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ABSTRACT

Biogeographic research has benefited from the digitizing of large database
derived from natural history collections and biological surveys. These resonacke
available via the Internet can be accessed by biogeographers around th® wddress
a multitude of ecological and geographic questions. Utilizing this data taps inheedsn
of years of study and countless hours of research conducted by biologistdtaeross
globe. This dissertation could not have been completed without the availability of data
collected by legions of researchers from museums, herbaria, and govergaras
By taking advantage of data collected by others, | was able to work agjeagkic scale
that would have been impossible had | gathered all my own data.

In chapter one, | use herbarium data to describe the temporal and spatia$ patte
of invasive and expansive species for the entire state of Oklahoma. Because of the
inherent bias in collections of natural history specimens. | test techniquésiioagng
temporal collecting bias: regression models and proportion curves. | founctieahy
of species invasion and expansion in Oklahoma could be detected using these techniques
which were developed for regions with longer collecting plant histories. The proportion
curve analysis eliminated some biases inherent in herbarium data by rethecafiipct
of collecting effort. Both the regression model and proportion curve analysstsatie
the temporal invasion patterns of alien, invasive species. However, the naties sieci
not show a clear expansion pattern. The information found in recently established
herbaria may not be sensitive enough to detect the increase of abundance of native

species.
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Currently species distribution modelling is one of the most popular methods of
utilizing large, georeferenced, biological databases. Chapter two is aebieat of the
overabundant literature on species distribution modelling. Topics covered are the
theoretical basis for distribution modelling, species and predictor data, mgdell
techniques, model evaluation, and uses for predictive maps created by modelling.

Using survey data collected for the U.S. Fish and Wildlife Service, y @pelcies
distribution modelling techniques to predict suitable habitat for the endangerecc&mer
burying beetleNicrophorus americanus). Using a suite of predictor variable thought to
influence a burrowing insect, | built several models using a variety of fimagel
techniques. The Maxent modelling algorithm performed the best. However, being a
generalist species, the suitable habitatNfoamericanus was not well modelled. Model
performance could be improved by incorporating information on the cadse of
americanus's endangered status and its population shrinkage. To improve the models
and consequently the recovery effort for the species, | need to take into account
interactions including congener and vertebrate competition and a reductiptimally
sized prey. Creating an accurate spatial layer of this data will be a tinaitenge. My
hope was to produce a map of potentially suitable habit&t. famericanus that would
guide conservation efforts within the state of Oklahoma. Although the model was not
highly accurate, the map of suitable habitat can help to inform conservation hgtdgis
areas that have suitable habitat forkhamericanus.

In chapter four, | return to the invasive species theme by addressing themquesti
of whether the introduced distribution of invasive species can be predicted froniviés nat

range. | modelled the potential distribution within the United States of alieze

Xiv



invasive species native to Europe using the Maxent modelling technique. Using
occurrence data from both the native (Europe) and introduced (US) ranges, | used
reciprocal modelling to evaluate habitat discrepancies between the introddceatize
ranges. This modelling approach can help to determine which environmental factors
within the introduced range are different from the native range and whichtsakbithin

the native range are not represented in the introduced range. Further, reciprocal
modelling can reveal potential problems with occurrence data and predictorasimabl
both native and introduced ranges, but it also has also been used to investigate ecological
phenomena, such as niche shifts of invasive species in their introduced range. vEhe nati
occurrences in Europe accurately predicted the distribution within Europe; and
introduced occurrences in the US accurately predicted the US distribution. Hgptheve
reciprocal models did not perform well. The explanations for the dissociated @nge
each species in Europe and US can possibly be related to the hypotheses pastulated f
invasive species success. The characteristics that make a species im&gsbe the

cause of the species’ environmental range to be different in the native and introduced
regions. My aim was to see if we could use easily obtained data to model theapotenti
areas of invasion within our state and use this information to assist conservatits eff
such as early detection and rapid response. My model results indicate that thedoccupi
niches are too inconsistent between the native and introduced ranges to make models
useful at the scale we are interested in. Further modeling attemptslizél niore
introduced occurrence data from areas within our region of the United Stateswillhi
entail a more concerted effort to locate available data in the areas tivbespecies may

be expanding.
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INTRODUCTION

This dissertation began with an interest in utilizing for research the vashgtise
of data collected in the herbaria of Oklahoma, now digitized as the Oklahomaarascul
Plants Database (OVPD; Hoagland et al. 2009). | wanted to explore biogeographic
guestions at the state level by mining the data collected by botanists overt the0pas
years. My interest in invasive plants led me to chose my first dissertatioermreklan
we use data in the OVPD to map the historic invasion of plants across Oklahoma? And
can we apply the same techniques to species that are native, but exhibit invasia beha
in response to human disturbance? The results of my investigation into these questions

make up the contents of Chapter 1.

Having explored the historic spread of invasives, | was interested tovseeduld
predict the future distribution of invasive species that have not yet become well
established in Oklahoma. A recently developed and growing sub-field of biagéggr
species distribution modelling - became an excellent tool to study the plotentia
distribution of new invasive species. Species distribution modelling (SDM) istyrre
the trendy line of research and the literature is extensive and rapidlyngro®ecause of
its relatively new status, there were few texts or articles thapit®and review the
literature when | began my research into SDM. | conducted a review offettature for
my own use to better understand the background and proper use and interpretation of the
models produced by these techniques (Chapter 2). During the course of researthing a
writing the literature review, | thought it wise to introduce myself to SiBivig a small
data set that contained both presence and absence data. Survey data for tha America

burying beetle were available and a model of its habitat preference wousefiok for



conservation efforts within Oklahoma for this endangered species.

| was lucky enough to attend the “Species Distribution Modeling Methods for
Conservation Biologists” workshop hosted by the American Museum of NaturalyHistor
and lead by Richard Pearson and Steven Phillips who have authored many articles on the
topic. At the workshop, | was inspired to take my invasive species modeling
international and use the native range data to explore the potential rangeeispasies
in a new area. My intention was to use the result to help locate areas in Oklahoma that
had the potential habitat for particular invasive species, but my resultsatbuatnot
uncommon problem - species do not necessarily occupy the same climatiaritedie i

native and introduced ranges.
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Can herbarium records be used to map alien species invasion
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Abstract

Aim To determine if the temporal and spatial pattern of alien plant invasion and native
plant expansion can be observed using 100 years of herbarium data from Oklahoma, USA
and to eliminate herbarium collection biases in such analyses.

Location Oklahoma, USA.

Methods Using herbaria records from the Oklahoma Vascular Plants Database from
1903 to 2004, we reconstructed the spatial and temporal collection history of two alien,
invasive taxal{onicerajaponica andTamarix spp.) and three native, expansive species
(Ambrosia psilostachya, Amphiachyris dracunculoides andJuniperus virginiana). To
compare the overall collecting trend, groups of native, non-expansive taxa leetecse

as counterparts. We recorded the year of the first collection in each tpwnsh
Oklahoma for all taxa. The cumulative number of occupied townships was log-
transformed, plotted against time, and modelled with linear regression. The slope of t
linear regression represented collection trend over time for the non-expansiverganint
group. However, for the invasive and expansive species, the regression slope
represented the collection eff@tus invasion or expansion rate. We calculated the
proportion of invasive and expansive species to non-expansive species by dividing the
cumulative number of townships for each invasive or expansive species by the
cumulative number of townships occupied by the counterpart group (proportion curve).
Results Maps of the collection records of invasive and expansive taxa illustrated no
discernable spatial invasion or expansion pattern. The slopes of the linear oegmssi
alien, invasive taxa were significantly steeper than those of theinagsbnative, non-

expansive counterparts, indicating an increase in abundawag@erus virginiana, L.



japonica andTamarix spp. exhibited one or more periods during which they were
collected at a disproportionately higher rate than their native, non-expansivergarste
Main conclusions Patterns of species invasion and expansion in Oklahoma were
detected using techniques developed for regions with longer collecting [samids.

The proportion curve analysis eliminated some biases inherent in herbaraubydat
reducing the effect of collecting effort. Both the regression model and propartian c
analyses illustrate the temporal invasion patterns of alien, invasive spé&hesative
species did not show a clear expansion pattern. The information found in recently
established herbaria may not be sensitive enough to detect the increase of alafndance

native species.



INTRODUCTION

Understanding the temporal and spatial dynamics of invasive and expansies speci
has become an important research topic for biogeographers, ecologists, iemiEstsc
and conservation biologists. To understand the geographic history of alien plant
invasions and native plant expansions many researchers are turning to the vast
storehouses of information associated with herbarium specimens. Collectiaes of al
plant species in herbaria around the world are being analysed to help ecotugigtsze
the spatio-temporal patterns of plant invasions (Statidr, 1998; Delisleet al., 2003;
Woodset al., 2005; Wuet al., 2005; Barney, 2006; Chauwtlal., 2006; Fuentegt al.,

2008). Herbaria are underutilized institutions that contain a large repositaistarical

and geographical information. PysSek, using European herbarium specimens, developed a
technique to quantify invasion rate (PySek, 1991; PySek & Prach, 1993; Mihulka &

Pysek, 2001; PySedt al., 2003). He used the term “invasion curve” to represent a
regression model of the cumulative number of localities of an invasive plantiplotte

against the year of collection. The slope of the regression was considered a
guantification of the invasion rate (PySek & Prach, 1993).

However, we must be cautious interpreting regression models calculated from
herbarium data because of the non-random sampling bias inherent in plant collections
Few studies take into consideration the biased nature of natural historyicodiestich
as: unequal sampling effort over time, non-random geographic representation, poor
location information, incorrect identification, and disproportionately represésuta.
Therefore, methods must be developed to remove such biases to reveal the truefpatter

invasion. Temporal variation in plant collection effort is apparent when the number of



herbarium specimens is plotted against year. For example, in the herbariatafeod
Oklahoma, USA, the number of specimens collected per year since 1883 variesrfsom z
to 6365, with a mean of 1752 per year (Hoagletral., 2006). The intensity of floristic
inventory is therefore highly variable and should be taken into account when studying
invasive species. The increase in the number of specimens of an invasiverspgcies
indicate an increase in abundance, or simply may mean an increase in the overall
collecting effort that year or decade. Mihulka & Pysek (2001), using datatferbaria
across Europe, corrected for collection rate among countries to account fondhiervar
in plant collecting intensity. Deliskt al. (2003) also developed a method to account for
the bias associated with temporal variation in plant collections in ripariah @frea
southern Québec, Canada. They selected widespread, native, non-invasive species to
provide a picture of collecting trends in the region. In addition to comparingtemtiec
rates, they calculated the ratio of invasive and non-invasive plant recordshgreeac
termed the “proportion curve” (Delisét al., 2003). If the proportion of invasive species
collections increases over a period of time, this suggests that the invasies speci
increased in range or abundance. This differs from PySek’s invasion curvie, whic
evaluates the overall invasion rate of a species since its first antlectd does not take
into account specific time periods during which invasion may have occurred rapidly.
PysSek also recognized that herbarium data had limitations and believed that a
“strong, long-term florisitic tradition” in the region was important to prodetable
analysis of plant invasion (PySek & Prach, 1993). Yet, Fuehts(2008) in Chile,
Woodset al. (2005) in Kansas, USA, Delisétal. (2003) in Québec, Canada, and

Stadleret al. (1998) in Kenya all produced analyses with data sets that were significantly



more recent than the several hundred years of data available in Europe. da tkans
earliest specimen was collected in 1869, while in Québec the earlieshepetas
collected in 1820. For Chile, Fuentsl. (2008) only analysed the herbarium
specimens collected since 1900. In Kenya a few specimens were collectedlSdioy
but most were collected after 1960. Wwal. (2005) were concerned with the adequacy
of using herbarium data to map the distribution of alien, invasive species because of thei
short-term history in Korea. They studi€dotolaria species that had only been
naturalized for 70 years. Not all European studies have the benefit of a londater
set. Chauvett al. (2006) examined the increase of North Ameriéerosia species in
France using only approximately 150 years of data.

We were interested in testing these methods on herbarium data found in the
Oklahoma Vascular Plants Database (OVPD), the repository for the pliaticol data
of the state of Oklahoma. The OVPD represents slightly over 120 years of plant
collecting, with the earliest specimen collected in 1883, though significant nsiofoe
plant collections were not made until the 1910s (Hoagbhaal, 2006). Not only are we
interested in applying these methods to truly invasive species, but are alksst@uten
detecting the patterns of increase of native, expansive species. Ineasiaed alien
species that have spread over a considerable area after introduction froar eegibn
by humans (Richardsat al., 2007). Expansive species are native plants that are moving
into new areas and increasing in abundance because of human-induced changes to the
landscape. Some of the expansive species are considered agriculturabwesdse,
especially in the Great Plains of North America, are woody species emagaa

grasslands. In this paper, we address the following questions. (1) Will we be able t



detect the spatial and temporal invasion pattern of alien plants in Oklahoma using the
relatively recent collecting history represented in the OVPD? (2) Caffentiely
eliminate regional and temporal biases using previously developed rese#nodsfig3)
Will these methods be suitable for illustrating expansion patterns of natiedy\ptant

species?

MATERIALSAND METHODS

We reconstructed the spatial and temporal collection history of: two alien,
invasive taxa; three native, expansive species; and three native, non-expansive
counterpart groups using records in the OVPD. We chose taxa that are both alien and
native to see if we would be able to detect a spatio-temporal pattern of entoeas
herbarium records. Nomenclature follows the PLANTS Database (USDASNERIDG).
We selected four species and one genus that are considered “weeds” ieathl&ns
(Stubbendieclet al., 1994; Southern Weed Science Society, 1998; Coppatdte 2002;
Friedmanet al., 2005; USDA, NRCS, 20068mbrosia psilostachya DC. (Asteraceae),
Amphiachyris dracunculoides (DC.) Nutt. (Asteraceaejuniperusvirginiana L.
(Cupressacead)pnicera japonica Thunb. (Caprifoliaceae), afdiamarix L.
(Tamaricaceae)Ambrosia psilostachya andA. dracunculoides are native to Oklahoma
and are considered agricultural weeds (USDA, NRCS, 2QR@)perus virginiana is a
woody species native to Oklahoma that is known to increase in abundance in grasslands
in the absence of fire (Coppedgeal., 2002; USDA, NRCS, 2006).onicera japonica
andTamarix are alien, invasive taxa that originated in Asia and Eurasia, respectively

(USDA, NRCS, 2006). Species tamarix known to occur in Oklahoma afe



parviflora, T. ramosissima andT. chinensis (Tyrl et al., 2006). We grouped all species of
Tamarix for our analysis due to the difficulties in identification, current confusion in the
taxonomy, and similar ecological functional roles.

To compare the overall collecting trend, groups of non-expansive species native
to Oklahoma were selected as counterparts for each invasive or expansive tax@s Spec
chosen for counterpart groups were selected based on the following créeresented
in the OVPD with at least 200 specimens; distribution similar to the invasive or
expansive taxa; similar life form or habit; readily identifiable; and nairtamically
confusing. We used a combination of several species to diminish possible collexging bi
found in any particular species.

The following species in the Asteraceae were assigned to the non-invasive
counterpart group fo. dracunculoides andA. psilostachya: Engelmannia peristenia
(Raf.) Goodman & LawsorGaillardia pulchella Foug.,Liatris squarrosa (L.) Michx.,
Pyrrhopappus grandiflorus (Nutt.) Nutt. andRatibida columnifera (Nutt.) Woot. &

Standl. An effort was made to choose species within the same family, appréximate
same size, and found in similar habitats. The following common, woody species were
chosen as native, non-expansive counterparts forduitiginiana andTamarix spp.:
Morusrubra L. (Moraceae)Prunus angustifolia Marsh. (Rosacead®hus aromatica Ait.
(Anacardiaceae) arfshpindus saponaria L. (Sapindaceae). Similar to the invasive and
expansive species to which they will be compared, these woody species asaiabge
or small trees and are widely distributed throughout the study area. Wewbose t
congeneric speciekpnicera flava Sims and.onicera sempervirens L., as native, non-

expansive counterparts fbrjaponica. These were chosen based on similar taxonomy
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(within the same genus), habit (vining perennials), habitat (woodland edges and
fencerows), and distribution (eastern Oklahoma). By comparing the tempadrspatial
collection rates of invasive and expansive taxa to non-expansive taxa, we &tempt
understand the general collecting trend so that attention could be drawn to tleinvas
and expansion history. We hope to de-emphasize the general collecting trend of the
native, non-expansive taxa from the collecting trend of invasive species to ereghasi
increase in abundance over time of the invasive and expansive species.

All specimen records for invasive and expansive species and their non-expansive,
native counterpart groups were selected from the OVPD, which includesmll pla
collections from the following major herbaria: OKL, OKLA, TULS, OCLA, CSudda
DUR (for institution names and locations, see Holmgren & Holmgren, 2006; Hoagjland
al., 2006). At the time of this research, minor plant collections represented in the OVPD
were from Oklahoma Panhandle State University at Goodwell and the University of
Oklahoma Biological Station at Kingston. In general, herbarium specimeashe
following associated data: species name, location of collection, collectectmyl date
and collector’s collection number. However, there is no standard label format or data
requirements and many specimens lack even basic data. The variable nature of
information provided on herbarium specimen labels required the elimination of some
specimens from our study. First, specimens lacking specific collectiowdete
removed from analysis. Cultivated specimens were also removed from analysi
Specimens with unknown or imprecise location information were excluded from analysi
Specimens of the same species with identical collectors, collection datesti@ol

numbers and locations were considered duplicate records and treated as om@ncollec
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Specimens in the resulting data set were georeferenced to township (88.3 km
and mapped using ArcGIS 9.1 (ESRRedlands, CA, USA). Townships, established in
Oklahoma during the Public Land Survey of 1871, are quadrangles approximately 6
miles (9.66 km) on each side and contain 36 equal sections (Hoagland, 2006). If not
recorded, the township was determined by interpreting directions to collectatioioc
provided on the herbarium label. The date and location of the first collection in each
township was identified and the total number of townships in which the invasive and non-
invasive counterpart groups were found was calculated. For a better comparison of t
uneven sample sizes of the invasive and expansive species with their counteypst g
we log-transformed (log) the cumulative number of occupied townships. Beginning
with the first collection of the invasive or expansive taxa, the data were plgtaia
time, and linear regression models were calculated. The slope of the digesasion
model was used to quantify the collection and invasion or expansion rate of the taxa in
this study. The slope of the curve represented collection effort over tirtteefoon-
invasive counterpart group and collection effatts invasion rate for invasive species.
The steeper the slope of the curve, the faster the rate of collection or invasiek &y
Prach, 1993). We then tested equality of the slopes of the regressions (Sokal & Rohlf,
1995). We also employed the method developed by Detisle (2003) to compare the
trend in general collecting of non-invasive species to the collection trend of invasive
species because this method does not correct for the temporal variability of plant
collections. We calculated the proportion of invasive to non-invasive plant collecyions b
dividing the cumulative number of townships for each invasive species by the duenulat

number of townships occupied by the non-invasive counterpart group (proportional
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curve). This proportion illustrated in graphical format, the proportional curve,ealow

to examine collection rate during short time periods.

RESULTS
Herbarium specimens

Following the removal of unusable and duplicate specimens, 3696 records
remained for analysis (Table 1). Of those, township was recorded on the spebiehen la
for 1103 records. 3114 were manually georeferenced. Although the first specimen used
in this analysis was collected in 1903, relatively few specimens of taxa i&sinveere
collected in Oklahoma before 1935.

Spatial and temporal distribution

The native, non-expansive counterpart groups of woody species and Asteraceae
taxa were found throughout Oklahoma and were not concentrated in any geographic
region (Fig. 1a,c). The native, expansive taxalracunculoides, A. psilostachya andJ.
virginiana, also were not limited to a particular region of the state (Fig. 2aloojcera
collections, both native and alien, were generally restricted to the easfesh hal
Oklahoma (Fig. 1b, 2d)Tamarix was found across Oklahoma with the exception of the
south-eastern corner (Fig. 2e).

The maps generated from specimen location information illustrated nongdibtzer
spatial invasion or expansion pattern by any of the invasive or expansive taxa; new
localities in different regions of the state were collected simultanekigly2). The
earliest collections oA. dracunculoides, A. psilostachya andJ. virginiana were scattered

across Oklahoma in a pattern that did not suggest an expansion front or radial expansion
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pattern (Fig. 2a,b,c). The first four collectiond_ofaponica were made in north-central
Oklahoma in the 1930s (Fig. 2d). However, subsequent collections were scattered
throughout the eastern half of the state and did not follow a radial pattern of invasion.
The firstTamarix collection was made in the centre of the state in 1910. There was no
apparent radial or linear (such as along a river corridor) invasidanedrix based on
initial analysis of the early collections points (Fig. 2e). The lack of evedehan
invasion front could indicate that the alien species were first introduced t@athenst
multiple locations.
Invasion and expansion rates

The linear regression models for the native, expansive spActirscunculoides,
A. psilostachya, andJ. virginiana, were not significantly steeper than the models of the
associated non-invasive counterpart groups (P > 0.05; Fig. 3a,b,c). The regression
models for both the alien, invasive takajaponica andTamarix, had significantly
steeper slopes than the associated non-invasive counterparts (P < 0.01; Fig't8d,e)
indicates that the rate at whithjaponica andTamarix have been collected over the last
100 years has increased in comparison to the collection rate of their assooiate
invasive counterpart taxa. The comparisons of the regressidnsraicuncul oides, A.
psilostachya andJ. virginiana to their native counterparts indicate that the collection
rates of these species are not significantly different from the oveligtion rate.

The proportion curve analysis indicates a time period during which for some of the
invasive and expansive taxa were collected disproportionately more compared to thei
native counterpart group (Fig. 4uniperus virginiana shows a likely increase in

abundance during the 1930s, but, interestingly, appears to decline from that period to the

14



present (Fig. 4c)Lonicerajaponica has a dramatic spike after its initial collection in the
1930s and the proportion curve illustrates a steady increase in abundance relative to i
native congeners since 1970 (Fig. 4d). Tamarix also increased in abundance in the 1930s
and shows a slight increase during the 1960s (Fig. 4e). NAithesicunculoides nor A.
psilostachya have proportion curves that illustrate remarkable expansion, with the

exception of a small, short increase in the late 193@s tsacunculoides (Fig. 4a,b).

DISCUSSION
Regression models and proportion curves

Generally, after the initial introduction of an invasive species, the pattern of
invasion begins with a lag period of few collections followed by a period of rapid,
exponential expansion. Alien, invasive species recently studied in FraneeszéCha
2006), Kenya (Stadlest al., 1998), Quebec (Deliskt al., 2003), and across Europe
(Pysek & Prach, 1993) and North America (Barney, 2006) follow this temporal invasion
pattern. Our data appear not to support a typical lag period because the shortjdtat port
of the curve at the beginning of the time period is also seen in the native, non-expansive
taxa. This suggests that the pattern is an artefact of collection histueyabsence of a
true lag period may be the result of the OVPD not having records during this phaese of t
invasion. The alien species in our study were both introduced to North America before
many specimens in the OVPD were collected. The lack of a lag phase mag dlge to
the generation time (time for the population to reproduce) of the alien species in our
research. PySek & Prach (1993) found that the generation time of ripariars specie

affected the rate of invasion. The shorter a species lifespan, the fasteathenmate.
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The alien species examined in our research are both long lived perennials, one a woody
vine and the other a small tree/shrub. Both PySek & Prach (1993) and Baisle
(2005) were working with species in riparian areas, a habitat type that mayaster
rate of invasion. Water flow can be an important dispersal agent for both seed and
vegetation fragments (Baker, 1974; Richardataad., 2007).

We found, in spite of the short and variable plant collecting history in Oklahoma,
that the regression models indicate an invasion trend in the aliertaapohica and
Tamarix). Both regression models had steeper slopes than their non-invasive counterpart
groups, signifying over the past 100 years that the cumulative number of townships
occupied was increasing faster than the number of townships occupied by non-invasive
species. Delislet al. (2003) found that four of the six invasive species in their study
exhibited steeper slopes than their native counterpart groups. The expansion trend was
not clear for the native, expansive species that we studied. This may be due torthe na
of native, expansive species. Native, expansive plants have presumably beenrpresent i
the region since the arrival of Europeans in North America, but they increase in
abundance over time, in response, mostly, to human disturbance. In Oklahoma, this may
be the result of a variety of factors, such as fire suppression, regrowtmicosied
fields, or intensive grazing. By looking at native, expansive species, weadlse
looking at an increase in population abundance which differs greatly from alrgn pla
invasion. Attempting to use herbarium data to understand population dynamics of native
species will be extremely difficult, if not impossible, due to the irregulaureaf plant

collecting and herbarium data.

16



The proportion curves revealed temporal invasion and expansion patterns, but at a
finer scale and therefore may better serve for analysis of dathaetever a shorter
time frame.Juniperus virginiana, L. japonica andTamarix exhibited one or more periods
during which they were collected at a disproportionately higher rate thamé#tie,
non-expansive counterparts (Fig. 4c,d,e). Because the proportion clyepmnica
shows an increase compared to that of the native congeners over the past 30ilyears unt
the present, we may hypothesize thgaponica continues to invade new locations (Fig.
4d). Juniperus virginiana’s proportion curve shows a significant increase in collections
during the 1930s, but also has a steady decline for approximately the last 50Tyesss
results contradict other studies that clearly demonstratd.taginiana has expanded
into grasslands in Oklahoma over the past 50 years (Coppealge2002). The
differing results from the proportion curvesb¥irginiana andL. japonica may be an
indication of plant collector bias. The continued collectioh.géponica above the rate
of its native congeners is evidence of continued expansibnabonica into new
locations. Plant collectors are interested in collecting species new teaaoraare in a
habitat. The decline id virginiana collections with respect to other native woody
species may be counterintuitive evidence of its increase in abundance. Botanists
generally have neglected to collect native species considered to be aburetint @ee
of the most ubiquitous species in North AmeriEar,axacum officinale (common
dandelion), has only 202 records in the 210,000 records of the OVPD (Hoeigénd
2006). However, Woodd al. (2005) found that early collections of alien species in
Kansas were extensive and were consistent with the overall collectiaghdar the

state. The possible lack of interest in collecting native “weedy” spataies analyses
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such as ours more complicated. While native, expansive species may be ignored, alien,
invasive species may currently hold the interest of collectors who are toytlogament

their spread. The increaselofjaponica andTamarix specimens in the past decade

signify the recent trend to identify and control alien, invasive species and may not
necessarily signify an increase in their real-world abundance.

Complications of herbarium data

The relatively short history of plant collecting in Oklahoma is problemétien
one wants to understand long-term trends in biogeography of the region espleeially t
invasion history of alien species. PySek & Prach (1993) believe that a long bistor
thorough plant collecting is necessary to produce reliable results. Initedtony of the
Oklahoma flora began late, when some alien species had already been introdubed. Bot
L. japonica andTamarix were introduced to North America in the early 1800s (Baum,
1967; USDA, ARS, 1970), well before the first herbaria were established in Oklahoma.
However, this study demonstrates that the data from herbarium specimenshonkla
are sufficient to demonstrate periods of invasion by alien taxa. The history of plant
collecting in Oklahoma may be too short for detailed analysis of spatiairzadied
population increase of native, expansive species.

The nature of herbarium records, which involves opportunistic and non-systematic
plant collecting, makes analysis difficult because this type of datargathetroduces
several biases. Several historical events, beginning with the establisifrttenstate’s
universities, influenced the temporal plant collecting pattern of the records@V#PB.

The geographic pattern of plant collecting is determined by the prefesktieeplant

collector, not based on a systematic grid of the state, or stratified raadgvhrgy of
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ecoregions. Taxonomic bias, overrepresentation of certain groups of taxa, can be found
in many collections. All temporal, geographic, and taxonomic biases must be oedtside
for one to be confident in the results obtained from herbarium data research. Through
various methods we made an effort to reduce the power of these biases to control our
results.

Maps of plant distributions made with records in the OVPD should give us a
reasonably accurate picture of the current extent of a given spethes @klahoma.
Wu et al. (2005) tested the adequacy of herbarium data to illustrate the distribution of
alien taxa. By comparing herbarium data with extensive field surveys, they faind th
herbarium records gave an accurate picture of the distribution and frequency aff sever
species introduced into Korea during the last 70 years. Plant distribution malps will
more accurate as the number of plant collections increases. Therefore, thehenger t
history of plant collecting in the region, the better documented the flora, and the more
comprehensive the herbarium collections. The accumulation of specimens over 100
years should provide a good illustration of species distribution. Mapping the records
from the earliest decades would be less likely to yield a reliablesepegion of species
distribution because there simply are fewer specimens collected. Attgrptiscern a
pattern of invasion over time using the somewhat sparse data prior to 1930 is unlikely to
represent the true invasion history of a plant; instead, we merely documemivéesadn”
of Oklahoma by botanists. Given the short history of the herbaria embodied in the
OVPD, analysis of the change in species distribution over time can be misleading
reality, we did not find a spatial invasion pattern in the maps generated in oursanalys

Neither of the alien taxa illustrates the pattern of species introduction aretjgabt
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exponential spread via a front or corridor. This could indicate that the alien¢asa w
introduced prior to most collections in the OVPD or were introduced at multipleasites
approximately the same point in time. Deligal. (2003) and PysSek (1991) found
invasive riparian species dispersing along river corridors, but our m3jpseafix gave
little indication that it was spreading up or down riparian zones. We believEathartix
is almost certainly spreading along rivers in Oklahoma (DiTomaso, 1998); howave
data are not sufficiently sensitive, either temporally or geographitaliyap the pattern.
Baker (1974) described the typical North American invasion pattern to be sgatter
populations expanding to fill in absences between populations. Both the invasive alien
and native expansive taxa in our study appear to follow this pattern.

The geographic distribution of specimens collected in Oklahoma is not random, but
instead follows a pattern correlated to population centres and botanicallgsimgr
areas. More species have been collected in counties with institutes of ligbatian
than in neighboring counties, though one would expect the flora to be similarly diverse
(Hoaglandet al., 2006). Researchers in Kansas identified population centres as one of
the problematic biases (Woodsal., 2005) and Iverson & Prasad (1998) actually took
into account the number of botanists residing in a county when they modelled the
diversity of the lllinois flora. Locations of canyons, mountains, unique rock outcrops,
and other topographically outstanding elements have lured botanists to coligct ma
specimens to document their distinctive flora. Counties with such features are
overrepresented in the OVPD (Hoagladl., 2006).

Other biases can be found in collections. Concentration on a particular group of

plants will produce a taxonomic bias. Many systematists deposit their icolleta
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single genus or species in a herbarium. Being knowledgeable of the regitors ¢tas

also be useful. For example, certain prairie species may be overreptestrag are

part of roadside plantings organized by the Department of Transportation. Small

projects, such as these, maybe unknown and, alas, we cannot know all the nuances of bias

in our data sets.

CONCLUSIONS

One could argue that too many uncontrolled variables in herbarium data sets cause
inaccurate representations of the historical biogeography of taxa. Nonettiedess
techniques developed by other biogeographers to analyse patterns of spesies and
eliminate biases inherent in herbarium data have been successful, to a degree, in our
research. We deliberately chose taxa that are known to have increased in abandanc
to be invasive in Oklahoma. We found that the alien, invasive species demonstrate an
invasion trend in both the regression model and proportion curve analyses. However, the
native species that have been labelled “expansive” did not show a cleariexpans
pattern. The information found in herbaria, especially comparatively recstdlylished
herbaria, may not be sensitive enough to detect the increase of abundance of native
species in response to human disturbance, for example. Yet, herbaria are important
storehouses of phytogeographic data. Unfortunately they are threatenedanstitut
plant collecting in the U.S. is in decline (Pratbeal., 2004), a trend confounded by a
reduced interest in plant taxonomy (Wortkal., 2002), and the elimination of herbaria
at some universities in recent years. Herbaria represent many detptigg collecting,

thousands of miles travelled, and countless man-hours of identification. We hope
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research such as ours will encourage others to take advantage of informaticeddagher
the scores of botanists before us and to design novel techniques and new avenues of

research utilizing herbarium records.
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Table 1. The number of townships in Oklahoma, USA occupied by select alien, invasive
taxd, native, expansive specieand native, non-expansive counterpart graufbie

total number of townships in Oklahoma is 2098. Specimens were recorded in the
Oklahoma Vascular Plants Database (OVPD), the repository for the pleatiog data

of the state of Oklahoma. * Specimens were removed from analysis if they could not be

georeferenced, were missing collection year, were cultivated, ordupheate

collections.

Total number  Number of Number of '

y . A . Year of first
of specimens specimens used townships in which collection
in OVPD in analysis* taxa were found

Ambrosia psilostachya® 240 201 140 1913
Amphiachyris dracunculoides 2 277 236 168 1913
Juniperusvirginiana 2 603 466 236 1913
Lonicera japonica® 121 103 75 1936
Tamarix specie’s 398 297 178 1910
Native, non-expansive 1002 859 463 1903
Asteracea®
Native Lonicera specie$ 283 231 103 1913
Native, noninvasive woody 1201 1003 555 1906
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Figure 1. The spatial and temporal collection history of select native xpamsve
groups in Oklahoma, USA. Occupied townships (9.66 x 9.66 km) are shaded based on
the time period during which the first collection of that taxon was made. Darker

townships are the locations of the earliest plant records.
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Figure 2. The spatial and temporal collection history of select alienjwevasd native,
expansive taxa in Oklahoma, USA. Occupied townships (9.66 x 9.66 km) are shaded
based on the time period during which the first collection of that taxon was mader Darke

townships are the locations of the earliest plant records.
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Figure 2
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Figure 3. Invasion and expansion curves generated for select invasive and expaasive t
compared to the general collection trend of the native, non-expansive counterpput gr

The slope of the linear regression represented collection trend over time for the non
expansive counterpart group. However, for the alien, invasive taxa and native, expansive
species the regression slope represented the collectionpbffoimvasion or expansion

rate. All linear regressions were statistically significant (?001). Regression pairs

with * indicate slopes that differ significantly from each other (P < 0.01).
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Figure 3
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Figure 4. Proportion curves were calculated by dividing the cumulative number of
townships in Oklahoma for each alien, invasive or native, expansive species by the
cumulative number of townships occupied by the native, non-expansive counterpart
group. Periods of increase, indicated by the shading, occur when the invasive or
expansive taxa was collected more often than would be expected from the general

collecting trend.
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Figure 4
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CHAPTER?Z2

The use of species distribution models to answer
ecological and biogeographic questions:

a review of the literature
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INTRODUCTION

Species distribution models (SDM) have become important tools for ecologists,
biogeographers, conservation biologists, and restoration ecologists. While ntneh of
SDM literature focuses on testing existing techniques (for exampegEeh and others
2006; Fielding and Bell 1997; Kadmon and others 2003; Meynard and Quinn 2007;
Mufioz and Felicisimo 2004; Pearce and Boyce 2006; Segurado and Araujo 2004;
Stockwell and Peterson 2002)), other researchers are using these tools foesigpot
generation or adding them to the suite of tools for conservation decision-makers. L
other multivariate statistical analyses, SDMs attempt to reduce the nahpmeential
variables in a data set to determine those that best explain a speaidsitaist
Therefore, SDMs help to understand and possibly quantify the ecological reentiserh
a species (Box and others 1993; Costa and others 2007; Danks and Klein 2002; De'ath
2002; De'ath and Fabricius 2000; Laurent and others 2004; Murphy and Lovett-Doust
2007; Norris and others 2006). It has been argued that SDMs, in fact, model the niche of
the species (this will be discussed further in the next section). Howeverjesspec
distribution is not simply a result of the physical environment matching the ezalogi
requirements of a species. Evolutionary and historical factors also detearspecies
distribution and SDMs may illuminate the geographic or historical featiiaesmit a
species’ modern distribution (Anderson 2003; Camarero and others 2005; Van Mannen
and others 2002). If SDM results, based on ecological data, suggest a much wider
distribution, what might be causing the limited distributions? Further hypoteetisy
may lead to an understanding of the dispersal barriers or historical situatioretitet!

the current, seemingly limited, distribution.
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In this literature review, | cover the essential topics associated wNtsSPBirst, |
discuss the niche concept and the variety of theoretical interpretations of model dutput
then consider issues associated with data, both species occurrence dataranchental
data, that are generally used to build SDMs. Of course, there are a multitude of
modelling techniques, a few of which | briefly describe and compare. Model csompari
can be performed using a variety of methods that | summarize. Finally, Igdibeus
current challenges facing modelers and outline some potential improvem#énssfield
of inquiry.

Species distribution modelling has proven useful for locating populations of rare,
endangered, or even undiscovered species (Pearson and others 2007; Peppler-Lisbach and
Schréader 2004). Although not widely published in the scientific literature, many
biologists associated with state agencies are using SDMs to find populatiores@f ra
endangered taxa and plant communities (Fertig and others 1998). For exampéd, Natur
Heritage Programs, which maintain spatial data of the occurrence of daea@dmgered
species at state and regional scales, have begun to apply SDMs foglpogtitations
of rare species. The Wyoming Natural Diversity Database has suclyessad SDMs
to locate several new populations of pygmy rabbit in areas where expdrigalomgists
did not expect to find the species or seriously consider as suitable locationggiBeand
others 2004). The Oregon Natural Heritage Information Center biologists found nine
new locations of grassy balds, a rare plant community, with information fron86nly
original locations (Buechling and Tobalske 2007) allowing them to make mormador
conservation recommendations. In relatively little known areas, resesaecharsing

SDMs of related taxa to find rare and even undiscovered species. Surrogate taxa a
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modelled with the expectation that similar species will have similar gicalo
requirements (Romermann and others 2007). New reptile species have been found in
Madagascar using this modelling approach (Raxworthy and others 2003).

Locating new populations of rare species is just one conservation application of
SDMs. Models have been used to help identify sites of high potential biotic diversity
(Cowling and Samways 1994, Ferrier and Guisan 2006; Iverson and Prasad 1998a; Lira-
Noriega and others 2007; Ortega-Huerta and Peterson 2004, ter Steege and others 2003).
These model results can help to identify sites for land conservation or natuve rese
systems (Danks and Klein 2002; Ortega-Huerta and Peterson 2004; Rodriguez and others
2007; Tole 2006). Making important conservation decisions based on species
distribution models must be done with caution. Size of data set, bias in the data, and gaps
in data coverage will affect the quality of the results (Hopkins 2007; Lomsetlethers
2007; Stockwell and Peterson 2002; ter Steege and others 2003; Vaughan and Ormerod
2003). Model choice and even how the model is evaluated will determine the type and
degree of error significantly affect results (Loiselle and others 2@@8sBn and others
2006).

Conservation biologists also are using SDMs to identify specific locationartha
best suited for species reintroduction or translocation (Carey and Brown 1994). In
chapter 3 of this dissertation, | use SDMs to create a map of habitat dyifabilhe
American burying beetle. | expect these results will not only congritoua better
understanding of the ecological requirements and species distribution, but also bg used b
the U.S. Fish and Wildlife Service to determine the best locations for bestotation

from road or pipeline construction sites.
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Alien species invasion can also be explored with SDMs. When species are
introduced into a new region by humans they are transported over evolutionary and
biogeographic time and space. Having overcome dispersal barriers, thess aftempt
to carve out an ecological niche in a new region. Many alien species ardlgunréhe
process of invading a new region and have not reached their full potential (Petetson a
others 2003; Peterson and Vieglais 2001; Welk and others 2002). By projecting the
ecological requirements from the home range on the newly invaded region, the models
can predict the potential extent of invasion in the new region (Anderson and others 2006;
Collingham and others 2000; Hulme 2003; Peterson 2003; Peterson and Nakazawa 2007;
Peterson and others 2003; Peterson and Vieglais 2001; Robertson and others 2001; Welk
and others 2002; Zhu and others 2007). In chapter 4 of this dissertation, | attempt to
model invasive species distribution using native and introduced range data. SDMs may
also be able to predict what species are likely to become invasive beforavieesvier
been introduced to a new region (Nyari and others 2006). Because of the potential
economic and ecological impact of alien species invasion, many regsachexploring
the use of SDMs to help in the fight against invasive species (Dark 2004; Lippitt and
others 2008).

Finally, the hottest topic in an already fiery field is using SDMs to prréatigre
suitable habitat in the face of global climate change. Researchers build mvddel
species current distributions under current climate conditions, then alterectiatatto
reflect various climate change scenarios and project the resulting hsipethe
distributions (Araujo and Luoto 2007; Araudjo and Pearson 2005; Araujo and others

2005a; Araujo and Rahbek 2006; Carey and Brown 1994; Iverson and Prasad 1998b;
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Oberhauser and Peterson 2003; Papes 2007; Pearson and Dawson 2003; Pearson and
others 2006; Thuiller and others 2005a; Thuiller and others 2005b). There are many
complicating factors that affect the results of these models. Likeodkls) they can be
significantly affected by the model algorithm, model assumptions, panaratita of

the model, and the geographic range of the data, but the added uncertainty of climate
models confounds the errors in the prediction (Aradjo and others 2005b; Davis and others
1998). In addition, because these models are predicting future distributions based on
potential climate change, model evaluation becomes problematic. In thei cévie
distribution models based on future global warming, Botkin and others (2007) found that
few of the models were evaluated and none were able to validate the model with
independent data. Validation with a truly independent data set may be impossible
(Araujo and others 2005a). However, work continues to improve the model output and

model forecasts (Aradjo and Luoto 2007; Araujo and New 2007).

NICHE CONCEPTS

In the SDM literature one can find varying opinions on the terminology and the
most appropriate definitions of model outcomes, but at their theoretical base, 8®Ms r
on the niche concept. In fact, modelers cannot even agree on what to call these models
species distribution models, potential habitat models, climate envelope models, or
ecological niche models, for example. However, there is no clear, uniforntidafior
niche in the discipline of ecology. Researchers continue to argue overitaoret
semantics in using “niche” to explain the output of correlative, descriptive mddeist

authors in the SDM literature use, or at least imply, the basic niche definitiooripuby
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Hutchinson (1957) where the niche is a multidimensional space in which the many axes

represent gradients of variables that limit an organism’s or population’ssfif@aesited

in (Olding-Smee and others 2003)). The niche concept attempts to explais specie

abundance patterns along multiple environmental gradients. Hutchinson distinguished

between the fundamental and realized niche. The fundamental niche represents the
theoretical space occupied by a species in which the combination of all relevant
environmental variables allow the species to survive and reproduce. However, the
general interpretation of the fundamental niche does not include biotic irdasach
particular interspecific competition. Therefore, it was necessaryfiteedbe realized

niche as a portion of the fundamental niche where the species is competitivalgmtom

and can successfully reproduce.

Pulliam (2000) put forth several theoretical niche or distribution relationships. H
proposed the following four possible scenarios:

1. Grinellian niche, or Hutchinson’s fundamental niche — species will occur where the
environmental variables are suitable.

2. Hutchinson’s realized niche — a subset of the fundamental niche where itesllimi
by interspecific competition or other biotic interactions.

3. Source-sink dynamics — species may be found in locations that will not support
reproduction, based on metapopulation theory (the study of the interactions of
populations separated in geographic space).

4. Dispersal limitation — also related to metapopulation dynamics, sughgastpecies

are absent from suitable habitat because of limitations in organism dispeisake
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time needed to establish a successful reproductive population in fitting habitat

patches.
The niche or distribution of an individual species may be described with any of these
theoretical frameworks. Knowledge of the environmental and physioldgretdtions
of a species will improve the outcome of a distribution model because model choice and
model parameters will have direct ecological meaning.

The source-sink scenario is one concept that is not often incorporated in
distribution modelling. In general, it is not known if a record of presence in theetata
is from a source or sink population. When recording species presence, espeadially a ra
species, it is very difficult to know if you are collecting data from a selasusy
population. It is likely that data sets acquired from opportunisticallyatetierecords
(records not collected as part of a methodical research study) contaivatibssrof
individuals from sink populations. Therefore, most models are built on data that do not
represent the true niche, fundamental or realized, because data come frmmddbat
may not allow for successful reproduction. Logically, the models constructedsen the
data should not be called “niche” models (Aradjo and Guisan 2006; Kearney 2006).
Soberon and Peterson (2005) argue that the data set entered into the model is the

spatial representation of the fundamental niche because the observations Eteddore
abiotic variables and, therefore, they argue that these modelling techniques should be
called niche models rather than distribution models. They contend that the datriduti
a species is a “complex expression of its ecology and evolutionary history.”a$eexy
that the modelling algorithms produce an estimate of the fundamental niche, which is

more imprecise than a species distribution. The true distribution of a speeies, t
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reason, includes in its concept the limitations of the species due to dispensditmi
and the evolutionary capacity of a population to adapt to new environments. Both
Kearney (2006) and Guisan and Thuiller (2005) strongly disagree with Soberén and
Peterson (2005) and argue that correlative distribution models do not represent the
fundamental niche of an organism. They hold that Soberon and Peterson (2005) are not
taking into account that the observational data are already constrained byduitis.
They assert that only mechanistic models based on direct measurementsobd g gs
behavior can produce the fundamental niche, any use of observational data are, in effec
reflecting the realized niche.
Araujo and Guisan (2006) want to dismiss any use of the formal definition of niche
with respect to distribution modelling. They suggest that ignoring biotic iti@mac
when defining the fundamental niche is incorrect. They believe that even réatchi
recognized that positive biotic interactions influenced the fundamental niche.qibiey
Hutchinson’s (1957) concluding remarks to support this argument:
... all variables, both physical and biological, being considered, the
fundam_ental niche of any species will completely define its ecological
properties.
...Interaction of any of the considered species [defining the realized niche] is
regarded as competitive...All species other than those under consideration are
regarded as part of the coordinate system.
They interpret Hutchinson’s statements to mean that biotic interactionstwher t
competition, such as pollination or parasitic relationships, should be included in the
multidimensional space that defines the fundamental niche. They support Leibold’s

(1995) updated niche definition which combines Hutchinson’s realized niche concept, but

also adds the impact of organisms on their environment.
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Not only are organisms affected by the environment, but the organisms themselves
also can modify their environment. This concept is not routinely considered in
distribution modelling. Elton (1939), MacArthur (1967), and Leibold (1995) support the
resource-consumer or trophic level niche ideas that place an emphasis on thentgganis
role or function within the environment. Laland and others (1999) extend the concept
further by describing how the evolutionary process can be affected by “niche
construction.” Niche construction occurs when organisms reshape both the abiotic and
biotic relationships that determine their niche. This modification causes &ksdbat
alters the pressures of natural selection and consequently the dynath&s of
evolutionary process. While theoretically compelling, the niche constructfmothesis
is too complex to be integrated into today’s distribution models. Also, the scalecht whi
an organism changes the environment is usually very fine, which may excusetaptc
from applications in very large scale (continental or regional) distribution nroglell

Both Kearney (2006) and Araudjo and Guisan (2006) endorse the term “habitat” to
describe output of the SDMs. Kearney maintains that the term niche implieethat w
understand and take into account the behavioral, morphological, and physiological
properties of a species. He believes it is more appropriate to chaatberoutput of
correlative models, which do not imply cause and effect, as potential habitathmaps
emphasizing the descriptive nature of these modelling techniques and discouraging
possible misuse. He also advocates reserving the term “niche” for situhtotrsily
describe the direct effect of the environment on fitness or potential for reproducéion of
population, such as in the mechanistic models. Araujo and Guisan (2006) also

recommend using the phrase “potential geographic distribution” with modelling
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techniques that have a definite spatial aspect and model results and output isdonoject
a map format.

A sophisticated argument on the ecological theory behind SDM may not
necessarily be important, however. What is important is trying to decideoadw@rence
data really represent. That is where biological expertise comestidn.aThe
algorithm is used to find areas that are most similar to the occurrenceltiata.
environmental data used to predict the distribution will also help to determine if the
model represents the realized or fundamental niche or simply suitable clooradiitions.
However, the use of niche seems to imply that the observational data represent
occurrence data from individuals within their realized niche where they cagsstudty
reproduce, which may not always be the case (i.e. sink populations or individudls caug
during dispersal). The arguments for using the terms “habitat” or “distribution”
modelling have won over this author. For the purposes of this dissertation and my
subsequent research depending on the context, | will continue to use the phrase

“distribution modelling” or suitable “habitat.”

MODEL TRAINING DATA
Bias and completeness

Species observations, or training data, are the most important component of SDM.
Without a high quality data set of sufficient size and scope, you can expectrgyeat e
model output. The greatest difficulties with SDMs result from assumptionsatssioc
with the model techniques and the actual characteristics of the observatiorsgtdata

Parametric procedures require a random sample of unbiased, independent observations.
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However, these features are rarely found in data sets used in distribution mgodelli
because almost none of the data have been collected for the purpose of spatial modelling.
Thus the methods used to analyze the data must take into consideration the unfavorable
characteristics of the data, such as geographic bias or uneven samplingBgafs is
represented in data sets in many ways depending upon the specific methods of data
gathering (Barry and Elith 2006).

Several groups of researchers have tested biased data in models to explore the
effect each type of bias has on model output. Kadmon and colleagues (2004) were
concerned that roadside bias in observational data sets of woody plants woulidhaffec
results of models relating species to climate variables. They found,del d#ieast, that
roadside observations and the road network did not have a climatic correlation.
However, Canadian breeding bird survey data, which are based on road transects, wer
significantly biased with most points occurring in the south, thus over-repregenti
warmer climates (Phillips and others 2009). Some roadside observations areclery |
to have some environmental bias beyond climatic related variables, such as
disproportionately representing disturbed or fencerow habitat. Models biilt wit
predictor variables other than climatic are likely to be affected byidmbsss. Loiselle
and colleagues (2007) were concerned that underlying climate bias in herbaaum da
may be influencing model predictions. In the Neotropics, they found an increlse in t
number of plant collections within specific ranges of several climate gtadie
Fortunately, they found that this bias did not greatly impact the model output. Instead,
they found the greatest factor in model performance to be the number of obseimations

the training data. Hortal and others (2007) found that large databases for vipdidsam
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areas still have gaps and biases that affect model performance. Tleoonoerned the
diversity of seed-plants in Tenerif, Canary Islands. They recommerssigsthe
completeness of a database with respect to the environmental variables beadodé|
building.

The principal source of bias in the training data is that observations are not spread
evenly across the environment gradients on which the predictions are based, but it has
been shown that stratifying the samples can improve model performancedBarEyith
2006; Vaughan and Ormerod 2003). If a data set is biased to one end of an
environmental gradient, then this may lead to spurious relationships betweengmedicti
and response variables. To counter this affect, Aradjo and Guisan (2006) suggest that
subsampling observations may improve the quality of the data set. They suggest
reducing identified bias by removing selected observations in the over-reptesent
environmental space. However, this can result in a reduction of data points, which are
highly valuable in model building. They also recommend additional stratified sgmpli
based on the areas that are not well represented in the observation dataiget(ra
Guisan 2006).

Sample size, the number of observations used to train the model, appears to be the
most important factor, after data accuracy, in model performance. All nmgdell
techniques benefit from additional training data and suffer when trainingrédimied
(Hernandez and others 2006; Loiselle and others 2007; Stockwell and Peterson 2002).
The size of the data set necessary to accurately model a species daiatibilithe
relative to the complexity of the species-environment relationshipyBad Elith 2006).

Researchers have had the greatest success modelling species witizesp@tiapecific
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ecological requirements (Brotons and others 2004). Hernandez and colleagues (2006)
were able to produce useful models with as few as 10 positive observations of a wide
variety of animal species with specialized ecological requirementzeSiwith such a

small data set could be a result of the researchers understanding the spelogeal
requirements and a relatively simple relationship between the specideand t
environment. In generalist species, where the species can toleraterangie®f
environmental gradients in a variety of combinations, models are more matiadiyati
complex and may not perform well (Brotons and others 2004). The smaller the training
data set, the fewer the number of predictor variables that can used in the model building
(Burnham and Anderson 2002).

Small data sets are typical of rare or poorly known species and in areayéhat ha
not been intensively surveyed. One purpose of modelling these species is to identify
areas of potential habitat to focus further research. Surrogate taxa caedlie model
the potential distribution of species that have very few recorded obser&igstgon
and others 2004). Also, a survey of landowners for the presence of a conspicuous species
may stand in for traditional occurrence data in areas that have had few ingelnyorie

biologists (Vaughan and Ormerod 2003).

Pseudo-absences

One of the short comings of both natural history collections and bird survey data is
the lack of reliable absence data. Absence data are necessary fafrienglder
modelling techniques. Because many observation data sets are lacking aebsanlse

pseudo-absences are generated and used in model building. Pseudo-absences, also
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known as background data, often are placed at random onto the study area (Stockwell and
Peters 1999). However, an alternative to simply using randomly generated-pseudo
absences is to limit their placement to areas where they are unlikelyaorake

Chefaoui and Lobo (2008), working with a threatened, endemic moth, used presence-only
modelling techniques to identify unsuitable habitats in which to focus the generation of
pseudo-absences. They found that Generalized Linear Models performedvitletter

expertly selected pseudo-absences than with the randomly chosen pseudo-absences.
Latolf and colleagues (2006) tested several approaches to generate pssare aata

for three butterfly species. They tried placing pseudo-absences in ardaaxitinat

observations of the model species or no records for species with similar habitat
preferences generated the best models. Both techniques relied on prelmodaty

building from which to decide pseudo-absence locations. This may confound the
subsequent models because both models take advantage of the same training data set.
Also, using non-random pseudo-absences may over-fit the model to the training data,
which will increase accuracy with the training data, but reduce transigrabil

independent data (Chefaoui and Lobo 2008). Another strategy they tested was to assume
that areas with high numbers of butterfly records have been relatively thgroughl

searched for butterfly species. Therefore, if there was no record for theiypafiecies
modelled in highly surveyed areas, then it is likely absent. Surprisingly, thishlegpsot

was not supported. Models made with pseudo-absence data based on this hypothesis
performed poorly, in fact more poorly than models built on randomly generated pseudo-

absence data (Lutolf and others 2006).
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Old data are routinely removed from spatial analysis because it is assianguby
may represent environmental conditions that are no longer present and/or retlect pa
distribution patterns prior to the influence of anthropogenic land cover and land use and
climate change (Raxworthy and others 2003). Also, older data tend not be accurate i
location description (Rowe 2005). Yet, results from Lutolf and colleagues (2aéite
that older data may improve model predictions. They found that when 100 year-old data
were removed, a model’s ability to predict present day occurrencescagtlifi

decreased.

Spatial Autocorrelation

Spatial autocorrelation exists when the value of a data point is more or ldas simi
to the values of nearby data points than would be expected from a random distribution
(Legendre 1993). Spatial autocorrelation is an assessment of the relationship of a
variable to its spatial location. Spatial autocorrelation can be positive orveegati
positive when points with similar values appear together spatially and neghtve w
values are dissimilar (Legendre 1993). Generally, we encounter positiva spati
autocorrelation in ecological data. Most ecological data have a spattalistrand the
distribution of a species is neither uniform nor random; and the same can be said for
environmental data (Henebry and Merchant 2002). The spatial patterns mostaiten se
are patches or gradients. These patterns are often generated byeraoitippnmental
and ecological factors.

Data that exhibit spatial autocorrelation should not be used in classicaicstiatist

tests because the data points are not independent observations (Beale and others 2007;
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Legendre 1993; Legendre and others 2002; Lennon 2000). Most statistical tests are based
on the assumption that data points, or observations, are independent (Gotelli and Ellison
2004). However, we can no longer make that assumption when the values of neighboring
data points are interrelated. Lennon (2000) found that when spatial autocorrelation wa
not corrected the variables with high spatial autocorrelation were moretikied/
“significant” in classical statistical tests. Spatial autocoticiaa form of
pseudoreplication, can lead to an overestimation of sample size and an inflation of
statistical significance of correlations. For example, to improve moderpehce by
increasing the sample size of a 10 point data set a researcher may collecipbinte
each adjacent to one of the original 10. Although there are now 20 data points, they are
not spatially independent. By using n = 20, the degrees of freedom will be oversdtimat
inaccurate p values will be calculated, and the standard errors of the mrelat
coefficients will be underestimated. This results in an increase in typs | rejecting
the null hypothesis, and assigning a false positive (Gotelli and Ellison 2004; Legendr
and others 2002; Liebhold and Sharov 1998).

Spatial autocorrelation can be quantified by calculating Modamich is based
on the residuals of a regression analysis (Gotelli and Ellison 2004).1 Thefficient”
compares the expected value and variance of spatially defined points and dstémmine
number of pairs that have a spatial relationship. The values for Monamige from -1
to 1; values close to 1 indicate positive spatial autocorrelation and negative aalue
negative spatial autocorrelation. A value not statistically different fromedns there is

no spatial autocorrelation (Liebhold and Gurevitch 2002; Liebhold and Sharov 1998).
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Once the degree of spatial autocorrelation has been determined, one must decide
how to correct it. One simple, but imperfect, technique is to remove data to inbeease t
separation distance of clustered points (Guisan and others 2006). For this method, points
are assigned a buffer based on the species’ biology and autecology that oéisentspr
an individual's home range. Buffers that overlap could be considered observations of the
same individual. Data points are then removed until there are no overlapping. buffers
This usually reduces spatial autocorrelation but also discards potentiakiphlel
information. Accurate ecological information can be costly to obtain and disgairdin
could be considered wasteful.

The use of spatial autoregressive models can help eliminate the spatial
autocorrelation effect within the data (Carl and Kiihn 2007; Dark 2004; Lichstein and
others 2002; Segurado and Araujo 2004). The use of spatially explicit models is more
advantageous than throwing away data and will generate fewer errorgatiyspat
autocorrelated data sets than classical statistical techniques sugreasioa models.
Normally distributed data perform well in autoregressive models, but much of the
occurrence data are presence-absence and not abundance, therefore a toibatipilis
Carl and Kuhn (2007) were able to remove spatial autocorrelation affects found yn binar
(presence-absence) data by using the generalized estimatitigreguadel, a lesser-
known method. Classification tree analyses appear to perform better wiggpat
autocorrelated data as well. Segurado and others (2006) and Cablk and others (2002)
tested the effect of spatial autocorrelation in distribution models, and found in spite of
autocorrelation in the original data, classification trees accuratelyliedderrelative

relationships between species richness and several environmental valisgesdre
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and others (2002) employed Dutilleul’'s modified t-test, which corrects fomeariaf the
test statistic and degrees of freedom in response to spatial autocorretatitoyrad it to
effectively correct for spatial autocorrelation.

Hawkins and others (2007) suggest that spatial autocorrelation may not be a factor
in analyses of very large scale data. They found that statistical anagsnot affected
by the spatial autocorrelation of gridded data on a continent scale. Usingpleasar
squares regression (OLS), they tested the assumption that spatial awttcoonweuld
significantly affect the OLS coefficients of data taken from 110 x 110 km a&iss
several continents. Moran'sndicated spatial autocorrelation at relatively short-
distances (approximately 750-1500 km) given the geographic distances satbpled (
9000 km). However, the OLS coefficients appeared to be unaffected by spatial
autocorrelation (Hawkins and others 2007).

We expect environmental data to have spatial autocorrelation. Although this poses
potential statistical difficulties, we can also use it as an opportunity tofidtre

significance and understand the basis of the spatial patterns of the data.

PREDICTOR DATA

Environmental predictor variables fall into two major groups: indirect andtdirec
Direct variables are elements of the environment that directly affectdtndodiion of a
species. Direct variables often have a physiological influence on the sffecsés
2002). For plants, direct variables would include: soil nutrients, solar radiation,
precipitation, and days under 0°C. For animals, some examples of direct vanables a

nesting sites, host plants, water temperature, and vegetation height. Indieddéesato
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not have a physiological affect, instead they are correlated to an environfaetaathat
directly impacts the species. For instance, altitude, longitude, or mean annual
temperature do not directly limit species distribution, but instead it is thegl@bon

with night time temperature, precipitation gradient, or evapotranspiratiqgpegtesly)

that is the direct cause (Austin 2002; Korner 2007; Vaughan and Ormerod 2003). When
direct variables are not easily measured, indirect variables are us@dagmtes and
integrated in the model.

Although predictor variables must contain some amount of error, few researchers
acknowledge error and attempt to correct for it (Barry and Elith 2006). Error, or
inaccuracy, can be a product of the nature of the data layer. For example, ecotones
between the vegetation types are rarely classified. Ecotones blurethéétween
vegetation types and create fuzzy boundaries. However, much vegetatidicatassi
data were originally digitized into distinct categorical polygons. The bluired |
representing the transition from forest to grassland is not easigsesyed in the GIS.

Transferability of the model will be compromised if error in environmeddtd
influenced the original model building, because error in environmental variables may
have a greater effect when applied to a new area. A new area to which thésmodel
applied may not have the same degree of error and the model will perform poorly in the
new situation (Barry and Elith 2006). Rowe (2005) found that the quality of the
georeferencing of historic specimens can significantly affecttthbuion of the
environmental data. The accuracy of recently georeferenced recorde igapdtdue to
the widespread use of GPS units. However, many natural history collectiomsreast

be assigned coordinates based on textual descriptions of the location found on the
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specimen label. Rowe (2005) calculated an accuracy buffer for all ocaipeimts

based on the specificity of the location description. She plotted the points and buffers on
a digital elevation model (DEM) to determine the potential inaccuracysthrainsferred

during elevation attribution. She found over 50% of the mammal collections in Utah
could have elevation errors of over 400 m due to the lack of precision in georeferenced
specimens.

The quality and accuracy of the DEM itself is an important factor in species
distribution models (Barry and Elith 2006). While DEMs, at large scales, aee quit
accurate, they may be inaccurate at local scales. The errors within z&tbhé
attributed to several causes. In particular, interpolation of digitized comesrftom
topographic maps introduces error into the DEM which compounds errors inherent in the
original data source and the digitizing process itself (Barry and Elith 2006au8e
many environmental variables — such as slope, aspect, and elevation — are demved fr
DEM, it is important to understand how error in the DEM will propagate error in the
derived variables. Van Niel and colleagues (2004) wanted to determine to what exte
error in a DEM propagates error in secondary and tertiary derived varidldgisally,
one would assume that error would increase with the level of derivation, but Van Niel
and colleagues (2004) did not find this to be the case. Secondary variables, slope and
aspect, had lower levels of accuracy compared to the tertiary varialyleasindgion.
Therefore, less derived does not necessarily mean less error.

Some of the original species distribution modelling techniques were solely bas
climatic variables as predictors of distribution. Since then, researciversnoxed

beyond using simple environmental layers, such as climate, vegetation, andghpogra
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as predictor variables recognizing that interactions occur between enviriahme

variables, though some of the modelling techniques neglect to incorporate them. Adding
interaction coefficients into the model or creating environmental layersityiragthe
interaction will make model interpretability and validation more comg@dtatnteraction
terms in the algorithm greatly increases the number of parametersmodet (Guisan

and Thuiller 2005). In addition, biotic interactions help to constrain species distributions
and more researchers are trying to include the distribution or abundance of liaggrpre

or competitor species (Araujo and Luoto 2007; Davis and others 1998). Predictor
variables that represent human influence also are being used in models, foeexampl
population density, airport density, and distance to roads (Kadmon and others 2004;
Lippitt and others 2008). As a result, the use of remotely sensed data in species
distribution models is increasing (Prates-Clark and others 2008). Satedldes are

easier to acquire and are at high enough resolutions for fine ecologigaisinMany
different environmental variables can be generated from satellite iynagsuch as
vegetation type and density, land cover and use, evergreen tree cover, or suréape geol
Remotely sensed data are becoming easier to use given the computational power of
current desktop computers and the availability of high resolution imageséntleand

others 2004).

MODEL TYPES
Introduction
To relate known species occurrence data to the environment, many modelling

methods have been developed and are currently in use. All modelling methods, to a great
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extent, possess similar characteristics fundamental to specidsutistrimodelling.
These characteristics are as follows:
1. Region under evaluation is represented in a GIS using raster format grjeie(ls).
2. Response variable is a data set made up of points of species observations — the
values may be simply presence, presence—absence, or abundance.
3. Predictor variables are usually environmental layers in the GIS thatyideale an
effect on the distribution of the response variable.
4. A function, which maybe simple or complex, is calculated to relate the response and
predictor variables. This function will then classify each raster ceflieo$tudy
region as suitable or unsuitable for the species.
The greatest variation among the modelling techniques is the type of function that
determines the response—predictor relationship (Austin 2002). In this sectieftyl br
review the popular modelling techniques found in the current literature and explare som

of the advantages, disadvantages, and other noteworthy aspects of these methods.

Envelope Models

Envelope techniques have traditionally focused on the relationship betweers specie
distribution and climatic variables only; and consequently, are often referredlitmat® c
envelope models (Kadmon and others 2003). BIOCLIM is one of the available software
packages for envelope models. For its foundation in environmental space, the envelope
model draws a rectangle resembling an envelope — hence the name — that bounds the
range of climate variables suitable for the species (Nix 1986) as repoftédrpenter

and others 1993). Figure 2ais a simple example using two predictor variables, but
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envelope models are multidimensional, similar to the niche concept. One of the
weaknesses of the envelope model is the rectangular shape which may inclu@dlensui
habitat in the “corners” of the envelope. To address this problem, more complex shapes
have been used to better characterize the species—climate relationshipr aidICox

(1991) developed a variation of the climate envelope using irregular polygon envelopes,
also known as convex hull (Fig. 2b). Convex hull methods, such as Habitat, eliminate the
extra environmental space within the rectangles that is unlikely to havextccur
presence—absence discrimination (Carpenter and others 1993). Both rectamdjular
convex hull envelopes define potential environments as “core” or “marginal.” Robertson
and colleagues (2004) refer to these as crisp envelopes because the predictions are
classified into three values—core, marginal, or absent. In turn, they developed a
modelling technique called fuzzy envelopment modelling that uses fuzzy logic.
Robertson and colleagues (2004) have refined the crisp envelope by changing how the
model copes with uncertainty and classification — the fuzzy model definesiaucarst
classification. The use of fuzzy logic in species distribution modeldlimsts early

stages, but poses to be an ecologically realistic approach after kuéheation by

researchers.

Domain

The Domain procedure uses a point-to-point similarity metric to assign a
classification value to each grid cell based on its proximity in environmenta gp#oe
most similar species presence location (Carpenter and others 1993). Envirbnmenta

similarity between the grid cell and the known presence site is calculageariming the
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standard distance, in environmental space, between two points for each environmental
variable. Standardized distance is then calculated by dividing the standandelisy

the range of the environmental variables and equalizing the contribution from each
environmental variable. The equal weight given to all the predictor variablesena
considered a disadvantage of the Domain procedure. The output for Domain is the
maximum similarity values between each grid cell and the known preserargailmss.
Output in the form of positive values indicate presence; negative values are agredic

of absence. The output is a measure of the classification confidence — not a prediction

of the probability of occurrence (Carpenter and others 1993).

Ecological Niche Factor Analysis

Ecological Niche Factor Analysis (ENFA) is a relatively new apgnaxplicitly
created to model species niches from presence—only data. Hirzel and esllgQfiP)
emphasize that the model attempts to be ecologically realistic byiagsamnimodal
relationship between the species and the environmental variables. Intibnigfadysis,
the first factor (called the marginality factor) attempts to ma&erthe distance, in
ecological space, between the species optimum for an environmental variable and the
mean value of that variable for the entire geographic study area. Théaotoes
maximize the specialization of the species along the environmentalrgragianalyzing
the ecological variance. The eigenvectors and eigenvalues are then used to tagp habi
suitability (Hirzel and others 2002). Few studies have been published compariAg ENF
to more widely used algorithms. So far, evidence indicates that ENFA may be a

promising technique to use with presence—only data sets (Sattler and others 2007; Tol
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2006). ENFA has also been used to help choose unsuitable habitat in which to generate

pseudo—absence points for other modelling algorithms (Chefaoui and Lobo 2007; 2008).

Ordination

Canonical Correspondence Analysis (CCA) is one of the more common ordination
techniques used in distribution modelling. CCA is an indirect gradient analysiscee
that relates environmental gradients to the distribution or abundance of a §jeecies
Braak 1986). Like ENFA, CCA assumes a unimodal relationship between the species
and the environmental variable. CCA is a combination of correspondence analysis and
multiple regression; using the reciprocal averaging algorithm ofsmyrelence analysis
combined with a multiple regression which is performed at each averaging cyute. T
axes of the CCA are two dimensional combinations of the environmental and occurrence
data. CCA is a “constrained” technigque because the resulting ordination is iceasina
the environmental variables (ter Braak 1986). The assumptions of a CCA, however, are
difficult to satisfy with data typically available for distribution mdaej. CCA requires:
normally distributed data with symmetrical tails on the bell curve; sphaidag equal
amplitude in response to the environmental variable; and species optima everdy space
along the environmental gradient (ter Braak 1986). Further research onap@lilities
acknowledge that function performance may not be significantly affectied if
assumptions are violated (Palmer 1993). The advantages of CCA are that it can use
abundance data in addition to presence—absence data. CCA can also be used for multiple

species at a time, but uses the same environmental variables for all species.
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Regression

This suite of modelling techniques is the most widely used for species distribution
prediction (Guisan and Zimmermann 2000). Regression has been thoroughly studied and
produces models that are easily interpreted. Generalized linear moldils)(&d
generalized additive models (GAMSs) are applied extensively in SDM beaduheir
statistical power and their potential to realistically model species-eamvant
relationships (Austin 2002; Yee and Mitchell 1991). GLMs are parametric techniques
that assume a linear relationship, which may not always be ecologicalbpappe:.
However, at finer scale a linear relationship may be the best reptesenfahe
relationship (Fig. 1). GAMs are considered more ecologically realistause they use
non-parametric functions that are more capable of modelling complex resp@uaksetopr
relationships. GAMs may create models that fit the training data HedteGLMs, but
this appears to come at a cost. When validated with independent evaluation data, GAMs
do not perform as well because of over-fitting, which limits the transfesabflthe
model to different areas or time periods (Randin and others 2006). Unfortunately
because of the complexity of the algorithm used to determine the shape ofciee-spe
environment relationship, GAMs require a large training data set to produce ast@ccur
model (Yee and Mitchell 1991).

For all regression techniques, occurrence data should be independent and therefore
not exhibit spatial autocorrelation. Stratified sampling across environhgeatkents
will improve regression models. This can be done by either removing data poimts, whi
may eliminate valuable data, or by additional field sampling, which may big aod

impractical. The use of spatial autoregressive models can help to elimmaizatial
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autocorrelation effect within the data (Carl and Kiihn 2007; Collingham and others 2000;
Dark 2004; Lichstein and others 2002; Maggini and others 2006; Segurado and Araujo
2004).

A relatively new strategy for improving regression models is the use of
information-theoretic approaches to select the best model based on the number of
predictive variables and predictive accuracy (Johnson and Omland 2004). As the number
of predictive variables in a model increases, the ability of the model ke fitdining
data increases. Maximizing accuracy or fit of the model, without consideadglm
complexity, will favor a model that utilizes all possible parametersh Wiarge
collection of predictor variables, it is possible to over-fit the model. The modaiesc
extremely good at predicting the training data, but poorly predicts data outside the
original range. This, of course, reduces the potential usefulness of the model. Tb comba
over-fitting and increasing complexity of models, model selection methods, such a
Akaike’s information criterion (AIC), have become increasingly popular in epeci
distribution model research (Gibson and others 2004; Johnson and Omland 2004,
Rushton and others 2004). AIC not only takes into consideration the model fit, but also
imposes a penalty based on the number of predictor variables within the model. AIC is
used to identify the most parsimonious set of models given the number of predictor
variables and the ability of the model to correctly predict presence and alfBentham
and Anderson 2002).

Another common method of reducing the number of predictive variables is to run a
multivariate analysis on the correlation matrix to determine which vasase most

important to the species distribution (Manel and others 2001). This also can help to
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explore the potential relationships between environmental data and observational data
before model building. Analysis of the environmental data prior to model building is
necessary to determine multi-collinearity among the variables. MostImgdel
procedures assume the predictor data sets are independent. Removing predicogs t
highly correlated will improve the model performance. Thuiller and colleq@068)

found that AIC allowed for additional predictor redundancy even after variables were

selected with a PCA.

Classification and Regression Trees

Classification and regression tree (CART) methods can create prear@ps by
either determining classes or average values for each grid cell of theastadyThe
algorithm divides the training data into two sub-sets, iteratively, based on the
environmental variable that best reduces the variance in the response variabéeis A tre
constructed by further divisions causing dichotomous branching for each split ofahe da
This continues with all new sub-sets until all occurrences have beenieths3ihe
branches of the tree can lead to presence or absence based on the environméigal varia
used to sort the data (De'ath and Fabricius 2000). The CART method allows for species
to be present in two different habitat types because CART can identify multiple
combinations of environmental variables that may be suitable for presence iptanult
branches of the tree may lead to presence (Norris and others 2006).

Random Forest is a form of CART that increases the power of the clagsificat
by generating multiple models from repeatedly sub-sampled tradlaitagsets

(bootstrapping). The multiple models grow a “forest” of trees of which eaclstree
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“grown” from a randomized subset of environmental variables. Each species data point
is classified by all trees in the “forest.” The classification bddkethe greatest number
of trees becomes the value for the data point (Breiman 2001). Although increasing the
number of trees does not appear to increase over-fitting in Random Forests (Rdasad a
others 2006), it does complicate model interpretability (De'ath 2002)

Yet another advanced CART method is Boosted Regression Trees (BRT). The
BRT models incorporate the regression tree algorithm of CART with a boosting
algorithm that combines and summarizes a collection of many — 100s to 1000s — trees.
In contrast, conventional regression finds a single tree or model that is th&besting
works on the premise that “it is easier to find many rough rules of thumb thaa finsl
a single highly accurate prediction rule” (Schapire 2002). The boosting protedldse
many “mediocre” models then combines them to produce an average. The addition of the
boosting algorithm also enables the BRT models to better represent smooth specie
response curves by averaging many — 100s to 1000s — trees (Elith and others 2008).
The models also are able to represent non-linear relationships and interaetvoesn
predictor variables (Elith and others 2008).

Although BRT modelling could be considered a “black-box” method, as many
other machine learning methods have been labeled, it appears in initial modelling
research that BRT results are making ecological sense (Elith and 2g4). One
significant drawback of BRT is current implementation requires absermelsan the
training data set. Although modelers have had good results by using randonobadkgr
data or pseudo-absences (Elith and others 2006) (Elith and others 2008). Because of its

complexity, BRT models can easily over-fit the training data. Elith andacplks
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(2008) have developed and published a tutorial and guidelines to facilitate the proper
implementation and parameterization of BRT (see online supplement for (Elith and
others 2008)). However, additional studies using BRT for SDM are necessary to fully

understand their parameterization for a variety of species in many iffeggons.

GARP

Genetic algorithm for rule-set prediction (GARP) is a machine leaalgaithm
that takes an artificial intelligence approach to species distributionlingdeGARP
develops rules for the distribution based on an iterative process of selectionti@valua
testing, and incorporation or rejection. GARP can improve the algorithms based on its
calculations. This process is handled solely by the software without additionadpuge
Selection occurs when GARP chooses and implements one of several modelling
algorithms to the training data. That algorithm, or rule, evolves to maximiaeaagoof
the model predictions. This evolutionary process is said to be analogous to DNA
evolution — point mutations, deletions, crossing over — and accordingly the term
“genetic” reflects this method. The accuracy procedure occurs up to 1000 times or until
newly evolved rules do not improve the accuracy. The resulting rule-setnoties of
the potential distribution and is mapped as predicted presence or absencedlbtoukw
Peters 1999). GARP should, theoretically, perform better than individual modelling
algorithms because it applies and selects the most accurate modetso(Pabel
Nakazawa 2007; Stockwell 2007). GARP, however, performed poorly in comparison to

many other modelling techniques (Elith and others 2006). Additional research indicates
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that GARP may be most useful in situations where presence-only dataitakelavwa a
very small data set (Pearson and others 2007; Stockwell and Peterson 2002).

Because of the random procedures built into GARP, the output will be different
every time it is run despite the identical input and parameterization (Anderdatheers
2003). This is an important concern for ecologists using and evaluating the model —
results are not easily replicated or interpreted. The ecologicabnslaip between

species presence and the environmental variable is hidden within the software.

Maximum Entropy

Maximum Entropy (Maxent), like other machine learning techniques, improves the
modelling algorithm automatically through a series of trainings with akee $et. The
creators of the Maxent technique used in species distribution modelling statésthat
able to predict a species’ distribution based on “incomplete information” —especi
observation data that do not necessarily cover the entire suitable range afireewtal
variables. Maxent estimates the distribution with maximum entropy (theumiéstm or
spread out distribution) of the known presence points given the constraints put on the
distribution with respect to the point’s relationship to the environmental layers. This
relationship is quantified by using the empirical average of the environnventable at
all presence records (Phillips and others 2006). The implementation of Maxent for
species distribution modelling was specifically designed for use with meesaty data.
In comparison with other presence-only methods, it performs significantér.bett

Maxent also performs well when compared to presence—absence procedureszinat util
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both real and pseudo-absence data (Elith and others 2006; Hernandez and others 2006;
Pearson and others 2007).

Maxent has several features that improve the models predictive perforarahce
interpretability. Maxent can take into account the interaction between envir@ment
variables. Maxent output is the probability of distribution, which is mathematically
defined. Maxent also has a built in procedure to counteract over-fitting of the model; it
employs a relaxation that allows the estimated distribution to go beyond thécampir
average within the error bounds. This smoothing procedure, called regularization, can
potentially correct for small sample size (Phillips and others 2006). Yenhtrexsearch
indicates mixed results of models built from small data sets (see botedPaad others
2007; Peterson and others 2007)).

Because it is a new technique, Maxent has not been thoroughly tested for potential
weaknesses. The effect of spatial autocorrelation within a data set lheendésted by
independent researchers. Also because of its recent application to spetiegidist
modelling, there are fewer known rules that help to guide the use, and reduce the misuse
or misinterpretation, of this technique. Although Maximum entropy modelling is new to
ecology, this technique has been used for many different applications andir&steeits

uses, problems, and advantages is active and growing (Phillips and others 2006).

MODEL COMPARISON
Several recent papers have systematically compared the performandépmém
modelling techniques. The most comprehensive comparison to date was carried out by

Elith and colleagues (2006) who tested 16 different modelling techniques using many
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species in several geographic regions. One of their main objectives veasdndirate

the utility of presence-only data in species distribution modelling. Therafay did

not use true absence data, but they did generate pseudo-absence data for teébhhiques
required it. Generalized dissimilarity modelling (GDM), Maxent, babstgression

trees (BRT), and multivariate adaptive regression splines for communit{MiARS-
COMM) performed the best on average for all regions and species. Elith aadjgelie
(2006) suggest that future models will perform better through the use of some of these
newer, more advanced techniques — such as BRT, MARS-COMM, and GDM. Elith
and colleagues (2006) believe that the best performing models share some key
characteristics: ability to model complex species—predictor relatigmaiid, by using
smoothing or regularization techniques, do not over-fit the data. Techniques that
responded poorly to the data were some of the older and more established methods:
BIOCLIM (one type of envelope model), multivariate adaptive regression sfbines
individual species data (MARS-INT), Domain, and the desktop application of GARP
(DK-GARP). However, almost all tests resulted in models that predictetespe
occurrence better than random. Elith and others (2006) comparison of model
performance also illustrates the variability of modelling successscegions. Some
regions, particularly Canada and the Australian wet tropics have more tfficul
producing reliable model results. This reduction in model performance is kebgt li
related to the quality of available data — both species and environmental — going into
the model for these regions. For example, in Canada, the species occurreace data
biased toward the southern portion of the country, leaving a large geographic gap in the

training data.
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Where as Elith and others (2006) provide a thorough analysis of modelling
methods, they do not consider finer details of the modelling process such as variable
selection and modelling choice using information-theoretic approaches. Additiona
research on these topics needs to be done to test how models may be enhanced by
refining their use.

Other comparison studies have not tested as many techniques, but their results have
helped us to understand the circumstances that cause good, or bad, model results. Size of
the occurrence data set has a significant effect on the model results with edetiéng
techniques producing useful models with small sample sizes. Maynard and Quinn
(2007), using artificially generated data, found that GARP performed véiryitle
extremely small sample sizes. Hernandez and colleagues (2006) also foundi®GARP
addition to Maxent, to perform reasonably well with small occurrence data sets
Prevalence, the ratio of presence to absence points, in species occurrendk reatace
the effective sample size. Maynard and Quinn (2007) found that a prevalence of 5% in a
2000 point data set was equivalent to having a sample size of 200 with a 50% prevalence.

The scale at which a model is built will also be an important factor in model
outcome. Although scale was not directly addressed by Elith and others (2006), Thuiller
and colleagues (2003) did evaluate model performance at different scales.ti@é¢he
model types tested (GLM, GAM, and CART), they found some models performed better
at larger scales. They suggest models that can handle complex relationklhi@s w
better able to model at a variety of scales. Models that rely on a pariayldo
describe relationships, linear for example, may not be good for large scafgeanal

because it is less likely for species responses to be linear acrossréhgrawlient of
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environmental variables. Linear models may be very useful at fines dzdause the
response is more likely to be linear over a shorter distance along the gredjefhj (
(Segurado and Araujo 2004; Thuiller and others 2003).

In addition to scale, model accuracy will be affected by the range oteespe
ecological requirements and tolerances. A specialist species wittow gographic
range and specific ecological requirements are easier to model 4enghgss between
specialist species and environment can be simply expressed mathéynafical
distribution of generalist species with a high tolerance of a wide rangelofeal
situations across a large geographic extent will be much more difficukdecpr The
model’'s capability to represent these broad relationships is limitet éfld others 2006;
Hernandez and others 2006; Segurado and Araujo 2004). Because SDM attempts to
characterize and quantify the species relationship to the environment, the moie spec
and simple, the relationship is the better.

Published comparisons of models show that there is no one technique that is
superior for all circumstances, but certain modelling algorithms and sofpaekages
perform better in general (Hernandez and others 2006; Meynard and Quinn 2007; Mufioz
and Felicisimo 2004; Segurado and Araujo 2004; Thuiller and others 2003; Vayssieres
and others 2000). When deciding on a modelling technique you must take into account
the available training data. Questions that should be asked are: How big is tl?ata s
Does it cover the entire range of the species? Does it include absencesdht® |
significant spatial autocorrelation? Does the environmental data incledmaaal
values? Answers to these questions will help to determine technique type. iAgswer

additional questions may lead to good model choices, such as: What is the purpose of the
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model; how will the results be used? If the intent is to identify land as endangered
species habitat, then choose a model that minimizes false presence. |sctieeoty
understand the ecological relationship between predictor and response varidtdas? T
choose a mathematical model that is interpretable. Even practical considehnatve
merit. How easily is the model implemented? Can existing data be used and are
computer resources available? Table 2 outlines some of the important diktmguis
features of each model type. These model properties will help to determine the most
appropriate method for a given situation.

The models discussed and employed in this literature review and dissertation are
correlative in nature. In other words, all SDMs incorporate algorithms thatater
species point occurrence data with a variety of environmental data. Théhahgori
attempt to find areas that are environmentally similar to those areastivaeecies is
known to be present or absent. However, another branch of distribution modelling is
interested in understanding the underlying mechanisms that determine species
distributions. The mechanistic approach directly measures the individugkssesto
abiotic variables, and, thus, determining the direct cause of a speciegbengra
limitation. Kearney (2006) highly recommends more research be done to applyyspatial

referenced data to mechanistic models of niches.

MODEL EVALUATION
Model evaluation is the testing process that helps determine the validity of the
model predictions. Testing must be conducted to defend the applicability of a model to

the given data and to the true distribution. In general, models are evaluaedbase
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percentage of prediction errors, which are either false presenceeakbsdence. The
results of model evaluation are cross-tabulated in a confusion matrix (also knawn as a
error matrix or contingency table) that compares the predicted and aesehge-
absence points, which can be reported as either counts or percentages (Tab. 1). False
presence errors are type | or commission errors; false absences dretypaission
errors. The confusion matrix also tallies true presence and true absendie §@ate
Ellison 2004). Conventional statistical tests on contingency tables are inapperéqriat
evaluating model performance. Tests such as chi-square would result in highly
significant values for situations that were either very accuhagé alues of TP and TA)
or very inaccurate (high values of FP and FN) (Gotelli and Ellison 2004).

Instead, from these four simple counts many accuracy measures can be derived.
The most common of these are prediction success, sensitivity, specifidt¢ohen’s
kappa. Prediction success is the simple calculation of the percentage of pointgifior whi
presence or absence is accurately predicted. Sensitivity (TP/(TPsER))likelihood
that a predicted presence point should actually be absent. Specificitf Ar&R)) is
the likelihood that a predicted absence point should really be classified as.present
Cohen’s kappa is a one of the few measures that uses all the data within a confusion
matrix, taking into account commission and omission errors as well as sgnaitidi
specificity, to produce an index value. The index ranges from -1 to 1 — with high values
meaning the predictions match the observation data, O indicating random agreathent, a
low values meaning the predictions are opposite of the observations (Elith and others

2006; Fielding and Bell 1997; Manel and others 2001).
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Due to the nature of the available information, most models are built with binary
observation data — simple presence-absence records for a given location. The
environmental data used to build models are generally not binary, but are categthmical
several possibilities or a continuous range of values. Consequently the model catput is
continuous range of possibilities of presence. Each pixel or grid cell contains a value
representing percentage of presence likelihood or percent suitabiligitidmal model
evaluation techniques cannot use the continuous model output, instead, the data must be
converted to binary format (presence-absence) and a threshold percentlge mus
chosen. A threshold value of 0.5 is often chosen because it is the point at which the
percentage of false presence and false absences are equal. However, wharséte da
does not have an equal number of absence and presence points, the threshold is biased
towards the more common point (Manel and others 2001) (Jiménez-Valverde and Lobo
2006). When the number of absence points is equal to the number of presence points, it
is said that the data set has a prevalence of 0.5. Prevalence is higher whertive poes
absence point ratio is higher.

Liu and others (2005) conducted a comparison of twelve threshold selecting
approaches using data sets with seven levels of prevalence. They found that most
threshold determining procedures worked well in data sets with a prevaleh&eaod
that model output is always biased toward the larger of the two groups, presence or
absence. This especially poses a problem with modelling techniques that rely on
presence-only data sets or randomly generated pseudo-absence points, which usually

outnumber the original present point data 100 fold. The choice of the threshold must be
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adjusted based on the most common point in the data set (Collingham and others 2000;

Jiménez-Valverde and Lobo 2006; Liu and others 2005; Manel and others 2001).
Research by Manel and others (2001) and Liu and others (2005) also illustrates that

some threshold dependent model evaluation procedures are affected by data prevalence.

Predictive success, sensitivity, and specificity are all signifigaffected by prevalence

in the data set. However, Manel and his colleagues found that Cohen’s Kappa was only

“marginally affected by prevalence” and recommend it as a simplelaadn for model

evaluation. Another advantage of Cohen’s kappa is that it is always calculsiite de

the occurrence of zeros in the confusion matrix (Manel and others 2001).
Receiver-operating characteristic (ROC) plots have been widely useckint r

years as a threshold independent evaluation technique for distribution models. Before

their acceptance in the ecological modelling discipline, ROC plots have beew used t

discriminate radar signals, medical diagnostic test results, and wpetdastions

(Fielding and Bell 1997). ROC plots appear to be useful for species distribution

modelling because they are not significantly affected by prevalenaeelMnd others

2001) and their use eliminates the need to subjectively choose a threshold for model

evaluation. The ROC curve plots sensitivity as a function of (1 - specificity Xtower

entire range of thresholds. A curve that maximizes sensitivity for low vafyés

specificity) is characteristic of good model performance. This isréltest by a curve

that comes close to the upper left corner of the ROC plot (Zweig and Cambegll 1993

The Area Underneath the Curve (AUC) is calculated and becomes a score of tHe model

accuracy for all possible thresholds. The score can range from 0.5 to 1 — 1 indicating

perfect discrimination between present and absent points and 0.5 indicating the chance of
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being present or absent is 50% and therefore no discrimination between the two. An
index has been developed for AUC values: a value of 0.5-0.7 is considered low accuracy;
0.7-0.9 is considered useful; and 0.9 and above is considered high accuracy (Swets 1988).
Despite its wide use, the validity of AUC as a measure of model accurabgdras
guestioned recently. Lobo and others (2007) recommend not using AUC for several
reasons. First, they argue that AUC does not measure accuracy, but instesad simpl
measures discrimination. If the predicted probabilities of species occenange from
0.4 to 0.6 in the region, the discrimination between suitable habitat and unsuitable habitat
is low. The accuracy of the model may be very high, meaning the species oaurrenc
probabilities may be accurate even though the discrimination between presenc
absence is poor. Lobo and others (2007) also point out that it is not useful to have one
score represent the entire range of thresholds because it is unlikely thatehees of
the threshold range contain useful information. The far edges of the thresigsd ra
correspond to very high type | or type Il errors. The range of thresholds reirdee
found in the middle where type | and type Il errors are nearer to equal. Additionally,
Lobo and others (2007) believe the main argument for using AUC — because it is
threshold independent — is questionable. In the past, threshold choice has been
considered subjective, but thresholds can be chosen using several tested methods (Liu
and others 2005).
Models are evaluated both internally and externally. Internal evaluatarnvis
well the model fits the training data. In the literature it is also known as tigtibs
because it reuses the training data to verify the model. This estimation of wmdelkcs

is, obviously, biased. Models tend to over-fit the training data because the modé! is buil
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on the subtle variation of each point in the training data (Fielding 2002). While the
model may fit the training data well, the additional variation found in the species
occurrence in the real world may not be accurately predicted. Therefere, it
recommended that an independent data set be used to conduct an external evaluation —
how well the model is able to fit a separate, independent set of evaluatio&ldatar(d
others 2006; Loiselle and others 2007; Peterson 2005). Evaluation data ideally would be
a truly independent data set, possibly obtained via different methods, during antliffere
time period, or in a different region (Aradjo and Guisan 2006; Manel and others 1999;
Manel and others 2001). Unfortunately a genuinely independent data set is usually not
available (however, see (Elith and others 2006; Fielding 2002)). Instead many shodeler
simply “hold out” a random selection of observations to be used in the external
evaluation. A basic rule of thumb for the amount of evaluation data is 20-30% of the
available observation points (Araudjo and others 2005a; Pearson and others 2006; Thuiller
2003). However, Huberty and Olejnik (2006) developed a method for determining the
percentage of data that should be held out for evaluation purposes. They propose that the
amount of evaluation data should be based on the number of predictor or environmental
variables used in the model. They recommend using:
[1+ (p-1}7™

where p is the number of predictors or environmental layers. As the number of
environmental layers to build the model is increased the percentage of points used to
build the model (the training data) should increase.

Instead of simply removing data for evaluation, more sophisticated dateopargti

techniques have been developed to allow all available data to be used for model building.
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Bootstrapping and jack-knifing procedures are common when models are builinalth s

observational data sets (see review in (Fielding and Bell 1997). These prodrdigres

the models repeatedly with random observations taken out for evaluation then replaced in

the training data and models are built and evaluated again with a differefibaadéc

data (Fielding 2002). An average of the results is then reported. This may be the bes

compromise for small data sets representing rare species or relahkelywn regions,

for which each data point is necessary for model building (Pearson and others 2007).
The modelling objective should help to determine the best method for model

evaluation. When determining the appropriate threshold, the types of errors tazeinim

based on the goal or the modelling project must be ascertained (Lobo and others 2007,

Loiselle and others 2003). For example, thresholds should be optimized to reduce type |

error, false presence, attempting to locate populations for research purposesertHHowe

reducing type Il errors might enhance accuracy for inventories ofdangered species

in a region of rapid human development. Loiselle and others (2003) analyzed error type

and how it could affect conservation planning. She and her colleagues were exploring

the usefulness of distribution models for identifying potential land for consamnvati

reserves. They found that models that tended to minimize false positives, iygs,| e

were more likely to agree with expert ecologist opinions on good locations for land

reserves. They conclude that the models, in general, may overestintas bpbitat

and possibly misdirect conservation effort.
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FUTURE DIRECTIONS

The current state of most species distribution modelling focuses on basic
implementation. Modelling algorithms correlate environmental data with specie
occurrence data. This is not a new concept — not in the least (Forbes 1844; Humboldt
1815). Because of the emergence of spatial technologies and advanced computing power
SDMs can consider large areas, the whole globe in fact, and dozens of predictor
variables. Models can also incorporate data from satellite imaged$loRatree study of
remote and little known regions. Advances have been made developing different
techniques to manage spatial autocorrelation, presence-only data, and smradl dicta
sets.

Currently SDMs have problems that need to be addressed in the future to improve
the reliability of their predictions. One of the current challenges is mods/ieges that
are not at equilibrium with their environment, such as invading species being rdadelle
their new region. Native species may be still responding to past disturbantes $ue
or even glacial retreat of the last ice age. Most modelling techniqueseassjuilibrium,
but new techniques need to be developed to help account for this situation (Guisan and
Thuiller 2005).

In the recent literature several articles debate the most appropaaiaten
methods for SDMs. Researchers disagree about the validity of certain miatiloma
procedures (Araujo and Guisan 2006; Austin 2007; Guisan and Thuiller 2005; Jimenéz-
Valverde and others 2008; Lobo and others 2007). Basic model evaluation needs to be
standardized so that models can be compared across species, regions, and time periods

Model evaluation can be improved through additional, yet simple, reporting. Vaughan
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and Ormerod (2005) found that sufficient model testing was “scarce and errers wer
seldom diagnosed.” They go on to suggest some straightforward practic#s tioat
include novel calculations, but simply provide the reader with a better understanding of
how the model was evaluated. They recommend that modelers report on the model’s
overall performance, including its ability to be generalized and trandfefiieey also
believe researchers should explain their evaluation parameters, such as threshold
determination, to indicate the possible uses of the model. Finally, they ade@ehess

to identify the model’s weaknesses and communicate the possible causes (Vadghan a
Ormerod 2005).

While some species distribution modelling software packages allow data to be
dumped in and models to be built with little guidance from the biologist, it may be better
for model choice to be directed by expert knowledge. Relevant predictor vagablbs
selected by biologists, who can then analyze them to determine which explaiashe
variation in the occurrence data. This is not new. What is relatively new isetio¢ the
information-theoretic approach to model selection (Burnham and Anderson 2002). The
information-theoretic approach will assist in choosing the most parsimonmale -
the model that explains most of the variation weighted by the number of pasaossdr
Biologists and modelers will benefit from using this approach to choose elegant a
ecologically significant models (Guisan and Thuiller 2005).

The future of species distribution modelling promises to reveal some exciting
techniques to cope with the dilemmas of current modelling approaches. Austin (2002)
argues that there needs to be a better connection between ecological thetatysticdls

modelling. Researchers are stepping back and looking at the theoretidalgsiatthe
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root of species distributions and finding that a fundamental part of niche theossiagni
— biotic interactions. The inclusion of interactions between species that, in pam go
species distribution will increase the ecological relevance of the modeldisthbution

of competitor, predator, and mutualist species can easily be added to a model, but the
interaction coefficients may be more complicated. Nonetheless, knowledgecass

life history is needed to produce good models. The inclusion of additional relevant
predictor variables is a necessary challenge. Future modelers arel ebloagmsider
migration and dispersal as important determinants of a species distributiontefidtark

is burgeoning with studies on the effect climate change will have on specidgritiests.

It is becoming more evident that migration and dispersal characteasacspecies will
become important factors as human caused habitat and climate change transtwass spe
distributions. Species distribution models may also benefit by including thebretic
concepts of population ecology. Metapopulation theory may improve the model’'s
ecological relevance. Understanding and adding source-sink dynamicsarfite t
species into models will lead to results that better represent the eoblibgyorganism
(Austin 2002; Guisan and others 2006; Guisan and Thuiller 2005).

Communities and functional groups will be better modelled in the next several
years. Already techniques have been designed to work with multiple species to build
models of communities. The theoretical challenge for ecologists will be: élow t
reconcile individual responses to the environment with the desire to model entire
communities as one? Modelling functional groups may, therefore, be less formidable
because — depending upon how the group is defined — they may respond similarly to an

environmental gradient.
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Table 1. A typical confusion matrix. TP = true presence; FP = false pee$ehe false

absence; TA = true absence.

Actual
present absent
: presen TP FP
Predicted absenﬂ FA TA
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Table 2. A quick comparison of common modeling techniques in the current literature.

Statistical Categorical data Assumption  Good with Different Implementation Response data Misc Comments
Method S small Weightsfor requirements
samples? predictor
variables?
Envelope A consistently performs poorly in
Modds transparent no no no Bioclim software uses only presence model comparisons
machine . . .
BRT learning - yes non- yes yes Package for R presence and absence, of newer technique that is performin
) parametric abundance well
mysterious
. . consistently performs poorly in
Domain interpretable yes yes no ArcGIS tool uses only presence model comparisons
) presence and absence, of difficult to create a predictive map
CCA transparent yes parametric neutral yes Canoco abundance from results
. non- presence and absence, 0| . . .
CART interpretable yes parametric yes yes Package for R abundance allows interaction of predictors
assumes
ENFA transparent yes unimodal no ? Package for R uses only presence no longer regularly used
relationship
GARP Irenaa:ﬁ?rilne: yes, but hasn’t beer es 5 Desktop GARP uses only presence consistently performs poorly in
19 thoroughly tested y ’ P yp model comparisons
mysterious
machme newer technique that is performin
M axent learning - yes yes yes Stand alone software| uses only presence well
mysterious
Random Irenaa:ﬁ?ri\ne- es non- es es Package for R presence and absence, o can deal with uneven prevalence
Forest 19 Y parametric y Y 9 abundance P
mysterious
. parametric, . .
Regression . requires presence and well studied model that performs
“GLM transparent yes Imear ' neutral yes Package for R absence moderately well
relationships
Regression complex requires presence and : )
-GAM transparent yes relationships no yes Package for R absence improves on GLM, but may overfit
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Figure 1. A unimodal response curve of a species along an environmental gradient may

appear linear when only a portion of the range is examined (dashed box).
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Figure 2. This example illustrates a simple two variable climate envelogel. The

stars represent values of the environmental variables for individual speciestbes.

The area within the solid box is the core environment and the dotted line is the boundary
of the marginal environment. The original envelope model is constrained to a box or

rectangular shape (a); however, the convex hull may be an irregular polygon (b).
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INTRODUCTION

The goal of the Endangered Species Act is to improve the chances of listed
species’ survival by increasing population levels, as outlined in an endangeress spec
recovery plan (US Fish and Wildlife Service 1991). If successful, this camireaul
species being delisted, but in order to achieve the goal of species retavery t
demography, habitat preferences, reproductive biology, and cause of the dpelnies
must be understood. However there are disparities in the level of available knowledge
for threatened and endangered species. For example, considerable informdigenhas
compiled on the status and life history of species such as the Red-cockaded Waodpecke
or Mexican grey wolf, but less in known about the Soccoro springsnail or rock gnome
lichen (US Fish and Wildlife Service 2009).

The American burying beetl®&icrophorus americanus) was listed as an
endangered species in 1989 (Federal Register 54 (133): 29652-29655). Like many
threatened and endangered invertebrates, information ldbauwrericanus prior to listing
consisted of the taxonomic description and morphological characterizatidfigh/&nd
Wildlife Service 1991, 2009). Although 1000s of surveys across the United States
conducted since listing have contributed to our knowleddé afnericanus's range and
populations, they focused on determining species presence and have minimally
contributed to our knowledge of its habitat affinities and reproductive biology. Rbesear
conducted since its addition to the endangered species list has focused on the breeding
season and over-wintering habitat preferences (Creighton et al. 1993b; Lomolino &
Creighton 1996; Lomolino et al. 1994; Schnell et al. 2007), population dynamics (Bedick

et al. 1999; Holloway & Schnell 1997; Peyton 2003; Raithel et al. 2006), and best survey
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practices (Bedick et al. 2004; Creighton et al. 1993a). However, we believe much
remains to be discovered about the reproductive and over-wintering requirenfénts of
americanus.

N. americanus was once considered common throughout eastern North America
(US Fish and Wildlife Service 1991), but at the time of its listing, the range had been
reduced to two disjunct populations; one on an island off the coast of Rhode Island and
another in eastern Oklahoma. Surveys throughout the historic range singehbste
located extant populations in central Nebraska, south-central South Dakota, $eutheas
Kansas, western Arkansas, and northeast Texas (US Fish and Wildlife Service 1991)
Populations in the historic range east of the Mississippi River have not been found.

Endangered species are generally rare for one of two reasons: theyweasi al
rare due to habitat specialization or restricted endemism or their populagomesiz
substantially reduced due to habitat loss or catastrophic events (Rosenzvugigpino
1997). The cause ®f. americanus population and range decline over the past 100 years
remains uncertain. Sikes and Raithel (2002) presented the following eight possible
causes foN. americanus decline: pesticide use, artificial lighting, pathogen, habitat loss,
vegetation change (both as an old growth woodland specialist or prairie specialist
vertebrate competition, loss of ideal carrion, and congener competition. Of those, they
conclude that the most plausible explanation is competition with congeners and
vertebrates for carrion and a reduction in optimal prey size. Schnell et al. (200@&%s
that availability of food, in the form of a carcass, during over-wintering gtiicantly
affect the survival of individuals.

Extensive surveys fdd. americanus within its historic range provide much data
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that can be integrated into spatial models to help predict suitable habitat feGeued
species data can be combined with GIS layers of environmental data in Sailtataitity
models to generate predictions of areas of suitable habitat within the presungedf
N. americanus. Species distribution models (SDM, also known as habitat suitability or
ecological niche models) are used to understand species’ distributionsg@maen3;
Camarero et al. 2005; Van Mannen et al. 2002), ecological requirements (Costa et al
2007; De'ath 2002; Laurent et al. 2004; Murphy & Lovett-Doust 2007; Norris et al.
2006), locate new populations (Pearson et al. 2007; Peppler-Lisbach & Schrader 2004),
plan land conservation (Buechling & Tobalske 2007; Danks & Klein 2002; Ortega-
Huerta & Peterson 2004; Rodriguez et al. 2007; Tole 2006), and predict new habitats
associated with climate change (Berry et al. 2002; Pearson et al. 2006). SDdgeorr
species occurrence data with environmental data to produce a predictive mppoésa s
potential distribution or suitable habitat. Different modelling techniqueseutilizariety
of algorithms to calculate probabilities that a species will occupy a girea. The
efficacy of an algorithm to accurately predict the presence or absene® vasied on the
guantity and quality of species data and the specificity of its environmentakraquis.
The vast and growing literature on distribution modelling suggest that somegtgehini
are generally more effective, but there is not one algorithm applicablesfzeaies, all
data sets, or all research objectives (Elith et al. 2006; Guisan et al. 20G@nRstzal.
2006; Rushton et al. 2004).

A nearly straight north-south line bisecting the eastern third of Oklahoma
demarcates the southwest edge of the rangs. famericanus (Fig. 1). Using specific

location information coupled with environmental data, we hope to delineate a less
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generalized map for potentidl americanus habitat and to understand the constraints on
the range. Currently sufficient information is not available for optimal ceaten
planning forN. americanus. Modelling may clarify habitat characteristics and focus
conservation efforts.

Our objective in modeling the potential distribution\bofamericanus is to
evaluate the suitability of these models for generating maps of potertitathtous
focusing survey and recovering efforts as well is contributing to the knowtddiges
species ecology. The purpose of this study is to evaluate the ability of cuodegiting
techniques to predict suitable habitatKbamericanus using presence-absence data
from species observations and surveys. Modelling will facilitate the dwcatihighly
suitable habitat, assist in defining and managing conservation landsaioericanus,
and help to assess the likely presence of the species prior to surveys. We havéochos
compare six modelling algorithms that utilize both presence and absence dataugAl
techniques that use absence data have been shown to perform better when absence
information is available, we suspect the absence data for the beethssmasenot truly

represent habitat that is unsuitable Xoamericanus.

METHODS
Sudy Area

The study area is the eastern half of Oklahoma, a state in the south{d&atral
Elevation within this area ranges from 87 m to 806 m with major topographic features
including the Ouachita Mountains in the southeast and the Ozark Plateau in the northeas

The natural vegetation of this region is primarily oak-hickory, oak-pine, or pkst oa
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blackjack oak forest (Hoagland 2000). The geomorphic provinces represent a variety of
surface geology from resistant sandstone and limestone to soft sands,ncaysvals
(Curtis et al. 2008). Oklahoma has a strong longitudinal and latitudinal gradient in both
precipitation and temperature. Average annual temperature ranges from i6theC
southeastern corner of the study area to 14.4° C in the northwest with the growing season
ranging from 201-222 days. The coldest month is January with an average tamepera
in the southeast being 4.1° C and in the northwest being 1.6° C. The warmest month for
the study area is July with an average temperature in the southeast being 26.91 C and i
the northwest being 27.7° C. Average annual precipitation within the studaaggsr
from 54.2 cm in the southeast to 33.4 cm in the northwest, with the wettest month being
May for all areas (Brock et al. 1995).
Sudy Species and Data Set

N. americanus is the largest species (approximately 2.5-3.5 cm adult length)
within theNicrophorus genus, a group of beetles that bury vertebrate carcasses on which
to raise their young (Lomolino et al. 1994). Both parents care for the offspring on the
underground brood carcass with secretions that apparently slow decay whilg teedin
larvae regurgitate and protecting them from predators. The young recufifedéy/s to
develop and surface as teneral adults in July and August. Adults over-winter
underground beginning in late September and emerge in April during spring. Adults are
nocturnal and require warm nights of 15.5°C for activity (US Fish and Wildlife ®ervic
1991).

TheN. americanus data set was compiled from records provided by the U. S. Fish

and Wildlife Service Tulsa Ecological Services Field Office and the Okiah
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Biological Survey. The data set contained records from both opportunistidiookec
and standardized transect surveys gathered from 1979 to 2008. Pregénce of
americanus may have been recorded with either method, but absence was only recorded
when the species was not collected during a standardized survey. Standardized survey
are series of carrion traps along a 20 m transect that is maintained foathlegsrnights
with temperatures above 15.5°C [for survey details see (US Fish and Wiklifiees
1991, 2007)]. Biologists permitted by the U.S. Fish and Wildlife Service conducted the
surveys, of which a majority were located in areas of road or pipeline cormtructi

Multiple surveys were conducted at some locations over the course sezsl y
Surveys at one location may be both positive or negative over time. Therefore records
were analyzed to determine the repeatability of the results at one aged 8n the
likelihood that a site with a positive observation had subsequent positive observations in
following years, a location was considered positive if any survey conducted #éthe s
yielded a positive beetle observation. We tested for spatial autocorrehatiw.
americanus data set with Moran’s(Rangel et al. 2006).
Predictor Variables

In previous researcN. americanus has been found to be a generalist species
(Bedick et al. 1999; Holloway & Schnell 1997; Lomolino et al. 1994), and it is unclear
which environmental variables are important in determining its distribution. Bheref
we chose a variety of predictor variables that we believe are likelyetct affourrowing
insect. These predictor variables fall into three major categories: tphagraegetation
and landcover, and climatic (Table 1).

Some research indicates thatamericanus may be found more often in certain

106



types of habitat. Creighton et al. (1993b) found bhamericanus are more likely to be
found in oak-hickory forest than other habitat types in eastern Oklahoma. To include
vegetation type in the models we used potential natural vegetation, vegetation, forest
cover, landcover, and landcover change. Also, preliminary work points to soiktextur
being an important factor in burying beetle habitat choice (Schnell et al. 20@#; S
2007). Consequently we included in the models soil association obtained from the
STATSGO data set (Soil Survey Staff 2005). Additionally, geologic dataindteled

in the predictor variable set because, similar to soil type, surface and subgedkg/
may affect the beetles ability to bury carrion and raise young underground.

Many insects are significantly affected by local climate viaratWe included
several climate variables in the models which were obtained in point formathifeom
Oklahoma Mesonet administered by the Oklahoma Climatological Survey (Brakk e
1995). These data were interpolated by simple kriging, except days belaindree
which was determined by universal kriging 50% local. Topographic data wereembtai
from the Digital Elevation Model (DEM) of Oklahoma derived from 1:100,000-scale
digital topographic maps. Slope and elevation, which influence microclimate otthe ar
were included in the models.

We attributed values for all predictor variables to each species data point. To
accomplish this, all predictor variables were converted into raster fortte6@&m grid
cell resolution. Models were run initially with all predictor variables. Hmresome
modelling techniques, particularly regressions, are significantly atfdxt correlation
among the predictor variables. Therefore we ran bivariate correlatiolesermine

which variables were highly correlated prior to a second round of model building.
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Among those variables that were highly correlated, we conducted logisessems of
each variable with the species data set to determine which variable tesdea gffect on
N. americanus occurrence. The variable within each correlated group that had the
greatest effect on the species was kept for a second round of model building.

Because many modelling techniques, especially regression based techniques, are
negatively affected by an unequal ratio of presence and absence dathgiMan2001),
we randomly removed absence data points until the number of absence and presence was
approximately equal. The final species data set used for modelling contained 426
locations with 203 presence and 223 absence points.
Modelling Techniques

We used six modelling techniques to create predictive models of habitat suitable
for N. americanus. Many researchers suggest comparing the results of several techniques
because no one method has proven to be the best for all species and study dreas (Elit
al. 2006; Guisan et al. 2006). We wanted to compare methods that were based on
traditional statistics and machine learning; and methods that utilized aeltsacand
generated pseudo-absence data.

Generalized Linear and Generalized Additive Models

Generalized linear models (GLMs) and generalized additive models (&®s
applied extensively in species distribution modelling because of theitistgmwer
and their potential to realistically model species—environment relationghipsn 2002;
Guisan et al. 2002; Yee & Mitchell 1991). GLMs are parametric techniques thateass
a linear relationship, which may not always be ecologically appropriate. \doves

finer scale or at the edge of a species range a linear relationship rhayest
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representation of the relationship (Austin 2002). GAMs are considered more eghogi
realistic then GLMs because they use non-parametric functions that areapabde of
modelling complex response—predictor relationships (Guisan et al. 2002). Although
GAMs may create models that fit the training data better than GLMs, ithereost.
When validated with independent evaluation data, GAMs do not perform as well because
of over-fitting, which limits the transferability of the model to differentagarer time
periods (Randin et al. 2006). GAMSs require a large training data set to produce an
accurate model because of the complexity of the algorithm used to deternshapleeof
the species—environment relationship (Yee & Mitchell 1991). GLM and GAM models
require absence data and results can be affected by an uneven ratio of presence a
absence points. For our model building, it was necessary to reduce the number of
absence points from the data set to achieve an appropriate presence—atisenBeth
models were implemented in R using the BIOMOD package (Thuiller 2003).
Regression Trees

Classification and Regression Tree (CART) methods divide the training data
iteratively into two sub-sets based on the environmental variable that bes tleeluc
variance in the response variable. A tree is constructed by further divisiornggcausi
dichotomous branching for each split of the data. This continues with all new sub-sets
until all occurrences have been classified. The branches of the cgsificee can lead
to presence or absence points based on the environmental variable used to sort the data
(De'ath & Fabricius 2000). CART was implemented in R using the BIOMOD packag
(Thuiller 2003)

Random Forest is a form of CART that increases the power of the cldgsifica
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tree by generating multiple models from repeatedly sub-samplathgalata sets
(bootstrapping). The multiple models grow a “forest” of trees of which eaglstre
“grown” from a randomized subset of environmental variables. Each species data point
is classified by all trees in the “forest.” The classification bddkethe greatest number
of trees becomes the value for the data point (Breiman 2001). Although increasing the
number of trees does not appear to increase over-fitting in Random Forests (Pahsad e
2006), it does complicate model interpretability (De'ath 2002; Prasad et al. 2006).
Random Forest was implemented in R using the BIOMOD package (Thuiller 2003).
The Generalized Boosted Method (GBM, also known as Boosted Regression
Trees) is an advanced CART method that incorporates the regressiondréknalgith
a boosting algorithm that combines and summarizes a collection of many — 100s to
1000s — trees. In contrast, conventional regression, CART, and Random Forest methods
find a single tree or model that is the best fit. Boosting works on the premisg that “
easier to find many rough rules of thumb than it is to find a single highly accurate
prediction rule” (Schapire 2002). The boosting procedure builds many models then
combines them to produce an average model. A basic CART method, because of its
dichotomous nature does not easily represent a smooth response curve (Austin 2002), but
the addition of the boosting algorithm enables the GBM models to better represent
smooth species response curves by averaging many trees (Elith et al. PZ0@&BM
models are also able to represent non-linear relationships and interactiorenbetwe
predictor variables (Elith et al. 2008). Although GBM modelling could be considered a
“black-box” method, as many other machine learning methods have been labeled, it

appears of model comparisons that GBM results are ecologically semsibheee
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accurate representations of species distributions (Elith et al. 2006). We enpdeim
GBM using ‘gbm’ in the BIOMOD package in R (Ridgeway 2006; Thuiller 2003).
Maxent

Maximum entropy (Maxent) is a machine learning method that is able to make
predictions using presence only data. Like other machine learning techniquest Max
improves the modelling algorithm automatically through a series of tgamnith the
data set. Maxent estimates the spatial distribution of the presence pdintsaxitnum
entropy (the most uniform or spread out distribution) given the constraints put on the
distribution with respect to the point’s relationship to the environmental layers. This
relationship is quantified using the empirical average of the environmentabiesior all
presence points (Phillips et al. 2006). Although Maxent was designed to use presence
only data, it also performs well when compared to presence—absence procedures tha
utilize both real and pseudo-absence data (Elith et al. 2006; Hernandez et al. 2006;
Pearson et al. 2007). We chose to use Maxent because of its superior performance in
model comparisons despite the availability of absence dakh &mnericanus. We
implemented Maxent with stand-alone software (Phillips et al. 2006; Pl&llipsdik
2008).
Model Evaluation

We used the threshold independent method, receiver-operating characteristic
curve (ROC) to evaluate all models. The area under the curve (AUC) of pROGs
been widely recommended to assess the predictive performance of specedidist
models (Barry & Elith 2006; De'ath & Fabricius 2000; Elith et al. 2006; Ferri@u&an

2006; Fielding & Bell 1997; Guisan et al. 2007; Rushton et al. 2004). AUC is calculated
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by plotting sensitivity against 1-specificity for all possible threshosisnsitivity is the
likelihood that a predicted presence point should actually be absent. While, spasificit
the likelihood that a predicted absence point should really be classified as.pAdeént
values range from 0 to 1; with 0.5 being random performance and values near 1 being
good predictive performance (Fielding & Bell 1997). An index has been developed for
AUC values: 0.5-0.7 = low accuracy; 0.7-0.9 = potentially useful; and > 0.9 high
accuracy (Swets 1988). Models were evaluated by calculating the Alilazfo

evaluation data set which was 25% of the species data points held out from the original

species data set.

RESULTS
Spoecies Data Set

From 1979 to 2008, 1182 surveys kramericanus were conducted across the
eastern third of Oklahoma with 1089 surveys conducted in the past 10 years (Fig. 1). Of
those, 230 (20%) of the surveys collected at leastNoaeericanus specimen. Of the
total number of surveys, 72 locations were surveyed more than once, representing 173
survey events (15%). Of the 72 locations, 29 were negative for all surveys; 28 were
positive for all surveys; 15 of the locations had surveys of both negative and positive
results. We considered the 15 locations with conflicting survey results as positive
Spatial autocorrelation of presence and absence was weak for neighboring ritatarmbi
became 0 at a distance of 84 km (Table 2, Fig. 2).
Predictor Variables

Eight environmental variables were removed for a second round of model
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building due to high correlation (Table 1). Three of the categorical landcoder a
vegetation layers were highly correlated and two were removed. Landcoyestaiaed.
Six climatic variables were removed leaving annual temperature, days fobeézing,
and May precipitation.

Model Comparison

Ten of the twelve models performed within the AUC index category of
“potentially useful” with an AUC value between 0.7-0.9 (Table 3). As expected,
removing correlated variables improved the performance of GLM, GBM, and GAM, and
also improved the Random Forest model. The model with the best performance was
Maxent using all the predictor variables (AUC 0.857). Other models with AU@vah
the “useful” category were Random Forest, GBM, and Maxent - all which lised t
smaller set of predictor variables (Table 3).

The map of the best Maxent model indicates khatmericanus is more likely to
be present in the northern part of the southern half of the study area (FighZmail
areas in the far north and southeast. May precipitation, geology, days belpindgre
annual temperature, and last day of growing season were accounted foh#&s¢ ¢gn
in AUC in the Maxent jackknife test of variable importance. Slope was the ondpleari
responsible for reducing model performance.

Of the other model predictions, the spatial representation of CART and Random
Forest appear to have the most agreement with the best Maxent model. Bothi@ART a
Random Forest predict greatest habitat suitability in the lower middle sfutig area,
but also indicate suitable habitat in the far north and southeastern corner. Howaeer

of the model predictions were obviously different from the Maxent predictive ni@ap (F
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3).

DISCUSSION

Even the best performing models did not fall in to the highly accurate category
(AUC > 0.9). Several factors may have inhibited predictive performance. The errors in
model building generally fall into two categories: data deficiencies, in botnespend
predictors, and incorrect model specifications (Barry & Elith 2006). Letstschnsider
model specifications and parameterization. The variation in model outpuit for
americanusis consistent with other studies comparing these modelling techniques (Elith
et al. 2006; Hernandez et al. 2006; Loiselle et al. 2003; Meynard & Quinn 2007; Mufioz
& Felicisimo 2004; Pearson et al. 2006). GAM and GLM were two of the worst
performing models — both techniques utilized absence data frolh #meericanus
surveys and are known to be significantly affected by spatial autodmmelaustin
2002; Diniz-Filho et al. 2008; Dormann et al. 2007; Guisan et al. 2006; Segurado et al.
2006). The spatial autocorrelation for the species data set was low (Tabler@aybut
have been high enough to affect the model algorithm. It has been suggested that when
using these regression techniques that a covariate term be added to accpatiafor s
autocorrelation (Segurado & Araujo 2004). Autoregressive techniques designed to
account for spatial autocorrelation can also be used, but have mixed results with model
built with presence/absence data sets as compared to those using abundancehalues. T
addition of covariates or using autoregressive techniques do not consistently ithprove
results of models from binary data (Dormann et al. 2007). The use of ensemble or

consensus methods may improve model predictions. By comparing, averaging, and

114



measuring variation in the predictions of multiple modelling techniques, ersembl
methods can draw out the correctly predicted areas from several models and indicat
areas of uncertainty (Marmion et al. 2009). Ensemble methods have been used for other
analyses, but only recently applied to SDM by a few researchers ¢A&adgw 2007;

Araujo & Rahbek 2006; Araujo et al. 2005; Marmion et al. 2009).

What factors in the species data set may have confounded model predictions?
Absence data points from thé americanus surveys may not truly represent unsuitable
habitat. Habitat suitability models work on the principle that the observed excas of
a species reflects the species ecological requirements. Most moglels tieé
assumption that the organism will be present in suitable habitat and absent from
unsuitable habitat — that the species is in equilibrium with its environment.
Unfortunately that assumption is often fallacious because organisms framtend
recorded in unsuitable habitat or not found in highly suitable habitat. The current
distribution ofN. americanus is almost certainly not at equilibrium with the environment
or the species would occupy more of its historic range. Knowing the cause of the rang
reduction would help to choose predictor variables that directly affect thetcurre
distribution. Methods relying on these absence data will therefore have errors
Techniques that use presence and absence data usually have higher AUC values than
presence only methods, but only when true absence data is available (Brotons et al. 2004;
Pearson et al. 2006). However, we argue that the absence ddtarfericanus do not
represent true absence, and using it to build the models introduced error into the
predictions. If false absences are suspected it is better to use a pordgmoethod

(Chefaoui & Lobo 2008; Hirzel & Le Lay 2008; Jimenéz-Valverde et al. 2008séeat
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al. 2006). Consequently, Maxent may have performed better because it does not rely on
absence data, but uses pseudo-absences or “background” data that chartneerizes
environment of the entire study area (Phillips et al. 2006).

Although the majority of the data comes from standardized surveys conducted
over the past twenty years, we believe there are some problematicdextie data set.
The survey method relies on rotten meat to lure insects to a pit fall trap andyisolike
attractN. americanus to suboptimal habitat. The USFWS provides trap specifications
and notes that beetles within a 8 km radius could be attracted to the bait (US Fish and
Wildlife Service 2007). Raithel and colleagues (2006) foundNhainericanus traveled
“considerable distances” both on their own or aided by prevailing winds. Bedick and
colleagues (1999) found beetles traveled up to 6 km in a breeding season in Nebraska.
For other flying invertebrates, such as butterflies, distribution model penfmen
decreases as mobility and flight period increases (Poyry et al. 2008pugiN.
americanus are attracted to carrion traps, this does not necessarily signify thaghe tr
location is suitable habitat for reproduction.

Because survey locations were not placed randomly on the landscape or in a strict
grid pattern covering the entire region, some geographic biases arenappéne data.
Much of theN. americanus survey data was conducted in roadside or pipeline right-of-
ways because it was commissioned by agencies prior to construction prajeetsfore
a pronounced bias exists in tNeamericanus data set that may affect model results.
Kadmon and colleagues (2004) found that even though woody plant records in Israel had
a strong roadside bias, they were able to produce accurate models from get.data

However, their models were built simply from the species data set and included only
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three climatic variables which they found were only weakly correlated. Odels)
however, were built using topographic and landcover features that may be nibye hig
correlated to road networks.

Species life history characteristics can affect the accuracynolal. N.
americanus is considered a generalist species and thus has no specialized habitat
requirements (Bedick et al. 1999; Holloway & Schnell 1997; Lomolino et al. 1994).
Generalist species have proven difficult to model because environmentatneejtis
are not simply correlated to predictor variables unlike species with stadigtor host
specificity (Brotons et al. 2004; Evangelista et al. 2008; Guisan et al. 2007).

The predictive performance of our models may be reduced by not including
predictors that directly affect the distributionMfamericanus. We used a variety of
predictor variables that should influence the distributioN.americanus at several
ecological scales. Climatic variables are known to determine the coatinen¢gional
distribution of a species. Topographic and landcover variables often affect ¢hes sie
a finer scale. However, we need to have greater emphasis on predictor yaniaible
directly affect the organism at the sub-state scale. Derived biocivaatables, such as
evapotranspiration, may make more ecological sense and are more apprograte to t
smaller scale than precipitation or temperature considered separately.

Despite the low predictive success of our models, the work we have done suggests
future avenues of research that will improve our understanding bE #ireericanus’s
biology and ecology. Maxent’s test of variable importance identifies vasi#idé were
most responsible for improving the model’s performance: May precipitatiologye

days below freezing, annual temperature, and last day of growing seasmbeMNbf
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days below freezing and last day of growing season indicate that enviriahme
conditions during over-wintering may account for part of the species suitablathabit
Over-wintering survival has been studied with regard to habitat type, carridatbdirg,
and depth in soil (Schnell et al. 2007), but another factor may be soil temperature.
Although we were able to see a signal on a large scale, the affect of smlaéumne on
N. americanus distribution may be better studied at a smaller scale while taking into
consideration the microclimate variation in small study areas. The impertd geology
in contributing to model performance indicates that substrate may limitNvhat
americanus finds to be suitable habitat. Substrate will affect the insect’s ability to bury
carrion and successfully raise a brood. Preliminary results from Sr{fghiith 2007)
research indicates that brood carcasses were most likely to be buried irolbas s
low clay content. The addition of an accurate soil texture layer, rathesdian
association, may enhance future habitat models.

The model results that indicate increased habitat suitability with iretéday
precipitation could suggest a physiological effect with over-wintering@oding carcass
decay or may simply be a surrogate for a predictor variable that we didenoBesause
of the strong southeast-northwest precipitation gradient in Oklahoma, prtamipiteay
be a surrogate for the distribution of a competitor or prey item. Research intcettie di
effect of precipitation ofN. americanus reproduction and over-wintering might prove
useful in understanding the current distribution of the species and the possible r@asons f
the historic range collapse.

Inclusion of biotic interactions such as overlap with competitor distribution and

shared resources improve model performance at small and macroscales ity atar
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organisms (Araujo & Luoto 2007; Davis et al. 1998; Guisan & Thuiller 2005; Heikkinen
et al. 2007; Preston et al. 2008). Indeed, Sikes and Raithel (2002) have hypothesized that
competition with congeneric and other scavengers and a reduction in suitathly size
carrion affects the distribution and abundanchl.aimericanus. The effect of

congeneric competitors on distribution models has been demonstrated for South
American pocket mice (gentteteromys) (Anderson et al. 2002). Including competitors
of native trees (four species bthofagus) in New Zealand also produce more accurate
species distribution models (Leathwick & Austin 2001). While they indicate tha mor
work needs to be done, they believe that the most plausible cabéeafoaricanus

decline is related to a change in these biotic interactions. Habitat fragimemhay be
altering the biotic interactions that have led to the declim¢ afmericanus. Holloway

and Schnell (Holloway & Schnell 1997) suggest that fragmentation has caused an
increase in vertebrate scavengers and a reduction in carrion supply. Bedi¢k999
agree, but also found that not all land-cover change is detrimental — agricattasl

can still be suitable habitat fol. americanus.

Another challenge for modelers is the inclusion of processes that affect the
distribution of a species (Austin 2002; Guisan & Thuiller 2008%).americanus may be
directly affected processes ongoing on the landscape, such as: fire, dispetsal
succession. Woody plant encroachment is affectinyltlaenericanus population in the
grasslands of Nebraska (Walker & Hoback 2007). Revising the 48 categories of
landcover change by grouping types of change that is more likBlyaimericanus could
improve the variable importance in the models. Integrating information of $it@ior

intervals could not only help improve model performance, but also inform land managers
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of conservation practices that would increase habitat suitability.

Modelling N. americanus only in Oklahoma has allowed us to use a finer scale of
environmental variables. We may have compromised the predictive ability robithel
by looking at the species at the edge of its western range. More sopdussicgprithms
have been developed recently that may be better for modelling species at thethdge
range, where habitat may be suboptimal and the species-environment relat®nshi

skewed compared to the whole range (Braunisch et al. 2008).

CONCLUSIONS

Other researchers have repeatedly encouraged better links from ed¢dhmpoa
and biology of the organism to the model building process (Austin 2002; Austin 2007;
Guisan et al. 2006; Guisan & Thuiller 2005). To improve model performance, we should
think more carefully about the causeNofamericanus's endangered status and its
population shrinkage. Sikes and Raithel's (2002) review concludes that the most
plausible explanation fd{. americanus's decline is a combination of factors associated
with biotic interactions including congener and vertebrate competition and aioedact
optimally sized prey. To improve the models and consequently the recovery effort fo
the species, we need to take into account these important variables. Creatingaie a
spatial layer of this data will be a future challenge.

Our objective was to produce a map of potentially suitable habitiit for
americanus that would guide conservation efforts within the state of Oklahoma.
Although the model was not highly accurate, the map of suitable habitat can help to

inform conservation biologists of areas that have suitable habitat fiNr #meericanus.
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Overgenerous models can mislead conservation planners in thinking that moeeareas
highly suited to the species. It is better to be conservative and find the best area
resources are limited for planning preserves for the species or are lamkargds of
reintroduction (Loiselle et al. 2003). Therefore, we urge caution in interpreting the
predictive map. We offer it as a suggestion from which additional research carebe don

to support or refute our suitability map.
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Table 1. Environmental layers used as predictor variables in models of potential habitat
suitability of the endangered Nicrophorus americanus in eastern Oklahoma.

Variable Range & Unit Source

Elevation 87 - 806 m Oklahoma Digital Elevation Model (Cederstrand and
Rea 1995; geo.ou.edu)

Slope 0-46° Oklahoma Digital Elevation Model (Cederstrand and
Rea 1995; geo.ou.edu)

Soil association 228 categories STATSGO (Soil Survey Staff 2005;
soils.usda.gov/survey/geography/statsgo)

Surface geo]ogy 133 categories U.S. Geological Survey (Heran et al. 2003;
pubs.usgs.gov/of/2003/0fr-03-247

Vegetation * 34 categories Oklahoma Gap Project (Fisher and Gregory 2001;
www.biosurvey.ou.edu/gap-ok.html)

Potential vegetation * 8 categories Game Type Map of Oklahoma (Duck and Fletcher
1943; www.biosurvey.ou.edu/duckfit/dfhome.html)

Landcover 15 categories National Land Cover Database (www.mrlc.gov)

Forest cover 0-100 %

Landcover change 48 categories

Annual temperature 144-162°C Oklahoma Climatological Survey

Oklahoma Mesonet (Brock et al. 1994,
www.mesonet.org)

Number of days below 57 - 93 days
freezing (0° C) *

Number of days above 56 - 85 days
322°C*

Length of growing season * 201 - 222 days

First growing season day *  87th - 97th day

of year
Last growing season day 299th - 310th day
of year
Annual precipitation * 325-555cm
May precipitation 48-6.7cm

September precipitation * 3.4 -5.6 cm
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Table 2. Analysis of spatial autocorrelation of Nicrophorus americanus occurrence re-
cords in Oklahoma. The average Moran’s / is given for 16 distance classes. Values for
I can range from -1 to 1; values close to 1 indicate a positive spatial autocorrelation and
negative values a negative spatial autocorrelation. Spatial autocorrelation is low at the
closest distances and approaches 0 at 84 km.

Average Paired

Distance (km) Moran’s / I (max)
154 0.23+0.012* 0.592
39.3 0.176 £0.013 * 0.523
55.7 0.054+£0013 * 0.401
70.5 0.065+0.013 * 0.371
84.1 0.01 £0.013 0.333
96.8 -0.001 £0.013 0.343
108.3 0.011 £0.013 0.323
119.0 -0.051 £0.013 * 0.324
129.9 -0.093 £0.013 * 0.360
141.2 -0.124 £0.013 * 0.391
153.1 -0.142 £ 0.013 * 0.439
167.0 -0.157 +£0.013 * 0.456
183.7 -0.118 £0.013 * 0.468
204.6 -0.093 £+0.013 * 0.486
233.7 -0.011 £0.012 0.500
320.7 0.206 £0.011 * 0.717

*p<0.001
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Table 3. Performance of different modelling techniques for Nicrophorus americanus us-
ing all available predictor variables and a reduced set of variables based on variable cor-
relations. AUC value of 0.5-0.7 is considered low accuracy; 0.7-0.9 is considered useful;
and 0.9 and above is considered high accuracy. Models were evaluated with 25% holdout
data from the occurrence data set. Classification and regression tree, CART; general-
ized additive model, GAM; generalized boosted model, GBM; generalized linear model,
GLM; maximum entropy, Maxent.

Correlated
Predictors
All Predictors Removed

CART 0.726 0.688
GAM 0.780 0.802
GBM 0.765 0.813
GLM 0.674 0.731
Maxent 0.857 0.831
Random Forest 0.792 0.834
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Figure 1. Occurrence records of Nicrophorus americanus in Oklahoma, south-central
United States, used in habitat suitability modelling. Presence records are indicated with
circles, absences with small crosses (+). To the east of the black line indicates the historic
range within Oklahoma.
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Figure 2. Spatial correlograms of Nicrophorus americanus occurrences in Oklahoma.
Circles indicate the Moran’s / for each distance pair. Triangles are the highest Moran’s /
value for each distance class.
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Figure 3. Predicted habitat of Nicrophorus americanus in eastern Oklahoma based on the
Maxent model using all predictor variables. This modelling technique produced the most
accurate model of all techniques tested, with an AUC value of 0.857. Circles indicate
known presence locations of Nicrophorus americanus and small crosses (+) indicate sur-
veys that found no Nicrophorus americanus.
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INTRODUCTION

Species’ ranges are controlled by environmental tolerances, biotic irdagcti
dispersal limitations, and historical factors. Boundaries such as mountaens, ri
oceans, and deserts limit the geographic range of many species, not bectablee sui
habitat is limited, but barriers prevent the continued movement of species. However,
humans have eliminated those barriers by accidentally or deliberatedparéing species
around the world (Vitousek, D'Antonio et al. 1997). If the habitat is suitable, alien
species can survive and thrive in their introduced range and possibly become invasive.
The term invasive has been used in a variety of ways, but we use the strictotedihiti
invasive species to mean alien species that have spread over a considesadiiea
introduction from another region by humans (Richardson, Panetta et al. 2000).

The impact of invasive species is multifaceted, both from an ecological and
societal perspective. Following introduction and establishment, invasive alieasspec
can have significant ecological and economic impacts. The ecological impachsite
species has been well documented: alteration of disturbance regimes, declinein nat
species abundance, nutrient cycles shifted, epidemics caused by new péoasitesb
shifts, and others [for reviews see (Vitousek, D'Antonio et al. 1997; Mack, Sinflarlof
al. 2000)]. The economic impact of alien invasive species is best illustratiee by t
estimated amount expended for invasive species management each year)i8h3i bil
the United States alone (Pimentel, Lach et al. 2000). These expenses could be
ameliorated by an effective early detection and eradication sybteining and
Humphries 1995; DiTomaso 2000) and early detection can be improved by identifying

the potential invasive species, recognizing the likely mode of transportatioherdioeta,
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and determining the potential habitat available. It is the last of these tio@icge
address with our research: identifying areas that are susceptible tombgdnown
invasive species. Species distribution modelling can identify areas in the itoduc
range that have environments similar to the native range. Locatintpgbagareas in
the introduced range that have the same fundamental niche space is thepfirst st
mapping potential areas of invasion.
Species Distribution Modelling

Species distribution models (SDM) correlate data for known species oumsre
with environmental data to produce a predictive map of the range within a study area
These models are predicated on the assumption that species populations are at
equilibrium with the environment; that is, the species should be found in all suitable areas
and not occupy unsuitable habitat (Hutchinson 1957) [but for a discussion on how
realistic this assumption is see (Aradjo and Pearson 2005)]. This assumption is
problematic when attempting to model the potential range of alien, invasivesspec
which by definition are continuing to expand both in geographic area and abundance.
Therefore, a model built with occurrence data from the introduced range may unde
predict the distribution of a species that has not reached equilibrium with itereneint.
Thus, it has been necessary to modify distribution modelling techniques to more
accurately model the potential distribution of alien spedrecent attempts to overcome
the limitations of the assumption of equilibrium have been to develop distribution models
based on data from the species’ native range and use the result to project the potenti
habitat suitability onto the introduced region (Peterson 2003; Nyéari, Ryall et al. 2006;

Lépez-Darias, Lobo et al. 2008). These models are generally built using c@dese sc
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climate data from the native range and the suitable climate parametgn®jected onto
the introduced range.
Reciprocal Modelling

The assumption of distribution modelling of invasive species using native range
occurrences is that the niche occupied in the native range will be similardoehe
occupied in the introduced range (Peterson and Vieglais 2001; Pearman, Guisan et al.
2008). Comparing model predictions of an invasive species in both its native and
introduced range is a test of that assumption. The ability of a model’s predictions to be
transferred from one region to another has been examined for species within their nati
range (Randin, Dirnbock et al. 2006; Barbosa, Real et al. 2009) and to introduced ranges
(Mau-Crimmins, Schussman et al. 2006; Fitzpatrick, Weltzin et al. 2007). In general,
these studies found that models predictions did not transfer well. When modelling the
potential distribution of an alien, invasive species in a new area, many species
distribution models go no further than to project the range of suitable environmental
variables in the native range onto the introduced range. Reciprocal modelling, on the
other hand, predicts not only the potential invaded range based on the environmental
characteristics of the native range, but it also uses occurrence datadromaded range
to predict the native range. The results can then be used to evaluate habitat dissrepan
or potential niche shifts (Fitzpatrick and Weltzin 2005; Fitzpatrick, Wed#zad. 2007;
Loo, Nally et al. 2007). Fitzpatrick and Weltzin (2005) proposed and demonstrated the
use of reciprocal modelling as a new method of studying the prediction errors ofenvas
species distribution models. This modelling approach can help to determine which

environmental factors within the introduced range are different from the natiye aad
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which habitats within the native range are not represented in the introduced range
Further, reciprocal modelling can reveal potential problems with occurdataeand
predictor variables in both native and introduced ranges, but it also has also been used to
investigate ecological phenomena, such as niche shifts of invasive spebis in t
introduced range (Mau-Crimmins, Schussman et al. 2006; Broennimann, Treier et al.
2007; Fitzpatrick, Weltzin et al. 2007).
Objectives

We were interested in exploring the potential of species distribution models to
identify areas susceptible to alien species invasion within the United.S&xiesies
distribution models are a relatively versatile and inexpensive ecologadat species
occurrence data, GIS layers of environmental data, and software to implement tlkee mode
are freely available on the Internet. Species distribution models have thegbate
improve our response to the threat of invasive species. ldentifying poteniitdlyls
habitat can help to focus early detection efforts and therefore reducsedheces needed
to manage or eradicate the species. We used species distribution models based on nati
range occurrences and climate to predict the climate suitability ofittve@give species.
Model predictions were then projected into the introduced range to determinthateas
are climatically suitable for the invasive species. To test the modelsaxy when
transferred into other regions, we compared model predictions in the introduced range to
occurrence records of the alien species in the introduced range. Using reciprocal
modelling and principle components analysis (PCA) we examined the differ@nce
predicted distributions in both geographic and climate space using native and irdroduce

occurrences.
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METHODS
Study Species

We limited our investigation to three invasive wetland plant species that are
considered invasive in the USA, that we assume have not reached environmental
equilibrium:Iris pseudacorus, Lythrum salicaria, andSaccharum ravennae. We focused
on species of European origin because of the plethora of data available on their nati
distribution.

Iris pseudacorus (yellow flag iris) is native to Europe and western Asia and
brought to North America as an ornamental in the mid 1800s (Sutherland 1990) and is
currently found throughout the USA and Canada, except the Rocky Mountains (USDA
NRCS 2009).Iris pseudacorus is capable of forming denseonocultures from a
network of rhizomes that exclude native riparian vegetation (personal observataih) (J
1953; Raven and Thomas 1970)is pseudacorus occurs in wetlands and riparian zones
and can thrive in drainage ditches. It also has been planted in sewage treatitites®t fa
for heavy metal remediation. As with other wetland pldnfsseudacorus can tolerate
long periods of anoxia, but also can withstand long droudhitspseudacorus can
reproduce sexually by seed and/or asexually by rhizome fragments. Hygrctine
typical dispersal mode via transport of floating fruits, seeds, and dislodgedds
(Sutherland 1990).

Lythrum salicaria (purple loosestrife) originated in Eurasia, but was well
established in North America by the 1830s, thus leading John Torrey and Asa Grey to
conclude it was a native species. It was probably introduced repeatedisthoAxherica

via ships ballasts, through the horticulture trade, in imported goods, and by immigrants
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using it as a culinary and medicinal herb (Thompson, Stuckey et al. 19&@)um

salicaria has been reported from 43 of the coterminous states in the USA and is
considered a noxious weed by several (USDA NRCS 2009). As a mature, herbaceous
perennialL. salicaria can reach up to 2 m in height and produce over 2 million seeds per
plant. Although most seeds cannot float, seedlings can and this may be the primary mode
of dispersa(Thompson, Stuckey et al. 1987).

Saccharum ravennae (ravenna grass) is a large clump forming grass species
native to southern Europe, northern Africa, and western Asia. It has been reported from
16 of the coterminous states (USDA NRCS 2009) and is designated as an invasive
species in Arizona and Utah (Swearingen 2006). The oldest records in herbaria in the
United States are from the early 1900s, but there is some speculation that the invasive
genotype was introduced later (Thomsen and Meyer 2008). It is widely used as an
ornamental grass in the USA and naturalized populations are presumed to be escaped
from cultivation and ornamental landscaping (Utah State University 2009).iavas
populations are generally found along rivers and the grass can grow in a easeily
types and moisture regimes.

Occurrence Data

Occurrence data sets were compiled from several data sources. A search wa
conducted of the Global Biodiversity Information Facility (GBIF) dataliasthe
species of interest. GBIF is an international organization that has partnéred w
institutions from around the world to provide biodiversity data over the Internet. A
majority of the data within GBIF comes from natural history collectiorduding

herbaria. We limited the occurrence records to the continental United States apel Eur
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We removed duplicate records, records with missing location information, and records
that were not georeferenced to three decimal places for latitude and londitskdeuld

be noted that GBIF does not guarantee the accuracy of the data provided. Bigdivers
occurrence data used for this research were provided to GBIF by institustedsiti

appendix 1 (Accessed through GBIF Data Portal, www.gbif.net, 2008-12-10). Additional
occurrence data fdr pseudacorus andL. salicaria within the United States were

obtained from the Nonindigenous Aquatic Species Program database at the US
Geological Survey (nas.er.usgs.gov). Occurrence data for all spetigsOklahoma

were acquired from the Oklahoma Vascular Plants Database
[www.oklahomaplantdatabase.org; (Hoagland, Buthod et al. 2008)]. The occurrence data
were randomly split into two data sets: model training (or building) data (758€ of

data) and model evaluation data (25% of the data; also known as hold out data).

The specimen occurrence records maintained by GBIF do not represent a
geographically uniform or systematic data set. Asymmetriesiaxisé data because
collection effort is not equal for all parts of the globe nor have all naturahist
collections contributed data to GBIF. Precision at which a specimen wasegenceid
is variable and some collections are not well georeferenced. We accounted fangampl
bias in the GBIF data through use of a “bias file” in Maxent (Phillips, Andetsain e
2006). The bias file is an additional raster file added to the modelling process tha
represents sampling effort. Because it is rare that sampling effortnsfepaband
available in spatial form, especially with large data sets such as GBiks @lle can be
generated by using records of several common species within the samarstaudyhis

group of species should be broadly distributed within the study area and represent a

147



variety of habitats and environmental tolerances. The distribution of this grougigsspe
is modelled using the same environmental predictor variables. Because this group of
species represents a wide range of environmental variables, the dastrihduld not be
easily predicted from the model. However, if the distribution of this group ofespeci
performs well using the environmental variables, we can infer that the model
performance is being affected by geographic sampling bias and not truenememtal
factors (Phillips, Dudik et al. 2009). We selected 20 common herbaceous plants of
Europe based on their broad European distribution and range of habitats (Appendix 2)
and adequate occurrence records in GBIF. Biodiversity occurrence data ubesl for t
research were provided to GBIF by institutions listed in appendix 1 (Accessedthroug
GBIF Data Portal, www.gbif.net, 2008-12-10). We discarded duplicate records, records
with missing location information, and records that were not georeferencelgésta
three decimal places for latitude and longitude. Each species contributed over 4,000
specimens to the total of over 80,000 occurrences. We randomly selected a subset of
15,000 records for model building in Maxent. Models for the bias file group of species
were built with the same parameters (detailed below) as models for tsezengpecies.
The model predictions for the bias file group of species were then used as tlle nas f
Maxent (Phillips and Dudik 2008).
Bioclimatic Predictor Data

Because plant species distribution is, for the most part, determined byecitnat
the continental scale (Woodward 1987), we used the 19 derived bioclimatic variables in
30 arc-second resolution raster grids (approximately 1 km x 1 km resolution) from

WorldClim for the environmental predictor data (Table 1). Freely availabletioge

148



Internet (www.worldclim.org), the WorldClim data make up a set of fine-ggakal

climatic layers interpolated from a large number of weather stationsatistichlly

enhanced with digital elevation models (Hijmans, Cameron et al. 2005). WorldClim has
been used with success in species distribution models (Broennimann, Treier @ al. 20
Fitzpatrick, Weltzin et al. 2007; Pearman, Randin et al. 2008). Within ArcMap, global
raster layers were clipped to rectangles surrounding the regions reprgsiee 48
contiguous United States (from here on referred to as US) and Europe, as far east a
western Russia.

Projecting models built in one region onto another region requires a similar range
of values within the environmental predictor variables. To determine if the
environmental variables used for model building at the continental scale haee sim
ranges in both the US and Europe, box plots and line graphs were used to evaluate each
pair of US and European environmental variables for range of value overlap. For
example, a value for each environmental variable is contained in each celladttre r
layer. The number of cells representing all possible values for each gasiadillied.

The entire range of values and interquartile range of values for each e/g@aatils

compared in 19 box plots for all bioclimatic variables. Box plot whiskers were doawn t
represent the range of values and boxes were drawn to encompass values between the
first and third quartile (Appendix 3). The extent of the box represents the range sf value
for each variable surrounding the mean for the middle 50% of cells. Another effort to
visualize the data involved line graphs drawn for pairs of environmental variables
(Appendix 3). The number of cells was plotted against variable value for each

environmental pair. Box plots and line graphs were visually analyzed.
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Maxent Modelling Algorithm

Many of the standard distribution modelling techniques, such as regression,
require both presence and absence data to make accurate predictions of a species’
distribution. Maximum entropy (Maxent) is a machine learning method that isoable
make predictions using presence only data (Phillips, Anderson et al. 2006). Like other
machine learning techniques, Maxent improves the modelling algorithm autalhgatic
through a series of trainings with the data set. The creators of the Maxent
implementation for species distribution modelling state that it is able to peesiecies’
distribution based on “incomplete information”; meaning species observation dada tha
not necessarily cover the entire suitable range of environmental vafRbikips,

Anderson et al. 2006; Phillips and Dudik 2008). Maxent estimates the distribution of a
species with maximum entropy (the most uniform or spread out distribution) of the
known presence points given the constraints put on the distribution with respect to the
point’s relationship to the environmental layers. This relationship is quantifiegl the
empirical average of the environmental variable at all presence reBitigp$§,

Anderson et al. 2006).

The implementation of Maxent for species distribution modelling was spdlgifica
designed for use with presence only data. In comparisons with other presence only
methods, it performs significantly better. Maxent also performs well whepared to
presence—absence procedures that utilize both real and pseudo-absencglgata (El
Graham et al. 2006; Hernandez, Graham et al. 2006; Pearson, Raxworthy et al. 2007).

Maxent has several features that improve the models predictive perforarahce

interpretability: it takes into account the interaction between environmeartables; the
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output is the probability of distribution, which is mathematically defined; it gsssea
procedure to counteract over-fitting of the model; it employs a relaxatioalibvat the
estimated distribution to go beyond the empirical average within the error bounds, a
smoothing procedure called regularization, can potentially correct for samafile size
(Phillips, Anderson et al. 2006; Phillips and Dudik 2008). Maxent is also simple to
implement given the user-friendly interface developed by Phillips et al. (20@8)only
does the software compute distribution models, but it also performs validatisticstati
jackknifes to calculate variable importance, and produces a potential distribafpoof m
the model results. And the software can also project the model results onto anather set
environmental variables in a different region which is especially usefulddeiimg
alien species in their introduced region (Phillips, Anderson et al. 2006; Phillips and
Dudik 2008).
Reciprocal Models

Once data were corrected and a bias file generated, occurrence and pre@ictor da
were loaded into Maxent version 3.2.19 (Phillips, Schapire et al. 2008). To test the
model, 25% of the occurrence data was withheld from model building and used in
evaluations (Table 2). Although not a truly independent data set, withholding occurrence
data from analysis for evaluation is a common and useful technique for modetiewalua
(Araujo, Pearson et al. 2005). The regularization multiplier affects how wetiddel
can be applied to independent data. As the multiplier value is decreased, the nmdel fit
the training data improves, but the risk of over-fitting the model increases. The
regularization multiplier is adjusted if the model evaluation results indiclatiege

difference in the performance of the model for the training and testing datass there
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is a large discrepancy between the test statistic for the training/aluigon data, the
default regularization multiplier value of 1 is recommended (Phillips, Andetsan e
2006). A maximum of 500 iterations for each model was run and a convergence
threshold of 0.0001 was used. Convergence threshold of 0.0001 is the default and is
considered a conservative estimate allowing the algorithm to approachgemer
(Phillips, Anderson et al. 2006). Ten thousand “background” points were randomly
chosen from the extent of the environmental layers as a representation ofjthefran
values for all environmental variables across the region. Multiple occurpeirts

falling within one grid cell of the environmental variables were reduced tpanéefor
both model building and evaluation.

Models were built in two stages. First, predictions from native range ded¢a we
mapped in both the native range (Europe) and introduced range (US). Then a full set of
reciprocal models were built in the introduced range (US) and projected intatihe
range (Europe). Models projected into a different region were checkeavforrenental
variables that were restricted because of range of values encountengdtiiming was
limited [termed clamping in Maxent software (Phillips, Schapire et al. 20083Hid®or
variable values in the new region that are outside the range used during moded buildin
will likely have an effect on predicted suitability. Models built with alighbles were
compared to models built with the reduced set of variables that had good range overlap
between US and Europe.

Model Evaluation
We used the threshold independent method, receiver-operating characteristic

curve (ROC) to evaluate all models. The area under the curve (AUC) of a R®Edm
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widely used to assess the predictive performance of species distribution (kbdsls
Le Lay et al. 2006; Wisz, Hijmans et al. 2008). AUC is calculated by plottingisgns
against (1-specificity) for all possible thresholds. AUC values range fromi Owith 0.5
being random performance and values near 1 being good predictive performance (Pearc
and Ferrier 2000). The Maxent model calculates AUC using 25% holdout data for
presence points and the 10,000 background points as absence points (Phillips, Schapire et
al. 2008). Native range models projected into the introduced range were evaluated using
US occurrences; introduced range models projected into native range waetezl/al
using Europe occurrences. AUC values for models were compared usingpadNilc
signed-rank test.
PCA

In addition to evaluating the distribution of the invasive species geographically,
we evaluated the distribution of populations from both the native and introduced range in
environmental space. A comparison of results in both geographic and environmental
space can help us to evaluate discrepancies between models made in the native and
introduced range. Using principle component analysis (PCA), we compared ti@nposit
of the species occurrences in climate space for both the native and introduced range
(McCune and Mefford 2006). Because of the large occurrence data lsgistodacorus
andL. salicaria in Europe, we randomly selected 1,500 occurrences for each species to

calculate the principle components.
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RESULTS
Occurrence Data and Accounting for Sample Bias

The number of occurrence records available per species in each region ranged
from 24 to 14877 (Table 2)ris pseudacorus andL. salicaria have been collected
extensively and are widely distributed throughout central and northern Euaige ¢F
Fig. 1a, 2a).Saccharum ravennae has significantly fewer occurrence records and is
found primarily in southern Europe (Table 2; Fig. 3a). It is clear from the map of
occurrence points in Europe that there is a sampling bias related to political baindarie
(Fig. 1a, 2a, 3a).

The AUC value from the bias file model was high (AUC 0.881 +/- 0.01),
indicating that GBIF data for Europe are not uniformly distributed in geograptue spa
and the distribution of this group of species can be erroneously predicted withcclimat
variables. The resulting predictions from the target group were used asstlfieebrathe
Maxent modeling of the invasive species.

Accounting for Difference in Range of Bioclimatic Variables

Based on the comparison of line graphs and box plots of US and Europe
bioclimatic variable raster layers, 5 of the 19 variables appeared to hage a lar
difference in value range and interquartile range (Appendix 3). These ganadie
excluded from the final model building (Table 1).

Although there were significant differences in the performance of the reetiz|
(models using all 19 bioclimatic variables versus models using the reduadd set
bioclimatic variables) there was not a consistent pattern related to nungrediator

variables (Table 3). Among the models built with the Europe occurrence points, either
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modeled in the native or introduced regions, onlySh@vennae model projected into
the US had a significant difference between all or reduced predictablesrand
contrary to expectations, the model with fewer variables performed betterefdre, in
subsequent analyses we focused only on the results from models with the reduced
predictor data set due to the slight advantage or no difference between thelseamade
Focusing on this data set also allowed us to moderate the errors caused bgsvartabl
dissimilar ranges in Europe and US.
Reciprocal Models

Species distribution models were highly accurate when applied to the region in
which they were built (Table 4, Figure 4b, 5b, 6b). The results from the three study
species supports the general assumption that plant species distribution neddyer
climate at the continental scale. However, species distribution models builtiegioe
and projected into another region performed poorly (Table 4, Figure 4a, 5a, 6a)ll For a
three species, models built using Europe occurrences and applied to Europe performed
well, with AUC values above 0.92. Even the small data s&trafennae, with only 18
training points, still performed well (AUC = 0.959). Models created using US
occurrences and applied to the US also performed well (AUC range = 0.895 to 0.922).
At best, the models projected into a different region had moderate AUC values (0.759
and 0.744), but several models performed no better than random (near 0.5). There was
no consistent pattern of performance for models built in the native range andegroject
into the introduced range or vice versa (Table 4). The modkabennae built with

Europe occurrences and projected into the US performed better than the model using US
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occurrences and projected into Europe. However, the motgbsefidacorus built with
Europe occurrences and projected into the US performed worse.
PCA

For all three species, the first three principle components accounted for over 75%
of the total variation in the data (Table 5). Fquseudacorus, the first principle
component (PC-1) was related to temperature (especially Bio6), PC-2 wed tela
precipitation (particularly periods of wettest precipitation), and PC-3&lated to
temperature extremes (Biol0 and 11) (Figure 7). Occurrences in Europe and US appea
to separate based precipitation. PCA were similak fealicaria, except temperature
extremes were more important in PC-1 (Figure 8). The Europe occurrendas &xhi
variety of precipitation tolerance, and temperature seems to separatedpe &uwl US
groups. FoSf ravennae, PC-1 was related to precipitation, while PC-2 and PC-3 were
related to temperature (Figure 9). The distributioB. ovennae US occurrences
appears to be more influenced by temperature and by precipitation in Europeredll t
analyses illustrate a separation in environmental space for the nativeraddaatl

occurrences.

DISCUSSION

All distribution models in this study performed well when built with occurrence
and climate data from the same region, but did not perform well when projected, or
transferred, to a different region. Transferability of model predictions to @hges
have been examined both within native ranges and to introduced ranges. Some studies

have found that models built using data from a portion of the native range are not
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necessarily transferable to other parts of the native range (Randin, DietadcR006;
Barbosa, Real et al. 2009); and invasive species models projected into their introduced
range and evaluated with introduced occurrences also show poor performance (Mau
Crimmins, Schussman et al. 2006; Fitzpatrick, Weltzin et al. 2007; Loo, Nally et al.
2007).

Recently postulated hypotheses regarding factors that contribute to invasive
species may explain the discrepancy of ranges of the three invasivestanhs svithin
Europe and US, such as escape from natural enemies, evolution in new environment,
better competitors due to novel biochemicals, pre-adapted to disturbed environment, and
repeated introduction with high propagule pressure [for review see (HierronMial.
2005)]. The characteristics that make a species invasive may be the santedkacs
that cause the species’ environmental range to be different in the avadivetroduced
regions. Not only do the model predictions from one continent to another illustrate a
difference in climate preference, the PCA results indicate a diffeiartbe climate
space occupied by the native and alien occurrences. This difference in occupegd habit
by one species after introduction to a new region can be interpreted as difiche s

Species distribution models assume that the species being modeled is at
equilibrium with the environment, whether in the native or introduced area (Araujo and
Pearson 2005); but this assumption certainly violated when modeling alien spédoids
may still be spreading into suitable areas. In fact, that is the point of our invasive
modelling research: to find areas of suitable habitat that the species lgasdispersed
into, for whatever reason. Therefore, in this study, it is assumed that the inyesives s

is not at equilibrium in the introduced range. Thus, it would be expected that models
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built with introduced range data under-predict the native distribution and the models buil
with native range data to over-predict the introduced distribution. Our resylts ar
unfortunately, not that simple. The appeal of using native range occurrences @ buil
model is to represent the species’ environment when it is at equilibrium. Howevrer, t

is some debate as to how many species are truly at equilibrium withinahee
environment (Araujo and Pearson 2005).

The assumption of modelling the distribution of invasive species using native
range occurrences is that the niche occupied in the native range will be sirthia one
occupied in the introduced range (Peterson and Vieglais 2001; Pearman, Guisan et al.
2008). Evidence is accumulating that invalidates that assumption. Fir&aategsis
invicta) are not occupying the same climatic space in their native and introduced regions
(Fitzpatrick, Weltzin et al. 2007; Fitzpatrick, Dunn et al. 2008). Spotted knapweed
(Centaurea maculosa) occupies areas that are climatically different in Europe and North
America (Broennimann, Treier et al. 2007). A lovegr&adrostis|ehmanniana) from
South Africa has invaded a different environmental niche in the southwestern United
States (Mau-Crimmins, Schussman et al. 2006).

The niche and niche shift concepts affect the interpretation of the model results.
Observations of the distribution of a species native region only consider the species
realized niche: the combination of suitable environmental conditions that is adjusted b
history and biotic interactions. When considering the distribution of an alien species in
its introduced region, what may be revealed is a new realized niche. Resgasing
reciprocal models such as ours have demonstrated that the realized nichendiffirse

and introduced ranges. The niches of introduced and native ranges, as represented in
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climatic or environmental space predicted by the models, may overlap in partvédpwe
nonoverlapping areas that represent different environmental space or reale=lane
biologically and ecologically interesting.

The difference between the suitable habitat in the native and introduced ranges
can be due to genetic differences caused either by evolution or adaptation after
introduction or the introduction of a particular phenotype that has thrived in the
introduced region (Dietz and Edwards 2006; Richardson afdk?3006). Fitzpatrick et
al. (2007, 2008) support the hypothesis that fire ants with a specific phenotype were
introduced into the United States. They also suggest the fire ants’ niche continued to
shift due to adaptation to the introduced region’s environment (Fitzpatrick, Wel&din e
2007; Fitzpatrick, Dunn et al. 2008). The core area of invasion for spotted knapweed
(Centaurea maculosa) is outside of the climatic niche of the native distribution.
Broennimann and colleagues (2008) argue that the niche of spotted knapweed has shifted
after introduction and the difference is not due to the introduction of a specific genotype.
They suggest that the niche shift could be caused by a change in realized niche
(competitor release or other change in biotic interaction) or a change in the fatalame
niche (evolution or adaptation of an increased competitive ability). Mau-Qnsrand
colleagues (2006) found that the variety of Lehmann’s lovegEnagrstis
lehmanniana) introduced in the United States was highly selected by agronomists and its
environmental tolerances within the introduced range did not reflect the enithee nat
range. Therefore models trained on occurrence data from only the introduged ran
performed better than models using native range information. The ressa@heude

that introduced taxa that represent a genetically distinct group withiniaspee best
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modelled with only introduced occurrences because native range information would
include environmental tolerances outside the narrow tolerances of the introdwced tax
Although a species’ distribution within its native region may be readily idbestcr
by climate variables, that prediction may not be transferable to anotheotoadien
based on climate alone. Biotic interactions also limit a species distnoutodel
predictions based on the native range may under-predict the potential distribution in the
introduced range if biotic interactions, such as competition or parasitisnenaoged
when an alien species enters a new region. For example, a competitor may be the
limiting factor at the northern edge of a species range. However, thagdnmordinge
edge may easily be represented by temperature. If temperature is asrdragate by
the model and predictions based on temperature are then projected into the introduced
region, the model will fail to accurately predict the distribution becauseetition is the
true limiter. Situations such as these have lead many ecologists andensaetiall for
the incorporation of biotic interactions in species distribution models (Davis, Jenlahs
al. 1998; Araujo and Luoto 2007; Guisan, Zimmermann et al. 2007). But accurately
predicting areas of invasion in the introduced range may never truly incorporate the
influence of biotic interactions because the introduced species are no longeddffect
their native biotic interactions and are subject to another suite of species imatieaatl
range with which it may form new biotic interactions that are currentgsicribable.
Poor model transfer may be a result of causes that are not related to ecology
Non-overlapping range of values for the predictor variables in Europe anthyStill
be affecting the model predictions despite removing five of the 19 variables frorh mode

building. There may continue to be error in the models caused by one or two variables
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that are important to the model predictions, but also have value ranges that do hot matc
in both the introduced and native regions. Knowledge of the environmental tolerances
across the entire range of the species is necessary to find all suitables l{hitahy
and Lovett-Doust 2007). Unfortunately, we cannot evaluate this likelihodd for
pseudacorus, L. salicaria, andS. ravennae because GBIF data are highly skewed to
western European and North America, but under represent their native rangerm eas
Europe, northern Africa, and/or the Middle East. The climatic environment of tlease a
within the native range was not represented in our models. Also, more complex models
have recently emerged and been applied to alien species distribution. For examyple, fuzz
envelope models proved successful in predicting the distribution of alien specieshin Sout
Africa (Robertson, Villet et al. 2004). The ongoing development of new algorittns a
technigues may improve the predictions of invasive species potential distribution.
Models of the potential distribution of invasive species have been informative at
the global scale (Peterson and Vieglais 2001; Petersors, Rape 2003; Nyari, Ryall et
al. 2006). For example, Thuiller and colleagues (2005) produced a global map of
potential areas of invasion by 96 South African plants species. Their modelsneekrfor
well due to the inclusion of a generalized biome variable with bioclimaticdayel
thorough documentation of the range of these South African endemics. Models utilizing
the introduced occurrences have been successful in predicting new areas of invasion at
the local level. In fact, because of the difficulty obtaining data fromenednges, some
modelers rely only on introduced region information. Researchers have examined the
local invasion potential of alien sea squirts (the tuniBatiemnum vexillum) off the

coast of British Columbia (Herborg, O'Hara et al. 2009), invasive treegrasses in an
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American national park (Evangelista, Kumar et al. 2008), and invasive plants in China
(Zhu, Sun et al. 2007). At the local scale, better performing models have included
variables that are important to the distribution of a species. In addition toeclimat
variables, modelers have included topography and landcover. Recent advancement in
distribution models have incorporated dispersal vectors (del Barrio, Harriso2@dé;
Herborg, O'Hara et al. 2009), anthropogenic influence (Lippitt, Rogan et al. 2008), and
remotely sensed habitat information (Thuiller, Richardson et al. 2005; Anderson,
Peterson et al. 2006).

Relatively easily obtained data and user-friendly modelling software make
building models an inexpensive tool for conservation biologists. Being able to create a
distribution map with little prior knowledge of the species’ ecology and bigkgy
tempting and possible with species distribution models. Models can help generate
hypotheses regarding the environmental and physiological tolerances of spasies.
apparent from our results and others that native region models based on climatesalone a
of little use in locating suitable invasive species habitat. It is not sagptigat many
others have come to the conclusion that species distribution models coupled with sound
ecological understanding will produce the best results (Wilson, Westpha2605;

Barry and Elith 2006; Guisan, Overton et al. 2006; Austin 2007).

Our goal was to create predictive models of alien plant invasion based on native
range information with the intention to inform conservation efforts such as early
detection and eradication programs. model areas that are suitable for invasiociflty spe
alien species using the native climate habitat. Our model results indligatbe climate

space occupied by the species are inconsistent between the native and introdjesed ra
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Therefore our model predictions are not useful in determining areas of haléhilisy

in the introduced range.
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Table 1. Bioclimatic variables from WorldClim (www.worldclim.org) used in Maxent
models to predict the distribution of three invasive species in US.

BIO1
BIO2*
BIO3
BIO4*
BIOS
BIO6
BIO7*
BIO8*
BIO9
BIO10
BIOI11
BIO12
BIO13
BIO14
BIO15
BIO16
BIO17
BIO18
BIO19*

Annual Mean Temperature

Mean Diurnal Range (Mean of monthly (max temp - min temp))
Isothermality (BIO2/BIO7) (* 100)

Temperature Seasonality (standard deviation *100)
Max Temperature of Warmest Month

Min Temperature of Coldest Month

Temperature Annual Range

Mean Temperature of Wettest Quarter

Mean Temperature of Driest Quarter

Mean Temperature of Warmest Quarter

Mean Temperature of Coldest Quarter

Annual Precipitation

Precipitation of Wettest Month

Precipitation of Driest Month

Precipitation Seasonality (Coefficient of Variation)
Precipitation of Wettest Quarter

Precipitation of Driest Quarter

Precipitation of Warmest Quarter

Precipitation of Coldest Quarter

* Variable removed from modelling due to differences in range between Europe and US.
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Table 2. Number of occurrence points used for model building and evaluation for each
region.

Native (Europe) Introduced (US)
Training Evaluation Training Evaluation
Iris pseudacorus 11158 3719 528 176
Lythrum salicaria 9847 3282 1216 405
Saccharum ravennae 18 6 30 10
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Table 3. Comparison of model performance using AUC values calculated using 25% of occurrence data held out. Standard deviations
indicate the variability of model accuracy through 500 iterations. The difference in accuracy between models built with all variables
and models built with five variables removed was tested with a Wilcox signed-rank test (n.s., not significant; *,p < 0.01).

** individual of a model pair that performed better in comparison.

Models built with US occurrence points Models built with Europe occurrence points
all variables reduced variables all variables reduced variables
Iris pseudacorus predicted into US 0.884 +/- 0.01 * 0.909 +/- 0.01 ** 0.613 +/- 0.01 ns. 0.648 +/- 0.01
predicted into Europe 0.79 +/- 0.01 n.s. 0.759 +/- 0.01 0.933 +/-0.01 n.s. 0.922 +/-0.01
Lythrum salicaria predicted into US 0918 +/-0.01 ns. 0.922 +/-0.01 0436 +/-0.01 n.s. 0447 +/-0.01
predicted into Europe 0.396 +/- 0.01 * 0.457 4+/-0.01 ** 0.924 +/- 001 ns. 0.917 +/- 0.01
Saccharum ravennae  predicted into US 0.943 +/- 0.04 ** * 0.895 +/- 0.04 0.668 +/- 0.03 * 0.736 +/- 0.03 **

predicted into Europe 0.452 +/-0.06 * 0.535 +/-0.07 ** 0.956 +/- 0.02 ns. 0.959 +/-0.01
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Table 4. Comparison of model performance using AUC values calculated using 25% of occurrence data held out. Standard deviations
indicate the variability of model accuracy through 500 iterations. The difference in accuracy between models built with all variables
and models built with five variables removed was tested with a Wilcox signed-rank test (n.s., not significant; *,p < 0.01).

Iris pseudacorus
Lythrum salicaria

Saccharum ravennae

Models built and applied to same region

Models projected into new region

. . e . difference between from native to from introduced to
within native within introduced . .

model sets introduced native
0.922 +/-0.01 * 0.909 +/-0.01 * 0.648 +/- 0.01 * 0.759 +/-0.01
0.921 +/-0.01 n.s. 0.922 +/-0.01 * 0447 +/-0.01 n.s. 0457 +/-0.01
0.959 +/-0.01 * 0.859 +/-0.04 * 0.736 +/- 0.03 * 0.535 +/- 0.07
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Table 5. Principle components analysis (PCA) of environmental variables associated with occurrence points for the species modelled.

Iris pseudacorus Lythrum salicaria Saccharum ravennae
Eigenvalue % Variance Eigenvalue % Variance Eigenvalue % Variance
PC-1 5.752 30.28 6.97 36.7 7.95 41.86
PC-2 5.119 26.96 442 23.25 529 27.82
PC-3 3.689 19.42 3.18 16.73 291 15.3
Total for first 3 76.63 76.68 84.98




Figure 1. Occurrences points used in models for Iris pseudacorus in Europe (a) and US
(b). Data are from GBIF (see appendix 1 for contributing institutions), USGS Nonindig-
enous Aquatic Species Program, and Oklahoma Vascular Plants Database.
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Figure 2. Occurrences points used in models for Lythrum salicaria in Europe (a) and US
(b). Data are from GBIF (see appendix 1 for contributing institutions), USGS Nonindig-
enous Aquatic Species Program, and Oklahoma Vascular Plants Database.
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Figure 3. Occurrences points used in models for Saccharum ravennae in Europe (a) and
US (b). Data are from GBIF (see appendix 1 for contributing institutions), USGS Nonin-
digenous Aquatic Species Program, and Oklahoma Vascular Plants Database.
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Figure 4. Potential distribution of Iris pseudacorus in US based on models built from
native range occurrences (a) and introduced occurrences (b). Actual occurrences of the
species are indicated with black dots.
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Figure 5. Potential distribution of Lythrum salicaria in US based on models built from
native range occurrences (a) and introduced occurrences (b). Actual occurrences of the
species are indicated with black dots.
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Figure 6. Potential distribution of Saccharum ravennae in US based on models built
from native range occurrences (a) and introduced occurrences (b). Actual occurrences of
the species are indicated with black dots.

185



Figure 6

(a)

Percent Probability
of Presence

[ J1-24

[]25-49
[ 50 - 74
75 - 89
~. - 100

0 250 500 1,000
N T

Kilometers

(b)

of Presence

[ ]1-24
[]25-49
[ 50 - 74
B 75 - 89
~. - 100

0 250 500 1,000 %
[ ——m

Kilometers

186



Figure 7. PCA of Iris pseudacorus occurrences points based on values of bioclimatic
variables. Open circles (o) represent the Europe records, crosses (+) represent the US
records. Contribution of bioclimatic variables to the distribution of the occurrence points
is indicated with the abbreviation of variable, see Table 1.
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Figure 8. PCA of Lythrum salicaria occurrences points based on values of bioclimatic
variables. Open circles (o) represent the Europe records, crosses (+) represent the US
records. Contribution of bioclimatic variables to the distribution of the occurrence points
is indicated with the abbreviation of variable, see Table 1.
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Figure 9. PCA of Saccharum ravennae occurrences points based on values of bioclimatic
variables. Open circles (o) represent the Europe records, crosses (+) represent the US
records. Contribution of bioclimatic variables to the distribution of the occurrence points
is indicated with the abbreviation of variable, see Table 1.

191



Figure 9

192

o
o
Bioé
L T )
, o in1s _
Bioly @ Ricip?
aF @ o
Bﬁiﬂﬁ o)
i
/ - Bio 1
2.0 ! "
Bio12 o
ol ¥ =
n -
< =5
<
5]
Bin3
Biod7 oo Bin 10
Bio14 Bjod
+
v K Bink
N +
ks
+
+
+ +
BinZ
Bid
Bin7
Axis 1




Appendix 1. Data for analyses were obtained from the GBIF data portal from the
following institutions:

10. GEO - Tag der Artenvielfalt 2008 - LSG PfatsbliChemnitz (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3381 11008p

20 Jahre Naturschutzgebiet Dreienberg (accessedghiGBIF data portal, http://data.gbif.org/datssesource/2729 09/12/2008)
3. Tag der Artenvielfalt Hockenheim (accessed tgroGBIF data portal, http://data.gbif.org/datasesjurce/2825 11/12/2008)
4. GEO-Tag in Eberbach (accessed through GBIFmtatal, http://data.gbif.org/datasets/resourcef2’®12/2008)

4. Tag der Artenvielfalt, Naturschutzgebiet Hockeinfer Rheinbogen (accessed through GBIF data portal
http://data.gbif.org/datasets/resource/2847 11008p

Ahrschleife bei Altenahr (accessed through GBIRgetrtal, http://data.gbif.org/datasets/resourc23B1/12/2008)
AKG-Gelénde (Bensheim) (accessed through GBIF gaittal, http://data.gbif.org/datasets/resource/28392/2008)
Angiosperm specimens of Shoji Sasamura of lwatéeBral Museum (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1800 0900BP

Arizona State University Vascular Plant Herbariiandessed through GBIF data portal, http://datagyigifdatasets/resource/676
09/12/2008)

Artenfiille um das Schalkenmehrener Maar (acce$seddgh GBIF data portal, http://data.gbif.org/datasesource/2722
11/12/2008)

Artenvielfalt auf der Weide - GEO-Hauptveranstagium Crawinkel (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/2697 0900BP

Artenvielfalt der Nordsee - Bremerhaven (Dorum-Ndlif (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/2716 11008p

Artenvielfalt in der Stadt: Botanischer Garten Weggal und Hardt (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3385 0900BP

Artenvielfalt Kreis GieRen (accessed through GBaFachortal, http://data.gbif.org/datasets/reso@8#2 11/12/2008)
AuRengeléande KITA Mauseburg Waldkirchen (accessesigh GBIF data portal, http://data.gbif.org/datasesource/3074
09/12/2008)

Australian National Herbarium (CANB) (accessed tigto GBIF data portal, http://data.gbif.org/datalsesource/47 09/12/2008)
Béche, Quellen und Teiche im FFH-Gebiet Mihlhatt#sdde (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3160 11008p

Bammentaler Duft- und Heilkréutergarten (acceskesligh GBIF data portal, http://data.gbif.org/datagesource/3115 09/12/2008)
Bannwald Burghauser Forst (accessed through GBHtatal, http://data.gbif.org/datasets/resou@#9309/12/2008)

BDBCYV - lll Semana de la Biodiversidad (Alicantgye), 2008 (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/7926 11008p

Bergbaufolgelandschaft am Muldestausee (accessaabth GBIF data portal, http://data.gbif.org/datssesource/2751 11/12/2008)
Bergkamen- Bergehalde GrofRes Holz (accessed th®B¢f data portal, http://data.gbif.org/datasetsitece/2797 09/12/2008)
Berkel (accessed through GBIF data portal, httat#@bif.org/datasets/resource/7871 11/12/2008)

Bernhardsthal (accessed through GBIF data pottat/data.gbif.org/datasets/resource/3398 09/13820

Beweidungsprojekt an der Nesse (accessed throudfh @&Ba portal, http://data.gbif.org/datasets/resef2938 09/12/2008)
Binsenwiesen (accessed through GBIF data portat//diata.gbif.org/datasets/resource/3113 11/18P00

Biodiversidad de Costa Rica (accessed through @Bt& portal, http://data.gbif.org/datasets/resd@38311/12/2008)
Biologiezentrum Linz (accessed through GBIF dataghohttp://data.gbif.org/datasets/resource/11042/2008)

Biologische Station im Kreis Wesel (accessed thnod@8IF data portal, http://data.gbif.org/datasetssurce/2703 11/12/2008)
Biospharenpark Wienerwald - Wiener Steinhofgrurateéssed through GBIF data portal, http:/datagifdatasets/resource/3392
11/12/2008)

Biotop Kohlbeke (Berlin-Marzahn) (accessed throG@iF data portal, http://data.gbif.org/datasetsfoese/2954 11/12/2008)
Biotop Binsenwiesen (Wehrheim/Taunus) (accesseaitfir GBIF data portal, http://data.gbif.org/datasesource/2761 11/12/2008)
Biotop Binsenwiesen und Ernst-Reiter-Wiese (Wehmi€aunus) (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3062 11008p

Bishop Museum Natural History Specimen Data (aczkessrough GBIF data portal, http://data.gbif.oegébets/resource/54
11/12/2008)

Bizzenbach-Aue im Bizzenbachtal (Wehrheim/Taunastéssed through GBIF data portal,
http://data.gbif.org/datasets/resource/2835 11008p

Bizzenbachtal (Wehrheim/Taunus) (accessed throlgjfr @ata portal, http://data.gbif.org/datasets/vese/2809 09/12/2008)
Bodenseeufer Radolfzell (accessed through GBIFmiatal, http://data.gbif.org/datasets/resourcel2BP12/2008)
Bodenteicher Seewiesen (accessed through GBIFpdata, http://data.gbif.org/datasets/resource/3B1/32/2008)

Bolzplatz (accessed through GBIF data portal, tttata.gbif.org/datasets/resource/3031 11/12/2008)

Borkhart (accessed through GBIF data portal, Hpta.gbif.org/datasets/resource/2933 11/12/2008)

Borstgrasrasen um die Burg Baldenau im Oberen Ralr¢eccessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3107 09008BP

Botanic Garden of the Finnish Museum of Naturakéfis (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/2406 0900BY

Boténica, Universidad de Le6n: LEB-Cormo (accesbealigh GBIF data portal, http:/data.gbif.org/deta/resource/260
09/12/2008)

Botanical Garden Collection (accessed through GRiia portal, http://data.gbif.org/datasets/resd@ic@1/12/2008)

Botanical Garden Yoshkar-Ola (accessed through @Bt& portal, http://data.gbif.org/datasets/rese/d92 11/12/2008)
Botanical Museum, Copenhagen. Database of typerspes (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/716 11/10820
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Botanical Society of the British Isles - Vascul@r data for Scottish Vice-counties (VCs 80, 883 & 104) (accessed through
GBIF data portal, http://data.gbif.org/datasetsfvese/1887 09/12/2008)

Botanical Society of the British Isles - Vasculdarits Database (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/839 09/10820

Botanical specimens database of Mr. Jiro Ito cobec Shizuoka Prefecture Museum of Natural His{@gcessed through GBIF data
portal, http://data.gbif.org/datasets/resource/1B1/12/2008)

Botanischer Garten (Saarbriicken) (accessed thiG&gh data portal, http://data.gbif.org/datasetsese/2641 09/12/2008)
Botanischer Garten Bochum (accessed through GBH-ptatal, http://data.gbif.org/datasets/resou@$109/12/2008)
Botanischer Garten Bonn (accessed through GBIFmtatal, http://data.gbif.org/datasets/resource4133/12/2008)
Botanischer Garten Darmstadt (accessed through @&Hr-portal, http://data.gbif.org/datasets/res@@R61 09/12/2008)
Botanischer Garten der Christian-Albrechts-Univtatsiu Kiel (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1378 11008p

Botanischer Garten Frankfurt (accessed through @BiE portal, http://data.gbif.org/datasets/resed®72 09/12/2008)
Botanischer Garten Gie?en (accessed through GBéFpaetal, http:/data.gbif.org/datasets/resou&2109/12/2008)
Botanischer Garten Graz (accessed through GBIFpdatal, http://data.gbif.org/datasets/resourcefl3%12/2008)

Botanischer Garten Jena (accessed through GBIRpdata, http://data.gbif.org/datasets/resourcel13&12/2008)

Botanischer Garten Krefeld (accessed through GRi& dortal, http://data.gbif.org/datasets/resodB8%3 09/12/2008)
Botanischer Garten Marburg (accessed through GBi& portal, http://data.gbif.org/datasets/resotf&4 09/12/2008)
Botanischer Garten Munster (accessed through G&ti mbrtal, http:/data.gbif.org/datasets/resoa&3 09/12/2008)
Botanischer Garten Osnabruck (accessed through @&#-portal, http://data.gbif.org/datasets/resed82 09/12/2008)
Botanischer Garten Rostock (accessed through Ga&trbrtal, http://data.gbif.org/datasets/resodB&3 09/12/2008)
Botanischer Garten Saarbrucken (accessed throudfh @zBa portal, http://data.gbif.org/datasets/resei1376 09/12/2008)
Botanischer Garten TU Dresden (accessed througk @&k portal, http://data.gbif.org/datasets/resed863 09/12/2008)
Botanischer Garten Ulm (accessed through GBIF platil, http://data.gbif.org/datasets/resource/13%32/2008)

Botany (UPS) (accessed through GBIF data portid;/ltata.gbif.org/datasets/resource/1045 09/1800

Botany registration database by Danish botanistsesed through GBIF data portal, http://data.gigjfdatasets/resource/703
09/12/2008)

Breitkopfbecken (Berlin-Reinickendorf) (accessemtiyh GBIF data portal, http://data.gbif.org/dataesource/3096 11/12/2008)
Bronx River Bioblitz (accessed through GBIF dataphttp://data.gbif.org/datasets/resource/7332/2008)

BUG (accessed through GBIF data portal, http://dathorg/datasets/resource/2628 09/12/2008)

BUND - Dassower See (Lubeck/Dassow) (accesseddhr@BIF data portal, http://data.gbif.org/datasessgurce/2707 09/12/2008)
Bundesamt fuer Naturschutz / Netzwerk PhytodivaesiDeutschland (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1098 09008

California State University, Chico (accessed thtoG@IF data portal, http://data.gbif.org/datasessurce/737 09/12/2008)
Canadian Museum of Nature Herbarium (accesseddhr@BIF data portal, http://data.gbif.org/datasetsjurce/123 11/12/2008)
Civico Orto Botanico Trieste (accessed through GidEa portal, http://data.gbif.org/datasets/resad@89 11/12/2008)

CONN GBIF data (accessed through GBIF data pdrtyd;//data.gbif.org/datasets/resource/7857 090BP

Cuxhavener Kistenheiden (accessed through GBIFpdatal, http://data.gbif.org/datasets/resources268/12/2008)
Danielsberg (Mdélltal, Karnten) (accessed througHfadata portal, http://data.gbif.org/datasets/reset2636 09/12/2008)
Danisco-Wiese (accessed through GBIF data pottat//ata.gbif.org/datasets/resource/2698 09/10820

Database Schema for UC Davis [Herbarium Labelsjgssed through GBIF data portal, http://data.gtgjfdatasets/resource/734
09/12/2008)

Departamento de Biolog. Veg. Il, Facultad de Faimadniversidad Complutense, Madrid: MAF (accessedugh GBIF data
portal, http://data.gbif.org/datasets/resourcef29/4.2/2008)

Deponie Klausdorf (accessed through GBIF data hdnttg://data.gbif.org/datasets/resource/2976 2/2008)

Die Wuhle (accessed through GBIF data portal, Mdigta.gbif.org/datasets/resource/3011 11/12/2008)

Dierloch, nérdlicher Mooswald (Freiburg-Hochdadccessed through GBIF data portal, http:/dathaygidatasets/resource/2952
09/12/2008)

Direccién General de Investigacion, Desarrollo Téggico e Innovacion de la Junta de Extremadura(@@t HSS (accessed
through GBIF data portal, http://data.gbif.org/data/resource/291 09/12/2008)

Déchtbuhlwald (Bad Waldsee) (accessed through @Rt& portal, http://data.gbif.org/datasets/resd@égy 11/12/2008)
Dorset Environmental Records Centre - Bryophyter&upof the Poole Basin Mires - NBN South West PRatject Case Studies
(accessed through GBIF data portal, http://datbaggidatasets/resource/835 11/12/2008)

Dpto de Botéanica, Ecologia y Fisiologia Vegetatiflaeio_cofc).Facultad de Ciencias.Universidad ded6lga (accessed through
GBIF data portal, http://data.gbif.org/datasetsioese/292 09/12/2008)

Draubiotop Lavamiind (accessed through GBIF datmpdittp:/data.gbif.org/datasets/resource/32432/2008)

E.C. Smith Herbarium (accessed through GBIF dattapdttp://data.gbif.org/datasets/resource/1820.2/2008)

East Ayrshire Countryside Ranger Service - EassiAiye Species Database (accessed through GBIpodid,
http://data.gbif.org/datasets/resource/1717 11008p

Ehmkendorf (accessed through GBIF data portal;/hdtia.gbif.org/datasets/resource/2944 11/12/2008)

EKY_Darwincore (accessed through GBIF data point#h://data.gbif.org/datasets/resource/7894 11008

Entdeckertour am Muldestausee (accessed through &&& portal, http://data.gbif.org/datasets/res@@i709 09/12/2008)
Entomology Department Collections, ZMUC (accessedugh GBIF data portal, http://data.gbif.org/detasesource/711
11/12/2008)

Environment and Heritage Service - EHS Speciesdetdgaccessed through GBIF data portal,
http://data.gbif.org/datasets/resource/940 09/13820

Eppingen und Umgebung (accessed through GBIF aatal phttp://data.gbif.org/datasets/resource/283/82/2008)
Erlengraben/Lipp-Tal (Ostringen) (accessed throB8iF data portal, http://data.gbif.org/datasetsioese/2675 09/12/2008)
EUNIS (accessed through GBIF data portal, httpt#/dbif.org/datasets/resource/198 09/12/2008)
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EURISCO, The European Genetic Resources Searclo@agaaccessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1905 09008BP

Fairchild Tropical Botanic Garden Virtual Herbariwarwin Core format (accessed through GBIF datéapor
http://data.gbif.org/datasets/resource/202 11/10820

Fern specimens collected by Mr. Hisaya Manago, Aiqyéant specimen database of Dr. Shigeru Mikiemion (accessed through
GBIF data portal, http://data.gbif.org/datasetsioese/608 09/12/2008)

Feuchtbiotop, Wildtier- und Artenschutzstation I&snhagen, Sielmanns Natur-Ranger (accessed th@&Righdata portal,
http://data.gbif.org/datasets/resource/3226 11008p

Feuchtwiese am Nationalpark-Haus Neuwerk (accebsedgh GBIF data portal, http://data.gbif.org/d&tas/resource/3590
11/12/2008)

Feuchtwiese Griine Mitte, Klasse 5a (accessed thr@ljF data portal, http://data.gbif.org/datasetssurce/3588 11/12/2008)
FFH-Gebiet Ahrbachtal (accessed through GBIF dattaf http:/data.gbif.org/datasets/resource/282/02/2008)

FFH-Gebiet Paartal (accessed through GBIF datalpbittp://data.gbif.org/datasets/resource/3558 2/2008)

Fledermaus (accessed through GBIF data portal//dtifa.gbif.org/datasets/resource/2948 11/12/2008)

Flora of Slowinski National Park, Poland (accesbedugh GBIF data portal, http://data.gbif.org/data/resource/2022 09/12/2008)
FloVegSlI - Floristical and fitocenological databa$@RC SAZU (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/2585 09008

Fohrenried (Fronreute und Baindt) (accessed thr@Bl data portal, http://data.gbif.org/datasetsitece/2970 09/12/2008)
Forstbotanischer Garten Tharandt (accessed thiG&dh data portal, http://data.gbif.org/dataseteuese/1370 09/12/2008)
Frauenholz (Holzmaden) (accessed through GBIFmtatal, http://data.gbif.org/datasets/resource/26682/2008)

Freiburger Netzwerk Artenvielfalt (accessed throGBIF data portal, http://data.gbif.org/datasetsitece/7866 11/12/2008)
Freiburger Tag der Artenvielfalt (accessed throG@iF data portal, http://data.gbif.org/datasetsfoese/2669 11/12/2008)
Freigelande Naturschutzscheune Reinheimer Teiokigfyarmstadt-Dieburg) (accessed through GBIF plaitial,
http://data.gbif.org/datasets/resource/2845 11008p

Frohlinder Muhlenbach (Dortmund-Kirchlinde) (acaasshrough GBIF data portal, http://data.gbif.oegésets/resource/2803
11/12/2008)

Fruit and seed collection database (accessed @84 data portal, http://data.gbif.org/datasetssurce/1093 11/12/2008)
Fuldaaue (Stadtgebiet Fulda) (accessed through @&Hr-portal, http://data.gbif.org/datasets/resef2i¢90 11/12/2008)

Garten J. Scherrer (Lachen-Speyerdorf) (accessedgh GBIF data portal, http://data.gbif.org/datasesource/3069 11/12/2008)
Geflihrte Wanderung im Eselsbachtal (accessed thrG&8JF data portal, http://data.gbif.org/datasetssurce/3561 11/12/2008)
Gelande der Lahntalschule Biedenkopf und Lahnaaete§sed through GBIF data portal, http://data@iifdatasets/resource/2982
11/12/2008)

Gelande des Schulzentrums am Himmelsbarg (accéssedjh GBIF data portal, http://data.gbif.org/data/resource/3136
11/12/2008)

Gemeinde Sursee (accessed through GBIF data futfal/data.gbif.org/datasets/resource/2652 02008)

Gemeindegebiet Weikendorf (Marchfeld) (accessenltin GBIF data portal, http://data.gbif.org/datssesource/2765 09/12/2008)
GEO Biodiversity Day (accessed through GBIF dataghchttp:/data.gbif.org/datasets/resource/10842/2008)

GEO Hauptveranstaltung Tirol (Innsbruck) (accegbenligh GBIF data portal, http://data.gbif.org/d&ts/resource/2662
11/12/2008)

GEO-Hauptveranstaltung (Duisburg) (accessed thr@Bit+ data portal, http://data.gbif.org/datasetsitece/2705 09/12/2008)
GEO-Hauptveranstaltung (Insel Vilm) (accessed thhoGBIF data portal, http://data.gbif.org/datasetsiurce/2704 11/12/2008)
GEO-Hauptveranstaltung (NLP Harz / Hochharz) (aseeéshrough GBIF data portal, http://data.gbif.datiasets/resource/2643
11/12/2008)

GEO-Hauptveranstaltung im Nationalpark Bayerisaivatd (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3378 09008

Georgs-Padd (Wangerooge) (accessed through GBaFpadatl, http://data.gbif.org/datasets/resourc@33pP1/12/2008)

Geo-Tag der Artenvielfalt Stiien Hornwiesen-Grundiefaccessed through GBIF data portal,
http://data.gbif.org/datasets/resource/2783 11008P

Gesamtartenliste Bremerhaven, Helgoland und Sgttegsed through GBIF data portal, http://data.ofgjfdatasets/resource/2689
11/12/2008)

Geschiitzter Landschaftsbestandteil - GLB Troppachessed through GBIF data portal, http://datamigifdatasets/resource/3014
09/12/2008)

Gewann Krampf (Heilbronn) (accessed through GBlfa gartal, http://data.gbif.org/datasets/resou@&3209/12/2008)
Gewasser des Wartbergparks Stuttgart (bei der @kastder VHS Stuttgart) (accessed through GBIR gattal,
http://data.gbif.org/datasets/resource/3124 11008p

Gronau - auf der Suche nach dem Neunauge (accéseadh GBIF data portal, http://data.gbif.org/dats/resource/3490
11/12/2008)

Gruga-Park Essen (accessed through GBIF data plattiail/data.gbif.org/datasets/resource/1384 J200B)

Gurgltal (Tarrenz) (accessed through GBIF dataghdnttp://data.gbif.org/datasets/resource/27212/2008)

Gymnicher Muhle (accessed through GBIF data pdrttd;//data.gbif.org/datasets/resource/7906 12008)

Hainhoop - Tonkuhle - Bullenmoor (Arpke) (accestedugh GBIF data portal, http://data.gbif.org/data/resource/2951
11/12/2008)

Hamberger Bricke / Wurmtal (Pforzheim) (accessealifih GBIF data portal, http://data.gbif.org/datasesource/2644
09/12/2008)

Harvard University Herbaria (accessed through Gdita portal, http://data.gbif.org/datasets/resdB27 11/12/2008)

Hatikka Observation Data Gateway (accessed thr@RjF data portal, http://data.gbif.org/datasetsfvese/2401 09/12/2008)
Hatikka Observation Data Gateway (accessed thr@RjF data portal, http://data.gbif.org/datasetsfoese/2401 11/12/2008)
Haus der Natur Salzburg

(accessed through GBIF data portal, http://dathaygidatasets/resource/1488 11/12/2008)

Heinersdorfer Sumpfwiese (accessed through GBI& plattal, http://data.gbif.org/datasets/resourc@219/12/2008)
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Heinersdorfer Sumpfwiese (accessed through GBI& plattal, http://data.gbif.org/datasets/resourc@i2171/12/2008)

herbario (accessed through GBIF data portal, fdgta.gbif.org/datasets/resource/566 11/12/2008)

Herbario de la Universidad de Arizona, EUA (accddbeough GBIF data portal, http:/data.gbif.orgéd@ts/resource/2479
11/12/2008)

Herbario de la Universidad de Salamanca: SALA (ssee through GBIF data portal, http://data.gbifaeitasets/resource/239
09/12/2008)

Herbario de la Universidad de Sevilla, SEV (acog$ssough GBIF data portal, http://data.gbif.orgédets/resource/283 09/12/2008)
Herbario de la Universidad de Sevilla, SEV-Histor{accessed through GBIF data portal, http://dbthayg/datasets/resource/284
09/12/2008)

Herbario del Instituto de Ecologia, A.C., MéxicB{BAJIO) (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1595 11008p

Herbarium (AMNH) (accessed through GBIF data potttip://data.gbif.org/datasets/resource/232 12004)

Herbarium (ICEL) (accessed through GBIF data pohtap://data.gbif.org/datasets/resource/231 1208)

Herbarium (UNA) (accessed through GBIF data pohth://data.gbif.org/datasets/resource/775 110089

Herbarium des Staatlichen Museums fur Naturkunddité§GLM) (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1105 0900BY

Herbarium Faeroense (accessed through GBIF datal guttp://data.gbif.org/datasets/resource/7132/2008)

Herbarium GJO (accessed through GBIF data pottal/idata.gbif.org/datasets/resource/1484 09/13820

Herbarium GZU (accessed through GBIF data porttd;/fdata.gbif.org/datasets/resource/1491 11/10820

Herbarium of Kitakyushu Museum of Natural HistondaHuman History (accessed through GBIF data portal
http://data.gbif.org/datasets/resource/606 09/13820

Herbarium of National Centre for Plant Genetic Reoss (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/227 09/13820

Herbarium of Oskarshamn (OHN) (accessed througtFGlata portal, http://data.gbif.org/datasets/resa@024 09/12/2008)
Herbarium of the Bia_owie_a Geobotanical Statiatéased through GBIF data portal, http://data ofgifdatasets/resource/1470
09/12/2008)

Herbarium Senckenbergianum (accessed through Gt-pbrtal, http://data.gbif.org/datasets/resodG®d 09/12/2008)
Herbarium Specimens of Museum of Nature and Humativifies, Hyogo Pref., Japan (accessed throughFGBita portal,
http://data.gbif.org/datasets/resource/589 09/10820

Herbarium Specimens of Tokushima Prefectural Muselapan (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/600 11/10820

Herbarium Universitat Ulm (accessed through GBIl&gertal, http://data.gbif.org/datasets/resou224109/12/2008)
Herbarium W (accessed through GBIF data portgh; Miata.gbif.org/datasets/resource/1479 09/12/p008

Herbarium Willing (accessed through GBIF data pohtip://data.gbif.org/datasets/resource/1096 2/2008)

Herbarium WU (accessed through GBIF data portgd; fdata.gbif.org/datasets/resource/1496 09/18P00

Herbier de la Guyane (accessed through GBIF datalpbttp://data.gbif.org/datasets/resource/14B86.2/2008)

Herbier de Strasbourg (accessed through GBIF datalphttp://data.gbif.org/datasets/resource/18322/2008)
Herrensee-Gebiet (Fischbachtal im Odenwald) (aedessough GBIF data portal, http://data.gbif.oegé$ets/resource/3055
09/12/2008)

Hintere Halde (accessed through GBIF data portid;/llata.gbif.org/datasets/resource/2830 09/13820

Hortus Botanicus Sollerensis Herbarium (FBonafeg¢ased through GBIF data portal, http://data.giyfdatasets/resource/300
11/12/2008)

Ibaraki Nature Museum, Dr.Masatomo Suzuki collectascular Plants (1) (accessed through GBIF dartizlp
http://data.gbif.org/datasets/resource/1813 09008

inatura - Erlebnis Naturschau Dornbirn (accesseslith GBIF data portal, http://data.gbif.org/dataesource/1866 11/12/2008)
Institut Botanic de Barcelona, BC (accessed thraaBIF data portal, http://data.gbif.org/datasetsitace/299 09/12/2008)
Institut d'Ecologia Litoral: IEL_Plantae (accessexugh GBIF data portal, http://data.gbif.org/dats/resource/263 11/12/2008)
Internation Botanical Collections (S) (accessedubh GBIF data portal, http://data.gbif.org/datssesource/1983 09/12/2008)
Inventaire national du Patrimoine naturel (INPN)d@ssed through GBIF data portal, http://data ofgifdatasets/resource/2620
09/12/2008)

IPK Genebank (accessed through GBIF data portal/fdata.gbif.org/datasets/resource/1851 11/18p00

Israel Nature and Parks Authority (accessed thr@s8i+ data portal, http://data.gbif.org/datasetsitece/1431 09/12/2008)
Issumer Fleuth (accessed through GBIF data pdrttat//data.gbif.org/datasets/resource/3252 09008

Jardin Botanico de Cordoba: Herbarium COA (accessedgh GBIF data portal, http://data.gbif.org&dsgts/resource/247
09/12/2008)

Jardin Botanique de la Ville Lyon (accessed throGghF data portal, http://data.gbif.org/datasetsitece/1388 09/12/2008)
Joint Nature Conservation Committee - Vegetatianets of coastal shingle in Great Britain (acceshesugh GBIF data portal,
http://data.gbif.org/datasets/resource/849 09/10820

KARSTLANDSCHAFT SUDHARZ - VOM GIPSABBAU BEDROHT (€nzstreifen am Roseberg) (accessed through GREF da
portal, http://data.gbif.org/datasets/resource/27262/2008)

Kiesbagger (Mittelhausen) (accessed through GBi& plartal, http://data.gbif.org/datasets/resourt@d211/12/2008)
Kiesgruben Wemb (accessed through GBIF data pottat//data.gbif.org/datasets/resource/2963 02008)

Kinderbauernhof Pinke-Panke (accessed through @Bi& portal, http:/data.gbif.org/datasets/resd@i&@2 11/12/2008)

Klasse 3a (accessed through GBIF data portal/faépe.gbif.org/datasets/resource/2929 11/12/2008)

Klutensee (accessed through GBIF data portal/hitgta.gbif.org/datasets/resource/2631 11/12/2008)

Knechtweide (Kohlfurth) (accessed through GBIF gatdal, http://data.gbif.org/datasets/resource220%12/2008)
Konigstetten (accessed through GBIF data ported;/fdata.gbif.org/datasets/resource/2667 09/18200

Korean Ethnobotany Database (accessed through @Gé#portal, http://data.gbif.org/datasets/resdlifice11/12/2008)
Kremmer Luch (accessed through GBIF data porttd;/fdata.gbif.org/datasets/resource/2937 11/18P00

Kurashiki Museum of Natural History (accessed tgitoGBIF data portal, http://data.gbif.org/datasessgdurce/599 09/12/2008)
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Kuste Wismar-Wendorf bis Hoben (accessed through-@Bta portal, http://data.gbif.org/datasets/reset2818 11/12/2008)
Kustenschutzwald (accessed through GBIF data pbitat/data.gbif.org/datasets/resource/2934 12(0B)

LaBoOb02 (accessed through GBIF data portal, idggd.gbif.org/datasets/resource/2629 09/12/2008)

Landschaftspark St.Leonhard-Deisendorf (accesseddh GBIF data portal, http://data.gbif.org/datasesource/3161 11/12/2008)
Landschaftspflegehof (Berlin) (accessed throughFaiita portal, http://data.gbif.org/datasets/res®@656 11/12/2008)
Landschaftsschutzgebiet Holmer Sandberge (accéssedjh GBIF data portal, http://data.gbif.org/d&ts/resource/3040
11/12/2008)

Landschaftsschutzgebiet Schmutterwald (accessedghiGBIF data portal, http://data.gbif.org/datasesource/3375 09/12/2008)
Langenberger Forst am Ochsenweg/ Nieblill-Leck &smmthrough GBIF data portal, http://data.gbifdetasets/resource/2658
11/12/2008)

Langes Tannen (accessed through GBIF data pottial/thata.gbif.org/datasets/resource/2682 11/13820

Langes Tannen (Uetersen) (accessed through GBdFpdatal, http://data.gbif.org/datasets/resourc&l261/12/2008)
Laubenheimer Bodenheimer Ried - von StromtalwiesghFlutrasen (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3501 0900BP

Leben im Finkensteiner Moor (accessed through GBlia portal, http://data.gbif.org/datasets/resd8ice! 11/12/2008)
Lebensraum Fluf3/Zwickauer Mulde in Wolkenburg (ase€ through GBIF data portal, http://data.gbifdeatpsets/resource/2973
11/12/2008)

Lebensraum Gesamtschule (Langerwehe) (accessedith@BIF data portal, http://data.gbif.org/datasesource/2767 09/12/2008)
Leiner-Herbar Konstanz (accessed through GBIF patial, http://data.gbif.org/datasets/resource/12/32/2008)

Liether Kalkgrube (accessed through GBIF data pdrttp://data.gbif.org/datasets/resource/3507 2/2008)

Liether Park 1 (LMS), Klasse 5b (accessed throuBliFGlata portal, http://data.gbif.org/datasets/oese/3530 11/12/2008)

Liether Park 2 (LMS), Klasse 6¢ (accessed throuBlFG@lata portal, http://data.gbif.org/datasets/oese/3492 11/12/2008)
Limnodata (accessed through GBIF data portal, fdta.gbif.org/datasets/resource/1466 09/12/2008)

Lindau im Bodensee (accessed through GBIF datalpbttp://data.gbif.org/datasets/resource/28012/2008)

LK 11 im Mdnchspark (accessed through GBIF datgahdnttp://data.gbif.org/datasets/resource/33962/2008)

Lothian Wildlife Information Centre - Lothian Wildé Information Centre Secret Garden Survey (a@zkisrough GBIF data portal,
http://data.gbif.org/datasets/resource/856 11/13820

Luch Niederlehme, Schler der Klasse 7 (accessedgh GBIF data portal, http://data.gbif.org/datasesource/2719 11/12/2008)
Lund Botanical Museum (LD) (accessed through GBRitagortal, http://data.gbif.org/datasets/resod@28 09/12/2008)
Lustadter Wald . (accessed through GBIF data pdrtigd://data.gbif.org/datasets/resource/7904 J200B)

Lustbach-Umland (accessed through GBIF data pdrttpl;//data.gbif.org/datasets/resource/3494 092008)

Magnoliophyta- Taiwan Biodiversity Data for GBIFc(@ssed through GBIF data portal, http://data.ofgifdatasets/resource/727
11/12/2008)

Mainufer (accessed through GBIF data portal, Httata.gbif.org/datasets/resource/3043 11/12/2008)

MEXU/Plantas Vasculares (accessed through GBIFmatal, http://data.gbif.org/datasets/resource/rB12/2008)
MISS_DC_01MAR2006 (accessed through GBIF data fdntgp://data.gbif.org/datasets/resource/7895 2/2(08)

MiBmahlsche Anlage (accessed through GBIF databbitp://data.gbif.org/datasets/resource/2852 2/2008)

Missouri Botanical Garden (accessed through GBtR gdartal, http://data.gbif.org/datasets/resou2E/@9/12/2008)

Mooswald (Freiburg) (accessed through GBIF datéapdrttp://data.gbif.org/datasets/resource/26512/2008)
Muritz-Nationalpark (accessed through GBIF dataglohttp://data.gbif.org/datasets/resource/33842/2008)

Museum of Natural History, Wroclaw University, Foof the Sto_owe Mts. (accessed through GBIF dattizlp
http://data.gbif.org/datasets/resource/1456 0900BP

NABU Naturschutzhof Netttetal (Sassenfeld) e.Vcéssed through GBIF data portal, http://data.glyfdatasets/resource/2759
09/12/2008)

NABU-Auerochsenweide (accessed through GBIF datepdttp://data.gbif.org/datasets/resource/311/8 2/2008)

NABUGEOL (accessed through GBIF data portal, Httata.gbif.org/datasets/resource/3140 09/12/2008)

NABU-Projekt (Osterode am Harz) Stidharzer Gipsk@stessed through GBIF data portal,
http://data.gbif.org/datasets/resource/2821 09008

Nationaal Herbarium Nederland (accessed throughr@Bta portal, http:/data.gbif.org/datasets/reset1211 09/12/2008)
National System of Proetcted Areas (accessed thr@BJF data portal, http://data.gbif.org/datasetssurce/1791 09/12/2008)
National Vegetation Data bank (accessed through@Rta portal, http://data.gbif.org/datasets/rese@471 09/12/2008)

Natur aus zweiter Hand am Muldestausee (accessmabth GBIF data portal, http://data.gbif.org/datssesource/2770 11/12/2008)
Natural History Museum Rotterdam (NMR) (accesseduph GBIF data portal, http://data.gbif.org/datasesource/693
09/12/2008)

Natur-Erlebnis-Kindergarten Waldkirchen/Erzgebifgecessed through GBIF data portal, http://daitbayt/datasets/resource/3090
11/12/2008)

Naturerlebnisraum Koppelsberg (PIon) (accesseditir@BIF data portal, http://data.gbif.org/datasetource/3132 11/12/2008)
NatureServe Network Species Occurrence Data (aetéseough GBIF data portal, http://data.gbif.oegédets/resource/607
09/12/2008)

Naturgarten Langenholtensen (accessed through @&#-portal, http:/data.gbif.org/datasets/resddB&%¥ 09/12/2008)
Naturgrundstiick (Eutin) (accessed through GBIF gatgal, http://data.gbif.org/datasets/resourcel2BH12/2008)

Naturnahes Tal in Siena (accessed through GBIFptatal, http:/data.gbif.org/datasets/resourced780/12/2008)

Naturparadies in Grafenhausen am Trifels (bei Anlengaccessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3093 09008

Naturpark Dromling (accessed through GBIF datagbadnttp://data.gbif.org/datasets/resource/7864 22008)

Naturschutzgebiet Gellener Torfmdorte (Landkreiss&marsch) (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3338 11008p

Naturschutzgebiet Bausenberg (accessed through &B#portal, http://data.gbif.org/datasets/resa@@57 09/12/2008)
Naturschutzgebiet Borstig bei Hallstadt (accesksenligh GBIF data portal, http://data.gbif.org/datasesource/3485 09/12/2008)
Naturschutzgebiet Kochertgraben (accessed throjR @Gata portal, http://data.gbif.org/datasets/vese/3233 11/12/2008)
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Naturschutzgebiet Lippeaue (Marl) - Pfadis in Sigknihle (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3087 11008p

Naturschutzgebiet Lochbusch-Kénigswiesen (accessedgh GBIF data portal, http://data.gbif.org/dats/resource/3094
11/12/2008)

nazza (accessed through GBIF data portal, httpe/fglaif.org/datasets/resource/2699 11/12/2008)

Neanderthal (accessed through GBIF data portal/futata.gbif.org/datasets/resource/3131 11/12/2008

Neckartalsudhang (Horb) (accessed through GBIFptatal, http://data.gbif.org/datasets/resourcef26812/2008)

Neuer Botanischer Garten Gottingen (accessed thr@BjF data portal, http://data.gbif.org/datasetssurce/1373 09/12/2008)
New Mexico Biodiversity Collections Consortium daagse (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3607 0900BY

New Zealand Biodiversity Recording Network (accdsseough GBIF data portal, http://data.gbif.orgédets/resource/7910
11/12/2008)

New Zealand National Plant Herbarium (CHR) (acogsssough GBIF data portal, http:/data.gbif.orgédets/resource/474
09/12/2008)

NMNH Botany Collections (accessed through GBIF getdal, http://data.gbif.org/datasets/resource41@3/12/2008)

Nordic Herbarium (S) (accessed through GBIF dattahdttp://data.gbif.org/datasets/resource/1028.2/2008)

NSG Haunestausee, Hauneteiche (accessed throughdagi portal, http://data.gbif.org/datasets/resa@B876 09/12/2008)

NSG Karwendel (accessed through GBIF data porttsl;/flata.gbif.org/datasets/resource/2678 11/13820

NSG Leist bei Ziegenhain (accessed through GBI& gattal, http://data.gbif.org/datasets/resourc®/301/12/2008)

NSW herbarium collection (accessed through GBIR ghattal, http://data.gbif.org/datasets/resource(@%12/2008)
NW-Innenhof Gesamtschule Herten 7.6.2001 (accebsedgh GBIF data portal, http://data.gbif.org/dats/resource/3321
11/12/2008)

Observational database of Icelandic plants (acddsseugh GBIF data portal, http://data.gbif.orgédets/resource/233 11/12/2008)
Observations du Conservatoire botanique nation&ahsin parisien. (accessed through GBIF datalporta
http://data.gbif.org/datasets/resource/1103 0900BY

Oklahoma Vascular Plants Database Provider (aatéisssugh GBIF data portal, http://data.gbif.orgédets/resource/2558
09/12/2008)

Okologisch Botanischer Garten Bayreuth (accessedidihh GBIF data portal, http://data.gbif.org/datssesource/1360 09/12/2008)
Okostation (Freiburg) (accessed through GBIF dattap http://data.gbif.org/datasets/resource/27%0.2/2008)

Orto Botanico di Pisa (accessed through GBIF dattap http://data.gbif.org/datasets/resource/13882/2008)

Paleobiology Database (accessed through GBIF aatal phttp://data.gbif.org/datasets/resource/5632/2008)

Panke und Ufer am Kinderbauernhof Pinke-Panke éseckthrough GBIF data portal, http://data.gbifdatasets/resource/2995
11/12/2008)

Perchtoldsdorfer Heide (accessed through GBIF piatal, http://data.gbif.org/datasets/resource/7@&32/2008)

Phanerogamie (accessed through GBIF data portjad//tiaita.gbif.org/datasets/resource/1506 09/1BP00

Phanerogamie (accessed through GBIF data portjpd//tiata.gbif.org/datasets/resource/1506 11/18p00

Philosophenwald und Wieseckaue in GieRen (accéssmajh GBIF data portal, http://data.gbif.org/data/resource/2690
09/12/2008)

Phragmites of Canada (accessed through GBIF data dutp://data.gbif.org/datasets/resource/528 2/2008)

Pilstingermoos (accessed through GBIF data pdntigl;/data.gbif.org/datasets/resource/2721 09008

Plant (accessed through GBIF data portal, httga/dhif.org/datasets/resource/469 09/12/2008)

Plant Observation Records of Japan (accessed thi®Bg- data portal, http://data.gbif.org/datasetssurce/2547 09/12/2008)
Plant observations from Bia_owie_a National Padc€ased through GBIF data portal, http://data.ofgjfdatasets/resource/1861
09/12/2008)

Plant specimens depodited in Osaka Museum of Natistory, Japan. (accessed through GBIF data porta
http://data.gbif.org/datasets/resource/1973 09008

Plant Systematics Laboratory, Ajou University, K(accessed through GBIF data portal, http://dbiaogg/datasets/resource/2469
11/12/2008)

Plants (GBIF-SE:Artdatabanken) (accessed througlti-@B8ta portal, http://data.gbif.org/datasets/reset1034 09/12/2008)
Please cite this data as follows:

Pottundkopp (accessed through GBIF data portal;/htata.gbif.org/datasets/resource/2741 11/12/008

Priest Pot species list, Cumbria, Britain (accessssligh GBIF data portal, http://data.gbif.orgédsts/resource/717 09/12/2008)
privater Garten (accessed through GBIF data pdrtigl;//data.gbif.org/datasets/resource/3016 12008)

Prombergl (accessed through GBIF data portal /ki#pa.gbif.org/datasets/resource/2702 09/12/2008)

Prophetensee Quickborn (accessed through GBIFpdatal, http://data.gbif.org/datasets/resource/2BRG 2/2008)
Quarrendorfer Landschaftsschutzgebiet (accessedghiGBIF data portal, http://data.gbif.org/datasesource/2778 09/12/2008)
Real Jardin Botanico (Madrid), Vascular Plant Helm (MA) (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/240 09/10820

Regenruckhaltebecken (Zeulenroda) (accessed thi®Biff data portal, http://data.gbif.org/datasessitece/2974 11/12/2008)
Regenwasserabfangsbecken (Erlenbach) (accessedhh@BIF data portal, http://data.gbif.org/datasetource/3133 11/12/2008)
Regionalpark(Hattersheim) (accessed through GBIi& glartal, http://data.gbif.org/datasets/resoufte3209/12/2008)
renaturierter Main (Kemmern bei Bamberg) (accesisemligh GBIF data portal, http://data.gbif.org/data/resource/2823
11/12/2008)

Renaturierung Werse (Innenbereich Beckum) (accebsedgh GBIF data portal, http://data.gbif.orgédsts/resource/2795
11/12/2008)

Repatriacion de datos del Herbario de Arizona (AR#Zcessed through GBIF data portal, http://dataayg/datasets/resource/2480
11/12/2008)

Ried und Sand - Artenvielfalt durch Beweidung (aseel through GBIF data portal, http://data.gbifdatasets/resource/3023
09/12/2008)

Riedensee (accessed through GBIF data portal//btita.gbif.org/datasets/resource/2724 11/12/2008)
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Rohrmeistereiplateau und angrenzendes Gebiet @tésrough GBIF data portal, http://data.gbif. dagidsets/resource/3382
11/12/2008)

Rosarium (LMS), Klasse 6a (accessed through GBi& glartal, http:/data.gbif.org/datasets/resouts®0311/12/2008)

Royal Botanic Gardens, Kew (accessed through GBt& dortal, http://data.gbif.org/datasets/reso62%/11/12/2008)

Royal Botanical Gardens Herbarium (accessed thr@Rjir data portal, http:/data.gbif.org/datasetsitece/512 09/12/2008)
Royal Museum of Central Africa - Metafro-InfosyXylarium (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/95 09/18P00

Rund um das LUGY (accessed through GBIF data pdnttzl://data.gbif.org/datasets/resource/3022 120008B)

Rund um den Eichwald,Schulhof Friedrich Frobel Ggsiom- Bad Blankenburg (accessed through GBIF ptatal,
http://data.gbif.org/datasets/resource/2684 11008p

Rund ums Cani (accessed through GBIF data pottpl//data.gbif.org/datasets/resource/3128 11/13820

Salzwiese Diekskiel (accessed through GBIF datpdttp://data.gbif.org/datasets/resource/32932/2008)

SANT herbarium vascular plants collection (accessssligh GBIF data portal, http://data.gbif.orgatatts/resource/222 09/12/2008)
Schatzinsel Wangerooge (accessed through GBIFpdeatal, http://data.gbif.org/datasets/resource/34B32/2008)

Schlern - (Bozen) (accessed through GBIF data Ipbtta://data.gbif.org/datasets/resource/2661 2/2008)

Schiler erforschen die Helme-Aue (accessed thr@RjF data portal, http://data.gbif.org/datasetsfoese/3577 11/12/2008)
Schulgarten der Volksschule (accessed through @Bi& portal, http://data.gbif.org/datasets/resd@B¥L 11/12/2008)
Schulgarten Hans-Carossa-Oberschule (accessedth@&BIF data portal, http://data.gbif.org/datasetsiurce/3027 11/12/2008)
Schulgarten mit Klasse 8a (Essen) (accessed thi@Bdh data portal, http://data.gbif.org/datasetsitece/2966 11/12/2008)
Schulgarten-St.-Georg-Gymnasium (accessed thro@iR @ata portal, http://data.gbif.org/datasets/vese/3248 11/12/2008)
Schulgelande Ceciliengymnasium (accessed throudhk @&a portal, http://data.gbif.org/datasets/rese3224 11/12/2008)
Schulgelande Schule auf der Aue, Miinster (accdbsedgh GBIF data portal, http://data.gbif.org/data/resource/2771
11/12/2008)

Schulhof der Astrid-Lindgren-Schule Elmshorn (aseesthrough GBIF data portal, http://data.gbif. daegdsets/resource/3092
11/12/2008)

Schulprojekt (Bremen) (accessed through GBIF dattaf http://data.gbif.org/datasets/resource/27B822/2008)

Schulteich Freie Waldorfschule Darmstadt (accetisedigh GBIF data portal, http://data.gbif.org/d&ta/resource/3335
11/12/2008)

Schulteich Heinrich-Mann-Schule (accessed throuBl-G@lata portal, http://data.gbif.org/datasets/vese/3253 11/12/2008)
Schulumfeld Albert-Einstein-Gymnasium (Sankt Augnistaccessed through GBIF data portal,
http://data.gbif.org/datasets/resource/2764 0900BY

Schulzentrum Parc Hosingen (accessed through GEH-pbrtal, http://data.gbif.org/datasets/reso8R3%4 11/12/2008)
Schussenaue (Weingarten) (accessed through GBifpdetl, http://data.gbif.org/datasets/resourcx328/12/2008)
Schussenaue bei Berg (accessed through GBIF data, inttp://data.gbif.org/datasets/resource/3020A22008)
Schwanheimer Wald (accessed through GBIF datalpbtta://data.gbif.org/datasets/resource/7865 22008)
Schwanseepark (87645 Schwangau) (accessed thrdighdata portal, http://data.gbif.org/datasets/oese/3058 11/12/2008)
Scottish Borders Biological Records Centre - SWattssh Borders Local Wildlife Site Survey data 19880 - species information
(accessed through GBIF data portal, http://datbaggidatasets/resource/848 09/12/2008)

Selz-Renaturierung (Hahnheim/Sérgenloch) (accessedgh GBIF data portal, http://data.gbif.org/d&ta/resource/3255
11/12/2008)

Selztal bei Friesenheim (accessed through GBIFgiztal, http://data.gbif.org/datasets/resourcel30%/12/2008)

Siegen/ Gymnasium Am Lohrtor (accessed through GRE portal, http:/data.gbif.org/datasets/rese/@832 11/12/2008)
Silbertor + Wasserbachtal (Rutesheim / Renningatgdssed through GBIF data portal, http://data@igifdatasets/resource/2677
11/12/2008)

Sonnentaugemeinschaft (accessed through GBIF detd, http://data.gbif.org/datasets/resource/2688.2/2008)

Spandau HBO (accessed through GBIF data portat//dtta.gbif.org/datasets/resource/2840 11/12/p008

Specimen Database of Colorado Vascular Plantsgaedehrough GBIF data portal, http://data.gbifaatpsets/resource/1832
09/12/2008)

SpieBwoogtal / Kénigsbruch (Fischbach) (accessedigih GBIF data portal, http://data.gbif.org/datasesource/3049 11/12/2008)
Spreewaldflie3e und Feuchtwiese bei Lubbenau (aeddsrough GBIF data portal, http://data.gbif dagésets/resource/3246
09/12/2008)

Staatliches Museum fur Naturkunde Stuttgart, Heuba accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1100 0900BP

Stadtgebiet (Dannenberg) (accessed through GBH-piatal, http://data.gbif.org/datasets/resourc¥22171/12/2008)

Stadtpark Herzberg (Elster) (accessed through @Bt& portal, http://data.gbif.org/datasets/resda8x 09/12/2008)
Stadtpark Sulzbach-Rosenberg (accessed through @BdFportal, http://data.gbif.org/datasets/res®/@800 11/12/2008)
Stausee (Oberdigisheim/MefRstetten) (accessed thi@Bd- data portal, http://data.gbif.org/datasetssurce/2673 11/12/2008)
Steinbruch Mainz-Weisenau (accessed through GBt#r plartal, http://data.gbif.org/datasets/resou@@4211/12/2008)

Stever (accessed through GBIF data portal, htgga/dbif.org/datasets/resource/3030 09/12/2008)

Streuobstwiese Stedar (accessed through GBIF dat,phttp://data.gbif.org/datasets/resource/3608.2/2008)
Streuobstwiesengelédnde St.Meinrad Gymnasium (aed¢ssugh GBIF data portal, http://data.gbif.oagésbets/resource/3065
09/12/2008)

Sudeniederung (Amt Neuhaus) (accessed through @&H-portal, http://data.gbif.org/datasets/resd8&&9 11/12/2008)
Sudeniederung (Amt Neuhaus), Landkreis Lineburge@sed through GBIF data portal, http://data.gigjfdatasets/resource/2715
11/12/2008)

Sirther Aue (accessed through GBIF data portal;/fitata.gbif.org/datasets/resource/3512 11/12/2008

SysTax (accessed through GBIF data portal, htgia/dbif.org/datasets/resource/1875 09/12/2008)

Tag der Artenvielfalt (accessed through GBIF datdgh, http://data.gbif.org/datasets/resource/2BE12/2008)

Tag der Artenvielfalt in Heidelberg (accessed tigltoGBIF data portal, http://data.gbif.org/datasetsiurce/3486 11/12/2008)
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Tag der Artenvielfalt mit Schilerinnen des Europay@asiums in Worth am Rhein (accessed through @Bt& portal,
http://data.gbif.org/datasets/resource/7872 11008p

Tag der Artenvielfalt mit Schilerinnen des Leib@ygmnasiums in Neustadt a.d.W. (accessed througlr G&ta portal,
http://data.gbif.org/datasets/resource/7873 11008p

Tage der Artenvielfalt rund um die Naturschutzstaflolsberg (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/7868 11008P

Take a Pride in Fife Environmental Information GentRecords for Fife from TAPIF EIC (accessed tigto GBIF data portal,
http://data.gbif.org/datasets/resource/927 09/13820

Taxa (accessed through GBIF data portal, httpa/dhtf.org/datasets/resource/7903 09/12/2008)

The AAU Herbarium Database (accessed through GBi& plortal, http://data.gbif.org/datasets/reso@@*/11/12/2008)

The Deaver Herbarium, Northern Arizona Universidgdessed through GBIF data portal, http:/datagbifdatasets/resource/678
11/12/2008)

The Shimane Nature Museum of Mt. Sanbe (accesseagin GBIF data portal, http://data.gbif.org/datasesource/1978
09/12/2008)

Tiere und Pflanzen am Pfannenbach (accessed th@Bthdata portal, http:/data.gbif.org/datasetsitece/3355 09/12/2008)
Tiergarten Straubing (accessed through GBIF datalpbttp://data.gbif.org/datasets/resource/2828 2/2008)

Tiroler Landesmuseum Ferdinandeum (accessed thi@8dfs data portal, http://data.gbif.org/datasetsitece/1509 09/12/2008)
Tongrube bei Hettstedt (accessed through GBIFmtatal, http://data.gbif.org/datasets/resource/34B82/2008)

Tornoer Teich (accessed through GBIF data portid;/fdata.gbif.org/datasets/resource/3502 11/X08P0

Triebesbach (Zeulenroda-Triebes) (accessed thr@ijk data portal, http://data.gbif.org/datasetsfoese/2996 09/12/2008)
Tumpel Schulbiologiezentrum (accessed through GBIl portal, http:/data.gbif.org/datasets/resd@8285 11/12/2008)

Type herbarium, Gottingen (GOET) (accessed thr@sBIF data portal, http://data.gbif.org/datasetsfoese/1494 11/12/2008)
UA Herbarium (accessed through GBIF data portg:ftlata.gbif.org/datasets/resource/7900 11/18p00

UAM Botany Specimens (accessed through GBIF datizlpdttp://data.gbif.org/datasets/resource/97822008)

Umgebung der Elsa-Brandstrom-Schule (Krickaupatgdssed through GBIF data portal,
http://data.gbif.org/datasets/resource/2781 11008p

Umgebung der Gesamtschule Hamburg-Winterhude (sedekrough GBIF data portal, http://data.gbif. degidsets/resource/2681
11/12/2008)

Umgebung der Gesamtschule Winterhude (Hamburgg¢aed through GBIF data portal, http://data.glgfdatasets/resource/2766
11/12/2008)

Umgebung der Grundschule Oderberg (accessed th@Bihdata portal, http://data.gbif.org/datasetsitece/3009 11/12/2008)
Umgebung von Schorndorf (accessed through GBIFptatal, http://data.gbif.org/datasets/resource$268/12/2008)

United States National Plant Germplasm System Cladie (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1429 11008p

Universidad de Almeria, HUAL (accessed through Gédla portal, http://data.gbif.org/datasets/resaf@d4 09/12/2008)
Universidad de Costa Rica (accessed through GBH-piatal, http://data.gbif.org/datasets/resourt®4109/12/2008)

Universidad de Extremadura, UNEX (accessed thr@igtr data portal, http://data.gbif.org/dataset®uese/255 09/12/2008)
Universidad de Granada, Herbario: GDA (accessemitiir GBIF data portal, http://data.gbif.org/datssesource/1741 11/12/2008)
Universidad de Méalaga: MGC-Cormof (accessed thrdBBI- data portal, http://data.gbif.org/datasetsitece/259 09/12/2008)
Universidad de Oviedo. Departamento de Biologi®tganismos y Sistemas: FCO (accessed through GBé&brtal,
http://data.gbif.org/datasets/resource/245 09/10820

Universidad Politécnica de Madrid, Dpto. Biologiagétal, Banco de Germoplasma (accessed through @zBdFportal,
http://data.gbif.org/datasets/resource/1521 11008p

University and Jepson Herbaria DiGIR provider (aseel through GBIF data portal, http://data.gbifdatasets/resource/1413
09/12/2008)

University Museums of Norway (MUSIT) (accessed tlylo GBIF data portal, http://data.gbif.org/datalsespurce/1996 09/12/2008)
University of California Botanical Garden DiGIR pider (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1412 11008p

Unna-Muhlhausen, Wiesen (accessed through GBIFmtatal, http://data.gbif.org/datasets/resourceb28@&/12/2008)

Unser kleines Rasenstick/ Durer-Gymnasium Nurnfargessed through GBIF data portal,
http://data.gbif.org/datasets/resource/2810 0900BP

Unterbrucker Weiher (accessed through GBIF dattpdittp://data.gbif.org/datasets/resource/28242/2008)

USDA PLANTS Database (accessed through GBIF datalpbttp://data.gbif.org/datasets/resource/10&@322008)

USU-UTC Specimen Database (accessed through GBéFpdatal, http://data.gbif.org/datasets/resous@3109/12/2008)

Utah Valley State College Herbarium (accessed tiir@sBIF data portal, http://data.gbif.org/datasetsgurce/1013 09/12/2008)
Vascular Plant Collection - University of Washingtderbarium (WTU) (accessed through GBIF data horta
http://data.gbif.org/datasets/resource/126 09/13820

Vascular Plant Collection (accessed through GBI& gartal, http://data.gbif.org/datasets/resou22/@9/12/2008)

Vascular plant collection of Jyvaskyla Universityis&um (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/462 09/13820

Vascular Plant Herbarium, Oslo (O) (accessed thrd@sBIF data portal, http://data.gbif.org/datasetssurce/1078 09/12/2008)
Vascular Plants Collection of Sagamihara City Mus€accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/1809 11008P

Vascular plants of south-central China (accesseligh GBIF data portal, http://data.gbif.org/datsgesource/1828 11/12/2008)
Vascular Plants, Field notes, Oslo (O) (accesseditih GBIF data portal, http://data.gbif.org/datssesource/1079 09/12/2008)
VegetWeb: zentrale Datenbank der Arbeitsgemeinstfegfetationsdatenbanken; Teil des Netzwerks fitdeliversitat Deutschland
(NetPhyD) (accessed through GBIF data portal, Migta.gbif.org/datasets/resource/1081 09/12/2008)

verschiedene Kleingewésser um Oldenburg/Holsteioe@sed through GBIF data portal, http://data ofgifdatasets/resource/3000
11/12/2008)
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Verwilderter Hausgarten mit angrenzendem Gelandefénburg-Hochsal) (accessed through GBIF datalport
http://data.gbif.org/datasets/resource/2986 0900BP

VFD-H: Rheingau: Pferdeweide Loock (accessed thrdbBIF data portal, http://data.gbif.org/datasetssurce/2928 09/12/2008)
VFD-RP: Hunsriick: Pferdeweide Kucher (accessediiirdGBIF data portal, http:/data.gbif.org/datasesource/3503 09/12/2008)
VFD-RP: Taunus: Kirchenweide Kopplers (accessealtin GBIF data portal, http://data.gbif.org/datssesource/3399
09/12/2008)

VFD-RP: Taunus: Ponykoppel Thurner (accessed tiir@&BIF data portal, http://data.gbif.org/datasetssurce/3125 09/12/2008)
Wald am Schloss Wittgenstein Bad Laasphe (accebsaagh GBIF data portal, http://data.gbif.org/data/resource/2747
09/12/2008)

Wald und Wiese am Buchwald (accessed through GRi& lortal, http://data.gbif.org/datasets/reso@#s 11/12/2008)
Waldhusener Moor (Lubeck-Kiicknitz) (accessed thhoB8IF data portal, http://data.gbif.org/datasetssurce/2969 11/12/2008)
Waldi-Weiher (accessed through GBIF data portah:ttata.gbif.org/datasets/resource/3346 09/18p00

Waldréander der Frankenhdhe (Rothenburg ob der Tadeessed through GBIF data portal,
http://data.gbif.org/datasets/resource/2647 11008p

Walldorf-Wiesloch: Natur Gber den Gleisen (accdgbeough GBIF data portal, http://data.gbif.orgéd®ts/resource/2850
09/12/2008)

Wanderweg am Windebyer Noor (bei Eckernforde) (ssee through GBIF data portal, http://data.gbifdetpsets/resource/2706
11/12/2008)

Warnowtal (Rostock) (accessed through GBIF dattapdrttp://data.gbif.org/datasets/resource/30862/2008)

Wassermann (accessed through GBIF data portal//tittta. gbif.org/datasets/resource/3034 11/12/2008)

Wedeler Au (accessed through GBIF data portal;/fdgia.gbif.org/datasets/resource/2990 11/12/2008)

Weide am Ostufer des Zotzensees, Muritz-Nationklfsacessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3111 11008p

Weide an der Mosselde / Dortmund-Kirchlinde/Wedtief(accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3219 09008

Weinberg Reichersdorf (accessed through GBIF datalp http://data.gbif.org/datasets/resource/34012/2008)

Westerwalder Umwelt- und Naturschutztag Limesgendeidillscheid (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3017 11008p

Wiese am Waldrand (Gurtweil) (accessed through GBifa portal, http://data.gbif.org/datasets/rese@i#84 09/12/2008)

Wiese und Bach am Kleinen Eutiner See (Eutin) (s through GBIF data portal, http://data.gbifadetasets/resource/2773
11/12/2008)

Wiesen-Walder-Wasser um Dansenberg, Biospharenegdeiélzerwald (accessed through GBIF data portal,
http://data.gbif.org/datasets/resource/3500 11008p

Wildes Bremer Leben im Park (accessed through @GRtk portal, http://data.gbif.org/datasets/resd@i@8 09/12/2008)
WildesMoor bei Schwabstedt (accessed through GBt& dortal, http:/data.gbif.org/datasets/resoGf@d 11/12/2008)
Wildkrauter (accessed through GBIF data portap:Httata.gbif.org/datasets/resource/2745 11/12/p008

Wismar Bucht coast-watching (accessed through @Bi& portal, http://data.gbif.org/datasets/resda@s 11/12/2008)
Zukiinftiges NSG Hoéftland/Bockholmwik (accessed tigio GBIF data portal, http://data.gbif.org/datasesource/2665 11/12/2008)
Zwei Flusse - eine Stadt (Villingen-Schwenning@tcessed through GBIF data portal, http://dathaygidatasets/resource/2829
11/12/2008)
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Appendix 2. Common, widespread species used for target group to create biaslifile us
in Maxent model. These 20 species are found throughout Europe and represent a variety

of habitats (Fitter et al. 1996).

Scientific Name

Habitat

Achillea millefolium
Ajuga reptans

Alisma plantago-aquatica
Anemone nemorosa
Arum maculatum
Calluna vulgaris
Digitalis purpurea
Dipsacus fullonum
Filipendula ulmaria
Galium aparine
Geranium pratense
Hyacinthoides non-scripta
Lamium purpureum
Leucanthemum vulgare
Lotus corniculatus
Papaver rhoeas

Plantago coronopus
Potentilla anserina
Primula veris

Urtica dioica

Grassland, banks and waysides, often a weed irslawn

Damp woods, hedge banks, meadows

In or beside ponds, ditches, canals, slowmovingrsiv
Woodlands, old hedge banks, upland meadows

Hedgerows, woodland, brown earth soils

Heaths, moors, rocky places, bogs, open woodlaad)lynon
sandy/peaty soils

Open spaces, woodland clearings, heaths, mourdamsi

Open woods, stream banks, roadsides, rough grouassland,
marginal habitats, railway banks

Wet, damp places of all kinds

Cultivated and arable land, waste-ground, woodlaedgches, scrub,
open ground, gardens

Meadows, roadsides, grasslands, open woods, dunes

Wide distribution except mountains and fens, buinigavoodlands
Arable and waste ground, hedgerows, roadsidesegavded
Grassy areas, especially nutrient-rich soils

Well-drained grassland, roadsides except on vadysails

Arable, waste ground, field edges, roadsides

Common near sea, on rocks, cliffs; dry sandy ghaeghsslands;
inland commons, paths and roadsides

Wasteland, pastures, waysides, sand dunes, especaiper places
Open woods, grassy places, meadows, roadside banks

Wasteland, woods, fens, roadsides, hedge bankeuEaghosphate
rich soils

202



Appendix 3. Box plots and line graphs comparing the overall range and interquartile
range of the 19 bioclimatic predictor variables available from WorldClim. Based on vi-
sual interpretation of these graphs, we eliminated 5 variables that had large differences in
ranges, see Table 1 for abbreviations and variables that were eliminated from modelling.
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SUMMARY

| began my research with an interest in utilizing data collected in the zedbar
Oklahoma, now digitized as the Oklahoma Vascular Plants Database. Biogeographic
research has benefited from the digitizing of large databases deriveddtoral history
collections and biological surveys. These resources made available viathetloan
be accessed by biogeographers around the world to address a multitude of é@ridgica
geographic questions. Utilizing this data taps into hundreds of years of study and
countless hours of research conducted by biologists across the globe. Thiatidissert
could not have been completed without the availability of data collected by legions of
researchers from museums, herbaria, and government agencies. By takimggelof
data collected by others, | was able to work at a geographic scale that woubkebave
impossible had | needed to gather all my own data. | was able to explore bapdeogr
questions at the continental and state level by mining the data collected bystsalogr

the past 100+ years.

My interest in the ecological conundrum of invasive plants led me to chose my first
dissertation topic — Can we use herbarium data to map the historic invasion of plants?
And can map the expansion of native “weedy” species in response to land use cimange?
chapter one, | used herbarium data to describe the temporal and spatial patterns
invasive and expansive species for the entire state of Oklahoma. | found thasptter
species invasion and expansion in Oklahoma could be detected using these techniques
which were developed for regions with longer collecting plant histories. However, the
expansion of native “weedy” species were not so easily documented. The irdarmat

found in herbaria may not be sensitive enough to detect the increase of abundance of
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native species.

One of the greatest caveats associated with modelling is the biased hature o
opportunistically collected data. Few studies take into consideration the biasedafiat
natural history collections such as: unequal sampling effort over time, non-random
geographic representation, poor location information, incorrect identification, and
disproportionately represented taxa. Therefore, methods must be developed to remove
such biases to reveal the true pattern of invasion. Researchers must méket tive e
reduce the power of these biases to control the results of analyses. The rasearch i
chapter one addressed temporal sampling bias using methods developed by researche
Europe and Canada.

Having explored the historic spread of invasive species, | was interested if
we could predict the future distribution of invasive species that have not yet beetime w
established in Oklahoma. A recently developed and growing sub-field of bragégg
species distribution modelling - became an excellent tool to study the plotentia
distribution of new invasive species. Species distribution modelling (SDM) istyrre
the trendy line of research and the literature is extensive and rapidlingroBecause of
its relatively new status, there were few texts or articles thapit®and review the
literature when | began my research into SDM. | conducted a review offettature for
my own use to better understand the background and proper use and interpretation of the
models produced by these techniques (chapter two).

During the course of researching and writing the literature review,aneclear
that these techniques were complicated and involved many assumptions. To introduce

myself to SDM, | modelled the distribution of the American burying beettegussi
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smaller data set that contained both presence and absence records. Sufeeyhaéata

beetle were available and a model of its habitat preference would be useful for
conservation efforts within Oklahoma for this endangered species. By modieling

species at the sub-state level, | was able to make some predictions of ibe lspleitat
preference. Although, as a generalist species, these results were ledsdhahlodel
performance could be improved by incorporating information on the cause of thesbeetle’
endangered status and its population shrinkage. To improve the models and consequently
the recovery effort for the species, the models need to include biotic iltesastuch as
congener and vertebrate competition and a reduction in optimally sized preyingreat

an accurate spatial layer of this type data will be a future challenge.

In chapter four, | returned to the invasive species theme by addressing the
question of whether the introduced distribution of invasive species can be predicted from
its native range. | modelled the potential distribution within the United Statkeeef
alien invasive species native to Europe using the Maxent modelling technique. Using
occurrence data from both the native (Europe) and introduced (US) ranges, | used
reciprocal modelling to evaluate habitat discrepancies between the introdadceatize
ranges. The native occurrences in Europe accurately predicted the destriaiitin
Europe; and introduced occurrences in the US accurately predicted the US distributi
However, the reciprocal models did not perform well. My model results indicatin¢hat
occupied niches are too inconsistent between the native and introduced ranges to make
models useful at the scale at which early invasive species detection can occur

The role of biotic interactions will need to play a bigger role in species

distribution modelling if they are to be ecologically meaningful. Inclusiamatfc
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interactions such as overlap with competitor distribution and shared resources will
improve model performance. Model predictions based on the native range may under-
predict the potential distribution in the introduced range if biotic interactiool,asu
competition or parasitism, are removed when an alien species enters a oew Bagi
accurately predicting areas of invasion in the introduced range may never truly
incorporate the influence of biotic interactions because the introduced species are
longer affected by their native biotic interactions and are subject to asattesof
species in the introduced range with which it may form new biotic interachiahare
currently indescribable.

Another interesting avenue of research that will significantly imptoge
modelling of invasive species is the inclusion of mechanistic variablegathet relying
on correlations with the environment to predict the environmental preferences of a
species, a mechanistic model uses information from detailed physioltugrahce
experiments to model the fundamental niche of a species. | would expect toedgcurat
model the potential of invasive species is to model the fundamental niche and project that
information onto the introduced range. This will not necessarily mean the spdtlss wi
able to thrive in those locations, because new biotic interactions will be in plaTd t
the species range.

The methods explored in this dissertation illustrate the potential of natualhist
collections and survey data have in contributing to modern biogeographical research.
Although the data is not perfect and the techniques do not perfectly represent the ecology
we can still take advantage of the newly digitized historical data to angweand

fundamental questions concerning biogeography. Advances in bias reductioa will
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doubt occur in the next several years. Improvements will be made to modelling
algorithms to better represent ecological processes. Predictor Hdta anhanced by
including biological meaningful and derived variables. Using any technique to model
species distribution should be done with care. Too often in the literature it is apparent
that the researchers plugged their data into a model, the model drew a map, and the
researchers presented the map as truth. This is done with little thought to proper
evaluation and noted accuracy. Researchers should understand their goal when they

model and verify that their approach is appropriate for that outcome.
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