Rosenzweig & Lomolino 

1997).  The cause of N. americanus population and range decline over the past 100 years 

remains uncertain.  Sikes and Raithel (2002) presented the following eight possible 

causes for N. americanus decline: pesticide use, artificial lighting, pathogen, habitat loss, 

vegetation change (both as an old growth woodland specialist or prairie specialist), 

vertebrate competition, loss of ideal carrion, and congener competition.  Of those, they 

conclude that the most plausible explanation is competition with congeners and 

vertebrates for carrion and a reduction in optimal prey size.  Schnell et al. (2007) suggest 

that availability of food, in the form of a carcass, during over-wintering will significantly 

affect the survival of individuals.   

Extensive surveys for N. americanus within its historic range provide much data 
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that can be integrated into spatial models to help predict suitable habitat.  Georeferenced 

species data can be combined with GIS layers of environmental data in habitat suitability 

models to generate predictions of areas of suitable habitat within the presumed range of  

N. americanus.  Species distribution models (SDM, also known as habitat suitability or 

ecological niche models) are used to understand species’ distributions (Anderson 2003; 

Camarero et al. 2005; Van Mannen et al. 2002), ecological requirements (Costa et al. 

2007; De'ath 2002; Laurent et al. 2004; Murphy & Lovett-Doust 2007; Norris et al. 

2006), locate new populations (Pearson et al. 2007; Peppler-Lisbach & Schräder 2004), 

plan land conservation (Buechling & Tobalske 2007; Danks & Klein 2002; Ortega-

Huerta & Peterson 2004; Rodríguez et al. 2007; Tole 2006), and predict new habitats 

associated with climate change (Berry et al. 2002; Pearson et al. 2006).  SDMs correlate 

species occurrence data with environmental data to produce a predictive map of a species 

potential distribution or suitable habitat.  Different modelling techniques utilize a variety 

of algorithms to calculate probabilities that a species will occupy a given area.  The 

efficacy of an algorithm to accurately predict the presence or absence varies based on the 

quantity and quality of  species data and the specificity of its environmental requirements.  

The vast and growing literature on distribution modelling suggest that some techniques 

are generally more effective, but there is not one algorithm applicable to all species, all 

data sets, or all research objectives (Elith et al. 2006; Guisan et al. 2006; Pearson et al. 

2006; Rushton et al. 2004).   

A nearly straight north-south line bisecting the eastern third of Oklahoma 

demarcates the southwest edge of the range for N. americanus (Fig. 1).  Using specific 

location information coupled with environmental data, we hope to delineate a less 
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generalized map for potential N. americanus habitat and to understand the constraints on 

the range.  Currently sufficient information is not available for optimal conservation 

planning for N. americanus.  Modelling may clarify habitat characteristics and focus 

conservation efforts.  

Our objective in modeling the potential distribution of N. americanus is to 

evaluate the suitability of these models for generating maps of potential habitat, thus 

focusing survey and recovering efforts as well is contributing to the knowledge of this 

species ecology.  The purpose of this study is to evaluate the ability of current modelling 

techniques  to predict suitable habitat for N. americanus using presence-absence data 

from species observations and surveys.  Modelling will facilitate the location of highly 

suitable habitat, assist in defining and managing conservation lands for N. americanus, 

and help to assess the likely presence of the species prior to surveys.  We have chosen to 

compare six modelling algorithms that utilize both presence and absence data.  Although 

techniques that use absence data have been shown to perform better when absence 

information is available, we suspect the absence data for the beetle surveys may not truly 

represent habitat that is unsuitable for N. americanus.   

 

METHODS 

Study Area     

 The study area is the eastern half of Oklahoma, a state in the south-central USA.  

Elevation within this area ranges from 87 m to 806 m with major topographic features 

including the Ouachita Mountains in the southeast and the Ozark Plateau in the northeast.  

The natural vegetation of this region is primarily oak-hickory, oak-pine, or post oak-
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blackjack oak forest (Hoagland 2000).  The geomorphic provinces represent a variety of 

surface geology from resistant sandstone and limestone to soft sands, clays, and gravels 

(Curtis et al. 2008). Oklahoma has a strong longitudinal and latitudinal gradient in both 

precipitation and temperature.  Average annual temperature ranges from 16.2° C in the 

southeastern corner of the study area to 14.4° C in the northwest with the growing season 

ranging from 201-222 days.  The coldest month is January with an average temperature 

in the southeast being 4.1° C and in the northwest being 1.6° C.  The warmest month for 

the study area is July with an average temperature in the southeast being 26.9° C and in 

the northwest being 27.7° C.  Average annual precipitation within the study area ranges 

from 54.2 cm in the southeast to 33.4 cm in the northwest, with the wettest month being 

May for all areas (Brock et al. 1995). 

Study Species and Data Set 

N. americanus is the largest species (approximately 2.5-3.5 cm adult length) 

within the Nicrophorus genus, a group of beetles that bury vertebrate carcasses on which 

to raise their young (Lomolino et al. 1994).  Both parents care for the offspring on the 

underground brood carcass with secretions that apparently slow decay while feeding the 

larvae regurgitate and protecting them from predators.  The young require 48-60 days to 

develop and surface as teneral adults in July and August.  Adults over-winter 

underground beginning in late September and emerge in April during spring.  Adults are 

nocturnal and require warm nights of 15.5°C for activity (US Fish and Wildlife Service 

1991). 

The N. americanus data set was compiled from records provided by the U. S. Fish 

and Wildlife Service Tulsa Ecological Services Field Office and the Oklahoma 
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Biological Survey.  The data set contained records from both opportunistic collections 

and standardized transect surveys gathered from 1979 to 2008.  Presence of N. 

americanus may have been recorded with either method, but absence was only recorded 

when the species was not collected during a standardized survey.  Standardized surveys 

are series of carrion traps along a 20 m transect that is maintained for three rainless nights 

with temperatures above 15.5°C [for survey details see (US Fish and Wildlife Service 

1991, 2007)].  Biologists permitted by the U.S. Fish and Wildlife Service conducted the 

surveys, of which a majority were located in areas of road or pipeline construction.  

Multiple surveys were conducted at some locations over the course several years.  

Surveys at one location may be both positive or negative over time.  Therefore records 

were analyzed to determine the repeatability of the results at one site.  Based on the 

likelihood that a site with a positive observation had subsequent positive observations in 

following years, a location was considered positive if any survey conducted at the site 

yielded a positive beetle observation.  We tested for spatial autocorrelation in the N. 

americanus data set with Moran’s I (Rangel et al. 2006). 

Predictor Variables 

 In previous research, N. americanus has been found to be a generalist species 

(Bedick et al. 1999; Holloway & Schnell 1997; Lomolino et al. 1994), and it is unclear 

which environmental variables are important in determining its distribution.  Therefore, 

we chose a variety of predictor variables that we believe are likely to affect a burrowing 

insect.  These predictor variables fall into three major categories: topographic, vegetation 

and landcover, and climatic (Table 1).   

 Some research indicates that N. americanus may be found more often in certain 
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types of habitat.  Creighton et al. (1993b) found that N. americanus are more likely to be 

found in oak-hickory forest than other habitat types in eastern Oklahoma.  To include 

vegetation type in the models we used potential natural vegetation, vegetation, forest 

cover, landcover, and landcover change.  Also, preliminary work points to soil texture 

being an important factor in burying beetle habitat choice (Schnell et al. 2007; Smith 

2007).  Consequently we included in the models soil association obtained from the 

STATSGO data set (Soil Survey Staff 2005).  Additionally, geologic data were included 

in the predictor variable set because, similar to soil type, surface and subsurface geology 

may affect the beetles ability to bury carrion and raise young underground.  

 Many insects are significantly affected by local climate variation.  We included 

several climate variables in the models which were obtained in point format from the 

Oklahoma Mesonet administered by the Oklahoma Climatological Survey (Brock et al. 

1995).  These data were interpolated by simple kriging, except days below freezing 

which was determined by universal kriging 50% local.  Topographic data were obtained 

from the Digital Elevation Model (DEM) of Oklahoma derived from 1:100,000-scale 

digital topographic maps.  Slope and elevation, which influence microclimate of the area, 

were included in the models. 

 We attributed values for all predictor variables to each species data point.  To 

accomplish this, all predictor variables were converted into raster format with 60 m grid 

cell resolution.  Models were run initially with all predictor variables.  However, some 

modelling techniques, particularly regressions, are significantly affected by correlation 

among the predictor variables.  Therefore we ran bivariate correlations to determine 

which variables were highly correlated prior to a second round of model building.  
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Among those variables that were highly correlated, we conducted logistic regressions of 

each variable with the species data set to determine which variable had a greater effect on 

N. americanus occurrence.  The variable within each correlated group that had the 

greatest effect on the species was kept for a second round of model building. 

Because many modelling techniques, especially regression based techniques, are 

negatively affected by an unequal ratio of presence and absence data (Manel et al. 2001), 

we randomly removed absence data points until the number of absence and presence was 

approximately equal.  The final species data set used for modelling contained 426 

locations with 203 presence and 223 absence points. 

Modelling Techniques 

 We used six modelling techniques to create predictive models of habitat suitable 

for N. americanus.  Many researchers suggest comparing the results of several techniques 

because no one method has proven to be the best for all species and study areas (Elith et 

al. 2006; Guisan et al. 2006).  We wanted to compare methods that were based on 

traditional statistics and machine learning; and methods that utilized absence data and 

generated pseudo-absence data. 

Generalized Linear and Generalized Additive Models 

 Generalized linear models (GLMs) and generalized additive models (GAMs) are 

applied extensively in species distribution modelling because of their statistical power 

and their potential to realistically model species–environment relationships (Austin 2002; 

Guisan et al. 2002; Yee & Mitchell 1991).  GLMs are parametric techniques that assume 

a linear relationship, which may not always be ecologically appropriate.  However, at 

finer scale or at the edge of a species range a linear relationship may be the best 
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representation of the relationship (Austin 2002).  GAMs are considered more ecologically 

realistic then GLMs because they use non-parametric functions that are more capable of 

modelling complex response–predictor relationships (Guisan et al. 2002).  Although 

GAMs may create models that fit the training data better than GLMs, there is a cost.  

When validated with independent evaluation data, GAMs do not perform as well because 

of over-fitting, which limits the transferability of the model to different areas or time 

periods (Randin et al. 2006).  GAMs require a large training data set to produce an 

accurate model because of the complexity of the algorithm used to determine the shape of 

the species–environment relationship (Yee & Mitchell 1991).  GLM and GAM models 

require absence data and results can be affected by an uneven ratio of presence and 

absence points.  For our model building, it was necessary to reduce the number of 

absence points from the data set to achieve an appropriate presence–absence ratio.  Both 

models were implemented in R using the BIOMOD package (Thuiller 2003). 

Regression Trees 

 Classification and Regression Tree (CART) methods divide the training data 

iteratively into two sub-sets based on the environmental variable that best reduce the 

variance in the response variable.  A tree is constructed by further divisions causing 

dichotomous branching for each split of the data.  This continues with all new sub-sets 

until all occurrences have been classified.  The branches of the classification tree can lead 

to presence or absence points based on the environmental variable used to sort the data 

(De'ath & Fabricius 2000). CART was implemented in R using the BIOMOD package 

(Thuiller 2003) 

 Random Forest is a form of CART that increases the power of the classification 
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tree by generating multiple models from repeatedly sub-sampled training data sets 

(bootstrapping).  The multiple models grow a “forest” of trees of which each tree is 

“grown” from a randomized subset of environmental variables.  Each species data point 

is classified by all trees in the “forest.”  The classification backed by the greatest number 

of trees becomes the value for the data point (Breiman 2001).  Although increasing the 

number of trees does not appear to increase over-fitting in Random Forests (Prasad et al. 

2006), it does complicate model interpretability (De'ath 2002; Prasad et al. 2006).  

Random Forest was implemented in R using the BIOMOD package (Thuiller 2003). 

 The Generalized Boosted Method (GBM, also known as Boosted Regression 

Trees) is an advanced CART method that incorporates the regression tree algorithm with 

a boosting algorithm that combines and summarizes a collection of many — 100s to 

1000s — trees.  In contrast, conventional regression, CART, and Random Forest methods 

find a single tree or model that is the best fit.  Boosting works on the premise that “it is 

easier to find many rough rules of thumb than it is to find a single highly accurate 

prediction rule” (Schapire 2002).  The boosting procedure builds many models then 

combines them to produce an average model.   A basic CART method, because of its 

dichotomous nature does not easily represent a smooth response curve (Austin 2002), but 

the addition of the boosting algorithm enables the GBM models to better represent 

smooth species response curves by averaging many trees (Elith et al. 2008).  The GBM 

models are also able to represent non-linear relationships and interactions between 

predictor variables (Elith et al. 2008).  Although GBM modelling could be considered a 

“black-box” method, as many other machine learning methods have been labeled, it 

appears of model comparisons that GBM results are ecologically sensible and were 
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accurate representations of species distributions (Elith et al. 2006).  We implemented 

GBM using ‘gbm’ in the BIOMOD package in R (Ridgeway 2006; Thuiller 2003).   

Maxent 

 Maximum entropy (Maxent) is a machine learning method that is able to make 

predictions using presence only data.  Like other machine learning techniques, Maxent 

improves the modelling algorithm automatically through a series of trainings with the 

data set.  Maxent estimates the spatial distribution of the presence points with maximum 

entropy (the most uniform or spread out distribution) given the constraints put on the 

distribution with respect to the point’s relationship to the environmental layers.  This 

relationship is quantified using the empirical average of the environmental variable for all 

presence points (Phillips et al. 2006).  Although Maxent was designed to use presence-

only data, it also performs well when compared to presence–absence procedures that 

utilize both real and pseudo-absence data (Elith et al. 2006; Hernandez et al. 2006; 

Pearson et al. 2007).  We chose to use Maxent because of its superior performance in 

model comparisons despite the availability of absence data for N. americanus.  We 

implemented Maxent with stand-alone software (Phillips et al. 2006; Phillips & Dudik 

2008). 

Model Evaluation 

 We used the threshold independent method, receiver-operating characteristic 

curve (ROC) to evaluate all models.  The area under the curve (AUC) of a ROC plot has 

been widely recommended to assess the predictive performance of species distribution 

models (Barry & Elith 2006; De'ath & Fabricius 2000; Elith et al. 2006; Ferrier & Guisan 

2006; Fielding & Bell 1997; Guisan et al. 2007; Rushton et al. 2004).  AUC is calculated 
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by plotting sensitivity against 1-specificity for all possible thresholds.  Sensitivity is the 

likelihood that a predicted presence point should actually be absent.  While, specificity is 

the likelihood that a predicted absence point should really be classified as present.  AUC 

values range from 0 to 1; with 0.5 being random performance and values near 1 being 

good predictive performance (Fielding & Bell 1997).  An index has been developed for 

AUC values: 0.5-0.7 = low accuracy; 0.7-0.9 = potentially useful; and > 0.9 high 

accuracy (Swets 1988).  Models were evaluated by calculating the AUC for the 

evaluation data set which was 25% of the species data points held out from the original 

species data set.   

 

RESULTS 

Species Data Set 

From 1979 to 2008, 1182 surveys for N. americanus were conducted across the 

eastern third of Oklahoma with 1089 surveys conducted in the past 10 years (Fig. 1).  Of 

those, 230 (20%) of the surveys collected at least one N. americanus specimen.  Of the 

total number of surveys, 72 locations were surveyed more than once, representing 173 

survey events (15%).  Of the 72 locations, 29 were negative for all surveys; 28 were 

positive for all surveys; 15 of the locations had surveys of both negative and positive 

results.  We considered the 15 locations with conflicting survey results as positive. 

Spatial autocorrelation of presence and absence was weak for neighboring data points and 

became 0 at a distance of 84 km (Table 2, Fig. 2). 

Predictor Variables 

Eight environmental variables were removed for a second round of model 
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building due to high correlation (Table 1).  Three of the categorical landcover and 

vegetation layers were highly correlated and two were removed.  Landcover was retained.  

Six climatic variables were removed leaving annual temperature, days below freezing, 

and May precipitation. 

Model Comparison 

Ten of the twelve models performed within the AUC index category of 

“potentially useful“ with an AUC value between 0.7-0.9 (Table 3).  As expected, 

removing correlated variables improved the performance of GLM, GBM, and GAM, and 

also improved the Random Forest model.  The model with the best performance was 

Maxent using all the predictor variables (AUC 0.857).  Other models with AUC values in 

the “useful” category were Random Forest, GBM, and Maxent - all which used the 

smaller set of predictor variables (Table 3). 

The map of the best Maxent model indicates that N. americanus is more likely to 

be present in the northern part of the southern half of the study area (Fig. 3), with small 

areas in the far north and southeast. May precipitation, geology, days below freezing, 

annual temperature, and last day of growing season were accounted for the highest gain 

in AUC in the Maxent jackknife test of variable importance.  Slope was the only variable 

responsible for reducing model performance. 

Of the other model predictions, the spatial representation of CART and Random 

Forest appear to have the most agreement with the best Maxent model.  Both CART and 

Random Forest predict greatest habitat suitability in the lower middle of the study area, 

but also indicate suitable habitat in the far north and southeastern corner.  However, none 

of the model predictions were obviously different from the Maxent predictive map (Fig. 
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3). 

 

DISCUSSION 

 Even the best performing models did not fall in to the highly accurate category 

(AUC ≥ 0.9).  Several factors may have inhibited predictive performance.  The errors in 

model building generally fall into two categories: data deficiencies, in both species and 

predictors, and incorrect model specifications (Barry & Elith 2006).  Let us first consider 

model specifications and parameterization.  The variation in model output for N. 

americanus is consistent with other studies comparing these modelling techniques (Elith 

et al. 2006; Hernandez et al. 2006; Loiselle et al. 2003; Meynard & Quinn 2007; Muñoz 

& Felicísimo 2004; Pearson et al. 2006).  GAM and GLM were two of the worst 

performing models — both techniques utilized absence data from the N. americanus 

surveys and are known to be significantly affected by spatial autocorrelation (Austin 

2002; Diniz-Filho et al. 2008; Dormann et al. 2007; Guisan et al. 2006; Segurado et al. 

2006).  The spatial autocorrelation for the species data set was low (Table 2), but may 

have been high enough to affect the model algorithm.  It has been suggested that when 

using these regression techniques that a covariate term be added to account for spatial 

autocorrelation (Segurado & Araújo 2004).  Autoregressive techniques designed to 

account for spatial autocorrelation can also be used, but have mixed results with models 

built with presence/absence data sets as compared to those using abundance values.  The 

addition of covariates or using autoregressive techniques do not consistently improve the 

results of models from binary data (Dormann et al. 2007).  The use of ensemble or 

consensus methods may improve model predictions.  By comparing, averaging, and 
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measuring variation in the predictions of multiple modelling techniques, ensemble 

methods can draw out the correctly predicted areas from several models and indicate 

areas of uncertainty (Marmion et al. 2009).  Ensemble methods have been used for other 

analyses, but only recently applied to SDM by a few researchers (Araújo & New 2007; 

Araújo & Rahbek 2006; Araújo et al. 2005; Marmion et al. 2009). 

 What factors in the species data set may have confounded model predictions?  

Absence data points from the N. americanus surveys may not truly represent unsuitable 

habitat. Habitat suitability models work on the principle that the observed occurrences of 

a species reflects the species ecological requirements.  Most models rely on the 

assumption that the organism will be present in suitable habitat and absent from 

unsuitable habitat — that the species is in equilibrium with its environment.  

Unfortunately that assumption is often fallacious because organisms can be found and 

recorded in unsuitable habitat or not found in highly suitable habitat.  The current 

distribution of N. americanus is almost certainly not at equilibrium with the environment 

or the species would occupy more of its historic range.  Knowing the cause of the range 

reduction would help to choose predictor variables that directly affect the current 

distribution.  Methods relying on these absence data will therefore have errors.  

Techniques that use presence and absence data usually have higher AUC values than 

presence only methods, but only when true absence data is available (Brotons et al. 2004; 

Pearson et al. 2006).  However, we argue that the absence data for N. americanus do not 

represent true absence, and using it to build the models introduced error into the 

predictions.  If false absences are suspected it is better to use a presence-only method 

(Chefaoui & Lobo 2008; Hirzel & Le Lay 2008; Jimenéz-Valverde et al. 2008; Pearson et 
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al. 2006).  Consequently, Maxent may have performed better because it does not rely on 

absence data, but uses pseudo-absences or “background” data that characterizes the 

environment of the entire study area (Phillips et al. 2006).   

 Although the majority of the data comes from standardized surveys conducted 

over the past twenty years, we believe there are some problematic features of the data set.  

The  survey method relies on rotten meat to lure insects to a pit fall trap and is likely to 

attract N. americanus to suboptimal habitat.  The USFWS provides trap specifications 

and notes that beetles within a 8 km radius could be attracted to the bait (US Fish and 

Wildlife Service 2007).  Raithel and colleagues (2006) found that N. americanus traveled 

“considerable distances” both on their own or aided by prevailing winds.  Bedick and 

colleagues (1999) found beetles traveled up to 6 km in a breeding season in Nebraska.  

For other flying invertebrates, such as butterflies, distribution model performance 

decreases as mobility and flight period increases (Pöyry et al. 2008).  Although N. 

americanus are attracted to carrion traps, this does not necessarily signify that the trap 

location is suitable habitat for reproduction.   

 Because survey locations were not placed randomly on the landscape or in a strict 

grid pattern covering the entire region, some geographic biases are apparent in the data.  

Much of the N. americanus survey data was conducted in roadside or pipeline right-of-

ways because it was commissioned by agencies prior to construction projects.  Therefore 

a pronounced bias exists in the N. americanus data set that may affect model results.  

Kadmon and colleagues (2004) found that even though woody plant records in Israel had 

a strong roadside bias, they were able to produce accurate models from the data set.  

However, their models were built simply from the species data set and included only 
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three climatic variables which they found were only weakly correlated.  Our models, 

however, were built using topographic and landcover features that may be more highly 

correlated to road networks.   

 Species life history characteristics can affect the accuracy of a model.  N.  

americanus is considered a generalist species and thus has no specialized habitat 

requirements (Bedick et al. 1999; Holloway & Schnell 1997; Lomolino et al. 1994).  

Generalist species have proven difficult to model because environmental requirements 

are not simply correlated to predictor variables unlike species with strong habitat or host 

specificity (Brotons et al. 2004; Evangelista et al. 2008; Guisan et al. 2007). 

 The predictive performance of our models may be reduced by not including 

predictors that directly affect the distribution of N. americanus.  We used a variety of 

predictor variables that should influence the distribution of N. americanus at several 

ecological scales.  Climatic variables are known to determine the continental or regional 

distribution of a species.  Topographic and landcover variables often affect the species at 

a finer scale.  However, we need to have greater emphasis on predictor variables that 

directly affect the organism at the sub-state scale.  Derived bioclimatic variables, such as 

evapotranspiration, may make more ecological sense and are more appropriate to the 

smaller scale than precipitation or temperature considered separately.  

 Despite the low predictive success of our models, the work we have done suggests 

future avenues of research that will improve our understanding of the N. americanus’s 

biology and ecology.  Maxent’s test of variable importance identifies variables that were 

most responsible for improving the model’s performance: May precipitation, geology, 

days below freezing, annual temperature, and last day of growing season.  Number of 
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days below freezing and last day of growing season indicate that environmental 

conditions during over-wintering may account for part of the species suitable habitat.  

Over-wintering survival has been studied with regard to habitat type, carrion availability, 

and depth in soil (Schnell et al. 2007), but another factor may be soil temperature.  

Although we were able to see a signal on a large scale, the affect of soil temperature on 

N. americanus distribution may be better studied at a smaller scale while taking into 

consideration the microclimate variation in small study areas.  The importance of geology 

in contributing to model performance indicates that substrate may limit what N. 

americanus finds to be suitable habitat.  Substrate will affect the insect’s ability to bury 

carrion and successfully raise a brood.  Preliminary results from Smith’s (Smith 2007) 

research indicates that brood carcasses were most likely to be buried in loose soil with 

low clay content.  The addition of an accurate soil texture layer, rather than soil 

association, may enhance future habitat models.   

The model results that indicate increased habitat suitability with increased May 

precipitation could suggest a physiological effect with over-wintering or brooding carcass 

decay or may simply be a surrogate for a predictor variable that we did not use.  Because 

of the strong southeast-northwest precipitation gradient in Oklahoma, precipitation may 

be a surrogate for the distribution of a competitor or prey item.  Research into the direct 

effect of precipitation on N. americanus reproduction and over-wintering might prove 

useful in understanding the current distribution of the species and the possible reasons for 

the historic range collapse. 

 Inclusion of biotic interactions such as overlap with competitor distribution and 

shared resources improve model performance at small and macroscales for a variety of 
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organisms (Araújo & Luoto 2007; Davis et al. 1998; Guisan & Thuiller 2005; Heikkinen 

et al. 2007; Preston et al. 2008).  Indeed, Sikes and Raithel (2002) have hypothesized that 

competition with congeneric and other scavengers and a reduction in suitably sized 

carrion affects the distribution and abundance of N. americanus.  The effect of 

congeneric competitors on distribution models has been demonstrated for South 

American pocket mice (genus Heteromys) (Anderson et al. 2002).  Including competitors 

of native trees (four species of Nothofagus) in New Zealand also produce more accurate 

species distribution models (Leathwick & Austin 2001). While they indicate that more 

work needs to be done, they believe that the most plausible cause for N. americanus 

decline is related to a change in these biotic interactions.  Habitat fragmentation may be 

altering the biotic interactions that have led to the decline of N. americanus.   Holloway 

and Schnell (Holloway & Schnell 1997) suggest that fragmentation has caused an 

increase in vertebrate scavengers and a reduction in carrion supply.  Bedick et al. (1999) 

agree, but also found that not all land-cover change is detrimental — agricultural areas 

can still be suitable habitat for N. americanus.   

 Another challenge for modelers is the inclusion of processes that affect the 

distribution of a species (Austin 2002; Guisan & Thuiller 2005).  N.  americanus may be 

directly affected processes ongoing on the landscape, such as: fire, dispersal, and 

succession.  Woody plant encroachment is affecting the N. americanus population in the 

grasslands of Nebraska (Walker & Hoback 2007).  Revising the 48 categories of 

landcover change by grouping types of change that is more likely to N. americanus could 

improve the variable importance in the models.  Integrating information of fire history or 

intervals could not only help improve model performance, but also inform land managers 
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of conservation practices that would increase habitat suitability. 

 Modelling N. americanus only in Oklahoma has allowed us to use a finer scale of 

environmental variables.  We may have compromised the predictive ability of the model 

by looking at the species at the edge of its western range.  More sophisticated algorithms 

have been developed recently that may be better for modelling species at the edge of the 

range, where habitat may be suboptimal and the species-environment relationship is 

skewed compared to the whole range (Braunisch et al. 2008). 

 

CONCLUSIONS 

 Other researchers have repeatedly encouraged better links from ecological theory 

and biology of the organism to the model building process (Austin 2002; Austin 2007; 

Guisan et al. 2006; Guisan & Thuiller 2005).  To improve model performance, we should 

think more carefully about the cause of N. americanus’s endangered status and its 

population shrinkage.  Sikes and Raithel’s (2002) review concludes that the most 

plausible explanation for N. americanus’s decline is a combination of factors associated 

with biotic interactions including congener and vertebrate competition and a reduction in 

optimally sized prey.  To improve the models and consequently the recovery effort for 

the species, we need to take into account these important variables.   Creating an accurate 

spatial layer of this data will be a future challenge. 

 Our objective was to produce a map of potentially suitable habitat for N. 

americanus that would guide conservation efforts within the state of Oklahoma.  

Although the model was not highly accurate, the map of suitable habitat can help to 

inform conservation biologists of areas that have suitable habitat for the N. americanus.  
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Overgenerous models can mislead conservation planners in thinking that more areas are 

highly suited to the species.  It is better to be conservative and find the best areas if 

resources are limited for planning preserves for the species or are looking for areas of 

reintroduction (Loiselle et al. 2003).  Therefore, we urge caution in interpreting the 

predictive map.  We offer it as a suggestion from which additional research can be done 

to support or refute our suitability map.   
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Variable Range & Unit Source

Elevation 87 - 806 m Oklahoma Digital Elevation Model (Cederstrand and 
Rea 1995; geo.ou.edu)

Slope 0 - 46° Oklahoma Digital Elevation Model (Cederstrand and 
Rea 1995; geo.ou.edu)

Soil association 228 categories STATSGO (Soil Survey Staff 2005; 
soils.usda.gov/survey/geography/statsgo)

Surface geology 133 categories U.S. Geological Survey (Heran et al. 2003; 
pubs.usgs.gov/of/2003/ofr-03-247

Vegetation * 34 categories Oklahoma Gap Project (Fisher and Gregory 2001; 
www.biosurvey.ou.edu/gap-ok.html)

Potential vegetation * 8 categories Game Type Map of Oklahoma (Duck and Fletcher 
1943; www.biosurvey.ou.edu/duckflt/dfhome.html)

Landcover 15 categories National Land Cover Database (www.mrlc.gov)

Forest cover 0 - 100 % 

Landcover change 48 categories

Annual temperature 14.4 - 16.2° C Oklahoma Climatological Survey
Oklahoma Mesonet (Brock et al. 1994; 
www.mesonet.org)

Number of days below 
freezing (0° C) *

57 - 93 days

Number of days above 
32.2° C *

56 - 85 days

Length of growing season * 201 - 222 days

First growing season day * 87th - 97th day 
of year

Last growing season day 299th - 310th day 
of year

Annual precipitation * 32.5 - 55.5 cm

May precipitation 4.8 - 6.7 cm

September precipitation * 3.4 - 5.6 cm

Table 1. Environmental layers used as predictor variables in models of potential habitat 
suitability of the endangered Nicrophorus americanus in eastern Oklahoma.
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Table 2. Analysis of spatial autocorrelation of Nicrophorus americanus occurrence re-
cords in Oklahoma.   The average Moran’s I is given for 16 distance classes.  Values for 
I can range from -1 to 1; values close to 1 indicate a positive spatial autocorrelation and 
negative values a negative spatial autocorrelation.  Spatial autocorrelation is low at the 
closest distances and approaches 0 at 84 km.

Average Paired 
Distance (km) Moran’s I I (max)

15.4 0.23 ± 0.012 * 0.592
39.3 0.176 ± 0.013 * 0.523
55.7 0.054 ± 0.013 * 0.401
70.5 0.065 ± 0.013 * 0.371
84.1 0.01 ± 0.013 0.333
96.8 -0.001 ± 0.013 0.343
108.3 0.011 ± 0.013 0.323
119.0 -0.051 ± 0.013 * 0.324
129.9 -0.093 ± 0.013 * 0.360
141.2 -0.124 ± 0.013 * 0.391
153.1 -0.142 ± 0.013 * 0.439
167.0 -0.157 ± 0.013 * 0.456
183.7 -0.118 ± 0.013 * 0.468
204.6 -0.093 ± 0.013 * 0.486
233.7 -0.011 ± 0.012 0.500
320.7 0.206 ± 0.011 * 0.717

* p < 0.001
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All Predictors

Correlated 
Predictors 
Removed

CART 0.726 0.688

GAM 0.780 0.802

GBM 0.765 0.813

GLM 0.674 0.731

Maxent 0.857 0.831

Random Forest 0.792 0.834

Table 3.  Performance of different modelling techniques for Nicrophorus americanus us-
ing all available predictor variables and a reduced set of variables based on variable cor-
relations.  AUC value of 0.5-0.7 is considered low accuracy; 0.7-0.9 is considered useful; 
and 0.9 and above is considered high accuracy.  Models were evaluated with 25% holdout 
data from the occurrence data set.  Classification and regression tree, CART; general-
ized additive model, GAM; generalized boosted model, GBM; generalized linear model, 
GLM; maximum entropy, Maxent.
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Figure 1.  Occurrence records of Nicrophorus americanus in Oklahoma, south-central 
United States, used in habitat suitability modelling.  Presence records are indicated with 
circles, absences with small crosses (+).  To the east of the black line indicates the historic 
range within Oklahoma.
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Figure 2. Spatial correlograms of Nicrophorus americanus occurrences in Oklahoma.  
Circles indicate the Moran’s I for each distance pair.  Triangles are the highest Moran’s I 
value for each distance class.
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Figure 3.  Predicted habitat of Nicrophorus americanus in eastern Oklahoma based on the 
Maxent model using all predictor variables.  This modelling technique produced the most 
accurate model of all techniques tested, with an AUC value of 0.857.  Circles indicate 
known presence locations of Nicrophorus americanus and small crosses (+) indicate sur-
veys that found no Nicrophorus americanus. 
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INTRODUCTION 

Species’ ranges are controlled by environmental tolerances, biotic interactions, 

dispersal limitations, and historical factors.  Boundaries such as mountains, rivers, 

oceans, and deserts limit the geographic range of many species, not because suitable 

habitat is limited, but barriers prevent the continued movement of species.  However, 

humans have eliminated those barriers by accidentally or deliberately transporting species 

around the world (Vitousek, D'Antonio et al. 1997).  If the habitat is suitable, alien 

species can survive and thrive in their introduced range and possibly become invasive.  

The term invasive has been used in a variety of ways, but we use the strict definition of 

invasive species to mean alien species that have spread over a considerable area after 

introduction from another region by humans (Richardson, Panetta et al. 2000). 

The impact of invasive species is multifaceted, both from an ecological and 

societal perspective.  Following introduction and establishment, invasive alien species 

can have significant ecological and economic impacts.  The ecological impact of invasive 

species has been well documented: alteration of disturbance regimes, decline in native 

species abundance, nutrient cycles shifted, epidemics caused by new parasites, food web 

shifts, and others [for reviews see (Vitousek, D'Antonio et al. 1997; Mack, Simberloff et 

al. 2000)].  The economic impact of alien invasive species is best illustrated by the 

estimated amount expended for invasive species management each year, $137 billion in 

the United States alone (Pimentel, Lach et al. 2000).  These expenses could be 

ameliorated by an effective early detection and eradication system (Hobbs and 

Humphries 1995; DiTomaso 2000) and early detection can be improved by identifying 

the potential invasive species, recognizing the likely mode of transportation into the area, 
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and determining the potential habitat available.  It is the last of these topics that we 

address with our research: identifying areas that are susceptible to invasion by known 

invasive species.  Species distribution modelling can identify areas in the introduced 

range that have environments similar to the native range.  Locating geographic areas in 

the introduced range that have the same fundamental niche space is the first step in 

mapping potential areas of invasion. 

Species Distribution Modelling 

Species distribution models (SDM) correlate data for known species occurrences 

with environmental data to produce a predictive map of the range within a study area.  

These models are predicated on the assumption that species populations are at 

equilibrium with the environment; that is, the species should be found in all suitable areas 

and not occupy unsuitable habitat (Hutchinson 1957) [but for a discussion on how 

realistic this assumption is see (Araújo and Pearson 2005)].  This assumption is 

problematic when attempting to model the potential range of alien, invasive species, 

which by definition are continuing to expand both in geographic area and abundance.  

Therefore, a model built with occurrence data from the introduced range may under-

predict the distribution of a species that has not reached equilibrium with its environment.  

Thus, it has been necessary to modify distribution modelling techniques to more 

accurately model the potential distribution of alien species.  Recent attempts to overcome 

the limitations of the assumption of equilibrium have been to develop distribution models 

based on data from the species’ native range and use the result to project the potential 

habitat suitability onto the introduced region (Peterson 2003; Nyári, Ryall et al. 2006; 

López-Darias, Lobo et al. 2008).  These models are generally built using coarse scale 
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climate data from the native range and the suitable climate parameters are projected onto 

the introduced range.   

Reciprocal Modelling 

The assumption of distribution modelling of invasive species using native range 

occurrences is that the niche occupied in the native range will be similar to the one 

occupied in the introduced range (Peterson and Vieglais 2001; Pearman, Guisan et al. 

2008).  Comparing model predictions of an invasive species in both its native and 

introduced range is a test of that assumption.  The ability of a model’s predictions to be 

transferred from one region to another has been examined for species within their native 

range (Randin, Dirnbock et al. 2006; Barbosa, Real et al. 2009) and to introduced ranges 

(Mau-Crimmins, Schussman et al. 2006; Fitzpatrick, Weltzin et al. 2007).  In general, 

these studies found that models predictions did not transfer well.  When modelling the 

potential distribution of an alien, invasive species in a new area, many species 

distribution models go no further than to project the range of suitable environmental 

variables in the native range onto the introduced range.  Reciprocal modelling, on the 

other hand, predicts not only the potential invaded range based on the environmental 

characteristics of the native range, but it also uses occurrence data from the invaded range 

to predict the native range.  The results can then be used to evaluate habitat discrepancies 

or potential niche shifts (Fitzpatrick and Weltzin 2005; Fitzpatrick, Weltzin et al. 2007; 

Loo, Nally et al. 2007).  Fitzpatrick and Weltzin (2005) proposed and demonstrated the 

use of reciprocal modelling as a new method of studying the prediction errors of invasive 

species distribution models.  This modelling approach can help to determine which 

environmental factors within the introduced range are different from the native range and 
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which habitats within the native range are not represented in the introduced range.  

Further, reciprocal modelling can reveal potential problems with occurrence data and 

predictor variables in both native and introduced ranges, but it also has also been used to 

investigate ecological phenomena, such as niche shifts of invasive species in their 

introduced range (Mau-Crimmins, Schussman et al. 2006; Broennimann, Treier et al. 

2007; Fitzpatrick, Weltzin et al. 2007).  

Objectives  

We were interested in exploring the potential of species distribution models to 

identify areas susceptible to alien species invasion within the United States.  Species 

distribution models are a relatively versatile and inexpensive ecological tool — species 

occurrence data, GIS layers of environmental data, and software to implement the models 

are freely available on the Internet.  Species distribution models have the potential to 

improve our response to the threat of invasive species.  Identifying potentially suitable 

habitat can help to focus early detection efforts and therefore reduce the resources needed 

to manage or eradicate the species.  We used species distribution models based on native 

range occurrences and climate to predict the climate suitability of three invasive species.  

Model predictions  were then projected into the introduced range to determine areas that 

are climatically suitable for the invasive species.  To test the model’s accuracy when 

transferred into other regions, we compared model predictions in the introduced range to 

occurrence records of the alien species in the introduced range.  Using reciprocal 

modelling and principle components analysis (PCA) we examined the differences in 

predicted distributions in both geographic and climate space using native and introduced 

occurrences. 
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METHODS 

Study Species 

We limited our investigation to three invasive wetland plant species that are 

considered invasive in the USA, that we assume have not reached environmental 

equilibrium: Iris pseudacorus, Lythrum salicaria, and Saccharum ravennae.  We focused 

on species of European origin because of the plethora of data available on their native 

distribution.   

Iris pseudacorus (yellow flag iris) is native to Europe and western Asia and 

brought to North America as an ornamental in the mid 1800s (Sutherland 1990) and is 

currently found throughout the USA and Canada, except the Rocky Mountains (USDA 

NRCS 2009).  Iris pseudacorus is capable of forming dense monocultures from a 

network of rhizomes that exclude native riparian vegetation (personal observation) (Judd 

1953; Raven and Thomas 1970).  Iris pseudacorus occurs in wetlands and riparian zones 

and can thrive in drainage ditches.  It also has been planted in sewage treatment facilities 

for heavy metal remediation.  As with other wetland plants, I. pseudacorus can tolerate 

long periods of anoxia, but also can withstand long droughts.  Iris pseudacorus can 

reproduce sexually by seed and/or asexually by rhizome fragments.  Hydrochory is the 

typical dispersal mode via transport of floating fruits, seeds, and dislodged rhizomes 

(Sutherland 1990).  

Lythrum salicaria (purple loosestrife) originated in Eurasia, but was well 

established in North America by the 1830s, thus leading John Torrey and Asa Grey to 

conclude it was a native species.  It was probably introduced repeatedly to North America 

via ships ballasts, through the horticulture trade, in imported goods, and by immigrants 
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using it as a culinary and medicinal herb (Thompson, Stuckey et al. 1987).  Lythrum 

salicaria has been reported from 43 of the coterminous states in the USA and is 

considered a noxious weed by several (USDA NRCS 2009).  As a mature, herbaceous 

perennial, L. salicaria can reach up to 2 m in height and produce over 2 million seeds per 

plant.  Although most seeds cannot float, seedlings can and this may be the primary mode 

of dispersal (Thompson, Stuckey et al. 1987).   

Saccharum ravennae (ravenna grass) is a large clump forming grass species 

native to southern Europe, northern Africa, and western Asia.  It has been reported from 

16 of the coterminous states (USDA NRCS 2009) and is designated as an invasive 

species in Arizona and Utah (Swearingen 2006).  The oldest records in herbaria in the 

United States are from the early 1900s, but there is some speculation that the invasive 

genotype was introduced later (Thomsen and Meyer 2008).  It is widely used as an 

ornamental grass in the USA and naturalized populations are presumed to be escaped 

from cultivation and ornamental landscaping (Utah State University 2009).  Invasive 

populations are generally found along rivers and the grass can grow in a variety of soil 

types and moisture regimes.  

Occurrence Data 

Occurrence data sets were compiled from several data sources.  A search was 

conducted of the Global Biodiversity Information Facility (GBIF) database for the 

species of interest.  GBIF is an international organization that has partnered with 

institutions from around the world to provide biodiversity data over the Internet.  A 

majority of the data within GBIF comes from natural history collections, including 

herbaria.  We limited the occurrence records to the continental United States and Europe.  
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We removed duplicate records, records with missing location information, and records 

that were not georeferenced to three decimal places for latitude and longitude.  It should 

be noted that GBIF does not guarantee the accuracy of the data provided.   Biodiversity 

occurrence data used for this research were provided to GBIF by institutions listed in 

appendix 1 (Accessed through GBIF Data Portal, www.gbif.net, 2008-12-10).  Additional 

occurrence data for I. pseudacorus and L. salicaria within the United States were 

obtained from the Nonindigenous Aquatic Species Program database at the US 

Geological Survey (nas.er.usgs.gov).  Occurrence data for all species within Oklahoma 

were acquired from the Oklahoma Vascular Plants Database 

[www.oklahomaplantdatabase.org; (Hoagland, Buthod et al. 2008)]. The occurrence data 

were randomly split into two data sets: model training (or building) data (75% of the 

data) and model evaluation data (25% of the data; also known as hold out data). 

The specimen occurrence records maintained by GBIF do not represent a 

geographically uniform or systematic data set.  Asymmetries exist in the data because 

collection effort is not equal for all parts of the globe nor have all natural history 

collections contributed data to GBIF.  Precision at which a specimen was georeferenced 

is variable and some collections are not well georeferenced.  We accounted for sampling 

bias in the GBIF data through use of a “bias file” in Maxent (Phillips, Anderson et al. 

2006).  The bias file is an additional raster file added to the modelling process that 

represents sampling effort.  Because it is rare that sampling effort is quantified and 

available in spatial form, especially with large data sets such as GBIF, a bias file can be 

generated by using records of several common species within the same study area.  This 

group of species should be broadly distributed within the study area and represent a 
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variety of habitats and environmental tolerances.  The distribution of this group of species 

is modelled using the same environmental predictor variables.  Because this group of 

species represents a wide range of environmental variables, the distribution should not be 

easily predicted from the model.  However, if the distribution of this group of species 

performs well using the environmental variables, we can infer that the model 

performance is being affected by geographic sampling bias and not true environmental 

factors (Phillips, Dudik et al. 2009).  We selected 20 common herbaceous plants of 

Europe based on their broad European distribution and range of habitats (Appendix 2) 

and adequate occurrence records in GBIF.  Biodiversity occurrence data used for this 

research were provided to GBIF by institutions listed in appendix 1 (Accessed through 

GBIF Data Portal, www.gbif.net, 2008-12-10).  We discarded duplicate records, records 

with missing location information, and records that were not georeferenced to at least 

three decimal places for latitude and longitude.  Each species contributed over 4,000 

specimens to the total of over 80,000 occurrences.  We randomly selected a subset of 

15,000 records for model building in Maxent.  Models for the bias file group of species 

were built with the same parameters (detailed below) as models for the invasive species.  

The model predictions for the bias file group of species were then used as the bias file in 

Maxent (Phillips and Dudik 2008).    

Bioclimatic Predictor Data 

Because plant species distribution is, for the most part, determined by climate at 

the continental scale (Woodward 1987), we used the 19 derived bioclimatic variables in 

30 arc-second resolution raster grids (approximately 1 km x 1 km resolution) from 

WorldClim for the environmental predictor data (Table 1).  Freely available over the 
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Internet (www.worldclim.org), the WorldClim data make up a set of fine-scale global 

climatic layers interpolated from a large number of weather stations and statistically 

enhanced with digital elevation models (Hijmans, Cameron et al. 2005).  WorldClim has 

been used with success in species distribution models (Broennimann, Treier et al. 2007; 

Fitzpatrick, Weltzin et al. 2007; Pearman, Randin et al. 2008).  Within ArcMap, global 

raster layers were clipped to rectangles surrounding the regions representing the 48 

contiguous United States (from here on referred to as US) and Europe, as far east as 

western Russia.  

Projecting models built in one region onto another region requires a similar range 

of values within the environmental predictor variables.  To determine if the 

environmental variables used for model building at the continental scale have similar 

ranges in both the US and Europe, box plots and line graphs were used to evaluate each 

pair of US and European environmental variables for range of value overlap.  For 

example, a value for each environmental variable is contained in each cell of the raster 

layer.  The number of cells representing all possible values for each variable is tallied.  

The entire range of values and interquartile range of values for each variable pair is 

compared in 19 box plots for all bioclimatic variables.  Box plot whiskers were drawn to 

represent the range of values and boxes were drawn to encompass values between the 

first and third quartile (Appendix 3).  The extent of the box represents the range of values 

for each variable surrounding the mean for the middle 50% of cells.  Another effort to 

visualize the data involved line graphs drawn for pairs of environmental variables 

(Appendix 3).  The number of cells was plotted against variable value for each 

environmental pair.  Box plots and line graphs were visually analyzed.   
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Maxent Modelling Algorithm 

Many of the standard distribution modelling techniques, such as regression, 

require both presence and absence data to make accurate predictions of a species’ 

distribution.  Maximum entropy (Maxent) is a machine learning method that is able to 

make predictions using presence only data (Phillips, Anderson et al. 2006).  Like other 

machine learning techniques, Maxent improves the modelling algorithm automatically 

through a series of trainings with the data set.  The creators of the Maxent 

implementation for species distribution modelling state that it is able to predict a species’ 

distribution based on “incomplete information”; meaning species observation data that do 

not necessarily cover the entire suitable range of environmental variables (Phillips, 

Anderson et al. 2006; Phillips and Dudik 2008).  Maxent estimates the distribution of a 

species with maximum entropy (the most uniform or spread out distribution) of the 

known presence points given the constraints put on the distribution with respect to the 

point’s relationship to the environmental layers.  This relationship is quantified using the 

empirical average of the environmental variable at all presence records (Phillips, 

Anderson et al. 2006).   

The implementation of Maxent for species distribution modelling was specifically 

designed for use with presence only data.  In comparisons with other presence only 

methods, it performs significantly better.  Maxent also performs well when compared to 

presence–absence procedures that utilize both real and pseudo-absence data (Elith, 

Graham et al. 2006; Hernandez, Graham et al. 2006; Pearson, Raxworthy et al. 2007). 

Maxent has several features that improve the models predictive performance and 

interpretability: it takes into account the interaction between environmental variables; the 
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output is the probability of distribution, which is mathematically defined; it possesses a 

procedure to counteract over-fitting of the model; it employs a relaxation that allows the 

estimated distribution to go beyond the empirical average within the error bounds, a 

smoothing procedure called regularization, can potentially correct for small sample size 

(Phillips, Anderson et al. 2006; Phillips and Dudik 2008).  Maxent is also simple to 

implement given the user-friendly interface developed by Phillips et al. (2008).  Not only 

does the software compute distribution models, but it also performs validation statistics, 

jackknifes to calculate variable importance, and produces a potential distribution map of 

the model results.  And the software can also project the model results onto another set of 

environmental variables in a different region which is especially useful for modelling 

alien species in their introduced region (Phillips, Anderson et al. 2006; Phillips and 

Dudik 2008). 

Reciprocal Models 

Once data were corrected and a bias file generated, occurrence and predictor data 

were loaded into Maxent version 3.2.19 (Phillips, Schapire et al. 2008).  To test the 

model, 25% of the occurrence data was withheld from model building and used in 

evaluations (Table 2).  Although not a truly independent data set, withholding occurrence 

data from analysis for evaluation is a common and useful technique for model evaluation 

(Araújo, Pearson et al. 2005).  The regularization multiplier affects how well the model 

can be applied to independent data.  As the multiplier value is decreased, the model fit to 

the training data improves, but the risk of over-fitting the model increases.  The 

regularization multiplier is adjusted if the model evaluation results indicate a large 

difference in the performance of the model for the training and testing data.  Unless there 
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is a large discrepancy between the test statistic for the training and evaluation data, the 

default regularization multiplier value of 1 is recommended (Phillips, Anderson et al. 

2006).  A maximum of 500 iterations for each model was run and a convergence 

threshold of 0.0001 was used.  Convergence threshold of 0.0001 is the default and is 

considered a conservative estimate allowing the algorithm to approach convergence 

(Phillips, Anderson et al. 2006).  Ten thousand “background” points were randomly 

chosen from the extent of the environmental layers as a representation of the range of 

values for all environmental variables across the region.  Multiple occurrence points 

falling within one grid cell of the environmental variables were reduced to one point for 

both model building and evaluation. 

Models were built in two stages.  First, predictions from native range data were 

mapped in both the native range (Europe) and introduced range (US). Then a full set of 

reciprocal models were built in the introduced range (US) and projected into the native 

range (Europe).  Models projected into a different region were checked for environmental 

variables that were restricted because of range of values encountered during training was 

limited [termed clamping in Maxent software (Phillips, Schapire et al. 2008)].  Predictor 

variable values in the new region that are outside the range used during model building 

will likely have an effect on predicted suitability.  Models built with all variables were 

compared to models built with the reduced set of variables that had good range overlap 

between US and Europe. 

Model Evaluation 

We used the threshold independent method, receiver-operating characteristic 

curve (ROC) to evaluate all models.  The area under the curve (AUC) of a ROC has been 
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widely used to assess the predictive performance of species distribution models (Hirzel, 

Le Lay et al. 2006; Wisz, Hijmans et al. 2008).  AUC is calculated by plotting sensitivity 

against (1-specificity) for all possible thresholds.  AUC values range from 0 to 1; with 0.5 

being random performance and values near 1 being good predictive performance (Pearce 

and Ferrier 2000).  The Maxent model calculates AUC using 25% holdout data for 

presence points and the 10,000 background points as absence points (Phillips, Schapire et 

al. 2008).  Native range models projected into the introduced range were evaluated using 

US occurrences; introduced range models projected into native range were evaluated 

using Europe occurrences.  AUC values for models were compared using a Wilcoxon 

signed-rank test. 

PCA 

In addition to evaluating the distribution of the invasive species geographically, 

we evaluated the distribution of  populations from both the native and introduced range in 

environmental space.  A comparison of results in both geographic and environmental 

space can help us to evaluate discrepancies between models made in the native and 

introduced range.  Using principle component analysis (PCA), we compared the position 

of the species occurrences in climate space for both the native and introduced range 

(McCune and Mefford 2006).  Because of the large occurrence data set for I. pseudacorus 

and L. salicaria in Europe, we randomly selected 1,500 occurrences for each species to 

calculate the principle components.   
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RESULTS 

Occurrence Data and Accounting for Sample Bias 

The number of occurrence records available per species in each region ranged 

from 24 to 14877 (Table 2).  Iris pseudacorus and L. salicaria have been collected 

extensively and are widely distributed throughout central and northern Europe (Table 2; 

Fig. 1a, 2a).  Saccharum ravennae has significantly fewer occurrence records and is 

found primarily in southern Europe (Table 2; Fig. 3a).  It is clear from the map of 

occurrence points in Europe that there is a sampling bias related to political boundaries 

(Fig. 1a, 2a, 3a).  

The AUC value from the bias file model was high (AUC 0.881 +/- 0.01), 

indicating that GBIF data for Europe are not uniformly distributed in geographic space 

and the distribution of this group of species can be erroneously predicted with climatic 

variables.  The resulting predictions from the target group were used as the bias file in the 

Maxent modeling of the invasive species. 

Accounting for Difference in Range of Bioclimatic Variables 

Based on the comparison of line graphs and box plots of US and Europe 

bioclimatic variable raster layers, 5 of the 19 variables appeared to have a large 

difference in value range and interquartile range (Appendix 3).  These variables were 

excluded from the final model building (Table 1). 

Although there were significant differences in the performance of the model sets, 

(models using all 19 bioclimatic variables versus models using the reduced set of 

bioclimatic variables) there was not a consistent pattern related to number of predictor 

variables (Table 3).  Among the models built with the Europe occurrence points, either 
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modeled in the native or introduced regions, only the S. ravennae model projected into 

the US had a significant difference between all or reduced predictor variables and 

contrary to expectations, the model with fewer variables performed better.  Therefore, in 

subsequent analyses we focused only on the results from models with the reduced 

predictor data set due to the slight advantage or no difference between these model pairs.  

Focusing on this data set also allowed us to moderate the errors caused by variables with 

dissimilar ranges in Europe and US.  

Reciprocal Models 

Species distribution models were highly accurate when applied to the region in 

which they were built (Table 4, Figure 4b, 5b, 6b).  The results from the three study 

species supports the general assumption that plant species distribution is governed by 

climate at the continental scale.  However, species distribution models built in one region 

and projected into another region performed poorly (Table 4, Figure 4a, 5a, 6a).   For all 

three species, models built using Europe occurrences and applied to Europe performed 

well, with AUC values above 0.92.  Even the small data set of S. ravennae, with only 18 

training points, still performed well (AUC = 0.959).  Models created using US 

occurrences and applied to the US also performed well (AUC range = 0.895 to 0.922).  

At best, the models projected into a different region had moderate AUC values (0.759 

and 0.744), but several models performed no better than random (near 0.5).  There was 

no consistent pattern of performance for models built in the native range and projected 

into the introduced range or vice versa (Table 4).  The model of S. ravennae built with 

Europe occurrences and projected into the US performed better than the model using US 
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occurrences and projected into Europe.  However, the model of I. pseudacorus built with 

Europe occurrences and projected into the US performed worse.     

PCA 

For all three species, the first three principle components accounted for over 75% 

of the total variation in the data (Table 5).  For I. pseudacorus, the first principle 

component (PC-1) was related to temperature (especially Bio6), PC-2 was related to 

precipitation (particularly periods of wettest precipitation), and PC-3 was related to 

temperature extremes (Bio10 and 11) (Figure 7).  Occurrences in Europe and US appear 

to separate based precipitation.  PCA were similar for L. salicaria, except temperature 

extremes were more important in PC-1 (Figure 8).  The Europe occurrences exhibit a 

variety of precipitation tolerance, and temperature seems to separate the Europe and US 

groups.  For S. ravennae, PC-1 was related to precipitation, while PC-2 and PC-3 were 

related to temperature (Figure 9).  The distribution of S. ravennae US occurrences 

appears to be more influenced by temperature and by precipitation in Europe.  All three 

analyses illustrate a separation in environmental space for the native and introduced 

occurrences.   

 

DISCUSSION 

All distribution models in this study performed well when built with occurrence 

and climate data from the same region, but did not perform well when projected, or 

transferred, to a different region. Transferability of model predictions to other ranges 

have been examined both within native ranges and to introduced ranges.  Some studies 

have found that models built using data from a portion of the native range are not 



 157 

necessarily transferable to other parts of the native range (Randin, Dirnbock et al. 2006; 

Barbosa, Real et al. 2009); and invasive species models projected into their introduced 

range and evaluated with introduced occurrences also show poor performance (Mau-

Crimmins, Schussman et al. 2006; Fitzpatrick, Weltzin et al. 2007; Loo, Nally et al. 

2007). 

Recently postulated hypotheses regarding factors that contribute to invasive 

species may explain the discrepancy of ranges of the three invasive study species within 

Europe and US, such as escape from natural enemies, evolution in new environment, 

better competitors due to novel biochemicals, pre-adapted to disturbed environment, and 

repeated introduction with high propagule pressure [for review see (Hierro, Maron et al. 

2005)].  The characteristics that make a species invasive may be the same characteristics 

that cause the species’ environmental range to be different in the native and introduced 

regions.  Not only do the model predictions from one continent to another illustrate a 

difference in climate preference, the PCA results indicate a difference in the climate 

space occupied by the native and alien occurrences.  This difference in occupied habitats 

by one species after introduction to a new region can be interpreted as a niche shift.   

Species distribution models  assume that the species being modeled is at 

equilibrium with the environment, whether in the native or introduced area (Araújo and 

Pearson 2005); but this assumption certainly violated when modeling alien species, which 

may still be spreading into suitable areas.  In fact, that is the point of our invasive 

modelling research: to find areas of suitable habitat that the species has not yet dispersed 

into, for whatever reason.  Therefore, in this study, it is assumed that the invasive species 

is not at equilibrium in the introduced range.  Thus, it would be expected that models 
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built with introduced range data under-predict the native distribution and the models built 

with native range data to over-predict the introduced distribution.  Our results are, 

unfortunately, not that simple.  The appeal of using native range occurrences to build a 

model is to represent the species’ environment when it is at equilibrium.  However, there 

is some debate as to how many species are truly at equilibrium within their native 

environment (Araújo and Pearson 2005).   

The assumption of modelling the distribution of invasive species using native 

range occurrences is that the niche occupied in the native range will be similar to the one 

occupied in the introduced range (Peterson and Vieglais 2001; Pearman, Guisan et al. 

2008).  Evidence is accumulating that invalidates that assumption.  Fire ants (Solenopsis 

invicta) are not occupying the same climatic space in their native and introduced regions 

(Fitzpatrick, Weltzin et al. 2007; Fitzpatrick, Dunn et al. 2008).  Spotted knapweed 

(Centaurea maculosa) occupies areas that are climatically different in Europe and North 

America (Broennimann, Treier et al. 2007).  A lovegrass (Eragrostis lehmanniana) from 

South Africa has invaded a different environmental niche in the southwestern United 

States (Mau-Crimmins, Schussman et al. 2006).  

The niche and niche shift concepts affect the interpretation of the model results.  

Observations of the distribution of a species native region only consider the species 

realized niche: the combination of suitable environmental conditions that is adjusted by 

history and biotic interactions.  When considering the distribution of an alien species in 

its introduced region, what may be revealed is a new realized niche.  Researchers using 

reciprocal models such as ours have demonstrated that the realized niche differs in native 

and introduced ranges.  The niches of introduced and native ranges, as represented in 
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climatic or environmental space predicted by the models, may overlap in part.  However, 

nonoverlapping areas that represent different environmental space or realized niches are 

biologically and ecologically interesting.  

The difference between the suitable habitat in the native and introduced ranges 

can be due to genetic differences caused either by evolution or adaptation after 

introduction or the introduction of a particular phenotype that has thrived in the 

introduced region (Dietz and Edwards 2006; Richardson and Pyšek 2006). Fitzpatrick et 

al. (2007, 2008) support the hypothesis that fire ants with a specific phenotype were 

introduced into the United States.  They also suggest the fire ants’ niche continued to 

shift due to adaptation to the introduced region’s environment (Fitzpatrick, Weltzin et al. 

2007; Fitzpatrick, Dunn et al. 2008). The core area of invasion for spotted knapweed 

(Centaurea maculosa) is outside of the climatic niche of the native distribution.  

Broennimann and colleagues (2008) argue that the niche of spotted knapweed has shifted 

after introduction and the difference is not due to the introduction of a specific genotype.  

They suggest that the niche shift could be caused by a change in realized niche 

(competitor release or other change in biotic interaction) or a change in the fundamental 

niche (evolution or adaptation of an increased competitive ability).  Mau-Crimmins and 

colleagues (2006) found that the variety of Lehmann’s lovegrass (Eragrostis 

lehmanniana) introduced in the United States was highly selected by agronomists and its 

environmental tolerances within the introduced range did not reflect the entire native 

range.  Therefore models trained on occurrence data from only the introduced range 

performed better than models using native range information.  The researchers conclude 

that introduced taxa that represent a genetically distinct group within a species are best 
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modelled with only introduced occurrences because native range information would 

include environmental tolerances outside the narrow tolerances of the introduced taxa.  

Although a species’ distribution within its native region may be readily described 

by climate variables, that prediction may not be transferable to another location when 

based on climate alone.  Biotic interactions also limit a species distribution.  Model 

predictions based on the native range may under-predict the potential distribution in the 

introduced range if biotic interactions, such as competition or parasitism, are removed 

when an alien species enters a new region.  For example, a competitor may be the 

limiting factor at the northern edge of a species range.  However, that northern range 

edge may easily be represented by temperature.  If temperature is used as a surrogate by 

the model and predictions based on temperature are then projected into the introduced 

region, the model will fail to accurately predict the distribution because competition is the 

true limiter.  Situations such as these have lead many ecologists and modellers to call for 

the incorporation of biotic interactions in species distribution models (Davis, Jenkinson et 

al. 1998; Araújo and Luoto 2007; Guisan, Zimmermann et al. 2007).  But accurately 

predicting areas of invasion in the introduced range may never truly incorporate the 

influence of biotic interactions because the introduced species are no longer affected by 

their native biotic interactions and are subject to another suite of species in the introduced 

range with which it may form new biotic interactions that are currently indescribable. 

Poor model transfer may be a result of causes that are not related to ecology.  

Non-overlapping range of values for the predictor variables in Europe and US may still 

be affecting the model predictions despite removing five of the 19 variables from model 

building.  There may continue to be error in the models caused by one or two variables 
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that are important to the model predictions, but also have value ranges that do not match 

in both the introduced and native regions. Knowledge of the environmental tolerances 

across the entire range of the species is necessary to find all suitable habitats (Murphy 

and Lovett-Doust 2007).  Unfortunately, we cannot evaluate this likelihood for I. 

pseudacorus, L. salicaria, and S. ravennae because GBIF data are highly skewed to 

western European and North America, but under represent their native range in eastern 

Europe, northern Africa, and/or the Middle East.  The climatic environment of these areas 

within the native range was not represented in our models.  Also, more complex models 

have recently emerged and been applied to alien species distribution.  For example, fuzzy 

envelope models proved successful in predicting the distribution of alien species in South 

Africa (Robertson, Villet et al. 2004).  The ongoing development of new algorithms and 

techniques may improve the predictions of invasive species potential distribution.   

Models of the potential distribution of invasive species have been informative at 

the global scale (Peterson and Vieglais 2001; Peterson, Pape•  et al. 2003; Nyári, Ryall et 

al. 2006).  For example, Thuiller and colleagues (2005) produced a global map of 

potential areas of invasion by 96 South African plants species.  Their models performed 

well due to the inclusion of a generalized biome variable with bioclimatic layers and 

thorough documentation of the range of these South African endemics.  Models utilizing 

the introduced occurrences have been successful in predicting new areas of invasion at 

the local level.  In fact, because of the difficulty obtaining data from native ranges, some 

modelers rely only on introduced region information.  Researchers have examined the 

local invasion potential of alien sea squirts (the tunicate Didemnum vexillum) off the 

coast of British Columbia (Herborg, O'Hara et al. 2009), invasive trees and grasses in an 



 162 

American national park (Evangelista, Kumar et al. 2008), and invasive plants in China 

(Zhu, Sun et al. 2007).  At the local scale, better performing models have included 

variables that are important to the distribution of a species.  In addition to climate 

variables, modelers have included topography and landcover.  Recent advancement in 

distribution models have incorporated dispersal vectors (del Barrio, Harrison et al. 2006; 

Herborg, O'Hara et al. 2009), anthropogenic influence (Lippitt, Rogan et al. 2008), and 

remotely sensed habitat information (Thuiller, Richardson et al. 2005; Anderson, 

Peterson et al. 2006). 

Relatively easily obtained data and user-friendly modelling software make 

building models an inexpensive tool for conservation biologists.  Being able to create a 

distribution map with little prior knowledge of the species’ ecology and biology is 

tempting and possible with species distribution models.  Models can help generate 

hypotheses regarding the environmental and physiological tolerances of species.  It is 

apparent from our results and others that native region models based on climate alone are 

of little use in locating suitable invasive species habitat.  It is not surprising that many 

others have come to the conclusion that species distribution models coupled with sound 

ecological understanding will produce the best results (Wilson, Westphal et al. 2005; 

Barry and Elith 2006; Guisan, Overton et al. 2006; Austin 2007).   

Our goal was to create predictive models of alien plant invasion based on native 

range information with the intention to inform conservation efforts such as early 

detection and eradication programs.  model areas that are suitable for invasion by specific 

alien species using the native climate habitat. Our model results indicate that the climate 

space occupied by the species are inconsistent between the native and introduced ranges.  
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Therefore our model predictions are not useful in determining areas of habitat suitability 

in the introduced range.  
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BIO1 Annual Mean Temperature
BIO2* Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (* 100)
BIO4* Temperature Seasonality (standard deviation *100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7* Temperature Annual Range
BIO8* Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19* Precipitation of Coldest Quarter

* Variable removed from modelling due to differences in range between Europe and US.

Table 1.  Bioclimatic variables from WorldClim (www.worldclim.org) used in Maxent 
models to predict the distribution of three invasive species in US. 
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Native (Europe) Introduced (US)

Training Evaluation Training Evaluation
Iris pseudacorus 11158 3719 528 176
Lythrum salicaria 9847 3282 1216 405
Saccharum ravennae 18 6 30 10

Table 2. Number of occurrence points used for model building and evaluation for each 
region.
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Models built with US occurrence points Models built with Europe occurrence points

all variables reduced variables all variables reduced variables

Iris pseudacorus predicted into US 0.884 +/- 0.01 * 0.909 +/- 0.01 ** 0.613 +/- 0.01 n.s. 0.648 +/- 0.01

predicted into Europe 0.79 +/- 0.01 n.s. 0.759 +/- 0.01 0.933 +/- 0.01 n.s. 0.922 +/- 0.01

Lythrum salicaria predicted into US 0.918 +/- 0.01 n.s. 0.922 +/- 0.01 0.436  +/- 0.01 n.s. 0.447  +/- 0.01

predicted into Europe 0.396 +/- 0.01 * 0.457 +/- 0.01 ** 0.924 +/- 0.01 n.s. 0.917 +/- 0.01

Saccharum ravennae predicted into US 0.943 +/- 0.04 ** * 0.895 +/- 0.04 0.668 +/- 0.03 * 0.736 +/- 0.03 **

predicted into Europe 0.452 +/- 0.06 * 0.535  +/- 0.07 ** 0.956 +/- 0.02 n.s. 0.959 +/- 0.01

Table 3.  Comparison of model performance using AUC values calculated using 25% of occurrence data held out.  Standard deviations 
indicate the variability of model accuracy through 500 iterations.  The difference in accuracy between models built with all variables 
and models built with five variables removed was tested with a Wilcox signed-rank test (n.s., not significant; *, p < 0.01).  
** individual of a model pair that performed better in comparison.
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Models built and applied to same region Models projected into new region

within native within introduced difference between 
model sets

from native to 
introduced

from introduced to 
native

Iris pseudacorus 0.922 +/- 0.01 * 0.909 +/- 0.01  * 0.648 +/- 0.01 * 0.759 +/- 0.01

Lythrum salicaria 0.921 +/- 0.01 n.s. 0.922 +/- 0.01 * 0.447  +/- 0.01 n.s. 0.457 +/- 0.01

Saccharum ravennae 0.959 +/- 0.01 * 0.859 +/- 0.04 * 0.736 +/- 0.03 *  0.535 +/- 0.07

Table 4.  Comparison of model performance using AUC values calculated using 25% of occurrence data held out.  Standard deviations 
indicate the variability of model accuracy through 500 iterations.  The difference in accuracy between models built with all variables 
and models built with five variables removed was tested with a Wilcox signed-rank test (n.s., not significant; *, p < 0.01).  
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Iris pseudacorus Lythrum salicaria Saccharum ravennae

Eigenvalue % Variance Eigenvalue % Variance Eigenvalue % Variance

PC-1 5.752 30.28 6.97 36.7 7.95 41.86

PC-2 5.119 26.96 4.42 23.25 5.29 27.82

PC-3 3.689 19.42 3.18 16.73 2.91 15.3

Total for first 3 76.63 76.68 84.98

Table 5. Principle components analysis (PCA) of environmental variables associated with occurrence points for the species modelled.
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Figure 1. Occurrences points used in models for Iris pseudacorus in Europe (a) and US 
(b).  Data are from GBIF (see appendix 1 for contributing institutions), USGS Nonindig-
enous Aquatic Species Program, and Oklahoma Vascular Plants Database.

175



Figure 1

(a)

(b)

176



Figure 2. Occurrences points used in models for Lythrum salicaria in Europe (a) and US 
(b).  Data are from GBIF (see appendix 1 for contributing institutions), USGS Nonindig-
enous Aquatic Species Program, and Oklahoma Vascular Plants Database.
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Figure 3. Occurrences points used in models for Saccharum ravennae in Europe (a) and 
US (b).  Data are from GBIF (see appendix 1 for contributing institutions), USGS Nonin-
digenous Aquatic Species Program, and Oklahoma Vascular Plants Database.
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Figure 4.  Potential distribution of Iris pseudacorus in US based on models built from 
native range occurrences (a) and introduced occurrences (b).  Actual occurrences of the 
species are indicated with black dots.
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Figure 5.  Potential distribution of Lythrum salicaria in US based on models built from 
native range occurrences (a) and introduced occurrences (b).  Actual occurrences of the 
species are indicated with black dots.
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Figure 6.  Potential distribution of Saccharum ravennae in US based on models built 
from native range occurrences (a) and introduced occurrences (b).  Actual occurrences of 
the species are indicated with black dots.
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Figure 7.  PCA of Iris pseudacorus occurrences points based on values of bioclimatic 
variables.  Open circles (o) represent the Europe records, crosses (+) represent the US 
records.  Contribution of bioclimatic variables to the distribution of the occurrence points 
is indicated with the abbreviation of variable, see Table 1.
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Figure 8.  PCA of Lythrum salicaria occurrences points based on values of bioclimatic 
variables.  Open circles (o) represent the Europe records, crosses (+) represent the US 
records.  Contribution of bioclimatic variables to the distribution of the occurrence points 
is indicated with the abbreviation of variable, see Table 1.
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Figure 9.  PCA of Saccharum ravennae occurrences points based on values of bioclimatic 
variables.  Open circles (o) represent the Europe records, crosses (+) represent the US 
records.  Contribution of bioclimatic variables to the distribution of the occurrence points 
is indicated with the abbreviation of variable, see Table 1.
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Appendix 1. Data for analyses were obtained from the GBIF data portal from the 
following institutions: 
 
10. GEO - Tag der Artenvielfalt 2008 -  LSG Pfarrhübel Chemnitz (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3381 11/12/2008) 
20 Jahre Naturschutzgebiet Dreienberg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2729 09/12/2008) 
3. Tag der Artenvielfalt Hockenheim (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2825 11/12/2008) 
4. GEO-Tag  in Eberbach (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2736 11/12/2008) 
4. Tag der Artenvielfalt, Naturschutzgebiet Hockenheimer Rheinbogen (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2847 11/12/2008) 
Ahrschleife bei Altenahr (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3522 11/12/2008) 
AKG-Gelände (Bensheim) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2639 09/12/2008) 
Angiosperm specimens of Shoji Sasamura of Iwate Prefectural Museum (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1800 09/12/2008) 
Arizona State University Vascular Plant Herbarium (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/676 
09/12/2008) 
Artenfülle um das Schalkenmehrener Maar (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2722 
11/12/2008) 
Artenvielfalt auf der Weide - GEO-Hauptveranstaltung in Crawinkel (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2697 09/12/2008) 
Artenvielfalt der Nordsee - Bremerhaven (Dorum-Neufeld) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2716 11/12/2008) 
Artenvielfalt in der Stadt: Botanischer Garten Wuppertal und Hardt (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3385 09/12/2008) 
Artenvielfalt Kreis Gießen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2972 11/12/2008) 
Außengelände KITA Mäuseburg Waldkirchen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3074 
09/12/2008) 
Australian National Herbarium (CANB) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/47 09/12/2008) 
Bäche, Quellen und Teiche im FFH-Gebiet Mühlhauser Halde (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3160 11/12/2008) 
Bammentaler Duft- und Heilkräutergarten (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3115 09/12/2008) 
Bannwald Burghauser Forst (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3379 09/12/2008) 
BDBCV - III Semana de la Biodiversidad (Alicante, Spain), 2008 (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/7926 11/12/2008) 
Bergbaufolgelandschaft am Muldestausee (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2751 11/12/2008) 
Bergkamen- Bergehalde Großes Holz (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2797 09/12/2008) 
Berkel (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7871 11/12/2008) 
Bernhardsthal (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3398 09/12/2008) 
Beweidungsprojekt an der Nesse (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2938 09/12/2008) 
Binsenwiesen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3113 11/12/2008) 
Biodiversidad de Costa Rica (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/333 11/12/2008) 
Biologiezentrum Linz (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1104 11/12/2008) 
Biologische Station im Kreis Wesel (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2703 11/12/2008) 
Biosphärenpark Wienerwald - Wiener Steinhofgründe (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3392 
11/12/2008) 
Biotop Kohlbeke (Berlin-Marzahn) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2954 11/12/2008) 
Biotop Binsenwiesen (Wehrheim/Taunus) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2761 11/12/2008) 
Biotop Binsenwiesen und Ernst-Reiter-Wiese (Wehrheim/Taunus) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3062 11/12/2008) 
Bishop Museum Natural History Specimen Data (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/54 
11/12/2008) 
Bizzenbach-Aue im Bizzenbachtal (Wehrheim/Taunus) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2835 11/12/2008) 
Bizzenbachtal (Wehrheim/Taunus) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2809 09/12/2008) 
Bodenseeufer Radolfzell (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2991 11/12/2008) 
Bodenteicher Seewiesen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3515 11/12/2008) 
Bolzplatz (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3031 11/12/2008) 
Borkhart (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2933 11/12/2008) 
Borstgrasrasen um die Burg Baldenau im Oberen Dhrontal (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3107 09/12/2008) 
Botanic Garden of the Finnish Museum of Natural History (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2406 09/12/2008) 
Botánica, Universidad de León: LEB-Cormo (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/260 
09/12/2008) 
Botanical Garden Collection (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/64 11/12/2008) 
Botanical Garden Yoshkar-Ola (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1392 11/12/2008) 
Botanical Museum, Copenhagen. Database of type specimens (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/716 11/12/2008) 
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Botanical Society of the British Isles - Vascular plant data for Scottish Vice-counties (VCs 80, 84, 103 & 104) (accessed through 
GBIF data portal, http://data.gbif.org/datasets/resource/1887 09/12/2008) 
Botanical Society of the British Isles - Vascular Plants Database (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/839 09/12/2008) 
Botanical specimens database of Mr. Jiro Ito collection, Shizuoka Prefecture Museum of Natural History (accessed through GBIF data 
portal, http://data.gbif.org/datasets/resource/1811 11/12/2008) 
Botanischer Garten (Saarbrücken) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2641 09/12/2008) 
Botanischer Garten Bochum (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1366 09/12/2008) 
Botanischer Garten Bonn (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1374 09/12/2008) 
Botanischer Garten Darmstadt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1361 09/12/2008) 
Botanischer Garten der Christian-Albrechts-Universitat zu Kiel (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1378 11/12/2008) 
Botanischer Garten Frankfurt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1372 09/12/2008) 
Botanischer Garten Gie?en (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1362 09/12/2008) 
Botanischer Garten Graz (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1390 09/12/2008) 
Botanischer Garten Jena (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1381 09/12/2008) 
Botanischer Garten Krefeld (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1379 09/12/2008) 
Botanischer Garten Marburg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1364 09/12/2008) 
Botanischer Garten Munster (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1383 09/12/2008) 
Botanischer Garten Osnabruck (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1382 09/12/2008) 
Botanischer Garten Rostock (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1369 09/12/2008) 
Botanischer Garten Saarbrucken (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1376 09/12/2008) 
Botanischer Garten TU Dresden (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1363 09/12/2008) 
Botanischer Garten Ulm (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1359 09/12/2008) 
Botany (UPS) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1045 09/12/2008) 
Botany registration database by Danish botanists (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/703 
09/12/2008) 
Breitkopfbecken (Berlin-Reinickendorf) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3096 11/12/2008) 
Bronx River Bioblitz (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/733 11/12/2008) 
BÜG (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2628 09/12/2008) 
BUND - Dassower See (Lübeck/Dassow) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2707 09/12/2008) 
Bundesamt fuer Naturschutz / Netzwerk Phytodiversitaet Deutschland (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1098 09/12/2008) 
California State University, Chico (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/737 09/12/2008) 
Canadian Museum of Nature Herbarium (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/123 11/12/2008) 
Civico Orto Botanico Trieste (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1389 11/12/2008) 
CONN GBIF data (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7857 09/12/2008) 
Cuxhavener Küstenheiden (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2695 11/12/2008) 
Danielsberg (Mölltal, Kärnten) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2636 09/12/2008) 
Danisco-Wiese (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2698 09/12/2008) 
Database Schema for UC Davis [Herbarium Labels] (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/734 
09/12/2008) 
Departamento de Biolog. Veg. II, Facultad de Farmacia, Universidad Complutense, Madrid: MAF (accessed through GBIF data 
portal, http://data.gbif.org/datasets/resource/249 09/12/2008) 
Deponie Klausdorf (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2976 09/12/2008) 
Die Wuhle (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3011 11/12/2008) 
Dierloch, nördlicher Mooswald  (Freiburg-Hochdorf) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2952 
09/12/2008) 
Dirección General de Investigación, Desarrollo Tecnológico e Innovación de la Junta de Extremadura(DGIDTI): HSS (accessed 
through GBIF data portal, http://data.gbif.org/datasets/resource/291 09/12/2008) 
Döchtbühlwald (Bad Waldsee) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2967 11/12/2008) 
Dorset Environmental Records Centre - Bryophyte Survey of the Poole Basin Mires - NBN South West Pilot Project Case Studies 
(accessed through GBIF data portal, http://data.gbif.org/datasets/resource/835 11/12/2008) 
Dpto de Botánica, Ecología y Fisiología Vegetal (herbario_cofc).Facultad de Ciencias.Universidad de Córdoba (accessed through 
GBIF data portal, http://data.gbif.org/datasets/resource/292 09/12/2008) 
Draubiotop Lavamünd (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3245 11/12/2008) 
E.C. Smith Herbarium (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1829 09/12/2008) 
East Ayrshire Countryside Ranger Service - East Ayrshire Species Database (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1717 11/12/2008) 
Ehmkendorf (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2944 11/12/2008) 
EKY_Darwincore (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7894 11/12/2008) 
Entdeckertour am Muldestausee (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2709 09/12/2008) 
Entomology Department Collections, ZMUC (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/711 
11/12/2008) 
Environment and Heritage Service - EHS Species Datasets (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/940 09/12/2008) 
Eppingen und Umgebung (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2816 09/12/2008) 
Erlengraben/Lipp-Tal (Östringen) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2675 09/12/2008) 
EUNIS (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/198 09/12/2008) 
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EURISCO, The European Genetic Resources Search Catalogue (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1905 09/12/2008) 
Fairchild Tropical Botanic Garden Virtual Herbarium Darwin Core format (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/202 11/12/2008) 
Fern specimens collected by Mr. Hisaya Manago, Aquatic plant specimen database of Dr. Shigeru Miki collection (accessed through 
GBIF data portal, http://data.gbif.org/datasets/resource/608 09/12/2008) 
Feuchtbiotop,  Wildtier- und Artenschutzstation Sachsenhagen, Sielmanns Natur-Ranger (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3226 11/12/2008) 
Feuchtwiese am Nationalpark-Haus Neuwerk (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3590 
11/12/2008) 
Feuchtwiese Grüne Mitte, Klasse 5a (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3588 11/12/2008) 
FFH-Gebiet Ahrbachtal (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2640 09/12/2008) 
FFH-Gebiet Paartal (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3558 11/12/2008) 
Fledermaus (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2948 11/12/2008) 
Flora of Slowinski National Park, Poland (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2022 09/12/2008) 
FloVegSI - Floristical and fitocenological database of ZRC SAZU (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2585 09/12/2008) 
Föhrenried (Fronreute und Baindt) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2970 09/12/2008) 
Forstbotanischer Garten Tharandt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1370 09/12/2008) 
Frauenholz (Holzmaden) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2668 11/12/2008) 
Freiburger Netzwerk Artenvielfalt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7866 11/12/2008) 
Freiburger Tag der Artenvielfalt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2669 11/12/2008) 
Freigelände Naturschutzscheune Reinheimer Teich (Kreis Darmstadt-Dieburg) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2845 11/12/2008) 
Frohlinder Mühlenbach (Dortmund-Kirchlinde) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2803 
11/12/2008) 
Fruit and seed collection database (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1093 11/12/2008) 
Fuldaaue (Stadtgebiet Fulda) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2790 11/12/2008) 
Garten J. Scherrer (Lachen-Speyerdorf) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3069 11/12/2008) 
Geführte Wanderung im Eselsbachtal (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3561 11/12/2008) 
Gelände der Lahntalschule Biedenkopf und Lahnauen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2982 
11/12/2008) 
Gelände des Schulzentrums am Himmelsbarg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3136 
11/12/2008) 
Gemeinde Sursee (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2652 09/12/2008) 
Gemeindegebiet Weikendorf (Marchfeld) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2765 09/12/2008) 
GEO Biodiversity Day (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1094 11/12/2008) 
GEO Hauptveranstaltung Tirol (Innsbruck) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2662 
11/12/2008) 
GEO-Hauptveranstaltung (Duisburg) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2705 09/12/2008) 
GEO-Hauptveranstaltung (Insel Vilm) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2704 11/12/2008) 
GEO-Hauptveranstaltung (NLP Harz / Hochharz) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2643 
11/12/2008) 
GEO-Hauptveranstaltung im Nationalpark Bayerischer Wald (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3378 09/12/2008) 
Georgs-Padd (Wangerooge) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3298 11/12/2008) 
Geo-Tag der Artenvielfalt Süßen Hornwiesen-Grundschule (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2783 11/12/2008) 
Gesamtartenliste Bremerhaven, Helgoland und Sylt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2689 
11/12/2008) 
Geschützter Landschaftsbestandteil - GLB Troppach (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3014 
09/12/2008) 
Gewann Krampf (Heilbronn) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2653 09/12/2008) 
Gewässer des Wartbergparks Stuttgart (bei der Ökostation der VHS Stuttgart) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3124 11/12/2008) 
Gronau - auf der Suche nach dem Neunauge (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3490 
11/12/2008) 
Gruga-Park Essen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1384 09/12/2008) 
Gurgltal (Tarrenz) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2727 09/12/2008) 
Gymnicher Mühle (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7906 11/12/2008) 
Hainhoop - Tonkuhle - Bullenmoor (Arpke) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2951 
11/12/2008) 
Hamberger Brücke / Würmtal (Pforzheim) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2644 
09/12/2008) 
Harvard University Herbaria (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1827 11/12/2008) 
Hatikka Observation Data Gateway (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2401 09/12/2008) 
Hatikka Observation Data Gateway (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2401 11/12/2008) 
Haus der Natur Salzburg                                                                                                                                                                                                                                    
(accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1488 11/12/2008) 
Heinersdorfer Sumpfwiese (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2734 09/12/2008) 
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Heinersdorfer Sumpfwiese (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2734 11/12/2008) 
herbario (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/566 11/12/2008) 
Herbario de la Universidad de Arizona, EUA (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2479 
11/12/2008) 
Herbario de la Universidad de Salamanca: SALA (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/239 
09/12/2008) 
Herbario de la Universidad de Sevilla, SEV (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/283 09/12/2008) 
Herbario de la Universidad de Sevilla, SEV-Historico (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/284 
09/12/2008) 
Herbario del Instituto de Ecología, A.C., México (IE-BAJIO) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1595 11/12/2008) 
Herbarium (AMNH) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/232 11/12/2008) 
Herbarium (ICEL) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/231 11/12/2008) 
Herbarium (UNA) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/775 11/12/2008) 
Herbarium des Staatlichen Museums für Naturkunde Görlitz (GLM) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1105 09/12/2008) 
Herbarium Faeroense (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/713 11/12/2008) 
Herbarium GJO (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1484 09/12/2008) 
Herbarium GZU (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1491 11/12/2008) 
Herbarium of Kitakyushu Museum of Natural History and Human History (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/606 09/12/2008) 
Herbarium of National Centre for Plant Genetic Reosurces (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/227 09/12/2008) 
Herbarium of Oskarshamn (OHN) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1024 09/12/2008) 
Herbarium of the Bia_owie_a Geobotanical Station (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1470 
09/12/2008) 
Herbarium Senckenbergianum (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1654 09/12/2008) 
Herbarium Specimens of Museum of Nature and Human Activities, Hyogo Pref., Japan (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/589 09/12/2008) 
Herbarium Specimens of Tokushima Prefectural Museum, Japan (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/600 11/12/2008) 
Herbarium Universitat Ulm (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1224 09/12/2008) 
Herbarium W (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1479 09/12/2008) 
Herbarium Willing (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1096 09/12/2008) 
Herbarium WU (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1496 09/12/2008) 
Herbier de la Guyane (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1436 11/12/2008) 
Herbier de Strasbourg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1849 09/12/2008) 
Herrensee-Gebiet (Fischbachtal im Odenwald) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3055 
09/12/2008) 
Hintere Halde (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2830 09/12/2008) 
Hortus Botanicus Sollerensis Herbarium (FBonafè) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/300 
11/12/2008) 
Ibaraki Nature Museum, Dr.Masatomo Suzuki collection:Vascular Plants (1) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1813 09/12/2008) 
inatura - Erlebnis Naturschau Dornbirn (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1866 11/12/2008) 
Institut Botanic de Barcelona, BC (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/299 09/12/2008) 
Institut d'Ecologia Litoral: IEL_Plantae (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/263 11/12/2008) 
Internation Botanical Collections (S) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1983 09/12/2008) 
Inventaire national du Patrimoine naturel (INPN) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2620 
09/12/2008) 
IPK Genebank (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1851 11/12/2008) 
Israel Nature and Parks Authority (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1431 09/12/2008) 
Issumer Fleuth (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3252 09/12/2008) 
Jardín Botánico de Córdoba: Herbarium COA (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/247 
09/12/2008) 
Jardin Botanique de la Ville Lyon (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1388 09/12/2008) 
Joint Nature Conservation Committee - Vegetation surveys of coastal shingle in Great Britain (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/849 09/12/2008) 
KARSTLANDSCHAFT SÜDHARZ - VOM GIPSABBAU BEDROHT  (Grenzstreifen am Röseberg) (accessed through GBIF data 
portal, http://data.gbif.org/datasets/resource/2726 09/12/2008) 
Kiesbagger (Mittelhausen) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2760 11/12/2008) 
Kiesgruben Wemb (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2963 09/12/2008) 
Kinderbauernhof Pinke-Panke (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3192 11/12/2008) 
Klasse 3a (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2929 11/12/2008) 
Klutensee (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2631 11/12/2008) 
Knechtweide (Kohlfurth) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2742 09/12/2008) 
Königstetten (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2667 09/12/2008) 
Korean Ethnobotany Database (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/111 11/12/2008) 
Kremmer Luch (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2937 11/12/2008) 
Kurashiki Museum of Natural History (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/599 09/12/2008) 
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Küste Wismar-Wendorf bis Hoben (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2818 11/12/2008) 
Küstenschutzwald (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2934 11/12/2008) 
LaBoOb02 (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2629 09/12/2008) 
Landschaftspark St.Leonhard-Deisendorf (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3161 11/12/2008) 
Landschaftspflegehof (Berlin) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2656 11/12/2008) 
Landschaftsschutzgebiet Holmer Sandberge (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3040 
11/12/2008) 
Landschaftsschutzgebiet Schmutterwald (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3375 09/12/2008) 
Langenberger Forst am Ochsenweg/ Niebüll-Leck (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2658 
11/12/2008) 
Langes Tannen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2682 11/12/2008) 
Langes Tannen (Uetersen) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2671 11/12/2008) 
Laubenheimer Bodenheimer Ried - von Stromtalwiesen und Flutrasen (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3501 09/12/2008) 
Leben im Finkensteiner Moor (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3154 11/12/2008) 
Lebensraum Fluß/Zwickauer Mulde in Wolkenburg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2973 
11/12/2008) 
Lebensraum Gesamtschule (Langerwehe) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2767 09/12/2008) 
Leiner-Herbar Konstanz (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1473 09/12/2008) 
Liether Kalkgrube (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3507 11/12/2008) 
Liether Park 1 (LMS), Klasse 5b (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3530 11/12/2008) 
Liether Park 2 (LMS), Klasse 6c (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3492 11/12/2008) 
Limnodata (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1466 09/12/2008) 
Lindau im Bodensee (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2801 11/12/2008) 
LK 11 im Mönchspark (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3396 11/12/2008) 
Lothian Wildlife Information Centre - Lothian Wildlife Information Centre Secret Garden Survey (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/856 11/12/2008) 
Luch Niederlehme, Schüler der Klasse 7 (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2719 11/12/2008) 
Lund Botanical Museum (LD) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1028 09/12/2008) 
Lustadter Wald . (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7904 09/12/2008) 
Lustbach-Umland (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3494 09/12/2008) 
Magnoliophyta- Taiwan Biodiversity Data for GBIF (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/727 
11/12/2008) 
Mainufer (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3043 11/12/2008) 
MEXU/Plantas Vasculares (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/780 11/12/2008) 
MISS_DC_01MAR2006 (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7895 09/12/2008) 
Mißmahlsche Anlage (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2852 11/12/2008) 
Missouri Botanical Garden (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/621 09/12/2008) 
Mooswald (Freiburg) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2651 11/12/2008) 
Müritz-Nationalpark (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3384 11/12/2008) 
Museum of Natural History, Wroclaw University, Flora of the Sto_owe Mts. (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1456 09/12/2008) 
NABU Naturschutzhof Netttetal (Sassenfeld) e.V. (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2759 
09/12/2008) 
NABU-Auerochsenweide (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3118 11/12/2008) 
NABUGEO1 (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3140 09/12/2008) 
NABU-Projekt (Osterode am Harz) Südharzer Gipskarst (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2821 09/12/2008) 
Nationaal Herbarium Nederland  (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1211 09/12/2008) 
National System of Proetcted Areas (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1791 09/12/2008) 
National Vegetation Data bank (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2471 09/12/2008) 
Natur aus zweiter Hand am Muldestausee (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2770 11/12/2008) 
Natural History Museum Rotterdam (NMR) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/693 
09/12/2008) 
Natur-Erlebnis-Kindergarten  Waldkirchen/Erzgebirge (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3090 
11/12/2008) 
Naturerlebnisraum Koppelsberg (Plön) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3132 11/12/2008) 
NatureServe Network Species Occurrence Data (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/607 
09/12/2008) 
Naturgarten Langenholtensen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2857 09/12/2008) 
Naturgrundstück (Eutin) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2961 11/12/2008) 
Naturnahes Tal in Siena (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7909 11/12/2008) 
Naturparadies in Gräfenhausen am Trifels (bei Annweiler) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3093 09/12/2008) 
Naturpark Drömling (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7864 09/12/2008) 
Naturschutzgebiet Gellener Torfmöörte (Landkreis Wesermarsch) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3338 11/12/2008) 
Naturschutzgebiet Bausenberg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2657 09/12/2008) 
Naturschutzgebiet Börstig bei Hallstadt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3485 09/12/2008) 
Naturschutzgebiet Kochertgraben (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3233 11/12/2008) 
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Naturschutzgebiet Lippeaue (Marl) - Pfadis in Sickingmühle (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3087 11/12/2008) 
Naturschutzgebiet Lochbusch-Königswiesen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3094 
11/12/2008) 
nazza (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2699 11/12/2008) 
Neanderthal (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3131 11/12/2008) 
Neckartalsüdhang (Horb) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2680 11/12/2008) 
Neuer Botanischer Garten Gottingen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1373 09/12/2008) 
New Mexico Biodiversity Collections Consortium database (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3607 09/12/2008) 
New Zealand Biodiversity Recording Network (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7910 
11/12/2008) 
New Zealand National Plant Herbarium (CHR) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/474 
09/12/2008) 
NMNH Botany Collections (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1874 09/12/2008) 
Nordic Herbarium (S) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1025 09/12/2008) 
NSG Haunestausee, Hauneteiche (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7876 09/12/2008) 
NSG Karwendel (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2678 11/12/2008) 
NSG Leist bei Ziegenhain (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3097 11/12/2008) 
NSW herbarium collection (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/968 09/12/2008) 
NW-Innenhof Gesamtschule Herten 7.6.2001 (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3321 
11/12/2008) 
Observational database of Icelandic plants (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/233 11/12/2008) 
Observations du Conservatoire botanique national du Bassin parisien. (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1103 09/12/2008) 
Oklahoma Vascular Plants Database Provider (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2558 
09/12/2008) 
Okologisch Botanischer Garten Bayreuth (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1360 09/12/2008) 
Ökostation (Freiburg) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2750 09/12/2008) 
Orto Botanico di Pisa (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1386 09/12/2008) 
Paleobiology Database (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/563 11/12/2008) 
Panke und Ufer am Kinderbauernhof Pinke-Panke (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2995 
11/12/2008) 
Perchtoldsdorfer Heide (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7863 09/12/2008) 
Phanerogamie (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1506 09/12/2008) 
Phanerogamie (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1506 11/12/2008) 
Philosophenwald und Wieseckaue in Gießen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2690 
09/12/2008) 
Phragmites of Canada (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/526 11/12/2008) 
Pilstingermoos (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2721 09/12/2008) 
Plant (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/469 09/12/2008) 
Plant Observation Records of Japan (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2547 09/12/2008) 
Plant observations from Bia_owie_a National Park (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1861 
09/12/2008) 
Plant specimens depodited in Osaka Museum of Natural History, Japan. (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1973 09/12/2008) 
Plant Systematics Laboratory, Ajou University, Korea (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2469 
11/12/2008) 
Plants (GBIF-SE:Artdatabanken) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1034 09/12/2008) 
Please cite this data as follows: 
Pottundkopp (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2741 11/12/2008) 
Priest Pot species list, Cumbria, Britain (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/717 09/12/2008) 
privater Garten (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3016 11/12/2008) 
Promberg1 (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2702 09/12/2008) 
Prophetensee Quickborn (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2826 11/12/2008) 
Quarrendorfer Landschaftsschutzgebiet (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2778 09/12/2008) 
Real Jardin Botanico (Madrid), Vascular Plant Herbarium (MA) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/240 09/12/2008) 
Regenrückhaltebecken (Zeulenroda) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2974 11/12/2008) 
Regenwasserabfangsbecken (Erlenbach) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3133 11/12/2008) 
Regionalpark(Hattersheim) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2753 09/12/2008) 
renaturierter Main (Kemmern bei Bamberg) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2823 
11/12/2008) 
Renaturierung Werse (Innenbereich Beckum) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2795 
11/12/2008) 
Repatriación de datos del Herbario de Arizona (ARIZ) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2480 
11/12/2008) 
Ried und Sand - Artenvielfalt durch Beweidung (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3023 
09/12/2008) 
Riedensee (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2724 11/12/2008) 
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Rohrmeistereiplateau und angrenzendes Gebiet (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3382 
11/12/2008) 
Rosarium (LMS), Klasse 6a (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3580 11/12/2008) 
Royal Botanic Gardens, Kew (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/629 11/12/2008) 
Royal Botanical Gardens Herbarium (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/512 09/12/2008) 
Royal Museum of Central Africa - Metafro-Infosys - Xylarium (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/95 09/12/2008) 
Rund um das LUGY (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3022 11/12/2008) 
Rund um den Eichwald,Schulhof Friedrich Fröbel Gymnasium- Bad Blankenburg (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2684 11/12/2008) 
Rund ums Cani (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3128 11/12/2008) 
Salzwiese Diekskiel (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3293 11/12/2008) 
SANT herbarium vascular plants collection (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/222 09/12/2008) 
Schatzinsel Wangerooge (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3493 11/12/2008) 
Schlern - (Bozen) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2661 09/12/2008) 
Schüler erforschen die Helme-Aue (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3577 11/12/2008) 
Schulgarten der Volksschule (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3511 11/12/2008) 
Schulgarten Hans-Carossa-Oberschule (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3027 11/12/2008) 
Schulgarten mit Klasse 8a (Essen) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2966 11/12/2008) 
Schulgarten-St.-Georg-Gymnasium (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3248 11/12/2008) 
Schulgelände Ceciliengymnasium (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3224 11/12/2008) 
Schulgelände Schule auf der Aue, Münster (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2771 
11/12/2008) 
Schulhof der Astrid-Lindgren-Schule Elmshorn (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3092 
11/12/2008) 
Schulprojekt (Bremen) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2789 11/12/2008) 
Schulteich Freie Waldorfschule Darmstadt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3335 
11/12/2008) 
Schulteich Heinrich-Mann-Schule (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3253 11/12/2008) 
Schulumfeld Albert-Einstein-Gymnasium (Sankt Augustin) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2764 09/12/2008) 
Schulzentrum Parc Hosingen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3394 11/12/2008) 
Schussenaue (Weingarten) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2833 09/12/2008) 
Schussenaue bei Berg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3020 09/12/2008) 
Schwanheimer Wald (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7865 09/12/2008) 
Schwanseepark (87645 Schwangau) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3058 11/12/2008) 
Scottish Borders Biological Records Centre - SWT Scottish Borders Local Wildlife Site Survey data 1996-2000 - species information 
(accessed through GBIF data portal, http://data.gbif.org/datasets/resource/848 09/12/2008) 
Selz-Renaturierung (Hahnheim/Sörgenloch) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3255 
11/12/2008) 
Selztal bei Friesenheim (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3091 09/12/2008) 
Siegen/ Gymnasium Am Löhrtor (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2932 11/12/2008) 
Silbertor + Wasserbachtal (Rutesheim / Renningen) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2677 
11/12/2008) 
Sonnentaugemeinschaft (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2686 11/12/2008) 
Spandau HBO (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2840 11/12/2008) 
Specimen Database of Colorado Vascular Plants (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1832 
09/12/2008) 
Spießwoogtal / Königsbruch (Fischbach) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3049 11/12/2008) 
Spreewaldfließe und Feuchtwiese bei Lübbenau (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3246 
09/12/2008) 
Staatliches Museum für Naturkunde Stuttgart, Herbarium (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1100 09/12/2008) 
Stadtgebiet (Dannenberg) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2792 11/12/2008) 
Stadtpark Herzberg (Elster) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2979 09/12/2008) 
Stadtpark Sulzbach-Rosenberg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2800 11/12/2008) 
Stausee (Oberdigisheim/Meßstetten) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2673 11/12/2008) 
Steinbruch Mainz-Weisenau (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2994 11/12/2008) 
Stever (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3030 09/12/2008) 
Streuobstwiese Stedar (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3506 11/12/2008) 
Streuobstwiesengelände St.Meinrad Gymnasium (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3065 
09/12/2008) 
Sudeniederung (Amt Neuhaus) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3260 11/12/2008) 
Sudeniederung (Amt Neuhaus), Landkreis Lüneburg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2715 
11/12/2008) 
Sürther Aue (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3512 11/12/2008) 
SysTax (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1875 09/12/2008) 
Tag der Artenvielfalt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2861 11/12/2008) 
Tag der Artenvielfalt in Heidelberg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3486 11/12/2008) 



200 

Tag der Artenvielfalt mit SchülerInnen des Europa-Gymnasiums in Wörth am Rhein (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/7872 11/12/2008) 
Tag der Artenvielfalt mit SchülerInnen des Leibniz-Gymnasiums in Neustadt a.d.W. (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/7873 11/12/2008) 
Tage der Artenvielfalt rund um die Naturschutzstation Molsberg (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/7868 11/12/2008) 
Take a Pride in Fife Environmental Information Centre - Records for Fife from TAPIF EIC (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/927 09/12/2008) 
Taxa (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7903 09/12/2008) 
The AAU Herbarium Database (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/224 11/12/2008) 
The Deaver Herbarium, Northern Arizona University (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/678 
11/12/2008) 
The Shimane Nature Museum of Mt. Sanbe (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1978 
09/12/2008) 
Tiere und Pflanzen am Pfannenbach (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3355 09/12/2008) 
Tiergarten Straubing (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2806 09/12/2008) 
Tiroler Landesmuseum Ferdinandeum (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1509 09/12/2008) 
Tongrube bei Hettstedt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3488 11/12/2008) 
Tornoer Teich (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3502 11/12/2008) 
Triebesbach (Zeulenroda-Triebes) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2996 09/12/2008) 
Tümpel Schulbiologiezentrum (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3285 11/12/2008) 
Type herbarium, Gottingen (GOET) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1494 11/12/2008) 
UA Herbarium (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/7900 11/12/2008) 
UAM Botany Specimens (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/975 09/12/2008) 
Umgebung der Elsa-Brändström-Schule (Krückaupark) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2781 11/12/2008) 
Umgebung der Gesamtschule Hamburg-Winterhude (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2681 
11/12/2008) 
Umgebung der Gesamtschule Winterhude (Hamburg) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2766 
11/12/2008) 
Umgebung der Grundschule Oderberg (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3009 11/12/2008) 
Umgebung von Schorndorf (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2696 11/12/2008) 
United States National Plant Germplasm System Collection (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1429 11/12/2008) 
Universidad de Almería, HUAL (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/244 09/12/2008) 
Universidad de Costa Rica (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1184 09/12/2008) 
Universidad de Extremadura, UNEX (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/255 09/12/2008) 
Universidad de Granada, Herbario: GDA (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1741 11/12/2008) 
Universidad de Málaga: MGC-Cormof (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/259 09/12/2008) 
Universidad de Oviedo. Departamento de Biología de Organismos y Sistemas: FCO (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/245 09/12/2008) 
Universidad Politécnica de Madrid, Dpto. Biología Vegetal, Banco de Germoplasma (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1521 11/12/2008) 
University and Jepson Herbaria DiGIR provider (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1413 
09/12/2008) 
University Museums of Norway (MUSIT) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1996 09/12/2008) 
University of California Botanical Garden DiGIR provider (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1412 11/12/2008) 
Unna-Mühlhausen, Wiesen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2865 09/12/2008) 
Unser kleines Rasenstück/ Dürer-Gymnasium Nürnberg (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2810 09/12/2008) 
Unterbrucker Weiher (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2824 11/12/2008) 
USDA PLANTS Database (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1066 09/12/2008) 
USU-UTC Specimen Database (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1508 09/12/2008) 
Utah Valley State College Herbarium (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1013 09/12/2008) 
Vascular Plant Collection - University of Washington Herbarium (WTU) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/126 09/12/2008) 
Vascular Plant Collection (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/622 09/12/2008) 
Vascular plant collection of Jyvaskyla University Museum (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/462 09/12/2008) 
Vascular Plant Herbarium, Oslo (O) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1078 09/12/2008) 
Vascular Plants Collection of Sagamihara City Museum (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/1809 11/12/2008) 
Vascular plants of south-central China (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1828 11/12/2008) 
Vascular Plants, Field notes, Oslo (O) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1079 09/12/2008) 
VegetWeb: zentrale Datenbank der Arbeitsgemeinschaft Vegetationsdatenbanken; Teil des Netzwerks für Phytodiversität Deutschland 
(NetPhyD) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1081 09/12/2008) 
verschiedene Kleingewässer um Oldenburg/Holstein (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3000 
11/12/2008) 
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Verwilderter Hausgarten mit angrenzendem Gelände (Laufenburg-Hochsal) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2986 09/12/2008) 
VFD-H: Rheingau: Pferdeweide Loock (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2928 09/12/2008) 
VFD-RP: Hunsrück: Pferdeweide Kucher (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3503 09/12/2008) 
VFD-RP: Taunus: Kirchenweide Köpplers (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3399 
09/12/2008) 
VFD-RP: Taunus: Ponykoppel Thurner (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3125 09/12/2008) 
Wald am Schloss Wittgenstein Bad Laasphe (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2747 
09/12/2008) 
Wald und Wiese am Buchwald (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2676 11/12/2008) 
Waldhusener Moor (Lübeck-Kücknitz) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2969 11/12/2008) 
Waldi-Weiher (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3346 09/12/2008) 
Waldränder der Frankenhöhe (Rothenburg ob der Tauber) (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/2647 11/12/2008) 
Walldorf-Wiesloch:  Natur über den Gleisen (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2850 
09/12/2008) 
Wanderweg am Windebyer Noor (bei Eckernförde) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2706 
11/12/2008) 
Warnowtal (Rostock) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3086 11/12/2008) 
Wassermann (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3034 11/12/2008) 
Wedeler Au (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2990 11/12/2008) 
Weide am Ostufer des Zotzensees, Müritz-Nationalpark (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3111 11/12/2008) 
Weide an der Mosselde / Dortmund-Kirchlinde/Westerfilde (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3219 09/12/2008) 
Weinberg Reichersdorf (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3401 11/12/2008) 
Westerwälder Umwelt- und Naturschutztag Limesgemeinde Hillscheid (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3017 11/12/2008) 
Wiese am Waldrand (Gurtweil) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2784 09/12/2008) 
Wiese und Bach am Kleinen Eutiner See (Eutin) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2773 
11/12/2008) 
Wiesen-Wälder-Wasser um Dansenberg, Biosphärenreservat Pfälzerwald (accessed through GBIF data portal, 
http://data.gbif.org/datasets/resource/3500 11/12/2008) 
Wildes Bremer Leben im Park (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2708 09/12/2008) 
WildesMoor bei Schwabstedt (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/3109 11/12/2008) 
Wildkräuter (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2745 11/12/2008) 
Wismar Bucht coast-watching (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2786 11/12/2008) 
Zukünftiges NSG Höftland/Bockholmwik (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2665 11/12/2008) 
Zwei Flüsse - eine Stadt  (Villingen-Schwenningen) (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/2829 
11/12/2008) 
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Appendix 2.  Common, widespread species used for target group to create bias file used 
in Maxent model.  These 20 species are found throughout Europe and represent a variety 
of habitats (Fitter et al. 1996). 
 
 

Scientific Name Habitat 

Achillea millefolium Grassland, banks and waysides, often a weed in lawns 

Ajuga reptans Damp woods, hedge banks, meadows 

Alisma plantago-aquatica In or beside ponds, ditches, canals, slowmoving rivers 

Anemone nemorosa Woodlands, old hedge banks, upland meadows 

Arum maculatum Hedgerows, woodland, brown earth soils 

Calluna vulgaris 
Heaths, moors, rocky places, bogs, open woodland, mainly on 
sandy/peaty soils 

Digitalis purpurea Open spaces, woodland clearings, heaths, mountainsides 

Dipsacus fullonum 
Open woods, stream banks, roadsides, rough ground, grassland, 
marginal habitats, railway banks 

Filipendula ulmaria Wet, damp places of all kinds 

Galium aparine 
Cultivated and arable land, waste-ground, woodland, beaches, scrub, 
open ground, gardens 

Geranium pratense Meadows, roadsides, grasslands, open woods, dunes 

Hyacinthoides non-scripta Wide distribution except mountains and fens, but mainly woodlands 

Lamium purpureum Arable and waste ground, hedgerows, roadsides, garden weed 

Leucanthemum vulgare Grassy areas, especially nutrient-rich soils 

Lotus corniculatus Well-drained grassland, roadsides except on very acid soils 

Papaver rhoeas Arable, waste ground, field edges, roadsides 

Plantago coronopus 
Common near sea, on rocks, cliffs; dry sandy gravelly grasslands; 
inland commons, paths and roadsides 

Potentilla anserina Wasteland, pastures, waysides, sand dunes, especially damper places 

Primula veris Open woods, grassy places, meadows, roadside banks 

Urtica dioica 
Wasteland, woods, fens, roadsides, hedge banks. Favours phosphate 
rich soils 

 
 



Appendix 3.  Box plots and line graphs comparing the overall range and interquartile 
range of the 19 bioclimatic predictor variables available from WorldClim.  Based on vi-
sual interpretation of these graphs, we eliminated 5 variables that had large differences in 
ranges, see Table 1 for abbreviations and variables that were eliminated from modelling. 
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SUMMARY  
 

I began my research with an interest in utilizing data collected in the herbaria of 

Oklahoma, now digitized as the Oklahoma Vascular Plants Database.  Biogeographic 

research has benefited from the digitizing of large databases derived from natural history 

collections and biological surveys.  These resources made available via the Internet can 

be accessed by biogeographers around the world to address a multitude of ecological and 

geographic questions.  Utilizing this data taps into hundreds of years of study and 

countless hours of research conducted by biologists across the globe.  This dissertation 

could not have been completed without the availability of data collected by legions of 

researchers from museums, herbaria, and government agencies.  By taking advantage of 

data collected by others, I was able to work at a geographic scale that would have been 

impossible had I needed to gather all my own data.  I was able to explore biogeographic 

questions at the continental and state level by mining the data collected by biologists over 

the past 100+ years.   

My interest in the ecological conundrum of invasive plants led me to chose my first 

dissertation topic — Can we use herbarium data to map the historic invasion of plants?  

And can map the expansion of native “weedy” species in response to land use change?  In 

chapter one, I used herbarium data to describe the temporal and spatial patterns of 

invasive and expansive species for the entire state of Oklahoma.  I found that patterns of 

species invasion and expansion in Oklahoma could be detected using these techniques 

which were developed for regions with longer collecting plant histories.  However, the 

expansion of native “weedy” species were not so easily documented. The information 

found in herbaria may not be sensitive enough to detect the increase of abundance of 
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native species. 

One of the greatest caveats associated with modelling is the biased nature of 

opportunistically collected data.  Few studies take into consideration the biased nature of 

natural history collections such as: unequal sampling effort over time, non-random 

geographic representation, poor location information, incorrect identification, and 

disproportionately represented taxa.  Therefore, methods must be developed to remove 

such biases to reveal the true pattern of invasion.  Researchers must make the effort to 

reduce the power of these biases to control the results of analyses.  The research in 

chapter one addressed temporal sampling bias using methods developed by researchers in 

Europe and Canada. 

 Having explored the historic spread of invasive species, I was interested to see if 

we could predict the future distribution of invasive species that have not yet become well 

established in Oklahoma.  A recently developed and growing sub-field of biogeography - 

species distribution modelling - became an excellent tool to study the potential 

distribution of new invasive species.  Species distribution modelling (SDM) is currently 

the trendy line of research and the literature is extensive and rapidly growing.  Because of 

its relatively new status, there were few texts or articles that compile and review the 

literature when I began my research into SDM.  I conducted a review of the literature for 

my own use to better understand the background and proper use and interpretation of the 

models produced by these techniques (chapter two).   

 During the course of researching and writing the literature review, it became clear 

that these techniques were complicated and involved many assumptions.  To introduce 

myself to SDM, I modelled the distribution of the American burying beetle using a 
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smaller data set that contained both presence and absence records.  Survey data for the 

beetle were available and a model of its habitat preference would be useful for 

conservation efforts within Oklahoma for this endangered species.  By modelling this 

species at the sub-state level, I was able to make some predictions of the species habitat 

preference.  Although, as a generalist species, these results were less than ideal.  Model 

performance could be improved by incorporating information on the cause of the beetle’s 

endangered status and its population shrinkage.  To improve the models and consequently 

the recovery effort for the species, the models need to include biotic interactions, such as 

congener and vertebrate competition and a reduction in optimally sized prey.   Creating 

an accurate spatial layer of this type data will be a future challenge. 

In chapter four, I returned to the invasive species theme by addressing the 

question of whether the introduced distribution of invasive species can be predicted from 

its native range.  I modelled the potential distribution within the United States of three 

alien invasive species native to Europe using the Maxent modelling technique.  Using 

occurrence data from both the native (Europe) and introduced (US) ranges, I used 

reciprocal modelling to evaluate habitat discrepancies between the introduced and native 

ranges.  The native occurrences in Europe accurately predicted the distribution within 

Europe; and introduced occurrences in the US accurately predicted the US distribution.  

However, the reciprocal models did not perform well.  My model results indicate that the 

occupied niches are too inconsistent between the native and introduced ranges to make 

models useful at the scale at which early invasive species detection can occur. 

The role of biotic interactions will need to play a bigger role in species 

distribution modelling if they are to be ecologically meaningful.  Inclusion of biotic 
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interactions such as overlap with competitor distribution and shared resources will  

improve model performance.  Model predictions based on the native range may under-

predict the potential distribution in the introduced range if biotic interactions, such as 

competition or parasitism, are removed when an alien species enters a new region.  But 

accurately predicting areas of invasion in the introduced range may never truly 

incorporate the influence of biotic interactions because the introduced species are no 

longer affected by their native biotic interactions and are subject to another suite of 

species in the introduced range with which it may form new biotic interactions that are 

currently indescribable.   

Another interesting avenue of research that will significantly improve the 

modelling of invasive species is the inclusion of mechanistic variables.  Instead of relying 

on correlations with the environment to predict the environmental preferences of a 

species, a mechanistic model uses information from detailed physiological tolerance 

experiments to model the fundamental niche of a species.  I would expect to accurately 

model the potential of invasive species is to model the fundamental niche and project that 

information onto the introduced range.  This will not necessarily mean the species will be 

able to thrive in those locations, because new biotic interactions will be in place to limit 

the species range. 

The methods explored in this dissertation illustrate the potential of natural history 

collections and survey data have in contributing to modern biogeographical research.  

Although the data is not perfect and the techniques do not perfectly represent the ecology, 

we can still take advantage of the newly digitized historical data to answer new and 

fundamental questions concerning biogeography.  Advances in bias reduction will no 
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doubt occur in the next several years.  Improvements will be made to modelling 

algorithms to better represent ecological processes.  Predictor data will be enhanced by 

including biological meaningful and derived variables.  Using any technique to model 

species distribution should be done with care.  Too often in the literature it is apparent 

that the researchers plugged their data into a model, the model drew a map, and the 

researchers presented the map as truth.  This is done with little thought to proper 

evaluation and noted accuracy.  Researchers should understand their goal when they 

model and verify that their approach is appropriate for that outcome.   
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